REPUBLIC OF THE PHILIPPINES

DEPARTMENT OF AGRICULTURE AND NATURAL RESOURCES BUREAU OF MINES

REPORT ON GEOLOGICAL SURVEY

OF ·

EASTERN MINDANAO

PHASE II

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL SURVEYS

SEP. 1973

METAL MINING AGENCY OVERSEAS TECHNICAL COOPERATION AGENCY GOVERNMENT OF JAPAN

REPUBLIC OF THE PHILIPPINES

DEPARTMENT OF AGRICULTURE AND NATURAL RESOURCES BUREAU OF MINES

REPORT ON GEOLOGICAL SURVEY

OF

EASTERN MINDANAO

PHASE II

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL SURVEYS

SEP. 1973

METAL MINING AGENCY OVERSEAS TECHNICAL COOPERATION AGENCY GOVERNMENT OF JAPAN

•		
	国際協力事業団	
	受入 指4.5.21 /18	
	登録No. 06151 SD	

•

PREFACE

The Government of Japan, in response to a request by the Government of the Republic of the Philippines, decided to investigate the potential of mineral resources in Eastern Mindanao of the Philippines, and entrusted the survey works to the Overseas Technical Cooperation Agency. The Agency, considering the importance of technical nature of the survey work, in turn sought the cooperation of the Metal Mining Agency of Japan (MMAJ) to accomplish the task.

The survey works are expected to be carried out over a period of three years, beginning in 1972. MMAJ organized a 29-man survey team headed by Mr. Hiroshi Fuchimoto, Staff of the Overseas Technical Cooperation Agency, and sent to the Philippines from January 17 to April 19, 1973. During this period, the team, with the help of the Government of the Republic of the Philippines and its various agencies, was able to complete survey work on scheduled for the current year.

This report summarizes the results of the survey, and will form a portion of the final survey reports that will be prepared with regard to the results obtained in 1972 and 1974.

Finally, I wish to take this opportunity to express my heartfelt gratitude to the officials of the Government of the Philippines for their wholehearted cooperation and support extended to the Japanese survey team.

September, 1973

12 tento

Keiichi Tatsuke, Director General, Overseas Technical Cooperation Agency

灌外技術協力。

CONTENTS

Preface	i
Location Map of the Survey Area	11
ABSTRACT	1
GENERAL IN FORMATION	
1. Introduction	3
1-1 Purpose of Survey	3
1-2 Outline of Survey	3
1-3 List of Members	5
1-4 Reference	6
2. General Discussion	7
2-1 Bislig Area	7
2-2 Tagbiga Area	10
3. Conclusion and Future Problems	12
PART I GEOLOGICAL SURVEY	
1. General Remarks	15
2. Geology	16
2-1 Stratigraphy	16
2-2 Eastern Area	19
2-3 Western Area	27
2-4 Geological Structure and Geological History	33
3. Economic Geology	37
3-1 Mineralized Zone	37
3-2 Mineralization Age	42

PART II GEOCHEMICAL SURVEY

1.	General Remarks	44
2.	Field Operations	46
3.	Analytical Technique	49
3-1	Field Test	49
3-2	Atomic Absorption Spectrometry	50
3-3	Colorimetry	50
3-4	X-ray Fluoresence Analysis	51
4.	Compilation and Interpretation of the Results	52
4-1	Statistical Treatment	52
4-2	Interpretation of the Results	53
5.	Description of the Anomalies	58
5-1	Eastern Bislig Area	58
5-2	Western Tagbiga Area	62
	PART III GEOPHYSICAL SURVEY	
1.	Abstract	66
2.	Induced Polarization Method	68
2-1	Principle	68
2-2	Measurement of IP Effect	72
2-3	Indication of Results	74
2-4	Physical Property of Rock Samples	78
3.	Results of Induced Polarization Survey in the Eastern Area	79
3-1	Surveyed Area	79
3-2	Period of the Survey	79
3-3	Members of the Survey Team	79

3-4	Place and Transportation	79
3-5	Geological Features	80
3-6	IP Instruments	81
3-7	Survey	81
3-8	Interpretation of Results of Survey	83
3-9	Physical Properties of Collected Rock Samples	88
3-10	Model Calculation	89
4. R	esult of Induced Polarization Survey in the Western Area	92
4-1	Surveyed Area	92
4-2	Period of the Survey	92
4-3	Members of the Survey Team	92
4-4	Place and Transportation	92
4-5	Geological Features	93
4-6	IP Instruments	94
4-7	Survey	94
4-8	Interpretation of Results of Survey	96
4-9	Physical Properties of Collected Rock Samples	102
4-10	Model Calculations	103
5. C	onclusion and Future Prospect	106
5-1	Eastern Area	106
5-2	Western Area	107

. •

LIST OF ILLUSTRATIONS

Fig.	1. 2. 3.	Location map of the survey area ii Compilation map of detailed survey results, Bislig Area 8 Compilation map of detailed survey results, Tagbiga Area 11
	I-1	Igneous activity of Kaban group
	I-2	Zonal distribution in the Bislig Area 41
	III-1	Induced polarization phenomenon
	III-2	Electric circuit analogy to IP phenomenon
	III-3	Decrease of the electric resistivity of rocks
	III-4	Current wave form supplied from current electrodes;
		Decay voltage curve 73
	III-5	Comparison between long and short cycles of measurements 74
	III-6	Method used in plotting dipole-dipole IP results
	III-7	Topographic influence 76
	III-8	FE model curve

LIST OF TABLES

•

Table	1.	Length of survey routes and number of geochemical samples 4
	I-1	Generalized stratigraphic section in the survey area17
	II-1	Area and number of geochemical samples of detailed
	II-2	Regional mean background and threshold values of stream sodiment samples
	11-3	Local mean background and threshold values of soil samples Bislig Area
	II-4	Coefficient of correlation. Bislig Area
	II-5	Local mean background and threshold values of soil samples, Silver Belt Mine Area
	II-6	Local mean background and threshold values of soil
	II-7	Local mean background and threshold values of soil
	II-8	Coefficient of carrelation, Tagbiga Area
	111-1 111-2	Physical properties of the rock samples, Bislig Area 90 Physical properties of the rock samples, Tagbiga Area 104

.

LIST OF APPENDICES

Table 1.	Fossils	A- 1
Ζ.	Potasn-Argon ages on some intrusive roo	cks A- 5
J.	Microscopic observations	А-б
4.	Chemical analysis of rock samples	A-35
5.	X-ray diffractive analysis	A-37
6.	Metal content of geochemical samples	A-38
Fig. 1. C	umulative frequency distribution of Ag, C	u, Pb, Zn, Mo, Ni, Co
ar	nd Ba	· · · · · · · · · · · · · · · · · · ·
2. C	orrelation diagram	A-65
Plate I-1	Survey area and routes	1:250,000 (1 sheet in pocket)
2	Geological map	1:250,000 (1 sheet in pocket)
3	Geological map	1: 50,000 (12 sheets in pocket)
4	Geological profile map	1: 50,000 (1 sheet in pocket)
5	Route and rock sample map	1: 50,000 (12 sheets in pocket)
6	Columnar sections of local stratigraphy	1:50,000 1:10,000 (1 sheet in
	0 1 7	pocket)
7	Tectonics and mineralization map	1:250,000 (1 sheet in pocket)
II-1	Geochemical anomalies of stream sedin	ments
		1:250,000 (1 sheet in pocket)
2	Location map of geochemical samples	1: 50,000 (12 sheets in pocket)
3A	Geological map, Bislig Area	1: 5,000 (1 sheet in pocket)
3B	Route and rock smaple map, Bislig Are	a
		1: 5,000 (1 sheet in pocket)
3C	Geochemical anomalies, Bislig Area	1: 5,000 (1 sheet in pocket)
3D	Location map of geochemical sample,	Bislig Area
		1: 5,000 (1 sheet in pocket)
4A	Route and rock sample map, silver Bel	t and Lepanto Mine Areas
		1: 5,000 (1 sheet in pocket)
4B	Geochemical anomalies, silver Belt and	d Lepanto Mine Areas
10		1: 5,000 (1 sheet in pocket)
4C	Location map of geochemical sample,	silver Belt and Lepanto Mine Areas
5 •		1: 5,000 (1 sheet in pocket)
5A	Geological map, Tagbiga Area	1: 10,000 (1 sheet in pocket)
28	Route and rock sample map, Tagbiga A	Irea
50	Conchemical an amplication Traching Assoc	1: 10,000 (1 sheet in pocket)
50	Geochemical anomalies, Tagbiga Area	1: 10,000 (1 sneet in pocket)
50	Location map of geochemical sample,	Lagoiga Area
		1: 10,000 (1 sneet in pocket)

III-E-2 IP profile map of the Bislig Area No. 1-Line 1:5,000 (1 sheet in pocket) E-3 do No. 2-Line 1:5,000 (1 sheet in pocket) E-4 do No. 3-Line 1:5,000 (1 sheet in pocket) E-5 do No. 4-Line 1:5,000 (1 sheet in pocket) E-6 do No. 5-Line 1:5,000 (1 sheet in pocket) E-7 do No. 6-Line 1:5,000 (1 sheet in pocket) E-8 do No. 7-Line 1:5,000 (1 sheet in pocket) E-9 do No. 8-Line 1:5,000 (1 sheet in pocket) E-10 do 1:5,000 (1 sheet in pocket) No. 9-Line E-11 do Base-Line 1:5,000 (1 sheet in pocket) E-12 Equi-frequency effect map of the Bislig Area (-100m)1:5,000 (1 sheet in pocket) E-13 do (-200m) 1:5,000 (1 sheet in pocket) E-14 Equi-apparent resistivity map of the Bislig Area (-100m)1:5,000 (1 sheet in pocket) E-15 (-200m)1:5,000 (1 sheet in pocket) do E-16 Equi-metal conduction factor map of the Bislig Area 1:5,000 (1 sheet in pocket) (-100m)E-17 do (-200m)1:5,000 (1 sheet in pocket) E-18 Result of simulation of the Bislig Area No. 4-Line 1:5,000 (1 sheet in pocket) E-19 do No.7-Line 1:5,000 (1 sheet in pocket) Topographic map of the Tagbiga Area III-W-1 1:5,000 (1 sheet in pocket) W-2 IP profile map of the Tagbiga Area A-Line 1:5,000 (1 sheet in pocket) 1:5,000 (1 sheet in pocket) do B-Line W-3 1:5,000 (1 sheet in pocket) do C-Line W-4 do D-Line 1:5,000 (1 sheet in pocket) W-5 E-Line 1:5,000 (1 sheet in pocket) W-6 do W-7 F-Line 1:5,000 (1 sheet in pocket) do G-Line 1:5,000 (1 sheet in pocket) W-8 do 1:5,000 (1 sheet in pocket) H-Line W-9 do 1:5,000 (I sheet in pocket) I - Line W-10 do 1:5,000 (1 sheet in pocket) W-11 do [-Line 1:5,000 (1 sheet in pocket) K-Line W-12 do Equi-frequency effect map of the Tagbiga Area W-13 (-100m) 1:5,000 (1 sheet in pocket) 1:5,000 (1 sheet in pocket) W-14 do (-200m)Equi-apparent resistivity map of the Tagbiga Area W-15 1:5,000 (1 sheet in pocket) (-100m)1:5,000 (1 sheet in pocket) (-200m)W-16 do W-17 Equi-metal conduction factor map of the Tagbiga Area 1:5,000 (1 sheet in pocket) (-100m) 1:5,000 (1 sheet in pocket) W-18 do (-200m)W-19 Result of simulation of the Tagbiga Area A-Line 1:5,000 (1 sheet in pocket) 1:5,000 (1 sheet in pocket) I - Line do W-20

Topographic map of the Bislig Area

1:5,000 (1 sheet in pocket)

III-E-1

ABSTRACT

In the second Phase of the survey of eastern Mindanao, Philippines, the detailed geological, geochemical and geophysical surveys were carried out over an area of about 3,000 Km² selected by the Phase I survey as having high potential for mineral resources.

In the Eastern Area, geological survey disclosed the geological structures of basaltic and andesitic groups, and there was found mineralization associated with quanzdioritic rocks in the basaltic group. The mineral assemblage of the mineralization shows zonal distribution of porphyry copper type deposits, i. e., from the outside, copper-molybdenum zone, copper-hematite zone and lead-zinc zone. In the south of these zones, barite ore deposits which appear to be a sedimentary type have been recognized.

Cold-extraction analysis which was used as field spot test uncovered the same anomalous copper concentrates so that geophysical survey (IP method) was carried out on the northern half of the zoning area.

In the Western Area, the Cretaceous rocks as referred to in the Report of Phase I was divided into two groups, i.e., basaltic and andesitic volcanics and their geological structures became clear. It was proved that overlying andesitic volcanics were formed during Tertiary time.

As copper mineralization associated with diorite was found in the Tagbiga Area, geophysical survey (IP method) was conducted over the area selected by geochemical survey.

In the mineralized zone, the geophysical anomalies coincide well with the

- 1 -

geochemical anomalies. Further, from the geological point of view, both zones appear to be excellent indications for ore deposits. It is, therefore, desirable to carry out the follow-up work such as geological and geophysical surveys and diamond drilling for defining the ore scale and occurrence. Judging from all the results obtained, however, further surveys of the Bislig area is considered more important than that of the Tagbiga area.

.

GENERAL INFORMATION

1. Introduction

1-1 Purpose of Survey

The purpose of survey for the Phase II was to investigate the promising places and to make a geological map for the area of about 3,000 Km² selected by the Phase I survey as having high potential for mineral resources. For this purpose, the detailed geological, geochemical and geophysical surveys were carried out systematically.

1-2 Outline of Survey

There were two areas to be surveyed in Phase II; one was in the eastern area of about 1,600 Km² composed of volcanic rocks which is distributed in the east side area of the Philippine Fault zone, and another was in the western area of about 1,400 Km² composed chiefly of pyroclastic rocks which is distributed in the west side of the Pantaron Ranges dividing Davao and Bukidnon Provinces. As there had been no direct roads between these two areas, and furthermore it took more than one whole day to get from the area to the another even by plane, two base camps were set up, that is, Bislig for the east and Halapitan for the west.

It was not so easy to use helicopters as in Phase I, therefore the other means such as telegraphs, light planes and the regular air-survices were used for communica-

For geological and geochemical surveys, eight parties were organized and three of them were assigned to the Eastern Area and four parties to the Western Area. To compare both areas gelogically, the remaining party surveyed the West in twenty days and the East in ten days.

- 3 -

Each party consisted of one Philippino and two Japanese geologists, however, one more Philippino geologist was assigned to the detailed survey area where the mineralized zone had been found.

During the field work, it was rainy season and it rained everyday in the Eastern Area, but in the Western Area it was dry season and furthermore the public peace had been improved. Therefore the survey was carried out more smoothly than the writers had expected.

After the geological parties had defined the mineralized zones, the geophysical parties started their field work in both areas and clarified their extension by Induced Polarization method. Two geophysical parties were organized from seven members; 2 Philippino and 5 Japanese geophysists, and one party was assigned to each area.

The period of stay in the Philippines, the total length of the survey routes and the number of geochemical samples are as follows:

Table 1	Period of survey, length of survey route and
	number of geochemical samples

Geological team

	Stay in Philippines	Actual field work	Length of survey route	Number of samples
Eastern Area	Jan. 17 ~ Apr. 5	Feb. 10 ~ Mar. 18	510 km	3,028 pcs
Western Area	79 days	37 days	470 km	2,728 pcs
Total			980 km	5,756 pcs

Geophysical team

Eastern Area	Mar. 7 ~ Apr. 19	Mar. 10 ~ Apr. 13	18.4 km	
Western Area	44 days	35 days	16.7 km	
Total			35.1 km	

The writers are indebted to Professor Yoshio Ueda, Tohoku University on chronologizing the intrusive rocks, and Dr. Kuniteru Matsumaru of Saitama University, Dr. Kenji Kurihara of Tokyo University of Education and Dr. Hiroo Natori of Geological Survey of Japan on identifying of fossils. The writers would like to express their gratitude to these people.

All the geological data, half the rock specimens and the geochemical samples obtained by the Phase II survey have been submitted to the Philippines Bureau of Mines as well as the Phase I.

1-3 List of Members

The list of members engaged in the survey is as follows.

JUAN E. PILAC	Bureau of Mines Philippines	HIROSHI FUCHIMOTO	Overseas Technical Cooperation Agency of Japan
MAXIMO V. GARCIA	do	КҮОІСНІ КОУАМА	Metal Mining Agency of Japan
		MAGOICHI ADACHI	do
		KAICHIRO SHIMIZU	0.T.C.A.
(Geological team)			
WENCESLAO ARGANÕ	B.O.M.	TERUYUKI TAKEDA	0.T.C.A.
NALCISO BAUTISTA	do	HARUHIKO HIRAYAMA	do
IRENEO OSCILLADA	do	YASUKICHI UEKI	do *
ALBERTO ISSAC Jr.	do	YOSHINOBU WATAYA	do
DONNO CUSTODIO	do	KATSUO ARAI	do
EMIL T. AVILA, Jr.	do	TAKEOMI MIYOSHI	do
BEN ALEGADO	do	TAKASHI KATANO	do

MARIO TORRES	B. O. M.	RYOICHI SUZUKI	0.T.C.A.
TAMMY DESTACAMENTO	do	SHUSUI URAI	do
		TATSUO NIIMURA	do
		IKUHIRO HAYASHI	do
		TOKICHIRO TANI	do
		KEIJI NAKANO	do
		HIDETOSHI TAKAOKA	do
		NORIO NAGASAKI	do
(Geophysical team)			
CESAR V. RAMOS	B.O.M.	ASAHI HATTORI	0.T.C.A.
MARCELINO APELO	do	ITSURO OGAWA	do
CAROL S. SAMONTE	do	OSAMU KUSAKA	do
BENERCITO BALLESTEROS	do	KATSUMI OYANAGI	do
ELIGIO ARIATE	do	HITOSHI ITO	do
		TOSHIAKI FUJIMOTO	do
		TOMIO TANAKA	do
		NAOYOSHI TAKAHASHI	do
		JUNICHI SATO	do
		SABURO TACHIKAWA	do

1-4 Reference

The references cited in this Report are almost same as those of the Report of Phase I, so that they are omitted.

2. General Discussion

Through the Phase II survey, many problems on geological, geochemical and geophysical surveys have remained, but in this chapter, only the problems on the detailed survey areas being projected in the Phase III are generally discussed.

2-1 Bislig Area

The mineralized zone found in the upper reaches of the Taon River is porphyry copper type mineralization associated with quartz diorite in the basalt group, and shows the zonal distribution of ore mineral peculiar to this type of mineralization. The detailed survey was carried out on the northern half of zoning area.

The width of quartz diorite is 800 m in the area and extends in NE direction. On the eastern side, about 400 m distant from this diorite, a diorite porphyry dike, 50 m in width, runs in same direction.

As shown in Fig. 2, geochemically anomalous zones of copper and molybdenum occur remarkably in the basalt area between the diorite and porphyry, and correspond to IP anomaly. On the grand surface of this zone nearby the intersection of the base line with line No. 9 of geophysical survey, a small exposure of quartz diorite, several meters in width, can be seen in the river. The diorite seems to be a small scale stock and a little amount of filmy or impregnated chalcopyrite and pyrite with molybdenite is recognized along the joint trending N-S. The average contents of metals present Cu 0. 15%; Mo 0. 05%, but Cu 3. 1% in part.

Rock exposure is very limited that no other mineralized zone can be seen.

1. The distribution of frequency effect values detected by IP survey is fit for porphyry copper deposits.

- 7 -

2. Between the quartz diorite and the quartz porphyry, there are some small scale dykes of 20 - 30 m in width, therefore many fissures are well developed in this zone.

From the reasons above, it can be expected that mineralization will increase at depths, though the copper content in soil is rather weak. So diamond drilling is necessary for this zone as having the highest potential for mineral resources in the detailed survey area.

Zinc anomaly extending from line No. 3 to line No. 4 on the western side of the base line of geophysical survey, should be further investigated because quartz diorite is exposed on the riverbed.

The zinc anomaly appears to be concentrated on the low land of the river but the IP anomaly does not appear, it is considered that the zinc anomaly had migrated from other places.

Furthermore, in the tributaries, running to the east nearly in the middle of the detailed survey area, and flowing into Taon River nearby the eastern end of line No. 6, joints are developed between points Nos. W2 and No.3, and the impregnation of chalcopyrite and pyrite is found. The copper content is 0.26 - 0.37% here, but geochemical and geophysical anomalies have not been found. This fact might be due to the very small scale mineralization.

Between lines Nos. 2 and 3, many boulders of gossan composed mainly of hematite and pyrite are widely distributed on the ridge trending E-W and on its mountainside. Some gossan show more than 4.0% of copper content but geochemical and geophysical anomalies are not found. It seems to be caused by leaching and further study is desirable.

- 9 -

2-2 Tagbiga Area

The mineralized zone in the upper reaches of the Tagbiga River is copper deposits associated with diorite intruding mudstone and tuff of Miocene age. In the composite body consisting of pyroxenite and diorite near the western contact with sodimentary rocks mentioned above, lenticular or vein-type massive ores are found in some places. The ore consists of chalcopyrite and pyrite, and its good portion shows over 18% of Cu, but the veins are narrow and don't continue for long distances.

Geochemical anomaly by stream sediment and soil survey was found in this zone and pyritization was stronger than that of other places, so IP geophysical survey was carried out.

The results of interpretation are shown in Fig. 3. As is evident from the figure, geochemical anomalies of copper, zinc, nickel and cobalt are overlapping along the western margin of the composite body and the IP anomaly is distributed nearly corresponding to the geochemical anomalies.

It appears that diorite fills the brecciated part of pyroxenite in the composite body. Consequently, geophysical results are affected by magnetite in pyroxenite. But from the geological and geochemical points of view, IP anomaly suggests the mineralized zone of vein-type continues towards depths.

Besides, the other IP anomalous zone is found in the eastern part of the zone stated above, and shows wide and deep distribution. From the scale of anomaly, this is more interesting than that in the composite body.

This anomalous zone is in pyroxenite on the ground surface but diorite stocks are exposed nearby. Moreover, the copper anomaly coincides with IP anomaly and extends towards the NE direction. Therefore, porphyry copper deposits can be expected. The follow-up work is desirable.

- 10 -

Fig. 3 Compilation map of detailed survey results, Tagbiga Area

3. Conclusions and Future Problems

The detailed geological, geochemical and geophysical surveys were carried out on the area which was selected by the Phase I survey as having high potential for mineral resources.

The conclusions reached from the systematic studies based on these surveys are as follows:

1. In the Eastern Area composed chiefly of basaltic rocks, it was discovered that quartz diorite stock has intruded along the anticlinal axis trending northeast. The mineralization of copper, lead, zinc and molybdenum associated with the stock shows a typical zonal distribution of porphyry copper deposits. From geological evidence, the intruding time of quartz diorite appears to be middel or late Miocene.

2. Det ailed survey on the northern half of mineralized zone showed that the geochemical anomalous zone on the eastern rim of the stock coincided with the geophysical anomalous zone, indicating the existance of porphyry copper deposits there. As both anomalous zones trend to extend toward the south, the follow-up work will be desirable. For this purpose, several methods such as geological and geophysical surveys and diamond drilling should be used for this area.

3. East side area of the Philippine Fault zone composed mainly of andesitic rocks were divided into five formations by the difference of volcanic activities, and geological structure of the formations were also elucidated. A larg scale altered zone with weak geochemical zinc anomaly stretching in NS direction was found along the upstream of the Bahayan River. Consequently, it will be desirable to carry out the follow-up program later on.

- 12 -

4. In the Western Area, the volcanic rocks referred to as Cretaceous rocks in the Phase I report can be divided into two groups — basaltic and andesitic. It is found that a large amount of volcanic rocks in the andesite group distributed on the other group had been formed in Oligocene to middle Miocene time. Many rock fragments of schists considered to be basement rocks are found in the conglomerate and sandstone of andesitic group. In the uplifted zone intruded by large scale periodolite, therefore, the depth of basement is more shallow than the writers had expected.

5. Vein or lens type copper mineralization associated with diorite is discovered in the West Tagbiga Area. Geophysical anomalies corresponding to geochemical anomalies are likewise recognized there. In addition, there are more promising indications in the northeast of these anomalies so that the follow-up work will be necessary. But in respect to exploration to be carried out, the Bislig Area in the east will be synthetically more important than the Tagbiga Area in the west.

6. Geochemical survey using spot test, i.e. rubeanic acid method, in the field has proved effective for defining a copper mineralized zone. However, there has been some slight difference between the anomalous zone as shown by spot test and that under atomic absorbtion method. The difference might have been caused by chemical decomposition of the sample, which could mean, in other word, the spot test showing cold extractable copper and the other, total copper. So that in seeking promising areas by geochemical field test, the fusion method such as biquinoline method capable of determining copper content quantitatively is probably better than spot test.

7. It has been proved that the use of application of IP method is most effective to approximate the horizontal and vertical distribution of mineralized zones. So

- 13 -

that IP method is recommended in the case of conducting further survey to determine the extension of anomalous zones. However, it is very difficult to analize the IP results in case the rocks are accompanied by mineralization of primary sulphides or oxides. The other geophysical methods such as the selfpotential and magnetic methods will make analysis easier with information on types of minerals and shapes of intrusive rocks.

·...

.

PART I GEOLOGICAL SURVEY

•

1. General Remarks

The volcanic and normal sedimentary rocks referred to as the Cretaceous system in the Report of Phase I spread widely in the surveyed area. Since the Phase I survey was a reconnassance survey to select the area of high potentiality for mineral resources, the detailed geologic structure obscurely remained.

In the Phase II survey, therefore, a great emphasis was placed on the elucidation of the detailed geologic structure of this area and on finding out the intrusive bodies accompanied by mineralization.

Some important conclusions obtained from the survey are summarized below. Eastern Area

1. Some quartz diorite bodies are observed in Bislig-Lingig region intruding basaltic lava flows, and a porphyry copper type mineralization associated with the bodies was disclosed.

2. The strip stretching along the Philippine Fault is chiefly composed of andesitic lava flows and is divided into some formations by sedimentary rocks intercalated within them. The geologic structure was also made clear by tracing those sedimentary rocks.

Western Area

The tuff previously lumped together as the Cretaceous system was roughly divided into two groups. It was proved that the upper section is formed during
Oligocene to middle Miocene time.

2. The geologic structure was made clear by tracing some characterlistic sedimentary key beds.

3. A diorite body with copper mineralization was discovered.

- 15 -

2. Geology

The rocks in the surveyed area belong to the Cretaceous to Paleogene period. Basaltic or andesite lava flows and their pyroclastic rocks spread widely in the Eastern Area and basaltic and andesitic pyroclastic rocks in the Western Area.

In the Western Area a large sclae peridotite dyke and a diorite stock intruded into the above-mentioned volcanic rocks. The Miocene limestone and the Pliocene to Pleistocene Molasse type sedimentary rocks are also observed in the Western Area.

The names of place printed on the 1:250,000 scale topographical map were given to the formations which had been lumped together as the Cretaceous system in the Phase I.

2-1 Stratigraphy

A generalized stratigraphic section of the surveyed area is shown in the Table I-1.

The Eastern Area consists of the Barcelona group, the Kaban group, the Mangagoy formation, the Bislig formation, the Dacongbonwa formation, the Kapalong formation, the Agtuuganon formation and the Aluvium in the ascending order.

The Barcelona group composed of basaltic rocks is exposed in the hills facing the Philippine Sea.

The Kaban group consists of andesitic rocks and extends narrowly adjacent to the eastern side of the Philippine Fault. This group can be divided into five formations on the basis of their lithologic characteristics. The correct age of this group, as well as the Balcolona group, is unknown because of lack of fossils.

- 16 -

Eastern

The Mangagoy formation is a sequence of conglomerate, sandstone, shale and limestone. The formation is observed from Mangagoy to Boston and unconformably overlies the Barcelona and the Kaban groups. It was formed by the marine transgression which started at the middle Oligocne epoch.

The Bislig formation overlies the Mangagoy formation conformably. It consists of shallow-sea sedimentary rocks filling up the basin between the Barcelona and the Kaban groups. Therefore, the direct relation between the two groups is not known.

The Dacongbonwa formation unconformably overlying the Bislig formation consists of the middle Miocene coral reef limestone.

The Kapalong formation composed of Molasse sediments is observed narrowly along the foot of mountains within the Philippine Fault zone. The age of this formation is upper Pliocene to Pleistocene on the basis of fossils.

The Agtuuganon formation is chiefly composed of coral reef limestone and formed in Pleistocene time.*

The Western Area consists of the Nilabsan group, the Kalagutay group, Kapalong formation, Lumbayo formation and Malanbo volcanics.

The Nilabsan group composed chiefly of basaltic pyroclastic rocks spreads in the drainage basin of the Nilabsan and Sita Rivers.

The Kalagutay group occupies the greater part of this area and covers the Nilabsan group uncomformably. This group consists chiefly of andesitic pyroclastic rocks and lavas intercalating limestone and mudstone of Oligocene to

^{*} The Agtuuganon formation referred to as late Miocene in the Report of Phase I is divided into two formations. The one is the Dacongbonwa formation and the other is the Agtuuganon formation overlying the former unconformably.

middle Miocene. Nevertheless, subdivision of this group could not be accomplished at this time since the nature of the igneous activities is the same throughout the sequence.

The Kapalong formation is Molasse type sediments and spreads at the foot of mountains east of the Pilangi – Davao fault. It is locally observed also in the west side of the fault. This formation was formed in Pliocene to Pleistocene.

The Lumbayo formation composed of coral reef limestone and overlying Malambo andesite lava are attributed to the Quarternary period. Both of them are observed on the top of mountains ranging along the western rim of the surveyed area.

2-2 Eastern Area

A large amount of volcanic rocks composes the main part of this area, and the local characteristics of the volcanic activities can be recognized. Namely basaltic lava flows develop in the east coast and are intruded by dioritic bodies. In the east side area adjacent to the Philippine Fault, however, there are developed a large amount of andesitic volcanic rocks.

Pyroclastic rocks and normal sedimentary rocks are poorly observed in the two areas.

2-2-1 Barcelona Group

This group spreads along the east coast from Sanco point to San Roque through Lingig in the belt-shops of 7 to 8 Km in width and about 35 Km in length.

Basaltic lava flows and dolerite intrusives account for more than 80% of this group and andesitic lava flows, basaltic pyroclastic rocks and normal sedimentary rocks are intercalated.

The basalt crops out typically at the cliff behind the PICOP factory and the Taon River flowing west of Barcelona. It is a compact and massive rock which is dark grey, grey or dark green in colour. Texture of the basalt flows vary from glassy to porphyritic. The presence of pillow and columnar stractures is proof that they are marine and terrigenous lava flows.

Under the microscope, twinned or zoned plagioclase and augite phenocrysts scatters in the ground mass of plagiolase laths, augite, glass and magnetite without olivine, and shows basaltic or ophitic texture. Chloritization is generally recognized.

Some andesite lava flows are observed in the upper reaches of the Taon River with 100 - 1250 meters in thickness. Most of them show grey colour and porphyritic texture macroscopically. Under the microscope, twinned or zoned plagioclase and augite phenocrysts are in the groundmass composed of plagioclase laths or needles, ore minerals and augite. All augite crystals are altered to chlorite or carbonate minerals.

The alternation of black shale and sandstone with less than 100 meters in thickness and basic tuff are intercalated in this group.

As there are few key beds, it is difficult to make clear the structure of this group. Generally the group inclines gently southwest. The anticlinal structure with the axis of NE-SW direction along the Taon River and the synclinal structure with the axis parallel to the hill behind PICOP factory are presumed.

The age of the Barcelona basalt is not clear due to lack of fossils within the intercalated clastic rocks. Therefore, in this Report the age is tentatively placed as Cretaceous to Palaeocene because this group is overlain unconformably by the Oligocene Mangagoy formation composed of conglomerate, tuff and limestone.

- 20 -

Near Boston about 10 Km south of San Roque, hornblende andesite, andesitic tuff, sandstone and mudstone are observed. From the fact that they show a dip of SE-NW direction, which is discordant with that of the above mentioned basalt, either unconformity or fault is presumed between them but it is not sure because both of them are overlain by the Mangagoy formation unconformably. Judging from the general geological structure, the andesitic rocks seem to be younger than the basaltic rocks and may belong to the Kaban group mentioned in the next section. 2-2-2 Kaban group

The Kaban group spreads along the east side of the Philippine Fault with 5 to 20 kilometers in width and about 50 kilometers in extention. It is observed typically in the Kaban mountain range about 5 kilometers northwest of Monkayo.

By lack of key beds such as lava flow or sedimentary rocks continuing for long distances, the detailed structure of the group is not so clear. But from the lithologic characteristics, the Kaban group can be divided into the following five formations.

Formation I – This is observed at the south end of the surveyed area and consists of hornblende-andesite, altered andesite and tuff breccia or lappili tuff of the same composition, intercalating thin beds of limestone and mudstone. General strike trends NW or EW and dips $20^{\circ} - 30^{\circ}$ towards N.

The uppermost horizon of this formation is characterized by the lapilli tuff exposed in the upper reaches of the Cateel River, and is overlain unconformably by the Formation II. The bottom of the formation can not be confirmed in this area. The thickness of the Formation I is over 4,000 meters.

Formation II — the Formation II spreads in the northern side of the Formation I, and has a concordant relation to the latter. It consists of glassy and site,

- 21 -

augite andesite and tuff breccia or tuff of the same compositon intercalating sandstone, mudstone and limestone in the upper horizon of this formation. It shows a strike of E-W and a dip of $20^{\circ} - 30^{\circ}$ N as well as the Formation I. The Formation II is conformably overlain by the Formation III at the Ngan River, where pyroxene basalt, tuff and normal sedimentary rocks expose narrowly.

The glassy andesite shows purplish gray and other volcanic rocks, dark green or pale green in colour. Chloritization, albitization and epidotization are commonly observed.

The andesite with augite cropped out along the crest of dome in the upper reaches of the Bahyan River is correlated to the Formation II, and is affected remarkably by silisification, argillization and pyritization. The thickness of this formation is about 1,500 meters.

Formation III — The Formation III spreads from the Ngan River to the Mamunga River overlying conformably the Formation II, It is also observed in the headwaters of the Bahoyan River surrounding the Formation II, which forms the core of the dome structure. Both of them are composed chiefly of altered andesite with intermediate plagioclase. Two-pyroxene andesite with porphyritic texture is also observed.

From the occurrences, almost all of andesite are lava flows and greenalization of this formation is weaker than that of the Formation II. The top of the Formation III is a pumiceous tuff. The thickness of this formation is about 1,000 meters.

Formation IV - The Formation IV spreads from the Mamunga River to the Sukod River. In the drainage basin of the Bahayan River, the same formation takes part in the dome structure surrounding the Formation III. It has a pumice bed on

- 22 -

the base and consists of two-pyroxene andesite, augite andesite, augite basalt and their pyroclastic rocks. Tuff-breccia, tuff, sandstone and mudstone pile up in the ascending order.

Augite andesite and mudstone are at the top of this formation. The formation overlie conformably the Formation III and attains about 1,000 meters in thickness.

Formation V - The Formation V is the youngest of the Kaban group and constitutes the outermost rim of the Bahayan River dome. It occupies the north end of survey area adjacent to the Philippine Fault.

The formation consists of altered andesite and its pyroclastics, and is unconformably overlain by the Mangagoy or the Biolig formation.

As described above, the Kaban group is divided into five formations and each characteristic of volcanic rocks is roughly stated. From the change of nature of the igneous activities, three cycles can be recognized in this group.

The first cycle is characterized by the igneous activities changing andesitic to basaltic, followed by the sedimentation of sandstone, mudstone and limestone. Formations I and II correspond to this cycle.

The second cycle begins with andesitic volcanic activities, ending with basaltic one in the subaquatic environment. It was explosive in the early stage and became calm later. Tuffacious sandstone, mudstone and tuff deposited in the later stage. Formations III and IV were formed throughout this cycle.

The third cycle corresponding to the Formation V is characterized by the explosive andesitic volcanic activities.

The igneous activities of the Kaban group are schematically shown in Fig. I-1.
Fig. I-1 Igneous activity of Kaban group

2-2-3 Igneous Rocks

(1) Gabbro

The Gabbro are exposed in the porphyry copper type mineralization area located in the upper reaches of the Taon River.

They are small in scale. One of them has a long shape stretching NE direction and cuts the diorite body which will be mentioned later.

Macroscopically it is grayish black holocrystalline rock. Under the microscope, plagioclase laths, augite, biotite and opaque minerals embed the gap among large crystals of plagioclase and augite.

Little alteration can be recognized.

(2) Dolerite

The narrow dolerite dykes are observed not only in the same mineralized area but also in the Kaban group. All of them are grayish black in colour and holocrystalline rock. Microscopically, phenocrysts of plagioclase and augite (5 - 7 mm in length) occur in a groundmass of plagioclase laths, augite and opaque minerals showing ophytic texture.

Secondary minerals such as chlorite, calcite and zeolite are recognized without exception.

From the evidence that the dolerite with same appearance and same mineral composition cuts the Bislig formation, the age of intrusion is probably the late Miocene.

(3) Porphyrite

The porphyrite dykes intrude into the Balcelona and the Kaban groups. Large phenocrysts (maximum 1 cm in diamter) of plagioclase are characteristic of these

- 25 -

rocks. Macroscopically it shows dark gray or dark green in colour and porphyritic texture. Under the microscope, phenocrysts of plagioclase, pyroxene or hornblende are in a matrix of plagioclase and pyroxene microlites.

Sericite, chlorite, zeolite, calcite and clay minerals are commonly observed in this rock.

(4) Quartz Diorite

The quartz diorite is well exposed along the upper reaches of the Taon River and the Agsan River. The Taon River's diorite intrudes into the Barcelona basaltic rocks with about 1 Km in width and 3 Km in length trending NE. Rock facies of diorite vary from place to place. They are quartz diorite, quartz diorite porphyry, granophyre and diorite porphyry.

Typical quartz diorite is grayish white, medium grained rock. Microscopically, it is mainly composed of quartz, plagioclase, biotite and amphibole with accessory sphene and apatite. Usually plagioclase is subhedral and rimmed by alkali feldspar. Sericite, chlorite, epidote and others are commonly observed as secondary minerals in this rock.

The absolute alternation age of quartz diorite is 129×10^6 years by K/Ar method. The alteration would probably be due to mineralization, therefore, if assuming that the mineralization had occurred in the wake of diorite intrusion, the age of diorite would be early Cretaceous. As there still remains some problems, they will be discussed in the section 3-2.

The Agsan River's diorite crops out at the southern end of the surveyed area as a platy dyke with 5 to 10 meters in width. It suffers remarkably from pyritization. Macroscopically it is leucocratic, medium grained holocrystalline rock. It

- 26 -

consists mainly of quartz, plagioclase, amphibole and biotite. Sericite and epidote are much observed.

The absolute age of this rock is 60×10^6 years by K/Ar method.

2-3 Western Area

Basic to intermediate volcanic rocks are distributed in the greater part of this area. They were referred to as the Cretaceous system as a whole without confirmations in the Phase I survey. But this time, it has been made clear that they can be divided into two groups and that the upper section belongs to the Oligocene epoch.

2-3-1 Nilabsan Group

The Nilabsan group is the lowest section in this area and spreads in the western side of the Davao River. It is typically exposed along the Sita River and the Nilabsan River.

This group has been formed by basic igneous activity. It consists of pyroclastic rocks such as dark green or greenish gray fine tuff, sandy tuff, lapilli tuff, tuff breccia and reddish brown fine tuff intercalating black mudstone and gray fine-grained sandstone.

All the fragments in the pyroclastic rocks are andesitic volcanic rocks and no sedimentary rock fragments can be recognized. Microscopically, lithic fragments of porphyritec or aphyric andesite and chips of plagioclase and augite are embedded by clay minerals or glass.

The reddish brown fine tuff which characterized this group is a compact rock with traces of stratification. It is usually within 10 meters in thickness. Under the microscope, a few crystals such as amphibole, plagiolase and clinopyroxene occur in reddish brown volcanic glass. Some of them contain colourless spherulites.

- 27 -

Along the Sita River, a unit of well sorted bedding consists of lapilli tuff, coarse tuff and fine tuff in the ascending order is observed repeatedly. The thickness of a unit is 10 to 20 meters.

The features of the Nilabsan group as mentioned above resemble closely that of the formation distributed in the east side of the peridotite body surveyed in the Phase I. Therefore the former is probably the upper sequence of the later. In spite of no paleontological evidences, the age of this group seems to be the Cretaceous to the early Paleocene because it is intruded by the peridotite which has been considered as late Cretaceous to early Paleocene in age.

Small scale synclinal and anticlinal structures are observed from place to place, but generally speaking, the Nilabsan group has a strike of NNE - NS and inclines westward.

It is about 3,000 m in thickness.

2-3-2 Kalagutay Group

The Kalagutay group is typically exposed along the Kalagutay River and spreads widely from the upper reaches of the Sita River and the Nilabsan River to the mountain area west side of the Pulangi River. It is also distributed narrowly in the east side of the Plungi-Davao fault.

The group consists of pyroclastic rocks such as andesitic volcanic breccia, tuff breccia, lapilli tuff and fine tuff with subordinate normal sedimentary rocks such as mudstone, sandstone and conglomerate. Andesitic and basaltic lava flows are also intercalated.

The volcanic breccia typically crops out in the middle course of the Sita River

- 28 -

and the upper reaches of the Kalagutay River. It is dark green or dark gray in colour and contains rounded breccias with more than 10 centimeters in diameter. In places, it shows auto-brecciated structure. Under the microscope, the breccia contains phenocrysts of plagioclase, green amphibole and augite. Groundmass is composed of plagioclase microlite and glass. A large amount of chlorite, calcite and pumpellyite are recognized as alteration products.

This volcanic breccia often contains accidental breccias and gradually changes to tuff breccia or fine tuff laterally.

Lapilli-tuff, tuff breccia and fine tuff are distributed widely from the upper reaches of the Nilabsan River to the Malicapan River. They are also observed in the eastern side of the Davao-Pulangi fault. They are dark green to dark gray in colour, and because of the strong alteration, it is difficult to discern the kind of breccias in them even under the microscope.

But the lapilli tuff exposed along the upper reaches of the Nilabsan River is rather fresh, and contains characteristically chromite and serpentine fragments which were probably derived from peridotite. From the evidence that chromite and serpentine are not contained in the Nilabsan group, it is conceivable that the sedimentary environment changed conspicuously between the two groups.

The normal sedimentary rocks such as mudstone, sandstone and conglomerate spread widely in the eastern side of the Davao-Pulangi fault and other areas.

Along the Bamoayo River, these rocks abut to the peridotite body. Sandstone or conglomerate contains characteristically a large amount of granules of sericite schist and quartz-mica schist which are presumed to compose the basement of this area.

- 29 -

Some limestone beds, which are each 2 to 10 meters in thickness, are distributed in the middle coarse of the Sita River alternating with sandstone and conglomerate. The age of the limestone beds as determined from fossils is upper Oligocene to lower Miocene.

Though intermittently, one of them can be traced about 40 kilometers from the Sita River to the Babonawan River through the Nilabson and the Kalagutay Rivers.

In the upper reaches of the Babonawan River, smaller foraminiferas were found out from the mudstone about 1,000 meters above this limestone.

The Kalagutay group has a strike of N-S and a dip of W generally. But the anticlinal structure with axis trending E-W is observed near San Fernand, and the synclinal structure is near Silae to Paradise and in the upper reaches of the Tigua River.

The thickness of this group attains 10,000 meters although the top is not confirmed.

2-3-3 Kapalong Formation

The Kapalong formation is distributed mainly in the eastern side of the Davao-Pulangi fault and partly in the upper reaches of the Sita River. It consists of conglomerate, sandstone and siltstone accompanying with thin limestone bed in the lowest horizon. This formation is Molasse type of Plioce to Pleistocene.

It is observed typically along the Kiulom River, southern part of the surveyed area. The Kapalong sedimentary basin was formed in Pliocene as the result of subsidence of the eastern block of the Davao-Pulangi fault and contemporaneous uplifting of the peridotic zone. The existence of synclinal structure located at

- 30 -

northern end of the Kapalong formation is one of evidences of the historical development on the basin.

2-3-4 Lumbayo Formation

The Lumbayo formation consists of conglomerate with limestone pebble, sandstone, mudstone and limestone, and overlies the Kalagutay group clinounconformably. It is observed at the top of the mountains about 400 - 900 meters in height, such as the Mt. Merui, the upper reaches of the Sita River and Little Baguio.

2-3-5 Malambo Andesite

The Malambo andesite is hornblende andesite lava and crops out typically in the upper reaches of the Tigua River. It is distributed in the elevation higher than 1,000 meters. The geological age is probably the end of Pleistocene.

2-3-6 Intrusive Rocks

(1) Peridotite, Gabbro

Peridotite forms the Pantaron Ranges dividing Bukidnon Province and Davao Province. It is a large scale dyke with 2 - 5 kilometers in width stretching in N-S direction. It is compact and is yellowish dark green in colour. Under the microscope, ultramafic minerals are almost serpentinized and mesh structure is remarkable. The relict minerals are usually clino-pyroxene and rarely olivine. It contains a small amount of chromite without exception.

Dark greenish gray gabbro with large crystals of diallage accompanies this periodotite. It is composed of plagioclase, olivine, diallage and a few opaque minerals. Olivine is mostly serpentinized.

In the headwaters of Balahayo River, amphibole schist, which is probably the

- 31 -

basement rock of this area, was found in the peridotite body as xenolith. Some small scale dykes of serpentinized peridotite also intrude into the Kalagutay group and stretch in the N-S direction.

(2) Pyroxenite, Gabbro, Diorite

Igneous composite body which is composed of pyroxenite, gabbro and diorite with 5 kilometers in width and 15 kilometers in length, crops out from the upper reaches of the Nirobsan River to the Tigua River by way of the Locawan River in NNE direction. It has intruded into mudstone and sandstone of middle Miocene belonging to the Kalagutay group.

Pyroxenite occupies the eastern part of this body, diorite the southern and the western parts. Gabbro intrudes into pyroxenite as stocks at two places.

Mutual relation among these rocks suggests that intrusions took place in the order of pyroxenite, gabbro and diorite. But they are probably comagmatic from resemblance of their mineral assemblage.

The geological age of gabbro is 11×10^6 years by K/Ar method.

Macroscopic and microscopic characters of these rocks are as follows.

(a) Pyroxenite

Pyroxenite is dark green or gray holocrystalline rock and is composed chiefly of augite and magnetite with a few amphibole, biotite and apatite.

(b) Gabbro

Gabbro is dark yellowish green, compact rock. Plagioclase and augite are main consituents and biotite, sphene and apatite are accessories.

(c) Diorite

Diorite is grayish black holocrystalline rock. It consists of potash-feldspar,

- 32 -

plagioclase, augite and biotite accompanying with a few magnetite, sphene and apatite.

2-4 Geological Structure and Geological History

2-4-1 Geological Structure

The geological structure of the project area was generally mentioned in the Phase I Report. In this section, therefore, description will be made only about the detailed structure which has been made clear by the Phase II survey.

In the Eastern Area, the folding structure and faults trending NE-SW are prominent. Especially along the anticlinal axis near the Taon River, there is seen an intrusion of the quartz dioritic bodies. The Oligocene Mangagoy formation also takes part in this folding structure. In the lower Miocene Bislig formation, however, structural direction of E-W system takes the place of the NE-SW system.

In the Mangagoy formation, at the southern part of the Barcelona group, synclinal structure with the axis trending NE system is observed. As described before, there are some geological discordances between the northern basalt and the southern andesite so that either unconformity or fault may be presumed.

The NE-SW system was probably formed in middle to late Miocene contemporaneous with the quartz diorite intrusion.

The Kaban group adjoining to the Philippine Fault forms monoclinal structure dipping northwards in the southern to the central region, but forms dome structure in the upper reaches of the Bahayan River. Contrasting to the Balcelona group, E-W system structure is rather prominent in the Kaban group.

The Philippine Fault can be actually observed at the foot of mountain southeast of Jaguimitan, where it looks like the normal fault falling down the west-side block.

- 33 -

Some minor faults trending N-S which are parallel to the Philippine Fault are assumed in the Kaban group. Their throws, however, are not clear due to lack of key beds.

In the Western Area, N-S system structures are prominent. Especially in the Nilabsan group, there are developed anticlinal and synclinal structures in a small scale. On the contrary, the structure of Kalagutay group is relatively simple dipping westwards monoclinically.

The Davas-Pulangi fault running through the central part of the surveyed area probably moved in early Pliocene. The sedimentary basin formed by accumulation of the Molasse type sediments spreading widely in the southern area of the Pantaron peridotite body was probably generated simultaneously with this fault.

Pyroxenite observed in the drainage basin of the Tagbiga River, namely in the Western detailed survey area of the Phase II, intrudes as sheet without disturbing the host rock. The western rim of this body, however, is in contact with Kalagutay group with N-S trending fault.

2-4-2 Geological History

The Eastern Area is separated from the Western Area with about 60 kilometers in this Phase. Besides, the Central Lowland Area with few geological data spreads widely between these two areas, and the stratigraphical correlation is more difficult than that of the Phase I.

The tendency of change of volcanic activities, from basaltic to andesitic with the passing of time, is very resemble between the both areas, so that assuming the activities occurred in the same period, the geological history referred to in the Report of Phase I will be partially correct by the facts obtained in the Phase II survey.

- 34 -

At the end of Jurasic, the sedimentary basin was formed by the orogenic movements. Marine transgression began in Cretaceous and in the Eastern Area the vigorous volcanic activities produced a large amount of basaltic lava. In the Western Area, on the contrary, basaltic pyroclastic rocks with more than 10,000 meters in thickness were deposited.

At the end of Cretaceous period, uplifting occurred in the Western Area accompanying the peridotite intrusion and the crystalline schist of the basement rock in this area is presumed to be exposed.

The volcanic activity changed to the andesitic in late Cretaceous to Paleocene or Eocene period. In the Eastern Area, a large amount of lavas and pyroclastic rocks with a few normal sedimentary rocks were deposited in this period. After the temporary uplifting in early Oligocene, the Mangagoy formation and the Bislig formation were formed in the neritic environment.

In the Western Area, the Kalagutay group composed of andesitic pyroclastics, lavas and normal sediments was deposited during the late Cretaceous to middle Miocene time a few rock fragments of peridotite were supplied to this group.

Since the peridotite body mentioned above was exposed above the sea level at that time; a few rock fragments of peridotite were supplied to this group.

In the late Miocene time, diorite intruded into both areas and accompanied porphyry coppor type and vein type mineralizations.

After that the Davao-Pulangi fault was made by the sudden uplifting of the peridotite zone in the Western Area. Consequently the sedimentary basin of the Kapalong formation was formed.

The Kaban group in the Eastern Area was elevated above sea level in this

- 35 -

period and the hollow formed by the Philippine Fault was burried with Molasse type sediments. In Pleistocene a thick pile of limestone was deposited. Thereafter, the continuing marine regression caused the limestone cliffs to be made at high places. In the Western Area, there followed and esitic volcanic activities.

3. Economic Geology

By the surveys of Phase II, the porphyry copper type mineralization was found in the Bislig-Lingig Area and the vein type of copper in the Tagbiga Area. In these areas, geochemical coppor anomalies had been found by stream sediment survey of Phase I.

3-1 Mineralized Zone

3-1-1 Bislig-Lingig Area

The basalt in the upper reaches of the Taon River is intruded by quartz diorite trending NE, accompanied by porphyry copper type mineralization.

In this area, there are two old mines which were operated for gold and silver by the Surigao Colorado Mining Association and the Southern Investment and Development Corporation before World War II, but the porphyry copper type mineralization has not been reported before.

