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Preface

In December 1975 I was appointed visiting Professor of Applied
Geophysics in the Department of Geology, University of Ibadan, with the aid
of Technical Assistance of the Government of Japan. Since then 1 have
given a course of lectures on the gravitational and magnetic method of
applied geophysics to the final year students, in addition to the super-
vision of postgraduate research.

The lectures are intended to present the fundamentals of the geophysi-
cal methods in easily understandable form. This is the book printed from
the cyclostyled volume for the gravitational method, the copies of which
have been handed to the students as the ‘handout'. The volume was written
with reference to the books listed at the end of this volume, most of
which were available in the bepartment. I owe & great deal to these books.

At this opportundty, I wish to express my sincere thanks to the staff
members of the Department, who have been so Irilendly that I have worked
here pleaéanply without any difficulﬁy, especially to Professor M.O.
Oyawoye, former Head of Geology Department, who has not only helped me in
'doing my official work, but also privately considered my family éo that we
spend good time in.Ibadan, Prof. E.A. Fayase, pfesent_ﬁead_af Geology. - |
Department, who has alﬁays been well disposed to me and to Dr. O. Ofrey,
and Dr. C.i. Adighije, both lecturers of Geophysics of the Department, who
have assisted me in every respect of my duty, particulérly, in the practical

training of the students, and in guiding them for their B.Sc. theses.

H. HIGASINAKA

DEPARTMENT OF GEbLOGY, UNIVERSITY OF
IBADAN, IBADAN, NIGERIA.
(NOVEMBER 1978).
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Gravitational Method
by

H. Higasinaka

I. Gravity measurement

1. Gravitcy

If the earth consists of concentric spherical shells each of which has
a constant density, and is not rotating, its attraction is directed toward
its centre and muét be the same at everywhere on its surface.

However, since the earth in actually rotating and has a property of
liguid more or less, it has, owing to the centrifugal force, 2 form of an
oblate ellipsoid compressed to the direection of its rotation axis. The form
is an eqﬁilibrium one resulted from the resultant of the attraction and the

centrifugal force.

P 1 Astronomical latitude
V¥ 1 Gegeentric latrtude
Fig. 1

The resultant force acting on a unit mass at a p01nt is called the
gravity or the force of gravity at that point. When we con51der the value
without regard to the mass of that p01nt, it becomes the acceleratlon of
gravitcy, which is indicateﬁ by g. The word gravity is often used for the
acceleration as well as the force.

If the earth is assumed to be a uniform sphere or a sphere con51st1ng

of uniform shells, i{ts attraction F on a mass qf m gr. at its surface.ls



given by
mE cm 8T
R2 sec2 ’

where G is the gravitational constant, E the total mass of the earth, and R

its radius. According to the determination by P.R. Heyl,

__em3 451930
gr. sec?

6.670 x 1070

o]
I

8 n

G=6,673 x 10 - din 1942.

' 2
The centrifugal force acting on the mass m is represented by mw r, where

w is the angular ﬁelocity of the rotation of thée earth, and
r = R cos,

P = the latitude of that point. Here, can be used

instead of Y.

27w/ 86164.09 = 7.29212 x 10'5 sec'l

g
it

=~
n

6371 km,

The force vanishes at the polesg and.attains a2 maximum value 3.4 dynes for a
unit mass at the equator. Thus thg gravity is maximum-at the poles and
minimum'at the equator. The difference of gravity at the poles and the
equator increases.by the ‘effect due to the oblate form of the earth,

As the effect of the_ceﬁtrifugal force is sﬁall,.compéred with the
earth's éttraction, ife.-O.SSZ of the latter as the maximum, only tﬁe attrac— .
tion is often called the gravity.. The attracfion F ﬁpﬁn a mass of 1 gr. at

the earth's surface is approximately given:

¢ 1 4/31Rp

R2

¥

6.670 x 1078 & 4/3. m .6370 % 10

5 5.5

980 dyne,



where p 1s the mean density of the earth and is taken 5.5.

For the unit of foéce, dyne (gr.cm.sec_z) is used, while for the accel-
eration gal (cm.sec-z) is used as the unit after the name of Galileo.
0.001 gal is called milligal (abbr. mgal).

Gravity chanpges with time. TIts periodic variation may be caused by the
following ﬁactors: the apparent change of the positions of the moon and the
sun, thelr tidal effect, change of the earth's attraction due to the varia-
tion of'latitude, migration of atomosphere, ete. ITts secular variation may
be occurred by geological changes such as upheaval and subsidence of the
crust or-ité part, erosion and deposition, earthquakes and volcanic erup-
tionsg, etec.

These effects are so0 small that ewven the largest one, cauged by the
motion of the moon and the sun, attains to only 10“7 of the normal field,
if a relatively short interval is concerned.

However, in the case of geophysical prospecting for derecting detailed
geological structures, the effect of variation which can be measured, should
be taken into account as tﬁe correction to the observed gravity value.

In additioﬁ, for the predictidn'of earthquakes or volcanic eruptions, the

detection of small change of gravity may be considered useful.

2. Relative measurement

The period of free oscillation T of a physical pendulum is given by

T—Z‘IT’I.' s R LE
T mgh ° & mhT? .
when its ampiitqde of oscillation is small. Here i_indicates the moment
of inertia of the pendulum about its oscillation axis, m the mass of the
péndulum,-énd h the distance between the oscillation axis and the ceutre of

gravity of the pendulum.



Namely, g is inversely proportiocnal to T2, or gT2 is constant at any
point for a definite pendulum,

Using a pendulum, we determine its period of oscillation TA at a base
station A where the gravity 8y is known, and next we move the pendulum to

another station B gravity of which is Bg and determine the period TB there.

Then we have the relation

2
_,g_B__= Ta
Ea 723

from which gy can be determined, with the values of TA and TB obtained from
the measurements, provided 8a is known., This is the principle of the rela-
tive measﬁrement of gravity by means of a pendulum.

There are two types of pendulum, thus, “Sterneck pendulum" and “bar
pendulum" like the Gulf pendulum. The former, made of brass, has a weight

at one end, and the latter is made of quartz in the case of the Gulf pendulum

(Fig. 2}.

Fig. 2

Placing a knlfe—edge at an appropriate positlon of a pendulum we can
make its period of oscillatlon mlnimum Then a small change of distance h
between the knxfe—edge and the centre of gravity, for instance by the thermal

expan51on or contraction, “has a minimum effect on the period. The pendulum

which has such a character is called a minimum pendulum,



Formerly the Sterneck pendulum was often used, but nowadays the rod

type has become common.

Differentiating the equation

éTz = const,
" we have dg = -3 4T
g T

If the wvalue of gravity is to be measured to the order of 1 mgal, the

accuracy of the measurement should be

d 1 mgal _ -6
—~ = 580 gai - 1°

Therefore, the accuracy of measurement of period, dT/T, should be 5 x 10—7

M |

Chronometer

Electro majnef‘
Fig. 3
This utmost high accuracy in thé pendulum observation may be attained

by the coincidence method.

The pendulum usually has a period of nearly 1 second. The slit of the

coincidence apﬁaratus opens exactly every one second by means of the electro-

magnet and the break-circuit chronometer. The light from the slit is sent
to the mirror of the oscillating pendulum, which reflects the light to the

field of the telescope, where the image of the thin slit is focussed.

If now the image just coincides with the centre line of the filed, the

image will move apart from the line with the following seconds, since the



pexriod of the pendulum is not exactly one second. The.difference af time
will increase with seconds, and at last it will attain one second after_some
séconds, say C sec, reckoned from the initial position of the image at.the
centre line; that is to say, we have again the coincidence of the image and

the centre line. C is called the coincidence interval.

Sec.
2] H z 3 -2 o1 O
" ' l I i i
| I ] I ] 1.
1 | ! ! | {
I | I ! I |
RS B R R DO R |
0 T 2T 3T 7C T(C+1)SEC
T < 18ec
Tig. 4
T <1 C = T(C + 1) Tomle—to
When sec, = or = TF1
' 1
When T>1see, C=T(C-1) or T=1 +-*Er:ij—-

€ may be determined as a mean value taken from a large number of oscilla-
tions. With the observed C, T can be calculated by the above formula.

In the case of observing C,
. - :

d{[,T = C}-l dé: when T < 1 sec
i? = Ci}l if when T > 1 sec.

: : R _
Considering only the accuracy of the measurement, we have

dT J . d¢

T c C

In the Sterneck pendulum,'C = 70 sec. apﬁroximately.
So When T is measﬁred, dT/T should be less than 5 x 10_7, WHilé when C is
" measured, dC/C is measured, becomes 70 x dr/T, i.e. the measutémeﬁt becomes

much easier.



‘In the coincidence observation, the image from the minor of the pendulum
crossed the centre line twice in opposite directions during an oscillation
of the pendulum. The above C means the coincidence of the image and the
centre line when the images crossing only in one direction are taken into
consideration. if Wé consider the coincidence for both phe images crossing
in opposite directions, we have to take C' instead of C, where C' = 1/2C.

In this case,

: 1 T i 1. 1 sec
T = -_— = - =
When T 1sec, T=1-—z37 ©T2-2 7% ¢ + 1
2
. _ 1 T 1 1 1 sec.
%en T 1 Sec, T = 1.+ 2C—l or T— '-"é""+ —a*- C' — l
2

Usually.c' is measured.
F.A. Vening Meinesz dévised a method eliminating horizontal accelera-
tions of the support of pendulum. The soft land in Holland made him think
of such a device.
Here used two similar half second pendulums which oscilléte simultane-

ously in one vertical plane in opposife directions such other.

fwr
TN T
I F\\ //4 K\\ //Ji |
~ % -~
i -
\\ ///"/

“Fig. 5

In Fig. 5 m;, My, Mq are the pendulums.. If we combine, for instance,

ml and My and send a light beam to the mirror of my s then the light is



reflected by a prism to m,, from where it goes to the coincidence apparatus.

25
The light from the combination of two pendulums may be considered to come
from a fictitious pendulum,

For a physical pendulum, the equation of motion is

2
49 | 8 gingp-o0,
ac? 2

If this pendulum is disturbed by a resultant of horizontal accelations

in the direction of oscillation, the equation becomes

a6 g6 1

+ ;
dt2 L 2 dt2

where d2f is the horizontal acceleration of the supporting point of the
de2 :
pendulum. The negative sign of dzf means that the direction of accelera-

dt2 _
tion is the same as that of the motion of pendulum,

When the two pendulums are used side by side, we have

2 2
d" 01 g Y
6. _ _%_ _

iz T 21 1 %1 de? 0 for m
2 | 2
d” o

2 + B 82 S P & S 0 for m,
de2 - 22 L2 de? '

Taking the similar pendulums, i.e., &1 = 22 = 1, and combining the both,

we have

, S

d” (87 - 05) '
D%, C1-8p =0,
de :

Y ]

which is the equation of motion for the free.oscillation of fictitious
pendﬁlum haﬁing the same pericd as of my and mn, and the phase of 81 - 02,
Therefore, by determining the coincidence interval of this fictitious
pendulum, we can find_the period of the original pendulum, disregardiﬁg

é’s

de2

Vening Meinesz used this method in the submariﬁe,.submerged below the



depth of 30m, and measured the gravity at sea. Since water oscillates as
a surface wave, the effect of sea waves on the submarine may be almost

negligible.

In 1923, as a first survey he made a trip to Java from Holland via Suez

Canal. He found the gravity at sea is somewhat larger than the value on the

land of the same latitude.

Nowadays the method of Eictituous pendulum is used widely on land in
order to eliminate the horizontal disturbance. It is not to mention that
the oscillation of the two pendulums in the opposite directions may cancel
a greater part of the effect of 'Mitschwingen' of the pendulum support.

The pendulum observation fakes time, and a set of the instrument are
bulky énd heavy.' Today gfavimeters are almost exclusively used. Recause
they are portable and need only a few minutes for one statiom.

The gravimeter measures the difference of gravity at two.points to 0.1
- 0.0l mgal.

There are some kinds of gravimeters. However, they are classified into
two types - stable and unstable.

As a stable type we take the Askania's gravimeter.

Serew : Scale
5 SO
O hhhhhhhhh
megrmg) l mg
Fig. 6

In Fig., 6 if mg.increases to m{g+mg), then the beam inclines from the
original horizontal position. By the rotation of a screw D attached to the

spring's','the beam is restored to the original position with the use of



light and scale. The change of spring s' is proportional to the.rotation,
which is in turn proporticnal to mg. .

The method of observation is called the "zero-method" or null method".

