Item	A seam	B şeam	C seam
	(%)	(%)	(%)
sio ₂	41.38	37.16	31.98
	(34.54-48.66)	(35.54-38.78)	(25.94-40.85)
TiO ₂	0.56 (0.49-0.63)	0.98 (0.97-0.99)	0.61 (0.58-0.65)
A1 ₂ 0 ₃	21.24	26.31	21.67
	(16.96-27.27)	(25.21-26.41)	(18.80-28.30)
Fe ₂ 0 ₃	25.65	21.17	25.53
	(15.32-32.80)	(18.77-23.57)	(11.79-41.77)
Mg0	1.92	2.79	2.99
	(0.66-3.56)	(1.72-3.85)	(1.61-5.68)
Ca0	4.10	6.54	10.13
	(1.98-7.98)	(5.58-7.49)	(4.61-14.64)
Na ₂ 0	0.72	0.72	0.62
	(0.55-0.84)	(0.71-0.72)	(0.58-0.65)
K ₂ 0	0.88	0.99	0.92
	(0.51-1.58)	(0.88-1.09)	(0.67-1.27)
P ₂ 0 ₅	0.21 (0.06-0.39)	0.21 (0.07-0.35)	0.13 (0.05-0.25)
so ₃	2.67	3.01	4.88
	(0.82-5.83)	(2.25-3.77)	(3.93-5.55)
Fouling index Ca0+Mg0	0.23	0.44	0.51
	(0.09-0.40)	(0.39-0.50)	(0.15-1.43)
Fe ₂ ⁰ 3			

Note: A seam : Arithmetic mean of W-2, W-3 and S-1

B seam : Arithmetic mean of W-2 and W-3

C seam : Arithmetic mean of W-2, W-3, W-4 and the upper

part of S-1

Values in () show the ranges.

High Al₂0₃, Fe₂0₃, CaO and MgO contents are typical characteritics for Waringin coal. Na₂O content is desirable to be under 2 % for coal for power stations, with 0.84 % for the coal of A seam at W-2 as the maximum value. Others have less and so no problem will arise. Except C seam of W-4, the fouling index of Waringin coal is generally less than 1.0 %, which is accepted.

The X-ray powder diffraction analysis carried on the coal samples before the proximate analysis showed that the mineral matters in coal are mainly composed of kaolinite, quartz, siderite, pyrite (marcasite), calcite (aragonite) and dolomite (Dwg. 14). It is characteristic that no feldspar was found in them. Besides the above-mentioned minrals small amount of mica mineral were found. since Na₂0 and TiO₂ were confirmed in the ash analysis, it is considered that feldspar and ilmenite may exist in such a small amount as they cannot be found by the X-ray diffraction analysis, and their contents are deemed very small.

The theoretical mineral compostions of ash (weight percent) were calculated based on the result of X-ray powder diffraction analysis together with chemical composition of ahs, the results are shown in the following table.

			1.0
Coal seam	C seam at W-2	C seam at W-4	C seam at S-1
Depth (m)	462.83 - 463.60	280.40 - 287.16	364.50 - 372.50
Kaolin	45.09 %	22.32 %	68.65 %
Dolomite	3.51	25.18	1.15
Calcite, Aragonite	4.01	11.31	7.94
Siderite	40.96	4.03	15.87
Pyrite, Marcasite	2.78	7.73	1.25
Quartz	3.66	29.80	5.14

A wide fluctuations can be seen from it, presumably caused by the phenomenon that these mineral occurred secondarily in the coal seam. (dissemination along cracks, etc.) The major constituent mineral of the roof and floor of coal seam is kaolin accompanies with small amounts of mica minerals and quartz, and these minerals are considered to have existed primarily in the coal seams. Otherwise the minerals such as dolomite, calcite (aragonite), siderite and pyrite (marcasite) are considered to be of secondary origin.

Scanning electron microscopic observation did not find any pyrite or marcasite to be of primary origin in the coal sample. Consequently, all these minerals are thought of secondary origin and the fluctuation in the ash analytical values is considered to show the uneven distribution of mineral matters

in coal. This fact does not even contradict the sulfur analysis result by gravity separation (possible to remove by the float-and-sink dressing).

5.5 Petrographic Analysis and Fluidity Test

The results of petrographic analysis are shown in Table 15. The test is performed using the Gieseler Plastometer. Petrographic analysis indicates that B and C seams seem to be undergone slightly higher degree of coalification than A seam. The coke strength revealed from the analysis of Table 15 are $D_{15}^{30} = 65$ for B seam and $D_{15}^{30} = 1$ less than 47 for A and C seams in terms of the drum strength of JIS. High coke strength can not be obtained from this coal alone. The result of the fluidity test is summarized as follows from Table 12.

