

NATURAL GAS UTILIZATION AND PETROLEUM REFINING IN THAILAND

No. 1

FROM AUG 1977 TO AUG 1979

JAPAN INTERNATIONAL COOPERATION AGENCY

INDEX

A.	Letter to Mr. Pravit Ruyabhorn	August 20, 1979
В.	Petroleum Product Demand Forecast	
" - ^	No. 4 - Revision of No. 2 and No. 3 Report	April 30, 1979
c.	Natural Gas Demand Forecast	July 16, 1979
D.	LPG Production from Natural Gas	August 9, 1979
E.	Petroleum Statistics in 1978	June 11, 1979
F.	Oil Shale (Translated into English from "F	ETROTECH"
	of the Japan Petroleum Institute)	
	Author: Mr. Minoru Enomoto	• • • • • • • • • • • • • • • • • • •
, ,	National Research Institute for Pollution	and Resources
-		April 1, 1979
G.	Request Technical Assistance for New Proje	ct June 16, 1979
н.	Memorandum	
,	I. Thai Refinery	
	II. Expansion of Thai Refinery	
	III. Organization of Thai Government	September 17, 1979
т .		
,T.	. Capacity and Crude Thruput of Thai Refiner	у -
J.	Capacity and Crude Thruput of Thai Refiner Natural Gas Design Case of Thailand	у
_		
J.	Natural Gas Design Case of Thailand	

A Letter to Un. Pravil Ruyabhorn ang, 20, 190?

B PETROLEUM PRODUCT DEMAND FORE CAST

NO.4-REVISION OF NO. I AND AND AND PEPPORT

= G H I J

K

シ

 $\overline{\mathbb{C}}$

August 20, 1979.

Mr. Pravit Ruyabhorn, Secretary-General, National Energy Administration.

Dear Mr. Pravit,

As promised, attached please find all the reports and conclusion covering two years of my service as an adviser to the National Energy Administration.

I would like to express my sincere thank, especially to your staffs and all concerns who provided me necessary data and informations which made my reports possible in time.

I will leave Bangkok on August 23, 1979. However, if you need any informations regarding the above, please do not hesitate to write or telex to me as following address:

Y. KATASE

UNICO INTERNATIONAL CORP-KONISHI BLDG. (7TH FLOOR) 2-2, 2-CHOME, HON-CHO, NIHONBASHI, GHUO-KU, TOKYO, JAPAN

TEL : (03) 661-7733

CABLE : ADD. "CONSULT UNICO"

TELEX NO: 0252-2107

ANSWER BACK CODE : "INTO J"

Thank you very much again for your good co-operation.

I remain,

Sincerely yours,

Y. Kawase

Encl. 1. List of Report

2. List of Memorandum

3. CONCLUSION

c: Mr. Athorn

Mr. Tammachart

Dr. Itti -

••••

LIST OF REPORT

(01)	OUR RECOMMENDATION OF SOFREGAZ INTERIM REPORT	October 2; 1977
(02)	CONSUMPTION OF NATURAL GAS AND ELECTRICITY	
	FOR MAJOR INDUSTRY PROJECT	November 21, 1977
	PART I FERTILIZER PART II CHEMICAL	
(03)	FELSIBLE STUDY OF AMMONIA	December 19,1977
(04)	ROI OF SODA ASH PROJECT	January 9, 1978
(05)	SPONGE IRON PROJECT	February 6, 1978
(06)	CONVERSION OF RESIDUAL FUEL OIL TO DIESEL OIL PART I TECHNICAL EXPLORATION	February 14, 1978
(07)	NATURAL GAS DEMAND AND FORECAST OF THE INDUSTRY (FUEL OIL AND RAW MATERIAL)	July 20, 1978
(1)	NATURAL GAS DEMAND FORECAST OF THE INDUSTRY (FUEL AND RAI MATERIAL)	July 20, 1978
(2)	STUDY OF 20,000 BPSD VACUUM UNIT 16,000 BPSD HYDROCRACKING AND 6,400 BPSD COKER	August 25, 1978
(3)	·	September 18, 1978
(l _F)	PETROLEUM PRODUCTS DEMAND FORECAST	00p00m001 101 1970
	No.1 NATURAL G.S	September 30, 1978
(5)	PETROLEUM PRODUCTS DEMAND FORECAST No.2 LPG RECOVER FOR NATURAL GAS	October 18, 1978
(6)	•	•
` .	Note: PETROLEUM PRODUCTS DEMAND FORECAST No.1, No.2 and No.3 were for 500 MMscf/D	October 25, 1978
ĩ.	natural gas production schedule. So, these reports were reviced later for 700 MMscf/D natural gas production schedule.	
(7),	PROPOSAL OF "PRELININARY PROPOSAL ON THE COMPUTOR PROGRAM"	December 11, 1978

.

-	(8)	QUESTIONS FOR ANSWER FROM SUMMIT INDUSTRIAL	
	`	CORPORATION	December 20, 1978
	(9)	THAILAND SPECIFICATION OF FUEL OIL (DRAFT)	December 21, 1978
	(10)	PLANNING AND CONSTURCTION SCHEDULE OF EXPANSION AND/OR NEW REFINERY SHOULD BE ACTED IN HASTE	January 1979
	(11)	PETROLEUM ECONOMIST	January 3, 1979
		JICA requests me on explanation of petroleum economist scope of work.	•
	(12)	1. PROPOSAL ON REFINERY EXPANSION PROJECT FOR KINGDOM OF THAILAND	
		2. PRELIMINARY PROPOSAL ON THE REFINERY L/P FOR NATURAL ENERGY ADMINISTRATION	January #, 1979
	(13)	NEW DATA OF NATURAL GAS FOR CALCULATION OF OPTIMUM REFINERY	January 5, 1979
		Asking data of FLUOR OCEAN SERVICES INC.	•
	(14)	CAPACITY OF REFINERY L/P MODEL	January 1979
	(15)	EVALUATION OF THE EXISTING REFINERY BY USING MODEL	January 11, 1979
	(16)	PRELIMINARY PROPOSAL FOR BASIC ENGINEERING OF TWO COMPANIES	January 15, 1979
	(17)、	CRUDE EVALUATION .	January 22, 1979
	(18)	ENERGY SAVING	
		(1) RENEWAL OF USED LUBE OIL AND RECOVERY OF WASTE OIL	
		(2) FLABEGAS UTILIZATION	•
		(3) VAPOR LOSS FROM NAPHTHA AND GASOLINE TANK AND TANK TRUCK	: February 16, 1979
	(19)	CONSTRUCTION COST COMPARISON	March 23, 1979
	(20)	ENERGY CONSERVATION No.1 REPORT ORGANIZATION	
		AND ACTIVITY OF COMMITTEE (IN JAPAN)	April 23, 1979
		PETROLEUM PRODUCT DEMAND FORECAST NO.4 REVISION OF NO.2 AND NO.3 REPORT	April 30, 1979
	(22) .	ABRIDGED TRANSLATION OF JAPANESE MOON LIGHT	
	(2 4)		May 12, 1979 July 16, 1979
	٠,	FORECAST	July 23, 1979
	(24)	LPG PRODUCTION FROM NATURAL GAS	July 9, 1979
		/~\	

LIST OF MEMORANDUM

(01)	OIL SHALE	April 1, 19 9
(02)	SYNTHETIC GAS FROM COAL AND LIGNITE	June 16, 1978
(0)	CRUDE ASSAY	September 5, 1978
(1)	TIS THAILAND INDUSTRIAL SPECIFICATION	October 10, 1978
(2)	MANUF CTURING INDUSTRIAL SPECIFICATION	October 10, 1978
(3)	JAPAN SILVER VO UNTEER	February 7, 1979
(4)	CONSERVATION OF ENERGY	February 26, 1979
(5)	COMMENTS FOR TORC REFINERY EXPANSION	March 19, 1979
(6)	DEPRECIATION YEAR FOR JAPANESE LOW FOR REFINERY	March 25, 1979
(7)	OIL SHALE	April 1, 1979
(8)	1. F/S FOR EXPANSION OF EXISTING REFINERY AND NEW REFINERY	1
	2. PURCHASING LP MODEL OF REFINING SCHEME AND F/S	April ^l +, 1979
(9)	I NATURAL GAS BURNING FOR MEDIUM AND SMALL SIZE BOILER II SMOKE FROM CHEMNEY III LPG EXPORT	April 14, 1979
(10)	NATURAL GAS BURNING FOR MEDIUM AND SMALL BOILER MINUTE	May 15, 1979
(11)	PLANT CAPACITY INDEX	May 3, 1979
	ALCOHOL FUEL FOR AUTOMOBILE	May 9, 1979
	7/7/14	April 27, 1979
	No. olasia and an analysis	May 9, 1979
	•	May 25, 1979
(16)	WATION REVIEW "CALTEX READY FOR EXPANSION OF BANG-CHAK	June 11, 1979
(17)	TERM OF PETROLEUM TECHNIC	June 20, 1979
(18)	INFORMATIONS OF INTEGRATED FLAT STEEL PROJECT	July 8, 1979

.

.• . X •

CONCLUSION

I FORE ORD

I.1 1ST ONE YEAR (AUGUST 24, 1977 - AUGUST 23, 1978)

During the 1st one year, I was adviser of Technical Division.

I reported (1) the review of SOFREGAZ interim and final report (2) new project of ammonia, soda ash, integrated flat steel, and (3) natural gas demand and forecast of the industry.

In this stage, natural gas production, price and others were unknown. So, these reports must be reviced. Some of them I reviced in the 2nd on year.

II.2 2ND ONE YEAR (AUGUST 24, 1978 - AUGUST 23, 1979)

During the 2nd one year, I was adviser of the Regulatory Division.

I would like to explain the conclusion of the 2nd one year to you, of course, the report of the 1st one year is related the report of the 2nd one year.

II PETROLEUM PRODUCT DEMAND INCLUDING NATURAL GAS

Crude oil throughput is always changed when energy source is changed. For the time being, natural gas production from Siam Gulf is changed, crude oil throughput should be changed.

In future, Thai energy source should be changed; not only crude oil and natural gas but as following energy

- (1) Atomic Energy
- (2) Coal (lignite)
- (3) Oil Shale
- (4) Solar Energy
- (5) Others

± .

I presented two reports of crude throughput in case of 500 MMscf/D natural gas production and 700 MMscf/D natural gas production.

III CONCLUSION

III.1 PETROLEUM REFINING AND NATURAL GAS

The petroleum refining pattern is entirely different after natural gas production.

Petroleum and natural gas flow is shown in FIG.1.

III.1.1 Refinery

1. Refining Capacity in 1983

The expansion and new refinery will be completed in 1983 at carliest.

Existing Capacity	184,000	BPSD	(Nominal	165,000	BPSD)
Minimum Capacity	369,000	BPSD			
*					

Excess Capacity 50,000 BPSD The year of 1983

Necessity Capacity 419,000 BPSD

Note: Excess capacity must be needed for petroleum products demand increase of 2.5 years.

The expansion and new refinery capacity is as follows:

Expansion and New (Minimum) 185,000 BPSD

Excess 50,000 BPSD

Total 235,000 BPSD - 1.4 times for nominal capacity

1.3 times for existing capacity

Of course, fuel oil is substituted by natural gas, so fuel oil which is equivalent of natural gas on calorific value should be grade up to lighter fractions, for this purpose many cracking units should be installed.

• • •

•

7 - .

2. Optimum Refinery

During my vacation, I asked for the computor calculation of the optimum refinery to some Japanese refining company and Unico without fee. The companies calculated by computor for 5 cases, actually more than 100 cases must be needed. So, I could not get conclusion of the optimum refinery.