As shown in Plate II-3A, in the neighborhood where the upper reaches of the Taon River curves to the west, a small stock of quartz diorite with about 50 meters in width is exposed, and filmy or disseminated chalcopyrite and pyrite with molybdenite can be observed along joints trending N-S in the stock.

The same mineral assemblage as chalcopyrite -molybdenite-pyrite is found in the tributary of the river about 1 kilometer north of this place. Metal contents are Cu: 0.1 - 0.3%, Mo: 0.02 - 0.05% but Cu is partially over 3%.

In the mineralized zone with molybdenum, potash alteration on the host rock of quartz diorite is recognized remarkably, and secondary biotite and potash feldspar occur. Besides, under the microscope, plagioclase alters into an aggregate of feathery sericite, and mafic minerals to chlorite and epidote partially.

- 37 -

Surrounding this copper-molybdenum zone, there is the mineralized zone having the mineral assemblage of chalcopyrite-pyrite. A small hill forming the divide between the Bahayan and the Taon Rivers takes part of this zone. Because of gentle slope, rock exposure is very limited and a large number of gossan boulders cover the whole hill. Most of the boulders consist of chalcopyrite, specularite, pyrite and quartz.

They have been dissolved away and changed into reddish brown or yellowish brown limonite. Consequently the gossans do not show their original contents, but the analysis of some comparatively fresh boulders is shown in Table 4 for reference. The copper content ranges mostly from 0.1 to 0.5% but some as much as 4%. The host rock in this zone is affected by strong chloritization so that its original texture is not clear, but it is presured to be andesite from the geology of neighboring area.

In the upper reaches of the Taon River, several quartz veins with 0.50 - 1.00 meters in width occur in strongly argillized porphyrite. These veins were prospected by drift (the length of cross cut : 25 meters, drift : 5 meters), and contain low grade of gold and silver (Au: 0.2 g/T, Ag 2 - 4 g/T). In the host rock, however, many tiny pyrite-quartz veinlets accompanied by sphalerite are fairly observed.

In white-argillized basalt about 300 m east of these veins, the old shaft and 5 tons of ore stockpile are seen. The ore consists of chalcopyrite, galena, sphalerite and pyrite showing high contents such as Cu: 0.85%, Pb: 17.6%, Zn 28.9%.

It seems that vein type or lens shape ore body was prospected. The Surigao Colorado Mining Association which is reported to have operated a gold and silver mine, probably had its mine site on this deposit judging from the location.

This zone characterized by lead and zinc are located on the outside of the

- 38 -

above-mentioned copper-hematite zone, as well as the zinc impregnation found on the road along the Taon River.

In the upper reach the Haguimitan River south of this area, are two mine sites. The one is Lepanto Mine and the other, Soriano Mine. Both mines were reportedly explored for barite.

In the Lepanto mine area, mineralized zone occurs in a strongly silicified rock which seems to be shale originally, and five drilling holes could be recognized (See PL II-4A). The black colored, strongly silicified rock contains a few acicular barite with fine grained pyrite and white clay mineral (montmorillonite or kaoline). Enduring erosion, small five ridges consisting of the silicified rock extend in N50W direction.

The Soriano mine was explored for lenticular barite body with 8 meters in length, 8 meters in width and 2 meters in thickness. The body occurs in the contact between dacite and dacitic tuff and both rocks are strongly argillized. From its occurrence, it seems to be sedimentary type. Analysis of some composition gives the following percentage.

Au: 0.3 g/T, Ag: 512 g/T, Cu: 0.12%, Pb; trace, Zn; 0.06%, BaSO4 : 59.3%, S; 25.2%.

As stated above, the porphyry copper type mineralization in this Bislig Area, shows zonal distributions, that is, from the center to the outside, copper-molybdenum zone, copper-hematite zone and (gold-silver-) lead-zinc zone. And corresponding to these zones, the alterations of the host rock have been changed, namely, from the center, biotite-potash feldspar-quartz zone, chlorite-biotite-quartz zone, and chloritemontmorillonite zone.

- 39 -

The zonal distribution in this area is somewhat schematically shown in Fig. I-2.

The zoning area extends 4 kilometers in E-W direction and 7 Km in N-S direction.

3-1-2 Bahayan-Mamunga Area

In the andesite area adjoining to the Philippine Fault, a large scale pyrite impregnated zone accompanying argillization and silicification in the upper reaches of the Bahayan and Mamunga Rivers. It was pointed out in the Report of Phase I, but its occurence was made more clear by the Phase II survey. It was ascertained that the mineralized zone extends over 14 kilometers in N-S direction with 1 kilometer in width.

Although copper content is very low, judging from the geological structure, strong montmorillonitization kaolinitization and sericitization suggest a shallow igneous intrusion accompanied by ore deposits.

3-1-3 Tagbiga Area

In the Tagbiga Area at the headwaters of the Tigua River, pyroxenite and composite body of pyroxenite and diorite spread widely. Mineralization is observed along the joints developed in the composite body or in the sheared zone as vein.

The direction of veins mainly shows two systems, NW-SE direction with pyriteclay veins and NNE-SSW direction with chalcopyrite-pyrite veins. The former veins are 0.20 - 0.50 meters in width and their contents are Au: 6 g/T, and Cu: 0.5%. Accompanied clay minerals are composed of zeolite, chlorite and sericite.

The latter ones are lenticular massive ores with 0.10 - 0.20 meters in width and are accompanied by sericite and chlorite as well. The contents are very high,

- 40 -

varying from 6 to 15 g/T of gold and from 12 to 18% of copper but the veins do not continue for long distances.

All of the veins do not contain molybdenum.

Besides, there are found pyrite impregnation at places but as a whole the mineralized zone trend to concentrate on the western margin of the composite body.

3-2 Mineralization Age

As shown in Table 2 of Appendices, the absolute alteration age of quartz diorite in the eastern mineralized area is 129×10^6 years (early Cretaceous period) by K/Ar method.

According to F.C. Gervacio (1966), the igneous activity of dioritic rocks in Mindanao Island is recognized in the early Cretaceous period, thereafter spilitic volcanic activity is followed. And andesitic volcanic activity continus to the Oligocene time through the orognesis in the end of Cretaceous period. He stated also that in the Jurassic period before the activity of dioritic rocks, sedimentary rocks with a few spilite are chiefly formed and they are more or less altered to schist.

From the evidences described below, the writers consider the age of diorite intrusion accompanied by mineralization to be late Miocene.

- 1. The igneous character changes from basaltic to andestic in both Eastern and Western Areas.
- 2. In the Eastern Area, the Oligocene formation overlying the basaltic rock is intruded by the diorite having a strong resemblance to that in mineralized area.

- 42 -

3. Measured datum is only one.

The age of mineralization in the Western Tagbiga Area is late Miocene because diorite cuts the mudstone of middle Miocene and absolute age (11×10^6 years) by K/Ar method gives also support to this estimation.

PART II GEOCHEMICAL SURVEY

•

1 General Remarks

The geochemical survey of the Phase II by stream sediment and soil sampling was carried out over an area of about $3,000 \text{ Km}^2$ selected by the Phase I in order to define the most promising area for mineral resources.

In this Phase II, geophysical survey (IP method) was to be carried out after geological and geochemical surveys. Therefore, it was necessary to know the geochemically anomalous zone in the field.

From the results of the Phase I survey, there were expected porphyry copper deposits associated with diorite and nickel (accompanying copper) with peridotite in the survey area. So, rubeanic acid and dimethylglyoxime solution were prepared for detecting copper and nickel semi-quantitatively in the field and analytical results were plotted on the map in order to establish the geophysical survey lines.

Thus, two copper mineralized zones were found, the one was in the Eastern Area and the other, in the Western Area. Geophysical lines were set up from the viewpoints of shape of geochemical anomalous zones and geology.

The quantitative analyses of samples collected by the geologists were done in Japan after finishing the surveys. From geological characteristics, silver, copper, zinc and molybdenum were chosen for analytical element in the Eastern Area and copper, zinc, nickel and cobalt, in the Western Area. In the vicinity of barite deposits in the Eastern Area, lead and barium were analysed instead of copper and molybdenum because copper anomaly did not appear by rubeanic acid field test.

- 44 -

The following became clear from the rubeanic test and the quantitative analysis.

- There are little areal differences on the pH values of running water in the survey area ranging 6.2 to 6.8. Therefore, it is not necessary to consider the effect of pH on metal contents when interpretation of the results are made statistically.
- 2. Copper anomalous zone detected by rubeanic method coincides with the quantitative analytical results as a whole. That method has proved efficient to defined the mineralized zone but a few problem still remained.
- Colorimetric method using acetic acid (pH 4. 0) prepared for rubeanic acid field test and dimethylglyoxime solution, was ineffectual for determination of nickel contents in stream sediments.

2 Field Operations

Geochemical survey was carried out with geological survey. The survey routes were set up along streams to cover all drainage systems.

As a rule, stream sediment samples were taken every 500 m in the main streams and at the meeting are sample from each side of the stream was also collected. Generally 10 — 20 grams of very fine-grained silty sediments (under 80-mesh fraction) were sampled by hand. Care was taken to avoid overlap of the Phase I routes. In case that it was forced to take the same routes, the samples were collected every 1,000 m for checking of metal contents. The amounts of metal deposition on stream sediments are much controlled by pH, so that pH values of all main streams were measured using pH test paper in order to make the following interpretation easier.

The total area is covered by 3,463 samples which represents an average of 1.15 pcs/Km^2 .

These stream sediments were dried in the sun and analyzed for copper and nickel by the simple methods in the field. According to the results, copper anomolies occurred in the same places as those of Phase I, i. e., in the upper reaches of the Taon River, east of Bislig in the Eastern Area, and in the upper reaches of the Tigua River, south of Halapitan in the Western Area. In both areas, veinlets or impregnations of chalcopyrite were recognized, so that these areas were selected for survey in detail.

Stream sediment sampling with higher sampling density and also soil sampling with ridge-and-spur pattern were carried out on the most promising parts in the

- 46 -

selected areas.

Soil was turned up about 20 cm in depth with hammer, and yellow soil samples below humus (so-called B-horizon) were collected. 100 m sampling interval was taken in the Western Area, but 25 m in the Eastern Area. Because the amount of gossan in the East was much larger than that in the West, and the mineralization appeared to be stronger also.

The area of detailed survey and the number of geochemical samples are as follows.

	Area	Number of samples	Density of samples			
Bislig Area	19 km²	893 pcs	47 pcs/km^2			
Tagbiga Area	20	539	27			
Total	39	1,432	37			

 Table II-1
 Area and number of geochemical samples of detailed survey

The soil samples were sieved by 30-mesh screen and -30-mesh fractions were analyzed for copper in the field.

Although both the survey routes and the number of samples were enough to establish the geophysical survey lines, 826 of additional samples were taken along the geophysical lines in order to use these data for interpretation of geophysical results and to define the area of Phase III survey.

The geochemical sample sites are shown in PL. II-2. Different letters were assigned to each party, i.e., from A to H and the serial number was also used on the sample. When three or four geologists of one party surveyed different creeks separately, a capital letter was given to the party chief and small letter to other members. A Philippino geologist was requested to use the combination letters such as a capital letter and his initials. The samples taken by geophysical team in the Western Area, the another combination letters of initial "P" and survey line's names from A to K (for example PB-3) were used to distinguish geological team's samples from geophysical ones.

3 Analytical Technique

Samples dried in the sun and prepared under 80-mesh fraction were analyzed semi-quantitatively for copper and nickel in the field. Finally, all samples were carried back to Japan and analyzed to a unit of ppm by atomic absorption spectrometry, colorimetry and X-ray fluorescence analysis.

Each analytical procedure is as follows.

3-1 Field Test

3-1-1 Copper

- 1. Scoop 1 g into test tube.
- Add 2 ml of extracting solution (disolve 5 g of hydrated sodium acetate with 100 ml of acetic acid and adjust with distilled water exactly to 450 ml).
- 3. Shake 1 minute vigorously.
- 4. Pour the resultant mixture of soil and extractant into the tip of the filter (Place a piece of filter paper on the bottom of a breaker. Lay a strip of the filter paper. Fold a filter paper into cone. Let the tip of the filter touch the reagent paper).
- 5. Compare the darkening of the reagent paper with a standard series.

3-1-2 Nickel

- 1. Scoop 1 g into test tube.
- 2. Add 2 ml of the same extracting solution.
- 3. Add a few drop of 1% dimethylglyoxime solution after vigorous shaking.
- 4. Compare with a standard series.

3-2 Atomic Absorption Spectrometry

The same analytical method as the Phase I was used for the determination of copper, lead, zinc, nickel and cobalt. But the following was the procedure followed for sample decomposition for silver.

- 1. Weigh 1 g into Pyrex beaker.
- 2. Add 10 ml of aqua regia and heat on a sandbath till near-dryness.
- 3. Add 10 ml of HCl (1 + 1) and solve.
- 4. Add 20 ml of ammonium citrate (50%) and adjust with distilled water exactly to 50 ml.

The content of 6 elements stated above was measured by atomic absorption spectrophotometer.

Measuring wave lengths are as follows:

Cu	:	3247 Å
Pb	:	2833 Å
Zn	:	2139 Å
Ni	:	2320 Å
Co	:	2407 Å
Ag	:	3281 Å

3-3 Colorimetry

Molybdenum was determined by handy procedure of I.L. Elliot's zinc-dithiol method.

- 1. Weigh 0.25 g of samples into Pyrex beaker.
- Add 2 ml of aqua regia, 1 ml of perchloric acid and 2 ml of sulfuric acid (1+1) and heat till white vaper goes up.

- 3. Add dilute sulfuric acid and solve by heating.
- Transfer to a test-tube calibrated at 10 ml, and adjust to this volume with 2 - 3 ml of ammonia water and distilled water.
- 5. Pipette 2 ml of the clear solution into a test-tube. Add 2 ml of hydroxylamine hydrochloride solution (2.5%) and shake gently.
- Add 0.5 ml of zinc-dithiol solution (1%) and shake gently at frequent intervals over a period of 20 min.
- 7. Compare with a standard series.
- 3-4 X-ray Fluoresence Analysis

Barium was analyzed by X-ray fluorescence analysis.

Pulverized sample into test-tube and apply X-rays. Measure the intensity of Ba-Ka line picked up by spectroscope from fluorescent X-rays by scintillation counter and compare with standards.

4 Compilation and Interpretation of the Results

4-1 Statistical Treatment

5,756 geochemical samples consisting of stream sediment and soil, as stated above, were collected. It become clear as the survey progressed that they included some samples from the area of younger volcanic or sedimentary rocks, and for making sampling pattern homogeneous, some samples were omitted to be analyze.

Consequently 4, 234 geochemical results, i.e., 2, 560 of stream sediment and 1,665 of soil sample were finally accumulated.

On treating these data statistically, available 728 samples of the Phase I were included, so that, 19,120 analytical results of about 5,000 samples were obtained.

The graphical methods have a great advantage of being quick and effective to treat a large amount of date. Therefore C Lepeltier's method as well as the Phase I has been used to determine the mean background values and the treshold values.

The surveyed area can be divided into the following four areas chalacterized by different rock facies.

- I. Bislig Area the area from Mangagoy to Lingig, mainly composed of basalt.
- II. Kaban Mountainous Area the strip extending from north to south along the Philippine Fault, mainly composed of andesite.
- III. Pantaron Mountainous Area the area on the western side of the Davao-Pulangi fault, mainly composed of peridotite.

IV. Tigua River Area — the area on the western side of the Davao-Pulangi fault, mainly composed of andesitic pyroclastic rocks, and can be subdivided into IV-a (pyroxenite-diorite area) and IV-b (the rest).

In the detailed survey areas of I and II, high sampling densities were obtained. Therefore, the local mean background and the threshold values of these areas were calculated in addition to the above regional values. The assay contour lines in the Western Area were drawn from "raw" data. But in the Eastern Area, three point's moving average method was employed in order to seek the trend of geochemical anomalies. Because the sampling interval is much shorter than the space interval and it is difficult to draw the lines in some places where the metal contents are remarkably different at adjoining sample sites.

The coefficients of correlation and of deviation were also determined by graph. Some samples of the former are shown in the Fig. 2 of appendices.

4-2 Interpretation of the Results.

The mean background and the threshold values of stream sediments were determined by Lepeltier's method and geochemical anomalies were divided into the following three ranks. They are 1) (t-10%) - t, 2) t - 2t and 3) 2t - in the Eastern Area and 1) t - 2t, 2) 2t - 4t and 3) 4t - in the Western Area because of large range, where "t" is the threshold value.

The results are shown in PL. II-1 (in pocket).

The mean background and the threshold values of stream sediments in the surveyed area are shown in Table II-2.

 Table II-2
 Regional mean background and threshold values of stream sediment samples

															(ppm)
	-	Number of Samples	Ag		Си		Zn		Мо		Ni		Co		Characteristic
			b	t	ь	t	b	t	b	t	b	t	b	t	rocks
Eastern Area	1	449	1.7	3.5	88	270	110	380	0.68	3.2		-	-	_	Basalt, Quartz diorite
	11	1,046	1.3	3.6	75	170	82	160	0.52	1.5		-	_	-	Andesite
Western Area I	111	552	-	-	40	58	50	76	-	-	330	1,200	33	70	Peridotite
	117 ⁻ a	157		-	80	220	35	80		-	12	17	13	18	Pyroxenite, Diolite
	-b	678			36	60	55	90	-	-	30	150	18	25	Pyroclastic rocks

Remarks b: mean back ground value t: threshold value

What is evident from the Table is as follows.

- Silver ----- The mean background and the threshold values are about the same in the Areas I and II.
- 2) Copper ----- Both mean background and threhold values in the Area I and IV-a are somewhat higher than those in the Areas III and IV-b. This fact may have been caused by mineralization associated with diorite. The differences of regional mean background values probably depend upon the distinction of rock facies.
- 3) Zinc ----- The background values in the Areas I and II which are composed of volcanic rocks are 2 - 3 times larger than the other areas. The high treshold value of Area I may be due to mineralization.
- Molybdenum ----- The high threshold value of Area I is surely related to the porphyry copper type mineralization.
- Nickel and cobalt ----- Both background and threshold values are very high. This will be due to peridotite without doubt.

As is obvious from PL. II-1, several geochemical anomalous zones by

stream sediment survey were found.

In the upper reaches of the Taon River in Area I, there is a place where three elements of copper, zinc and molybdenum exceed the threshold values by far. Here, the highest values are Cu: 739 ppm, Zn: 1,138 ppm and Mo: 10.2 ppm. This anomalous zone coincides well with the porphyry copper type mineralized zone. In the lower reaches of the Lingig River, silver anomaly ranging from 2.3 to 4.0 ppm is recognized, and in the main stream of the Haguimitan 3 Km north of the Lingig River, there is a spot showing 80 ppm of silver. But no conclusion can be reached because of few samples, so that more detailed survey will be desirable.

In the Area II composed of andesitic rocks, the geochemical anomalies of silver, copper and zinc were found as did the Phase I survey at the headwaters of the Bahayan River. Pyritization and silicification are remarkable and they appear to have been caused by mineralization.

Many results of each element show about the same value as each threshold one and trend to disperse widely.

In the upper reaches of the Agusan River, the high copper content of stream sediment samples ranging from 300 to 500 ppm is considered to be related to the Sabena and the Manat Mines. Both mines have been under exploration for pophyry copper deposits by drifting or drilling.

In the Area III chiefly composed of peridotite, there were many sites showing higher values than the threshold one in every water system.

In the uppermost reaches of the Davao River, nickel content ranging from 1,500 to 1,800 ppm was recognized in the peridotite body. The copper anomaly in the small branch of about 3 Km lower reaches, shows from 200 to 250 ppm. It

- 55 -

occurs in the andesitic tuff and could probably have some relations to the Bonacao mineralized zone which was found about 5 Km north from here in the Phase I survey.

Copper and zinc anomalies located 5 Km northeast of Paradise, are in the Molasse type formation of Pleistocene. It is difficult to explain their causes geologically, but logging road runs through nearby, so artificial pollution may be considered.

In the tributary of the Pulangi River north of the survey area, copper anomaly with nickel, cobalt and zinc is found. Its content is nearly the same as the threshold value (60 ppm). This is presumed to have been caused by partial concentration in the peridotite body.

In the Area IV, west of the Davao and the Pulangi Rivers, the background and the threshold values were approximated by the preliminary interpretation. After careful discussions, it became clear that the values in pyroxenite-diorite body were much higher than those in pyroclastic rocks, nevertheless the interpretation was made on the complex populations so that strange values as mentioned above were obtained.

Therefore, interpretation have been done on two areas, IV-a and IV-b.

As to Area IV-a, two remarkable copper anomalies were recognized in the composite body of pyroxenite and diorite where diorite looked to have intruded into pyroxenite as filling fissures developed at the margin of pyroxenite. One of anomalies is in the upper reaches of the Tagbiga River, the tributary of the Tigua River, and the other, at the headwaters of the Locawon River, the tributary of the Davao River.

There are some sites showing over 200 ppm of copper, and a few sites, more

than 400 ppm.

In the upper reaches of the Tagbiga River, copper mineralized zone of vein type occurs in a composite body and rubeanic acid field test showed high copper concentration. Therefore, this place was selected as an area for the detailed survey without hesitation. But according to atomic absorption spectrometry the other anomaly, was better than the Tagbiga Area.

These opposite results are due to the difference of decomposition of samples, that is, cold leaching and hot leaching methods. It proves that soluble copper is low but total copper is rather high in the Locawon River.

In the upper reaches of the Nilabsan River, diorite is exposed about 3 Km along the river. Although weak zinc anomaly was found but copper anomaly did not appear.

In the Area IV composed mainly of pyroclastic rocks, nickel anomalies with relatively high content of cobalt were found at the places where dykes of peridotite were recognized.

Copper anomalous zone accompanied by zinc was obtained in the drainages on the west side of the lower reaches of the Bodonawan River. Copper contents ranging from 200 to 325 ppm are equivalent to 3 to 5 times of the regional mean backbround value. Numerically speaking, these contents are not so high but they are concentrated, so it is desirable to carry out follow-up works such as detailed geological and geochemical surveys. This area is composed of andesite lava or its tuff.

- 57 -

5 Description of the Anomalies

5-1 Bislig Area

5-1-1 Porphyry Copper Area

This area lies in the upper reaches of the Taon River, 10 Km south of Mangagoy where PICOP factory is in operation. As a roadway runs through from Bislig to Lingig on the eastern side of the detailed survey area, accessibility is very well.

The mineralized zone is of porphyry copper type associated with diorite intruded into basalt lava and andesite lava. Outcrops of mineralized rock and floots of gossan are found everywhere. Among them chalcopyrite and copper oxide were commonly recognized, and a fairly strong reaction of copper was carried out at intervals of 25 - 50 m along the river and ridge. The soil sampling along the geophysical survey lines was also carried out every 25 m, because this area appeared to be the most promising area from the geological and geochemical points of view and to be taken up as a target in Phase III Survey.

The mean background and threshold values of this area are shown in Table II-3. In PL II-3C two assay contour lines are drawn so as to catch easily the trend of each element. The one is a line of threshold value, the other, a line of the mean value of threshold and mean background values.

Copper — The most remarkable anomalous zone extends in NNE direction from the intersecting point between base line and line No. 9 of geophysical survey. Near the point E. 3 of Line No. 4, a small scale anomaly is also found. The former is in diorite. For example, at the bank of Taon River near the interset-
					(ppm)
	Ag	Cu	Zn	Mo	Number of samples
b	0.9	110	30	1.0	
t	1.8	550	215	10.0	829 pcs
S	2.6	4.3	4.4	5.1	

Table II-3Local mean background and threshold values of
soil samples, Bislig Area

b: mean background value

t: threshold value

s: coefficient of deviation

ing point, there is the impregnation of chalcopyrite, pyrite and molybdenite extending towards north. The latter is in basalt, and the floats of hematite and quartz are scattered. In parallel to these anomalous zones, another anomaly with copper content from 300 to 500 ppm is found on the western side. This anomaly coincides well with the eastern boundary of diorite.

Molybdenum — The eastern anomaly overlaps the copper one. Besides weak indication is also recognized in the center part of quartz diorite body.

As shown in PL. II-3C, both anomalies of copper and molybdenum trend to extend towards south over the soutern limit of the detailed survey area.

Zinc — Somewhat concentrated anomaly is obtained between line No. 3 and line No. 4 on the western side of the base line, and another one appears near the eastern end of line No. 4. The former concentrated on the low land, such as creek, looks to have been migrated from other places. The fact that IP anomaly does not appear supports this estimation.

The latter is at the top, so it shows true anomaly.

Silver — Being different from other three elements silver contents do

not concentrate at one place but disperse in a wide area. This may be a result from the facts that the contents are generally low and that it is difficult to classify them because of small range. In another wards, it may be said that silver mineralization in this area is not so strong. id that silver mineralization in this area is not so strong.

The silver anomalous zone which is tentatively decided by usual way, corresponds to the copper anomalous zone in the southern part, but it is rather closely related to zinc anomalous one. As a whole, it is located on the outside of copper -molybdenum zone, and seems to show a geochemical zoning.

In this area, the floats of gossan are distributed on the hills or the hillsides. Some of them run 4% in copper content; nevertheless copper content in soil is lower than expected. The climate of this area is tropical-forest-type so it might have been caused by leaching and further study is desirable.

The coefficients of correlation among each element are shown in Table II-4.

	Mo/Cu	Mo/Ag	Mo/Zn	Cu/Zn	Cu/Ag	Zn/Ag
ρ	0.375	- 0.208	- 0.309	0.120	0.242	0.620

 Table II-4
 Coefficient of correlation, Bislig Area

ρ: coefficient of correlation

It is obvious that silver has close relation with zinc but no correlation can be seen among other elements.

5-1-2 Silver Belt Mine Area

The Mine Area is situated in the uppermost reaches of the Taon River and

very close to the PICOP logging road.

The impregnation of chalcopyrite, pyrite and sphalerite is seen in the porphyrite with large phenocrysts of plogioclase. Argillization is generally observed and locally sillicification is strong. Trench prospecting for the impregnated zone and quartz veins had been carried out in many places. Therefore, soils were collected along the creeks and the ridges.

The mean background and threshold values calculated from the 95 samples of this area are shown in Table II-5.

					(ppm)
	Ag	Cu	Zn	Мо	Number of samples
b	0.7	42	27	1.1	
t	1.6	210	120	2.9	95
S	1.9	3.4	3.2	2.1	

Table II-5Local mean background and threshold values of
soil samples, Silver Belt Mine Area

Comparing these values with those of the Porphy Copper Area (Table II-3), copper is about a half of the latter in the mean background value, and silver, zinc and molybdenum almost approximate. In the threshold value, only silver approximates, on the other hand, and other elements less than a half.

As is evident from PL. II-4B of geochemical map, each element does not trend to concentrate. Considering the mean background and threshold values it is presumed that the mineralization in this area is not so strong.

5-1-3 Lepanto Mine Area

The Lepanto Mine Area lies in the upper reaches of the Haguimitan River,

3 Km south of the Porphry Copper Area.

In the silicified shale, pyrite and barite were impregnated.

As this was an area where drilling-prospecting had been carried out before, soil samples were collected in anticipation of there being the sedimentary type ore deposite, and four elements of silver, lead, zinc and barium were analyzed. Copper was not detected by rubeanic acid fild test from these samples.

Through the sampling pattern was irregular, the mean background and threshold values calculated from the analytical data, are as follows.

(bhui)					
Number of samples	Ba	Zn	Pb	Ag	
	115	28	25	0.9	b
86 pcs	290	120	230	3.5	t
· · · · · · · · · · · · · · · · · · ·	1.8	3.2	3.3	2.8	S

Table II-6Local mean background and threshold values of
soil samples, Lepanto Mine Area

(nnm)

As far as the writers can judge from the Table, four elements do not show much high values. With no data available on barium in the Porphyry Copper Area, it cannot compare these values with others. According to B. Mason, the mean barium content in shale is 580 ppm and in igneous rock, 425 ppm. It can be said, therefore, barium mineralization is not worthy of special mention.

As shown PL. II-4B, anomaly of each element is not concentlated, and a little silver anomaly is only observed at the site where prospecting had been done.

5-2 Western Tagbiga Area

The copper anomalous area detected by rubeanic acid field test lies in the

upper reaches of the Tigua River about 10 Km south of Halapitan. The anomaly exists in pyroxenite and diorite intruding into pyroxenite.

The mean background and threshold values are shown in Table II-7, but in PL. II-5C of geochemical map, two contour lines, the one is the threshold value and the other is the mean value of threshold and mean background values, are drawn as well as PL. II-3C.

					(ppm)
	Cu	Zn	Ni	Со	Number of samples
b	105	50	36	53	
t	420	105	70	120	394 pcs
S	3.9	1.6	1.8	2.3	

Table II-7Local mean background and threshold values of
soil samples, Tagbiga Area

b: mean background value

t: threshold value

s: coefficient of deviation

Anomalies of each element are as follows.

Copper — Anomalies appear widely near the western contact between the composite body and sedimentary rock, and in the northeast part of detailed survey area. In the former zone, vein type or lenticular massive ores composed of chalcopyrite, pyrite and quartz are recognized at some places, so geophysical survey was carried out. The highest content of copper is 600 ppm. The latter anomaly is in pyroxenite but mineralization can not be seen along the creeks. As both stream sediment and soil samples were weak in reaction of rubeanic acid test, geophysical survey was not carried out. From the result of atomic absorption spectrometry, the latter shows better concentration than that of the former. Though the exposure

is limited, further study is desirable.

Zinc — Anomaly corresponds well to that of copper. The contents are relatively low. The highest value is 145 ppm.

Nickel — In the western part adjacent to the western copper concentration, nickel anomaly extends narrowly.

This location coincides perfectly with the boundary of composite body. Besides the anomaly extending in the NE direction from this place and another one near the meeting point of Tigua and Tagbiga Rivers are found although these anomalies are overlapping partially copper and zinc ones, coefficient of correlation between nickel and copper or nickel and zinc is very low. Therefore, nickel as well as cobalt is probably included as primary mineral of pyroxenite. Even though they are same ultrabasic rocks, nickel content in pyroxenite is about 1/10 to 1/20 times of that in serpentine.

Cobalt — The main anomaly is located in the northweastern part of this area and corresponds well to nickel one. Also, there is a small scale concentration overlaping the western copper, zinc and nickel anomalies. The highest value in this area is 166 ppm.

Compiling the geochemical results of four elements stated above, there is a clear concentration of these elements in the same western margin of pyroxenitediorite composite body. Other than this, the concentrations of copper and nickel or cobalt are found widely in the northeastern part of the area.

The coefficients of correlation among each element are as follows.

- 64 -

	Cu/Zn	Cu/Ni	Cu/Co	Zn/Ni	Zn/Co	Ni/Co
ρ	0.450	0.191	0.559	0.259	0.525	0.438

 Table II-8
 Coefficient of correlation, Tagbiga Area

.

٠

As is evident from Table II-8, copper and zinc or cobalt, cobalt and zinc, and cobalt and nickel are closely related each other but there is few connection between nickel and copper or zinc.

Generally speaking, pyrite usually contains cobalt; therefore, copper, zinc and cobalt anomalies seems to have been caused by the same mineralization. On the other hand, nickel as well as cobalt (partly) is presumed to be contained in pyroxinite as primary mineral.

PART III GEOPHYSICAL SURVEY

.

1. ABSTRACT

According to the results of the Phase I geological and geochemical surveys and the Phase II detailed geological surveys, the eastern area, Bislig and the western area, Tagbiga were selected as high potential areas for mineral resources.

The purposes of the geophysical investigations reported here are to know electrical property, distribution and scale of the mineralized zone and to discuss the possibility of finding ore deposits and to select the best drilling points, by applying electrical survey (Induced Polarization Method) in those areas.

As IP methods indicate a remarkable anomaly for the porphyry copper type deposit and its surrounding mineralized zone which are expected to be found in those areas, it has made remarkable development of finding mineralization in tropical jungles where outcrops are hard to find.

In this project, IP survey was conducted over 18.4 Km of survey lines in the eastern area and of 16.7 Km in the western area, and the total survey lines are 35.1 Km.

These geophysical survey lines were planned from the informations of the mineral outcrops of copper, the distribution of geochemical anomalies and from geological standpoints.

Judging from the results of the geophysical survey, additional IP lines were also run.

Results of these surveys indicate IP anomalous zones in both areas.

In the eastern area, the width of the anomalous zone is about 400 m and the length is more than 1,500 m extending to a N-S direction accompanied by a low

- 66 -

resistivity zone due to hydrothermal alteration. Together with the results of geochemical anomalies, hopeful drilling points were selected in this area.

In the western area, an anomalous belt more than 3,500 m in length in a NNE direction was found and was expected to extend to a NE direction, but some anomalies seem to be due to primary magnetite and pyrite, therefore further surveys are recommended hereafter.

2. Induced Polarization Method

2-1 Principle

Although the phenomenon of IP is extremely complex, certain insight has been gained into its mechanism as a results of recent researches. It now seems well established that two principal effects must be distinguished; an electrode polarization and a membrane polarization.

Electrode polarization or Over voltage

The electric current in the ground is normally carried by ions in the electrolytes present in the pores of rocks. If the passage of these ions is obstructed by certain mineral particles (which, like common metals, transport the current by electrons,) ionic charges pile up on the surface of the mineral particle. The accumulated charges create a voltage that tends to oppose the flow of electric current across the interface and the particles are said to be polarized.

When the current is interrupted a residual voltage continues to exist across the particle but it decreases continuously as the ions slowly diffuse back into the pore-electrolytes.

With the change of frequency of the supplied current, the resistance of the metallic minerals vary due to the motion of the charged ions.

These phenomena are the combined effect of ionic conductivity and electronic conductivity and these processes give the IP effect.

Foremost among the ore minerals having an electronic mode of conduction and therefore exhibiting strong IP are ;

- 68 -

Sulfides:	Pyrite, Pyrrhotite, Marcasite, Galena, Chalcopyrite,
	Molybdenite, Pentlandite, Cobaltite, Algentite
Oxides:	Magnetite, Pyrolusite, Cassiterite
Others:	Native Copper, Graphite, Arsennide, Clay mineral
Normal Effect or Bac	kground

This phenomenon is due to electrochemical change such as membrane polarization, diffusion potential and flow potential by supplying electrical current into the ground where no metallic minerals are present. Ionic movement is the cause of this phenomenon.

For example, the surface of a clay particle is negatively charged and this attracts positive ions from the electrolytes. An electric double-layer is therefore formed at the surface of the particle somewhat as sketched in Fig. III-1, the concentration of positive ions being greatest at the surface of the clay particle.

When an electric current is forced through the clay, the positive ions are displaced and upon interruption of the current, the positive charges redistribute themselves in their former equilibrium pattern. The movement of the ions is detected as IP effect.

Fig. III-1 Induced polarization phenomenon

A. Electrode polarization phenomenon at mineral-electrolyte interfaces.

B. Membrane polarization phenomenon in clays.

Polarization is essentially a surface phenomenon. Hence the greater the surface presented by sulfides or clays to an electric current, the stronger are the polarization effects.

From the nature of the IP effect, it follows that impregnation-type ores such as porphyry copper type deposit which have a large effective surface of mineral particles, are particularly suitable targets for exploration by IP method.

Condenser Model

This is a simple but far-reaching and useful analogy to the polarization phenomena in rocks.

Consider an electric circuit consisting of a condenser and a high resistance in parallel (Fig. III-2).

Fig. III-2 Electric circuit analogy to IP phenomenon

The circuit in Fig. III-2 has the property that if the battery is replaced by a source of alternating electromotive force, the amplitude of the alternating voltage in the circuit decreases with the frequency for constant magnitude of the circuit.

In other words, the effective electrical resistance (impedance) of the circuit decreases as the frequency of the applied current increases. The reason for the decrease is that, although a condenser presents an infinite resistance to a direct current, it allows alternating current to pass across it (circuit B-C), so that when the current alternates, an extra path B-C becomes available to it.

If the polarization phenomenon in the ground where due to the ore-electrolyte interfaces acting as condensers, the resistivity of rocks should be expected to decrease as the frequency of the current passing through them increases. This is indeed found to be the case. (Fig. III-3)

Fig. III-3 Decrease of the electric resistivity of rocks with the frequency of the current through them.

Thus each electrolyte-mineral grain interface in the ground may be likened to a tiny condenser storing ionic charges whose diffusion in the electrolytes, after the cessation of the current, corresponds to the leakage through the resistance A-D in Fig. III-2, giving rise to a steadily decreasing voltage between two potential electrodes on the surface. This is the time domain IP effect.

And as the frequency domain IP effect adopted in this survey a ratio of two kinds of resistivity for low (0.1 - 0.3 Hz) and high (3 - 10 Hz) frequencies are measured directly on the deviation meter.

2-2 Measurement of IP Effect

The methods of IP effect are divided into two main groups as mentioned above.

In time domain method, IP effect is expressed as a parameter of chargeability which is a residual voltage Vs at a definite time after the current cut off or time integrated voltage divided by the voltage Vp just before the current cut off. (Fig. III-4)

- 72 -

Chargeability;
$$m = \frac{Vs}{Vp} \times 100 \ (\%)$$

or $\int \frac{\int Vs \, dt}{t_1}$ (mV-sec)

The practice in frequency-domain methods is to determine the apparent resistivity of the ground at two frequencies with almost ten times variation.

But it is mathematically proved that those methods are two different aspects of one and the same phenomenon.

Let ρ dc be the resistivity of a rock for direct current and a c that for an alternating current of high frequency.

Then the frequency effect FE is defined as:

$$\rho_{ac} = \frac{\rho_{dc}}{1 + FE \frac{Fac}{Fdc}}$$

When Fac = 10x Fdc,

$$FE = \frac{\rho dc - \rho ac}{\rho ac}$$

- 73 -

In the field work, FE can be read directly in % on the deviation meter.

Conception of two frequencies are shown on Fig. III-5.

Fig. III-5 Comparison between long and short cycles of measurement

In this survey of Phase II frequency of ρ ac was 2.5 Hz in the eastern area, 3 Hz in the western area because of the difference of IP measuring system. ρ dc was both 0.3 Hz, then only 1.08 times of FE in the eastern area have to be corrected to compare with the results of the western area.

2-3 Indication of Results

Three kinds of sections are indicated as IP results such as Frequency Effects (FE %), Apparent Resistivity ($\rho\Omega$ -m) and Metal Conduction Factor (MCF \mho /m).

The electrode configuration is dipole-dipole which together with the method of plotting results, are shown on Fig. III-6.

As illustrated, the current is applied at two points (5, 6) a distance (a)= 100 m apart.

The receiver is located at two other points (1, 2) on the same line and measures the potential between these points which are also a distance (a) apart. The distance (a) is commonly called the "electrode spread length".

The distance between the nearest current and potential electrodes is (na), where (n) is a variable integer commonly between 1 and 3 or 4.

The depth of penetration (h) is increased by increasing (n),

$$h = \frac{a(n+1)}{2} = 50 (n+1)$$
 (meters)

Fig. III-6 Method used in plotting dipole-dipole IP results

The values from each measurement are plotted at the intersection of 45 degree lines from the center point of the current electrodes and the center points of the potential electrodes.

Apparent Resistivity

The equations to be used in calculation of apparent resistivity is;

```
\rho = F \cdot V/I,
```

where V is a measured potential

- I is a constant current at 3 Hz
- and F is expressed as below in any electrode configurations

- 75 -

F =
$$2\pi/(\frac{1}{c_1p_1} - \frac{1}{c_1p_2} - \frac{1}{c_2p_1} + \frac{1}{c_2p_2})$$

In this survey, all survey lines are straight (except D-line in Tagbiga), then

$$F = \pi an(n+1) (n+2)$$

$$= 314n (n+1) (n+2)$$

$$C_{2} C_{2} P_{2} C_{2} P_{2} P_{3}$$

$$C_{1} P_{1} P_{1} P_{1}$$

Apparent resistivity measured by dipole-dipole configuration tends to be influenced by steep topography.

If the topography should continue infinitely in perpendicular direction, corrections could be calculated by electronic computer or using analog carbon paper corrections could be done experimentally. But it is expensive and three dimensional effects may not be rejected. So topographical corrections have been done referring to many model sections calculated by computer. (Fig. III-7)

Fig. III-7 Topographic influence $(\tan^{-1} (2/5), a = 2, \rho_0 = 1)$

Metal Conduction Factor

The theory of electrode-polarization effects shows that IP is greatly influenced by the resistivity of the electrolytes in the country rock. The parameter known as metal conduction factor (MCF) was devised by MADDEN to correct (partially) for the resistivity of the country rock. In principle, it is defined simply as the frequency effect divided by the lower frequency apparent resistivity.

However, as the number thus obtained is inconveniently small, it is multiplied by 1,000 so that the practical definition of the metal factor becomes;

$$MCF = \frac{FE}{\rho \, dc} \times 1,000 \quad (\mho/m)$$

If the resistivity is expressed in Ω -m, the dimension of the metal conduction factor is Ω^{-1} m⁻¹, that is, those of the electric conductivity.

Under ideal circumstances big metal conduction factor are detected by low resistivity and high FE due to ores and alterations, but the topographic influence to the apparent resistivity must be considered to interpret it.

On each section, contours are drawn in moderate interval, but it is important to appreciate that these contour plots cannot be considered as vertical sections of the electrical properties of the ground.

For example, contours for some models are shown on Fig. III-8, but the anomalous sources do not coincide with high anomaly but actually lie in the shallower zone.

- 77 -

2-4 Physical Property of Rock Samples

To make analysis easy, electrical property of the collected rock samples were measured. Typical rock samples in both areas were collected, 32 in the eastern area and 25 in the western area and frequency effect and resistivity were measured in each rock. As the rock samples were collected from the surface of the ground, change in resistivity was unexpectedly wide because of the porosity and the weathering effect so that the resistivity of rock samples are generally higher than that underground. (Table III-1, III-2)

A small current supplied from an ultra low frequency oscillator was 1 or 5 micro-amperes and the measuring equipments were Model YMO-412A and P-660 which were used in the field survey, getting the same results.

$$R = \frac{V}{I} \qquad R : Resistance (\Omega)$$

$$I : Current (A)$$

$$= \rho \cdot \frac{\ell}{s} \qquad V : Potential (V)$$

$$= \frac{s}{\ell} \cdot \frac{V}{I} \qquad \rho : Resistivity (\Omega - m)$$

$$\ell : Length (M)$$

s : Section (M^2)

3. Result of Induced Polarization Survey in the Eastern Area

3-1 Surveyed Area

The area surveyed is situated in the province of Surigao del Sur in Mindanao Island, south of the municipality Bislig between Barrio Mangagoy and The Municipality Lingig, around the valley of Taon.

It is bounded by

Latitude 8° 5'40" and 8° 7' 0" N (2.0 Km north to south), and Longitude 125°22' 0" and 126°23'30" E (2.0 Km east to west).

The base station lies approximately at

Latitude 8° 6'30" N and Longitude 126°22'38" E.

3-2 Period of the Survey

The survey started March 7, 1973 and concluded on April 18, 1973 with 30 days of actual work during the 41 days of stay in the area.

3-3 Members of the Survey Team

CAROL S. SAMONTE ITSURO OGAWA CESAR V. RAMOS KATSUMI OYANAGI NARCISO BAUTISTA NAOYOSHI TAKAHASHI BENERCITO BALLESTEROS JUNICHI SATO ALBERTO ISSAC SABURO TACHIKAWA

3-4 Place and Transportation

The area of survey is about 100 Km northeast of Davao City. A domestic flight of Philippine Airlines connecting Davao City and Bislig in 30 minutes is available as a means of transportation. The base camp was set up at PICOP Station Office of Barrio Mangagoy, 8 Km east of Bislig. From this camp to the area of survey, it takes about 20 minutes by car using a logging road from Mangagoy.

Well developed logging road network over this area provided a very convenient access to the area. All the eastern end of each survey line intercept the road going to Linging from where one can easily enter the survey area.

3-5 Geological Features

The rocks of this area composed of basalt and andesite lavas of late-Cretaceous Barcelona basalt group, dioritic rocks such as quartz diorite, diorite and diorite porphyry, which are products of igneous activity during the last Miocene, and gabbro and porphyrite.

The basalt lava occupies the largest portion of the surveyed area. Andesite lava intercalated in the basalt lies mainly in the northeastern part of the area. They extend northeastward striking NW-SE and dipping $20^{\circ} - 30^{\circ}$ to the south.

The dioritic rocks are distributed in several areas all extending northeastward at right angles to the lavas.

The biggest dioritic body lies southwest of the area stretching over 2,000 m in length and about 700 m in width.

All the dioritic rocks are probably the facies of a single intrusive mass occuring in a comparatively shallow depth.

The basalt and andesite lavas mentioned above are hydrothermally altered by the post-igneous activity of the dioritic rocks. Hydrothermal alteration such as silicification, sericitization, argilization and potasium alteration are commonly seen. Accompanying these alterations, impregnations or veinlets of pyrite, chalcopyrite,

- 80 -

molybdenite, magnetite, hematite, or zincblende, etc. are observed everywhere.

In the northern part, small bodies of gabbro which are late intrusions, are distributed. Small scale dykes of porphyrite lies between the two main bodies. Both of them are intruded after mineralization. They look fresh and are not affected by hydrothermal alteration.

3-6 IP Instruments

IP Transmitter

Model P 660 made by McPHAR	Co., CANADA
Maximum output power	5A, 700V
Engine Generator	3.5 Kw, 400 Hz, 110 V

IP Receiver

Model P 660 made by McPHAR Co., CANADA

Fullscale 100 Microvolt

Transceiver

Model CH-1330 made by HITACHI Co., JAPAN Maximum output power 500 mW, 10 sets

3-7 The Survey

Determination of the survey lines were based primarily on the results of the geological and geochemical survey. The final survey lines were decided considering the limitation and restrictions of the induced polarization survey method. From an expected distribution of IP anomalies, some additional survey lines were also planned.

The base station was not determined by solar observation as usually done in the Philippines but simply by locating the intercept point between survey line No. 3 and the base line on the 1/50,000 scale topographic map.

The barometer reading (164.70 m above the sea level) was employed as the elevation of the base station.

The surveyed area is situated between 100 m and 300 m above sea level. Because of the thick vegetation, fully grown plants were cut along all the surveyed lines.

The directions of the survey lines were referred from the magnetic north. The base line is in the direction of north-south and the survey lines are eastwest.

The total length of the survey lines is 18.4 km, where the base line is 2 km and the total of the other survey lines including some additional lines is 16.4 km.

Survey lines are 250 m apart and measuring points were established every 100 meters. Along the eastern part of survey line No. 3, however, distance between measuring points is 50 m with additional complementary points introduced because of detected anomalies.

Instruments and Accuracy (Common with the Western Area)

Instruments used for the survey were USHIKATA handy compass S-25 and measuring tape of 50 m made by eslon and the accuracy of survey was more than 1/50.

Specifications are shown below;

A. USHIKATA handy compass S-25
 Angle of inclination
 Full circle divided into one degree scale division
 Angle of declination
 Zero back method

- 82 -

Telescope	X12 reversible
Fine adjust	Adjustable horizontally and vertically
Weight	1.3 Kg
Measuring tape (Eslon tape)	
Factory inspected error	50 m 26mm, +52mm
Tension Pull	150 Kg for $12 - 16$ m tape width
Expansion	0.25 mm for 1 meter

3-8 Interpretation of Results of Survey

Β.

The results of induced polarization method (IP) survey are shown in PLIII-E2 to E11 as frequency effect (FE), apparent resistivity and metal conduction factor contours along a vertical section of each survey line.

Equi-FE map and equi-apparent-resistivity maps correspond to 100 M (N=1) and 200 M (N=3) under the surface are shown in PLIII-E12 to E17.

Remarkable anomalies shown in profiles along each survey lines are described in the following section.

3-8-1 Result of Survey along Each Line

Line No. 1 (PLIII-E2)

Apparent resistivity shows two layer structures with the upper layer of 150-400ohm-M and the lower layer of 400-800ohm-M. The upper layer seems to show the low resistivity of andesite. The lower layer is considered to be diorite.

Frequency effect (FE) shows only a slight anomaly of 4% at measuring point E-6.

Line No. 2 (PLIII-E3)

The andesite layer extended from survyy line No. 1 (150-400ohm-M) is

dominant here. A high resistivity zone distributed at measuring points W-3 and 4 near surface seems to be the same diorite extending from survey line No. 1 as shallow intrusive bodies.

FE is almost as low as the back ground level everywhere except a weak anomaly near point W-1 where mineralization was observed at the surface.

Line No. 3 (PLIII-E4)

In the eastern part of Line No. 3, outcrops of andesite (150-4000hm-M) is probably the extension of the same andesite layer from survey line No. 1 and No. 2. The low resistivity zone reflects the existence of andesite layer. In the western part, only near points W-5 and W-6, a high resistivity zone due to diorite, is observed.

This might be the same body extended from measuring points W-3 and 4 of line No. 2.

FE shows only a weak anomaly at the east end of the line.

Line No. 4 (PLIII-E5)

The resistivity profile is separated in two parts, namely the western low resistivity (50-100ohm-M) zone and the eastern high resistivity (higher than 400ohm-M) zone. The geological map shows the low resistivity zone being basalt and the high resistivity zone being dioritic intrusives.

A remarkable FE anomaly of 10% is found in the low resistivity zone at E-3, which coincides well with the observed outcrops and geochemical anomalies. From the characteristic of this anomaly, any deep mineralized zone is not expected. Concerning the shape and properties of mineralized zone, see the result of the Model Calculations (PLIII-E18)

- 84 -

Line No. 5 (PLIII-E6)

As seen in the case of survey line No. 4, east of the base line is the low resistivity zone of basalt and west of it is the high resistivity zone of diorite. Under measuring point 0 (intercept with the base line), basalt is supposed to have diorite intrusion.

In the low resistivity zone, west of the small valley near point E-7, widely distributed FE anomaly is seen. As in the case of line No. 4, probable existence of a shallow mineralized zone is indicated.

Line No. 6 (PLIII-E7)

Now the high resistivity diorite zone is found in the central part between W-9. and E-1. And both ends of the line are in the low resistivity zone.

Near the surface between W-5 and W-6 which are in the high resistivity zone, FE anomaly of a probable mineralized zone is shown. FE anomaly extended from line No. 5 found at points E-2, 3 could have been due to the strong mineralization of pyrite.

Line No. 7 (PLIII-E8)

Near points W-2, 3, 6 and 7, the high resistivity zone recognized from the low resistivity basalt zone, indicates the existence of diorite very clearly.

The observed FE anomalies are expected to be in basalt zone and at the interface between the basalt and the diorite zones on this survey line.

Line No. 8 (PLIII-E9)

Basalt in the middle of this survey line shows a lower resistivity (less than 200 ohm-M) than that found in the northern area of line No. 7, and the intrusion of diorite is inferred to be very deep.

The remarkable anomalies of FE between points W-3 and E-2 are in basalt or diorite intruded into basalt. No anomaly of FE was observed in basalt and gabbro in the eastern part of E-8 where mineralization of pyrite and chalcopyrite is exptected.

Line No. 9 (PLIII-E10)

East of the base line, where basalt and gabbro occur, wide spread low resistivity zone is observed.

No FE anomaly was detected east of a mineralized zone in the small valley between points 0 and E-1, where 12 - 13% FE anomaly in this valley is due to mineralization of pyrite and chalcopyrite which appears to incline sharply to the east.

Anomalies of FE (6-9%) are widely found west of the base line where basalt and diorite might be extensively mineralized.

Base Line (PLIII-E11)

High resistivity zone observed between measuring point 10 and 13 is caused by a south dipping diorite which penetrates the surrounding basalt (of lower resistivity than 200 ohm-M).