Coal seam	A	seam		B.se	eam .	C		
Borehole No.	W-2	W-3_	s-1	S-2	W-3	W-2	s-1*1	S-1 *2
Softening temperature (C°)	413	409	410	407	411	407	404	407
Maximum fluidity (DDPM)	1.4	1.5	1.7	1.8	1.3	2.1	4.5	3.0
Maximum fluidity temperature (C°)	426	423	428	420	423	432	430	432
Resolid tempe- rature (C°)	543	453	458	456	453	453	456	456
Range (C°)	40	44	43	49	42	46	52	49

Table 15. Petrographic analysis of coal from S-1

Coal seam	A seam	B seam	Upper part of C seam	Lower part of C seam
Vitrinite type (Vol. %)				
V 6	4 3. 3	1 4, 0	1 0.4	3. 4
V 7	4 3.3	5 0.3	7 0 7	8 0.1
V 8	. !	1 8.1	5.2	0.8
Maceral type (Vol. %)				
Vitrinite	8 6.6	8 2.4	8 6.3	8 4.3
Vitrinite	8 6.6	8 2.4	8 6.3	8 4.3
Psuedo- vitrinite				. -
Exinite	8.9	6.3	8.0	5.0
Exinite	8.9	6. 3	8.0	5.0
Resinite	_		<u></u>	
Inertinite	3. 0	3. 6	3.9	6.3
Sclerotinite	2.3	3. 0	2.3	2.2
Micrinite	0.7	0. 6,	1.6	4.1
Semi-fusinite		· —		
Fusinite		••-	-	
Mineral matter	1. 5	7.7	1.8	4.4
Mean Maximum ref— lectance (%)	0.7 0	0.7 6	0.7 5	0.74
Reactive entity (Vol. %)	9 5.5	8 8.8	9 4.3	8 9. 3
Inert ontity, (Vol. %)	4.5	1 1 3	5.7	1 0 7
Composition balance index	0.15	0.3 9	0.19	0.3 7
Strength Index	2.4 5	2.69	2.5 3	2.6 7
Calculated coke strength	0	11	0	8

Analyzed by Coal Mining Research Center, Japan.

Note: *1 The upper part of C seam (352.86 - 364.50 m)

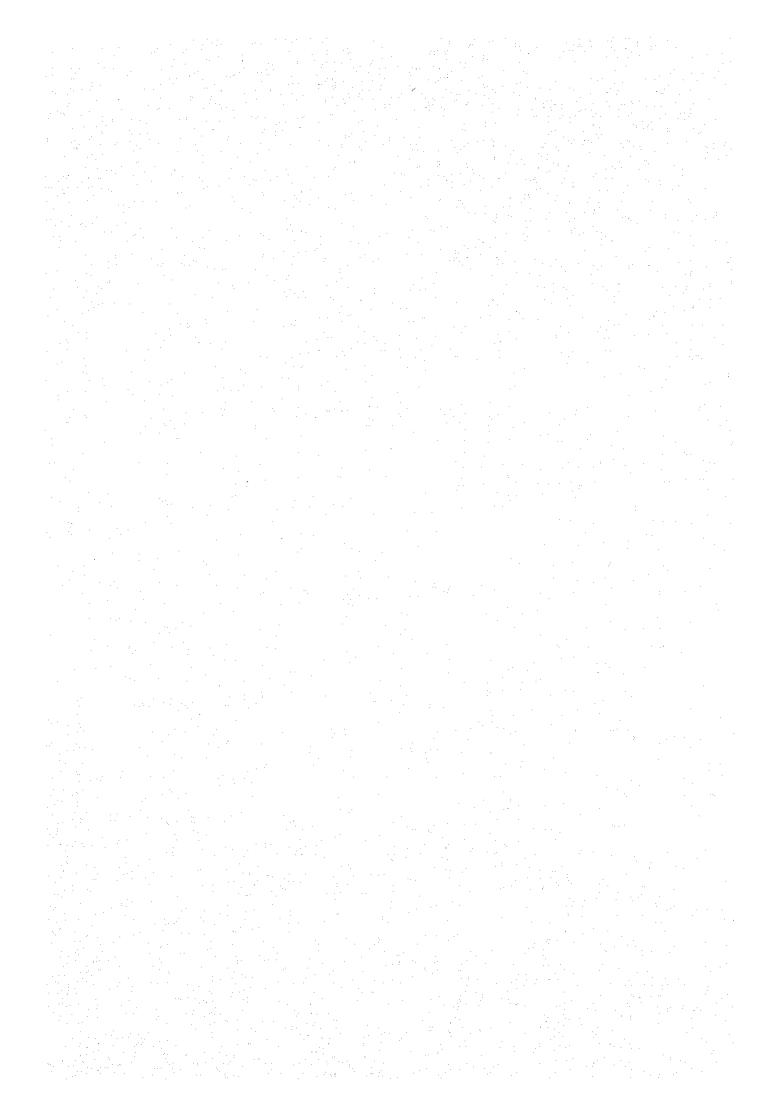
*2 The lower part of C seam (364.50 - 372.50 m)

The test is performed using the Gieseler Plastometer.

The maximum fluidity is very low and fluid range is narrow for coals in all seams.

5.6 Evaluation of Coal Quality

After going through coal quality analysis and tests, following considerations may be given to the A, B and C seams.


- (1) Although there is slight different all coal considered to have same quality.
- (2) Waringin coal may be classified as bituminous coal Cl according to the Japanese classification system and high volatile A bituminous coal, in ASTM classification.
- (3) The Waringin coal quality generally is as follows: (Raw coal basis)

I.M. (%)	3 - 4
Ash (4)	4 - 6
V.M. (%)	38 - 41
F.C. (%)	- 51 - 53
Total sulfur (%)	0.5 - 1.5
C.S.N.	$3 - 4\frac{1}{2}$
C.V. (Kcal/Kg)	7,400 - 7,500
H.G.I.	43 - 48
Ash melting point (°C)	1,340 - 1,370

- (4) The fair guality of Waringin coal, such as low ash content, high calorific value and weak-coking porperty, is good for steam coal and suitable for bending in coke making.
- (5) On the other hand, the nitrogen content (1.8 2.2 %) and sulfur content (1 - 2 %) are slightly higher than expected.

