Ⅳ 付 録

Appendix 1 List of Big Customers

As of Sep. 1979

PL. Area	Name of Customer	Annual Energy Consumption (MWh)	Maximum Demand (MW)	Category ¹
Q00	Lucky Tex	99,084	13.5	L.B.
n	TH. Durable Textile	81,576	10.4	L.B.
#	Aji-No-Moto	68,544	10.1	L.B.
n	Asahi Caustic Soda	68,083	8,4	S.R.
n	B.K.K Iron & Steel Works	48,415	19 . 5	S.R.
n	TH. Central Chemical	15,510	2.6	L.B.
TTL	6	381,212		
D10	TH. American Textile	70,488	10.3	I.B.
n	TH. Melon	45,512	6.2	L.B.
n	TH. Textile	34,272	4.9	L.B.
11	TH. Teijin	29,394	5.2	L.B.
11	TH. Teijin 2	24,246	3.6	L.B.
H	Teijin Polyester	23,706	10.1	L.B.
n	Good Year Factory	12,846	3.2	L.B.
B	TH. Bridge Stone	6,150	3.4	L.B.
TTL	8	246,614		
R00	G.S. Steel	103,163	20,1	S.R.
H	B.K.K Steel Industry	72,887	17.4	S.R.
ii .	THIndia Steel	21,440	8.2	S.R.
n	U.S. Summit	18,476	4.7	L.B.
11	Fire Stone Factory	16,211	3.4	L.B.
TTL	5	232,177		
S30	Samsen Water Works	63,132	8.9	L.B.
M20	TH. Synthetic Textile	32,113	4.5	L.B.
P10	TH. Tobacco Monopoly	24,706	8.6	L.B.
M20	TH. Blanket Factory	22,488	3.2	L.B.
T20	Thonburi Water Works	10,608	1.5	L.B.
W20	ESCAP	6,968	2.4	L.B.
D20	Bangkhen Water Works	1,341	2.0	L.B.
TTL	7	161,356		
GTTL	26	1,021,359		

Note: 1) L.B. means large business. S.R. means special rate.

Appendix 2. 需要家持進相器設置による投資回収の比較

MEAの料金制度は、力率が85%を下廻って低くなった場合のペナルティ条項を有しているが、85%を上廻って高い場合のポーナス条項はない。これに対し、例えば日本などでは85%を下廻る1パーセントごとに基本料金の1パーセントを上乗せする代りに、85パーセントを超える1パーセントごとに基本料金の1パーセントを減額する制度となっている。

需要家が自らキャバシターを設置した場合に、その投資額が将来の料金面でどのように回収されるかを、上記の異ったケースについて比較してみた。

比較計算の計算条件として、次のモデルを用いた。

- (1) 契約kWを100kWとする。
- (2) 月間消費電力量 36,000 KWH、かつ15分最大で無効電力75 KVARを記録したとする。 計算の結果は次のとおり。
- 1. 需要家の支払うべき料金
 - (1) 基本料金 95×100kW = 9,500 パーツ
 - (2) 電力量料金 0.81×50 日 = 40.5 "

 $0.80 \times 150 \,\mathrm{mm} = 120 \,$ "

 0.79×200 = 158 $^{\prime\prime}$

 $0.78 \times 35,600 = 37,168$

(3) 力率料金 7×(75-63)= 84 "

3 7,6 7 0.5 "

2. 50 KVA キャパシターを設置する(無効電力 25 KVAR)として、設備費 20,000 パーツと 仮定し、料金面で回収できる月数を求める。

Case A (現状の場合)

毎月の回収額

8 4 バーツ

全回収に要する月数 238ヶ月

Case B (変更した場合)

毎月の力率料金減額 7×(25-63)=266パーツ

毎月の回収額 84+266=350パーツ

全回収に要する月数 57ヶ月

Appendix 3. Coordination of capacity of substation facilities -1/2

					Rated capacity			Required	capacity	Ratio of	rated capac	ity to requi	red capacity
Locatio	on.	Transformer	Circuit	breaker	Current transformer	Disconnec switch	ting	Maximum current (A)	Inter- rupting capacity of cir- cuit breaker (MVA)	Rated /	Rated capacity Required breaking capacity	/ max.	Disconnect- ing switch Rated current Required max. current
Bangna SS.	Trans. No.1 Line No.1 Line No.2 Bus tie	1-3¢ 30/40 MVA	1600A	3950MVA	3-200×400 : 5// 5A 3-750×1500 : 5// 5A " "	1250A		344 688 " 344	1789 " "	4.6 2.3 "	2.2 "	1.2 2.2 "	
Bangyeekhan SS	Trans. No.1 Trans. No.2 Line No.1 " No.2 Bus tie	1-3¢ 30/40 MVA	1260A " "	350CMVA " " "	3-400/200:5/5A " " 3-1200/800/600/400/200:5/5A " "	1200A 6	lKA	344 " 688 " 344	2005 " "	3.6 " 1.8 "	1.7	1.2 " 1.7	3-5
Lumpini SS.	Trans. No.1 " No.2 Line No.1 Line No.2 Bus tie Bus tie	1-3¢ 30/40 MVA	1200A "	1800MVA "	3 – 600/400/300/200/100 : 5// 5A " "	10 11 11 11 11 11 11 11 11 11 11 11 11 1	OKA	344 " 688 " " 344	1871 "	3.5 "	0.96 "	1.7	1.7 " 0.9 " 1.7
Mochit SS.	Trans. No.1 " No.2 Line No.1 " No.2 Bus tie	1-3¢ 30/40 MVA	1200A "	2500MVA "	3 - 600/400/300/200/100 : 5/5A "	11 1 11 1	OKA	344 688 "	1733 "	3.5 "	1.4	1.7	1.7 " 0.9 " 1.7
Mahamek SS.	Trans. No.1 " No.2 Line No.1 " No.2 Bus tie	į ·	2000A "	5000MVA "	3 - 2000/1500/1200/800 : 5A 3 - 600/400/300/200/100 : 5A	11 1 11 1	OKA	344 " 688 " 344	1067 "	5.8 "	4.6 "	(5.8 1.7	1.7 " 0.9 "
	Trans. No.1 " No.2 Line No.1 " No.2 Bus tie	1	2000A "	5000MVA "	2000/1500/1200/800 : 5A 600/400/300/200 : 5A)) () ()	OKA " " OKA	344 " 688 " 344	1522 "	5.8 "	3.2 "	^{{5.8} 1.7	1.7 " 0.9 " 1.7

Appendix 3. Coordination of Capacity of Substation Facilities - 2/2

		<u> </u>			Rated capacity			Required	capacity	Ratio of	rated capac	ity to requi	red capacit
Locatio	on	Transformer	Circui	t breaker	Current transformer	Discon switch	necting	Maximum current (A)	Inter- rupting capacity of cir- cuit breaker (MVA)	Rated	Rated capacity Required breaking capacity	Rated current Required max.	Disconnecting switch Rated current Required max. current
Pathumwan SS.	Trans. No.1 " No.2 Line No.1 " No.2 Bus tie	1-3¢ 30/40 MVA	2000A	500CAVA	3-600/400/300/200/100:5//5A "3-2000/1500/1200/800:5//5A	600A " 2000A "	66KA " "	344 688 "	1859 "	5.8 "	2.6	1.7 " 2.9 "	1.7 " 2.9 " 5.8
Samsen SS.	Trans. No.1 " No.2 Line No.1 " No.2 Bus tie	1-3¢ 30/40 MVA	2000A	5000MVA "	{3 - 2000/1500/1200/800 : 5A 3 - 600/400/300/200/100 : 5A	600A # #	20KA 11 11	344 688 "	2278 "	5.8 "	2.2	{5.8 1.7	1.7 0.9 "
North sapardam SS.	Trans. No.1 " No.2 Line No.1 Line No.2 Bus tie	"1-3φ 30/40 MVA	2000A " " 1200A	500 CMVA " " 180 CMVA	3-600/400/300/200/100:5//5A "3-2000/1500/1200/300:5//5A	400/800 " 2000A "	17	3 ¹ 44 1376 1032	1813	5.8 " 1.5 "	/.0 "	1.7 " 1.5	2.3 " 1.5 "
South sapandam SS.	Trans. No.3 " No.4 Line No.3 " No.4 Bus tie	1-3¢ 30/40 MVA	2000A 11 1200A 2000A	5000KVA " 1800MVA 5000MVA	3 - 600/400/300/200/100 : 5// 5A " 3 - 2000/1500/1200/800 : 5// 5A " "	400/800. " 2000A "	17	344 " 1376 " 1032	1813	5.8 " 0.8 1.9	1.0	1.7 " 1.5	2.3 " 1.4 " 1.9
Silom SS.	Trans. No.1 " No.2 Line No.1 " No.2 Bus tie	30/40 MVA "	1200A "	3500MVA	3 - 200×400 : 5//5A 1			344 7 688 "	1227	3.4	2.8 "	1.1 " 1.7 1.7	
Sansab SS.	Trans. No.1 Line No.1 " No.2 Bus tie	1-3¢ 30/40 MVA	2000A n	3500MVA	3-400/200 : 5// 5A 3-1200/800/600/400/200 : 5// 5A	1600A		34年 n n	1562 "	5.8 "	2.2	1.2 3.5	4.6
Watlieb SS.	Trans. No.1 " No.2 Line No.1 " No.2 Bus tie " "	1-3¢ 30/40 MVA	1200A n 2000A	1800MVA # 5000MVA #	3-600/400/300/200/100 : 5// 5A ` " 3-2000/1500/1200/800 : 5A "	600A 11 11 11	20KA 11 11 11	344 688 7 344	1568	3.5 " 5.8 "	1.1 " 3.2	1.7 " 5.8	1.7 n 0.9 n 1.7

Appendix 4 General Information of Surveyed Substations

No.	Name of Substation	Terminal or Distribution Substation	Туре	Existing Transformer MVA x unit	Space for 3rd bank
1	Bang kapi	T/S	Outdoor	40 × 2	Yes
2	Makasan	D/S	Outdoor	40 x 2	"
3	Chidlom	T/S	Indoor	50 x 2	No
4	Yohti	D/S	Indoor	40 x 1	"
5	Taksin	D/S	Indoor	40 × 1	"
6	Sathupradit	D/S	Indoor	40 x 1	Yes
7	Bangplee	T/S	Outdoor	24 KV 40 × 1	п
8	Paknam	D/S	Outdoor	115/24 KV 40 × 2	n
9	Watlieb	D/S	Outdoor	40 x 2	"
10	Sapandam	D/S	Outdoor	40 x 4	No
11	Lumpini	D/S	Outdoor	40 x 2	Yes
12	Pathumwan	D/S	Outdoor	40 x 2	"
13	Mahamek	D/S	Outdoor	40 x 2	н
14	Silom	D/S	Indoor	40 x 2	No
15	Mochit	D/S	Outdoor	40 x 2	Yes
16	Sansab	D/S	Indoor	40 x 1	"
17	Bangna	D/S	Indoor	40 × 1	No
18	Prakanong	D/S	Outdoor	40 x 2	11
19	Bangyeekhan	D/S	Indoor	40 x 2	"
20	Samsen	D/S	Outdoor	40 x 2	Yes
21	Pracha chuen	D/S	Outdoor	40 x 2	11
22	North bangkok	T/S	Outdoor	24 KV 40 × 1 12 KV 20 × 2	11
23	Lard plao	T/S	Outdoor	_	"
24	Klong jan	D/S	Outdoor	20 × 2	"
25	Tong kung	D/S	Outdoor	40 × 2	n

No.	Name of Substation	Terminal or Distribution Substation	Type	Existing Transformer MVA x unit	Space for 3rd Bank
26	South bangkok	T/S	Outdoor	20 x 1	Yes
27	Bang pu	D/S	Outdoor	115/24 40 × 1	11
28	South bang plee	Futi	ure plan		
29	Samrong	D/S	Outdoor	40 x 2	No
30	Bangkok noi	T/S	Outdoor	20 x 2	Yes
31	Pechkasem	D/S	Outdoor	20 x 2	п
32	Thonburi	D/S	Outdoor.	40 x 2	n
33	Onnuj	D/S	Outdoor	115/24 40 x 2	No
34	Ramintra	D/S	Outdoor	115/24 40 x 2	"
35	Nonburi	D/S	Outdoor	20 x 2	Yes
36	Bang pood	D/S	Outdoor	20 x 2	n
37	Klong rangsit	T/S	Outdoor	_	II
38	Rangsit	D/S	Outdoor	40 x 2	H
39	Dong muan	D/S	Outdoor	40 x 2	No
40	Bangkurachao	D/S	Outdoor	10 x 1	Yes
41	Prapradaen	D/S	Outdoor	40 × 2	n
42	Klong sanpasamit	D/S	Outdoor	20 x 2	11
43	Rasuluran	D/S	Outdoor	40 x 2	Yes
44	Klang kred	Temporary	Outdoor	20 × 1	No
45	Lard plakao	D/S	Outdoor	Under construction	11
46	Prasanmit	D/S	Outdoor	Under construction	н
47	Sipraya	D/S	Indoor	Land purchase only	11
48	Sailom	D/S	Indoor	Future plan	"

(1) 計 算

a. コンクリート柱仕様

	1 8.5 π	2 0.0 m	2 2.0 m
頂部寸法	2 0 × 2 0cm	25×25cm	2 5 × 2 5 cm
下部寸法	3 6.2×3 6.2 <i>c</i> m	4 4 × 4 4 cm	46×46cm
曲げ強度	1 0.0 ^{t-m}	1 4.0 ^{t-m}	$1 ext{ 4.0}^{t-m}$

b. 風圧荷重

1) 電線風圧

$$PC = 0.0 \ 0 \ 2 \ 5 \ V^{2}$$

$$= 0.0 \ 0 \ 2 \ 5 \times 6 \ 0^{2}$$

$$= 9 \ LB/FT^{2}$$

$$= 9 \times \frac{0.4 \ 5 \ 3 \ 6}{(0.0 \ 2 \ 5 \ 4 \times 1 \ 2)^{2}} = 4 \ 3.9 \ 4 \ 3 = 4 \ 4 \ KG/m^{2}$$

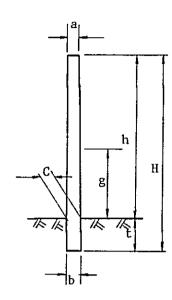
2) コンクリート柱風圧

$$PF = 0.0 \ 0 \ 4 \ V^{2}$$

$$= 0.0 \ 0 \ 4 \times 6 \ 0^{2}$$

$$= 1 \ 4.4 \ LB/FT^{2}$$

$$= 1 \ 4.4 \ \times \frac{0.4 \ 5 \ 3 \ 6}{(0.0 \ 2 \ 5 \ 4 \times 1 \ 2)^{2}} = 7 \ 0.3 \ 0 \ 8 = 7 \ 0 \ kg/m^{2}$$


3) 69 kV がいしおよび金具風圧

∵日本で風速40mの電線風圧100kgであり、MEAでは26.8m/sで44kgのためこの比によった。

c. 垂直荷重

コンクリート柱の圧縮強度は相当高く、直線か所における電線、がいし等の垂直荷重の検 討は省略する。

(2) コンクリート柱の風圧計算と風圧による曲げモーメント

重心位置
$$g = h - \frac{h}{3} \left(\frac{2c+a}{c+a} \right)$$

コンクリート柱風圧計算表()内数値は根入れ 2.0 m の値を示す

	項	Ē		記号	单位	H 18.5 m	1I= 2 0.0 m	II= 2 2.0 m
٠,	頂	部	ф	a	M	0.2 0	0.2 5	0.2 5
各	下	部	ιţ	b	"	0.3 6 2	0.4 4	0.4 6
部	根	入	深	t	"	(2.0 0) 3.0 0	(2.0 0) 3.0 0	(2.0 0) 3.0 0
の寸	地	際	t j j	С	"	(0.3 4 4 5) 0.3 3 5 7	(0.4 2 1) 0.4 1 1 5	(0.4 4 0 9) 0.4 3 1 4
法	地	Ŀ	髙	h	"	(16.5) 15.5	(1 8.0 0) 1 7.0 0	(20.00) 19.00
	重	心	高	g	"	(7.5 2 0 2) 7.0 9 5 6	(8.2 3 5 5) 7.8 0 8 3	(9.0 7 9) 8.6 5 7
受	且	面	積	A	M²	(4.4921) 4.1517	(6.039) 5.6228	(6.9 0 9 0. 6.4 7 3 3
3	ノクリ	ート柱丿	虱 圧	PſA	KG	(314.5) 290.6	(4 2 2.7) 3 9 3.6	(483.6) 453.1
		ート柱 <i>)</i> 祭モーメ		MP	kg—M	(2364.7) 2062.1	(3481.2) 3073.3	(4390.9) 3922.8

(3) コンクリート柱の許容曲げ強度

$$Mf = M - Mp$$
 $M = \neg \nu \not = 0$ リート柱の曲げ強度 $M18.5 = 10,0000 - {2,364.7 \choose 2,062.1} - {7,635.3 \choose 7,937.9} kg - m$ $M20 = 14,0000 - {3,481.2 \choose 3,073.3} = {10,518.8 \choose 10,926.7}$ $M22 = 14,0000 - {4,390.9 \choose 3,922.8} = {9,609.1 \choose 10,077.2}$ $"$

(4) 既設架渉線の曲げモーメント

a. 支持物形状

FIG, 5-1にコンクリート柱の各型別サイズの詳細を示す。

b. 架渉線の風圧

架渉線の風圧計算式はつぎのとおりである。

Hc = PcDS + PI

ことに D ; 架渉線の外径

S ; 径間……...送電線 8 0 m 高圧線以下 4 0 m

Pi ; がいし風圧 1連懸垂=13kg/1支持点

(69kV線) 1連耐張=29 "

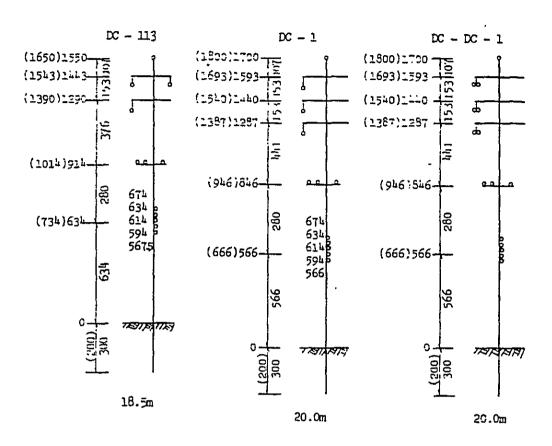
Pc; 電線風圧…… 4 4kg/m²

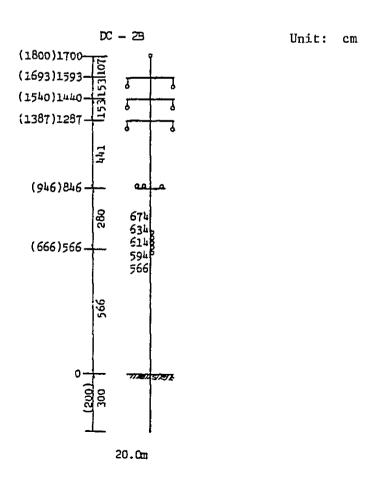
上式を用いて架渉線の種類別に計算した風圧荷重は次表のとおりとなった。

(懸垂か所計算用)

No.	架涉線種類	外 径 (元元)	径 間 (m)	電線風圧 PcDS(kg)	がいし風圧 Pi(kg)	架渉線風圧 (kg)
1	5/16" GW	7.9375	8 0	2 7.9 4	0	2 7.9 4
2	795 AAL	26.0654	8 0	9 1.7 5	1 3	1 0 4.7 5
3	2×795 AAL	"	8 0	1 6 5.1 5	1 3	1 7 8.1 5
4	795×2cAAL	"	8 0	1 8 3.5 0	2 6	2 0 9.5 0
5	3×336.4高 圧	1 6.9 1 6 4	4 0	8 9.3 2	0	8 9.3 2
6	SL WIRE	9.8 0 4 4	4 0	1 7.2 6	0	1 7.2 6
7	低压中性線	1 6.4 3 3 8	4 0	2 8.9 2	0	2 8.9 2
8	3×336.4 低圧線	2 0.8 7 8 8	4 0	1 1 0.2 4	0	1 1 0.2 4
9	通信ケーブル	4 8.2 6 0	4 0	8 4.9 4	0	8 4.9 4

注1. 2×795AALは795複導体を示す。


2. この場合の電線風圧はJEC-127に従がい単導体風圧値の90%とした。


3. 795×2cAAL は795AAL 2回線を示す。

(5) 架渉線による地際の曲げモーメント計算

TABLE No.1~No.3 に、架渉線の風圧による曲げモーメントの計算結果を示す。

Fig. 5-1 Size and type of pole -

No. 1 Setting depth 3.0 m

			1.001	ivo: i setting deptil 5.0 ili	111 2:0 111				
Conductor		DC-1E	1B (18.5 m)	DC-	DC-1 (20 m)	DC-D	DC-DC-1 (20 m)	DC-2	DC-2B (20 m)
	Wind pressure (kg)	h (m)	Mc (kg-m)	h (m)	Mc (kg-m)	h (m)	Mc (kg-m)	h (m)	Mc (kg-m)
5/16" GW.	27.94	15.50	433.07	17.00	474.98	17.00	474.98	17.00	474.98
795 AAL	104.75	12.90	1351.275	15.93 14.40 12.87	1668.668 1508.4 1348.133				
2 × 795 AAL	178.15					15.93 14.40 12.87	2837.93 2565.36 2292.79		
795 × 2C AAL	209.50	14.43	3023,085					15.93 14.40 12.87	3337.335 3016.80 2696.265
3 × 336.4 H. D/L	89.32	9.14	816.385	8.46	755.647	8.46	755.647	8.46	755.647
SL wire	17.26	6.74	116.332	6.74	116.332	6.74	116.332	6.74	116.332
L. D/L neutral	28.92	6.54	189.137	6.54	189.137	6.54	189.137	6.54	189.137
3 × 336.4 L. D/L	110.24	6.34	698.922	6.34	698.922	6.34	698.922	6.34	698.922
Communication cable	84.94	5.675	482.035	5.66	480.760	99.5	480.760	5.66	480.760
Total			7110,241		7240.979		10411.859		11766.178
Limit (Paragraph (3))		(18.5 m)	7937.9	(20 m)	10926.7	(20 m)	10926.7	(20 m)	10926.7
Tolerance			1.11		1.50		1.04		0.92
Check			О.К		O.K		O.K		ON

Note;

Tolerance = Limit of bending moment by conductor

Total bending moment by conductor

No. 2 Setting depth 3.0 m

Conductor		DC-11	DC-1B (20 m)	DC-1	DC-1 (22 m)	DC-DC	DC-DC-1 (22 m)	DC-2	DC-2B (22 m)
	Wind pressure (kg)	h (m)	Mc (kg-m)	h (m)	Mc (kg-m)	h (m)	Mc (kg-m)	h (m)	Mc (kg-m)
5/16" CW.	27.94	17.0	474.98	19	530.86	19	530.86	19	530.86
795 AAL	104.75	14.4	1508.4	17.93 16.40 14.87	1878.168 1717.9 1557.633				
2 × 795 AAL	178.15					17.93 16.40 14.87	3194.230 2921.660 2649.091		
795 × 2C AAL	209.50	15.43	3232.585					17.93 16.40 14.87	3756.335 3435.800 3115.265
3 × 336.4 H. D/L	89.32	10.64	950.365	10.46	934.287	10.46	934.287	10.46	934.287
SL wire	17.26	8.24	142.222	8.74	150.852	8.74	150.852	8.74	150.852
L. D/L neutral	28.92	8.04	232.517	8.54	246.977	8.54	246.977	8.54	246.977
3 × 336.4 L. D/L	110.24	7.84	864.282	8.34	919.402	8.34	919.402	8.34	919.402
Communication cable	84.94	7.175	609.445	7.66	650.640	7.66	650.640	7.66	650.640
Total			8014.796		8586.719		12197.999		13740.418
Limit (Paragraph 3)		(20 m)	10926.7	(22 m)	1.0077.2	(22 m)	10077.2	(22 m)	10077.2
Tolerance			1.36		1.17		0.82		0.73
Check			О.К		O.K		ON		NO

Note;

Tolerance = Limit of bending moment by conductor Total bending moment by conductor

No. 3 Setting depth 2.0 m

Conductor		DC-1B	DC-1B (18.5 m)	DC-	DC-1 (20 m)	DC-D(DC-DC-1 (20 m)	DC-2	DC-2B (20 m)
	Wind pressure (kg)	h (m)	Mc (kg-m)	h (m)	Mc (kg-m)	h (m)	Mc (kg-m)	h (m)	Mc (kg-m)
5/16" GW.	27.94	16.5	461.01	18.0	502.92	18.0	502.92	18.0	502,92
795 AAL	104.75	13.9	1456.025	16.93 15.40 13.87	1773.418 1613.15 1452.883	li.			
2 × 795 AAL	178.15					16.93 15.40 13.87	3016.08 2743.51 2470.94		
795 × 2C AAL	209.50	15.43	3232.585					16.93 15.40 13.87	3546.835 3226.300 2905.765
3 × 336.4 H. D/L	89.32	10.14	905.705	9.46	844.967	9.46	844.967	9.46	844.967
SL wire	17.26	7.74	133.592	7.74	133.592	7.74	133.592	7.74	133,592
L. D/L neutral	28.92	7.54	218.057	7,54	218.057	7.54	218.057	7.54	218.057
3 × 336.4 L. D/L	110.24	7.34	809.162	7.34	809.162	7.34	809.162	7.34	809.162
Communication cable	84.94	6.675	566.975	99.9	565.700	99.9	565.700	99.9	565.700
Total			7783.111		7913.849		11304.928		12753,298
Limit (Paragraph 3)			7635.30		10518.80		10518.80		10518.80
Tolerance			0.98		1.32		0.93		0.82
Check			ON		O.K		ON		NO

Note;

Tolerance = Limit of bending moment by conductor
Total bending moment by conductor

Appendix 6. がいしの風圧

(1) MEA基準の66kVがいし連の風圧荷重は6LB/FT² とのことであり、これをkg/m²単位 に換算すると、

$$P = 6 \times \frac{0.4536}{(0.0254 \times 12)^2} = 29.3 \text{kg/m}^2 \text{ theorem.}$$

との風圧値により1支持点の風圧荷重を計算すれば、

Pi = P A ·············· A = がいし1連の投影面積 (m)

1連懸垂がいし連 29.3×0.214 = 6.3kg/1支持点

1 連耐張 " 2 9.3 × 0.4 6 4 = 1 3.6 kg/1 支持点

となり非常に小さな値を示す。

しかしながらこの値は、コンクリート柱の裕度に大きな影響がないため、裕度計算は省略する。

(2) 風圧荷重のMEA基準の比較

MEAの基準風速は60マイル/Hで砂速に換算すると、26.8m/sとなり日本での40m/sに対し44.89%の風圧値となる。MEA方式は日本に比べがいし風圧は小さく、コンクリート柱の風圧は大きくなっている。次表参照

参考に各種風圧値を対比すると次表のとおりである。

		日 本		MEA
風	速	4 0 π/s	60マイル	$\nu / h = 26.8 \text{m/s}$
基準	の根拠	電気設備	日本式に考え 風速の2乗に	MEA 基準の
		技術基準	比例した値	算定式または値
コンクリー	- ト柱(角型)	120 kg/m²	54 kg/m²	$14.4 \text{LB/FT}^2 = 7 0 \text{kg/m}^2$
鉄 柱(腹材ダブル)	220 "	99 "	
"(腹	材シングル)	240 "	108 "	
鉄 塔	(鋼 管)	170 "	76 "	
"	(アングル)	290 "	130 "	
電 線	(単)	100 "	45 "	$9 LB/FT^2 = 4 4kg/m^2$
"	(多導体)	90 "	41 "	
がいし		140 "	63 "	$6 LB/FT^2 = 2.9.3 kg/m^2$
" (5 6 kV/連懸垂	30kg/支持点	13kg/支持点	6.3 kg/支持点
" (5 6 kV/連耐張	65kg/支持点	29kg/支持点	1 3.6 kg/支持点

Appendix 7. 配電用コンクリート柱の強度

(1) 設計条件

a. コンクリート柱仕様

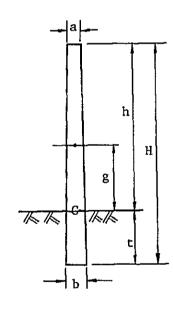
 1 2.0 m
 1 4.0 m

 ○ 頂部寸法
 1 6.1 8×1 8.5 5
 1 7.5 0×2 0.0 0

 ○ 下部寸法
 2 5.2 7×2 8.5 5
 2 8.0 0×3 1.5 6

 ○ 曲げ強度
 3.5 1-m
 4.1 5 1-m

b. 風圧荷重


電線風圧 4.4 kg/m²・コンクリート柱風圧 7.0 kg/m²

c. 垂直荷重

コンクリート柱の圧縮強度は相当高いので省略する。

(2) コンクリート柱の許容曲げモーメント

a. コンクリート柱の風圧計算

地際幅
$$C = \frac{(b-a)h}{H} + a$$

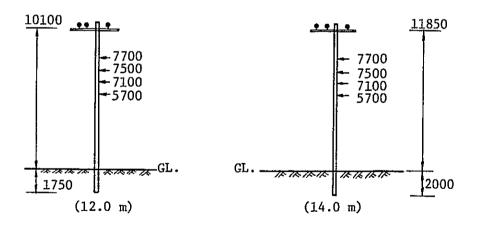
受風面積
$$A = \frac{(a+c)h}{2}$$

重心位置
$$g = h - \frac{h}{3}$$

コンクリート柱風圧計算表

	項	-	B	記号	単位	H=1~2.0~m	H=14.0 m
	頂	部	幅	a	m	0.1 6 1 8	0.1 7 5 0
各	下	部	幅	b	"	0.2 5 2 7	0.2800
部の	根	入	深	t	"	2.0	2.0
すり	地	際	幅	С	"	0.2 3 7 6	0.2650.
法	地	上	高	h	11	1 0.0	1 2.0
	重	心	高	g	"	4.6837	5.5 9 0 9
受	風	面	積	A	m²	1.997	2.6 4 0
コン	クリー	- ト柱	風圧	PF•A	kg	1 3 9.7 9	1 8 4.8
1	´クリー る地際			Мр	kg-m	6 5 4.7 3	1 0 3 3.2 0

b. コンクリート柱の許容曲げ強度


$$M_f = M - Mp$$
 M ; コンクリート柱の曲げ強度

$$M_{12} = 3500-654.73=2845.27 (kg-m)$$

$$M_{14} = 4 \ 1 \ 5 \ 0 - 1 \ 0 \ 3 \ 3.2 \ 0 = 3 \ 1 \ 1 \ 6.8 \ 0 \ (kg - m)$$