The best way from 5 cases calculation for the expansion and new refinery are as follows:

- (1) Residues of existing 3 refineries must be gathered and cracked.
- (2) Diesel oil must be imported. (Note: Diesel oil import is very difficult).
- (3) Cracking units must be necessary, but gasoline fraction is over production.

3. Crude Evaluation

I presented some company's crude evaluation which was calculated by computor.

Conclusion of crude evaluation is as follow:

- a. Lighter crude and high gasoline yield crude are profitable instead of high price.
- b. Low-sulfur crude is profitable instead of high price.

As you know the crude in all over the world is getting heavier, and production of low sulfur crude is very difficult to get it.

CRUDE EVALUATION IS NEEDED TO CARRY AS FOLLOWING CASES:

- (1) Refining company wants to buy new crude.
- (2) Revamping, expansion and new refinery

2nd

- o 1st

 Available crudes must be selected.
- Optimum refinery must be calculated for available crudes, and same time crude evaluation can be carried.

- ' . 7

Crude evaluation can not carried before units selection, and evaluation of unavailable crude is no meaning.

3. Construction Cost and Financing

Construction cost/barrie /day of big size is less than small size.

For Example:

	50,000 BPSD (MM \$)	115,000 BPSD	150,000 BPSD
Construction Cost*	260.9	461.6	554.6
\$/B/D	5,218	4,014	3,679
Rate	1	0.77	0.71

Note: * including off-site

Thus, small expansion and new refinery are big loss of money, but when one company installs big refinery, financing is very difficult.

Three refining companies are planning to revamp and expand for existing refineries. If the revamping is possible, installation cost may be cheap. In any event, comparison of case 1 three refineries expansion and expansion (no new refinery), case 2 combination of three refineries expansion and new refinery, and case 3 only new refinery, should be carried by computor calculation.

In Japan, it is said that the most profitable capacity is 300,000 BPSD and minimum size is 150,000 BPSD capacity.

4. Thai Petroleum Requirement Pattern

The refinery pattern after natural gas production is so-called abnomal, but it is very similar to W. Germany and France (see FIG.1). Refinery which is high yield of diesel oil is called DIESEL OIL REFINERY.

14134

•

.

term of the second seco

5. Bottle Neck

I surveyed the bottle neck of SUMMIT Bangchak Refinery. 3 refining companies already revamped, so I suspended a study of bottle neck of 3 refineries.

6. Tank Capacity

Thailand should be installed tanks before the expansion and new refinery completion may be the year of 1983, because he should import petroleum products before the year of 1983 about same quantity of domestic production in 1983.

Tank capacity must be needed 90 days storage for domestic refining and import petroleum products.

Existing tank capacity for 3 refineries is not satisfactory.

	,	1977	1978	1979	1980	1981	1982
(1)	Existing Tank Capacity 10 ³ Kl	2,539	2,639	2,639	2,639	2,639	2,639
(2)	Crude Thruput 10 ³ Kl/D	29•3	29•3	29 • 3	29•3	29.3	29.3
(3)	Storage Days *1. r	90	90	90	90	. 90	90
(4)	Demand 10 ³ Kl/D	33.7	36.5	43.2	48.1	50.0	53.4
(5)	Storage Days*2 For Demand	78•3	72•3	61.1	54 _• 9	52.3	49.9
(6)	.Running Capacity Days*3	39.3	36.2	30.6	27•5	26.4	24.7

Note: *1 Storage days for refinery (crude throughput) ((1) - (2) = days (3)

^{*2} Storage days for demand (1) - (4) = days (5)

^{*3} Storage days for running capacity (5) x ½

· · · · · ·

3

In 1982 necessity of tank capacity $4.806 \times 10^3 \text{Kl}$ At present tank capacity $2.639 \times 10^3 \text{Kl}$ New tank capacity (newly install) $2.167 \times 10^3 \text{Kl}$

If tanks are not sufficient, petroleum products can not be imported.

III.1.2 Natural Gas

Natural gas production will be commenced in October, 1981.

When Bang Pakong Power Station will be completed, natural gas requirement for the power station will be 382 MMscf/D. 700 MMscf/D natural gas production is not enough to supply it to the existing industry. So, at first, natural gas should be supplied to EDAT and new products. If natural gas production will be over than 700 MMscf/D, then NGOT will supply natural gas to existing industry. At that time, NGOT should be guarantee a quantity of natural gas, and supplying term.

Natural gas supplying to existing industry need much money such as natural gas pipeline laying, boiler modification, but no merit.

Eang Pakeng Power Station is not good location, it is better to move to very close to refinery, and aslo good place for coal firing.

At present, Thai Government is planning the new project of flat steel and soda ash project. In future, when natural gas production will be increased, he must study petrochemical, such as ammonia (fertilizer), and C_2 , C_3 C_4 and C_5 delivertibes. And if natural gas will be enough more than 700 MMscf/D. The new project should be expanded.

III.1.3 LPG Production

LPG from refineries are supposed to enough for domestic requirement after the completion of the expansion and new refinery.

So, LPG from natural gas will be exported to get foreign currency, but LPG FOB price must be higher than fuel oil 1,200° on calorific value.

C₃ LPG C₄ LPG

Current FOB Price 160 t/T 180 t/T

more than more than

Expected FOB Price 192 w/T 216 w/T

Note: * C₃ LFG 192 ½/T, C₄ LPG 216 ½/T are costs of Thai LPG from natural gas, and costs of them are equivalent to fuel oil 1,200° on calorific value.

The current FOE price is very low, but LPG FOB price is going up rapidly, in near future LPG FOB price will be up to feasible price because of worldwide LPG market tight.

Therefore, NGOT should be watch a movement of LPG price.

Japan is very good LPG market for Thailand.

Thai LPG production from natural gas (from pipeline)

in 1983 $304 \times 10^3 \text{T}$ (after 1988 $559 \times 10^3 \text{T}$)

Japanese LPG Domestic Production and Import

Domestic in 1983 $5,917 \times 10^3$ T

Import in 1983 $11,589 \times 10^{3}$ T

Total 17,506 x 10³T

The natural gas processing unit must be moved to near sea-shore for LPG export and LPG delivery by ship.

Decrease of natural gas production according to LPG production increase is 18.20 MMscf/D in 1981, 46.42 MMscf/D in 1985 and 36.97 MMscf/D in 1990. The decrease of natural gas supply is nearly equal to natural gas for the existing industry, therefore, NGOT can not

supply natural gas to the existing industry.

III.3 ENERGY CONSERVATION

I presented 2 reports for energy conservation. I requested to send materials of energy conservation to Japan and I got many of them, but I have so time to report to you.

Energy conservation in the refinery is as follows:

(1) Air fuel ratio 0, meter for flue gas necessary.

(2) Insulation Change to thick insulator

former insulator price is

higher than curde oil.

(3) Heatexchanger Change or rearrange, former

heatexchanger price is higher

than crude oil

(4) Refux and stripping Steam Reduce .

(5) Waste pressure and heat Recover

(6) Vapor loss from storage corn roof tank Recover

Some refining company's energy conservation target is 20%.

About energy saving in the refinery, my calculation ic as follows:

(1) Renewal of used lube oil 0.37% on crude

(2) Flare gas . 0.03% on crude

(3) Vapor loss 0.31% on crude

Vapor loss is very big, so in USA, Japan and other countries have recovered gasoline vapor.

In refinery crude oil and gasoline tank (cone roof tank), and tank truck and car.

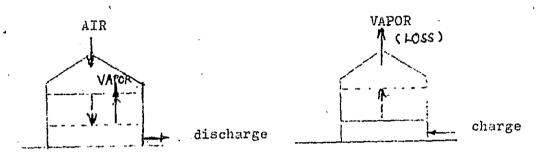
 $\frac{1}{2}(X_{i} - \varphi_{i}) = \frac{1}{2}(X_{i} - \varphi_{i})$

• • • •

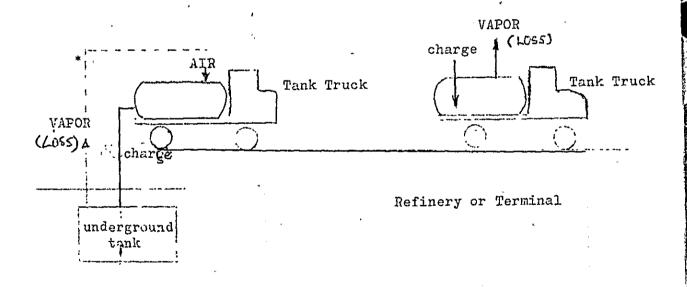
•

. •

:- ,


1 p =

In terminal (depot)


Gasoline tank and tank truck

In gasoline service station

Underground tank and tank truck

Cone Roof Tank (Crude oil and gasoline tank)

Gasoline Service Station

Note: * Tank is connected underground tank and gasoline vapor loss is prevented.

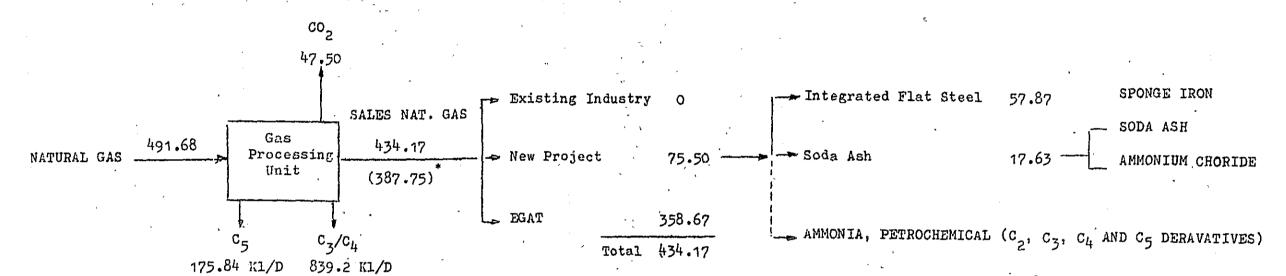
FIG.1

RUDE FLOW

Note: No mark is BPSD	•			1983	1978
	1983		LPG	2.4 %	2.1 %
Nominal Cap. 165,000	Existing 184,000 Expansion 145,000		→ BENZINE	21.5 %	19.1 %
Actual Cap. 184,000	Total 329,000	,	JET FUEL	7.5 %	6.6 %
CRUDE OIL 369,000 Existing 3 refineries	Expanded 3 refineries	353,000	> KEROSENE	2.8 %	2.5 %
<u> </u>		333,000	DIESEL OIL	36.1 %	31.9 %
	New Refinery		FUEL OIL	21.6 %	30.6 %
	New 90,000	÷	OTHERS	3.8 %	2.4 %
	•		LOSS & OWN FUEL	4.3 %	4.8 %

,	CRUDE THRU	PUT (IN 1983)) -,
	Existing	Expansion	Expanded (Total)
SUMMIT	63,000	45,000	108,000
TORC .	74,500	65,000	139,000
ESSO	46,500	35,000	81,500
	184,000	145,000	329,000
NEW		Newly 90,000	Newly 90,000
* * * * * * * * * * * * * * * * * * *	184,000	235,000	419,000
	Exp	ansion and New	Refinery
		Minimum Cap.	369,000
	-	Extra	50,000
			419,000

PETROLEUM	PRODUCTION	%	OF	MATN	COUNTRIES	AS	OF	1976
LUINOUDUM	TIODUOTTON	\sim	OT.	11111	AAA4444A	7	O.L	1710


1 ⁷ -	Japan	USA	W.Germany	France
BENZINE	11.1 %	44.4 %	√15.6 %	15.6 %
NAPHTHA .	10.7	4.0	2.5	5.1
JET FUEL	1.4	6.5	1.4	3.1
Kerosene	9.8	1.2	nil	0.1
DIESEL OIL	15.5	22.1	41.0	25.8
FUEL OIL	45.3.	13.0	24.1	32.5
OTHERS	6.1	8.4	13.4	7.5

