The Kingdom of Thailand

Electricity Generating Authority of Thailand

UPPER QUAE YAI HYDROELECTRIC DEVELOPMENT PROJECT FEASIBILITY REPORT

SUMMARY -

122 643 MPN LIBRARY

Japan International Cooperation Agency

June

1980

M P N 80-47(S)

No.

6-

•

1

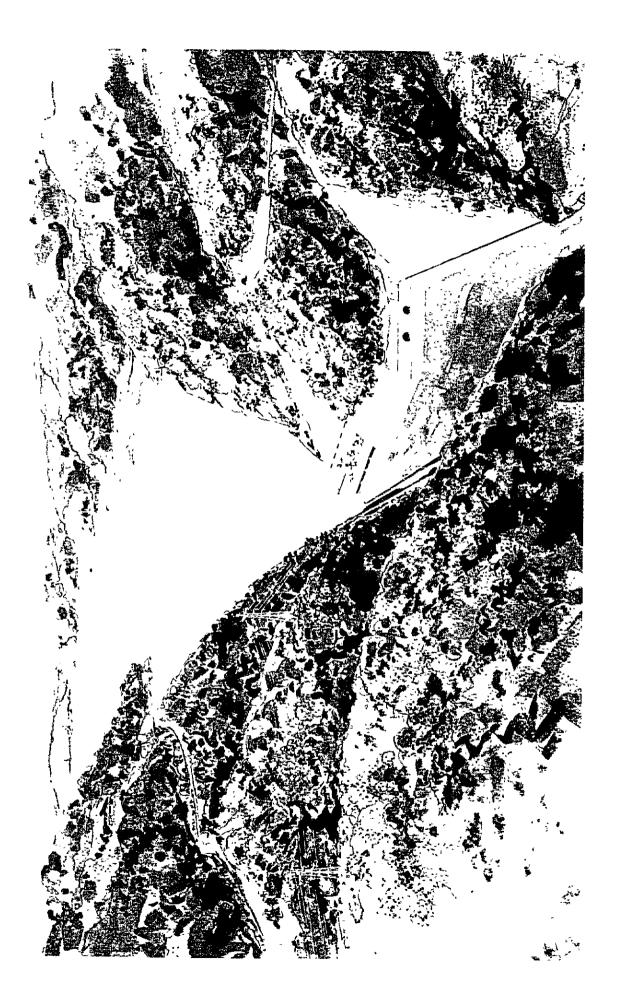
The Kingdom of Thailand

Electricity Generating Authority of Thailand

UPPER QUAE YAI HYDROELECTRIC DEVELOPMENT PROJECT FEASIBILITY REPORT

--- SUMMARY ----

June 1980


-

Japan International Cooperation Agency

国際協力事	5業団
マス 184. 3.27 月月	122
登纬40,01997	6413 MPN

.

CONTENTS

		Page
	Conclusion and Recommendation	• 1
1.	Introduction	• 2
2.	General Features of Nam Chon Project	• 3
3.	General Features of Thi Khong Project	• 6
4.	Construction Cost and Financial Program	• 7
5.	Construction Schedule and Start of Operation	• 7
6.	Economic Analysis	• 8
7.	Investigation	• 8

•

•

LIST OF FIGURES AND TABLES

- Fig. 1 Key and Location Map
- Fig. 2 Yearly Energy Balance
- Fig. 3 Profile of Quae Yai River
- Fig. 4 Geology Reservoir Area Plan
- Fig. 5 Storage Capacity and Surface Area at Nam Chon Site
- Fig. 6 Inflow, Power Discharge and Reservoir Water Surface at Nam Chon Power Station
- Fig. 7 General Plan (Nam Chon)
- Fig. 8 Typical Profile & Section Principal Structure (Nam Chon)
- Fig. 9 Plan, Profile & Section Power Intake Power House (Nam Chon)
- Fig. 10 General Layout (Thi Khong)
- Fig. 11 Construction Schedule of Nam Chon Project
- Fig. 12 Construction Schedule of Thi Khong Project
- Fig. 13 Sensitivity Analysis (2A) & (2B)
- Table 1
 Nam Chon Project Construction Cost
- Table 2
 Thi Khong Project Construction Cost

CONCLUSION AND RECOMMENDATION

CONCLUSION

Output of The Upper Quae Yai Project	Total: 631,000 kw
Nam Chon Power Station	580,000 kw
Thi Khong Power Station	51,000 kw

Type of Dam

Nam Chon dam	Rockfill dam
Thi Khong dam	Concrete gravity dam

Construction	Cost	Total project cost	
	am Chon Project hi Khong Project	570.4 million US\$ 56.4 million US\$	Equivalent to (11,694 million Bahts) "(1,156 million Bahts)
Construction	Schedule	Start of operation	Construction period
N	am Chon Project	1987	Approx. 6 years
\mathbf{T}	hi Khong Project	1989	Approx. 4 years

Economic Evaluation

Internal rate of return (discount rate of 10%): 15.2%

RECOMMENDATION

In order to start operation of the Upper Quae Yai Project by 1987, the various investigation works such as geological investigations on the damsite, investigations and laboratory tests of materials energetically being carried out by EGAT at present should be continued to be expedited for the purpose of detail design.

Based on the investigation results, it will be necessary to immediately commence detail design, and also preparation of tender documents and specifications. Facilities required for construction such as access roads to project sites and buildings should be prepared as early as possible in order to meet planned construction schedules.

1. INTRODUCTION

The early implementation of the Upper Quae Yai Hydroelectric Development Project, a hydroelectric power project with a large-scale reservoir, is expected to meet the increasing electric power demand in Thailand.

Nam Chon Power Station, to be the main power station in this Project, will have a maximum output of 580,000 kW, and will be located 141 km upstream of Srinagarind Power Station.

Thi Khong Power Station, to utilize the head remaining between Nam Chon and Srinagarind, will have a maximum output of 51,000 kW, and will be located at the end of the backwater of Srinagarind Reservoir approximately 8 km downstream from Nam Chon site.

The Upper Quae Yai Project consists of these two power stations, and the total output will be 631,000 kW.

EGAT (Electricity Generating Authority of Thailand) has pushed ahead with development of the Quae Yai River as a major river of Thailand suited for largescale hydroelectric power development, and planning and field investigations have been carried out for the Upper Quae Yai Project as indicated below.

1972	Reconnaissance by Japanese Gavernment Investigation Team
	for preparation of reconnaissance report
1974 - 1976	Investigations by an expert dispatched by Japanese Govern-
	ment and formulation of the Quae Yai basin development plan

.