(3) 既設架渉線の曲げモーメント

a. 支持物形状

b. 架渉線の風圧

i) 架渉線の風圧計算式

 $Hc = Pc \cdot D \cdot S$

D ; 架渉線の外径

S ; 夜間 40 m

Pc; 電圧風圧 4 4 kg/m²

Ⅱ) 架渉線風圧荷重

Na	架渉線種類	外 径 (mm)	径 問 (m)	架渉線風圧 Pc•D•S(kg)
1	3×336.4 高 圧	1 6.9 2	4 0	8 9.3 4
1'	3×795MCM 高 圧	2 6.0 6	4 0	1 3 7.6 0
2	SL WIRE	9.1 9	40 .	1 6.1 7
3	低圧中性線	1 5. 2 4	4 0	2 6.8 2
4	3×336.4 低圧線	1 9.2 8	4 0	101.79
5	通信ケーブル	4 8.2 6	4 0	8 4.9 4

Ⅲ) コンクリート柱地際の曲げモーメント

架渉線による地際の曲げモーメント計画表

, .	架	涉	線	1	2 m 柱	1 4	n 柱
Na	種	類	風 圧(kg)	h (m)	Mc (kg−m)	h (m)	Mc (kg-m)
1	3×336.4	高 圧	8 9.3 4	10.10	9 0 2.3 3	1 1.8 5	1 0 5 8.6 8
1'	3×795	高圧	(137.60)	(10.10)	(1389.76)	(11.85)	(1630.56)
2	SL	Wire	1 6.1 7	7.70	1 2 4.5 1	7.7 0	1 2 4.5 1
3	低 圧 中	性線	2 6.8 2	7.5 0	201.15	7.5 0	201.15
4	3×336.4	低	1 0 1.7 9	7.1 0	7 2 2.7 1	7.1 0	7 2 2.7 1
5	通 信 ケ -	- プル	8 4.9 4	5.70	4 8 4.1 6	5.7 0	4 8 4.1 6
	計				2 4 3 4.8 6 (2 9 2 2.2 9)		2591.21 (3163.09)
コンクリート柱の許容曲げ強度				2806.89		3 1 1 6.8 0	
	判	5	Ē		OK (No)		OK (No)

Appendix 8. 2次ネットワーク配電方式の解体

(1) はじめに

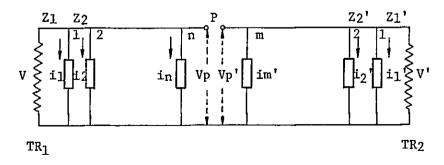
MEAは、8点の区域に亘り低圧架空レギュラーネットワーク供給を行なっているが、需要 増に伴ない同方式の設備も増強する必要にせまられている。ところが、ネッワーク変圧器に付 属するネットワークプロテクターが非常に高価であるため、その入手ができなくなった。そこ でこの際ネッワークを順次解体し、ネットワークプロテクターを使わないですむ樹枝状方式で 電力を供給することとなった。この際どんな問題点があるか、解体の際どりいう方法で行なり べきか等について考察したので、以下に述べる。

(2) 現方式解体時の問題点

2 次ネットワーク方式を解体する際、考えられる問題点はつぎの通りである。

- a. 低圧線の切分けの仕方により配電用変圧器(以下TRという)が過負荷になる場合がある。
- b. 低圧線切分けの仕方により需要家の電圧が下がる所が出る場合がある。
- c. TRおよびフィーダーが永久事故になった場合早期復旧が遅れる。
- d、解体後のTR負荷管理を確実に行なわないと、上記a, bの問題が発生する。

(3) 2次ネットワーク解体の方法


前項a、bの問題点に対する方法としては、

- 切離したTRにいくらの負荷を分担させるか
- 低圧線のどこで切り離すか
- の2点にしぼられてくる。

a. 理論的考察

複数のTRからネットワークに電力が供給され、それぞれ需要家に電流が流れている或る 時点では諸種の条件がバランスしてどこかに電流 0 の所があり、その点がTRの負荷をバラ ンスさせTRからの電圧降下を等しくしている点である。

第8-1図

第8-1 図において、低圧線を中間点 P において切離した場合、切離し点の電圧 Vpは

$$V_p = V - D_p$$

$$= V - \left(Z_1 \cdot \sum_{i=1}^{n} i_i p + Z_2 \cdot \sum_{i=1}^{n} i_i p + \cdots Z_n \cdot i_n \right) \cdots \cdots \oplus$$

{ Dp: T RからP点までの電圧降下 Zn:線路インピーダンス ip:各負荷電流

同様にTR2側の電圧Vp'は

$$Vp' = V' - \left(Z_1' \cdot \sum_{j=1}^{m} p_j' + Z_2' \cdot \sum_{j=1}^{m} ip_j + \cdots \cdot Z_m' \cdot i_m' \right) \cdots \cdots \cdots \odot$$

電流 0 の点とは、上記 P 点において左右の電位差が生じない状態であるから

つぎに

- i) TR1, TR2 は同じ変電所の同じパンクから供給されている。
- ji) 変電所から TR1, TR2 に至る12kVインピーダンスが等しい。 (地下ケーブルの太さが同じで、距離も同じ)
- Ⅲ) 低圧線の各区間線路インピーダンスも同じである。 (電線サイズ,装柱,径間も同じ)

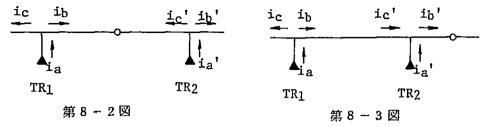
とおくと、

$$V = V'$$
 $Z n = Z'm = Z$

また
$$\sum_{ip}^{n} ip + \sum_{j}^{n} ip + \dots + in = \sum_{j}^{n} in となる$$

$$V_p = V_p'$$

$$V - Z \left(\sum_{i=1}^{n} n \cdot in \right) = V - Z \left(\sum_{i=1}^{m} m \cdot im \right)$$


$$\sum_{\Sigma}^{n} \mathbf{n} \cdot \mathbf{n} = \sum_{\Sigma}^{m} \mathbf{n} \cdot \mathbf{n} = (N \cdot I) \cdots$$

この4式が実用的な電流0点の条件となる。

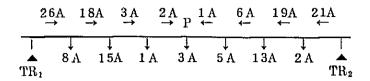
b. 低圧線切離しの方法

aの考え方に従って具体的に切離しを行なう方法として次が考えられる。

1) 負荷の片寄りのチェック

ネットワーク区域の負荷分布に対応してTRが設置されていると第8-2図のように電流 O点(以下P点という)は両TRの中間にある。ところが負荷に対し、TRの位置が片寄っていた場合には第8-3図のように両TRの外側にP点が存在する。

そのためTRから出る電流が他の電流の和より大きいことを確認する。


ii) P点の探知法

a) 引込電流測定法

各柱で引込線に流れている電流を測定し④式でP点をみつける。

P点はe柱であり、少しでも電圧差の少ない Case 2 を採用し、e柱のTR₂側で低圧線を切り離す。

b) 低圧線電流測定法

上図において柱上で低圧線の電流を測り、電流値の少ない方へ移動しP点を探す。

c) 電圧测定法

TR柱から順次各柱の線間電圧を測定して行き、最も低いか所(P点)を探す。

d) KWH法

KWHと電流は相関があるので、各柱にかかっている需要家のKWHを集計し、前記a)に準じて判定する。

e) CUT & TRY法

附近の需要の分布状況を見て、需要分布がほぼ左右等しいと思われる所で、低圧線を 仮に切離し両方の電圧を測定し、極端な差がなければOKとし、差があれば他へ移って 切離してみる。

この場合、ネットワークを組んでいるので、需要家の停電を伴なりことはない。ただ し流れている電流が大きい場合は問題がある。

f) その他の方法

今のところ考えられないが、簡単に電流方向を判定できる装置が開発されれば、それ を利用する。

c. TRへの負荷分担

ネットワーク区域の各フィーダーの最大負荷(1979年9月)と各フィーダーに接続されているTRの容量の関係を示す利用率は別表の通り40~60%とかなり低い。

従って、各TRとも解体前の最大負荷を分担するようにすれば、負荷分布に対する極端なTR位置の片寄りがない限り、TR不等率を考慮しても個々のTRの利用率は60~70%以下に収まると思われる。

(4) 移行過程での注意

a. ネットワークを解体して行く過程で、解体されないT Rが各フィーダーに平等に残されていることが必要であろう。

なぜなら、1フィーダーが停電した場合、残っているネットワークTR間の負荷の触通を スムーズに行なわせるためである。

b. 前述の(3)で述べた方法は少し理論的過ぎるとも思われ、地勢上の理由あるいは保守員のわかり易さ等も考慮して必ずしもP点の追求を厳密にしなくてもよい。

(5) 解体後の維持管理

- a. 定期的にTRの電流測定、低圧線あるいは需要家の電圧測定を実施して、過負荷事故や極端な電圧降下を防がねばならない。
- b. 樹枝状方式では事故時の復旧が遅くなることは避けられないのだから、これに対する次の 対策が必要である。
 - i) フィーダー事故時の対策

フィーダー(地中線)事故時、故障区間を早期に切離して他のフィーダーから送電できるようフィーダーの連けい化をはかること。

ii) TR事故時の対策

TR事故時には早急に取替工事ができるよう機動化をはかり、常に準備をしておくこと。

(6) む す ひ

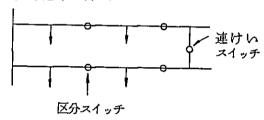
以上ネットワークの解体について現段階で考えられることについて述べた。理論やベーバー プランでは比較的容易に思われるかも知れないが、実際の現場では困難も伴なりであろう。そ れ故に解体は1台、1台慎重な配慮のもとに行なわれるべきであり、また解体のより良い方法 を常に研究し乍ら行なわれるべきである。

Appendix 9. ネットワーク解体時の高圧系統構成

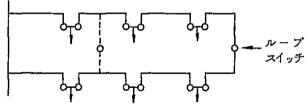
(1) はじめに

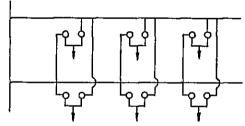
ネットワーク方式の利点は、フィーダーまたは配電用変圧器(以下TRという)が事故になっても即座に他バンクの低圧側から供給され、供給が継続されることにある。解体するとこの利点がなくなるため、

- a. フィーダー(地中線)事故時、故障区間を早期に切離して他のフィーダーから送電できるようフィーダーの連けい化をはかる。
- b. T R事故時には、早急に取替工事ができるよう機動化をはかり、T Rの代替品を常備し準備しておく。
- c. 低圧線の切離し点にスイッチを設け、隣接TRから救援できるようにする。 ことが必要である。

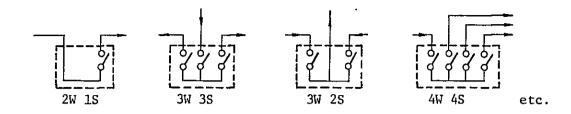

(2) 高圧配電系統の構成

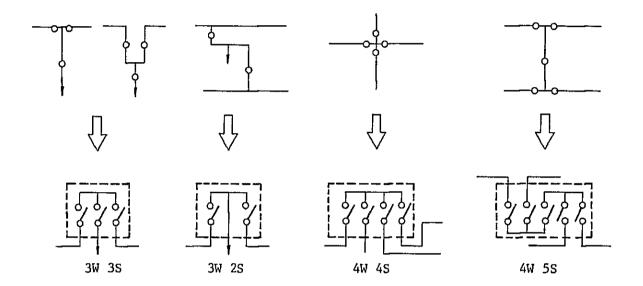
系統構成方式としては、次のa~dの方式が考えられる。


a. 樹枝状方式


b. 区分連けい方式

c. πループ連けい方式


d. 予備線方式


この 4 方式の中で、c, d は操作も単純であり信頼性も高い。M E A の系統ではフィーダーは末端ほど小サイズケーブルを使用しているので、逆送範囲は許容電流を考慮して決定する必要がある。この対策として c.の π 方式で図の点線のように連けいスイッチを追加することを考えるとよい。また d.予備線方式は π ループ方式と比べ許容電流の心配は少ない。

(3) 配電線用多回路スイッチ

最近とくに地中配電系統において多回路スイッチがよく使われるようになった。多回路スイッチの回路構成は次の通りである。

また、多回路スイッチの結線の例を示すと次のとおりである。

(4) 多回路スイッチの設置場所

次の4方法が適用される。

a. 地下設置

マンホール内に設置する方法で、既製品の寸法から検討するとMEAのマンホール内に設置可能である。MEA Underground Distribution Construction Standard のDwg Na 2411 に施設例が示されている。

b. 地上設置

歩道、公園等の空地を活用し、スマートな小型のキュービクルタイプで地上に設置する。 この方式は操作が迅速簡便にできる点では、地下設置より優れている。

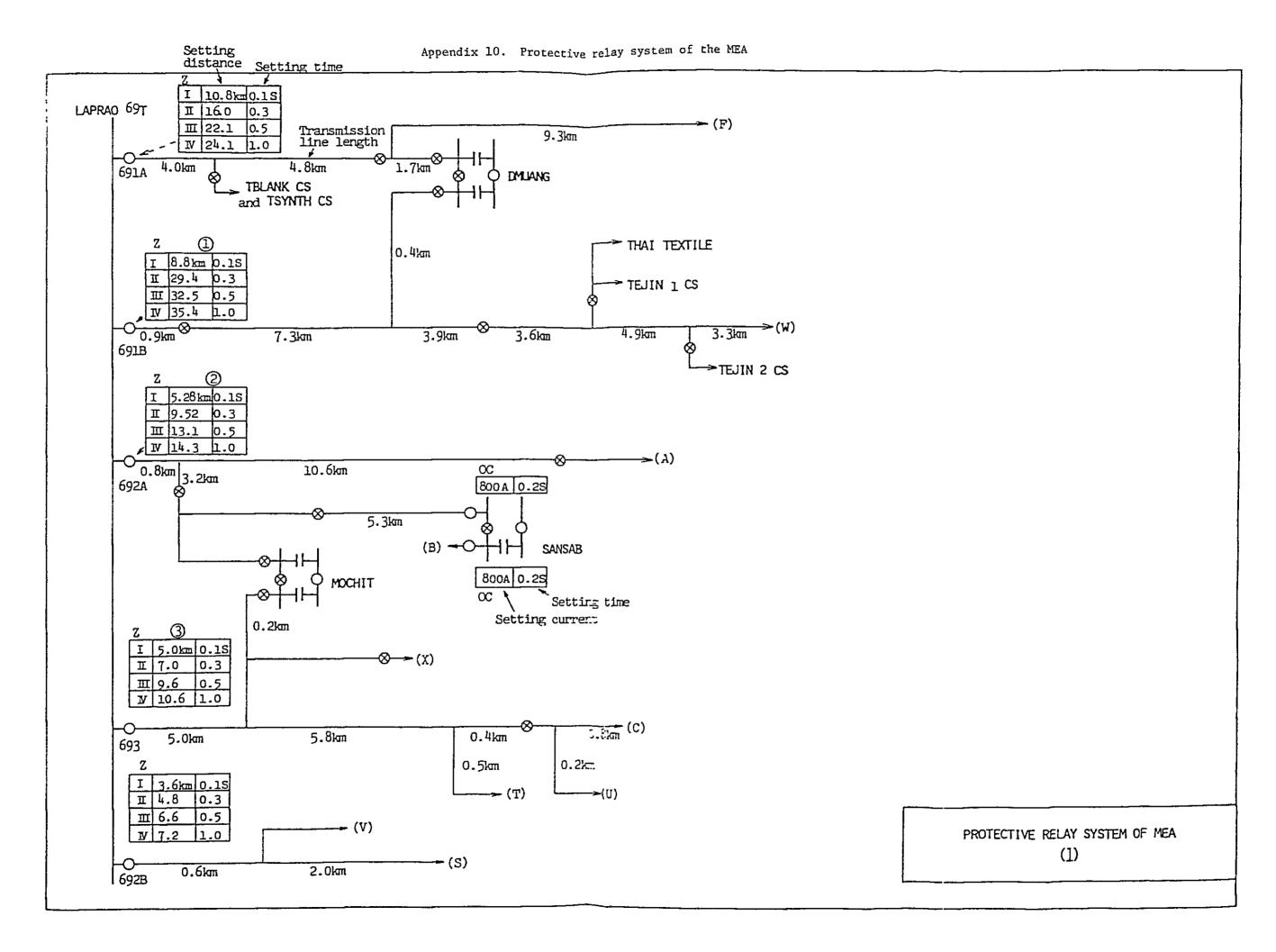
c. 屋内設備

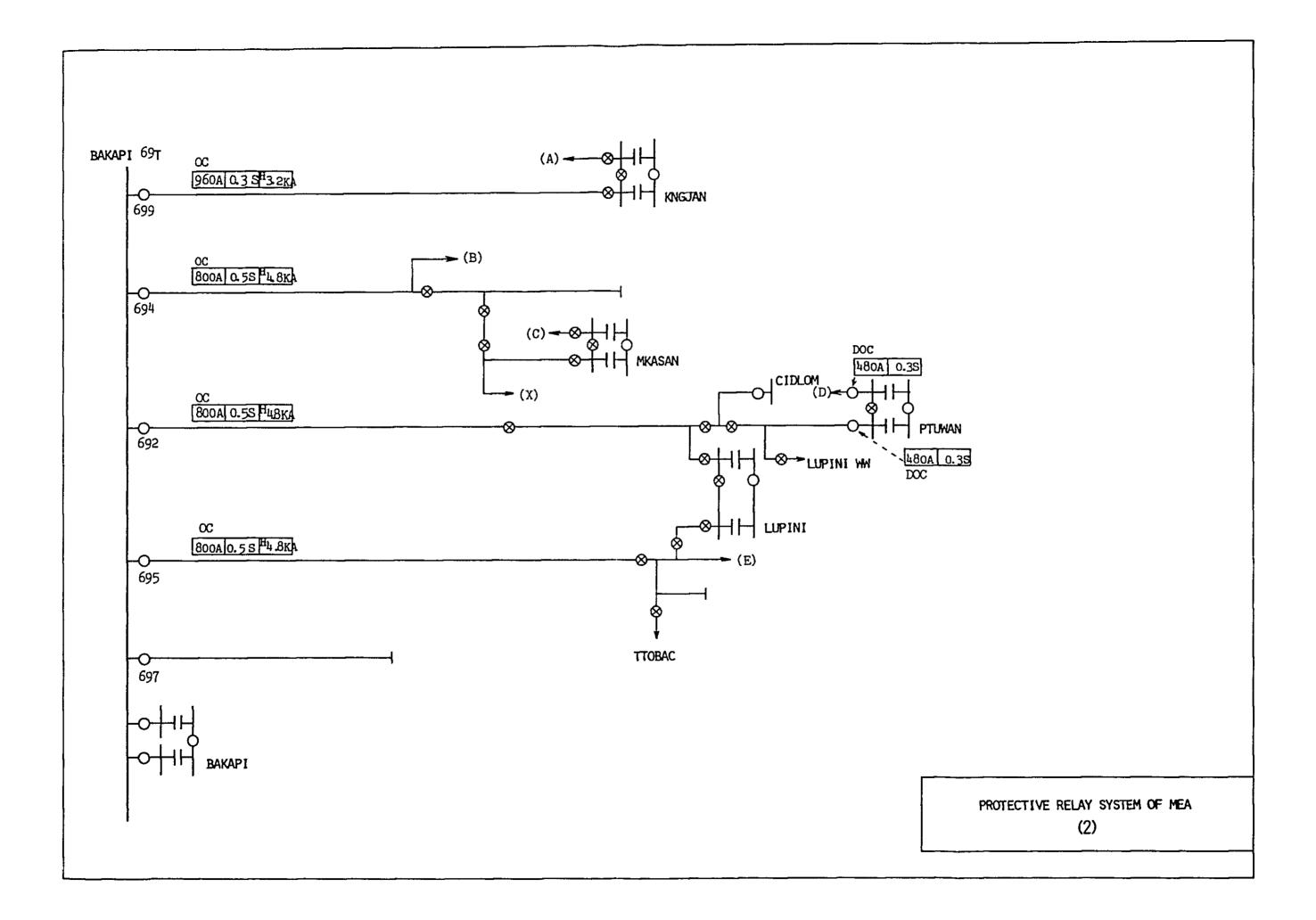
高圧の新設需要家にπ引込し、需要家の供給信頼度向上とあわせて高圧系統の整備をする 点では最良の方法である。既設系統の装備だけの目的で実施する場合は需要家の了解がえら れにくい問題がある。

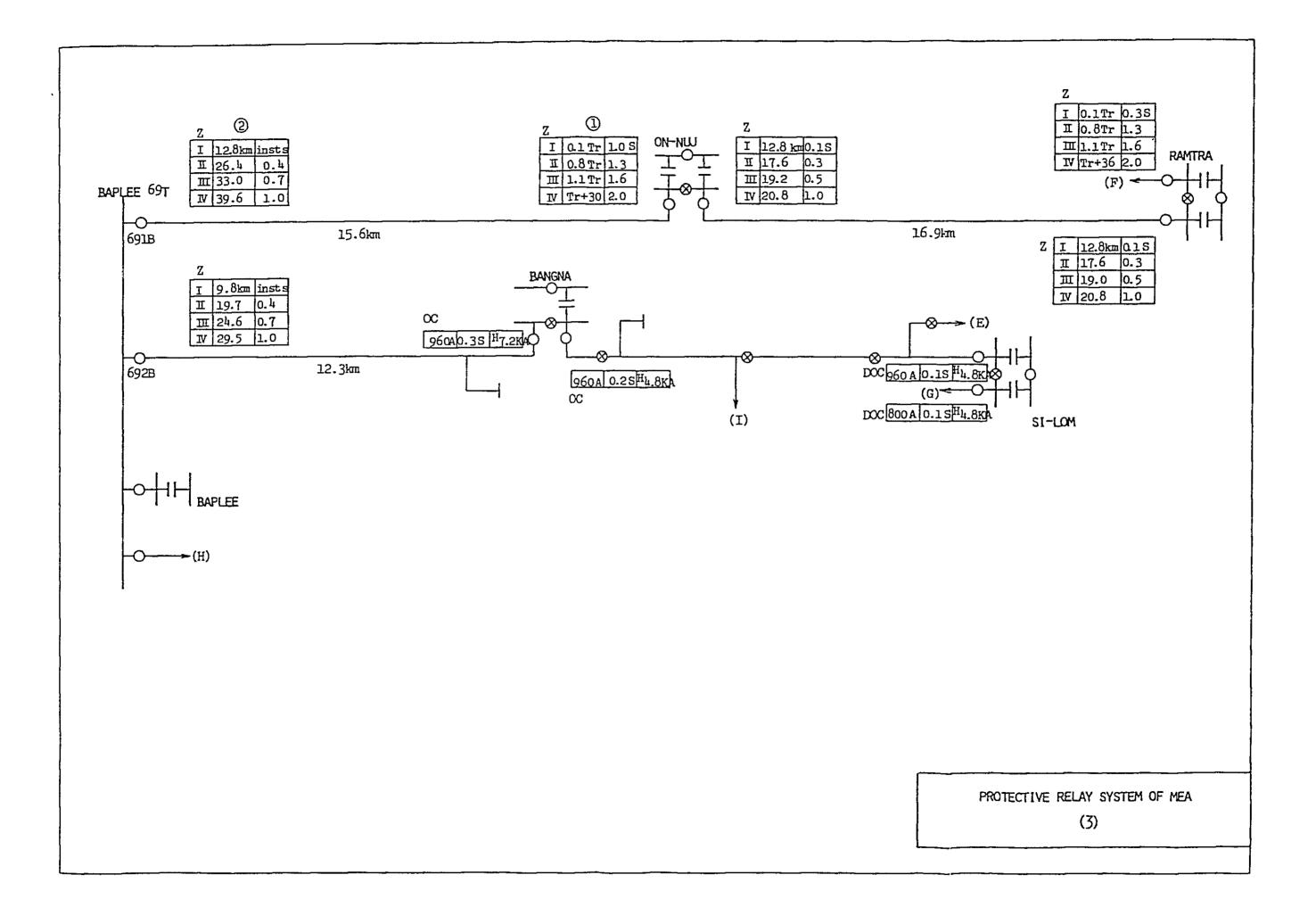
d. 柱上設置

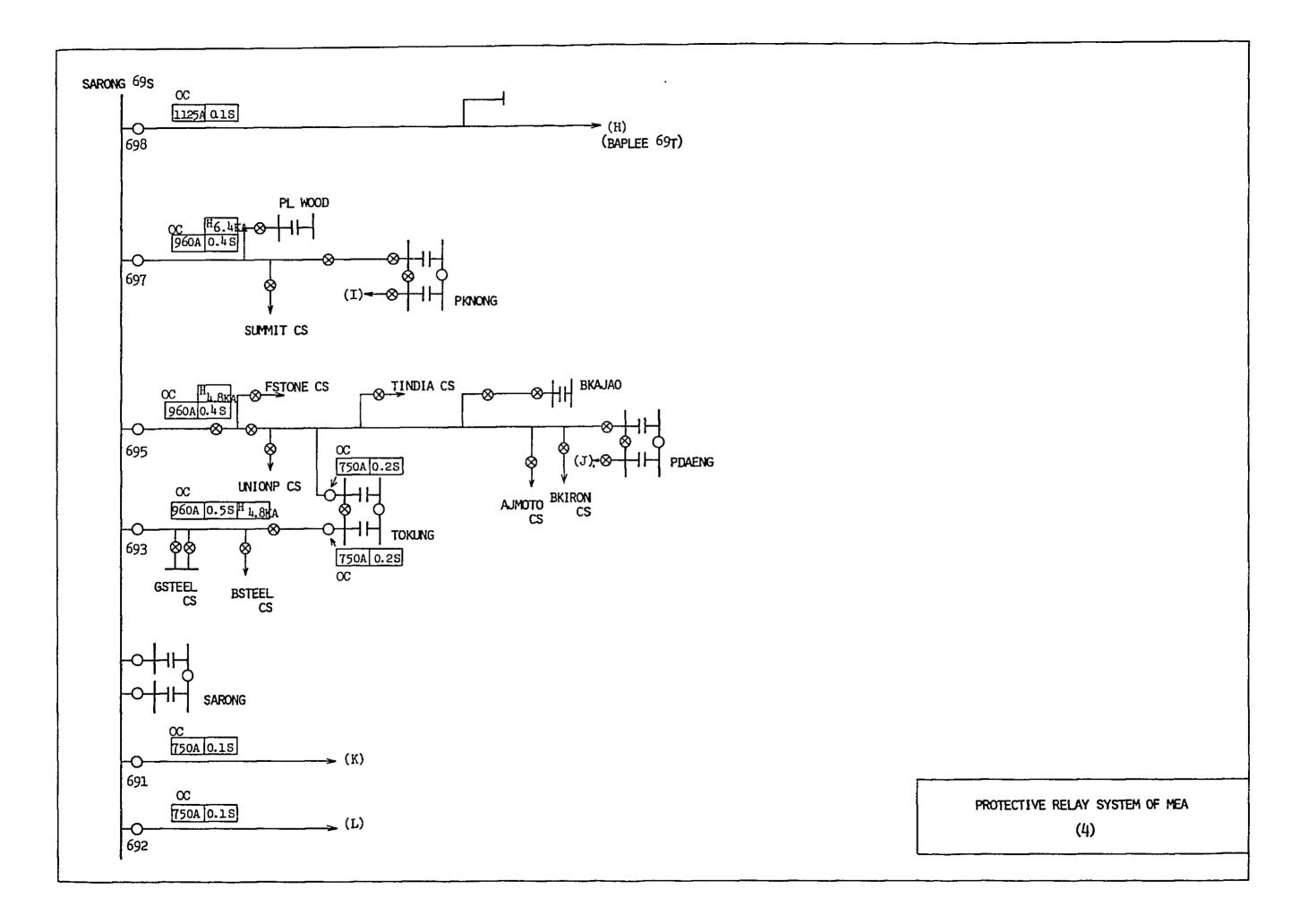
地中ケーブルの延長、美観の点で難がある。他の方法が適用できない場合に限定すべきで ある。