CHAPTER 6

COAL RESERVES

CHAPTER 6. COAL RESERVES

6.1 Method and Basis for Coal Reserves Estimation

The area for the coal reserves estimation included not only the current exploration drilling area, but up to Sawah Luhung area. The eastern limit of the area lay in the Ombilin River (Ombilin fault). For A coal calculation, the southern limit lay in a line connecting the spot 250 m south of S-2 and the outcrop found near the hospital. The south limit of C coal calculation is the southern termination of the goaf.

Isopach lines were drawn on the basis of data of the drillings and of outcrops. The areas where the coal thickness is less than 1.0 m are omitted from estimation. Furthermore, the range with in 100 m from goaf is omitted for a water prevent pillar and the depth limit is down to 200 m below the sea level.

1) Block

The area is divided into 5 blocks of a, b, c, d and e by major faults, each of which is further divided into sub-blocks by the level, coal seam thickness and synclinal axis. As a result, A seam is divided into 63 sub-blocks, B seam into 4 ones and C seam into 32 ones.

2) Level

The level is divided into 5 groups of above +200 m, +200 m $^{\circ}$ +100 m, +100 m $^{\circ}$ +0 m $^{\circ}$ -100 m and -100 m $^{\circ}$ -200 m.

3) Area

The area is determined on a plan of 1/5,000 by means of planimeter measurement.

4) Dip

Dips are determined from sturcture contour and the inclind area is calculated by multiplying the plan area by dip conversion ratios (secant).

5) Thickness of coal seam

Parting is not included in the thickness determination. Thicknesses of coal seam are determined from isopach lines drawn by the intra-and extrapolating methods on the basis of data of the drillings and outcrops. Thickness of coal seams in the current drillings (W and S series) are determined by multiplying apparent thicknesses by dip conversion ratios (cosine). Thicknesses of coal seams in the old drillings (SR and DH series) are determined by multiplying apparent thicknesses uniformly by 95 %, since dip angles are unknown. As for C seam coal reserves were estimated up to the thickness of 6 m and over it separately.

6) Specific gravity

The specific gravity of 1.3 is adopted uniformly. According to the analytical result specific gravity is 1.3 in about 5 % ash content. (Refer to Table 12).

7) Theoretical recoverable reserves

Theoretical recoverable reserves = Plan area x secant

(inclined area)

x thickness of coal seam x specific gravity (1.3)

The theoretical recoverable coal reserves stated here mean the coal reserves in situ within the range considered recoverable from the technical viewpoint.

8) Safety factor

The geological safety factor is determined for every subblock based on stability of coal seam, that of geological structure and accuracy of survey (density of drillings and distance from the goaf). It ranges from 70 % to 85 %.

9) Safety reserves

Safety reserves = Theoretical recoverable reserves x safety factor

10) Recoverable factor

Since the recoverable factor is a element related to mining method and technique, it can not be decided without them. In the current calculation the usual value of 85 % is adopted for the recoverable factor.

11) Recoverable reserves

Recoverable reserves = Safety reserves x recoverable factor (85 %)

6.2 Coal Reserves

The coal reserves estimated based on the above-mentioned calculation methods and basis are as summarized follows from Table 16 and 17.

1,000 t

Coal seam	Theoretical recoverable coal reserves	Safety reserves	Recoverable reserves
A seam	15,610	12,145	10,316
B seam	1,606	1,285	1,092
C seam	18,238	14,016	11,912
Total	35,454	27,446	23,320

In the major part of the northern half of the area, only
A seam exists, therefore, the reserve density (reserves /
unit area) is rather low. Whether or not this northern half
if exploitable depends upon the result of the feasibility
study. Taking into consideration such factor as the high
reserve density areas (where 2 or 3 seams of A, B and C coexists), distance from the supposed location of pit mouth
expected in future (near the Lunto River), depth of coal seams
and mining method, etc., the objective reserves for the future

are supposed to be in the following area and conditions: Block e except for the east flank of the syncline. Down to the depth of -100 m.

Up to the maximum workable thickness of 6 m in C seam. (Refer to Dwg. 13)

The recoverable reserves according to the above-mentioned conditions are shown in the following table.

1,000 t

Level Designation of seam	+200 - +100	+100 - +0	<u>+</u> 0100	Total
A seam	926	1,400	1,836	4,162
B seam	109	394	376	879
C seam	712	1,814	3,161	5,687
Total	1,747	3,604	5,373	10,728

The area of this range is about 2.63 $\rm Km^2$ and the mean coal reserve density is 4.1 $\rm ton/m^2$. The coal reserves in the part of C seam where the thickness of the coal seam exceed 6 m within the above-mentioned range is 2,826 x 1,000 ton, which will be able to be mined in the future.