1978 - 1979	Detailed geological investigations for selection of Project
	sites by experts dispatched by Japanese Government, and
	investigations through drillholes and test adits at Project
	sites, and preparation of topographic maps
1978	Preparation of Preliminary Report by EGAT
1979	Preparation of Pre-feasibility Report by EGAT

2. GENERAL FEATURES OF NAM CHON PROJECT

(1)	Location	Approx. 210 km NNE of Kanchanaburi,
		98°54.63' East Longitude,
		15°13.13' North Latitude
(2)	Catchment Area	4,908 km ²
(3)	Annual Mean Inflow	2,975 x 10 ^G m ³
(4)	Reservoir	
	Normal high water level	El. 370.0 m
	Max. high water level	El. 373.8 m
	Min. water level	El. 331.0 m
	Available drawdown	39.0 m
	Total storage capacity (at E1. 370.0 m)	5,950 x 10 ⁶ m ³
	Effective storage capacity	4,100 x 10 ⁶ m ³
	Reservoir surface area (at E1. 370.0 m)	137 x 10 ⁶ m ³
(5)	Power Generation	
	Max. output	580,000 kW
	Annual energy production	1,095 x 10 ⁶ kWh
(6)	Dam	
	Туре	Rockfill dam with center core
	Crest elevation	El. 376.5 m
	Height	185.0 m
	Crest length	450.0 m

	~ 1		
	Dam volume	$12.7 \ge 10^6 \text{ m}^3$	
	Design flood discharge	5,900 m ³ /sec	
	Spillway	Tunnel type	
		Capacity:	2,500 m ³ /sec
		Inner dia. x Length:	No.1 10 m x 820 m No.2 10 m x 860 m
		Gate	
		Width x Height:	11.5 m x 10.5 m, 2 ea.
	Cofferdam	Crest elevation:	El. 250 m
	Diversion tunnel	Capacity:	$1,600 \text{ m}^3/\text{sec}$
		Inner dia. x Length:	No.1 8m-10mx1,080m No.2 8m-10mx1,150m
	Outlet	Capacity:	$100 \text{ m}^3/\text{sec}$
(7)	Intake		
	Туре	Reinforced concrete s	structure
	Gate	Width x Height:	8 m x 10 m, 2 ea.
(8)	Pressure Tunnel	Inner dia. x Length:	No.1 7.9 m x 370 m No.2 7.9 m x 450 m
(9)	Surge Tank		
	Туре	Chamber type	
		Inner dia. x Height:	11 m x 78 m, 2 ea.
(10)	Penstock	Inner dia. x Length:	5.0 m x 260 m, 4 ea.
(11)	Powerhouse		
	Туре	Surface, reinforced c	oncrete structure
		Length x Width x Heig	ght: 110 m x 20 m x 44 m
	Draft gate	Width x Height:	6.0m x 5.0m, 4 ea.
(12)	Main Electrical Equipment		
	Installed capacity	580,000 kW	
	Turbine		
	Туре	Vertical-shaft Franci	S
	Number of units	4	
	Normal effective head	146.5 m	
	Max. discharge	115 m ³ /sec	

3

Output	150,000 kW	
Revolving speed	188 rpm	
Generator		
Туре	3-phase, a.c., synchronous generator	
Number of units	4	
Capacity	162,000 kVA	
Frequency	50 Hz	
Main transformer		
Туре	3-phase, outdoor, oil-immersed	
Number of units	4	
Capacity	162,000 kVA	
Voltage	230/13.8 kV	
Switchyard equipment		
Туре	Outdoor SF ₆ gas insulated switchgear	
Bus connection system	Double-bus system	
Number of transmission lines	2	
Transmission Line		
Route	Upper Quae Yai to Srinagarind Switchyard (2 cct, 115 km)	
	Srinagarind Switchyard to Ban Pong 2 Substation (2 cct, 108 km)	
	Ban Pong 2 to Sai Noi Substation (1 cct, 54 km)	
Length	277 km	
Voltage	230 kV	
Telecommunication		
Multi-channel radio equir	oment	
Power line carrier equipment		

Carrier protective relay signaling equipment

Transmission line fault locating equipment

Mobile radio telecommunication equipment

Data transmitting equipment

(13)

(14)

3. GENERAL FEATURES OF THI KHONG PROJECT

(1)	Location	8 km downstream from	m Nam Chon site
(2)	Catchment Area	5,145 km ²	
(3)	Annual Mean Inflow	3,090 x 10 ⁶ m ³	
(4)	Regulating Pond		
	Normal high water level	El. 197.0 m	
	Min. Water level	El. 196.8 m (El. 193	5 m during one unit drop)
	Available drawdown	0.2 m	
	Total Storage capacity (at El. 197.0 m)	16 x 10 ⁶ m ³	
	Effective storage capacity	$0.3 \ge 10^6 \mathrm{m}^3$	
	Pond surface area (at El. 197.0 m)	$1.45 \ge 10^6 \text{ m}^2$	
(5)	Power Generation		
	Max. output	51,000 kW	
	Annual energy production	$93 \ge 10^6 \text{ kWh}$	
(6)	Dam		
	Туре	Concrete gravity	
	Crest elevation	E1. 200.0m	
	Height	32 m	
	Crest length	110 m	
	Dam volume	$46 \times 10^3 \mathrm{m}^3$	
	Design flood discharge	2,800 m ³ /sec	
	Spillway		
	Туре	Overflow type	
	Gate	Width x Height:	11.0 m x 13.0 m, 3 ea.
	Sand flush gate	Width x Height:	11.0m x 15.0m, 1
(7)	Intake		
	Туре	Rainforced concrete s	structure
	Gate	Width x Height:	9.0 m x 17.0 m, 4 ea.

•

.

1

(8)	Powerhouse		
	Туре	Surface, reinforced concrete structure	
		Length x Width x Height:	65 m x 20 m x 44 m
	Draft gate	Width x Height:	9.0 m x 7.0 m, 2 ea.
(9)	Main Electrical Equipment		
	Installed capacity	51,000 kW	
	Turbine		
	Туре	Vertical-shaft Kaplan	
	Number of units	2	
	Normal effective head	12.5 m	
	Max. discharge	240 m ³ /sec	
	Output	26,400 kW	
	Revolving speed	94 rpm	
	Generator		
	Туре	3-phase, a.c., synchronous generator	
	Number of units	2	
	Capacity	27,000 kVA	
	Frequency	50 Hz	
	Main transformer		
	Туре	3-phase, outdoor, oil-im	umersed
	Number of units	2	
	Capacity	27,000 kVA	
	Voltage	230/13.8 kV	
	Switchyard equipment		
	Туре	Outdoor, air-insulated	
	Bus connection system	Single-bus system	
	Number of transmission lines	1	

4. CONSTRUCTION COST AND FINANCIAL PROGRAM

4.1 Nam Chon Project

	Forein Currency	Local Currency	Total
US\$ (million)	225.6	344.8	570.4
Equivalent to Bahts (million)	4,625	7,069	11,694

4.2 Thi Khong Project

	Forein Currency	Local Currency	Total
US\$ (million)	24.7	31.7	56.4
Equivalent to Bahts (million)	506	650	1,156

5. CONSTRUCTION SCHEDULE AND START OF OPERATION

5.1 Nam Chon Project

As a result of power demand forecasts, Nam Chon Power Station should start operation in 1987. The construction schedule of the works is as shown in Fig. 11.

5.2 Thi Khong Project

In order to construct this Project economically, the construction period should be scheduled so that the construction facilities for Nam Chon Project can be utilized. Particularly, in order to make diversion works easier, the construction period should be planned in step with water impoundment of Nam Chon Project. Consequently, the start of operation will be in 1989 as shown in the construction schedule of Fig. 12.