A 8-9% FE anomaly is observed near the interface between this diorite and the basalt distribured in the southern area. Both seem to be very strongly mineralized. FE anomaly was not observed in the northern extension of andesite.

3-8-2 Equi-Frequency-Effect and Equi-Apparent-Resistivity Maps

Equi-Frequency-Effect Map

N=1 (depth 100 M) (PLIII-E12)

The remarkable anomalies seen in the middle of the surveyed area extending

northeast which corresponds to the near surface occurrences of basalt are due to pyritization at shallow depths. The copper outcrops found near E-3 of line No. 4 and 0 of No. 9 also belong to this most prospective area of 6% FE.

The western portion of the diorite area does not show any anomaly except the 5-8% FE anomaly observed near its interface with andesite.

Andesite and micro diorite occur along the Taon River in the southeastern part of the surveyed area, where no significant anomaly is observed.

N=3 (depth 200 M) (PLIII-E13)

The anomaly caused by the shallow mineralized zone at E-3 of survey line No. 4 weakened in this map. Most features of the distribution of FE anomalies, however, do not change, since the sources of anomalies lie very deep.

Equi-Apparent-Resistivity Map

N=1 (depth 100 M) (PLIII-E14)

Apparent resistivity varies 50 to 1,000ohm-M and is divided into two zones, namely a high resistivity (higher than 500ohm-M) zone and a low resistivity (lower than 250ohm-M) zone.

The high resistivity zone surrounded by 500ohm-M equi-resistivity contour roughly coincides with the occurrence of diorite and porphyrite.

In the eastern part of the surveyed area, the low resistivity zone lies north and south. The low resistivity zone in the north reflects andesite and gabbro occurrences; the southern low resistivity zone reflects the basalt occurrences. The extremely low resistivity (less than 100ohm-M) zone seen around the measuring points E3 - E5 of survey lines No.4, 5, 6 may be considered the area of hydrothermally altered basalt. The fine grain diorite in the southeastern part of the surveyed area show low resistivity due to their high porosity.

N=3 (depth 200 M) (PLIII-E15)

The extension of the high resistivity zone observed in this map is wider than that of the map of N=1. The high resistivity zones around measuring points E-1, E-4 of survey line No. 1 and W-1 of line No. 2 are due to intrusions of diorite, emanating from a common rock body at depth.

The low resistivity zone lying north and south in N=1 map lies now south of survey line No. 3 in this map, suggesting the deep extension of hydrothermally altered basalt.

The andesite and gabbro in the northern part of the surveyed area correspond to the distribution of the resistivity of 250 - 500ohm-M in the northern part of the survey line No. 3.

The topographical effect is generally not observed except in the high resistivity zone at E-3 of the survey line No. 6.

3-9 Physical Properties of Collected Rock Samples

Physical properties of 32 rock samples collected in the surveyed area are shown in Table III-1.

Except ore samples, FE is under 4% similar to the background value measured in the field. In rock samples of comparatively high FE, pyrite mineralization is observed, indicating the anomalies being mainly due to pyrite.

Even the resistivity of rock samples of same material ranges 100ohm-M to several 10kohm-M. This large fluctuation of resistivity is mainly due to the degree of weathering of the sample taken in the field and also due to variation of the

- 88 -

physical property during the transportation. Therefore the remarkable differences of apparent resistivity observed from place to place in the field was not confirmed in the laboratory.

3-10 Model Calculations

The shape and properties of source of observed remarkable IP anomalies were studied using an analogue computer.

The results are shown in PLIII E-18, E-19. These were calculated based on the anomalies observed at measuring points E-3, E-4 of survey line No. 4 and E-1, E-2 of line No. 7 from an assumed geological structure. A background value of 2000hm-M was assumed for the resistance network of survey line No. 4 and 4000hm-M for line No. 7.

Even though it is extremely difficult to find a real structure from thousands of possible combinations of shape and properties of the source of anomaly, the assumption of a shallow source for survey line No. 4 and a deep source for line No. 7 is very plausible.

.

Sample No.	Rocks	Section (cm ²)	Length (cm)	Current (µA)	Potential (mV)	Resistivity (Ωm)	FE (%)
OW-1	Andesite	11.65	2.11	5	982.0 192 0	10,700	1.8
OW-2	Basalt	6.08	1.31	5 1	876.0 178.4	8,210	1.5
OW-3	Micro Diorite	5.58	1.44	5 1	1,200.0 334.0	11, 100	0.8
OW-4	Diorite	10.71	3.54	5 1	703. 6 151. 2	4, 420	0.5
OW-5	Quartz Diorite	5. 62	1.59	5	920. 0 202. 0	6, 820	1.0
OW-6	Basalt	5.79	3.55	5 1	3, 382. 0 692. 0	11,200	3.5
OW-7	Micro Diorite	11.27	3.45	5	1, 198. 0 416. 7	10,700	4.2
OW-8	Micro Diorite	5.67	2.20	5	4, 185. 0 845. 0	21,700	2.4
OW-9	Micro Diorite	3, 85	2.79	5	126. 0 25. 5	13, 400	1.3
OW-10	Diorite	8.39	2.47	5	1, 434. 0 504. 2	13, 400	1.3
OW-11	Micro Diorite	5, 83	2.06		3, 440. 0 772. 0	20,700	2.3
OW-12							<u> </u>
OW-13	Silicified Lapilli Tuff	6. 21	1.50	5	23. 28 4. 63	190	8.8
OW-14	Andesite	4, 13	1.63	2.7 1	3,110.0 1,230.0	30, 200	-0.1
OW-15							ļ
OW-16	Micro Diorite	3, 38	3,48	5 1	894. 0 196. 0	1,820	1.1
OW-17	Ore (origin: Basalt)	4.44	1.55	5 1	35.3 7.7	210	39. 8
OW-18	Andesite	7.77	1.90	5 1	264. 0 52. 0	2, 140	3.4
OW-19	Andesite	9.44	3.80	5	902. 0 212. 5	4,880	3.7
OW-20	Basalt	6.55	2.46	5 1	435.0 89.2	2,350	1.8
OW-21	Andesite	2.25	2.80	5 1	1,018.0 245.5	1,800	1.9
OW-22	Basalt	8.02	1.95	5 1	1,118.0 279.0	10, 300	1.3

 Table III-1
 Physical properties of the rock samples, Bislig Area

Sample No.	Rocks	Section (cm ²)	Length (cm)	Current (µA)	Potential (mV)	Resistivity (Ωm)	FE (%)
OW-23	Basalt	8. 58	1. 99	5 1	4,982.0 984.0	42,700	2, 3
OW-24	Basalt	9.25	1.70	5 1	82.42 17.82	930	0, 5
OW-25	Basalt	14.17	2.19	5 1	653.0 122.9	8,200	3. 8
OY-1	Micro Diorite	7.22	1.79	5	410, 0 86, 8	3,400	4.9
OY-2-2	Quartz Diorite	9. 53	2.96	5 1	311.1 73.5	2,200	-0.1
OY-2-3	Diorite	5.97	1.63	5 1	131.4 25.98	960	1.9
OY-3	Basalt	7.98	2.45	5 1	6,230.0 1,311.0	41,200	1.5
OY-4	Diorite	9.69	2.10	5 1	627.8 149.4	6,340	1.5
OY-5	Andesite	9.91	1.61	5	199.1 39.7	2,450	2.9
0Ү-6	Micro Diorite	7.38	2.53	5	812.0 222.7	5,620	1.3
OY-7	Quartz Diorite	12.95	2.33		364.5 84.4	4,370	1.7
0Ү-8	Quartz Diorite	8.55	2.80	5	619.0 137.0	3,980	0.0

•

.

4. Result of Induced Polarization Survey in the Western Area

4-1 Surveyed Area

The surveyed area is situated 150 Km southeast of Valencia, in Bukidnon Province in MINDANAO Island.

It is bounded by

Latitude 7° 46' 41" and 7° 48' 34" N (3.5 Km north to south), and

Longitude 125° 17' 04" 125° 19' 00" E (1.2 Km east to west).

The base station lies approximately at

```
Latitude 7° 47' 38'' N and Longitude 125° 17' 23'' E
K-Line No. 35
```

4-2 Period of the Survey

The survey started March 7, 1973 and concluded on April 18, 1973 with 30 days of actual work during 41 days of stay in the area.

4-3 Members of the Survey Team

WENCESLAO ARGAÑO	ASAHI HATTORI
MARCELINO APELO	OSAMU KUSAKA
EMIL T. AVILA, Jr.	HITOSHI ITO
ELIGIO ARIATE	TOSHIAKI FUJIMOTO
	TOMIO TANAKA

4-4 Place and Transportation

Valencia is situated about 130 Km south of Cagayan de Oro City along the national high way Route 3, and San Fernando, where the base camp for food supply was settled, is about 20 Km East of Valencia.

Barrio Katipunan is the terminal village for the transportation of members and surveying goods by logging trucks, from where all the equipments and foods were carried by human power for about two hours along Tigua river and its upstream Tagbiga.

The base camp was settled beside Tagbiga river in the middle of the surveyed area, but the area was so extensive and rugged that it took about half an hour on foot to reach the nearest line and one and one half hour to the farthest line.

More than 40 laborers always lived in the camp, so that a few laborers went to and from San Fernando every day to replenish their food supplies in the camp.

4-5 Geological Features

Geology of the surveyed area is comparatively simple. Normal sediments such as conglomerate, sandstone and mudstone belonging to the Kalagutay group of early to middle Miocene age, are intruded by pyroxenite and diorite during late Miocene.

Quaternary andesite lava covers partially the rocks mentioned above.

Pyroxenite and diorite occupy more than half of the surveyed area.

The trend of these intrusive rocks coincide with the general strike $(N5^{\circ}W)$ of sedimentary rocks.

About 500 \sim 1,000 m eastwards from the contact between intrusive rocks and the normal sediments, diorite intrude into pyroxenite in dyke and network form, and it appears to be a composite body.

Further eastward, the composite body changes gradually to pyroxenite with few diorite dykes.
Pyroxenite in this area is dark green or dark gray holocrystalline rock composed of augite, hornblende, biotite and magnetite. $5\% \sim 10\%$ of magnetite grains are included in the pyroxenite.

Diorite is fine grained holocrystalline rock consisting of biotite, plagioclase, augite and a few magnetite.

Thermal metamorphism of the sedimentary rock is not recognized. Impregnations of pyrite are observed in some places of the intrusive rocks. Further more a few veinlets of chalcopyrite and other ore minerals are also found mainly in the composite body.

4-6 IP Instruments

IP Transmitter

Model 506 made by CHIB	A Electronic	Laborator	y, JAPAN	V
Maximum output power	2.5A, 800 V			
Engine Generator	Model MK-2	2.0 Kw,	400 Hz,	115 V

IP Receiver

Model	YMO-412	made by	YOKOHAMA	Electronic	Laboratory,	JAPAN
-------	---------	---------	----------	------------	-------------	-------

Fullscale 10 Microvolt

Transceiver

Model CH-1330 made by HITACHI Co., JAPAN

Maximum output power 500 mW, 10 sets

4-7 Survey

Lines and Bench Mark

The IP survey lines were planned by the geological team based from the results of the geological and geochemical surveys. The base line was brushed

- 94 -

along the general direction of copper outcrops and geochemical anomalies.

Ten IP survey lines were planned including one base line but one additional line was surveyed considering the results of IP survey, namely A Line, B Line, ----, J Line from the north and K Line as the base line. The direction of the base line is N15^oE (magnetic north) and the other lines intercept it at right angle each 400 m apart.

The base station was selected at the intercept of F Line and K Line (K-33) using the elevation of 800 m from the enlarged map of 1/10,000, for lack of an established bench mark in this area.

The length of every survey lines are as follows,

A,C — J Line	9 lines each 1,200 m	total	10,800 m
B Line			2,600
K Line			3, 300

Total 16,700 m

Actual Survey

As thick vegetation covers the area and the topography is very steep, the compass and tape traverse survey was conducted.

Measuring instruments were USHIKATA handy compass S-25 and eslon measuring tape with an accuracy of more than 1/50.

Measuring points were established 100 m interval and complementary points at 50 m interval. Circular calculator and a table of horizontal distances were used in the field.

Elevation of the measuring points ranges from 640 m to 1,250 m.

Average inclination of the surveyed line is generally from $25^{\circ} \sim 35^{\circ}$. In the

southern part of the area, more than 50° slope was recorded between two points.

4-8 Interpretation of Results of Survey

The results of survey were interpreted by two dimensional analysis of their profile along each survey line and three dimensional analysis of their plane distribution over the surveyed area.

Two typical anomalies (line A and I) were further studied quantitatively by model calculations.

Profiles of frequency effect (FE), apparent resistivity and metal conduction factor are shown in PLIII-W2 ~ W12 together with the topographical profiles. Their horizontal plane sections are shown in PLIII-W13 ~ W18 for the depths N=1 and N=3.

4-8-1 Interpretation of Profiles at Each Survey Line

Line A (PLIII-W2)

A typical anomaly of over 10% FE was detected in the eastern part of the survey line at measuring points 18-21. According to the model calculations later described, this anomaly is considered to be caused by a 150 M wide mineralization with a westward dip. It might be due mainly to disseminated pyrite.

An anomaly of $4 \sim 5\%$ FE was observed at 100 M under measuring point 10, which indicates nearly 200 M of extension of a mineralization with a width of about 100 M.

Except the high resistivity of topographical influence observed at both ends of this survey line, the resistivity is low especially at measuring point 8 (lower than 500hmM) where the late andesite lava cover exists.

- 96 -

Line B (PLIII-W3)

The wide and strong FE anomaly is found in the eastern portion of the survey line. Anomalies of over 6% FE are all located within pyroxenite area to the east of the small valley around measuring point 20. Notably, the remarkable anomaly zone seen around point 45 east of point 36, indicate that pyroxenite is mineralized from shallow to deeper places. The nanomaly is due to magnetite in the pyroxenite and partly due to pyrite mineralization.

The apparent resistivity varies from several 10 to 600ohmM divided into two zones, namely that of andesite west of point 11 with resistivity value of about 600ohmM, and that of diorite and pyroxenite in the east with about 150ohmM resistivity.

The large scale topographical unevenness influenced very much the apparent resistivity, so that one third to four times as much as the true resistivity are observed at points 18, 24, 32 and 43 as high resistivity and at points 28, 40 and 46 as low resistivity.

Line C (PLIII-W4)

6-8% FE anomaly observed at points 20-22 should correspond to a shallow mineralization in pyroxenite and extends over the north gully to the anomaly of measuring point 22 of line B.

In the west side of the valley at point 12, resistivity is low (under 100ohmM), showing a high porosity of sedimentary rocks. FE is also low (-0.5 to 1.0%) there indicating absence of mineralization.

Line D (PLIII-W5)

This line was additionally surveyed along the valley of Tagbiga and its branch

- 97 - .

to study the very extensive anomaly zone discovered on survey line B. FE anomaly as much as 10% was observed all over this additional survey line. As in the case of line B, the anomaly seems to be of magnetite or pyrite mineralization of pyroxenite and near point 20, it coincides with the low resistivity zone and the mineralized zone is expected to extend at depth.

The resistivity of pyroxenite was estimated from the average resistivity along this line as 1500hmM where topographical influence is negligible.

Line E (PLIII-W6)

No remarkable anomaly was observed except the slight anomaly of FE 5% about 150 M under point 19 which is considered to be the west edge of the mineralized zone extending northward by northwest.

No clear contrast of apparent resistivity was obtained becuase of topographical fluctuations.

Line F (PLIII-W7)

FE anomalies found in the eastern part of the survey line are owing to mineralization of pyroxenite shown at the surface or point 16 and east of point 19. As observed on rock samples $R-1 \sim R-3$, pyroxenite is mineralized strongly in the area even at the surface.

The anomaly extends to great depth and the resistivity is considerably low so that an additional survey is recommendable in the eastern part of this line.

Low resistivity of sedimentary rocks was observed west of point 9.

Line G (PLIII-W8)

Very clear FE anomaly whose centre is at point 18 is in an area of pyrorenitediorite composite body. A source of anomaly about 200 M wide (point $16 \sim 20$) and more than 150 M deep with a westward dip can be supposed.

The rock samples collected at the surface has high content of pyrite as well as magnetite and the FE anomaly higher than 13% must have originated from the pyrite.

Line H (PLIII-W9)

The wide distribution of FE anomaly east of the gully at point 16 was confirmed by measurements every 50 M. The rock samples collected at the surface showed strong mineralization of magnetite and pyrite in the pyroxenite-diorite composite body. The resistivity being comparatively low, point 16 can be a prospective boring point.

Line I (PLIII-W10)

A result of model calculations based on the result of survey along this line is shown in PLIII-W20. According to that, the source of anomaly is at the depth of about 150 M and about 200 M wide with a westward dip. FE was assumed 20%. As seen in the case of rock sample R-9, the mineralization might be partially intensive.

Line J (PLIII-W11)

From now on the centre of the anomaly is in the western part of line K. Typical shape of a couple of anomalies extending with 45° inclination as shown in the profile indicates a strong mineralization localized near the surface around points $11\sim13$.

West of these couple of anomalies, resistivity is so low that a distribution of porous rocks is expected.

Line K (PLIII-W12)

In the resistivity profile after the removal of topographical fluctuations, a uniform distribution of resistivity of 100-2000hm-M of pyroxenite is seen.

In the FE profile, south of point 45, a north by northeast extension of mineralization is indicated by a widely distributed anomaly of 5.0%.

The 6-8% anomaly at point 46 was also recognized by some outcrops and a copper anomaly observed in the geochemical survey. Its size is not large but it is clearly a shallow anomaly.

Also at point 54 near the surface, a small source of anomaly is seen. South of this point is the extension of the anomaly described in relation to line I and line J. 4-8-2 Interpretation of Plane Maps of Each Depth

Equi-Frequency-Effect Map

N=1 (depth 100 M) (PLIII-W13)

The anomaly was detected on point 11 of line J and extend to point 13 to 19 on line I, point 15 to 23 on line G and point 19 to 25 on line F. The anomaly was not detected on line E but reappeared strongly all over on line D, extending to point 36 to 53 on line B and point 16 to 21 on line A. Although there is lack of information about this anomalous zone in the area between line C and line E, which are 700 meters apart, the area surrounded by 7% FE contour almost agrees with the distribution of mineralized zone.

2% FE contour defines well the geological borderline between sedimentary rocks and pyroxenite.

N=3 (depth 200 M) (PLIII-W14)

Main features of the map are almost the same as the map N=1. The shallow

- 100 -

anomaly at point 11 of line J, however, has disappeared, on the contrary, the anomaly extending north by northeast is now more distinct by the deep anomaly under point 18 of line H.

The anomaly zone of line I – line F extends almost due north and due south along the east of the gully at point 16 of line G. This might show that mineralization occurs along the sheared zone and the source of anomaly varies in width and depth as the scale of the sheared zone as seen in the shallow anomaly of line J or the deep anomaly of line H.

Equi-Apparent-Resistivity Map

N=1 (depth 100 M) (PLIII-W15)

Apparent resistivity measured by dipole method involves not only topographical influence but also an erroneous resistivity of the surface in 45[°] directions. To avoid it, the average resistivity of three nearest neighboring point

$$\rho_{c} = (\rho_{1} + \rho_{2} + \rho_{3}) / 3$$

is employed in the maps.

The 100ohmM equi-resistivity contour parallel to line K agrees very well with the borderline between pyroxenite and sedimentary rocks shown in the geological map, and the resistivity of the pyroxenite and the sedimentary rocks are estimated to be 150ohmM and 60ohmM respectively. Pyroxenite has a resistivity of 200ohmM in the high resistivity zone on the hill at the eastern end of lines G, H, I and J. On the other hand the contour of 500hmM at line A shows moist andesite exist there.

The variation of resistivity described above are considered to be due to real geological differences and the contours are expressed in thick lines. The other contours which might be due to topographical influence or very local variation and have little meaning with the inter-survey-line distance of 400 M are expressed in broken lines.

N=3 (depth 200 M) (PLIII-W16)

The geological variation of the distribution of resistivity shown in the map of N=1 has dissappeared in this map.

Since topographical effect is strong and it is very difficult to relate the results of survey of neighboring lines, the contours in this map are all expressed in broken lines.

Equi-Metal-Conduction-Factor Map (PLIII-W17, W18)

The distribution of metal conduction factor (MCF) over 50mho/M agrees with that of the mineralized zone. At some places as point 14 of line G and point 8 of line J, however, MCF is high due to low apparent resistivity caused by topographical irregularity and the detail of the structure cannot be observed.

It should be necessary to survey further the anomaly extending northeast by southwest between point 20 of line D and the eastern end of line E, since the anomalous source extends persistently at depth in line D.

4-9 Physical Properties of Collected Rock Samples (Table III-2)

Resistivity of rock samples collected at the surface varies considerably with the degree of weathering, chemical change and other conditions after their collection. The resistivity of the collected rock samples measured in the laboratory cannot be correlated with resistivity obtained in the field. Resistivity of the rocks in the laboratory is usually higher than that measured in the field.

In all the samples with FE higher than 3%, magnetite and pyrite are clearly visible to the naked eye.

Sedimentary rocks have less FE than 2%, which agrees with the value of the low FE zone in the western part of the surveyed area.

From the observation of external appearance and thin section under the microscope, it is concluded that the rocks of high FE contains considerable amount of magnetite which forms strong source of FE anomaly together with pyrite.

4-10 Model Calculations

In the course of quantitative study of the observed IP anomalies, many precedent model calculations were applied. For the two remarkable anomalies at lines A and I, model calculations were carried out by an IBM360 Model J/195 computer.

As shown in PLIII-W19, W20, the underground was divided hypothetically into about 1,400 grids each named with a 'code number'. The values of resistivity and FE were given as parameters to each grid and the two-dimensional resistance networks were solved by Gaus-Seidel iteration.

The combination of resistivity and FE and the shape of the source of anomaly was changed several times so as to find an optimum solution by which the result of calculation comes closest the observed value.

		1	T	r			
Sample No,	Rocks	Section (cm ²)	Length (cm)	Current (µA)	Potental (mV)	Resistivity (Ωm)	FE (%)
R-1	Feldspar vein	4.10	1.58	5 1	55.2 10.6	280	12.3
R-2	Pyroxenite	4.07	1.40	5 1	56.4 10.6	320	9.7
R-3	Pyroxenite	10. 21	1.15	5 1	46, 2 8, 91	810	18.0
R-4	Conglomerate	10.07	2. 38	5 1	224.0 49.56	2, 050	0.7
R-5	Pyroxenite	12.83	1.96	5 1	223, 2 52, 05	3, 160	2.7
R-6	Pyroxenite with diorite net	11.65	1.80	5 1	75.5 14.92	970	8.3
R-7	Micro Diorite	9.63	1.39	5 1	603.2 118.2	8,270	4.1
R-8	Pyroxenite	11.84	1.81	5 1	207.0 41.7	2,720	13. 4
R-9	Pyroxenite	5. 30	2. 15	5 1	137.6 27.5	680	28.8
R-10	Pyroxenite with diorite net	4.90	3. 48	5 1	23.04 4.58	65	18.4
R-11	Pyroxenite	8.60	1.22	5 1	67.8 13.4	950	0.6
R-12	Sandy Tuff	12.08	1,68	5 1	4.37 .82	61	0.5
R-13	Pyroxenite	8.52	3.86	5 1	866.6 176.2	3,860	11.0
R-14	Pyroxenite	7.13	1.53	5 1	50.2 9.8	460	58.0
R-15	Pyroxenite	5.76	1.55	5 1	83. 1 15. 7	600	27.4
R-16	Pyroxenite	11. 53	1.45	5 1	24.7 4.84	390	6. 9
R-17	Andesitic Tuff	7.85	2.26	5 1	101. 1 20. 7	710	1.6
R-18	Taffaceous shale	6. 93	1.58	5 1	42. 4 8. 48	370	0, 1
R-19	diorite net with diorite net	11. 39	1. 93	5 1	124. 0 24. 86	1,470	22. 5
R-20	Pyroxenite with diorite net	7.15	1.31	5 1	92.6 18.5	1,010	3, 0
R-21	Pyroxenite with diorite net	4.85	1.30	5 1	104.5 20.6	770	29. 9

Table III-2 Physical properties of the rock samples, Tagbiga Area

Sample No.	Rocks	Section (cm ²)	Length (cm)	Current (µA)	Potential (mV)	Resistivity (Ωm)	F.E (%)
R-22	Pyroxenite	8.75	1.33	5 1	223. 2 52. 05	3, 180	2. 7
R-23	Pyroxenite	9, 88	1.65	5 1	82, 4 16, 34	980	1. 2
C-58	Red Tuff	6.48	1.33	5 1	54.6 10.7	530	0, 2

.

•

.

5. Conclusion and Future Prospect

5-1 Eastern Area

The apparent resistivity varies widely from 50ohmM to 100ohmM and the contrast between the low and the high resistivity zone is considerably clear.

Dioritic rocks in southwestern part of the surveyed area have high resistivity ranging from 500-1,000 hmM. From this property the distribution of dioritic rocks was well interpreted at the surface as well as in depth.

Basalt showed low resistivity from 100 to 2500hmM, and less than 1000hmM in the hydrothermally altered zone which coincides with a high FE zone.

As for FE anomaly which indicates mineralization, a remarkable anomalous zone extending to the northeast was detected in the middle of the surveyed area. The anomalies at point E-3 of line No. 4 and point 0 of line No. 9 should be at or near the surface, and outcrops of pyrite and chalcopyrite were discovered by the geological survey at those particular points.

The other FE anomaly extending to the east of point E-1 of line No. 5 and to the west of point 0 of line No. 9 could be due to basalt in dioritic rocks and mineralization from the surface to the depth of dioritic rocks in the western part of the surveyed area. According to the geological survey, the FE anomaly conforms mainly with the pyritized zone. Since this zone coincides with the low resistivity zone with alterations, it should be the most prospective area.

The ore deposit which is expected in this area lies probably at the interface between basalt and diorite. From 6 to 8% FE anomaly is considered to be the most promising zone of copper deposit extending to the southwestern part of point E-1 of line No. 6, point 0 to W-1 of line No. 7 and point W-2 of line No. 8

In this zone, point E-1 of line No. 6 is recommended as the interesting boring site.

To investigate further the anomaly found in the basalt, a bore hole site within the vicinity of point E-3 on line No. 4 is highly recommended.

As a future plan, an additional IP survey is necessary to study further the distribution of the well defined anomaly observed on survey lines No. 8 and No. 9 which might be considered extending to the southwest of this area.

5-2 Western Area

Since this broad survey of IP over an area 3,300 M long from the north to the south and width varying from 1,200 - 2,600 M from the east to the west was planned well and taking into consideration the results of geological and geochemical surveyes, we could get a significant information about the distribution of mineralized zone from well defined IP anomalies.

Equi-FE contour of 7% shown in PLIII-W13, 14 corresponds very well to the distribution of mineralization. This anomaly zone is observed only in the pyroxenite and the composite body of pyroxenite and diorite in the eastern portion of the surveyed area. No anomaly is detected in the sedimentary rocks in the western portion of the area.

The strong and deep anomaly observed in the eastern part of line B and the whole part of line D is considered to be due to fresh magnetite grains in pyroxenite or mineralization of diorite intrusive at depths.

Having partially low resistivity, this area is most interesting shown by the result of the geophysical survey.

The shape and source of anomalies distributed in the direction of north-south in the southern part of the surveyed area varies from survey line to survey line. This variation of shape of anomalous zone is probably due to the effect of the distribution of intrusive bodies and the concentration distribution of magnetite and/or due to the magnetite grain distribution over the sheared zone along the gully passing point 16 on line G.

Along line F and line H, a wide and deep anomaly was observed.

Although topographical elevations vary considerably and the results of the apparent resistivity is influenced much by the topographical irregularity, the low resistivity sedimentary rocks and andesite are well distinguished from the high resistivity pyroxenite and composite body of pyroxenite and diorite.

Despite the fact that the copper anomaly is weak in the geochemical survey, the strong FE anomalous zone described in the IP survey is recommended to be surveyed hereafter as it might be the halo of a porphyry copper deposit.

Furthermore the gap between the anomaly zones striking NE-SW, that is east of line E and F and to the south of line D, is desired to be investigated.

According to the results of the geophysical survey, point 20 of line D shows the most consistent IP anomaly. This point is recommended as the most prospective boring site.

Point 16 of line H, where a comparatively broad N-S extension of IP anomaly is expected, might be the secondary proposal site of boring.

In the future surveys, application of the magnetic observation as well as the self potential method (SP) is desired as a complementary survey to the IP method, since the IP anomaly detected in the survey is considered to be due mainly to fresh magnetite.

Magnetic measurements could be very effective in the identification of ore and the determination of the distribution of igneous rocks.

APPENDICES

•

Table 1. Fossils

1. Smaller Foraminifera

G-52 consist of a few species of benthonic forms which indicate shallow water environment of inner-bay condition. Samples b-102 and E-0 consist of Middle Miocene planktonic fauna associated with benthonic foraminiferal assemblage indicating deep-water environment. It is In the 14 foraminiferous samples, benthonic foraminifera is more common than planktonic foraminifera. Among them samples G-35 and contain also shallow water benthonic species. Planktonic foraminifera is common in four samples (CN-11, D-35, E-5 and B-68), which noteworthy that two species of Ostracoda are commonly found in samples E-56A and h-59.

Paleoecology	deep water	shallow water	leep water
Geological age	Middle Miocene 1	Younger age	Early or Middle I Miocene
Planktonic Foraminifera	Globorotalia cf. menardii G. mayeri G. praemardii Globigerina altispira Globoquadrina altispira Globigerinoides ruber G. trilobus Globigerinita glutinata Orbulina bilobata O. universa		Globigerinita cf. glutinata Globoquadrina cf. venezuelana Orbulina suturalis O. universa
Benthonic Poraminifera	Nodosaria longiscata Sphaeroidina bulloides Stilostomella lepidula Urigerina cf. proboscidea Cassidulina subglobosa	Fseudorotalia (?) sp. Elphidium sp. Operculina sp. Amphistegina sp. Cibicides sp. Hanzawaia nipponica	Nodosaria longiscata Globobulimina sp. Uvigerina cf. proboscidea Amphistegina sp. Cibicides (?) sp.
Group or Formation	Kalagutay G.	Lumbayao F.	Kalagatay G.
Locality	Halapitan	do do	Tagbiga C.
Sample No.	B-68 (Mudstone)	b-102 (Limy sandslone)	CN-11 (Mudstone)

Sample No.	Locality	Group or Pormation	Benthonic Foraminifera	Planktonic Foraminifera	Geological age	Paleoecology
D-35 (Siltstone)	Nilabsan R.	Kalagatay G.	Eggerella sp. Amphistegina sp. Gyroidina sp.	Globigerina spp. Globigerinoides sacculifer G. cf. trilobus Orbulina suturalis	Early or Middle Miocene	Deep water
E-5 (Andesitic tuff)	Латао R.	с ^д	Calcarina sp. Elphidium cf. craticulatum E. crispum Operculina sp. Poroeponides cribrorepandus Amphistegina sp. Cibicides pseudoengerianus C. sp.	Globorotalia mayeri Globigerinoides ruber subquadratus G. sacculifer Orbulina universa	Early or Middle Miocene	Shallow
E-56A (Mudstone)	Дасопдропиа R.	Barcelona G.	Fyrgo sp. Uvigerina sp. Ammonia beccarii Pararotalia sp. Elphidium craticulatum Operculina sp. Cibicides sp. Florilus sp.		Not clear	Shallow water
E-56B (Mudstone)	qo	da	Elphidium craticulatum		Not clear	Not clear
E-59 (Calca)	đo	qo	Pyrgo Triloculina sp.		Not clear	Not clear
E-O (Limestone)	Sanco Point	Agtunganon F.	Ammonia beccarii Elphidium cf. advenum E. Sp. Nonionella Sp.		Tounger age	Shallow
G-35 (Mudstone)	Simulav R.	Kapalong P.	Elphidium advenum E. craticulatum E. sp. Amnonia beccarii A. sp.		Fliocene~ Fleistocene	Shallow water

٠

Palececology	Shallow water	Not clear	Not clear	Not clear
Geological age	Piocene- Pleistocene	Not clear	Not clear	Not clear
Planktonic Foraminifera		spp. (indeterminable)	Globigerinoides spp. spp. (indeterminable)	
Benthonic Foraminifera	Armonia beccarii Elphidium craticulatum	Uvigerina sp. Melonis cf. pacificus	Bolivinopsis sp. Textularia spp. Dorothia sp. Martinottiella sp. Melonis cf. pacificus	Elphidium craticulatum E. sp.
Group or Pormation	Kapalong F.	Mangagoy P.	ę	Каbал G.
Locality	Pasian R.	Pagtitaan R.	do	Ngan R.
Sample No.	G-52 (Muđstone)	G-313 (Mudstone)	G-313 (fine sandstone)	h-59 (Mudstone)

A-3

2. Larger Foraminifera	•	_	_		_		_			~	(<u>.</u>			_		•	~-	~~		~~	~	~~
Sample No. and Formation	stern Area)	(Mangagoy F.	9	(Float	7 (Mongagoy F.	0 q0	98(do	12(do	22 Agruuganon 38 Dacongborva	55 (do	64 (Agtuuganon 75 (Daconchonua	78 (Mangagoy P.	07 (Agtunganon	15 (Mangagoy F., 16 (Antimicanon 1	4 (Mangagoy P.	50(Float)	ena Mune stern Area)	2 (Kalagutay G.	망. - 약 - (1)	9 9) (ер,	9 qo	2 	야 ⁶ 6
	Ē	Ĩ	造	1 A	2	20	11	5	ÎÏ	5		ц Ц Ц	ŝ	ĴĴ	Ë	Ĩ.		Ë	5	ĴĴ	Щ,	11	Ľ,	ក្តីក្តី ផ្លូផ្លូផ្លូផ្លូផ្លូផ្លូផ្លូផ្លូផ្លូផ្លូ
Nummulitidae Nummulitiae Nummulites sp. Operculina ammonoides (Gronovius) O. venosa? O. sp.			0	200							0	0				0				0				0
Heterosteginae Heterostegina borneensis van der Vlerk Spiroclypeus tidoenganensis van der Vlerk S. margaritatus Schlumberger S. leupoldi van der Vlerk S. ef. higginsi Cole S. sp.		0			000	0		0000							0	c	5	0	:					
Cycloclypeinae Cycloclypeus communis Yabe and Hanzawa C. eidae Tan C. posteidae Tan C. carpenteri Brady C. cf. carpenteri Brady					0	00		0									**		0	0 00			0	0
Lepidocyclinidae Nephrolepidina sumatrensis (Brady) N. inflata Provale N. angulosa Provale N. japonica Yabe N. cf. cebuensis Yabe and Hanzawa N. inormata Rutten			¢	0			0							000	00	0				0000			0	
N. ferreroi Provale N. verbecki Newton and Holland N. parwa Oppenoorth N. ar. Eulepiding planata Oppenoorth E. formoas Schlumberger			0	0 00			0	0 0			c					0000							0	000
E. favosa Cusaman E. sp. Miogypsinidae Miogypsinoides abunensis (Tobler) M. dehaarti van der Vlerk M. formosensis Yabe and Hanzawa Miogypsina theeidaeformis Rutten	-									•-•	00)))			-	000						_	00	000
M. polymorpha Rutten M. inflata Yabe and Hanzawa M. globulina (Michelotti) M. sp. Amphisteginidae Amphistegina radiata (Fichtel and Moll)												0				0		0000	0					
Alveolinidae Borelis pygmaeus (Hanzawa) B. sp. A. Flosculinella bontangensis Rutten F. globulosa Rutten Miliolidae					0	00			0					2						2		0	0	
Fabulariinae Austrotrillina howchini (Schlumberger) Milolinae Kanakaia cf. mariauensis Hanzawa Peneroplidae				-		0				0	c	> 	-	- -					-					o o
Soritos martini Verbeek Marginopora vertebralis Blainville Planorbulinidae Planorbulinella larvata (Parker and Jones) P. sp. B.										0	00 0					00		0 0		30				0 2
Homotrematidae Homotrematinae Homotrema rubrum (Lamarck) Sporadotrema cylindricum (Carter) Victoriellinae Carpenteria utlicularis (Carter)						c	, , ,			0						0		0	00		0	>		 >0
C. protectormis (4008 C. Sp. Acerbulinidae Acerbulina inhaerens Schultze A. linearis Hanzawa A. (Ladoronia) vermicularis Hanzawa Gypsina globulus Reuss G. vericularis (Peaker and Jance)		0	-	 D	0 0	00				0		00	0 0				<u>></u>	000		0000				
Cymbaloporidae Halkyardia minima (Liebus)									Ī			Í			ļſ					ľ	Ħ	Ĩ		
Geo- Pleistocene (Th)* logical Middle Miccene (Tf) Lover Miccene (Upper Te ~ lover Tf) age Upper Oligocene (Te ~ Upper Te) Middle Oligocene (Td)		0	0	0	0	00	0	0	0	0	0	00	0		0			0		0		0	0	00

Remarks * West Pacific Standard

129 x 10⁶ | Early Cretaceous Late Paleocene 20 x 10⁶ Early Miocene 21 x 10⁶ Early Miocene Late Miocene Remarks đo 11 x 10⁶ 60 x 10⁶ 21 x 10⁶ year Age Potash content contamination ĸ 35.53 89.81 19.79 40.62 47.92 23.11 Air 4.47 0.49 0.17 2.08 0.77 0.54 Feldspar & Homblende Colorless mineral Mineral **Plagioclase** Hornblende Hornblende Hornblende-biotite-clinopyroxene Biotite gabbro Hornblende andesíte (díke) Hornblende andesite (dike) Altered biotite-hornblende Altered quartz diorite Altered dior tic rock granodiorite Rock В н Ř 2 ч. Location Locavon Agusan q Sita Taon Ngan Sample No. P-409 B-44 <u>E-20</u> П-84 E-27 H-9

Table 2. Potash-Argon ages on some intrusive rocks

Explanation:

From the field observation, B-44 and E-20 rocks seem to be intruded at the same time.

The potash content of E-20 sample shows very low and the air contamination is very high so that the measured age is not so reliable.

Therefore, the intruding age of both rocks is surely Late Miocene.

Though the writers think its age as to be Late Miocene tentatively, it is desirable to carry out more detailed F-409 quartz diorite is too old in absolute age. This datum does not coincide with the field evidences. geological survey in Phase III.

Sample No.	Location	Group or Formation	Rock	Macroscopic features	Microscopic observations	Remarks
	(Thin Section)					
A-3	Koburocanan C.	Kalagutay G.	Andesite	Pale gray, coarse- grained rock.	Crystals of plagioclase ($0.5 \text{ mm} \sim 1 \text{ mm}$ in length) and chloritized biotite occur in a less clearly defined glassy matrix. Lithic fragments can not be observed. Secondary minerals are chlorite, calcite, epidote, prehnite, sericite, quartz and sphene.	
A-4	ф	qo	Andesite	Dark gray, compact rock	Composition is quite similar to A-3, although crystals are fine and there are a small amount of lithic fragments. Secondary minerals are chiefly calcite, chlorite and opaque minerals.	
A-5	đo	do	Altered andesite	Grayish green, coarse grained rock with white veinlets.	-Lithic fragments of porphyritic augite andesite and phenocrysts of augite, plagioclase and hornblende are in a argillaceous matrix. Chlorite, epidote, calcite, prehnite and laumontite occur as secondary minerals.	
B-13	Mampilo C.	ę	Basic conglomerate	Grayish green rock with many kinds of pebbles (diameter is up to 1 cm).	Pebbles of serpentinite, dolerite and gabbro are cemented by radiated zeolite (thomsonite?). Fragments of pyroxene and chlorite are also present.	
B-17	do	Intrusives	Scrpentinite	Yellowish dark green rock.	Mafic minerals are completely serpentinized and show mesh structure. A few opaque mineral is recognized along small cracks.	
B-24	qo	do	Dolerite	Dark gray, compact rock.	Microphenocrysts of twinned plagioclase are in a matrix of twinned plagioclase laths, clinopyroxene, sphene and opaque minerals. Matrix shows intergranular texture.	
B-25	Ŷ	ф	Cataclastic clinopyroxene gabbro	Grayish white rock with black spots.	Holocrystalline. Twinned plagioclase, clinopyroxene, clinozoisite (aggre- gate of small crystals) and serpentine are the main constituents. Plagioclase and clinopyroxene crystals are crushed by cataclasis. Clinozoisite is interstitial to plagioclase.	
B-26	ę	ф	Olivine-clinopyroxene gabbro	Medium-grained holocrystalline rock.	Plagioclase, clinopyroxene and olivine are the principal minerals. Plagioclase shows carlsbad or albite twinning and partly altered to clay minerals. Clinopyroxene and olivine are almost serpentinized. Opaque minerals are recognized also.	See PL-1A

Table 3. Microscopic observations

Remarks					See PL-1B			see PL-IC	
Microscopic observations	Many volcanic fragments (chiefly feldspar and augite) are welded by volcanic glass and chlorite. Feldspar is fresh and rarely twinned. White veinlets are composed of barite.	Serpentine is principal mineral. Clinopyroxene, chromite and opaque minerals are observed.	Pyroxene is almost clinopyroxene which is partly serpentinized.	Medium-grained, holocrystalline. Zoned plagioclase partly altered to sericite, clinopyroxene, biotite, opaque minerals and apatite make up this rock. Xenolith is composed of clinopyroxene, hornblende, biotite, opaque minerals, zoisite and apatite.	Principal minerals are clinopyroxene and opaque minerals. A small amount of hornblende and biotite is present interstitially to the clinopyroxene (prismatic augite).	Holocrystalline and poikilitic texture. Feldspar crystal encloses abundant small crystals of pyroxene, hornblende and ore mineral.	1. Clinopyroxene, biotite, plagioclase, alkali feldspar, ore mineral, sphene and apatite are the principal minerals. Xenolith is ultrabasic, holocrystalline rock, composed of clinopyroxene, biotite, ore mineral and apatite.	¹ , Potash feldspar showing perthite texture, twinned plagioclase altered to sericite, biotite, hornblende and clinopyroxene are main constituents. Accessories are ore minerals, apatite and sphene. Large crystals of secondary epidote are recognized. Quartz is absent.	Holocrystalline rock with porphyritic texture. Phenocrysts of augite and biotite occur in a matrix of plagioclase laths, acicular or granular clinopyroxene, biotite and opaque mineral.
Macroscopic features	Greenish gray, com- pact rock with white veinlets.	Dark yellowish green, compact rock.	Dark gray, compact rock.	Gray, compact rock with dark greenish gray xenolith (pyroxenite).	Grayish green, medi- um-grained, holocry- stalline rock.	Gray compact rock with pyrite inpregna- tion.	Gray, medium grained holocrystalline rock with dark gray xenolith.	Gray, medium-grained holocrystalline rock.	Dark gray, compact rock.
Rock	Argillaceous tuff	Clinopyroxene serpentinite	Serpentinized pyroxenite	Biotite-clinopyroxene diorite	Hornblende-biotite pyroxenite	Biotite-clinopyroxene dolerite	Biotite -clinopyroxene diorite	Hornblende-biotite- clinopyroxene diorite	Biotite-clinopyroxene porphyrite
Group or Formation	Kalagutay G.	Intrusives	đo	op	qo	q	ęp	đo	qp
Location	Kalakangon R.	qp	đò	Locawon R.	q	ę	qo	ę	đo
Sample No.	B-32	B-37	B-38	B-46	B-49	B-50	B-51	B-52	B-53

Remarks				See PL-2A	See PL-2B				
Microscopic observations		Phenocrysts of euhedyal augite (0.6 mm in size) occur in a matrix of plagioclase laths, clinopyroxene and opaque mineral. Secondary epidote occures in druses as radial aggregates. Carbonate minerals are also present in druses and fissures.	Holocrystalline and pegmatitic rock. Principal minerals are potash felds- par and plagioclase. Potash feldspar shows graphic intergrowth with plagioclase and is altered to sericite perfectly. Plagioclase has polysynthetic albite twinning.	It shows porphyritic texture. Phenocrysts of euhedral hormblende, augite, anhedral plagioclase and opaque minerals are in a matrix of plagioclase laths, granular pyroxene, cristobalite and opaque minerals.	Rounded to subrounded fragments ($1 \sim 5 \text{ mm}$ in size) are composed of volcanic, plutonic, metamorphic and sedimentary rocks. Compositions which make up each fragment are as follows. Volcanic rock: porphyritic, aphyric and glassy andesite. Plutonic rock: serpentinite, granite and hornblende diorite. Sedimentary rock: chert, limestone and tuff. Metamorphic rock: mica schist, quartz-mica schist and amphibolite.	Subhedral to anhedral plagioclase (partially altered to sericite), olivine (showing mesh structure), diallage (having clear parting) and a few opaque minerals are the main constituents of this rock. Olivine is replaced by serpentine partly or wholly.	Grains are made up of angular to subrounded rock and mineral fragments. Mineral fragments are chiefly composed of muscovite, clinopyroxene, hornblende, calcite, plagioclase, apatite and chromite. Rock fragments are dolerite, serpentinite and gabbro.	The essential minerals are plagioclase, clinozoisite altered from pyroxene and biotite. Sphene, apatite and opaque minerals are present.	Subhedral to anhedral clinopyroxene, biotite and opaque minerals are the principal minerals. Felsic minerals are absent.
Macroscopic	features	Gray, compact rock with a few green spot.	Leucocratic, pegmatitic rock.	Gray, porphyritic, compact rock.	Durk gray, bedded, sandy rock.	Dark greenish gray, holocrystalline rock with a few large phenocryst.	Greenish gray,coarse- grained rock.	Dark gray, medium- grained, holocrystalline rock.	Melanocratic, coarse- grained, holocrystalline rock.
, Rock		Porphyritic augite basalt	Potash feldspar- plagioclase pegmatite	Augite-hornblende andesite	Sandstone	Diallage-olivine gabbro	Basic sandstone	Biotite-augite gabbro	Lamprophyre
Group or	Formation	Kalagutay G.	Intrusives	Kalagutay G.	ę	Intrusives	Kalagutay G.	Intrusives	q
Location		Locawon R.	San Fernand	Kalagutay R.	Balacayo Co.	ę	Kalakangon R.	Locawon R.	qo
Sample	No.	B-62	B-67	BT-6	b-2	b-6	b-8	b-17	b-20

A-8

rtvations Ren	ocrysts of euhedral pyroxene ite are scattered in a matrix of d pyroxene and granular opaque g and are altered to carbonate d with carbonate mineral, opa	: in a matrix of plagioclase laths altered from plagioclase and clay	: are main components. Epidote ic minerals are replaced by	and opaque minerals are the ltered to calcite and clay minerals.	ne is altered to aggregates of eral. Anhedral plagioclase is minerals.	grains. Mafic mineral (probably ; chlorite.	te, epidote, plagioclase and a mineral and calcite are com-	lagioclase and lithic fragments. vic rock. Chlorite, calcite and led bedding.	dded in a nearly opaque matrix	
Microscopic obser	It shows porphyritic texture. Microphenot (maximum size is 1 mm) altered to chlorit plagioclase laths, granular augite, altered minerals. Some plagioclase have twinning minerals. Amygdaloidal druses are filled and plagioclase.	Phenocrysts of augite and hypersthene are and opaque mineral. Abundant carbonate a mineral are present.	Hornblende, biotite, magnetite and augite and apatite are commonly observed. Mafi chlorite and actinolite.	Augite, hornblende, biotite, plagioclase at principal constituents. Plagioclase are alt	Original texture does not remain. Pyroxen epidote, chlorite, calcite and opaque mine: also changed to sericite, calcite and clay r	Ore minerals fill the fissures with quartz pyroxene) is completely altered to fibrous	Holocrystalline. Augite altered to chlorite few potash feldspar are present. Opaque r monly found.	Grains are composed of angular quartz, pl Lithic fragments are almost acidic volcani zircon are observed. It shows clear grade	Chips of plagioclase and quartz are embed that also contains a few specks of calcite.	
features	Gray, compact rock with amygdaloidal druses.	Gray, compact rock.	Dark green to gray rock with epidote spots.	Granitic, compact rock.	Yellowish green rock.		Fine-grained, com- pact rock.	Black, fine-grained rock.	Gray, laminated rock.	
Rock	Pyroxene basalt	Two pyroxene andesite	Pyroxenite	Biotite-hornblende- augite diorite	Altered pyroxenite	Ore	Augite microdiorite	Mudstone	Clayey mudstone	
Group or Formation	Nilabsan G.	Intrusives	qo	op •	ор	Ore	Intrusives	Kalagutay G.	qo	
Location	Babonawan R,	Tagbiga C.	qp	qo	ę.	op	qo	đ	ф	
No.	P-101	C-3	C-+	C-10	C-11	C-14	C-15	C-18	C-22	

Remarks											
Microscopic observations	Euhedral green hornblende ($1 \sim 5 \text{ mm}$ in size) and twinned and zoned plagioclase are in a matrix of plagioclase laths and glass. Accessories are apatite, magnetite and chlorite.	Phenocrysts of plagioclase and augite (both are $0.1 \sim 0.5$ mm in size) are enclosed in smaller crystals of plagioclase, magnetite, chlorite, hematite and sericite with some interstitial glass.	Texture and mineral compositions are same to C-25.	Holocrystalline. The main minerals are plagioclase (altered to sericite, epidote and clay mineral) and biotite. Potash feldspar, magnetite and chlorite are fairly present.	Augite, green hornblende and biotite are major constituents. Secondary chlorite and serpentine are also observed.	Chips of biotite, augite, plagioclase and magnetite are distributed through a glassy matrix.	Principal minerals are plagioclase, biotite and augite (some of them are aegirine augite). A few small grains of magnetite, apatite and epidote are commonly observed.	Fragments of glassy and microcrystalline andesites and chips of plagioclase, hornblende and magnetite are cemented by chlorite, sericite and clay minerals.	Abundant chips of plagioclase and hornblende and magnetite are welded by clay mineral. There are some andesitic rock fragments.	The foliation is very clear in this section, which is made up of amphibole, anthophyllite, garnet and zoisite.	Phenocrysts of plagioclase (altered to calcite and quartz) and augite are in a intersertal matrix which is composed of plagioclase laths, augite and glass. Amygdales are filled with secondary zeolite, calcite and quartz.
Macroscopic features	Porphyritic rock.	Black, compact rock.	Porphyritic rock.	White, fine-grained granitic rock.	Pale green rock with pyrite veinlets.	Pale green, compact rock.	Granitic, compact rock.	Gray, compact rock with lithic fragments.	Green, massive rock.	Schistose rock with silky brightness.	Black, compact rock with many amygdales.
Rock	Hornblende andesite	Augite andesite	Hornblende andesite	Biotite microdiorite	Pyroxenite	Andesitic tuff-breccia	Biotite-clinopyroxene microdiorite	Andesitic tuff-breccia	Sandstone	Amphibole schist	Augite andesite
Group or Formation	Kalagutay G.	qo	đo	Intrusives	do	Molambo andesite	Intrusives	Kalagutay G.	do	Basement rock?	Intrusives
Location	Tagbiga C.	đà	do	ф	op	do	Tagbiga R.	op	Pulangi R,	Balakayo R.	Tigua R.
Sample No.	C-26	C-28	C-31	C-33	C-37	C-47	C-49	C-50	C-54	C-60	1-12

Remarks						See PL-2C				
Microscopic observations	Essential rock fragments, that is, amygdaloidal glassy andesite, por- phyritic augite andesite and pilotaxitic andesite occur in a matrix of argillaceous material.	Phenocrysts of euhedral and zoned plagioclase are in a matrix of plagioclase laths and glass. A few grains of apatite is observed.	Volcanic rock fragments are composed of porphyritic andesite, glassy andesite and chloritized tuff.	Many spherultes occur in a matrix of plagioclase laths which are inter- granular to augite and ore mineral. Spherulites are filled with carbonate, chlorite and feldspar.	Holocrystalline and porphytitic texture. Phenocryst is subhedral to euhedral plagioclase altered to chlorite and clay mineral. Twinned plagioclase laths, chlorite, fresh granular augite and ore mineral make up this groundmass.	Holocrystalline rock which is composed of anhedral feldspar (replaced by carbonate or chlorite), carbonate, chlorite and ore mineral. The rock shows traces of foliation.	Phenocrysts of twinned and zoned plagioclase (altered to sericite and clay mineral), augite and green hornblende are in a intergranular matrix of plagioclase laths, augite, chlorite and ore mineral.	Subhedral twinned plagioclase, subhedral augite (partly altered to chlorite) are phenocrysts. Groundmass is composed of plagioclase laths, augite, chlorite and opaque mineral. It shows doleritic texture.	Andesitic rock fragments are cemented by porphyritic andesite. They are composed of phenocrysts of twinned plagioclase and augite in a matrix of plagioclase laths, chlorite and ore mineral.	Similar to D-7. Spherulites are filled with carbonate, feldspar and quartz. Phenocrysts of altered plagioclase occur in a matrix of feathery augite, devitrified mineral and chlorite.
Macroscopic features	Dark gray, compact rock.	Glassy, compact rock.	Gray rock with lithic fragments,	Gray, spherulitic rock.	Dark grayish green, compact rock.	Gray, compact, banded rock,	Grayish black, com- pact rock,	Grayish black, com- pact rock.	Grayish black rock with breccia.	Gray, spherulitic rock,
Rock	Andesitic tuff	Andesite	Andesitic tuff-breccia	Augite basalt	Augite dolerite	Red tuff	Augite basalt	Augite dolerite	Brecciated augite andesite	Augite basalt
Group or Formation	Kalagutay G.	Intrusives	Nilabsan G,	q	Intrusives	Nilabsan G.	qo	Intrusives	Nilabsan G.	go
Location	Tigua R.	do	Takamile R.	do	ę	ę	ę	qo	Panganan R.	đo
Sample No.	CN-9	CN-15	D-5	D-7	8-U	D-10	D-12	D-14	D-18	D-21

Remarks	e mineral. nd opsuge	a matrix	of e com-	he latter een ill amount	tite, and	d mmed	rinned , sphene,	feldspar), kture of	aths, green	a few ie laths,
Microscopic observations	Phenocrysts consist of plagioclase, hornblende, augite and opaque Matrix is made up of plagioclase laths, microlite or crystallite a mineral.	Phenocrysts of twinned plagioclase, hornblende and augite are in a of many tiny plagioclase and hornblende microlites.	 Colourless spherulites filled with amorphous material and chips o plagioclase regularly arrange in reddish brown tuff which might b posed of fine volcanic glass. 	Fragments of andesite and chloritized rock make up this rock. This composed of euhedral plagioclase phenocrysts and yellowish graroundmass. There are many cavities filled with chlorite, a sma of plagioclase laths and augite in the chloritized rock.	Main constituents are twinned plagioclase, green hornblende, biot augite and epidote (altered from plagioclase). A few grains of apa ore mineral are accessories.	Phenocrysts of euhedral hornblende rimmed with opacite and zone plagioclase are scattered in a groundmass of plagioclase laths (ri with potash feldspar), hornblende and opaque mineral.	Large crystals of anhedral biotite (2 mm in size) and zoned and tw plagioclase occur in small crystats of plagioclase, augite, biotite, apatite and ore mineral.	Phenocrysts of zoned and twinned plagioclase (timmed with alkali biotite, apatite and ore mineral are enclosed in a fine-grained min plagioclase, quartz, biotite, augite, ore mineral and zoisite.	Phenocrysts are euhedral augite. Matrix consists of plagioclase l hormblende, chlorite, epidote and ore mineral.	Many vesicles (filled with plagioclase, pyroxene and chlorite) and phenocrysts of plagioclase and augite are in a matrix of plagioclas
Macroscopic features	Gray, porphyritic rock,	Gray, compact rock.	Reddish brown, com- pact rock.	Grayish black rock.	Micro-holocrystalline rock.	Gray, porphyritic rock.	Grayish black, fine- grained, holocrystal- line rock.	Gray, porphyritic rock.	Gray, porphyritic rock.	Gray, porous, volcanic rock.
Rock	Hornblende andesite	Augite-hornblende andesite	Spherulite-bearing tuff	Andesitic tuff-breccia	Hornblende-biotite diorite	Hornblende andesite	Biotite-augite diorite	Biotite-augite diorite- porphyry	Augite-hornblende andesite	Augite andesite
Group or Formation	Nilabsan G.	do	ф	Kalagutay G.	Intrusives	do	đb	р	lntrusives	Nilabsan G.
Location	Panganan R.	Lobong C.	Nilabsan R.	ę	do	qo	do	op	Locawon R.	qo
Sample No.	D-22	D-23	D-28	D-33	D-37	D-39	D-40	D-44	D-46	D-47

ample No.	Location	Group or Formation	Rock	Macroscopic features	Microscopic observations	marks
81-0	Locawon R.	Intrusives	Hornblende andesite	Gray, porphyritic rock.	Phenocrysts of plagioclase altered to clay mineral, fresh hornblende and augite are in a matrix of plagioclase laths, quartz, chlorite, epidote and ore mineral. Sphene, apatite and opaque mineral are accessories.	
0-50	op	Nilabsan G.	Hornblende andesite	Gray, porphyritic rock.	Phenocrysts of twinned plagioclase and mafic minerals (altered completely to carbonate, chlorite and epidote) are distributed in a polkilitic matrix of plagioclase laths with chlorite patches and ore mineral.	
'n	Pailuman R.	qo	Andesitic tuff-breccia	Dark gray, brecciated rock.	Fragments of porphyritic andesite and chips of plagioclase and augite are cemented by chlorite and clay mineral.	
-10	Nilabsan R.	Kalagutay G.	Hornblende andesite	Gray, porphyritic rock.	Phenocrysts of twinned and zoned plagioclase, hornblende, augite, biotite and quartz are present in a matrix of plagioclase laths, granular augite, brown biotite and opaque mineral.	
1-16	ф	qp	Altered tuff-breccia	Pale green rock with vesicles.	Fragments of hornblende andesite, augite andesite and shale and chips of chromite are welded by chlorite and clay mineral. Abundant tremolite and a few epidote are alteration products.	
-17	op	Malambo andesite	Hornhlende-biotite andesite	Gray, volcanic rock.	Phenocrysts of twinned and zoned plagioclase, green hormblende, biotite and augite are scattered in a pilotaxitic matrix of plagioclase laths, hormblende and ore mineral. Apatite is also observed.	
9-1	Sita R.	Nilabsan G.	Andesitic coarse tuff	Dark green, coarse- grained rock with white veinlets.	Fragments of porphyritic andesite, pilotaxitic andesite and glassy andesite and crystal chips of plagioclase occur in a matrix of less clearly defined glassy fragments. Secondary minerals are clay minerals with zoolite and pumpellytte.	
80 11	qo	ę	Andesitic lapilli tuff	Dark green rock cemented by white minerals.	Lithic fragments of porphyritic augite and esite and chips of augite and plagioclase are cemented by laumontite and clay mineral. There are many cavities (0, 2 mm in size) which are filled with analcite and clay mineral.	
6-1	ę	Kalagutay G.	Augite basalt (pebble of volcanic breccia) `	Dark grayish green rock with vesicles filled by dark green minerals.	Microphenocrysts of augite occur in a matrix of plagioclase laths arranged regularly, granular augite, magnetite and brown glass. The matrix shows intergranular texture. Calcite, pumpellyite and clay mineral replace the glass.	