		, , , , , , , , , , , , , , , , , , , ,	
	•		•
		,	
	,	•	•
	,	4.5	
, e ,		*	
	`		
		,	*
			**•
		•	1.0 - 201
4, 45		, , ,	
. · ·	1 1 1 1 mm	, . , ,	* * ****
		•	,
.,	*	, ,	•
	,		ŧ
=*	`		· •
•			,
		ه± د جم کونو به	
	:		
		*	
			9
	•	-	• •
, • • • •		- :	
•	*,		
l .		* \\	
•		*	
•			
,		,	
	ر مه سرده	حافاتشيس يها	1 /* . 7/ · 3 · · · .
" •			
	- 3		
	. Prairie		
	. With the		
			۸.
			۸.
			,
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		•
	1. 2.322		•
	1. 2.322		

			* ********** ***
			m tila. At
			And the second s

• -	·								-		,	,
(8)	Fuel Oil	% on crude % on crude	25.8	22.8	21.6	17.6	19.0	18.1	19.5	18.5	19.5	. 20 • 4
(2)	Fuel Oil	% on crude	52.6	34.2	34.7	36.4	35.7	36.1	35.5	35.9	35.4	35.0
(9)	(5)÷(7)	88	7.1	711.9	13.7	19.7	4.71	18.8	16.7	18.1	16.6	15.2
(5)	Total	10 ² KL/y	16,723	17,960	18,489	18,155	20,251	21,896	24,174	25,576	27,546	29,566
(†)	(5)÷(1)	95	20.8	33.4	37.8	51.8	. 6.94	49.7	45.1	48.1	6.44	41.7
(3)	Fuel Oil N.G. Equi.	10 ³ KI/y	1,189	2,141	2,529	3,578	3,527	4,106	4,038	4,634	4,577	4,506
(2)	Fuel Oil	10 ³ K1/y	5,726	6,413	6,699	6,913	7,549	8,256	8,958	9,592	10,199	10,818
(1)	N.G. Prod.	MMscf/D	150	300	350	500	500	009	909	200	200	700
		_	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990

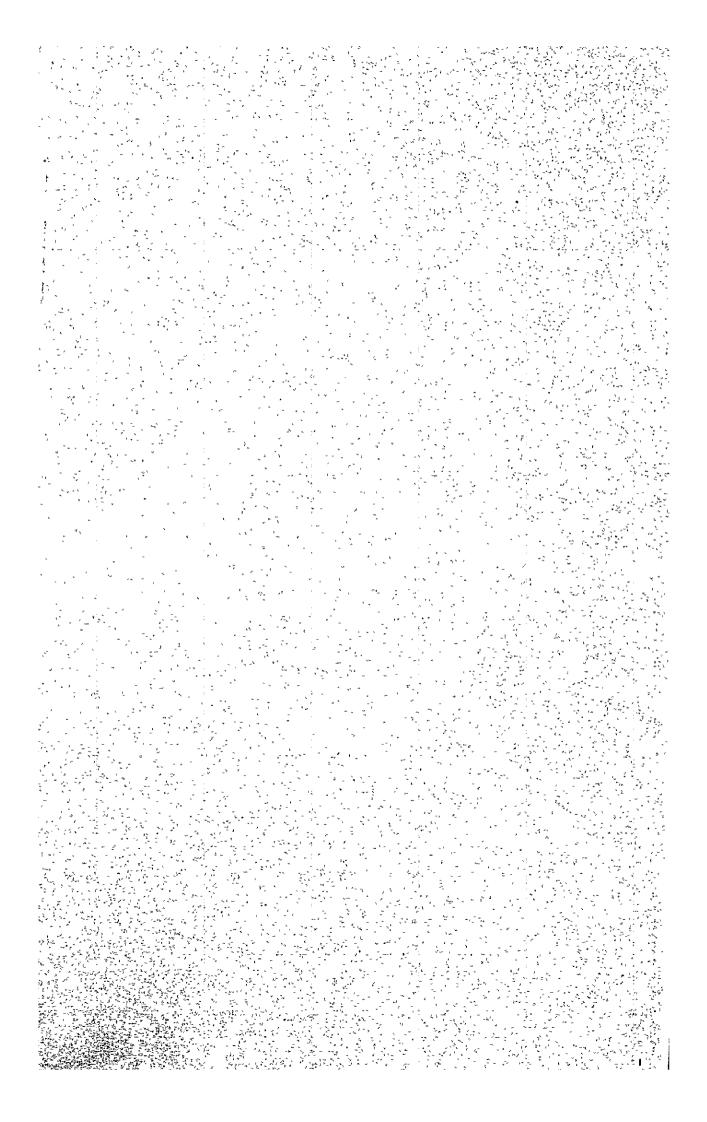
Note: No mark is MMscf/D

<u> 1985</u>

Note: * Natural gas volume when LPG is produced from 100% natural gas from well head.

- (1) Bang Pakong Power Station's natural gas requirement 382 MMscf/D. So, NGOT can not supply natural gas to the existing industry.
- (2) Thai LPG Production in 1983 304 x 10³T in 1988 559 x 10³T

 Japanese LPG in 1983 5,917 x 10³T in 1988 11,589 x 10³T


 17,506 x 10³T

Japan is good LPG market for Thailand.

TABLE-2 NATURAL GAS BALANCE (NO EXISTING INDUSTRY)

-	FL.	UOR REPORT	*	100% L	PG Prod.		les N.G. UOR REPORT		. 100%	LPG Production	on
•	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	·(4), (11)
	N.G. Prud. Sched.	LPG Prod.	Sales N.G.	LPG Prod.	Sales N.G.	Çonsum	ption		(5)-(6)	Į.	
			,		*	New Proj.	EGAT	Total	For EGAT	Bang Pakong Requirement	Total
	MMscf/D	10 ³ T	MMscf/D	10 ³ T	MMscf/D	MMscf/D	MMscf/D	(6) +(7)=(3)	MMscf/D	MMscf/D	(6)+(9) =(15)
1981	150	48.94	134 • 16	150.93	115.96	-	134.16	Same as (3)	115.96	110	Same as (5)
1982	300	74.56	267.01	253.60	235.10		267.01		235•10	110	
1983	350	102.28	309.05	303.97	273.05	-	309.05		273.05	246	
1984	500	130•95	444.94	422.40	392.92	17.63	427.21		<u>375 • 29</u>	382	
1985	500	162•35	434 • 17	422.40	389.75	75.50	<u>358.67</u>		314.25	382	
1986	600	195•73	512.88	490.56	460.24	75.50	437.38		384.74	382	
1987	600	232.01	499•57	490.56	453.41	75.50	424.07		377•91	382	-
1988	700	270.13	578.43	559•15	526.82	75.50	502•93		451.32	382	
1989	700	310.20	562,32	559 • 15	517.87	. 75.50	486.82		442.37	382	
1990	700	352.07	546.35	559 • 15	509.38	104.44	441•91	i i	404.94	382	

Note: Sales natural gas is not enough for Bang Pakong Power Station, so LPG production must be controlled.

Mr. Tammachart Sirivadhanakul, Director of Regulatory Division, National Energy Administration.

Dear Mr. Tammachart.

Re: PETROLEUM PRODUCT DEMAND FORECAST
NO.4 - REVISION OF NO.2 AND NO.3 REPORT

Previous report of PETROLEUM PRODUCT DEMAND FORECAST was in case of 500 MM scf/D maximum natrual gas production schedule, afterwards National Gas Organization of Thailand changed the natural gas production schedule from 500 MM scf/D to 700 MM scf/D. Therefore, petroleum product demand forecast is recalculated because fuel oil production in the refinery is changed.

The calculation and consideration way are very similar to my experience when I was used to work for Koa Oil Co. (joint venture with Caltex) and Kyokuto Oil Co. (joint venture with Mobile). NEA must establish own procedure of calculation and consideration of expansion and/or new refinery.

When the expansion and/or new refinery is studied and planned, the petroleum products demand is foundation of study, planning and basic engineering. Therefore, bases of petroleum product demand are changed, it must be recalculated.

- 1. LPG production from refinery might be exceeded LPG demand, so LPG from natural gas must be exported.
- 2. Condensate from well head and natural gas process plant must be export as petrochemical raw material. Because light naphtha might be exceeded the requirement from refineries, according to this reason, refineries must have much cracking units. But, the decision should be made after computor calculation.
- 3. <u>Lube oil</u> should be manufactured in near future, because lube oil p oduction makes much profit as well as it contributes to Thai economy.

4. Crude oil selection and crude oil import are very difficult after the oil crisis.

Petroleum stockpiling is necessary and crude oil import source must be enlarged.

- 5. Petroleum Products import and export must be consider after marketing research.
- 6. The minimum and desirable capacity of total refineries, and additional capacity are as follows:

		• •		
	Total Minimum Capacity	Additional	Total Desirable	Remark
	BPSD	Capacity BPSD	Capacity BPSD	
1977	184,000	-	<i>51</i>	Actual crude through-put in 1977
1982	. ditto	,		
1983	369,000 (184,0 <mark>00</mark> ÷185,00	+50,000 0)(185,000+50,0	419,000	New installation 235,000 RPSL
1984	362,000			
1985,	404,000			
		+100,000	519,000	
1986	437,000			
1987	482,000			,
1988	510,000	+125,000	644,000	
1989	550,000			
1990	590,000		•	•
		+150,000	794,000	
1991	644,000		•	
1992	699,000			
. 1993	757,000	•		,
		+150,000	944,000	
1994	820,000	•	•	
	•	•	•	•
1999	1,177,000	<u>:</u>	₹:	
`.,		+150,000	1,394,000	
2000	1,257,000	-		

Note: The minimum capacity is same as products demand plus loss and own fuel.

* *		•
= Y		
-	-	
		* *
	-	9 N =
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		Cars of
		,
		,
	2	
		*
		r -
		* -
÷		
-		-
		÷ .
~		
•	• -	
		e e
	2 2	
	*	,
	*	•

Total Japanese crude oil through-put was about 6,000,000 BPSD in 1977.

89 toppers average 66,000 BPSD
49 refineries average 121,000 BPSD
biggest 330,000 BPSD

If the expansion and/or new refinery is completed in 1983, newly installation should be 235,000 BPSD, total capacity is 419,000 BPSD.

Recalculation data are one of the input data of computor calculation.

I appreciated if it would be useful for you.