6. ECONOMIC ANALYSIS

The results of economic analysis based on an alternative thermal power station are as indicated below.

	with Thi Khong Power Plant	without Thi Khong Power Plant
Benefit (B)	US\$494.1 million (E10,129 million)	US\$455.3 million (Ø9,333 million)
Cost (C)	US\$341.2 million (E6,995 million)	US\$314.4 million (E6,445 million)
B - C	US\$152.9 million (E3,134 million)	US\$140.9 million (E2,888 million)
B/C	1.45	1.45
Internal rate of return (discount rate 10%)	15.2%	15.0%

7. INVESTIGATION

Calcareous rock formations are distributed in the Quae Yai basin. These formations are generally defective with regard to resistance against permeability. Accordingly, geological investigations were firstly focused on security against reservoir watertightness.

The evaluation of reservoir watertightness was studied by photo geological interpretation, summit level analysis, drainage pattern analysis, and chemical analysis of river water and rocks. Followingly the geological investigations at dam foundations were carried out.

The investigations below were made at Nam Chon and Thi Khong which were selected finally as Upper Quae Yai Project site.

- o Preparation of topographic maps
- o Drillhole for structure foundations

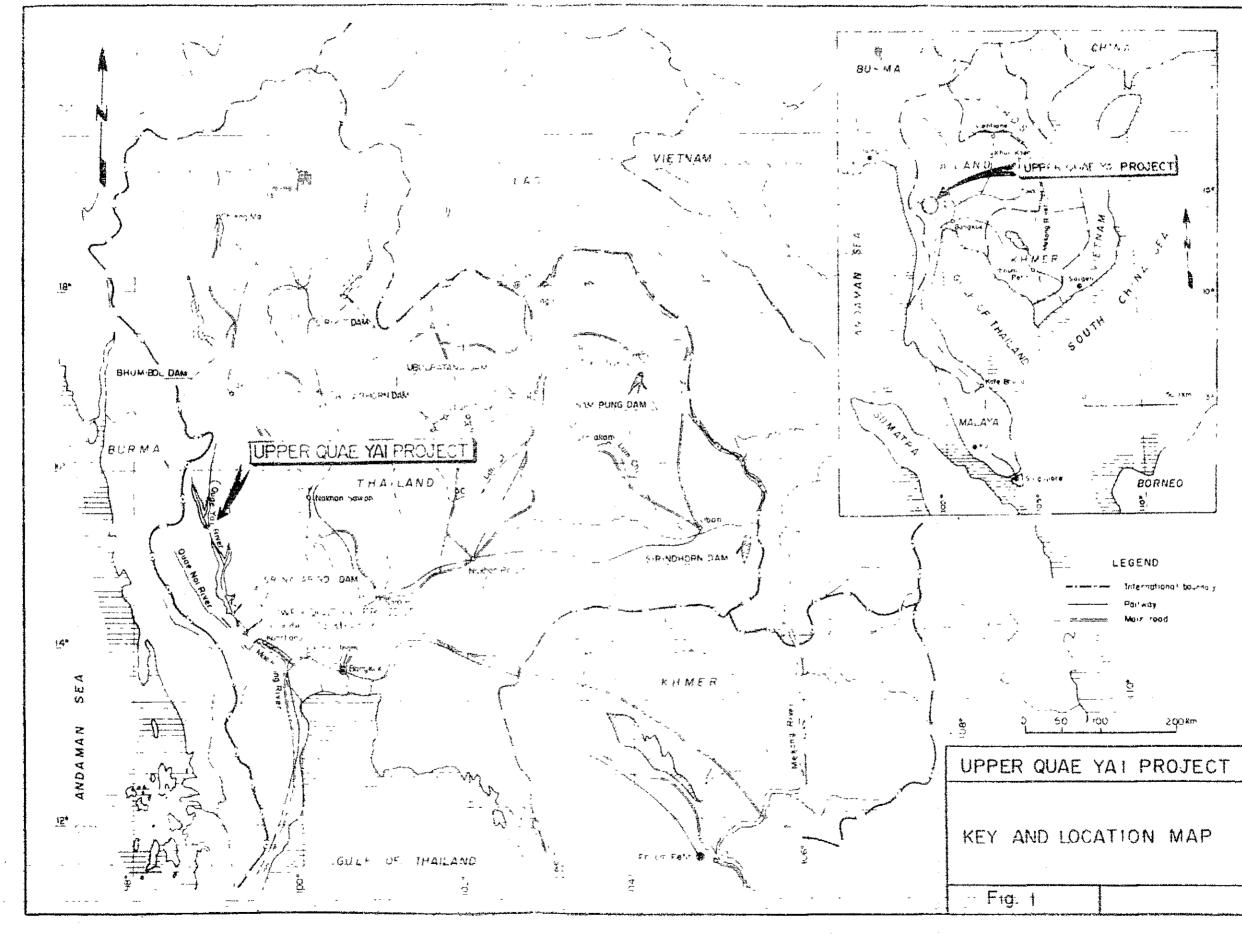
Nam chon site24 holes, total length 1,783 mThi Khong site4 holes, total length126 m

o Test adit and test pit for structure ioundations

Nam Chon site 3 adits, about 90 m

Thi Khong site 2 pits, about 3 m

Investigations and laboratory tests for materials
 Drillhole 5 holes, total 200 m


Test pit 30 pits, total 111 m

o Hydrological investigations

As a result of these investigations and examinations, the reservoir watertightness was made clear and it was judged that both project sites possess adequate bearing strength as foundations for the structures planned. In addition to the above, there would be no special problems on the provisions of the water cutoff of the dams. Furthermore, with respect to dam construction materials, it is assured that sufficient amounts of materials with suitable properties can be obtained in the vicinity of the project sites.

