IV-2 Amount of Investment and Expense

1. Amount of Investment

(1) Investment in Expansion of Facilities

a. Investment in expansion of distribution system

Annual investment in expansion of distribution system and the investment converted to present value are divided into as below:

- O Distribution substation
- O Subtransmission line
- High voltage distribution line

And these are computed by electronic computer. Tables IV-5 and IV-6 give the results.

Investment in the far term (10 years) is appreciably greater than the investment in the near term. The reason for this phenomena is that more distribution substations are to be built in the far term and price escalation which is estimated at 8% annually.

b. Investment in expansion of upper stream system

Investment in terminal substation in the metropolitan area, 230 kV transmission line and sub-terminal substations in outskirt of the metropolitan area is given in Table IV-7 and the present value of the investment is given in Table IV-8.

Of this total investment, investment in 230 kV underground transmission line amounts to a sizeable.

c. Investment in expansion of lower stream system

According to growth of demand, investment in expansion of lower stream system will be increased. This investment is given in Tables IV-7 and IV-8.

(2) Policy guided investment

As policy guided investment, an amount for semi-insulated conductor, the same for the near term, has been included, and is shown in Tables IV-7 and IV-8. The amount of this investment is relatively small but can be modified by policy decision.

(3) Investment in renewal of function of facilities

This investment is given in Tables IV-7 and IV-8.

(4) Other investment

Investment of vehicle and testing equipment, etc. is given in Tables IV-9 and IV-10.

(5) Amount of investment

Amount of investment in the 20 years period is given in Tables IV-7 and IV-8. In the far term (last 10 years) the amount of investment is approximately 48,370 million Bahts, and this amount converted into present value is approximately 13,180 million bahts.

Trends of annual investment is shown in Fig. IV-6.

2. Amount of Expense

The amount of expense corresponding to the above mentioned investment is given in Tables IV-9 to IV-12.

Table IV-5 Amount of Investment - Far Term (Detail)

	St	ıbstatio	on	Tra	ansmissio	n line	Dist	tributio	on line
Year	Distri- bution SS	Upper system	Renewal	Sub- TL	Upper system	Renewal	High voltage DL	Lower system DL	Semi- insulated DL
'82 ∿'91	861	167	1,311	360	563	403	978	7,836	(306) 113
'92 ∿'96	1,256	956	1,309	477	2,679	364	1,467	8,595	⁽²⁵²⁾ 160
'97 ∿ 2001	3,570	265	2,174	1,114	794	856	3,484	16,044	(261) ₂₄₈
'92 ∿ 2001	4,826	1,221	3,483	1,591	3,473	1,220	4,951	24,639	(513) ₄₀₈
TTL	5,687	1,388	4,794	1,952	4,036	1,623	5,929	32,475	(819) ₅₂₁

SS: Substation, TL: Transmission line, DL: Distribution line

(): Semi-insulated conductor length m cct·km

Table IV-6 Present Value of Amount of Investment - Far Term (Detail)

	Sul	Substation			ansmissio	n line	Dis	tributio	on line
Year	Distri- bution SS	Upper system	Renewal	Sub- TL	Upper system	Renewal	High voltage DL	Lower system DL	Semi- insulated DL
'82 ∿'91	603	74	806	257	249	246	654	4,830	70
'92 ∿'96	441	334	449	172	928	131	509	2,941	55
'97 ∿2001	804	72	495	259	215	195	788	3,645	57
'92 ∿2001	1,245	406	945	431	1,143	326	1,297	6,585	112
TTL	1,848	480	1,751	688	1,392	572	1,950	11,416	182

Year	Substation	Transmi- ssion line	Distribution line	Vehicle & equipment	TTL
'82 ∿'91	2,339	1,326	8,927	880	13,472
192 ∿196	3,521	3,520	10,222	945	18,209
'97 ∿ 2001	6,010	2,764	19,776	1,609	30,159
'92 √ 2001	9,530	6,284	29,998	2,555	48,367
TTL	11,869	7,611	38,925	3,435	61,840

Table V-8 Present Value of Amount of Investment - Far Term

Year	Substation	Transmi- ssion line	Distribution	Vehicle & equipment	TTL
'82 ∿'91	1,483	752	5 ₁ 55 ¹ 4	538	8,327
'92 ∿'96	1,224	1,231	3,505	324	6,284
'97 √2001	1,371	669	4,490	367	6,897
'92 √ 2001	2,596	1,900	7,994	691	13,180
TTL	4,079	2,652	13,548	1,228	21,507

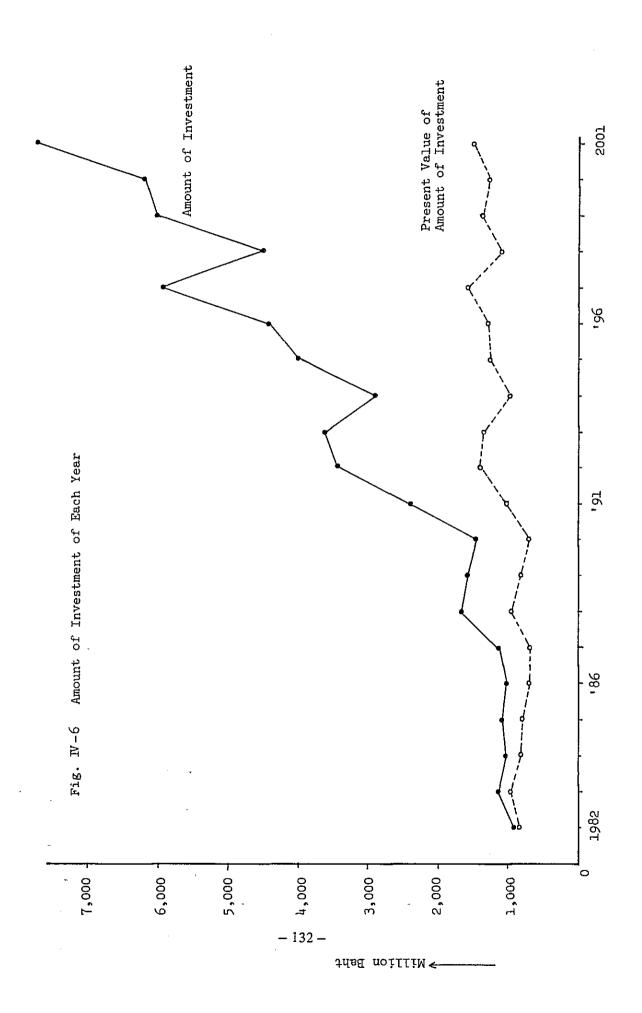


Table IV-9 Amount of Expense - Far Term (Detail)

	Su	bstation	1	Tre	nsmission	line	Dis	tributi	on line
	Distri- bution SS	Upper system	Renewal	Sub- TL	Upper system	Renewal	High voltage DL	Lower system DL	Semi- insulated DL
'82 ∿'91	829	25	936	310	73	246	872	5,807	85
192 ∿196	1,237	559	1,547	446	1,373	423	1,440	9,859	161
'97 ^2001	3,027	1,049	2,898	977	2,622	812	3,379	19,769	325
'92 ∿2001	4,264	1,608	4,445	1,423	3,995	1,235	4,819	29,628	486
TTL	5,093	1,633	5,381	1,733	4,068	1,481	5,691	35,435	571

Table IV-10 Present Value of Amount of Expense - Far Term (Detail)

	Su	bstation	1	Tr	ansmission	line		tributio	n line
	Distri- bution SS	Upper system	Reneway	Sub- TL	Upper system	Renewal	High voltage DL	Lower system DL	Semi- insulated DL
'82 ∿'91	487	11	525	183	32	136	510	3,266	48
192 √196	420	188	528	153	461	145	487	3,357	55
'97 ∿2001	681	243	659	221	608	184	763	4,483	74
'92 ∿2001	1,101	431	1,187	374	1,069	329	1,250	7,840	129
TTL	1,588	կկ2	1,712	557	1,101	465	1,760	11,106	177

Year	Substation	Transmi- ssion line	Distribu- tion line	Vehicle & equipment	Distribu- tion loss	TTL
'82 ∿'91	1,790	629	6,764	903	1,044	11,129
'92 ~ '96	3,343	2,242	11,460	1,158	1,342	19,944
'97 √ 2001	6,974	4,411	23,473	3,014	2,473	40,346
'92 ~ 2001	10,317	6,653	34,933	4,572	3,814	60,290
TTL	12,107	7,282	41,697	5,475	4,858	71,418

Table N-12 Present Value of Amount of Expense - Far Term

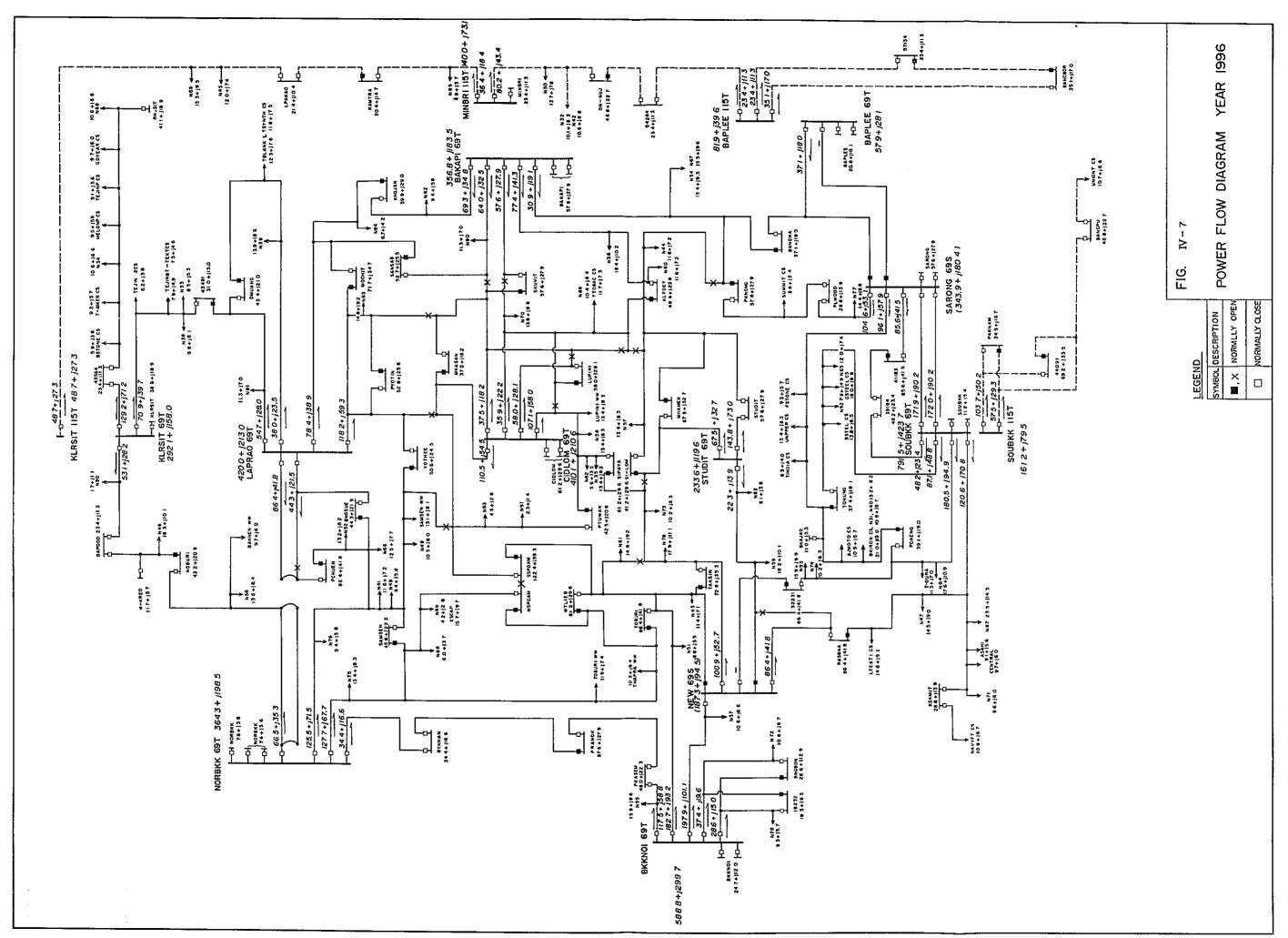
Year	Substation	Transmi- ssion line	Distribu- tion line	Vehicle & equipment	Distribu- tion loss	TTL
¹82 ∿ '91	1,023	351	3,824	506	622	6,325
'92 ∿ '96	1,136	759	3,899	531	458	6,783
'97 ∿ 2001	1,583	1,013	5,320	685	561	9,162
'92 ∿ 2001	2 , 719	1,772	9,219	1,215	1,019	15,945
TTL	3,742	2,123	13,043	1,721	1,641	22,270

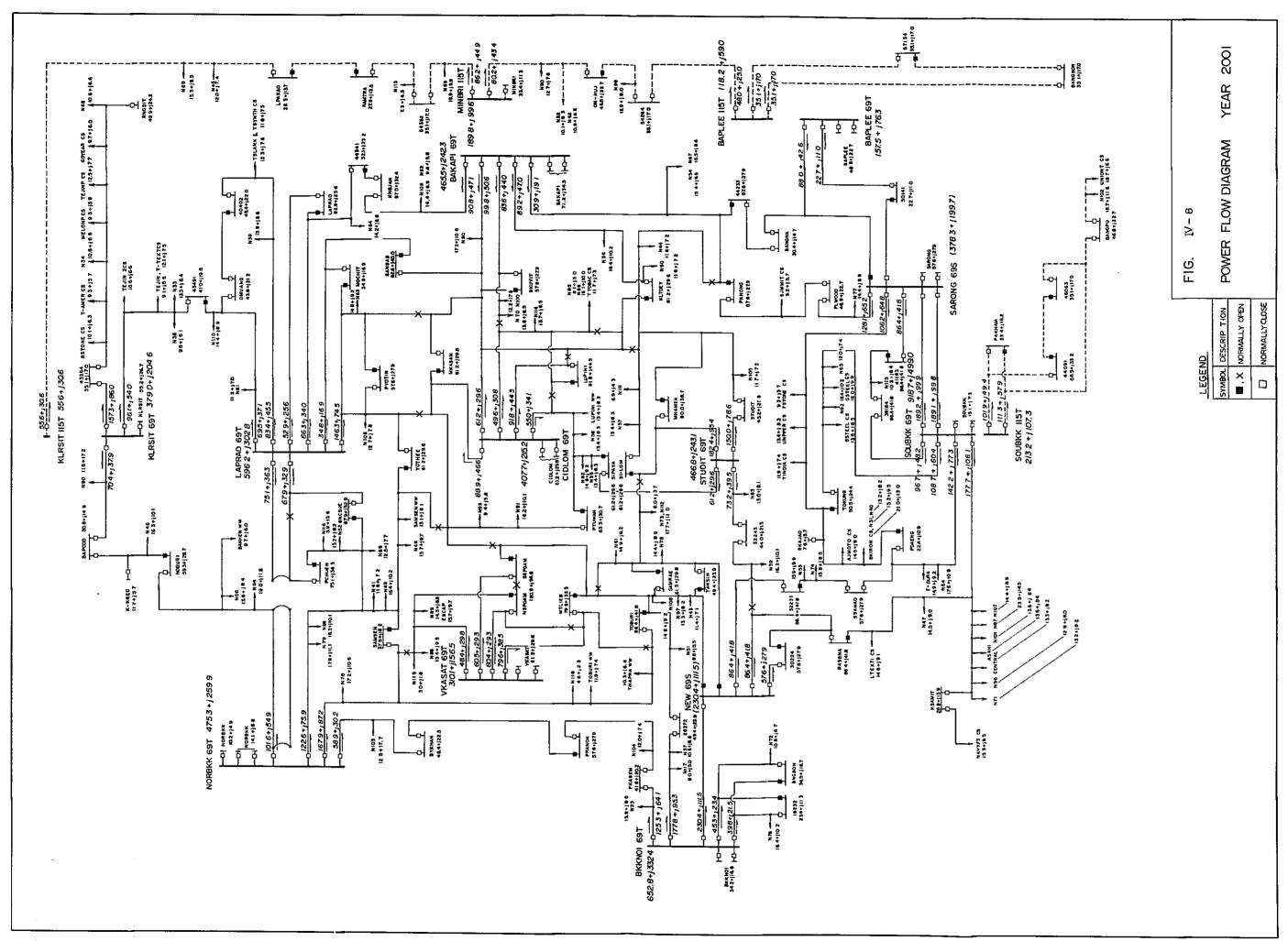
IV-3 Power Flow, Short Circuit Capacity and Reliability Studies

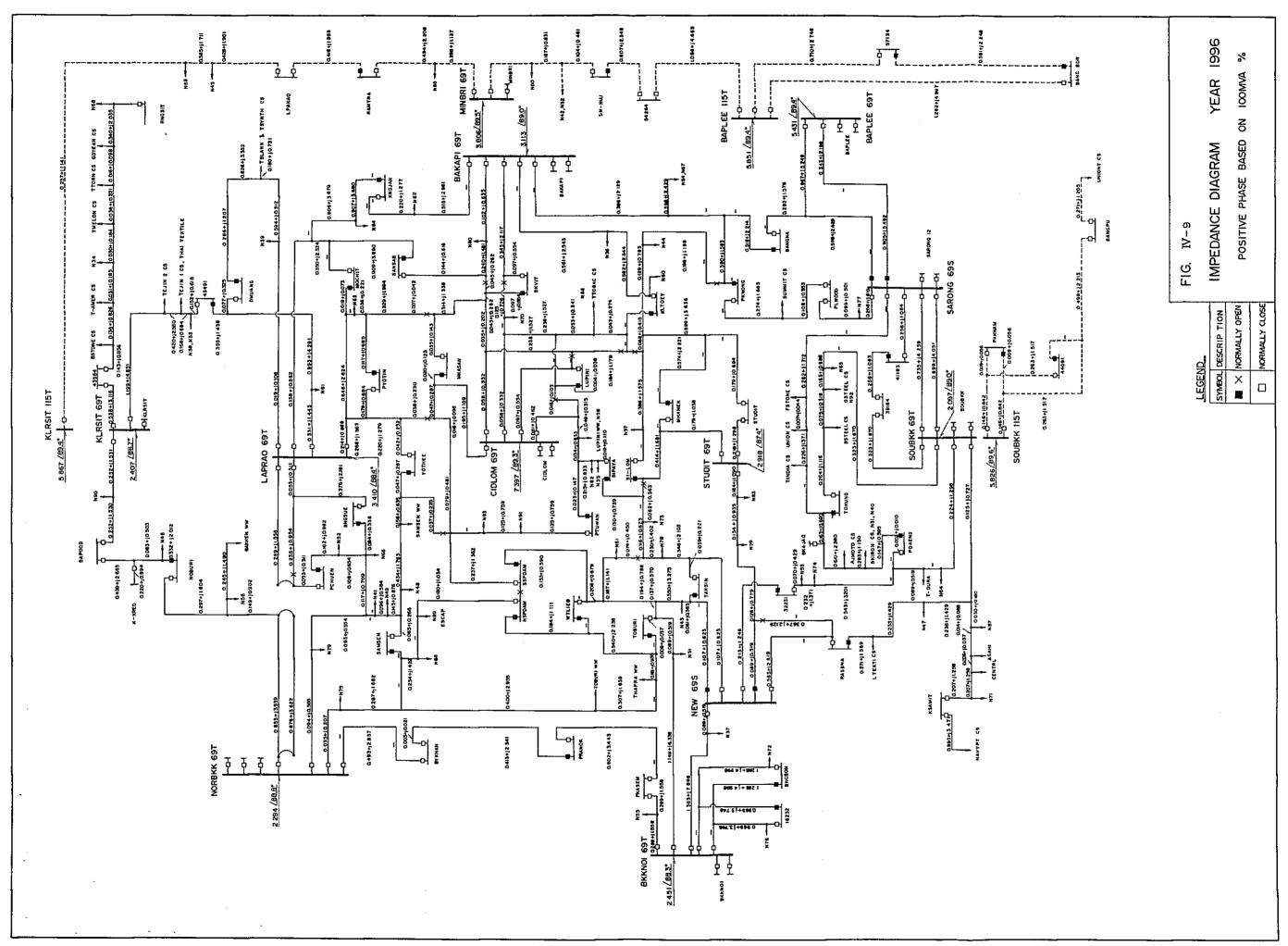
1. Power Flow Studies

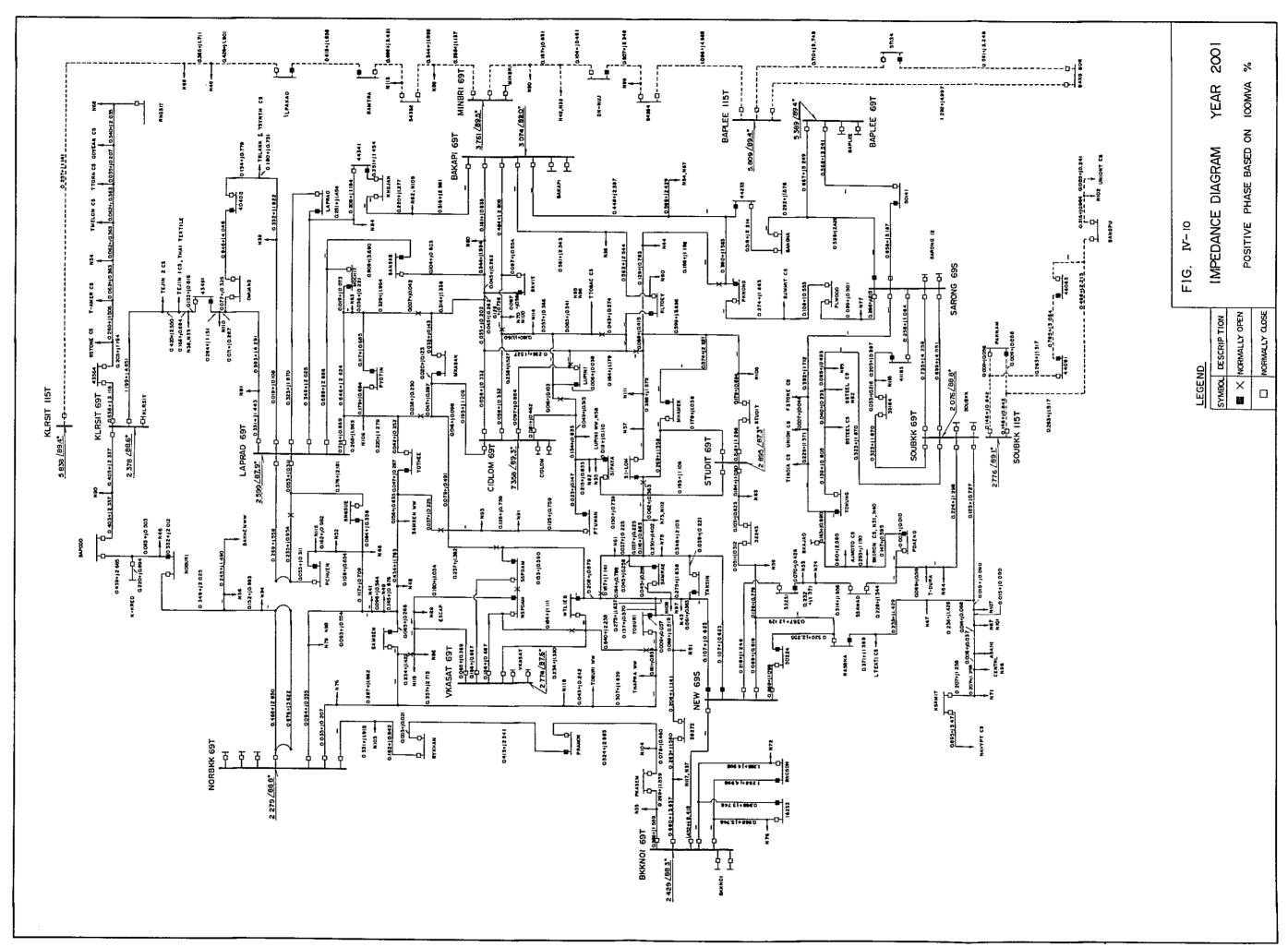
Results of calculation of power flow during the period 1996 to 2001 are shown in Figs. IV-7 and IV-8.

The required length of the transmission lines have been restrung with TAAC and therefore, the power flow capacity of each line has been enlarged creating no problem in respect of power flow.


2. Short Circuit Capacity Studies


Figs. IV-9 and IV-10 are impedance maps of the system in 1996 and 2001. Because of the expansion of EGAT's power system, the impedance of the power source side has dropped, and consequently has enlarged the short circuit capacity. There will be 4 terminal substations at which the short circuit capacity on the 69 kV side will exceed 4,000 MVA and almost approach 5,000 MVA. If the short circuit capacity is predicted to exceed 5,000 MVA, it will become necessary to segregate the 69 kV bus and operate the 69 kV system independently. It may also become necessary to study the possibility of raising the impedance of 230 kV/69 kV transformers. Tables IV-13 and IV-14 give the short circuit capacity at the 69 kV side of each terminal substation and each distribution substation.


3. Reliability studies


At the time of 1 bank fault, the average service interruption to customer is 0.635 hour/year. There is no degradation of reliability which means that the facility expansion program has been properly prepared. Table IV-15 gives the power interchange factor of each substation and Table IV-16 gives the interchange factor of each distribution substation.

Average annual service interruption time to customer for outage of distribution feeders are 0.88 H/year-customer (1996) and 0.76 H/year-customer (2001).

Tabel N-13 Fault Level at Terminal Substation - Far Term

Unit : MVA

				Unit: MVA
Substation	'91	196	2001	Remark
North BKK	4,318	4,360	4,388	
BKK Noi	3,067	4,080	4,116	
s.вкк (69кv)	4,235	4,768	4,818	
" (115KV)	1,710	1,720	3,600	
Bangplee (69KV)	1,830	1,841	1,855	
" (115KV)	1,700	1,710	1,720	
K.Rangsit (69KV)	4,065	4,155	4,205	
" (115KV)	1,690	1,700	1,710	
Lard Prao	2,900	2,930	3,850	
Bangkapi	3,172	3,212	3,253	
Chidlom	1,345	1,352	1,359	
T.Satupradit	_	3,430	3,454	
T.Visutkasat	_	_	3,604	
Minburi	_	2,628	2,659	

(Note) Three phase fault.