As an unstable type, the LaCoste Romberg gravimeter is dealt with here.
This is very sensitive and mostly used for geodetic purposes as well as pro-
spection.

A mass m is suspended by a spring as is shown in Fig. 7. If the balance
is horizontal and in equilibrium, tﬁe.moment by g is balanced with phe moment

due to the spring.
mg.l = kb cos ¢. 1 = kal (1)

where kb is the force of the spring in the direction BC and changes with the

length b, k being constant.

_
€ |
|
|
I
[
a b !
i
A 3
mg "

Fig. 7

When the force of ;hé spring is proﬁortional to its 1énéﬁh; the spring
is called a "zero length spring’.

In the same gravity field; if the béam is ﬁot horizontal but makes an
angle 6 with the horizontal direction, b decreases to b'.
In this case, |

The clockwise moment = mg cos 6.1

The counter-clockwise moment = kb' cos P'.1 = k é.cos 8.1.

From (1) we find that both the above moments are equal. S, the balance



in this case is also in equilibrium. That is to say, it is in an astatic

condition and the equilibrium is maintained independent on g. This means

the state is completely unstable. The mass m can take any position,

For instance, we imagine a door which can stop at any position. With a small

force it can change the position a great deal. If the supporting vertical

line is slightly inclined, the door.becomes somewhat stable, but still sensi-
tive to a small force,
In fact we can not attain the extreme condition: force of the spring =
kb, but make the instrument very sensitive to a small change of gravity.
When § is small,
mg cos 6.1 = ka cos B.1 + (0,

where C is a proportional constant.

Therefore, a small displacement C6 of the mass is proportional to CHg.

3. Method of survey

The gravimeter dis so sensitive that a change of 0.0l mgal may be
detected. Instgad, the condition of the instrument varies considerable with
time;'ﬁrobably due to the elastic creep of the spring. I1f we observe the
gravity continuéﬁsly at a point, the reading of the gravimeter change with
time. The chénge is mostly.due to what is called the 'drift'.

| In the‘case of tﬁe gravity‘survey, the effect of the drift shbuld be

eliminated as faf as possible. This will be accomplished by meéns of the
method of.looping. It is advisable to.close a loop within a felatively short
intefval of time, say, two hours.

The change of readings of the two fepeated measurements at a base point
shoﬁs'mostly the drift occcurred during the measurements in the.loop. This
drift may be distributéd to the points of the loop égcording as the order of

observation.



For the pendulum observation, we do not need to take the drift in con-
‘siderations. But itg sensitivity is 0.2-0.25 mgel aven in the recent well
designed instrument.

If the gravity at one station is known, the values of gravity at other
stations can be relatively determined by the pendulum observation or the
gravimeter measurement, compered with that of the first a station.

The fundmanetal station of gravity is now in Porsdam, where the gravity
was determined absolutely with the use of reversible pendulums by F. Kiihnen

and Ph. Furtwingler at nearly the beginning of the twentieth century:

Geodetic Institute, Potsdam

52° 22", 86 N

]

13° 4'. D6 E

"

"

H B7m

Potsdam = 981,274 + 0,003 gal,
The gravity value based on this Potsdam is called that of 'Potsdaﬁ: gravity
system'.
From later absolute measufements at other.placee the value at Potsdam
has been ccn51dered to have to be subtracted about 13 gal. |
All the grav1meters are affected by the change of temperature Some of
them are made ro compensate the effect. But most of them are kept at a
constaht temperatcre 40° cr 50°C by batteries.
‘The readings of gravimeter are converted to the change of gravity Ag.
" That is, we must know the scale value of the instrument, which means how
many change of gravity corresponds to one scale division.
| We select two p01nts where the relative values of gravity are kn0wn
Forx the points, we usually take them in a nearly N-8 dlrection for getting
a relatively large dlfference of gravity between the two p01nts, or take two

points, one of which is at the foot of a mountaln and the other atz1higher



place. 1In the latter case we have to take care the difference of atmospheric

effects at the two points. From the measurement at the two points, the scale
value can be determined. The line connecting the two points is called the
'calibration line' for gravity. To minimize the drift effect, the shorter
the time is, the better the result for the calibration is. |
Concerning the spacing of observation points, it depends on the object
oﬁ the survey. To detect relatively small ore bodies, the spacing is, say
20m or 30m. To find out major geological structures, a distance of 1 or 2

km or more is taken as the spacing.

When the survey area is large, several base points are selected and they
are connected to one reference point.

As to the gravity points, we must know its exact position aund its

height.. The position should be known not only for detecting underground
bodies, but also for the latitude correction given to the observed value.
The height is necessary for the elevation correction. Bench marks are often
taken as observation points.

In order to determine the position and thé height of the observation
point as well as to calculate the terrain correction, preliminary topographic
surveys are made with the use of transit and level. For height determination
the bérometér’is sometimes used. It is preﬁerable to measure the ﬁeight at
most to 3 em, which corresponds. to a difference of 0,01 mgal.

In gravity surveys in water, sometimes a water tight gravity meter is
set on the bottom of the water. By remote contrﬁl on a.boat the meter is
ievelled with a motor drive device; The reading is g%ven on a photographic
plate. Sometimes an observer with a gravimeter enters'a.divipg bell which
is immérsed to the botﬁom of the water.

Gravity measurement can also be doﬁe on a boat by thé use of special

device to eliminate the ogcillation of the boat.

—13—



II. Reduction of observed gravity

1. Normal gravity

If we extend the meén sea level into the land fhrough narrow channels,
we have a closed level sﬁrface, which is called the 'geoid’'.
Here, the channels are assumed to be so narrow that the original sea surface

does not change and also assumed to have no capillary effect.

Physital surface
oot __ spherord Elipseid
mean sead level

Fig. 1

The surface of the geoid is considered as a mathématical figure of the
earth. However, it has an irregular form owing to the irregular mass distri-
bution near the surface of the earth,

Instead of the'geoid, a level surface which is very close to the geoid
‘and has a rotation figuﬁe is considered. This idealizea earth is callgd'the
"earth spheroid' or 'niveau spheroid"'.

The gravity on thé'spheroid is expressed by

. 2 - '
Yo = Ye(l + Bsin $ - B? sin2 2 4)
where Yo = gravity at a latitude ¢ at sea level
Ye = gravity at the équater at sea level
B, B' = constants depending on the data used for their determina-

tion _
' This is called a gravity formula, and Yo calculated by the fofmula is called
the normal gravity aﬁ a latitude ¢. | |

_ The internaﬁidnal fﬁrmula 1930 is

Yo = 978.049(1 + 0.005 288 4 sin’ — 0.000 005 9 sin>24)



vwhich is widely used for calculating the normal gravity at a point at sea

level.

To compare an observed value of gravity with the normal gravity, we
usually give three reductions to the ohserved gravity, i.e. free-air reduc-

tion, terrain reduction and Bouguer reduction.

2. Free—~alr reduction

If the observation station is H m high above sea level, the observed g

is smaller than that expected at sea level.

sea feve/

Fig. 2

Denoting g, the gravity at PO at sea level just below the observation

station P,

To reduce the observed graviry g to the value 8, at sea level, we have to

add to g the following value:

5 B C - E E
gf - 80' g R2 - G (R‘l’H)z
E H n2
=G " (25— - 3"7?’ Foaennn )

ng is célled the free-air reduction applied to £.
For the stations less than the height of 2000 m, the second term of the

‘above equation is neglected. 5o

‘-—15—



2
Taking the average value of gravity for GE/R” and the average radius of

curvature for R, we have
ng = 0.3086 H mgal, H in m.

When observation point is below sea level, H is negétive and so haé
to be subtracted from g. |

When H = 3m, the value of reduction amounts to approximately 1 mgal.
Today gravity can be measured to 0.01 mgal. TFor 0.0l mgal, the heigﬁt of

observation station should be known to the accuracy of 3 cm.

3. Terrain reduction

The mass above the observation station P attracts a unit.mass at P
upwards, and the mass defect below P gives upward attraction too.
Therefore, if wé substraét the effects due to upper mass and lower negative
mass from observed g, Wé have a value of gravity g' when P lies on a flat
land having a height of H above sea level. This reduction is éalled the

reduction g' is always larger than g.

e S feve!
Fig. 3

Tﬁe terrain réduction is calculated on the following basis.

We prepare a transparent sheet.on whiéh concentric circlés and fadial
lines are drawn. The sheet is placed on a tdpégraphic map of.the'surveyed _
area, tﬁe grayity station being centred._ Thé ﬁean height.h”of ééch coﬁﬁart-

ment of the sheet is read from the map.

—16—



Fig. 4

Taking the sectoral prism of a compartment having a height h, we calcu-

late its gravitatiomal effect at P.
A small element dm of the prism is taken and the coordinate of its
centre is represented with a cylindrical coordinate (r, ¥, z). The vertical

-

attraction dg at P due to the element is

rd¥, dr, dz Z

.r2 + 22 : ‘/]:2 4 22

dg = Gp

The attraction of the prism is

' h z dz
(5g = Gp]’.‘dﬂ)dr 0(1:2 " 22)3/2
r av
= Gp (L - ) ) dr
= Gp (L - cos 6) ddr
z




The attraction depends only on the angle , which is the vertical angle
between the vectors r and |r? + h2.

We calculate all the effects due to the massesrof compartmeﬁts and add
them. The effect is independent on thg sign of 0. Becauéé cos 8= cos (-8).
The terrain reduction g' - g = Sgt is always positivé and has to be

added to the observed g.

Since the terrain effect is generally small, it may be often neglected.

4, Bouguer reduction

g' gives the gravity at P which is located on an infinite slab having
a thickness of H and lying horizontally between P and sea level.

If we subtract the effect of the mass of the slab on P, we have the
gravity at P only due to the mass underneath sea level. The effect of the
slab is given by 27wGpH, which is a reduction to be éubtracted from the
observed g, and is called the Bouguer reductiom, which is expressed by

The effect of the slab is derived from the last equation:

r
8g = Go (1 - 75——5") dydr.

Substitute H instead of h and integrate the equation from 0 to 27 and from

0 to © with respect to ¥ and r respectively;

GgB

2m o
Gp d dr (1 - UM AW
‘J; %}; : . Vyr2 4 hl )

@
2mGP I_r - T2 |O.

ZHGQH .

1l

. -8 ' |
Putting G = 6.673 x 10 ~ and P=2.67, which is the mean density of the
granite consisting'of the upper part of the crust,
SgB = 0.1119 H mgal, H in m..

For H = 9m, SgB = 1 mgal.



Comhined SgB with the free-air reduction, the gravity at sea level is

obtained, and it is usually designated by g;.

B, T 8 + Ggf - SgB ’

where S8gg - SgB = (0.3086 - 0.1119)H = 0.1967 H.

f

g, = 8 + 0.1967 H, H inm, P = 2,67,

If the terrain reduction is considered,

gy =8 t Sg. + Sg_ - Sgp

The sign of the Bouguer reduction to be added to the observed gravity

is always opposite to the free-air reduction.

5. Gravity anomalies

A reduction gravity value minus the normal value at the same latitude

as the observation station is called the gravity anomaly.

g - Y = Ago Free-gir anomaly

|
-
|

o o Agg Bouguer anomaly.

 The gravity anomaly is useful for finding out underground mass distribu-
tion. Which anomaly is used depends on the purpose.

The result of gravity observation for international network is usually

tabuléted as followé:
Sta. \P A H g g . g" g - g”..Y :

The unit commonly used for each column is given below:

p o 0.1 or " (second)
A: 0.1 or "

H: 01lm _ or 0,01l m

g : 0.1mgal  or 0;01 mgal

QST



6 Reduction for prospecting
For local prospecting, the observed gravity is usually corrected for
elevation, topography, and latitude. The words, correction and reduction

can be used similarly.

{a) Elevation correction

4 datum plane is chosen adequately fﬁr the correction instead of sea
level. Usually a horizontal plane through the lowest station in the surveyed
area is taken as the datum plane.

The correction Sge includes the free-air and the Bouguer.correction
and is given by

0.3086 h - 27TGPh

i

Sge

0.3086 h - 0.041 910h ,

where h is the height of observation station above the datum plane and p 1is

the density taken for the slab between the statjon and the date plane.

________ 4 . ' —. Datum plane

sea Zéwe[
Fig. 6

(b) Terrain.correction
Most of the effecﬁ‘due to topograpﬁy of a large scale are elimiﬁated by
the Bouguer correction.._So‘tﬁe correction required is that of thé effect |
due to near terfain. As alygady stéted, the upward atttattion'ﬁf.hills
.higher than.the station P and aisp.the upwérd effect due to valleys.ha#e to
. be removed, =0 as to have the gravity at P lying on an infinite slab of
thickness h reckoned from the:détum plane.