•

- -

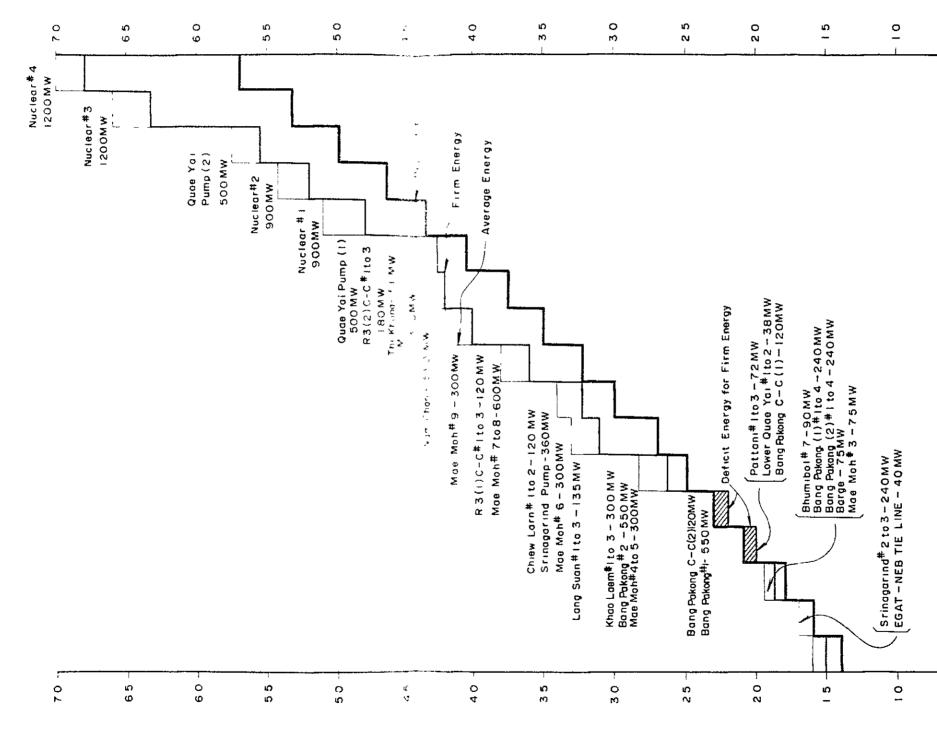
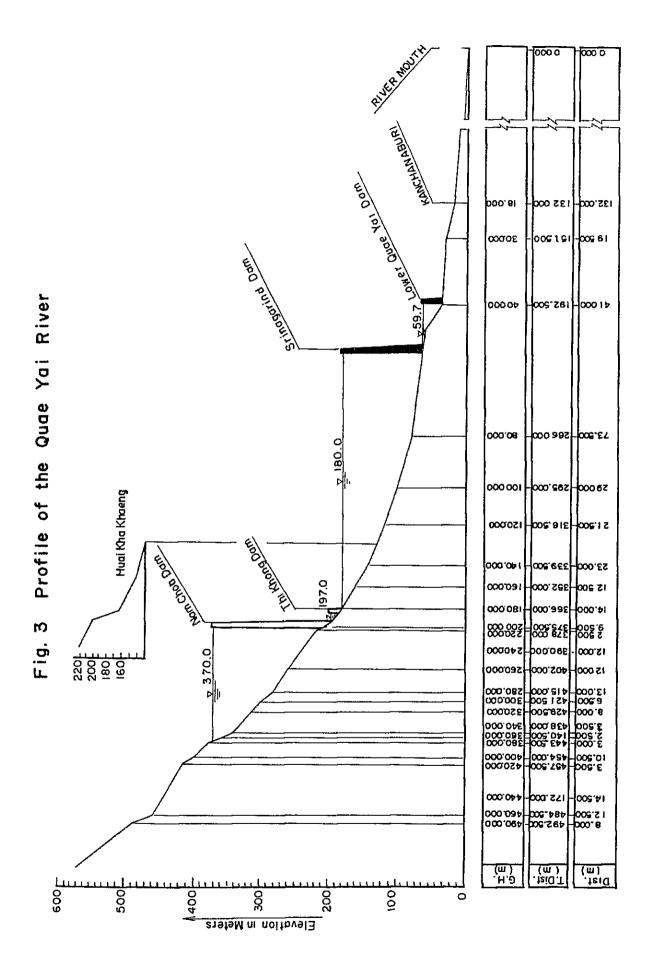
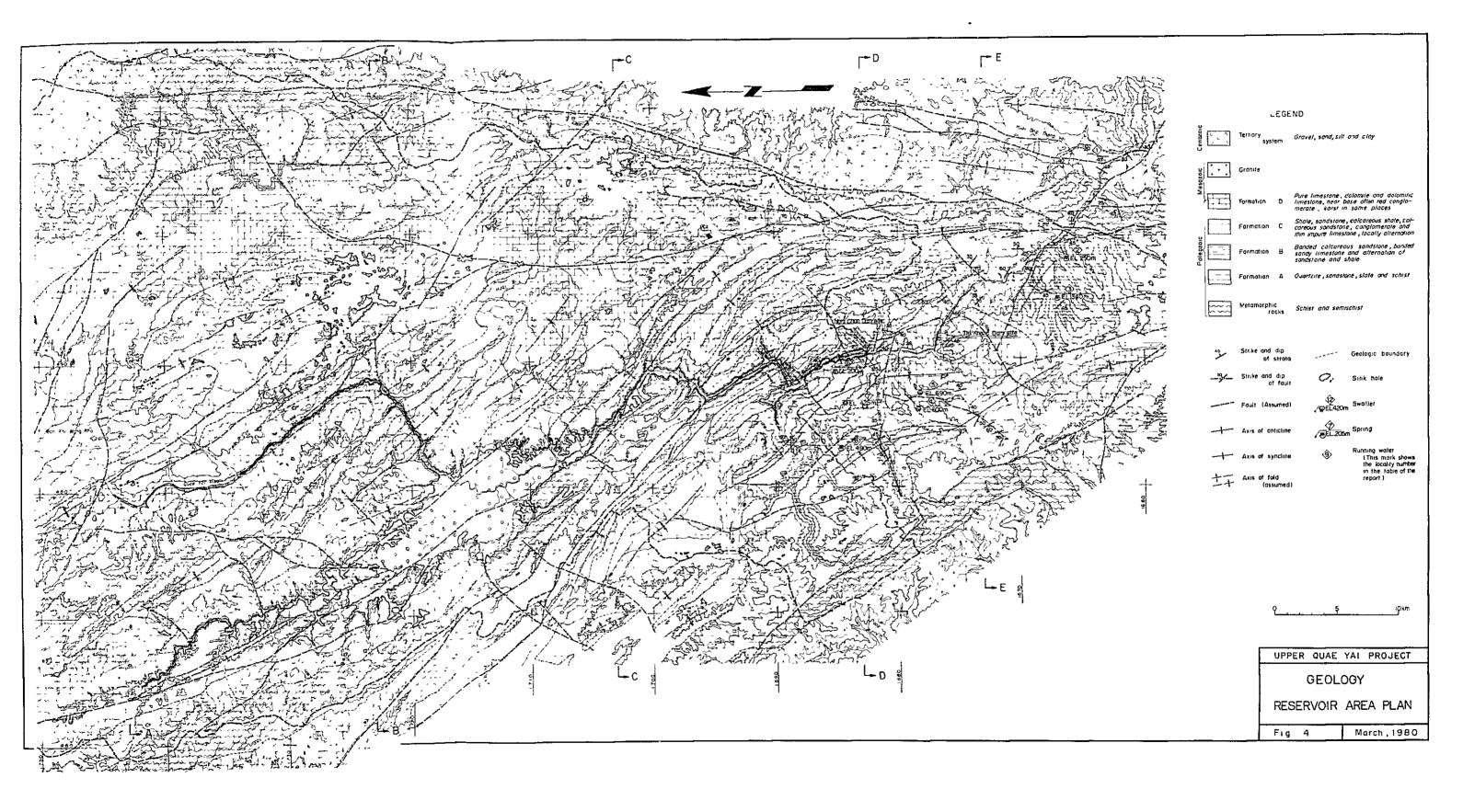