Table N-14 Fault Level at Distribution Substation - Far Term

lni		MVA	

<u></u>				Unit : MVA
Substation	' 91	196	2001	Remark
North BKK	4,318	4,360	4,388	
Klongkred	1,091	1,097	933	
Bangyeekhan	1,923	1,931	1,936	i i
Klong Sanpasamit	1,688	1,760	1,767	
Pechkasem	1,561	1,786	1,792	
North BKK	4,318	4,360	4,388	
Prapradaen	2,380	2,538	2,552]
Rasburana	649	738	733	
Thonburi	923	1,060	1,000	
Taksin	750	845	1,035	
Bangkok Noi	3,067	4,080	4,116	
Bangkrajao	1,252	1,240	1,243	
Bangbon	1,195	1,320	1,324	
Pran Nok	1,010	1,100	1,103	
Suksawad	-	-	1,898	
Samray	-	-	1,037	
28272	-	-	1,300	
32231	1,080	1,111	818	
30224	_	-	828	
16232	-	1,591	1,597	
Rangsit	1,014	998	859	
Klong Rangsit	4,065	4,155	4,205	
43564	. -	1,800	1,809	
Lumpini	1,251	1,257	1,263	
Makasan	1,056	1,058	1,065	
Sapandam	1,448	1,500	2,725	

(Note) Three phase fault

	Unit	:_	MVA
--	------	----	-----

Substation	191	196	2001	Remark
Pathumwan	913	917	920	
Silom	868	938	979	
Watlieb	845	855	2,429	
Yothee	1,340	1,348	1,512	
Bangkapi	3,172	3,212	3,253	
Bangna	809	812	815	
Bangsue	2,217	1,688	1,954	
Donmuang	1,040	1,043	1,138	
Klong Jan	1,189	1,354	1,356	
Mahamek	709	2,527	2,536	
Mochit	1,566	1,576	1,805	
Nontaburi	1,454	1,459	1,477	
Plywood	1,608	1,578	1,583	
Prachacuen	2,245	1,889	2,228	
Prakanong	1,246	1,165	1,168	
Sæmsen	1,931	1,939	1,785	
Samrong	2,452	2,385	2,397	
Sansab	1,691	1,703	1,506	
Satupradit	868	2,364	2,378	
South BKK	4,235	4,768	4,818	
Tangkung	1,560	1,611	1,814	
Bangpood	1,802	1,820	1,407	
Sukhumvit	1,711	1,722	1,547	
Sipraya	999	1,003	2,100	
Chidlom	1,345	1,352	1,359	
Paholyotin	1,510	1,520	1,731	
Klongtoey	1,201	1,207	1,217	
Visutkasat	-	<u>.</u>	3,604	

Fault Level at Distribution Substation - Far Term

Unit	:	MVA	

		,		Unit : MVA
Substation	' 91	'96	2001	Remark
Lardprao		-	2,228	
40402	-	<u> </u> 	1,838	
32243	-	-	2,162	
44233	-	_	688	
44341	-	_	1,364	
41183	-	1,887	1,899	
39184	2,355	2,510	2,524	
43491	930	901	904]
Paknam	1,481	1,486	2,718	
Bangpu	955	957	1,350	
Bangplee	1,830	1,841	1,855	
Onnuj	965	1,958	1,975	
Ramintra	792	1,390	970	
Ladplakao	931	936	938	
Minburi	-	2,628	2,659	
Bangbor	912	914	918	
44091	1,216	1,219	1,940	
46063	-	_	1,704	
54264	-	945	949	
54352	-	_	1,466	
50141	-	_	1,117	
57134	-	1,149	1,164	

Table N-15 Annual Average Time of Interruption - Far Term

Unit : hour

Chileda	Annı	ual average tim	e	Remark
Substation	'91	'96	2001	Remark
North BKK	1.04	1.04	1.05	
Klongkred	0.99	0.96	0.91	
Bangyekhan	0.64	0.63	0.63	
Klong Sanpasamit	0.64	0.64	0.64	
Pechkssem	0.64	0.64	0.64	
North BKK	0.63	0.63	0.63	
Prapradaen	0.65	0.64	0.66	
Rasburana	0.63	0.64	0.63	
Thonburi	0.62	0.62	0.62	
Taksin	0.63	0.63	0.63	
Bangkok Noi	0.71	0.70	0.70	
Bangkrajao	0.63	0.63	0.63	
Bangbon	0.66	0.66	0.66	
Pran Nok	0.69	0.64	0.64	
Suksawad			0.64	
Samray			0.62	
28272			0.64	
32231	0.63	0.63	0.64	
30224			0.64	
16232		0.71	0.71	
Rangsit	0.67	0.67	0.67	
Klong Rangsit	0.71	0.71	0.71	
43564		0.66	0.67	
Lumpini	0.56	0.56	0.56	
Makasan	0.56	0.56	0.56	
Sapandam	0.56	0.56	0.56	
Pathumwan	0.56	0.56	0.56	
Silom	0.59	0.58	0.58	
Watlieb	0.56	0.57	0.56	
Yothee	0.59	0.59	0.60	
Bangkapi	0.63	0.63	0.63	

	Annu	Unit : hou		
Substation	'91	'96	2001	Remark
Bangna	0.64	0.64	0.64	
Bangsue	0.63	0.63	0.63	
Donmuang	0.64	0.64	0.64	
Klong Jan	0.64	0.64	0.64	
Mahamek	0.63	0.63	0.63	
Mochit	0.63	0.63	0.63	
Nontaburi	0.63	0.64	0.64	
Plywood	0.64	0.64	0.63	
Prachacuen	0.63	0.63	0.63	
Prakanong	0.63	0.63	0.63	
Samsen	0.63	0.63	0.63	
Samrong	0.64	0.65	0.65	
Sansab	0.60	0.60	0.60	
Satupradit	0.63	0.63	0.63	
South BKK	0.67	0.68	0.68	
Tangkung	0.63	0.63	0.63	
Bangpood	0.70	ö.71	0.71	
Sukhumvit	0.62	0.62	0.65	
Sipraya	0.56	0.56	0.56	
Chidlom	0.56	0.56	0.56	
Paholyotin	0.63	0.63	0.63	
Klongtoey	0.62	0.62	0.62	
Visutkasat			0.58	
Lardprao			0.63	
40402			0.63	
32243			0.63	
44233			0.63	
44341			0.63	
41183		0.63	0.63	
39184	0.63	0.63	0.63	
43491	0.64	0.64	0.64	

Unit : hour

	Annu			
Substation	'91	196	2001	Remark
Paknam	0.66	0.66	0.63	
Bangpu	0.71	0.71	0.71	
Bangplee	0.73	0.75	0.71	
Onnuj	0.71	0.71	0.71	
Ramintra	0.71	0.71	0.70	
Ladplakao	0.67	0.76	0.76	
Minburi		0.71	0.71	
Bangbor	0.71	0.71	0.71	<u> </u>
44091	0.65	0.66	0.64	
46063			0.71	
54264		0.71	0.71	
54352			0.71	
50141			0.71	
57134		0.71	0.71	
			·	
				
			·	<u> </u>
				<u> </u>
				ļ
			<u> </u>	
		· · · · · · · · · · · · · · · · · · ·		
TTL	0.635	0.636	0.636	
TFII	0.635	0.030	0.000	

Table N-16 Interchange Factor at 1 Transformer Fault - Far Term

	Int	Remark		
Substation	'91	196	2001	Nemai k
North BKK	0.08	0.08	0.08	
Klongkred	0.12	0.14	0.17	
Bangyekhan	1.0	1.0	1.0	
Klong Sanpasamit	1.0	1.0	0.94	
Pechkssem	1.0	1.0	1.0	
North BKK	1.0	1.0	1.0	
Prapradaen	1.0	1.0	1.0	
Rasburana	1.0	1.0	1.0	
Thonburi	1.0	1.0	1.0	
Taksin	1.0	1.0	1.0	
Bangkok Noi	1.0	1.0	1.0	
Bangkrajao	1.0	1.0	1.0	
Bangbon	1.0	1.0	1.0	
Pran Nok	0.46	0.99	1.0	
Suksawad			0.98	
Samray			1.0	
28272			1.0	
32231	1.0	1.0	1.0	
30224			1.0	
16232		1.0	1.0	
Rangsit	1.0	1.0	1.0	
Klong Rangsit	1.0	1.0	1.0	
43564		1,0	1.0	
Lumpini	1.0	1.0	1.0	
Makasan	1.0	1.0	0.97	
Sapandam	1.0	1.0	1.0	
Pathumwan	1.0	1.0	1.0	
Silom	1.0	1.0	1.0	
Watlieb	1.0	0.72	1.0	
Yothee	1.0	1.0	1.0	
Bangkapi	1.0	1.0	1.0	1

Interchange Factor at 1 Transformer Fault - Far Term

	Int	erchange facto	or	Remark
Substation	'91	'96	2001	nemark
Bangna	1.0	1.0	1.0	
Bangsue	1.0	1.0	1.0	
Donmuang	1.0	1.0	1.0	
Klong Jan	1.0	1.0	1.0	
Маhаmek	1.0	1.0	1.0	
Mochit	1.0	1.0	1.0	
Nontaburi	1.0	1.0	1.0	
Plywood	0.93	0.73	1.0	
Prachacuen	0.98	1.0	1.0	"
Prakanong	1.0	1.0	1.0	
Samsen	1.0	1.0	1.0	
Samrong	0.84	0.69	0.64	
Sansab	1.0	1.0	1.0	
Satupradit	1.0	0.95	1.0	
South BKK	0.55	0.50	0.46	
Tangkung	1.0	1.0	1.0	
Bangpood	1.0	i.o	1.0	
Sukhumvit	1.0	1.0	1.0	
Sipraya	1.0	1.0	1.0	
Chidlom	1.0	1.0	0.93	
Paholyotin	1.0	1.0	1.0	
Klongtoey	1.0	1.0	0.94	
Visutkasat			1.0	
Lardprao			1.0	
40402			1.0	
32243			1.0	
44233			1.0	
44341			1.0	
41183		1.0	1.0	
39184	1.0	1.0	1.0	
43491	1.0	1.0	1.0	

Interchange Factor at 1 Transformer Fault - Far Term

	Int	terchange facto	or	Remark
Substation	191	'96	2001	Remark
Paknam	1.0	1.0	1.0	
Bangpu	1.0	1.0	1.0	
Bangplee	0.64	0.53	1.0	
Onnuj	1.0	1.0	1.0	
Ramintra	1.0	1.0	1.0	
Ladplakao	0.66	0.31	0.31	
Minburi		1.0	1.0	
Bangbor	1.0	1.0	1.0	
44091	1.0	1.0	1.0	
46063			1.0	1
54264		1.0	1.0	
54352			1.0	
50141			1.0	
57134		1.0	1.0	
				-
				
				
	<u> </u>			
				
				-
				<u> </u>
				<u> </u>
-	·			<u> </u>

IV-4 When Load Varies from Projected Load

1. Case Study

In the "MEA Load Forecast for 1982 to 2001" a sensitivity analysis was made for demand when the GDP indicate a plus or minus 10% fluctuation. Results of this sensitivity analysis reveal that in the year 2001, a plus 10% GDP growth will result in $\pm 16.6\%$ load growth and a minus 10% GDP growth will result in $\pm 14.7\%$ load growth in the MEA system.

In the study of distribution system expansion program when demand variates against projected demand, the above mentioned values were used for 2 case studies.

Case 8 — when the distribution load is plus 16.6% of the projected load in 2001 (upper value)

Case 9 — when the distribution load is minus 14.7% of the projected load in 2001 (lower value)

In order to study the facility expansion and investment programs, it is necessary to make the study for each year. Therefore, the upper (B) and lower (C) values of demand shown in Fig. IV-11 were used in the study. The computed upper and lower distribution loads are given in Table IV-17. In the year 2001 the loads are as follow:

upper load - 4,967 MVA lower load - 3,634 MVA projected load - 4,260 MVA

2. Facility Expansion Program

Under the conditions of Case 2 in the table below, calculations of distribution system expansion program for variation of loads were made by computer, and the results are given in Tables IV-18 and IV-19. In the year 2001, the number of distribution substations under variation of loads is shown in Table IV-20. In comparison to Case 2, for the other 2 cases there is a plus or minus 8 substations.

Table IV-20 Number and Capacity of Distribution Substations

Year	Case 2	Case 8	Case 9
Number			
1991	57	60	57
2001	76	84	68
Capacity (MVA)			
1991	3,990	4,250	3,990
2004	6,540	7,320	5,460

In the scheduling of construction of distribution substations, using Case 2 as the basis, there would be a plus and minus of approximately 2 years for Case 8 and Case 9. Table IV-21 gives the substations that are required and not required as a result of variation of demand against projected demand.

In Table IV-18, under column "Case 8", 2 distribution substations identified as 33291 and 31304 are to be constructed in the center of the city (Area A) near terminal substations. Therefore, these 2 distribution substations are to be of feeder transformer type.

3. Amount of Investment and Expense

Amount of investment and expense of Case 8 and Case 9 are compared in relation to Case 2, and the results are given in Tables IV-22 to IV-25.

Amount of investment as compared to Case 2 reveal that in Case 8 the investment is approximately 9,290 million Bahts greater (converted to present value — approximately 3,050 million Bahts), and in Case 9 the investment is approximately 8,170 million Bahts less (converted to present value — approximately 2,940 million Bahts).

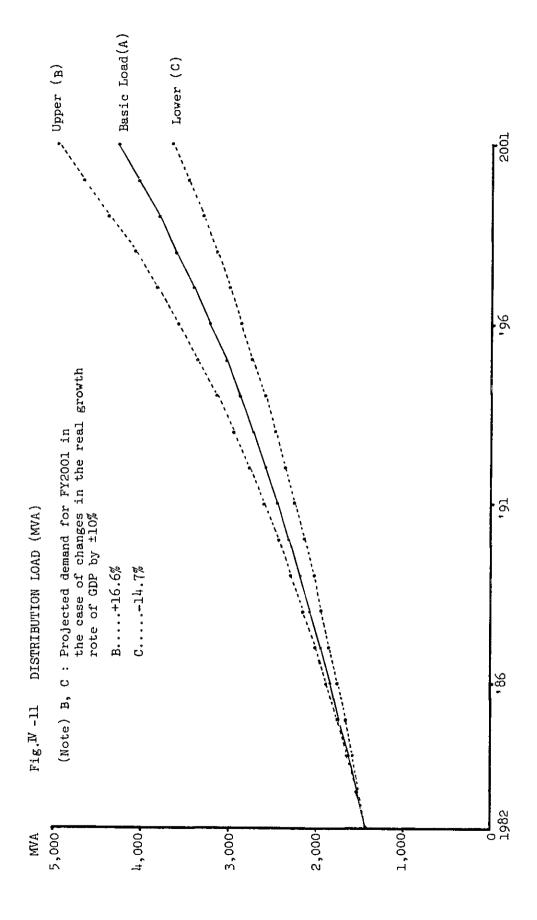


Table N- 17 Calculation of Upper & Lower Distribution Load

Year	Basic load	Upper	load	Lower	load
lear	(MVA) A	(MVA)B	B/A-	(MVA)C	C/A
182	1,449	1,449	1.0	1,449	1.0
'83	1,540	1,546	1.004	1,521	0.988
184	1,636	1,650	1.009	1,596	0.976
185	1,737	1,760	1.013	1,675	0.964
'86	1,834	1,878	1.024	1,758	0.959
'87	1,947	2,004	1.029	1,846	0.948
188	2,064	2,138	1.036	1,937	0.938
'89	2,177	2,281	1.048	2,033	0.934
'90	2,300	2,434	1.058	2,134	0.928
'91	2,432	2,597	1.068	2,240	0.921
'92	2,572	2,771	1.077	2,351	0.914
'93	2,720	2,957	1.087	2,467	0.907
194	2,877	3,155	1.097	2,590	0.900
'95	3,039	3,366	1.108	2,718	0.89և
'96	3,210	3,592	1.119	2,853	0.889
'97	3,396	3,832	1.128	2,994	0.882
198	3,592	և,089	1.138	3,143	0.875
199	3,801	4,363	1.148	3,299	0.868
2000	ት,024	4,655	1.157	3,462	0.860
2001	4,260	4,967	1.166	3,634	0.853

(Note)
$$B = 1.449 \times 1.067^n$$

 $C = 1.449 \times 1.0496^n$
Values of "n" are as follows:
'82, '83, '84, '85, '86, '87, '88, '89, 2001
 $n = 0, 1, 2, 3, 4, 5, 6, 7, 19$

Table N-18 Distribution Substation Expansion Program - Far Term (Case 8)

Unit : No. x MVA Expansion Bloc Capacity Capacity Substation in 1991 in 2001 No. 192 ∿ 196 TTL '97∿2001 1x40 1x4010 North BKK 1x20 1x20 Klongkred Bangyekhan 2x402x40 20 2x20 2x20 Klong Sanpsamit 1x40 1x40 Pechkasem 2x20 2x20 North BKK 2x20 2x20 2x40 2x40 Prapradaen 2x40 +1x40 +1x40 3x40Rasburana Thonburi 3x40 3x402x40 +1x40 Taksin +1x40 3x40 1x40 2x20 1x40 2x20 Bangkok Noi Bangkrajao 2x10 2x10 2x40 2x40 Bangbon Pran Nok 1x40 +2x40 +2x40 3x40 new Suksawad +2x402x40 2x40 new +1x40 +3x403x40Samray 2x40 new 3x40 3x40 28272 +3x402x40 +1x40 +1x40 3x40 32231 new 3x40 30224 +3x40 3x40 new 2x20 +2x20-16264 2x20 new 16232 +2x20 2x20 2x2030 Rangsit 2x40 +1x40 +1x403x40Klong Ransit 2x40 +1x40 +1x40 3x4043564 2x20 +1x20 +1x20 3x20 40 3x40 Lumpini 2x40 +1x40 +1x40 Makasan 2x40 +1x40 +1x40 3x404x404x40Sapandam 2x40 +1x40 3x40Pathumwan +1x40 2x40 $2x^{40}$ Silom 2x40 +1x40 3x40Watlieb +1x40

Distribution Substation Expansion Program - Far Term (Case 8)

Unit : No. x MVA

					OHILO . II	O. X MVA
Bloc	Substation	Capacity		Expansion	1	Capacity
No.	04000401011	in 1991	192 1/96	'97∿2001	TTL	in 2001
40	Yothee	2x40				2x40
	Bangkapi	2x ¹ 40	+1x40		+1x40	3x40
	Bangna	2x40			,	2x40
	Bangsue	1x10	+2x40 -1x10	+1x40	+3x40 -1x10	3x40
	Donmuang	2x40				2x40
	Klong Jan	2x40	+1x40		+1x40	3x40
	Mahamek	3x40				3x40
	Mochit	2x40	+1x40		+1x40	3x40
	Nontaburi	1x40 1x20	+2x40 -1x20		+2x40 -1x20	3x40
	Plywood	1x20	+1x40	+1x40 -1x20	+2x40 -1x20	2x ¹ 40
	Prachacuen	2x40	+1x40		+1x40	3x40
	Prakanong	2x40				2x40
	Samsen	2x40				2x40
	Samrong	2x40				2x40
	Sansab	2x40		+1x40	+1x40	3x40
	Satupradit	2x ¹ 40	+1x40		+1x40	3x ¹ 40
	South BKK	1x20		+2x40 -1x20	+2x48	2x40
	Tangkung	2x40		+1x40	+1x40	3x40
	Bangpood	2x20		+1x20	+1x20	3x20
	Sukhumvit	2x40				2x40
	Sipraya	2x40				2x40
	Chidlom	2x40				2x40
	Paholyotin	2x40				2x40
	Klongtoey	2x40				2x40
	Visutkasat		new 2x40		+2x40	2x40
	Lardprao			new 2x40	+2x40	2x40
	Setsiri			new 2x40	+2x40	2x40
	33291			new 2x40	+2x40	2x40
	31304			new 2x40	+2x40	2x40
	r0r05			new 2x40	+2x40	2x ¹ 10
	32243			new 2x40	+2x40	2x40
_	44233			new 2x40	+2x40	2x40
	44341		new 2x40	+1x40	+3x40	3x40

Distribution Substation Expansion Program - Far Term (Case 8)
Unit: No. x MVA

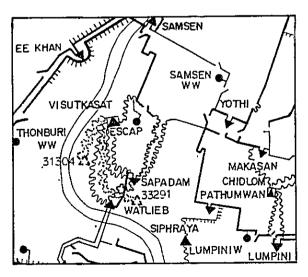
Bloc	Substation	Capacity in 1991	Expansion			Capacity
No.			192 1 196	'97∿2001	TTL	in 2001
40	40263			new 2x40	+2x40	2x40
	41183	2x40	+1x40		+1x40	3x40
	39184	2x40	+1x ¹ 40		+1x40	3x ¹ 40
	43491	2x40		+1x40	+1x40	3x40
50	Paknam	2x40				2x40
	Bangpu	2x40				2x40
	Bangplee	1x40		+1x40	+1x40	2x40
	Onnuj	2x ¹ 40				2x40
	Ramintra	2x40			· · · · · · · · · · · · · · · · · · ·	2x40
	Ladplakao	1x40				1x40
	Bangping			new 2x40	+2x40	2x40
	Minburi		new 2x20	+1x20	+3x20	3x20
	Bangbor	3x20				3x20
	44091	2x40	+1x40		+1x40	3x40
	46063			new 3x20	+3x20	3x20
	54264	2x20	+1x20	JACO	+1x20	3x20
	54352			new 2x20	+2x20	2x20
	51221			new 2x20	+2x20	2x20
	50141		5×50	+1x20	+3x20	3x20
	57134		new 3x20		+3x20	3x20
	67042			new 2x20	+2x20	2x20
	Number of Substation	60	+7	+17	+24	84
	Total Capacity (MVA)	4,250	196 5,420	2001 7,320		7,320
	Total Load (MVA)	2,597		l l		4,967
	Utilizing factor	61.1	'96 66.9	2001		67.9

Table \mathbb{N} - 19 Distribution Substation Expansion Program - Far Term (Case 9)

Unit : No. x MVA

			Unit : No. x MVA Expansion				
Bloc No.	Substation	Capacity in 1991	192 v 196	 1		Capacity in 2001	
10		1x40	92.0 90	.91.0 500T	TTL	1x40	
10	North BKK						
	Klongkred	1x20	<u> </u>			1x20	
		- \ -					
20	Bangyekhan	2x40	ļ	1		2x40	
	Klong Sanpsamit	2x20 1x40				2x20	
	Pechkasem	2x20				1x40 2x20	
	North BKK	2x20				2x20	
	Prapradaen	2x40				2x40	
	Rasburana	2x ¹ 40	+1x40		+1x40	3x40	
	Thonburi	2x40	+1x40		+1x40	3x40	
	Taksin	2x40		+1x40	+1x40	3x40	
	Bangkok Noi	1x40 2x20				1x40 2x20	
	Bangkrajao	2x10			·	2x10	
	Bangbon	2x40		_		2x40	
	Pran Nok	1x40	+1x40		+1x40	2x40	
	Samray			new 2x40	+2x40	2x40	
	32231	2x40		+1x40	+1x40	3x40	
	16232			new 2x20	+2x20	2x20	
				2220			
30	Rangsit	2x40				2x40	
	Klong Ransit	2x40		+1x40	+1x40	3x40	
	43564		new 2x20		+2x20	2x20	
40	T	0-10				0-1-0	
40	Lumpini	2x40		<u> </u>		2x40	
	Makasan	2x40				2x40	
	Sapandam	4x40				4x40	
	Pathumwan ·	2x40				2x ¹ 40	
	Silom	2x40				2x40	
	Watlieb	2x40				2x40	
	Yothee	2x40				2x40	
	Bangkapi	2x40		+1x40	+1x40	3x40	
	Bangna	2x40				2x40	
	Bangsue	1x10	+1x40	+1x40 -1x10	-1x10 +2x40	2x40	

Distribution Substation Expansion Program - Far Term (Case 9)
Unit: No. x MVA


			1	: No. x MVA Capacity		
Bloc No.	Substation	Capacity in 1991	in 2001			
40	Donmuang	2x40	192 1/195	'97 ∿ 2001	TTL	2x40
40	Klong Jan	2x40		+1x40	+1x40	3x40
		2x40 2x40	+1x40	+1X40	+1x40 +1x40	3x40
	Mahamek					
 	Mochit	2x40	+1x40 +1x40	+2x40	+1x40 +3x40	3x40
<u> </u>	Nontaburi	2x20	-1x20	-1x20 +2x40	-2x20	3x40
	Plywood	1x20		-1x20	-1x50 +5xf0	2x40
	Prachacuen	2x40	+1x40		+1x40	3x40
	Prakanong	2x40	•			2x40
	Samsen	2x40				2x40
	Samrong	2x40				5x40
	Sansab	2x40				2x40
	Satupradit	2x40		+1x40	+1x40	3x ¹ 40
	South BKK	1x20				1x20
	Tangkung	2x40				2x40
	Bangpood	2x20				2x20
	Sukhumvit	2x40				2x40
	Sipraya	2x40				2x40
	Chidlom	2x40				2x40
	Paholyotin	2x40				2x40
	Klongtoey	2x40				2x40
	Visutkasat			new 2x40	+2x40	2x40
	44341			new 2x40	+2x40	2x40
	41183		new 2x40	+1x40	+3x40	3x40
	39184	2x40	2,40	+1x40	+1x40	3x40
	43491	2x40	· · · · · · · · · · · · · · · · · · ·			2x40
50	Paknam	2x40				2x40
	Bangpu	2x40				2x40
	Bangplee	1x40	-	+1x40	+1x40	2x40
	Onnuj	2x ¹ 40				2x40
	Ramintra	2x40				2x40
	Ladplakao	1x40				1x40
 	Minburi	1340	new		10-00	•
	MITHOUTT		2x20		+2x20	2x20

Distribution Substation Expansion Program - Far Term (Case 9)

Unit : No. x MVA Expansion Capacity Capacity in 1991 Bloc Substation in 2001 lio. 192 ∿ 196 | 197 ∿ 2001 TTL50 Bangbor 3x20 3x20 44091 2x40 +1x40 +1x40 3x40 new 2x20 46063 +2x20 2x20 new 2x20 54264 +1x20 +3x20 3x20 new 2x20 50141 +2x20 2x20 new 2x20 57134 +2x20 2x20 Number of Substation 57 +4 68 +7 +11 Total Capacity (MVA) 96 4,530 2001 3,990 5,460 5,460 2001 3,634 Total Load (MVA) 96 2,853 2,240 3,634 2001 66.6 '96 63.0 Utilizing factor (%) 56.1 66.6

Table №-21
Difference among Three Cases Selection of Distribution Substation

Bloc No.	Substation	Case 2	Case 8	Case 9	Remark
20	Suksawad	0	0	-	
	28272	0	0	-	
	30224	0	0	-	
	16264	-	0	~	
40	Lardprao	0	0	-	
	Setsiri	_	0	_	
:	33291	-	0		*
	31304	-	0	-	*
	40402	0	0	-	
	32243	0	0	_	
	<u> </u> 44233	0	0	-	
	40263	-	0	-	
50	Bangping	_	0	_	
	54352	0	0	1	
	51221	_	0		
	67042	_	0	-	
•					i
	TTL	8	16	0	

(Note)

* : Type of connection of subtransmission line is Feeder Transformer Type.

0 : selected by computer

- : not selected by computer

Table N-22 Amount of Investment

Year	Case 2	Case 8	Case 9
'82	13,472	(+3,134)	(-1,696)
∿ '91		16,606	11,776
'92	48,367	(+6,157)	(-6,470)
∿ 2001		54,524	41,897
TTL	61,840	(+9,289) 71,129	(-8,168) 53,672

Table IV-23 Present Value of Amount of Investment

Year	Case 2	Case 8	Case 9
'82	8,327	(+1,586)	(-952)
√ '91		9,913	7,375
'92	13,180	(+1,465)	(-1,989)
∿ 2001		14,645	11,191
TTL	21,507	(+3,051) 24,558	(-2,941) 18,566


Table N -24 Amount of Expense

Year	Case 2	Case 8	Case 9
'82	11,129	(+1,178)	(-1,001)
∿ ' 91		12,307	10,128
'92	60,290	(+8,300)	(-9,007)
∿ 2001		68,590	51,283
TTL	71,418	(+9,479) 80,897	(-10,007) 61,411

Table N -25 Present Value of Amount of Expense

Year	Case 2	Case 8	Case 9
'82	6,325	(+594)	(-540)
√ '91		6,919	5,785
'92	15,945	(+2,175)	(-2,401)
∿ 2001		18,120	13,544
TTL	22,270	(+2,769) 25,039	(-2,941) 19,329

V. DEMAND FORECAST BY EACH MESH

As a general rule, distribution substations located in a load center will result in the least energy loss. Therefore, it is essential to know where the center of load is in planning an optimum distribution system. For this purpose, MEA's supply territory was divided into meshes of 0.5 km \times 0.5 km, 1 km \times 1 km and 2 km \times 2 km, and load forecasts for each mesh were made for the future years (1982 to 2001).

V-1 Method of Load Forecast for Each Mesh

Load forecast conducted by MEA is compiled in "MEA Load Forecast (1982 – 2001) dated August, 1980." The report estimates that the total demand on MEA's system in the year 2001 will be 30,099 GWH. (See Fig. V-1) The report also gives the planning area's projected demand in MWH. Based on the values projected by MEA, load forecasts for each mesh were made by us.

The projection flow for load forecast by each mesh is given in Fig. V-2, and a general description of the procedure taken is given below.

1. Projection of Large Power Demand

Load forecast of large power demand supplied at 69 kV or 115 kV (hereinafter called 69 kV customer demand) were made by using the actual value of 69 kV customer demand ratio (Rate 69*) in each of the Planning Area.

Note:* Rate
$$69 = \frac{69 \text{ kV Customer (GWH)}}{\text{Medium and large business (GWH)}} \times 100\%$$

(See Appendix 1 for details.)

2. Calculation of Distribution Demand

Deducting 69 kV customer demand from basic demand, the distribution demand supplied by MEA's distribution substations were calculated.

Conversion of kWH into kW

Distribution demand (kWH) in each Planning Area were converted* into kW (load), and growth rate of load (kW) was calculated for the period 1982 to 2001.

Note:* Conversion of kWH to kW by multiple regression method for details see Appendix 1.

4. Calculation of Future Loads

Actual loads (Report on Analysis of Existing Conditions – 1979) of each existing mesh were multiplied by kW increment factor of each Planning Area to arrive at the future load (1982 – 2001) of each mesh.

5. Addition of Special Loads

Projected loads of meshes with no load in 1979 and assumed future spot loads (industrial zone, housing district, etc.) were added to MEA's load projection data.

6. Calculation of kW of Large Power Demands

Loads (kW) were calculated by using actual annual load factors obtained from 69 kV customer demand (MWH).

The above calculations were performed by electronic computer, and a flow chart is given in Fig. V-3.