Both the calculated effects are to be added to g and the corrected g is



always increased.

For the correction, a method has been previously given. However, the
Hammer's method is often used. His transparenﬁ chart, having concentric
circles and radial segments is superimposed on a topographic map around the
gravity_station P. Take the difference between the mean height of a com-
partment of the chart and the height of the gravity station, The sign of
the height difference is not taken into account. The correcfion for every
compartment is obtained from the Hammer's Table if the height difference and
density ¢ are known, and all the corrections thus obtained are added to g.

g + Sge + Sgt gives the gravity value on the datum plane when the
masses above the station and those of negative density helow the station are

removed.

{(c) Latitude correction
The change of gravity with latitude ¥, Sgg, is given by differentiating
the grévity formula with respect to .

Yo = 978.049(1 + 0.005 288 4 sinzllJ - 0.000 005 9 sin 2U)

Ao~ 5172 sin 2y
ot 6g£ = 5.172 sin 2y - d¥ gal, dU in radiap

If s'ié taken as the distance on the earth's surface in a N-3§ direction,

N3



g =R d

_ . 9.172 . 7
Sgl = 6370 sin 2¢-.s, gal, s in km.

0.812 sin 2¥ .s, mgal,

which expresses the change of the normal gravity when the station at  moves
to P + 8y or moves northwards by a distance s .

When a standard station, which has approximately the average latitude
of the surveyed area, is selected, the corrections to the other stations are
calculated only by knowing the distances in the N-5 direction from the stan-
dard station. For northern points Sg, has to be subtracted and for southern
points vice versa,

The corrected gravity at P = g + Sge + Sgt - Sgl,
which gives a kind of Bouguer anomaly, and is employed as the basis of the
calculation for prospecting.

When the surveyed area is large, Sgl for a station having latitude.

¥ + O¥ is calculated from the difference of two normal gravity:

b

S5, = Yo W+ 8K - Yo (U,

where w is the latitude of the standard station.

(d) Earth-tide correction and drift corréction

The solid earth changes its form with the relative position of the moon
and the sun.. So tbe gravity changes.’

ihis earth*tidelcorrection is made by taking the record of the chanpe
of gravity due to earth~tide during surveys or by using tébles especiaily
published for this purpose. ﬁowever, 1f we fepeat the gravity measurement
at the base statlon in a short interval, the tidal effécts at-the.other
stations taken betﬁeen the two repeated<measurements at -the base will be
mostly eliminated together with the instrumental_drift, provided the effeét-

" being assumed to have changed linearly.
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As to the drift, it has been stated previously,

7. Resultg of measurements
Values of gravity anomaly are plotted on a map and isogal lines of
Bbuguer anbmaly.or free-air anomaly are drawn with a suitable interval.

From these gravity maps, conclusions about underground structures are

drawn always in consistence with geology and other facts.
In Fig. 8, a few exémples are illustracively given, concerning the relation
of underground structure and gravity profile taken on the ground through the

point of the maximum effect above the gource of the anomaly.

A few mfﬂ/ ] : \/_ 4f

\
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/ \
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I1I, Theory of isostasy
1. Isostasy

Igostasy is one of the characteristic states of the earth's crust.

The crust has always a tendency ﬁo keep this equilibrium state, and if there
occurs a certain change, for instance, due to the deposition of sediments or
the denudation of rocks by erosion, the crust tends to restore the original
equilibrium state. But as the crust has a property of rigidity, it can not
follow the change of surface mass distribution at once. Eveﬁ if the crust
can restore the state, it takes time to bring Back to the isostatic state.
When the surface change is limited to a small iocality, the restoration may
not be fulfilled on account of the rigidity of the crust, “When the afea of
the change is lafge enouglh, the restoration will be accomplished after some
years, The limit of the area subject to restoration is called the "area of
compensation"., The area is believed in general to be a circle having a
radius of 60~ 150 km.

A piece of jelly is strong to retain its form, in other words, it has a
property of rigidity. .However, a large volume ﬁf jelly can not retain its
form like a viscoué fluia, that is to say, jelly has a plastic property when
it has a large size. The crust may have the same property as.jelly. So a
large poftion.of the crust can behave just like a Qiscous fluid. Hence the
‘crdst is considered to havé aé a whole a tendency to follow fhe isostatic

adjustmentL

2, Pratt Theory and.Airy Theery

| - According to the ?ratt idea stated above, the depﬁh of gomﬁensation is
taken at the depth where the level surface and the surface of'equal.prESSure
coincide and its.depth ﬁag been thought about 100 km.. Above this depth of
Compensation, the éurface of equal pressure approaches to the-physicél
surféce of.toﬁogréphy aﬁd &iffers.more and more from thé.level surface

'(Fig. 2.



Take pillars of different density P and of the different height h which

is inversely proportional to the density such as
pl hy = p2 ha ..... s

| and let them float on a liquid of a denser density P . They will rest with
their bottoms at the same depth which corresponds to the depth of compensa-
tion. This example shows the Pratt theory (Fig. 4.

From thé observations of the plumb line deflections in India, G.B. Airy
(1801 - 1892) also thought of the idea of isostasy almost at the same time as
Pratt. He ;hought that continents having a constant density float at the
gurface of the substratum having a larger density just like icebergs at the
ocean surface,

If we take pillars of the same density and of different lengths and dip
them into a liquid having a larger density; they will float as Fig. 5 shows.
For the Airy theory the relation between continents and the substratum is
given by this illustration.

" If we consider a level passing the bottom of the longest pillar, the
level has the similar proﬁerty as the depth of compensation, on which the
.masses'of piiiars éause the same pressure.

Suppose the earth's crust is in the state of isostasy. Then, following
the deposition or denudatlon of rocks, the crust of that part must move to
restore.the original equilibrium state by sinking into the substratum.or by

getting subsgances from the substratum. As a malter of fact it is well
known that the delta area of the mouth of a large river is subsiding owing

to an immense deposit of debris transported by the river. Qo thé other hand,
it is also belisved by geologists that the denudated area is belng uplifted.

These geologlcal phencmena can be explained by both the theories of
Pratt and Airy © But most of the geological layers are spreaa horizontally

and they have usually almost the same density along the horizontal direction.



From this point of vieﬁ, the Airy's theory seems to be cléser_to the
gaglogical fact than the Pratt'é. But the result of isestatic calculation'
made by Hayford and Bowie (described later) shows that the Pratt theory on
which their calculation was based is to be accepted as elucidating a general
state of the earth's ecrust. In fact, both the theories haﬁe basically the
same.idea that the earth's crust floats on the substratum. The idea itself

. is the basis of isostasy.

nl, n, : Gepdetic normal to the ellipsoid. _

81> 8y ! Astronomical normal to the equipotential surface;
i.e., direction of gravity.

91, 92 : Plumb line deflection actually measured.

eg', gé ¢ Calculated normal to the equipotential surface,

the attraction of the Himalayas being considered.

Qi, eé : Plumb line deflection calculated for the effect of
: the Himalayas .

Pratt found (91 -~ 92) < (Gi - eé)

Fig. 1
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3. Isostatic reduction - Pratt-Hayford Method

In the early part of the twentieth century J.F. Hayford (1868 -1925)
calculated the isostatic effect on the plumb line deflec;ion measured in the
United States. Although his calculation was based on the Pratt idea, the
treatment of isostasy was a little different from the Pratt's original idea.
The depth of compensation D was measured from the physical surface in order
to simplify the calculation. Therefore the vertical distance of the layer
of compensation from sea level depends on the height of topogréphy (Fig. 6).

If a layer of equal pressure is taken at the depth D from sea level

just as the Pratt idea, the following equation holds (Fig. 6):
oD = (P - AP) D + Ph | @

h
AP = —— P
8P = D

where P is the demsity of a rockcolumn of length D, of whic;h tﬁe top surface
is the coéétal plain and Ap is é compensating density of a column, of which
the upper part forms a mountain of.height h, Following to the Hayford's “
method, W. Bowie calculated the.isostatic effect on the gravity obéerved in
fhé United States., -

The ‘isostatic reduction for the observed gravity has two procedures, .



i.e., the topographic effect on gravity due to the mass above sea level is
removed and the effect of the mass deficiency, which is considered to extend
from the physical sﬁrface through the distance of D, is eliminated. The
latter is the compensating effect.

The masses to be considered around a gravity station are divided into
sectoral pillars by concentric circles and radial segments, and the pravity
effect of each pillar is calculated similarly as the topographic correction

(Fig. 7).

The gravity effect Gg of a cylinder at a point P' on its axis is given

(Fig. 7)

Sgeyl = 2TGP(h+ /r2 + 12 —Jr2 + (h+n')%) | W

where r and h are respectively the radius and the height of the cylinder,
and h' is the distance from the attracted point P' to the upper surface of

the cylinder.

The effect due to a cylindrical ving at a point on its axis is

_ 2 . '2_\/ 2 "2
Sg ZNGD(/rz +h r, + (h+h")

eyl ring
_Jrf +1'24 [r2 4 (a+n)?)

where T, and r, are respectively the outer and inner radii of the cylindrical

(3

ring (Fig. 7). Based on this formula, the isostatic reduction is calculated.

. For the topographic effect, Sgt(ring), above sea level,

8g, (ring) = 2mGO( /rzz +h'2- /r% + (h+h")2
- W
- /1_-12 02+ fr2+ (rnh?),

. where h is.the height of the topography above sea level.
For the compensation effect 6gc(ring) due to the negative mass of

density, -AP or —h/D.P



_jr12 +h'2+ jr12 +(D+h')2)

(5)

For the isostatic reduction, both (4) and (5) are subtracted from the
observed gravity.
As h' is usually very small compared with D or rl_(4) and - (5) can be

expanded as follows:

. = - 2 2_ 2 -+ 2 ¥ h 6

rSgt(ring) 2mep {r, /rz +hZ - + /rl W2 +F (h', ,‘.r)} (6)
= hoe o2 20 [2 .2 \

ch(ring) = -2m6P D {r2 Iy +D _r1+ Ty +D +F2(h ., D, )}, (7

where the two functions Fl(h', h, r) and Fz(h', D, r) have a similar form
and can be regarded as correctional terms, since their values are very small
compared with the former four terms.

The cylinderical ring is divided into n equal sectoral pillars (Fig. 7),
and the mean height h of each pillar above sea level is estimated from a

topographical map. For such a sectoral pillar,

- 2TGp _/2 2. [12 412 3 '
th = a (r2 s +h | rl%- ) +he) + fl : (8)
__ e b [Z.2_ [.2 +p2y 4 |
6gc. - D(rz Jrg TD7-xy + frf fp)ffz_ (9)
Here fl and f2 are the corrections for h', and their values can be obtained
from the tables prepared as_the.correqtions which depend on the variables h'
and h. When h' <<.rl & Xy, they are neglected.
Hayford divided the area around a stacion as is shown in Tablé 1.
The gravity effect of each compartment can be calculated by (8) and (9)
with known T, T, and p, if h is estimated. pwas taken 2.67 by Hayford.
n pairs of gravity effect calculated by (8) and (9) for all compartments are

summed up, and the sum is subtracted from the observed gravity at P'.

Subtracting the sum from the observed value is called the isostatic reduction



“‘or correction.

For the ocean with depth h (Fig. 6),
PD = 1.027h + P(D-h) + AP.D ,

where 1.027 is the density of sea water and AQ.D is the compensating mass
against the mass deficiency of the ocean, the density excess being considered

from the ocean surface to the depth of compensation.

The formulas for the calculation of the effect due to the mass defi-~
ciency of sea water and the effect due to the compensating excess mass

extending from sea level to the depth of D are given:

- _ 2nG - / 2 2 [+ 2 2 N
‘ 1.643(r2 r2 +h -—rl-¥ rl +hi) + f1 (10)
216 h _ 2 Z_ 2 2 !
5gc 1.643 D (r2 } 4 +D rlﬁ- }rl +Da)y + £, (1L

where h' in fi'and fé are the height of the observation station above sea

y

ég

[

level. When h' « r; & T, fl and £, are neglected. |

The value of the depth of compensation is to be determined so that the
isostatic anomalies at many gravity stations become the smallest. Hayford
took 113.7 km for D, and Bowie 96 km.

‘The effect.qf topography and the effect of compensation have different
signs. 8o the sum of these two effects gives a smallér value than the larger
oﬁe of the two, but does not vanish at wost cases even if the digturbing
mésses are far away from the attracted point. Therefore the isostatic
reduction is extended all over the world.