	, m	7	-		~~~					<u> </u>	 -			-
Total	Recavers- Recoverable	664	903	570	1489	0699	10316	1092	744	8206	2962	11168	11,912	23,520
0.0	Recavers- ble isclor	722	65.1	62.6	664	659	661	68.0	525	68.4	585	657	65.3	. 839
~-2	In situ	920	1.587	910	2245	10,150	15,610	1,606	1,252	12003	4,983	16.986	18238	55,454
-2.0 0	Recoverable					1,586	1,686	213		2519	136	2,655	2,655	4,554
-100	Recovers- ble isctor					663	66.3	680		6 6.2	595	658	658	66.1
·	In situ					2543	2,543	513		3,804	230	4,034	4034	0689
Sub total	Recoverable	664	903	570	1,489	5,004	8,630	628	744	5,687	2826	8,513	9,257	18.766
100	Recovera- ble factor	72.1	6 5.1	62.6	66.4	658	6 6.0	68.0	585	69.4	59.5	6 5.7	65.2	65.7
1~	In situ	920	1,587	910	2243	7.607	13067	1293	1,252	8.199	4,753	12952	14204	28564
100	Recoverable			147	451	2392	2,990	376		5,1,61	1,529	4,690	4.690	8056
-~0∓	Recovera- ble factor			59.5	680	65.0	65.1	680		68.6	59.5	65.3	65.3	65.4
	In situ			247	663	5,681	4591	553		4,611	2,572	7,183	7,183	12,327
0	Recoverable	664	903	423	1,038	2612	5,640	503	744	2526	1,297	5,823	4,567	10,710
0 #~	Recovers- ble factor	722	65.1	65.8	65.7	66.5	665	68.0	59.5	70.4	59.4	66.3	650	66.0
	In situ	920	1,387	663	1,580	3,926	8476	740	1,252	3,588	2,181	5,769	7,021	16237
Level	Bi ock	8	۵	υ	סי	60	Total	9	σ	тах 6.0 т	<u> </u>	total	Total	Grand total
Coal	Seam				∢			: B				ပ		Gran

Reserves expected to be mined at early stage recoverable 1000t

			 	1
Total	4,162	879	5,687	10,728
±0~100	1,836	376	3,16.1	5,373
+100~=0	1,400	394	1,814	3,604
~+100	926	109	712	1,747
Coal Seam	Ą	Ø	່ນ	Total

Remasks

· Block" e except east wing of syncline

. up to $-10 \mbox{\em d} m$. 6m of maximum minable thickness for C seam .

5
at.
caluculat
ca
reserves
Coal
17
<u>e</u>
۵

					1.15	1			<u>:</u>	<u>[]</u>	·																·			
(E)	Remarks	·					includs.0	- op				1									;									
	Recoverable reserves	10001	130		178	40	63	25.5	534		. 664	120	108	251	161	640		161	102	26.3		903	166		52	9.1	114	257	- '	
		factor	υς (C)		85	"	"	"				85	*	,,	"	·		85	,,	-	1.7				85	*	,,			
	afety reserves Racov.	10001	153		210	47	7.4	298	629		782	141	127	295	189	752		190	120	310		1,062	196		61	107	134	502		
	Salety Salety	factor %	85		85	"	*.	,,				0.2	008	*	70			80	· .						70		,,,			
	In situ reserves	10001	181		247	55	87	.350.	739		920	202	159	. 369	270	1,000		237	150	387		1,387	230		87	154	192	433		
5	S		50.		1, 10	"	* .	. "				1.3	"	: 2	"			1.3	"				1.3		£ 3	*	*			
וחכחומו	Coal thickness	Ħ	1.25		1.25	1.50	1.25	1.70				1.25	1.50	1.75	200	-	•	175	,,		·		1.25		1.25	1.75	2.10			
eserves caluc	Calculation area	1000#	111.1		151.7	28.2	5.3.3	158.5				124.1	81.7	162.2	103.8			1042	66.1				1.41.8	:	538	67.5	704			
Lese	sec.		1,026		1,026	*	1,015	1.019				1,0 46	"	1040	,,			1,012	"				1,031		1,015		1,035			
Coal	Inci.	degree	13		13	*	10	11				17	"	16	'n.			٥	,,				14		10	"	1.5			
1,	Plane area	1000	108.5		147.9	29,5	52.5	155.5				1186	78.1	156.0	9.66			1030	65.3				137.5		53.0	6 6.5	68.0			
lable	Level		~+200		+200~-100	"	"	и	+200~+100			+200~+100	*	"	"	+200~+100		+100~±0	"	+100~∓0			-+-200		+100~+0	,	"	+100~+0		
	Wing		м	:	×	*	ы	*				W	" .	ы	*			w	લ		-		W		w	*	ы			
	Block		65		32-1	s 2—2	a.2—3	82-4	a.2 Sub total		a total	b 1—1	b 1—2	b 1—3	b14	b1 Sub total		b 21	b2-2	b2 Sub total		b total	c1-1		c 21	c 2—2	62-3	c 2 Sub total		
	Coal Seam											٧											:.					7		