Sincerely yours,

Y. Kawase

•

	Page
T FOREWORD	1
II HEATING VALUE AND FUEL OIL EQUIVALENT OF SALES	-
NATURAL GAS	2 ′
III LPG PRODUCTION	3
IV SCHEDULE OF EXPANSION AND NEW REFINERY PLANNING	`6
IV.1 Product Demand	6
IV.1.1 Products From Natural Gas	6
IV.1.2 Lube Oil Production	7
IV.1.3 Loss and Own Fuel	8.
IV.2 Crude Oil	9
IV.3 Petroleum Products Import and Export	11.
IV.3.1 Import	11
IV.3.2 Export	11
V MINIMUM CAPACITY OF EXPANSION AND NEW REFINERY	12
VI DESIRABLE CAPACITY OF EXPANSION AND NEW REFINERY	13
VII CONCLUSION	15
•	
FIGURE AND TABLE LIST	
Figure PROCESS PLANT BLOCK DIAGRAM	4
Table LPG PRODUCTION (ASSUMED) AND DEMAND	, ,
Table LPG PRODUCTION FROM WHOLE NATURAL GAS	5
Table NATURAL GAS PRODUCTION SCHEDULE	6
Table LUBE OIL MINIMUM CAPACITY IN THAILAND	7
Table PETROLEUM PRODUCTS PRODUCTION OF MAIN	
COUNTRIES AS 1976	ර ඉ
Table PETROLEUM STOCKPILING OF EACH COUNTRY	. 9
Table CRUDE OIL IMPORT SOURCE OF THAILAND AND JAPAN	10
Table IMPORT AND EXPORT IN JAPAN IN 1977	12
Table DESTRABLE ADDITIONAL CAPACITY	14

Note that the second of the se

market in the American Francisco

And the second s

TABLE	1 - 10	HEAT VALUE AND FUEL OIL EQUIVALENT OF	AF	nm 1 cm
	,	SALES NATURAL GAS IN 1981 - 1990 1	– 10	PTACE "
TABLE	11-20	LPG PRODUCTION IN 1981 - 199011	<u>-</u> 20	n.
TABLE	21	REQUIREMENT OF EACH PRODUCT AND TOTAL CRUDE	:	
. '	. "	OIL THRU-PUT (EXISTING, EXPANSION AND/OR NEW	-	
		REFINERY) AND EXPANSION AND/OR NEW REFINERY		
	-	CRUDE OIL THRU-PUT	21	111,
TABLE	,22,	REQUIREMENT OF EACH PRODUCT AND TOTAL CURDE		
, т	·	OIL THRU-PUT FOR EXPANSION AND/OR NEW REFINERY	22	η
TABLE		EXAMPLE OF CONSTURCTION SCHEDULE FOR EACH		
	j .	REFINERY	23	IL
FIG.1	•	TOTAL THROUGH-PUT, EXPANSION AND/OR NEW		
	,	REFINERY CONSTRUCTION SCHEDULE 1983 - 2000	24	H _S
FIG.2		NEW INSTALLATION FROM 1983, EXPANSION AND/OR		
		NEW REFINERY CONSTRUCTION SCHEDULE		
		1983 2000	25	

,

.

-

•

.

T FOREWORD

I reported PETROLEUM PRODUCTS DEMAND FORECAST NO.1 NATURAL GAS on September 30, 1978, NO.2 LPG RECOVERY FROM NATURAL GAS on October 18, 1978, NO.3 PETROLEUM PRODUCTS DEMAND FORECAST AND NET REFINERY CAPACITY on October 25, 1978.

These calculations were based on 500 MM scf/D maximum natural gas production schedule, afterwards Natural Gas Organization of Thailand disclosed on 700 MM scf/D maximum natural gas production schedule. Therefore, I revice previous No.1, No.2 and No.3 report.

My recalculation of the report is used the petroleum demand forecast which was made by Regulatory Division of NEA as same as previous report, and natural gas supply schedule is used Fluor Ocean Services International Inc.'s report which was presented to NGOT.

I recalculated the minimum and desirable refinery capacities from 1981 to 2000, according to the above mentioned change.

In 1977, actual crude oil through-put was 184,000 BPSD. When the existing refineries is expanded or revamped and the grass roots refinery will be installed in 1983, total crude oil through-put will be minimum 369,000 BPSD and additional crude oil through-put will be 185,000 BPSD (actual crude oil through-put of existing refineries is 184,000 BPSD). It is just twice of present crude oil through-put. Crude oil through-put in 2000 will be 1,257,000 BPSD.

Total refinery capacity must be always bigger than minimum crude oil through-put which is same as products demand plus loss and own fuel. Desirable refinery capacity must be bigger than minimum refinery capacity, because petroleum products import is more difficult then crude oil import and foreign currency is lost and a niew point of national security.

The recalculation is based on the under conditions.

1. Petroleum product forecast was made by Regulatory Division of NEA in 1978.

-

•

- 2. Natural gas production schedule is NGOT's schedule and used data are Fluor Ocean Services International's report which was presented to NGOT.
- 3. The capacity of expansion and/or new refinery is based on 1977's result of three refineries. Then 1978's result of three refineries crude oil through-put is summerized, recalculation should be necessary again.
- 4. The expansion and/or new refinery is concerned no petroleum products import and export.
- 5. The expansion and/or new refinery is assumed to be completed in 1983.
 - So, the recalculation of refinery capacity is from 1983 to 2000.
- 6. LPG production is assumed same as its demand.

 Deficit of LPG in 1981 and 1982 will be covered by LPG from natural gas.
 - After 1983, whole LPG demand will be produced in refineries.

 Therefore, LPG from natural gas should be exported.
- 7. Lube oil production is assumed to be manufactured from 1983.

 If a start-up of lube oil production is delayed, the crude oil through-put must be minused about 2%.
- 8. Loss and own fuel in assumed as 3.8% or 4% on crude oil through-put.

This should be recalculated after decision of units of expansion and/or new refinery.

When the above mentioned bases and assumptions are changed, recalculation should be carried. Because data of petroleum demand forecast are foundamental of study, planning and basic engineering for the expansion and/or new refinery.

II HEAT VALUE AND FULE OIL EQUIVALENT OF SALES NATURAL GAS

Heat value and fuel oil equivalent of sales natural gas are calculated from Fluor's report. In Fluor's report, the Gas Processing

;

-

•

plant is installed and it provides a source of high quality sales gas with low CO₂ content, provides LPG and provides pentanes plus heavier hydrocarbons.

Fluor said pentanes plus heavier hydrocarbons make an excellent gasoline precursor, but lighter gasoline (light naphtha) fractions are excess because expansion and new refinery should have much cracking units. So, the fraction from natural gas must be exported as petrochemical raw material or used as own fuel.

The PROCESS PLANT BLOCK FLOW DIAGRAM is shown in Figure on the next page.

In Fluor's report, heating value is shown as high heating valve (HHV), so low heating valve (LHV) is calculated, then fuel equivalent is calculated. The calculations are shown in TABLE 1 - 10 (ATTACH. 1 - 10).

III LPG PRODUCTION

In Fluor's report, LPG production is shown as LB-Moles/Hr, LBS/HR, and GMP, so Kl/y is calculated, and TABLE 11 -20 (ATTACH. 11 - 20) shows LPG production in Kl/y.

When the minimum crude oil through-put is recalculated, LPG production is assumed as same as its demand,

LPG production of the expansion and new refinery can not estimate because new installed units are not decided. So, the above mentioned LPG production is assumed.

If plants of the expansion and new refinery are same as existing refineries, LPG production can be assumed as upper table of page 5. Actually LPG production from refineries is bigger than the demand of LPG which is shown in the table, after the expansion and/or new refinery will be completed. Accordingly, LPG from natural gas will not be needed except 1981 and 1982 for domestic use, thus LPG from natural gas should be exported.

.

·

PROCESS PLANT BLOCK DIAGRAM

,

.

,

e =

- ^	Producti (assumed		Demand	
•	10 ³ Kl/3	•	10 ³ к1/у	
1277	240	÷		, · · · · · · · · · · · · · · · · · · ·
78	240		294	Deficit of LPG will be
79	240	Actual	317	imported
80	240		356	p02 00 a
1881	240	r % -	396 Ì	Deficit of LPG will be
82	240		444	make up from LPG from natural gas.
83	481	×	464	Actual production will
84	472		479	be more than the demand
85	527		523	because cracking plants
•	•		•	will be more than at
2000	1,640		1,483	present.
Note: *	240 x 10 ³ Kl	/y. x <u>369,0</u> 184,0		

LPG production of 1983 - 2000 is assumed.

When LPG from natural gas is exported, LPG production schedule must be changed, namely LPG is produced from whole natural gas instead of some part of natural gas.

LPG PRODUCTION FROM "HOLE NATURAL GAS

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	N.G. Produc- tion	Fluor's LPG Production Schedule	N.G. Product	Gas Plant Feed	$(2)x\frac{(3)}{(4)}$	5)x 0.53 [*]	(6)÷365
-	MMscf/D	10 ³ kl/y	10 ³ LBS/Hr	10 ³ LBS/Hr	10 ³ Kl/y	10 ³ t/y	t/D
1981	150	92	365	107	314	166	455
82	300	141	826	227	513	272	745
83	350 -	193	954	299	616	326	893
84	500	247	1,376	400	850	451	1,236
85	500	306	1,376	500	842	446	1,222
86	600	369	1,669	637	· 967	513	1,405
87	600	438	1,669	757	966	512	1,403
88	700	509 ·	1,963	914	1,093	579	1,586
89	700	585	1,963	1,051	1,093	579	1,586
1990 2000 Note:	ditto (1) is	664 : EGAT schedu	1;963 :	1,194	1,092	ditto :	ditto

^{(2), (3), (4)} are from TABLE 11 - 20 (ATTACH.11 -20), and from Fluor's report.

is average specific gravity of LPG.

•

TY SCHEDULE OF EXPANSION AND NEW REFINERY PLANNING

Then the existing refineries are expanded or revamped and new refinery is installed, generally follwoing procedure should be carried.

Products demand is very important to decision of capacity of the expansion and new refinery, so when products demand and natural gas production is changed, petroleum products demand should be recalculated.

IV.1 Products Demand

IV.1.1 Products From Natural Gas

At first, petroleum products which is not considering natural gas products, demand must be made. Then following items must be considered.

- (a) LPG LPG production from natural gas.
- (b) Gasoline Condensate from well head and natural gas pressing plant.
- (c) Fuel Oil Sales gas which is fuel oil equivalent.
- For (a), LPG production from refineries will be exceeded LPG demand as the above mentioned III. So, LPG production from natural gas is not considered in the recalculation, LPG from natural gas must be exported.
- (b) Condensates of natural gas is light gasoline (light naphtha), it would be excess because the expansion and new refinery must have cracking units. So, condensates from natural gas is not considered in the recalculation, condensates must be exported.
- (c) Fuel oil of demand must be excluded fuel oil equivalent of natural gas. (see TABLE 21 and 22, ATTACH. 21 and 22)

Natural gas production schedule is as follows.

NATURAL GAS PRODUCTION SCHEDULE

	MMscf/D	!	MMscf/D
1981	150	1986	600
1982	300	1987	700
1983	350	1988	700
1984	500		:
1985	500	•	:
		2000	•

IV.1.2 Lube Oil Production

Lube oil is added in the petroleum products demand as shown on TABLE 21 and 22, (ATTACH.21 and 22), a lube oil production is about 2% on crude oil through-put. The reason of lube oil including in products demand, TORC has had lube oil production plan. Lube oil production makes much profit as well as its contribute to Thai economy.

Lube oil production capacity is as follows in 1983.

 $369,000 \text{ BPSD} \times 0.017 = 6,237 \text{ BPSD}$ Lube oil demand in 1983.

Note: 0.017 means lube oil demand is 17% on crude oil through-put in 1983.

6,273 BPSD ÷ 0.65 = 9,651 BPSD Lube oil material in 1983
Note: Lube oil yield % on lube oil material is 65%.

10,000 BPSD lube oil plant is economical size. Lube oil production would be commenced in 1933, the minimum lube oil capacity is as follows.

LUBE OIL MINIMUM CAPACITY IN THAILAND

	-	
Year	Lube Oil Minimum Capacity BPSD	•
1983	9,651	
84	11,138	Desirable lube oil
85	13,674	capacity is 15,000 BPSD
86	14,791	
87	15,572	
88	17,262	Desirable lube oil
89	17,769	capacity is 20,000 BPSD
1990	19,062	(install 5,000 BPSDmore)

If lube oil production is postponed for several years, crude oil through-put which is shown in TABLE 21 and 22 (ATTACH. 21 and 22) must be minus 2% for the same years.

.

.

. `

*

. .

-. . .

.

IV.1.3 Loss and Own Fuel

Loss and own fuel percentage of TABLE 21 and 22 (ATTACH. 21 and 22) is different, TABLE 21 is calculated 4.5% and TABLE 22 is 3.3% on crude oil through-put, but these are not including diesel oil for big electric power generator in the refinery, but including small electric power generator for emergency. At this stage loss and own fuel can not be calculated exactly, but approximately estimation of them is needed for calculation of refinery capacity.