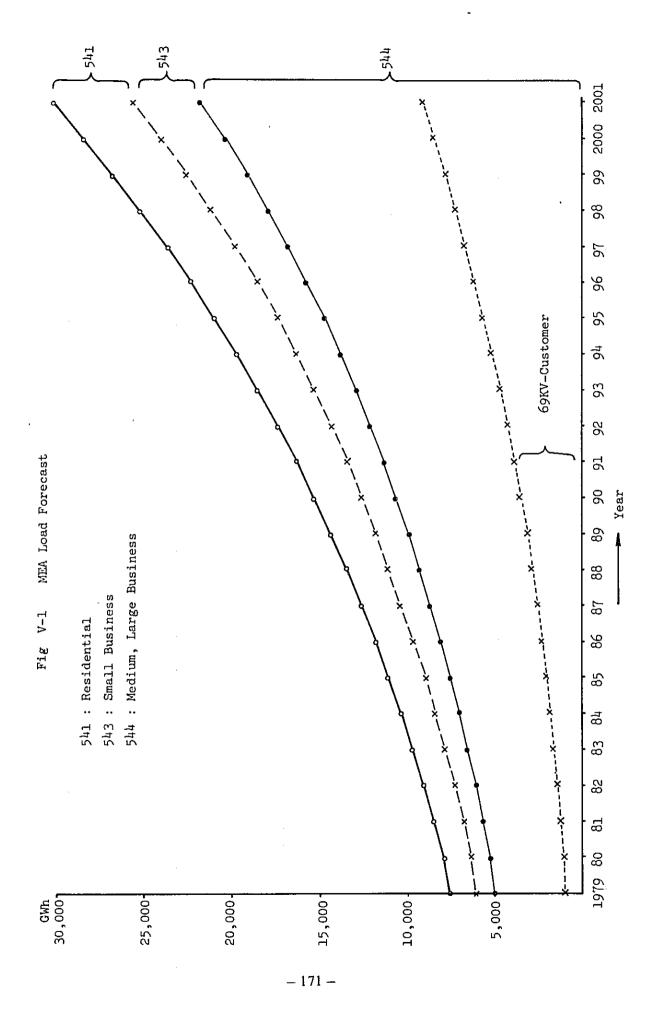
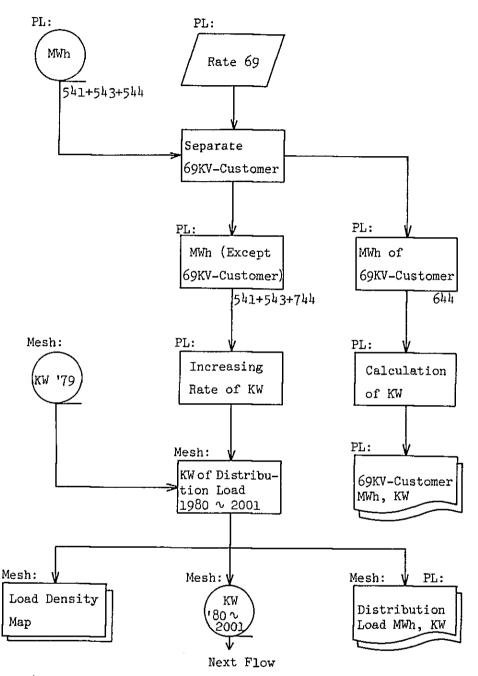



Fig.V-2 Projection Flow Chart

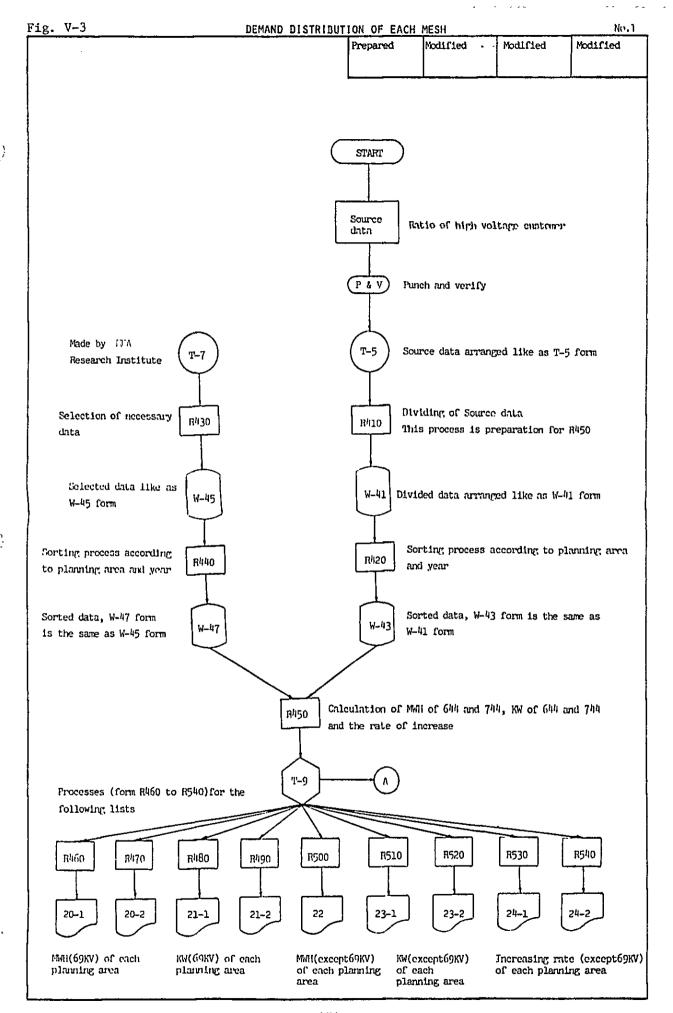
(Note)

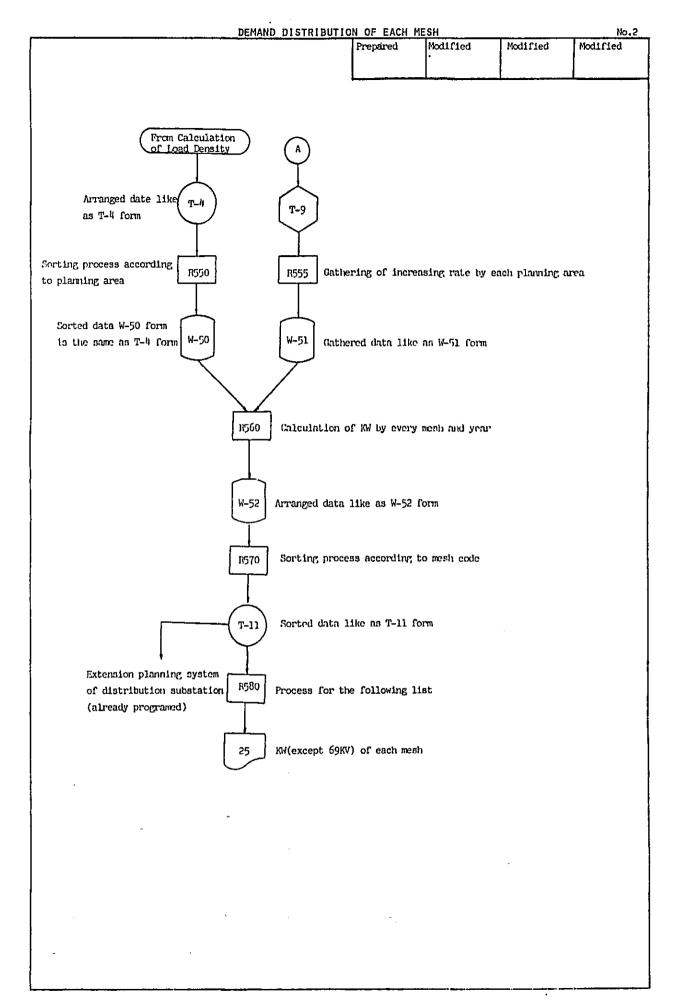
PL : Each Planning Area

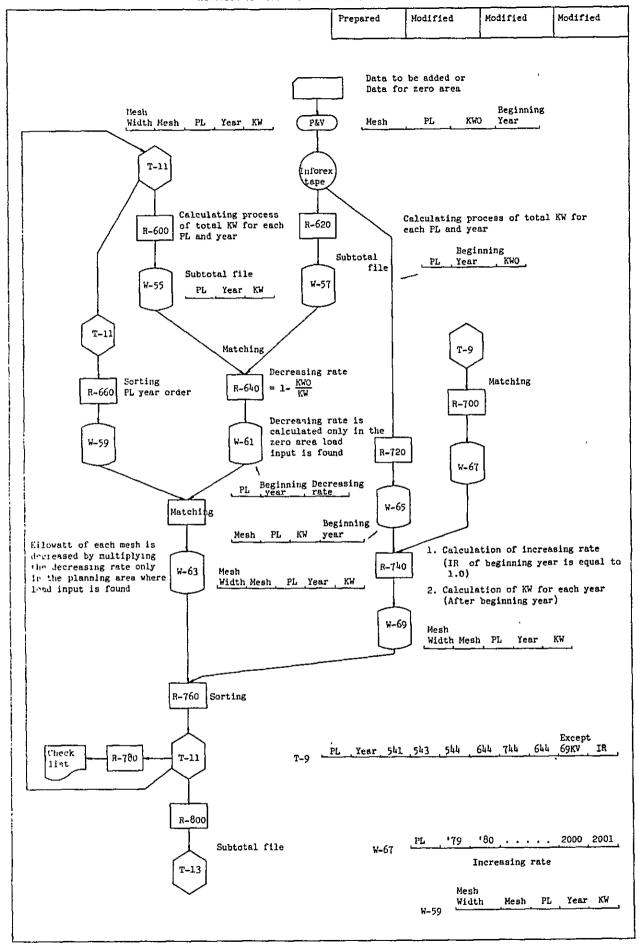
644 : 69KV-Customer

Mesh: Each Mesh

744 : Except 69KV-Customer


541 : Residential


543 : Small Business


Rate $69 = \frac{644 \text{ MWh}}{544 \text{ MWh}} \times 100 \%$

544 : Medium and Large

Business

V-2 Summary of Results of Load Projection

1. Total Load (kW)

Projected total load is summarized in Table V-1.

Table V-1 MEA's Total Load

Year	Distribution Load (MW)	69 KV Customer Load (MW)	Total (MW)
1982	1,304	255	1,559
1986	1,651	407	2,058
1991	2,189	676	2,865
1996	2,889	1,060	3,949
2001	3,834	1,562	5,396
2001/1982	2.9	6.1	3.5

The estimated total load on MEA's system in the year 2001 is 5,396 MW which is 3.5 times the estimated demand in 1982.

Distribution demand in the total demand is 3,834 MW (2.9 times the estimated demand in 1982). This value is the basis in planning MEA's distribution substation expansion program.

Total load in each year is given in Table V-2, Estimation of MEA's Load.

2. Load (kW) by Planning Area

Projected distribution loads by Planning Area are given in Table V-3-kW (Except 69 kV) of Each Planning Area – No. 1 and No. 2

Projected 69 kV customer loads by Planning Area are given in Table V-4-kW (69 kV) of Each Planning Area – No. 1 and No. 2.

3. Distribution Load by Mesh

A summary of the projected distribution load (kW) by mesh is shown in Table V-5. In the 20 years future, there will exist differences in load density between districts.

Table V-5 Distribution Load by Mesh

Mesh	Average Load D	ensity (kW/km ²)
IVIESTI	in 1979	in 2001
0.5 km²	8,200	21,200
1.0 km²	1,100	4,100
2.0 km ²	80	320

The projected values of distribution load (kW) by mesh are shown in the output print "Output 25 - kW of Each Mesh (Except 69 kV)". And the following load density maps are the output prints of electronic computer.

```
MEA Load Density Map (1982) ZE9Q 4013, 4014

" " " (1986) ZE9Q 4015, 4016

" " " " (1991) ZE9Q 4017, 4018

" " " (2001) ZE9Q 4019, 4022
```

The load density maps are filed on "ATTACHMENT OF THE 20-YEAR MASTER PLAN".

Table V-2 ESTIMATION OF MEA'S LOAD

	**************************************	69 K	V-Customer	mms /s.m/
	Distribution Load (A)	Annual Max.	Convert to Sep.(B)	TTL (A+B)
182	1,304	282	255	1,559
*83 \	1,386	316	285	1,671
* 84	1,472	357	322	1,794
185	1,563	397	358	1,921
186	1,651	451	407	2,058
187	1,752	499	450	2,202
· 88	1,858	550	496	2,354
189	1,959	614	554	2,513
190	2,070	681	615	2,685
'91	2,189	749	676	2,865
192	2,315	821	741	3,056
'93	2,448	902	814	3,262
194	2,589	984	888	3,477
95	2,735	1,076	971	3,706
196	2,889	1,175	1,060	3,949
'97	3,056	1,275	1,151	4,207
'98	3,233	1,380	1,245	4,478
199	3,421	1,491	1,346	4,767
2000	3,622	1,608	1,451	5,073
2001	3,834	1,731	1,562	5,396

(Note) Diversity Factor = $\frac{\Sigma \text{ Annual Max. MW of 69 KV-Customer}}{\Sigma \text{ MW of 69 KV-Customer at System Peak}}$ = 1.108

×	KKKKK OUT P	PUT 23-1 (2) KKKK	(2) KKKK	KW (EXCEPT 69KV)	PF	EACH PL A	AREA	250	CN0.13			PAGE 001
YEAR	Вио	B50	BOO	010 D20	030	P L L10	L20	E A L30	IWW	MM2	M10 M20	TOTAL
1979	27135.7	11109.2	43131.2	43989.6 41548.2	2 31928.4	13096.0	53631.2	61084.1	47400.5	10638.6	21516.1 65958.	3 472167.1
1980	27821.3	11615.0	46849.3	46269.4 44813.4	4 32074.0	13041.1	54251.0	56772.8	49088.5	10741.7	22635.7 70485.7	486458.9
1981	30888.1	12508.9	49144.8	48926.3 48407.3	3 34507.1	13808.3	57259.5	58220.2	53676.7	11414.1	25103.6 75900.4	519765.3
1982	34154.6	13506.6	53353.1	51679.8 52038.9	9 37016.7	14640.2	55607.5	59698.6	58559.2	12140.3	27748.3 81573.2	551717.0
1983	37630.5	14607.5	57684.1	54536.2 55757.0	39615.3	15539.9	57795.9	61213.5	63754.1	12923.3	30575.5 87522.7	589155.5
1985	41327.6	14165.4	62182.2	57514.5 59596.7	7 42309.8	16510.3	60101.9	62770.9	69285.8	13766.4	33594.4 93762.4	626888.3
1985	45253.9	14731.8	66871.8	60610.4 63613.9	9 45114.0	17552.7	62531.5	64389.3	75163.7	14668.4	36812.8100318.4	667632.6
1986	49427.0	15307.1	71806.4	63856.3 67860.4	4 43893.9	18672.3	65094.9	66063.1	81405.8	15634.4	40241.0107198.	0 706460.6
1987	53855.9	15898,2	77029.3	67256.8 72376.3	3 46000.8	19873.2	67787.3	67798.3	88037.5	16667.5	43889.6114446.	9 750917.6
1988	58560.7	16510.6	82578.9	70806.2 77217.2	2 48185.2	21158.2	70635.4	69606.1	95086.3	17769.5	47771.3122071.9	797957.5
1989	58883.6	17151.2	88508.9	74540.2 82434.9	9 50452.4	22530.6	73638.7	71499.5	95000.7	18944.7	51899.9130112.1	835597.4
1990	62086.5	17834.7	94871.2	78461.9 88078.2	2 52808.3	23995.7	76818.7	73478.9	99735.7	20199.3	53081.4138594.1	880044.6
1991	65388.9	18570.3	101691.0	82570.6 94185.2	2 55267.0	25558.3	80192.1	75555.7	104599.5	21534.7	56183.7147557.	9 928854.9
1992	68809.7	19371.0	19371.0 109014.5	86881.1100803.9	9 57837.4	27225.3	83764.1	77730.9	109623.6	22955.8	59395.8157029.4	980442.5
1993	72387.2	20254.1	20254.1 116894.4	91437.9107966.6	6 60525.5	28999.9	87571.9	80027.4	114846.4	22697.4	62732.6167048.7	1033390.0
1994	76131.9	21230.8	21230.8 125352.5	96211.1115698.7	7 63341.3	30888.5	91615.6	82446.5	120297.7	23633.5	66223.4177641.	5 1090713.0
1995	80090.3	22310.6	22310.6 134422.2 101	101231.0124050.0	0 66297.6	32898.6	95943.2	84999.3	126033.5	24595.2	69893.8188874.7	1151640.0
1996	84282.3	23512.7	144135.9	23512.7 144135.9 106514.9133044.7	7 69401.1	35034.3	100561.0	87705.5	132086.8	25588.9	73769.2200780.4	1216417.7
1997	88757.4	24846.8	154530.1	24846.8 154530.1 112057.0142701.4	4 72670.4	37307.9	105495.4	90576.3	138523.6	26617.5	77876.1213391.1	1285351.0
1998	93544.8	26321.1	26321.1 165628.3	117893.1153054.5	5 76115.9	39723.0	110777.8	93618.6	145396.8	27689.9	82255.0226747.5	3 1358766.3
1999	98678.6	27945.1	27945.1 177464.1	124029.5164123.5	5 79751.9	42290.0	116436.1	96861.7	152753.6	28814.5	86941.3240928.2	1437018.1
2000	2000 104203.4	29727.2	29727.2 190057.8 130	130492.0175952.0	0 83593.8	45016.3	122491.3	100313.4	160650.3	29995.2	91961.3255954.0	1 1520408.0
2001	2001 110159.5	31674.5	31674.5 203461.4 137	137283.9188561.8	8 87658.0		128985.5	47911.9 128985.5 103978.3 169168.1	169168.1	31247.6	97344.6271875.8	1 1609310.9
×	XX 469459.4 440710,42416663.41905	440710.42	2416663.41	1905049.7253884.71276365.8	71276365.8		878987.51	603272.51878987.51746408.92350174.4		460878.41	460878.41259446.4435773.3	1 21497074.8

×	***** OUT PUT 23-2 (2) ***** K W (EXCEPT	23-2 (2	***	3 ×	EXCEPT	T 69KV)) O F	EAC	R P L	∢	E A	(NO.2)	.2)						PAGE 001
YEAR	P10	P20	000		800	810	820	P L S3	0	A R	E A 120	II.	0	W20	ผรข	TOTAL	1	ALL TOTAL	
1979	33019.0 39446.4 95718.9204675.2 12494.8	9446.4	95718.	920467	.2 124		37820.7	38538.7		59048.8 4	40770.5	35516.3		30844.2 2	28838.6	656732.1		128,899.2	
1980	33537.7 3	34184.6 98005.4207027.4	98005.	4207027	.4 1310	4.3	36626.1	1 38866.3		72257.7	40932.4	35720.0		31098.4 2	29010.3	670370.6	7	156829.5	
1981	35859.4 3	35947.9103558.6223014.6	03558.	622301	6.6 1385	4.	37590.8	3 40150.3		75045.0 4	43732.4	37516.8		32425.0 3	30342.3	709037.2	~	228802.5	
1982	38276.3 3	37849.3109674.5239775.8	09674.	5239773	.8 1465	9.9	38634.1	1 41514.7		79804.9 4	46678.0	39460.1		33816.9 3	31791.3	751931.9	1.9 1	303648.9	_
1983	40785.7 3	39892.4116356.9257337.0	16356.	9257333	7.0 1551	4.2	39757.7	42967.3		84634.9 4	49775.4	41549.2	.2 35271	۰.	33362.8	797205.1	~	386360.6	
1984	43394.0 4	42073.8123601.9275778.8	23601.	9275778	3.8 1643	3.1	40964.1	1 44508.7	.7 895	89595.0 5	53036.2	43789.1		36789.3 3	35051.5	845015.5	_	471903.8	
1985	46111.7 44397.1131392.8295183.5	4397.11	31392.	829518	1.5 1741	8.4	42261.6		46150.8 94732.7		56448.4	46197.3		38374.5 3	36863.9	895529.1		563161.7	
1986	48961.1 4	46862.2139740.3315586.9	39740.	331558	5.9 1426	55.0	43649.8		47888.4100099.7		0023.0	60023.0 48768.8		40025.1 3	38812.5	944682.8		1651143.4	
1987	51962.5 4	49481,9148641,5337099,4	48641.	533709	.4 15(15006.2	45132.3		49730.8105768.3		63776.3	51517.2		41739.5 4	40890.0	1000745.9	•	1,751663.5	
1988	55145.7 5	52247.3158128.1359780.4	58128.	135978	3.4 1578	17.1	46712.6		51677.8111792.3		67720.4	54456.0		43525.4 4	43111.9	1060085.0	•	1858042.5	
1989	58550.1 5	55173.9168197.8383705.8	68197.	838370		16610.4	48392.1		53734.9118222.2		71876.5	57582.6		45383.1 4	45475.7	1122905.1		1958502.5	
1990	62205.4 5	58262.8178880.7408940.2	78880.	7408941	1.2 1748	7.	50180.9		55916.2125118.9		76254.0	60918.5		47317.0 4	47995.2	1189471.2		2069515.8	
1991	66140.9 6	61520.6190185.2435591.4	90185.	243559	1.4 1839	8.2	52076.2		58213.1132518.2		80881.9	64466.9		49327.4 5	50668.8	1259988.8		2188843.7	
1992	70400.7 64960.3202160.4463731.5	4960.32	02160.	446373	1.5 193	55.5	54084.3		60641,1140489.5		85781.6	68243.5		51427.8 5	53509.6	1334795.8		2315238.3	
1993	75020.4 6	68589,0219851.3493495.9	19851.	349349	5.9 2038	0.45	56213.4		63203.7149041.2		90982.2	72251.0		53624.1 5	56525.2	1414181.4		2447,571.	
1994	80032.3 7	72407,8228233.0524915.3	28233.	052491	5.3 214	53.2	58463.5		65905.7158223.2	23.2 9	96508.8	76517.1		55922.3 5	59722.7	1498304.	ው	2589017.	_
1995	85467.3 76435.3242429.0558148.9	6435.32	42429.	055814		22580.4	60842.7		68757.9168071.9102391.5 76666.4	71.910	2391.5	76666		58327.7 6	63113.5	1583232,5		2734872.5	
1996	91337.5 8	80684.1257447.6593273.2	57447.	659327	5.2 2370	4.99	58928.6		71767.0178613.0108662.6	13.010	8662.6	80075.9		60866.3 6	8, 40799	1672127.0		2888544.7	_
1997	97697.1 8	85161,6273346.4630443.5	73346.	463044	3.5 2501	4.51	60744.1		74934.7189861.2115346.4	61.211	5346.4	83639.1		63539.8 7	70508.2	1770237.5		3055588.	rs S
1998	104562.28	89882.8290164.0669740.6	90164.	926990	0.6 2633	25.2	62646.7		78276.6201859.7122483.5	59.712	2483.5	87368.2		66369.5 7	74537.7	1874216.7		3232983.0	
1999	111941.8 94873.1307978.0711310.4	4873.13	07978.	071131	772 9.0	9.50	64639.6		81802,5214608,5130099,7	08,513	7.6600	91276.9		69364.1 7	78802.5	1984402.7		3421420.8	~
	2000 119866.5100126.5326823.0755295.9 291	0126.53	26823.	075529	5.9 29	58.8	66731.6		85514.1228178.6138235.4	78.613	8235.4	95376.8		72553.1 8	83315.1	2101175.4		3621583.4	
							,												

Table V-4

XXX OUT	*** OUT PUT 21-1	(1) ****	×××	(W (69KV)		A C H P	AREA					•	
YEAR	8%0	0.50	B00	010	D20	P L 030	A R E A L20	130	TM1	ZMM	M10	M20	TOTAL
1979				46916	253							10389	57558
1980				49679	5001			4998				9783	19569
1981			4999	52580	7698			5899				11327	82503
1982			7887	55486	10729		2000	6882				12980	99014
1983			11224	58428	14076		6303	7964				14742	112737
1984		4998	14831	61402	17725		7729	9140				16615	132440
1985		7275	18750	64453	21649		9286	10416				18605	150434
1986		9868	22946	67561	25827	5000	10970	11803				20717	174692
1987		12776	27402	70748	30249	6139	12796	13302				22946	196358
1988		15997	32100	74047	34891	7350	14763	14917				25302	219367
1989	4999	19528	37012	77438	39744	8641	16875	16649	4998			27785	253669
1990	7248	23348	42126	80942	44792	10010	19130	18503	7120		5000	30390	288609
1991	9739	27449	47437	84582	50040	11462	21529	20485	9482		7435	33122	322762
1992	12477	31813	52952	88367	55488	12997	24084	22597	12079		10157	35982	358993
1993	15445	36424	58645	92269	61141	14619	26775	24834	14911	6665	13164	38974	402200
1994	18651	41270	64553	96348	67024	16330	29626	27207	17979	9689	16447	42100	444431
1995	22076	46357	70688	100597	73143	18136	32613	29717	17212	9010	19992	45351	488951
1996	25723	51659	77070	105023	79528	20033	35752	32359	24791	11338	23799	48727	535802
1997	29571	57180	83728	109657	86213	22025	39037	35132	28514	13888	27851	52248	585044
1998	33623	62944	90700	114489	93230	24115	42468	38054	32447	16659	32132	55915	636776
1999	37869	68952	98018	119551	100619	26300	46043	41103	36578	19643	36624	59717	691017
2000	42301	75227	105743	124833	108406	28582	49772	44298	40905	22849	41329	63676	747921
2001	46914	81798	113888	130369	116648	30963	53643	47642	45412	26261	46245	67808	807591
*	306636	674863	1082749	1925765	1144114	262702	504194	483901	296487	131543	280175	765201	7858330

****	***** OUT PUT 21-2 (1) ****	-2 (1))	* * * *	K 12 (69KV)	T	EACH	4 1 6	8 E A	X)	(NG.2)				PAGE 001
YEAR	P10	P20	000	ROD	510	S20	530 A	R E A	120	M10	W20	M30	TOTAL	ALL TOTAL
1979	4700		72524	44168			12011		2017		1324		136744	194302
1980	4992	6665	74993	44636			11922		2340		1608		145490	214951
1981	6541	5353	82103	48191			12348	4998	3312		2037		164883	247386
1982	8382	5752	89231	51945			12818	8127	4454		2543		183252	282266
1983	10529	6202	65596	55915			13330	11653	5778		3132		202988	315725
1984	12989	6701	103814	60119			13887	15537	7290		3815		224152	356592
1985	15766	7254	111401	64577			14491	19759	8997		4594		246839	397273
1986	18852	7868	119265	69308	2000		15144	24284	10909		5483		276113	450805
1987	22246	8543	127473	74334	5451		15848	29084	13030		6491		302500	498858
1988	25941	9285	136056	79675	5941		16607	34127	15364		7620		330616	549983
1989	29923	10097	145079	85355	6473		17424	39405	17908		8882		360546	614215
1990	34184	10985	154591	91397	7047		18293	44886	20669		10285		392337	680946
1991	38727	11953	164647	97826	7670		19231	50580	23642		11833		426109	748871
1992	43536	13007	175279	104670	8343		20228	56462	26827		13533		461885	820878
1993	48614	14148	186519	111957	9070		21293	62570	30218		15391		499780	901980
1994	53963	15390	198477	119717	9857		22433	68908	33822		17413		539980	984411
1995	59589	16733	211122	127982	10706		23645	75485	37626	5001	19608		587497	1076448
1996	65526	18178	224537	136786	11621	2000	24932	82352	41643	6597	21969		639141	1174943
1997	71769	19739	238768	146165	12607	2947	26302	89545	45868	8359	24508		689577	1274621
1998	78350	21413	253867	156158	13673	6963	27763	97092	50305	10285	27228		743097	1379873
1999	85316	23207	269888	166806	14817	8047	29306	105070	54957	12382	30127		799923	1490940
2000	92692	25133	286889	178153	16045	9205	30949	113471	59829	14659	33208		860233	1608154
2001	100505	27189	304930	190244	17367	10442	32686	122372	15659	17105	36469		924250	1731841
×	933632	289129	3827982	2306084	161688	45604	452891 1	1155767	581746	74388	309101	.	10137932	17996262

VI. PLANNING CRITERIA	A AND CONDITIONS	

VI. PLANNING CRITERIA AND CONDITIONS

VI-1 Planning Criteria

Planning criteria which form the basis of planning distribution system expansion program were studied from a technical standpoint and the criteria developed are given in Table VI-1. Described hereunder are the main points of the said criteria.

- 1. The service area of MEA was divided into 3 areas, identified as "A", "B" and "C", and criteria for facilities and service most suited to the load density were established.
- 2. Criteria for Facilities
- (1) Studies were made for the following 3 cases of distribution transformer capacity.

Case A 3 x 40 MVA & 3 x 20 MVA Case B 2 x 40 MVA & 2 x 20 MVA Case C 3 x 30 MVA & 3 x 20 MVA

(2) Subtransmission line

Normally open π loop (2 incoming lines) type Feeder transformer type 2 circuits T branch type

Note: See Report on Existing Condition Appendix 13.

(3) Distribution line

Multi-interlinked type and radial type

- 3. Operation Criteria
- (1) Supply voltage

Note:* See Report on Existing Condition Appendix 14.

(2) Voltage drop of distribution line

Voltage drop limits under normal operation were determined as follows in order that voltage at the customer could be maintained within a certain range when interchange of power is performed among distribution lines at time of fault.

Note: See Appendix 2. Service voltage for each area.

(3) Utilization factor of transformer in distribution substation

In order to maintain supply reliability during outage of 1 bank of distribution transformer, the maximum utilization factor of each bank was determined as follow:

"A"	area	85%
"B"	area	80%
"C"	area	65%

(4) Operation during fault

a. Fault in one circuit of subtransmission line

Distribution substation will receive power by switching to another circuit.

b. Fault in 1 bank of transformers in distribution substation

Load of the bank in fault will be supplied by the following mean.

- Supply power from another bank in the same substation
- Supply power from another substation by switching operation of distribution line
- Supply power from a mobile transformer

c. During fault of distribution line

In a distribution line of multi-interlinked type, the fault section is isolated by switching operation of distribution line to supply power to customers. In a distribution line of radial type, the power source side of the fault section is supplied power by switching operation of distribution line.