Fig 2 Yearly Energy Balance in GWh

AWD⁵OI Ygenergy 10³GWh

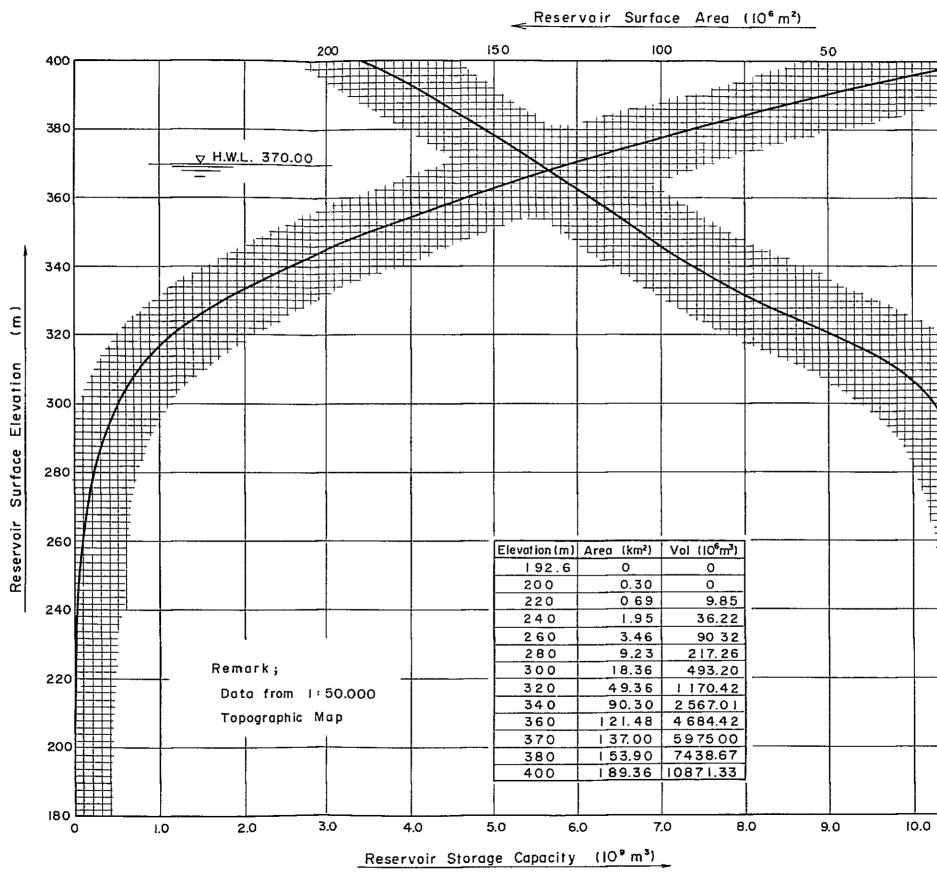
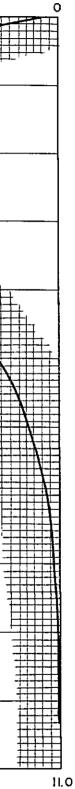
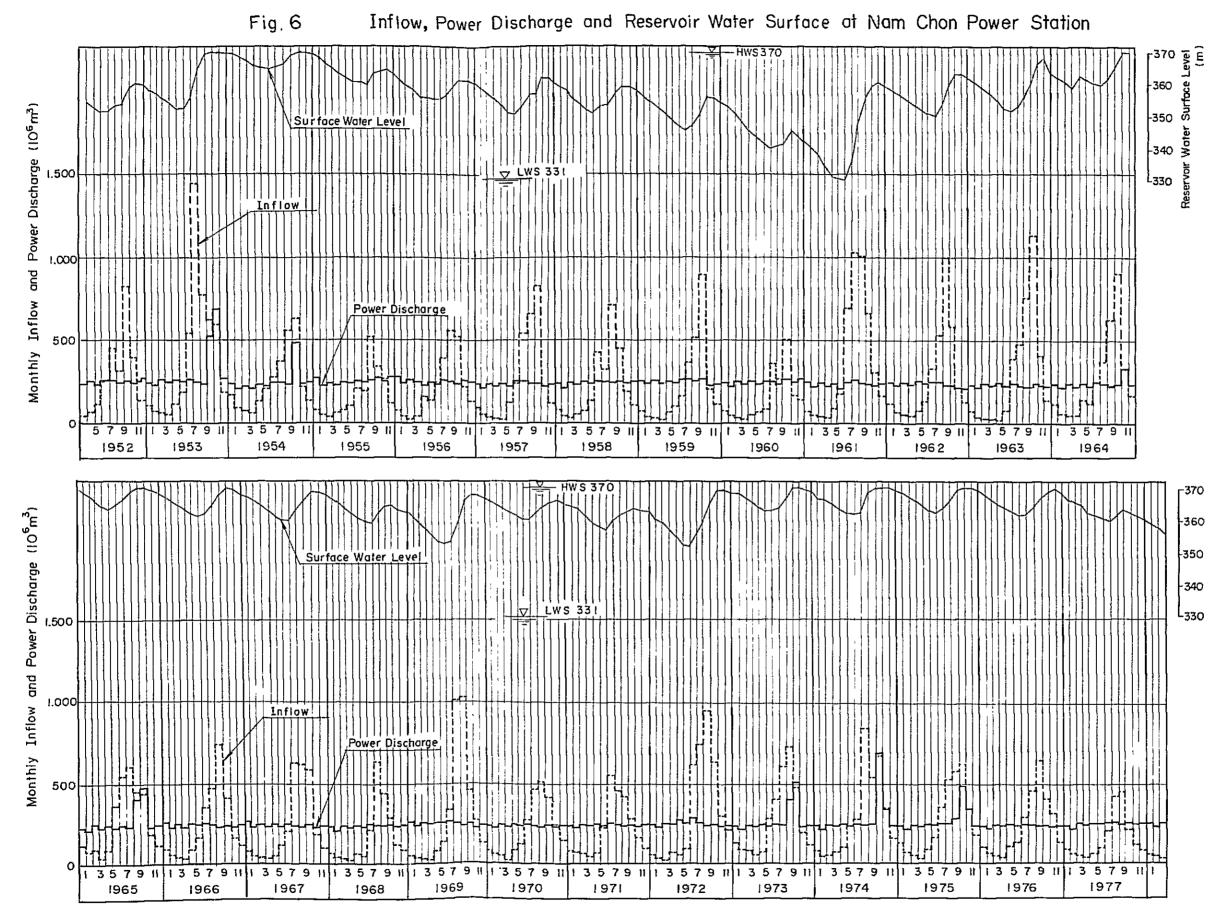
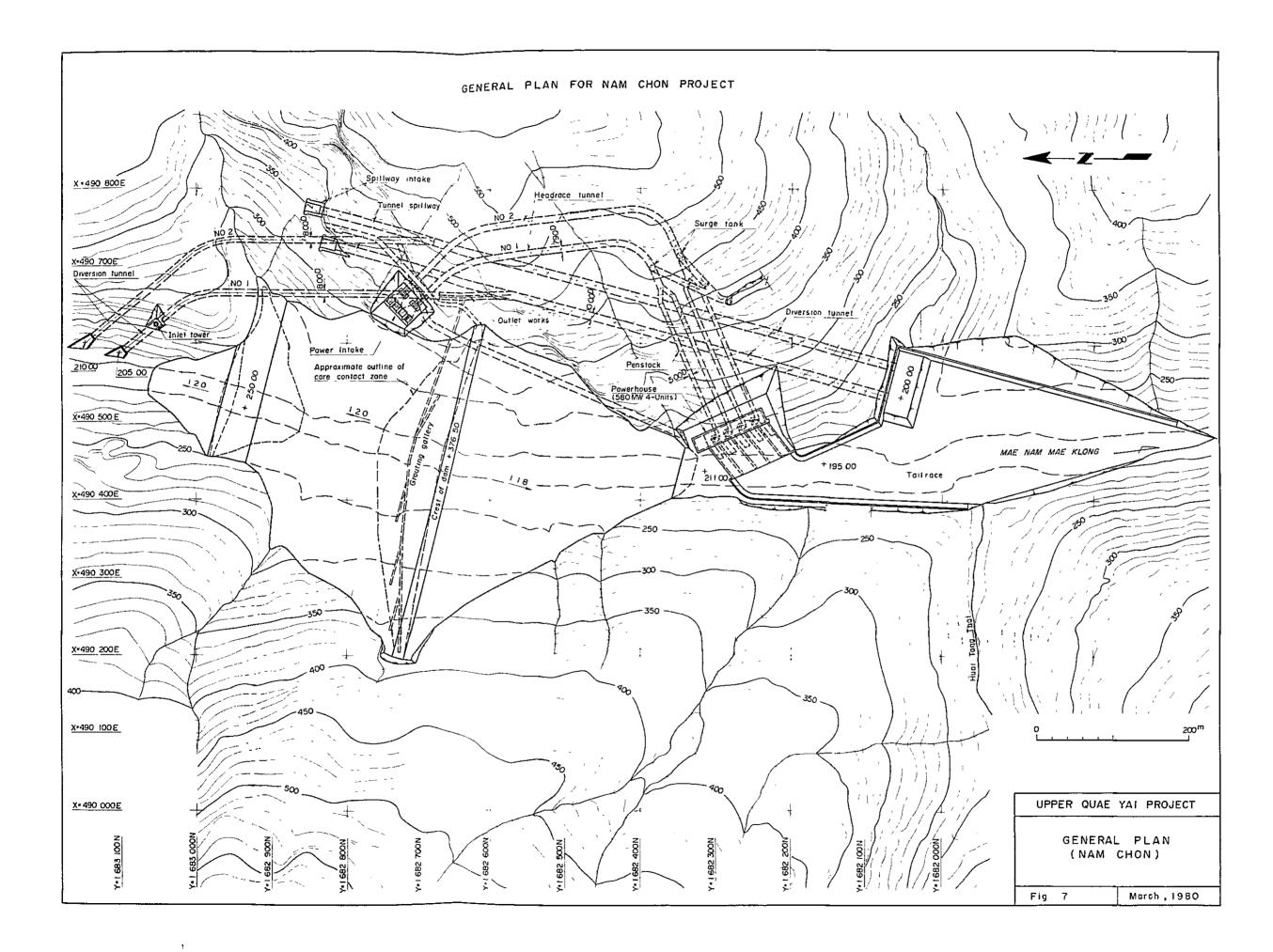