	•	-	•
:	z	=	=
`	٠.		,

		(11)	Remarks								include 0~		i	include +100												•				include 00	
Section No.	Call star Discript Call star Call						_		. :		inclu			ineli							 									inclu	
Section No.	Call star Discript Call star Call		Geoverable reserve	10001	83	64	147		570	254	111	365		159	259	121	154	673		341	110	451		1,489	322	160	86	25	39	202	27
See	Coal learn Slock A Wing Level Place area Incl. esc. Calculation away Casi S. C Institute colored		Recov. F	factor	85	*				85				85	"	"	*			85	*			<u> </u>	85	*	,	,	,		
See	Coal learn Slock A Wing Level Place area Incl. esc. Calculation away Casi S. C Institute colored		ety reserves	1000 t	86	7.5	173		671	299	1 30	429		164	305	143	181	793		401	129	530	:	1,752	378	189	102		46	258	-
See	Coal learn Slock A Wing Level Place area Incl. esc. Calculation away Casi S. C Institute colored		ifety Sa	ctor	20					30	7.0			7.0	30	,				0,0		<u>.</u>			30		0		2		
Signature Sign	Coal seem Biock A Wing Level Plane area Incl. ecc. Calculation week Coalise S.G In site Incl. ecc. Incl. ecc. Calculation week Incl. Ecc. Ecc. Incl. Ecc. Ecc. Incl. Ecc. Ecc. Ecc. Ecc. Incl. Ecc.)· ·				'`			•	3					ω	Ì				ω		7		8	<u> </u>	
Sab total Wing Level Plane area Incl. sec. Calculation area Cosinosa Cos	Coal seam Block A White Level Plane area liet. Galculation area Lickers c3-2 E " 400 100 of degree 100 or 100		In situ rese	10	140	107	247		910	. 374	186	560		254	381	179	226	1,020		502	161	663		2,243	475	236	145	42	54	280	ď
Sab total Wing Level Plane area Incl. Sec. Calculation area 1000m degree 1000m degree	Coal neam Block At Wing Level Plane area Incl. sec. Calculation area c3-1 W ±0~—100 \$5.0 10° 41 41 c38± total ±0~—100 5.0 10° 0.05 41 41 c38± total ±0~—100 5.0 110° " 41 41 d41—2 " " 1110 " 1144 1144 d41—1 W +100~±0 141.5 11 10.9 144.0 d2—1 W +100~±0 141.5 11 10.9 144.0 d22-1 W +100~±0 164.3 " " 68.7 d22-1 W +100~±0 164.3 " " 164.0 d32-2 W +100~±0 164.3 " " 164.4 d42-1 W +100~±0 164.3 " " 164.0 d38-0 D " 50.0 15 " </td <td></td> <td>S. C.</td> <td>:</td> <td>£.</td> <td></td> <td></td> <td></td> <td></td> <td>1.3</td> <td>*</td> <td></td> <td></td> <td>1.3</td> <td>,,,</td> <td>,</td> <td></td> <td></td> <td></td> <td>ю +**</td> <td>*</td> <td></td> <td></td> <td></td> <td>1.3</td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td> -</td>		S. C.	:	£.					1.3	*			1.3	,,,	,				ю +**	*				1.3		*	*	*	*	-
Sab total Wing Level Plane area Incl. Sec. Calculation area 1000m degree 1000m degree	Coal neam Block A Wing Level Plane area Inc. Rec. Calculation area 1000 of degree 1000 of		Cost	E	2.0 0	200				1.75	1.25		-	1.25	1.75	2.00	2.10			2.10	2.10				2.10	1.75	1.7.5	1.25	1.75	2.00	1
Seam Block & Wing Level Plane area Incl. 1000	Coel seam Block A Wing Level Plane area Incl. 1000m degree 10			1000#	53.8	411				164.4	114.4			144.0	167.4	68.7	828		1.	183.8	59.0				175.3	103.6	89.2	25.8	23.7	107.6	205
aseam Block & Wing Level Plane c5-2 E	Coal seam Block A Wing Level Plane c3-1 W ±0~~100 c5-2 E " " 4 d1-1 W +100~±0 d2-1 W +100~±0 d2-3 " " 6 d2-4 E " " 8 d2-4 E " " 8 d3-7 W ±0~ d3-1 W +200~+100 16 e1-2 " " " 9 e1-2 " " 2 e1-3 " " 2 e1-4 " " 2 e1-5 " " 2 e1-6 " " 2 e1-6 " " 9 e1-6 " " 9		 Sec.		1,015	'n	 			1,031	*			1,019	"	".	1,035			1,019	1,035				1,040	*		1,095			
aseam Block & Wing Level Plane c5-2 E	Coal seam Block A Wing Level Plane c3-1 W ±0~-100 c5-2 E " " 4 d1-1 W +100~-100 d2-2 " " " 11 d1-2 " " # 101 d2-4 E " " 8 d2-4 E " " 8 d2-4 E " " 8 d3-1 W ±0~ 18 d3-2 E " " 8 e1-2 " " " 8 e1-2 " " 20 e1-3 " " 20 e1-5 " " 20 e1-6 " " 20 e1-6 " " 20		Incl	degree	10	2	-			14	"			11.	. "	"	15			1,	15				16		ı,	24	,,,	"	
Seam Block AW Mng C 53-2 E C 55-2 M C 55-2 M C 55-2 M C 55-2 M C 55-2 E C 55-2	Coal seam Block & Wing c 3-1 W c 3-2 E c 3-2 E c 3-4 W d 1-1 W d 1-2 " d 2-3 " d 2-4 E d 3-4 E d 3-5 b total d 3-5 b total d 1-1 W d 2-3 " d 2-4 E d 3-5 b total d 1-1 W d 2-1 W d 2-1 W d 2-1 W d 2-1 W d 3-1 W d 3-1 W d 1-1 W d 1-2 " d 1-2 " d 1-2 " e 1-2 " e 1-2 " e 1-5 " e 1-6 " e 1-6 "		Plane area	1000#	53.0	405		-		159.5	111.0			141.3	164.3	67.4				180.4	5.70		-		166.6	986	858	23.6	21.6	98.3	4 E O
10 ck /k Wing 10 ck /k Win	Coal seam Block & Wing c 5-2 E c 5-2 E c 5-2 E d 1-2 " d 1-2 " d 2-2 " d 2-3 total d 2-3 " d 2-4 E d 3 total d 3 Sub total d 7 Total d 7 Total d 7 Total e 1-2 " e 1-2 " e 1-2 " e 1-2 " e 1-5 " e 1-6 "		Level		±0 ~100	"	十0~-100			~+200	"	~+200		+100~±0	"	"	"	H00~#0		~0#	"	~0+			-200-+100	2	"	//	"	"	
	Coal seam		3r !%	•	W	Ю				æ	"				1		ស	1		×	Fi	-	 			2	,		2	. "	
	Coal seam		Block A		c 3—1	c 3-2	5Sub total		c Total	d 1—1	d 1—2			d 2—1	d 2—2	d 2—3	d 24	2.Sub total		d 3-1	d 3—2	5Sub total		d Total	1-1	e 1-2	e 1—3	e 1—4	e 1—5	e 1—6	
			seam					::										- U				70									