PLANNING CRITERIA

Itam	A area	B area	C area
1. Classification of Service Area	1. Main part of Bangkok urban area 2. Load density is more than 5000 KW/KM² in 1979. 3. Geographical coverage is 34 km². 4. Many important loads are located in this area.	1. Area surrounding Bangkok urban 2. Load density is between 500 2. Load density is between 500 3. Geographical coverage is 608 kn 4. This area is under rapid 13. Geographical coverage 14. This area is under demand 15. Geographical coverage 16. Soo KW/KM 1979. 17. Geographical coverage 18. Geographical coverage 19. Geographical coverage	 Remote area for from Bangkok urban area. Mostly, agricultural field, farmer village and fisherman village Load density is less than 500 KW/KM² in 1979. Geographical coverage is 2464 km².
2, Facility Criteria (1) Unit capacity of Distribution substation Case A Case B Case C Case C Case C	40 MVA x 3 units 40 MVA x 2 units 30 MVA x 3 units	40 MVA × 3 units 40 MVA × 2 units 30 MVA × .3 units	20 MVA × 3 units 20 MVA × 2 units 20 MVA × 3 units Outdoor

Class	A aroa	B area	C area
(3) Type of connection of subtransmission lines	Normally open 17 - loop (two incoming lines) and Feeder	Normally open \mathcal{H} -loop (two incoming lines)	Normally open \mathcal{R} -loop (two incoming lines) and Double
(4) Type of subtrans-	transformer Underground or overhead.	Underground or overhead	circuit T-branch Overhead
mission line			
(5) Type of distribution	Multi-interlinked	Multi-Interlinked	Radlal overhead
lines	Underground or overhead	Underground or overhead	
(6) Control of distribu-	Automatic or remote control	Time share control (loop)	Time share control (radial)
tlon switches			
3. Operation criteria			
(1) Frequency	50 Hz	50 Hz	50 Hz
(2) System voltage			
Transmission line	230 KV	230 KV	230 KV
Subtransmission line	69 KV	69 KV	69 KV or 115 KV
Distribution line	12 KV	12 KV or 24 KV	24 KV or 12 KV
(3) Allowable load current			
of distribution feeder			
Overhead Normal	(336, 4 MCM) 400 A	(336.4 MCM) 400 A	(336.4 MCM) 400 A
Emergency	(") 530 A	(") 530 A	(") 530 A
Underground Normal	(650 MCM)500A(in case of single	(650 MCM)500A (in case of single	ı
Emergency	(650 NCM) 600 A (in case of single cct. in duct), (500 NCM) 500 A	ctt. in duct), (300 NM) 400 A (650 NCN) 600 A (in case of single ctt. in duct), (500 NCN) 500 A	ı

Class	A area	B area	C Srea
(4) Allowable voltage			
drop on primary distri-			
butlon feeder			
12 KV Normal	300 V	000 V	A 006
Emergency	600 V.	1100 V	1200 V
24 KV Normal	1	1200 V	1800 V
Emergency	1	2100 V	2400V
(5) Utilization factor of		•	
transformer in distri-			
bution substation			
	Through the planning period	Through the planning period	Through the planning period
Normal	85 % (Max, for each substation)	80 % (Max, for each substation)	65 % (Max, for each substation)
Emergency	120 %(Within 4 - 5 hours)	120 %(Within 4 - 5 hours)	120 %(Within 4 - 5 hours)
(6) Power factor at	% 06	* 06	% 05
substation			
(7) Emergency operation			
(Distribution substa-			
tlon)			
- One bank of trans-	In case that the substation is	In case that the substation is	In case that the substations
former goes Into	equippėd with 3 banks,	equipped with 3 banks,	equipped with 3 banks,
fault at peak time.	customer service will be	customer service will be	customer service will be
	Interrupped only during switching operation	interrupped only during switching operation	Interrupped only during switching operation

C area with the	In case that the substation is still equipped with 1 or 2 banks, customer service will be interrupted during switching operation and despatching of portable transformer.	Customer service will be inter- rupted during switching operation at the substation,	Only the sections on power source side of faulted section or maintenance work section are served by its own bank,
B area	In case that the substation is still equipped with 1 or 2 banks, customer will be interrupted during switching operation and despatching of portable transformer,	Customer service will be interrupted during switching operation at the substation.	Great part of all customers are served by another substation and its own bank except the faulted section or maintenance work section.
A area	In case that the substation is still equipped with 1 or 2 banks, customer service will interrupted also only during switching operation.	Customer service will be interrupted during switching operation at the substation.	All customers are served by another substation and its own bank, except the faulted section or maintenence work section
Class		(Subtransmission 11ne) - One circuit of subtransmission line goes into fauit at peak time.	(Distribution Line) - When one circuit of distribution line goes out of operation by reason of fault or maintenance work;

VI-2 Planning Conditions

1. Technical Conditions

(1) Determination of blocs for calculation

In the study of load allocation to distribution substations there are the following limiting conditions.

- a. topographic restrictions (large river) do not allow interconnection of distribution lines
- b. interchange of distribution load not possible because of different distribution voltages
- c. difficult to interchange distribution load via several distribution substations

MEA's service territory is divided into 2 zones by a large river and there are 2 distribution voltages, viz., 12 kV and 24 kV. Taking into account these existing conditions, in the calculation of distribution system, blocs were established as shown in Fig. VI-1 and restrictions were designed on the interchange of power between blocs.

(2) Sites for distribution substations

In planning a substation, river, lake on topographic conditions will not permit the construction of the substation. Also, in actual construction of substation, existing building, park or other structures make it impossible to build a substation. Therefore, in selecting a site for a substation, this should be done by finding the most suitable site from among several candidate sites. 91 sites for distribution stations were selected in consultation with MEA. These sites are shown in Appendix 3.

(3) Fixation of short term program

New substations and addition of transformers to existing substations that are being implemented by MEA were fixed as shown in Table VI-2 and calculations were made.

(4) Transformer capacity of new substation

Studies of 2 cases of transformer capacity were made. These are 2 banks from the offset and 1 bank initially.

(5) Limitation of number of feeders

```
40 MVA - 6 feeders (12 kV), 3 feeders (24 kV)
30 MVA - 5 feeders (12 kV), 3 feeders (24 kV)
20 MVA - 3 feeders (12 kV), 2 feeders (24 kV)
```

(6) Adoption of thermal resistants aluminum conductor (TAAC)

For the reasons described below TAAC was adopted for subtransmission lines and calculations were made.

- a. MEA's subtransmission lines are overhaed lines supported on concrete poles constructed adjacent to buildings and house, therefore, it is not possible to modify the lines to multiple circuits.
- b. From limitation of strength of concrete poles, it is not possible to replace conductors to sizes above 2×795 MCM.
- c. Weight and strength of TAAC are almost the same as AAC now in use, but the power transmitting capacity of TAAC is 1.6 times of AAC.

2. Economic Conditions

The following economic conditions were applied in the investment calculations.

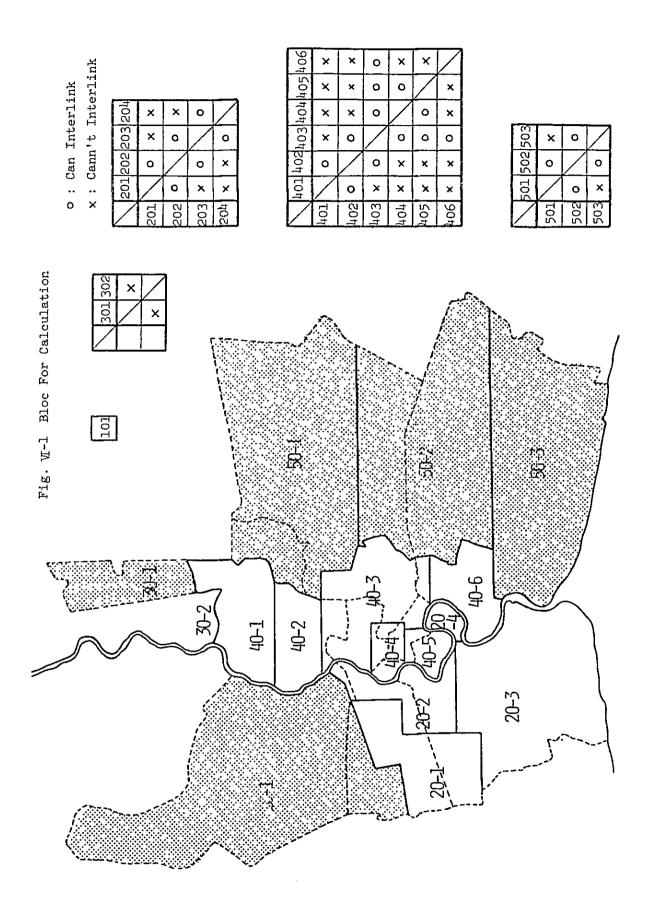
- (1) Unit cost
 - a. use MEA's 1979 unit cost
 - b. use Japanese unit cost, then taxes and duties are:
 - equipment, 69 kV and over 18%
 - equipment, under 69 kV 42%
- (2) Overhead charges
 - a. Engineering Depart. charge 2% for local materials 5% for imported materials (no tax)
 - b. Purchase & Store Depart. charge same as above
 - c. Construction Depart, charge 50% of construction cost
- (3) Physical contingency 3%
- (4) Evaluated cost of energy loss 0.6020 B/kWH (Price of energy purchased from EGAT, 1979)
- (5) Price escalation -8% annually
- (6) Rate of interest -8.5% annually

- (7) Annual expense of investment
 - a. Transmission lines 12.99% of accumulated total of annual investment

(detail)

- (a) Average useful life 29 years
- (b) Depreciation factor -3.45%
- (c) Interest rate 8.5%
- (d) Operation & maintenance expense factor 1.04%
- b. Substations 15.12% of accumulated total of annual investment

(detail)


- (a) Average useful life 24 years
- (b) Depreciation factor 4.17%
- (c) Interest rate 8.5%
- (d) Operation & maintenance expense factor -2.45%
- c. Distribution lines 15.65% of accumulated total of annual investment

(detail)

- (a) Average useful life 21 years
- (b) Depreciation factor 4.76%
- (c) Interest factor 8.5%
- (d) Operation & maintenance expense factor 2.39%
- d. Vehicle & equipment 22.14% of accumulated total of annual investment

(detail)

- (a) Average useful life 8 years (scrap value 10%)
- (b) Depreciation factor 11.25%
- (c) Interest factor 8.5%
- (d) Operation & maintenance expense factor 2.39%
- Note: (1) Expense factor is capital expense factor (depreciation factor & interest factor) plus operation & maintenance expense factor (excluding salary and wages)
 - (2) Data from Accounting and Finance Dept. MEA.

Table VI -2

PLANNING CONDITION

Fixation of construction

(1) New Substation

1981	1982	1983	1984
LADPLAKAO 1×40 MVA	SIPRAYA 1×40 MVA	KLONG TOEY 2x40 MVA	
	PAHOLYOTHIN 1×40 MVA	PRAN NOK 1x40 MVA	
		BANGBON 1×40 MVA	
		POO-JAO	
		VISUTKASAT	
		CHIDLOM 12KV 2x40 MVA	

(2) Addition of Transformer

1981	1982	1983	1984
KLONG JAN 2x20 — 2x40	KLONG SANPASA- MIT	BANGKOK NOI	PLYWOOD
PECHKASEM 2×20 3×20	NONTABURI	SIPRAYA 1×40— 2×40	PECHKASEM 3x202x20 1x40
YOTHEE 1×40 → 2×40	SATUPRADIT 1×40 — 2×40	PAHOLYOTHIN 1×40 → 2×40	BANGBON 1×40—2×40
SANSAB 1::40-2:x40			
TAKSIN 1×40→ 2×40			
BANGNA 1x40-2x40			

VII. CASE STUDY WITH COMPUTER FOR EXPANSION OF DISTRIBUTION SYSTEM

VII. CASE STUDY WITH COMPUTER FOR EXPANSION OF DISTRIBUTION SYSTEM

VII-1 Calculation Method for Expansion of Distribution System

Calculation of expansion of distribution system was performed with large capacity electronic computer by using the already established distribution substation planning program developed in Japan. A general description of the calculation method is given below.

- 1. Input Data
- (1) Load (kW) over a 20 years period for each mesh
- (2) Planning criteria and planning condition (covering all matters described in the preceding chapter)
- (3) Data of existing sustations (location¹⁾ capacity, number of banks, voltage, number of distribution feeders, possibility of increasing number of banks and other factors)
- (4) Data of proposed new substations (location¹⁾, capacity, ultimate number of banks, voltage, ultimate number of distribution feeder and other factors)

Note: 1) Input data of location are all mesh coordinates.

- (5) Data of subtransmission lines (length, conductor size and other data of subtransmission lines constructed in relation to construction of new substations and addition to existing substations)
- (6) Data of distribution lines (permissible load current, allowable voltage drop and other data of underground cables and overhead lines)
- (7) Data for calculation of reliability (bank outage rate, duration of outage and other data)
- 2. Description of the Calculation
- (1) Planning of distribution substation

Fig. VII-1 gives the calculation procedure in planning of substation

- a. Calculate to find whether or not the total capacity of transformers is adequate for the total load of a bloc. (coincident factor of each transformer in the bloc is taken as 0.9)
- b. In the case of shortage of capacity of a substation, establish an ideal supply area for each new candidate substation, and calculate whether or not the load in that area is over 80% of a unit capacity (ex. 40 MVA × U.F.)

- c. If the shortage of supply capacity is over 80% of a unit capacity, then construct a new substation. If there are more than 1 candidate substations where the shortage of capacity is over 80% of a unit capacity, calculate the Σ W.\$\mathbb{L}\$ of each candidate substation and select the substation with the smallest Σ W.\$\mathbb{L}\$.
- d. If the shortage of capacity is less than 80% of a unit capacity, cope with the situation by adding another transformer in an existing substation. The determination of which substation should be expanded is made by calculating the $\Sigma W.\ell$ of each existing substation and selecting the one with the smallest $\Sigma W.\ell$.
- e. After making the selection of a substation to be newly constructed or expanded, recalculate to ascertain the total load of a bloc is within the total capacity of transformers (including new substation) in that bloc. If there is shortage of capacity, reperform the calculations mentioned above until there is sufficient capacity.
- f. At the point when the total load of a bloc is within the total capacity of transformers in that bloc, then calculate the optimum service area of substation in the bloc.
- g. The calculation procedures for selection of new or expansion of substations and optimization of service area of each substation are as follows:
 - a) find the load (W) of a mesh and the sitance (ℓ) between a mesh and substation
 - b) find the service area giving the smallest value of $\Sigma W.l.$
 - Note: i) The above calculations are made from the standpoint of optimum load sharing of substations in a bloc (least distribution expense). The least expense including subtransmission lines and substations, should be finally evaluated by comparing, all cases after calculating construction costs and annual expense.
 - ii) For details of calculation of $\Sigma W.\ell$, see Appendix 4, Load Sharing Calculation.

(2) Planning of subtransmission line

When the location and capacity of a distribution substation are determined, find the length and conductor size of subtransmission line by the following method. These are input data obtained by manual calculation.

- a. Comparative studies are made of type of connection, and the most economical type for each area is selected. The expansion program is based on this standard type. (See Report on Existing Condition Appendix 13)
- b. When the location of substation is determined, connection is made to the closest existing subtransmission line.

c. The conductors of existing subtransmission lines are replaced from aluminum conductors to thermal resistance aluminum conductors in order to increase the transmitting capacity thereby avoiding the construction of new lines and as a result improving the overall economy.

Note: A substation is a point whereas a subtransmission line is a line. Therefore, it is difficult to theoretically select an optimum scheme because in the selection of route, it is influenced by existing lines and topography. As a practical solution, the planning was done by the above method.

(3) Planning of high voltage distribution line

Calculation procedure in planning high voltage distribution line is shown in Fig. VII-2.

- a. Find the optimum number of feeders according to the maximum load carrying capacity of distribution line (for 4 directions).
- b. Calculate average voltage drop for minimum number of feeders (for 4 directions).
- c. If the voltage drop exceeds a limit, judge if an additional feeder can be installed. (there is a limit to the number of feeder.)
- d. If the voltage drop exceeds a limit and an additional feeder cannot be installed, as an improvement work, modify the overhead line to double conductors, or install SVR (Stepup Voltage Regulator)
- e. Calculate amount of interchange power from another bank in the same substation or from another substation by switching of distribution line, and then calculate interchange factor.

(4) Calcualtion of construction cost

The procedure of calculation of construction cost for financial analysis is as follows:

- a. Multiply quantities of work of subtransmission line, substation and distribution by unit prices to calculate construction cost taking into account price escalation, and then calculate the annual investment.
- b. Discount the annual investment in (a) above by a given interest rate to calculate present value.
- c. Accumulate the annual investment of (a) above, and multiply by an annual expense factor to calculate annual expense. The annual expense should include evaluated value of distribution loss (kWH).

d. Calculate the present value of each year's annual expense

Note: Present value (li) of annual expense

$$\ell_i = (P_1 + P_2 + \cdots + P_i) \times \frac{\alpha}{(1+\gamma)^i} + \frac{\ell \cdot W_i}{(1+\gamma)^i}$$

li : Present value of expense in i year

Pi : Investment in i year

Wi: Distribution loss (kWH) in i year

γ : Interest rate

 α : Annual expense factor

2: Evaluated value of distribution loss in kWH

(5) Reliability calculation

Reliability calculation is performed as follows on the assumption of outage of 1 bank of transformer in a substation.

- a. Based on data of outage rate and continuous outage hours of 1 bank, the annual outage hours for each substation are calculated.
- b. From the load at the time of outage of 1 bank, deduct interchange power between banks and interchange power from another distribution line, and calculate the load (power) shedded.
- c. Calculate the average annual outage time.

3. Output

Output of a distribution substation planning system is as follows:

- (1) New and expansion plan of substation demand and supply balance by bloc
- (2) New and expansion plan of substation unit capacity of substation
- (3) New and expansion plan of substation distribution of load among substations
- (4) Map of supply district
- (5) Expansion plan of high voltage distribution line
- (6) Construction cost by substation
- (7) Amount of investment
- (8) Conversion to present value of amount of investment
- (9) Amount of expense
- (10) Conversion of amount of expense to present value
- (11) Calculation of reliability

Fig VII -1 Outline of Distribution Substation Planning

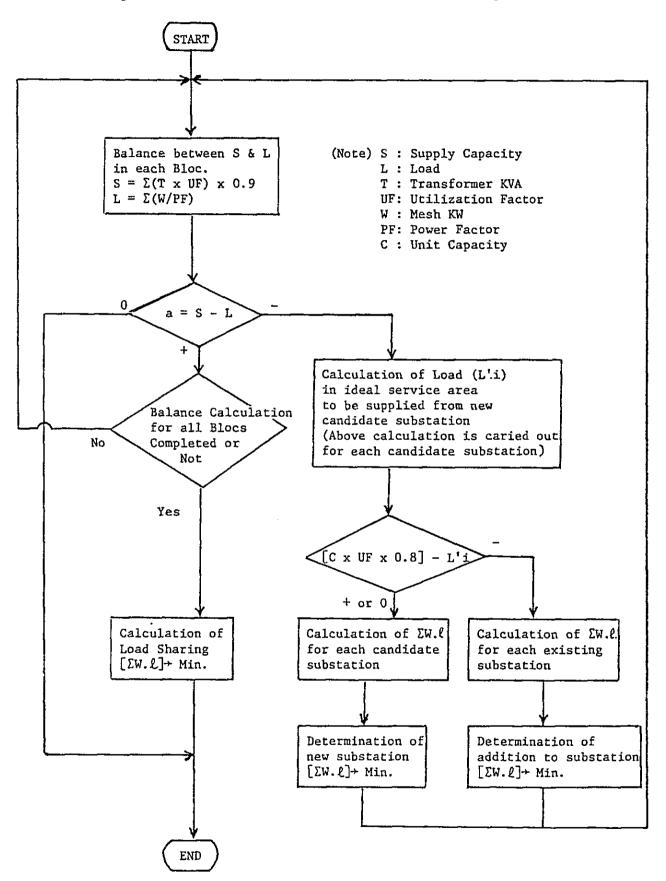
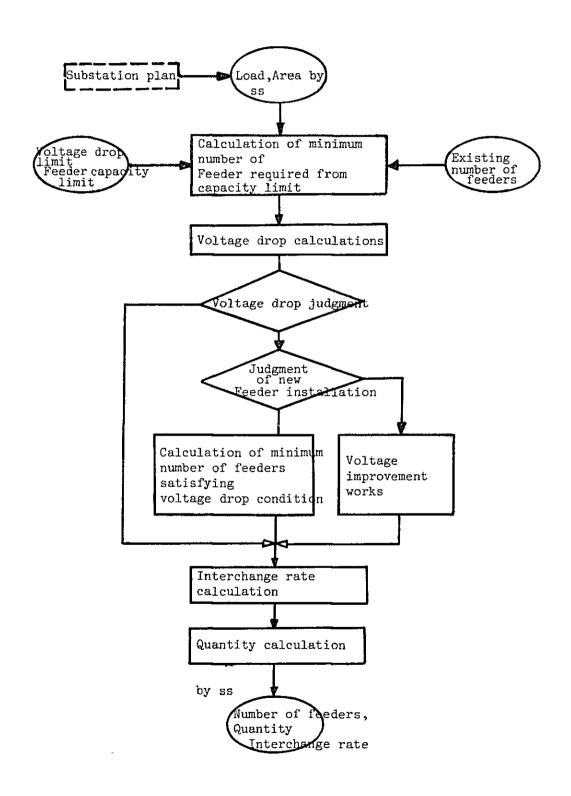



Fig. VII-2 Outline of Thigh Tension

Distribution Line Planning

VII-2 Results of Calculations

1. Case Study

Comparative calculations were made for 7 cases under the conditions described below.

- (1) Case 1 trial case
- (2) Cases 2 to 7
 - a. Maximum utilization factor of transformers is applied from the initial year of service.
 - b. Capacity of distribution substations and number of transformer banks at the start of service are arranged for differing combinations as shown in Table VII-1.

2. Result of Comparative Calculations

(1) Total capacity and utilization factor of distribution substations

For each case (Cases 2-7) studied, the total capacity of substations and utilization factors are given in Table VII-2.

a. Total capacity

An optimum load distribution among substations was performed for each case in relation to the projected load, and the total capacity of substations thus obtained is as follow.

Fig. VII-3 to VII-8 give the yearly changing pattern of total capacity of substations corresponding to load. These figures indicate the following important features.

- In the period 1982 to 1984, since substations to be constructed are already determined, there will be an increase in total capacity of substations, but in the period 1984 to 1991, the growth in the total capacity is small.
- In the far term (1992 to 2001), total capacity of substations will increase corresponding to the growth of demand.
- Annual increase in total capacity of substations will be in large steps for substations with initial installation of 2 banks and in small steps for substations with initial installation of 1 bank.

b. Utilization factor

Utilization factor $\left(\frac{\text{total load}}{\text{total capacity}} \times 100\%\right)$ of substations at system peak are as follow indicating that the values for each case are quite similar.

Fig. VII-9 gives the yearly charging pattern of utilization factor of each case. In each case, there is a gradual climb in the curves until in and around 1996 and then flattens. These indicate that -

- determining a higher value of upper limit of utilization factor of 1 bank of transformer in the planning criteria will not result in a rapid rise of utilization factor. Since, the utilization factor at present is low, the utilization factor will gradually increase corresponding to growth of load.
- the maximum utilization factor of MEA's system would be 65 to 68% considering the loads of each area.

(2) Number of substations

A comparison of computed number of substations for each case is given in Table VII-3.

In the year 1991, the number of substations for each case is between 57 and 63 indicating a small difference between cases, but in the year 2001, the number is between 76 and 109 indicating a bigger difference between cases.

The number of substations to be built from 1982 to 2001 differs widely between cases. That is, in case 2, the number is 30 while in case 7, the number is 63. The cause of this difference is evident by examining the number of substations in the year 2001 shown in Table VII-3. The cause can be summarized as follows:

- a. In the cases (Cases 3, 5 and 7) of substations of initial installation of 1 bank of transformer, the number of substations with 1 bank will increase corresponding to growth of load.
- b. In the cases (Case 4 80 MVA, 40 MVA) where the capacity of a substation is small, the number of substations will increase.
- c. In the cases (Case 2 120 MVA, 80 MVA) where the capacity of a substation is large, the number of substations will be little.

Fig. VII-10 gives the annual trend in the growth of number of substations. From this Fig., it will be noted that —

- a. in the near term, the growth in the number of substations is small, and this trend is almost the same for all cases.
- b. in the far term, the difference between cases becomes big.

(3) Number of distribution feeders

The number of distribution feeders for each case is shown in Table VII-4. It will be noted in the table, that there is no great difference in the number of feeder between the cases. The cause of this phenomena is that the total load of each case is identical and in the process of calculations with an electronic computer, the least required number of feeders were obtained.

(4) Comparison of amount of investment

In comparison, amount of investment in each year included price escalation (8%) is calculated, and in order to evaluate the difference in the amount of investment annually, the annual investments were converted to present value of a basic year (1979) using a discount rate of 8.5%.

The amount of investment converted to present value (1979) is shown in Table VII-5 and Fig. VII-11.

The results of comparison are summarized as follows:

- a. Amount of investment over the 20 years period converted to present value is 21,510 to 22,750 million Bahts, indicating that investment of Case 2 is the least.
- b. Amount of investment in the near term is approximately 1/3 of the amount of investment in the 20 years period, and there is very little difference in the amount of investment between Case 2 and Case 4. In the far term, the amount of investment is the least for Case 2.
- c. Investment by facilities indicates that when the investments for subtransmission line and distribution substation are small, the investments for distribution line are large, and when the investments for subtransmission line and distribution substation are large, the investments for distribution lines are small.

(5) Comparison of amount of expense

In order to evaluate the difference in the amount of investment for each facility, amount of expense was calculated.

Amount of expense consists of depreciation, interest charge, and operation and maintenance costs (excluding salary and wages) arising from the investment in facilities.

Amount of expenses is computed by multiplying fixed rates to accumulated total of amount of investments in a certain year. In the comparison of amount of expenses calculated energy losses for each case were multiplied by an evaluated unit price and the results were included.

Calculation of amount of expenses and evaluation of energy loss were made for each year, and then converted to present value of a base year (1979).

The amount of expenses converted to present value (1979) are given in Table VII-6 and Fig. VII-12. The results of the comparison are summarized as follows.

- a. Amount of expenses over a 20 years period converted to present value is 22,270 to 23,090 million Bahts, indicating that Case 2 gives the smallest amount of expense.
- b. Amount of expenses in the near term is approximately 1/3 of total amount of expenses of 20 years period, and there is very little difference in these expenses in Cases 2, 4 and 5. Case 2 gives the least amount of expenses in the far term.

(6) Conclusion

The results of the comparison are summarized below.

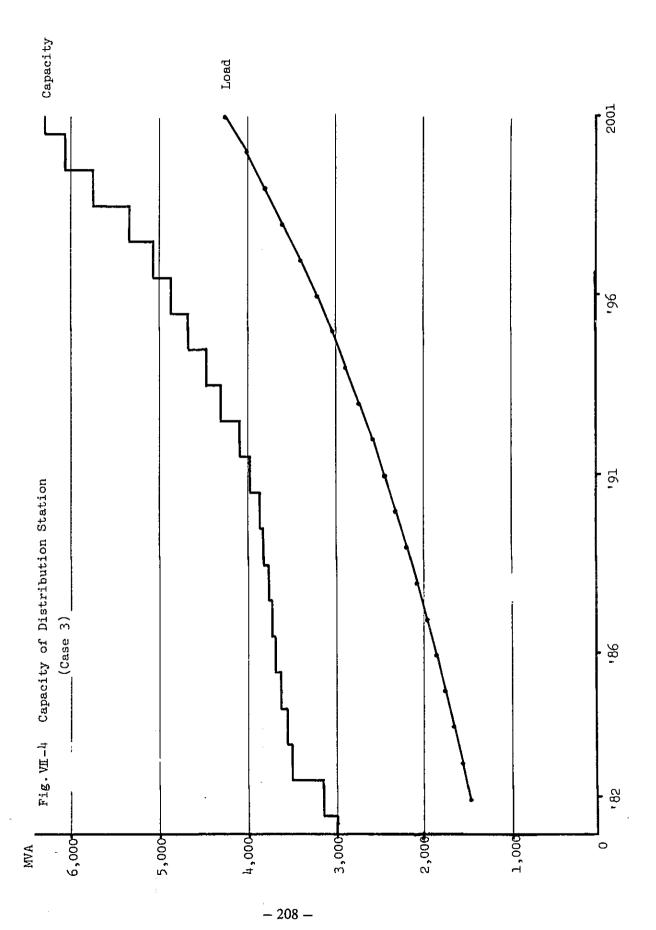
- a. MEA's distribution system has a margin in the capacity at present, and there is no need to build many new substations in the near term.
- b. In the far term, since the load will grow at a rapid pace annually, the matter which will require careful consideration is when and where new distribution substations and additional transformers at distribution substations should be constructed or installed.
- c. In comparison of the cases of 1 bank initial start and 2 banks initial start, it is found that 1 bank initial start is not advantageous because of the greater number of substations that are required (Cases 3, 5 and 7).
- d. In comparison of Case 4 (40 MVA × 2 = 80 MVA) and Case 6 (30 MVA × 3 = 90 MVA), there is little difference in the capacity of 1 substation, and therefore there is little difference between the 2 cases in the number of new substations that will be required.
- e. In Case 2, annual investment and expense are little difference with Case 4 in the near term, but in the far term when the load density grows, the advantage of Case 2 is evident.

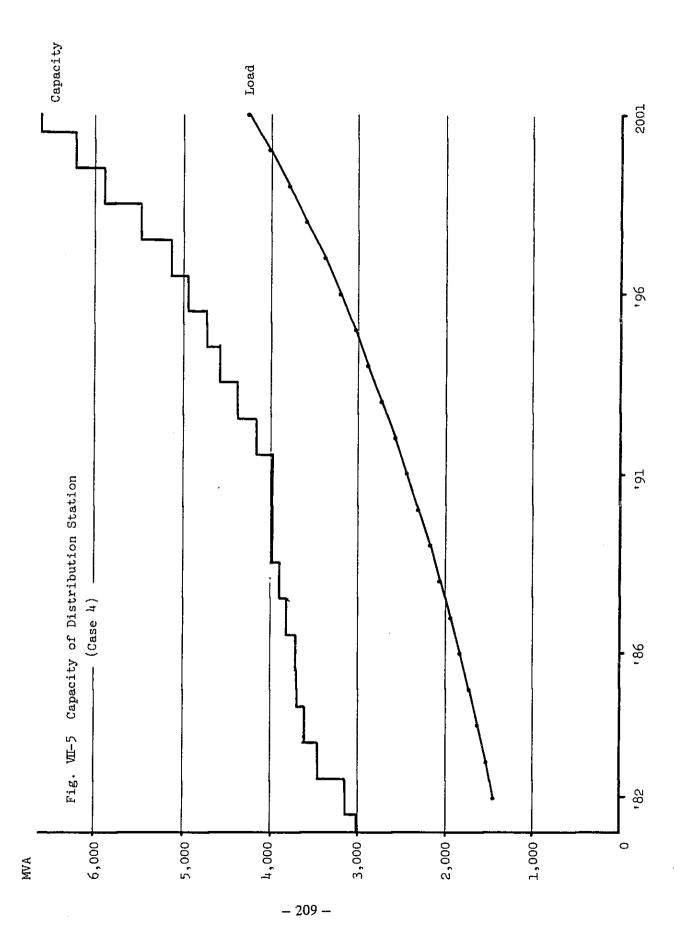
From the results of the above analysis and for the reasons described below, Case 2 is recommended as the most optimum program.