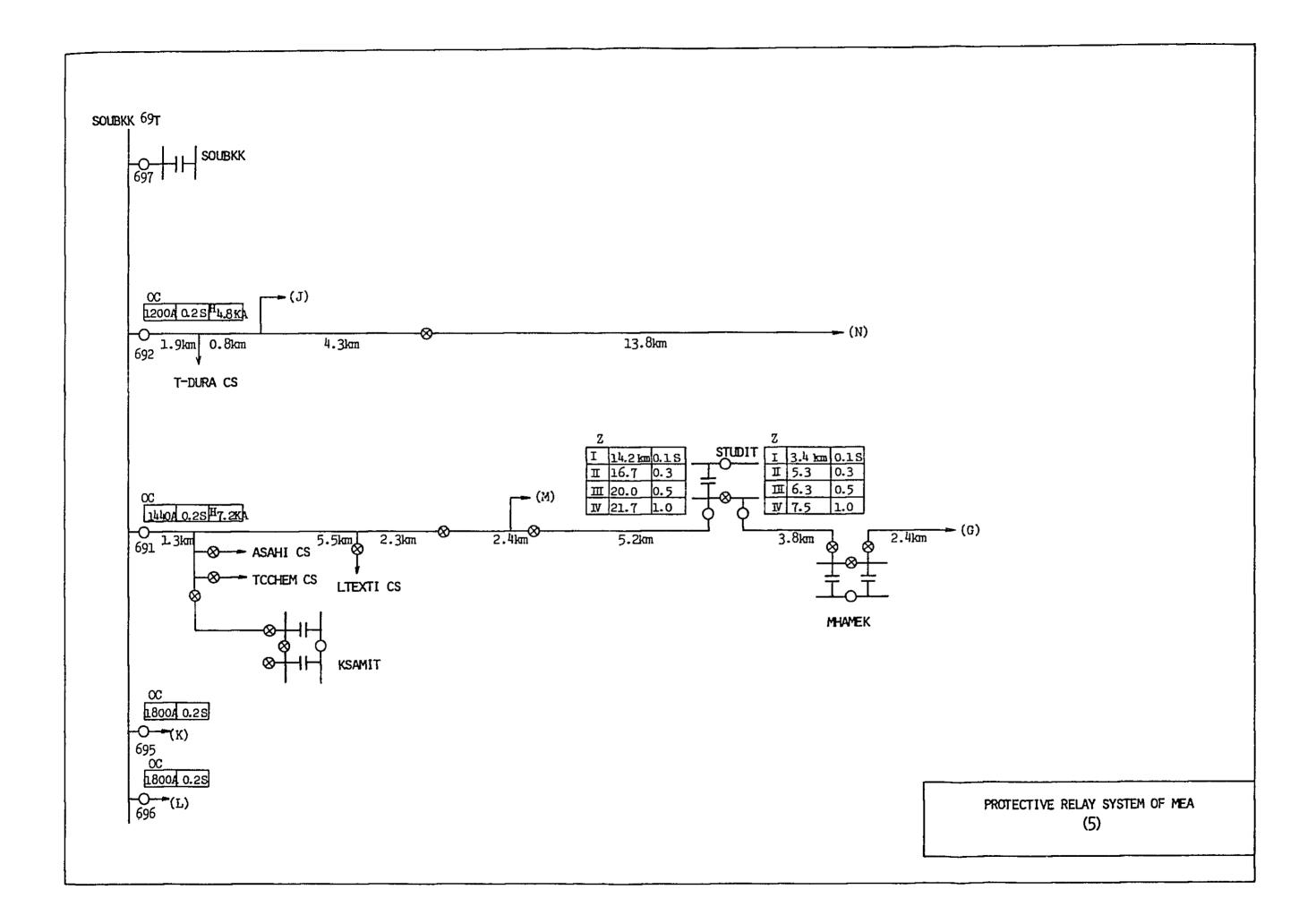
(5) 実施設計上の注意

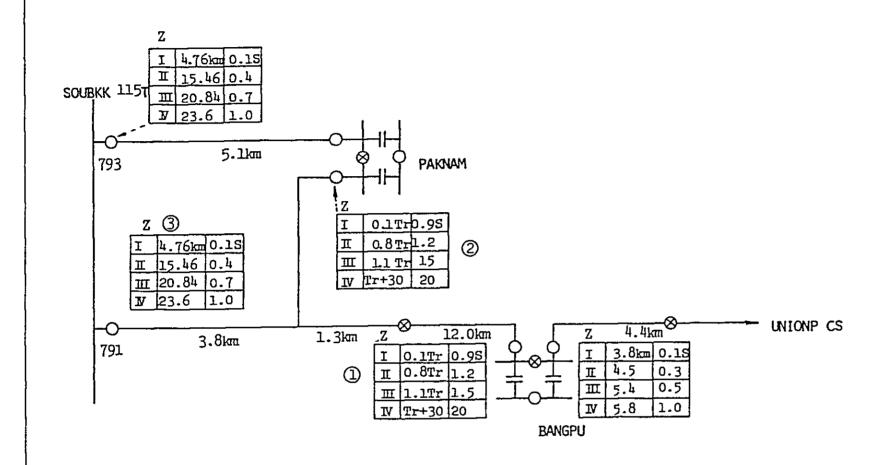

- a. ネットワーク区域は、同じ場所にも多数フィーダーを施設しネットワークを構成している。 このためネットワークを解体した場合でも近傍の各TRは異なるフィーダーから供給されて いるため、事故等で他フィーダーへ負荷切替えする場合、切替負荷容量は小さくてよい。こ の有利な条件は踏製、活用した方がよい。
- b. ネットワーク区域内は、TRのユニット容量が500 M と大きいため、負荷切替はTR単位で他のフィーダーに切替えできるよう実施することが望ましい。従って、系統構成はTR単位のπか予備線方式が良いと思う。
- c. フィーダーの開閉器の型の決定に当っては、屋内用、屋外用を含め十分検討する必要がある。
- d. ネットワーク解体の工程は(信頼度低下を防ぐため)、低圧側の解列を広範囲に実施する場合は、当該TRを供給するフィーダー間の連けい工事完了後に実施する。

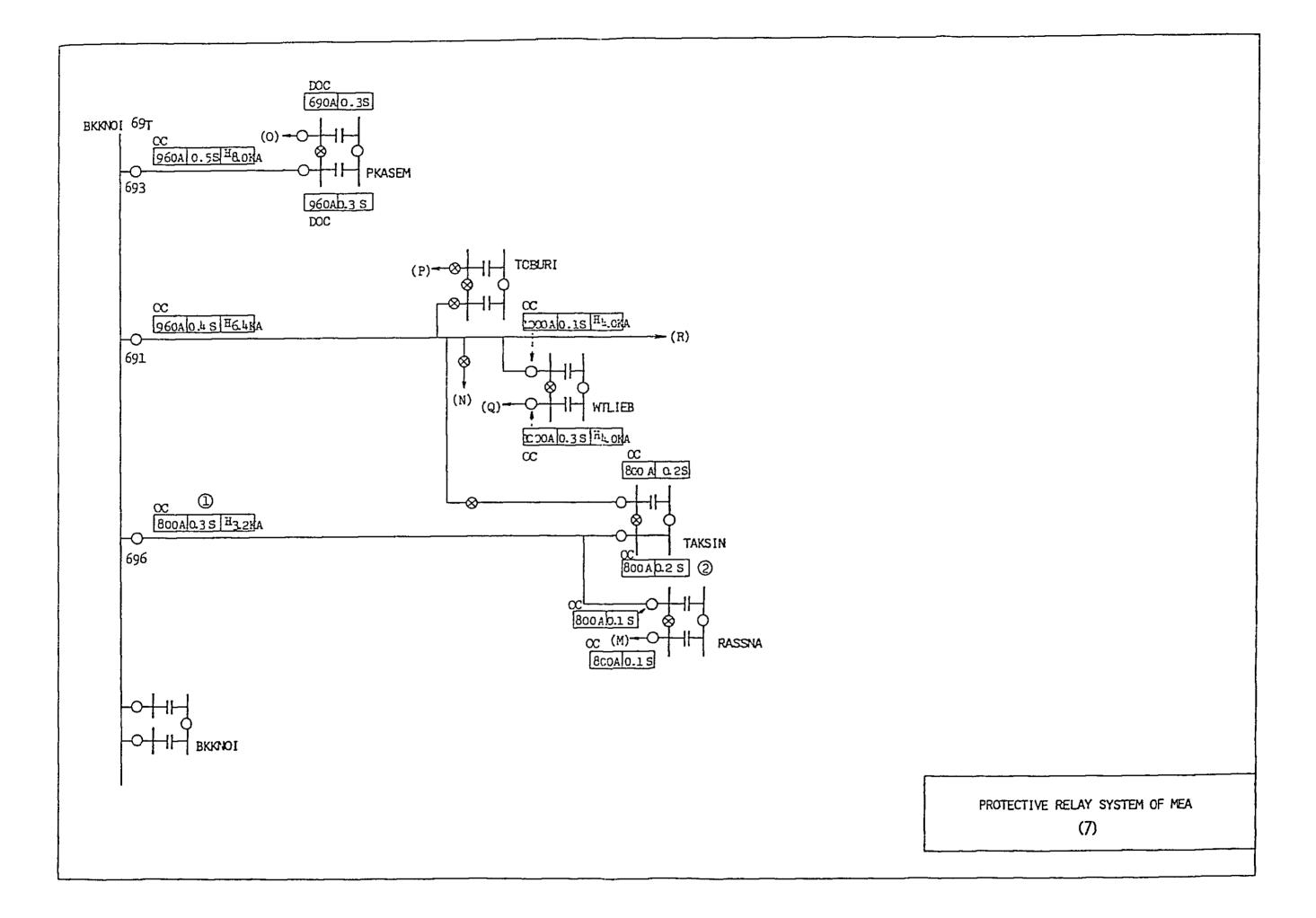

(6) 今後解決すべき問題点

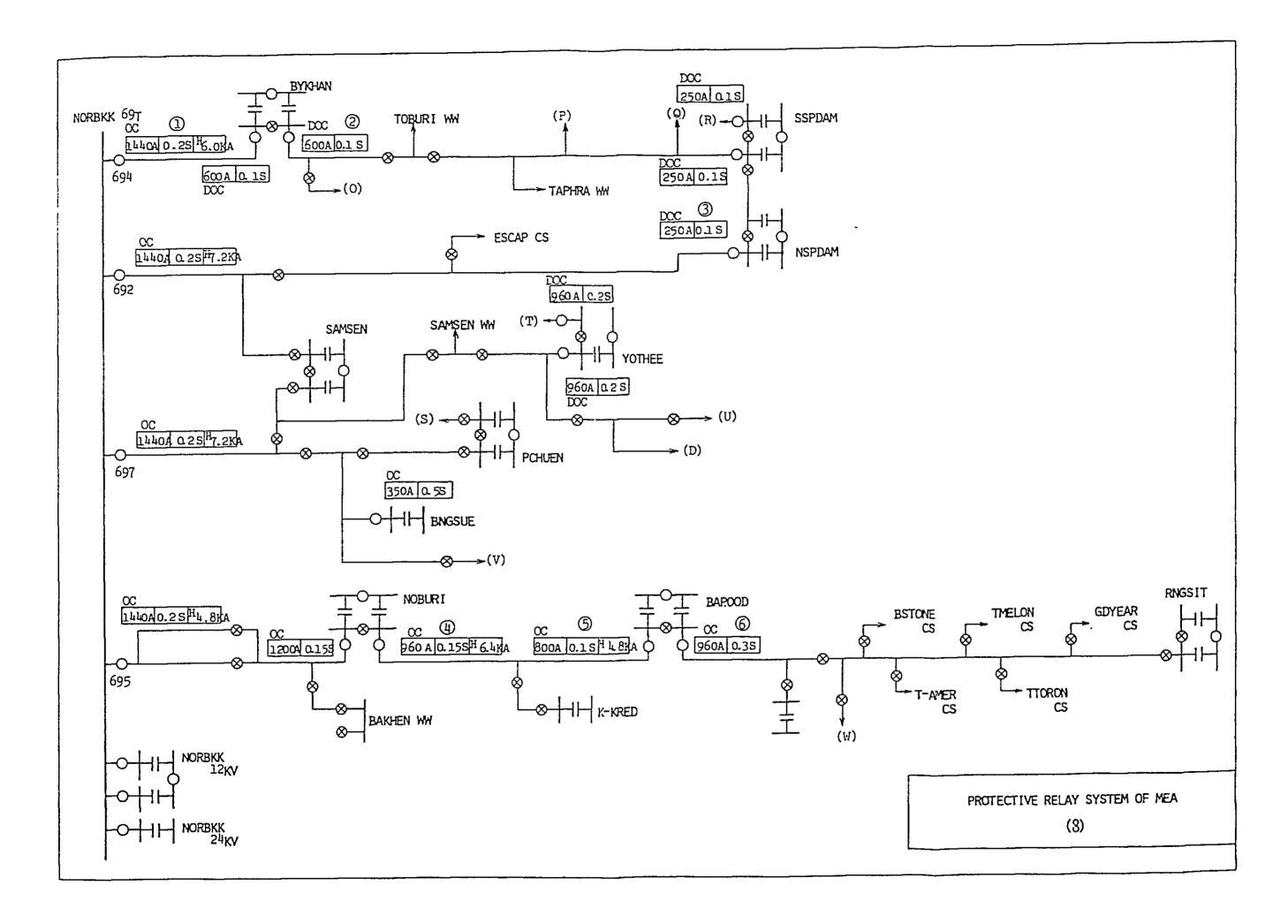

- a. 多回路スイッチについて、実際に現地で設置場所を確保できるかどうか検討する必要がある。
- b. Τ R ごとにπ引込連けい方式か予備線方式をとるとした場合、多回路スイッチが全体で約440台必要であるので多額の工事費を要する。
- c. スイッチ端子のプレハプ型コネクターは、CVケーブル用である。ネットワーク区域に多 数施設されているPILC(鉛被紙ケーブル)用の簡易接続法の検討が必要である。


Appendix 10. MEAの保護継電器の詳細検討


MEA系統の各継電器についてチェックし解析した。 以下のダイヤグラム(1)~(8)にその結果を示した。







PROTECTIVE RELAY SYSTEM OF MEA
(6)

Appendix 11. 既設変電所の利用率

1979年9月12日15時における変圧器容量と負荷の比率を43の変電所について並べてみると Table 11-1のとおりである。

- a. 43の変電所の平均利用率は50.2%である。
- b. 下表のように利用率の分布は広い範囲に分散している。

ベンク数	~_利 変電所	用率% 容量	30以下	40まで	50 "	60 "	70 "	80 "	計
	10	MVA	1	-	_		_	1	2
1	2 0	"	-	1		-	1	_	2
	4 0	"	_	2	1	3	1		7
	2 0	"	_	_	_	_ ·		_	_
2	4 0	"	1	1	1	1	3	_	7
	8 0	"	3	3	8	6	3	2	2 5
	計		5	7	1 0	10	8	3	4 3

- c. 2バンクの変電所で利用率が50%以下のものは、1バンク停電のときにも直ちに切替が可能と考えられる。43のうち17の変電所はそういう条件に入っている。
- d. その他の26の変電所では、1パンク事故のときは他の変電所からの融通が必要である。

Table 11-1 Utilization Factor of Substation

	SS.	Bank	Ba	nk Max Lo	oad	Bank	Total	Average
Substation	Cap (MVA)	Cap (MVA)	(MW)	(MVAR)	(MVA)	UTF (%)	Load (MVA)	UTF (%)
		20	12.8	7.4	15.0	75.0	24.5	61.0
BKKNO1 (K)	40	20	8.0	5.6	9.7	48.5	24.5	61.3
DAMADI (D)	90	40	14.0	3.0	14.3	35.7	22.2	41.5
BAKAPI (B)	80	40	18.0	6.0	19.0	47.5	33.2	41.5
BANGNA (BG)	40	40	13.8	8.2	16.1	40.0	16.1	40.0
BNGSUE (BS)	10	10	7.0	3.0	7.6	76.0	7.6	76.0
DMM (DM)	90	40	9.5	4.0	10.3	38.8	22.6	10.2
BYKHAN (BY)	80	40	12.0	3.0	12.4	31.3	22.6	28.3
DAROOD (DD)	40	20	5.2	5.5	7.6	38.0	11.5	28.7
BAPOOD (BD)	40	20	5.0	0.1	5.0	25.0	11.3	20.1
BKAJAO (BC)	10	10	2.5	0.7	2.6	26.0	2.6	26.0
BAPLEE (BP)	40	40	19.0	12.2	22.6	56.5	22.6	56.5
DANGBU (DII)	90	40	30.0	10.1	31.6	79.0	43.9	54.0
BANGPU (BU)	80	40	10.8	6.1	12.4	31.0	43.9	54.9
CIDLOM (CL)	_		-		_	-	<u></u>	
DMIANO (D)	90	40	15.0	5.8	16.1	40.2	40.0	50.0
DMUANG (D)	80	40	22.0	9.5	24.0	60.0	40.0	50.0
KLRSIT (KR)	40	40	16.5	10.2	19.4	48.5	19.4	48.5
V.C. 13 (I.C.)		20	7.5	4.0	8.5	42.5	20.4	51.0
KSAMIT (KS)	40	20	9.7	6.9	11.9	59.5	20.4	51.0
K-KRED (KK)	20	20	_	-	_	_		_
**************************************	40	20	13.0	4.6	13.8	68.9	27.0	60.5
KNGJAN (KJ)	40	20	12.2	7.2	14.2	70.8	27.8	69.5
7 11D73 17 47 3	00	40	29.0	24.0	37.6	94.1	61.0	76.5
LUPINI (L)	80	40	16.6	14.0	21.7	54.3	61.2	76.5
LAPRAO (LP)	_		_	_	_	_		_
MOGUET OF		40	16.0	7.0	17.5	43.7	24.0	42.5
MOCHIT (M)	80	40	15.0	7.8	16.9	42.3	34.8	43.5
1677 4 0 4 11 71 70 70	00	40	17.2	11.8	20.9	52.1	40.3	50.4
MKASAN (MS)	80	40	17.2	9.2	19.5	48.8	40.3	50.4
NATION DE COMP	0.0	40	20.0	9.5	22.1	55.4	20.2	47.0
MHAMEK (MM)	80	40	14.2	7.8	16.2	40.5	38.3	47.9

Substation	SS.	Bank	Ва	ınk Max Lo	oad	Bank UTF	Total Load	Average UTF
Substation	Cap (MVA)	Cap (MVA)	(MW)	(MVAR)	(MVA)	(%)	(MVA)	(%)
NODDEK (N)	40	20	6.6	4.0	7.7	38.6	15.3	38.3
NORBKK (N)	40	20	6.6	3.7	7.5	37.8	13.5	36.3
NODUBLAND)	40	20	8.0	3.8	8.9	44.3	19.5	48.8
NOBURI (NR)	40	20	9.4	5.0	10.9	53.2	19.5	40.0
ON MILL (MILL)	90	40	12.8	6.0	14.1	35.3	23.5	29.3
ON-NUJ (NU)	80	40	7.8	5.4	9.5	23.7	23.5	29.3
PLWOOD (PL)	22.4	22.4	6.4	4.0	7.5	33.5	7.5	33.5
DA VALANI (D)	0.0	40	30.0	10.1	31.7	79.1	42.0	54.9
PAKNAN (R)	80	40	10.8	6.1	12.4	31.0	43.9	34.9
DD 4 ENG (O)	0.0	40	19.5	17.5	26.2	65.5	41.0	52.4
PDAENG (Q)	80	40	13.8	8.0	16.0	39.9	41.9	52.4
DVMONG (D)	0.0	40	15.8	8.2	17.8	44.5	16.6	£0.2
PKNONG (P)	80	40	24.7	14.8	28.8	72.0	46.6	58.3
DTHU AND ON A	0.0	40	23.7	17.2	29.3	73.2	56.2	70,3
PTUWAN (PM)	80	40	22.8	14.3	26.9	67.3		10.3
DICAGONA (DO)	40	20	11.2	9.4	14.6	73.1	27.0	60.5
PKASEM (PS)		20	10.8	7.6	13.2	66.0	27.8	69.5
20111231 (200)	00	40	13.3	8.0	15.5	38.8	22.9	20.6
PCHUEN (PC)	80	40	6.1	4.1	7.3	18.4	22.9	28.6
D. COM. (DM)	00	40	18.5	12.2	22.2	55.4	54.6	46.2
PASSNA (RN)	80	40	23.3	23.0	32.7	81.8	54.6	68.3
D. (G G)	0.0	40	10.8	7.2	13.0	32.4	25.3	21.6
RNGSIT (RS)	80	40	10.4	6.4	12.2	30.5	25.2	31.5
D 4 1 (TD 4 (D/T)	00	40	11.8	10.8	16.0	40.0	20.1	26.4
RAMTRA (RT)	80	40	12.6	5.0	13.6	33.9	29.1	36.4
GAMODNI (C)	0.0	40	22.0	4.0	22.4	55.9	40.1	50.6
SAMSEN (S)	80	40	19.3	4.0	19.7	49.3	42.1	52.6
GARONG (GR)	00	40	22.0	17.1	27.9	69.8	61.6	77.0
SARONG (SR)	80	40	26.2	21.2	33.7	84.3	61.6	77.0
STUDIT (SA)	40	40	11.2	7.5	13.5	33.7	13.5	33.7
CCDDAM (CD)	-	40	15.0	10.5	18.3	45.8	447	55.0
SSPDAM (SD)	80	40	22.0	14.5	26.3	65.9	44.7	55.9
NSPADAM	0.0	40	14.0	7.5	15.9	39.7	24.0	42.5
	80	40	15.8	8.8	18.1	45.2	34.0	42.5
SOUBKK (SK)	20	20	10.0	7.0	12.2	61.0	12.2	61.0

Cubstation	SS.	Bank	Ba	ınk Max Lo	oad	Bank	Total	Average
Substation	Cap (MVA)	Cap (MVA)	(MW)	(MVAR)	(MVA)	UTF (%)	Load (MVA)	UTF (%)
SI-LOM (SL)	80	40	22.1	13.3	25.8	64.5	53.3	667
SI-LOW (SL)	80	40	24.2	13.2	27.6	68.9	33.3	66.7
SANSAB (SS)	40	40	19.4	12.8	23.2	58.0	23.2	58.0
TOBURI (T)	80	40	18.0	6.8	19.2	48.1	37.5	46.9
TOBORI (I)		40	16.9	7.0	18.3	45.7		
TOKUNG (TK)	80	40	24.8	6.0	25.5	63.8	45.1	56.4
TORUNG (TK)	80	40	17.2	10.5	20.2	50.4	45.1	
TAKSIN (TS)	40	40	19.0	14.2	23.7	59.3	23.7	59.3
WELLED (M)	80	40	16.0	5.5	16.9	43.7	20.6	20.2
WTLIEB (W)	80	40	13.0	4.3	13.7	34.2	30.6	38.3
YOTHEE (TY)	40	40	22.2	10.6	24.6	61.5	24.6	61.5
TOTAL	2,642.4						1,326.9	50.2

- Note: 1. Bank UTF = Bank utilization factor
 2. Average UTF = Average utilization factor
 3. These data are value as of September 12, 1979.

Appendix 12 Utilization Factor of Existing Feeders

Sept. 12, 1979 1/9

					Sept. 1	2, 1979
Substation	Distribu- tion Feeder	Volt- age (kV)	Conductor of Main trunk Line	Feed- er Capac- ity MVA (A)	Feeder Load MVA (B)	Utiliza- tion Factor (B/A)
BANKKAPI	B11	12	AAL 336.4 MCM	8	4.666	0.583
2224 12224 12 1	B12	12	"	8	2.751	0.343
	B13	12	.,,	8	1.842	0.230
	BI4	12	,,	8	2.498	0.312
	B16	12	ıı ıı	8	2.457	0.307
,	B21	12	n	8	5.136	0.642
	B23	12	"	8	6.030	0.753
	B24	12	"	8	6.321	0.790
	B25	12	11	8	6.420	0.803
BANGKOK NO1	K12	12	n	8	5.561	0.695
	K13	12	"	8	5.561	0.695
	K14	12	ı,	8	6.798	0.850
	K22	12	ıı ıı	8	5.150	0.644
	K23	12	,,	8	5.943	0.743
				Į		
BANGK POOD	BD11	12	"	8	3.157	0.395
	BD12	12	"	8	2.210	0.276
	BD13	12	/ //	8	1.815	0.227
	BD14	12	"	8	1.578	0.197
	BD21	12	"	8	0.113	0.014
	BD23	12	l "	8	2.974	0.372
BANG YEE KHAN	BYII	12	"	8	5.987	0.748
	BY12	12	ı ı	8	0.211	0.026
	BY13	12	"	8	6.786	0.848
	BY21	12	"	8	6.621	0.828
	BY22	12	"	8	5.794	0.724
	BY23	12	n n	8	4.552	0.569
BANG PU	BU411	24	"	16	6.728	0.421
	BU412	24	l n	16	13.662	0.854
	BU413	24	n n	16	12.642	0.790
	BU421	24	"	16	6.645	0.415
	BU422	24	11	16	0.369	0.023
BANG SUE	BS11	12	n n		Spare	1
	BS14	12	#	8	8.105	1.013

						2/9
Substation	Distribu- tion Feeder	Volt- age (kV)	Conductor of Main Trunk Line	Feed- er Capac- ity MVA (A)	Feeder Load MVA (B)	Utiliza- tion Factor (B/A)
BANG NA	BG11	12	AAL 336.4 MCM	8	4.320	0.540
	BG13	12	11	8	3.919	0.490
	BG22	12	n	8	6.029	0.754
	BG23	12	"	8	4.020	0.503
BANG KRACHAO	BC12	12	u	8	1.621	0.203
	BC21	12	n	8	4.357	0.544
BANG PLEE	BP411	24	11	16	7.245	0.453
1	BP412	24	"	16	0.201	0.012
İ	BP421	24	11	16	6.842	0.428
	BP422	24	"	16	9.458	0.591
DONMUANG	D12	12	"	8	6.920	0.865
ļ	D13	12	n .	8	7.327	0.916
	D14	12	n .	8	6.003	0.750
	D21	12	n	8	6.513	0.814
•	D22	12	n	8	5.495	0.687
	D23	12	17	8	6.992	0.874
	D24	12	"	8	6.207	0.776
KLONG RANGSIT	KR411	24	п	16	9.915	0.620
	KR421	24	"	16	10.114	0.632
	KR431	24	"	16	7.139	0.446
KLONG SANPA SAMIT	KS11	12	ır	8	4.364	0.546
	KS12	12	tf	8	5.610	0.701
1	KS21	12	n n	8	6.615	0.827
1	KS22	12	11	8	6.013	0.752
	KS23	12	"	8	1.203	0.150
KONG JAN	KJ11	12	n	8	5.080	0.635
	KJ12	12	,,	8	0.111	0.014
	KJ13	12	n n	8	4.339	0.542
	KJ14	12	"	8	8.575	1.072
	KJ21	12	ıı .	8	7.666	0.958
	KJ22	12	n n	8	4.269	0.534
ì	КЈ23	12	"	8	5.628	0.704

						3/9
Substation	Distribu- tion Feeder	Volt- age (kV)	Conductor of Main Trunk Line	Feed- er Capac- ity MVA (A)	Feeder Load MVA (B)	Utiliza- tion Factor (B/A)
LUMPINI	Lil	12	AAL 336.4 MCM	8	5.013	0.627
	L12	12	"	8	5.213	0.652
	L13	12	n	8	4.111	0.514
	Li4	12	п	8	6.015	0.752
	L15	12	"	8	7.017	0.877
	L16	12	#	8	7.620	0.953
	L21	12	"	8	6.783	0.848
	L22	12	"	8	4.658	0.582
	L23	12	H.	8	4.455	0.557
	L24	12	"	8	4.252	0.532
	L25	12	"	8	7.695	0.962
	L26	12	"	8	3.747	0.468
MAKKASAN	MS11	12	"	8	2.949	0.369
	MS12	12	n n	8	5.506	0.688
	MS13	12	"	8	7.865	0.983
	MS14	12	n	8	2.261	0.283
	MS15	12	n.	8	3.834	0.479
	MS21	12	n.	8	2.781	0.348
	MS22	12	n	8	5.665	0.708
	MS23	12	#	8	4.429	0.554
	MS24	12	n .	8	4.119	0.515
	MS26	12	n	8	2.472	0.309
МАНАМЕК	MM11	12	"	8	6.068	0.759
	MM12	12	a	8	6.674	0.834
	MM13	12	"	8	6.472	0.809
	MM14	12	п	8	4.855	0.607
	MM I 5	12	"	8	3.544	0.443
	MM21	12	n	8	3.164	0.396
	MM22	12	u	8	5.148	0.644
	MM23	12	"	8	3.362	0.420
	MM24	12	"	8	6.724	0.841
	MM26	12	"	8	0.395	0.049
мо-сніт	MII	12	"	8	5.466	0.683
	M12	12	11	8	5.150	0.644
	M13	12	"	8	5.163	0.645
	M14	12	"	. 8	4.853	0.607
	M21	12	"	8	7.032	0.879
	M22	12	"	8	1.980	0.248
	M23	12	n	8	5.546	0.693

	· · · · · · · · · · · · · · · · · · ·		r	,		.,,-
Substation	Distribu- tion Feeder	Volt- age (kV)	Conductor of Main Trunk Line	Feed- er Capac- ity MVA (A)	Feeder Load MVA (B)	Utiliza- tion Factor (B/A)
MO-CHIT	M24	12	AAL 335.4 MCM	8	4.358	0.545
NONTHABURI	NRII	12	n	8	5.781	0.723
	NR13	12	ı,	8	4.794	0.594
	NR21	12	n	8	3.096	0.387
	NR23	12	"	8	2.271	0.284
	NR24	12	<i>"</i>	8	6.813	0.851
NORTH BANGKOK	N12	12		8	6.919	0.865
	N13	12	"	8	7.326	0.916
	N14	12	l "	8	4.376	0.547
	N22	12	"	8	3.969	0.496
					_	
					-	
ON-NUJ	NU411	24	"	16	6.326	0.395
	NU412	24	п	16	5.905	0.369
	NU421	24	n n	16	3.796	0.237
	NU422	24	"	16	0.421	0.026
	NU423	24	"	16	1.265	0.079
PAKNAM	R412	24	 	16	8.495	0.531
	R413	24	"	16	8.495	0.531
	R422	24	u	16	7.432	0.465
	R423	24	,,	16	11.679	0.730
PATHUWAN	PM 1 i	12	,,	8	4.738	0.592
	PM12	12	, ,,	8	5.529	0.691
	PM13	12	u	8	5.529	0.691
	PM 14	12	"	8	6.220	0.777
	PM 15	12	<i>"</i>	8	7.108	0.889
	PM21	12	"	8	7.392	0.924
	PM22	12	"	8	6.663	0.833
	PM23	12	"	8	6.246	0.781
	PM24	12	"	8	5.831	0.729
PRAKANONG ·	P11	12	,,	8	5.001	0.625
-	P12	12	<i>"</i>	8	6.329	0.791
	P13	12	n n	8	4.900	0.613
	P14	12	"	8	6.023	0.753
	P21	12	"	8	7.888	0.986