	:
-	
1	
:=	
_	

. [r	·	<u> </u>							7							[Γ	r			
(m)	Remarks		!					·							! 							·	,	•						
			1.1						1.		-													<u> </u>		<u> </u>				-
	Recoverable reserves	10001																											. !	
	ole re	10	29.	926		951	63	51	5.5	9.1	146	51	12	127	159	1,686		1018	433	86	64	4.5	81	29	.50	103	553	120	2,592	
	overa								1.			, 				Ţ-Ē) , .											,2,	
		L.												- 1																-
	Safety reserves Rucov.	factor %	8.5			85	"	"	"	"	"	*	"			**.		85	,,,	*	2	*	,,	\$,	*	*	*	1		
.	serves	10001	35	2		9	4		5	8	2	0.9	4	0	2	9	. , '	ω	0		۰	3 .	9	6	æ		2	_	ις L	
	ty Fe	-	8	1,092		1,096	7	09	59.	108	17.2	9	1.4	150	187	1,986		1,198	510	101	7	53	96	69	58	121	3.9.2	141	2,815	
		. :			:															. !										
.	Safety	factor	80		· 	80	,,	7.0	. "	85	"		80	7.0		;		80	"	#	70	"	85	"	*	70	*	"		ľ
		10001													——. I	:														ŀ
ſ	situ reserves	10(6.4	1,361		1,370	120	86	93	126	202	7.0	17	214	26.7	2565		1497	659	164	108	7.6	115.	ω,	69	174	559	20.1	5,681	
	In situ			1			,									.2		-							<u> </u>				ĸĵ	
	o,		1.3			1.3	-	"	"				,	"		 -		1.3			"				,					1
-	SS	E	-			-				-	 					_	_	-												1
	Coal	• .	1.25			2.15	1.75	1.25	1.25	1.75	200	1.75	1.25	2.00	1.75			205	1.80	1.75	1.25	1.25	1.75	200	175	200	1.75	1.40		
ľ	arca arca	0 11							-							:											:		-	Ŧ
	Calculation area	1000 m	99			490.1	52.9	52.9	57.3	55,6	77.9	30.9	10.6	82.2	17.5			6	5.2	72.5	6 6.6	4 6.8	49.5	51.3	30.2	668	2.9	40		
	cu] នា		2			49	r.	5	r.	ιυ	^	₩.		ω	7	:	 -	561.9	273.2	7	9	4	4	153	ίO	40:	245.9	1104		l
	23																	ļ				<u> </u>								1
	sec.		1,095			1,051	#	"	*	,,	1.071	1,103	"	1,035				1,031	"	1,040	"	1.064	1,086	1,103	"	1,035		"		
	Incl.	degree	24			18	*	"		,	21	25	,,	15	*			14	"	16	"	20	23	25	,,	٦. ي	"	*		t
	e e	1000#									-	. !												•						t
	Plane area	100	243			466.3	503	50.3	545	52.9	727	280	9.6	79.4	115.5			545.0	2.65.0	69.5	64.0	44.0	45.6	284	27.4	645	237.6	106.7		
	Pla					4		.	·			. !			-	-		က်	2					l			2	=		
		-	0.	9											-			0											0	1
	Level		7+10	+		□ †	,,	"	,,	,,	, ,	2	. ,,	,		<u>}</u>		±0~~100	,,	*		,,	,	,,,	,		"	,,	±0~-100	
	L'e		+200~+100	+200~+100		+100~∓0				·						+100~±0		+0			-				,		,		H	
	Wing		W +	T		- M	"	"	4	,,			,,	ы		*		×	"	ž	. "	,	,,		,	E	,			1
-														-		otal		1	2	3	4	5	, 9	2	8	8	1.0		ots]	1
	B10ck /6		e 2–8			e 2—1	e 2-2	e 2—3	e 2-4	e 2—5	e 2-6	e 2—7	e 2—8	e 2 9	e 2~10	e2 Sub total		e 3-	e 3—	e 3-	- S e	e 3—	e 3—	e 3—	e 3.	4 3	e 3—10	e 3—11	e3 Sub total	
	Coal seam	,						Ą																	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			:		Ī
}	Coal									·															·					