E-11 Sta R. Kalaguay G. Hornblende andesite Dark rock. E-16 do do Augite basalt Dark rock. E-22 do Intrusives Serpentinite Yellon rock. E-23 do do do Borrite Yellon rock. E-23 do do do do Yellon rock. E-24 do do do Gabbro Yellon rock. E-31 udo do do Gabbro Yellon rock. E-31 Nilabsan R. do Kalagutay G. Augite basalt (pebble Dark got. E-31 Nilabsan R. do Crystal tuff Dark got. Bark got. e-5 Davao R. Intrusives Dolerite Reddi e-6 Sita R. Kalagutay G. Calcareous fine tuff Gray.	Group or Formation Rock	Macroscopic features	Microscopic observations R(Remarks
E-16dododohugte basaltDark rock.E-23doIntrusivesSerpentiniteYellon rock.E-23dodofor liePale gE-24dododoYellon rock.Yellon rock.E-29dododofor liePark gE-31Nilabsan R.doCrystal tuffDark ge-5Davao R.IntrusivesDoleriteReddi with ae-6Sita R.Kalagutay G.Calcarcous fine tuffGray.	ilagutay G. Hornblende a.	ıdesite Dark green, compact rock.	Phenocrysts of zoned plagioclase, green hornblende, and a few grains of augite occur in a matrix of plagioclase microlite and glass. Generally this rock has many phenocrysts and shows porphyritic texture. Pumpellyite and calcite are associated with much chlorite.	
E-22doIntrusivesSerpentiniteYellovE-23dododoBioritePale gE-24dododoYellovYellovE-29dodododoYellovE-29dofofoYellovYellovE-21Nilabsan R.doKalagutay G.Augite basalt (pebbleDark gE-31Nilabsan R.doCrystal tuffDark ge-5Davao R.IntrusivesDoleriteReddise-6Sita R.Kalagutay G.Calcareous fine tuffGray.	do Augite basalt	Dark green, compact rock.	Phenocrysts of augite occur sporadically or glomeroporphyritically. Ground- mass consists of plagioclase laths arrenged regularly, granular augite, glass and opaque mineral. Saponite and calcite are recognized as secondary minerals.	
E-23dododofalePaleE-24dododabbroYellovE-29dodoGabbroYellovE-31MolociKalagutay G.Augite basalt (pebbleDark got, sock.E-31Nilabsan R.doCrystal tuffDark gacome-5Davao R.IntrusivesDoloriteReddise-6Sita R.Kalagutay G.Calcarcous fine tuffGray.	rusives Serpentinite	Yellowish dark green rock.	This rock is serpentinized completely and original constituents are not clear. Pale green to colourless antigorite and considerable opaque mineral are present.	
E-24 do do Gabbro Yellow B-29 do Kalagutay G. Augite hasalt (pebble Dark g B-31 Nilabsan R. do Crystal tuff Dark g E-31 Nilabsan R. do Crystal tuff Dark g e-5 Davao R. Intrusives Dolerite Reddis e-6 Sita R. Kalagutay G. Calcarcous fine tuff Gray.	do Diorite	Pale gray, holocry- stalline rock.	The main minerals are twinned plagioclase and green amphibole (cunmingtonite). There are much actinolite or uralite.	
E-29 do Kalagutay G. Augite hasalt (pebble Dark g index of tuff-breccia) rock. E-31 Nilabsan R. do Crystal tuff Dark g iargev com accom e-5 Davao R. Intrusives Dolerite Reddis e-6 Sita R. Kalagutay G. Calcareous fine tuff Gray.	do Gabbro	Yellowish green, holocrystalline rock.	Medium-grained, holocrystalline texture. Principal minerals are plagioclase enclosed augite grains poikilitically, amphibole (probably cummingtonite) and augite. Secondary actinolite or uralite and calcite are commonly observed.	
E-31 Nilabsan R. do Crystal tuff Dark g accom large v e-5 Davao R. Intrusives Dolerite Reddis with a spheru e-6 Sita R. Kalagutay G. Calcareous fine tuff Gray,	lagutay G. Augite basalt of tuff-breccis	(pebble Dark greenish gray .) rock.	Phenocrysts of plagioclase and augite are distributed sporadically in a matrix of plagioclase microlite, granular augite and brown glass. Secondary calcite and chlorite partly replace pyroxene.	
e-5 Davao R. Intrusives Dolerite Reddis with a spheru e-6 Sita R. Kalagutay G. Calcareous fine tuff Gray,	do Crystal tuff	Dark gray rock accompanied with large white minerals.	Euhedral or crushed crystals of hornblende, plagioclase and biotite occur in a matrix of volcanic glass. Hornblende is green to pale brownish green and has strong pleochroism.	
e-6 Sita R. Kalagutay G. Calcareous fine tuff Gray,	rusives Dolerite	Reddish gray rock with a few small spherulites.	Plagioclase laths and ophitic augite laths, with secondary calcite, quartz, epidote and some ilmenite. Albitization of plagioclase is remarkable.	
solt ro	lagutay G. Calcareous fin	e tuff Gray, fine-grained, soft rock,	Tiny fragments of andesite, basalt, augite and hornblende are cemented by aggregates of secondary calcite, clay minerals and pumpellyite. Some smaller fossils are also present.	

•

Remarks				See PL-3A	See PL-3B					
Microscopic observations	Phenocrysts of plagioclase altered to clay mineral and augite with opaque mineral are embeded in a groundmass of plagioclase laths, acicular augite and chlorite.	Prismatic barite crystals and numerous opaque mineral are scattered in a argillaceous matrix.	Spherulites filled with calcite, quartz and chlorite occur in a matrix of . plagioclase laths, chlorite, secondary quartz and calcite.	Principal minerals are composed of anhedral quartz, twinned and zoned plagioclase and brown biotite. Opaque mineral, augite and apatite are accessory minerals.	The essential minerals are twinned plagioclase (7 mm in size) and augite (5 mm in size). Smaller plagioclase, augite, biotite and ore mineral are also observed.	Anhedral quartz, subhedral, zoned and twinned plagioclase, biotite altered to chlorite and hornblende are dominant minerals. Accessories are epidote, apatite and sphene.	Graphic quartz, euhedral, zoned and twinned plagioclase partially altered to sericite, green hornblende and biotite (altered completely to chlorite and epidote) are principal minerals. Black opaque mineral is present in the altered biotite and lornblende.	, Main constituents are quartz, plagioclase altered to aggregates of scricite and chlorite, biotite which is also altered to chlorite, ore mineral and a few epidote.	Similar to F-422. There is a little more epidote.	Large crystals of zoned and twinned plagioclase and mafic mineral altered to chlorite perfectly are embeded in a grandmass with micrographic texture.
Macroscopic features	Gray, porphyritic rock.	Black, compact rock with pyrite impregna- tion.	Gray, compact rock with many spherulites	Grayish white, holocrystalline rock.	Grayish black, holocrystalline rock.	Grayish white, holocrystalline rock.	Grayish white, holocrystalline rock.	Gray, holocrystalline, altered rock.	Gray, holocrystalline rock with pyrite impregnation.	Gray, porphyritic rock.
Rock	Augite andesite	Shale	Vesicular basalt	Biotite quartz diorite	Augite gabbro	Hornblende-biotite quartz diorite	Hornblende-bjotite quartz diorite	Biotite quartz diorite	Biotite quartz diorite	Porphyritic granophyre
Group or Eormation	Barcelona G.	qo	do	Intrusives	q	đo	do	qo	ф	đo
Location	Lingig R.	Haguimitan R.	Taon R.	ор	qo	op	op	qo	qo	q
Sample No.	F-24	F-31	F-41	F-42	F-98	F-411	F-412	F-422	F-432	F-433

Remarks							ย	See PL-3C
Microscopic observations	Many spherulites filled with microcrystals of quartz, feldspar and calcite and phenocrysts of zoned and twinned plagioclase are enclosed in a matrix with doleritic texture. A few opaque mineral is present.	This rock is altered entirely. Plogioclase crystals are decomposed to clay minerals and olivinc(?) to reddish brown opaque mineral. A mixture of tiny opaque minerals and clay mineral makes up the groundmass.	Lithic fragments of porphyritic andesite and aphyric andesite and chips of plagioclase, hornblende, augite and opaque mineral are cemented by carbonate and clay mineral. A few fragments of microfossil is present.	Large crystals of euhedral, zoned and twinned plagioclase (rimmed with alkali feldspar) and prismatic augite are enclosed by small crystals which are composed of zoned and twinned plagioclase, granular augite, opaque mineral, biotite and chlorite.	Phenocrysts of zoned and twinned plagioclase, augite partially altered to chlorite and opaque mineral occur in a matrix of plagioclase laths, augite and opaque minerals. A small amount of sphene is present also.	Chips of quartz (with rounded and corroded edges), plagioclase altered to clay mineral, opaque mineral and sphene and rock fragments of porphyritic andesite and pumice are separated by argillaceous material.	te Main phenocrysts are euhedral, twinned and zoned plagioclase enclosing augite and opaque mineral poikilitically. Groundmass consists of plagioclas laths, granular to irregular augite, hornblende and biotite. The texture is porphyritic.	Abundant epidote and chlorite are produced by strong alteration. Plagioclase showing glomeroporphyritic texture has carlsbad and albite twinning and is altered to chlorite and epidote. A groundmass of plagioclase laths, opaque mineral, chlorite and epidote shows intersertal texture.
Macroscopic features	Dark gray, compact rock with many spherulites.	Reddish brown, porphyritic rock.	Dark gray, compact rock.	Dark gray, holocrystalline rock.	Gray, porphyritic rock.	Grayish green, soft rock.	Dark gray, porphyriti rock.	Greenish white, compact rock.
Rock	Vesicular dolerite	Basic volcanic rock	Crystal tuff	Augite-biotite diorite- porphyry	Augite andesite	Dacitic tuff	Augite diorite- porphyry	Altered dolerite
Group or Formation	Intrusives	Bislig F.	Mangagoy F.	Intrusives	đo	Barcelona G.	Intrusives	ę
Location	Taon R.	Simulaw R.	Tangmoan R.	Taon R.	Kabasagan R.	Haguimitan R.	Taon R.	д
Sample No.	F-487	F-526	F-551	F-626	F-681	F-2723	f-24	[-+1

•

Remarks							See PL-4A		
Microscopic observations	Phenocrysts are very rare. Prismatic augite (2 mm in size) is altered to actinolite and chlorite. Groundmass consists of plagioclase laths, actinolite, chlorite, epidote and ore mineral and shows doleritic texture.	Phenocrysts of zoned and twinned plagioclase and euhedral augite occur in a holocrystalline matrix of plagioclase laths, granular augite, hydromica, chlorite and opaque mineral. Alkali feldspar rims on the plagioclase.	Zoned and twinned plagioclase and augite are the principal constituents. Biotite, chlorite and opaque mineral also occur. A small quartz vein penetrates this rock.	Medium-grained, holocrystalline rock with intergranular texture. Plagioclase, actinolite after augite, opaque mineral and sphene make up this rock.	Phenocrysts of plagioclase and augite occur in a matrix of plagioclase laths arranged sporadically, augite and magnetite. The texture is intergranular. Secondary mineral is very few.	A few phenocrysts of plagioclase and augite are observed in a hyalopilitic matrix of plagioclase laths and glass. Plagioclase laths are arranged regularly and partially altered to saponite.	Phenocrysts are composed of tiny augite (0.2 mm in size) and plagroclase. The texture is glomeroporphyritic. Matrix is holocrystalline and consists of regularly arranged plagroclase laths, microgranular aguite and opaque minerals. Saponite replaces the phenocrysts partially.	Phenocrysts of plagioclase and augite occur in a matrix of plagioclase laths and magnetite. Sphene and calcite are accessories. Strong chloritization and albitization affect this rock.	Abundant plagioclase phenocrysts occur in a pliotaxitic matrix which is composed of plagioclase microlite. Calcite and chlorite are commonly observed. A little laumontite, prehnite and epidote are present also. Albitization of plagioclase is notable.
Macroscopic features	Gray, compact rock.	Gray, porphyritic rock.	Dark gray, compact rock.	Dark green, compact rock.	Dark green, compact rock.	Greenish gray, com- pact rock.	Dark green, compact rock.	Bluish gray rock.	Bluish gray rock.
Rock	Augite dolerite	Augite quartz diorite	Augite gabbro	Altered dolerite	Augite basalt	Augite andesite	Augite hasalt	Augite andesite	Andesite
Group or Formation	Barcelona G.	Intrusives	qq	do	, Kaban G.	qo	qo	^{ср} •	Kaban G.
Location	Taon R.	op	đ	çş	Simulaw R.	qp	qo	qo	Pasian R.
Sample No.	f-46	f-50	f-75	f-653	I-9	G-5	G-18	G-45	G-60A

ampre No.	Location	Group or Formation	Rock	Macroscopic features	Microscopic observations Remar.
2-60B	Pasian R.	Kaban G.	Fine andesitic tuff	Greenish gray rock.	Fine fragments of plagioclase and porphyritic and esite ($1 \sim 2 \text{ mm}$ in size) are cemented by clayey mineral. Much opaque mineral, chlorite and calcite are accompanied with sphene.
-69	ç	ą	Augite basalt	Dark green, compact rock.	There are some plagioclase phenocrysts containing augite grains polkilitically in a matrix of plagioclase laths arranged regularly, granular augite, magnetite and brown glass. Clay mineral and zeolite partially replace the glass.
	q	qo	Augite basalt	Grayish green rock with vesicles filled with white minerals.	Phenocrysts of plagioclase and augite occur in a matrix of plagioclase laths, granular augite, magnetite and glass. A few calcite 1s associated with much saponite.
:-718	ទិ	ę	Andesitic tuff-breccia	Brownish gray rock showing flow struc- ture.	Rock fragments are all andesitic. In a groundmass composed of plagioclase microlite, brown glass and opaque minerals, there are some phenocrysts of plagioclase and pseudomorph of microphenocrysts of matic minerals. The matrix enclosed the phenocrysts shows a breeciated texture. Pale green chlorite (some are brown) occur secondarily. A few pumpellyite and acicular illmenite are present.
-73A	qo	op	Basaltic fine tuff	Dark gray, compact rock.	Lithic fragments of andesite showing intergranular and pilotaxitic textures and chips of plagioclase and augite are in a matrix of glass and opaque mineral. Calcite and chlorite are produced partially.
73B	qo	ęp	Andesite	Dark gray, compact rock.	Phenocrysts of plagioclase are scattered sporadically in a groundmass of plagioclase laths arranged regularly and glass. The texture shows porphyritic.
-76	q	çp	Augite basalt	Yellowish gray, com- pact rock.	Phenocrysts are composed of much plagioclase and a little aguite. Ragioclase laths arranged at random, augite and magnetite make up the groundmass. A large amount of secondary clay mineral are present.
-85	Lungsad C.	q	Andesite	Bluish gray, compact rock.	Similar to G-60. Microphenocrysts of plagioclase are distributed sporadically in a ground mass of plagioclase laths and magnetite. The groundmass shows pilotaxitic texture. Calcite, chlorite and albite after plagioclase are recognized. There are some hematite veins.
06-	qo	do	Lapilli tuff	Greenish yellow rock.	Rock fragments of basalt, andesite with various texture and altered pumice are embeded by secondary zeolite and clay mineral.

.

Remarks					See PL-4B		See PL-4C		
Microscopic observations	Phenocrysts are plagioclase and a little augite. Groundmass consists of plagioclase laths, granular augite and magnetite with holocrystalline texture.	 Phenocrysts of plagioclase and a few microphenocrysts of augite are enclosed in a groundmass of plagioclase laths and intergranular augite. Many cavities filled with zeolite and saponite are developed in the rock. 	A matrix composed of plagioclase laths, granular augite, magnetite and glass-contains abundant phenocrysts of plagioclase and a few augite phenocrysts. Greenish brown clay mineral replace the glass but altera- tion is weak.	Phenocrysts of plagioclase and orthopyroxene are scattered sporadically in a groundmass of plagioclase laths, small grains of clinopyroxene, orthopyroxene and glass. Texture is intergranular.	Similar to G-291. Phenocrysts of plagioclase and glomeroporphyritic augite occur in a groundmass of plagioclase microlite, glass and opaque mineral. The texture is porphyritic. Saponite and hematite are present.	Similar to G-291. Phenocrysts of plagioclase containing augite poikilitically and augite are in a matrix of plagioclase microlite and glass. Abundant saponite is secondary mineral.	A matrix composed of plagioclase microlite, granular augite and opaque mineral encloses phenocrysts of plagioclase, augite and orthopyroxene with reaction rim of granular augite. Secondary saponite and hematite are present.	Phenocrysts of abundant plagioclase and a few augite are in a matrix of plagioclase laths arranged at random, granular augite and magnetite. Clay mineral is seen as a secondary mineral but alteration is weak.	Phenocrysts of plagioclase and augite are scattered sporadically in a matrix of plagioclase laths, granular aguite and glass. Plagioclase laths arrange regularly and the texture is trachytic.
Macroscopic features	Dark green, compact rock.	Pale gray rock accom- panied with many cavitles filled with white minerals.	Dark green, compact rock.	Yellowish gray, porphyritic rock.	Reddish dark green, compact rock.	Dark green rock.	Dark green rock.	Dark green, compact rock,	Black, compact rock.
Rock	Augite basalt	Augite basalt	Augite basalt	Two-pyroxene basalt	Augite andesite	Augite andesite	Two-pyroxene basalt	Augite basalt	Basaltic andesite
Group or Formation	Kaban G.	ф	do	do	Kaban G.	qo	ç	q	qo
Location	Lungsad C.	do	qo	op	Lungsad C.	ę	ф	Buhay R.	ę
Sample No.	G-96	G-103	G-111	G-115	G-127	G-134	G-136	G-226	G-232
Remarks	nd , calcite,	icrolite e, ration.	rained nular.	ysts of :ral	mm in n size),	e grains ioclase	ize), ilase. s.	lorite, Itera -	ur in
--------------------------	--	---	---	--	--	--	--	--	--
Microscopic observations	Fragments are composed of busalt to and esite ($2 \sim 3mm$ in size) an plagioclase. Secondary minerals are brownish green clay mineral, zeolite and sphene.	Phenocrysts of plagioclase occur in a groundmass of plagioclase mi and glass. The texture shows porphyritic. Occurrences of chlorite laumontite and calcite suggest this rock is affected by thermal alter The rock becomes red by hematite.	Phenocrysts of plagioclase in a matrix of plagioclase laths, microgi augite and magnetite are altered to albite. The texture is intergran Chlorite and calcite are commonly observed.	In a holocrystalline matrix of plagioclase laths and augite, phenocry zoned plagioclase and augite are scattered sporadically. It shows glomeroporphyritic texture. A small amount of greenish clay mine and glass replace the phenocrysts partially.	Phenocrysts of plagioclase $(1 \sim 2 \text{ mm} \text{ in size})$ and rare augite $(0, 5 \text{ is size})$ are in a holocrystalline matrix of plagioclase laths $(0, 1 \text{ mm} \text{ in fine augite and magnetice}$. Alteration is weak.	 Similar to G-271. Phenocrysts of plagioclase enclosing some augite poikilitically and augite occur sporadically in a groundmass of plagi laths, augite and opaque mineral. The texture is intergramular. 	A matrix composed of plagioclase laths (more or less 0.1 mm in si fine augite and opaque mineral enclose some phenocrysts of plagioc This rock shows porphyritic texture and has many irregular cavitie.	Abundant plagioclase phenocrysts are found in the groundmass of plagioclase microlite and brown glass. Occurrences of calcite, chl laumontite and sphene show this rock is affected by hydrothermal al tion.	Phenocrysts of zoned plagioclase and glomeroporphyritic augite occu a matrix of plagioclase laths and glassy material. The texture is normhyritic. Calcite. samonte and hematite are also present.
Macroscopic features	Pale green, polycolored rock.	Reddish gray, com- pact rock.	Grayish green, com- pact rock.	Greenish gray, com- wet rock,	Dark green, compact rock.	Yellowish dark green. compact rock.	Grayish black, com- pact rock.	Gray, porphyritic rock.	Reddish gray, com- pact rock.
Rock	Basic coarse tuff	Basaltic andesite	Basaltic andesite	Augite basalt	Basaltic andesite	Augite basalt	Basaltic andesite	Andesite	Two-pyroxene basalt
Group or Formation	Kaban G.	ор	Kaban G.	ę	đo	qp	qo	do	Kaban G.
Location	Buhay R.	đ	Buhay R.	ф	qo	р	Sukod R.	đ	Wagas C.
Sample No.	G-246	G-251	G-255	G-269	G-271	G-272	G-278	G-285	G-291

Remarks	pie, augite See PL-5A s is a ure	texture. Itite are		clase tite.	rre nount of tion of	gments h green	ıd augite.	cclase bophitic	natrix. Icular	ocla se
Microscopic observations	Phenocrysts are composed of zoned plaghoclase with poikliftic aug and orthopyroxene which has reaction rim of augite. Groundmass mixture of plagioclase microlite and glass. Xenoliths of gabbro a observed in this section.	Plagioclase laths and subhedral or interstitial augite show ophitic Opaque mineral, brownish green clay mineral, calcite and laumor commonly found.	It mainly consists of calcite grains with chips of smaller fossils.	Small phenocrysts of plagioclase occur in a groundmass of plagiot laths (altered to albite), clinopyroxene, orthopyroxene and magne There is much saponite.	Lithic fragments of porphyritic andesite and chips of plagioclase a cemented by glassy material. By the strong alteration, a large ar chlorite, calcite, sericite and eipdote occur secondarily. Albitizat the plagioclase is notable.	A matrix of brownish red glass and plagioclase laths encloses fra of andesite, plagioclase and augite. Laumontite and pale brownisl clay mineral are rich in this rock.	Principal minerals are plagioclase, amphibole (cummingtonite) an Abundant actinolite, uralite and sericite replace them.	Euhedral to subhedral, zoned plagioclase, augite enclosing plagio grains interstitially or poikilitically, and opaque mineral show sul texture. Snponite is predominant.	Abundant phenocrysts of plagioclase and augite are in an altered n Zeolite (probably laumontite) and chlorite replace the matrix. Ac hematite is common.	Phenocrysts of zoned plagioclase and augite are embeded by plagic and pyroxene microlites and glassy material.
Macroscopic features	Yellowish dark green, compact rock.	Yellowish dark green rock.	Brownish gray rock.	Dark green, compact rock,	Pale green rock.	Pale reddish green rock,	Melanocratic, medium-grained rock,	Dark gray, compact rock.	Reddish gray rock.	Dark green, compact rock.
Rock	Two-pyroxene andesite	Dolerite	Limastone	Two-pyroxene basalt	Andesitic coarse tuff	Andesitic coarse tuff	Gabbro	Augite dolerite	Augite andesite	Augite andesite
Group or Formation	Kahan G.	Intrusives	Dacongbanwa F.	Mangagoy F.	Kaban G.	qp	Intrusives	Kaban G.	qp	qp
Location	Wagas C	Sanco point	Pagtilaan R.	qo	Bahayan R.	ор	Buhay R.	op	Sukod R.	Kaban R.
Sample No.	G-292	G-305	G-308	G-314	g-1	g-11	g-32A	g-32B	g-40	g-58

Remarks					See PL-5B				
Microscopic observations	Groundmass is holocrystalline and shows hasaltic texture. Plagioclase laths, granular augite and magnetite make up the groundmass. Phenocrysts are composed of a few crystals of plagioclase and abundant augite which show sometimes glomeroporphyritic texture.	Fragments of andesite showing various textures, plagioclase, augite and hornblende are welded by volcanic glassy material.	The rock is altered to aggregates of secondary quartz. A few relic mineral of albite and much magnetite are present.	Phenocrysts of plagioclase and augite occur in an ophitic matrix of plagioclase laths, augite and magnetite. Secondary saponite is commonly observed.	All matic minerals (chiefly orthopyroxene) are replaced by chlorite, calcite and quartz. Many plagioclase crystals ($l \sim l$, 5 mm in size) change to saussurite. Groundmass is composed of altered plagioclase, opaque minerals and secondary quartz.	This rock is affected by greenerization. Phenocrysts of plagioclase, altered orthopyroxene and clinopyroxene are in a groundmass of tiny plagioclase laths, pyroxene and opaque minerals. Especially, alteration of orthopyroxene is strong which changes to chlorite perfectly.	Breccias of aphanitic and porphyritic andesites are cemented by plagioclase crystals, glassy material and their fine fragments. By the strong alteration, original minerals are replaced by chlorite, quartz and calcite. There are some veinlets of quartz and calcite.	Strongly silicified. Fragments are composed of mud and igneous rocks (intensely altered). Matrix is made up of their smaller fragments and fine tuff which are altered to microcrystalline quarts or calcite.	Phenocrysts of twinned plagioclase, orthopyroxene and clinopyroxene are embeded by a marrix of plagioclase laths, spherical pyroxene, opaque minerals and glass. Plagioclase is altered to saussurite and some pyroxene to chlorite. There are some green-coloured minerals.
Macroscopic features	Dark green, compact rock.	Pale greenish gray rock.		Dark green rock.	Dark blue, porphyritic rock.	Dark blue rock.	Green rock with well sorted breccia.	Grayish white rock with tiny fragments.	Dark blue rock with large phenocrysts of pyroxene and plagioclase.
Rock	Augite basalt	Andesitic tuff-breccia .	Silicified rock.	Augite dolerite	Porphyritic andesite	Two-pyroxene andesite	Fine andesitic lapilli tuff	Fine lapilli tuff	Two-pyroxene andesite
Group or Formation	Kaban G.	Kapalong F.?	Kaban G.	Intrusives	Kaban G.	đo	đb	qo	ç
Location	Simulaw R.	Pasian R.	qo	Jaon R.	Maposo R.	độ	op	Kinayan R.	Ngan R.
Sample No.	g-68	g-72	g-73	g-74	H-16	Н-23	H-24	H-45	Н-54

Remarks	ihowing equigranular ecognized in a matrix als.	xitic texture and tuff. ints and plagioclase chips	place all parts of the rock. cudomorphs, the	opaque minerals occur See PL-5C 1 minerals. Some Ils.	se altered to zeolite, als are replaced by clay	tially) and pyroxene ass of plagioclase taths, minerals are chlorite,	ne matrix. Secondary	ugite are embeded in a Ind opacite. It shows	tered to epidote or reed hy clay mineral and
Microscopic observations	By strong silicification, secondary quartz grains s texture are formed. Some plagioclase laths are r which is almost replaced by quartz and clay miner	Lapilli is composed of aphyric andesite with pilota The matrix made up of volcanic ash, lithic fragme is replaced partially by clay minerals.	Quartz, carbonates, chlorite and clay minerals re From the existence of plagioclase and pyroxene ps original composition seems to be andesitic,	Phenocrysts of plagioclase, green hornblende and in a matrix of plagioclase laths and green coloured plagioclase are altered to chlorite and clay minera	Grains (0, 2 mm in mean size) consist of plagiocla quartz, hornblende and augite. Cementing materti minerals, quartz, zeolite and calcite.	Phenocrysts of plagioclase (altered to chlorite par (altered to chlorite or zeolite) occur in a groundm opaque minerals, microlite and glass. Secondary	control of porphyritic and size and clay mine-rate. Breecias of porphyritic andesite are in a crystalli minerals are calcite, zeolite and clay mineral.	Phenocrysts of twinned and zoned plagioclase and s groundmass of plagioclase laths, granular augite s intergranular texture.	Phenocrysts of plagioclase and augite which are al- chlorite occur in a micro-grained groundmass reli
Macroscopic features	Bluish rock with plagioclase crystals.	Purplish, brecciated rock.	Green, compact rock with polycoloured, essential rock fragments.	Polycoloured (reddish hrown to green) rock with mosaic texture.	Black, compact rock.	Gray, porphyritic rock.	Gray, pyrite impreg- nated rock.	Black, compact rock.	Dark blue, porphy- ritic and compact rock.
Rack	Aphanitic andesite	Andesitic lapilli tuff	Andesitic lapilli tuff	Hornblende andesite	Fine tuffaceous sandstone	Pyroxene andesit <i>e</i>	Andesitic lapilli tuff	Augite basalt	Porphyritic andesite
Group or Formation	Kaban G,	eg Fj	op	Kaban G.	q	q	đo	ço	do
Location	Tingari R.	qo	Maenitu R.	Ngan R.	qo	Bango R.	Naboc R.	qo	qo
Sample No.	H-58	H-61	11-68	11-75	H-86	H-92	H-107	H-138	H-140

Remarks	See PL-6A							See PL-6B	
Microscopic observations	This rock contains large crystals of plagioclase and augite in a fine-grained, altered plagioclase and augite. It has microholocrystalline and porphyritic texture. Chlorite, clay minerals, zeolite and calcite replace plagioclase partially.	Only plagioclase phenocrysts are distinguished as original mineral. Other minerals are strongly altered to microgranular quartz, calcite and dusty opaque minerals.	Alteration of this rock is strong. A few plagioclase and pyroxene remain fresh in a altered matrix composed of chlorite, epidote, calcite, quartz and clay minerals.	Phenocrysts of twinned plagioclase, quartz and hornblende pseudomorphs occur in a granular microcrystalline to glassy groundmass. Abundant chlorite is derived from hornblende. Calcite veinlets penetrate the field.	phenocrysts of twinned and saussuritized plagioclase and pyroxenc psuedmorphs occur in a groundmass of plagioclase laths and glass. Chlorite, calcite and zeolite are secondary minerals. A few aragonite is present also.	A groundmass of plagioclase laths, pyroxene and glass contains phenocrysts of twinned plagioclase, hornblende and opacite. It shows felty texture. Chlorite, zeolite and clay minerals are secondary minerals.	Phenocrysts of plagioclase, augite and orthopyroxene (altered to chlorite perfectly) are enclosed in a groundmass of glass, plagioclase laths and opacite. Considerable chlorite is present.	Phenocrysts of plagioclase and pyroxene are scattered in a groundmass of glass and plagioclase laths. By the strong alteration, a large amount of chlorite, hydromica and clay minerals are produced.	Phenocrysts of plagioclase and pyroxene in a glassy matrix of plagioclase and glass (changed to hydromica and chlorite) are altered strongly by
Macroscopic features	Pale green rock.	Well bedded, pale blue rock.	Pale blue, compact rock.	Blue, porphyritic rock with xenoliths.	Black rock with prismatic plagioclase.	Dark blue, compact rock.	Purplish, glassy, porphyritic rock.	Purplish, glassy rock with hematite veinlets.	Purplish, glassy rock with flow banding.
Rock	Porphyrite	Andesitic sandy tuff	Andesitic tuff-breccia	Dacite	Andesite	Hornb]ende andesite	Glassy andesite	Glassy andesite	Glassy andesite
Group or Formation	Intrusives	Kahan G.	do	op	ęp	op	qp	qo	do
Location	Naboc R.	qo	qo	op	Maa R.	Karamakan R.	Hagibana R.	ę	Ambawon R.
Sample No.	H-143	7 1 -H	H-153	Hi - 47	h-17	h-25	h-26	h-29	h-39

Remarks										See PL-7A	See PL-7B
Microscopic observations	Phenocrysts of plagioclase and clinopyroxene are embeded by microphenocrysts of plagioclase, pyroxene and opacite. Abundant chlorite, clay minerals, zeolite and a few epidote are observed.	Phenocrysts of oxyhornblende, plagioclase and aughte occur in a matrix of plagioclase, oxyhornblende and opacite. Oxyhornblende is characteristic mineral of this rock.	Well sorted grains of quartz, plagioclase, mafic minerals (altered to chlorite or clay mineral) and opacite. Secondary quartz, chlorite and clay minerals are observed.	Phenocrysts of twinned plagioclase, augite and a few orthopyroxene occur in a glassy matrix of clay minerals, plagioclase microlite and opacite. Chlorite replaces plagioclase and pyroxene.	Chips of plagioclase and hornblende are recognized and altered strongly.	A matrix showing intersertal texture is composed of plagioclase laths and glass. Phenocrysts of twinned plagioclase, augite, hypersthene and opacite are altered to epidote, chlorite, quartz and hydromica.	Lithic fragments are composed of porphyritic, two-pyroxene andesite. A matrix is altered to clay mineral, micro-opacite and chlorite. Alteration is relatively strong.		Pyrite veinlet (1 \sim 2 mm) penetrates a large amount of primary magnetite and a few small chalcopyrite crystals disseminate irregularly.	Chalcopyrite, pyrite and magnetite are main constituents. Magnetite is enclosed by chalcopyrite. Pyrite has irregular shape.	Numerous tiny pyrite grains (0. $03 \sim 0.08$ mm in diameter) are scattered in dark gray, muddy, compact matrix (probably mudstone). Some of pyrite show colloform or framboidal texture.
Macroscopic features	Pale green, compact rock.	Gray rock with large plagioclase and hornblende crystals.	Blueish gray, medium-grained rock.	Bluish gray, porphyritic texture.	Bluish gray, porphy- ritic rock.	Gray, porphyritic rock.	Dark green rock with lithic fragments.				
Rock	Altered porphyrite	Hornblende andesite	Tuffaceous sandstone	Two-pyroxene andesite	Lapilli tuff	Altered andesite	Lapilli tuff		Pyroxenite	đo	Mudstone
Group or Formation	Intrusives	Kaban G.	ф	ęp	q	đ	đo		Intrusives	đo	Barcelona G.
Location	Canobi R.	Cow R.	Ngan R.	Magtonob C.	Naboc R.	qo	qo	(Polished Section)	Locawon R.	Tagbiga R.	Lepanto Mine
Sample No.	h-45	h-51	h-67	h-74	h-76	h-107	011-h		b-23	c-14 c-37	F-31

Remarks	See PL-7C	See PL-8A	See PL-8B
Microscopic observations	Corroded galena, with some trace of cubic form, partially replaced by enclosing spinalerite. The sequence of deposition of minerals is, from the older to the younger, galena, chalcopyrite and sphalerite. These minerals are penetrated by quartz veins with a few pyrite.	Acicular hematite is associated with pyrite. There is a small amount of chalcopyrite replaced by chalcocite partially.	Chalcopyrite, pyrite and gangue minerals. Pyrite is replaced by chalcocite along grain boundaries and fractures. Chalcopyrite is also replaced partly by chalcocite and covellite.
Macroscopic features			
Rock	Porphyrite	Andesite	Quartz diorite
Formation	Intrusives	Barcelona G.	Intrusives
Location	Surigao Mine	Таол R.	op
sample No.	F-75	F-689 F-2474	f-73 f-61 f-100 f-691

A: Olivine-clinopyroxene-gabbro (Sample No. B-26)

Plagioclase (pl), clinopyroxene (cp) and olivine (ol) are the principal minerals. Clinopyroxene and olivine are almost serpentinized. X-nichols

x 50

B: Hornblende-biotite-pyroxenite (Sample No. B-49) Clinopyroxene (cp), biotite (bi), hornblende (hb) and abundant magnetite (m) make up this rock. // -nichols

x 50

C: Hornblende-biotite-clinopyroxene-diorite (Sample No. B-52)

Twinned plagioclase (pl), biotite (bi), hornblende (hb) and clinopyroxene (cp) are main constituents.

X-nichols

A: Augite-hornblende-andesite (Sample No. BT-6)

Phenocrysts of hornblende (hb), augite (au), plagioclase (pl) and opaque minerals (o) are in a matrix of plagioclase laths, granular pyroxene and so on.

∥-nichols

x 50

B: Sandstone (Sample No. b-2)

Many kinds of rock fragments make up this rock. In this photograph, the biggest one with a distinct schistosity is quartz-micaschist (sch).

∥-nichols

x 50

C: Red tuff (Sample No. D-10) Feldspar, chlorite, carbonate minerals and opaque minerals make

minerals and opaque minerals make up this rock.

X-nichols

A: Biotite-quartz-diorite (Sample No. F-42) Twinned plagioclase (pl) partially altered to sericite, quaetz (q) and brown biotite (bi). X-nichols

.

x 50

Sph

B: Augite-gabbro (Sample No. F-98) Twinned plagioclase (pl), augite (au) and opaque minerals (o) are main constituents. //-nichols

x 50

C: Altered basalt (Sample No. f-41)

Spherulite (sph) composed of quartz occur in a groundmass. The groundmass consists of abundant epidote, chlorite and plagioclase lanths.

X-nichols

A: Augite-basalt (Sample No. G-18)

Augite (au) and plagioclase (pl) make up phenocrysts showing glomeroporphyritic. The matrix consists of plagioclase laths and micro-granular augite and opaque minerals.

X-nichols

x 50

B: Augite-andesite (Sample No. G-127) Phenocrysts of twinned plagioclase (pl) and augite (au) occur in a matrix of plagioclase microlite, glass and opaque minerals. X-nichols

x 50

C: Two-pyroxene-basalt (Sample No. G-136)

Phenocrysts of plagioclase (pl), augite (au) and orthopyroxene (op) with reaction rim (rr) of granular augite occur in a matrix of plagioclase laths, granular augite and opaque minerals.

X-nichols

.

A: Two-pyroxene-andesite (Sample No. G-292)

Phenocrysts of plagioclase (pl), augite and orthopyroxene (op) with reaction rim (rr) of granular augite, are in a matrix of plagioclase microlite and glass.

X-nichols

x 50

B: Porphyritic andesite (Sample No. H-16)

Large crystals of plagioclase (pl) altered to saussurite are phenocrysts. A matrix is composed of altered plagioclase, secondary quartz and opaque minerals. X-nichols

x 50

C: Hornblende-andesite (Sample No. H-75)

Phenocrysts of plagioclase (pl), green hornblende (hb) and opaque minerals (o) occur in a matrix of altered plagioclase and green colored minerals.

X-nichols

A: Porphyrite (Sample No. H-143)

Large crystals of augite (au) and plagioclase (pl) partially altered to calcite, and small crystals of altered plagioclace and augite make up this rock.

X-nichols

x 50

B: Glassy andesite (Sample No. h-29) In this photograph, it is ob-served that a small crystal of augite (au) is in a groundmass of altered glass and plagioclase laths. X-nichols

A: Chalcopyrite (cp)-pyrite (py) -magnetite (Sample No. C-14)

Chalcopyrite, pyrite and magnetite are constituents. Magnetite and pyrite are enclosed by chalcopyrite.

∥ –nichols

x 25

B: Coloidal pyrite in muddy compact rock

(Sample No. F-31)

Numerous tiny pyrite is scattered in muddy compact matrix (probably mudstone). Some of pyrite show coloform of framboidal texture.

∥ -nichols

x 25

C: Chalcopyrite (cp)-galena (ga) -sphalerite (sph) (Sample No. F-75) Chalcopyrite and galena show intergrowth, and they are enclosed by sphalerite.