						5/9
Substation	Distribu- tion Feeder	Volt- age (kV)	Conductor of Main Trunk Line	Feed- er Capac- ity MVA (A)	Feeder Load MVA (B)	Utiliza- tion Factor (B/A)
PRAKANONG	P22	12	AAL 336.4 MCM	8	6.113	0.764
	P23	12	11	8	6.804	0.851
	P24	12	,,	8	5.916	0.740
	P26	12	ø	8	5.718	0.715
PETCHKASEM	PS11	12	#	8	2.986	0.373
	PS12	12	"	8	2.688	0.336
	PS13	12	н	8	4.978	0.622
	PS14	12	u	8	5.874	0.734
	PS21	12	п	8	5.234	0.654
	PS22	12	n	8	4.914	0.614
	PS23	12	"	8	7.265	0.908
PRACHACHUEN	PC11	12	li.	8	7.400	0.925
	PC12	12	n	8	6.284	0.786
	PC13	12	"	8	5.776	0.722
	PC22	12	n	8	5.980	0.748
	PC23	12	"	8	5.879	0.735
PRAPRADAENG	Q11	12	"	8	5.204	0.651
	Q12	12	n	8	6.412	0.802
	Q13	12	n	8	6.878	0.860
	Q14	12	u	8	5.204	0.651
	Q21	12	n	8	6.337	0.792
	Q22	12	"	8	8.448	1.056
	Q23	12	u	8	8.226	1.028
PLY WOOD	PL11	12	n	8	4.863	0.608
	PL12	12	ıı	8	3.546	0.443
RASBURANA	RN11	12	n	8	7.592	0.949
	RN12	12	u	8	4.801	0.600
	RN13	12	n	8	4.913	0.614
	RN14	12	n	8	8.822	1.103
	RN21	12	n	8	6.677	0.834
	RN22	12	ıı ı	8	5.286	0.661
	RN23	12	n	8	6.677	0.835
	RN24	12	n n	8	6.492	0.811
	RN26	12	n	8	3.246	0.406
RAMINTRA	RT411	24	u	16	4.472	0.279
	RT412	24	"	16	6.880	0.430

Substation Distribution Feeder (kV) Conductor of Maim Trunk Line Capacity Ca			· · · · · · · · · · · · · · · · · · ·				
RAMINTRA RT413 RT421 RT422 RT422 RT423 RT424 RT423 RT41 RS421 RS421 RS421 RS421 RS422 RT423 RT423 RT41 RS421 RS422 RT423 RT423 RT41 RS423 RS724 RS723 RS724 RS723 RS724 RS723 RS724 RS724 RS723 RS724 RS724 RS724 RS724 RS725 RS724 RS725 RS726 RS727 RS726 RS726 RS726 RS726 RS726 RS726 RS726 RS726 RS726 RS727 RS726 RS727 RS726	Substation	tion	age		er Capac- ity MVA	Load MVA	tion Factor
RT421			 	<u> </u>			
RANGSIT RS414 RS421 RS422 RS422 RS422 RS422 RS423 RS43 RS424 RS423 RS424 RS424 RS424 RS424 RS424 RS424 RS425 RS425 RS424 RS425 RS426 R	RAMINTRA	RT413	24	AAL 336.4 MCM	16	1.205	0.075
RANGSIT RS414 RS414 RS421 RS422 RS422 RS422 RS423 RS424 RS424 RS424 RS424 RS425 RS43 RS44 RS426 RS434 RS444 RS426 RS434 RS444 RS426 RS434 RS426 RS44 RS426 RS44 RS426 RS44 RS426 RS44 RS426		RT421	24	ıı ı	16	7.185	0.449
RANGSIT RS414 RS421 24 RS422 24 RS422 24 RS423 RS42 RS423 RS42 RS43 RS43 RS44 RS423 RS44 RS423 RS43 RS44 RS423 RS44 RS45 RS46 RS47 RS423 RS46 RS47 RS46 RS423 RS46 RS47 RS47 RS47 RS47 RS47 RS46 RS47 RS47 RS47 RS47 RS47 RS47 RS47 RS47		RT422	24	п	16	3.593	0.225
RS421		RT423	24	n	16	3.593	0.225
RS422	RANGSIT	RS414	24	n	16	0.398	0.025
SAMRONG SR11 12 " 8 7.238 0.905 SR12 12 " 8 5.027 0.628 SR13 12 " 8 7.841 0.980 SR14 12 " 8 6.434 0.804 SR21 12 " 8 6.269 0.784 SR22 12 " 8 6.269 0.784 SR22 12 " 8 8.228 1.028 SR24 12 " 8 8.425 1.053 SR26 12 " 8 4.311 0.539 SAMSEN S11 12 " 8 4.447 0.556 S12 12 " 8 6.064 0.758 S14 12 " 8 5.054 0.632 S14 12 " 8 6.064 0.758 S16 12 " 8 6.064 0.758 S21 12 " 8 6.064 0.758 S21 12 " 8 5.255 0.657 S22 12 " 8 6.064 0.758 S11 12 " 8 5.255 0.657 S22 12 " 8 6.064 0.758 S21 12 " 8 5.255 0.657 S22 12 " 8 6.064 0.758 S21 12 " 8 5.255 0.657 S22 12 " 8 6.064 0.758 S21 12 " 8 5.255 0.657 S22 12 " 8 6.064 0.758 S21 12 " 8 5.255 0.657 S22 12 " 8 6.064 0.758 S23 12 " 8 5.559 0.695 S24 12 " 8 5.559 0.695 S24 12 " 8 5.559 0.695 S24 12 " 8 6.660 0.708 SILOM SL11 12 " 8 3.881 0.485 S21 12 " 8 6.660 0.708 SILOM SL11 12 " 8 5.660 0.708 SL12 " 8 5.599 0.695 S24 12 " 8 5.660 0.708 SILOM SL11 12 " 8 5.092 0.637 SL14 12 " 8 6.369 0.821 SL14 12 " 8 6.369 0.821 SL14 12 " 8 6.369 0.821 SL14 12 " 8 6.361 0.764 SL22 12 " 8 5.092 0.637 SL22 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649		RS421	24	"	16	12.653	0.791
SAMRONG SR11 12 " 8 7.238 0.905 SR12 12 " 8 5.027 0.628 SR13 12 " 8 3.821 0.478 SR14 12 " 8 7.841 0.980 SR15 12 " 8 6.434 0.804 SR21 12 " 8 6.269 0.784 SR22 12 " 8 6.269 0.784 SR23 12 " 8 8.425 1.053 SR24 12 " 8 8.425 1.053 SR26 12 " 8 4.311 0.539 SAMSEN S11 12 " 8 4.447 0.556 S12 12 " 8 4.268 0.534 S13 12 " 8 4.064 0.758 S14 12 " 8 5.054 0.632 S14 12 " 8 5.060 0.708		RS422	24	ıı	16	11.428	0.714
SR12 12 " 8 5.027 0.628 SR13 12 " 8 3.821 0.478 SR14 12 " 8 7.841 0.980 SR15 12 " 8 6.434 0.804 SR21 12 " 8 6.269 0.784 SR22 12 " 8 6.269 0.784 SR23 12 " 8 8.425 1.053 SR24 12 " 8 8.425 1.053 SR26 12 " 8 4.447 0.556 S12 12 " 8 4.268 0.534 S13 12 " 8 5.054 0.632 S14 12 " 8 5.054 0.632 S14 12 " 8 5.660 0.708 S21 12 " 8 6.664 0.758 S22 12 " 8 6.064 0.758 S23 12 " 8 5.660 0.708 S21 12 " 8 6.660 0.708 S21 12 " 8 7.559 0.695 S24 12 " 8 7.559 0.695 S25 12 " 8 7.560 0.708 SILOM SL11 12 " 8 7.559 0.695 S24 12 " 8 7.560 0.708 SILOM SL11 12 " 8 7.560 0.821 SL13 12 " 8 6.569 0.821 SL14 12 " 8 6.569 0.821 SL14 12 " 8 6.571 0.784 SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 5.194 0.649 SL23 12 " 8 5.194 0.649		RS423	24	"	16	3.674	0.230
SR12	SAMRONG	SR11	12	"	8	7.238	0.905
SR14 12 " 8 7.841 0.980 SR15 12 " 8 6.434 0.804 SR21 12 " 8 5.290 0.661 SR22 12 " 8 6.269 0.784 SR23 12 " 8 8.425 1.053 SR24 12 " 8 8.425 1.053 SR26 12 " 8 4.311 0.539 SAMSEN S11 12 " 8 4.268 0.534 S12 12 " 8 5.054 0.632 S14 12 " 8 5.054 0.632 S14 12 " 8 5.054 0.632 S14 12 " 8 6.064 0.758 S16 12 " 8 5.255 0.657 S21 12 " 8 5.559 0.695 S22 12 " 8 6.064 0.758 S23 12 " 8 5.559 0.695 S24 12 " 8 5.559 0.695 S24 12 " 8 5.660 0.708 S110 S11 12 " 8 5.660 0.708 S12 12 " 8 6.064 0.758 S13 12 " 8 5.559 0.695 S24 12 " 8 5.559 0.695 S24 12 " 8 5.660 0.708 SILOM SL11 12 " 8 3.638 0.455 S25 12 " 8 6.660 0.708 SILOM SL11 12 " 8 3.638 0.455 S25 12 " 8 6.660 0.708 SILOM SL11 12 " 8 3.638 0.455 S25 12 " 8 6.660 0.708 SILOM SL11 12 " 8 6.569 0.821 SL14 12 " 8 6.271 0.784 SL12 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 5.194 0.649		SR12	12	n	8	5.027	1
SR14 12 " 8 6.434 0.804 SR21 12 " 8 6.434 0.804 SR21 12 " 8 5.290 0.661 SR22 12 " 8 6.269 0.784 SR23 12 " 8 8.228 1.028 SR24 12 " 8 8.425 1.053 SR26 12 " 8 4.311 0.539 SAMSEN S11 12 " 8 4.447 0.556 S12 12 " 8 4.268 0.534 S13 12 " 8 5.054 0.632 S14 12 " 8 5.054 0.632 S14 12 " 8 6.064 0.758 S16 12 " 8 5.255 0.657 S21 12 " 8 6.064 0.758 S21 12 " 8 5.255 0.657 S22 12 " 8 6.064 0.758 S23 12 " 8 5.559 0.695 S24 12 " 8 5.559 0.695 S24 12 " 8 5.660 0.708 SILOM SL11 12 " 8 3.638 0.455 S25 12 " 8 6.660 0.708 SILOM SL11 12 " 8 3.638 0.455 S25 12 " 8 6.660 0.708 SILOM SL11 12 " 8 3.638 0.455 S25 12 " 8 6.660 0.708 SILOM SL11 12 " 8 3.638 0.455 S25 12 " 8 6.660 0.708 SILOM SL11 12 " 8 3.638 0.455 S25 12 " 8 5.660 0.708 SILOM SL11 12 " 8 6.569 0.821 SL14 12 " 8 6.571 0.784 SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 5.194 0.649 SL23 12 " 8 5.194 0.649		SR13	12	n	8	3.821	ľ
SR15		SR14	12	ıı		7.841	
SR21 12 " 8 5.290 0.661 SR22 12 " 8 6.269 0.784 SR23 12 " 8 8.228 1.028 SR24 12 " 8 8.425 1.053 SR26 12 " 8 4.311 0.539 SAMSEN S11 12 " 8 4.447 0.556 S12 12 " 8 4.268 0.534 S13 12 " 8 5.054 0.632 S14 12 " 8 6.064 0.758 S16 12 " 8 5.660 0.708 S21 12 " 8 5.255 0.657 S22 12 " 8 6.064 0.758 S23 12 " 8 5.255 0.657 S24 12 " 8 5.559 0.695 S24 12 " 8 5.559 0.695 S24 12 " 8 5.660 0.708 S1LOM SL11 12 " 8 3.638 0.455 S25 12 " 8 6.660 0.708 S1LOM SL11 12 " 8 6.569 0.821 SL13 12 " 8 6.569 0.821 SL14 12 " 8 6.569 0.821 SL16 12 " 8 6.271 0.784 SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 6.111 0.764 SL24 12 " 8 6.111 0.764 SL24 12 " 8 6.111 0.764		SR15	12	"		l .]
SR22 12 " 8 6.269 0.784 SR23 12 " 8 8.228 1.028 SR24 12 " 8 8.425 1.053 SR26 12 " 8 4.311 0.539 SAMSEN S11 12 " 8 4.268 0.534 S12 12 " 8 5.054 0.632 S14 12 " 8 6.064 0.758 S16 12 " 8 5.255 0.657 S21 12 " 8 6.064 0.758 S21 12 " 8 5.255 0.657 S22 12 " 8 6.064 0.758 S23 12 " 8 5.559 0.695 S24 12 " 8 3.638 0.455 S25 12 " 8 5.660 0.708 SILOM SL11 12 " 8 3.881 0.485 SL12 12 " 8 6.569 0.821 SL14 12 " 8 6.569 0.821 SL14 12 " 8 6.569 0.821 SL16 12 " 8 6.271 0.784 SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 5.194 0.649 SL23 12 " 8 5.194 0.649		SR21	12	19			
SR23 12		SR22	12	11			1
SR24 12 " 8 8.425 1.053 SR26 12 " 8 4.311 0.539 SAMSEN S11 12 " 8 4.447 0.556 S12 12 " 8 4.268 0.534 S13 12 " 8 5.054 0.632 S14 12 " 8 6.064 0.758 S16 12 " 8 5.660 0.708 S21 12 " 8 5.255 0.657 S22 12 " 8 6.064 0.758 S23 12 " 8 5.559 0.695 S24 12 " 8 5.660 0.708 S21 12 " 8 5.559 0.695 S24 12 " 8 3.638 0.455 S25 12 " 8 5.660 0.708 SILOM SL11 12 " 8 3.881 0.485 SL12 12 " 8 0.324 SL13 12 " 8 6.569 0.821 SL14 12 " 8 4.379 0.547 SL16 12 " 8 6.271 0.784 SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 6.111 0.764		SR23	12	#			
SAMSEN S11 12 " 8 4.311 0.539 SAMSEN S11 12 " 8 4.447 0.556 S12 12 " 8 4.268 0.534 S13 12 " 8 5.054 0.632 S14 12 " 8 5.060 0.708 S21 12 " 8 5.660 0.708 S21 12 " 8 5.660 0.708 S22 12 " 8 6.064 0.758 S22 12 " 8 6.064 0.758 S23 12 " 8 5.559 0.695 S24 12 " 8 3.638 0.455 S25 12 " 8 3.881 0.485 SL12 12 " 8 3.881 0.485 SL12 SL13 12 " 8 3.881 0.485 SL12 SL14 12 " 8 4.379 0.547 SL16 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649		SR24	12	"			
S12		SR26	12	"			Į.
S12	SAMSEN	SII	12	"	8	4.447	0.556
S13 12 " 8 5.054 0.632 S14 12 " 8 6.064 0.758 S16 12 " 8 5.660 0.708 S21 12 " 8 5.255 0.657 S22 12 " 8 6.064 0.758 S23 12 " 8 5.559 0.695 S24 12 " 8 3.638 0.455 S25 12 " 8 5.660 0.708 SILOM SL11 12 " 8 3.881 0.485 SL12 12 " 8 2.588 0.324 SL13 12 " 8 6.569 0.821 SL14 12 " 8 6.271 0.784 SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 <td></td> <td>S12</td> <td>12</td> <td>п</td> <td>8</td> <td>4.268</td> <td>0.534</td>		S12	12	п	8	4.268	0.534
S14		S13	12	11	1		!
S16		\$	12	н			ſ
S21 12 " 8 5.255 0.657 S22 12 " 8 6.064 0.758 S23 12 " 8 5.559 0.695 S24 12 " 8 3.638 0.455 S25 12 " 8 5.660 0.708 SILOM SL11 12 " 8 3.881 0.485 SL12 12 " 8 2.588 0.324 SL13 12 " 8 6.569 0.821 SL14 12 " 8 6.271 0.784 SL16 12 " 8 6.271 0.784 SL21 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649			1	"			Ē.
S22 12 " 8 6.064 0.758 S23 12 " 8 5.559 0.695 S24 12 " 8 3.638 0.455 S25 12 " 8 5.660 0.708 SILOM SL11 12 " 8 3.881 0.485 SL12 12 " 8 2.588 0.324 SL13 12 " 8 6.569 0.821 SL14 12 " 8 6.271 0.784 SL16 12 " 8 6.271 0.784 SL21 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649		1		<i>)</i> }			†
S23 12 " 8 5.559 0.695 S24 12 " 8 3.638 0.455 S25 12 " 8 5.660 0.708 SILOM SL11 12 " 8 3.881 0.485 SL12 12 " 8 2.588 0.324 SL13 12 " 8 6.569 0.821 SL14 12 " 8 6.271 0.547 SL16 12 " 8 5.092 0.637 SL21 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649		1		"			
S24 12 " 8 3.638 0.455 S25 12 " 8 5.660 0.708 SILOM SL11 12 " 8 3.881 0.485 SL12 12 " 8 2.588 0.324 SL13 12 " 8 6.569 0.821 SL14 12 " 8 6.271 0.547 SL16 12 " 8 6.271 0.784 SL21 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649				II .			
SILOM SL11 12 " 8 5.660 0.708 SL11 12 " 8 3.881 0.485 SL12 12 " 8 2.588 0.324 SL13 12 " 8 6.569 0.821 SL14 12 " 8 4.379 0.547 SL16 12 " 8 6.271 0.784 SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649			i	11			
SL12 12 " 8 2.588 0.324 SL13 12 " 8 6.569 0.821 SL14 12 " 8 4.379 0.547 SL16 12 " 8 6.271 0.784 SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649		į.		"			1
SL12 12 " 8 2.588 0.324 SL13 12 " 8 6.569 0.821 SL14 12 " 8 4.379 0.547 SL16 12 " 8 6.271 0.784 SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649	SILOM	SL11	12	"	8	3.881	0.485
SL13 12 " 8 6.569 0.821 SL14 12 " 8 4.379 0.547 SL16 12 " 8 6.271 0.784 SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649		1					
SL14 12 " 8 4.379 0.547 SL16 12 " 8 6.271 0.784 SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649		1					
SL16 12 " 8 6.271 0.784 SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649		1	!				
SL21 12 " 8 5.092 0.637 SL22 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649		1					
SL22 12 " 8 5.194 0.649 SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649							
SL23 12 " 8 6.111 0.764 SL24 12 " 8 5.194 0.649							
SL24 12 " 8 5.194 0.649		· 1					i e
1 81.25 1 12 1 " 1 8 1 6 4 16 1 11 802		SL25	12	"	8	6.416	0.802

. 7/9

				···		, .
Substation	Distribu- tion Feeder	Volt- age (kV)	Conductor of Main Trunk Line	Feed- er Capac- ity MVA (A)	Feeder Load MVA (B)	Utiliza- tion Factor (B/A)
SOUTH BANGKOK	SK11	12	AAL 336.4 MCM	8	5.723	0.715
	SK12	12	"	8	6.132	0.767
•	SK13	12	"	8	2.861	0.358
TONGKUNG	TK11	12	"	8	7.468	0.934
	TK12	12	"	8	5.890	0.736
	TK13	12	"	8	6.837	0.855
·	TK14	12	"	8	5.890	0.736
	TK16	12	11	8	5.153	0.644
	TK21	12	H .	8	5.032	0.629
	TK22	12	n,	8	6.851	0.856
	TK23	12	"	8	6.405	0.801
	TK24	12	"	8	3.203	0.400
THONBURI	T11	12	"	8	6.867	0.858
	T12	12	"	8	5.453	0.681
	T13	12	"	8	7.262	0.908
	T14	12	"	8	7.070	0.884
	T16	12	н	8	4.040	0.505
	T21	12	ıı	8	6.795	0.849
	T22	12	"	8	5.895	0.737
	T23	12	"	8	6.295	0.787
	T24	12	"	8	6.794	0.849
	T25	12	"	8	6.694	0.837
TAKSIN	TS11	12	"	8	5.877	0.735
	TS13	12	H	8	6.687	0.836
	TS16	12	#	8	5.268	0.659
	TS21	12	"	8	6.485	0.811
	TS22	12	II.	8	2.229	0.279
TOTHI	YTII	12	tt	8	3.952	0.494
	YT12	12	"	8	4.965	0.620
	YT16	12	II .	8	6.282	0.785
	YT22	12	"	8	4.864	0.608
	YT24	12	tt	8	3.039	0.380
	YT25	12	n	8	3.242	0.405
KLANG KRED	KK411	24	"	16	1.176	0.074

Substation	Distribu- tion Feeder	Volt- age (kV)	Conductor of Main Trunk Line	Feed- er Capac- ity MVA (A)	Feeder Load MVA (B)	Utiliza- tion Factor (B/A)
SAN SAB	SS12	12	AAL 336.4 MCM	8	5.302	0.663
	SS14	12	ı,	8	6.650	0.831
	SS22	12	n	8	4.303	0.538
	SS24	12	ıı	8	3.685	0.461
	SS25	12	"	8	4.853	0.607
SATHUPRADIT	SA12	12	"	8	4.245	0.531
	SA22	12	n	8	4.541	0.568
	SA25	12	"	8	5.824	0.728

	(Hacthork Arou)						
Substation	Distribu- tion Feeder	Volt- age (kV)	Under	actor of ground ble	Feed- er Capac- ity MVA (A)	Feeder Load MVA (B)	Utiliza- tion Factor (B/A)
WATLIEB	W11	12	500 mc	m (x) (p)	8	4.850	0.606
	W12	12	"	n (n) (p)	8	3.959	0.495
	W13	12	"	"	8	3.167	0.396
	W14	12	,,	"	8	5.618	0.702
	W21	12	,,	u	8	5.543	0.693
	W22	12	, ,,	"	8	4.355	0.544
	W23	12	,,	(x)	8	4.256	0.532
	W24	12		(x) (p)	8	4.355	0.544
SOUTH SAPANDAM	SD11	12		(p)	8	6.313	0.789
	SD12	12	,,,	u	8	5.72	0.715
	SD13	12	"	n	8	5.128	0.641
	SD14	12	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(x)	8	2.861	0.358
	SD21	12	"	(p)	8	6.213	0.777
	SD22	12	"	(x)(p)	8	5.524	0.691
	SD23	12	n	n	8	6.115	0.764
	SD24	12	<i>n</i>	(p)	8	5.72	0.715
NORTH SAPANDAM	SD31	12	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(x)	8	4.914	0.614
	SD32	12	"	(x) (p)	8	3.079	0.385
	SD33	12	"	(x)	8	4.914	0.614
	SD34	12	"	"	8	2.258	0.282
	SD41	12	"	n	8	6.105	0.763
	SD42	12	"	H	8	4.003	0.500
	SD43	12	n	H	8	0.021	0.003
	SD44	12	"	n	8	5.604	0.701
	SD46	12	,,	17	8	2.602	0.325
					al mean zation fac	tor = 171.7 = 0.620	

Appendix 13. 2次送電系統の構成方式

(1) 2次送電線系統の構成方式の種類

一般に大都市では、ある地域内にある配電用変電所群に対して、電力はターミナル変電所の 電源プスから2次送電線を通じて供給される。この場合、2次送電系統についてはいくつかの パターンが考えられる。

これらの基本的パターンは、通例地域の特殊条件に適合させるため、何らかのモディファイが行われる。従って、2次送電系統の構成方式として数多くのケースが考えられるが、本論においては、2次送電線の基本的構成方式としてつぎの3つをとりあげ、それぞれのもつ特徴を比較したい。

a. タップドタイ方式

いずれの配電用変電所も2つの異った電源プスから受電できるよう、2次送電線をπ型引 込とする方式

b. フイーダートランス方式

配電用変電所に設置する変圧器1台ごとに、電源プスから専用の2次送電線を設ける方式

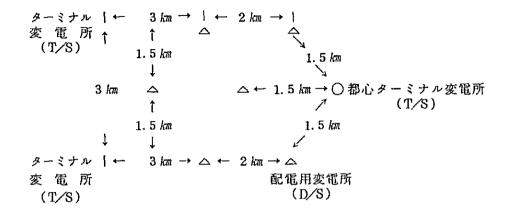
c. 2回線T分岐方式

2次送電線をすべて平行2回線とし、2回線T分岐によって各配電用変電所に引込む方式 一般的にいって、これら3つの方式のそれぞれは、工事費、供給信頼度、運用方法などにつ いて独自の特性をもっている。従ってどの方式を選ぶべきかは、各方式のもつ特性のうちどの 有利性を重視するかというポリシーに大きくかかわりをもつと思われるが、以下の項において 3つの方式を詳細に比較することとする。

(2) 同一変電所群に対し、すべての変電所を同じ方式で供給する場合の比較

前記3方式のもつ基本的特性を明らかにするために、1つの地域の配電用変電所群のモデルを作り、これらの配電用変電所群に供給するための2次送電系統が、3方式のうちのいずれかで統一されていると仮定して、投資額や信頼度等について比較を行なう。

この場合配電用変電所のロケーションモデルは、都市中心部地域(以下Aエリアと呼ぶ)、 都市周辺地域(以下Bエリアと呼ぶ)及び郡部(以下Cエリアと呼ぶ)において異ったものを 設定し、それぞれの地域における各方式を比較した。


比較する項目は構成モデル、所要機材と投資額、供給信頼度、および運用面の特性とした。 ただし所要機材と投資額の試算に当っては、方式の異りに応じて変化する機材のみを対象とし、 各方式に共通なものは計算に含まれていない。

なお、構成モデルを決める条件として、Aエリアは3つのターミナル変電所から引き出される地中送電線と、架空送電線の併用、Bエリアは2つの電源プスから引き出される架空送電線、

Cエリアは1つの電源プスから引き出される架空送電線を使用することとした。

a. Aエリアにおける各方式の比較

Aエリアの配電用変電所のロケーションモデルをつぎのごとく設定する。

これに対して各方式で供給するときの2次送電系統の構成モデルおよびそれぞれの投資額、 供給信頼度等を比較すると、表13-1のとおりである。

表13-1の結果のとおり、投資額はフィーダートランス方式が最も小さく、ついでタップドタイ方式、2回線T分岐方式の順に大きい。

一方信頼度の面から見ると、フィーダートランス方式と他の2つの方式との間には大きな差異がある。フィーダートランス方式の場合、送電線1回線事故時に変圧器1台のみが停電するが、他の方式の場合には変圧器2台もしくは4台の停電を伴なう。しかしながら、フィーダートランス方式の場合、停電した変圧器を別の電源で救済することは不可能であり、送電線の故障の修理が完了するまで長時間の停電が継続することとなるが、他の2つの方式の場合には、切替のためのCB操作時間のみの停電ですむ。このことは、ターミナル変電所のプス事故時にも同じである。

停電範囲の大きさと停電継続時間の長さのどちらを重視するかは、ポリシーの問題であるが、停電時間が短いことの方が社会的影響は少ないと思われる。

2回線T分岐方式は完全な二重構造であるから、送電線事故やターミナル変電所のプス事故時、短時間で回線の切替が可能であるが、他の方式と比して投資額は大きいのが欠点である。

以上を勘案すると、Aエリアにおける方式としてフィーダートランス方式が有利と考えられる。Aエリアは架空送電線と地中送電線が併用されているが、架空送電線のみでフィーダートランス方式の送電線を建設する場合は、送電線の事故率が地中線に較べて、高いことを考慮する必要がある。また、地中送電線のみでフィーダートランス方式を建設するのは事故率の面で有利であるが、負荷増とともに回線数が増しT/Sからの引出しが困難になり、かつ投資額も多い。

Type of	,				件处层板座。第甲件件	
system	system Connection model		Overhead line	Underground line	供給信頼度・運用特性	
Tapped	3 km 2 km 1/5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Subtransmission line	795MCM AA,lcct-5km. 2x795MCM AA,lcct-6km.	1600sq.mm Cu/PEX,lcct- 3km. 500sq.mm Cu/PEX,lcct- 1.5km. 795MCM AA,lcct-2km.	・送電線1回線事故時、1つまたは2つの配電用変電所が停電するが、短期間で他の電源へ切替ることが可能。 ・切替のため、他の変電所のCB操作が	
tie 15km 1/S T/S 8 D/S 8 D/S : Underground line : Overhead line	Substation switching and measuring facilities	6 Line Feeders (2000A CB, etc) 2 Line Feeders (800A CB, etc) 6 Trans. Feeders (800A CB, etc) 3 Bus Tie (800A LS,etc)	šame as left.	必要。 ・地中ケーブルの途中分岐が必要。		
	D/S :Distribution substation	Construction	TC.59,121 x 10 ³ .	TC.88,608 x 10 ³ .		
	O :Circuit breaker	cost	G.TTL TC.147,729	2 x 10 ³ ,		
Feeder		Subtransmission	120sq.mm HAl,2cct+9km.	150sq.mm Cu/PEX,2cct- 4.5km.	 ・送電線1回線事故時に、1バンクは教 済可能。 ・変圧器二次側ブス事故時、ターミナル 変電所のCBを開放するための方策が 	
transformer		Substation switching and measuring	6 Line Feeders (800A CB,etc)	same as left.	必要。 ・ターミナル変電所からの引出回線数が 多くなる。	
	T/S T/S	facilities				
	ම ම් ම් ම් හුර වර්ද	Construction	TC.29,448 x 10 ³ . G.TTL TC.110,340	TC.80.892 x 10 ³		
Double circuit		Subtransmission	2x400sq.mm TA1,2cct- 4.5km. 2x795MCM, AA, 2cct- 3.5km.	800sq.mm Cu/PEX,2cct- 3km. 500sq.mm Cu/PEX,2cct- 0.75km.	・送電線1回線事故時、1つまたは2つ の配電用変電所が停電するが、短時間 で健全回線に切替えが可能。 ・切替のCB操作は、自らの変電所のみ	
T-branch	T-branch T/S B B D/S B	Completies	4 Line Feeders (2000A CB, etc) 6 Line Feeders (800A CB, etc) 6 Trans. Feeders (800A CB, etc) 3 Bus Tie (800A LS,etc)	same as left.	で可能。	
	7/S \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		5 [TC.117,316 x 10 ³ .		

す

りが、一切る一切、れ一考率つ

供; ·:

差.