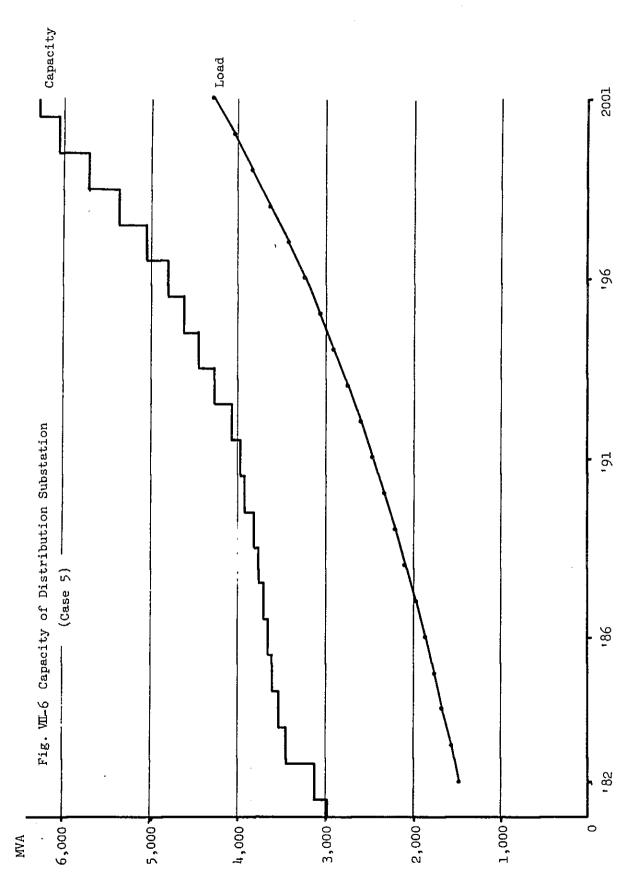
- over the 20 years period, the amount of investments and amount of expenses is the least, and particularly in the far term, the amount of investments and expenses are small.
- the number of new substation that are required is the least and would result in lesser problems in acquisition of land for substations in the future.
- since the number of required substations is little, acquisition of right-of-way of subtransmission line will be easy.
- as predescribed before, there are no problems in respect of power flow, short circuit current and supply reliability of MEA's power system.

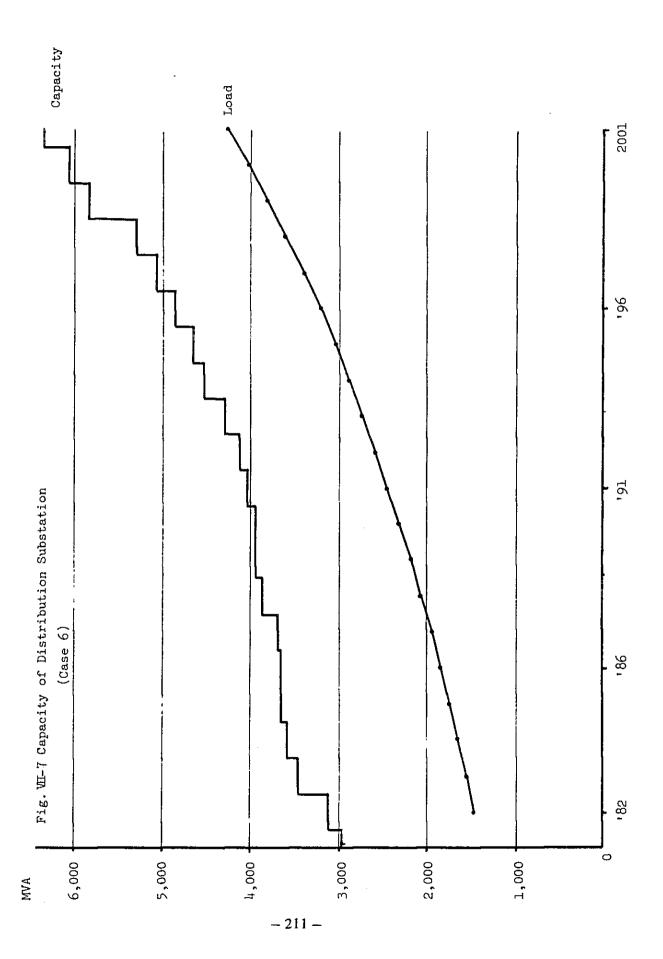
As the next optimum program, Case 4 is recommended.

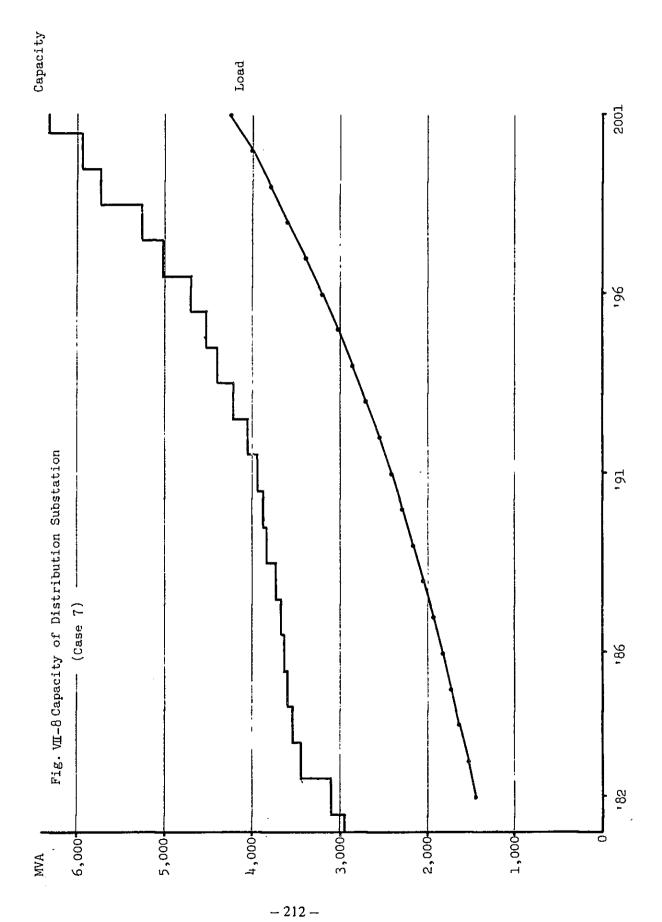
Table VII -1 Calculating conditions for each cases

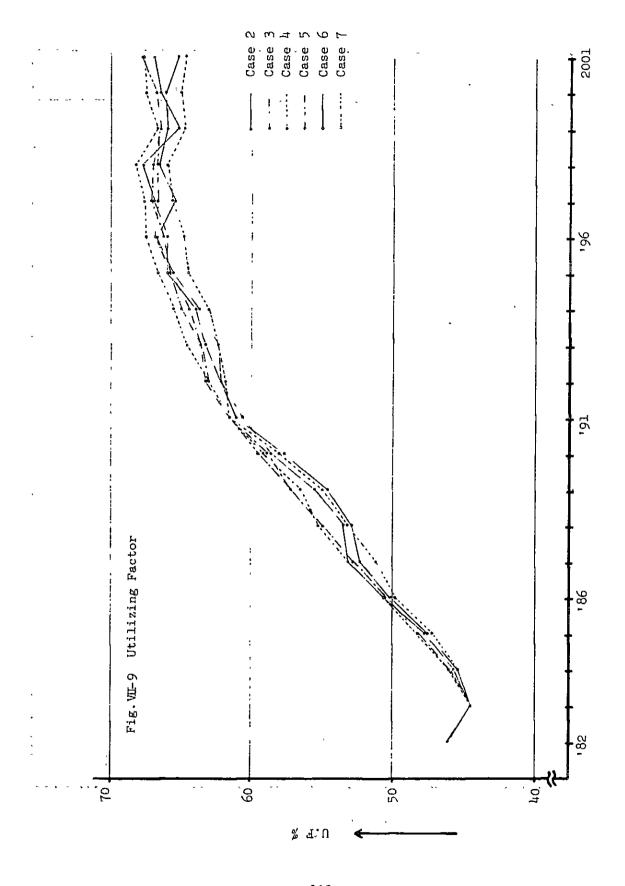

Utilization factor	Final capacity	Installation procedure	Case No.
A Area : 0.85	A area 40 x 3 B area 40 x 3	2-Bank start	2
	C area 20 x3	1 "	3
B Area : 0.80	A area 40 x 2 B area 40 x 2	2-Bank start	4
0.00	C area 40 x 2	1 "	5
C Area :	A area 30 x 3 B area 30 x 3	2-Bank start	6
0.07	C area 20 x 3	1 "	7


Table VII-2 Comparison of Total Capacity and Total Utilizing Factor


	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7
	(40-3B,2S)	(40-3B,1S)	(40-2B,2S)	(40-2B,1S)	(30-3B,2S)	(30-3B18)
1982						
(MVA)	3,150		(Same)			
Load (MVA)	1,448		(Same)			
Utl. Factor	46.0		(Same)		:	
1991	•					
(MVA) Capacity	3,990	3,970	3,970	3,970	4,020	3,970
Load (MVA)	2,432	2,432	2,432	2,432	2,432	2,432
Utl. Factor	60.9	61.3	61.3	61.3	60.5	61.3
2001						
(MVA) Capacity	6,540	6,290	6,600	6,290	6,380	6,300
(MVA) Load	4,261	4,261	4,261	4,261	4,261	4,261
(%) Utl. Factor	65.1	67.7	64.6	67.7	66.8	67.6


(Note) 40-3B, 2S: 40 MVA, 3 Bank, 2 Bank start





Comparison of Number of Distribution Table VII-3 Substation

			- · · · · · · · · · · · · · · · · · · ·	T		" , -	
		Case 2	Cere 3	Case 4	Case 5	i '	Case 7
		(40-3B,2S)	(40-3B,1S)	(40-2B,2S)	(40-2B,1S)	(30-3B,2S)	(30-3B,1S
		,				' ,	
Existing	<u>,</u> (81')	46	46	46	46	· 46	46
('82 ∿'	91)	(+11)	(+15)	(+15)	(+15)	(+13)	(+17)
<u> 1991</u>		57	61	58	61	59	63
(192 % 2	2001)	(+19)	(+42)	(+34)	(+45)	·(+27)	(+46)
2001		76	103	92	106	86	109
(182 ∿ 3	3001)	(+30)	(+57)	(+46)	(+60)	(+40)	(+63)
•	Ì						
							
Details	on 20	001			i		
1x20	AVM	1	10	1	12	1	13
1x30	11						19
1x40	11	3	28	2	26	. 2	3
<u>.</u>		'				·	
2x10	"	1	1	1	1	1	1
2x20	.,	5	6	17	11.	6	5
2x20	u		v	_,		18	18
2x40	11	32	45	68	51	25	34
2x Com	bino		-		2	2	1
- 2X CO.11	DITTE					_	_
3x20	AVM	7	5			9	6
3x30	11	, l				8	4
3x40	11	· 24	14	*1 1	*1 1	1	1
3xCom	bine	. 2	2	*2 1	*2 1	12	3
"		`					
.: "⊧ 4x40	MVA	·, 1	1	1	1	1	1
1		<u>, </u>			•	-	-
			and interest and an inches of	*********	2-4 min 11	~~	••

Combine : Combination of different capacity
*1 : Klong Ransit (for PEA)
**2-:-Pechkasem (fixed Distribution Substation) (Note)

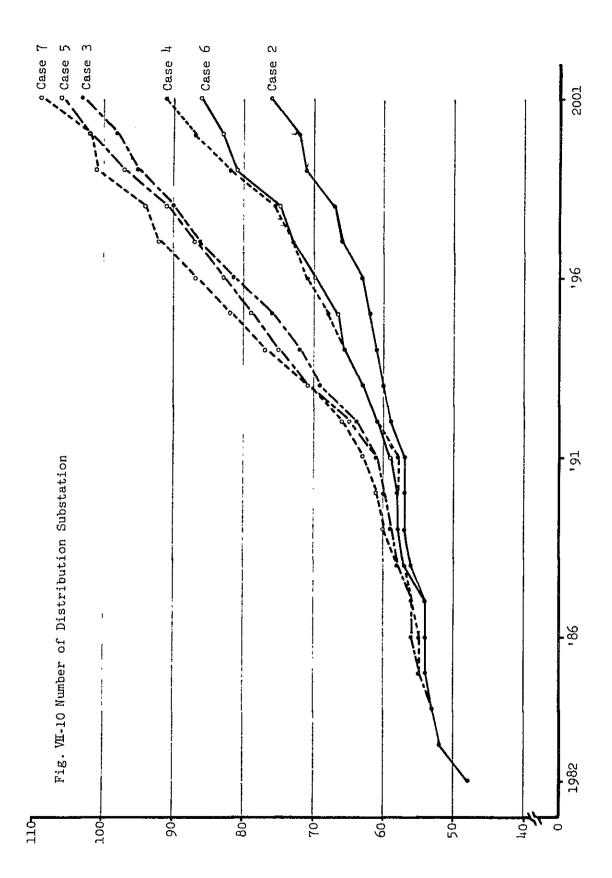


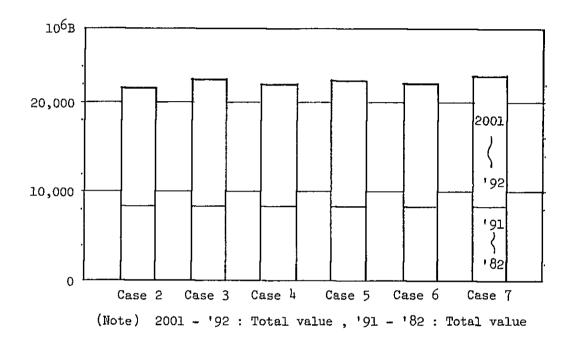
Table VII-4 Comparison of Number of Feeder

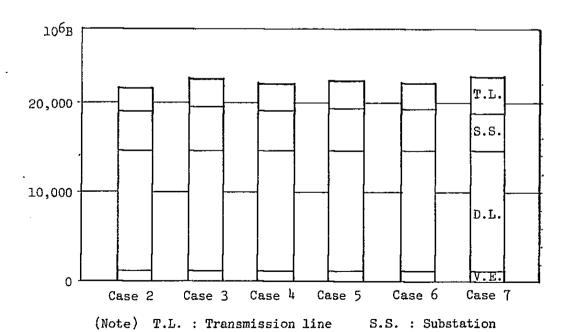
	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7
	(40-3B,2S)	(40-3B,1S)	(40-2B,2S)	(40-2B,1S)	(30-3B,2S)	(30-3B,IS)
Existing	3 ¹ 45	3 ⁴ 5	345	345	345	345
1991	487	491	489	490	492	495
2001	770	773	801.	780	769	774

Table VII-5 Comparison of Present Value of Amount of Investments ('79)

Unit: 106 Baht

	,					
	Case 2 (40-3B,2S)	Case 3 (40-3B,1S)	Case 4 (40-2B,2S)	Case 5 (40-2B,1S)	Case 6 (30–3B,2S)	Case 7 (30-3B,1S)
1982 - 1991						
S.T.	750	820	810	810	850	820
D.S.	1,480	1,640	1,540	1,600	1,620	1,710
D.L.	5,560	5,550	5,470	5,480	5,570	5,530
V.E.	540	540	540	540	540	540
TTL	8,330	8,550	8,360	8,430	8,580	8,600
1992 - 2901						
S.T.	1,900	2,150	2,050	2,230	1,990	2,260
D.S.	2,600	3,240	2,980	3,270	2,810	3,400
D.L.	7,990	7,800	7,900	7,700	7,910	7,800
V.E.	690	690	690	690	690	690
TTL	13,180	13,880	13,620	13,890	13,400	14,150
1982 - 2001						
S.T.	2,650	2,970	2,860	3,040	2,840	3,080
D.S.	4,080	4,880	4,520	4,87o	4,430	5,110
D.L.	13,550	13,350	13,370	13,180	13,480	13,330
V.E.	1,230	1,230	1,230	1,230	1,230	1,230
TTL	21,510	22,430	21,980	22,320	21,980	22,750


S.T. : Sub-transmission Line


D.S. : Distribution Substation

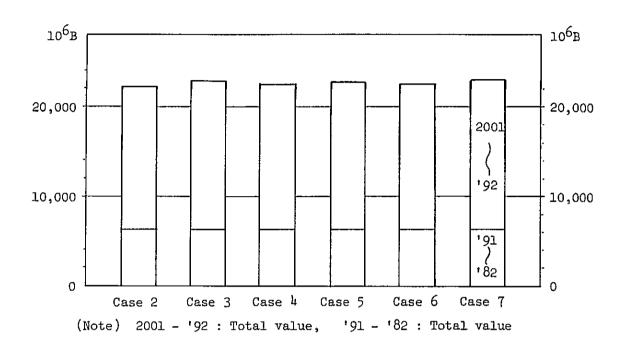
D.L. : Distribution Line

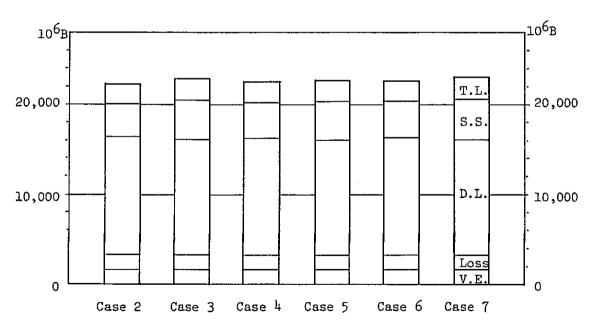
V.E. : Vehicle & Equipment

Fig. VII-11 Present Value of Amount of Investments ('79)

V.E. : Vehicle & equipment

D.L.: Distribution line

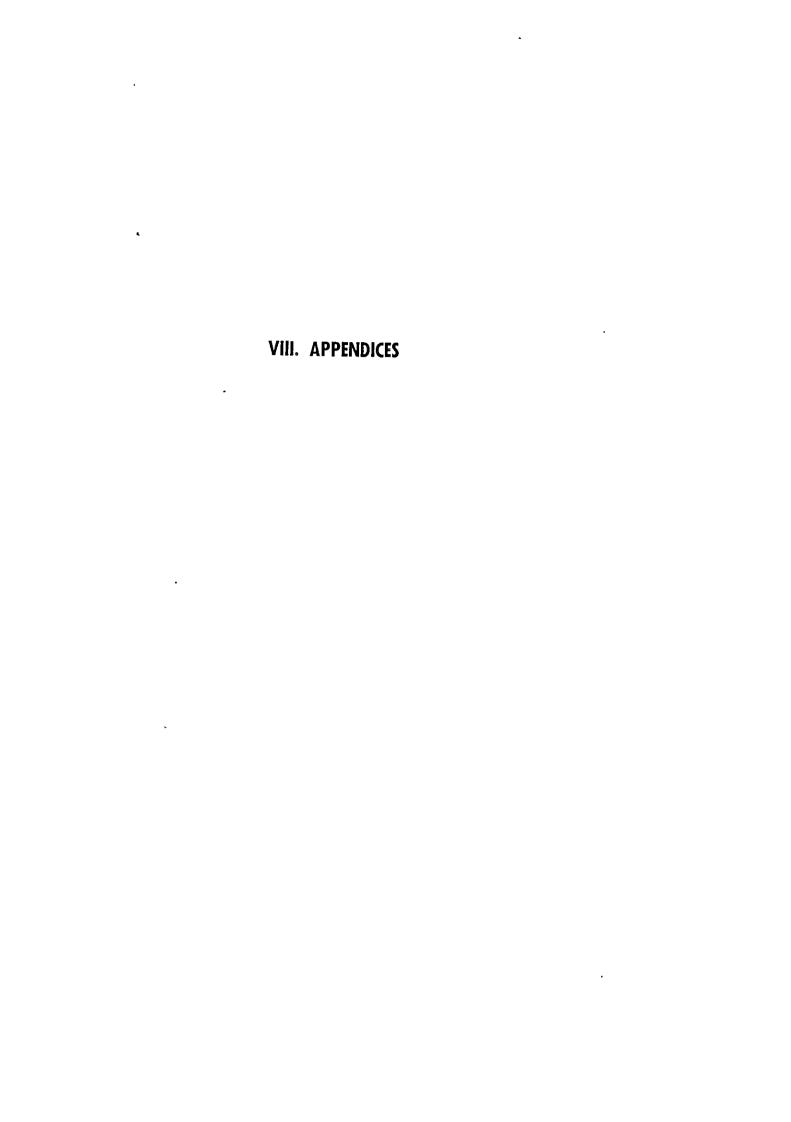

Table VI-6 Comparison of Present Value of Amount of Expenses ('79)


	Case 2 (40-3B,2S)	Case 3 (40-3B,1S)	Case 4 (40-2B,2S)	Case 5 (40-2B,1S)	Case 6 (30-3B,2S)	Case 7 (30-3B,1S)
1982-1991						
S.T.	350	400	390	390	380	390
D.S.	1,020	1,080	1,060	1,060	1,070	1,090
D.L.	3,830	3,790	3,770	3,750	3,810	3,780
V.E.	510	510	510	510	510	510
Loss	620	610	620	610	610	620
TTL	6,330	6,390	6,350	6,320	6,380	6,390
1992-2001						
S.T.	1,770	1,950	1,850	2,000	1,850	2,030
D.S.	2,720	3,320	2,980	3,320	2,980	3,480
D.L.	9,220	9,130	9,100	9,010	9,200	9,070
V.E.	1,210	1,210	1,210	1,210	1,210	1,210
Loss	1,020	910	960	920	970	910
TTL	15,940	16,520	16,100	16,460	16,210	16,700
1982-2001						
S.T.	2,120	2,350	2,240	2,390	2,230	2,420
D.s.	3,740	4,400	4,040	4,380	4,050	4,570
D.L.	13,050	12,920	12,870	12,760	13,010	12,850
V.E.	1,720	1,720	1,720	1,720	1,720	1,720
Loss	1,640	1,520	1,580	1,530	1,580	1,530
TTL	22,270	22,910	22,450	22,780	22,590	23,090

S.T.: Sub-transmission Line
D.S.: Distribution Substation

D.L. : Distribution Line
V.E. : Vehicle & Equipment

Loss : Loss of Distribution Line


(Note) T.L.: Transmission line

S.S.: Substation

D.L. : Distribution line

Loss : Distribution loss

V.E. : Vehicle & equipment

VIII. APPENDICES

		Page
1.	Conversion of The MEA's Basic Demand for Mesh Load	222
2.	Service Voltage for Each Area	231
3.	Candidate Site of Distribution Substation	241
4.	Load Sharing Calculation	243
5.	Distribution Substation Expansion Program of Each Cases	245
6.	Amount of Investment & Expense of Each Cases	272
7.	Detailes of Investment of Each Cases	304
8.	Location of Customer Substation (2001)	321
9.	Load Density Map (attached)	

Appendix 1 Conversion of The MEA's Basic Demand for Mesh Load

1. Preface

MEA's whole basic demand (GWh) and demand of each PL Area were estimated based on the MEA LOAD FORECAST (1982 - 2001) August, 1980.

Concerning to the planning of distribution facilities, it is necessary to convert the basic demand (GWh) to the load (KW) shown below.

- (1) Customers' load supplied by 69 KV and 115 KV (hereafter called 69 KV-Customer)
- (2) Customers' load supplied from the MEA's distribution substation (hereafter called distribution load)

Furthermore, distribution load must be distributed by each mesh.

- 2. Estimation of 69 KV-Customer's Load
- (1) Estimation of 69 KV-Customer's GWh

The following rate is applied for the load estimation of 69 KV-Customer.

Rate 69 =
$$\frac{69 \text{ KV-Customer (GWh)}}{\text{Medium & Large Business (GWh)}} \times 100\%$$

a. Actual record of Rate 69

The values of Rate 69 from 1975 to 1979 are shown in Fig. 1.

b. Model curve of Rate 69

It is assumed that a 69 KV-Customer (5,000 KW) is appeared in a certain PL Area for the every 50 GWh load increase, the values of Rate 69 can be shown like as Fig. 2.

c. Standard increasing curve of Rate 69

Standard increasing curve of Rate 69, which is based on the actual record of Rate 69 except PL Area S30 and R00, is shown in Fig. 3.

Increasing curve : $y = 52.0 - 65.566 \times 0.99396^{x}$

x; Medium and Large Business of PL Area (GWh) 544

y; Rate 69 (%)

d. Application of Rate 69

GWh of each PL Area except the particular area (R00) is increased, the value of Rate 69 will be increased depending on the standard increasing curve. (Fig. 4)

e. Estimation results

Estimation results of 69 KV-Customer (GWh) are like as OUTPUT 20 and these are tabulated below.

Unit: CWh

Table 1.

				Ollit: Gwil
		1979	1991	2001
	541 543	1,478 1,043	2,885 2,107	4,638 3,791
544	744 (TTL) 644	4,097 (6,618) 1,021	7,382 (12,374) 3,936	12,567 (20,996) 9,103
	GTTL	7,639	16,310	30,099

(2) Estimation of 69 KV-Customer's kilowatt (KW)

Kilowatt (KW) of 69 KV-Customer was calculated by applying the 60% load factor (MEA's actual record), and calculation results are like as OUTPUT 21.

(3) Estimation of number of 69 KV customers

The average maximum demand (KW) of a 69 KV customer is growing each year. A trend line of average maximum demand of 69 KV customers was obtained from actual data recorded by MEA, and from this trend line, the number of 69 KV customers was calculated.

Trend line Y = 5.05 + 0.29X (KW)

Y: average maximum demand (KW) of a 69 KV customer

X: 1979 is 1

3. Estimation of Distribution Load

(1) Multiple regression between KW and MWh

Multiple regression analysis between KW and MWh was conducted for each planning area.

Regressive equation can be written as follows.

$$Y = a + bX_1 + cX_2 + dX_3$$

here,

Y : KW

X₁; MWh of residential [541] X₂; MWh of small business [543]

X₃; MWh of medium and large business [744] (except 69 KV-Customer)

Above data are found in each planning area.

a, b, c, d; Coefficient have to be obtained.

Analysed results

Regressive equation is:

$$Y = -2,415.4 + 0.068324X_1 + 0.40594X_2 + 0.16135X_3$$

Multiple correlation coefficient . 0.9796

(2) Calculation of KW increasing rate of each PL area

Kilowatt (KW) increasing rate ($IR_{n,p}$) of each PL Area was obtained by the following equation.

Kılowatt (KW) increasing rate of each PL Area is like as OUTPUT 24.

(3) Estimation of KW of each mesh

Kilowatt (KW) of each mesh from year 1980 - 2001 was obtained according to the following procedure, that is,

Multiply KW (1979) of each mesh, which is already calculated, by KW increasing rate $IR_{n,p}$ of each PL Area.

Estimation results of distribution load (KW) of each mesh are like as OUTPUT 25, and KW in 1991 and 2001 is shown on the Load Density Map.

Furthermore, distribution load of each mesh is tabulated in Table V-5 for 0.5 Km², 1 Km² and 2 Km² area.

4. Conclusion

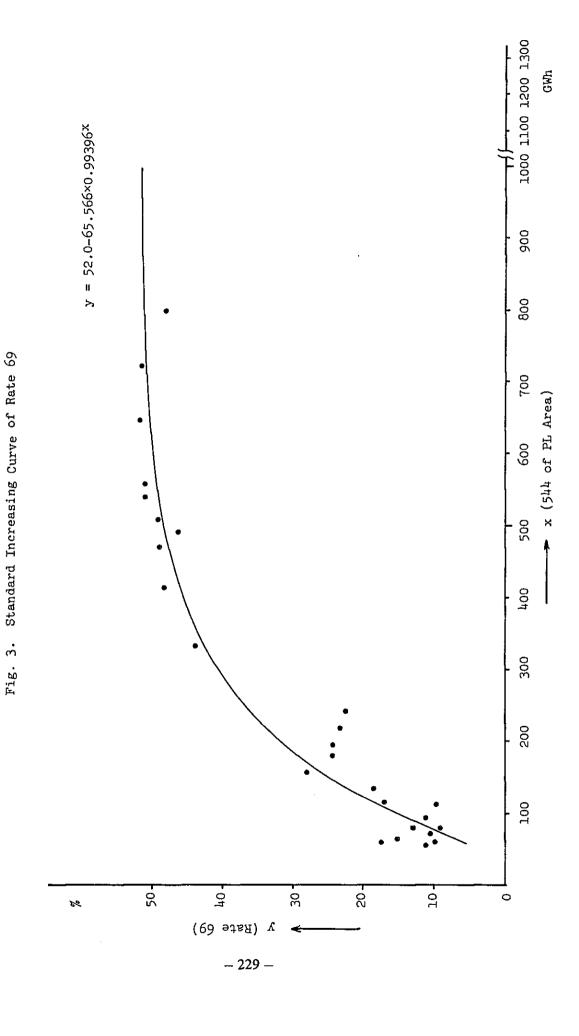
MEA's basic demand was converted to 69 KV-Customer load and distribution load, and results are tabulated in Table 3 and Table 4.

Table 2. Calculation Result of Load (KW) by Mesh

		500 m mesh	1.0 km mesh	2.0 km mesh	Total
Numbe	Number of mesh Area km²	137 34.25	608	451 1,804	1,196 2,446.25
ΚW	1979 (A) 2001 (B) Ratio:B/A	282,151.7 726,792.4 2.576	695,913.3 2,521,934.9 3.624	150,834.2 585,540.3 3.882	1,128,899.2 3,834,267.6 3.396
Load density	1979 KW/km² 2001 "	8,238.0	1,144.6 9.741.4	83.6	1,567.4

Table 3.