∥ --nichols

A: Disseminated specularite (sp) -Pyrite (py) (Sample No. F-689)' Acicular specularite is associated with pyrite. // -nichols

x 25

 B: Disseminated chalcopyrite (cp) -pyrite (py)-secondary copper minerals (Sample No. f-73) Chalcopyrite and pyrite are main constituents. Pyrite is replaced by chalcocite along grain boundaries and fractures.
 // -nichols

				ļ		Ì	ľ			ľ	
Sample No.	Location	Country rock	Au g/T	Ag g/T	Cu % I	5P %	Zn %	Mo %	3aS04 %	S S	Remarks
C-6	Tagbiga R.	Pyraxenite	6	t	0.53	•	1	10.0>	t	1	Fyrite-clay vein. Width: 0.30m
С-8	đo	do	۲v	I	18.05	ł	1	<0.01	I	1	Chalcopyrite-pyrite-clay vein, Width: 0.02m
6-0	đo	đo	1	1	<0.01	I	1	<0.01	1	1	Pyrite-clay vein, Width: 0.20m
C-11	đo	do	9	I	11.69	1	1	<0.01	1	1	Malachite stain, Width: 0.20m
C-14	qo	do	15	ı	16.62	1	1	<0.01	1	1	Chalcopyrite-pyrite vein, Width: 0.15m
F-31	Lepant Mine	Silicified Shale?	1	I	11.0	tr	0.06	ı	4.4	7.6	Silicified rock sampling, Width: 5.70m
F-42	Tson R.	Diorite	0,1	5	0.15	ŀ	tr	0.046	1	1.7	Chalcopyrite-pyrite-molybdenite veinlets
F-42-1	đo	đo	1.2	20	3.10	I	0.01	0.036	1	17.6	do (best part)
F-7 5	Surigas Mine	Porphyry?	I	ı	0.85 1	7.6 2	8.9	ı	I	17.0	Ore stockpile (5T)
F-82	do	đo	0.2	4	10.0	1	0.06	t	1	1	Quartz vein, Width: 1.00m
F-8 3	do	do	0.2	~	0.03	1	0.04	ı	1	ı	do Width: 1.00m
P-84	đo	đo	0.2	7	0.16	I	0.07	1	1	r	do Width: 0.25m
F-87	đo	đđ	ı	1	0.24	1	1	0.027		2.9	Áltered porphyry
F-88	đo	Andesite	0.1	0	0.04	I	0.09	1	ı	3.2	Altered andesite
F-102	Silver Belt Mine	Porphyrite	I	1	0.01	t	0.11	1	ı	1	Silicified & pyrite impregnated rock
F-158	Lepanto Mine	Silicified shale?	1	I	I	1	ı	ı	tr	2.6	do sampling Width: 5.00m
F-160	do	do	t	1		t	1		tr	0.85	đo
F-162	đo	do	1	ı	1	1	ı	1	tr	0.24	do
F-190	do	do	1	 I				1	tr	0.61	đo
F-202	đo	qo	1	I	0.02	ţ	0.03	1	77.8	6.3	Barite lens
F-411	Taon River	Quartz diorite	0,4	1	0.18	ı	1	0.021	I	1.5	Chalcopyrite-pyrite-magnetite impregnation
F-422	do	do	ţ	1	0.26	ł	1	0.022	ı	1	do
F-425	do	do	0.3	1	0.37	F	1	0.019	t	r	do
P-432	do	đo	0.2	I	0.20	1		0.024	1	,	do
F-2040	đo	Andesite	0.2	ı	2.5	1	1	0.030	I	١.	Float (Chalcopyrite-pyrite-duartz)
F-2055	đo	do	0.2	I	0.14	I	1	0.024	ı		Float (. do)
F-2721	Soriano Mine	Dacite - Dacitic tuff	0,3	512	0.12	4	0.06	1	59.3 2	25.2	Barite lens (barite-pyrite)

Table 4. Chemical analysis of rock samples

f-45Taon RiverBasalt0.570.025-37.9Pyrite-barite impregnation $f-73$ dodododo0.2-4.0-0.033-9.7Float $f-81$ dodo0.2-4.01-0.033-9.7Float $f-100$ Silver Belt Minedo0.20.2-0.22-0.033do $f-101$ dodo0.21.9trtr<0.038-12.6Chalcopyrite-sphalerite $f-101$ dodo1.0-0.142.15.90.019do $f-653$ Taon RiverBasalt0.4-1.07210-0.026do $f-653$ Taon RiverBasalt0.1-0.142.15.90.019do $f-653$ doAndesite0.1-1.0720.026dodo $f-653$ doAndesite0.1-0.142.15.90.025do $f-653$ doAndesite0.1-0.170.026dodo $f-653$ dodo0.0-0.01-0.011<	Sample No.	Location	Country rock	Au g/T	Ag g/T	Cu %]	ъዳ	% uz	Mo %	BaSO4%	s %	Remarks
T-73do 0.2 $ 4.0$ 0.2 $ 4.0$ 0.5 1.9 T $Toot$ $T-13$ do 0.2 $ 0.22$ $ 0.033$ $ 0.7$ $Toot$ $T-100$ Silver Balt MinePorphyrite 0.2 1.9 tr tr 0.033 $ 0.003$ $T-101$ do 0.2 1.9 tr tr 0.033 $ 12.6$ $Chalcopyrite-pyrite inprintT-101dodo1.01.0 0.142.15.90.019 0.0T-538Taon RiverBasalt0.4 1.07 0.26 0.038 12.6Chalcopyrite-pyrite inprintT-538Taon RiverBasalt0.01 0.019 0.026 T-538do0.019 0.026 0.024 T-558do0.011 tr 0.011 T-558do0.021 0.021 -$	4	Taon Bivar	Hasalt		1	0.57			0.025	1	97.9	Pvrite-harite immregnation
f-73dodododododododofloat $f-81$ dodododododododofloatdo $f-81$ dododododo0.2 $ 0.033$ $ -$ do $f-100$ Silver Belt MinePorphyrite0.51881.9 tr tr tr $ -$	Ì	15171 11001										
f=81dododododododof=0f=0f=0f=0f=100Silver Belt MinePorphyritedo0.51881.9trtrtr0.038dof=101dododo1.01.01.9trtr0.038-12.6Chalcopyrite-sphaleritef=101dododo1.01.02.15.15.90.019dof=653Taon RiverBasalt0.4-1.072.15.00.019dof=657doAndesite0.1-0.142.15.00.019dof=658doAndesite0.1-1.07-0.010.01-0.025dof=658doAndesite0.1-0.24-0.010.023dof=681doBasalt0.1-0.01-0.01-0.013ff=681doAndesite0.2-0.023-0.023ffoatf=681doModesite0.2-0.01-0.01-0.013ff=691doModesite0.2-0.01-0.013fff=681doModesite0.2-0.01 <td>f-73</td> <td>do</td> <td>qo</td> <td>0.2</td> <td>ı</td> <td>4.0</td> <td>ı</td> <td>1</td> <td>0.053</td> <td>I</td> <td>9.7</td> <td>Float</td>	f-73	do	qo	0.2	ı	4.0	ı	1	0.053	I	9.7	Float
f-100Silver Belt MinePorphyrite 0.5 188 1.9 tr tr tr 0.038 $ 12.6$ Chalcopyrite-pyrite implicient function $f-101$ dododo 1.0 $ 0.14$ 2.1 5.9 0.019 $ -$ Chalcopyrite-pyrite implicient $f-638$ Taon RiverBasalt 0.4 $ 1.07$ $ 0.026$ $ -$ Chalcopyrite-sphalerit $f-657$ doAndesite 0.1 $ tr$ $ 0.026$ $ f-658$ doAndesite 0.1 $ tr$ $ 0.026$ $ f-658$ dodoMadesite 0.1 $ tr$ $ 0.026$ $ f-658$ dodoMadesite 0.1 $ tr$ $ 0.017$ $ f-658$ dodoBasalt 0.1 $ 0.011$ $ 0.017$ $ f-658$ doBasalt 0.1 $ 0.017$ $ -$ <td< td=""><td>f-81</td><td>do</td><td>do</td><td>0.2</td><td>1</td><td>0.22</td><td>1</td><td>1</td><td>0.023</td><td>I</td><td>1</td><td>do</td></td<>	f-81	do	do	0.2	1	0.22	1	1	0.023	I	1	do
f-101dodododo1.0 $ 0.14$ 2.1 5.9 0.019 $ -$ Chalcopyrite-sphalerit $f-638$ Taon RiverBasalt 0.4 $ 1.07$ $ 0.026$ $ Rloat (pyrite-chalcopyrite-sphaleritf-658doAndesito0.1 tr 0.026 dof-658dodo0.2 0.24 0.026 dof-659dododo0.2 0.24 0.023 dof-659dododo0.2 0.01 0.170.023 dof-659doBasalt0.1 0.01 0.170.023 10.33f-678doBasalt0.1 0.01 0.170.023 0.33f-678doBasalt0.1 0.01 0.030 10.33f-678doBasalt0.1 0.01 0.033 10.33f-678dodoMadesite0.1 0.031 0.3310.40f-686dodo0.2 0.55 0.021 0.021f100Silver Belt MinePorphyrite0.51881.9ᆦţŗ0.038I12.6Chalcopyrite-pyrite impregnation$	f100	Silver Belt Mine	Porphyrite	0.5	188	1.9	ᆦ	ţŗ	0.038	I	12.6	Chalcopyrite-pyrite impregnation
f-638Taon RiverBasalt 0.4 -1 1.07 $ 0.026$ $ Ploat$ (pyrite-chalcopy $f-657$ doAndesite 0.1 $ tr$ $ tr$ $ -$ <td>f-101</td> <td>do</td> <td>do</td> <td>1.0</td> <td>I</td> <td>0.14</td> <td>2.1</td> <td>5.9</td> <td>0.019</td> <td>I</td> <td>I</td> <td>Chalcopyrite-sphalerite-galena impregnation</td>	f-101	do	do	1.0	I	0.14	2.1	5.9	0.019	I	I	Chalcopyrite-sphalerite-galena impregnation
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	f-638	Taon River	Basalt	0.4	I	1.07	I	1	0.026	I	ı	Float (pyrite-chalcopyrite-quartz) Width:0.50m
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	f-657	do	Andesite	1.0	I	ቱ	ı	1	0.026	1	I	do (hematite-quartz)
f-659 do do do 0.2 - 0.01 - 0.17 0.023 - 0.33 Sphalerite-Pyrite imprint. f-678 do Basalt 0.1 - 0.01 - - 0.33 Sphalerite-Pyrite imprint. f-678 do Madesite 0.1 - 0.01 - - 0.33 Sphalerite-Pyrite imprint. f-689 do Andesite 0.1 - 0.030 - - Hoat f-691 do do 0.2 - 0.50 - - 0.021 - - do f-686 do do 0.2 - 0.50 - - 0.021 - - Pyrite-hematite-chalco	f-658	άo	đo	0.2	t	0.24	ı	0.91	0.023	I	5.6	Ploat
f-678 do Basalt 0.1 - 0.01 - - 0.030 - - Float f-689 do Andesite 0.2 - 0.54 - - 0.023 - - do f-691 do do 0.2 - 0.50 - - 0.021 - - do f-686 do do 0.2 - 0.35 - - Ryrite-hematite-chalco	f-659	do	do	0.2	1	10.0	ı	0.17	0.023	t	0.33	Sphalerite-pyrite impregnation
f-689 do Andesite 0.2 - 0.54 - - 0.0 f-691 do do 0.2 - 0.50 - - 0 0 f-691 do do 0.2 - 0.50 - - - Hyrite-hematite-chalcol f-686 do do 0.2 - 0.35 - - 0.021 - - Float	f678	do	Basalt	0.1	1	0.01	ı	1	0:030	I	I	Float
f-691 do do 0.2 - 0.50 0.021 Pyrite-hematite-chalco f-686 do do 0.2 - 0.35 0.023 Float	f-689	do	Andesite	0.2	ı	0.54	1	1	0.023	I	I	do
f-686 do do do 0.2 - 0.35 0.023 Float	f-691	qo	đo	0.2	1	0.50	ı	ı	0.021	I	1	Pyrite-hematite-chalcopyrite-Quartz vein
	f-686	do	do	0.2	1	0.35	ı	1	0.023	I.	1	Float

A-36

		0 9	
	Remarks	Clay associated with o do by Strongly argillized do Weak argillized do Silicified Fyrite-impregnation Fyrite-impregnation Strongly argillized do do do do do do do do do do do do do	eu.
	Apa	0	rrite it it
	문	0	hale atit esen
fide	סי א		$_{\rm Pr}^{\rm Sp}$
Sul	4 4		4. e 0
,	10		AI SI SI
ر بو	រី អ		te t
lfat	P Ba	0 0	, yri
Su	5	0 0	ite cite ite
	e ror		Pyr Clas
	4 57	0 0000000 0000000 000000000000000000000	
	긜	0	ਬ ਹ ਹ ਪ
	E E		H
i	Lau	0 0 0	c Ispa sum
	Ch1	000 0 0 0000 0	Talo Quar Felc
	Mus	00	·· ·· ·· ··
neral	Seri	00 0 0 0 00000 0	Talo Qz Feld Gyp
臣	Mont	0 00000 0000 0	
lay	oy		ite vite ite ntit
	Hall	0	eric usco hlor aumo
	yr0	0	0201
	to P		eri fus hl
-	Κĩ		07.0H
		e e utf it	e Dite
-	ск		llit te
,	원	្រុំ ភ្លុំដំដូដដំដូច ចំព័ត្ត ដំនើងដំដែន ដែល សំព័ត្ធ សំព័ត្ធ សំព័ត្ សំព័ត្ត អ្នក សំព័ត្ធ សំព័ត្ត សំព័ត្ត សំព័ត្ធ សំព័ត្ធ សំព័ត្ធ សំព័ត្ សំព័ត្រ អ្នក សំព័ត្ធ សំព័ត្យ សំព័ត្យ សំព័ត្ធ សំព័ត្ធ សំព័ត្ធ សំព័ត្ធ សំព័ត្	ine phyl oysi mori
			Kaol Pyro Hall Yont
4	ion	b 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
ding	mat	ដែល ទំនាំ មិនទំនាំ ទំនាំ ទំន	1100 1100
5.0	For	E Barc Saba Thri	a y e x
	1013		
	0081	de d	
		S HE B SS	
1ple	. <u>.</u>	8 1 4 8 6 1 8 9 1 9 2 6 4 7 7 7 7 7 7 9 9 9 1 9 8 6 1 9	
San	~	<u> </u>	

Table 5. X-ray diffractive analysis

A-37

Table 6. Metal content of geochemical samples

(A) Stream sediment (-80-mesh fraction)

																(pr)
Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Co
1	A- 2	39	87	182	23	56	A - 107	33	56	585	38	111	A - 194	36	44	165	28
4	13	90	49	42	18	57	110	33	57	585	39	112	196	51	40	590	37
د ۸	14	24	4)	22	14	20	115	40	70 E1	220	40	114	197	41 47	40	712	21
5	17	81	45	55	17	59	110	71	02	400	24	115	200	58	55	151	25
,	-1	05	47	,,	11	00	110	11	95	410	29	11)	200	50	22	1)1	<i>.</i> ,
6	19	35	50 69	45	16	61	119	59	99	656	44	116	202	73	57	219	31
8	20	40	45	29	10	62	120	49	70	240	94	118	204	35	22	205	70
ä	24	41	57	112	10	64	124	26	45	468	25	119	206	30	31	00	21
10	26	41	57	55	1 9	65	125	31	43	695	44	120	208	32	33	146	32
11	27	35	58	43	14	66	126	81	108	101	39	121	210	60	74	159	29
12	28	43	55	41	14	67	128	40	81	903	41	122	211	52	53	193	25
13	30	38	51	44	13	68	129	56	74	466	40	123	212	46	38	121	23
14	31	33	47	42	19	69	130	19	42	1018	47	124	217	33	41	274	33
15	33	45	59	52	17	70	131	29	59	1125	51	125	218	50	62	212	33
16	35	36	52	49	12	71	133	57	65	323	43	126	219	34	40	273	33
17	37	35	44	33	10	72	134	48	60	380	44	127	220	43	59	98	20
18	44	26	36	22	9	73	136	24	33	582	46	128	221	37	45	232	28
19	46	29	42	27	13	74	137	32	36	455	49	129	222	43	79	61	15
20	47	39	44	29	11	75	139	44	44	660	53	130	224	35	47	226	26
21	48	37	57	31	15	76	140	22	34	609	45	131	225	51	58	293	23
22	49	33	49	29	14	77	141	37	48	747	61	132	226	40	54	253	26
23	50	33	53	42	15	78	142	28	42	690	52	133	227	28	45	493	36
24	51	21	41	25	10	79	143	44	60	938	76	134	230	32	54	420	28
25	22	37	63	22	20	80	144	44	50	484	35	135	231	52	58	593	44
26	57	35	64	45	19	81	151	61	85	303	35	136	232	40	54	574	42
20	20	20	62	43	19	02	157	109	129	204	40	137	233	4/	21	223	30
20	50	20	50	20	16	84	159	100	140	612	40	130	234	44 61	22	201	27
30	61	40	76	45	19	85	159	80	129	576	50	140	235	55	50	253	26
21	63	41	67	40	22	86	160	53	00	267	77	141	277	09	87	615	53
12	64	41	62	49	20	87	160	37	51	201 AAA	40	141	218	- 50	60	281	32
33	67	18	62	51	21	88	162	143	162	1514	118	147	230	31	46	413	36
34	68	40	60	52	21	89	165	75	106	301	35	144	242	27	40	366	11
35	70	35	49	30	15	90	166	40	68	137	24	145	244	29	64	60	10
36	71	38	56	51	19	91	167	45	80	372	40	146	246	124	98	279	22
37	73	38	54	52	19	92	168	34	52	417	41	147	248	32	45	338	26
38	74	39	59	54	19	93	169	41	60	537	47	148	250	65	71	298	27
39	75	38	55	48	20	94	170	54	74	493	46	149	251	16	36	221	16
40	77	21	48	601	35	95	174	41	58	520	49	150	252	48	68	199	18
41	80	24	44	817	42	96	175	32	64	482	44	151	254	37	48	522	32
42	84	27	46	800	43	97	176	53	62	543	48	152	255	49	66	163	18
43	85	16	55	62	15	98	177	39	58	534	47	153	257	57	61	131	20
44	86	25	44	838	42	99	178	31	49	530	46	154	258	30	46	161	23
45	87	28	57	774	42	100	180	29	43	504	46	155	259	42	50	151	19
46	90	29	44	755	40	101	181	29	47	428	42	156	262	36	66	276	20
47	91	31	46	778	40	102	185	38	48	198	32	157	264	142	166	421	24
48	95	30	73	588	38	103	186	49	51	207	32	158	265	51	68	208	21
49	99	31	69	515	35	104	187	64	104	90	26	159	268	22	49	449	24
50	100	33	93	98	24	102	199	40	43	173	28	100	<i>41</i> 1	00	10	214	24
51	101	35	66	643	42	106	189	61	59	151	25	161	273	36	55	458	24
52	102	44	72	600	38	107	190	53	49	184	29	162	274	37	62	574	26
53	103	34	61	637	41	108	191	48	66	138	27	163	276	50	45	615	27
54	104	49	71	528	38	109	192	30	40	130	21	164	278	35	56	546	25
55	106	35	60	506	34	110	193	36	42	163	26	165	279	33	54	650	29

						<u> </u>										(p1	om)
Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Ca	Ser.No.	Sample No.	Çu	Zn	Ni	Co
166 167	A - 280 283	62 25	78 53	240 718	20 27	231 232	a - 33 37	69 57	107 76	602 431	61 52	296 297	B – 25 26	58 32	61 37	302 330	26 25
168	284	37	60 51	733	29	233	38	67	96	503	50	298	27	69	77	330	32
170	289	42	66	401	20	234 235	39 42	54 46	83 70	555 177	57 32	299 300	28 29	41 40	42 49	310 317	26 27
171	200	20	67	807	73	226	40				10	-	-				
172	292	38	61	903	82	230	43	40 54	76	83 361	19 50	301	30	88 45	43	306	26 31
173	294	50	60	1389	212	238	45	32	66	147	25	303	32	40	50	282	27
175	298	40	56	439	39	239 240	51	41 50	74 43	296 163	26 27	304 305	34 35	53 39	56 49	312 408 ·	30 31
176	298	A 1	70	642	60	241	F 4	40	~	100	20	204	26			640	
177	299	65	73	703	68	241	55 55	48	65	202	20	306	42	27 38	44	282	39 36
178	300	71	74	723	57	243	56	57	48	146	27	308	46	51	47	274	29
180	304	36	72	35	16	244 245	57	30	47 53	144	29 30	309 310	48 49	85 42	48 46	296	32 34
181	307	90	02	55	21	246	50	10	~				50		40	077	20
182	311	59	66	51	22	240	59 60	22	65 38	193	20 35	312	50	40 25	48	442	30
183	316	130	99	52	18	248	64	62	70	120	27	313	57	27	32	449	33
185	318	100	-57 94	70	19	249	65 66	49 36	58 48	170 107	31 19	314 315	58 59	31 27	32 33	162 509	22 34
186	סור	80	63	40	10	951							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			704	
187	322	61	75	85	19	251 252	68 69	42	50 55	142 231	27 39	316 317	61 62	19 59	30 50	726 493	۶9 34
188	323	95	129	114	24	253	70	46	50	186	40	318	64	268	137	353	28
190	320 330	275	183	55	16	254 255	73 74	33 31	40 39	181 320	34 54	319 320	66 68	26 29	35 43	970 408	42 35
101	221	00	101	24	10	05/											
191	335	99 136	112	81	16	256	75 77	31	45 43	174 300	36 35	321 322	71 72	47 14	43 25	918 889	55 54
193	338	41	63	48	24	258	78	35	49	338	40	323	82	16	30	819	44
194	339	41	60 64	16	13	259 260	79 80	42 29	48 49	203 303	29 39	324 325	83 84	25 230	36 134	657 693	41 46
106	147	61	50	177	11	0(1	0.0	-									
190	343	325	190	44	13	261	82 83	33 80	42 88	377 464	46 57	326 327	85 87	104 35	91 44	360 585	31 41
198	344	294	236	62	16	263	86	48	68	292	34	328	88	247	143	371	32
200	348	29	66	15	20	264 265	88 90	25 51	50 71	302 177	36 36	329 330	90 91	42 49	53 59	335 310	31 29
201	340	102	120	25	22	266	02	40	61	201		221	01	10	41	202	37
202	350	81	122	29	13	267	92	40	67	263	37	332	95	199	121	437	33
203	351	203	152	28	14	268	102	48	85	277	44	333	96	33	42	420	33
205	356	122	114	25	12	209	103	34 47	54 61	286 286	39	335	97 98	135	29	24	23
206	350	217	146	708	64	271	102	74	48	406	41	726	00	100	73	a	12
207	306	255	197	693	64	272	109	42	63	242	33	337	100	52	19	7	9
208	361	26	47	584	51 27	273	113	46	63	237	36	338	101	84	35	9	12
210	a - 3	61	50	450	31	275	115	31	50	156	21	340	102	77	17	7	- 9
211	6	42	43	520	35	276	120	าต	47	104	27	341	104	42	19	Q	Q
212	8	34	37.8	557.9	36.8	277	124	60	47	64	16	342	105	138	49	7	8
213 214	11 12	38 91	42.8	3 840.0 497	68.8	278 279	130	77 26	72 56	65 68	19 28	343 344	107	101	21 68	6 10	10
215	13	59	53	271	30	280	134	36	55	61	25	345	109	194	55	11	10
216	14	35	35	596	39	281	140	36	57	76	17	346	110	106	21	6	9
217	15	33	509	181	24	282	141	39	47	64	23	347	111	119	35	7	11
218 219	16 17	62 47	74 50	150 214	23 32	283 284	143 B = 6	57 33	56 49	124 369	30 28	348 349	113 114	60 69	31 24	6 10	6 9
220	19	53	61	210	32	285	- 7	37	43	349	27	350	115	117	34	8	é
221	20	53	95	194	27	286	9	33	48	401	31	351	121	52	26	10	10
222	22	80	145	103	24	287	10	77	56	284	32	352	122	106	31	10	13
224 224	23	40 40	127 71	<u>244</u> 270	41	288 289	13	70 34	70 44	90 د 460	28 32	353 354	123	82 83	39 40	9 11	9
225	27	57	147	313	33	290	17	40	48	452	33	355	125	405	217	14	14
226	28	50	85	275	48	291	18	45	49.	2 464.0	32	356	126	22	18	9	10
227	29	81	89 82	488	59 44	292	19	28	33	232	24	357	128	67	25	10	10
220 220	30	08 73	105	558	53	293	20 21	49 36	58 45	482 641	34 37	358	129	415 48	40	16	13
44.7			~ ~	F ()	63	205	22	A 4		212			101		-	15	100

•

																(pp	m)
Ser.No.	Sample No.	Cu	Zn	Nİ	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Co
361	B - 132	68	25	8	12	· 426	B - 227	16	34	1120	58	491	b - 68	50	17	15	10
362	133	79	15	.7	.9	427	228	31	36	324	25	492	69	56	15	9	9
363	134	93	27	10	11	428	229	.9	18	881	54	493	72	71	17	8	13
365	136	84	21	9	10	429 430	231	15 28	22 34	875 302	65 22	494 495	74 75	75 62	30 16	71 14	28 10
366	137	117	24	6	11	431	234	29	36	427	29	496	76	66	91	46	26
367	138	49	24	7	11	432	236	21	59	93	19	497	77	39	58	140	27
360	139	22	56	4	10	433	237	24	55	45	17	498	78	49	50	45	24
370	142	78	20	7	10	435	240	27	60	44	17	499 500	83	53	50 65	40 55	23
371	143	64	24	6	11	436	242	41	63	122	19	501	84	76	64	53	25
372	144	70	27	10	10	437	243	30	57	81	15	502	85	102	71	67	30
374	147	54	16	11	12	439	244	30	22 51	43	13	503	87	60	110	53	29
375	148	100	39	9	15	440	249	30	63	83	17	505	89	41	55	27	19
376	150	29	45	12	16	441	252	24	117	40	29	506	96	47	37	34	22
377	151	36	48	14	18	442	253	73	50	23	13	507	97	62	14	4	9
379	152	16	19	3	16	443 444	204	25 28	08	20	24	508	98	89 74	15	9	14
380	154	48	42	8	13	445	b – 2	29	36	319	28	510	100	95	20	12	15
381	155	62	43	8	15	446	4	35	38	186	27	511	101	159	25	15	16
382	156	38	38	7	10	447	5	32	51	153	23	512	102	90	18	10	16
384	157	22 37	25	10	17	448	6 8	34	50 42	85	19	513	103	78	16	10	12
385	163	24	50	22	16	450	9	36	27	199	31	515	104	244	21	15	20
386	165	31	76	34	22	451	10	36	35	294	33	516	107	51	20	6	22
387	166	19	56	20	15	452	13	32	31	219	31	517	110	118	26	10	13
200 189	168	29	60 60	25	25	453	17	34	27	233	32	518	111	99	22	14	15
390	169	35	74	44	27	455	19	31	30	51	22	520	115	69	14	5	9
391	171	34	67	41	26	456	20	13	23	772	42	521	116	204	26	27	26
392	174	32	55	20	15	457	21	59	50	83	27	522	120	72	15	10	12
394	177	20	21	44	10	450 459	22	47	33	204 406	32	523	123	69	30	29	22
395	178	44	60	53	33	460	26	27	40	342	31	525	125	105	46	27	26
396	181	38	29	20	18	461	27	30	38	399	34	526	129	241	22	12	19
397	182	54	32	21	20	462	28	27	36	331	30	527	130	90	12	10	12
390 399	187	19	45	691	43	463	32	28	ر 4 4٦	125	20	528	131	254	10	10	12
400	188	15	45	861	55	465	34	28	44	89	15	530	133	168	10	9	12
401	189	22	37	755	45	466	36	32	43	104	17	531	134	59	18	9	17
402	190	19	36	600	36	467	37	28	45	60	12	532	136	85	11	8	15
404	192	23]9	38	+144 520	رہ 33	468 469	38 10	40 28	55 44	102	15	533	137	124 158	12	7	12]5
405	194	12	32	1220	71	470	41	30	41	59	12	535	139	196	18	6	12
406	196	18	36	762	62	471	42	38	30	177	25	536	141	74	18	8	12
407 408	197	23	37 40	920 711	56 68	472	45	34 19	31	285	29	537	142	230	19	б я	11
409	193	8	30	984	60	474	40	43	46	166	30	519	143	82	16	6	8
410	200	22	51	1111	62	475	48	47	52	181	31	540	145	68	15	6	9
411	201	12	28	1028	36	476	49	22	26	150	17	541	146	88	8	5	5
412 413	203	26	47	560 771	69 47	477	50 51	32 20	32	216	23	542	149	44	15	777	11
414	205	24	45	626	37	410	52	29	31	152	18	544 544	150	57 67	26	10	13
415	207	33	44	511	42	480	53	27	31	168	20	545	154	100	31	10	13
416	209	27	45	513	28	481	54	24	25	224	22	546	155	100	32	12	14
417 419	210	25	45	297 826	98 11	482	55 66	27	21	129	17 18	547	161	25	33	11	9 19
419	212	39	56	324	69	484	57	18	31	27	10	540 549	165	25	78	40	14
420	213	23	27	520	39	485	58	20	34	22	9	550	169	21	60	23	13
421	221	23	24	420	31	486	59	17	28	14	5	551	180	29	52	148	25
422 423	222	38 18	- 39 - 16	201	10 52	487 488	60 61	17	40 14	25 37	o q	552	181	10	49	28 215	31
424	224	18	21	438	31	489	62	17	38	19	ıó	554	183	38	68	103	19
425	226	16	41	979	57	490	66	18	55	14	14	555	186	41	59	18	14

.

Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Co
556	b - 187	27	71	67	18	621	C - 411	44	84	214	31	686	CN - 220	39	75	40	19
557	188	16	62	27	18	622	412	33	44	641	36	687	221	30	79	27	17
558	190	77	74	20	17	623	413	43	55	414	33	688	222	38	79	43	20
559	191	24	54	21	15	624	414	34	44	547	33	689	223	68	80	41	20
560	192	69	68	16	16	625	416	36	41	619	34	690	224	281	79	56	22
561	193	30	59	20	14	626	417	40	54	201	24	691	230	54	61	24	16
562	194	30	56	12	13	627	418	33	54	660	36	692	232	56	49	17	13
563	195	29	65	17	16	628	420	33	47	192	22	693	233	59	39	22	12
564	196	33	66	35	16	629	421	34	49	659	36	694	234	57	32	13	10
565	197	42	77	12	17	630	422	35	46	539	31	695	236	36	72	81	22
566	BT - 4	45	70	572	47	631	423	40	58	421	27	696	237	38	74	93	24
567	5	34	60	491	50	632	429	48	73	104	24	697	238	27	64	97	21
568	7	34	54	146	28	633	CU - 1	42	53	13	11	698	239	22	71	104	22
569	9	22	61	451	39	634	3	66	28	9	10	699	241	27	79	120	24
570	10	26	58	298	30	635	4	50	33	9	9	700	242	19	53	54	15
571	12	15	53	337	28	636	5	123	67	18	17	701	243	43	54	78	24
572	13	29	43	148	24	637	6	32	55	14	13	702	244	33	55	56	21
573	14	22	62	642	55	638	7	61	86	24	20	703	245	16	44	29	12
574	16	17	56	529	44	639	8	31	104	29	24	704	CE - 117	36	51	25	12
575	19	20	52	327	39	640	9	46	47	11	11	705	127	51	65	102	22
576	21	22	59	332	33	641	10	56	47	9	11	706	132	19	49	10	8
577	22	40	55	352	33	642	12	43	94	23	22	707	133	47	49	18	12
578	23	29	59	427	42	643	13	41	87	21	19	708	135	20	42	81	20
579	24	36	79	355	56	644	19	46	31	9	10	709	137	25	57	67	17
580	26	36	89	23	22	645	CA - 141	108	57	24	18	710	138	24	54	102	20
581	27	35	71	15	17	646	143	91	58	20	17	711	139	24	48	148	21
582	28	40	81	15	21	647	144	67	71	28	19	712	140	29	52	110	20
583	29	57	63	25	16	648	146	67	79	38	22	713	141	24	50	656	50
584	30	35	69	22	16	649	147	63	56	20	14	714	142	28	53	92	20
585	C - 341	35	24	8	8	650	162	34	70	113	21	715	143	29	65	40	18
586	344	37	51	10	15	651	164	36	61	183	38	716	144	29	67	93	21
587	346	32	68	31	20	652	165	25	52	61	14	717	147	25	66	60	19
588	348	41	53	12	15	653	166	23	47	57	16	718	148	31	65	108	20
589	350	36	73	29	17	654	168	32	49	71	17	719	150	38	66	59	21
590	351	35	52	30	14	655	169	17	51	46	13	720	D - 21	30	51	50	17
591	353	44	59	27	22	656	170	22	58	31	12	721	22	32	57	55	16
592	354	42	50	5	11	657	171	26	53	67	15	722	23	40	61	68	23
593	356	36	61	28	18	658	172	15	47	29	9	723	26	34	50	60	20
594	357	21	92	23	24	659	173	25	47	56	15	724	27	48	49	81	23
595	359	41	67	8	14	660	176	26	57	48	15	725	28	31	50	39	15
596	362	33	74	14	16	661	177	23	39	11	9	726	32	26	57	32	16
597	363	49	58	8	13	662	179	19	39	99	8	727	34	28	54	31	16
598	364	55	72	7	16	663	180	13	49	22	11	728	38	20	51	18	9
599	365	41	73	5	16	664	181	21	55	91	18	729	39	22	49	18	9
600	368	44	55	18	11	665	182	22	69	47	16	730	40	25	48	21	12
601	369	42	40	3	8	666	190	33	60	87	23	731	43	23	70	20	12
602	371	60	77	7	15	667	192	45	77	32	24	732	44	38	53	55	19
603	372	36	65	3	14	668	193	22	59	67	30	733	45	39	60	30	17
604	375	18	32	10	8	669	197	31	44	241	24	734	46	35	50	47	16
605	376	39	60	47	24	670	198	29	66	89	20	735	50	37	47	55	16
606	378	29	58	62	25	671	199	30	47	242	26	736	53	49	46	79	22
607	380	24	40	14	12	672	200	27	44	225	24	737	54	39	50	56	19
608	386	25	50	72	19	673	202	26	46	540	36	738	55	49	50	180	33
609	387	25	46	50	14	674	203	35	52	363	27	739	56	39	59	52	19
610	388	30	54	102	24	675	204	40	51	518	34	740	59	49	57	163	29
611	391	20	42	72	20	676	205	35	54	163	22	741	60	38	54	41	17
612	392	25	42	7	9	677	206	35	36	409	27	742	61	48	34	74	19
613	393	33	50	*67	17	678	207	45	65	161	23	743	63	30	64	29	17
614	394	29	54	38	15	679	209	32	31	493	31	744	64	40	62	31	16
615	395	36	51	104	23	680	CN - 212	37	73	7	12	745	65	28	51	33	15
616	396	33	41	23	11	681	213	39	73	31	16	746	71	40	55	27	17
617	397	27	43	34	13	682	214	22	57	26	11	747	74	26	49	15	15
618	398	34	48	214	24	683	216	47	50	26	10	748	75	38	62	25	16
619	408	36	53	233	26	684	217	46	81	41	19	749	77	39	52	30	17
620	409	31	43	631	34	685	219	61	80	26	18	750	78	38	63	25	15

						. <u> </u>						. <u> </u>				(p)	pm)
Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Co
751 752 753 754 755	D - 82 83 85 86 88	38 39 39 39 39 32	61 74 65 67 50	29 32 31 31 28	16 17 17 17 13	816 817 818 819 820	તો – 23 24 25 26 27	33 23 29 40 36	63 65 58 67 48	116 75 87 32 30	21 17 20 17 18	881 882 883 884 885	d - 130 132 133 Dd - 4 6	43 46 38 24 39	68 90 86 41 63	30 31 29 19 31	2 2 2 1 1
756	89	51	50	41	24	821	28	34	66	26	11	886	7	22	44	17	1
757	94	41	64	42	19	822	30	42	68	75	23	887	8	34	52	29	2
758	97	42	65	31	19	823	33	23	61	19	10	888	9	54	57	40	1
759	98	25	63	20	13	824	34	31	63	32	13	889	10	40	59	32	1
760	100	38	55	28	17	825	35	37	60	51	17	890	13	31	59	27	1
761	101	31	57	21	14	826	39	34	56	34	16	891	E - 21	28	63	57	
762	102	29	52	21	15	827	43	11	39	10	8	892	22	32	59	47	
763	106	31	40	21	12	828	44	28	50	20	14	893	23	36	49	38	
784	111	45	34	23	12	829	45	39	42	21	11	894	24	31	48	44	
765	115	42	53	21	13	830	46	40	39	19	10	895	25	27	. 51	31	
766	116	45	46	24	11	831	49	56	42	28	12	896	26	29	58	32	1
767	118	33	39	13	9	832	50	38	45	22	11	897	27	24	41	31	1
768	119	46	47	28	13	833	53	39	44	21	13	898	28	38	43	49	1
769	121	44	58	29	15	834	57	83	53	38	16	899	29	26	50	40	1
770	122	40	49	23	12	835	61	55	42	19	12	900	30	27	47	60	1
771	123	29	75	21	15	836	63	61	38	20	11	901	31	31	43	64	
772	124	45	57	28	16	837	64	28	55	29	14	902	32	27	55	41	
773	125	33	63	21	14	838	67	44	37	14	10	903	33	20	52	24	
774	126	33	68	19	13	839	68	57	44	31	13	904	34	24	48	27	
775	127	31	62	15	11	840	70	78	43	24	13	905	35	28	42	51	
776	129	37	58	25	14	841	71	20	57	105	19	906	36	23	51	55	
777	130	36	75	27	16	842	72	40	43	128	16	907	37	19	47	23	
778	131	33	103	22	14	843	73	46	34	13	10	908	38	27	49	40	
779	132	25	58	44	16	844	74	39	32	10	8	909	39	18	50	23	
780	133	34	63	46	17	845	75	51	31	13	8	910	40	20	49	25	
781	136	35	71	45	21	846	76	49	45	13	12	911	41	19	56	17	
782	137	51	50	27	12	847	77	37	70	78	19	912	42	16	74	22	
783	138	77	53	32	13	848	80	61	39	13	10	913	43	33	46	16	
784	141	35	56	51	13	849	84	57	39	11	10	914	44	28	61	86	
785	142	35	51	53	14	850	85	57	35	13	8	915	45	17	56	23	
786 187 788 789 790	143 144 145 151 152	43 26 24 66 65	70 48 50 45 46	46 44 77 13 15	19 11 20 10 11	851 852 853 854 855	86 87 88 90 91	27 59 54 55 47	70 41 43 50 44	85 10 14 26 9	19 9 11 14 9	916 917 918 919 920	46 47 48 49 50	25 27 27 27 27 13	51 58 69 56 73	85 63 53 17	
791	153	30	25	7	9	856	94	61	39	12	10	921	51	27	53	493	
792	154	59	43	13	10	857	95	58	40	11	11	922	52	15	58	24	
793	155	45	30	10	10	858	98	122	25	15	14	923	53	25	73	44	
794	157	162	27	11	11	859	99	56	25	7	7	924	54	20	71	26	
795	158	75	36	8	10	860	100	85	78	48	18	925	55	14	31	186	
796	162	81	61	15	13	861	104	27	73	19	15	926	56	29	47	720	
797	163	100	32	7	13	862	105	37	74	33	15	927	57	12	108	42	
798	164	178	29	7	10	863	106	25	78	20	14	928	58	16	54	134	
799	165	100	30	7	12	864	107	18	90	14	16	929	59	16	61	221	
800	166	102	29	6	12	865	108	42	92	127	24	930	80	33	59	157	
801 802 803 804 805	167 170 171 172 173	107 56 71 44 43	28 52 47 40 62	35 35 25 29	11 18 19 16 20	866 867 868 869 870	109 110 111 113 114	27 22 32 71 40	86 101 69 55 47	23 20 26 16 16	15 21 15 10 10	931 932 933 934 935	61 62 63 64 65	27 29 17 23 22	56 68 54 73 66	289 82 184 92 144	
806	176	38	66	23	17	871	116	39	90	32	18	936	66	19	59	141	
807	178	32	65	21	16	872	117	31	76	23	16	937	67	33	71	39	
808	179	35	63	24	16	873	118	29	57	18	11	938	68	31	82	. 57	
809	d = 2	42	54	69	21	874	119	33	61	23	13	939	69	57	81	33	
810	8	53	59	48	23	875	122	39	60	35	18	940	70	33	86	68	
811	15	35	56	63	20	876	123	37	70	38	19	941	71	35	125	35	
812	16	53	55	186	39	877	124	34	62	31	15	942	72	31	95	64	
813	17	36	60	38	20	878	125	44	81	68	27	943	73	21	98	37	
814	21	38	62	32	21	879	126	41	64	41	21	944	74	25	97	85	
815	22	40	61	54	21	880	127	33	102	20	15	945	76	67	68	53	

Ser.No.	Sa	ար1	e No,	Cu	Zn	Ni	Co	Ser.No	. Samp	le No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Co
946	Ē		77 78	108	59 46	19 16	16	1011	c -	41 42	108	42	7	27 61	1076	C - 139 140	49 49	80 98	43 36	30 36
948			79	44	77	105	23	1013		43	102	48	5	30	1078	141	49	75	53	30
949 950			80 83	33 23	69 60	37 14	18 14	1014		44 45	90 137	44 31	7 6	27 27	1079 1080	142 143	66 33	67 67	68 37	36 21
951 952			84 85	28 18	63 31	37 14	13	1016		46	119	27 68	11	33 46	1081	144	30 25	72	58 16	25 16
953	e	-	21	30	55	83	21	1018		48	73	30	5	26	1083	146	25	49	18	19
954 955			22 23	21	24 72	27	13	1019		49 50	100 358	40 51	7 9	26 42	1084 1085	147 148	131 125	45 45	33 33	39 24
956 957			24 25	15 40	39 57	16 43	7 20	1021 1022		51 52	81 135	35 35	5	26 27	1086	149	105	49	37	30 37
958			26	13	57	16	9	1023		53	83	39	9	33	1088	151	254	50	31	37
960			30	15	45	17	9	1025		55	54	28	7	36	1089	152	63 93	28 43	32 37	27 41
961	EM	-	9	23	48	31	14	1026		56	58	42	8	36	1091	154	115	69	42	50
962 963			10 11	20 21	78 48	22 27	14 12	1027		57	78	30 32	6	23	1092	155	91	40	31	37
964			12	27	55	28	15	1029		59	103	40	8	30	1093	157	76	30	23	30
965			13	20	46	25	13	1030		60	144	40	12	45	1095	158	129	73	86	47
966 967			14 15	21 19	70 104	26 24	16 17	1031		61 62	52 35	50 43	7	18 15	1096	159	94 74	35	28 63	33
968			16	22	50	28	14	1033		63	m	79	16	42	1098	161	56	65	56	30
969 970			18	36	55 41	19 67	21	1034 1035		64 65	119 92	75 70	14 15	36 30	1099 1100	162 163	39 49	30 68	26 55	15 30
971	С	-	1	96	75	53	33	1036		66	146	75	16	45	1101	164	66	79	69	47
972			2	50 75	43 67	30 44	15 20	1037		67 69	39 71	62	11	15	1102	165	49	54	51	26
974			4	77	63	48	30	1039		93	57	23	5	26	1105	165	57	50	37	18
975			5	44	57	46	29	1040		94	42	20	5	26	1105	168	49	55	54	30
976 977			6 7	92 64	115 60	54 42	52 33	1041 1042		95 96	65 58	20 22	5	20 27	1106 1107	194 195	98 184	50 38	37 37	31 40
978			8	75	65	46	33	1043		97	63	35	6	30	1108	196	85	58	37	35
979 980			10	104 74	130 65	104 41	39	1044 1045		98 99	90 60	23	ь 5	29 24	1109	197	78 152	35 57	36	26 42
981			11	75	72	16	38	1046		100	97	42	6	29	1111	199	90	44	28	25
982			12	148	60 70	13	42	1047		101	52 83	15	4	16 30	1112	200	89	45	25	25
984			14	173	35	16	41	1049		102	47	29	6	30	1115	201	59	39	26	25
985			15	160	63	14	33	1050		113	46	54	11	26	1115	203	80	35	25	26
986 987			16 17	171	65 47	14 8	33 36	1051 1052		114	225 44	54 56	30 12	38 30	1116	204 205	57 126	44 28	31 31	25 30
988			18	169	37	7	29	1053		116	92	80	24	42	1118	206	118	40	38	31
989 990			19 20	111 92	35 25	6 7	27 30	1054		117	38 73	51 70	23	30	1119	207 208	78 78	158 45	29 54	29 60
991			21	52	55	13	29	1056		119	46	60	14	27	1121	209	67	44	37	39
992 993			22	142 108	43 40	6	28 27	1057		120 121	71 46	65 54	14	30 24	1122	210	74	43 50	33 40	36 44
994			24	146	63	12	33	1059		122	61	74	19	30	1124	212	95	37	26	23
995			25	100	30	6	29	1060		123	44	60	13	26	1125	213	84	38	26	28
996 997			26 27	133 94	57 41	6	30 29	1061 1062		124 125	46 17	58 25	12 5	24 15	1126 1127	214 215	72 78	63 30	36 18	37 21
998			28	83	40	6	17	1063		126	46	60	13	30	1128	216	98	39	25	25
1000			29 30	90 68	33	6	33	1064		127	50 54	70	15	23	1129	UA - 1 2	123	113	48 85	50
1001			31	103	31	10	17	1066		129	44	65	15	15	1131	3	139	54	31	35
1002			32 37	196 102	75 48	7	38 30	1067		130	54 37	60 65	16 11	23 18	1132	4 5	197 115	70 40	36 23	44 28
1004			34	118	50	7	27	1069		132	57	75	15	30	1134	6	186	62	38	47
1005			35	100	50	7	23	1070		133	60	67	13	30	1135	7	227	102	01	11
1006 1007			36 37	129 106	43 43	5 10	27 27	1071 1072		134 135	54 45	78 82	46 43	44 37	1136 1137	8 9	181 98	135 95	55 61	77 43
1008			38	208	55	7	29	1073		136	44	85 85	44	49 4	1138	10	120	118	74 15	59 24
1010			40	74 108	37	6	27	1075		138	41	80	40	37	1140	20	71	43	23	38

:

.

Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Sam	ole No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Co
1141	CA - 21	61	62	25	35	1201	CE -	- 28	103	52	78	52	1261	CN - 71	25	55	32	22
1142	22	61	47	25	30	1202		29	102	120	87	49	1262	72	31	52	29	23
1143	34	284	50	22	35	1203		30	98	92	109	54	1263	73	25	56	26	26
1144	35	56	61	45	32	1204		31	97	98	103	53	1264	74	29	53	30	25
1145	36	51	67	42	32	1205		34	96	37	25	33	1265	75	20	46	18	18
1146	37	30	73	36	24	1206		63	56	38	32	38	1266	76	10	41	16	13
1140	8L 20	49	22	75	24	1207		64	78	21	47	48	1267	89	167	32	19	20
1140	39	49	22	41 22	24	1200		76	100	12	39	30	1200	90	274	37	71	26
1150	41	52	62	33	28	1210		77	80	47	20	33	1270	92	83	17	24	38
1151	42	39	50	36	28	1211		78	110	44	29	33	1271	93	354	55	21	35
1152	43	35	48	34	16	1212		79	83	51	25	35	1272	94	329	43	18	26
1153	44	36	70	46	32	1213		80	50	49	48	27	1273	95	171	35	21	32
1154	66	168	35	24	24	1214		81	29	49	39	33	1274	113	38	64	55	35
1155	70	254	95	33	60	1215		93	167	35	39	45	1275	114	46	66	28	38
1156	73	87	83	79	45	1216		94	233	35	33	34	1276	115	38	40	32	27
1157	74	90	75	82	39	1217		95	198	45	33	51	1277	116	62	33	29	32
1158	75	93	79	55	41	1218		96	333	37	43	51	1278	117	208	46	26	38
1159	76	89	80	68	46	1219		105	337	43	24	37	1279	118	135	52	43	33
1160	\mathcal{H}	93	82	γυ	43	1220		106	102	37	33	52	1280	119	125	33	26	28
1161	78	93	65	66	46	1221	~~~	107	104	40	37	45	1281	120	156	35	26	27
1102	90	200	22	20	40	1222	UN -	- 1	188	69	30	45	1282	121	D2 E2	60	40	43
1164	93	77	40	38	32	1224		2	146	37		17	1284	122	52	58	40	36
1165	95	254	85	28	39	1225		4	271	75	31	48	1285	124	83	62	31	38
1166	96	129	53	31	28	1226		5	104	60	30	40	1286	132	73	17	19	27
1167	97	66	39	36	28	1227		6	333	49	29	47	1287	133	69	17	20	28
1168	98	85	65	25	28	1228		7	69	48	28	38	1288	139	104	46	27	32
1169	99	92	45	43	34	1229		8	146	57	29	45	1289	142	90	46	24	31
1170	100	115	44	61	36	1230		9	115	52	23	38	1290	143	38	40	29	20
1171	101	36	23	16	20	1231		10	158	46	35	45	1291	145	31	32	25	18
1173	102	70	29	36	20	1232		11	140	10	19	0C 48	1292	158	20	20	24	78
1174	105	36	34	26	27	1234		17	104	54	22	16	1204	150	22	56	20	36
1175	105	44	34	20	26	1235		14	105	66	28	42	1295	160	146	33	23	26
1176	106	43	36	29	33	1236		15	127	150	21	38	1296	161	131	29	13	23
1177	134	82	39	47	83	1237		16	50	68	38	85	1297	162	104	22	18	24
1178	CE - 1	119	92	63	45	1238		22	204	58	32	69	1298	163	146	28	17	20
1179	2	129	58	38	45	1239		33	92	49	27	36	1299	165	166	29	19	25
1180	7	50	59	41	37	1240		34	96	37	25	33	1300	196	96	21	14	20
1181	8	108	42	53	53	1241		35	112	40	24	33	1301	197	33	29	20	17
1182	. 9	240	35	31	31	1242		36	71	46	27	39	1302	198	46	37	26	23
1183	10	278	36	28	27	1243		37	177	60	30	43	1303	199	31	19	20	19
1185	11	62	40 63	28 69	35 44	1244 1245		39	37	40 29	25 18	22	1304	200	40	37	18	20 16
1186	12	78	62	าต	38	1246		40	72	52	21	A A	1306	202	11	35	22	19
1187	14	61	82	17	50	1240		40	25	20	17	10	1200	202	62	20	20	+7 10
1188	15	61	71	43	59	1248		42	20	27	38	21	1308	211	8	47	16	ĩá
1189	16	48	72	47	33	1249		43	17	28	29	26	1309	CU - 35	71	18	56	20
1190	17	74	81	40	54	1250		44	29	35	31	33	1310	49	67	20	14	26
1191	18	34	86	49	59	1 251		45	13	17	29	15	1311	50	62	17	12	20
1192	19	95	74	40	49	1252		46	13	35	25	37	1312	51	67	19	16	26
1193	20	86	60	27	36	1253		63	79	58	24	36	1313	52	48	17	16	20
1194	21	103	41	63	38	1254		64	35	52	43	27	1314	53	46	18	16	20
1195	22	74	43	38	46	1255		65	20	50	38	22						
1196	23	94	54	81	44	1256		66	10	40	23	12						
1197	24	132	44	85	48	1257		67	17	48	32	21						
1198	25	172	47	64 81	45	1250		60	20	40	30	21						
1200	20 97	26 I 26	53	24 0#	77 50	1260		70	22	40 55	29	21						
1200	-1	40	26	22	50	1400		10	40	22	49	ر ۽						

																(p	pm)
Ser.No.	Sample No.	Ag	Cu	Zn	Mo	Ser.No.	Sample No.	٨g	Cu	Zn	Mo	Ser.No.	Sample No.	٨g	Cu	Zn	Мо
1315	E - 91	1.0	93	123	0.9	1376 1377 1378 1379 1380	F - 495 496 497 499 503	1.5 2.0 2.0 1.5 1.5	191 194 236 169 114	142 75 105 83 79	1.0 1.7 1.0 1.1 0.6	1441 1442 1443 1444 1445	F - 588 589 590 591 596	2.1 2.6 2.6 2.1 1.5	93 91 167 40 144	141 68 66 95 38	0.9 0.4 0.8 0.6 0.7
1316 1317 1318 1319 1320	92 94 96 97 98	1.5 1.5 1.5 1.0 1.0	139 90 154 81 90	167 164 166 155 152	0.9 0.9 1.4 1.1 1.0	1381 1382 1383 1384 1385	505 506 507 508 509	2.0 2.0 2.0 2.0 1.5	103 177 147 131 202	57 104 83 77 84	0.6 1.7 1.0 0.6 0.7	1446 1447 1448 1449 1450	$f = \frac{29}{4}$ 6 11	1.0 2.1 2.6 3.1 1.5	54 158 155 162 176	120 153 112 115 129	2.3 2.1 1.4 0.9 1.1
1321 1322 1323 1324 1325	99 100 101 102~1 "~2	1.0 1.0 2.0 1.5 2.0	148 101 81 133 108	134 77 154 93 166	0.4 0.5 0.9 0.2 0.7	1386 1387 1388 1389 1390	510 511 512 513 514	1.5 1.5 1.5 1.6 1.6	142 125 170 157 81	82 87 235 145 121	0.9 0.7 1.2 0.4 1.3	1451 1452 1453 1454 1455	12 18 19 24 29	2.1 1.5 1.0 1.5 2.1	153 253 106 155 140	137 84 125 135 129	0.3 0.5 0.4 0.7 0.6
1326 1327 1328 1329 1330	103~1 "~2 104 105 106	1.5 2.0 1.5 1.5 1.0	146 104 128 105 146	139 135 157 119 121	0.6 1.0 0.5 0.7 0.6	1391 1392 1393 1394 1395	515 516 517 518 521	1.6 2.1 1.6 1.6 1.0	176 164 94 162 66	145 218 80 114 75	0.5 0.7 0.4 0.3 0.4	1456 1457 1458 1459 1460	33 500 501 504 505	1.0 1.5 2.1 2.1 1.5	109 55 86 77 73	126 83 65 36 74	0.5 1.5 2.2 0.3 1.2
1331 1332 1333 1334 1335	108 109 110 114 115	1.5 1.5 1.5 1.0 1.0	128 148 128 121 67	192 126 158 186 108	0.6 0.6 0.6 0.6 0.5	1396 1397 1398 1399 1400	523 525 527 528 529A	2.1 1.0 2.1 2.1 2.1	47 69 128 83 73	94 48 141 98 123	0.2 2.9 0.4 0.5 0.6	1461 1462 1463 1464 1465	506 508 511 513 515	1.0 1.0 1.5 1.5 1.6	53 40 100 51 54	121 92 96 47 42	1.4 0.6 0.5 1.3 0.4
1336 1337 1338 1339 1340	116 118 119 F - 3 5	1.5 1.5 1.0 3.4 2.8	78 113 79 151 92	158 183 134 104 140	0.6 0.7 0.6 0.7 0.5	1401 1402 1403 1404 1405	529B 530 531 532 533	2.6 2.6 3.1 2.6 3.1	115 86 107 109 100	81 47 134 139 184	0.8 0.3 0.5 0.4 0.4	1466 1467 1468 1469 1470	516 521 522 524 525	1.0 1.0 1.0 1.0 1.0	130 72 48 73 43	74 51 71 92 177	0.2 4.2 0.6 0.4 0.7
1341 1342 1343 1344 1345	7 8 9 10 11	3.4 3.4 4.0 3.4 2.8	127 157 187 128 96	109 104 168 96 93	0.3 0.4 0.4 0.8 0.7	1406 1407 1408 1409 1410	534 535 540 541 543	2.6 2.1 3.1 2.6 2.6	91 94 104 81 101	115 171 217 100 104	0.2 0.3 0.7 0.3 0.8	1471 1472 1473 1474 1475	526 527 529 530 532	1.0 1.0 1.0 1.6 1.0	133 61 59 143 61	71 100 52 80 72	0.4 0.6 0.4 0.3
1346 1347 1348 1349 1350	12 13 17W 18 21	2.8 3.4 3.4 2.8 4.0	137 95 87 79 86	102 183 224 169 131	0.5 0.4 0.5 0.7 0.8	1411 1412 1413 1414 1415	545 546 549 550 552	2.6 2.1 1.6 2.0 1.5	56 50 86 64 80	95 135 101 110 137	1.4 0.4 0.3 1,1 0,5	1476 1477 1478 1479 1480	533 534 535 536 537	1.0 1.6 1.0 1.6 1.6	47 73 71 91 38	58 91 72 132 117	0.1 0.5 0.4 0.7
1351 1352 1353 1354 1355	22W 23W 27 28 467	3.4 2.8 2.8 2.8 2.3	69 87 74 64 147	267 248 81 51 187	0.7 0.9 0.6 1.3 0.9	1416 1417 1418 1419 1420	553 554 556 558 559	1.5 1.0 1.5 2.0 1.0	53 90 59 36 164	100 82 105 61 57	0.4 1.1 1.5 1.2 3.6	1481 1482 1483 1484 1485	538 539 540 544 550	2.1 1.0 2.1 1.6 1.0	44 103 151 86 77	129 73 86 87 76	0.6 1.8 1.2 0.3
1356 1357 1358 1359 1360	468 469 470 471 472	2.3 2.8 2.3 2.3 2.8	126 125 143 172 121	67 88 103 96 186	0.5 0.4 0.5 0.4 0.9	1421 1422 1423 1424 1425	561 562 565 566 567	2.0 2.0 1.5 1.5 1.5	22 106 120 106 53	20 52 81 65 72	0.8 1.4 3.2 2.0 0.8	1486 1487 1488 1489 1490	552 553 554 555 556	1.6 1.0 1.0 0.5 2.5	242 59 55 104 118	160 126 111 76 173	1.3 0.3 0.7 0.3 0.7
1361 1362 1363 1364 1365	473 479 480 481 482	2.3 3.4 2.8 2.5 2.0	181 129 135 132 94	105 86 98 107 111	0.8 0.2 0.3 1.4 1.1	1426 1427 1428 1429 1430	569 570 571 572 574	1.0 1.5 1.0 1.0 2.0	186 67 103 105 65	94 52 62 86 53	9.6 3.6 2.9 2.8 2.0	1491 1492 1493 1494 1495	557 558 559 560 561	2.0 2.0 2.5 3.0 3.0	95 46 86 34 94	109 78 167 135 171	0.8 0.6 0.7 0.8 0.9
1366 1367 1368 1369 1370	483 484 485 488 489	2.0 2.0 2.0 2.0 2.0	118 157 125 80 101	82 80 90 93 84	0.6 0.5 0.7 0.5 0.6	1431 1432 1433 1434 1435	576 577 580 581 582	1.0 1.5 1.5 1.5 2.0	130 101 58 144 36	73 74 58 70 66	1.1 1.0 0.7 0.5 0.3	1496 1497 1498 1499 1500	562 564 565 566 571	1.5 1.5 2.0 2.0 1.5	121 149 131 221 50	106 105 102 119 106	0.9 0.9 0.9 1.9
1371 1372 1373 1374 1375	490 491 492 493 494	1.5 1.5 1.5 1.5 1.5	138 186 130 143 141	67 94 81 72 85	1.2 1.1 0.8 0.9 1.0	1436 1437 1438 1439 1440	583 584 585 586 587	1.5 1.5 2.0 1.5 3.1	50 101 110 83 77	86 67 78 90 94	0.8 0.8 1.1 0.3 0.2	1501 1502 1503 1504 1505	573 574 576 578 579	2.0 1.5 1.5 2.0 2.5	111 76 64 59 55	191 132 107 111 120	0.9 1.4 0.8 1.0