一電は場で

従って、フィーダートランス方式をもとに将来の送電線の拡充に当っては、別項(4)に詳述 するユニット方式の導入採用を考慮した方が良いであろう。

b. Bェリアにおける各方式の比較

Bエリアの配電用変電所のロケーションモデルを次のとおりとして、Aエリアと同じく比較した結果は表13-2に示す。

表13-2に見る如く、投資額においてはAエリアと同じくフィーダートランス方式が最も安い。しかし架空線における事故率が比較的高いことを考えると、この方式には信頼度上問題がある。この点から事故対応の容易なタップドタイ方式か、2回線T分岐方式が望ましいが、投資額からみてタップドタイ方式が好ましいと思われる。

c. Cエリアにおける方式の比較

Cエリアの配電用変電所のロケーションモデルをつぎのとおり1電源よりの供給として設定し、3方式を比較した結果を表13-3に示す。

表13-3においてタップドタイ方式として示されたモデルは、理論上真のタップドタイではなく、π引込による1回線供給である。信頼度の点からフィーダートランス方式は好ましくない。地域の信頼度の必要性に応じて、π引込の形か或いは2回線T分岐方式の適用を決めるべきである。

(3) 現在のタップドタイ方式に3つの方式で新設変電所を接続する場合の比較

現存設備がタップドタイ方式で構成されているとき、新しい配電用変電所への供給を3つの方 式を採用した場合について比較する。

比較項目は構成モデル、所要機材と投資額、供給信頼度および運用面の特性とするが、所要 機材と投資額の計算は方式に応じて変化する機材のみを対象とし、各方式に共通なものは含ま れていない。

なお構成モデルを決める条件として、新設変電所に供給するための送電線は、Aエリアは地

Type of	Connection model	Required facilities	and construction cost	供 給 信 頻 度 · 運 用 特 性
Tapped .	1/S 9 9 1/S 5	Subtransmission line	2x400sq.mm TA1, lcct-8km. 2x795MCM AA, lcct-4km. 2x795MCM AA, 2cct-4km.	・送電線1回線事故時、1つまたは2つの配電用変電所が停電するが、短時間で他の電源へ切替が可能。 ・切替のため、他変電のCBの操作が必要。
	D/S D/S : Overhead line 88 D/S T/S: Terminal substation D/S: Distribution substation	Substation switching and measuring facilities	8 Line Feeders (2000A, CB, etc) 6 Trans. Feeders (800A, CB, etc) 3 Bus Tie (2000A, LS,etc)	·
	O :Circuit breaker	Construction cost	TC.84,358 x 10 ³ .	
Feeder transformer	T/S T/S	Subtransmission line	120sq.mm HAl, 2cct-18km.	・送電線1回線事故時に、1バンクは救済可能。 ・変圧器二次側ブス事故時、ターミナル変電所のCBを開放 するための方策が必要。 ・ターミナル変電所の引出回線数が多くなる。
	응 응 영 D/S D/S S S S S S S S S S S S S S S S S S S S	Substation switching and measuring facilities	6 Line Feeders (800A, CB, etc)	
		Construction cost	TC.51,444 x 10 ³ .	
Double circuit T-branch	T/S 0 0 T/S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Subtransmission line	2x400sq.mm TA1, 2cct-8km. 2x795MCM AA, 1cct-4km. 2x795MCM AA, 2cct-4km.	 ・送電線1回線事故時、1つまたは2つの配電用変電所が停電するが、短時間で他の回線へ切替可能。 ・切替のCB操作は自らの変電所のみで可能。
	D/S D/S D/S S S S S S S S S S S S S S S	Substation switching and measuring facilities	4 Line Feeders (2000A, CB, etc) 6 Line Feeders (800A, CB, etc) 6 Trans. Feeders (800A, CB, etc) 3 Rus Tie (800A, LS, etc)	•
		Construction cost	TC.98,099 x 10 ³ .	

je stalego žino 👢

Type of	Connection model	Required facilities	and construction cost	供給信頼度・運用特性
Tapped	6km	Subtransmission line	2x400sq.mm TAl, lcct-6km. 795MCM AA, lcct-3km. 2x795MCM AA, lcct-3km. 2x795MCM AA, 2cct-6km.	・送電線1回線事故時、1~3の変電所が停電し、事故復 1日まで救済不能。
	:Overhead line D/S T/S:Terminal substation D/S:Distribution substation O:Circuit breaker (a):Transformer	Substation switching and measuring facilities Construction cost	6 Line Feeders (2000A, CB, etc) 6 Trans. Feeders (800A, CB, etc) 3 Bus Tie (2000A, LS, etc) TC.84,834 x 10 ³ .	
Feeder transformer	T/S 8 8 8 D/S D/S	Subtransmission line Substation switching and measuring	120sq.mm HAl, 2cct-33km. 6 Line Feeders (800A, CB, etc)	 ・送電線1回線事故時、1バンクは救済不能。 ・変圧器二次側ブス事故時、ターミナル変電所のCBを開放する方策が必要。 ・ターミナル変電所の引出回線数が多くなる。
	ම් ම් D/S	facilities Construction cost	TC.88,104 x 10 ³ .	
Double circuit T-branch	1/S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Subtransmission line	2x400sq.mm TA1, 2cct-6km. 2x795MCM AA, 1cct-9km. 2x795MCM AA,2cct-3km.	 ・送電線1回線事故時、1つまたは2つの配電用変電所が 停電するが、短時間で他の回線へ切替可能。 ・切替のためのCB操作は自らの変電所のみで可能。 tion with power interruption.
	T/S	Substation switching and measuring facilities Construction cost	2 Line Feeders (2000A,CB, etc) 6 Line Feeders (800A, CB, etc) 6 Trans. Feeders (800A, CB, etc) 3 Bus Tie (800A, LS, etc) TC.94,288 x 10 ³ .	

e de la company
中送電線と架空送電線を併用し、Bエリア、Cエリアは架空送電線を使用することとした。

a. Aエリアにおける各方式の比較

Aエリアにおける既設配電用変電所および新設配電用変電所のロケーションのモデルは、 前項(2) - a に用いたモデルと同じものを使用し、中央部の2つの変電所が新設変電所である と仮定する。表13-4はその比較を示す。

投資額はフィーダートランス方式が最も小さいが、前項(2) - a で記した信頼度上の特質を もっている。

タップドタイ方式では、既設の地中ケーブルの容量が不足するため、既設地中ケーブルへのT分岐接続が不能であることが、投資額を大きくする原因である。

b. Bエリアにおける各方式の比較

Bエリアにおける配電用変電所のロケーションモデルは、前項(2)-bに用いたモデルと同じものとし、下方の変電所を新設変電所を仮定する。比較の結果を表13-5に示す。

c. Cエリアにおける各方式の比較

Cエリアにおける配電用変電所のロケーションモデルは、前項(2)ーcに用いたモデルと同じものとし、下方の変電所を新設変電所と仮定した。

比較の結果を表13-6に示す。

(4) 地中線系統

a. 地中送電線系統の特徴

2 次送電線の地中送電線による構成を考える場合、架空送電線による構成とは全く異った 考え方が必要である。

架空線は熱放散が容易なため送電容量を大きくし易く、また線路の途中分岐、電線の張替 等が容易にできる特徴がある。これに対し地中線には次のような特徴がある。

- 一地中埋設工事費が架空工事費に比べ高い。
- 一地中ケーブルの送電容量は、同じ導体断面積をもつ架空線に比べて小さい。
- 地中ケーブルの途中分岐、取替等が高価につく。
- 架空線に比べ雷、車両、樹木等外的要因に依る事故は少ない。
- b. 地中送電線系統構成の各方式
 - i) フィーダートランス方式

この方式は地中送電線による構成方式としては最も簡単であり、 T/S(ターミナル変電所)から配電用変電所の変圧器各パンク毎に1回線のケーブルで送電する方式である。 この方式は次のような特徴をもつ。

- ーT/S側にCBを設け、配電用変電所側のCBを省略し、変圧器間を結ぶプスも省略する。
- 1回線故障時には1バンクが停電する。
- ー 需要増加に伴ない配電用変電所の変圧器が増える毎に、ターミナル変電所の C B および

Tabel 13-4 Comparison of system in A area

Type of system		Required facilities	and costruction cost		111. 11A 1 bee who was ITT 81d* All.
system	Connection model		Overhead line	Underground line	供給信頼度・運用特性
Tapped	TS	Subtransmission line	795MCM AA, leet-3km.	500sg.mm Cu/PEX,2cct- 1.5km.	 ・送電線1回線事故時,1つまたは2つの配電用変電所が停電するが,短時間で他の回線に切替可能。 ・切替のため,他の変電所のCB操作が必要。
tie		Substation switching and measuring facilities	2 Line Feeders (800A, CB, etc) 2 Trans. Feeders (800A, CB, etc) 1 BUS Tie (800A, LS, etc)	same as left.	・既設ケーブルの途中分岐は容量不足のため不能。
	D/S :Distribution substation	Construction	TC.14,225 x 10 ³ .	TC.36,047 x 10 ³ .	
	O :Circuit Breaker breaker	cost	G.TTL. TC.50,2	272 x 10 ³ .	
Feeder		Subtransmission line	120sq.mm HAl, 2cct-3km.	150sq.mm Cu/PEX, 2cct- 1.5km.	 ・送電線1回線事故時,1バンクは救済不能。 ・変圧器二次側プス事故時,ターミナル変電所のCBを開放する方策が必要。 ・ターミナル変電所からの引出回線数が多く
transformer		Substation switching and measuring facilities	2 Line Feeders (800A, CB, etc)	same as left.	なる。
		Construction	TC.9,816 x 10 ³ .	TC.26,802 x 10 ³ .	
		cost	G.TTL. TC.36,6	518 x 10 ³ .	
Double circuit		Subtransmission line	Size-up to. 2x400sq.mm TA1,2cct- 1.5km. New. 795MCM AA, 2cct-1.5km.	500sq.mm Cu/PEX, 2cct- 1.5km.	 ・送電線1回線事故時,1つまたは2つの配電用変電所が停電するが,短時間で他の回線へ切替可能。 ・切替のためのCB操作は自らの変電所のみ
T-branch	T/S 8 8 0/S	Substation switching and measuring facilities	1 Line Feeder (2000A, CB, etc) 2 Line Feeders (800A, CB, etc) 2 Trans. Feeders (800A, CB, etc) 1 Bus Tie(800A,LS,etc)	same as left.	・切合のためのし日保下は日うの友権がつう。
		Construction cost	TC.19.328 × 10 ³ . G.TTL. TC.58,0	TC.38.755 $\times 10^3$.	

Type of	Connection model	Required facilities	and construction cost	供給信賴度•運用特性
Tapped tie	4Km	Subtransmission line	Rearrangement. 2x400sq.mm TAl,lcct-8km. 2x795MCM AA, lcct-4km. New. 2x795MCM AA, 2cct-4km.	 ・送電線1回線事故時、1つまたは2つの配電用変電所が停電するが、短時間で他の回線へ切替可能。 ・切替のため他の変電所のCBを操作が必要。
	D/S D/S D/S D/S D/S T/S :Terminal substation D/S :Distribution substation	Substation switching and measuring facilities	2 Line Feeders (2000A, CB, etc). 2 Trans. Feeders (800A, CB, etc) 1 Bus Tie (2000A, LS, etc)	
	O :Circuit breaker	Construction cost	TC. 39,854 x 10 ³ .	
Feeder transformer	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Subtransmission line	New. 120sq.mm HA1, 2cct-10km.	・送電線1回線事故時、1バンクは救済不能。 ・変圧器二次側ブス事故時、ターミナル変電所のCBを開放 する方策が必要。
	T/S Ø Ø D/S	Substation switching and measuring facilities	2 Line Feeders (800A, CB, etc).	
		Construction cost	TC. 26,924 x 10 ³ .	
Double circuit T-branch	T/S 0 0 T/S	Subtransmission line	Size-up. 2x400sq.mm TA1,2cct-8km. 2x795MCM AA,2cct-4km. New. 795MCM AA,1cct-4km.	 ・送電線1回線事故時、1つまたは2つの配電用変電所が停電するが短時間で他の回線へ切替可能。 ・切替のCB操作は自らの変電所のみで可能。
	T/S 0 0 0 0 T/S T/S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Substation switching and measuring facilities	2 Line Feeders (2000A,CB, etc) 2 Line Feeders (800A,CB, etc). 2 Trans. Feeder (800A,CB, etc). 1 Bus Tie (800A, LS,etc).	
		Construction cost	TC. 55,429 x 10 ³ .	

Type of	· Connection model	Required facilities	and construction cost	供給信頼度・運用特性
Tapped tie	6 Km	Subtransmission line	Size-up to. 2x400sq.mm TA1, lcct-6km. 2x795MCM AA, lcct-3km. New. 2x795MCM AA, 2cct-6km.	・送電線1回線事故時,1つまたは2つの配電用変電所が停電 し,事故点復旧まで救済不能。
	:Overhead line 88 T/S :Terminal substation D/S :Distribution substation O :Circuit breaker	Substation switching and measuring facilities Construction cost	2 Line Feeders (2000A, CB, etc) 2 Trans. Feeders (800A, CB, etc) 1 Bus Tie (2000A, LS, etc) TC.44,907 x 10 ³ .	
Feeder transformer	STransformer	Subtransmission line	New. 120sq.mm HA1, 2cct-15km.	 ・送電線1回線事故時、1バンク救済不能。 ・変圧器二次側プス事故、ターミナル変電所のCBを開放するための方策が必要。
	D/S D/S D/S D/S D/S D/S	Substation switching and measuring facilities	2 Line Feeders (800A, CB, etc)	
		Construction cost	TC.39,144 x 10 ³ .	
Double circuit T-branch	0	Subtransmission line	Size-up to. 2x400sq.mm TA1, 2cct-6km. 2x795MCM AA, 2cct-6km. New. 795MCM AA, 2cct-6km.	 ・送電線1回線事故時、1つまたは2つの配電用変電所が停電するが、短時間で他の回線へ切替可能。 ・切替のためのCB操作は自らの変電所のみで可能。
	T/S	Substation switching and measuring facilities	<pre>1 Line Feeder (2000A, CB, etc) 2 Line Feeders (800A, CB, etc) 2 Trans. Feeders (800A, CB, etc) 1 Bus Tie (800A, LS,etc)</pre>	
		Construction cost	TC.50,911 x 10 ³ .	

- .

Ŕ , •

> } !

ケーブルも増設しなければならない。

-配電用変電所の変圧器二次側事故の保護ができない。 上記の各項に対する改善策として以下の対策が必要である。

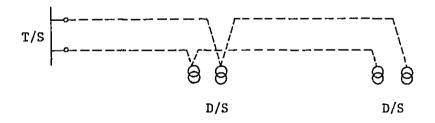
一1回線事故対策

1回線事故時、他のバンクから配電線に電力を供給できるよう、変圧器の常時負荷限度を下げ利用率を低くしておく(2バンクの場合、利用率約55%、3バンクの場合、利用率約73%)あるいは、配電系統を通じ、他の配電用変電所から容易に供給できるような施設を作っておく。

ーターミナル変電所の引出回線増加対策

ターミナル変電所の建設時に予め地中管路を多管路作っておくと同時に引出用CB設置のスペースも十分とっておく。

- 変圧器 2 次側事故対策

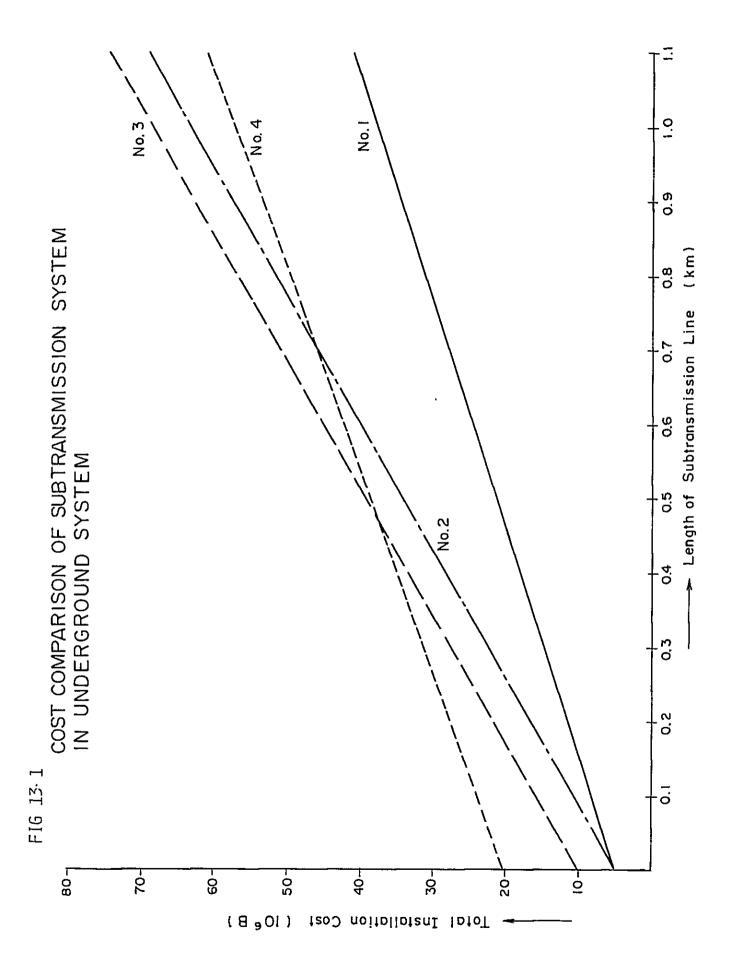

ターミナル変電所と配電用変電所間に信号伝送設備を設け、変圧器2次側事故時ターミナル変電所側のCBを転送遮断させる。

フィーダトランス方式の変形として、2ターミナル変電所から受電する方式もある。との場合は、1ターミナル変電所事故時は他のターミナル変電所から受電でき、また1ケーブルの事故時には事故ケーブルを切離した後、健全ケーブルから受電でき信頼度の向上がはかれるが、その分だけコストが高くつく。

ii) ユニット方式

都市の需要密度が高く配電用変電所の数も多くなり、フィーダートランス方式では引出 設備の数が多くなるので、このような場合ユニット方式がとられている。

ユニット方式とは、フィーダートランス方式をモディファイして、複数の変圧器に対して1つのフィーダで供給するもので、つぎのような結線を行なうものである。



この方式では引出設備の数は少くてすむ。ただし1回線事故時には、その回線に接続されている変圧器はすべて停電するが、停電する変圧器は各配電用変電所ごとに分散されているので、前述の1回線事故時の対策をたてておけばよい。

この方式の変形として、1変圧器の事故のため同じフィーダで供給している他の変圧器

Connection model	Required facilities and construction cost	各方式の特徴.
No.1. Feeder transformer system	Subtransmission line. 150sq.mm Cu/PEX, 2cct-2xL km. Substation. 4 Line Feeders (800A, CB, etc). Total construction cost. TC. (4,968 + 32,640 x L) x 10 ³ .	 (1) 1フィーダー1トランスでD/S側の開閉装置およびブス装置は省略する。 (2) トランス二次側故障時の転送しや断設備が必要である。 (3) 1フィーダー故障時には1トランスが停電する。
No.2. Unit system-(1)	Subtransmission line. 800sq.mm Cu/PEX, 2cct-2xL km. 150sq.mm Cu/PEX, 2cct-L km. Substation. 4 Line feeders (800A, CB, etc) Total construction cost. TC. (4,968 + 57,884 x L) x 10 ³ .	 (1) 1フィーダーに2トランスが接続され、各D/S側の開閉装置およびブス装置は省略する。 (2) D/S間に連絡フィーダーを作り、各トランスとも2 T/S に接続される。 (3) トランス二次側故障時の転送しや断設備が必要である。 (4) 1フィーダー故障時に2トランスが停電するが、故障区間切離し作業後は、すべてのトランスに供給可能である。 (5) ただし、1トランス事故時に他のトランスが同時に停電する。
No.3. Unit system-(2)	Subtransmission line. 800sq.mm Cu/PEX, 2cct-2xL km. 150sq.mm Cu/PEX, 2cct- L km. Substation. 8 Line feeders (800A, CB, etc) Total construction cost. TC. (9,936 + 57,884 x L) x 10 ³ .	(1) 上記方式にトランス保護用の開閉装置を取付ける。 (2) 転送しや断設備は不要となる。 (3) 1トランスの事故が他のトランスへ波及しない。
No.4. Tapped tie system	Subtransmission line. 1600sq.mm Cu/PEX, lcct-2xL km. 800sq.mm Cu/PEX,lcct- L km. Substation. 6 Line Feeders (2000A, CB, etc) 4 Trans. Feeders (800A, CB, etc) 2 Bus Tie (2000A, LS, etc) Total construction cost. TC. (20,592 + 36,347 x L) x 10 ³ .	 (1) D/S に送電線用開閉装置とブス装置を設ける。 (2) 送電線は1回線で済むが、ケーブルサイズは太くなる。 (3) 1フィーダー故障時には、他のフィダーから供給が可能である。 (4) 1トランス事故が他へ波及しない。

(5) Examples of system composition in Japan

System composition of subtransmission lines of 9 private utilities companies of Japan is given in the following Table 13-8.

Table 13-8 Examples of system composition in Japan

W	Constant	Underground	Remarks
Name of po- wer company	Overhead system	system	Remarks
Hokkaido	2 cct, "T" branch	Combination of 2 power sourch "" connection and 2 cct "T" branch	
Tohoku			Very small underground system
Tokyo	tt	Unit system	Large consumers, SS are π loop system
Chubu	11	Feeder transformer system	Large consumers, SS are π loop system
Hokuriku	ıı		Very small underground system
Kansai	11	2 power source Tr connection	large consumer, combination of X loop connection and 2 cct T branch
Chugoku	ıt	Combination of 2 power source connection and unit system	
Shikoku	ıt	Unit system	
Kyushu	11	2 power source, connection	

が停電するのを防ぐため、各変圧器の1次側にCBを設置する場合がある。

また、前項と同じく2ターミナル変電所から受電する方式も用いられる。

in) タップドタイ方式

この方式は1回線事故時でも他の回線から受電できるよう配電用変電所側に、受電回線 切替用のプス設備を設ける。2ターミナル変電所から受電する構成にすれば信頼度は更に 向上する。

信頼度は高くなるが、一方プスの設備費およびケーブル費(2以上のバンクに供給するためケーブルサイズは太くなる)が高くなる。

このコストアップを防ぐため、配電用変電所側のCBを省略しLSのみでプスを構成する場合もある。

この方式では、配電用変電所の数が多くなると、ターミナル変電所の引出ケーブルも太 くする必要があり、地中ケーブル1回線の送電容量により限度が生じる。

c. 各方式の比較

上述のように各方式にはそれぞれの特徴があり、これを比較すると表13-7のようになる。この表に示すような4つのモデルについて、各変電所間の距離UDをパラメーターとしてコストを算出し、グラフに示すと第13-1図のようになる。

第13−1図においてLが小さい時には、モデル№1(フィーダートランス方式)のコストが最も安く、信頼度向上のための設備が付加されるごとにコストは順次高くなる。

L がある値以上になると、管路およびケーブのコストが高くつくためモデル№ 2, № 3(ユニット方式)のコストが№ 4(タップドタイ方式)のコストより高くなる。

この図で示されたユニット方式とタップドタイ方式のコスト直線の交点の値は、このモデル計算の条件のもとでの数値であることに注意されたい。

しかしながら、一般的傾向として次のことが言える。

- ーフィーダートランス方式は、信頼度は低いがトータルコストは安い。
- ーユニット方式と、タップドタイ方式のコストは、管路、ケーブルの長さによって決まる。
- 配電用変電所がさらに増えた場合など、このモデル以外のケースについては、その都度コスト計算のうえ比較検討する必要がある。

(5) 日本における系統構成方式例

日本の9電力会社における2次送電系統の系統構成方法の概要は次表のとおりである。

電	カ	系 統	構 成 方 式	摘要
会	社 名	架空線系統	地中線系統	7 16 安
北	海道	2回線T分岐	2 電源 π 引入および 2 回線 T分岐併用	
東	北	"		地中線系統極めて少ない
東	京	"	ユニットサブステーション 方式	大口需要家SSはπルー プ方式
中	部	"	フィーダートランスフォー マ方式	大口需要家SSはπルー プ方式
北	陸	"		地中線系統極めて少ない
関	西	"	2 電源 π 引込み	大口需要家は πループ および 2 回線 T 分岐併用
中	围	"	2 電源 π 引込およびユニットサプステーション併用	
四	国	"	ユニットサプステーション 方式	
九	州	"	2 電源 π 引込	

上表に見るごとく、地中系統の構成方式が地域ごとに異っているが、いずれもそれぞれの地域における立地条件や需要特性などに応じた拡充の歴史をもつものであり、9社に共通な方式はない。

9社のうち数社が採用しているユニット方式および中部のフィーダートランス方式においては、配電用変電所はすべて完全無人であり、ターミナル変電所からリモートコントロールされている。すなわち配電線による融通のための連系を強化した上、制御用施設が整備されることを条件として上記方式を採用している。

MEAがもしフィーダートランス方式やユニット方式を採用するとした場合、日本と同じ考 え方に立つことについて十分な検討が必要であろう。

架空系統については共通して2回線T分岐方式が使用されている。日本では、2次送電線は 通常専用の鉄塔線路を使用するので、平行2回線が通常の姿となることからこの方式が最も便 利なものとなる。MEAの場合は、配電線と共用のコン柱で道路沿いに建設されるので、建物 等の関係で1回線線路が増える。

従ってタップドタイ方式がやり易い方式となったものと思われる。

(6) 結 論

a. 都市中心部(Aエリア)における拡充

MEAが使用して居るタップドタイ方式は、配電線を共架した架空線路を使用する場合においてのみ効果的な方式である。

都市化の進展に伴い1ルートに1回線しか架設できない状況となっても、1回線πループ で構成するタップドタイ方式は、経済的かつ高い信頼度の方式である。

しかしこの方式は、負荷の増大とともに多くの回線を必要とし、電線サイズは大きくなって支持物の強度の不足を来たすなど 制約を受けることが考えられる。この状態は負荷密度が高くかつ、伸びの大きい都市中心部において早く出現する。

この地区での新しい回線は地中線とせざるを得ないが、地中線は架空線と異なる特性を有し、第49項に述べたごとく、フィーダートランス方式を基本とした独自の方式を考慮する必要がある。

一方において、系統が地中線で拡充されるとき、現有の架空系統を撤去するのは経済的でない。都市美観の見地から、地中化を要求されることは考えられるが、そのときは配電線も同時に地中化しなければ、美観の点から意味がない。故に地中化を実施するとしても、特殊な一部地域に限られると思われる。従って現有架空系統は将来も有効に使用すべきであり、地中・架空併用のタップドタイ方式として拡充するのが有利である。

以上のことから、Aェリアの拡充に当っては、現有設備を利用した架空・地中併用系統と、 ターミナル変電所から近い所に建設される新しい配電用変電所に対するフィーダートランス 方式の地中系統を適切に構成することが望まれる。

b. 都市周辺部(Bエリア) における拡充

Bエリアにおいては、一部に地中線が用いられることはあっても、大部分は架空系統である。架空系統は地中系統に比して事故率の高いこと、Bエリアでは配電線の相互連系が完全には行ない難いこと、などからフィーダートランス方式は好ましくない。原則としてダップドタイ方式で拡充し、配電用変電所の数が多くなった時は、2回線T分岐方式に移行すると思われる。

c. 郡部(Cエリア)における拡充

○エリアにおいては、配電用変電所とターミナル変電所との距離が長く、2つの電源プスから引き込むことは無理なケースが多い。1回線放射状の系統は信頼度が低いことは明らかで、これをカバーするため、必要に応じ、2回線T分岐方式を採用するとよい。

Appendix 14. 配電電圧に関するスタディ

(1) 日本における都市配電電圧のスタディ

一般的に言って、ある地域における適正な配電電圧は、その地域の負荷密度と需要構成によって決まる。しかし、大都市における電力需要は、経済成長に伴って急速に上昇し、需要構成もまた変化してゆくのが常である。それらの変化に対応して不安のない供給を継続するための配電電圧及び配電方式に関するスタディが日本においてなされた。

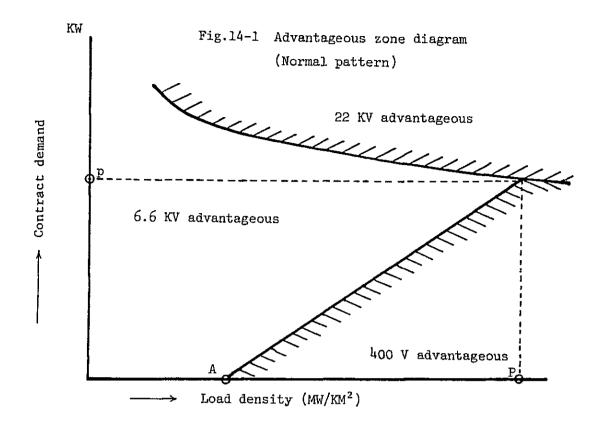
MITI(日本政府通産省)は、政府スタッフ及び9電力会社の専門家で構成された"過密化対策委員会"を設立し、都市における配電問題を検討した。この委員会は、1971年5月にファイナルレポートを日本政府に提出した。

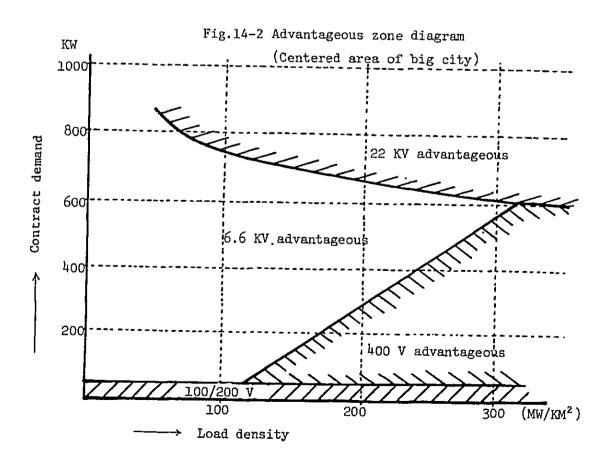
次項(2)にその報告内容の一部を示す。

(2) 負荷密度と配電電圧

都市の発展とともに電力需要の増大も著しく、とくに都市中心部の電力負荷密度が極めて高くなったため、設備の拡充、高信頼度の保持、設備の管理、安全の確保等が大きな困難となった。現行方式(6kV/200V)を続けていたのでは、安定した供給力を確保することが難しいと思われた。新しい配電電圧が検討され、