"IV.1.4 Petroleum Products Production Pattern

Thai Petroleum products production pattern seems unusual after natural gas utilization. But, it is not unusual, petroleum products production of main countries are shown.

PETROLEUM PRODUCTS PRODUCTION OF
MAIN COUNTRIES AS 1976
UNIT: 1,000t,()is %

West Japan USA: UK Germany France Thailand (1985) Motor 12,019 299,832 15,232 17,346 18,187 1.692 Gasoline (11.1)(44.4)(16.9)(15.6)(15.6)(22.1)Naphtha 21,248 27,185 4,538 2,490 5,822 (10.7) (4.0)(5.1)(5.1)(2.5)Aviation 2,777 44,005 4,402 1,350 3,549 1,637 (1.4)Fuel (6.5)(4.9)(1.4)(3.1)(7.7)Kerosene -19,615 7,879 2,458 49 120 612 (9.8)(1.2)(2.7)(-)(0.1)(2.9)Diesel 30,952 149,255 . 24,198 40,473 40.954 7,851 Oil (15.5) (22.1)(26.8)(41.0)(35.8) (<u>37.</u>1). Fuel Oil 87,948 90,371 32,695 23,783 37,123 4,022 (45.3) (13.0)(36.2)(24.1)(32.5)(19.0) Others 12,255 60,037 6,716 13,195 8,547 2,348 (6.1) (8.4)(7.4)(13.4)(7.5)(11.2) Total 199,237 676,138 90,284 98,686 114,302 21,162 ⁻(100) -(100) (100)(100) $(100)^{-}$ (100)

As above mentioned table, That retroleum products production is very similar with 'est Germany, fuel oil of USA production is less than That and diesel oil production of France is similar to That.

IV.2 Crude Oil

Crude oil selection is restricted after the oil crisis, especially after Iranian revolution.

Then the expansion and/or new refinery is installed in 1983, crude cil import is being very difficult, because crude oil import is jumped up from 184,000 BPSD to 369,000 BPSD, it is about twice. If such big quantity of crude oil is not able to import, petroleum products should import, but its import is more difficult than crude oil import, therefore Thailand must be produced petroleum products by domestic refinery, a view point of national security. Every country produces petroleum products in his own refineries.

Petroleum stockpiling is very important, main countries' stockpiling is as follows.

PETROLEUM STOCKPILING OF EACH COUNTRIE

	Days	*						
Japan	.85	(April,		days	the	end	of	1979)
υK	89	(April,	1977)					
Sweden	79	!t	h					,
Belgium	115	11						
France	101	, 11	,					
7. Germany	105	tt	•	-				
Italy	112	11						
Switzerland	128	11						

Every country endeavor to enlarge crude oil import source.

Comparison of crude oil source between Thailanddand Japan is shown in Table.

- (1) Japan has more import sources than Thailand.
- (2) Thailand is depended more on Middle East than Japan.
- (3) Japan desires to import Red Chinese crude oil, but he can not more import, because he has not enough cracking unit for treating it. It is said that crude oil reserves of Gulf of Pohai (Chili) is as same as Saudi Arabia.

Recently, Japanese Government approaches with Petroleos Maxicance $_{\rm to}$ import his crude oil, and his crude oil reserves is 40.2 x 10 9 Bbl to import his crude oil, and his crude oil reserves is 40.2 x 10° Bbl (including natural gas) this of Saudi Arabia is 150 x 10° Bbl in 1977.

CRUDE OIL IMPORT SOURCE OF THAILAND AND JAPAN

•							
	Thailand (10 ³ Kl) Japan (10 ³ Kl						
, '	. 1977		1976				
	Quantity	. %	Quantity	%			
Middle East	,						
Saudi Arabia	4,568	47.15	86,536	31.4			
Kuwait	95	0.98	17,618	6.4			
Neutral Zone	668	6.90	11,374	4.1			
Qatar	2,815	29.05	494	10.2			
UEA .	411	4.24	31,741	11.5			
Oman	-	mag)	9,458	3.4			
Iran	-	-	53,832	19•5			
Iraq	190	1.96	8,344	3.0			
Others	53	0.55	-	_			
Sub Total	8,255	90.83	219,397	79.5			
.SIA PACIFIC		,					
Bruni & Malaysia	719	7.42	12,571	4.5			
Indonesia	-	- -	33,494	12.1			
Australia	-	, . -	· 133 .	0.1			
Sub Total	719.	7.42	46,198	16.7			
Communist Country							
Taching	170	1.75	7,268	2.6			
USSR	-	-	93	0.1			
merica (USA, Brazil, Venezuela)	. -	-	333	0.1			
Africa	-	-	2,537	1.0			
Total	9,689	100	75,826	100			
_							

•

<u>:</u>

-

Big different of Thailand is that Japan has many exploitation companies.

Conclusion of crude oil is as follows.

- (1) It is very difficult to selection of crude oil.
- (2) It is very difficult to get more crude oil when the expansion and/or new refinery will be completed.
- (3) Crude oil import source must be enlarged.
- (4) For calculation of optimum refinery, crude oil is selected among available crudes and at least two of lighter and heavier crude oil are selected for design. But special heavy crude such as Red China and Infonesia crude oil are ordinary distillated separate topper.

IV.3 Petroleum Products Import and Export

IV.3.1 Import

When import price of petroleum products is cheaper than domestic refined petroleum products, petroleum products can be import. In this case, petroleum products will be imported by long range contract. Recently, Middle East countries and Singapore are under construction or planning of export refinery. So in future, it is easy to import petroleum products. But, in principle rule whole petroleum products must be produced by own refineries, according to national.security.

If export refinery is shut-down, petroleum products can not be imported from others.

Import market must be surveyed.

IV.3.2 Export

That petroleum demand is inclined to light fraction, so, That refinery has to have much cracking unit. Accordingly gasoline fraction yield is going up, thus condensates from well head and natural sas processing plant, and some part of virgin naphtha might be exported as petrochemical raw material. Japan is importing much naphtha as under tabel.

.

* ,

Big different of Thailand is that Japan has many exploitation companies.

Conclusion of crude oil is as follows.

- (1) It is very difficult to selection of crude oil.
- (2) It is very difficult to get more crude oil when the expansion and/or new refinery will be completed.
- (3) Crude oil import source must be enlarged.
- (4) For calculation of optimum refinery, crude oil is selected among available crudes and at least two of lighter and heavier crude oil are selected for design. But special heavy crude such as Red China and Infonesia crude oil are ordinary distillated separate topper.

IV.3 Petroleum Products Import and Export

IV.3.1 Import

When import price of petroleum products is cheaper than domestic refined petroleum products, petroleum products can be import. In this case, petroleum products will be imported by long range contract. Recently, Middle East countries and Singapore are under construction or planning of export refinery. So in future, it is easy to import petroleum products. But, in principle rule whole petroleum products must be produced by own refineries, according to national security.

If export refinery is shut-down, petroleum products can not be imported from others.

Import market must be surveyed.

IV.3.2 Export

Thei petroleum demand is inclined to light fraction, so, Thai refinery has to have much cracking unit. Accordingly gasoline fraction yield is going up, thus condensates from well head and natural gas processing plant, and some part of virgin naphtha might be exported as petrochemical raw material. Japan is importing much naphtha as under tabel.

. *

· *.

12 2

.

;; · · · ·

Thai can export naphtha to Japan, but fuel oil is very difficult to export. Export market must be surveyed.

IMPORT AND EXPORT IN JAPAN IN 1977

UNIT: 10³Kl

	Import .	Export
Gasoline	. 2	- '
Naphtha	8,528 (24.4%)* ² (34,928)* ¹	~
Jet Fuel	_	1,496
Kerosene	5	150
Diesel Cil	-	176
A Fuel	1,379	887,
B Fuel	-	54
C Fuel	7,781	.9,276
Total		
A,B,C Fuel	9,160 (7.8%)*2	10,217
_ • •	(117,880)*1	1
Total	17,693	12,039

Note: *1 Consumption of naphtha and fuel oil

V MINIMUM CAPACITY OF EXPANSION AND NEW REFINERY

At first, the demand, loss and own fuel for each year must be estimated for decision of the minimum refinery capacity. The minimum refinery capacity muct be decided by the following 3 items.

- (1) Petroleum product demand (see IV.1)
- (2) Possibility crude oil import (see IV.2)

^{*2 %} on each (naphtha and fuel oil) consumption

•

(3) Petroleum products import and export (see IV.3)

Initial stage, condensates and petroleum import and export can not be in consideration. These matters are studied by consultant.

Accordingly, the minimum refinery capacity of each year might be as well petroleum product demand and plus loss and own fuel.

VI DESIRABLE CAPACITY OF EXPANSION AND NEW REFINERY

Then the expansion and new refinery is constructed, the refinery capacity should be bigger than the minimum capacity. The products demand is going up every year, so 1 - 3 years after completion of expansion and/or new refinery of 50,000 - 150,000 BPSD capacity must be installed. But, when additional refinery capacity is installed with cracking unit, small cracking is not economical, so desirable additional capacity would be 100,000 - 150,000 BPSD.

TABLE 23 (ATTACH. 23) shows an example of construction schedule from 1983 to 2000, it is made from FIG. 1 (ATTACH. 24). CASE-1 of TABLE 23 is the minimum size of additional refinery and CASE-2 of it is the maximum (desirable) size of additional refinery, but total additional must be same. New No.1 - No.3 refinery may be possible the second refinery of existing oil refinery.

FIG.1 (ATTACH.24) and FIG.2 (ATTACH.25) show 2 cases, CASE-1 shows 50,000 BPSD — 75,000 BPSD minimum size of additions, and CASE-2 shows 100,000 ~ 150,000 BPSD desirable size of additions. In practice, additional capacities will be between CASE-1 and CASE-2, but total of additions must be equal.

Summarized desirable additional capacity is shown in table of page 14. FIG.1 and 2, and the table are depend on TABLE 21 (ATTACH.).

Then additional capacity is installed, capacity of one train must be considered, thus when the capacity is smaller than one train, plant must be always expandable to one train.

The most favorable capacity of one train may be 150,000 BPSD and one refinery may be 300,000 BPSD.

. .

***.

.

•

, ... f .

In Japan every company is made expansion schedule when operation rate is going up to 85%.

Japanese government guide line of the minimum capacity of refinery is 300,000 BPSD, and Japanese companies consider that 150,000 BPSD refinery is border line whether make pro it or not.

DESIRABLE ADDITIONAL CAPACITY

	(1)	(2)	,
	MINIMUM Capacity BPSD	Desirable Add Capacit BPSD	
1983 —	369,000	419,000	(+ 50,000)
84	362,000		•
85	404,000	519,000	(+100,000)
86	437,000		•
87	482,000		-
88	510,000	644,000	(+125,000)
89	550,000		•
1990	590,000		
91 -	644,000	794,000	(+150,000)
92	699,000		
93	757,000	944,000	(+150,000)
94	820,000		•
95	000,888	1,094,000	(+150,000)
96	960,000		(1,1)21
97	1,028,000	1,244,000	(+150,000)
98	1,100,000		
99	1,177,000	1,394,000	(+150,000)
2000	1,257,000	,	()

Note: From FIG.1 (ATTACH.24) and TABLE 23 (ATTACH.23)

•

.

,

VII CONCLUSTION

Capacity of expansion and/or new refinery is calculated by ordinal procefure.

1. The minimum capacity of expansion and/or new refinery must be same as demand plus loss and own fuel. The expansion and/or new refinery will be completed in 1983 at the earliest.