													-			(p	pm)
Ser.No.	Sample No.	Ag	Cu	Zn	Mo	Ser.No.	Sample No.	Ag	Cu	Zn	Мо	Ser.No.	Sample No.	Ag	Cu	Zn	Мо
1506 1507 1508 1509 1510	f - 583 584 585 586 586 587	2.0 1.5 1.0 1.0 1.5	38 74 21 40 51	77 172 94 81 84	3.0 0.9 1.0 9.2 2.2	1571 1572 1573 1574 1575	G - 48 49 51 53 55	2.1 1.5 1.5 1.0 1.0	34 52 118 67 60	141 136 53 59 57	0.3 0.5 0.4 0.5 0.4	1636 1637 1638 1639 1640	G = 132 133 135 136 137	1.1 2.2 2.2 2.2 5.0	111 193 127 94 62	90 236 128 76 46	0.9 1.1 0.7 0.6 0.5
1511	588	2.5	20	62	1.0	1576	56	1.5	40	52	0.4	1641	139	3.3	81	86	0.9
1512	589	1.5	43	84	3.6	1577	57	1.5	58	59	0.3	1642	140	3.3	105	109	0.7
1513	590	1.5	162	141	1.9	1578	58	1.5	55	61	0.5	1643	141	2.8	103	69	0.5
1514	591	1.5	65	124	1.0	1579	59	2.6	57	52	0.7	1644	142	3.3	68	37	0.5
1515	592	3.5	10	21	0.1	1580	60	2.1	44	54	0.6	1645	143	3.9	156	171	1.0
1516	593	2.5	184	69	0.7	1581	62	2.6	54	59	0.7	1646	145	5.0	84	108	0.7
1517	595	2.0	28	54	0.4	1582	63	3.1	57	66	0.4	1647	146	3.9	103	46	0.4
1518	597	1.5	43	56	1.1	1583	64	2.6	55	66	0.7	1648	147	3.3	113	85	0.6
1519	598	2.5	85	107	1.5	1584	65	3.1	55	51	0.7	1649	149	3.3	55	49	0.7
1520	600	2.0	75	60	1.2	1585	66	3.6	38	60	0.5	1650	150	4.4	144	77	0.4
1521	601	2.0	66	157	0.2	1586	69	3.6	151	55	0.4	1651	151	3.3	59	74	0.7
1522	602	2.0	64	56	0.4	1587	70	3.1	144	60	0.3	1652	152	3.9	92	72	0.7
1523	603	2.0	53	58	0.3	1588	72	3.1	182	64	0.3	1653	154	3.3	59	73	0.5
1524	604	2.0	75	64	0.2	1589	73	1.5	108	57	0.3	1654	155	2.8	73	86	0.8
1525	605	1.5	78	79	0.5	1590	74	1.5	82	• 67	0.2	1655	156	2.8	55	53	0.9
1526	606	2.5	71	63	0.1	1591	76	1.5	83	80	0.2	1656	157	3.9	73	43	0.6
1527	G - 1	2.5	133	156	0.4	1592	77	1.0	104	76	0.3	1657	158	2.2	62	74	1.1
1528	2	2.0	81	143	0.4	1593	79	1.5	76	62	0.0	1658	159	3.3	59	103	0.7
1529	3	1.5	137	97	0.3	1594	81	1.5	131	76	0.2	1659	160	2.8	59	68	0.6
1530	4	2.0	129	80	0.2	1595	82	2.1	81	66	0.3	1660	161	2.8	43	65	0.4
1531	5	2.0	119	145	0.5	1596	83	1.5	116	118	0.3	1661	162	3.3	51	53	1.6
1532	6	2.5	137	110	0.4	1597	84	3.1	69	154	0.7	1662	163	4.4	45	64	0.4
1533	7	2.5	92	98	0.2	1598	85	3.1	98	99	0.3	1663	165	3.3	51	64	0.7
1534	8	2.0	135	100	0.3	1599	87	3.1	123	119	0.4	1664	166	2.2	61	53	0.4
1535	9	1.5	117	74	0.2	1600	88	2.6	82	55	0.2	1665	167	4.4	114	61	0.3
1536	10	2.0	133	109	0.4	1601	90	3.6	93	121	0.7	1666	168	4.4	79	67	0.6
1537	11	2.0	137	108	0.4	1602	91	3.6	130	112	0.2	1667	169	4.4	89	74	1.0
1538	12	1.5	117	85	0.2	1603	92	3.6	79	96	0.3	1668	170	3.9	60	69	0.6
1539	13	2.5	134	121	0.4	1604	93	4.1	109	167	0.5	1669	171	3.3	69	91	0.7
1540	14	2.6	89	167	0.5	1605	94	4.1	122	174	0.5	1670	172	3.3	65	69	0.6
1541	15	1.0	106	93	0.3	1606	96	3.6	81	106	0.6	1671	173	3.3	81	56	1.7
1542	17	1.6	132	92	0.2	1607	97	3.1	78	100	0.5	1672	174	2.8	67	70	0.5
1543	18	1.0	141	59	0.4	1608	98	3.1	79	113	0.7	1673	175	2.8	95	45	0.3
1544	19	1.6	97	80	0.2	1609	99	2.1	103	119	0.3	1674	176	2.8	91	163	1.1
1545	20	1.6	87	58	0.1	1610	100	2.6	92	108	0.6	1675	177	3.3	98	53	0.3
1546	21	2.1	95	147	0.3	1611	101	2.1	105	63	0.3	1676	178	2.2	99	49	0.0
1547	22	2.6	87	93	0.2	1612	103	2.1	93	56	0.2	1677	179	2.2	92	48	0.2
1548	23	3.6	100	92	0.3	1613	104	2.1	148	139	0.3	1678	180	2.2	64	54	0.6
1549	24	2.1	105	80	0.3	1614	105	2.1	154	104	0.3	1679	182	3.3	158	37	0.1
1550	25	1.6	101	71	0.3	1615	106	3.8	151	108	0.6	1680	183	3.9	95	54	0.3
1551	26	1.0	102	88	0.2	1616	107	3.3	138	83	0.6	1681	184	3.9	71	56	0.4
1552	27	2.1	85	79	0.2	1617	109	2.7	126	72	0.9	1682	185	4.4	72	61	0.0
1553	28	1.6	86	114	0.3	1618	110	3.3	116	53	0.5	1683	186	3.3	65	112	0.8
1554	29	2.1	132	53	0.2	1619	111	2.7	123	70	0.4	1684	187	3.3	56	108	0.8
1555	30	1.0	125	61	0.2	1620	112	2.7	125	76	0.6	1685	188	2.8	65	105	0.8
1556	32	1.0	89	63	0.7	1621	113	4.3	101	91	0.8	1686	189	3.3	85	155	1.0
1557	34	1.6	85	84	0.7	1622	115	3.3	114	115	0.8	1687	190	2.2	91	177	1.1
1558	35	3.1	44	82	0.8	1623	116	3.3	95	86	0.8	1688	191	1.7	43	118	0.9
1559	36	2.1	63	81	0.6	1624	117	3.3	127	84	0.4	1689	192	1.7	68	124	1.0
1560	37	2.1	48	76	0.6	1625	118	2.7	101	136	0.5	1690	193	3.1	75	92	0.5
1561	38	2.1	52	69	0.5	1626	119	3.8	96	68	0.2	1691	194	3.1	103	253	0.5
1562	39	2.1	81	97	1.0	1627	121	3.8	98	108	0.5	1692	197	2.6	84	179	0.8
1563	40	2.6	47	73	0.6	1628	122	2.7	86	46	0.7	1693	198	2.6	83	183	0.7
1564	41	1.6	51	84	0.5	1629	123	2.2	112	75	0.2	1694	199	2.1	66	80	0.3
1565	42	3.1	57	95	0.6	1630	124	2.7	113	100	0.5	1695	200	2.1	110	237	0.7
1566	43	2.6	41	147	0.3	1631	125	2.2	99	80	0.7	1696	201	1.5	153	107	0.5
1567	44	2.1	50	118	0.5	1632	126	2.2	105	84	0.6	1697	202	2.1	98	115	0.8
1568	45	1.5	37	110	0.5	1633	127	2.2	127	77	0.8	1698	203	1.0	160	56	0.6
1569	46	1.0	61	100	0.6	1634	129	2.2	105	96	1.0	1699	204	1.0	103	118	0.7
1570	47	1.5	38	129	0.5	1635	130	1.6	120	70	0.4	1700	205	1.0	121	95	0.2

Ser.No.	Sample No.	٨g	Cu	Zn	Мо	Ser.No.	Sample No.	٨g	Cu	Zn	Mo	Ser.No.	Sample No.	Ag	Cu	Zn	Мо
1701 1702 1703 1704 1705	G - 206 207 208 209 210	1.0 2.1 2.1 1.5 1.5	104 133 104 112 116	60 74 62 83 98	0.4 0.5 0.5 0.3 0.5	1766 1767 1768 1769 1770	G - 279 280 282 283 284	1.9 1.9 1.5 1.0 1.0	111 102 75 93 69	133 158 112 77 82	0.8 0.8 0.6 0.7 0.6	1831 1832 1833 1834 1835	H - 6 7 8 9 10	<1 <1 <1 <1 1	54 35 72 109 72	49 45 90 100 37	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2
1706 1707 1708 1709 1710	211 212 213 214 215	1.0 1.5 1.0 1.0 1.5	101 110 113 116 98	93 95 58 99 82	0.4 0.6 0.4 0.8 0.5	1771 1772 1773 1774 1775	285 288 289 g - 1 3	2.4 1.9 2.4 1.5 1.9	119 112 113 74 115	86 86 102 69 304	1.2 1.2 1.9 0.5 0.9	1836 1837 1838 1839 1840	11 12 13 14 15	1 1 1 1	86 53 72 77 72	34 75 77 83 71	< < < < < < < < < < < < < < < < < < <
1711 1712 1713 1715 1715	216 217 218 219 220	1.0 1.0 1.0 1.0 3.6	116 136 124 133 130	74 100 195 60 103	0.7 0.6 0.9 0.4 0.6	1776 1777 1778 1779 1780	4 5 7 9 10	1.9 1.5 1.5 1.5 1.0	83 74 59 115 116	106 59 64 74 106	0.5 0.1 0.2 0.7 0.6	1841 1842 1843 1844 1845	16 17 18 19 20	1 1 1 1 1	72 72 62 48 72	63 86 67 76 66	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2
1716 1717 1718 1719 1720	221 222 223 224 225	3.1 3.1 2.6 3.1 3.1	89 93 97 111 82	130 101 120 73 117	0.5 0.5 0.5 0.4 0.7	1781 1782 1783 1784 1785	11 12 13 14 15	1.9 1.9 1.5 1.9 1.5	143 120 131 132 98	134 87 132 99 118	0.8 0.7 0.8 0.7 0.4	1846 1847 1848 1849 1850	22 23 24 25 27	1 1 1 1	53 62 45 86 62	77 71 212 75 95	< 2 < 2 < 2 2 2 2 2 2 2 2 2 2 2 2 2
1721 1722 1723 1724 1725	226 227 228 229 230	3.6 3.1 2.1 1.5 1.5	108 79 106 107 108	75 102 63 74 76	1.0 0.3 0.5 1.0 0.5	1786 1787 1788 1789 1790	16 17 18 19 20	1.5 1.0 1.9 1.9 1.0	122 110 138 140 122	75 99 135 176 83	0.7 0.8 0.8 1.3 0.7	1851 1852 1853 1854 1855	28 29 30 31 32	1 1 1 1	72 91 100 86 132	78 71 75 73 73	< 2 < 2 < 2 2 2 2 2 2 2 2 2 2
1726 1727 1728 1729 1730	231 232 233 234 235	1.5 3.1 2.6 2.6 2.1	165 107 118 119 114	85 93 62 58 103	0.5 0.6 0.3 0.3 0.6	1791 1792 1793 1794 1795	21 22 23 24 25	1.0 1.0 1.5 1.5 2.5	124 127 126 127 126	70 87 73 76 106	0.5 0.4 0.5 0.4 0.3	1856 1857 1858 1859 1860	33 34 35 36 37	1 1 1 1	86 35 77 118 118	77 84 74 77 83	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1731 1732 1733 1734 1735	236 237 238 239 240	2.6 1.5 1.5 1.5 1.5	109 117 111 125 109	64 51 48 76 50	0.5 0.2 0.3 0.4 0.4	1796 1797 1798 1799 1800	26 27 28 29 30	1.0 1.5 1.0 1.0 1.5	157 123 129 143 135	128 102 155 91 75	0.3 0.3 0.3 0.3 0.3	1861 1862 1863 1864 1865	38 39 40 41 42	1 1 1 1 1	77 62 53 50 137	85 98 93 94 84	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1736 1737 1738 1739 1740	241 242 243 244 245	2.1 2.1 1.5 1.5 2.4	78 119 106 119 88	96 175 110 85 147	0.3 0.4 0.3 0.4 0.5	1801 1802 1803 1804 1805	31 32 33 34 35	1.5 2.0 2.5 1.5 1.0	127 130 114 141 74	79 88 102 84 107	0.3 0.3 0.3 0.3 0.6	1866 1867 1868 1869 1870	43 44 45 46 47	1 1 1 1	72 36 62 72 45	78 51 107 96 75	<2 <2 <2 <2 <2 <2 <2 <2
1741 1742 1743 1744 1745	246 247 248 249 250	1.5 2.4 1.9 2.4 1.9	133 128 127 142 168	86 80 65 107 148	0.3 0.4 0.3 0.4 0.6	1806 1807 1808 1809 1810	36 37 38 39 40	1.5 1.0 1.0 1.0 1.0	78 83 64 78 103	108 135 136 115 157	0.7 0.5 0.6 0.5 0.7	1871 1872 1873 1874 1875	48 49 50 51 52	1 2 1 1 1	45 62 100 77 45	116 93 96 80 100	<2 <2 <2 <2 <2 <2 <2
1746 1747 1748 1749 1750	251 252 254 255 256	1.9 2.4 1.9 1.9 2.9	140 152 97 135 132	72 81 69 127 128	0.3 0.3 0.4 0.4	1811 1812 1813 1814 1815	41 42 43 44 45	1.5 2.0 1.5 1.0 1.0	87 76 100 90 104	126 105 118 192 139	0.7 0.8 1.8 0.9 0.7	1876 1877 1878 1879 1880	53 54 55 56 57	1 1 1 1 1	96 72 53 53 53	86 106 107 143 123	< 22 < 22 < 22 < 22 < 22 < 22 < 22 < 22
1751 1752 1753 1754 1755	257 259 260 261 263	1.5 1.5 1.9 1.5 1.5	150 142 141 128 150	61 82 96 77 98	0.3 0.4 0.6 0.5 0.3	1816 1817 1818 1819 1820	46 47 48 49 50	1.5 1.5 1.0 2.0 1.5	72 122 86 100 89	125 186 81 168 82	0.6 0.9 0.5 1.3 0.5	1881 1882 1883 1884 1885	58 59 60 61 62	1 1 2 2	36 62 53 45 62	96 105 136 76 86	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
1756 1757 1758 1759 1760	265 266 267 270 271	1.5 1.5 1.5 1.5 1.5	153 152 91 100 113	50 133 97 109 78	0.4 0.4 0.7 0.6 0.5	1821 1822 1823 1824 1825	51 52 54 55 56	2.0 1.5 1.5 1.5 3.0	165 116 103 132 94	242 208 110 131 136	2.8 1.1 0.4 0.5 0.7	1886 1887 1888 1889 1890	63 64 65 66 67	3 1 1 1 1	58 72 72 45 62	87 93 90 77 93	$\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle \langle \langle \langle \rangle \rangle \rangle \langle \langle \langle \langle \rangle \rangle \rangle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$
1761 1762 1763 1764 1765	272 274 276 277 278	1.0 1.5 1.0 1.0 2.4	108 101 141 101 105	64 82 61 83 94	0.5 0.4 0.2 0.4 0.9	1826 1827 1828 1829 1830	57 H - 1 3 4 5	2.5 1 1 1 1	137 138 91 89 242	114 45 63 77 49	0.5 < 2 < 2 < 2 < 2	1891 1892 1893 1894 1895	68 69 70 71 72	1 1 1 1 1	30 72 62 72 58	76 90 77 108 78	<22 <22 <22 <22 <22 <2

Ser.No.	Sample No.	Ag	Cu	Zn	Mo	Ser.No.	Sample No.	Ag	Cu	Zn	Мо	Ser.No.	Sample No.	Ag	Cu	Zn	Mo
1896	н - 73	1	58	83	<2	1961	H = 152	1	36	74	<2	2026	II – 226	1	34	38	< 2
1897	75	1	50	113	$<^{2}$	1962	153	1	36	76	<2	2027	227	1	84	66	<u>></u> 2
1898	76	1	96	94	$<^{2}_{-}$	1963	154	1	45	55	<2	2028	228	1	92	90	52
1899	77	1	45	114	$<^{2}_{2}$	1964	155	2	25	76	<2	2029	229	3	90	83	< 2
1900	79	1	30	110	$<^2$	1965	156	1	40	50	<2	2030	230	3	64	22	< 2
1901	80	1	82	139	<2	1966	157	1	30	55	<2	2031	231	1	64	69	< 2
1902	81	2	86	113	\leq^{2}	1967	158	1	30	57	<2	2032	232	3	80	59	≤ 2
1903	82	1	.77	98	~2	1968	160	2	36	52	<2	2033	233	2	89	64	~2
1904	83	1	72	86	<2	1969	161	1	40	51 54	\leq_2^2	2034	235 Hi - 1	2	80 76	04 129	<2
													_				
1906	85 86	1	118	92	<2 <2	1971	163 164	1 2	36 53	59 64	<2 <2	2036	3	2	39 51	88 76	< 2
1908	87	ī	118	94	\geq_2^-	1973	165	ī	25	61	\leq_2^-	2038	5	2	69	93	$\geq \frac{1}{2}$
1909	89	1	118	92	\leq_2	1974	166	1	49	70	<2	2039	6	2	77	77	< 2
1910	- 90	1	92	90	<2	1975	167	1	17	70	<2	2040	7	2	67	86	< 2
1911	91	1	72	96	<2	1976	168	1	25	55	<2	2041	8	1	36	87	< 2
1912	92	1	53	90	<2	1977	169	1	37	51	≤2	2042	9	1	58	93	< 2
1913	94	1	40	96	<2	1978	170	2	100	57	$\sum_{i=1}^{2}$	2043	10	1	45	69	< 2
1914	95	1.	68	83	$<^{2}$	1979	171	1	74	75	<2	2044	11	1	78	105	< 2
1915	97	1	108	103	$<^{2}$	1980	172	2	68	72	<2	2045	12	1	64	90	< 2
1916	99	1	78	87	<2	1981	173	1	85	74	<2	2046	13	1	71	86	<2
1917	100	1	82	145	<2	1982	174	2	86	81	<2	2047	14	្រ	71	97	<2
1918	101	1	96	88	<2	1983	176	2	29	29	<2	2048	15	<1	104	68	2
1919	102	1	118	93	$<^{2}_{2}$	1984	178	2	88	82	<2	2049	16	1	112	- 74	< 2
1920	103	1	62	91	$<^2$	1985	179	2	76	76	~2	2050	17	~1	84	66	< 2
1921	104	1	72	82	<2	1986	180	2	70	87	<2	2051	19	≤ 1	84	65	< 2
1922	105	1	62	66	<2	1987	181	1	70	81	<2	2052	20	$\sum_{i=1}^{n}$	67	48	$\leq \frac{2}{2}$
1923	106	1	68	90	<2	1988	182	2	75	74	<2	2053	21	<1	58	50	$\sum_{n=1}^{2}$
1924	107	1	49	86	<2	1989	183	2	75	62	<2	2054	23	\geq	100	60	~2
1925	109	1	36	112	<4	1990	184	2	94	15	<2	2055	25	~1	90	50	- 4
1926	110	1	72	84	<2	1991	185	2	70	88	<2	2056	26	1	64	105	< 2
1927	111	2	86	74	<2	1992	186	- 1	59	70	\geq^2	2057	28	T	73	95	<2
1928	112	2	49	57	<2	1993	187	< 1	27	39	~2	2058	29	-	74	72	~ 2
1929	113	2	53	58	$\frac{2}{2}$	1994	188	2	79	70	<2	2059	31	i	48	84	<2
1001	11-			-	~	1000	100		00	<i></i>		20(1		,	46	105	2
1931	115	2	36	29 54	~2	1996	190	2	60 64	55 64	<2	2061	34	<1	71	61	< 2
1933	117	ī	59	65	≤ 2	1998	193	2	91	56	<2	2063	35	1	77	76	< 2
1934	119	ĩ	22	42	$<\overline{2}$	1999	194	2	84	88	<2	2064	37	1	51	84	< 2
1935	120	ī	30	49	<2	2000	195	2	70	46	~ 2	2065	38	< 1	79	76	<2
1936	121	1	26	44	<2	2001	196	1	59	31	<2	2066	40	1	80	74	< 2
1937	122	ī	30	31	$<\overline{2}$	2002	197	2	50	37	<2	2067	41	1	82	87	< 2
1938	123	1	53	73	<2	2003	198	2	55	81	<2	2068	42	1	88	96	< 2
1939	125	2	72	86	<2	2004	199	2	72	52	<2	2069	44	1	77	78	< 2
1940	126	1	78	70	<2	2005	200	2	57	70	<2	2070	45	1	80	77	<2
1941	127	2	82	70	<2	2006	202	2	65	77	<2	2071	46	1	83	115	<2
1942	128	1	86	67	<2	2007	203	2	58	57	<2	2072	47	<1	78	97	< 2
1943	129	2	68	66	<2	2008	204	2	77	84	<2	2073	49	1	84	87	< 2
1944	131	1	82	59	<2	2009	206	3	54	53	<2	2074	51	<1	100	93	< 2
1945	132	1	100	76	<2	2010	207	2	55	53	$<^{2}$	2075	53	1	87	98	$<^{2}$
1946	134	2	96	61	<2	2011	208	2	48	49	<2	2076	54	1	60	87	< 2
1947	136	1	82	63	<2	2012	209	2	39	77	<2	2077	55	, T	80	102	< 2
1948	137	1	109	84	<2	2013	210	1	37	67	<2	2078	56	1	90	87	~ 2
1949	138	1	114	64	<2	2014	211	≥ 1	41	83	<2	2079	50	1	102	62	< 5
1920	139	1	109	10	<	2015	214	~ 1	78	14	<"	2000	27	*		U	<-
1951	140	1	63	47	~ 2	2016	214	2	37	41	<2	2081	60	2	56 16	121	< 2
1952	141	<1	22	36	~ 2	2017	215	≥ 1	۶۶ مر	48	~4	2082	10	1	- 0C 11	51	25
1953	143	2	86	94	<	2018	216	·~ !	48	70 20	~4	2083	60 64	1	10	21	~ 5
1955 1955	144 145	1	118 72	87	≥ 2	2019	210	1	32	48	$\langle 2 \rangle$	2085	65	3	60	74	≥ 2
1074	• • •				- 1	2021	221	< 1	F.C.	40	< 2	2084	66	ġ	71	126	<'2
1950	146	1	82	84 07	< 4	2021	241	≥ 1	20	49 ⊿R	<2	2080	67	2	42	86	$\overline{\langle 2 \rangle}$
1068	140	4	82 82	71 81	~2	2024	223	2	56	44	<2	2088	68	2	44	91	$\leq \overline{2}$
1959	150	î	82	87	<2	2024	224	3	51	49	<2	2089	70	ī	42	79	< 2
1960	151	$<\hat{1}$	164	64	$\sum_{i=1}^{n}$	2025	225	2	39	60	<2	2090	71	1	46	82	< 2

.

															(p)	pm)
Ser.No.	Sample N	o. Ag	Cu	Zn	Mo	Ser.No.	Sample No.	Ag	Cu	Zn Mo	Ser.No.	Sample No.	٨g	Cu	Zn	Мо
2091 2092 2093 2094 2095	lti - 72 73 74 75 76	1 1 1 1	52 33 52 42 46	147 143 126 86 83	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2156 2157 2158 2159 2160	h = 65 66 68 69 70	1 1 1 2 1	56 102 104 41 95	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2221 2222 2223 2224 2224 2225	h - 149 150 151 153 154	1 1 1 1	51 21 61 71 106	87 71 82 59 72	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2096 2097 2098 2099 2100	78 79 80 81 82	1 1 2 1	57 58 33 71 65	113 134 57 84 80	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2161 2162 2163 2164 2165	72 73 74 75 76	1 1 1 1 1	29 89 29 158 127	$\begin{array}{rrrr} 64 &< 2\\ 86 &< 2\\ 74 &< 2\\ 117 &< 2\\ 101 &< 2 \end{array}$	2226 2227 2228 2229 2230	156 157 158 161 162	<1 1 1 1	43 46 111 102 57	89 92 89 97 66	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2101 2102 2103 2104 2105	83 84 85 h - 1 3	1 1 1 1	42 75 73 292 77	79 97 97 83 66	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2166 2167 2168 2169 2170	77 78 79 80 82	1 1 1 1 1	124 31 44 31 31	$\begin{array}{rrrr} 114 & < 2 \\ 97 & < 2 \\ 67 & < 2 \\ 86 & < 2 \\ 71 & < 2 \end{array}$	2231 2232 2233 2234 2235	163 164 165 166 167	1 1 1 1	33 79 31 83 67	66 62 96 69 69	<2 <2 <2 <2 <2 <2
2106 2107 2108 2109 2110	4 5 6 7 8	1 1 1 1	94 106 321 75 94	62 81 56 80 77	<2 <2 <3 <2 <2 <2	2171 2172 2173 2173 2174 2175	83 84 85 86 87	<1 <1 1 1	25 22 39 46 54	$\begin{array}{rrrr} 77 & < 2 \\ 77 & < 2 \\ 86 & < 2 \\ 91 & < 2 \\ 74 & < 2 \end{array}$	2236 2237 2238 2239 2240	168 169 170 172 173	1 1 1 1	102 73 95 41 38	89 73 84 70 75	<2 <2 ≪2 ≪2 2 <2
2111 2112 2113 2114 2115	9 10 11 12 13	1 1 1 1	510 96 120 127 125	91 87 80 89 86	< 2 < 2 < 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2176 2177 2178 2179 2180	88 89 91 93 94	1 1 1 1	41 61 68 76	$\begin{array}{rrrr} 63 & < 2 \\ 80 & < 2 \\ 66 & < 2 \\ 73 & < 2 \\ 83 & < 2 \end{array}$	2241 2242 2243 2244 2245	175 176 178 180 181	1 1 1 1 1	43 45 57 48 48	61 75 105 84 95	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
2116 2117 2118 2119 2120	14 15 16 17 18	1 1 <1 <1 <1	128 109 108 149 135	77 90 90 70 82	<2 <2 <2 <2 <2 <2	2181 2182 2183 2184 2185	95 96 97 98 101	1 1 1 1	69 58 66 59 81	$\begin{array}{rrrr} 74 & < 2 \\ 75 & < 2 \\ 60 & < 2 \\ 85 & < 2 \\ 84 & < 2 \end{array}$	2246 2247 2248 2249 2250	182 183 184 185 187	$1 \\ < 1 \\ < 1 \\ 1 \\ 1 \\ 1$	33 46 46 46 52	80 82 67 76 76	<2 <2 <2 <2 <2 <2 <2 <2 <2
2121 2122 2123 2124 2125	19 20 21 22 23		115 130 125 123 125	86 86 93 86 90	<2 <2 <2 <2 <2 <2	2186 2187 2188 2189 2190	103 104 106 108 109	1 1 1 1 1	54 71 76 89 91	74 <2 63 <2 63 <2 74 <2 70 <2	2251 2252 2253 2254 2255	188 189 190 191 192	1 1 1 1	45 50 50 50 35	71 99 76 71 63	$\begin{array}{c} < 2 \\ < 2 \\ < < 2 \\ < < 2 \\ < 2 \\ < 2 \end{array}$
2126 2127 2128 2129 2130	24 25 26 28 30		92 85 78 33 75	71 74 56 69 56	<2 <2 <2 <2 <2 <2	2191 2192 2193 2194 2195	110 111 113 114 115	1 <1 <1 <1 <1	80 63 38 45 47	69 <2 88 <2 40 <2 39 <2 34 <2	2256 2257 2258 2259 2260	193 194 195 196 197	1 1 1 1 1	33 48 45 33 50	81 93 72 81 105	<2 <2 <2 <2 <2 <2 <2 <2
2131 2132 2133 2134 2135	31 32 34 35 37		73 62 82 83 83	51 51 49 50 48	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2196 2197 2198 2199 2200	116 117 119 120 122	<1 1 1 <1 1	62 36 45 15 61	45 <2 40 <2 43 <2 31 <2 63 <2	2261 2262 2263 2264 2265	198 199 200 201 202	1 1 2 1	48 38 36 50 55	70 55 67 83 97	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
2136 2137 2138 2139 2140	38 39 40 41 42	3 1 9 1 9 1 9 1 9 1 9 1	61 31 49 53 64	80 84 95 79 86	<2 <2 <2 <2 <2 <2	2201 2202 2203 2204 2205	123 125 126 127 128	1 1 1 1	36 43 52 46 42	87 <2 106 <2 74 <2 77 <2 73 <2	2266 2267 2268 2269 2270	203 204 205 206 207	1 1 1 2 1	29 48 48 48 30	81 83 129 84 95	$\langle 2 \rangle \langle 2 $
2141 2142 2143 2144 2145	4) 4/ 47 48	3 3 4 3 6 3 7 1 3 3	L 51 L 55 L 69 L 66 L 66	82 89 91 91 86	<2 <2 <2 <2 <2 <2 <2	2206 2207 2208 2209 2210	129 131 132 133 136	1 1 1 1	89 40 40 40 54	142 <2 86 <2 74 <2 70 <2 79 <2	2271 2272 2273 2274 2275	208 209 210 211 212	<1 1 1 1 1	35 67 62 31 27	79 79 63 107 116	<22 <22 <22 <22 <22 <22 <22 <22 <22 <22
2146 2147 2148 2149 2150	41 50 51 51 51	9 1 0 2 4 2	L 66 L 81 L 61 L 59 L 63	86 76 77 8 78	<2 <2 <2 <2 <2 <5 <2 <5 <2	2211 2212 2213 2214 2215	137 138 139 140 141	1 1 1 1	51 58 40 70 65	$\begin{array}{rrrr} 76 & <2 \\ 99 & <2 \\ 81 & <2 \\ 82 & <2 \\ 74 & <2 \end{array}$	2276 2277 2278 2279 2280	213 214 215 F - 6 25	2 1 2 1.2 1.9	65 67 71 142 100	63 71 79 134 334	<2 <2 <2 0.6 1.0
2151 2152 2153 2154 2155	5) 5) 5) 6) 6)	6 7 8 2 4	1 48 1 29 1 55 1 64 1 55	66 40 79 73 94	<22 <22 <22 <22 <22 <22	2216 2217 2218 2219 2220	143 144 145 146 147	1 1 1 1	70 69 67 71 84	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2281 2282 2283 2284 2285	36 37 43 46 48	1.2 0.8 0.9 0.3 1.0	93 68 739 64 58	138 170 185 130 73	1.1 1.0 3.5 2.7 3.2

,

		۰.
lΠ	DП	
15	F	γ.

						_											
Ser.No.	Sample No.	Ag	Çu	Zn	Mo	Ser.No.	Sample No.	٨g	Cu	Zn	Мо	Ser.No.	Sample No.	٨g	Cu	Zn	Mo
2286	F - 49	1.0	76	125	1.2	2331	F - 542	1.7	120	235	0.7	2376	f - 567	1.0	133	136	0,6
2287	50	0.9	246	104	2.4	2332	544	1.4	81	181	0.6	2377	569	0.8	46	115	0.3
2288	51	0.9	165	156	1.4	2333	595	0.8	99	38	0.9	2378	570	1.1	150	375	1.4
2289	52	0.3	30	120	2.2	2334	605	0.3	73	20	1.0	2379	572	1.3	148	337	1.6
2290	54	1.0	66	1.138	0.7	2335	616	0.5	26	23	1.2	2380	575	1.4	136	533	2.1
,-				-,-20			010					4,000	212	414	*30		~ • • •
. 2291	57	0.8	300	104	0.9	2336	619	0.4	91	23	2.2	2381	579	0.8	81	232	0.7
2292	65	0.4	101	68	0.8	2337	661	0.4	46	23	1.6	2382	607	0.4	71	59	1.0
2293	68	0.7	68	129	1.2	2338	666	0.7	100	117	0.2	2383	610	0.1	114	50	0.9
2294	71	0.3	32	42	1.1	2339	667	1.1	91	87	0.1	2384	614	0.1	71	62	0.4
2295	85	0.9	76	205	1.3	2340	669	1.1	110	175	0.5	2385	617	0.3	237	37	1.9
2296	96	0.6	67	193	1.0	2341	675	1.7	151	243	0.2	2386	621	0.1	136	552	0.4
2297	97	0.2	34	197	1.8	2342	680	0.6	126	192	0.7	2387	622	0.4	156	23	0.5
2298	101	2.1	58	24	2.1	2343	687	0.9	167	215	1.1	2388	625	0.9	150	223	0.5
2200	104	0.5	21	42	1.7	2344	699	1 1	222	401	0.0	2280	627	1 4	166	202	<u>.</u>
2200	109	0.2	25	76	0 0	2246	000	1.1	120	141	0.9	2309	620	1.4	241	202	0.2
2300	100	0.0		10	0.9	2343	1 - 2	1.2	132	143	0.5	2390	020	1.0	241	203	2.5
2301	111	0.6	46	17	1.5	2346	7	1.3	138	16 1	0.6	2391	638	0.3	121	264	2.3
2302	113	0.4	59	101	0.8	2347	8	1.8	135	216	0.7	2392	658	1.1	177	618	1.6
2303	114	0.8	60	143	0.3	2348	14	1.3	166	141	0.4	2393	689	1.5	213	312	0.7
2304	117	0.1	25	10	0.9	2349	10	1 5	104	127	0.5	2304	808	ñ.7	103	397	0.0
2205	118	0.1	78	00	0.7	2350	17	1 0	07	120	0.2	2305	600	<u>, , , , , , , , , , , , , , , , , , , </u>	175	70	0.9
2303	110	0.5	10		0.1	2010	41	1.0	01	100	0.0	2395	099	0.1	30	(9	0.4
2306	121	0.4	144	105	0.6	2351	31	1.6	120	125	0.5	2396	700	0.7	45	143	0.6
2307	122	0.6	157	282	0.3	2352	36	0.6	341	85	1.6	2397	701	1.4	117	278	0.9
2308	126	0.5	196	361	0.3	2353	37	0.4	321	73	3.3	2398	708	0.7	116	284	1.3
2309	127	0.3	69	185	0.4	2354	49	1.0	249	33	1.4	2399	713	1.1	120	281	0.7
2310	140	1.7	53	107	0.2	2355	53	0.7	393	111	7.2	2400	719	0.7	57	154	0.5
											•					-• ·	
2311	147	0.9	41	100	0.0	2356	54	1.2	334	30	10.2	2401	721	1.3	58	535	0.7
2312	247	0.1	21	33	1.0	2357	59	1.4	140	257	4.2	2402	734	0.7	33	109	0.3
2313	257	0.4	42	12	0.7	2358	60	0.7	148	246	1.6	2403	736	0.6	30	86	0.6
2314	309	1.5	85	166	0.4	2359	65	0.3	101	72	1.3	2404	740	0.3	32	73	1.2
2315	320	0.7	43	131	0.3	2360	66	0.4	127	418	2.1	2405	745	0.3	30	103	0.7
		,										- 105	1.12	•••	50	402	
2316	328	0.3	47	86	0.5	2361	78	1.6	64	412	0.8	2406	747	0.6	29	100	1.0
2317	335	0.7	43	101	0.3	2362	79	1.4	218	262	2.7	2407	750	0.6	19	106	0.8
2318	337	1.0	67	166	0.4	2363	85	1.5	276	301	1.2	2408	752	0.3	37	109	0.7
2319	418	0.3	134	56	4.0	2364	86	0.7	364	222	2.1	2409	753	0.7	90	226	1.0
2320	426	0.3	62	29	23	2365	93	0.2	55	49	1.2	2410	756	0.9	116	231	0.8
2,200	.120	v. ,		-/		2,0,	,,,	012				2,110	155	•••		b J t	0.0
2321	435	0.6	71	65	1.9	2366	94	0.2	48	69	1.1	2411	758	0.5	58	114	1.0
2322	436	0.2	98	123	1.3	2367	98	0.1	38	50	1.2	2412	759	1.5	67	177	1.5
2323	438	0.2	90	15	2.7	2368	103	0.5	40	46	0.8	2413	760	0.3	50	210	1.5
2324	447	81.4	<u>.</u>	476	2.0	2369	113	1.0	128	170	0.7	2414	761	0.5	15	61	0.5
2225	445	1 7	74	1122	0.6	2370	114	6.6	120	110	0.7	2414	762	1 2	84	114	1 2
636J	444	1,2	(4	1)2	0.7	6)(U	114	v.0	94	110	V+1	2413	102	1,4	04	114	1,4
2326	445	0.9	74	164	0.8	2371	173	0.1	45	92	0.9	2416	765	1.5	95	123	1.1
2327	448	0.9	74	203	1.9	2372	185	0.4	45	150	1.0	2417	766	0.8	71	153	1.4
2328	449	1.2	115	130	0.7	2373	343	0.6	17	10	6.8						
2329	500	0.3	64	129	1.0	2374	478	1.7	50	70	0.1						
2330	504	1 4	120	120	0.7	2375	517	14	08	140	0.5						
0((2	204	****	120	150	0.1	C162	511	++4	20	140	0.2						

																	(11	200.7
Ser.No.	Sample No.	Cu	Pb	Zn	Ba	Ser.No.	Sen	mple No.	Cu	Pb	Zn	Ba	Ser.No.	Sample No	Cu	Pb	Zn	Ba
						2426	fB	1008	33	20	143	165					·	
						2427		1009	101	167	326	376						
2418	fB 1000	36	15	96	195	2428		1011	84	403	430	329						
2419	1001	51	160	277	390	2429		1012	85	851	582	259						
2420	1002	34	26	149	542	2430		1013	106	4246	561 1	1,270						
2421	1003	30	16	103	108	2431		1017	123	100	146	247						
2422	1004	70	147	373	304	2432		1018	174	24	104	282						
2423	1005	28	14	91	87													
2424	1006	92	29	186	304													
2425	1007	122	43	154	943													

,

.

Ser.No.	Sample No.	Ag	Pb	Zn	Ba
2433	F - 154	0.3	27	34	77
2434	168	0.8	43	97	199
2435	f - 116	2.3	61	119	235
2436	117	1.6	20	131	247
2437	118	1.8	31	104	259
2438	119	0.3	16	73	165
2439	120	2.5	18	106	165
2440	121	0.8	25	141	259

Ser.No.	Sample No.	٨g	Рb	Zn	Ba
2441	f - 122	1,1	24	123	282
2442	127	1.8	23	174	168
2443	128	1.3	20	200	200
2444	130	2.3	24	163	137
2445	131	1.6	22	171	210

				(PF)m
Sample	No.	Ag	Pb	Zn	Ba
	Sample	Sample No.	Sample No. Ag	Sample No. Ag Pb	Sample No. Ag Fb Zn

•

(B)	Soil (-80-mesh	fraction)

Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Çu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	'Zn	Ni	Co
2446	C - 69	8	6	6	8	2496	C = 220	61	50	66	167	2546	C - 277	40	28	13	19
2447	70	. 9	8	3	7	2497	221	85	62	52	123	2547	278	56	36	22	30
2448	71	13	10	10	8	2498	222	64	56	62	150	2548	279	125	49	35	40
2449	72	3	. 9	10	7	2499	223	79	69	58	133	2549	280	198	90	29	123
2450	73	15	10	2	7	2500	224	59	50	73	166	2550	281	172	31	39	117
2451	74	38	19	8	10	2501	225	59	38	73	127	2551	282	202	31	32	81
2452	75	3	5	2	7	2502	226	81	62	48	93	2552	203	206	21	27	78
2453	76	26	12	4	17	2503	227	90	38	32	75	2553	284	198	31	29	59
2454	77	3	2	4	3	2504	228	101	38	47	79	2554	285	124	93	20	60
2455	78	9	5	6	9	2505	229	320	147	31	78	2555	286	134	84	24	57
2456	79	13	22	6	6	2506	230	503	47	31	63	2556	287	58	33	6	28
2457	80	20	14	4	4	2507	231	690	38	27	78	2557	288	23	39	6	14
2458	81	34	19	18	5	2508	232	145	53	24	62	2558	289	20	39	6	21
2459	82	13	10	2	5	2509	233	242	38	44	56	2559	290	23	31	8	15
2460	83	40	13	6	9	2510	234	310	50	24	67	2560	291	24	39	8	22
2461	84	34	24	8	10	2511	235	357	56	24	75	2561	292	24	41	6	29
2462	85	58	30	18	32	2512	236	414	56	24	81	2562	293	26	24	8	26
2463	86	39	30	47	25	2513	237	129	145	24	67	2563	294	29	19	10	18
2464	87	43	36	31	18	2514	238	140	100	16	82	2564	295	33	24	10	15
2465	88	103	38	198	53	2515	239	149	71	24	59	2565	296	19	23	10	14
2466	89	425	152	38	77	2516	240	220	57	36	93	2566	297	29	23	8	21
2467	90	98	67	20	69	2517	241	425	51	28	68	2567	298	19	20	8	13
2468	91	133	158	37	85	2518	242	340	59	39	82	2568	299	64	32	16	20
2469	92	124	84	26	63	2519	243	338	75	22	76	2569	300	18	23	4	14
2470	104	432	88	18	44	2520	244	190	62	34	125	2570	301	23	19	10	18
2471	105	12	12	2	5	2521	245	116	73	63	48	2571	302	26	33	10	22
2472	106	17	- 14	6	75	2522	246	54	90	48	55	2572	303	37	44	10	24
2473	107	46	38	16	25	2523	247	70	93	30	38	2573	304	28	24	10	19
2474	108	138	30	20	55	2524	248	102	71	40	70	2574	305	28	35	12	18
2475	109	182	45	19	49	2525	249	86	55	32	37	2575	306	32	26	18	20
2476	110	89	23	24	48	2526	250	295	52	40	72	2576	307	35	31	23	19
2477	111	21	73	26	49	2527	251	255	52	56	96	2577	308	51	24	23	16
2478	112	29	36	34	73	2528	252	190	57	56	81	2578	309	25	20	8	16
2479	169	21	40	3	13	2529	260	245	51	32	59	2579	310	19	24	8	15
2480	170	33	43	4	7	2530	261	142	37	26	56	2580	311	27	27	12	43
2481	171	78	55	21	22	2531	262	228	52	28	60	2581	312	30	43	10	27
2482	172	67	49	21	16	2532	263	229	66	32	63	2582	313	28	19	12	15
2483	173	103	57	24	22	2533	214	235	58	38	77	2583	314	36	20	19	13
2484	174	31	26	8	4	2534	265	340	38	44	113	2584	315	36	36	8	25
2485	175	14	20	12	4	2535	266	407	38	40	79	2585	316	18	18	10	12
2486	187	67	56	15	22	2536	267	382	33	34	68	2586	317	30	29	16	12
2487	188	36	24	10	14	2537	268	610	60	38	89	2587	318	22	14	10	14
2488	189	18	16	8	13	2538	269	193	36	19	61	2588	319	32	24	10	16
2489	190	49	20	6	12	2539	270	190	38	27	60	2589	320	32	14	12	12
2490	191	48	21	18	12	2540	271	252	38	32	73	2590	321	96	43	31	24
2491	192	47	55	9	23	2541	272	145	40	50	117	2591	322	270	19	20	38
2492	193	38	39	29	15	2542	273	48	39	51	69	2592	323	365	34	27	51
2493	217	385	44	30	56	2543	274	51	39	52	73	2593	324	470	36	40	71
2494	218	205	52	27	59	2544	275	89	48	40	63	2594	325	265	36	27	37
2495	219	111	48	40	79	2545	276	43	40	27	32	2595	326	282	38	47	43

Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Sample No.	Cu	Zn	Ni	Co
2596	C - 327	107	58	32	46	2661	CA - 119	240	32	52	33	2726	CE - 51	38	28	57	25
2597	328	738	74	36	56	2662	120	73	25	38	33	2727	52	68	41	27	17
2598	329	231	53	36	62	2663	121	60	33	34	36	2728	53	73	48	60	37
2600	330	20	45	52	75	2664	122	85	23	29	33	2729	54	114	37	49	50
2000	166	90	00	03	94	2665	123	30	32	43	49	2730	55	33	51	30 '	31
2601 2602	332 333	74 119	61 49	55 30	87 50	2666 2667	124	106	29 20	37	39 44	2731	56	48	54	42 57	50 24
2603	334	199	78	33	72	2668	126	400	63	37	71	2733	58	157	36	24	29
2604	335	262	66	47	67	2669	127	36	32	22	19	2734	59	148	59	84	87
2605	336	315	56	30	60	2670	128	93	63	35	30	2735	60	27	41	63	85
2606	337	319	59	47	95	2671	129	29	32	31	42	2736	61	32	52	58	62
2607	338	284	68	33	60	2672	130	56	29	33	20	2737	62	64	63	37	62
2608	339	127	53	41	/ 2 81	2673	131	22	17	51	12	2738	66	55	41	19	25
2610	CA = 11	189	58	30	75	2675	135	59	37	33	22	2740	68	164	41 71	56	40 62
									21			2140	00	104	11	0	02
2011	12	127	95	<u>رر</u>	60	2676	136	27	20	22	15	2741	69	95	52	93	50
2612	14	74	28	37	84	2011	151	19	21	19	20	2742	70	144	71	50	62
2614	15	374	39	37	74	2679	25 - 1	23	20	17	17	2143	72	107	25	44 50	61
2615	16	36	31	42	87	2680	4	40	46	26	34	2745	73	177	74	100	100
2616	17	21	45	50	112	2681	5	205	61	24	37	2746	75	173	47	40	66
2617	18	300	54	44	87	2682	6	159	41	22	37	2747	82	50	39	27	25
2618	23	129	63	43	87	2683	7	205	81	28	56	2748	83	44	39	57	25
2619	24	22	21	16	15	2684	8	232	74	30	62	2749	84	62	46	57	22
2020	23	21	10	21	12	2085	9	191	63	36	75	2750	85	66	47	28	25
2621	26	23	18	15	5	2686	10	50	32	31	12	2751	86	244	65	25	42
2622	27	23	29	22	12	2687	11	22	31	15	12	2752	87	73	56	59	42
2633	28	33	23	22	7	2688	12	59	65	67	37	2753	88	175	49	76	77
2624	30	25	29	16	12	2689	13	36	33	41 30	15	2754 2755	89	283	43	61 65	81 85
0606	20				10	0(0)						-155			~~		~~
2626	45	14 67	52 47	46	37	2691	15	364 368	45 53	49 52	66 75	2756	91 92	53 67	38	48	37
2628	46	146	114	70	75	2693	17	198	28	48	62	2758	97	308	47	68	72
2629	47	49	52	33	25	2694	18	121	59	37	48	2759	98	154	32	79	103
2630	48	38	33	30	21	2695	19	64	42	37	19	2760	99	354	50	23	75
2631	49	38	30	12	20	2696	20	25	15	25	12	2761	100	45	47	57	,
2632	68	46	36	30	12	2697	21	25	26	22	12	2762	101	145	33	77	14
2633	69	75	37	30	12	2698	22	25	21	15	16	2763	102	42	39	42	69
2004 2635	72	118	42 87	21	42	2699	23	57	27	31	10	2764	103	83	51	59	87
			•••			2100					40	2105	104	02	10	24	15
2636	79	154	81	43	80	2701	25	28	88	56	75	2766	111	33	71	59	119
2631	80	92	92	22	50	2702	26	27	59	67	97	2767	112	75	73	76	65
2030	80	20 46	59	36	21	2703	28	107	60	40	94 60	2768	113	258	01 76	42	72
2640	83	31	42	26	19	2705	29	100	58	67	41	2770	115	137	74	33	62
2641	84	200	95	22	42	2706	30	7	13	25	10	2771	116	150	89	56	50
2642	85	214	54	30	62	2707	31	45	32	30	22	2772	CN - 17	139	79	150	42
2643	86	189	63	24	62	2708	32	66	37	25	40	2773	18	102	93	74	16
2644	87	377	100	40	73	2709	33	41	37	21	35	2774	19	122	50	67	50
2645	88	228	50	22	52	2710	35	104	54	9	62	2775	20	92	55	69	91
2646	89	169	50	50	112	2711	36	125	46	37	72	2776	21	348	50	37	37
2647	91	132	37	45	65 50	2712	37	27	29	34	21	2777	23	265	53	49	56
2040	107)4 16	43	24	25	2713	8C 0C	40	47	47	20 50	2778	24	12	66	52	50
2650	108	42	38	22	25	2715	40	118	38	45	79	2780	26	133	137	84	88
2651	109	42	47	52	94	2716	41	75	53	45	84	2781	27	292	72	34	57
2652	110	45	72	40	54	2717	42	105	83	30	75	2782	28	221	62	39	62
2653	111	62	83	44	34	2718	43	215	65	69	71	2783	29	137	65	37	50
2654	112	248	64	40	84	2719	44	518	53	63	75	2784	30	133	59	37	65
2655	113	154	35	52	62	2720	45	243	45	43	50	2785	31	108	52	52	66
2656	114	414	60	28	105	2721	46	214	34	45	84	2786	32	314	59	40	56
4027 2659	115	ン10 375	54 71	45	66 84	2722	47	69 100	42	52 67	140 100	2787	47	28	26	52 149	נ⊥ 12
2659	117	120	29	43	30	2724	40	182	38	42	50	2780	40 40	2) 18	45	59	15
2660	118	36	40	50	52	2725	50	32	21	43	13	2790	50	81	56	74	23