Unit: MW


Year	Distribution Load	69 KV Customer Load	Total
1982	1,304	255	1,559
1986	1,651	407	2,058
1991	2,189	676	2,865
1996	2,889	1,060	3,949
2001	3,834	1,562	5,396

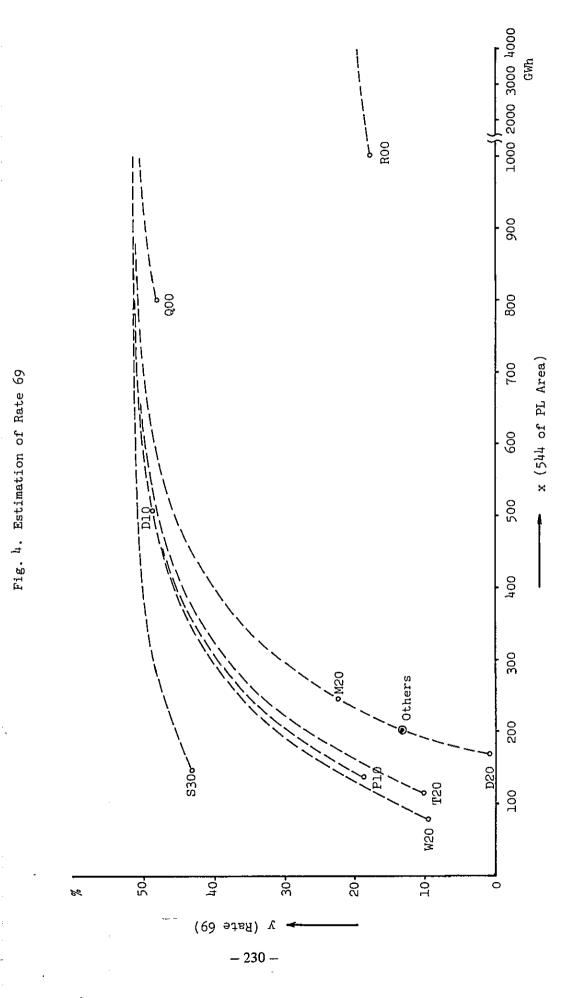
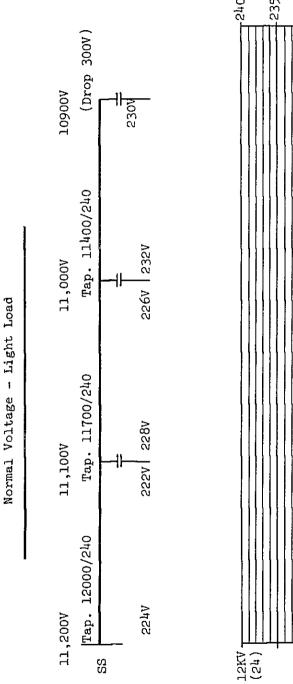
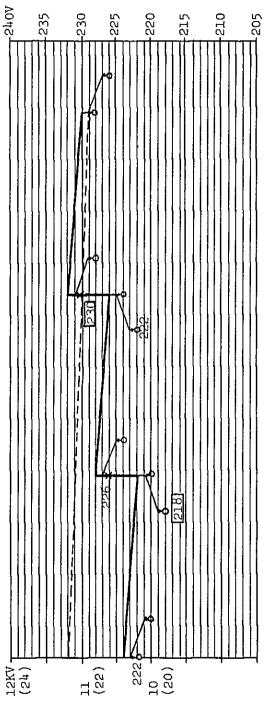

Distribution facilities planning will be studied by applying the above results as basic load.

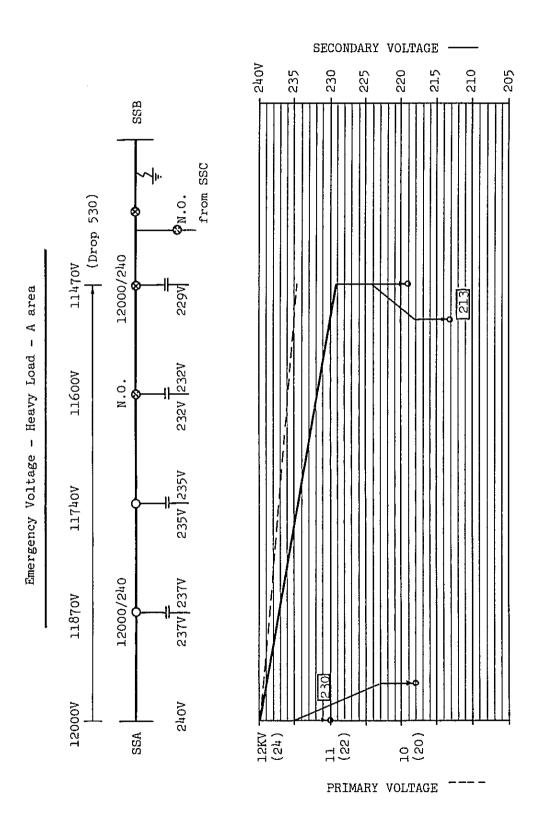
Fig. 1 Rate 69 (1975 \sim 1979)

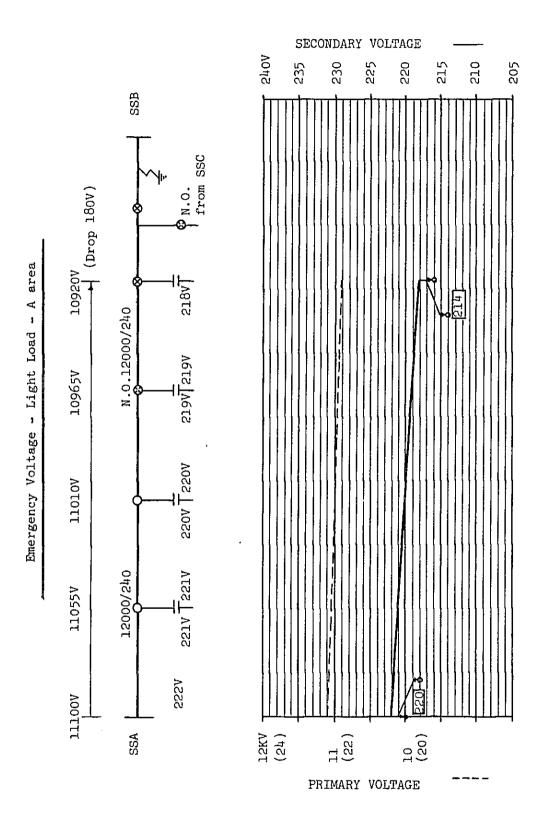
– 227 **–**

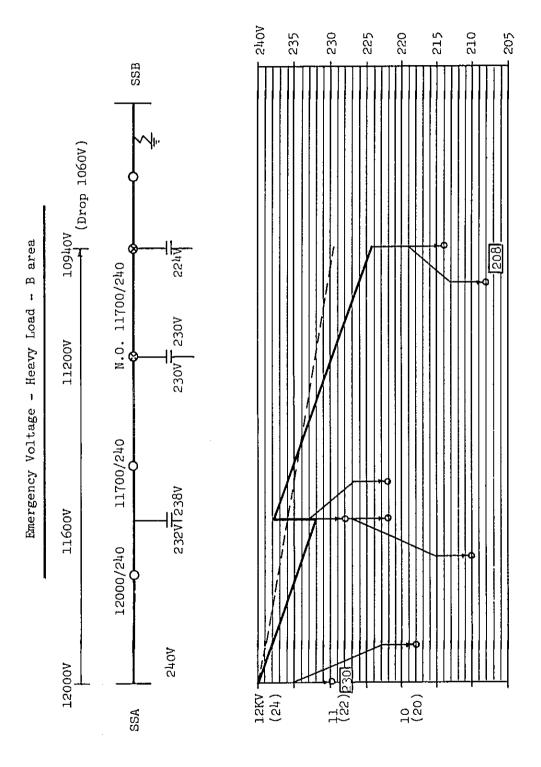
- 228 --

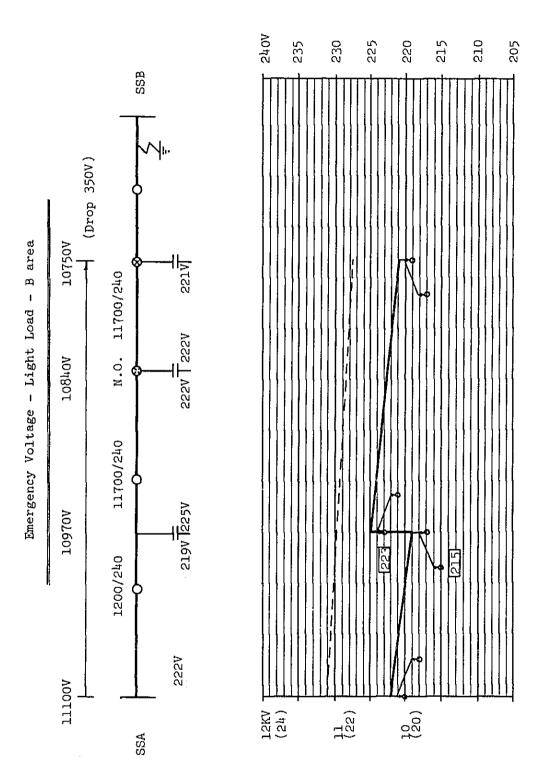


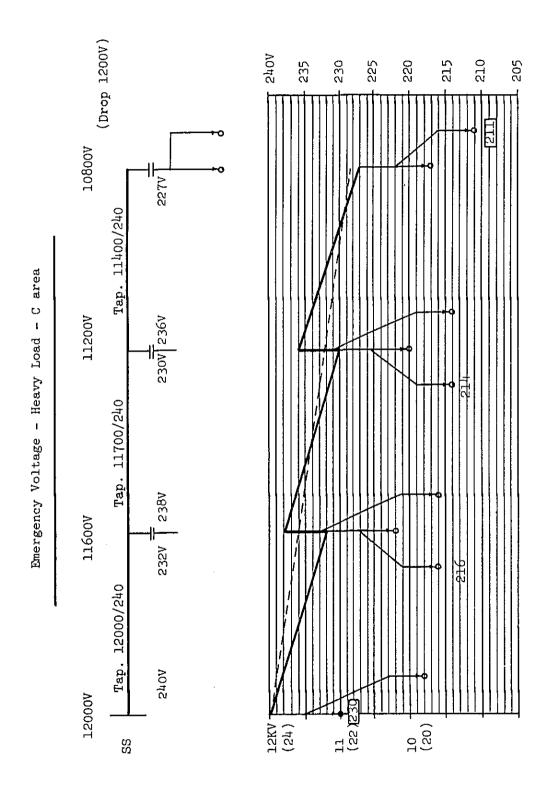

Appendix 2

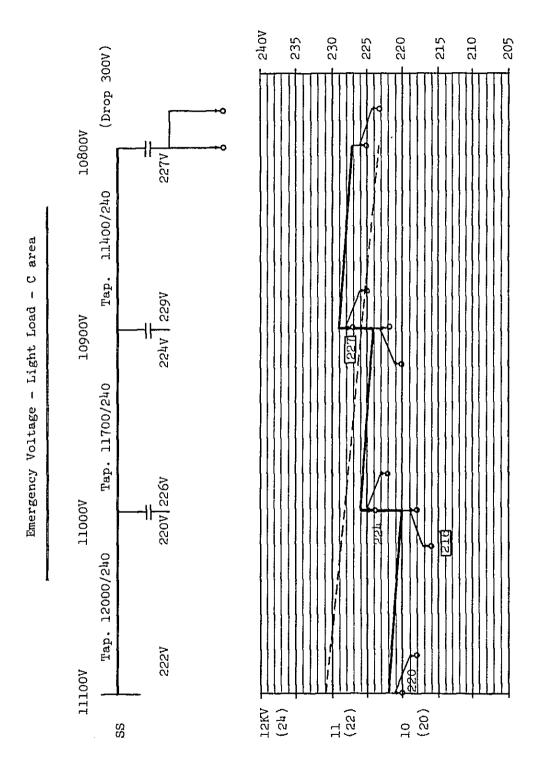

SERVICE VOLTAGE FOR EACH AREA

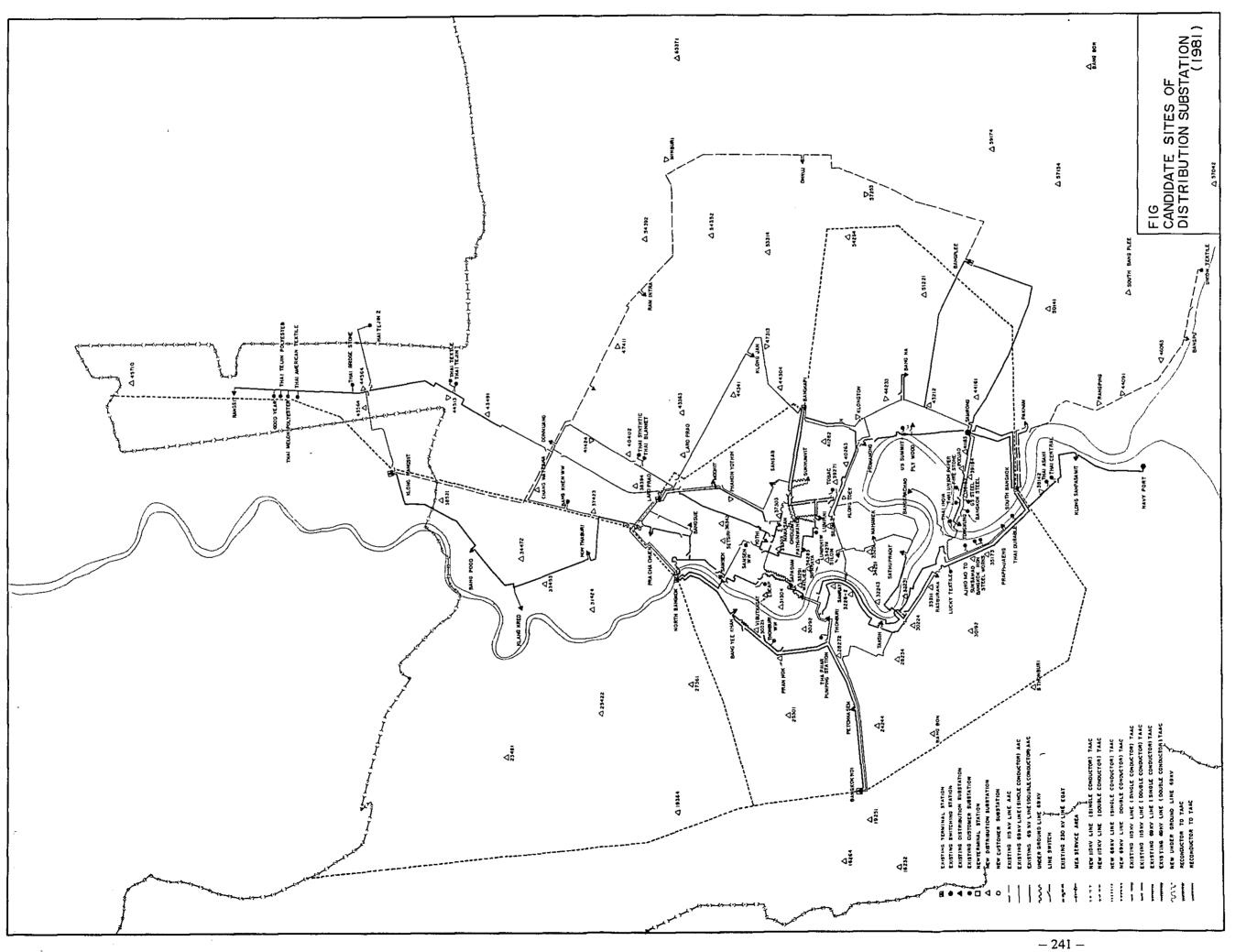

			Unit -: Volt
<u>.</u>		Light Load	Heavy Load
	Normal Voltage		
	Min	218	214
A	Max	222	226
Area	Emergency Voltage		
	Min	214	213
	Max	220	230
	Normal Voltage		
	Min	218	214
	Max	226	226
B Area	Emergency Voltage		
	Min	215	208
	Max	223	230
·	Normal Voltage		
ļ	Min	218	214
С	Max	230	226
Area	Emergency Voltage		
ļ	Min	215	203
	Max	226	230

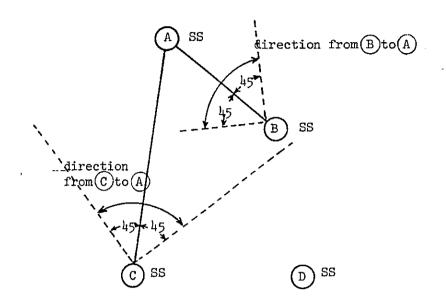

in secondary line in service wire (B) Voltage drop through Tr.
(C) " in secondary
(L) " in service was the service of the service SECONDARY VOLTAGE _ 240V 235 - 230 . 215 1 210 205 225 - 220 (Drop 900V) 10,900V Tap. 11400/240 11,2007 230V Study of Distribution Line Voltage Drop. Normal Voltage .. Heavy Load Tap 11700/240 230V 236V 11,500V Tap.12000/240 236V 11,800V SS 10 (20) 12KV (24) 11 (22) PRIMARY VOLTAGE










Appendix 4 Load Sharing Calculation (Transportation problem method)

Process of load share calculation is as follows:

- 1. Ideal service area will be fixed for each SS. (Only geographical restriction condition should be applied. Each mesh is served by the nearest SS.)
- 2. If the load in ideal service area is bigger than the capacity of the SS (such as C SS in sample diagram), calculation is done as follows;
- (1) Find out an adjacent SS which has its surplus capacity (such as B SS) and following calculation is done on each mesh served by C SS.

where $L_{di} = | L_{ij} - L_{ic} |$ $L_{ij} = | L_{ij} - L_{ij} |$ $L_{ij} = | L_{ij} - L_{$

- (2) Next, find out a mesh which has minimum value of L_{dt} , and the load of that mesh is transferred to be under the service of j SS.
- (3) Above process are refrained until the adjacent SS becomes on full loading.
- (4) If two or more substations appears in shortage of capacity after fixing of ideal service area, above-described calculation process should be followed on all of each mesh served by those SSs.
- 3. In such a case that any adjacent SS has not enough surplus capacity, calculation process is as follows;
- (1) Find a nearest SS (A SS in example) which has still surplus capacity.
- (2) Have a look in the direction toward A SS from C SS, (*) and find another SS (B SS in example) which is located most nearly of C SS. (B SS has not surplus capacity.)
- (3) Load P_m under service of C SS is transferred to be served by B SS in same manner of above term 2. Where P_m is equivalent to the smaller one of surplus capacity of A SS and shorted capacity of C SS.
- (4) Next, have a look in the direction towards A SS from B SS, and find a nearest SS (A SS in this case). Load P served by B SS is transferred to A SS, while P is quantity of P_m .
- (5) Such process would be refrained until capacity-shorted substation can be found no more.
- * Definition of "direction"

Appendix 5 Distribution Substation Expansion Program of Each Cases

x MVA	TTL	1x40	1x20	07.4		3	2×40	2×20	2x20	3840	3×50	SKEO	2x40	2	2%40	3x40	2x#0	2x20	2x40	2x40	2x40	2x10		3x10	3x20	3xko		3x20	2x to	2x40	1 5	of A	2x40	1	×	3×40	3×40	340
No.	2007		7		1	\dagger	1	1	Ì	1	1	T	1		2x40	1	1							+1x40			T	+1x20										
Unit	2000		7			1			1		1			0 × 1 × 40											Ī								nev.	2×40				_
	66,				1	1		1			1	-	1				OXX OXX				nev 2xuo				+1x20	+-				_			1			₹.		
	198				7	1			1	1																21.4		Ì			1	7.47	_	-	01×10			
	16.								1					01X																	41×40	-1x20						
	95.					1					1	01X																									+1,440	
53	56,					2x20										+1x40																						1×10
(Cure 2)	76.												+1x40					_ !															11×10		_	X1.	_	_
YA.	.93									+1×40															Dev	2x20					<u>07×1+</u>	-1x20				+1×40		
PROGRAM	76.										+1×40																											
ION	<u>اة</u>												_																									
XPANS	8																																_					
DISTRIBUTION SUBSTATION EXPANSION	8															n XX											_			1								
BSTAT	85.				+1×40 -1×20											_																						
ins No	28.																										+1×10				_							
BUTIO	98.																																		_			
DISTR	185				+1x20																											_					_	
-	18.							+1xto												01210										2x40								
	33												nev 1 y LO							nev.	2								l									
	- 92										_																											
	Exist.	1x40	1x20		2x20		2×40	3x20	2×20	2x40	2x40	2xto						2x20	_ t	24.2		1	5×10		2×40		캶		2x20		2x40	2x20	2x40		2х40	1x10	97X	2×40
	Substation	Horth BKK	Klongkred		Bangkok Not	16232	Bangyekhan	Pechkasen	Horth BKK	Rasburana	Thonburi	Taksin	Pren Nok	Samray	28272	30031	30224	Klong Sanbsamit	Tree and not	Pendbon	The same	Suksavad	Bangkre, lao		Rangsit	4356h	Klong Rangsit		Bangpood	16461	Donmusng	Nontaburi	Prachacuen	70707	Bangkapi	Bangsue	Klong Jan	Mochit
	3100	ន			ន																				8				01						L	_		

DISTRIBUTION SUBSTATION EnPANSION PROGRAM (Case 2)

(Case 2)
PROGRAM
EXPANS 10N
SUBSTATION
DISTRIBUTION

≤F	-1			<u>i</u>		-7			~	Т	1		_	_	_	Т	T	7	Т	_	Т	_	 T	Т	Т	T	1	Т	-i	1	Т	1	Т	T	7
.I	TET.	3x20	2x40	2×40	3x20	3x40	3x20	3×20	3x50		+30 _T 6														1	1									Ì
Unit: No	2001						+1x20	+1×20			4.7.6		6.540		4.261	65.1																			
ä	2000										122		6,100		4,024	66.0					Ī														
İ	66,			_			ne. 2x20				1,1,1		2,180		3,802	65.8																			
	8			_				2×20			1.67		2,400		3,592	5 99																			
١	16.	+1x20							1×20		+366		5,200		3,395	65.3					1								- 1						_
	95,								"5x20		+163		920		3,210	66.6				T															\neg
ı	- 35								-		±162		1,660	1	3,039	65.2		T			1												7		
ļ	191										116,		7,520		2,877	63.6																	1		_
	,93					07×1+					1,	3	4,370		2,720	60 0				7															_
	192	2x20									+2 5.0		4,150		2,573	62.0	;																		
	16.										2.5		3.990		2,432	0 0																	1		
	• 30										5.7		3,990		2,299	2 4 2	-					_													
	189	_									11.7.7	1	3,990		2,176	10																			
	88	_				nSw40					+2ck		3,910		2,064	C																			_
	137			_	±3x20						ð		3,730		1,946		,					·													
	36			_					_		î		3,670		1,835	5	1		1	7															_
	*85				2x20						+1	1	3,670		1,737	1	- 1																		
	181			_								2	3,610		1,6361,737	3			Ţ																
	133	-		_							5,5	*	3,470		1,541	-	7																		
	132			-			-				+21,8	7	3,150		1 448	1	5 2	1	1	1															
	Exfsr.		2x40	2×40		-		Γ			97		2,990			1	1	1	T	7					_										
		-					İ	 -			+	1	-	-		10.40			1	1			Γ							Γ					
	Substation		85	昆	por.	=		-	-		Number of	tation	Total capacity		Total load (MVA)	, 54.54	(8)			[
		19215	Paknam	Bangpu	Bangbor	16079	1,6063	50141	57134		Numb	Sque	Tota	_	Tore	11			_	_			_	_	_	_	L	_		_	L				
	310c	ξ						<u> </u>			╛.								1	_							<u> </u>	1							<u></u>

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Care 3)

2x40 2x40 1x40 1x20 1x20 3x40 Unit . No. x MVA 2x40 1x40 1x40 1xto 2x20 2x40 2x40 1xto 2×10 1x40 1×20 2x20 1x20 TI 41×40 2000 2001 15×40 +1×40 P.Y.Lo nEX4q +3×10 +1×20 - 66 +1×40 +1×40 96, 26, +1×40 15×20 onX.Su -96 1x40 new 1x20 95 new L 19. 115.20 1×40 93 nev 1x40 .92 .91 06, Dev 1xto 189 1x20 . 33 +1×40 187 98. 1x20 .33 .8r .8s "£¥40 +1x40 new to . 32 Exist. 2×10 2x20 2x40 2×40 1×40 1x20 2x20 Klong Sanpasamt Substation Prapradaen Bangbon Klongransit 16264 16232 Bangyethan Pechkasem Horth bik Bangkra Jao North Bak Alongkred Bangkok Noi Rasburana Thonburi Pren Nok Sanray 30321 28372 32231 30224 28234 30292 Suksavad Rangsit Taksin 24244 44564 43564 45710 19251 2 91 23

(Case 3)
PROGRAM
ION EXPANSION
SUBSTATION
I STRIBUTION
a

X MVA		3x20	07XZ	9 (S	2x40	1×10	1×40	1x40	2x40	1×10	2x40	2×40	2x40	2240	2740	2x30	2×40	1×40	1×40	2x40	1×40	2xh0	2×to	S _{EO}	23.40	SX40	The King	CXAC	2840	Oq.XZ	2x40	2x40	2xh0	2xh0	1x40	
Unit No.			-	\dagger																41xh0			+1x40													
Uni:			1	Ť	T	T	T	OrXI u						Γ								+1×40													_	
66.	+	\dashv	1	-	†	†-	↾	=-			_	T		_				1						OJXI.												
86,	+		+	\dagger	+	+	ngx to	-		+1×40				T			T		nev 1x4D						1				_							
16,	+	+	\dashv		\dagger	╁	-	-		Ť	-	-	\vdash							T	nev 1xto	-				1		1			,		П		1×40	
· (5,	+	+	+	1	0%x1+	╁	1	-	-	-		1	\vdash	十	1	 -	\vdash		1	nev 1x40		T			7	1		_					П			
	\dashv	-	1x40	+	Ĩ.	╀	+	-	-	-	-	╁	┝	1	\dagger	+	-	-	}-	Ē.		╁	1×40			-	_	1		Н		_		-	_	
56. 76. (5 vsro)	-	-	Ä	\dashv	+	+	-	-	-	-	-	╁	-	╁	╀	╀	+	ned of a	-	+	\vdash	╢	ia .			-	-	-		-	\vdash	-	-	\vdash		
1 -	-	-	-	-	+	-	2	-	\vdash	-	\vdash	-	╀	╀	+	+	1	12.7	1	╁	 	new 1x40		_		\dashv	-	-		-	-	-	\vdash	\vdash	-	
PROGRAM	-}]	-}	\downarrow	+	nev	1	-	-	-	-	-	\vdash	╀	+	Ļ	+	+	╀	+	-	ne	-	_		-	-			-	-	_	-	-	-	
 -	_	<u> </u>	-	1		1	1	-	L	-	<u> </u>	╀	-	-	+	+	+	+	╀	+	<u> </u>	-	-	L		_				<u> </u> _	L	_	\vdash	-		ĺ
NO 15	_ -	1×20	_	1	1	1	_	 	L	_	Ļ	+	_	ļ	\downarrow	\downarrow	-	+	\downarrow	+	-	-	-	L				 		-	_	-	\vdash	-	<u> </u>	
XPAN\$	_	-	_	_	_	1	ļ	_		1		_	_	_ _	\downarrow	_	-	-	-	_	<u> </u>	-	-	L						-	-	-	\vdash	 		
8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8					1		ļ	_		_	L	_	\perp	1	1	\downarrow	\perp	_	\downarrow		_	_	_	Ļ	_		_			_	ļ	-	╀	_	_	
BSTAT								_				_					_	$oldsymbol{\perp}$	L		_		L	L			_		_	_	L	_	<u> </u>	L	_	
151 SU																		_												L				<u> </u>	L	
38.					Ī	T	T	T	Ī	T									T						ļ 1				_		L		<u> </u>			
DISTRIBUTION SUBSTATION EXPANSION		1			7	7		Ţ-	T		1		1		1							1			ļ			 -	 							
G - 18	\dashv		1x40	1	-		+	†		†	Ť	1	T	1	1	_								T						Ī						
.53	\dashv	-	-		-	+	+	†	†	-	+	\dagger	1	1	1	+	1	Onx T.	<u> </u>			1		T							T	545	nev d	OF X	CX C	
		-	-	-	+	+	+	+-	╁	+	+	+	1	1	1		11×40	On X		1	+	1	+	\dagger	1					1	1	nev	विकार स्था			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		O'XS		2x40	2x20	2x10	\dagger	+	Debe		A S	7	Sxto		97X2	및 X	1×15	-	+	1		†	+	†	2,40	01x2	l sales	9,7	2×40	1 2	, c		T			1
<u>ă</u>	<u> </u>	8	-	5	Ñ	~	+	-	,	+	1	4	2 10	1	1	1	7	+	╁	\dashv	+	+	+	\dagger	1		-			\dagger	+	+	+	+	+	1
Substation		Bangpood	43491	Donmung	Hontaburi	Prachacuen	10102	31424	38394	Bangkapi	Bangsue	Klong Jan	Mochi t	Prakanong	Samsen	Senseb	Sukhuavi t	Paholyotin	Lardprao	Klongton	Setsiri	47313	146341	40203	11:05	Makesen	Casandan	Pat human	10.70	51 10m	Wattie	Totale	Sipraya	Chiaiom	Visutheent	
3300		70		 			1	1	1																								ot			

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 1)