- 負荷密度の現状と将来予測
- ー現在の技術レベル
- 既設設備との関連


等を総合的に検討した結果、過密都市に対しては22kV/400 V が好ましいとの結論が得られた。


この22kV/400V 配電方式は高密度地域で有効な配電方式であるが、すべての高負荷密度地域で有利であるとはいえず、需要構成と負荷密度にによって大きく左右される。

負荷密度及び需要構成をバラメーターとし、契約電力に応じて需要家供給電圧の区分を変化させて経済比較を行うと、その結果は第1図のごときバターンで表わされる。Fig14-1において、負荷密度がPMW/kdを超過すると、すべての需要家が22kV又は400Vでの供給が最適であることを示している。このPの値は、需要構成のバターンによって異なる。

東京の中心地域の需要構成を適用すれば、Fig14-2に示すとおりとなる。第2図に基づいて、負荷密度の或る値、例えば100MW/kiiの断面で、22kV/400Vに統一して供給したと仮定する。この場合22kV/400Vを採用することのメリットは、750kW以上のスポット負荷への供供に現われるのみである。しかしこの負荷密度ではスポット負荷のウェイトは少ない。従って、負荷密度が100MW/kiiの断面では22kV/400V採用のメリットは現われないといえる。

次に、負荷密度が100MW/kiiを超えて大きくなるに従って22kV/400V供給の有利な需要家

が増え、300MW/Km²に達すれば、すべての需要家が22KV/400V 供給が有利となる。従って100MW/Km²と300MW/Km²の中間の或る負荷密度の断面において22KV/400Vに統一して供給することによるメリットとデメリットが等しくなる点が存在する。

この限界点を求めるために、委員会は東京の中心部約50㎞の現状をベースとしてつぎの3つの方式のもとで試算を行った。

- 22kV/400 配電
- 22kV/400 及び 6kV/200 併用
- 6kV/200V (現在方式)

Fig14-3に、各方式のM当り投資額を示す。 Fig 14-3 は、 22kV/400V 方式がメリットを 現わすのは負荷密度が約 150MW/kiiも 超えたのちであることを示している。

以上は日本において検討された内容である。この結果をMEAの設備に適用すれば次のことが言える。MEAの現在の負荷密度は、バンコック市中心部で(A area)平均8MW/kmi(最高20MW/kmi)であり、20年後の需要想定値から想定しても平均20MW/kmi(最高60MW/kmi)にしかならない。従って配電電圧の経済性からいえば、少くとも今後20年間のうちに24kV昇圧の必要性は現われないと考えられる。

(3) モデルによる12kV, 24kV建設費試算例

(本項の試算例は、前述の委員会報告とは無関係のものである。)

a. 比較の前提条件

1) 設備標準

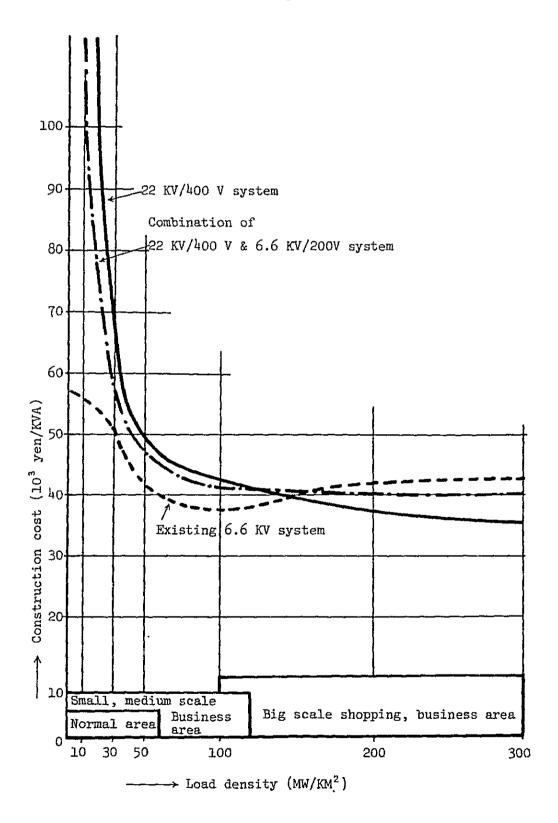
比較に使用した設備標準は、現行MEA設備標準による。

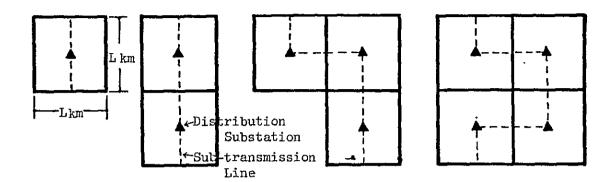
(1) 設備標準……比較に使用した設備標準は次表のとおり

設

	1 2kV	2 4 kV	備	考
D/S の 容 量	2×40 MVA	2×40 MVA		
送電線サイズ	2×795MCM	2×795MCM		
D/Sフィーダケーブル	Cu 650MCM	Cu 650MCM		
D/S 引出フィーダ数	1 2	6		
負荷配電線サイズ	AA336.4 MCM	AA336.4 MCM		
スポット負荷用ケーブル	Cu 650MCM	Cu 650MCM		

備


標


华

(注) D/S: Distribution Substation

- ii) 1配電用変電所の供給区域及び送電線、配電線のモデル
 - 1 D/Sの供給区域を一辺ℓkmの正方形とする。
 - 1 D / S 当り送電線亘長はℓ m とする(Fig 14-4)

Fig.14-3 Comparison of construction cost

Length of subtransmission line per one distribution substation is ℓ km.

Fig. 14-5 Model of distribution line

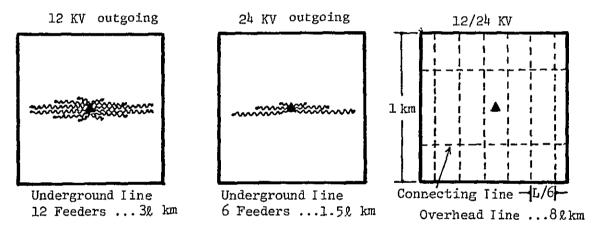
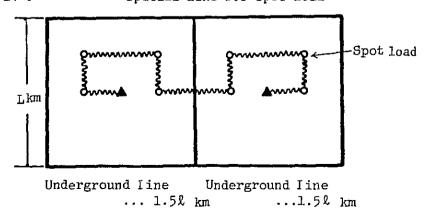



Fig.14-6 Model of special line for spot load

- D/Sから引出す配電線は地中線とし、架空の配電線との接続はFig14-5のとおりとする。
- -架空配電線はℓ/6㎞の間隔で建設されるものとする。(Fig14-5)
- ースポット負荷用配電線はすべて地中線によるπループ方式とし、隣接配電用変電所の スポット負荷用配電線と連けいする(Fig 14-6)
- ースポット負荷とは、12kV配電線の場合1,000kW以上、24KV配電線の場合2,000kW 以上の負荷を指す。

ii) Calculation Criteria

負荷密度をDMW/laiとすると計算諸元はTable 1のようになる。

負荷密度の変化に対応した主要な計算諸元を図示するとFig 14-7 のようになる。

	1 2kV	2 4 k V	備	
需要密度(MW/km	D D	D		
(注1) 1 <i>温</i> 当 り D/S ‡	$N = \frac{D}{\alpha}$	$N = \frac{D}{\alpha}$	$\alpha = 80 \times$	
1D/Sの 供給 面積(k	i) 1/N	1/N	}	
1D/S供給区域の一辺(ki	$\ell = \sqrt{\frac{1}{N}}$	$\ell = \sqrt{\frac{1}{N}}$	<u> </u>	
1D/S引出フィーダ亘長(k	a) 3 l	1.5 ℓ	 	
1D/S架 空 配 電 線(ki	a) 8 l	8 ℓ	 	
1 D/S 内配電トランス容量 (MVA	$) R = \frac{80 \text{MVA}}{\beta}$	$R = \frac{80 \mathrm{MVA}}{\beta}$	I A	シス利用率 Ps利用率
1D/S内スポット用地中配電線 (ka	1.5 $\ell \cdot m_1$	1.5 l·m2		<u>.</u>

Talb 14-1 計 算 諸 元

(注1) D/S: Distribution Substation

(注2) スポット用配電線数の計算(m1, m2)

都市の負荷密度が高くなると契約電力が 1,000 kWあるいは 2,000 kW以上のスポット負荷が増加する。

日本におけるスポット負荷率の例を参考に、バンコックのスポット負荷率をFig14-8のように想定する。

この率により、それぞれの需要想定に応じたスポット負荷の値を算出し、12kV および24kVごとに必要なスポット用配電線数を計算する。

iv) 建設費の計算式

各設備別建設単価をTable 14-2のように表すと、建設費の計算式は(a) および(b) のとおりとなる。

Table 14-2 各設備別単価 (単位:10 B)

	単 位	1 2kV	2 4 kV	備考
D/S	個所	S_1	S_2	
69KV配電線	ckt∙ <i>k</i> m	t	t	
地中配電線	"	uı	U 2	
架空配電線	"	h ₁	h ₂	
配電用変圧器	MVA	d ₁	₫₂	
配電用機器	MVA	eı	e ₂	

※B:バーツ

(a) 1 2 kV 系統

1 D/S当り建設費(C₁)

$$C'_{1} = S_{1} + \ell \cdot t + 3\ell u_{1} + 8\ell h_{1} + R(d_{1} + e_{1}) + 1.5\ell m_{1}, u_{1}$$

$$MW$$
当り建設費 $C_i = \frac{C_i'}{1 D/S 内需要}$ 10³ B/MW

(b) 2 4 kV 系統

1 D/S当り建設費(C2)

$$C_2' = S_2 + \ell \cdot t + 1.5 \ell u_2 + 8 \ell h_2 + P (d_2 + e_2) + 15 \ell \cdot m_2 \cdot u_2$$

$$MW$$
 当 り 建設費 $C_2 = \frac{C_2'}{1 \text{ D/S 内需要}}$ 10⁸ B/MW

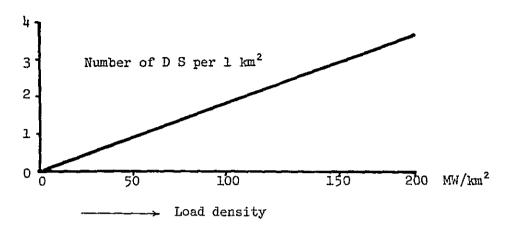
b. 建設费の計算結果

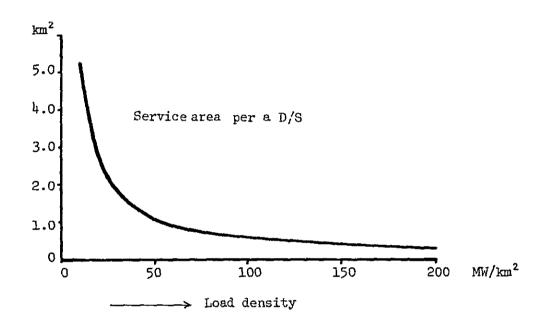
MEAの"THE FIFTH" に用いられている各設備別建設単価を用いて負荷密度ごと に12kV, 24kVの建設費(10⁸B/MW)を計算するとFig 14-9のようになる。

これによると負荷密度約120MW/kii 以下では12kVが有利、120MW/kii 以上となれば24kVが有利となる。

c. 配電線電圧降下および配電線路ロス

i) 配電線電圧降下


前述のモデルにより配電線最大電圧降下を計算すると、負荷密度10MW/MIにおいて、


1 2 kVで約150 V、24 kVで約100 Vである。負荷密度が増加するに従い、配電線亘長は短くなり電圧降下もこれらの値以下となるので問題ない。

ii) 配電線路ロス電力量の評価

同様のモデルにより年間配電線路ロス電力量を算出し、ロス電力量評価単価(EGATからの購入電力料単価)で評価すると、線路ロスは24kVの方が12kVより少ないが、変圧器ロスは24kVの方が12kVより多くなり、互に相殺されるため前記(2)の経済比較結果に大きく影響を与えるものではない。

Fig.14-7 Calculation criteria

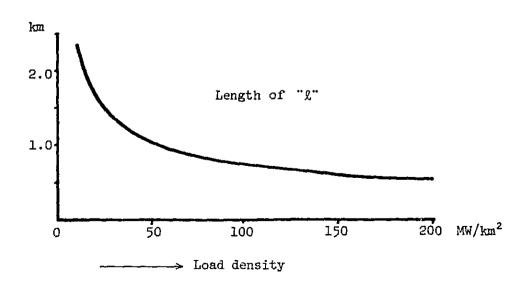
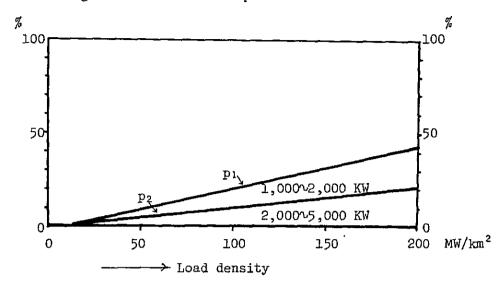
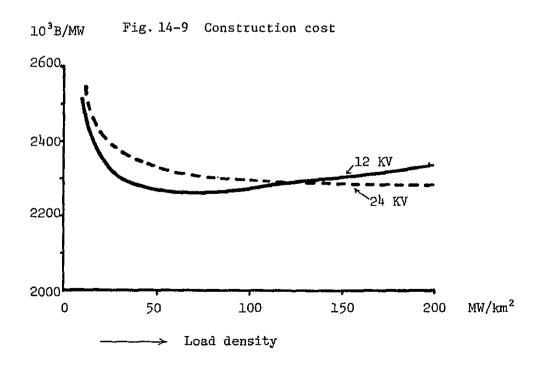




Fig.14-8 Forecast of spot load rate

Appendix 15. MEAの建設・設計基準に関する検討結果

(1) 緒 言

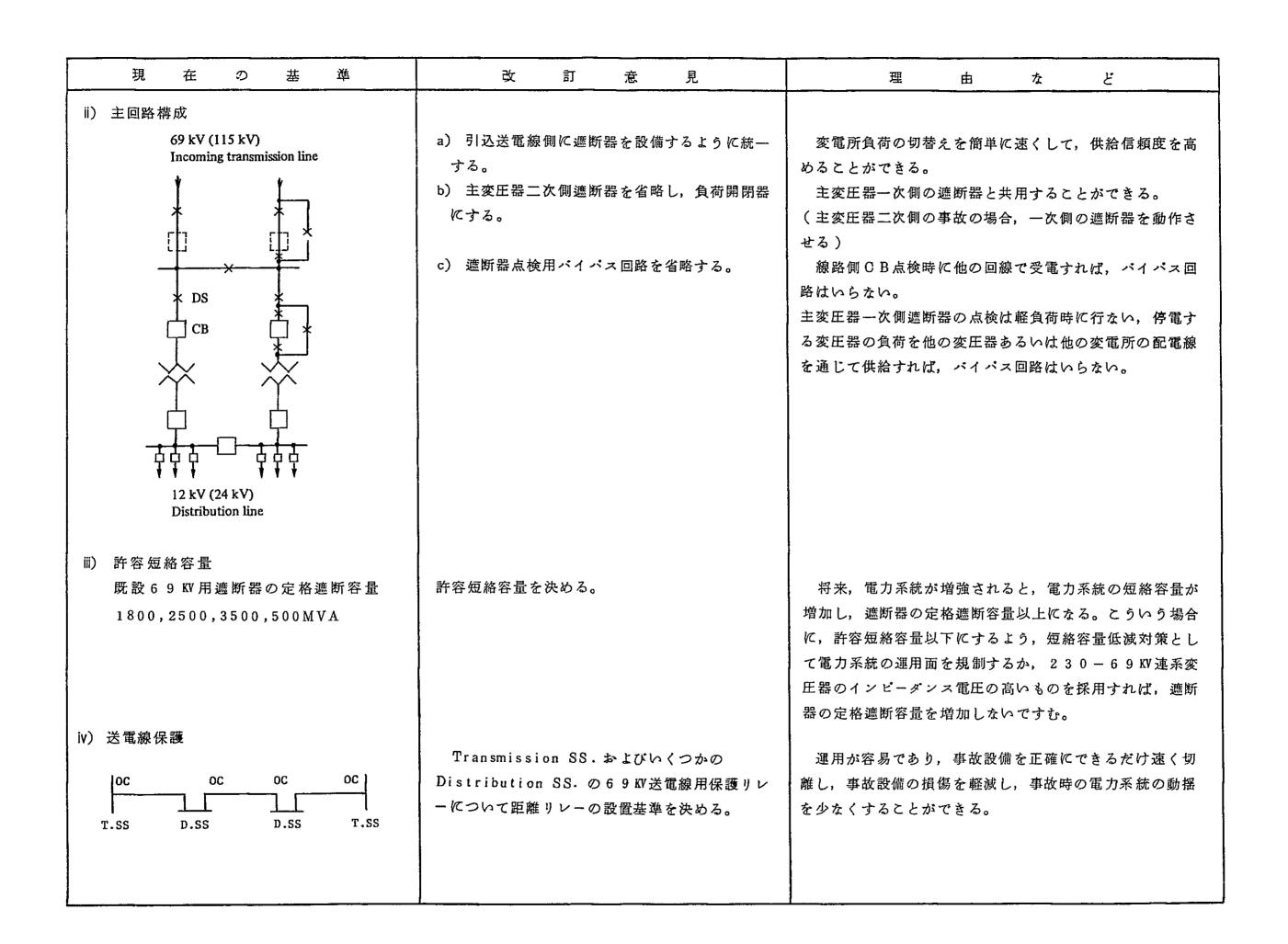
MBAは2次架空送電線路の架空配電線路及び地中配電線路建設に関し、詳細な建設基準(以下"基準"と称す)を保有している。これのメリットは設計の簡素化、資材の規格化が図られるということで、今までの建設実績、運用実績等から見る限り、この"基準"は効果的に機能しており且大きな矛盾もないように見受けられる。しかしこの"基準"は約20年前に定められたもので、その後部分的に改訂、追加等の修正を行っているようには見受けられるが全般的にかなり古い技術が基本となっており、現在の技術との間に大きな違いがあれば見直す必要がある。

またパンコックは急速に大都市化し、今後もますますその傾向が進むものと想定されるが、 それに伴う設備規模の肥大化、環境条件の変化等により現状の"基準"では追随できなくなる ことが容易に想像できる。ここでは現行の"基準"を前述のような観点から眺め気付いた点、 疑問点等について以下に述べることとする。

なお、現行の"基準"は、そのほとんどが決定された仕様を図表で表現したもので、その決 定根拠、考え方といった詳細については記述していない。

したがって図・表 1 枚毎にその適否について指摘することは不可能であるのでMEAの基準の項目に分類して、現行"基準"及びMEAから得られた知識をもとに検討した。

なお、変電設備については 上記のような建設基準が入手できてなかった。MEAの変電所の機器の購買方式は、個別に機器仕様を作りそのつど個別発注をするという性格が強い。


しかしながら、現在のように系統規模が大きくなり、将来もさらに大きくなることを考えれば、変電所の個々の機器仕様を決めるに当り、一定の思想のもとに行われることが必要である。

また今後、変電所の建設が数多く行われるためどの変電所でも必要とする同じタイプの工事、 材料等については標準化をはかり、経済性の向上をはかるべきである。

現在の基準	改 訂 意 見	理 由 な ど
a. 電気機器類の規格		
MEAの規格類は、ANSI主体にきめられている。	必要なところは、IECをベースにした規格に順次改訂して行くべきである。	ANSIのいくつかの部分は、タイの実態と合致しない部分がある。 例 1) アメリカは60 Hz であるが、タイは50 Hz を採用している。 2) MEAの配電電圧は、12 kV・24 kVであるが、ANSIの該当する電圧・階級は15 kV・25 kVであり、ANSIそのままあてはめれば過絶縁の仕様になり経済的に不利である。

(3) 変 電

	改 訂 意 見	理由など
a. ターミナル変電所		
i) Double Bus 2CB方式	Double Bus 10B方式	CBの設置台数が多く,不経済である。
	DS * Line Bus CB C Bus Tr.	
ii) 1 ½プス方式	2 4 0 C D 0 2 4 # # 0 C D 4	
Line Normally open Y Tr. b. 配電用変電所	3台のCBのうち真中のCBを Normaly Closeとして運転する。	1 ½プス方式の特色である高信頼度運転の効果を発揮させるため。
i) 配電用変電所の標準容量 配電用変電所における主変圧器のユニット容量は40MVAとし、設置台数は2台である。	主変圧器の容量を20MVAおよび40MVA とし、設置台数は3台とする。	主変圧器のユニット容量および設置台数の適正性は,供給区域の負荷密度に応じ違えるべきである。

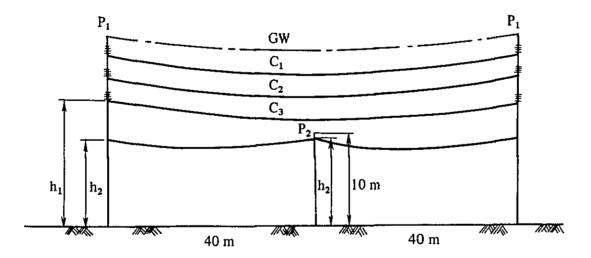
現在の基準	改 訂 意 見	理由など
V)自動復旧装置 採用していない。	送電線事故時の変電所自動復旧装置を採用する。	送電線事故により、変電所が停電した場合, 受電送電線 の切替が正確に早く出来る。
vi)配電線用キュービクル 屋内型を使用	屋外型キュービクルを採用する。	Buildingのスペースを小さくでき、建物工事等の削減 がはかられる。
vii)防音対策 採用なし	市街地の配電用変電所に防音壁、防音室等の防音対策を採用する。	付近住民からの苦情をなくする。

(4) 送 電 線

現 在 の 基 準	改	訂	意	見			理		由	な	٤	
a. 電 線												ļ
i) 電線の種類 (DWG.NG3602)	T + +	.	· · · · · · ·			_					an and a second control of the second	.
硬アルミより (AAC) 795MCM のみ	耐熱アルミ台	1金より級	(TAAC	3)795MC	JM	•					に機械的性質	`
使用している。	を加える。										温度が高い(A	l
											物は現行のまる	ŧ
									倍に増やも	_	らない所でも	
						_	_			むというケー		,
											へ 3出てきて経済	٤
					ĺ		リットが			wの配品)が	、田に名に辞り	
					ļ	μу /-	יא יו ע פי	- щ ~	0			
ni) 許容電流 (DWG.Na.3 6 0 2)										MEA	日本)
AAC795MCM	バンコックの	の気象統計	データー	(気温, 風	,速,		午容 電流	平常	時 I ₁ (A)		790	
平常時 800A	日射量, etc) ならびに	現在の電	線性能(許	容温			異常			1,064	
異常時 960A	度, ets)を考	慮して再	検討すべ	きである。		 	問囲温度	:	T (c)	4 0	4 0	
						亙	風 速	<u>[</u>	V (m/sec)	0.61	0.5	
					j		3 射		W (W/cm²)	0	0.1	
						#	辐射係数 比	i	Z	0.5	0.9	
					İ	ā	午容温度	平常	時 t ₁ (c)	8 0	9 0	
							//	異常	時 t ₂ (C)	100	1 2 0	
••	ļ					\				(0) - 1 m =	اشتعادت د بالا	
	:										流ならびに計	
					ļ	昇皕朱	汗を比較	くする	と上衣の』	通りで次のと	とが言える。	
					[一	・ンコック	の周	囲温度,「	日射は日本よ	りも悪条件下り	r.
						ある	はずなの	つで,	風速も含む	かて気象統計:	データをもとり	R
	<u> </u> 				-	見直	『す必要が	いある	0			
	1					一 許	「容温度は	t,現	在の電線性	生能から判断	して、日本での	カ
						採用	目値を推奨	そでき	る。			

現 在 の 基 準	改 訂 意 見	理由など
ii) 弛度(DWG.N0.3604,3605) a) 弛度表 等価径間が125mのケースについて のみ弛度表がある。	等価径間125mの他に数ケースの弛度表を作 成すべきである。	① 緊線区間の等価径間長をすべて125mにはできない。 ② 等間径間長が違えば弛度、張力とも異なるので、現行 のままでは支持物強度、クリアランス等に悪影響を与え る。
b) 架線時弛度と最終弛度 架線時弛度と最終弛度との間に 0.0 6 ~ 0.0 7 %のクリープを見込んでいる。	建設後比較的年数の経過している線路で電線の 弛度観測を行ない、計算上の架線時弛度と最終弛 度と比較するなど、クリープ量について再検討す るよう勧める。	 ① AACクリープ量は0.05~0.06%であるが、実際には 延線時にプレストレッチを行なうのと同じような効果が 出て、緊線完了後のクリープ量は上記の約半分となる。 ② 弛度・張力計算において実際の値より大きなクリープ 量を想定すると、実際の最終張力は設計値よりも大きく なり、支持物に設計値以上の荷重が加わることとなる。
iv) スペーサー(DWG. NQ3715) Preformed Spacer(flexible type) を採用している。	Semi-rigid type Spacer (comprising boltnut type clamps and a bar type b-ody) を採用するよう勧める。	スペーサーには、短絡電流による電磁吸引力等が圧縮力 および引張力として作用する。とくに電磁吸引力はスペー サーに対して大きな圧縮力として作用し、現在のPrefor- med Spacerでは耐えられない。
b. 碍 子 i) 5 ¾ "×10" 碍子の連結個数(DWG. NO.3033) a) 標準設計 69 KV ·······4~7個 115 KV ······6~10個	69 KV ·······4個 115 KV ······6個	 ① アームの材質に関係なく予測される開閉サージによって決まる碍子連絡個数にすべきである。 ② 横振れ角および水平角の大きい個所では、碍子を増結する代りに碍子装置のアース側にロットを挿入して離隔を確保すべきである。

現在の基準	改 訂 意 見	理 由 な ど
b) 汚損設計 ,	汚損マップを作成し, 汚損量(等価塩分付着密度)によって碍子連結個数を決定する。	① バンコックは海に近いので、海塩による汚損がかなり あると思われる。② 汚損された碍子は耐電圧値が低下し、せん絡事故が発 生し易くなるので、そのような事故を未然に防ぎ、送電 線の安定度を高めるため。
ii) 懸垂碍子装置の使用制限 中角度柱にまで懸垂碍子を使用している。 水平角度による使用制限はなく,懸垂碍子 の横振れ角で制限しているようであるが, かなり大きな最大70°程度)横振れ角まで 許容している。	懸垂碍子の使用を直線柱および極く小さな水平 角度を有する支持物(水平角度2°程度まで、無風 時の碍子横振れ角で20°程度以下となる個所)に 制限する。	現在,小角度および中角度柱においては,碍子の横振れ 方向を水平角荷重の作用する方向に決め,左右アームの長 さを変えたり,支線の取付位置を決めたりしているが,強 風が逆方向に吹いた場合には碍子が反対方向に振れて,支 持物,支線等との間隔が不足する等問題が発生する。
c. そ の 他 i) アークホーン 現在は取付けていない。	碍子の連結個数を標準設計より1個増やしてア ークホーンを取付ける。 アークホーン間隔 碍子連結 個数 6 9 KV 5 5 cm 5 個 1 1 5 KV 7 7 cm 7 個	① バンコック地域はかなり強烈な雷が頻繁に発生する。② 送電線に雷撃があったとき、アークホーンがないと雷撃電流は碍子連の表面を伝って流れ、碍子が破損され易い。
ii) アーム 木製アームおよび鋼製アームを採用して いる。	すべて鋼製アームに替えて、かつこれを接地する。	木製アームには次のような欠点がある。 一、強度のバラツキが大きい。 一、経年劣化が激しいうえ、耐用年数に大きなバラツキがある。 一、地絡検出が難しい。 一、碍子が絶縁不良になったとき、漏れ電流によって焼損する恐れがある。


. .