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ser.No.	Sample No.	Cu	Zn	Ni	Co	Ser.No.	Samp	le No.	Cu	Zn	Ni	Co	Ser.No.	Samp	le No.	Çu	Zn	Ni	Co
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2791	CN - 51	72	68	52	17	2856	CN -	- 172	14	15	15	27	2921	PB -	49	214	48	28	45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2792	52	42	45	56	29	2857		173	31	32	30	27	2922	_	51	173	57	36	69
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2794	53	387	47	20 50	75	2850 2850		174	155	38	45	55	2923	PC -	17	245	57	46	76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2795	55	150	57	45	85	2860		176	72	37	32	65	2925		21	390	49 65	34	50 50
$ \begin{array}{c} 277 \\ 277 $	2701		1.54			••											570		24	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2796	57	154	34	55 67	84 96	2861		177	102	35	30 45	65 86	2926	- 100	23	380	96	31	60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3798	58	63	50	44	85	2863		179	105	59	30	70	2928	10 -	11	280	62	48	63
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2799	62	273	122	44	77	2864		180	368	42	23	49	2929		15	162	52	40	65
28001 84 18 13 46 10 2866 182 62 98 77 80 2911 P 1 9 74 103 87 48 80 28004 86 36 58 50 22 2864 114 91 33 38 145 2933 117 219 64 43 53 2806 86 30 45 297 73 74 47 75 227 2871 188 491 54 43 50 2935 17 13 65 35 44 45 75 2936 19 117 140 56 34 21 218 286 934 17 140 56 34 21 218 286 44 43 43 43 43 293 21 218 286 10 44 43 44 45 2938 119 21 286 10 21 26 64 19 33 31 44 10 10	2800	77	27	47	24	16	2865		131	55	59	28	74	2930		17	70	52	46	105
2802 89 39 21 22 2804 85 25 77 2932 11 228 67 48 50 2804 86 33 52 95 52 2804 87 33 147 2933 11 228 67 48 50 2806 96 104 68 42 52 2937 11 31 64 43 55 47 42 45 2935 12 13 30 64 43 50 2937 11 31 44 45 30 2937 11 13 50 46 14 25 46 14 25 14 15 11 14 45 2937 11 13 14 49 2937 11 13 14 49 2937 11 13 14 45 52 2944 11 25 14 14 14 14 14	2801	84	18	13	46	10	2866		182	62	58	27	80	2931	PF -	9	74	105	87	41
2804 67 33 29 16 16 97 13 38 175 2933 17 13 64 34 53 2805 88 33 52 98 22 2870 186 57 47 42 45 5355 21 370 16 61 31 44 87 5355 21 70 64 15 41 25 45 2805 99 177 75 74 47 77 2874 189 64 34 51 114 64 64 184 94 2933 111 140 64 <	2802	85	38	27	25	22	2867		183	34	35	25	77	2932		11	228	67	48	80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2804	87	13	49	65	19	2869		185	37	43	38 56	145	2933		17	219	64	34	53
$ \begin{array}{c} 28067 & 96 & 104 & 68 & 42 & 52 & 2871 & 187 & 93 & 29 & 44 & 87 & 2936 & P1 & 1 & 150 & 41 & 25 & 45 \\ 28069 & 97 & 104 & 54 & 47 & 87 & 2872 & 188 & 49 & 53 & 44 & 46 & 2939 & 117 & 166 & 56 & 14 & 61 \\ 2809 & 99 & 117 & 76 & 76 & 55 & 60 & 2874 & 199 & 116 & 165 & 54 & 16 & 19 \\ 2810 & 100 & 86 & 54 & 82 & 59 & 2875 & 191 & 125 & 49 & 18 & 94 & 2940 & P1 & 3 & 104 & 66 & 62 & 42 \\ 2811 & 101 & 85 & 38 & 29 & 60 & 2876 & 192 & 76 & 66 & 96 & 2941 & 7 & 168 & 200 & 210 \\ 2812 & 102 & 30 & 29 & 151 & 19 & 2877 & 191 & 17 & 192 & 76 & 66 & 96 & 2941 & 7 & 162 & 100 & 86 & 230 \\ 2813 & 102 & 30 & 29 & 15 & 19 & 2877 & 191 & 17 & 49 & 92 & 2942 & 7 & 18 & 102 & 200 \\ 2814 & 102 & 30 & 215 & 19 & 2877 & 191 & 116 & 66 & 63 & 94 & 2940 & 11 & 8 & 77 & 60 & 40 \\ 2815 & 105 & 116 & 49 & 33 & 25 & 2880 & 204 & 99 & 105 & 33 & 65 & 2949 & 117 & 255 & 77 & 92 & 22 \\ 2817 & 106 & 33 & 25 & 18 & 12 & 2881 & 120 & 77 & 79 & 23 & 56 & 2946 & 17 & 255 & 77 & 92 & 22 \\ 2818 & 106 & 33 & 22 & 18 & 11 & 2884 & 206 & 77 & 79 & 23 & 56 & 2949 & P1 & - 1 & 98 & 56 & 11 & 34 \\ 28280 & 110 & 29 & 22 & 23 & 11 & 2884 & 206 & 77 & 79 & 23 & 50 & 2946 & P1 & - 1 & 98 & 56 & 11 & 34 \\ 28281 & 111 & 48 & 25 & 23 & 8 & 2887 & U & -24 & 101 & 87 & 30 & 50 & 2951 & 7 & 59 & 50 & 14 & 32 \\ 28242 & 112 & 48 & 51 & 27 & 30 & 2888 & U & -24 & 101 & 82 & 297 & 5 & 2959 & P1 & - 1 & 98 & 56 & 11 & 34 & 47 \\ 28242 & 126 & 83 & 64 & 23 & 27 & 2889 & 27 & 79 & 102 & 29 & 75 & 2959 & 7 & 18 & 13 & 34 & 77 \\ 2825 & 127 & 82 & 78 & 45 & 37 & 2899 & 27 & 96 & 76 & 28 & 69 & 2955 & 11 & 146 & 57 & 20 & 37 \\ 2825 & 130 & 56 & 74 & 33 & 21 & 2894 & 13 & 30 & 53 & 48 & 87 & 2959 & P1 & - 1 & 164 & 44 & 21 & 16 & 14 \\ 2830 & 131 & 140 & 61 & 49 & 50 & 2894 & 13 & 30 & 53 & 24 & 62 & 8254 & 11 & 140 & 55 & 20 & 37 \\ 2826 & 133 & 168 & 23 & 27 & 77 & 2895 & 33 & 125 & 47 & 25 & 31 & 2964 & 77 & 128 & 66 & 67 & 45 \\ 2826 & 133 & 168 & 127 & 77 & 2895 & 33 & 125 & 47 & 33 & 286 & 44 & 11 & 16 & 44 & 26 & 77 \\ 2826 & 133 & 146 & 67 & 2989 & 33 & 125 & 47 &$	2805	88	33	52	38	22	2870		186	55	47	42	45	2935		21	72	36	26	63
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2806	96	104	68	42	52	2871		187	93	29	44	87	2036	PG _	11	350	41	25	45
22809 98 104 54 47 87 2873 189 65 33 44 94 2939 10 246 64 12 71 2810 100 86 54 82 59 2874 109 115 38 44 94 2939 11 3 106 66 64 12 71 189 65 33 44 94 2939 11 3 106 66 66 64 12 71 11 11 11 11 16 18 60 100 11 19 2876 1191 14 105 22 60 2941 17 255 70 22 50 2946 117 255 70 22 50 2946 117 255 70 22 50 2946 117 25 71 23 36 2946 117 25 70 23 36 2949 117 25 71 25 71 25 71 25 71 75 </td <td>2807</td> <td>97</td> <td>75</td> <td>75</td> <td>44</td> <td>75</td> <td>2872</td> <td></td> <td>188</td> <td>491</td> <td>34</td> <td>43</td> <td>80</td> <td>2937</td> <td>14 -</td> <td>17</td> <td>140</td> <td>56</td> <td>34</td> <td>61</td>	2807	97	75	75	44	75	2872		188	491	34	43	80	2937	14 -	17	140	56	34	61
2810 39 117 76 35 60 2874 190 115 38 42 96 2399 12 298 56 18 49 2811 100 85 38 29 60 2876 192 76 46 56 66 2941 5 199 66 62 42 28114 103 20 18 17 9 2876 195 48 66 62 2941 71 85 100 60 60 2814 104 117 16 18 6 2877 115 50 2944 17 255 79 22 50 2815 106 33 25 18 12 2881 206 75 92 21 50 2944 17 23 56 13 34 2810 100 29 23 31 34 23 210 73 21 59 2944 17 23 56 11 23 23 <	2808	98	104	54	47	87	2873		189	65	33	44	94	2938		19	246	64	32	73
2811 101 85 29 60 287 192 76 45 95 2941 7 82 100 83 29 15 19 2877 193 37 31 49 95 2941 7 82 100 82 30 2813 103 20 11 16 18 6 2879 105 25 65 2944 15 96 54 459 45 2814 104 107 50 31 22 2880 204 99 105 23 65 2944 17 215 70 21 77 22 55 2946 19 568 50 22 72 215 10 95 34 18 49 93 22 283 11 282 206 77 79 23 50 2951 79 90 90 90 90 104 37 22 29 75 293 9 125 40 44 42 44 44	2809	100	117	76	35	60 59	2874 2875		190	115 125	38 ⊿9	42 38	96 94	2939	17U _	21	298	56	18	49
2811 101 85 38 29 60 2876 192 76 46 36 96 2941 5 109 96 198 46 28112 102 31 17 9 2877 193 17 14 99 2942 7 82 100 100 92 100 <td< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>-/-</td><td>127</td><td></td><td>20</td><td>74</td><td>2340</td><td>rn -</td><td>ر</td><td>104</td><td>00</td><td></td><td>44</td></td<>				-	-				-/-	127		20	74	2340	rn -	ر	104	00		44
	2811	101	85	38	29	60	2876		192	76	46	36	96	2941		5	109	96	198	46
	2813	103	20	18	17	9	2878		194	105	62	49	95	2942		11	85	71	82 60	40
2815 105 116 49 33 25 2880 204 99 105 23 65 2945 17 255 79 22 50 2816 106 33 25 18 12 2881 205 97 72 15 50 2946 19 568 50 22 72 61 499 2813 106 48 30 39 25 2883 207 75 95 21 50 2946 PI -1 98 58 13 34 2821 110 288 223 110 2886 200 89 84 30 35 29950 PI -3 61 32 31 24 2822 112 48 51 2887 CU 24 101 87 30 50 29951 5 55 50 31 34 77 282 290 75 29953 10 44 30 35 2995 15 81 31	2814	104	17	16	18	6	2879		195	48	46	36	29	2944		15	96	54	198	45
	2815	105	116	49	33	25	2880		204	99	105	23	65	2945		17	255	79	22	50
	2816	106	33	25	18	12	2881		205	97	72	15	50	2946		19	568	50	22	72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2817	107	50 48	31	23	17	2882		206	75	92	23	60 50	2947		21	270	61	40	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2819	103	32	22	18	10	2884		207	77	92 79	23	29 56	2948	РТ -	23	318	58	18	68 34
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2820	110	29	23	23	11	2885		209	89	84	30	53	2950		3	61	32	31	24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2821	111	48	25	23	8	2886		210	73	79	23	50	2951		5	56	31	12	32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2822	112	48	51	27	30	2887	CU -	- 24	101	87	30	50	2952		7	99	50	104	37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2823	125	19	65	42	30	2888		25	79	102	29	75	2953		9	125	54	104	48
2826128322621152891287979255029561788283275282712946332321289229825029561788283275282813056574533289330846534482958FJ1110263484328301341166127592895329267306329605278272724283113517788277728963312547253129617122666745283313712539408728973112142437929631514045184528341281683936942899371214233151404518452835140121493842290038125463463296613168912649283714470413950290240983430562967151739726552839147212534122906442535	2824	126	82	68 78	23	27	2889		26	77	80 76	26 28	68 69	2954		11	140	55	20	37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						51			-1	20			•,	2933		1)	01	51	74	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2826 2827	128	32 46	26	21	15 21	2891 2892		28	79 82	79 65	25	50 50	2956		17	88	28	32	75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2828	130	56	57	45	33	2893		30	84	65	34	48	2958	PJ _	17	102	63	48	43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2829	131	40	61	49	50	2894		31	30	53	48	87	2959		3	44	21	16	14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2830	134	116	61	27	59	2895		32	92	67	30	63	2960		5	278	27	27	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2831	135	177	38	27	77	2896		33	125	47	25	31	2961		7	122	66	67	45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2832	136	117	38	40	87	2897		34	113	47	23	33	2962		11	219	54	26	47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2834	137	168	39	40 36	0/ 94	2899		37	121	42	4) 53	79 71	2963		15	140	45	18	45 70
2836 141 171 93 45 52 2901 39 320 53 21 65 2966 13 168 91 26 49 2837 144 70 41 39 50 2902 40 98 34 30 56 2967 15 173 97 26 55 2838 146 52 40 55 25 2903 41 50 42 27 37 2968 17 125 61 32 50 2840 148 31 30 19 10 2905 43 102 75 30 36 2970 21 235 49 32 55 2841 149 34 33 19 12 2906 44 93 50 30 45 2971 25 184 46 52 77 2842 150 46 38 21 25 2907 45 106 52 2973 29 88 32 <	2835	140	121	49	38	42	2900		38	125	46	34	63	2965	PX -	īi	162	84	26	54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2836	141	171	93	45	52	2901		39	320	53	21	65	2966		13	168	91	26	49
2838 146 52 40 55 25 2903 41 50 42 27 37 2968 17 125 61 32 50 2839 147 21 25 34 12 2904 42 55 35 35 40 2969 19 173 65 20 43 2840 148 31 30 19 10 2905 43 102 75 30 36 2970 21 235 49 32 55 2841 149 34 33 19 12 2906 44 93 50 30 45 2971 25 184 46 52 77 2842 150 46 38 21 25 2907 45 106 52 28 36 2972 27 258 64 38 23 27 75 2844 152 145 43 52 50 2909 47 32 46 28 46	2837	144	70	41	39	50	2902		40	98	34	30	56	2967		15	173	97	26	55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2838	146	52	40	55	25	2903		41	50	42	27	37	2968		17	125	61	32	50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2840	147	31	30	19	10	2904		42	102	75	30	36	2969		21	235	49	32	43 55
2841 149 34 33 19 12 2900 44 49 50 45 2971 25 164 46 52 77 2842 150 46 38 21 25 2907 45 106 52 28 36 2972 27 228 64 38 23 37 2908 46 115 41 32 52 2973 29 88 32 32 75 2844 152 145 43 52 50 2909 47 32 46 28 46 2974 31 320 79 42 77 2845 153 188 38 21 50 2910 48 342 51 38 53 2975 39 312 105 38 80 2846 154 315 33 36 47 2911 PA -15 70 34 18 16 2976 41 330 71 58 100 2846 156 238 38 32 37 2911 PA -15 70 34 18 16 2976 41 330 71 58 100 2846 156 238 38 32 37 2911 PA -15 70 34 18 16 2977 43 191 57 50 95 2847 155 377 2913	2041	140	24		10	10	2006			01	50	20	45	0071			104			~~
2843 151 38 43 23 37 2908 46 115 41 32 52 2973 29 88 32 32 75 2844 152 145 43 52 50 2909 47 32 46 28 46 2974 31 320 79 42 77 2845 153 188 38 21 50 2910 48 342 51 38 53 2975 39 312 105 38 80 2846 154 315 33 36 47 2911 PA 15 70 34 18 16 2976 41 330 71 58 100 2846 156 238 38 32 37 2913 19 63 55 27 28 2978 47 600 60 26 64 2848 156 168 38 30 50 2914 21 112 47 35 32 2979	2842	149	46	38	21	25	2906		44	106	52	28	36	2971		27 27	258	40 64	38	69
2844 152 145 43 52 50 2909 47 32 46 28 46 2974 31 320 79 42 77 2845 153 188 38 21 50 2910 48 342 51 38 53 2975 39 312 105 38 80 2846 154 315 33 36 47 2911 PA - 15 70 34 18 16 2976 41 330 71 58 100 2847 155 377 39 36 44 2912 17 103 63 48 34 2977 43 191 57 50 95 2848 156 238 38 32 37 2913 19 63 55 27 28 2978 47 600 60 26 64 2849 164 123 43 23 50 2914 21 112 47 35 32 2979 <td>2843</td> <td>151</td> <td>38</td> <td>43</td> <td>23</td> <td>37</td> <td>2908</td> <td></td> <td>46</td> <td>115</td> <td>41</td> <td>32</td> <td>52</td> <td>2973</td> <td></td> <td>29</td> <td>88</td> <td>32</td> <td>32</td> <td>75</td>	2843	151	38	43	23	37	2908		46	115	41	32	52	2973		29	88	32	32	75
2845 153 188 38 21 50 2910 48 342 51 38 53 2975 39 312 105 38 80 2846 154 315 33 36 47 2911 PA - 15 70 34 18 16 2976 41 330 71 58 100 2847 155 377 39 36 44 2912 17 103 63 48 34 2977 43 191 57 50 95 2848 156 238 38 32 37 2913 19 63 55 27 28 2978 47 600 60 26 64 2849 164 123 43 23 50 2914 21 112 47 35 32 2979 49 305 79 20 71 2850 166 108 38 30 50 2915 FB - 33 189 40 40 85 <td>2844</td> <td>152</td> <td>145</td> <td>43</td> <td>52</td> <td>50</td> <td>2909</td> <td></td> <td>47</td> <td>32</td> <td>46</td> <td>28</td> <td>46</td> <td>2974</td> <td></td> <td>31</td> <td>320</td> <td>79</td> <td>42</td> <td>77</td>	2844	152	145	43	52	50	2909		47	32	46	28	46	2974		31	320	79	42	77
2846 154 315 33 36 47 2911 PA - 15 70 34 18 16 2976 41 330 71 58 100 2847 155 377 39 36 44 2912 17 103 63 48 34 2977 43 191 57 50 95 2848 156 238 38 32 37 2913 19 63 55 27 28 2978 47 600 60 26 64 2849 164 123 43 23 50 2914 21 112 47 35 32 2979 49 305 79 20 71 2850 166 108 38 30 50 2915 FB - 33 189 40 40 85 2980 51 230 48 17 70 2851 167 292 31 24 37 2916 35 192 59 40 73 <td>2845</td> <td>153</td> <td>188</td> <td>38</td> <td>21</td> <td>50</td> <td>2910</td> <td></td> <td>48</td> <td>342</td> <td>51</td> <td>38</td> <td>53</td> <td>2975</td> <td></td> <td>39</td> <td>312</td> <td>105</td> <td>38</td> <td>80</td>	2845	153	188	38	21	50	2910		48	342	51	38	53	2975		39	312	105	38	80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2846	154	315	33	36	47	2911	PA -	- 15	70	34	18	16	2976		41	330	71	58	100
2849 164 123 43 23 50 2915 17 26 2979 49 305 79 20 71 2850 166 108 38 30 50 2915 FB 33 189 40 40 85 2980 51 230 48 17 70 2851 167 292 31 24 37 2916 35 192 59 40 73 2981 53 246 44 10 53 2851 167 292 31 24 37 2916 35 192 59 40 73 2981 53 246 44 10 53 2852 168 25 29 24 20 2917 37 63 34 35 57 2982 55 268 32 14 63 2853 169 23 36 15 31 2918 41 250 71 44 73 2983 59 147 48	2847	155	377	39	36	44	2912		17	103	63 55	48	34	2977		43	191	57	50	95
2850 166 108 38 30 50 2915 FB - 33 189 40 40 85 2980 51 230 48 17 70 2851 167 292 31 24 37 2916 35 192 59 40 73 2981 53 246 44 10 53 2851 168 25 29 24 20 2917 37 63 34 35 57 2982 55 268 32 14 63 2853 169 23 36 15 31 2918 41 250 71 44 73 2983 59 147 48 28 75 2854 170 31 29 15 18 2919 43 92 29 48 75 2984 61 140 38 116 78 2855 171 23 <	2849	164	123	43	23	50	2914		21	112	47	35	32	2979		49	305	79	20	71
28511672923124372916351925940732981532464410532852168252924202917376334355729825526832146328531692336153129184125071447329835914748287528541703129151829194392294875298461140381167828551712333151229204719257405929856388423277	2850	166	108	38	30	50	2915	PB -	- 33	189	40	40	85	2980		51	230	48	17	70
2852168252924202917376334355729825526832146328531692336153129184125071447329835914748287528541703129151829194392294875298461140381167828551712333151229204719257405929856388423277	2851	167	292	31	24	37	2916		35	192	59	40	73	2981		53	246	44	10	53
2853 169 23 36 15 31 2918 41 250 71 44 73 2983 59 147 48 28 75 2854 170 31 29 15 18 2919 43 92 29 48 75 2984 61 140 38 116 78 2855 171 23 33 15 12 2920 47 192 57 40 59 2985 63 88 42 32 77	2852	168	25	29	24	20	2917		37	63	34	35	57	2982		55	268	32	14	63
2855 171 23 33 15 12 2920 47 192 57 40 59 2985 63 88 42 32 77	2853 2854	169	23	36 20	15 15	31 18	2918		41 43	250	20	44 49	73	2983 2984		59 61	147	48 19	28	75
	2855	171	23	33	15	12	2920		47	192	57	40	59	2985		63	88	42	32	77

																(p	pm)
Ser.No.	Sample No.	٨g	Cu	Zn	Мо	Ser.No.	Sample No.	Ag	Cu	Zn	Mo	Ser.No.	Sample No.	Ag	Cu	Zn	Mo
2986 2987 2988 2989 2989	P - 40 45 47 69 70	0.6 0.9 1.6 0.5	398 275 607 55	161 25 78 54	4.4 7.1 6.9 1.3	3051 3052 3053 3054 3055	F - 253 254 256 258	1.0 0.1 0.4 0.3	34 25 44 35	36 16 28 9	1.2 0.8 1.3 1.1	3116 3117 3118 3119	F - 637 640 641 644	0.8 0.8 0.8 0.3	97 159 114 135	7 68 28 43	1.1 0.3 0.7 1.0
2991 2992 2993 2994	72 74 76 77	0.1 1.9 1.6 0.5	11 204 179 19	4 53 56 12	1.2 1.1 1.5 0.8	3056 3057 3058 3059	260 264 265 266	0.1 0.3 0.6 1.1	21 11 20 9	15 11 15 13	0.9 0.8 0.9 0.9	3121 3122 3123 3124	646 647 651 654	0.5 0.9 0.9 0.2	20 16 81 55	20 30 78 6 4	0.4 0.3 1.6 2.4
2995 2996 2997 2998 2999 3000	80 86 87 91 92 93	0.4 0.3 0.5 0.7 0.4	48 42 69 10 40 16	36 42 39 7 15 7	1.1 1.3 2.4 3.5 2.2 3.2	3060 3061 3062 3063 3064 3065	267 268 269 272 274 275	0.6 0.1 0.7 0.3 1.0	14 11 10 54 37 26	9 9 42 31 36	0.9 0.7 0.6 0.9 0.6	3125 3126 3127 3128 3129 3130	659 660 664 676 724 f ~ 13	0.2 0.2 0.2 0.5 1.1 0.9	86 117 217 90 49 197	4 20 115 37 118	3.4 5.9 2.0 0.5 0.2 0.7
3001	94	0.2	6	4	2.3	3066	276	0.9	26	13	1,2	3131	36	0.6	456	64	1.6
3002	99	0.1	10	6	2.3	3067	277	3.1	19	13	2,6	3132	40	1.5	308	201	2.5
3003	100	25.3	36	11	2.0	3068	282	1.8	86	53	0,4	3133	42	0.9	169	65	3.5
3004	109	0.8	15	39	0.4	3069	351	1.0	172	120	0,5	3134	45	2.2	570	219	0.8
3005	110	0.5	22	40	1.4	3070	357	1.4	276	279	0,5	3135	46	1.5	266	136	2.1
3006	141	1.0	37	19	0.1	3071	358	1.5	221	139	0.9	3136	51	1.2	359	190	0.6
3007	142	0.5	37	24	0.2	3072	361	1.7	197	123	1.2	3137	53	0,7	295	94	3.6
3008	143	1.2	83	28	0.1	3073	362	0.5	237	197	1.5	3138	56	1.3	266	91	4.2
3009	148	0.9	65	43	0.2	3074	378	0.9	38	36	0.3	3139	57	1.1	323	55	2.1
3010	149	0.4	40	17	0.4	3075	384	0.8	183	116	0.5	3140	59	0.3	306	119	1.7
3011	150	0.7	101	25	2.0	3076	394	0.9	87	69	0.6	3141	61	0.5	148	141	1.3
3012	183	1.0	59	35	0.2	3077	397	0.6	60	57	0.4	3142	63	2.2	1,095	125	1.0
3013	208	0.6	48	28	0.8	3078	398	0.3	153	51	0.5	3143	66	1.6	232	199	0.6
3014	209	2.4	184	216	2.5	3079	404	1.5	369	243	1.1	3144	68	1.4	223	566	1.2
3015	210	0.3	62	31	0.7	3080	408	0.5	221	36	1.7	3145	72	1.1	139	308	1.0
3016	211	0.7	29	37	0.1	3081	409	0.6	209	57	3.8	3146	76	1.6	228	112	1.9
3017	212	1.3	109	57	1.9	3082	410	0.3	177	42	2.6	3147	95	0.6	202	56	2.8
2018	213	0.3	33	25	0.5	3083	411	1.7	500	44	2.1	3148	97	0.7	122	36	2.7
3019	214	0.7	126	40	1.5	3084	414	1.2	118	78	2.7	3149	154	0.9	52	31	0.4
3020	215	0.3	29	51	0.8	3085	416	0.3	174	53	3.3	3150	155	8.1	118	73	0.7
3021	216	0.7	51	75	0.8	3086	417	0.8	166	38	1.5	3151	156	0.7	89	23	0.4
3022	217	0.9	81	43	3.1	3087	419	0.6	126	101	2.3	3152	157	0.4	86	46	0.2
3023	219	0.6	87	45	1.3	3088	420	0.5	144	23	2.8	3153	158	0.5	85	35	0.4
3024	220	0.6	104	84	0.9	3089	421	0.5	150	51	3.4	3154	159	1.2	80	61	0.5
3025	221	0.9	69	57	1.7	3089	423	0.6	158	41	5.4	3155	160	1.0	65	52	0.4
3026	222	0.7	94	53	1.5	3091	428	0.9	567	48	4.6	3156	161	0.9	100	29	0.3
3027	223	0.5	47	64	0.9	3092	429	0.5	210	27	4.2	3157	162	0.6	272	112	1.4
3028	224	0.3	57	8	1.7	3093	430	0.8	438	97	4.8	3158	163	0.7	152	94	0.7
3029	225	0.6	26	42	1.6	3094	431	0.8	319	21	3.3	3159	164	0.5	128	61	0.9
3030	227	1.3	50	22	3.0	3095	437	1.2	158	15	2.9	3160	165	0.2	165	25	0.7
3031	228	0.8	13	10	1.6	3096	438	0.2	213	9	8.4	3161	166	0.5	88	26	1.5
3032	229	0.8	11	13	1.0	3097	440	1.2	134	77	9.3	3162	167	0.6	43	21	2.7
3033	230	0.2	5	6	0.7	3098	601	1.8	143	48	1.0	3163	168	0.2	33	14	1.6
3034	231	0.5	147	10	1.9	3099	603	0.5	120	17	1.7	3164	170	0.4	43	22	0.8
3035	232	0.3	13	89	1.4	3100	604	0.3	71	8	1.5	3165	171	0.9	105	51	1.1
3036	233	0.5	6	6	1.3	3101	606	0.3	67	11	1.1	3166	172	0.6	38	18	0.9
3037	234	0.7	13	11	1.8	3102	607	0.8	170	140	2.4	3167	173	0.1	100	105	1.0
3038	235	0.8	11	9	2.4	3103	611	0.3	88	15	1.3	3168	174	0.1	32	25	0.6
3039	237	0.5	8	10	0.8	3104	612	0.6	154	40	1.0	3169	175	0.5	34	26	2.0
3040	238	0.6	18	10	1.1	3105	614	0.3	209	11	3.6	3170	176	0.4	42	42	1.4
3041	241	0.6	28	13	1.0	3106	617	0.3	93	23	2.9	3171	177	0.3	30	43	0.7
3042	243	0.2	59	42	1.9	3107	618	0.4	352	14	4.2	3172	180	0.1	18	15	0.9
3043	244	0.5	40	45	1.4	3108	622	0.1	136	7	4.1	3173	181	0.1	38	33	0.8
3044	245	1.0	42	36	1.9	3109	623	0.4	25	9	2.2	3174	182	0.3	23	21	0.6
3045	246	0.8	51	48	1.8	3110	624	1.0	35	9	1.7	3175	183	0.3	33	24	1.2
3046	247	1.4	193	36	1.5	3111	625	0,8	21	6	0.5	3176	185	0.4	67	44	0.7
3047	248	0.3	32	30	1.5	3112	627	1,0	156	43	1.3	3177	186	0.3	81	52	1.5
3048	249	1.0	62	39	1.8	3113	632	0,4	139	32	1.7	3178	187	0.6	31	24	1.8
3049	250	0.3	36	54	1.3	3114	635	0,3	24	7	0.6	3179	188	0.3	29	18	0.8
3050	251	0.1	25	15	1.2	3115	636	0,3	52	9	0.5	3180	189	0.3	26	19	0.7

Ser.No.	Sample No.	Ag	Cu	Zn	Mo	Ser.No.	Sample No.	Ag	Сu	Zn	Mo	Ser.No.	Sample No.	Ag	Cu	Zn	Mo
3181	f - 190	0.7	42	17	0.7	3246	f - 478	0.8	86	8	1.6	3311	f - 700	0.3	80	117	0.5
3182	191	0.7	67	28	0.8	3247	479	0.9	99	21	1.1	3312	701	1.4	127	239	0.8
3183	192	1.2	89	49	0.7	3248	481	1.0	132	23	4.6	3313	702	0.8	79	107	0.8
3184	194	1.0	45	18	1.6	3249	482	1.0	57	14	0.7	3314	705	0.8	132	57	1.0
3185	195	1.4	18	14	0.9	3250	483	0.3	111	8	0.7	3315	706	0.5	134	222	0.6
3186	196	0.3	15	8	0.9	3251	484	0.4	62	11	0.4	3316	707	0.8	117	89	1.6
3187	226	1.4	109	46	0.9	3252	488	0.8	89	29	0.4	3317	708	0.8	156	129	2.4
3188	227	1.2	135	42	2.2	3253	489	1.1	102	41	0.3	3318	712	0.4	366	54	0.7
3189	228	0.3	128	21	3.8	3254	490	0.6	63	28	0.3	3319	714	0.7	155	103	0.7
3199	229	0.5	56	16	1.4	3255	491	0.5	45	20	0.4	3320	715	0.5	51	86	1.5
3191	230	0.6	4	45	2.9	3256	492	0.6	70	24	0.5	3321	716	1.1	68	130	1.0
3192	233	0.3	99	15	2.6	3257	493	0.1	52	16	0.5	3322	718	0.9	81	104	0.3
3193	234	0.3	48	19	0.8	3258	994	0.9	45	18	1.0	3323	719	1.3	82	91	0.5
3194	235	1.0	147	60	0.9	3259	495	0.4	131	37	0.6	3324	720	0.8	78	63	0.3
3195	236	0.7	110	78	1.1	3260	496	0.5	36	20	0.6	3325	772	0.8	41	33	0.2
3196	239	0.2	93	69	1.0	3261	497	0.6	88	71	0.5	3326	725	1.4	61	63	0.4
3197	243	0.6	89	98	0.9	3262	607	0.4	144	46	3.2	3327	727	1.8	119	177	0.6
3198	244	1.9	114	63	0.5	3263	610	0.8	113	59	2.3	3328	728	1.8	120	127	0.2
3199	247	0.3	103	81	0.7	3264	612	0.3	103	104	2.7	3329	729	0.7	239	37	0.5
3200	248	1.5	142	82	0.6	3265	615	0.1	58	56	1.4	3330	730	1.4	131	154	0.6
3201	254	1.9	129	110	0.7	3266	617	0.6	196	26	1.9	3331	731	0.8	76	117	0.7
3202	255	0.6	59	33	0.7	3267	618	0.4	24	11	1.3	3332	732	0.7	71	486	0.2
3203	259	1.4	159	61	0.5	3268	619	0.8	113	55	2.4	3333	733	1.4	89	133	0.4
3204	262	1.0	160	59	0.6	3269	623	0.6	136	131	0.4	3334	735	1.4	55	54	0.6
3205	264	1.4	189	148	2.0	3270	624	0.5	199	136	0.4	3335	738	0.7	85	123	1.1
3206	265	1.3	236	85	0.9	3271	626	2.1	215	250	0.2	3336	741	1.1	92	137	1.1
3207	268	0.3	208	85	0.8	3272	628	0.8	199	126	0.3	3337	743	0.6	92	122	1.6
3208	270	1.9	226	98	0.6	3273	629	1.0	297	115	0.4	3338	747	0.6	85	122	1.0
3209	272	1.8	159	73	0.8	3274	635	0.9	26	173	0.2	3339	749	0.8	97	201	1.0
3210	275	1.5	186	52	0.6	3275	636	0.3	24	53	0.5	3340	751	0.4	68	83	0.9
3211	278	1.2	73	33	0.5	3276	637	0.7	30	44	1.6	3341	753	1.0	103	200	1.2
3212	279	0.9	71	27	0.3	3277	638	0.9	522	398	10.3	3342	755	1.1	155	266	0.7
3213	282	1.2	92	39	0.4	3278	639	0.3	81	36	1.2	3343	757	0.5	90	107	1.2
3214	283	1.2	98	34	0.3	3279	640	0.4	118	40	1.9	3344	758	2.0	116	149	1.0
3215	332	2.0	192	92	1.0	3280	641	1.0	136	48	1.2	3345	759	0.8	90	180	1.8
3216 3217 3218 3219 3220	338 339 340 344 346	0.1 0.1 0.3 0.1	24 38 22 21 20	21 27 13 24 24	3.9 2.8 4.3 2.1 1.6	3281 3282 3283 3284 3285	644 645 646 647 649	0.5 0.7 1.0 0.8 1.3	50 146 40 31 187	60 219 58 54 265	0.5 1.0 0.5 0.6 2.2	3346 3347 3348 3349 3350	762 768 769 770 771	0.3 0.6 0.9 0.9 0.3	89 320 168 147 122	103 26 60 43 34	1.2 2.4 1.9 1.9 2.2
3221 3222 3223 3224 3225	348 351 353 356 359	0.1 0.1 1.8 0.3	8 11 31 47 43	11 7 9 27 15	3.6 1.7 1.4 3.1 2.1	3286 3287 3288 3289 3290	650 651 652 654 660	1.0 1.1 0.4 1.0 1.5	70 42 41 41 179	64 55 4 52 73	0.5 0.6 2.2 0.8 0.3	3351 3352 3353 3354 3355	773 774 776 777 778	0.3 0.5 0.6 0.6 0.6	116 104 404 204 324	11 23 74 97 79	1.7 4.2 3.1 2.1 0.7
3226 3227 3228 3229 3230	360 364 365 367 368	0.3 0.3 1.4 0.9 0.3	56 26 153 60 53	22 23 87 36 35	1.3 2.1 0.7 2.4 2.5	3291 3292 3293 3294 3295	661 664 665 666 670	1.2 1.5 0.7 1.5 1.5	105 194 180 107 200	70 86 60 221	0.8 0.9 1.0 1.0 1.0	3356 3357 3358 3359 3360	779 780 783 F - 2000 2001	0.9 0.9 1.2 1.2 1.9	238 324 228 55 86	94 193 117 45 77	1.7 0.8 0.9 0.5 0.6
3231	369	0.9	69	84	1.1	3296	671	2.0	229	43	2.4	3361	2003	1.5	78	55	0.5
3232	372	0.3	56	48	1.1	3297	672	1.4	345	129	3.6	3362	2004	2.0	63	58	0.5
3233	373	0.9	52	33	1.0	3298	675	0.9	166	86	1.2	3363	2006	2.0	62	87	0.3
3234	374	0.5	43	38	1.5	3299	676	1.6	123	43	0.8	3364	2007	1.7	63	60	0.6
3235	376	0.8	68	33	1.1	3300	677	1.2	156	102	0.3	3365	2008	1.9	62	75	0.5
3236	377	0.6	35	30	0.8	3301	679	0.5	113	87	1.1	3366	2010	1.2	52	24	0.3
3237	380	0.9	70	51	0.9	3302	681	1.2	127	107	0.7	3367	2012	1.0	85	34	0.6
3238	381	0.3	52	53	0.6	3303	684	1.4	174	103	1.4	33	2013	1.4	108	58	0.6
3239	382	0.9	108	68	1.5	3304	686	1.1	95	471	0.9	3369	2014	1.7	135	71	0.3
3240	405	1.4	697	14	14.0	3305	688	1.8	262	286	1.1	3370	2016	1.5	80	29	0.6
3241	432	0.9	30	30	2.6	3306	690	1.2	286	102	1.1	3371	2017	0.9	89	32	0.3
3242	472	0.3	72	7	1.4	3307	692	0.8	279	61	3.4	3372	2018	1.2	84	33	0.3
3243	473	0.3	75	6	0.7	3308	693	0.9	137	93	0.9	3373	2019	0.7	102	95	0.8
3244	474	0.5	98	9	1.0	3309	695	0.9	302	80	2.0	3374	2020	1.9	72	33	0.6
3245	476	0.2	60	7	1.1	3310	696	1.2	180	86	0.2	3375	2021	1.9	41	40	0.2
																(p	pm)
--------------------------------------	--------------------------------------	---------------------------------	-------------------------------	----------------------------	---------------------------------	--------------------------------------	--	---------------------------------	------------------------------	------------------------------	---------------------------------	--	--	---------------------------------	-------------------------------	-------------------------------	---------------------------------
Ser.No.	Sample No.	٨g	Cu	Zn	Мо	Ser.No.	Sample No.	٨g	Cu	Zn	Mo	Ser.No.	Sample No.	٨g	Cu	Zn	Мо
3376	F - 2022	1.9	56	54	0.3	3441	F - 2095	1.6	49	29	0.9	3506	F - 2166	0.4	118	32	1.7
3377	2023	1.1	226	15	3.2	3442	2096	1.5	104	51	0.4	3507	2167	0.9	107	29	2.0
3378	2024	1.9	81	90	0.6	3443	2097	1.2	49	19	0.5	3508	2168	0.9	145	34	1.7
3379	2025	1.6	86	99	1.5	3444	2098	1.2	22	17	0.7	3509	2169	1.2	102	124	0.5
3380	2026	1.8	95	144	0.6	3445	2099	1.2	21	16	0.3	3510	2170	0.8	179	67	1.4
3381	2027	2.3	69	91	0.5	3446	2100	1.3	23	14	0.4	3511	2171	0.5	139	67	1.3
3382	2028	2.6	58	62	0.5	3447	2101	1.1	24	14	0.1	3512	2172	1.0	100	70	0.6
3383	2029	1.6	196	58	0.4	3448	2102	1.5	304	24	11.2	3513	2173	0.5	271	101	0.6
3384	2030	2.3	82	57	0.6	3449	2103	1.3	64	19	0.3	3514	2174	0.7	156	100	0.6
3385	2031	2.1	258	45	0.7	3450	2104	0.7	68	44	0.4	3515	2175	0.8	168	99	0.6
3386	2032	1.8	209	40	0.6	3451	2105	1.1	162	26	0.5	3516	2176	0.8	123	78	0.5
3387	2033	1.8	179	54	0.9	3452	2106	1.6	189	41	0.5	3517	2177	0.8	213	81	0.7
3388	2035	1.4	59	63	1.0	3453	2107	2.3	171	34	0.4	3518	2178	0.8	202	68	0.8
3389	2036	1.9	96	82	1.3	3454	2108	1.6	173	184	0.4	3519	2179	1.0	189	96	1.6
3399	2037	1.4	74	63	1.0	3455	2109	1.3	169	67	0.3	3520	2181	1.0	330	81	2.6
3391	2039	1.6	108	95	0.9	3456	2110	0.9	108	41	0.3	3521	2182	0.9	192	77	2.3
3392	2040	1.6	63	153	3.7	3457	2111	1.3	95	38	0.6	3522	2183	1.2	274	64	2.0
3393	2042	1.6	12	21	0.3	3458	2112	0.8	108	26	1.1	3523	2184	0.4	310	52	1.2
3394	2043	0.3	16	36	0.3	3459	2113	0.5	156	34	0.7	3524	2185	1.2	231	72	0.9
3395	2044	1.9	11	20	0.2	3460	2114	1.1	70	30	0.6	3525	2186	1.0	179	176	0.7
3396	2045	1.1	12	8	0.1	3461	2115	1.1	46	39	0.5	3526	2187	1.2	186	52	0.9
3397	2046	0.7	13	10	0.2	3462	2116	0.9	73	34	0.5	3527	2188	0.8	121	57	0.8
3398	2047	0.9	9	11	0.1	3463	2117	0.9	157	52	0.6	3528	2189	0.5	54	26	0.3
3399	2048	0.9	3	8	0.1	3464	2118	0.9	114	38	0.4	3529	2190	0.7	54	29	0.5
3400	2049	0.7	4	8	0.1	3465	2119	0.9	52	54	0.6	3530	2191	0.7	78	31	0.7
3401 3402 3403 3404 3405	2050 2051 2052 2053 2054	2.1 0.9 2.0 1.3 1.0	46 38 94 15 13	22 41 75 26 24	0.2 0.3 0.4 0.1 0.2	3466 3467 3468 3469 3470	2120 2121 2122 2123 2123 2124	0.9 2.0 1.9 2.4 1.3	32 49 44 118 186	44 78 79 76 222	0.3 0.6 0.7 1.0 0.9	3531 3532 3533 3534 3535	2192 2193 2194 2195 2195 2196	0.7 1.8 1.3 1.0 0.8	202 356 215 77 29	29 248 186 278 75	0.7 1.0 0.7 0.9 0.2
3406	2055	1.6	9	32	0.2	3471	2125	1.5	94	148	1.1	3536	2197	1.0	97	40	0.4
3407	2056	1.3	16	36	0.2	3472	2126	1.2	64	78	0.3	3537	2198	1.0	114	41	1,1
3408	2057	1.8	40	69	0.3	3473	2127	1.6	55	41	0.2	3538	2199	1.0	71	42	0.5
3409	2059	1.6	30	33	0.5	3474	2128	1.1	58	48	0.1	3539	2200	0.9	81	23	0.5
3410	2060	0.8	25	20	0.4	3475	2129	1.3	47	56	0.3	3540	2201	0.8	77	74	0.5
3411 3412 3413 3414 3415	2061 2063 2064 2065 2066	1.6 1.6 1.5 1.8	127 243 120 92 76	29 67 54 74 78	1.0 0.7 0.6 1.1 0.7	3476 3477 3478 3479 3480	2130 2131 2132 2133 2133 2134	1.3 1.6 1.3 0.9 0.8	34 51 53 27 83	41 31 31 25 54	0.5 0.4 0.2 0.1 0.4	3541 3542 3543 3544 3544 3545	2202 2203 2204 2205 2206	1.0 1.0 0.8 0.8 0.8	87 147 165 45 36	63 98 63 32 27	0.8 1.1 0.4 0.2 0.3
3416	2068	1.4	75	69	0.6	3481	2136	1.1	31	38	0.2	3546	2207	0.8	128	39	0.6
3417	2069	1.8	136	35	2.7	3482	2137	1.4	57	59	0.5	3547	2208	0.5	44	14	0.3
3418	2070	1.4	178	33	1.4	3483	2138	1.1	34	42	0.3	3548	2209	0.5	65	13	0.5
3419	2072	1.4	110	37	0.7	3484	2139	0.9	65	38	0.3	3549	2210	0.5	70	17	0.6
3420	2073	1.1	98	33	0.9	3485	2140	1.6	46	38	0.2	3550	2211	0.7	71	24	0.8
3421	2074	1.0	81	28	1.1	3486	2141	1.6	50	42	0.3	3551	2212	0.5	36	27	0.5
3422	2075	1.4	76	29	1.0	3487	2142	1.4	45	38	0.4	3552	2213	0.5	103	54	0.2
3423	2076	0.6	49	21	1.1	3488	2143	1.2	33	31	0.3	3553	2214	0.3	29	9	0.1
3424	2077	1.0	88	42	1.2	3489	2144	1.8	52	68	0.3	3554	2215	0.3	14	13	0.1
3425	2078	1.1	30	40	0.6	3490	2145	0.7	63	45	0.5	3555	2216	0.4	9	11	0.1
3426 3427 3428 3429 3430	2079 2080 2081 2083 2084	1.0 0.9 0.8 0.8 0.5	27 18 46 28 26	27 24 14 24 17	0.5 0.4 1.6 0.7 0.8	3491 3492 3493 3494 3495	2146 2148 2149 2151 2152	0.8 1.8 1.5 0.9 1.1	103 93 110 96 66	72 143 142 60 65	0.9 0.8 1.5 1.2 0.4	3556 3557 3558 3559 3560	2217 2218 2219 2221 2221 2222	0.7 1.0 1.7 0.6 0.8	52 47 47 36 38	98 23 30 22 18	0.4 0.5 0.1 0.7 0.5
3431	2085	1.1	10	15	0.2	3496	2153	1.4	102	76	0.7	3561	2223	0.8	43	22	0.6
3432	2086	1.1	11	11	0.3	3497	2155	0.9	121	95	1.1	3562	2224	0.5	32	15,	0.3
3433	2087	1.3	12	15	0.2	3498	2156	0.9	105	67	1.0	3563	2225	0.6	41	13	0.4
3434	2088	1.5	17	18	0.3	3499	2157	0.9	109	41	1.3	3564	2226	0.5	42	12	0.5
3435	2089	0.9	17	15	0.3	3500	2158	2.8	125	73	1.3	3565	2227	0.6	137	27	0.7
3436	2090	1.5	17	19	0.4	3501	2159	2.0	107	65	0.4	3566	2228	1.2	330	43	1.3
3437	2091	0.8	50	35	3.7	3502	2160	1.6	237	62	1.1	3567	2229	0.6	335	55	2.0
3438	2092	1.7	58	22	0.3	3503	2161	0.8	137	59	0.7	3568	2230	1.9	203	33	0.9
3439	2093	0.8	60	72	0.8	3504	2163	0.3	116	38	1.7	3569	2232	1.9	110	28	1.0
3440	2094	1.6	85	47	0.8	3505	2165	0.4	93	26	2.0	3570	2233	1.9	137	34	1.1

1	in.	-	۲
٦	Р	թա	1

Ser.No.	Sample No.	Ag	Cu	Zn	Мо	Ser.No.	Sample No.	Ag	Сц	Zn	Mo	Ser.No.	Sample No.	Ag	Cu	Zn	Mo
3571	F - 2234	1.3	346	28	1.8	3636	F - 2303	1.4	235	77	0.5	3701	P - 2371	0.7	41	9	15.8
3572	2235	1.2	167	25	0.8	3637	2304	1.9	244	78	0.7	3702	2372	0.4	4]	8	2.2
3573	2236	0.6	39	18	0.2	3638	2305	2.0	263	103	0.4	3703	2373	0.5	143	10	2.2
3575	2238	0.8	13	21	0.2	3640	2307	1.5	229	68	0.3	3705	2375	0.4	126	7	4.3
3576	2239	0.8	39	28	0.4	3641	2308	1.4	224	18	0.5	3706	2376	0.7	199	10	9.6
3577	2240	0.9	197	84	1.3	3642	2309	1,1	437	37	12.9	3707	2377	0.9	158	46	8.8
3578	2241	1.2	159	148	2.0	3643	2310	0.9	345	28	4.5	3708	2378	0.5	144	24	3.6
3580	2242	1.4	306	73	2.2	3645	2312	1.4	793	83	6.2	3710	2380	1.8	225	88	0.7
3581	2244	1.0	124	117	0.9	3646	2313	1.5	333	116	0.7	3711	2381	1.2	106	43	0.4
3582	2245	1.1	101	97	0.7	3647	2314	1.1	251	97 147	0.7	3712	2382	1.4	115	41 24	0.7
3584	2247	1.6	120	93	0.9	3649	2316	1.5	212	129	0.6	3714	2384	0.9	70	14	0.9
3585	2248	1.3	85	140	0.4	3650	2317	1.8	307	190	0,4	3715	2385	0.9	64	17	0.8
3586	2249	1.1	108	187	0.5	3651	2318	1.6	216	101	0.6	3716	2386	0.8	104	26	0.7
3588	2250	2.3	244 355	121	0.5	3653	2319	1.2	205	96	0.3	3718	2388	1.1	94	25	0.7
3589	2252	2.1	287	156	0.8	3654	2321	1.2	121	96	0.4	3719	2389	1,9	322	76	1.0
3590	2253	1.4	219	104	1.9	3655	2322	1.4	285	90	0.7	3720	2390	0.5	50	14	0.6
3591	2254	1.0	181	152	2.7	3656	2323	1.5	91	109	0.5	3721	2391	0.8	46	9	1.0
3593	2256	1.0	642	160	1.4	3658	2326	0.3	44	200	0.5	3723	2393	0.7	99	8	1.9
3594	2257	0.8	87	21	1.4	3659	2327	2.0	169	101	0.5	3724	2394	0.9	86	14	1.0
3595	2258	0.4	47	13	1.7	3660	2328	1.5	145	593	0.1	3725	2395	0.7	167	12	4.0
3596	2259	0.8	72	13	1.9	3661	2329	1.2	84	119	0.3	3726	2396	0.8	139	14	2.7
3597	2260	1.3	248 464	33	3.3	3662	2330	1.4	140	109	0.6	3727	2397	0.7	172	23	2.4
3599	2262	1.0	173	100	0.8	3664	2333	1.1	802	50	1.1	3729	2399	1.5	204	85	0.6
3600	2263	1.6	222	131	0.8	3665	2334	0.8	264	32	1.4	3730	2400	0.5	74	34	0.9
3601	2264	1.3	422	94	1.0	3666	2335	1.1	422	34	1.1	3731	2401	0.9	134	11	5.0
3602	2265	0.4	290	106	2.3	3668	2337	0.9	109	10	0.7	3733	2402	0.9	83	8	3.5
3604	2268	0.4	120	7	3.6	3669	2338	0.7	81	9	0.6	3734	2404	1.1	93	6	2.1
3605	2269	1.2	98	69	2.0	3670	2339	0.5	65	7	1.3	3735	2405	0.4	93	8	2.2
3606	2270	1.7	138	31	4.5	3671	2340	0.8	108	30	1.5	3736	2406 2407	0.3	93 102	6 7	1.9
3608	2272	0.9	165	40	1.5	3673	2342	0.5	123	15	1,1	3738	2408	0.2	104	n	1.8
3609	2273	0,8	80	150	1.8	3674	2343	0.5	62	23	1,1	3739	2409	0.4	108	11	1.7
3610	2274	1.5	50	41	1.2	3675	2345	0.8	110	41	1.4	3740	2410	0.2	111	13	1.8
3611	2275	1.5	54	30	1.7	3676	2346	1.1	106	35	1.4	3741	2411	0.6	171	17	1.6
3612	2276	0.8	105	23	2.1	3677	2347	0.3	53	<u>و</u>	1.3	3743	2412	0.2	42	10	0.2
3614	2279	1.8	141	33	1.7	3679	2349	0.3	52	1ó	2.4	3744	2415	0.4	62	9	1.3
3615	2280	1.8	331	81	6.6	3680	2350	0.8	187	50	0.5	3745	2416	0.3	197	10	2.6
3616	2281	1.9	345	175	0.7	3681	2351	1.1	151	30	0.9	3746	2417	0.6	64	86	0.2
3617	2282	3.0	412	82	0.7	3682	2352	0.7	36	18	1.3	3747	2418	0.4	139	27	1.2
3619	2285	1.0	120	51	1.3	3684	2354	0.7	72	12	0.7	3749	2420	0.2	81	16	0.9
3620	2286	1.4	208	73	1.8	3685	2355	1.1	84	30	1.0	3750	2422	0.3	107	21	1.1
3621	2287	1.7	165	143	0.7	3686	2356	0.9	213	26	0.6	3751	2423	0.2	133	35 24	2.5
3622	2288	1.4	218	52	1.2	3688	2358	0.5	82	28	0.4	3753	2425	0.6	124	13	1.6
3624	2290	1.3	169	73	1.2	3689	2359	0.7	167	17	0.5	3754	2426	0.4	88	11	0,8
3625	2291	2.4	139	81	1.3	3690	2360	0.4	42	11	0.6	3755	2427	0.1	88	8	1.9
3626	2292	0.6	268	24	0.9	3691	2361	0.5	81	12	0.6	3756	2428	0.6	133	7 30	1.7
3627	2293 2204	0.5	257	109	3.5 1.5	3692 3693	2362	2.0 0.7	167	13	0.5	3758	2430	0.7	75	29	2.1
3629	2295	1.3	225	207	3.5	3694	2364	0.7	88	15	1.1	3759	2431	0.6	88	14	3.0
3630	2296	1.9	191	262	2.0	3695	2365	0.4	53	11	0.7	3760	2432	0.6	57	13	2.3
3631	2297	2.3	167	269	0.6	3696	2366	0.4	168	15	2.9	3761	2433	0.8	51 57	16 17	1.1
3632	2298	1.8	182 81	122	0.8	3698	2368	1.1	105 95	- 12	2.2	3763	2435	0.7	53	17	ī.ī
3634	2301	1.8	98	52	0.7	3699	2369	0.8	126	8	2.3	3764	2436	0.6	221	17	7.7
3635	2302	1.7	125	48	0.6	3700	2370	0.4	94	13	2.9	3765	2437	0.6	140	17	1.9

.