,80 52

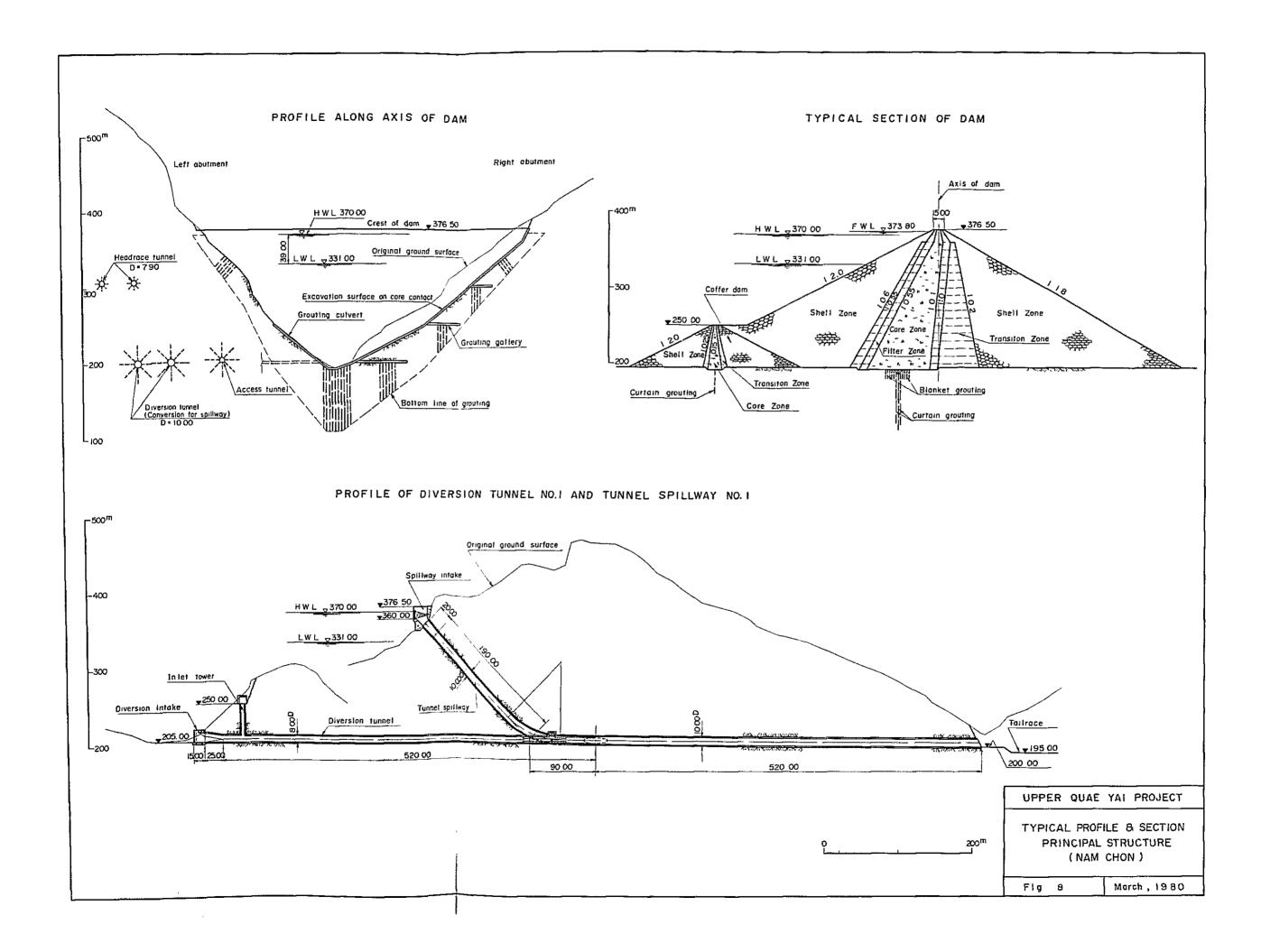

0

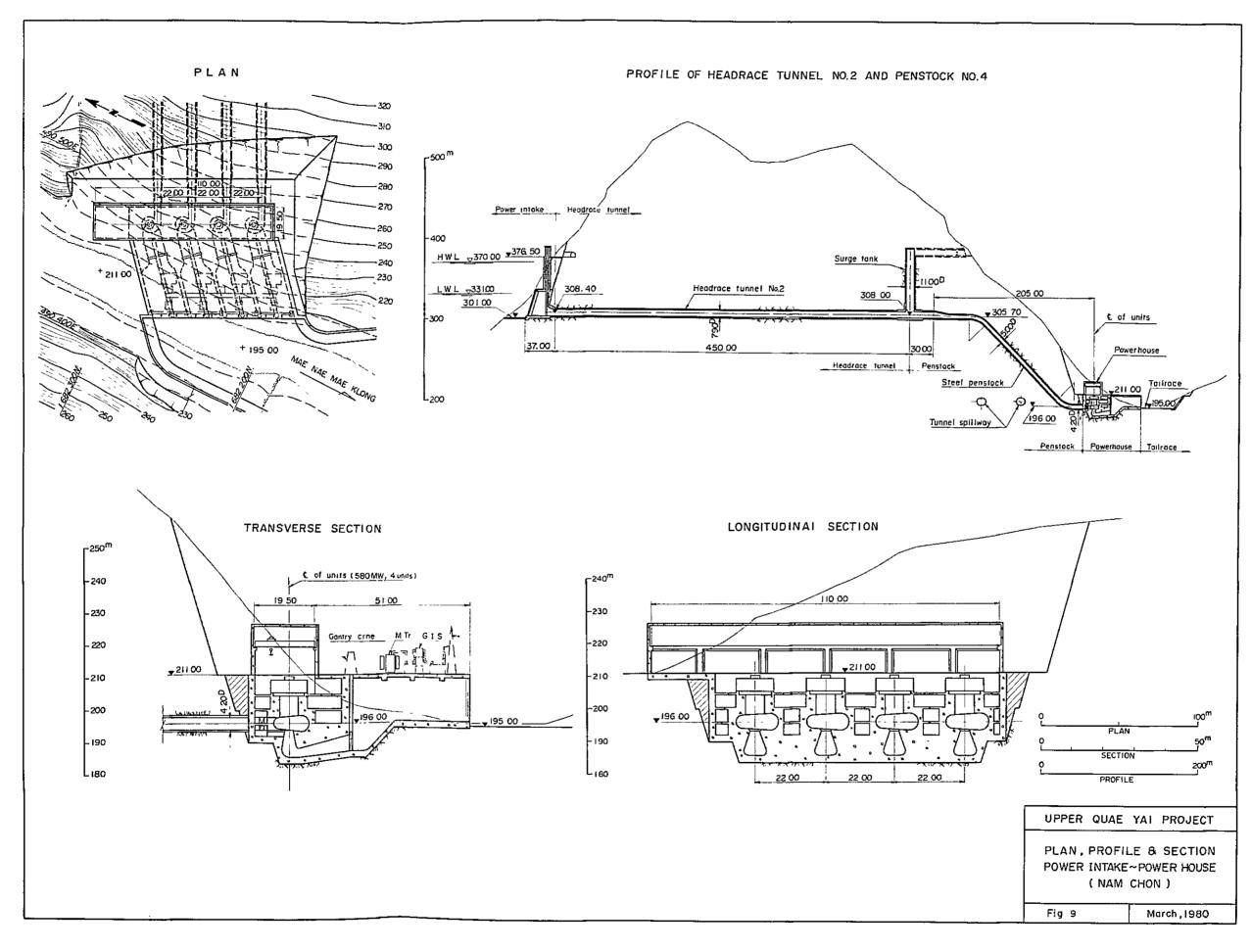
0

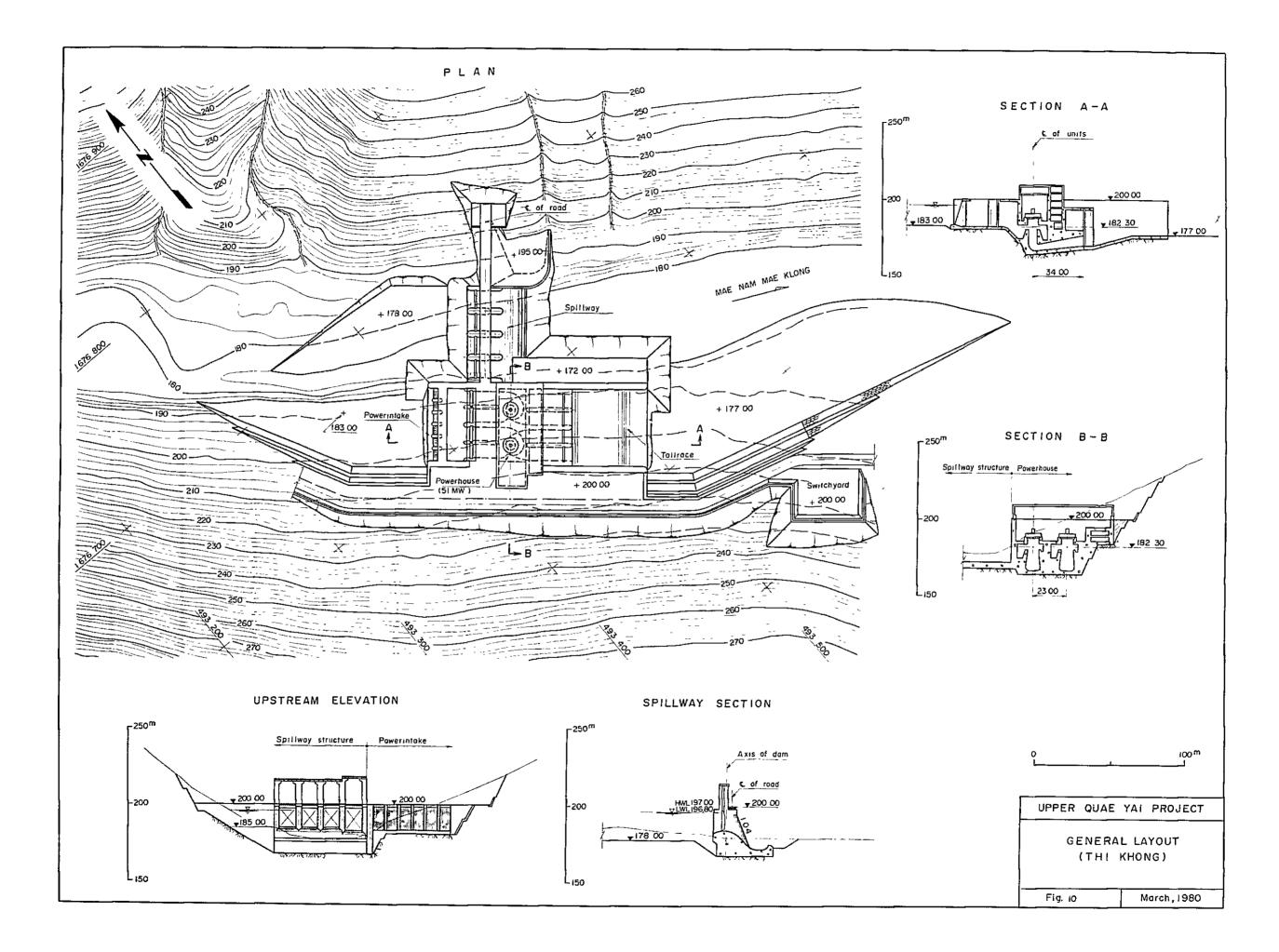
Note: Fiscal Year '79 '79 Oct to '80 Sep.

. GWh = 10⁹ Wh


Fig. 5 Storage Capacity and Surface Area at Nam Chon Site




-370 P -360 -360 -350 -350 -350 -340 -330 -330 -330 -330 L₃₃₀

۱.