The minimum capacity of expansion and/or new refinery will be 185,000 BPSD in 1983, actual crude oil through-put is 184,000 BPSD in 1977 (nominal capacity is 165,000 BPSD), so, 369,000 BPSD of total capacity in 1983 will be twice of 1977. In 2000, total capacity will be 1,257,000 BPSD.

- 2. It would be very difficult to import big quantity of crude oil such as just twice of present import in 1983. Crude oil import source must be enlarged.
- 3. Import and export of petroleum products will be consider after marketing survey.
- 4. Capacity of revamp and/or new refinery after 1983 can be considered as 50,000 BPSD, but small capacity such as 50,000 BPSD is not economical because construction cost per barrel is high, especially small cracking unit is very expensive. So, disirable capacity of revamp and/or new refinery will be 100,000 150,000 BPSD after 1983.
- 5. In 1983, crude oil through-put, additional and total capacity are as follows.

Crude oil through-put will be	369,000 BPSD
Existing capacity is	184,000 BPSD
Additional capacity will be	235,000 BPSD
Total capacity will be	419,000 BPSD

TABLE 1 HERY VALUE AND FUEL OIL EQUIVALENT OF SALES MITURAL GAS IN 1981

1	(1)	(2)*1	(3)	(4) ^{*2}	(5)	(6)	(7)	(8)	(9)	(10)	(11)*2	(12)	(13)
			(1)x(2) x24÷10 ³		(3)x(4) ÷10 ³	(5)×365 ÷10 ³	(6) ÷ 3.960254 ^{*3}	(7)-9,826*4 x10 ³	(1)×379 ^{*5} ×24÷10 ⁶	(5)÷(9)		(3)x(11) ÷10 ³	(2)÷(9)
 NITROGET	Net Gas To Pipeline	Holccular /eight		H.V.Net	H.V.Net	H.V.Net	H.V.Net	(Fuel Equiv.)	H.V.Net	H.V.Net	H.V.Gross	H.V.Gross	H.V.Gross
	lb-Kols/Hr.	16	10 ³ 16/D ·	10 ⁹ DT::/Y	10 ⁶ BTU/D	10 ⁹ BTU/Y	10 ⁹ Kcal/Y	10 ³ K1/Y	10 ⁶ scf/D	DTU/scf	BTU/1b	10 ⁶ BTU/D	BTJ/scf
NITROGET	35.3	28.013	23.7	0	0	. 0			0.32		0	0	
METHAVE	10,821.9	16.042	4,166.5	21,500	89,580	32,697]	98.44		23,860	99,413	
CARBON DIOXIDE	1,754.4	44.01	1,863.6	o	0	0			16.05	1 i	0	0	į
ethave	1,497.9	30.068	1,080.9	20,420	22,072	8,056			13.62		22,300	24,104	
PROPATE	428.c	44.094	452.9	19,930	9,026	3,294		!	3.89		21,650	9,805	
ISOBULANZ	\$8.5	50.120	123.4	19,610	2,420	883	ļ	1	0.80		21,240	2,621	
N-D PAME	71.9	53.120	100.3	19,670	1,373	720 -	· !		0.65		21,290	2,135	
ISOPENTANE	20.8	72.146	36.0	19,390	698	255			0.19	 	20,995	756	
N-PEUT (VE	11.8	72.146	20.4	19,500	398	145			0.11		21,070	430	
revanes	15.7	86.172	32.5	19,206	624	228			0.14		20,746	674	
SEPT AV S S	4.9	100.198	31 . 8	19,129	226	82			0.06		20,639	244	
0017.773	0.9	114.224	2.5	19,074	48	18			0.01	, ;	20,564	51	
WATER	1.7	16.015	^	0	0	0			0.02	:	0	0	
TOTAL	14,763.7		7,915.2		127,065	46,378	11,687	1,189	134.28	946		140,233	1,044

Note: *1 molecular weight from the book. *2 DATA BOOK ON HYDROCARBONS

*3 Kcnl = 3.968254 BTU

*4 heat value if fiel oil *5 ! 1b-mol = 379 scf

TABLE 2 HEAT VALUE AND FUEL OIL EQUIVALENT OF SALES NATURAL GAS IN 1982

	(1) ·	· (2)*1	(3)	(4)*2	(5)	(6)	(7)	(8)	(9)	(10)	(11)*2	(12)	(13)
		·	(1)x(2) x24÷10 ³		(3)x(4) ÷10 ³	(5)x365 ÷10 ³	(6) ÷ 3.968254 ^{*3}	(7)-9,826*4 ×10 ³	(1)x379 ^{*5} x24÷10 ⁶	(5)-(9)		(3)x(11) ÷10 ³	(2)÷(9)
	Net Gas To Pipeline	Molecular Weight		H.V.Net	H.V.Net	H.V.Net	H.V.Net	(Fuel Equiv.)	H.V.Net	H.V.Net	H.V.Gross	H.V.Gross	H.V.Gross
	lb-Mols/Hrr,	1b	10 ³ 1b/D	10 ⁹ BTU/Y	10 ⁶ BTU/D	10 ⁹ btu/Y	10 ⁹ Kcal/Y	10 ³ Kl/Y	10 ⁶ scf/D	BTU/scf	BTU/1b	10 ⁶ BTU/D	BTU/scf
nitrogen	160.7	- 28.013	108.0		0	0	1		1.46		0	, .0	
metrane	20,206.4	16.042	7,779.6	21,500	167,261	61,050		,	183.80		23,860	185,621	
CARECHDIOXIDE	5,576.6	44.01	5,890.2	0,-	0	0			50.72		~ 0	0	-
ethane	2,303.1	30.068	1,662.0	20,420	33,938	12,387			20.95	İ	22,300	37,063	
PROP JIE	732.6	44.094	775.3	19,930	15,452	5,640			6.66		21,650	16,785	ļ.
ISOBUTANE	151.3	58.120	211.0	19,610	4,138	1,510			1.38		21,240	4,482	
N-BUTANE	137.1	58.120	191•2	19,570	3,761	1:373			1.25	,	21,290	4,071	
150PENDANZ	42.8	72.146	74.1	19,390	1,437	525			0.39		20,99=	1,556	
N-PINT.NE	26.1	72:146	45.2	19,500	881	322		,	0.24		21,070	952	
HEXAMES	31.1	86.172	64.3	19,206	1,235	451		·	0.28		20,746	1,334	
HEPTINES	10.5	100.198	25.2	19,129	482	176			0.10		20,639	520	
OCTANES	2.4	114,224	6,6	19,074	126	46			0.02		20,364	136 [.]	t f
MATUR	3.5	18,015	1•5·	0	0	0		• ,	0.03]]	0	0	1
TOTAL	29,384.2		16.834.2		228,711	83,480	21,037	2,141	267.23	856		252,500	945

Note: *1 molecular weight from the book. *2 DATA BOOK ON HYDROCARBONS *3 Kcal = 3.968254 BTU *4 heat value of full oil *5 lb-mol = 379 scf

	(1)	· (2)*1	(3)	(4)*2	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
NITROGEN WATHANE			(1)x(2) x24÷10 ³		(3)x(4) ÷10 ³	(5)×365 ÷10 ³	(6) ÷ 3,•96825 ^{‡3}	(7)÷9,826*4 ×10 ³	(1)x379 ^{*5} x2 ⁴ ÷10 ⁶	(5) ÷(9)	ť -	(3)x(11) ÷10 ³	(2)÷(9)
	Net Gas To Pipeline	Molecular Weight		H.V.Net	H.V.Net	H.V.Net	H.V.Net	(Fuel Equiv.)	H.V.Net	H.V.Net	H.V.Gross	H.V.Gross	H.V.Gross
	lb-Mols/Hr	16	10 ³ 16/D	10 ⁹ BTU/Y	10 ⁶ BTU/D	10 ⁹ BTU/Y	10 ⁹ Kcal/Y	10 ³ Kl/Y	10 ⁶ scf/D	BTW/scf	BTU/lþ	10 ⁵ BTU/D	BTU/scf
NITROGEN	173.0	- 28.013 16.042	116.3 9,194.8	0 21 , 500	o 197,688	0 72,156			1.57 217.23		0 23-860	0 219,388	
CARBON DIOXIDE	5,858.3	44.01	6,187.8	o`	0	0			53.29	,	` 0	45,209	
PROPANE	2,809.3	30.068 44.094	2,027.3	20,420 19,930	41,397 17,604	15,110 6.425			25 • 55 7 • 59		22,300	19,123	
ISOBUTANZ N-BUTANE	171.9 153.0	58.120 58.120	239.8 213.4	19,610 19,670	4,702 4,198	1,716 1,532			1.56 1.39		21,240	5,093 4,543	
ISOPENTAND N-PENTANE	47.5 28.7	72.146 72.146	82.2 49.7	19,390 19,500	1,594 969	582 354			J.43 0.26	1	20,995	1,726	
HEXAMES	34.8	86.172	72.0	19,206	1,383	505			0.32		20,746	1,494	
Heptanes Octanes	11.6	100.138	27.9 6.9	19,129	534 132	195 48			0.11		20,504	142	
VATER	3.9	1ชุ๊ •∩15	1.7	C		0			0.04		0	0	
TOTAL	34.011.2		19,103.1		270,201	98,623	24,853	2,529	309.36	873		292,341	964

Note: *1 molecular weight from the book. *2 DATA BOCK ON HYDROCARBONS *3 Kcal = 3.968254 BTU *4 heat value of fiel oil *5 lb-mol = 379 scf

	(1)	· (2)*1	(3)	(4)*2	(5)	(6)	(7)	(8)	(9)	(10)	(11)*2	(12)	(13)
			(1)x(2) x24÷10 ³		(3)x(4) ÷10 ³	(5)x365 ÷10 ³	(6) ÷ 3.968254*3	(7)÷9,826*4 ×10 ³	(1)x379 ^{*5} x24÷10 ⁶	(5)÷(9)		(3)x(11) ÷10 ³	(2)+(9)
	Net Gas To Pipeline	Molecular Weight		H.V.Net	H.V.Net	H.V.Net	H.V.Net	(Fuel Equiv.)	H.V.Net	H.V.Net	H.V.Gross	H.V.Gross	H.V.Gross
	lb-Mols/Hr.	16	10 ³ 1b/D	10 ⁹ BTU/Y	10 ⁶ BTU/D	10 ⁹ BTU/Y	10 ⁹ Kcal/Y	10 ³ KI/Y	10 ⁶ scf/D	BTU/scf	BTU/lb	10 ⁶ BTU/D	BTU/sci
NITROGEN	269.5	28.013	181.2	0	C	6 0			2,45	1	0	0	.]
KETHANE	33,869.8	16.042	13,040.1	21,500	280,362.	102,332			308.08		23,860	311,137	
CARBON DIOXIDE	9,107.6	44.01	9,619.8	0	0	0			82.84		0	0	
ethane	3,859.1	30 . 068	2,784.9	20,420	56,868	20,757			35.10		22,300	62,103	
PRCPANE	1,198.2	44.094	1,268.0	19,950	25,271	9,224			10.90		21,650	27,452	
ISCBUTANE	246.9	58.120	344.4	19,610	6,754	2,465			2.25	·	21,240	7,315	
N-BITANE	223.6	39.12C	311.9	19,670	6,135	2,239			2.03		21,290	6,640	
ISOPENTANE	69.8	72.146	120.9	19,390	2,344	856			0.63		20,995	2,538	
N-PENTANE	42.6	72.146	73.8	19,500	1,439	525			0.39		21,070	1,555	
HEXANDS	50.8	85.172	105.1	19,206	2,019	737			0.46	į į	20,746	2,180	}
etytanes	17.1	100.198	41.1	19,129	786	287			0.16		20,639	848	
OCTANES	4.0	114.224	11.0	19,074	210	77			0.04	[[20,564	226	
ATER .	5•7	18.015	2.5	o ⁻	0	0			0.05		0	.0	
TOTAL	48,964.7	<u> </u>	27,904.7		382,188	139,499	35 , 154 ³	3,578	445.38	858		421 , 994	947