(v)	ves Remarks	4.4															Number of Street												
	Safety Safety reserves Recov. Recoverable reserves	1000£	871	74	163	117	48	4.0	114	47	212	1,686		0.690		10,516		109	394	376	213		1.092		540	204		744	
	Recov.	factor	85	,,	"	*	*		"	.,,	"	"	-	"				80 C)	*	: 5	"								-
	Safety reserves	10001	1,025	87	192.	137	57	48	134	55	250	1,985		7.878		12,145		129	463	442	251		1,285		929	240		876	
	Safety	factor	80	,,	"	","	7.0	"	35	70.	"				:			80	,,	"		-			 7.0	. 11			
	In situ reserves	10001	1,281	109	240	171	8	89	157	7.9	257	2543		10,150		15.610		161	579	553	313		1,606		806	344		1,252	-
	S. G.		1.3	*		*	,,	,,	"	"								21	*	"	"				 1.3	. "			_
	Coal thickness	Ę	1.70	1.40	2.00	1.75	1.25	1.25	1.75	1.70	1.40							1.00	1.10	1.30	1.30				4.50	3.00			
	Calculation area	1000#	5797	0.09	924	75.3	50.0	41.8	69.1	355	1960							1.23.8	464.7	327.1	185.5				155.3	58.1			
	sec.		1,026		1,040	1.046	1,064	1,086	"	1.051	4							1.058		1,040	1,064				1,035	"			
	Incl	degree	13	#.	16	17	20	23	"	18	"							19	'n	16	20			1.0	15	"			_
	Plane area	1000#	5650	58.5	888	72.0	47.0	38.5	63.6	5.5.8	186.5				÷			117.0	382.5	314.5	174.3				150.0	85.1			
	Level		-100200	"	"	"	"		"	"	"	-100~-200						~+100	+100~+0	±0~100	-100200				~+200	+200~+100			
	Wing		R	*	"	×.	*	*	1	B	ž							×		"					W	· i	-		_
	Block 16		e 4-1	e 4—2	e 4—3	e 44	64-5	e 4-6	e 4—7	e 48	e 4-9	ed Sub total		e Total		A Seam Total		6.1	e 2	£ 9	.e4		B Segm Total		d 1	42		d Total	
	Coal seam					¥						ð								æ			H			υ	:		

1						لاجسا		·		 		· 1	<u> </u>	- 1		 	, 1		بنسبخ	<u> </u>		, —	 -	·		·	اـــــا	
(>)	Remarks		maximum	6.0 m						# 0.5 m							maxim	6.0 m				- 1						
	Recoverable reserves	1000	27	108	146	531	50	50	712	. 30	204	10	244		926	34	47	164	248	441	495	105	85	124	73	1,814	ε.	
		or					· · ·																					
	മെട്ട	1000t factor	80	*	"	"	"	"		 85	"	,,,				 85	"	*	,,	"	,,	*	*	"	2			
	Safety Safety reserves Recov.	1000	32	127	172	389	. 69	59.	828	35	24.0	12	287		1,125	40	55	192	291	518	582	124	98	146	86	2,152		
	afety S	factor	70 %	80.	85	"	"	7.0	-	70	,,,	"				 7.0	7.0	80	85		,,	"	"		7.0			
		10001			- 1		· ·																			<u> </u>		
	In situ reserves	10	46	159	202	458	69	85	1,019	51	343	17	411		1,430	57	79	240	345	610	982	145	115	172	123	2,569		
	5 · C		ل ب	*	"	"	"	"		1.3	"	,,				.53	, ,	,,,		*	<i>"</i>	2	*	"	*			
	Coal thickness	Ħ	200	450	6.00	"	"	400		1.50	4.50	1.50		•		1.00	2.00	4.50	6.0 0	"	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	"	4.00			
	Calculation area	1000 0	17.7	27.2	25.9	58.7	8.9	16.3		25.9	58.7	8.9				4 3.5	50.5	41.1	4 3.9	78.2	87.8	186	14.8	22.1	23.6			
	3 9 8		1,051	1,064	1,071	"	1,095	1,133	* 1	1,0,71	"	1,095				1,035	1,046	.,,	,	1,051	1,071	"	1,095	1,103	1,112			
	Inel.	degree	18	20	21	. "	24	28		21	"	24				15	17.	.,,		1.8	21	"	24	25	27.			
	Plane arca	1000 1	168	25.6	242	54.8	8.1	14.4		24.2	548	8.1				42.0	29.0	39.3	42.0	7 4.4	82.0	17.4	13.5	20.0	21.0			
	Level		~+100	""	"	"	"	"	~+100	~+100	"	"	~+100		~+100	+100~±0	, , , , , , , , , , , , , , , , , , ,	"	"	"	"	"	"	"	"			
	Wing		W	"		"	"	,,		W	"	"			1	W		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	"	"	H.s.	ž.	,,	*		: 1	
	Block A		e 1—1	e 1—2	e1-3	e1-4	e 1—5	e1-6	e1 Sub total	e"1—3	e'1-4	e'1—5	e'l Sub total		e 1+e'l Sub total	,e2- 1	62-2	e 2 3	e2-4	e 2- 5	e2- 6	e2-7	e 2 8	e 2- 9	e 2-10	e2 Sub total		
	Coal seam								ນ																	0		