The correction for the zones from A to L are calculéted.from the above
formulas under the assﬁmption that the sea level_ié horizontal.

| M,.N and O zones.are calculated first with the.above plane formulas and

ﬁhen correction is added with the use of the tables prepared by Hayford.
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Zones farther than 0 zone are numbered 18, 17, etec. and célculated with
spherical formulae, which are derived as follows:
Consider first the gravity effect dg at P' due to an elementary mass dm at
P which is located above the niveau surface passing P' (Fig. 8).

Let d be the distance from P' to P and B the éngle from horizontai

plane through P' to the line P'P.

dm sin B

de = G
® a2 (12)

Table 1 Zones and Compartments by Hayford

Zone Outer Raduis No. of Compartments
A 2 B 1
B 68 4
C 230 ' : 4
D 590 6
E 1,230 8
F 2,200 10
G 3,520 ' 12
H 5,240 16
I 8,440 20
J 12,400 16
K 18,800 20
L 28,800 24
M 58,800 : ' 14
N 99,000 16
.0 - 166,700 28

(=1°29'58") '
18 Col%41t13e 1
17 1 534 52 1
16 2 11 53 1
15 2 33 46 1
14 ' 30305 1
13- 4.19 13 16
12 5 46 34 10
11 7 51 30 8
10 10 44 6
9 - 14 09 4
8 20 41 4
7 26 41 ' o 2
6 3558 ' 18
5 51 04 _ ‘ 16
4 72 13 : ' 12
3 . 105 48 - _ _ 10
2 - 150 56 . 6
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Denoting & the angle between OP' and OP, a the chord subtended by a,

h. the height of dm from the niveau surface PO, R the earth's radius, then

d2 = a2 + h2 + 2ah sin —%— s

cos {7 - ——?—2‘— (T-a) } = -sin—%-

On the other hand,

sﬂ1B=-%r {R-(R+h) cos a}
2
1 a

= ( R h cos a) ,

where the relation R-R cos ¢ = aZIZR can be derived as follows (Fig. 9):
Let P'A 1 0Pg . Then P'Py becomes a tangent at P' to the circle

passing through the ;hree points P', A and B.

PQP'Z = PpA + PoB
a2 = (R-Rcosq) - 2R .
From (12)
2
a
dg = ¢ —=& dm , oy

(a2 +1n? + 2ah sin -‘(;—)3/2

which can be calculated with known o and h.
For an'elementafy mass dm at a depth h below the niveau surface, we
have to use — h instead_of h in (13).

az
. 2R |

dg = G
(a2 +h? - 2ah sin -3 3/2

+ h cog &

dm ' . (14)

Fﬁom (13} and (14) the topographic effect above sea level and the
corresponding compehsating effect of each compartment can bé calculated,
provided that the height of topography, or the depth of ocean is known.

Hayford prepared many tables to facilitate the calculations for his
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isostatic reduction. The isostatic reduction includes terrain and Bouguer

reductions. So the gravity used for the isostatic anomaly, gi, is given as
gi = gt dgf - 481

where g is the observed gravity, dgf the free-air reduction and 8gi 1is the
sum of topographic and compensating effects, the latter two effects having
different signs each other.

The isostatic anomaly, fgi, is

Agi = EBi - Yo (16)

where Yy is the normal gravity at sea level for the point under discussion.

4.  Establishment of the Theory of Isostasy

The detexrmination of the form of the earth is based on the measurements
of arc length between two points on a meridian and the difference of their
latitudes.

The measurement of latitude depends on the direction of gravity.
Theréforé the result of observation has to be'usually.corrected for neigh-
Eouring anomalous mass,

Aécording to the theorf of isostasy, it is not éufficient to remove
only the effect of the mass ébove sea level. in addition to this.elimiﬁa—
tion, the dompehsating negatiﬁe mass'iﬁ the.undetground'hés to be sub-
tracted. If the isostatic compensation is perféct, thelobserved plumb line
defleétion may.become zero by this reduction.

By the iéostatic reduction appliea for the observed gravity value, the
gravity value may approach to that on an ideal earfh, aﬁd the gravity anomaly
approaches ta zero. |

| Hayford calculgted the isostatic reduction by his method, as stated in-

Section 3, for all the values of plumb line deflection obsérved in U.S.A.,



and found that the corrected plumb line deflection become to be about 1710

of the observed deflection. This fact suggests that the crust has a property

of isostasy, and by his calculations the thoery of isostasy has become to be
recognized.

W. Bowie applied the isostatic reduction to observed gravity values.
The result showed also that the gravity anomalies decreased to much smaller
values.

The Hayford ellipsoid (1909) was determined from the are measurements
carried out only in the U.S5.A., nontheless'iﬁ has been taken as the basis of
the intgrnational ellipsoid (1924). The reasons is based on the fact that

the values of latitude used for the calculation were corrected for the

isostatic effects.

Hayford ellipsoid 1909 Tnternational ellipscid 1924
a = 6378 388 m a = 6378 388 m
b = 6356 909 b = 6356 912
f= 1 £ = 1
296.96 : ' 297.00

Isostasy is one of the most important principles in earth science, and as

stated above, it has been established by the American geophysicists.

5. Isostatic Reducfion - Airy-Heiskanen Method

.The_Airy-Heiskanen method df isostatic reduction is based on the Alry
idea. Let the average crustal thickness be indicated by T. Then the mass
df height h above sea level is compensafed by the root of continent of depth
It beneath the lower surface of the average crust, and the mass deficiency of
ocean of.depth h' is compensated by the anti-root of height t' above the
i&wer surface of thé average crust (Fig. 10).

If the denéity P of the crust is taken as 2.67 and that of the



substratum P' 3,27. The thickness to of the root is given as

hP = tAP where AP = p' - P, o
(17
. t=—o— b =4.451
Ap :
The total crustal thickness T. under continent is
Te =T +h+t=7T+ 5,45h ' ' : (18)

In the ocean, a column of mass deficiency is compensated by a column of

mass excess in the anti-root.

(P=-1.03)h" = t'AP

(19) .
er= B p o g 73
The total crustal thickness under sea is:
Ts = T-h'-¢' = T-3.73h o (20)

When the crust is isostatically compensated, its thickness is simply
calculated from (18) or (20}, whe;e the normal thickness T is usually taken
as 30 km,

The compensating effect of a ring of root of continent, and that of a
ring of anti-root ﬁf ocean are given respectiﬁel& just‘as_fgfmula (5) {c.f.

Fig. 71

N 2 -
S8c(ring)e = ~2nGhel/r2 + (T+m2 _\jr2+ (FHE+e)2 1)
_Jrlz + (T +H)2 +_~/r12 +(T+.H+t)2-}..
- 8 = 271GAp 2 4 (T+H=-t")2 - 2 : 2
Be (ring)s : T Ap{\/rz (T t ) jrz + (T +H) - .
_ - L (22)

—jr12 +(T+H-t")2 + /rlZ +(T+H)2}.,



where H is the height of the gravity station above sea level, and t and t'
are obtained from (17) and (19). |
For the calculation of the isostatic reduction, the Hayford's zones and
compartments are used, From A to O of the zones, the effects are calculated
by the above plane formulae with the use of the tables prepared by Heiskanen.
The tables are based for a point at sea level i.e, having H=0. So the bhasgic
formulae used for the tables are those of {21) and (22) in which let H=0.
‘ The formula for a cylindrical ring just as (21) or (22) is used for the

calculacion of topographic effect of continent and ocean, which are respec-

tively.
= 27 2 - - +
th( ing) 2 Gp{jr2 + (H-h)2 J rfr HZ 25
.= 2 L (H-h)2 + 2 +32}
Jf] h r1 H
t(ring)s & ) ){J 2 J_E ( )2 (24)

—Jrlz + B+ frlz +{(B+h'¥2 )

The values correspondiug to these plane formulae have already been
tabulated by Hayford in his isostatic reduction:

For the zones from 18 to 1, the spherical forﬁulae (13) and (14) are
used for ﬁoth the compensating anﬁ topographie effects as in the case of
the calculation by Hayford.

The isostatic anomaly is similarly given by_(lﬁ) and .(16).
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IV. Gravitational attractions of some bodies having simple forms
To calculate the attraction of a body on a point, we usually first

calculate thg potential of the body at the point and then find the attraction

by differentiating the potential with respect to the direction in which the

attraction is regquired.

The potential is a function whose first derivative with respect to a

direction gives the force along the direction.

1. Homogeneous spherical shell

In general, the potential of attraction, V, is given by the integration
dm
v=cje, (1)

where G denotes the universal constant of gravitation, which 1s according to

the determination by P.R. Heyl,

G = 6.670 x 107 cm’/gr. sec’ (1930) (2)
- 6.673 x 100 ® " (1942)
and M= x-xN 4 -y 4 (@ -2n?, (3)

x', y', z').being the coordinates of the point P where the attraction of the
body is to be féund, and (x, y, z) the coordinates of a point P having an
elementary mass dm of the body (Fig. 1),

We use polar coordinates. The

to polar ones (r', Q', J*) by the relations.

= r' sin B8' cos Y'

X
y' = ri‘ sin e' sin UJ, .

z2' = r' cos 8'

1f (x, v, z) are expressed in (r, 8, ¥) of polar coordinates



prrd® « r sind dp - d_r : o (4)

N

dm

I

or? sin® a8 d¥ dr ,
where 0 denotes the density of the attracting mass (Fig. 1).

Let Y= r, r' then
v = ijj r2 sin® do dy dr ' (5)
Jr2+rt2 —2rr'cos ¥ '

(a) Spherical Shell with Infinitely Small Thickness

Now we take z' - axis through p' (Fig. 2). Generality is kept, and Y

becomes 0.

First the potential V due to a spherical shell with an infinitely small

thickness dr is required.

v = ap zd i 2w sinf d9 d¢_
= Gpr dr
=0 ) V=0 Jr2+r'2 -2rx' cos 8

gl
: in6 d
= Gprzdr - 2T S0 0
o \/r2+r'2-2rr' cos B

Put cos®= t, then sinB df = -d{cos§ = -dt, and the limits .Df integ'ration:

(6)

=07 becomes t =1 + -1. So (6) can be written

. 5 : -1 -dt
Vv = 2mGpr” dr '1 Jr2+1'2 - 2rr'e

Since j dX__ 2va + bX

7o+ 5% T 5
' ' -2 +r'2 - e
v = 2T 2 dr V2 +r 2' 2rr't _
S

J(r +1)2 -~ f(r'-1)2

rrl L

= 2GR r2 dr

) t
where |/ (r -1)2 has one of two values * (r'-1x) for r'> r or r'<zx

respectively.



(1) When r'>r, or p' is outside the shell, the ﬁotential becomes
- 2 2
V = 2w6p ¥ dr S ey i (7)
where m is the mass of the shell, i.e., m = 41Tr20- dr.
This is the potential due to the whole mass concentrated at the centre

of the spherical shell with a thickness dr. The force F is in the direction

to the centre is

BYT 2 ] (8)

where the negative sign means that the attractive force is direction
opposite to that of increasing r'. In order to have the force to be posi-

tive, we will take sometimes a negative derivative of potential as the

force.

(ii) When r' < r, or p' is inside the shell, the potential becomes

V = 2MgP rodr—— = G2 (9
T r

This depends on r and independent on r'. Therefore the potential inside a

shall is everywhere constant.

v ‘ '
- =0, (10
- or!' )
j.e., there is no force inside a spherical shell.
(iii) When x' = ¥, (7) and (9) are equal. This means that the potential

is continuous at the boundary. So, we can calculate the force on the_surface

frém (8).

(bj Spherical Shell with Finite Thickness
| Next we deal with the potentiai of a spherical shell with a finite
thickness and a constant density.
| Leﬁ rl:and r, be the outer and the.inner radii of the shell and r' the

distance of an attracted point from the centre.

4]



(i) Potential at an outside point p', r' > r.

From (7)
ry
v=j wepridr -
r2
3 rl 1
= 4TEp | — i o (1)
o
_ 4 3., 3y 1
=TT TR S
V=e Total'mass
X
- oy -G Total mass (12)

ar' r'2

Thus the force is the same as that due to the whole mass concentrated

to the centre.

(ii) Potential at an inside point, r' < r.

r}
v =J 4niGp r dr
1?2 .