Note: *1 molecular weight from the book. *2 DaT: BOOK ON HYDROCARBONS *3 Kcal = 3.968254 BTU *4 heat value of fuel oil *5 lb-mol = 379 scf

	T							r				<u> </u>	
	(1) .	(2)*1	(3)	(4) ^{*2}	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
			(1)x(2) x24÷10 ³		(3)×(4) ÷10 ³	(5)x365 -10 ³	(6) - 3.968254 ^{*3}	(7)÷9,826*4 ×10 ³	(1)x379 ^{*5} x24÷10 ⁶	(5)÷(9)		(3)x(11) ÷10 ³	(2)÷(9)
	Net Gas To Pipeline	Molecular Weight		H.V.Net	H.V.Net	H.V.Net	H.V.Net	(Fuel Equiv.)	H.V.Net	H.V.Net	H.V.Gross	H.V.Gross	H.V.Gross
	lb-Mols/Hr.	1b	10 ³ 1b/D	10 ⁹ btu/Y	10 ⁶ BTU/D	10 ⁹ btu/Y	10 ⁹ Kcal/Y	10 ³ K1/Y	10 ⁶ scf/D	BTU/scf	BIN/jp	10 ⁶ BTU/D	BTU/scf
NITROGEN	268.7	. 28.013	180.7	. 0	0	0	1		2.44	İ	0	0	
Methane	35,774.2	16.042	13,003.3	21,500	279,571	102,043			307.21		23,360	310,259	
CARBON DIOXIDE	8,213,3	44.01	8,675.2	0,-	0	0			74.71		0	9	
ethane	3,843.1	30.068	2,773.3	20,420	56,631	20,670			34.96		22,300	61,845	
PROPANE	1,086.9	44.094	1,150.2	19,930	22,923	8,367			9.89		21,650	24,902	
ISOBUTANE	221.8	58.120	309.4	19,610	6,067	2,214			2.02		21,240	6,572	
N-BUILMT	200.8	58.120	280.1	19,670	5,510	2,011			1.83		21,290	5,963	
ISOPENTANE	62.7	72.146	108.6	19,390	106ء	769			0.57		20,995	2,280	
H-PENTANE	38.2	72.145	66.1	19,500	1,289	470			0.35		21,070	1,393	
HEXANES	45.6	86.172	94.3	19,206	1,811	661			0.41		20,746	1,956	
FEPT.NES	15.4	100.198	37.0	,9,129	708	258			0.14		20,639	764	
OCTANIS	3.6	114.224	9.9	19,074	1 89	69		1	0.03	İ	20,564	20'.	
TATER	5.2	18.013	2.2	O	O	0			0.05	,	,	o	†
TOTAL	47,779.5		26,690.3		376,805	137,532	34,653	3,527	434.61	347		416,138	957

Note: *1 molecular weight from the book. *2 DATA BOOK ON HYDROCARBONS *3 Real = 3.958254 BTU *4 heat value of fuel oil *5 lb-mol = 379 sef

	(1)	· (s)	(3)	(4)*1	(5)	(6)	(7)	(8)	(9)	(10)	(11)*2	(12)	(13)
			(1)x(2) x24÷10 ³		(3)x(4) ÷10 ³	(5)×365 ÷10 ³	(6) ÷ 3.968254*3	(7)÷9,826*4 ×10 ³	(1)×379 ^{*5} ×24÷10 ⁶	(5)÷(9)		(3)x(11) +10 ³	
	Net Gas To Pipeline	Molecular Weight		H.V.Net	H.V.Net	H:V.Net	H.V.Net	(Fuel Equiv.)	H.V.Net	H.V.Net	H.V.Gross	H.V.Gross	H.V.Gross
,	lb-Mols/Hr.	16	10 ³ 1b/D	10 ⁹ BTU/Y	10 ⁶ btu/d	10 ⁹ BTU/Y	10 ⁹ Ecal/Y	10 ³ K1/Y	10 ⁶ scf/D	RTU/scf	BTU/16	10 ⁶ BTU/D	BTU/scf
NITROGEN	349.8	28,013	235.2	0	0	О			3.18	7	0	Ç.	
Methan e	39,671.0	16.042	15,273.7	21,500	328,385	119,861		3	360.85		23,860	364,430	
CARBON DIOXIDE	10,173.0	44.01	10,745.1	0	0	0			92.53		25,000	0	
ethanz ·	4,335.1	30.c68	3,128.3	20,420	63,880	23,316			39.43		22,300	69,761	
PROPAGE	1,232.1	44.094	1,303.9	19,930	25,987	9,485		,	11.21		21,650	28,229	
ISOBUTANE	250.7	58.120	349.7	19,610	6,858	2,503	^ - 		2.28		21,240	7,428	
N-BUT-NE	231.5	58.120	322.6	19,670	6,346	2,316			2.10		21,290	6,868	
ISOPENTANE	73.5	72.146	127.3	19,390	2,468	901	:		0.67		20,995	1	
N-PENTANE	45.4	72.146	78.6	19,500	1,553	560			0.41		21,070	2,677	-
HEXAMES	52.1	86.172	107.7	19,206	2,068	755			0.47		20.746	1,656	
HEPT-NES	18.0	100.198	43.3	19,129	820	302		į l	0.16		20,639	2,234 894	
OCTATES	4.5	114.224	12.3	19,074	235	86		1 1	0.04	5.	20,564	į	
TATER	6.0	18.015	2.6	0	0	0	ĺ		0.05		0	253	
TOTAL	56,442.5		31,730.3		438,588	160,085	40,341	4,106	513.38	854		484,426	944

Note: *1 molecular weight from the book. *2 DATA BOOK ON HYDROCARBONS *3 Kcal = 3.968254 BTU *4 heat value of fuel oil *5 lb-mol = 379 scf

<u> </u>				 _	·				, ,_			,	
	(1)	(2)*1	(3)	(4)*2	(5)	(6)	(7)	(8)	(9)	(10)	(11)*2	(12)	, (13)
And the control of th			(1)x(2) x24÷10 ³		(3)x(4) ÷10 ³	(5)×365 +10 ³	(6) ÷ 3.968254 ^{*3}	(7)+9,826*4 ×10 ³	(1)x379 ^{*5} x24+10 ⁶	(5)+(9)		(3)x(11) +10 ³	(2)÷(9
	Net Gas To Pipeline	Nolecular Weight		H.V.Net	H.V.Net	H.V.Net	H.V.Net	(Fuel Equiv.)	H.V.Net	H.V.Net	H.V.Gross	H.V.Gross	H.V.Gres
	lb-Mols/Hr	16	10 ³ 1b/D	10 ⁹ BTU/Y	10 ⁶ BTU/D	10 ⁹ BTU/Y	10 ⁹ Kcal/Y	10 ³ K1/Y	10 ⁶ scf/D	BTU/scf	BTU/1b	10 ⁶ BTU/D	BTU/scf
i Hitrogen	348.8	28.013	234.5	0	0	0			3.17	ŧ	0	0	
ethan e	39,556.0	16.042	15;229.4	21,500	327,432	119,513			359.80		23,860	363,373	
SARBON DIOXIDE	9.048.9	44.01	9,557.8	0	0	0			82,31		0	0	
enane	4,316.8	30.068	3,115.1	20,420	63,610	23,218	[39 • 27	İ	22,300	69,467	
PROPNE	1,104.2	44.094	1,168.5	19,930	23,288	8,500	[10.04;	,	21,650	25,298	
ISCBUTVI	221.9	58.129	309.5	16,510	5,141	1,876	į.		2,02		21,240	6,574]]
v-butling	204.6	58.120	285.4	19,670	5,614	2,049	[1.86		21,290	6,076	1
ISOPENTANE	65.0	72.146	112.5	19,390	2,181	796			0.59		20,995	2,362	
N-PENTANE	40.1	72.146	69.4	19,500	1,353	494			0.36		21,070	1,462	
edianes	46.0	86.172	95•1	19,206	1,826	666			0.42		20,746	1,973	
EEPIANES	15.9	100.153	38.2	19,129	731	267	,	,	C.14 .	· .	20,679	788	
OCTANIES	4.0	114.224	11.0	19,074	210	77	;		0.04		20,564	226	
WIER	5.3	18.015	2.3	0,	0	0			0.05		0	. 0.	
TOTAL	54,977.5		30,228.7		431,386	157,456	39,679	4,038	500.07	863			. 585

Sote: *1 molecular weight from the book. *2 D.T. BOOK ON HYDROC..RBONS *3 Kcal = 3.968254 BTU *4 heat value of fuel oil *5 lb-mol = 379 scf

.

	(1)	(2)*1	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)*2	(12)	(13)
NITROGEN			(1)x(2) x24÷10 ³		(3)x(4) ÷10 ³	(5)x365 ÷10 ³	(6) ÷ 3.968254 ^{*3}	(7)÷9,826 ^{*4} ×10 ³	(1)×379 ^{*5} ×24÷10 ⁶	(5)÷(9)		(3)x(11) ÷10 ³	(2)÷(9)
	Net Gas To Pipeline	Molecular Weight	7	H.V.Net	H.V.Net	H.V.Net	H.V.Net	(Fuel Equiv.)	H.V.Net	H.V.Net	H.V.Gross	H.V.Gross	·
	lb-Hols/Hr.	1b	10 ³ 1b/D	10 ⁹ bTU/Y	10 ⁶ btu/d	10 ⁹ BTU/Y	10 ⁹ Kcal/Y	10 ³ KI/Y	10 ⁶ scf/D	BTU/scf ·	BTU/1b	10 ⁶ BTIJ/D	BTU/scf
	431.5 45,716,7	28.013 16.042	290.1 17,601.3	, o 21,500	0 378,428	0 138,126			3•92 415•84		0 23,860	419,967	·
g RBC" DIOXIDE	10,755.4	44.01	11,360.3	0	0	0			97.83 44.01		22,300	77,856	
ethane prop.Me	4,833.0 1,234.6	30.068 44.094	3,491.3 1,306.5	20,420 19,930	71,292 26,039	26,022 9,504			11.23		21,650	28,286	
isobopne n-butand	247.¢ 231.3	58.120 58.120	344.5 322.6	16,610 19,670	5,722 6,346	2,089 2,316			2.25 2.10		≥1,240 21,290	7,317 6,868	
isopijiline T-pijiraye	73.9 46.2	72.146	128.0 80.0	19,390 19,500	2,482 1,560	906 569			0.67 0.42		20,995	2,687	
EZX.NZS	52.0	86.172	107.5	19,206	2,065 819	754 299			0.47		20,746	2,230	
nceves	17.8	100.198	42.8 13.7	19,129 19,074	261	95			0.05		20,56	282	
aEDR	6-1	18.015	2.6	0	0	0			0.06	1	0	0	
TOTAL	63,655.5		35,091.2		495,014	180,680	45,531	4,634	579.01	855		546,062	947

Note: *1 molecular weight from the book *2 D'.Ta BOOK ON HYDROCARBONS *3 Koak = 3.960254 BTU *4 heat value of fuel oil *5 lb-mol = 379 scf