× twa	15.		1x40	1x40	1×40	Ohxi	2×40	2x40	1x40	1x40	0421	2x40	1xt0	07X	1x20	2x40	2×40	2×70	3×40	1×40	1x10		2xh0	1×10	1x20	1×20	1x20	1×20	2x40	2xh0	3×20	2×40	2×40	1×40	3x20	3x40	3×20
. Ho.	2001			1xto						onXI.			1 x 40										-			nep 1x20								new LD			
Unit:	2000		nea 1xto										 				11×40																		L		+1x20 +1x20
	66.	-	FI			Otxi		Г											+1×40								_	new 1x2d	04x1+				_			_	+1x20
	86				neγ													+1×40									L	Ĺ									
	16.										1x40						Γ										1×20				13×20			L	1		1x20
	96.																	1240																			
(;	56,	; 					 	-													ne.						-				1420	2					
(Case	7,6,	<u> </u>		-					-										Of r t+						new	TYCA											
	193	-	_	_	-				newho			_		Γ	_																					+1 x ho	
РКОСКАМ	.95	-			-												On×3u					1	1								Avill	1×20					
	16,	 -					 -	-	-								T		T																	1,4	
EXPANSION	96,	 -			İ		 	 		 					-	T	T		nev.	×	1														5	1125	
	- 68				}		İ	-		<u> </u>																	T										
DISTRIBUTION SUBSTATION	-33	-		-		-	ļ. <u>-</u>	-		-							T	1		ev.	7 7 7 7		1												18	+TXSU	
SUB	.87	-		-		-	+	\vdash	t		<u> </u>				 		 -			Ï								1						Ţ			
30110	98,		-	-			<u> </u>			\dagger	T	H	\dagger	1	\dagger	\dagger	十	T	T	+	1	Ì	İ	Ť	+			1		\dagger			1	1		nev.	n X
STRIE	185	\vdash	-	-	<u> </u> 		+-	-	-	+	-		+	1	†	+	+	+	+	+	+	\dagger	1	+	1	T							1) Je	1x20	
<u> </u>	-88	-		╁	-	-	\dagger		t	\dagger	-	┢	+	T		-	+	\dagger	†		1	1	+	_ -			1	†	1								
	33	-		-			1	+		+	-	T	\dagger	+	1	-	1	+	1	\dagger		_	1	1			1			1							
	- 28	-	-	+	-	-	\dagger	1	2	╁	╁	\dagger	\dagger	+	+	+	\dagger	\dagger	\dagger	\dagger	+	\dashv	+	7		1	+	+	\dagger		+	- 	1	1	1	1	
	Exist.	╁	-	+	+	$\frac{1}{1}$	0126	1200	7	+	+	o.l.o.	2,50	1000	7 × 7	D ZX	, x	\dagger	+	+	+		1	2×40	1x40	1	1	+		1×10	2 F0		2x40	2x40	T		
	Г		$\frac{1}{1}$	+	+	+	+		+	\dagger	+	+	+	\dagger	╣	\dagger	+	\dagger	\dagger	\dagger	+	1	+	_	1	1	+	1	1	1	-			1	1	1	
	Substation		51108.2		, 5	1		Маћалек	Satupradic		35251		Dangara	Fryvood	Saarong	South BKK	Tangkung	44233	38192	41183	39184	44181		Remintra	Ladplakao	Minburi	1,7411	54352	65371	Bangplee	Onud	54264	Paknam	Bangpu	Bangping	Bangbor	44091 46063
	3loc S	_ _	140 S11		346 4	<u> </u>	77.70	Mai	Sa.	32243	15552	<u>ا</u>	100	<u> </u>	ag.	Š	Ta	777	88	4	8	1717	_	50 Re.	La	至	7	15	9	B	Ö		Pa	ñ.	ជ័	ř	3 3

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 3)

× MVA	_		e l	o.	g	T	٤		T		T	T	Γ		Γ	Γ	T	T												1				T	7
4	TI		1x20	3x20	}	1	5	1 1			1	<u> </u>	1	-	L		\downarrow	-	_	-			_	_	_	-	-	1	-	-	1	-	\downarrow	\downarrow	4
Fair Fair	2007				2X 2X 2X				6,290	1,261	67.7			1				_[_				1	_	1	1		_	4	_	\downarrow	\downarrow	_
키	2000						£,	?	5,7306,030 6,290	3,802 4,024 4,261	7 99	•	_	_	_	_	_							_	_	_	_ -	_	_	4	1	_	_	_ _	_
	66.			+1×3			7.				7 7					_	_								_		_		_				1	1	_
	198			+1x20			£	3	5 370	3,592	99	1																	_						
	16.						£58.7	5	5,070	3,396	67.0	3																							
Ī	196		1x20	1x20		T	*0 B3	96	1,850	3,210	6,49	-																							
Ì	95			-			4.14	9	1,630	3,039	y y	;	1	T	T		T								_		7		_					1	
	76		_			7	+3 3,	2	1 067 1	2,877	17	2	1	1			_									1	1	_	_						-
1	- 63					1	÷	6	1 062 1	2,720 8	1 63	_ 1	\dagger	Ť	1		1	Ì							7	Ì	Ì		_				- -		1
j	16,					+	Ţ,	30	4,070,4	2,573 2		2.6	1	Ť		1	1				_		-			7	1	Ì			1			7	_
ŀ	161		-			+		<u>-</u>	3,970 4	2,432 2		7	-	1	+	1	╁	-	_								7	1			1		1	1	ㅣ
ŀ	06.		-		-	1		2	3,870 3	2.299 2		29.4	+	-	\dagger	†-	\dagger		_		_	-	_	-	-	1	7	1					1	1	-
- }	. 69		-		-	+	- [7	3,810 3	2,176 2	 ⊦-	76.1	-	\dagger	╁	\dagger	+	_	_		_	-					-						1	1	-
Ŋ	33					$\frac{1}{1}$	+ 2+	<u>,</u>	3,770 3	2,064 2	_	74.0	+	\dagger	+	+	+	-			-					-	1	\dashv				\dashv	+	1	-
ŀ	. 87					\dashv		<u>-</u>	3,690 3.	1,9462,		72.7	╁	-	+	+	-	-			-	-	_		-	-	_	-		_	-	+	\dashv	\dashv	-
ŀ	98					+	+	2			_	50.3	+	+	+	+	+	-			\vdash	-	-				-	+	_				\dashv	\dashv	\dashv
ļ	_					-		╀	10 3,650	37 1,035		46.1 50	╀	╀	+	+	+	_	_		-	-	-	-			-	-		-			\dashv	-	-
}	1 - 85		_			1		- 25	019*8 02	36 1,737				+	-	+	+	_		ļ _	<u> </u>		├	-			-	-			Н		-	-	-
	- G		_		_		- [23	3,570	1,636		45.0	-	+	+	+	-				-	-	-	-	_		-	-		-			-	-	-
							-	₹	0 3,470	8 1.541	<u> </u>	7.71	+	1	-	\downarrow	1	_	_		_	-	-	-	_				-	L				4	
							+2,	-1-	3,150	1,448		9	4	4	+	4	4		L	igert	<u> </u>	<u> </u>	Ļ	-	L	_			L	_	L			_	_
	Exist.						2	2	2,990	_		1	_	-	1	\downarrow	_		_	<u> </u>	<u>_</u>	_		_	_	_			<u> </u>	<u> </u>				_	
	\$on							5	Total capacity (MVA)	E		(2)																							
	Substation		1,1	34	2		Der of	substation	(MAA)	Total load									ļ							•	ļ	ļ						.	
Į		-	50141	57134	67942		13.5	ans -	Tot	- To		3	_	_	+	\downarrow			_	\downarrow	_	\downarrow	-	+	-	_	_	_	L	_	\downarrow	\vdash			
ĺ	9300		ß																_			L			L	L				L					

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 4)

х муа	TEI	οήχι	1x20		2x40	2x20	05 27.50 27.	2×40	2×40	2x40	2×40	2×hp	2x20	2x10	2x40	2x40	2x10	2x40	2×40	2x40	2x40	2x40	2×40	2x20	2x40		2×40	3x40	2x20	2x20		2x40	2x40	1×10	2x40	2xto
it No.	2007	-																				2x40														
Unit	2000																								35											
	66.		_	_				1x40									2x40													2x20						
	86.								Ï										2xh0							j		+1×40			_			\rfloor		
	197																																			
	96.																				0η <u>x</u> ζ _υ															
	195																				-	_	nev 2x40		7										i	7
	16,																	2X 20				_												1		_
	193	 						-1x20				_										_							2x20							
İ	- 26,		_					Ħ								41x40												,								
ı	19.								7	_						Ì																		7		
	96.																	İ							1									7	7	
Ì	-68														_				_	2xto														1		
	88.																			_					Ī											
	187											-												_				04x1+						1		
t	38.		-																									+			П			1		
ŀ	185																							2x2d												
							+1×40 -1×20							_	+1x40	_														_	_					
	-33	:					+-							-	nev 1xto	£,ro																				
	- 82				-					_	_		-		<u> </u>	<u>"</u>	_				\vdash	-	_	-					-	-	-					
	Exist.	1×40	1×20		2×40	2x20	3x20	2x20	2x40	2x40	2×40	2×40	2x20	2×10							-				_		2×40	1240	-			2×40	2xh0	7×70	2x40	Sxto
	Substation	North BKK	Klongkred		Bangyekhan	Klong Sanpasamit	Pechkasen	North BKK	Prapradaen	Resburana	Thonburi	Taksin	Bangkek Not	Bangkrajao	Bangbon	Pran Nok	Suksawad	Samray	28272	32231	30224	28231	16264	16232	24244		Rangsit	Klong Rensit	13564	15710		Lumpini	Makasan	Sapandam	Pathurvan	Silom
	3100	10			20			Γ																			30					07				

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 4)

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Gase 4)

· ·	Exist.	. 82	.83	18.	1.85	Se. 88. 18. 98. 58.	- 18.	-33		16, 06,		6. 26.	1-	<u>4</u>	. - 56.	8,	16.	86	66.	Uni 2000	Unit : No.	× MVA
	-		-						-		1					1					1	
		1																	nev 2x40			2x40
_		_													new 2x40							2x40
		1										 					24.0	5xto				2x10
		-			1		-		+	1	1	2×40	1			1	1	7	1			2x40
		_			1			2×40	7			_	1		1	1	7			1		2x40
_	L	П					-	1				1	1		1						2x40	2x ³ to
		Н	_	nev 2x40		7	-	1	7	1	7	1			+		1	1	1	Î		2x40
	l i				+	\top	+	\dagger	+	+	\dagger	- -	1	1	1	1	+	_			2x10	2xt0
Orko		丅			1	\dagger			T	1			T				1				T	2x40
2~10	1_	1		T			T										-		_			2×40
1240		T			 	Γ					П					1	+1x40					2x40
2×40	┺-	Γ																1				2×40
2xto	┸_	•									_						1	1				2×40
01XT	_							-	+	1	1		7			Ť	7	1	700			1×10
	_						_										1		2×40			2×40
	-	Γ												2×20								2x20
				-	2x20																	2x20
					-		2x70	-					-									2×40
_												200	Ť			2x20	<u> </u>	7				EXEC
												2x20							7.0			3x50
	₽-																		2x20			2x20
								_						, Luci						2x20		2x20
	-						1	1			1	750		2x20			1					CXC)
							1	1	1		1	2x20				1		nev.				2x20
	 i						-	1						1				2x20				
	\rightarrow																					
1.6		1,8	÷1,	53	£5 25	55	25/	122	1, 58	58	58	+3 61	+263	43	£5 68	17.	13	÷3 76	95	÷ B	45 45	26 ±#¢
Total capacity 2,990		3,150	3,1503,470	3,610	3,690	3,690	3,810	3,890 3,970		3,970	3,970	4,170	1,370	4,580	4,720	1,960	5.180	2,160	5,880	6,200	6,600	
1,366		1,48	1,541	1,636	1,737	1,835	3,946	2,064	2,176	2,299	2,432	2,573		2,720 2,877	3,039	3,210	3,395	3,592	3,802	1,024	1,261	
Utiliting factor Le 7		1,0	1,11	45.3	b.T. 1	1.64	51.1	23.2	54.8	57.9	61.3	61.7	62.2	62.8	64.4	64.7	65.5	65.8	5 n9	64.9	64.6	
_	-1		-1	.1			1					ŀ									!	l

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 5)

x MVA	TTL	1×40	1x20		2×40	2x20	1x40 2x20	2x20	Sxto	2x40	2×40	2x40	2x20	2×10	2x40	3×to	1x40	2×h0	1xh0	2×40	2x40	2×40	1×40	2×40	1x20	2×20	TXZO	1×40		ZX#Q	97K	1xt0	1x20	1x20	
Unit . No.	2007		-									-		-		-								41×40		1	+					1			
Uni	2000 2001				١								1						nev 1x40	+1x40															
	66,																1x10	On×I+								+1,x20				_		P.C.			
	86,										i		٦	_								+1×40				1					욁				
į	16.																				+1x40														
i	95.										-				!								neσ 1×40					Ì						1x20	
,	- 56.							,																neγ 1χ ⁴ 0	2 7 2 8				1					7	
(case)/	ار ا					i							_													1		1×40	1			7		7	_ _
	163				j	_												_		new 1xho		_				7				_			1x20	1	
EATHISTON FROGRAM	26,							-					•									1x40												7	
5	τ6,				T	i												nev 1xto				_						7	1			1		1	
בענעו	06.											_																							
	68 68																				1×40														
DISTRIBUTION SOSSIVITOR	63										-									_		_				17.20		\neg	1					1	
202	181							_												_						-		7			etxt.			\exists	
n i o	98.			_ <u> </u>								-									T							7	1	-	_			1	
14151	185												_				_			-							1x20	_	1	_				\dashv	\dagger
a 	78.	-					+1×40 -1×20			-		_			0747	-	_	_			T	Γ							7						1
	.33 Eg.						-			-		-		-	Y Tr	12 to			-			┞													\top
	- 95		_			_		 	-	-		٠				-			┢		-			\vdash			-		1				-		1
	Exis:	1×40	1x20		2x40	2×20	3x20	2x20	2x40	2×t0	x _l o	2xhG	2x20	2x10	T			-	T			ľ		┪	-	_				2×40	1×40				1
	Substation E	North BKK	Klongkred 1		Bangyekhan 2	Klong Sanpasamit 2							t Not		Γ	Pran Nok	Suksavad	Searney	30321	28272	18008	30224	28234	30292	19251	16264	16232	որշոր		Rangsit	ans1t		19561	45710	
	Bloc No.	10 16	¥	<u> </u>	20 Br	1	ď	ž	ă.	R.	F	E	m	Ä	FE S	á	ξŲ	બ	- m	7	-	ň	Š	m	-	1	Ĩ	CV		30	1	-27	7		

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 5)

O ZOO1 TIL		2х40	2x40	4×40	2x40	2x40	2x40	2x40	2x40	2xto	2555	2x40	2x40	2x40	2x40	1233 1233 1233 1233 1233 1233 1233 1233	07×1	2x40	2×40	2x40	ON XI	2×40	2x40	1x20	2x40	2×20	2×40	2×40	2xt0	2×40	2x10	1x40	1x40	2x40	1x40	2x40
2003																9	-1x20	1											Ì							
199 2000 2001										1																							i.X	+1xto		+1×40
. 93	-																																			_
<u>8</u> 6											+1xt0															j									1×10	_
16'																																1240		_		
'\$'						Ì				-				١		26 4.1 4.1																				1×10
195																			-																	
16.																																		1×10		
193																																				_
192																,																_				
<u></u>																		ŀ																	.	_
96.																																				
8																																				
- 83																																				
187																																				
38,												Î																								
185																					1									_						
180																																				L
£.				,																								41×40	USX TO	+1×k0	01 X2					
器		_													Γ								+1xtd				+1×to	nev 1xto		nev.						
Exist.		2x70	2xho	η×η	2×40	2x40	2×40	2×70	2xho	2x10	1×10	2×40	2×40	2×40	2x40	2×20	1×20	2×40	2x40	2×40	2x70	2×10	1x40	1×20	2x40	2x20	1,040									
Substation		Lumpini	Makasan	Sapandam	Pathumuven	Silom	Watlieb	Yothee	Bangkapi	Bangna	Bangsue	Donmuang	Klong Jan	Mahamek	Mochit	Nontaburi	Plywood	Prachacuen	Prakanong	Samsen	Samrong	Sansab	Satupradit	South BKK	Tangkung	Bangpood	Sukhumvit	Sipraya	Chidlon	Paholvotin	Klongtony	Visutkasat	Silon 2	Ladorao	Klongton	Setsiri
Bloc No.		2		- 				Γ		Γ																										

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 5)

۶ľ														Ţ	_	_	T	Ţ							_]	Ī	Т		_T	T		Π	T		T	Ţ	_
×	TTL		1x20	1xh0	1x40	1x40	2x40	1x40	1×40	17 P	2xh0	1x40	2xlt0	2x40	1x40	1x40	S S	2x40	Of XI	2xh0	1xh0	1xt0		2xh0	2x40	2xh0	Syfo	2xt0	7. 1.	1x t0	1×10	1×20	250	2×10	2x20	2x20	1x20
Unit: No.	2002			1x40								nev 1x40		04×(+	1x40																						1x20
5	2000		1x20				-					-						+1×40					_						1xtq	7		7					
Ì	66,		<u>-</u>			1×40				1x40	01×1+							Ĭ			17.40																
	- 98		_		nev 1x40	_				-			+1x40	Ì													-1			7	1x40						
	16,				E		1×40	1x40					7							_		1x40			Ì	+1×40					•						
Ì	જ						•	5					1×10		_					_						Ì									+1x20		
	195												<u>с</u>			nev 1x40			1x10	_						7	7			7			7	1		+1×20	
-	٠ <u>ۇ</u>														-	<u>-</u>	+1×40		<u> </u>								-	1	-	7		1×20	7		1x20	÷	_
ŀ	193				_		nev 1x40		new		_			nev 1xto	-		+	_		-	_						_	1		7	_	-	-	7	=	\dashv	_
1	- 35	-					č		ž		1×40		-	ē	-		-		-	-						_	1		-	1			7	7	1	1x20	_
ŀ	т к	\dashv					_			-	Ĕ.				_					+1xto			_				-		-	+		H	-	-	╣		
	ع	\dashv		_						_			_				1×10	-	_	- 71					_		-	-		1			-{	41xh0	\dashv	\dashv	
ļ	60	\dashv	_		_			_		_			\dashv			_	=	-	-	-			_				-		7	-			-	*	\dagger	\dashv	_
-	- 33	\dashv					_	_				_	-					2	-		-									_	_		20	-	+	\dashv	_
ŀ		-	_				_	_	\exists	\dashv			\dashv				-	1x40	{			-					_	_	-				+1x20	_	\dashv	\dashv	
ļ	97	_											_			_	_		_	_							-							ηO	\dashv	4	,,
ŀ	3,86	-											4	\dashv				_	_	_						_				-				1×40	\dashv	\dashv	
ŀ	185	_								_	_	_	_	_		_	_	4		04			_							_			15x20	-	\dashv	-	_
Į	₫. -	-		_															_	nev lxbD										_				_	\dashv	4	
١	<u>چ</u>									_						L										_					_						_
	. 82														_		_									L									Ш		
١	Exist.																							2x40	2540	1×40	2×30	07X2		1xto		_					_
	Substation		กล																							٠			South Bangplee	02	200						
	Subst		Jangwatna	34274	33291	31304	70707	47313	32243	31424	44233	38394	38192	14241	35251	40263	41183	39184	18144	43491	41282	34251		Paknem	Bangpu	Bangplee	Onnul	Romintra	South P	Ladplakno	Bangping	Minburi	Bangbor	16011	1,6063	54264	1,74,1,1
İ	No.		9					Γ					Γ											8											П		

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Cuso 5)

K MVA	į		1x20	1x20	1x20	2x20	2x20	2x20		+60									į																
<u>.</u>	_		H	7	ਜ	2	~	+1x20 2	1	ğ	1	<u>8</u>	261	+	67.7	+	+	1		\dashv		-				-	-						+	1	1
Unit	2000 2007		_	-	new 1x20			귀		103	_	5,7106,030 6,290	3,802 4,024 4,261	_1	66.7					-			L	-				_				-	+	\dagger	-
- 1 -	799 20	_	_	1x20	50		\dashv	\dashv	-	2+ L ₀ 2+	\dashv	306	, 802 t		9.99	-	-						-		H							1	+	+	-
-	. 96,			ŭ			-	1x20		+4, 4,	_	5,390 5	3,592 3		9.99	\dagger	1		_			-	-	_		_							1	†	
-	. 197		1×20			+1x20	\dashv	a 1		87	1	5,090,2	3,395 3	+	66.7	+	+													_				+	-
ŀ	95,		1 3			Ŧ.	-		+	** 83	1		3,210 3	_	66.7	1								_									\dashv	7	
- [-	56						+1x20	-		+ ₁ +	1	4,6304,810	3,039 3		65.6	1	1					_	 	-				_					-	†	_
ŀ	<u>g</u> ,						7		1	+,4	1	7 054,4	2,877 3		64.6	+										<u> </u>		-						7	
ŀ	<u>ي</u>		_			1x20	-	+		+671	_	4,290	2,720		63.4	1	1							_						İ				1	_
ŀ	-1 26 		-			s	1x20			+7,65	-	4,090	2,573 2		62.9	1				_														1	_
ľ	٤.						-	_		+161		3,970	2,432		61.3									Γ			_			Γ				\top	
ľ	<u>В</u>						-		\uparrow	+1,60	_	3,770 3,810 3,890 3,970	2,299	1	59 1	_	Ì																		
-	-68.		_							+159		3,810	2,176 2,299		27.1																				
	.53									+2.58		3,770	2,064		54.8																				_]
ľ	.87									56		3,690	1,946		52.7		1																		
ľ	35,					!				+156					50.3																				
ľ	.85									+2,55		3,610 3,650	1,737 1,835		48.1												L		L						
	, B.			1						1,53		3,570	1,636		45.8																				
	.33		!							+4 52		3,470	1,541		777																				
1	-85									+248		3,150	1,448		16.0																	<u> </u> _			
	Exist.									917	r 1	2,990																							
												city			Utilizing factor		}							1											
	Substation		22	r.	ส	1,1	-z	Ę.		Number of		Total MARA acity	Total load		561251															ŀ	ŀ				
	_		54352	65371	51321	50141	57334	67042	-	93	_	100	Tot	-	<u> </u>	_	-	-	-	+	+	1	+	+	+	+	+	+	+	-}-	+	+	+	\vdash	-
Į	30.		ς.		_						_			Ĺ.,				L	<u>L</u> ,	L.			L	ل			1						上	Щ	<u></u>

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 6)

	_	_	_	_	-	_	-		_			_		_	_		_						, ,	-	_		_		 		 -	_	$\overline{}$	٠.,
OHI . MO. X MVA		1x10	1x20	2x40	2×20	1×10 2×20	2x20	2x40	2x40	2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2	2x10	3x20	2×10	2×40	1×20	2x30	2x30	2×30	2x30	3x30	2x30	2×30	3x20	2x30	12.54	いない	3x40	3x20	99 XX	2×20	ux40	5×10	2x40	2×40
2001																						nev. 2×30				+1x30				+1x30		+1×30		
2000																					nev 2x30								 +1×30					
8																05×30							+1x20	22.30	-			+1x20						
; 8															+1×30					+1×30							+1×40							_
10.			L						+1×30																									
,02																		2x30								_ 								
195																																		
76																				2×30						1								
193																												2x20						
26.																	new 2x30	i																
126										+1x30																								
8																																		
8																			2x30															
eg.								_															2x20											
18,																											+1×40							
38																																		
(%)												+1×20	 												-									
76.						+1x40 -1x20								+1×40																				
66											Ì			ney 1x10	neu 1x40																			
- 88																																		
Exist.		1×40	1×20	2xb0	2×20	3x20	2x20	2×40	2×40	2×40	2x40	2x20	00.00													2×40	1x40		2x40	2x40	ихио	2x40	2×40	2x4D
Substation		Horth BKK	Klongkred	Bangyekhan	Klong Sanpasantt	Pechkasem	Morth BKK	Prapradaen		Thonburi	Taksin	Bangkok Noi	Bangkrajao	Bangbon	Pran Nok	Suksavad	Samray	28272	32231	30224	28234	30292	16232	24244		Rangsit	Klong Ransit	1,3564	Lumpini	Nakasan	Sapandam	Pathuzvan	Silon	Watlicb
3100	-	ž 9	×	Z0 B	포	E.	15.	A.	ı i	Ĥ	A	EĞ.	m m	n	ñ.	ES .	r)	Ñ	<u> </u>	1	12	3	٦	2		30	×	-7	70 07	1	S	4	S	3
				 _	-		_			_	_		1	٠	4			-		***		_	•		_	_	_	_	 _	_	_			

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case C)

şF	, [a	٥	c	0	20	٦	أهد	٥	20	ا	٥	Ь	٦	20	٥	اه	اه	اب	٥	اه	٦	او	g	وا	<u>_</u>	۵	g	္က		2	a	ွ	<u></u>
UNIT - NO. X MYA	Ë	2x110	2x40	2×40	2x30	Sxto	2x40	XX V	2×40	30 33 30 30 30 30 30 30 30 30 30 30 30 3	2x3	2 x 2 0	2×40	2x40	2×40	ž	25 25 25 25 25 25 25 25 25 25 25 25 25 2		25 2 X 2 X	3X 3X 3X 3X 3X 3X 3X 3X 3X 3X 3X 3X 3X 3	2×40	2xto	2x40	2xt0	2x10	2x30	2x30	2×30	2x30	2×30		2×30	2x30	3x30		3x30
3	2001																	+1x30													+1×30					+1x30
	2000 2003									+1×30	1x20 +1x30								+1×30	_							1	e X			_					_
	66.											+1×30					_	-1x-0 +1x30												new 2x30		2x30	2x30	+1×30		
	96.																									ĺ		300	2×30							_
	197									-																2x30										2x30
Ţ	,8,																+1×30	,		+1x20						201	2x30							2x30		
	.95				-1x10																										n5×30					_
1	<u>.</u>				+1x30		_				+1×30																1		Ì		_					
ľ	23	_						+1×30		+1×30						Ì	_																		DEX2 5x30	
	25																																			
ľ	g																																			
ľ	8																																			
	<u></u>	_									_																									
	89	 }																																		
-	- 62		_																-																	
	3																											Í								
Ī	<u>5</u>																																			
ľ	20 20									•						Γ																				
ľ	£3																					1×40	2x40	1xto	2x40							Ī				
Ì	- 82	_								_					r	T	+1×10	-		_	+1×40	nev 1x40	2x40	ner 1 v kg	5						T	T				
	Ex1 \$	շռին	2x40	2x40	1x10	2x40	2×40	2×40	2×40	2x20	1x20	2xh0	2x40	2x40	2x40	2x40		1x20	2x40	2x20	1x40											I				
	Substation	Yothee	Bangkapi	Bangna	Bangsue	Donmuang	Klong Jan	Mahanek	Mochit	Hontaburi	Plywood	Prachacuen	Prakanong	Samsen	Saurong	Sansab	Satupradit	South BKK	Tangkung	Bangood	Sukhimvit	Sipraya	Chidlom	Paholyatin	Klongtoey	Visutkasat	Lardprac	Klongton	Setsiri	33291	hokos	47313	32243	44233	14341	40263
	No.	9																														\prod				