From (9)

. r
o= 4TGp r2 1
. S "

= 21Gp (rf —-rf ) _ (13)

Thus, the potential is constant, and there 1s therefore no force every-
where inside the shell.

ov

s - 0 o o

{iii) ©Potential at a point within the maési Iy >r' > r,
Divide the spherical shell into two concentric shells with a spherical

surface of radius r' (Fig. 3).
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The potential of the outer shell Vo is, from (13)
Vo = 2TGge (rlz -ypl?2 )
and that of the inner shell v, is, from (11)

4 1
= — T 33y L=
Vi 3~ 16O (x ) -5
Potential is a scalar quantity, so it can be simply added or sub-
stracted.

12
V= vogtvi = 276 2 X% 4 3,1
otvi = 2mGp (r 5 - 5 TGP (15)

v 4
ar’ =3~ "ee (' - ™z )

= "' _ ¢ Pr
A r'2

= mj
=C — (16)

where L er’ m, denote the masses of the spheres of radius r' and s, and

the mass of the imner shell respectively.

Thus, the attraction is only due to the inner shell and is the same as

that of the whole inner mass concentrated at the centre.
2. Homogeneous Sphere
Let R be the radius of a sphere and p its density.

(i} For an outside point, r'> R.

Put r. = R and X, = 0 in {11).

1
-4 B3 ' : 17
VvV = 3 T[Gp._r_t_ ;
. Total mass
=0 ____].:..i_....______
9V Total mass
~ g T I — (18)



(i1} TFor an inside point, r'< R,

Put r, = 0 in (15) and (16) _ {19)
T
V = 27Gp (Rz-— r3 )
V. 4 oy .
- eI T 3T TGpT (20}

Mass of inner sphere
t'2

= G

which is important to calculate the gravity in the earth.

3. Circular Disc

We consider the potential.of a circula; disc at a point on a central
axis perpendicular to the disc (Fig. 4)}. Let a be the radius of the disc,
dz its infinitely small thickness, and p its density.

Then an elementary mass dm at a point is given By prdy « dr * dz |

8o the potential v is

<i
I

2T ra prdy dr dz
G_ -5 r=6 \/r2+z‘2

]

: ra rdr :
R ey
s 2

. a
-.2TGp dz

[

JrZ+2z'2

0 _ _ :
.Z’H'Gp dz(\/a2f272¥2') S o . (21)

. XdX N EC I
o= = VX248
VX2 4 a2 '

The attraction at P' is

.

r

v o
= T . P e—
el 2mGP dz- (1L 2.2 ) (22)



4, Right Circular Cylinder

Attraction of a right circular cylinder upon a point on its axis is
directly obtained from the attraction of a disc by integration the expres-

sion with respect to z' (Fig. 5). From (22)
h ' H -
v 2
- = 21Gp dz (1 - [
azl jo p ( 3_2+(H —-Z)2 )

h
z+ JH-2)2+a2

i

2TGp

For integration, cf. (21)
o

U

2mGp (h + J(u—h)2+a2- Ju2+a2)

i

ZﬂGp (h+ 21 - 22 ) (23)

When B = h, i.e., when the force at the centre of the upper surface of

the cylinder is required,

- 3"‘ - mGp (- JH: +a® + a) (24)
z

5. Ring Cylinder

From (23) (Fig. 6), {outer cylinder) - (inner cylinder):

- % =2'ITGDI{‘[(H.-—h)2+a22 —j H2 +a2 i}
| —f(H-h)2+a12 +jﬁi+alz } - (25)
When H = h,
- —g-;l,— =_mp (fH2+a12 -ju2+322 +a, - a;) (26)

The formulae (26) is used for the topographic cortgctidns to -be appliéd

to observed values of gravity.



6. Infinitely Extended Plate
When the thickness h of a cylinder and the distance H of the attracted

point are much smaller than its radius a, from (23)

-—g—:—, =2mep {h+a J1+—(-}-1;"-'22)—2—— - a }+—Ia{—§—}
= 2TGp [h+a{l+—]2-'- —(ﬂ—“zgl-z-} —all+ %—S—j— . H
=27wGp (h - ._Zt}_%_h_z__)
=-zwcph(1-—§—2'a—“—) (27
When a.—r o
2V = amcpn @8

The attraction of an infinite plate is dependent only on its thickness
h and independent on the distapnce H of the attracted point from the plate,

The above result is used for the Bouguer correction to the observed gravity.

7. Llogarithmic Potential

Here is considered the pot_ential of a line segment AB having a linear

density A. Taking the coordinate axes as Tig. 8, we have

Potential of dm upoh p' = G _E‘_SL
Potential of AB upon p' = V=Gf b Ady

“8 J(x~x"2+y2

Since J———ﬁ— = log (X +V X2+a2),
. Jx2 + a2 _

Ib

V=2GA

log (y +Jy2+ (x-x")2

—-a

H

ch{log (b+ b2+ (x~x"2) -log (-a+ al+ (x—xn)D}e (29



When a, b (x - X’),

<
it

GA[1logib+b (L + ——(12‘3;—‘__')-2_ T DA Y,
8b4

log{ -a+a(1+—EIXDZ_ (e -x")4
232 Sall

+
g
——
e

n

2 [RY
cAliog 2b {1 + (x=-x%x")" __&x-x')
og 2b { 4b2 1606 T

-----

2
GAllog 2b+ log { 1+ SEoxD }

(x -=x")2

~log 52

- log{1l-

Since log (L+X) = X ~ 1/2X° + 1/3%° = verrvrn.

(x-x")2

v
4b2

]

cA{log 2b+

(x=x")2 + (x ~x")?

-log ”a ) IR

w2
2GA log %};—% + G & - ) (blz + ;12—) (30)

As the above expressicn is written as

. R . - 2
V = 2GAlog 2 fab - 2GA log(x-x') + GA (x 4"") (blz + :12—) ,

NS RO S SR Tk SRS S S (31)
C9x X-X . -

This is the attraction of a line segment AB in the x' - direction when a and
b are large compared with (x-x").

" When a and b are infinity,

v _
ax' =6 TR

1f r denotes the perpendicular distance from p' to the line, i.e.,

— 4T



2
and V = -2G XlogT , (32)

This expression is called logarithmic potential, and is applied for the
calculation of the attraction due to a body having a two dimensionai form.
The two dimensional form.is a form having an infinite length in éne direction
and having everywhere the same cross.section taken perpendiculary to that
direction,

Suppose a two dimensional mass extending in finitely to the y' direction.

Then its potential on a point p' (x', z') is given (Fig. 9)
v = -2¢ pjj log r dxdz | (33)

where r2 = (x‘-x‘)2 + (z-—z')2 and dm corresponding to A is pdxdz. So the

gravitational force in the z' - direction due to the body is
_ a3V _ z-z'
pg = v = 2P ——— dxde (34)

8., Attractions of two dimensional bodies
(a) Recténgular prism
Take the origin of the coordinate system at p' (Fig. 10), then x"'=0

and z' =0,

chﬂ 22 d%dz -
T

o |
26p( F[ - E andz
. X1 /21 X“ + 2

where Xys %5y 29, Z, are the coordinates of the four edges as shown in Fig.

Ag

10.
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-4 =z 1 2 2
S =
| ince J T .dZ 5 log (X" 4+ 27) ,

X
ZGDJ 2 log (%2 +22)
% .
1

X
/ 2
2Gp 2 log VR TEC +292 dx

z
2dx

Ag

1

1 xlog(x2+z§)—2x+22 tan—l~—x— x

= 2Gp —5— ) 2 22
2 -1 x
-x log (x“+ 2y Y+ 2x - 2zl tan 2L | X

n

jlog J X2 +22 ax

‘-é—-jlog (X2+22) dx

2 -
= —%——{ X log (X"+22) - 2X+ 22 tan L
- cp{ 2 4,2y _ -1 %
Ag Gp leog(x2 +22 ) 2x2 + 222 tan o
- 2 2 - -1 %3
_ leog(x2 +z1 )+ 2;»-:2 221 tan -
- : 2 2 o -1 x1
_ xllog_(xl +22 )+ 2x1 222 tan z, 3
. 24,2 _ -1 X
+?cllog(xl + oz 3 2xl + 221 tan 2
. -1 21
2 2 = -
Put - +zl _r12 tan o L2
2, 2 _ 2 -1 1w
X l+z = r2 tan %5 2
-1 %2
2 = 3 =
xz2 4z t, tan % Va
A
_ .2 -1 2 -
xl?- +z27- = r4 tan x( 1p1

—49—
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X2 -1 *1

then tan_l—Eg - tan = = (900- wB) - (900- wq) ='w4 ; ¢3
tan‘l.f;_i- — f; SRS R
bg = 26p { x, log z—g ~ x, log z—i
+zy (B, = V) =z (g - U] SR €15

(b) Vertical dike
If the lower boundary of a rectangular prism is extended downward to a

considerable depth, that is, z, 3>xl, xé (Fig. 11}, we have approximately

i

z, (5= ¥y =%
m Yy

2y (== 7)) =%

g Wy = ¥3) =%, - %

I

260 1%, log—> ~x, log — + Gx,- %) =2, Oy - 9,))
or Ag Gp X, Dgrg - %, log Y1 Xy = %Xq) =2y =Wy

L los )

26p 1 (x2 —xl) log tq —xz-log. :2+x

(36)

* Gy mxp) —zg (g - y) )
As z, or r3'incfeasés, Ag increases. TFor Zy > Ag has an infinitély
" large value. However, since the increase depends upon log Tas Ag increase

gradually with ry.

{(c) Vertical Fault

When one side of the rectangle is extended horizontally to a long

distance, the form takes of a vertical fault (Fig. 12).

Putting in (35), T, = I, and w2 =-¢3 = (; wa have

o m | "
Ag = 2Gp(fxllpg 1 + 22¢4 - zl¢l) : : (37)



When the thickness of the slab is small compared with its depth, (37)
- is much simplified.
Let Zy — 2 = L, and ¢4 = wl = ¢1

2

2 2
T4 X1 +2Z2

log r12 = log x12 +212_

2tzl N t2
Xlz +212 x2+z 2

log (1 +
1 1

r 12

which can be neglected, if t < zy

Theraefore (37) becoms

Ag = 2GptY . | (38

r / P

X’

Fig. 1 : Fig. 2
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V. Interpretation of gravity anomalies

1. Regional anomaly and local anomaly

Gravity anomalies measured by surveys are considered to consist of two
anomalies: regionai and 10cal; The local anomaly often indicates anomalous
mass distribution of special configuration or sometimes underground natural
resources. Therefore the regional anomaly has to be removed from the
observed anomaly. There are two methods for obtaining the regional field.

One is to determine the regional anomaly graphically from the gravity
anomaly map, by taking, for instance, main profiles of the map. Fig. 1 shows
such an example, In consistence with geology and other facts, the regional
anomaly is considered adequately from the trend of the observed anomaly

curve,

Another is the analytical method, in which for instance the fbllowing
two methods are often used: determination of the mean value around a point
where the local anomaly is required, and that of the distribution of regional

field over a surveyed area.

.(aj Method of meaﬁ vaiue

To obtain the regioﬁal aﬁomaly at a point P, a circle 1s drawn around
the point P. The 1ength-df its radius is selected suitably, deﬁending on the
purpose of the survey. Oﬁ the cirele, say, sight points are taken, separated

each other with an,angie 2n/8 subtended from ﬁhe centre (Fig. 1).
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?he gravity anomalies at these eight points are determined from the

‘isogal map of, say, Bouguer anomaly, thus Agl, Agz, e Aga, We consider
. 1 &
the mean value Agr = 3 £ Ag  as the regional anomaly at P. Then the

local anomaly at P is given g, = Ag - Agr,-where g is the observed anomaly

at P read from the isogal map.

We calculate the local anomalies at many points, and draw the isogal
map of local anomalies, which is useful for finding local underground struc-
tures,

When the mean value taken over a circular area around P is required, the
aree is divided into concentric circular zones and the mean value of each
circular zone is calculated.

Practically, the area is divided with radial lines as well as concentric
circles (Fig. 2).

In the example, radii of the concentric circles are r, 2r, 3r, 41, and
radial lines axe taken every 2m/8. There are 32 compartments of sectoral
form.. In every compartment the mean gravity anomaly is determined from the
iso—anomaly map.. In a circular zone we have eight values of anomaly which
correspond respectively to the eight compartments. The mean vaioe of the
sight is considered to be the mean regional field of the circular zome at P.