現 在 の 基 準	改 訂 意 見	理 由 な ど
ii) 最小電線離隔	現行のNESCと比較して再検討すべきである。	MEAの現基準はNESCのH-30をベースにしたと注記されているが、現行のNESCの値とは違っている。 一例として、送電線と高低圧配電線との離隔を比較してみると、次のような違いがある。 69kV 115kV MEAの現行基準 1.47m 2.06m
		現行のNESC 1.99m 2.45m
		日本の技術基準(参考) 2.12 m 2.74 m
iv) 送電線最下電線と配電線単独柱との垂直		
間隔支持物の装柱と電線の弛度から計算	a) 送電線と配電線の共架柱(DC-1,DC-DC	Table 15-1 に示すように、DC-1およびDC-DC
すると Table 15-1の通りである。	-1) における送電線最下電線の支持点を50m	-1においては,温度80cのときの送電線最下電線と配
	上げる。	電線単独柱との離隔が1.28mとなり、最小離隔1.47m
	b) あるいは、配電線単独柱の地上高を50cm 下	を下廻る。
	げる。	
e -		

Table 15-1 Vertical clearance between lowest conductor of transmission line and distribution line

Type of	l h	h	Tomn	Can	Vertical clearance (m)		
Common Pole	h ₁ (m)	h ₂ (m)	Temp. (°C)	Sag (m)	from dis. line conductor	from distribu- tion pole	
			37.8 (100°F)	0.82	2.18	1.68	
DC-1, DC-DC-1	12.50	9.50	80	1.22	1.78	1.28	
			150	1.73	1.27	0.77	
			37.8 (100°F)	0.82	4.02	3.52	
DC-1B	14.05	9.21	80	1.22	3.62	3.12	
			150	1.73	3.11	2.51	

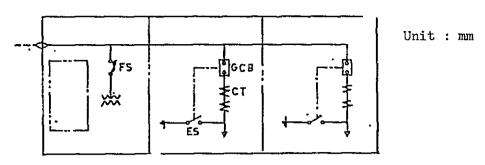
Fig. 15-1 Longitudinal profile of joint-use section of transmission and distribution lines

(5) 配 電

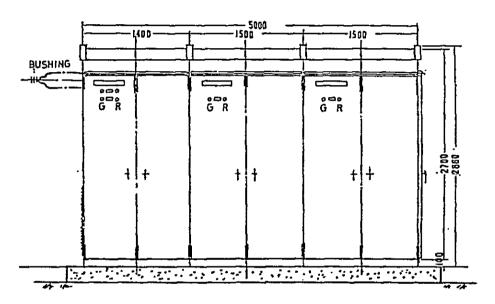
1 2.M 3.5 ton-metor 1 4.M 4.1 5 " 1 4.M 4.1 5 " 1 4.M 5.5 " (何かの機器, 電線を追加すれば強度不足となる。 (方 後ますます配電線のルート確保が困難となるので高圧 2 回線装柱を可能にさせる必要がある。 (日) 高圧電線 都心部では被覆線を使用し、狭線間の美化装柱を検討し、接柱部品、 (日) BKK に適した美化装柱を検討し、接柱部品、 海に線を被覆化することにより公衆の感電防止と配電網 故を減少させる。同時に狭線間緩配列等が可能となる。 (注) BKK に適した美化装柱を検討し、接柱部品、 接続部絶縁方法等を決める必要あり。 等定な一部に限り 2 5 KVスペーサーケーブル(AL)を使用 (1) 配電線路用開閉器 3 極同時開閉の負荷開閉器(定格電流100~ 第イスコンスイッチは配電線の途中で開閉する際にを	現 在 の 基 準	改 訂 意 見	理由など		
在 長 許容曲げモーメント(地際) 1 2.M 3.5 ton-metor 1 4.M 4.1 5 " 1 4.M 5.5 " 1 4.M 6.1 ton-metor 1 4.M 6.1 ton-metor 1 4.M 6.1 ton-metor 1 4.M 6.1 ton-metor 1 4.M 6.1 ton-metor 1 4.M 6.1 ton-metor 1 4.M 6.5 ton-metor	a. 架空配電線				
1 2.M 3.5 ton-metor 1 4.M 4.1 5	i)コンクリート柱の強度				
1 4.M 4.1 5	柱 長 許容曲げモーメント(地際)	コンクリート柱の強度を高くする。	a) 高圧1回線の標準的な装柱の条件下では,支持物強度		
ii) 高圧電線	1 2. M 3. 5 ton-metor	例えば, 1 2.M 4.5 ton-metor	は十分であるが、許容限度に余裕がなく標準装柱のうえ		
ii) 高圧電線	1 4. M 4. 1 5 "	1 4. M 5. 5 "	に何かの機器、電線を追加すれば強度不足となる。		
ii) 高圧電線			b) 今後ますます配電線のルート確保が困難となるので,		
## 線…336.4 MOM 押アルミ線 分岐線…4/0 AWG ## ## ## ## ## ## ## ## ## ## ## ## ##			高圧2回線装柱を可能にさせる必要がある。		
 分岐線… 4/0 AWG # … 2/0 AWG # … 2/0 AWG # … # 2 AWG # 接続部絶縁方法等を決める必要あり。 (注) BKK に適した美化装柱を検討し、装柱部品、接続部絶縁方法等を決める必要あり。 (注) BKK に適した美化装柱を検討し、接柱部品、接続部絶縁方法等を決める必要あり。 (注) BKK に適した美化装柱を検討し、接柱部品、接続部絶縁方法等を決める必要あり。 (注) BKK に適した美化装柱を検討し、接柱部品、放を減少させる。同時に決線間終配列等が可能となる。 (注) BKK に適した美化装柱を検討し、接柱部品、放を減少させる。同時に決線間終配列等が可能となる。 デイスコンスイッチは配電線の途中で開閉する際に存成で開閉する必要があり、事故時に事故区間切離して時間を要する。 3 極同時開閉のLBSを採用することにより、事故を時間を短縮させる。 助開閉器 中部の限られた需要家用にのみ使用さ 配電線路に自動開閉器を採用し、事故時の配電 配電線事故時、事故区間を自動的に切離すことにより、 	ii)高圧電線				
# … 2/0 AWG # 接続部絶縁方法等を決める必要あり。 (注) BKK に適した美化装柱を検討し、装柱部品、接続部絶縁方法等を決める必要あり。 特定な一部に限り 2 5 KVスペーサーケーブル(AL)を使用 ii) 配電線路用開閉器 a) 手動開閉器 幹線には単極デイスコンスイッチが使 われ、分岐線にはカットアウトスイッチ (フューズ付)が使われている。 5 気中型、真空型、ガス型等を目的により選択し 使用する。 6 0 0 A)のものを採用する。スイッチのタイプ も気中型、真空型、ガス型等を目的により選択し 使用する。 6 0 0 B) 自動開閉器 一部の限られた需要家用にのみ使用さ 配電線路に自動開閉器を採用し、事故時の配電 配電線事故時、事故区間を自動的に切離すことにより、事故を	幹 線…336.4MСM裸アルミ線	都心部では被覆線を使用し、狭線間の美化装柱	都心部では建物,看板等が高圧線に接近しているので,		
### ### ### #########################	分岐線··· 4 / 0 AWG "	を採用する。	高圧線を被覆化することにより公衆の感電防止と配電線事		
特定な一部に限り 25 Wスペーサーケーブル(AL)を使用 iii) 配電線路用開閉器 a) 手動開閉器 幹線には単極デイスコンスイッチが使 われ、分岐線にはカットアウトスイッチ (フューズ付)が使われている。 b) 自動開閉器 一部の限られた需要家用にのみ使用さ 配電線路に自動開閉器を採用し、事故時の配電 配電線事故時、事故区間を自動的に切離すことにより、事故行時間を短縮させる。			故を減少させる。同時に狭線間縦配列等が可能となるので,		
2 5 KV スペーサーケーブル(A L)を使用 iii)配電線路用開閉器		接続部絶縁方法等を決める必要あり。	美化装柱の採用が可能となる。		
ii) 配電線路用開閉器 a) 手動開閉器					
a) 手動開閉器 幹線には単極デイスコンスイッチが使われ、分岐線にはカットアウトスイッチ (フューズ付)が使われている。 b) 自動開閉器 一部の限られた需要家用にのみ使用さ a) 種間時開閉の負荷開閉器(定格電流100~ 600A)のものを採用する。スイッチのタイプ も気中型、真空型、ガス型等を目的により選択し 使用する。 むておりが使われている。 むておりが使われている。 むておりが使われている。 むておりが使われている。 むておりが使われている。 むておりが使われている。 むておりが使用する。 むておりが使われている。 むておりが使用する。 むておりが使用する。 むておりが使われている。 むておりが使用するととにより、事故を時間を短縮させる。 むてはいる。 むてはいる。 むてはいる。 むてはいる。 むてはいる。 むてはいる。 むてはいる。 ないる。 ないるいる。 ないるいるないる。 ないるないるないるないるないるないるないるないるないるないるないるないるないるな	2 5 KV スペーサーケーブル(A &)を使用				
幹線には単極デイスコンスイッチが使われ、分岐線にはカットアウトスイッチ (フューズ付)が使われている。	ii)配電線路用開閉器				
われ、分岐線にはカットアウトスイッチ (フューズ付)が使われている。	a) 手動開閉器				
(フューズ付)が使われている。 も気中型, 真空型, ガス型等を目的により選択し 時間を要する。 3極同時開閉のLBSを採用することにより, 事故で 時間を短縮させる。 6)自動開閉器 一部の限られた需要家用にのみ使用さ 配電線路に自動開閉器を採用し, 事故時の配電 配電線事故時, 事故区間を自動的に切離すことにより		• • • • • • • • • • • • • • • • • • • •	デイスコンスイッチは配電線の途中で開閉する際に停電		
使用する。 3 極同時開閉の L B S を採用することにより、事故 時間を短縮させる。 時間を短縮させる。 一部の限られた需要家用にのみ使用さ 配電線路に自動開閉器を採用し、事故時の配電 配電線事故時、事故区間を自動的に切離すことにより			状態で開閉する必要があり、事故時に事故区間切離しに長		
時間を短縮させる。 b) 自動開閉器 一部の限られた需要家用にのみ使用さ 配電線路に自動開閉器を採用し、事故時の配電 配電線事故時、事故区間を自動的に切離すことにより	(フューズ付)が使われている。				
b) 自動開閉器 一部の限られた需要家用にのみ使用さ 配電線路に自動開閉器を採用し、事故時の配電 配電線事故時、事故区間を自動的に切離すことにより		使用する。			
一部の限られた需要家用にのみ使用さ 配電線路に自動開閉器を採用し、事故時の配電 配電線事故時、事故区間を自動的に切離すことにより	b) 白動開開器		中国に対象の		
		配電線路に自動開閉器を採用し、事故時の配電	配電線事故時、事故区間を自動的に切離すととにより、		
	,, . ,				
lacksquare					

現 在 の 基 準	改 訂 意 見	理由など
iv) 配電変圧器 a) 定格容量(KVA) 5,10,15,25,37.5,50,75, 100,167,333,500,750, 1000のほかに,133,150,200, 300,630KVAがある。 特に需要家持変圧器の容量は上記以外のものが多数存在する。	れを守らせる。	需要家持変圧器はMEA管内配電変圧器容量の44%にも当り、品質が悪いとロスも多く、また、配電線事故の要因ともなり一般需要家へも迷惑を与えることになる。
b) 設置方法 変圧器設置方法は, 柱上設置が主であ る。	市街地では柱上設置のほか借室設置,地上設置 あるいは地下設置も併用する。	柱上設置では建物への接近による危険, 騒音による住民 の苦情などが発生するので, これを避けるため。
v) 配電線路用電圧調整器 採用なし	長距離配電線で電圧降下の甚だしい線路の途中に 電圧を上げる為の電圧調整器を採用する。	長距離配電線で電圧降下甚だしい場合は、その対策として電線のサイズアップするには工事費が高くなり不経済であるので、線路の途中に電圧調整器を設置すれば経済的な電圧改修が行なえる。
 vi) そ の 他 a) アーム 木製のアームを使用している。 b) 電柱標識板 採用なし 	軽量鋼製のアームを採用する。 交通ひんぱんな道路添いのコンクリート柱に夜 光性の電柱標識板を取付ける。	木製アームの腐蝕による事故防止および取扱費用が軽減 される。 車両衝突による配電線事故を防止するため。

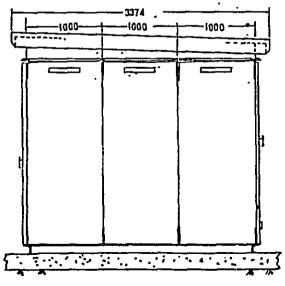
現 在 の 基 準	改 訂 意 見	理由など
b. 地中配電線 i) 地中ケーブルの種類 単 芯 650MCM Cu XLPE 500MCM	a. 3芯トリプレックス形XLPEケープルを採する。 ・	単芯ケーブルを 3 本同時に 1 管路に引き入れる場合は、 引込時の張力のアンバランスができ、特定ケーブルにのみ 張力が集中し絶縁部に無理がかかる。 トリプレックス形だと張力が平均し、工法も容易である。 また、トリプレックス形は 3 芯 1 体形に比べ、 ① 電流容量が約 1 0 あ多い ② 重量が 5 ~ 1 0 あ小さい 等の利点がある。
	b. 鋼帯がい装ケーブルの採用 (市街地道路が整備され, 埋設物の規制が行 なわれ得る場所)	ケープル埋設の工期を短縮し、工事費を軽減させるため。
ii) 地中管路 石綿セメント管(コンクリート巻き) および鋼管	a) 地中管路材料として左記のほか、軽量鋼管、 FRP合成管、硬質プラスチック管等を採用する。 とくに橋梁添架の場合はFRP管を使用する。 b) 変電所出口等引出管路数が多い所では洞道を 採用する。	市街地では管路工事のための道路くっさくが交通支障と なるので、軽量で強度のある管路材料を使用することによ り、くっさく、配管、埋戻しを短期間のうちに完了させる ことができる。 とくに橋梁添架にFRP管を使用すれば軽量のため橋梁 強度に与える影響が少なく、また腐蝕の恐れもない。
≒)マンホール 現場打マンホール	プレハブ組立形マンホールの開発を行なう。	上記と同じく市街地での地中線工事期間の短縮をはかる ため。


現	生 の	基	準	改	訂	意	見		理	曲	な	Ĕ	
iv)地中開閉 開閉器					帮閉器 (耐		よび地上設置多	該当区間以 信頼度向上:	の事故, 降の負荷 がはかれ 中線路の	作業時に 例へ他の る。 追加延長	該当区間の 電源から送 工事を必要) 切離しある き電する等で そとする場合	Lb,

参考


G- 1	電気機器規格値の比較例
S - 1	自動故障復旧装置
S - 2	GISによる69kV配電用変電所
S - 3	G I S による 6 9 kV 開閉所
S - 4	2 4 kV 屋外用キュービクル
S - 5	変圧器の防音室
T - 1	耐熱アルミ線の効果
D - 1	美化配電柱(例1)
D - 2	" (例2)
D - 3	12kV手動LBS(空気遮断タイプ)
D - 4	15kV " (真空 ")
D - 5	1 2 kV 自動 L B S (空気遮断タイプ)
D - 6	配電変圧器室の容量と広さ
D - 7	2 4 kV 配電線路用電圧調整器
D - 8	夜光性電柱標識板
D - 9	トリプレックス形ケーブルと鋼帯がい装ケーブル
D-10	地中配電用軽量鋼管
D - 11	〃 硬化プラスチック管
D - 12	〃 FRP管とFRP合成管
D - 13	〃 フレクジプル管
D-14	プレハプマンホール
D -15	地中配電用機器の使用例
D - 16	地中配電用多回路スイッチ(地上設置)
D - 17	" (地下設置)

G-1 Values Comparison of Two Standards (ANSI/IEC)


	ANSI	IEC
12 KV		
Three phase distribution transformer		
Insulation class	15 A	12
Basic impulse insulation level	95 KV	75 KV
24 KV		
Three phase distribution transformer		
Insulation class	25	24
Basic impulse insulation level	150 KV	125 KV
	(MEA 125 KV)	
12 KV Outdoor air switch		
Rated maximum voltage	15.5 KV	12 KV
Rated impulse withstand voltage	110 KV	75 KV
(To earth and between poles of switch)		
24 KV Outdoor air switch		
Rated maximum voltage	25.8 KV	24 KV
Rated impulse withstand voltage	150 KV	125 KV
(To earth and between poles of switch)		

One Line Connection

Front View

Side View

Unit : mm Note ; Transformer noise will be reduced to Main body of transformer 6,600 Sound-proof chamber about two-thirds. ន្ត 3,000 3 200 NOZLRI 005 <u>003.5</u> Ra'diator 3,650 HAL 150 1,200 1,850 1,850 1,200 HAL 150° ಯಕ್ಷ CWKHDC 60% 디 **80x6a** 002 T 048 3 4364

T - 1 Performance of High Conductivity Thermo-resistant Aluminium Alloy Conductor

The performance of this conductor (TAL) is shown below.

I. Properties

Table 1 compares an ordinary aluminium conductor (HAL), and the high conductivity thermo-resistant aluminium alloy conductor.

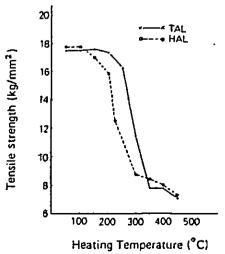
Table 1

Properties	HAL	TAL
Melting point (°C) Specific heat at 20°C Coefficient of linear expansion (°C ⁻¹) Specific dencity (g/cm ³) Tensile strength (kg/mm ²) Elongation (250 mm) (%)	660 0.22 23×10 ⁻⁶ 2.7 16–19 2 – 4	660 0.22 23×10 ⁻⁶ 2.7 16–19 2 – 4
Coefficient of elasticity (kg/mm²) Electric conductivity at 20°C Thermal coefficient of electric resistance (°C⁻¹)	approx. 6,300 61 0.0040	approx. 6,300 60 0.0040

II. Practical performance at normal temperature

The high conductivity thermo-resistant aluminium alloy conductor is almost equal to the other conductors in tensile strength, and other performance.

Table 2 shows comparison of the typical properties of these conductors, 4.0 mm in diameter.


Table 2

		Tensile strength kg/mm²	Elongation (250 mm) %	Conductivity %
TAL	max.	18.49	3.4	60.7
	min.	17.69	2.6	60.3
	mean	18.12	3.1	60.5
HAL.	max.	18.55	3.3	62.5
	min.	17.68	2.6	62.3
	mean	18.10	3.0	62.4

III. Annealing characteristics

Fig. 1 shows the tensile strength of the conductors (HAL and TAL) heated for one hour at varied temperatures, and Fig. 2, their tensile strength after heating for a long time, which is a problem in actual operation of transmission lines.

Fig. 1 4.0mm¢ Annealing Characteristics after 1 hr. heating

has remarkable thermo-resistant characteristics for HAL. Therefore the continuous allowable operation temperature can be adapted at 150°C, compared with 90°C at HAL, and the short time allowable operation temperature can be adapted at 180°C.

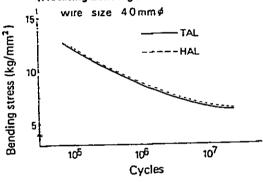
Fig. 2 TAL 4.0 mmp Annealing Characteristics

The creep characteristics of the conductors is shown in Fig. 3.

Time (HRS)

Fig. 3 High temperature creep 4.0 mm¢

HAL 90°C 25% UTS

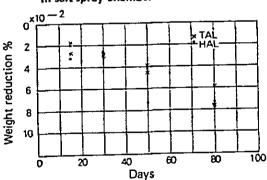

TAL 150°C 25% UTS

10 100 1,000

IV. Vibration fatigue characteristics

Fig. 4 shows the vibration fatigue characteristics of the conductors examined by rotary bending tester. The TAL is equivalent to HAL.

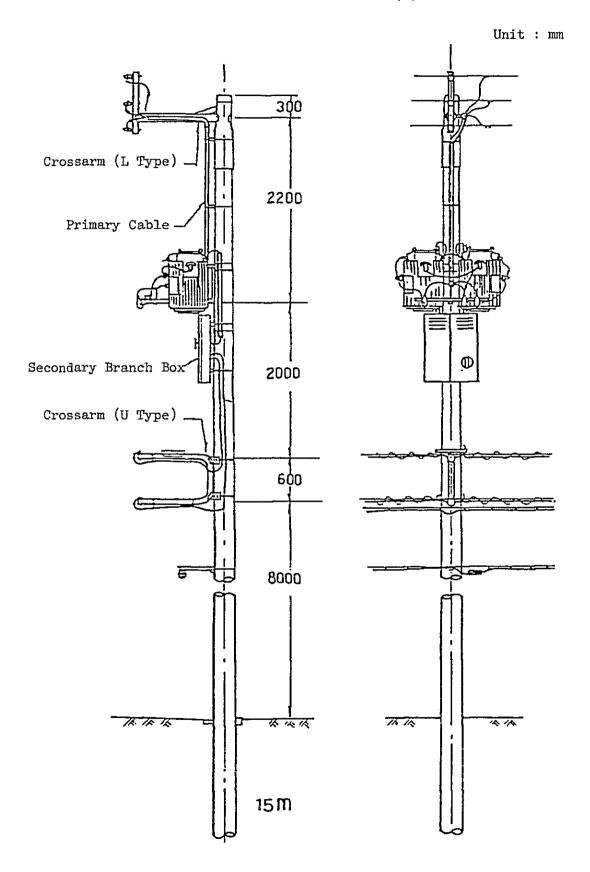
Fig. 4 Vibration fatigue characteristics (Rotating bending machine)

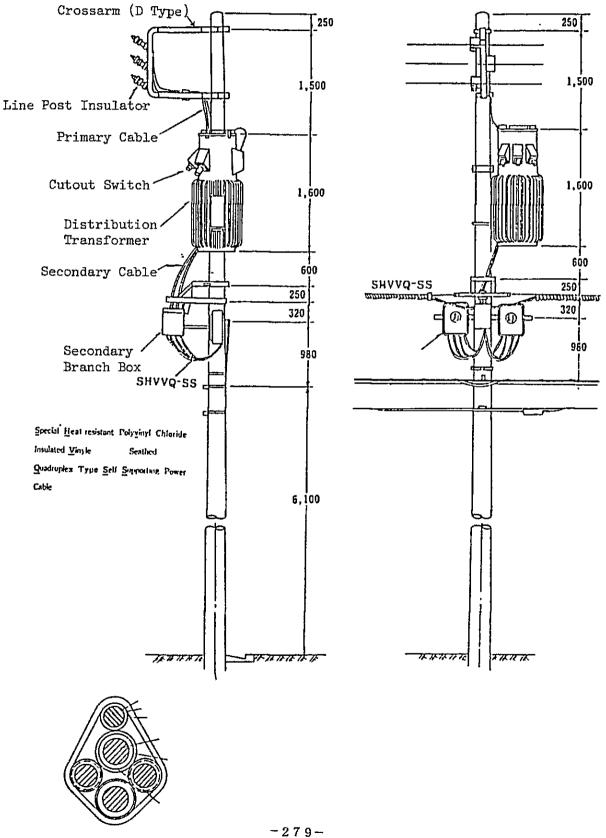


Elapsed hours (HRS)

V. Corrosion resistance

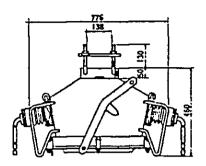
In salt-water spray and chlorine tests, the TAL proved to be practically equal in corrosion resistance to HAL.

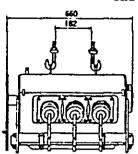

Fig. 5 Weight reduction due to corrosion in salt spray chamber

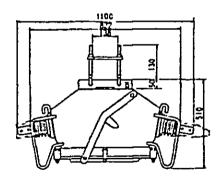

CONCLUSION

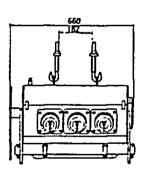
From the foregoing it is evident that, the TAL can be used up to the continuous allowable temperature of 150°C and the short-time allowable temperature of 180°C.

D - 1 Aethetic Distribution Pole (1)

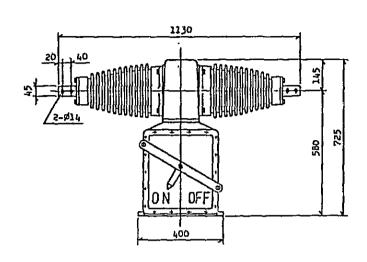


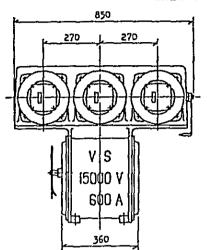

Unit : mm

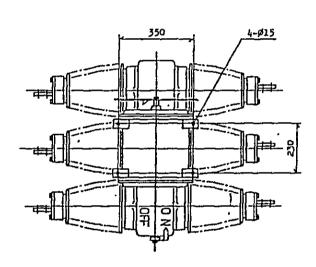

D - 3 12-KV Manual-operating Load Break Switch (Air-breaking type)


Unit : mm

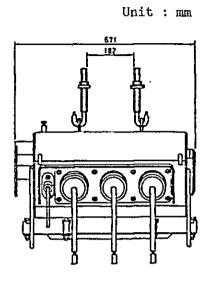
Ampacity	Lead wire	Weight
200A	80mm2	78kg
400A	125mm ²	81kg

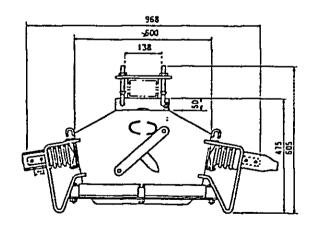


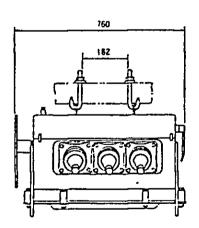



Amapcity	Weight
600A	92kg

D - 4 15-KV Manual-operating Load Break Switch (Vacuum-breaking type)

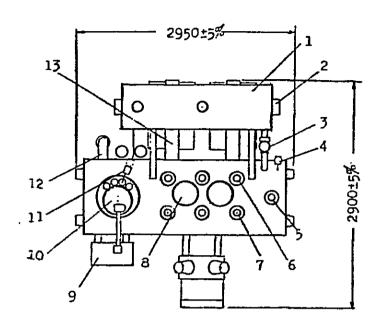

Unit : mm



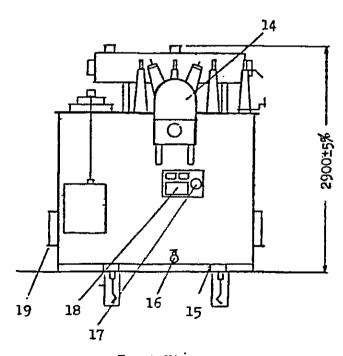


Rated voltage	15000 V
Rated current	600 A
Short - time current	25 kA
Peak making current	63 kA
Basic impulse level	95 kV
Weight	230 kg

Ampacity	Lead wire	Weight
200A	80 2	110kg
400A	125mm ²	115kg



	~
Ampacity	Weight
600A	120kg

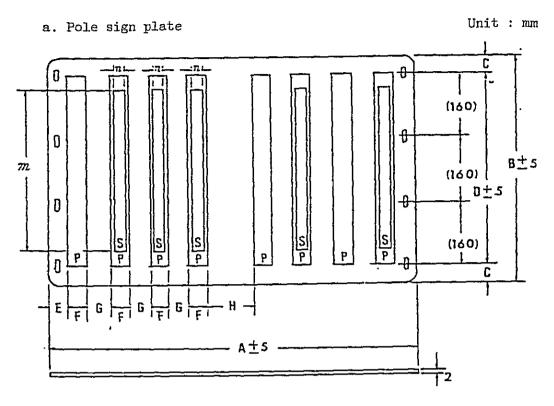

D-6 Capacity and Size of Distribution Transformer Station

																	Siz	ze of Tr	ansform	ner Statio	on		
					C:	apaci	ty of	Tran	sform	er (K	VA)				Und	er-road	type	On	ı-road t	ype		house ty	
		125	160	200	250	260	315	400	500	630	750	800	1000	2000	depth (m)	width (m)	height (m)	depth (m)	width (m)	height (m)	depth (m)	width (m)	height (m)
FEDERAL GERMANY	Berlin Dortmund Düsseldorf Essen Hamburg Hannover Munich Stuttgart							0 0 0 0 0 0		0000000								2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.8 1.8 1.8 1.8 1.8 1.8 1.8	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	3.5 3.5 3.5 3.5 3.5 3.5 3.5	2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
UNITED KINGDOM	Bristol London						0		0		0				3.66	3.05	2.44	3.4 3.66	2.1 3.05	2.1 2.47	5.0 3.66	4.0 3.05	2.5 2.44
AUSTRIA	Vienna (Wien)				0			0		0								4.0	3.0	2.8	6.0	4.0	3.0
BELGIUM	Antwerp (Anvers) Brussels (Bruxelles)	0			0			0		0					5.81	2.31	2.31	3.0 4.0 5.31	3.0 3.54 2.31	3.0 3.2 2.31	5.5 4.0	3.5	2.8 2.15
DENMARK	Copenhagen				-		<u> </u>	-	0		-	-		 	3.61	2.31	2.31	1.8	1.8	1.83	2.89	2.65	2.35
SPAIN	Barcelona (ENHER) Barcelona (FECSA) Barcelona (HEC) Bilbac Madrid (H.E.) Madrid (U.E.) Seville (Sevilla) Valencia				0 0 0 0 0 0	0		0 0 0 0 0 0		0 0 0 0 0 0					4.2 3.5 7.0 8.9 6.45	4.2 5.0 4.5 4.3 2.70	4.2 3.0 4.0 3.0 2.5	3.9 5.0 7.0 6.5	3.0 4.0 4.5 4.0 5.0 5.4	7.90 3.0 4.0 3.0 3.5 3.25	4.2 3.0 6.0 6.5 5.0 6.0 5.0 8.0	4.2 3.5 4.5 4.0 5.0 4.0 4.0 3.0	4.4 2.8 4.0 2.8 2.5 3.0 3.2 3.25
FRANCE	Lyons Marseilles Paris		0		0			0		0		0			6.1	2.7 3.2	2.6	4.6 3.7	2.7 3.2	2.6 2.6	4.6 5.0 6.5	2.7 4.0 4.0	2.6 2.5 3.0
HOLLAND	Amsterdam The Hague (Den Haag) Rotte-dam	0		0	0		0 0	0		0		-						1.5 3.5 {2.9 1.5	1.5 2.5 2.2 1.5	2.7 2.8 3.3 2.8	3.0 3.5 2.7	2.5 3.5 2.7	2.6 2.7 2.7
ITALY	Genoa (Genova) Milan (Milano) Rome (Roma) Turin (Torino)		0 0		0 0 0			0 0 0							4.5	3.5	2.8	2.8 4.5	1.8	3.3 2.8	4.0 5.0 4.5	4.0 4.0 3.5	3.5 3.0 2.8
POLAND	Wroclaw						0		0									6.0	6.0	3.5	6.0	5.0	3.0
PORTUGAL	Lisbon (Lisboa)				0			0		0													
SWEDEN	Stockholm				0								0	0				8.0	5.0	2.7 +0.65	8.5	5.0	3.0 +0.65
SWITZERLAND	Zurich												0		15.4	11.0	4.5	4.8	1.4	3.0	11.0	4.5	3.1