9
(Cese
PROGRAM
EXPANSION
SUBSTATION
DISTRIBUTION
_

10 11 12 12 13 14 15 15 15 15 15 15 15	≨F														T								_	T	T			T	П		Ī				
11133 1114 1144 1114 1144 1114 1114 1114 1114 1114 1114 1114 1114 1144 1114 1114 1114 1114 1114 1114 1114 1114 1144 1114 1144 1114 1114 1114 1114 1114 1114 1114 1114 1144 1114 1114 1114 1114 1114 1114 1114 1114 1144 1114		Ē	Ì	3x3(3x3(3x3(2xh(2xt(2x7	2x4(ž	2×2(3x5	343	37.20	37.5		- 1	3x5(!_		14	ě									
1,113 1,124 1,13 1,14		2002																		2x20			5x20			986	6,380	1.261		ł					
1918 Personal States, 422 431 424 425 436 436 436 439 439 439 439 439 439 431	<u> </u>	_													Ì						+1x20					2	6,060	1,024		66.4					
1918 Personal States, 422 431 424 425 436 436 436 439 439 439 439 439 439 431	- 1:	-				+1×3d				+1×30			_				+1x20		2x20						,	9	5,840	3, 802	7,50	65.1					
1918 Personal States, 422 431 424 425 436 436 436 439 439 439 439 439 439 431	1	- 98			+1x30												2x20			Ì					٩	7.	5,310	502		9.19					_
1915 1915	ľ	16.								İ											23.20			1		273	3,080	i i		66.8	-	1			7
13183 1814 182 183 184 185 186 1	-	, %		_							1				7			Ì			-	x20			1	2	e.			65 9	T	 			٦
13183 187 18	- -	-		x30								_			7							Ŧ		_		67	620				1	-			-
Substitution Sail Sail 188 188 188 188 189 190 191 192 193	ŀ			=	_	-					1	-		x20	1	-	-	-		_		2x20		1			1,012			1 1	+	+			-
1918 1918	- {-		\dashv	-		-		-			-			25	1	-			_			-	-	-	- [120	2	١.	\dagger	├-			-
Substation Exist. '82 '53 '84 '85 '87 '89 '89 '90 '91 19183	-	726	-	-			-				-	-			-	8 S		x20	_	_			-	+		,5 					+	-	-		-
Substation Exist, 62 '33 '84 '155 '96 '87 '89 '89 '99 19183	ŀ	~	-	က္လ								-	_		4	구	_	<u>ي</u>	_			_	-	+	7	8		65.0	-	5	+	╀	-	\dashv	\dashv
1383 1884 1885	1-		-	نه ي	_		-		-	-		-	-	_	\dashv	_		_		\dashv	-		+	\dashv	-		930 4.	8	2		╁	-	-		-
1,183 1,184 1,85 1,83 1,84 1,85 1,85 1,87 1,88 1,183 1,1	-		-	_			_				-	-	\dashv	-	\dashv	-	_			_			-		-	80					╬	+	-		-
Pakman	ŀ		$\frac{1}{1}$	-	30								-	-	-	30	_		_			-		\dashv	-	-					+	-		-	-
1183 184 185 184 185 186	-	_	\dashv		2,7		_							_		PS.				_	_		-		-	-	102	9	0,0	1_1_	-	-		\vdash	
Substation Exist. 682	ŀ		-												Ť	_				-	_		-	_	4	_	50 3.6	- 1	6	-	\downarrow	-	\vdash		4
Substation Exist. 682 53 184 1183 1998	ŀ		4												8	_	_				_		_	4	4	_	3,6	1	2	9	+	-	-	-	_
Substation Exist. '82 '83 4,1183 29184 4,3491 Paknan 2x40 Onny Bangpue 2x40 Onny Bangpue 2x40 Onny Bangpue 1x40 Onny Bangpue 1x40 Onny Bangpue 1x40 Onny Bangpue 1x40 Onny Bangpue 1x40 Onny Bangpue 1x40 Falso Fals	1				_	<u> </u>					_				₹ <u>`</u>		_			_	_			\dashv	_	-	3.6	- 5	1	<u>!</u> .L.	-	-	ļ		_
5ubstation Exist. 62 1183 2918 4349 Paknan 2x40 Paknan 2	ŀ			_		25. See									_		_				_			1	_	-157				╀┈┼	_	_	-		_
5ubstation Exist. 62 1183 2918 4349 Paknan 2x40 Paknan 2		ξę,																								7	3,47	- 5	7.	 -		_			
Substation 4,1183 29184 4,3491 Paknan Bangpue Dannyl Ramintra Ladplakao Minburi Bangbue Danglee Sonul 14091 14093 14003 54,254 51,221 50141 57134 671042 701042 701042 7010442 7010442 7010442 7010442 7010442 7010444 7010444 70104444 7010444 7																			_		_	 				45 ¹ 48	3,15	<u>.</u>	7 7	1,6.0		_			
Substation 4,1183 29184 4,3491 Paknan Bangpue Dannyl Ramintra Ladplakao Minburi Bangbue Danglee Sonul 14091 14093 14003 54,254 51,221 50141 57134 671042 701042 701042 7010442 7010442 7010442 7010442 7010442 7010444 7010444 70104444 7010444 7		Sxtst.						2x40	2x40	1×40	2x40	2x40	1×40													97	2,990				_[
<u>▐▗┈╿╼╌╿╼╌┦╼╌┦╼╀╼╀╼╀╼╀╼╀╼╀╼╀╼╀╼┼╼┼╼┼╼┼╼┼╼┼╼┼╼┼╼┼╼┼╼┼╼</u>				41183	39184	19491		Paknam	Bangpu	Bangplee	Onnu	Romintra	Ladplakao	Minburi	Bangbor	1,4091	1,6063	54264	54352	51221	50141	57134	67042			Number of substation	7	Total load	(MOA)	Utilizing factor					
		0.00 0.00						1-	1-							T													T			T			

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Coop 7)

F		- 1	١	i	-1	٠,	1	- 1	1	_	ļ	٠-۲	-	7		1	Ţ	1	7	í	7	- }		1	Ī	- 	7	- -	Т	1	ī	1	7	1	7	\top
Unit : No. x MVA	TIL		1x40	1x20		2xt0	2×20	1x40 2x20	2x20	2x40	255 255 255 255 255 255 255 255 255 255	2x10	2×40	2x20	2×10	2x40	DX.40	1x30	2×30	1x30	2×30	8	2x30	2x30	2×30	1x20	2x20		2x30		2×40	3x40	next.	1320	P. I	
t : No.	2001									Ì								Ì			_]	+1x3							+1×30							
를	2000																			-				+1×30	+1x30										1	
Ì	66,	_																15x30			+1×30						+1x20					2	Ix3c			
	96,										+1×30												-1×30									+1x40				
	16,		-																+1x30											T					F	
ľ	96																			1x30		+1×30												200	1x20	
	- 95													1			1			-		Ť		nev 1x30		1x20		1	1			1	1	7	†	T
													7	7				7			_				1x30	-		1		1			1	7	1	1
	.63			\dashv	_								1	1		_	7								_		_		1x30	1	7	7		22.2	+	1
ł	- 65		1											1		1		1			_		1x30	İ				Ĭ				1			7	\top
ŀ	191										-			1			1				1×30		1			_		_	1	1		1	7	1	\dagger	1
	96.	_	_				-							1		7			1×30		-								1			_	1	1	+	
	- 69		_				-			_			\dashv	7					-			nfx30							7				1	1	7	
١	.38				_			_							_							_					1x20	1	1	1	_	1	1	1	\dagger	
	87	\exists							_			_		-				-		_				-				7	_	+		+1×40	1	1	+	+
ł	36													-			-	\dashv										_	\dashv	1		*	1	1	+	
l	. 85	Н				_		<u> </u>	-											_								1x20	1	+			1		+	\dagger
	 ซื						_	1x20	-	-		_		_		01×1+	_			_	_		_		_			<u> </u>						\dashv	\dashv	+
	 						-	1 5	-			_			_	new 1xto +1	0 7 ×							┢				Н							\top	-
	. 82		_			\vdash	_	-	-					_	-	e -	E T		_		_		H	\vdash		-				_					\dashv	+
	Exdst. 1	_	1×40	1×20		Zxho	2x20	3x20	2x20	2×40	2x40	뮻	2×40	2x20	2×10		_	_	_	-	-	-	-	-		-					2x40	1×40	Н		_	+
	Ext		Ã	A	-	🖺	ļ.,,	<u> </u>	ล	60	2	12	Α.	ć.	2		-	_		-	-	-	 	-	-	-	\vdash				•••					+
	Substation		X	po		han	Klong Sanpasari	E E	Ř	laen	E BE	ļ.,		: Not	Jao	_	×	<u>.</u>													,.	lansit				
	Subst		Horth BKK	Klongkred		Bangyekhan	Cong 5	Pechkasen	North BKK	Prapradaen	Rasburana	Thonburi	Taksin	Bangkok Mat	Bangkra Jao	3angbon	Pran Nok	Suksavad	Searay	30321	28272	32231	3022t	28234	30292	19251	16261	16232	24244		Rungsit	Klong Rensit	19511	43564	45710	
	Bloc No.	_	2		-	200	┿╌	10.	=	"	-	-		-	m	""	"	1 43	vo	"	"	100		1 4	(,)			 			30	1-	1-7	-		\dagger
	E S	l	1.	1	<u> </u>	1	1_	1_		1_	L_	<u></u>	L	1		<u>!</u>	1_	<u>L</u>	<u></u>	1_	L .	٠.		!		┸	١.,	1		1		_	┺	٠	لب	Щ.

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case ?)

30. 30.	Substation			- 100	- 5		ì	-	_		_	-	H	-	-	-	_	ŀ	-	-	-	,	-
-		EX15	, 82 i	.33	70	ç,	do.	19.	_ ဦ	60.	8	. 37	92	93	. 1 %	95	196 197	7 1 9B	66	2000	2001	TIL	_
								_															_
2	Lunpini	2xtd						-	_		-		_	_	-	_	<u> </u>	 -	_	_	_	쭚	i
+-	Makasan	2xha					Г				-	-			-	-		_	_			2 ⁴ 20	_
+"	Sapandan	1,×40										-		<u> </u>		_	<u> </u>	_		_	_	1,xto	_
 -	Pathuavan	2x40			Γ				_	_					_	_		_				2x10	i
-	Silon	2x40							_		_			_	_	_			_			2×40	
Ë	Watlich	2x40											_		_		!					2×40	
┢	Yothee	2x40																				아X	1
╁╴	Bangkapi	2x40									-		_					_				Q¥X2	i
├	Bangna	2×40							_													2×10	i
	Bangsue	1×10					_				_					_	_	+1×30	0		+1×30		-
一	Donmuang	2x40										<u>'</u>								_		2x #0	\neg
一	Klong Jan	2x40																	_	-		2x40	┪
F	Mahamek	2×40					_	_	_			_		_				_	_		_	2×40	-
-	Dochit	2x40													 	<u></u>	_				_	2xhD	_
-	Nontaburi	2x20													_							2×20	1
-	Plywood	1x20								_												1x20	_
-	Prachacuen	2×t,0																	_	_		2x40	T
⊢	Prakanong	2x40						_				_	_	_	_	_	-	-			_	2×to	1
-	Samsen	2x10			1															_	_	2x40	-
+-	Samrong	2x40	Γ																		_	2x40	7
+-	Sonsab	2x46																				2x40	-
-	Satupradit	3.440	+1x40						-	-		\vdash	_	-	-	<u> </u>	-		_			2x40	
+	South BKK												Н									1×20	
۲	Tangkung	2x40															_					2x40	7
-	Bangpood	2x20									_					7	+1x20	_	_	_	1	3x20	Т
+	Sukhuavit	1×40	+1×40					_		_	-	1	-	-		-{	_	-	-	_	-	27.60	1
-	Sipraya		ner 1xto	1x40 +1x40											\dashv	-	_	_	-		1	2x40	Т
F	Chidlom			2x40					-		1	\dashv		1	-		-	1	-	4	+	2x40	Т
-	Paholyotin		nev 1x40	41x40				•					_						_	_	_	2xto	1
+	Klongtoey			2x70									-					\dashv		\dashv		_	Т
F	Poojao									+	1		1	+	\dashv	1		-	EX.	e e	۲ ۲	_	Т
Ė	Visutkasat									1	-		7	-	-	-		1x30	-	-		1330	7
-	Silom 2								1		_	1	1	-		-	-	_[nfx30		-	1x30	\neg
	Lardprac							1		1	1	1	1	- 1	1×30	1	-	-	-	+1x3d	띴	2x30	T
Ī	Klongton							-	-	-		7	-	-	-	-		1x30	_	-	_	ξχ.	П

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 7)

MVA	11:12		2×30	1×30	1x30	1x30	1x30	1x30	x30	2x30	2x30	1x30	2x30	2x30	2×30	1x30	2x30	1x30	2x30	3x30	1x30	2x30	3×30	1x30	1x30	1x30		2x40	Z IIIO	123	2x40	2xh0	1x40	1x30	1x20	3x20	3x30
No.x MVA			ei .	ਜ	a		1×30 1:		5	⁽²⁾	+1×30 2	-	¢i	5		new30 1	. 1	Ä	61	3		+1×30 2	_	Į	new 1 x 30 1	7	1	<u>~ </u>	2	1	-	-	- 1	1x30	7		_
Unit.	1002 00			1x30			1.6		\dashv	+1x30	7		+1×30	+1x30		ne						7			a-1	\dashv	-	-	-	\dashv	_	_		="	_	_	-
	99 2000		_	ğ.		P£X30	_		+1×30	7	-		7+	7+		-	x30	new 1x30	1×30		-		+1×30			-	-	\dashv	-	+1×30			+	-	+	_	-
	66.	-	+1×30		nev 1x30			nev 1x30	+1								7	ne 1	1			H	7			+	-+	+	+	=			-		+	1	1
	5. 16.		+1		e i		_	nes	_		\dashv	_		"f¥30			_	_		+1×30			-	1×30		1	\dashv	+	1	\dashv		-	-	-	\dashv	1	-
	! —			_		_				 				ηÇ						+1				100	$\overline{}$	စ္က		+	-	\dashv			+	\dashv	+	-	-
	96, 5		1x30							1x30		50		_	+1×30					+1×30				_		1x30	-	-	4				-	\dashv	-	_	-
	56. h		ix a		-		_				-	1x30		_	1,430		_	_	ne. 1×30	(+1)	_		_			-	-	\dashv	_	\dashv			-	_	S S	_	-
	16. E			_	_			-	ဋ	_	9				96	_	ရ		1,							4	+	1	-				\dashv	-	1x20	_	-
TAL MISTOR I MOSICULA	£6. a		_	_	_[-	-		PY 30		133	_		_			PEX30					200	_	_		-	\dashv	-	-				\dashv	-	+	-	<u>_</u>
	192		_	_		_	_			_	_		0	_	_							05 x J 12		_			4	_	-	_		\dashv	4	_	\dashv	뭐	+1×30
01510	191	_	_	_	_	_				\downarrow		\dashv	1x30								_		_	_		_	_	_					_	_	-	+1x20	_
Š	06.			_	_		_		_							_		_		0			0			_	4	4	_	_		_		_	\dashv	-	<u></u>
	68.			_	_	_	_				-									nev 1x30	0		+1x30		_	_	4	_	_	\dashv			_	_	\dashv	Ω.	+1×30
	1.38				_	_	_				_						 			_	1x30	_	[4	_	 					_	_	+1×20	_
	187		_																			_					_							_		_	ᄝ
	98.			_							_													:					_				_	_	_		1x3
	1.85				_		_									_				_		_	0				_		_							1x20	_
	18.		_												<u>.</u>	_							1x30												_		_
	•33																																				
	281																										-										
	Exis:.																											2x40	2×40	1x40	2×40	2×40	1×40				
	Substation		Setsiri	31,274	33291	31304	34283	43212	70107	47313	32243	31424	44233	38394	38192	44,304	44341	35251	1,0263	41183	39184	44181	43491	41282	35303	34251		Paknan	Bangpu	Bungplee	Omed	Ramintra	Ludplakao	Bangping	Minburi	Bangbor	14091
-	3100		70												T		T			Γ		T						2								-	

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 7)

x MVA	TTL		3x20	3x20	x20	1x20	1x20	1x20	x20	3x20	1x20		+63											T			T	Ī		T	T				Ī
			er .				-		3		-		+1,109	_	<u></u>	561	_	9.79	+	+	-	-		+	+	$\frac{1}{1}$	+	\dagger	1	+	+	+	+	+	1
Unit : No.	2007	-	_	_	1x20			1x20	+1x20	_	13.20	+	+1,102	1	5,970 6,300	3,802 4,024 4,261		9 7.19	-	+	-	_	-	+	+	+	╁	╁	-	+	+	+	+	+	1
	99 2000	-	+1x20		-	_	ngv.	_	+1x20 +1	-	-	- -	1,101		5,710 5,	802 4.		9 9.99	\dashv	\dashv	_	\dashv	_		+	+	- -	+	+	+	+	+	+	+	1
Ì	. 98	-	+		_		ne T		7	+1x20	-	-	7+ 45	\dashv	5,270 5,	3,592 3,		2	-	+			-	-	- -	\dashv	-	- -	+	+	+	+	\dagger	+-	1
ļ	. 16.	-	50	: D.:	-	1x20	_		_	+1x20 +1					5,030 5,	3,395 3,		8		-		\dashv	-	+	+	+	╬	+	4	+	+	+	+	+	-
ŀ	36 96		20 +1x20	+1x2d						7		+	56 ₅ + 26		4,770 5,	3,210 3,	_	.3 67.5	-	\dashv		-	_	-	\dashv	+	+	+	_	+	+	+	-	-	$\left\{ \right.$
		-	1x20						20	_		_	45 45	\dashv	1,560 1,	3,039 3,		7.9	-	-	-	-	_	_	+	1	-	+	+	+	+	+	+	_	-
1	7 . 95	-		1×20					PEX20	Ī	_	-	7 +582		1,100 1,	2,877 3,	-	, t 66	-	-		_			1	+	+	-}	4	1	+	+	+	-	-
	1 ₀ 1 8	_		_					_	1x20	_	_	1 +677				_	5 65.4		_		_		-	-	1		-	_	\dashv	+	-	+	+	-
	. 93	\dashv	_		4							_	- 77	_	1, 220	3 2,720		1 64.5	_	_		_	_	-	4	+	-	+	_	+	+	+	+	\bot	-
ŀ	92	_		1×20	_					_		_	+3		0 1,080	2 2,573		3 63.1	_					-	4	1	_	-		+	4	4	-	\downarrow	$\left \right $
ŀ	٦ <u>۲</u>	_		_								_	+263	\dashv	0 3,970	9 2,432		61.3	_	-	_	_		_	4	1	-	\downarrow		-	4	4	+	-	-
ŀ	8	\downarrow			_	_							19		3,890	6 2,299	_	1, 59.1	_	\dashv				-	-	4	-	4		4	\downarrow	+	+	-	-
ŀ	ئ			_	_			_		_			+2		3,860	1, 2,176		56.4		_				4	_	-	4	_	_		_	1	_	+	-
	-93	_										_	1+258		3,740	6 2.061	_	55.2		_		_			_	_ -	_	1	_	4	_	_	_	_	-
	.8												56		3,670	3.946	_	53.0							_	1				_	1	\downarrow		1	4
	- 36												+156		3,630	1.835		50.5								1								_	_
	BS												+255		3,600	1, 737		48.2							_				_						_
1	181												+1 53		3,560	1.636		45.9																	
	33												+4		3,470	1,541		7.77							•										
	+ 92												#21B		3,150	1.448		1,6 D																	
	Exist.												91	1 1	2,990																			T	
	Substation		1,6063	54264	τιηλη	54352	65371	51221	50141	57134	51015		Number of	The same of the sa	Total capacity	Total Total	76007	ordizing rector (%)																	_
	310c		5																																_

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 8)

ίVΑ	. זנג		1x40	1×20	1	2×40	250	27.20	×20	2x40	3x40	3x40	3x40	200	XI0	2xt0	3x40	2x40	3x40	3x40	3x40	3x40	2x20	2x20	1	2x40	3X#0	D XXS	3×40		3x40	hxto	3X f0	2×40	3x40	2×40	3×10
Unit .No.x MVA		H	7	A	_	ći I	61	⊣ái	3	Ċί			3	12	či.	ςί	-	~1			-3	m	-2	74	- 1	1		+	<u> '</u> 		1	+		-	+		_
Juit.	0 2001		_	_	_				4	_	-			-	-	_	·	_	+1×40	+1×40	_	O ₄	2x20	-	+	+	+	- -	+	+		+	-	\dashv	\dashv	-	_
	2000	_		_						_	_	_	_		_	_	\dashv	-	_	-0		4.1×40	i X	_	-	2	+	+	-	+	Q.	\dashv	1	+	+	1	_
	66,				_	_	_		_	_	_	_			_	_	_		_	2xt0		0	_		_	41×40	+	+	+	+	+1×10	\dashv	<u> </u>	-	\dashv	-	-
	.98				_					_	_	4		_			_		_			ner 2xho		_	_	4	1		-	,	_	4	+1×40	-	0	-	_
	97									_								O ₁ X							_	1		+1x2	office		_	4	-	-	+1×40	_	_
	.56																	_	2x40								9xt∓								_		
(case o)	-95												+1×40				+1x40																				_
200	<u>\$</u>					ì															41x40												_				_
F .	*93																+1x40							nev 2x20													
ואאשטאר	76,		_	-			_				+1×40					_																				ĺ	
	16.						_				*	+1×40																2x20	1	1							
	8						_	_	_	_		7									_			-		1			\dagger	1							-
	68.							_	_										_	-	2x40				1	_		1	+	1		П					-
-	33								_		_			00×1-1		-					e_	\vdash				-	1	1	╁	+		H					Ī
2	-6					_	L				_	_		1 1		\vdash	-				-	<u> </u>	-			-	+1×μ0	+	+	-		-	_			_	-
Maintenance Maintenance	L						_					_	<u> </u>	_	_	_	_			_		1				4	<u> </u>	+	$\frac{1}{1}$								L
	5 1.86			_		_	_			-	_		L	0	-	-		_		-	-	\vdash	-	-		_	_	\dashv	+	_							-
2	- 8s	_	_		_	_	L	00	_	<u></u>		_		+1x20	_	-	<u> </u>	_	_	_	_	-	-	_		_		\dashv	-	\dashv			_				L
	7B. —					<u> </u>		25X1 11X2 12X2 12X2 12X2 12X2 12X2 12X2	-			_	_	1	_	01×1+	_			_		<u> </u>				_	_	_	4	4		L			_		-
	F.					_	_								L	1157	10 to	_			_	<u> </u>							_	_	_						L
	- 28	·															L	_			L												L	_			L
	₩. a		1×40	1×20		Sx40	2x20	3x20	2x20	2×40	04X5	2xto	2×t0	2x20	2x10											2×40	Ot×t			2×40	2×40	рт×п	2×40	2×40	2×40	2×40	
	Substation		North BKCK	Klongkred		Bangyekhan	Klong Sanpasant	Pechkasem	North BKK	Prapradaen	Rasburana	Thonburi	Taksin	Bangkok Not	Bangkra, lao	Bangbon	Pran Nok	Suksavad	Samray	28272	32231	րշան	16264	16232		Rengsit	Klong Ransit	43564		Lumpini	Makasan	Sapandam	Pathuman	Silom	Watlieb	Yothee	
	all oc		P		 	8	╁		T				T		1	\dagger	1	Γ		-	T	T	T			g				107							r

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 8)

2x40 2x40 2x40 3x40 3x40 3x40 2x40 Ë 2x40 2x40 2x40 2x40 2x40 2x40 2x40 3x40 3xh0 2xt0 2xt0 3xt0 0,31 2x40 ner 2xto 2000 2001 41x4d SX10 2x40 2x40 - 66 41×40 2xt0 1x40 1x20 1x20 1x40 86 +1x40 02.44 7.450 .97 +1×40 96 1x40 +1x40 +1×40 04X5 "Sxto +1×40 95 07×T+ +3×40 . 10. 0ħxI+ .93 +1x40 +1×40 192 +1x40 ±358 2x40 <u>1</u> ŝ 69 - 33 181 2x40 184 185 186 2x40 +1x40 new 1x40 +1x40 Dyxi her of xi .33 2x20
1x20
2x40
2x40
2x40
2x40
1x40 +1x60
1x20
2x20
2x20 - 32 Exist. 1×40 2x40 2x40 2x40 2x40 2×40 Substation Sansab Satupradit South BKK Paholyotin Klongtoey Visutkasat Klong Jan Mahamek Prachacuen Prakanong Samsen Nontaburi Plyvood Sukhumvít Tangkung Samrong Bangpood Sipraya Chidlom Lardprao Setairi Mochit Вапдпа 33291 31304 40002 32243 41233 41233 41183 41183 13491 70

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case B)

Appendix

111	2×40	2×40	2x10	2x10	2 x 40	1x40	2x40	3x20	3x20	3×40	3x20	37.20	2x20	2x20	3x20	3x20	2x20		19				T						
2001							οηχζ _{ιι}								_				 78	7,320	1.767.1	0.679		-				\dagger	
2000 20								+1×20		-	+1x20		-	2x20			2x20		81	6,960	1,126,44,364214,65584,367.7	0.6630.669							
66.													_	_	+1×20				76	6,220 6,580 6,960	4,3642	0.663							
.98																			73	6,220	1,126 4	0,663							
16.			+Ixh0								2X20		75×20						70	5.TB0	3,8659	0,669							
95.															2x20				67	5,420	3,624.9	0 669							
195							_					+1x20				+1x20			65	5,140	3,399,3	0.661							
191						Ü										2x20			63	4,760	3,185 9	0.669							
183								2x20											 62	7,600	2,9838	0.649							
.92										+1×40									18	4,370	2,796.¢	0.640							
16,												P5x20							99	3,990 4,250	1,664.31,778 01,894 72,026,52,159,32,302 02,4564 2,621,32,796. (2,9838)3,185 93,3993	0.616,0.617							
95.																			2		15,4564					_			_
, B9																			5	3,990	2,302.0	0.577							
. 33										ոеգ 2xկ0				_					 1%	3,910	2,159.3	0.552							
181									+1.x20	•									55	3,810	2,026.	0.532							
* 86																			75	3,670	7, 1994, 7	0.516							
1.85																		L	 죠	3,670	1,778	0.484	_						
₹8.									2x20					_					 12	3,650	1,664	0.456							
£.			1																22	3,470	1,560.1	0,450							
- 82																			82	3,150	1,4635	0,465							
Exist.	2x40	2×40	1x40	2x40	2×40	1×40						_							91	2,990		Į.			_			_	
Substation	Paknam	Bongpu	Bangplee	Onnul	Ramintra	Ledplakao	Bangping	Minburi	Bangbor	16001	46063	54264	54352	51221	50141	57134	67042		Number of substation	Total capacity (MVA)	Total load	Utilizing factor							
310c	50																												

DISTRIBUTION SUBSTATION EXPANSION PROGRAM (Case 9)

× MA	TTL	i	1x40	1720		2710	2x20	2x20	2x20	2xto	3740	3x10	3×40	23.50	2x10	2×40	SXEO	2x40	3x40	2x20		2×40	3x40	2x20		2×40	2×10	9 ×	2X F0	2x40	2×40	2x40	3x10	2×40	2x40	2×40	3,4,40
:	2002								1			1	1	1		-		-										-					+1×10				1
Ē	2000					_											_	2X40					+1x40		_												
Ì	66.					_							+1×40			-	-										Ì			_							
	96.							_		i																	-		į								+1x40
	16.		_			-													1x40	2x20												Ī			· 読		7
	196				7												+1×40			_												T					
-	.95			\dashv	-						+1×60			-	-		3				-	-				1	7	_		-	\vdash	\dagger	-	_	+1×40		_
	16.											+1×40		-		_	-	_			-			2x20		-	1					-	-	-	*		-
-	<u>23</u>				-	_												_		_				- a				_									
Ī	8													•																							
ſ	ഒ																		new 2x40																		
	8														_																						
	-83 -																																				
	.38													+1x20 -1x20									+1×40														_
	-87										_																										
Ī	38																															T			Γ		
	ž8.													+1x20																							
	18							02X1-								+1×40																					
	.33															nev 1 v ko	Ot X																				
	. B2					_	-	-			-			-	_	-	-	-		-					Γ						1	1		Γ	T		
	Exist.		04x1	1x20		2x40	2x20	3×20	2x20	2x10	07.X	2x40	2×40	2×20	SX10							2x40	1×40			2x40	2x40	1,x40	2x40		1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 3	2740	2×40	1x10	2x40	2x40
	Substation		North BKK	Klongkred		Bangyekhan	Klong Sanpasam	Pechkasem	North BKK	Prapradaen	Rasburana	Thonburt	Taksin	Bangkok Not	Bangkrajao	Bangbon	Pran Bok	Samray	32231	16232		Benesit	Klong Runsit	43564		Lumpini	Makasan	Sangadam	Pathumnan		Silon	WALLIED	Benghan	Bengne	Bangsue	Donmuang	Klong Jan
	Bloc No.		07			20																۶				ç											

DISTRIBUTION SUBSTATION EXPANSION PROGRAM

(Gase)

F				~~		$\overline{}$		_	_		_	_		_	_		_			_			_	7	┉;	~Ţ				\neg	\neg	\neg	7		
TEL	3x40	3x40	3x40	2×40	3x40	2x40	2x40	2x40	2×40	3x40	1x20	2×40	2x20	2x40	2×40	2x40	2ж40	2×40	2x40	2x40	3x40	3×t0	2×40			2xh0	2×40	2xto	2x40	2x40	1x40	2x20	3×20	3x40	2×20
1002 01			+1x40								_								ner 2x40			41×40						+1×40	•						2x20
2000				+1×40						+1×40																									
66,			+1x40 -1x20																	nexto 2xto															
198							Ī	-													+1x40				-							-			
26.				+1×58																															
95,		+1×40			+1×40																											2x20			
56.	+1×40	-7																										-						+1x40	
76,			*1x40					-					_																			_			_
193																					2x40									-					_
- 55																	_		-		-													7	
191		_														1																		\dashv	
06,				_							_								-		_													7	_
- 68+				_																		nev 2xho												7 7 7 7 6 7 6	
.38																						~					_						+1x20		
187								-											_									_						7	
98,							-																											-	_
185			_			_							_						_														5x20	1	
18.		_																					2x40						_	-			-		
133						_							_		04×1	장	1×40	2x40					5									— 			_
132		_							_	1xto				+1×40	FXto +	2x40	1×40 +	u I											-	-					_
Exist.	2x40	2x40	2x20	1x20	2×40	2×40	2×40	2×40	2x40	טואנ+ טואו	1x20	2x40	2x20	1×40	ď		ď									2xh0	2×40	υγ×τ	2x40	2x40	1×10			1	
Substation	Mahamek	Mochit	Nontaburi		Prachacuen		_		Sansab	Satupradit			-		Sipraya	Chidlom	Paholyatin	Klongtocy	Visutkasat	14311	41183	39184	13461			Ракпат	Bangpu	9;		tra	0	Minburi	Bangbor	14091	146063
3100	ç																									20									_

Unit . No. x MVA 68 3x20 2x20 Ę 1440.3 1521.0 1596. 41674 111759. \$1845.2 1936 52032 2 2133.8 2240.02251.3 2466.7 2588 92716 7 2853 3 2994. 7 3143. \$ 3299.7 3460 6 3633.9 3,350 3,470 3,610 3,670 3,670 3,670 3,750 3,910 3,910 3,990 3,990 4,070 4,220 4,370 4,530 4,660 4,780 4,940 5,180 5,460 0.668 0.666 89 2000 | 2007 2x20 99 0.613 0.658 0.668 8 +1x20 ő 2x20 86* 63 16 29 0.442 0.456 0.479 0.503 0.516 0.520 0.546 0.561 0.589 0.606 0.615 0.622 0.630 96 61 60 3 (Case 8) 2x20 <u>.</u> 9 193 跃 DISTRIBUTION SUBSTATION EXPANSION PROGRAM .92 5 75 5 8 26 -89 95 38 ζ. -8-77 98 굯 . 9. 캢 78 53 0.46g 0.439 .33 없 - 82 5 Exist 2,990 94 Utilizing factor Total capecity Number of substation Substation Total load (MYA) 57134 54264 8