Denote the mean value at P of the circular zone (3r- Ar) by Ag3 4;
that of-(?r-—Br) by A§2_3 and so on. The total areal mean of the observed

anomalies at P is given as

1 - 2 2 2
ABp = ;zz;sf—'[AgS_a{n(ln:) - w(3r)7) + ... b B 4T ]

1 - i} _ _
5 (ThE3 4+ 5083+ 087 LENER

In these methods, the length of the radius of a cirele around a point

‘should be taken properly so that the mean value approximates the regional
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field at that point. If we take the radius large, the_mean_value seems fo
approach the regional field, but instead, other effect will enter the ‘area.

As a method of area mean, we often divide a circular area into gqual
sectors, and estimate the mean anomaly'bgm of each sector from.the originél
isogal map. For instance, i£ sectors are eight_as in Fig. 1, tﬁe régiénal
anomaly at the centre is coﬁsideréd to be the afithmetig meanrof the eight
Agm. | |

If we divide the area around a point P into square compartments having
gides parallel to NS and EW, the mean observad .anomaly Agm Qf each comﬁatt«

ment is estimated from the isogal map, and take their mean value for all

compartments. In the case of Fig. 3, the mean value at P is

16
= = L
Agf 16 n=1 Agmn
when we have anomalies along a traverse, the regional effect can be in many

cases represented by a straight line:
i} = a 1ib x
gr o} 0

where x is the distance of an observation point from a certain definite

point, and a and bo are constants to be determined by the method of least

squares (Fig. 4).

(b}' Method of finding distribu;ion of regiqnal fieié.

The area concerned is divided.into many squafe comﬁértment (Fig. 5).
The values of observed andmaliés at the corners of the compartﬁéﬁts aré
ﬁaken from the isogal ﬁap based on the_obsérved anbmﬁlies.

For example, in Fig. 5 values of Ag at 25 cross points are read ffom

the map. The coordinates (x,y) of the points are ex@féSsed by'



(_2’—2) (_13—_2) (07-2) » (13_2) » (2’_2) ’

("‘21"'1) . ("l»_l) (03-1) ) (1:_1) L] (2’_1) *

(_2’2)} (_1’2)) (0,2), (1,2); (232)'
We assume that the regional field is represented by
Ag = a + px + gy

Glving 25 values of Ag and the coordinates x,y of the points where Ag are
taken, we have 25 observation equations; from which we can determine a, p and

q. Then the regional field is given by the f formula

hgr = as + pox + qoy,
where suffix o means the value determined by the method of least squares.

A8y ot (x1, yk) - {ao+ Pox *+ 4o Yk)

Without using the method of least squares, a,, p,, and g, can be
determined. Take the mean value of Ag at (1,1) and (1,5) and consider it as
the fegional value at (1,3). Similarly, the values at (11,3}, (111,3),
cens (V,B) are determined as the regional values at these points. They are
plotted on a graph.paﬁer as in Fig. 5.

The distribution of the dotts is assumed to be linear, and the slope of
the.line and its intercept at Ag axis'aie determined as o and ay. 1In the

above equation, when y = o,
_Agr = 84 + Po¥

. which corresponds to the line.
Actually

Po =——§£-g;(£— = tand



So from the line in the graph paper, we can deter_t'nine.po as tan o,

In the same way, take the mean value of Ag at {1,1) and (V;1), and
consider it to be the regional field at (IXTI,1). Similarly ﬁhe regional
fields ;t‘(III,Z), (I1L1,3),....vv v (IIi,S) are determined. Plotting these
values in the graph paper just like the above, we cah'deterﬁine ao_and do>»
where q, = tan p. In this case a, must be diffefent from the value pre-
viously obtained. So the mean of the two ay is taken as the constant of the
necessary foyxmula including both the terms of Po and P

When the regional field is not represented by a linearIQQUation, we

assume a quadratic equation:

_ 2
ABy T 8y T a3, * 21%

+ aoly + ao2y2 + ayjxy

The coefficients a's aré determined by the method of least squares.

When discrepancy of observed anomalies is conspicuous,; a method of
smoothing is often used. A .simple method is giﬁen as follows.

The observed anomalies at three consecutive points on a éréverse'ére
.taken for,the smoothing (Fig. 6), the spaciué of the observation points Eeing
supposed to be approximately equal.

Suppose'
28 Agm = (s -48s) 2 (Agq + Agz)_ + (8 + &5) 5 (Ag,z_ + Agq) o,

where Agm.is the smoothed value at the middle point between P, and P,.

1 3

1o 1068 ..
Be, =g sy + 20, + bey) - T T ey - b8y

- 1f P, 1s taken just at the centre between P, and P3,.i;é}, 68 = 0 the

smoothed Agm is given by 1/4_(Agl + 2&g2 + &gs)} When 68.« S and Agl- Ag3'
is not large, the correctional term can be neglected..



2. Interpretation for simple bodies

From isogal map showing local anomalies we try to find out underground
structures, referring to geology, drilling results etec.

In general, gravity highs often indicate anticlines, igneous intrusions,

metallic ores, etc., Gravity lows often show sedimentary deposits which are

lighter than the surroundings. Strips of steep increase of gravity are often

attributed to faults.

Next we deal with the interpretation of gravity anomalies caused by

bodies of simple forms.

{a) Sphere
From {18) of the preceeding chapter, the attraction due to a spher at
P' is given by
¢ 4/3mR> §/e't

. 2 2
where R is the radius of the sphere, § its density, r'2 = x'"" 4+ z° as shown

in Fig. 7.

Denoting its z-—component by Agz we have

a4 3 -1 . 2
ag, = G 3R sx!2+22 r'
3 .
= QoM 05— (1)
" Z
when xi =0, Agz has a maximum value Agm_ax.
. . 5
R .
= == § (2)
Agrnax _Gal3ﬁ 72 C
So generallj
1
Agz = Agmax (l + xlz ) 3/2
' 2
]



Whe =
nog = 172 8g

1 1

x'2 . 3/2
(1 + ) )

* 7 = 1.305 x'll2 (3

] : . .o
where x 1/2 1s the distance between the two points having Agmax and 1/2Agmax
respectively.

Knowing x'l/2 we can estimate the depth z of the centre of the sphere.

1f & is known R can be found from (2), being here the difference between the

density of the sphere and of the surroundings.

“(b} Vertical rod
Consider a vertical thin rod having a density A whose upper and lower

ends are at z. and Zg- Its gravity effect is given by

1
zZ
_ 2 Adz z
be = GL R

1

. 2y = .
= GA . (x'2422)3/2 dz

1
Since
x dx 1
—_—E U S
o2 + a2) 212 T2 42
S GA —L ] %=
ag = \/x'zd-zz .
1
1 1

il

Gr (7 - o
’xl2+z]:2 X‘2+222 ) ('f’)

When 2z, is =

= O TT———— |
S ey 3



In (5), when x = 0

= 1
DBy = GA 2 . (6)

Denoting that XHJZ is the distance ©f a point where g take

1/2Agmax, we have

1

1 ~ GA 1
T2 0Bpay = G N Zy RN
12t ( 1/2) o
. Zl

XH/Z 2 '
(T +1 = 4 Ky = J3 Z (7

Therefore if we find the distance XEIZ

1/213gmax, the depth z, of the semi-infinite vertical rod can be found

from the twe peints Agmax and

{Fig. 8).

The density A is obtained from (6) as

A= KEJZ ABmax

73 G

AZ max.
'édg;nax
P)
b 3 X’
T‘
Fig. 7



a9 max.

Fig. 8

(¢} Horizontal infinite cylinder
First we calculate the attraction Ag of a horizontal infinite cylinder
on a point just above its horizontal axis.

From (34) of the preceding chapter,

A 7z - Z!
= e = g | ———m——d
Ag VA 25 = m
2 2, 2 , ' | -
where e =<t¢'"" +1r° - 2r' rcos (M ~ 8) cf. Fig. 9
dm = or df dr N -
z.= r cos 8,
-z' = r.' (r' is taken positive)
k il oL - '
+ r cos B
= 4G d L de
A& crjorrfo. ' +r2+2r' rcos b ’

where R is the radius of the cross-section of the cylindef.

The integral with respect to O, 16, is transformed. as follows:

I = m-08 r' + r cos g+ ' 4+ rcosT_ A8
8 o r'2+1r2 4+ 2¢'r cos B r'2+r2+2rTrCO§W. .

where 0 is taken to be s0 small that the integrand may be regarded constant

" for the interval Erom w-AB to-m
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For the first term we use the following formula:

a' +b' cos'® _ b6 _a'b - ab’ d8
a+bcosd ) b a-+ b cosg '

where

a9 _ .2 can~l Va2 -b2 tan%
a-+b cosh m T R
-t < G <7

F‘irst term of

- 1 Sl r'-x T A8
Ie— 3 (ﬂ—69)+~—;:—,~—tan {—1:';°+—1:—tan " )]’ .
m 2
where .tan 7 T 5
. T AB
First term = T T o
While
| 1
Second term = ———— Af
r' -
Let AB approach O,
= L.
18 oy
R
4TGO
AB = 1_,_| f rdr
o]
- 2mR’Go 4 | (8)

When p' is not on the z! -axis, the vertical component Agz of the
above dg has to be taken.

ZTIRZGUH%,— 2

i

Ag

2

2
2'2 422

2 HRZ GO

or = - 218" GG%— (-——_—-l“;;'i') (9)
‘ 1+ ~57



When x' = 0, Ag has a maximum value:
i z

' 2 1
- —— 1o
pg_,. = 2TR GO (10)
1
Agz = Agmax( x'2 )
1+ )
z

T

At the point X792 where Agz = 1/215gmax

12
1o+ _S1/2 -
z2
%! '
1/2 = 2

The depth z of the centre of the eylinder can be found as x'l/Z’

is determined from the distance between the two points having Agmax and

which

1/2A 8ax respectively.

If § is known, R is given from (10).

3. Two.dimensional body having an irregular cross-section
(a) A method of using graticule

The effect of a two dimensional body is given by
rg = zccjf—(z—-—z—) dx dz
r2

where 1"2 = (x-x')2 + (z_—z')2
If we take the attracted .point P! at the origin of coordinates,
%! = 0 and 2’ = 0,
hg = ZGUI —2:2— dx dz
_ r
where r2 = x2 + z_2.

When the cylinderical coordinates are used (Fig. 12).

x r cos U

r sin

N
B



dxdz = dr.rd ¥

bg = 2GGJJ’ siny drdy (16)
. r ‘l)

The integration is generally difficult, because the limits of integra-

tion of r relate to the value of ¢ and vice versa. Therefore, to simplify

the problem, we take a small portion of the body which has the same limits

of r even if the value differs. Thus, for P, the lower and upper limits of

r are r and r + Ar; for ¥ + Ay, che limits are also r and T + Ay (Fig. 13).

Then the attraction of the portion on the point p' is given by

r+Ar P+ AU
Shg = 2ij— Ar sianl di
T Y

= =260 ]rlr+Ar l cos ¢|w+
Y

T

iy

= -260{ (xr+4r) - r}{ cos(p+ AY) ;—COSIP}

where ¢ and Y+ are the limits of P, and r and r + Ar are the limits of r.

Therefore, for the whole mass

og = —ZGUEﬁ {(c+ax) - v} {cosW+MY) - cosP}

If the mass is divided into many portions, say n, so that each portion
has a constant gravity effect 84, 8, on P'. The effect of all the mass on
P' is obtained as

1f a quadrant is divided inte many small compartments, each of which
has a dimension of Ar = 1 cm, cosy ~ cos (P+AYP) =0.05, each compartment
] [ ] . 6 _6
‘having a density of 1 exerts the point P' with an acceleration 6.67 x 10
mgal (cf.(17). Fig. 14 shows such compartments on a reduced scale.

Practically, the figufe with Ar = 1 em is drawh on a transparent sheet

and put it on a section showing an assumed underground body;, coinciding



0 - point of the sheet with the attracted point P' and the line ox' with the
horizontal surface. By counting the number of compartments which occupy the
ceross-section of the body, we caﬁ find Ag at P! due to the twe dimensional
body.

When thé section is drawn on a scale of 1 :S.ahd the density cpntfast
is T, the effect of one compartment is 6.67 x'10"6 X § ®Oox mgai.
For instamce, if, the section is drawn on 1 :104, and if density contrast is
0.2,

Sbg, = 6.67 x 1078 x10% x 0.2

The graticule is drawn as follows. Aroﬁnd a centre 0, many concentric
circles are drawn with radii 1 em., 2 cm., 3_§m.; ........ , the number of
circles being taken properly according to the object. |

As to P, for x' -axisy = 0. cosP = 1,

Since cosV ~cos (¥ + &) = 0.05, ¢ +.A¢==l8°12',
where ¥ = 0, Therefore, the first radial line angles 18°12' with x' -axis.
For the first radial line, ¥ = 18°12', So cdsﬂi = (.95,

Since cosy - cos (¥ , AU) .= 0.05, cos (U + AY) = 0.90.
W+ A= 25°51!

or AP = 7°39',
Therefore, the second radial line makes an angle of 25°51' with the
1

x' ~axis, and it angles 7°39' with the first radial line.