	(1)	(2)*1	· (3)	(4)	(5)	(6)	(7)	(8) · ·	(9)	(11)	(11) ²	(12)	(13)
·		,	(1)x(2)		(3)x(4) ÷10 ³	(5)x365 ÷10 ³	(6)÷ 3.968254 ^{*3}	(7)÷9,826*4 ×10 ³	(1)x379*5 x24÷10 ⁶	(5)÷(9)		(3)×(11) ÷10 ³	(2)+(9)
	Net Gas To Pipeline	Molecular Yeight		H.V.Net	H.V.Net	H.V.Net	H.V.Net	(Fuel Equiv.)	H.V.Net	H.V.Net	H.V.Gross	H.V.Gross	H.V.Gros
:	lb-Mols/Hr.	1b	10 ³ 1b/D	10 ⁹ btu/y	10 ⁶ BTU/D	10 ⁹ btu/y	10 ⁹ Kcal/Y	10 ³ K1/Y	10 ⁶ scf/D	BTU/scf	BTU/1b	10 ⁶ BTU/D	BTU/sc:
NITROGEN	430.1	28,013	289.2	. 0	0	0			3. 91	1	0		
neth vae	45,572.6	16,042	17,545.8	21,500	377,235	137,691			414.53		23,860	418,643	
GUESCH DIONIDE	9,434.3	44.01	9,964.9	0	0	0			85.81		0		
eth.NE	4,816,4	30.068	3,475.7	20,420	70,974	25,906			43.81		22,300	77,508	
PROPLIND	1,093.4	44.094	1,157.1	19,930	23,061	8,417			9.95		21,650	25,051	
ISOSUTNE	215.3	58 • 120	300.3	19,610	5,889	2,149			1.96		21,240	6,378	
N-BUTNE	201.4	58.120	280.9	19,670	5,525	2,017			1.83		21,290	3.580	
ISOPENTNE	64.3	72.146	111.3	19,390	2,158	788			0.58	1	20,995	2,337	
N-PENPLINE	40.2	72.146	69.6	19,500	1,357	495			0.37	1	21,070	1,466	
HEX LYES	45.2	86.172	93.5	19,206	1,796	656			0.41		20,746	1,940	
HZF1.NZS	15.5	100.193	37.3	19,129	714	261	Ì		0.14	1	20,639	770	
OCT.LVES	4.3	114.224	11.8	19,072	225	82		. !	0.04		20,564	243	
MIN	5•3	18.015	2.3	Ç	0	0			0.05	,	0	0	
TOTAL	61,938.3		33,340		488,934	178,462	44,972	4,577	. 563.39	360		540,316	959

Note: *7 molecular weight from the book. *2 D.T. BOOK ON HYLROC RBONS *3 Moral = 3.060254 NTU *4 heat value of fuel oil *5 lb-mol = 379 sef

	(1)	(2)*1	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(11)	(11)2	(12)	(13)
			(1)x(2) x24÷10 ³		(3)x(4) ÷10 ³	(5)x365 ÷10 ³	(6) ÷ 3.968254 ^{*3}	(7)÷9,826*4 ×10 ³	(1)x379 ^{*5} x2 ⁴ ÷10 ⁶	(5)÷(9)		(3)x(11) ÷10 ³	(2)+(9)
	Net Gas To Pipeline	Molecular Weight		H.V.Net	H.V.Net	H.V.Net	H.V.Net	(Fuel Equiv.)		H.V.Net	H.V.Gross	H.V.Gross	H.V.Gros
	lb-Mols/Hr.	16	10 ³ 1b/D	10 ⁹ BTU/Y	10 ⁶ BTU/D	10 ⁹ btu/y	10 ⁹ Kcal/Y.	10 ³ K1/y	10 ⁶ scf/D	BTU/scf	BTU/1b	10 ⁶ BTU/D	.BTU/scf
HITROG ZN	428.6	· 28.013	288.2	. 0	0	0			3.90	1	0	0	1
KETHANE	45,409.9	16.042	17,483.2	21,500	357,889	137, 199			413.05		23,860	417;145	
CARBON DIOXIDE	8,050.1	44.01	8,502.8	0	0	0			73.22		0	0	
erHe	4,792.5	30.068	3,458,4	20,420	70,621	25,777			43.59		22,300	77,122	
PROPANE	945.3	44.094	1.000.4	19,930	19,938	7,277			8,60		21,650	21,659	
eoeut.ne	182.1	58.120	254.0	19,610	4,981	1,818			1.66	1	21,240	5,335	1 1
N-BUTANE	170.0	58,120	237.1	19,670	4,664	1,702			1,55		21,290	5,048	
ISOPENTAND	54.2	72.146	93.8	19,390	1,819	644			0.49		20,995	1,969	,
H-PENTANE	33.9	72.146	56.7	19,500	1,145	418			0.31	İ	21,070	1.237	
exines	38.1	86.172	78.7	19,206	1,513	552			0.35		20,746	1,635	1.
eptanes	13.0	100 - 198	31.3	19,129	599	219			0.12		20,639	ñ46	, 1
)CTANES	3.6	114.224	9.9	19,072	189	69			0.03		د، 564	204	
RIER	4.5	18.015	1.9	O	0	0	}		ົດ•ດ4		c	r	
TOTAL	60,125.8	· .	31,498.5		421,358	175,695	44,275	4,506	546.91	3 8a		532,064	9.73

Note: *1 molecular weight from the book. *2 DATA BOOK ON HYDROCARBONS *3 Kcal = 3.963254 BTU *4 heat value of fuel oil *5 lb-mol = 379 scf

.

•

TABLE 11 LPG PRODUCTION IN 1981

*		<u> </u>	•							
(8).	(6)÷(2)	LPG	10 ² K1/Y	2.65	57.20	30.45	1.68	60.05	92.03	
(2)	·	Specific Quantity	60°F/60°F	0.374	0.508	0.584	0.631	0.664		
(9)	(5)x365+10 ³	LPG Weight	10 ³ t/Y	66*0	90.62	17.78	1.06	0.03	48°84	
(5)	(4)x24÷10 ³	LPG Weight	t/D	2.72	79.63	. 48.72	2.91	60° ò	134.07	
(4)	(3)+2.20462 (4)x24+10 ³	LPG Weight	Kg/Hr	113.2	3,318.1	2,029.9	121.1	3.9	5,586.2	
. (3)	(1)×(2)	LPG Teight	1b/Hr	249.6	7,315.2	4,475.2	566.9	8.6	12,315.5	
(2)		Molecular Weight	1.b	30.068	ħ60° ħħ	58.120	72.146	86.172	•	
(1)	-	LFG	lb-Mols/Hr	8.3.	165.9	0.77	3.7	0.1	255.0-	
	٠		•	ETHANE	PROPANE	BUTANE (ISO+N)	PENTANE (ISO+N)	HEXANE	TOTAL	

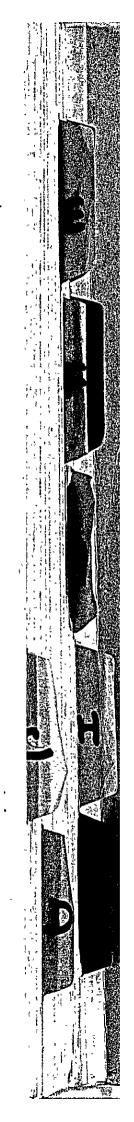


TABLE 12 : LPG PRODUCTION IN 1982

	(1)	(2)	(3)	(†)	(5)	(9)	(6)	(8)
,			(1)x(2)	(3)+2,20462	(4)x24÷10 ³	(5)x365+10 ³	offic.	(6)÷(2)
	LPG Product	Molecular Weight	LPG Weight	LPG Weight	LPG Weight	LPG	Specific	LPG Volume
	lb-Mols/Hr	1.b	1b/Hr	Kg/Hr	t/D	10 ² t/Y	60°F/60°F	10 ³ 12/Y
				•				,
ETHANE	12.3	30.068	369.8	167.7	4.02	7.47	465.0	3.93
PROPANE	258.9	ħ60° ħħ	11,415.9	5,178.2	124.28	45.36	0.508	89.29
BUTANE (ISO+N)	113.6	58.120	6,602.4	2,994.8	. 71.88	26.24	0.584	. 44.93
PENTANE (ISO+N)	5.1	72.146	367.9	. 166.9	4.01	1.46	0.631	2.31
HEXANE	0.1	86.172	9.8	3.9	60.0	0.03	199.0	0.05
TOTAL .	399.0		18,764.6	8,511.5	204.28	74.56	2.761	140.51

.TABLE (2) :: LPG PRODUCTION IN 1983

	, , ,,,,				_					_	
(8)	(4)÷(9)	LPG. Volume	103K1/Y		5.43	122.36	61.73	3.19	0.05	192.76	
(2)		Specific Quantity	60°F/60°F	•	0.374	0.508	0.584	0.631	499.0		
(9)	(5)x365÷10 ³	LPG "eight	10 ³ t/Y·		2.03	62,16	36.05	2.01	0.03	. 102.28	,
(5)	(4)x24÷10 ³	LPG Weight	- t/D		5.57	170.31	98.76	5.50	60.0	280.23	
(†)	(1)x(2) (3)÷2,20462	LPG Weight	Kg/Hr	•	231.9	7,096.3	4,115:2	229.1	3.9	11,676.4	
(3)	(1)x(2)	LPG !Yeight	1b/Hr		511.2	15,644.6	9,072.5	505.0	8.6	25,741,9	
(2)		Molecular Weight	1.b		30.06	460.44	58.120	72.146	86.172		
(1)	~	LPG Product	lb-Mols/Hr		17.0	354.8	156.1	2.0	0.1	. 535.0	
					ETHANE	PROPANE	BUTANE (ISO+N)	PENTANE (ISO+N)	HEXVNE	TOTAL	

\.... e

TABLE 14 LPG PRODUCTION IN 1984

	:									
(8)	(6)+(9)	LPG	10 ³ K1/Y	06.9	156-97	2000	40. 4	0.05	246.81	
(2)		Specific Quantity	60°F/60°F	425.0	0.508	0.584	0.631	199.0		
(9)	$(4)x24 \div 10^{3} (5)x365 \div 10^{3}$	IPG Weight	10 ³ t/Y	2.58	46.66	46.05	2.55	0.03	130.95	
(5)	(4)x24÷103	LPG Weight	t/D	7.07	218.46	126.16	66.9	60.0	358.77	
(4)	(5)+2.20462	LPG Weight	Kg/Hr	294.6	9,102.3	5,256.7	291.3	3.9	14,948.8	
(3)	(1)x(2)	LPG Weight	1b/IIr	6,649	20,067.2	11,589.1	642.1	3.6	.32,956.5	
(2)		Molecular Weight	3.0	30.068	460.14	58.120	72.146	86.172		
(1)		LPG Product	1b-Mols/Hr	21.6	455.1	199.4	8.9	0•1	685.1	
•• • ••	,			ETHANE	PROPANE	BUTANE (ISO+N)	PENTANE (ISO+N)	HEXANE	TOTAL	

TABLE 15 LPG PRODUCTION IN 1985

	(1)	(2)	(3)	(†)	(5)	(6).	(2)	(8)
			(1)x(2)	1)x(2) (3)÷2.20462	(4)x24+10 ³	(5)x365±10 ³	,	(2)+(9)
	LPG Product	Molecular Weight	LPG Weight	LPG . Weight	LPG Weight	LPG Weight	Specific Quantity	LPG
•	lb-Mols/Hr	1.6	1b/Hr	Kg/Hr	t/D	10 ³ t/Y	60°F/60°F	10 ³ K1/Y.
				*				17 54
ETHANE	26.9	30.068	808.8	366.9	8.81	3.22	0.374	8.61
PROPANE	. 0.995	460.44	24,957.2	11,320.4	271.69	99.17	0.508	195,22
BUTANE (ISO+N)	246.2	58.120	14,309.1	6,490.5	155.77	98*95	0.584	97.36
PENTANE (ISO+N)	10.7	72.146	772.0	350.2	8.40	3.07.	0.631	4.87
HEXANE	۲. ٥.	86.172	9 . 8	3.9	60.0	. 0.03	. 499*0	0.05
TOTAL	349.9		40,855.7	18,531.9	92* 444	. 162.35		306.11.
,		4				*	-	