emarks																													
reserves Re	1000t								· ·																			-	
Recoverable res	10	1.0	272	503	144	51	26	1,053		2867		648	260	322	879	542	246	123	41	3,161		99	543	558	557	25	1,529		4.690
Recov. R	factor	ဗ	"	"	"	*						85			"	,,		"				85	- 11	*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"			
reserves	1000 €	09	320	599	170	19	30	1,240		5,372		762	423	379	1,034	637	289	145	49.	5,718		78	629	656	59.7	3.0	1,800		5,518
Safety Safety	factor	7.0	,,		. "	"	"		 -			7.0	80	85	,	,	,		7.07			7.0		*		*		-	
In situ reserves S	10001	86	457	856	242	86	43.	770		4,539		1,089	529	446	1,217	750	340	170	7.0	4,611		112	913	937	287	4.5	2572		83
			4	8	2	*		1,7		4,3		3,0	5	4	1,2	7	Ю	7-		4,6		-	6	6	2		2,5		7.183
S .		1,3	*	*			"					1.3	*	"	"	*	*	"				1.3	2	2	"	"			
Coal	Ħ	1.50	4.50	7.50	10.00	4.50	1.50	-	-			2.0 0	4,50	6.00	"	"	,	" "	4.0.0			1.50	450	7.50	1 0.0 0.	1.50			
Calculation area	1000 m	4.3.9	782	878	18.6	14.8	22.1					418.7	90.5	57.2	156.0	96.1	43.6	21.8	13.4			57.2	156.0	96.1	4 3.6	21.8	-		
α C		1,046	1,051	1,071		1095	1,103					1,035	1,040			1,04,6	1,051	1,064	1,071			1,040	· ·	1,046	1.051	1,064			
Incl.	degree	17	18	21	*	24	25					15	. 16	"	"	17	81	20	21			16	· N	17	18	20			
Plane area	1000	42.0	74.4	82.0	17.4	1 3.5	2 0.0				-	4045	87.0	55.0	150.0	91.9	41.5	20.5	12.5			55.0	150.0	616	41.5	20.5			
Level		+100~±0	"	,,	1	,	"	+100~+0		+100~#0		+0~~100	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		"	"	"				±0~-100	*		"	"	100100	-	±0~100
Wing.		*	*	*			*				-	×	*	ì	ž.		"	*	: 2 ,			¥	*	2	2	"			
Block A Wing		e'2-4	e′25	e'2-6	e'2-7	e,2-8	e'2-9	e'2 Sub total		e2HeZ Sub total		e 3-1	e 3-2	e 3—3	63-4	e 3—5	e 3—6	e 57	e 38	e 3 Sub total		6/3—3	e/3-4	e/3—5	6,3-6	e/3-7	e'S Sub total		e34e3 Sub total
Coal seam							U								: ::::::::::::::::::::::::::::::::::::												•		
		<u> </u>	•		•		•	'		•	· · · ·	'	'		20					<u> </u>	L—	L	I		L				
						٠		٠.	٠.					-	•														

						. * .																			
Remarks																				3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Safety reserves Recoverable reserves	10001	629	765	326	113	349	357	2,519		67	89	135	2,655		11,168		11,912								
w. Recov	j.	- 15							-				 		2			7.							-
) [Reco	t factor	85	*	<i>"</i> ,	"	"	"			85	"									 		:	 		+
Safety reserve	10001	740	900	384	134	410	396	2,964		7.9	82	161	3,125		15,140		14016								
Safety	factor	70	80	85	7.0	80	85			70.	"		 										 		
Jn situ reserves	10001	1,057	1,126	451	191	513	466	5,804		11.5	117	230	4,034		16,986		18238								
5.8		1.3		"	,,	,,	"			1.3	"											-			+
thickness	E	20.0	4.50	9.00	2.00	4.50	9.00	3,		1.50	1.50										./*:				+
Calculation area th	1000#	406.8	1924	57.9	7.5.4	87.6	59.8			57.9	59.8														
a e c		1,040	1,035	"	1071	"	"			1,035	1,071									 					1
Incl.	dogree	16	15	"	21	. //	"			15	2.1			-									 -		1
Plane area	1000#	390.9	185.9	55.9	68.5	81.8	55.8			55.9	55.8														
Level		-100~200	"	"	"	"	" .	-100~-200		-1.80~-200	"	-100~-200	-100~200												
		A		*	*	,,	*			W	,,		 			7								 -	-
Wing.		_^_	*	`	,		1					11.	[1				1.	7.5	l				1

Coal seam

Ü

REFERENCES CITED

- American National Standard Institute (1970), American National Standard.
- Bemmelen, R.W. (1949), The geology of Indonesia.
- Blow, W.H. (1969), Late middle Eccene to recent planktonic foraminiferal biostratigraphy. 1st Internat. Conf. Proc.
- Japanese Industrial Standard Committee (1972) Japanese
 Industrial Standrad (JIS) Method for testing coal and
 coke JIS M 8801, 8803, 8810, 8811, 8812, 8813, 8814, 8815.
- Koesoemadinata, R.P., Hardjono, I. and Sumadirdja, H. (1978), Tertiary coal basin in Indonesia. CCOP tech. Bul. Vol. 12.
- Koesoemadinata, R.P. and Matasak, Th. (1978), Geological study of Ombilin coal field (in Indonesian).
- Marubeni and Kaiser (1971), Technical report of investigation and exploration of Ombilin coal field.
- Mertosono, S. and Nayoan G.A.S. (1974), The Tertiary basinal area of central Sumatra. Proc. Indonesian petr. Assoc. 3rd Annual Conv.
- P.T. Petrosea International (Indonesia) (1976), The geology and coal resources of the Sawah Rasaw area, Ombilin Coal Mine.
- Silitonga, P.H. and Kastowo (1975), Geological map of the Solok quardrangle, Sumatra (1: 250,000). Geological Survey of Indonesia.
- Stach. E. et al (1975), Coal Petrology (second edition).
 Gebriider Borntraeger, Berlin, Stuttgart.
- SUMITOMO (1975), Rehabilitation and expansion plans of Ombilin Coal Mine. Vol. I \sim III