(b) Estimation of depth

We suppose.that a: sediment of:density.is deposited on thé underiying
_deﬁser bed rock of density O, and indicate the minimﬁm depth. of the surface
of the béd rock by z, and its maximum depth by z, (Fig. 15)..-_. |
When the infinitely extendiﬁg slab of tﬁickness (zz-zleis:wholly made

\ . _ _ . . .
of 0., its gravity anomaly on the ground surface shows a maximum value .



(Ag)max’ while when the slab is wholly made of the anomaly has a minimum

value (&g)min i.e.,

(Ag)max = (Ag)min + 2TGAC (zz - zl) (18)

where ~ A0 = g' - g

Any observed anomaly Ag has a value between the above two extreme

values i.e.,

(ag) . > b8 > SL-VE
or (88) oy ~ (Ag)min > g8
This inequality holds also when Ag takes a maximum value,

(Ag)max ~ (Ag)min > Ag - Ag

max min,
where the two notations of the right hand side indicate respectively the

maximum and the minimum observed anomalies.

Referring to {(18), we have

22 -2, > Agmax - Agm:i.n

1 (19
2ncGAo

Se 22-zl-is larger than the depth difference calculated from the maximum
change of Ag in the field.
- The depth z of the bed rock is often calculated from Ag and Agmax by
the delowing formula

A - Ag

zZ - 2 = max

(20}
L 2mGAo

here Ag being the observed anomaly at the point where z is to be sought.
When the maximum depth is concerned, the iqequality (19) has to be
taken into.consideration. (19) and (20) can be of course applied not only

to a two dimensional surface, but also to'a general surface,
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Theory of Pendulum

Appendix

1. Mathematical Pendulum:

The classic metho& to measure gravity is to observe the period of a
pendulum. A mathematical pendulum is the one having a mass thét is suspended
freely by a fine massless thread under the influence of gravity and swings
about a horizontal axis through the point of suspension,

Let 0 be the point of suspension of a pendulum of'length 1, P the end
point of the pendulum with a wmass m, & the phase angle of the pendulum, then
the tangential component toward + x of the oscillation force considered from

the motion of the pendulum is given:

md*S _ mldif
L dtr T g2

ot Z
Plx.z)

Fig. 1
The above equality can be obtained as follows:

ds £.48

dt =V = dt = 2w
.dzs 2 dza
dt2 dt2

. . ds d ' ' e
in which aE~and 3¢ Mean the velocity of the mass and its angular velocity
considered toward the counterclockwise direction, and both the accelerations

3 2 ‘ . . .
8 : :
_%Ez-and 193 have negative values toward that direction.

~7o—



The above tangential force must be equal to the negative of the tangen-

tial component of the gravitational force acting on m.

Therefore
2
mld™§ . L
— = mg sin g
%2 g
2
d 8 .
a2 tismasc W

As to the normal force, it can be disregarded. Because the outward
forces, i.e. mg cos o and the centrifugal force mlﬁz are balanced by the
tension of the suspending thread.

(1) is the differential equation of the motion of a ﬁathematical pendulum.

To obtain g with 1, t and &, we integrate the above equation. First,

it is multiplied with 2%% dt
2d6 QEQ. dt = -2 & sing dg dt
dt a2 2 dat
By integration,
dé (2 g
(dt)_ = 2 gcoso +C
' ‘ | . do. _
Let do be the maximum phase angle i.e. O = o, when e 0. Then the above

integration constant C is given as

. _= _ 5. :
c 2 0 cos o
(-(-1--5—)2 =2 E-(cosu-—cos Og)
dt g
1 da
L T J cost - costg

' , oo
Since penerally cosa = 1-2 sin 5, we have

1 f . dx
. =73 R./g J?oscx - cos 0.0

To integrate this, we introduce a new variable W, thus



sin—(;— = sin—gaoﬂ siny

Then, by differentiating this equality with respect to ]

1 o dé_ _ . Do
> cos — g =. sin 5 cos ¥,
2 ginCo
T dd =
° "2; cosy dy
cos —
cos 3

. 2
Since cos = Jl - sin2 O.Lzo sin ¥ from the definitien of ¥,

m‘o—:

dt = (&/g dyy -

Jl-sinz gzg-sin ]

Limits of integration are

Y=o for ¢ =o0
Y = —12T— for o= Oto
T2 dy
t = M/gj .
2 ,/].—-s:i.n2 929— sin’l - (2)

‘where t is the half of the half period. The integral is an elliptic
integral and is calculated as follows. o

If oo is sméll, the integrand can be expanded by bindmial series.
Thus pﬁtting sin2 %9- = kz,

1 _ 1,2 1.2

=1 +>k"= = k" cos 2¢
Jl—k2 sin’ ¥ b 4 :
21t 2 cos 2w+ Z Wcos by 4 Ll

16 64



T i
) 22&J 7 = U ?lszJ"'e?&kA)Jz dy
) ] ﬁ—sin—z-sintp : o

o
1 .2 3 4 2
—(Tk +—1€T—k)§ cos 2y 4y

‘ SE
2

But _ T
w3

—;— sin21b‘

(STE]

0

o

o

S
|2
=

i

ST

i
<

o

9 o
N
=]
[47]
£
=
(=
=
1
o mf=
1

—i-sinl&\bl = 0
i v
2 d =(1+—-2‘~—k2+—-—9——k4+ ..... y L
J 200 2 4 64 2
1-sin — sin ¥
0 2
So {2) is
' T 2 1, 200 9 . 4 do :
;, 5 .—g—-(l+-l:s;mz+64 sin —2—+ ..... Y,
"t is the time that the pendulum moves from the vertical (« = C ) to the

highest position (o = 0o). If the whole period is indicated by T, T=4¢t.

As the fourth order of sin %0— is practically neglected,
e 1 2 G
= m = .=
T 2 . .(.1 + 5 sin” ——) ,
where sin® _do = {8 _ ,‘3‘_0)3 ____l: ¥ (_019_)5______1 }2
2 2 2 2.3 2 2.3.4.5
. % %
% g o 2:3
: 2
2 (I-D
T = 2 —— (1 +
L At TR (3)



As the oscillation period of a pendulum, we use the period for

infinitely small amplitude (d0==0). Indicating the period by T,, we have

T, = 2 L/e
2
g
T=T0(1+-—]-_-€——) . (4)
o 15)
o= T~ 71g T (

The required period To is obtained from the obse:ved ﬁeriod T (5) by adding
a correction - w%%w-T, which is called the amplitude correction for.the
correction, for instance, as a simple method the average value of the two
amplitudes at the start of the observation and at its end is taken.

From {4) we see that g is obtained from the period of oscillation 1if &

is measured accurately, thus

g = 4 w —_—" ) (6)

2. Physical Pendulum

We consider the vibration of a rigid body about a horizontal axis, ife.,
of a physical éendulum. In Fig. 2, let 0 denote the horizontal axis, dm an
elementéry mass of the bady at (x, z), r the disténée between the axis and
dm, (xG, zG), the centre of gravity G of the body, M its total mass, and h

the distance of G from the axis 0, Here G is mnot gEneraliy in the xz plane.




From (1) we have the following equation for dm.

dw X
dm r ar = —dmg ~—r——- (7)

2 _dw :
L dm = -g x dm

where rzdm is the moment of inertia of the body about the axis.Of

The left hand side of (7) indicates thé force acting on dm which is
congidered only from the actual motion of the pendulum. But the right hand
side of the equation means the force which originates or maintains the

actual motion.

By the definition of the centre of gravity,

j'x dm = XGM

Therefore

dw 2
ac l(r dm = —ngM

gMh sin a, (8)

]

where 0 denotes the phase angle of OG and h the distance Qg,
Consider an axis through G parallel to the suspension axis and the

distance of dm from the axis to be p , thus

o2 = xmxpt + G-z’
Introducing
X = Xo (x = %)
z = z,+ (z —ZE)2
we have : r2 = x2 + 22
= KGZ + ZGZ + (X-—XG)Z + (Z-ZG)Z .

+ ZxG (x-—xG) + 22G (z-—zG)

o, , | .
= h.-k_p.+2xG(xfx& + 2z, (2-2,) .

— 7



Therefore the moment of inertia is written

2 2 3 '
5r dm = h 5 dm +jp dm -+ 2xG5 (x-—xG) dm + 2zG j(z—zG) dm

Since (x—xG) and (z—zG) are the coordinates of dm with respect to the centre
of gravity' as the origin, we have from the definition of the centre of

gravity,

jrzdm = ‘n2 jdm + jpzdm . (95

where Ipzdm is the moment of inertia of the body about the axls through G.

Indicating the moment of inertia about the G-axis by kzM, thus
{ Pan -
we have
jrzdm = (h2 + kz) M ‘ : (10)

k being called the radius of gyration about the axis through G..

Therefore (8) becomes

o .
4o 2 4 1 ®yM = -gihsing
dt o :
or 2 : : -
d o A 2
—— (h = - .
) (h” + k) ghsinag _ (11)

_This is the differential equation for the motion of the physical pendulum,

1f we put

: '—E“t“:-i S "‘%— sin d.'.= 0. . _ . . (12)

The differential equation is the same as (2) for a mathematical pendulum of

length &. We gee that the ph’ysicél‘ pendulum has the same period as a
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mathematical pendulum of length,

2 2
g - B+ K

s 1®
This is called the length of equivalent mathematical pendulum, or the
reduced length of the physical pendulum.

1f we take a parallel axis 0' at a distance 1 from the axis of suspen-~
sion O at the farther side of the parallel axis G, the axis is called the

axis of oscillation of the pendulum, here the three parallel axes being in

the same plane.

The period T of the physical.pendulum with amplitude do is given by

T = om £ 1 a?
= 'y @+ )
r;—— 2 2
T - A _&_, = X _‘Q_'_ . _b__-i-_.k_. (14)
8] g g h

If the moment of inertia about 0 is indicated from {(10) as

when d_ = 0,
)

(b2 + k%) M

the required period is
. 3 .
= — 5
?o 2 Mgh (13)
3;_ Corrections of Observed Period

ﬁor the determination of the period of a physical pendulum, the follow-
ing five corrections are considered, thus 1) amplitude, 2) temperature,
3) effect of air 4) rate of chronometer, 5) flexgre of the stand.

1)' The correction for amplitude is to be corrected to the period of
no amplitude by (5). When the amplitude is do’ the period TO of (14)

corrected for dO is given from (5)



a d
o Tr -

where T is the observed period,

2)  Councerning the effect of temperature, the temperature coefficient

for the correction is determined for every pendulum.

3) As to the effect of air, thgre aré three kinds to be taken into
consideration: buayancy, motion of air with the oscillating pendulum, and
decrease of amplitude due to air resistance. On account of the buoyancy of
the air, the weight of the penduium diminishes from M to gM-—ng, where M;
is the air mass replaced by the pendulum.

I1f we assume that the centre of gravity Gl of the replaced air is at a
distance of hl from 0 on the line connecting 0 and G, (11) becomes

d26 2

2
TV (h™ + k7 M

1

-g (WM - h'M') sin a (16)

Here the left hand side shows the moment considered'only from the motion

of the pendulum regardless of the cause of the motion.

Putting _
B o N - -
L= W ~ h'M - hiM' (.17) .
h(l - M :
we have
dza Co ' '
3t2 + gff Sina =C . | as)
x
\
Fig. 3



‘This is the equation of motion of a mathematical pendulum with length
L oscillating in vacuum, as is shown in (1). That is to say, the period of
the physical pendulum'affected by the buoyancy due to air is the same as of
the matbemaﬁical pendulum of length &, defined by (17), which oscillates

freely without the disturbance of air.

From (3) the period T of the pendulum with amplitude d  is

2 2 : 2
£ nl 4k 1 %5
T = 2T |—
Jg o TR G 5 19
hM
The period for o = 0 is
T u% 2
o = T(l = 16 ) (0)

The effect of the buoyancy can be calculated by comparing (14) and (20).
But the effect is usually taken into account with the effect of moving air

mass considered below.

As to the effect of air mass moving with the pendulum, it can

dza

ar?

¥
(h2+k2+x2 —-%—)M= -g (hM - h'M' ) sin, (21)

in which it is supposed that there is no gravitational effect due to the

moving air mass.