Fig. 11 Construction Schedule of Nam Chon Project

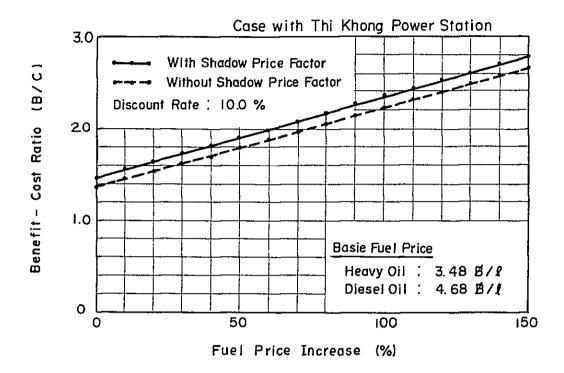
Description	_		Item	Unit	Quantity	1981			1982			1983			1984			1985			1986	;		198
Preparation Works				L.S.	1	 																		
Construction Facilities	i			L.S.	1														Com	menc	emer	nt of :	Fillin	g F
Clearing				L.S.	1																			
Care of River				L.S.	1	C																		
Diversion Tunnel	١٥.	1	Ex.	m ³	239,000				П															
	١o.	2	Con	. m ³	72,500										Clo	se Ga	i ate I I							
Dam			Ex. Gro Em.		901,700 60,000 12,700,000				C								Clo	se Ga	ite					
	• • •		Ex.	m ³	840,000	D	own					ss T.			In.	A.C.	ntrar		Down	1	1			
Spillway			Con Gate	. m ³				 			Con.		A.T		ncl.	Con.	þ				Incl	Con	╡ └∙ Gat	e
Intake	-		Ex. Con Gate	3 3	160,000 39,000																			
Outlet Works			Ex. Con Gate	m^3 m^3	10,300 11,400					1			x. O.	Ex	on. Tra		<u>v</u> .							
Headrace			Ex. Con Gro		21,600																			
Surge Tank			Ex. Con Gro	m3 m3 L.S	14,000			:																
Penstock				. L.S.	. 1																		1	1
Powerhouse			Ex. Con Con.(S	m3 m3 S) m ³	261,000 70,000 40,000																			
Tailrace			Ex. Con Gate	m ³ m ³ e L.S.	34,500										n					i]	
Electrical Equipment				L.S.	. 1																			
Transmission Line				L.S.	. 1																<u> </u>			F
Switchyard Equipment				L.S.	1											1								

987		Notes
Rea	servo	
<u> </u>		
	2	Start of Operation
		Ex. : Excavation Con.: Concrete Em. : Embankment Gro.: Grout Injection
		Incl. In.: Inclined Shaft A.T.: Access Tunnel O.Ex.: Open Excavation
		Tra.: Trashrack V. : Valve
		S.P.: Steel Pipe
_ _		S.S.: Super Structure
П		

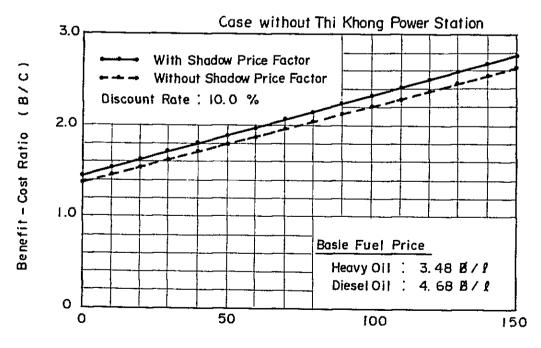
4 Ņ

. د معر ا f 1

. . . -•


~1

Project
Khong
Thi
Ч
Schedule
Construction
12
Fig.


Description	Unit	Unit Quantity	1985	1986	1987	1988	1989
Preparation Works	L.S.	- <u> </u> 					
Construction Facilities	L.S.						
Clearing	L.S.						
Care of River	L L		0				Start of Operation
Excavation	m3	720,000					
Concrete (Dam & Spillway)	т ³	46,000					
Concrete (Intake)	в3	24,000					
Concrete (Powerhouse)	в ³³	35,000					
Concrete (Tailrace)	m3	10,000					
Gate (Spillway)	L.S.	r-i					
Gate (Intake)	L.S.	F					
Gate (Tailrace)	L.S.	Ħ					
Switchyard	L.S.	F.					
Electrical Equipment	L.S.	F-1					
Transmission Line	L.S.	T					

.

Fig. 13 Sensitivity Analysis (2A)

Sensitivity Analysis (2B)

Fuel Price Increase (%)

. .

	Curre	ency	Total
Item	US\$ (M	illion)	US\$ (Million)
	Foreign	Local	
Preparation Works Camp, Road, Compensation and Contingency	14.2	45.7	59.9
Civil Works			
Diversion, Outlet Works and Care of River	6.1	20.1	26.2
Dam	59.5	45.8	105.3
Spillway	5.9	15.5	21.4
Intake, Headrace, Surge Tank and Penstock	4.1	17.0	21.1
Powerhouse and Tailrace	3.4	17.1	20.5
Miscellaneous	2.4	3.5	5.9
Contingency	7.9	11.6	19.5
Sub-total	89.3	130.6	219.9
Hydraulic Equipment			
Spillway Gates	1.5	0.3	1.8
Outlet Valve	1.1	0.3	1.4
Intake Gates	2.0	0.3	2.3
Penstock	6.9	2.3	9.2
Draft Gates	0.8	0.1	0.9
Contingency	0.8	0.8	1.6
Sub-total	13.1	4.1	17.2
Electrical Equipment	56.7	10.0	66.7
Transmission Line and Telecommunication	40.2	16.5	56.7
Engineering Fee	12.1	8.1	20.2
Total	225.6	215.0	440.6
Interest During Construction		107.9	107.9
Import Duties	-	21.9	21.9
Total Project Cost (Million US\$)	225.6	344.8	570.4
(Million Bahts)	4,625	7,069	11,694

Table-1 Nam Chon Project Construction Cost

.

	Curre		Total
Item	US\$ (Mi Foreign	Local	US\$ (Million)
	1 of orgin	Hotar	
Preparation Works			
Camp, Road, Compensation	0.9	2.3	3.2
and Contingency			
Civil Works			
Dam and Spillway	1.0	4.3	5.3
Intake, Powerhouse, Tailrace	3.2	9.7	12.9
and Switchyard Care of River	0.2	0.2	0.4
Miscellaneous	0.1	0.4	0.5
Contingency	0.5	1.4	1.9
			l l
Sub-total	5.0	16.0	21.0
Hydraulic Equipment	1.4	0.3	1.7
Spillway Gates Intake Gate, Trashrack	1	[
and Draft Gate	1.6	0.3	1.9
Contingency	0.1] _	0.1
Sub-total	2.1	0.6	3.7
The studies 1 Figurieur sut	14.3	2.5	16.8
Electrical Equipment	14.3	2.5	_
Engineering Fee	1.4	0.9	2.3
m (c)	24.7	00.0	47.0
Total	24.7	22.3	47.0
Interest During Construction	-	6.8	6.8
Import Duties	-	2.6	2.6
Total Project Cost (Million US\$)	24.7	31.7	56.4
(Million Bahts)	506	650	1,156

Table-2 Thi Khong Project Construction Cost