Plane View

Front View

THREE PHASE ON-LOAD VOLTAGE REGULATOR ONAN OUTDOOR USE

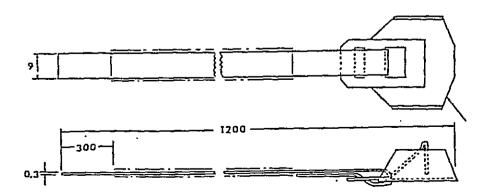

THROUGH PUT 8,002 kVA
FREQUENCY 50 Hz
INPUT VOLTAGE 23.1-17.6 kV
(21 TAPS)
OUTPUT VOLTAGE 23.1 kV

TOTAL WEIGHT 11,500 kg±5% OIL QUANTITY 3,400 Lit±5%

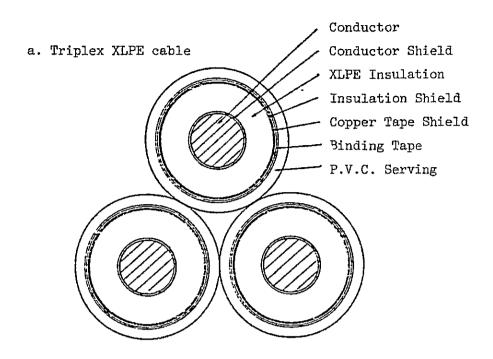
LECEND

- 1. CONSERVATOR
- 2. OID LEVEL GAUGE
- 3. BUCHHOLZ RELAY
- 4. OIL FILTER VALVE
- 5. NEUTRAL BUSHING.
- 6. INPUT BUSHING
- 7. OUTPUT BUSHING
- 8. HANDHOLE
- 9. MOTOR DRIVEN OPERATING BOX
- 10: ON-LOAD TAP-CHANGER
- 11. OIL FLOW RELAY
- 12. PRESSURE-RELIEF DEVICE
- 13. PADIATOR
- 14. POTENTIAL TRANSFORMER
- 15. EARTHING TERMINAL
- 16. OIL DRAIN VALVE
- 17. OIL THERMOMETER
- 18. NAMEPLATE
- 19. JACK BOSS

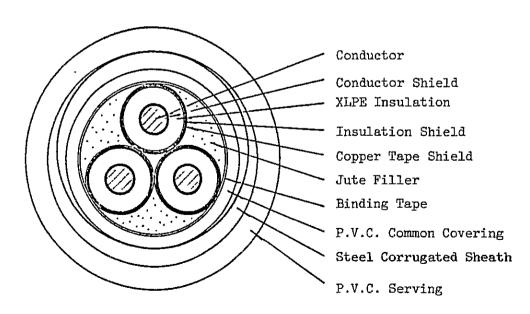
D - 8 Luminous Pole Sign Plate

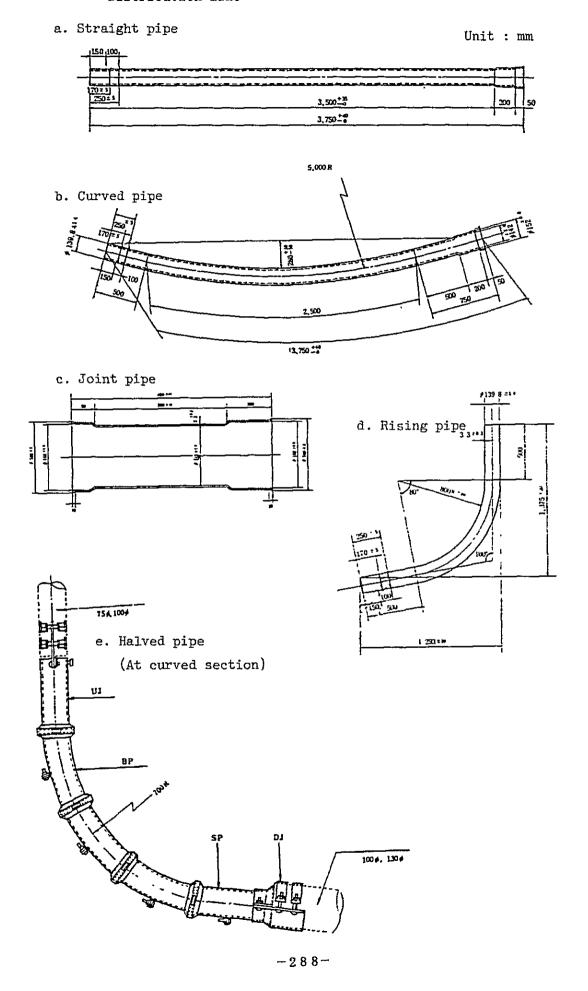

S : Scotch Light (Yellow)

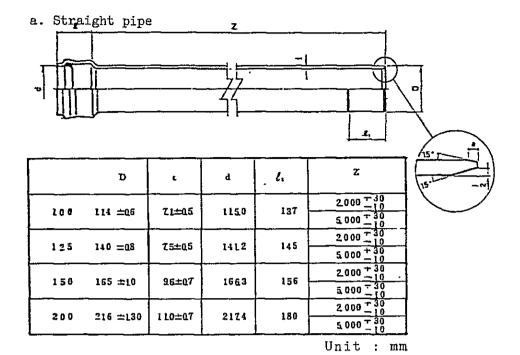
P : Polyethylene Tape (Yellow)


A	В	С	D	E	F	G	H	π	D
70C	500	6 6	4 E O	35	38	44	62	400	20
500	300	25	න	23	29	31	44	200	20

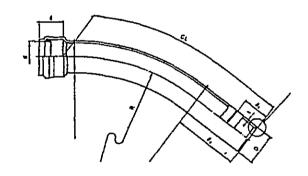
Scotch Light is applied by a special process.


 Reflection by Scotch Light is called directional reflection, which means it reflects a beam of light back along its original path from all directions.

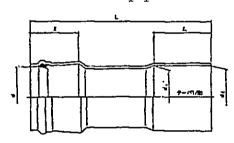

D - 9 Triplex Cross-linked Polyethylene Cable and Steel Tape Armoured Cable

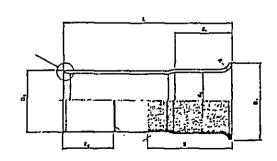


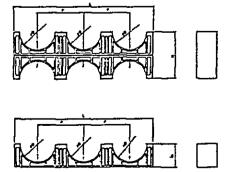
b. Steel tape armoured XLPE cable

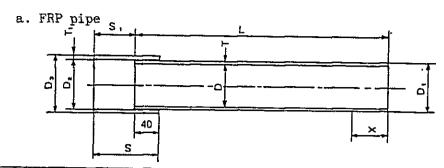


D - 10 Light-weight Steel Pipe for Underground Distribution Line

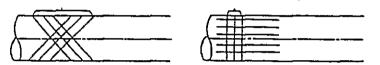



b. Curved pipe

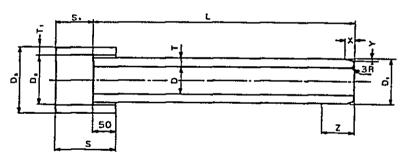

c. Joint pipe


d. Bell-mouthed pipe

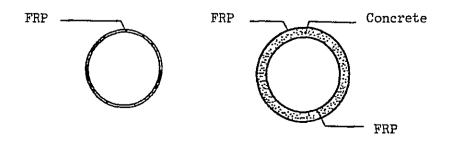
e. Sleeper

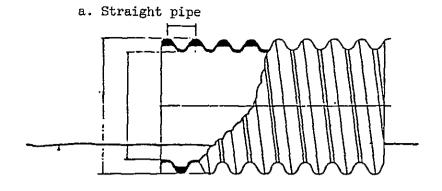


D - 12 Fiberglass Reinforced Plastic (FRP) Pipe and FRP Composite Pipe for Underground Distribution Line

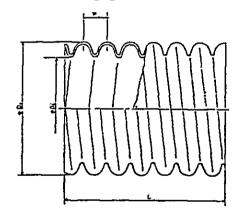


	D	-Т .	Đ ₁	D _z	T,	D,	s	S ₁	X	L	К	9
100	100	4	108	116	4	124	110	70	73	1	2.4	0.30
125	125	4	133	141	4	149	110	70	73	4000	2.9	0.36
150	150	4	158	166	4	174	110	70	73	6000	3.5	0.42
200	200	5	210	218	5	228	120	8C	83	1	5. B	0.76
250	250	5	260	26B	5	278	120	80	83	Ϊ.	7.2	0.93

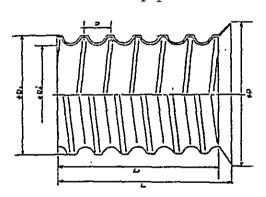

Winding method of glassfiber


b. FRP Composite pipe

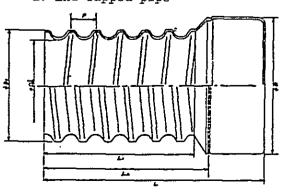
	0	Ŧ	D,	D.	Τ,	D _a	s	S,	x	Y	z	L	Kg	}
100	100	10	120	130	10	150	130	80	10	3	83	1000	6.9	1.1
125	125	10	145	155	10	175	130	80	10	3	83]	8.5	1.3
150	150	12	174	184	12	208	130	80	10	3	83	2000	12.2	1.9
200	200	T\$	230	240	15	270	140:	90	10	3	93	4000	20.3	14
250	250	18	286	296	18	332	1401	90	10	3	93	1	30.3	5.0

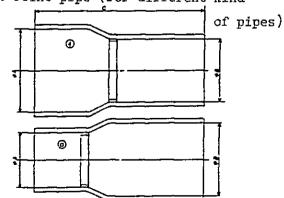


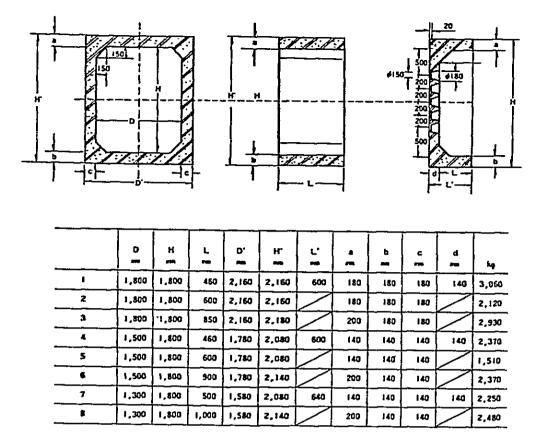
D - 13 Flexible Pipe for Underground Distribution Line



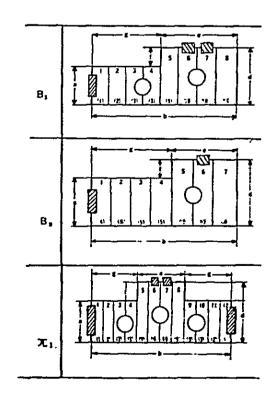
Nominal distater (cm)		.Inner (mm)	Pitch (mm)	. Weight (kg/m)	Standard . length per coil(m)	Standard O I height of o	
100	127	100	25.5	1.2	50, 100	2.3 I 0.8	(s,l=100)
125	156	125	35	1.4	50	2.3 X 0.5	
150	190	150	40	1.9	50	2.3 I 0.75	
200	250	200	50	3.8	30	2.3 I 0.75	

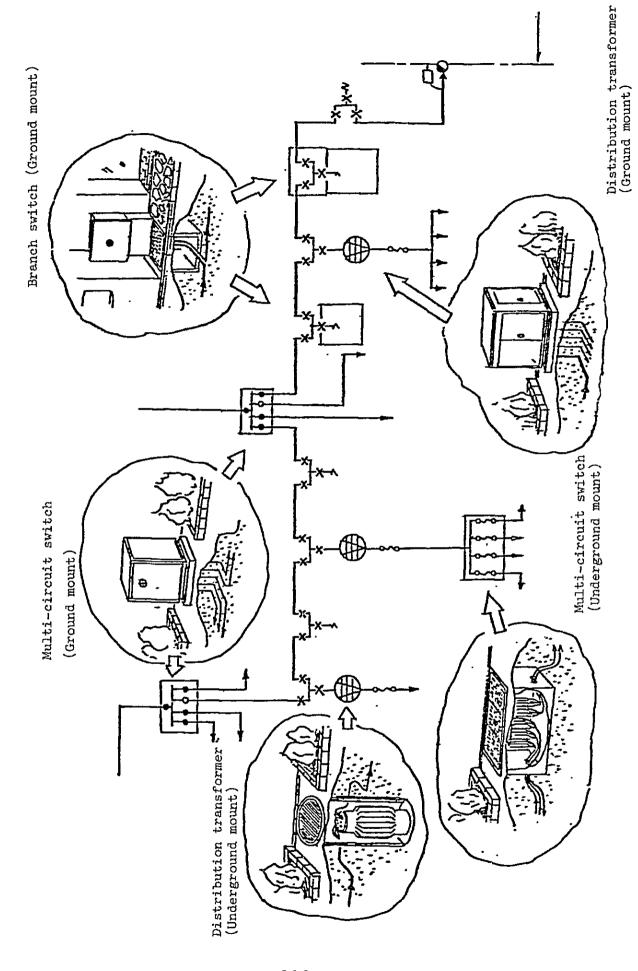

b. Joint pipe


c. Bell-mouthed pipe

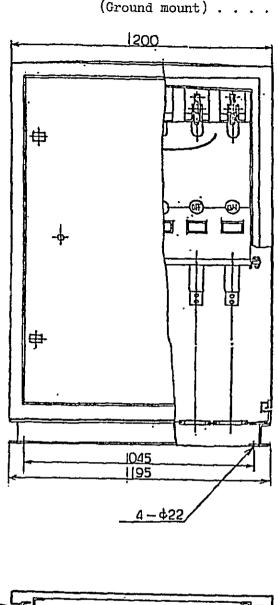

d. End-capped pipe

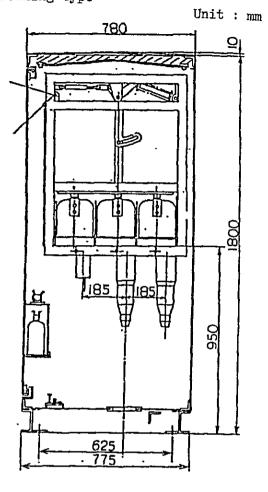
e. Joint pipe (for different kind

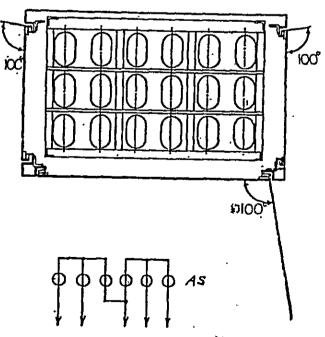

D - 14 Prefabricated Manhole

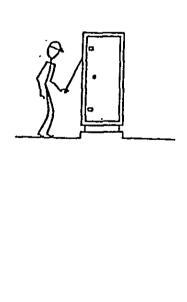


Unit: mm

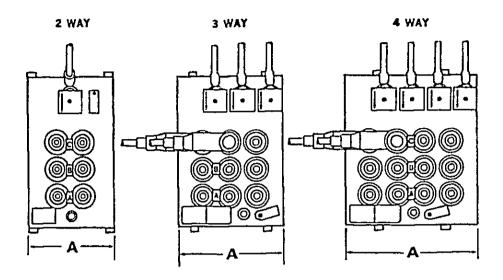

Combination

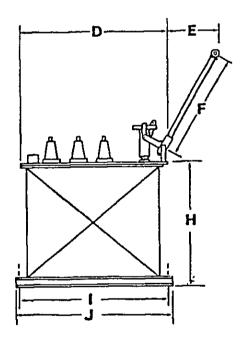

A 30	
A符	1 2 0 3 6 5 6 7 0 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Α,	1 2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Aı	1 2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
۸,	1 2 2 1 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
۸,	
۸,	

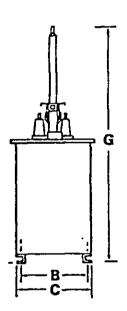




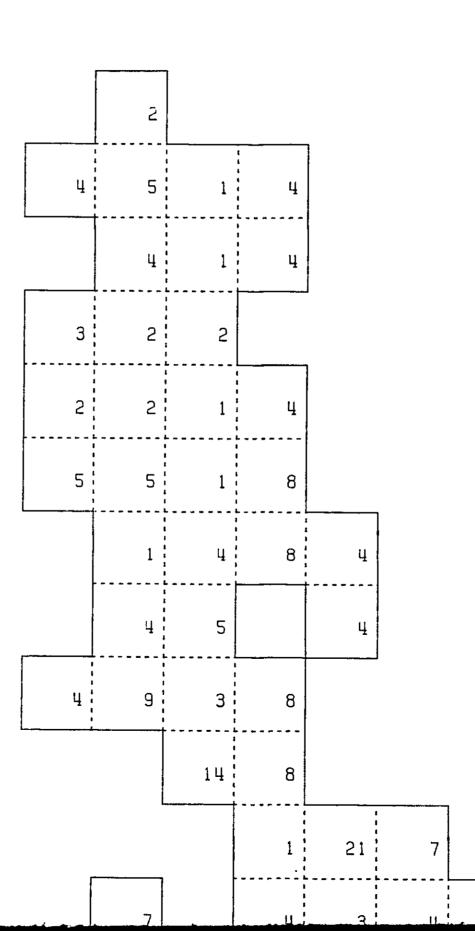
D - 16 Multi-circuit Switch for Underground Distribution Line (Ground mount) Air-breaking type

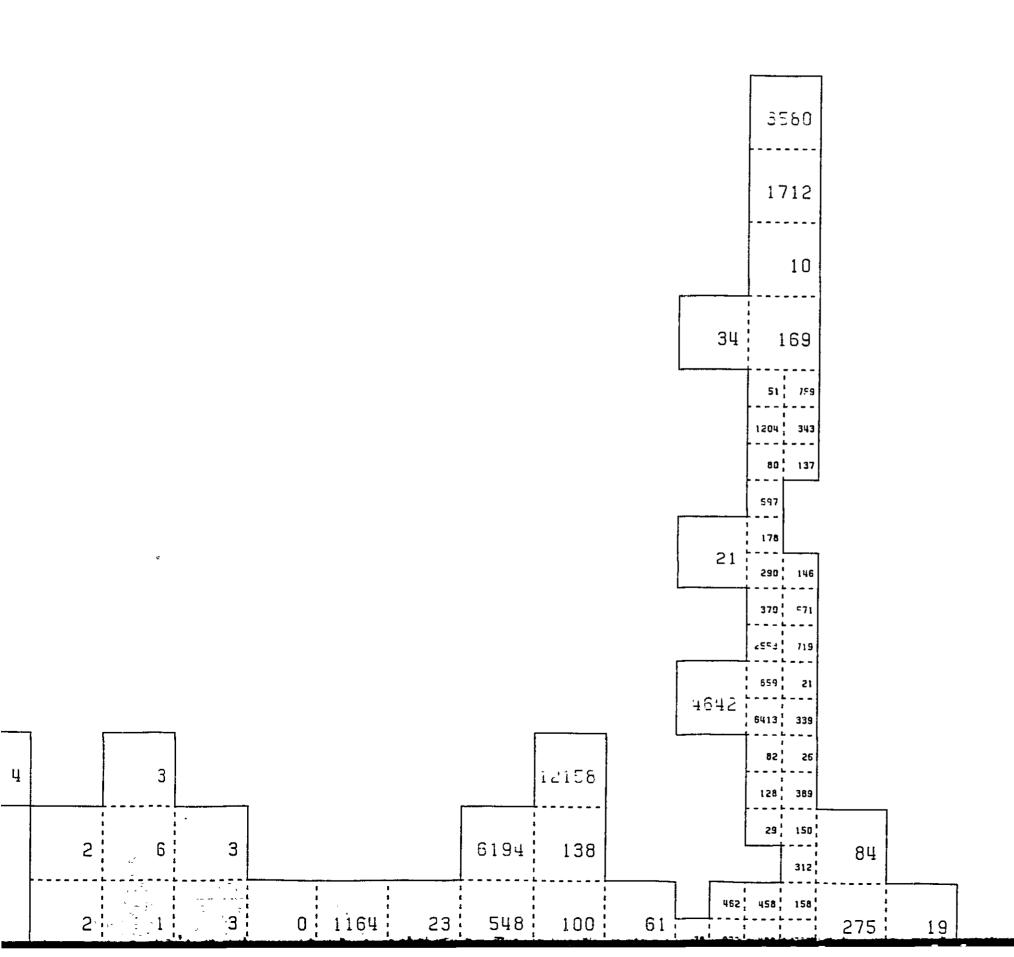






D - 17 Multi-circuit Switch for Underground Distribution Line (Underground mount) Gas-breaking type (Submergible)





Dimensions	A	В	C	D	E	F	G	Н	1	J	WEIGHT (Approx.)
TWO-WAY	420										70 K8
THREE-WAY	510	330	360	710	310	610	1200	590	720	760	140 -
FOUR-WAY	- 6 1 6	7,70	Juo	,,,	0,0	* * *	, , , ,		, , ,		180 ~_

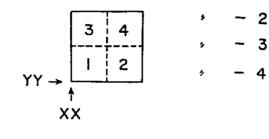
APPENDIX 16 LOAD DEXE

DE SITY YAR OF MEA

SEF 1379 UNITOKW

Ц	9	3	8								
		14	8				i	4		3	
			1	21	7				2	6	
	7		Ц	3	Ц	ų			2	1	
	13	9	5				5	37	97		-
		10		•		•		2	80	8	
		10						10	50	45	
		5						108	485	52	1
			20	23	34	23	22	34	71	65	L
				· · · · · · · · · · · · · · · · · · ·			24	61	49	113	L - 3 1 1 1
				29	9	26	62	59	31	41	L
				· · · · · ·		19	4	49	125	1104	· · · · · · · · · · · · · · · · ·
					'	, , , , , , , , , , , , , , , , , , ,		21	73	202	2
				43	24	30		42	102		<u>.</u>
				705	1223	299	59	18	82	L = = = = = = = = = = = = = = = = = = =	1 3
							1				i

•


.

									464	659 6413													
	3						12158			128	26												
2	6	3				6194	138			h h	312	84								_			_
2	1	3	0	1164	23	548	100	61		462 458 577 450	L !	275	19								19	27	,
97		10	24	692	1292	136	13	212			£19 2976	68	11	Ų							32	27	,
80	8	43	2178	1055	227	907	861	282	620	496 1714	20	97	16		٠					23	5		
50	45			8; 606 626; 757	135 67	16 269		417 15 ⁴⁷			L 1	30	3							23	200		
485	52			155 1190	<u>t</u>	18 58 287 394			- -		L 1	341								37	37	53	}
71	65	180	19, 403,		793 141	622 460 347 486	750 874	: :	42 2	23 23	159	1	904	508	67	34	18	2	31	147			<u> </u>
49	113	64	13 30	133 19	98 166	1004 S25	2487 237	1952 800	117	423 140	1 1	7	1160	959	35	24	148	864	13			16	; ; ; ; ;
31	41	38		6 6 1 1		668 49 883 437			. -	-		157	434	103	976	2587	1548	779	54			16	;
125													269 79 600 155		486	1453	98	328	20			30)
73	202	213	935 1973 1959 798	2817 3443 5468 2536	3222 2925		1301 1236 	823 168 207 38	∠567 4	16 15	918	376 180 307 793	913 1435		221	36	234	307	36	4	Ц	30	
102	179	329 1930 525 1968	3574 ser see	1300 1300 1300 1300 1 	23 1 310 2 100 2 1		l multimal L = L = 1 606 L multimal	10 122		122 482	395	816 1524	973, 348 1196, 227		295	196		830	30			20)
82	į	371 1027	1704 L = 1 = 1	1004 005 1052 1044 	1204, 1204, 1004, 1214, 1215, 1204, 1204, 1004, 1125,	1710 1017 1010	5923	3097 3559	1113 1	1562	567	634 406			96	214	259	7072	39	376		12	2

			ı			٦	5									
				19	27		24				•					
				32	27	5	12									
			23	5		11	5									
			23			16	13									
	···		37	37	53	174	301	53	54							
18		31	147			91	·		18	29	18					
148	864	13			16	351	16	126	13		13					
1548	779	54			16	157	9	5		ı	·					
98	328	20			30	11	-									
234	307	36	ц	Ц	30	11										
	830	30			20											
<u> 259</u>	7072	.39	376		1.2		1					 	_	-		to a strade -

(Note)

(2) I x I Km² Mesh No. XXYY - 0

(3) 2 x 2 Km² Mesh No. XXYY - 9

			m Kari			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	Z	!	_	525
	705	1223	299	59	1 1 1 1 1	18	; ! ! ! !	82		536	371 720
	10	13	938	646	- - -	63		<u> </u>	324	<u></u>	44
	·			! ! 	1		L :	<u> </u>	1/61	L	L
	2251	239	2452	1531		:			247	L	L 2
	·	119 2029 671		: 	 - !	:	!	183		L	
-	119	2029	6/1	54	23 3		637	1064	644	337	60
	105			5			Ц	22			164
						33	7	57	1	72	
				16		79	· • • • • •	52		43	1 (
				124	- 11-5	24		1 1			
				210							
								_			
						F				4	1
				-				8		4	(1)
								1			

14 19

90.

			Javane kal		L		_ L _ L	- 4 - 4 	l l	i i.	- b -	ا د با با ایجو ایجوا	ا بند ا بنده ا	ا ما د اسالین	h	1				6 I	6 : 1		L i									7	}
3	1	82	536		<u>i</u>	L			1		- 	L _ L _ I	1,000 pm 1,000 pm 1,000 pm 1,115			~ ~ 1	1	L	L			l	L I		395	96	214	259	7072	39	376		12
63 !	45		324 686					3335	1864	1000 1754 -	1711 Table 1		186 1779	110°	3950	3187	2221	356	1278	279	179	131	1 3 ;			 	! \$! !	! \$! !	1 1 1	1	 		
98	199		1/61 1177		4					1				1	1 1	1		,	1		, ,				1183	431	6080	345	132	68	585	109	13
<u>i</u> .			247 17		i				i				-			. <i></i> - i	1	, L		L			282	100	130	53	337	618	117	7	22		54
71	703	659 <u>.</u>	25 91	795	4856	2627	S521 ;	819 [694	1743	2885	1085	417		9 :	106	70	295	2340	1119	157		490			! ! !	 	 	 				74
- - L .	L	<u>-</u>	183 809	L	L	L	L	L	ا ا			k l	L	1	L		۱ ا	L	L :	L	L = 1		i	007	286	86	74	15	3	7	13	6	
<u></u>	637	1064	644 337		-	L	L	L	ا ـ ـ ـ ا					1	L = L		—- j		 1		.	1	L 5		·					: 	! !	! ! !	
	4;	22	59	F	695				j			L i	152	i		إ	—- <u>-</u>		L i				182	904	179		413	9	11			30	16
 			i 	6					t			L 4	7260	· 6		L	_ - i	1 L	5 1		1	1	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	· : :)			; ; ;
3	7! 	57	172		91	g ⁻	72 :	L	i	664			385	1	<u>-</u>	1	1	- - -	<u></u>	-	i	2	40	10	174	1358	308	9				10	8
- · ·	-	52	43	1	03		63	198		510	2563		1006			266	1059		868				05		10		530	554	1150	20		†	
J :		-	40					35	22	1					ı		553	1313	54 54	ı	87				10		330	204	456	30	, <u>4</u> , ,	12	16
1		1 1			38	;	30		14			2	83 ;	3157 	,,,,				452			Ц	13	643	650	125	388		950	142	1924	1597	8
	 -				b			 -		ı				· j		720			L !	 1		: 	1 1	·		 			·			, (b	
					27		2					11	13		2213							31	75	28	23	33	65	1217	25		239	56	230
					5		5						75		41	1848	1		749		ГŦ		312	26	49	16	19	10	114	21	24	55	7
		Γ				 :_									. !		197		1019	 !			 		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			: 	t 	; 		
			4		19				6	1	86		ļ		41	74 62	[·	1718		<u> </u>	8	00					5	30		7	5	29
		8	4		38		14		50					,=		2	37		55	[] [{	556	7	15	1331	37	15		5		i	<u> </u>		66
<u></u>	<u>-</u>	b								}					Ł				-	I 		 	! ! !) 		 	<u> </u>			**************************************		 	
3		ц	14																			39	123	621	7230	1012				132	17	30	659
3		19																			·				37	5	26	2		99	12		25
	<u> </u>																	ı	Mesh	No	xx			ļ			1		Ì			1	
					30				1		:				40)						- -		5(<u> </u>			1	6	0	L	<u> </u>	4

	1			1					1	
259	7072	39	376		12		9	9		
345	132	68	585	109	13	21	61			
618	117	7	22		54	25	Ц	31	Ц	
15	3	7	13	6				18	53	
9	11			30	16	8				9
9	·			10	8					20 2
554	456	30	ij	12	16		27		11	
	950	142	1924	1597	8		14	11		
217	25		239	56	230	72	46			
10	114	21	24	55	7	456	136	52	744	
5	30	, , , , , , , , , , , , , , , , , , ,	7	5	29	43	7	48	65	
5	-				66	53	7		7	
		132	17	30	659	278	27	10		
S	-	99	12		25		12			
35°	60	<u> </u>	· · · · · ·			70	01		<u></u>	L1

요-

84

으

8-

7							2123	5710	1176	459	575	626	1058	1573	974	787	
o			,				3246	8625	6857	5547	4584	2052	1962	3631		118	
8					679 3	463	2080	1712	2329	9212	6775	2030	604	1126		43	
•			٠		1485	2377	1627	1925	2123	2166	1248	570	1980	941	473	948	
9	1080	462	1392	2023	5867	6104	1349	1560	1864	776	596	1223	1939	2563	3220	3128	
	222	1188	2127	4614	4371	2735	1084	1729	2572	1229	6530	5933	4852	2620	1155	2034	-
3 0	1379	2128	2762	2503	2263	3746	5058	1959	1104	1927	1404	2700	2849	616	346	2764	
	1448	1526	3031	2549	1946	2078	1382	977	1493	1928	2397	5807	1109	205	114	218	
1	383	1818	3750	1229	1563	1932	1893	1111	669	1073	3747	2433	539	157	931	971	
		894	1758	2320	1651	1779	52	185	2881	743	1417	934	1348	810	729	802	
32	APPEN 1	DIX I'	7 <u>L</u> (DAD.	DEI	VSI.	TY 1	1AP 	OF	MEA	A (F	ARE	A)		P 19		7

.