2 2 2 ——
h™ + k" 4+ x M
L T , (V¥
h(l—“—ﬁﬁri)
we have _ 2 '
doa , _8 . =
452 o o—po sinu -0

This is the equation of motion when both the effects of buoyancy and the

moving air mass are considered, The period when uo = ( 18 given by

—81—



x2 M

° s gh 1 - -h'M )
, T
2 M' \
1f we pur x 01-+k YK, = § and suppose ht =h,
ro = 2w ¢ Bt L+ k8 | 1/2 o0
°= gh "I -38 |

With the use of this equation, k can be determined empirically.
Two pendulums having the same form but different mass Mi and MZ are used

and their period of oscillation Tl and T, are determined at the same spot.

2
Then |
. h _ _ 2 2
-——-sz Tl (1-6) = " +KH U+ 8k
e 02 ey L 22
oy T, @ §,0 = " +X) A+ Sk,
M' M
where 8 = e, Y i
1 Ml 2 Mz
12 -
1 1+8x 1 - 6
17 T 1+8K * 3 I
1
o= T~ 81 -TF 1~ &)
8117 (- &) - 81T @ - 8y)
. Tf _ Tg .
or 1+ K= - 2 7 . ) . (25)
: 61T2 _ GQT]_ ' ‘ '

1-8y 1-35

From this equation we can calcuiate K or xz;

Let T air and T denote the perlod of the phy31ca1 pendulum w1th the
affect due to air (23) and the period with no such effect (14), the effect
of the amplitude being corrected for both. Then_the”correction for the air

which i5 to be substracted from‘the observed period-T air is given.by'

' -.—32-.- .



ke (12 14us | 1/2

Tan_Tc):z?T( gh ) { '—lT'g—) - 11

2 2 .

- A"+ k™ (1/2 1 1

Zﬂ(——_——gh ) {(1+7 k&) (1 + E‘S)“l}

2 2

_ h® +k 8

= 2m 2h 3 (1 + k)

=To% {(1+Kk)

= T 5 1+ k) ' (26}

an 2

where (1+%) is known empirically as is shown by (25).

As to h and h2 + kz, if the pendulum has a simpie form, h can be
measuped and h2 + k2 can be calculated from its moment of inertia.

For § = M'/M the density of the air mass M' can be determined by the
air pressure in the pgndulum container, the air pressure being measured with
a manometer. | |

Concerning the effect of air resistance, it makes the amplitude of the
oscillation of pendulum smaller. The rgsistance is supposed to be propor-
tional to the angular velocity of.the pendulum when o is small, and is given
by how, which is a moment acting on the centre of-gravity, c and h being -
respectively a proportionél constant and the angular velocity of the
pendulum. | | |

. Therefore if we consider the effect of this resistance, in addition to

the effect due to g, the equation of motion (11) becomes

2
d o 2 2
h"4+%™) = —gh sina
dt2( g
S B S A @n
..dt_z g dt_ g _ |
: 2., .2
where we put & = b +£k and sinCG = o



This is the differential equation of the physical penduluﬁ wheh we take
the air resistance into consideration, If we solve this t homogeneous
differential equation of thé 2nd order, we have the amﬁlitude as a function
of time t. And we can find the decrease of émplitudé with the lapse of time.

In the case of practical measurement the inside of the pendulum con-
taiﬁer is kept in high vacuum. Therefore the effect of resistance is much.
reduced and practically no special correction is giveﬁ'extept that the
decrease of the amplitude is measured and is considered for the amplitude

correction,

4) Rate of chronometer change

The change of rate is determiﬁed compared.with the radio‘time signal up
to the accuracy of 0,01 seg./day. If'one second of the chronometer used
is eﬁual to accurate (1+c¢) second, the péridd 'I‘:L sec. determined with the
chronometer should.be corrected to T = T (14*0) sec. | . (28)

When the chronometer gains, t is negative and vice versa.

5) Concerning the motion of the pendulum support caused by the oscil-

lation of the péndulum,'we suppose that the axis of oscillation displaces f
- . = . .

in time t toward the positive direction of x-axis with the angular displace-
ment @ of the pendulum from the vertical position (Fig. 2y,
Cdw (.2 a’s
‘Instead of (8) we have in this case a j’r dn = -gMh sinQ -+ Eﬁf Mh
, ' - - de2
cos o, R
where the left hand side is the moment considered from the motion of the
pendulum and the right hand side is the moment due to the external forces

causing the motion of the pendulum. So from (10)

2 . : 2
da 2 .2 SN, a’f
qr2 (h"+X%°) = -gh sino +.'dt2 ‘h cosa
g2 .2
If we put L = L éTk



a%s

del

d2
we have Q B

L .
w2t 3 sing - coso = 0 29)

This 1s the differential equation of the pendulum motion when the flexure of
the support is taken into account, and & is the length of equivalent mathe-

2
matical pendulum when there is no horizontal acceleration as jtg
2

ch in (29) can be expressed as a function

The horizontal acceleration

of as follows. Let the horizontal displacement of dm be dx in time dt.
Then its horizontal velocity dx/dt is given by
dx 2 af df

dt=vr+dt=zw+dt

where v is the velocity of dm directed to the motion. Therefore

= NIPY N . &
The horizontal force F due to the whole mass is
=J i’z‘ am = ‘;‘Z 'zGM+w2xGM+ ‘ig M (30)

.The elastic force.of the suppoft due to the above force F is expressed
by €f, where ¢ is the elastic comstant of the support or 1/E is numerically
.equal to the displacement f of the support when the external force ¥ is
unity €f acts in the opposite direction_of F.

&f + F = 0 : ' : (31)

F of (30) can be simplied. TFrom (ll)

2 :
—-n—-—gtz = -gf sinag (32)

But from the descriptien in 1.



dd .2

(¢ it Y© = 2 g/t (cosa - cosao)'
o 2 .2 :
= g/ (sin a - sin o) (33)
.cos A= (1 -~ sinzA)lfz
=1 - ——%— 'sinzA o

Substituting (32) and (33) into the right hand side of {30), we have

F = _hig___ M ( sino cos® + sind sinzOLo - sin_30¢ ),

where h cosa= 2,, h sina = Xas and the last term of {30) is neglected,

. 3 :
If we also neglect the terms like sin"o and take a for sin o,

Po= g I | (34)

Therefore (31) becomes

. _hg _ _
f = oL Mo, . (35)
0T T = -y
o . _hg B
where Y = M : : : (36)
e% . : . '
Thus £ is expressed as a Eunction ;of d. Putting the value of .f into
(29),
a2 | 2 .
- o & = :
42 + 2 sin + E;ﬂ,?- M cos @ tz 0 |
or _ .
dza hg ' : ' '
— (1 + in = ‘
12 ( ey, M) o+ —g——ﬂ’, sinq Q | (37)

where £ is taken for cosa.
Comparing (37) with (12), we find that the equivé_lent- length of the
mathematical pendulum?’ affected by the niot_ion of the support is given by

T

VoS | B CE)



Therefore the equivalent length of the mathematical pendulum increases

by

Ag = _Mgh
el

owing to the ovscillation of the support.

The increase of period AT is given as follows:

T+ AT = 2w 2,/ =2n\{2/ }1+ .y
= o fi/g x5 2B
AT = T_ﬁgh__ (39)
2682

Here the observed period can be used for T.

The corfection AT is always to be substracted from the observed period,
E can be found with the use of (31) by applying a definite horizontal force
to the pendulum support with a weight through a pulley and measuring the

displacement of the support.

4, Reversible Pendulum:

In a physical pendulum the axis of suspension 0 and the axig of oscilla-
tion O' ﬁritten in 2, are interchangeable. - That is to say, if we oscillate
the physical pendulum about the axis 0' which is parallel to the axis 0, O
becomes the axis of suspension and 0 the axis of oscillation, and the period
of the oscillation is the same as that when 0 is the axis of suspension

(Fig. 9). | | |
| Therefore when the physical pendulpﬁ oscillates about 0' its length R'
of mathematicai pendulum is equal to l, This is shﬁwn'as follows. From 1
of (12).

: 2, .2
AR OIS Vil S SS SR

2 - h L -h
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While

2 2
k _ k
L = h + 5 . Of 2 -h = .
k2 - h
2 ~h
Therefore
1
L = (& ~h) +h = &

The pendulum of which the two axes of oscillation can be interchangeably
used is called the reversible pendulum. To determine the exact positions of
the two axes in a physical pendulum is very difficult. So we fix them
approximately at first and then give corrections to fulfil the requirements.

We take two parallel axes in a plane passing the centre of gravity, and
determine the length of equivalent mathematical pendulum for each axis. Let
T, I and h be the period, the reduced length and the distance of G from the
axis of suspension respectively, and théir suffix, 1 and 2, be respectively

for the first axis and the second axis. Then

. T, =2m {9‘2
8

“When the two axes are exactly interchangeable, the period which we

search for is given.by

2

T _ g - h1+h2

2 L 2
Tl 1 hl+ k

hy

2 ' E : .

T - ') - hy +hg : . . (40)
Ty? 2 hy+ _Kk2 o |

where
L = hl + h2



[ . X
1 hl + hl
) k2
2 = h, +
2
b,
2 +h)—h.T2+—kE--'1‘2
1 22 h
1
2 2 K 2
T, (b + b)) = BT+ _hz_T
2 2 2 2. .2
(hy + )T - BT) = (b - By )T
2 _
TZ - thl hsz
h, - b,

The right hand gide of this equation is simplified as follows:

Putting

T, = T, + 6T,
7 = nT# - ho (T - 2T18T)
by =Ty
¢
= Tf Q+_2he TT
' by -hy 1
! by - h2
Likewise ' 2 : . 2
e i hy (17 + 2158T) - hpTS
b, - hy
o
-1, a1 ST,
By = hy 2
Toe T4 o T
' 1 2
Froﬁ the above two forms of T,
T = T_1+T2 ¢ T =Ty mth _ (42)
o 2 2 h. - h :

1 2



The second term is a correction to the mean of the two observed periods.
This increases with the difference of the two periods and decreases with the
difference of the two distances of 0 and 08' from the center of gravity.

So the reversible pendulum is made so that T, =T becomes smaller and

2

hl--h2 is as large as possible.

For this purpose, two knife edges are fixed fifst, i.e. h, + h2 is made

1
constant, and then the position of G ig changed by a movable weight w go that

Tl and T2 take ¢lose values. W is used for changing hl - h2 largely.

ald.

-

Fig. 4

As to the effect of air, it becomes miuch simpler if the form of the
pendulum is symmetrical with respect to its geometrical centre. The centre
of gravity G' of the air replaced by the pendulum is at the middle point

between the two axes O and 0'. i.e., the distance h., between 0 and G' is

1
equal to the distance hz.between 0' and G'. Denoting the distance by k',
we have from (22) which gives the reduced 1éngth of the physical pendulum

when the effect of air is taken into consideration,

2, .2 2 M :
A hy M+ KO+ X
1 . © h'™' = h M 11.. ’
' _ - h'™™ .
by (L= ) e |
_ 2 2w 2 2.
g - hy +E +x - hy, M+ KM + xN
2 h, (1 - L2803 Yy ) - h,M - h'WM'
T2 h,M : 2 -



Subtracting the above two equations each other,

% h - - _ s 22y
by = Bh) M~ (R - LIR'M = (n b,?) 1¢

While, from (40)

2
T
L= (h, +h L
1 ( 1 2) 72 .
2
T
£, = (h, + h,) 2
2 1T

Substituting these £l and 22 into the above equation,

h1+h2

2 2 hy +hy 2 2 2 .2
h.T." ~h, T.°IM - >+ = - Mt = _
o2 (hT" ~h,T, 2 (T =T, DR = (b " ~h,) )M
' 2 2
2 o mI-hTy” - 1f) e
hl - h2 hl - h2

For this purpose, two knife edges are fixed first, i.e. h1 + h2 is made
constant,
By the calculation similar to (42), we have

Tl + T2 + Tl - T2 + hl + hz _ Tl - TZ h!M'
2 2 hl - hz 2 hl —h2

(43)

The last term is the effect of air, which is also proportional to (Tl-—Tz)/

' 2
(h f‘hz), and in this case it is not necessary to kmow k. TIn order to

l .

minimize the effect of air; the reversible pendulum is usually made so that
the outer form of the pendulum has symmetry on either side of the geometrical
centre and the centre of gravity is deflected to one side of the geometrical
centre as far as possibie.

The reversible pendulum has been used for the absoclute measurement of

gravity.

—9]—
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