					,							<u></u>				(ppm)
Ser.No.	Sample No.	Ag	Cu	Zn	Mo	Ser.No.	Sample No.	٨g	Cu	Zn	Мо	Ser.No.	Sample No.	Ag	Cu	Zn M
3766 3767 3768 3769 3770	F - 2439 2440 2441 2442 2443	0.2 0.3 0.2 0.6 1.1	40 44 14 37 51	16 9 6 15 24	0.8 1.0 1.0 0.8 0.8	3831 3832 3833 3834 3835	F - 2511 2512 2513 2514 2515	0.3 0.3 0.3 0.3 0.3	69 67 2 23 19	4 4 3 9 6	8.9 6.8 0.7 1.4 1.0	3896 3897 3898 3899 3899 3900	F - 2583 2585 2586 2587 2588	0.8 0.5 1.4 1.2 0.9	217 53 1961 410 398	18 4. 36 1. 71 21. 6 28. 10 41.
3771 3772 3773 3774 3775	2444 2445 2446 2447 2448	0.3 0.5 0.3 0.1 0.5	115 154 196 172 311	8 7 6 13	3.2 3.9 4.6 6.3 7.5	3836 3837 3838 3839 3840	2516 2517 2518 2519 2520	0.5 0.6 1.0 0.9 0.5	86 79 42 36 53	54 68 54 19 18	0.9 2.5 3.2 2.2 1.3	3901 3902 3903 3904 3905	2589 2590 2591 2592 2593	1.2 1.3 1.0 0.9 1.2	505 615 620 358 554	24 8. 69 10. 25 15. 79 2. 50 3.
3776 3777 3778 3779 3780	2449 2450 2451 2452 2453	0.6 0.5 0.5 0.5 0.2	342 237 300 275 124	7 4 5 4	10.4 8.6 36.3 29.5 14.7	3841 3842 3843 3844 3845	2521 2522 2523 2524 2527	1.0 0.8 0.3 0.1 0.6	49 27 25 45 121	10 5 6 8 8	3.1 2.2 10.6 2.2 3.1	3906 3907 3908 3909 3910	2594 2595 2596 2597 2598	0.8 1.0 0.5 0.4 0.5	477 104 103 114 67	20 3.) 6 6.) 7 6. 8 4.) 6 5.
3781 3782 3783 3784 3785	2454 2456 2457 2458 2460	0.2 1.4 1.3 1.2 0.9	132 206 176 190 132	9 34 34 34 25	1.7 2.6 2.3 1.9 2.5	3846 3847 3848 3849 3850	2528 2529 2530 2531 2532	0.5 0.6 0.3 0.5 0.3	119 116 101 104 142	16 10 26 28 15	3.4 3.2 1.2 1.0 1.0	3911 3912 3913 3914 3915	2599 2600 2601 2602 2603	0.5 0.7 1.0 0.9 0.8	138 185 126 183 146	6 2. 21 4. 11 2. 10 2. 6 2.
3786 3787 3788 3789 3790	2461 2463 2464 2465 2466	1.2 1.5 1.7 1.4 1.4	149 239 314 477 525	37 42 45 38 17	1.3 1.1 2.5 3.0 5.6	3851 3852 3853 3854 3855	2533 2534 2535 2536 2537	1.1 0.7 1.1 0.8 1.6	127 141 214 277 576	15 9 9 10 22	1.4 1.0 0.6 0.6 3.4	3916 3917 3918 3919 3920	2604 2605 2607 2608 2609	0.7 0.7 0.8 0.7 0.5	104 254 367 221 154	6 3. 16 1. 28 3. 41 6. 14 6.
3791 3792 3793 3794 3795	2467 2468 2469 2470 2473	1.4 1.0 1.0 0.5 1.4	342 111 72 95 362	13 23 10 7 11	2.3 11.4 1.5 8.1 0.7	3856 3857 3858 3859 3860	2538 2539 2540 2542 2545	1.8 1.7 1.2 1.4 1.6	335 368 376 277 386	32 34 51 61 9	11.1 7.9 7.9 1.1 1.3	3921 3922 3923 3924 3925	2610 2611 2612 2613 2614	0.7 0.8 1.3 0.3 0.3	211 163 281 57 87	27 4. 43 7. 36 9. 5 8. 9 2.
3796 3797 3798 3799 3800	2474 2475 2476 2477 2478	0.9 0.4 0.5 0.5 0.6	294 172 214 307 191	15 4 5 7 4	1.9 2.2 5.8 1.8 1.9	3861 3862 3863 3864 3865	2546 2547 2548 2549 2550	2.0 1.4 1.6 2.4 1.3	309 250 163 391 329	11 14 12 61 21	1.4 1.4 1.1 1.4 3.4	3926 3927 3928 3929 3930	2615 2616 2617 2618 2619	0.4 0.4 0.7 0.7 0.3	113 211 290 103 109	8 1. 7 2. 12 3. 11 2. 7 11.
3801 3802 3803 3804 3805	2479 2480 2481 2482 2483	0.7 0.4 0.5 0.5 0.7	291 97 136 153 135	9 6 14 14 17	2.1 1.1 0.8 5.2 2.4	3866 3867 3868 3869 3870	2551 2552 2553 2554 2555	1.1 1.3 1.3 1.8 1.7	371 311 260 259 266	17 15 14 37 29	3.9 4.6 3.7 3.6 4.6	3931 3932 3933 3934 3935	2620 2621 2622 2623 2623	1.3 1.2 1.3 1.3 1.0	631 400 510 560 718	32 4. 56 5. 27 9. 38 7. 38 10.
3806 3807 3808 3809 3810	2484 2486 2487 2488 2489	0.7 0.1 0.2 0.2 0.1	81 34 32 56 180	10 8 11 13 7	2.1 1.0 0.7 0.7 1.4	3871 3872 3873 3874 3875	2556 2557 2558 2560 2561	1.8 1.3 1.8 1.8 1.3	337 317 300 190 133	44 28 21 104 88	5.3 3.3 5.2 0.9 1.7	3936 3937 3938 3939 3939 3940	2625 2626 2628 2629 2630	1.3 1.2 1.3 1.0 1.6	444 343 721 454 652	43 5.0 36 5.2 26 9.0 16 7.0 91 11.0
3811 3812 3813 3814 3815	2490 2491 2492 2493 2493 2494	0.6 0.2 0.1 0.1 0.1	257 93 60 32 26	14 8 8 7 9	0.9 1.3 1.7 1.3 3.4	3876 3877 3878 3879 3880	2562 2563 2565 2566 2566 2567	1.4 1.3 1.4 1.8 1.7	85 103 137 94 83	59 76 112 69 56	0.9 1.3 1.1 1.2 1.2	3941 3942 3943 3944 3945	2631 2632 3633 2634 2635	1.9 1.7 1.7 0.9 0.4	1132 1154 2776 581 345	38 26.3 40 33.4 63 15.0 11 19.7 3 20.4
3816 3817 3818 3819 3820	2495 2496 2497 2498 2499	0.5 0.6 0.5 0.2 0.4	72 88 98 66 167	10 30 14 14 26	12,8 3,9 1,9 3,6 3,9	3881 3882 3883 3884 3884 3885	2568 2569 2570 2571 2572	1.6 1.3 0.5 0.5 0.5	136 117 75 97 61	112 71 53 104 24	0.9 0.9 1.2 1.5 1.3	3946 3947 3948 3949 3950	2636 2637 2638 2639 2640	0.7 0.5 1.1 1.7 0.9	430 335 524 635 554	15 21.4 5 24.3 8 23.4 8 16.4 10 23.4
3821 3822 3823 3824 3825	2500 2502 2503 2504 2505	0.4 0.3 0.8 1.5 1.1	101 40 65 84 75	20 7 14 14 13	1.7 3.6 2.1 1.5 1.3	3886 3887 3888 3889 3889 3890	2573 2574 2575 2576 2577	0.5 0.4 0.9 0.9 0.9	60 38 51 95 88	20 14 20 50 43	1.6 1.0 1.5 1.5 1.5	3951 3952 3953 3954 3955	2641 2642 2644 2645 2646	1.5 0.9 1.6 0.9 0.9	206 94 83 59 28	22 3. ¹ 22 1. ² 44 1. ² 21 1. ² 11 1.
3826 3827 3828 3829 3830	2506 2507 2508 2509 2510	1.1 1.1 1.0 1.0 0.4	93 122 115 88 96	7 15 13 15 5	0.9 1.2 1.6 0.8 3.1	3891 3892 3893 3894 3895	2578 2579 2580 2581 2582	0.5 1.0 0.9 0.4 1.6	72 168 290 33 124	26 42 62 7 28	1.7 2.8 4.3 2.6 3.4	3956 3957 3958 3959 3960	2647 2648 2649 2650 2651	0.3 0.9 1.3 0.4 0.7	37 49 55 88 89	21 0. 30 1. 43 0. 82 1. 82 1.

,

Ser.No.	Sample No.	Ag	Ըս	Zn	Mo	Ser.No.	Sample No.	Ag	Cu	Zn	Мо	Ser.No.	Sample No.	Åg	Cu	Zn	Mo
3961	P = 2652	0.9	75	44	1.6	3986	F = 2679	0,6	135	9	5.4	4011	F = 2704	0.4	92	4	5.4
3962	2653	0.8	144	62	1.4	3987	2680	0,1	39	3	4.2	4012	2705	0.3	110	11	3.0
3963	3654	1.1	52	67	0.7	3988	2681	0.9	28	3	2.3	4013	2706	0.7	147	20	6.3
3964	2655	1.1	35	64	0.8	3989	2682	0.4	129	55	3.5	4014	2705	0.3	164	30	4.6
3965	2656	0.5	91	14	0.5	3990	2683	0,1	70	5	5.1	4015	2708	0.4	224	48	4.2
3966	2657	0.5	84	55	0.7	3991	2684	1.2	246	7	7.0	4016	2709	1.0	513	140	4.1
3968	2650	1 1	44	50	1 3	3093	2085	0.9	142	20	3.8	4017	2710	1.5	226	48	1.9
3969	2661	1.6	122	70	0.6	3994	2687	0.9	117	30	4.1	4018	2712	1.2	167	40 69	1.0
3970	2662	1.2	94	57	0.5	3995	2688	0.1	82	7	15.6	4020	2712	1.2	202	20	2.1
									•	•			-1-2				
3971	2663	1.2	259	103	3.0	3996	2689	0.1	70	4	13.2	4021	2714	1.5	397	17	3.5
3972	2664	1.2	368	87	3.9	3997	2690	0.3	110	8	16.5	4022	2715	1.2	254	13	5.3
3973	2005	1.2	122	160	1.3	3998	2691	0.4	86	8	7.2	4023	2716	1.3	257	20	3.8
3975	2667	0.3	132	44	1.7	4000	2691	0.4	89	13	4.4	4025	2718	0.6	285	37	4.2
								•••	.,			1025	.,10	0.0	-05	51	416
3976	2668	1.3	129	29	1.6	4001	2694	0.3	89	16	2.1	4026	2719	1.3	311	37	4.9
3977	2669	1.3	132	32	1.6	4002	2695	0.6	73	29	1.4						
3978	2670	1.3	134	20	1.0	4003	2696	0.9	122	6	0.6						
3980	2673	0.3	123	8	3.3	4005	2698	0.3	127	72	2.0						
,,,,,,	2015			v	2.2	-009	2090	0.5	76(12	2.0						
3981	2674	0.6	172	29	3.0	4006	2699	0.9	98	24	3.3						
3982	2675	0.6	378	4	9.3	4007	2700	1.0	97	9	1.1						
3983	2676	0.3	233	4	6.4	4008	2701	0.3	56	3	1.0						
3984	2677	0.4	134	3	3.0	4009	2702	0.7	123	3	2.6						
2902	2010	0.5	101	ر	2.2	4010	2103	0.7	144	ر	4.0						
																(\
																\P.	իայ
Ser.No.	Sample No.	Cu	Pb	Zn	Ba	Ser.No.	Sample No.	Cu	Pb	Zn	Ba	Ser.No.	Sample No.	Cu	Pb	Zn	Ba
		104															
4027	fB = 1013	183	144	457	106							-					
																(1	(המנ
Ser.No.	Samle No.	40	701.		<u>.</u>	Ser No.	Samala Na		τι.			Free Mr.	See le Ve			(1	opm)
Ser.No.	. Sample No.	Ag	Рь	Zn	Ba	Ser.No.	Sample No.	, Ag	Рь	Zn	Ba	Ser.No.	. Sample No	. Ag	Ръ	(1 Zn	opm) Ba
Ser.No.	. Sample No.	Ag	Pb	Zn	Ba	Ser.No.	Sample No. F - 188	, Ag 0.8	Pb 21	Zn 13	Ba.	Ser.No.	. Sample No F - 307	. Ag 0.9	Pb 25	(1 Zn 22	ppm) Ba 104
Ser.No.	R = 151	Ag	Pb	Zn	Ba	Ser.No. 4056 4057	Sample No. F - 188 189	Ag 0.8 0.7	Pb 21 46	Zn 13 73	Ba 88 66	Ser.No. 4086 4087	F - 307 308	. Ag 0.9 1.7	Рь 25 17	(1 Zn 22 42	Ba 104 142
Ser.No. 4028 4029	F - 151	0.4	Pb 21 21	Zn 13	Ba 44	Ser.No. 4056 4057 4058 4059	Sample No. F - 188 189 191 192	Ag 0.8 0.7 0.8	Pb 21 46 12	Zn 13 73 4	Ba 88 66 57	Ser.No. 4086 4087 4088	. Sample No F - 307 308 f - 116	. Ag 0.9 1.7 1.8	Pb 25 17 16	(1 Zn 22 42 51	Ba 104 142 223
Ser.No. 4028 4029 4030	F - 151 152 153	Ag 0.4 1.0 0.8	Pb 21 21 20	2n 13 11 11	Ba 44 132 110	Ser.No 4056 4057 4058 4059 4060	Sample No. F - 188 189 191 192 193	Ag 0.8 0.7 0.8 0.5 1.8	Pb 21 46 12 41 84	Zn 13 73 4 10	Ba 88 66 57 123 132	Ser.No. 4086 4087 4088 4089 4089	F - 307 308 f - 116 117 118	. Ag 0.9 1.7 1.8 2.1	Pb 25 17 16 18 27	(1 Zn 22 42 51 94 54	Ba 104 142 223 282 235
Ser.No. 4028 4029 4030	F - 151 152 153	0.4 1.0 0.8	Pb 21 21 20	2n 13 11 11	Ba 44 132 110	Ser.No. 4056 4057 4058 4059 4060	Sample No. F - 188 189 191 192 193	Ag 0.8 0.7 0.8 0.5 1.8	Pb 21 46 12 41 84	Zn 13 73 4 10 14	Ba 88 66 57 123 132	Ser.No. 4086 4087 4088 4089 4090	F - 307 308 f - 116 117 118	. Ag 0.9 1.7 1.8 2.1 0.7	Pb 25 17 16 18 27	(1 Zn 22 42 51 94 54	Ba 104 142 223 282 235
Ser.No. 4028 4029 4030 4031	. Sample No. Р - 151 152 153 155	0.4 1.0 0.8 0.8	Pb 21 21 20 7	2n 13 11 11 3	Ba 44 132 110 44	Ser.No. 4056 4057 4058 4059 4060 4061	Sample No. F = 188 189 191 192 193 194	Ag 0.8 0.7 0.8 0.5 1.8 1.8	Pb 21 46 12 41 84 281	Zn 13 73 4 10 14	Ba 88 66 57 123 132 189	Ser.No. 4086 4087 4088 4089 4090 4091	F - 307 308 f - 116 117 118 119	. Ag 0.9 1.7 1.8 2.1 0.7 1.6	Pb 25 17 16 18 27 27	(1 Zn 22 42 51 94 54 54	Ba 104 142 223 282 235 235
Ser.No. 4028 4029 4030 4031 4032	. Sample No. F - 151 152 153 155 156	0.4 1.0 0.8 1.0	Рь 21 21 20 7 29	2n 13 11 11 11 3 21	Ba 44 132 110 44 121	Ser.No. 4056 4057 4058 4059 4060 4061 4062	Sample No. F - 188 189 191 192 193 194 195	Ag 0.8 0.7 0.8 0.5 1.8 1.8 1.8	Pb 21 46 12 41 84 281 140	Zn 13 73 4 10 14 11 20	Ba 88 66 57 123 132 189 151	Ser.No. 4086 4087 4088 4089 4090 4091 4092	. Sample No F - 307 308 f - 116 117 118 119 120	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6	Pb 25 17 16 18 27 27 99	(1 Zn 22 42 51 94 54 54 66 51	Dpm) Ba 104 142 223 282 235 235 259
Ser.No. 4028 4029 4030 4031 4032 4033	F - 151 152 153 155 156 157	0.4 1.0 0.8 0.8 1.0 0.3	Pb 21 21 20 7 29 29	Zn 13 11 11 11 3 21 16	Ba 44 132 110 44 121 44	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063	Sample No. F - 188 189 191 192 193 194 195 196	Ag 0.8 0.7 0.8 0.5 1.8 1.8 1.6 1.8	Pb 21 46 12 41 84 281 140 81	Zn 13 73 4 10 14 11 20 15	Ba 88 66 57 123 132 189 151 132	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093	. Sample No F - 307 308 f - 116 117 118 119 120 123	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5	Pb 25 17 16 18 27 27 27 99 16	(1 Zn 22 42 51 94 54 66 51 46	ppm) Ba 104 142 223 282 235 235 259 212
Ser.No. 4028 4029 4030 4031 4032 4033 4034	F - 151 152 153 155 156 157 159 161	0.4 1.0 0.8 1.0 0.3 1.0	Рь 21 21 20 7 29 29 29 15	Zn 13 11 11 11 3 21 16 14	Ba 44 132 110 44 121 44 55 33	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063 4064	Sample No. F - 188 189 191 192 193 194 195 196 197	Ag 0.8 0.7 0.8 0.5 1.8 1.6 1.8 1.6 1.8 0.4	Pb 21 46 12 41 84 281 140 81 35	Zn 13 73 4 10 14 11 20 15 87	Ba 88 66 57 123 132 189 151 132 47 10	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095	<pre>Sample No F - 307</pre>	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3	Pb 25 17 16 18 27 27 99 16 18	(1 Zn 22 42 51 94 54 66 51 46 51	ppm) Ba 104 142 223 282 235 235 259 212 241 272
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035	F - 151 152 153 155 156 157 159 161	0.4 1.0 0.8 1.0 0.3 1.0 0.5	Рь 21 21 20 7 29 29 29 15 26	Zn 13 11 11 11 3 21 16 14 10	Ba 44 132 110 44 121 44 55 33	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065	Sample No. F - 188 189 191 192 193 194 195 196 197 198	Ag 0.8 0.7 0.8 0.5 1.8 1.6 1.8 0.4 0.3	Pb 21 46 12 41 84 281 140 81 33 5	Zn 13 73 4 10 14 11 20 15 87 4	Ba 88 66 57 123 132 189 151 132 47 19	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095	<pre>Sample No P - 307 308 f - 116 117 118 119 120 123 124 125</pre>	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 0.8	Pb 25 17 16 18 27 27 99 16 18 20	(1 Zn 22 42 51 94 54 66 51 46 50 44	Ppm) Ba 104 142 235 235 235 259 212 241 270
Ser.No. 4028 4029 4030 4031 4031 4032 4033 4034 4035 4036	F - 151 152 153 155 156 157 159 161 163	0.4 1.0 0.8 1.0 0.3 1.0 0.5 0.3	Pb 21 21 20 7 29 29 15 26 31	Zn 13 11 11 11 3 21 16 14 10 9	Ba 44 132 110 44 121 44 55 33 33	Ser.No. 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199	Ag 0.8 0.7 0.8 0.5 1.8 1.6 1.8 0.4 0.3 0.4	Pb 21 46 12 41 84 281 140 81 33 5 18	Zn 13 73 4 10 14 11 20 15 87 4 32	Ba 88 66 57 123 132 132 189 151 132 47 19 94	Ser.No 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096	Sample No F - 307 308 f - 116 117 118 119 120 123 124 125 131	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 0.8 2.3	Ръ 25 17 16 18 27 27 27 99 16 18 20 24	(1 Zn 22 42 51 94 54 66 51 46 50 44 40	Ba 104 142 223 282 235 259 212 241 270 231
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037	F - 151 152 153 155 156 157 159 161 163 164	0.4 1.0 0.8 1.0 0.3 1.0 0.5 0.3 0.3	Pb 21 21 20 7 29 29 15 26 31 58	Zn 13 11 11 11 3 21 16 14 10 9 6	Ba 44 132 110 44 121 44 55 33 33 44	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200	Ag 0.8 0.7 0.8 0.5 1.8 1.8 1.6 1.8 0.4 0.3 0.4 0.3	Pb 21 46 12 41 84 281 140 81 33 5 18 26	Zn 13 73 4 10 14 11 20 15 87 4 32 32	Ba 88 66 57 123 132 132 151 132 47 19 94 76	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096	. Sample No F - 307 308 f - 116 117 118 119 120 123 124 125 131 132	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 0.8 2.3 2.6	Ръ 25 17 16 18 27 27 27 99 16 18 20 24 22	(1 Zn 22 42 51 94 54 66 51 46 50 44 40 63	ppm) Ba 104 142 223 282 235 259 212 241 270 231 189
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4036	 F = 151 152 153 155 156 157 159 161 163 164 165 166 	0.4 1.0 0.8 0.3 1.0 0.5 0.3 0.3 0.5	Pb 211 212 207 7 299 299 15 26 311 58 84	Zn 13 11 11 11 16 14 10 9 6 16	Ba 44 132 110 44 121 44 55 33 33 44 66	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4066	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201	Ag 0.8 0.7 0.8 0.5 1.8 1.8 1.6 1.8 0.4 0.3 0.4 0.4 0.4 0.8	Pb 21 46 12 41 84 281 140 81 33 5 18 26 14	Zn 13 73 4 10 14 11 20 15 87 4 32 32 48	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098	. Sample No F - 307 308 f - 116 117 118 119 120 123 124 125 131 132 134	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 0.8 2.3 2.6 2.4	Ръ 255 17 16 18 27 27 99 16 18 20 24 22 21	(1 Zn 22 51 94 54 66 51 46 50 44 40 63 49	ppm) Ba 104 142 223 235 235 235 259 212 241 270 231 189 147
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4036 4037 4038 4039	F - 151 152 153 155 156 157 159 161 163 164 165 166 165	Ag 0.4 1.0 0.8 0.3 1.0 0.3 1.0 0.5 0.3 0.5 0.3	Pb 211 212 200 7 299 299 15 26 311 58 84 18	Zn 13 11 11 11 11 16 14 10 9 6 16 16 7 7	Ba 44 132 110 44 121 44 55 33 33 44 66 33	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4066 4066 4066 4067	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280	Ag 0.8 0.7 0.8 0.5 1.8 1.6 1.8 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.8 1.8	Pb 21 46 12 41 84 281 140 81 33 5 18 26 14 17	Zn 13 73 4 10 14 11 20 15 87 4 32 32 32 48 68	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113 179	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 0.8 2.3 2.6 2.4 0.5	Ръ 255 17 16 18 27 27 99 16 18 20 24 22 21 15	(1 Zn 22 51 94 54 66 51 46 50 44 40 63 49 24	ppm) Ba 104 142 223 235 235 259 212 241 270 231 189 147 63
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040	F - 151 152 153 155 156 157 159 161 163 164 165 166 167	 Ag 0.4 1.0 0.8 0.3 1.0 0.5 0.3 0.5 0.3 1.6 	Pb 21 21 20 7 29 29 15 26 31 58 84 18 18	Zn 13 11 11 16 14 10 9 6 16 16 7 64	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4065 4066 4067 4068 4069 4070	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 283	 Ag 0.8 0.7 0.8 0.5 1.8 1.8 1.6 1.8 0.4 0.3 0.4 <	Pb 21 46 12 41 84 281 140 81 33 5 18 26 14 17 23	Zn 13 73 4 10 14 11 20 15 87 4 32 32 48 68 64	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113 179 208	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135 136	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 0.5 0.3 0.8 2.3 2.6 2.4 0.5 0.3	Pb 255 177 166 188 277 27999 166 188 200 244 222 211 155 16	(1 Zn 22 42 51 94 54 66 51 46 50 44 40 63 49 24 10	ppm) Ba 104 142 223 282 235 235 235 235 235 241 270 231 189 147 63 42
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169	0.4 1.0 0.8 1.0 0.3 1.0 0.5 0.3 0.5 0.3 0.5 0.3 1.6 0.3	Pb 21 21 20 7 29 29 15 26 31 58 84 18 18	Zn 13 11 11 16 16 16 16 64 9	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77 66	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4065 4066 4067 4068 4069 4070 4071	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 283 284	 Ag 0.8 0.7 0.8 0.5 1.8 1.6 1.8 1.6 1.8 0.4 0.3 0.4 <	Pb 21 46 12 41 84 281 140 81 33 5 18 26 14 17 23 23	Zn 13 73 4 10 14 11 20 15 87 4 32 32 32 48 68 64 68	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113 179 208 151	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135 136 137	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 0.5 0.3 2.6 2.3 2.6 2.4 0.5 0.3	Pb 25 17 16 18 27 27 99 96 18 20 24 22 21 15 16 23	(1) Zn 22 42 51 46 50 44 40 63 49 24 10 29	ppm) Ba 104 142 223 282 235 225 225 225 225 225 225 212 241 270 231 189 147 63 42
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170	0.4 1.0 0.8 1.0 0.3 1.0 0.5 0.3 0.5 0.3 0.5 0.3 1.6 0.3 1.8	Pb 21 21 20 7 29 29 15 26 31 58 84 18 18 153 55	Zn 13 11 11 12 16 16 16 16 16 16 16 7 7 64 9 23	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77 66 110	Ser.No. 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4066 4067 4068 4069 4070 4071 4072	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 283 284 285	Ag 0.8 0.7 0.8 0.5 1.8 1.6 1.8 0.4 0.4 0.3 0.4 0.4 0.3 0.4 0.4 0.3 1.2 1.2	Fb 21 46 12 41 84 281 140 81 33 5 18 261 14 14 81 33 5 18 26 14 17 23 26	Zn 13 73 4 10 14 11 20 15 87 4 32 32 32 32 32 48 68 64 68 55	Ba 88 66 57 123 132 189 151 152 47 19 94 76 113 179 208 151	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135 136 137 138	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 0.8 2.3 2.6 0.3 0.5 0.4	Pb 25 17 16 18 27 99 16 18 20 24 22 21 15 16 23 12	(1 Zn 22 42 51 94 54 66 50 44 40 63 49 92 4 10 29 6	ppm) Ba 104 142 223 235 259 212 241 270 231 189 147 63 42 105 42
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4036 4037 4038 4039 4040 4041 4042 4043	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170 171	0.4 1.0 0.8 1.0 0.3 1.0 0.3 0.3 0.5 0.3 1.6 0.3 1.8 0.4	Pb 21 21 20 7 29 29 29 29 29 29 29 31 58 84 153 55 25	Zn 13 11 11 11 16 16 16 16 16 16 16 16 16 16	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77 66 110 66	Ser.No. 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4067 4068 4069 4070 4071 4072 4073	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 283 284 285 286	Ag 0.8 0.7 0.8 0.5 1.8 1.8 1.6 1.8 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 1.2 1.2 0.5	Pb 21 46 12 41 84 281 140 81 140 81 133 5 18 261 14 17 23 23 23 21 23 23 21 11	Zn 13 73 4 10 14 11 20 15 87 4 32 32 32 32 32 32 32 32 32 33 9	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113 179 208 151 151 151 152	Ser.No. 4086 4087 4088 4099 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4101 4103	. Sample No F - 307 308 f - 116 117 118 119 120 123 124 125 131 132 134 135 136 137 138 139	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 2.6 2.4 0.5 2.4 0.5 0.3 0.5 0.4 0.3	Pb 25 17 16 18 27 99 16 22 21 15 16 23 21 15 16	(1 Zn 22 42 51 94 54 66 50 44 40 63 49 24 40 10 29 6 4	Ppm) Ba 104 142 235 235 259 212 241 270 231 189 147 63 63 42 232
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170 171 172	0.4 1.0 0.8 0.8 1.0 0.3 0.3 0.5 0.3 0.5 0.3 1.6 0.3 1.8 0.4 1.3	Pb 21 21 20 7 29 29 29 5 26 31 58 84 18 18 18 18 55 52 52 52 52 77	Zn 13 11 11 11 16 16 16 16 16 16 16	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77 66 10 66 166	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4067 4068 4067 4068 4067 4070 4071	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 283 284 285 286 287	 Ag 0.8 0.7 0.8 0.5 1.8 1.6 1.8 1.6 1.8 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.5 0.7 	Pb 21 46 12 41 84 281 140 81 33 5 18 261 14 17 23 26 11 26	Zn 13 73 4 10 14 11 20 15 87 4 32 32 32 32 32 32 48 68 68 68 55 39 41	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113 179 208 151 151 151 151 132 151 133 151 133 153 153 153 153	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135 136 137 138 139 140	Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 0.8 2.3 2.4 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3	Pb 25 17 16 18 27 99 16 18 27 99 16 18 20 21 15 16 23 12 16 7	(1 Zn 22 51 94 54 66 50 50 44 40 63 99 24 10 29 6 4 4 19	Ba Ba 104 142 235 235 259 212 241 270 231 189 147 63 42 105 542 232 189
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170 171 172 173	0.4 1.0 0.8 1.0 0.3 1.0 0.5 0.3 0.5 0.3 1.6 0.3 1.8 0.4 1.3 0.5	Pb 21 21 20 7 29 29 29 5 26 31 58 84 18 18 18 153 55 25 27 23	Zn 13 11 11 11 16 14 10 9 6 16 16 16 16 16 16 16 16 16	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77 66 10 66 166 132	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 283 284 285 286 287 288	 Ag 0.8 0.7 0.8 0.5 1.8 1.6 1.8 1.6 1.8 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.5 0.7 1.1 	Fb 21 46 12 41 84 281 140 81 33 5 18 261 14 17 23 26 11 26 18	Zn 13 73 4 10 14 11 20 15 87 4 32 32 48 68 64 68 55 39 41 111	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113 179 208 151 151 151 152 132 153 153 153 153 153 153 153 153	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135 136 137 138 139 140 141	. Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 2.3 2.4 0.5 0.3 0.5 0.3 0.5 0.3 0.3 0.3	Pb 25 17 16 18 27 99 16 18 27 99 16 18 20 21 15 16 23 12 16 7 66	(1 Zn 22 51 94 54 66 50 50 44 40 63 99 24 10 29 6 4 4 10 29 9 4	Depen) Ba 104 142 223 225 259 212 235 259 212 270 231 189 32 189 32
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170 171 172 173 174	0.4 1.0 0.8 1.0 0.3 1.0 0.3 0.3 0.3 0.3 0.3 1.6 0.3 1.6 0.3 1.6 0.4 1.3 0.5	Pb 21 21 20 7 29 29 29 29 25 26 88 44 18 18 18 18 153 55 52 52 52 7 23 21	Zn 13 11 11 11 16 14 10 9 6 16 16 16 16 16 16 16 16 16	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77 66 110 66 166 132 88	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 283 284 285 286 287 288 288	Ag 0.8 0.7 0.8 0.5 1.8 1.6 1.8 0.4 0.3 0.4 0.3 0.4 0.4 0.3 1.2 0.5 0.7 1.2 1.2 0.5 0.7 1.1	Fb 21 46 12 41 84 281 140 81 33 5 5 18 261 11 26 18 26 11 26 18 21 23 26 18 12	Zn 13 73 4 10 14 11 20 15 87 7 4 32 32 32 32 32 32 32 48 68 64 64 68 55 59 41 111	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113 179 208 151 151 151 152 113 189 151 151 151 151 151 151 151 15	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4096 4099 4100 4101 4102 4103 4104 4105	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135 136 137 138 139 140 141 143	Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 2.6 2.4 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.3	Pb 25 17 16 18 27 99 16 18 201 12 21 15 16 23 12 16 7 66 18	(1 Zn 22 51 94 54 66 50 44 40 63 50 44 40 63 49 24 10 29 6 4 19 9 4	Depen) Ba 104 142 223 235 259 212 241 270 231 189 32 105 42 32 189 32 105 189 32 105 189 32 105 189 32 105 189 199 199 105 199 199 199 199 199 199 199 19
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4044 4045	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170 171 172 173 174 175	 Ag 0.4 1.00 0.8 1.00 0.3 1.00 0.3 1.6 0.3 1.8 0.4 1.3 0.5 0.4 1.3 	Pb 21 21 20 7 29 29 29 15 26 84 18 18 18 18 18 153 55 52 57 23 21 46	Zn 13 11 11 11 16 16 16 16 16 16 16	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77 66 110 66 132 88 88	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 281 284 285 286 287 288 289 290	, Ag 0.8 0.7 1.8 1.8 0.5 1.8 1.6 1.8 0.4 0.3 0.4 0.3 0.4 0.3 1.2 1.2 0.5 0.7 1.1 1.5 0.5	Fb 21 466 12 41 84 281 140 81 33 5 18 266 141 17 23 266 111 23 26 18 18 12 13	Zn 13 73 4 10 14 11 20 15 87 4 4 88 64 68 65 39 9 41 111 111 141 111 144 31	Ba 88 66 577 123 132 189 151 132 47 19 94 76 113 179 208 151 151 151 151 151 151 151 15	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4095 4096 4099 4100 4101 4102 4103 4104 4105	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135 136 137 138 139 140 141 143 147	Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 0.5 2.4 0.5 0.3 0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Pb 255 177 166 18 27 99 16 18 20 24 22 115 16 23 12 16 7 66 18 48	(1 Zn 22 51 94 54 66 50 44 40 63 50 44 40 63 24 10 29 6 4 10 29 6 4 17 19	ppm) Ba 104 142 223 235 259 212 241 270 231 189 42 32 147 63 32 147 63 32 105 125 105 116
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170 171 172 173 174 175 177	0.4 1.0 0.8 1.0 0.3 1.0 0.3 1.0 0.3 1.6 0.3 1.8 0.4 1.3 0.5 0.3 1.6 0.4 1.3 0.5 0.3 0.3 0.5 0.3 0.3 0.5 0.3 0.5 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Pb 21 21 20 7 29 92 95 26 31 58 84 418 18 153 55 25 27 23 21 46 6 22	2n 13 11 11 11 16 16 16 16 16 16 16	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77 66 110 66 132 88 88 88 199	Ser.No. 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 283 284 285 286 287 288 289 290 291	Ag 0.8 0.7 0.8 0.5 1.8 1.6 1.8 1.6 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.7 1.2 1.2 0.5 0.7 1.1 1.5 0.5 0.8	Pb 21 46 12 41 84 281 140 81 140 81 140 81 12 133 5 18 26 11 26 18 12 16 12 16 23	Zn 13 73 4 10 14 11 200 15 87 4 32 32 32 32 32 32 32 32 48 66 4 111 111 111 414 31	Ba Ba 88 66 57 123 132 189 151 173 208 151 132 113 189 151 132 113 189 151 132 113 189 151 132 113 132 113	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135 136 137 138 139 140 141 143 147 148	Ag 0.9 1.7 1.8 2.1 0.7 1.6 0.5 0.5 0.3 0.3 0.3 0.3 1.4 5.2 2.6	Pb 255 177 166 18 27 27 99 99 166 18 20 24 22 21 155 16 23 12 16 7 7 66 18 48 861	(1 Zn 22 42 51 94 54 66 55 50 44 40 63 49 24 92 4 10 29 6 4 4 19 9 4 11	ppm) Ba 104 142 223 255 259 212 241 270 231 189 147 63 32 42 32 105 42 32 105 116 95
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170 171 172 173 174 175 177	0.4 1.0 0.8 1.0 0.3 1.0 0.5 0.3 1.6 0.3 1.6 0.3 1.8 0.4 1.3 0.5 0.4 1.3 0.5 0.3 0.5	Pb 21 21 20 77 29 92 92 95 26 31 58 84 41 8 84 8 84 8 84 8 8 8 4 8 8 8 4 6 25 55 27 23 21 20 29 29 29 29 29 29 29 29 29 29 29 29 29	Zn 13 11 11 11 11 11 12 14 14 10 9 6 6 7 64 9 23 30 129 26 37 30 23 33 33 33 33	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77 66 110 66 166 132 88 88 199 88 88	Ser.No. 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4076	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 281 284 285 286 287 288 289 290 291 294	Ag 0.8 0.7 0.8 0.5 1.8 1.8 1.6 1.8 0.5 1.8 1.8 0.5 1.8 0.3 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.5 1.2 1.2 0.5 0.7 1.1 1.5 0.5 0.8 0.7 1.8 1.8 1.8 0.5 1.8 1.8 0.7 1.8 1.8 1.8 0.7 1.8 1.8 0.7 1.8 1.8 0.7 1.8 0.7 1.8 0.7 1.8 0.8 0.7 5 1.8 0.7 1.8 0.7 1.8 0.7 1.8 0.8 0.7 5 1.8 0.7 1.8 0.8 0.7 5 1.8 0.7 5 1.8 0.7 5 1.8 0.7 5 1.8 0.7 5 1.8 0.7 5 1.8 0.7 5 1.8 0.7 5 0.8 0.7 5 1.8 0.7 5 1.8 0.7 5 0.8 0.7 5 0.8 0.7 5 0.8 0.7 5 0.8 0.7 5 0.8 0.7 1.8 0.7 0.8 0.7 1.8 0.7 0.8 0.7 1.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Pb 211 466 12 41 84 281 140 313 5 18 266 11 266 18 12 16 23 18 12 16 23 18	Zn 13 73 4 10 14 11 20 15 87 4 32 32 32 32 32 32 48 68 68 68 68 68 55 39 41 111 111 111 111	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113 179 208 151 132 133 189 151 132 113 151 132 113 132 133 132 132 132 13	Ser.No. 4086 4087 4088 4099 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135 136 137 138 139 140 141 143 147 148 149	Ag 0.9 1.7 1.8 2.1 0.7 1.6 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 1.4 5.2 2.2 0.3 0.3 0.3	Pb 25 17 16 18 27 99 16 18 20 21 15 16 23 12 16 7 66 18 48 61 86	(1 Zn 22 42 51 94 54 66 50 50 44 40 63 49 24 10 29 6 4 19 4 17 19 91 11 20	ppm) Ba 104 142 223 282 235 259 212 241 270 231 189 147 63 42 32 105 116 63 42 32 105 116 59 5
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170 171 172 173 174 175 177 179 180	0.4 1.0 0.8 1.0 0.3 1.0 0.5 0.3 0.5 0.3 0.5 0.3 1.6 0.3 1.8 0.4 1.3 2.0 0.5 0.5	Pb 21 21 20 7 29 29 29 29 29 29 29 29 29 29 29 29 29	Zn 13 11 11 16 16 16 16 7 64 9 9 26 30 129 26 37 30 33 33 34	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77 66 110 66 166 132 88 88 88 88 88 88 199 88 188	Ser.No. 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 283 284 285 286 287 288 289 290 291 291 294 295	Ag 0.8 0.7 0.8 0.5 1.8 1.8 1.6 1.8 0.5 1.8 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 1.7 1.2 0.5 0.7 1.1 1.5 0.5 0.5 1.7	Pb 21 46 12 41 84 281 140 81 333 5 18 26 14 17 23 26 11 26 18 12 16 23 18 87	Zn 13 73 4 10 14 11 20 15 87 7 4 32 32 48 68 64 68 65 39 41 111 111 111 111 44 31 70	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113 179 208 151 151 151 151 151 151 151 15	Ser.No. 4086 4087 4088 4099 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135 136 137 138 139 140 141 143 147 148 149 150	Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 0.5 0.3 0.3 0.3 0.3 0.3 1.4 5.2 2.6 0.3	Pb 25 17 16 18 27 99 16 23 115 16 23 16 23 16 13 12 16 18 48 61 18 48 61 86 29	(1 Zn 22 42 51 94 45 46 50 50 44 40 63 49 24 10 29 6 4 19 9 4 11 19 11 120 20 20	ppm) Ba 104 142 223 225 225 225 225 225 225 22
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4046 4049 4050 4051	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170 171 172 173 174 175 177 179 180 181	0.4 1.0 0.8 1.0 0.3 1.0 0.5 0.3 0.5 0.3 0.5 0.3 1.8 0.4 1.3 2.0 0.5 0.5 0.5 0.3	Pb 211 21 21 21 21 20 7 29 21 46 22 21 46 22 14 14 26	Zn 13 11 11 11 16 16 16 16 16 16 16	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77 66 100 66 166 132 88 88 88 199 88 188 132	Ser.No. 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4076 4077 4076 4077 4078 4079 4080 4081	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 281 284 285 286 287 288 289 290 291 294 295 296	Ag 0.8 0.7 0.8 0.5 1.8 1.8 1.6 1.8 0.5 1.8 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.7 1.1 1.5 0.5 0.5 0.5 0.7 1.1 1.5 0.5 0.7 0.8 0.7 0.8 0.5 1.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Pb 21 46 12 41 84 281 140 81 333 5 18 266 18 12 16 23 18 87 12 16 23 18 87 12	Zn 13 73 4 10 14 11 20 15 87 7 4 32 48 68 68 64 68 55 39 41 111 111 111 111 111 111 111 111 111	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113 179 208 151 151 151 151 151 151 151 15	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111	Sample No F = 307 308 f = 116 117 118 120 123 124 125 131 132 134 135 136 137 138 139 140 141 143 147 148 149 150 151	Ag 0.9 1.7 1.8 2.1 0.7 1.6 0.5 2.3 2.3 2.3 0.5 0.3 0.5 0.3 0.5 0.3 0.3 1.4 5.2 2.6 0.3 0.3	Pb 25 17 16 18 27 99 16 18 20 21 15 16 23 12 16 7 66 18 48 61 8 29 40	(1 Zn 22 42 51 94 45 46 50 54 46 50 44 40 63 49 24 10 29 6 4 4 19 4 11 110 20 20	ppm) Ba 104 142 233 235 259 212 235 239 211 270 231 189 32 105 116 95 63 105 116 95 63
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4044 4045 4046 4047 4048 4049 4050 4051 4052	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170 171 172 173 174 175 177 179 180 181 182	0.4 1.0 0.8 0.8 1.0 0.3 0.3 0.5 0.3 1.6 0.3 1.6 0.4 1.3 2.0 0.5 0.5 0.3 1.3 1.6 0.4 1.3 0.5 0.5 0.5 0.3 1.3 0.5 0.5 0.5 0.3 1.3 0.5 0.5 0.5 0.5 0.3 1.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Pb 21 21 21 21 20 7 29 29 29 29 29 29 29 20 31 55 27 23 21 46 22 14 26 26	Zn 13 11 11 11 16 16 16 16 16 16 16	Ba 44 132 110 44 121 44 55 33 33 44 66 33 37 77 66 106 66 166 132 88 88 199	Ser.No. 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4076 4077 4078 4077 4078 4079 4080 4081 4082	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 283 284 285 286 287 288 289 290 291 294 295 296 297	Ag 0.8 0.7 1.8 1.8 1.6 1.8 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.4 0.8 1.7 1.2 1.2 0.5 0.7 1.1 1.5 0.5 0.7 1.7 0.9 1.1	Fb 21 46 12 41 84 281 140 81 33 5 18 261 14 17 23 266 11 26 11 26 12 16 23 18 12 16 23 18 12 26 27	Zn 13 73 4 10 14 11 20 15 87 7 4 32 48 68 64 68 55 39 41 111 111 44 31 111 111 111 1	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113 179 208 151 151 151 152 113 189 151 152 113 152 153 179 208 151 152 153 179 208 151 152 153 155 155 155 155 155 155 155	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135 136 137 138 139 140 141 143 147 148 149 150 151 152	Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 2.3 2.4 0.5 0.3 0.5 0.3 0.5 0.3 0.3 0.3 1.4 5.2 2.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.5 0.3 0.3 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.5 0.3 0.5 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Pb 25 177 16 18 27 99 16 18 27 99 16 18 20 21 15 16 23 12 16 23 12 16 86 61 86 81 86 92 40 20	(1 Zn 22 51 94 54 66 55 50 44 40 66 50 50 44 40 29 6 4 4 10 29 6 4 4 19 11 20 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21	ppm) Ba 104 142 223 225 259 212 235 259 212 237 231 189 32 105 42 32 189 32 105 63 42 165 63 177 155
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170 171 172 173 174 175 177 179 180 181 182 185	Ag 0.4 1.00 0.8 1.00 0.31 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.41 1.84 1.32 0.55 0.33 0.55 0.33 0.33 0.33 0.33 0.33 0.33 0.33	Pb 21 21 20 7 29 29 29 29 29 29 29 26 31 58 84 18 18 18 18 18 55 52 52 7 23 21 46 22 21 14 6 22 23 23 21 23 23 24 29 29 29 29 29 29 29 29 29 29 20 29 20 20 20 20 20 20 20 20 20 20 20 20 20	Zn 13 11 11 11 16 14 10 9 9 23 30 129 26 37 30 43 33 34 37 69 920	Ba 44 132 110 44 121 44 55 33 33 44 66 33 37 77 66 100 66 166 132 88 88 199 88 88 188 132 199 110	Ser.No 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 283 284 285 286 287 288 289 290 291 294 295	Ag 0.8 0.7 0.8 0.5 1.8 1.6 1.8 0.4 0.3 0.3 0.4 0.3 0.4 0.3 0.4 0.3 1.2 1.2 0.5 0.7 1.1 1.5 0.5 0.8 1.5 1.7 0.9 1.1 1.5	Fb 21 466 12 41 84 281 140 81 33 5 5 18 261 11 26 12 16 23 12 16 23 12 12 12 23 23 24 12 23 24 12 12 12 23 23 24 12 23 23 24 12 23 23 24 25	Zn 13 73 4 10 14 11 20 15 87 7 4 4 88 64 68 55 39 41 111 111 111 111 111 111 115 87 30 4 32 32 32 32 32 32 32 32 32 32	Ba 88 66 57 123 132 189 151 132 47 19 94 76 113 179 208 151 151 152 113 189 151 152 113 189 151 152 132 132 132 132 94 76 132 132 132 132 132 132 132 132	Ser.No. 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4111 4113	Sample No F - 307 308 f - 116 117 118 120 123 124 125 131 132 134 135 136 137 138 139 140 141 143 147 148 149 150 151 152 153	Ag 0.9 1.7 1.8 2.1 0.7 1.6 1.6 0.5 0.3 2.6 0.3 0.5 0.3 0.5 0.3 0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Pb 25 17 16 18 27 99 16 18 201 15 16 22 11 15 16 23 12 16 23 12 16 17 16 18 48 61 86 29 205	(1 Zn 22 51 94 54 66 50 44 40 63 50 44 40 63 50 44 10 29 6 4 19 9 4 11 200 20 13 14 33	ppm) Ba 104 142 223 235 259 212 241 189 270 231 147 63 42 105 42 105 63 32 105 63 110 110
Ser.No. 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4044 4045 4046 4047 4048 4049 4050 4051 4050 4051	F - 151 152 153 155 156 157 159 161 163 164 165 166 167 169 170 171 172 173 174 175 177 179 180 181 182 185	Ag 0.4 1.00 0.8 1.01 0.33 0.55 0.33 0.50 0.33 0.64 1.8 0.44 1.33 0.55 0.33 0.50 0.51 0.52 0.53 0.55 0.53 0.55 0.55 0.55	Pb 211 21 20 7 7 29 99 15 26 31 58 8 44 18 18 18 153 55 27 7 23 21 14 14 14 14 26 22 14 4 14 14	Zn 13 11 11 11 16 16 14 10 9 6 6 7 64 9 23 300 1299 26 37 30 33 34 37 69 20 20 20 20	Ba 44 132 110 44 121 44 55 33 33 44 66 33 77 66 110 66 132 88 88 199 88 188 132 199 88 132 199 9110 99	Ser.No. 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4066 4067 4068 4070 4071 4072 4073 4074 4075 4076 4077 4076 4077 4076 4077 4078 4079 4080 4081 4082 4083 4084	Sample No. F - 188 189 191 192 193 194 195 196 197 198 199 200 201 280 283 284 285 286 287 288 289 299 291 294 295 296 297 299 300	Ag 0.8 0.7 0.8 0.5 1.8 1.6 0.5 1.8 1.6 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Pb 21 46 12 41 84 281 140 81 140 81 223 233 266 12 11 266 12 18 87 12 233 234	Zn 13 73 4 10 14 11 200 15 87 4 32 32 32 32 32 32 32 32 32 32 32 32 32	Ba Ba 88 66 57 123 132 189 151 179 94 76 151 132 189 151 132 113 131 132 113 170 94 132 132 132 132 131 170 94 132 170	Ser.No. 4086 4087 4088 4099 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113	Sample No F = 307 308 f = 116 117 118 120 123 124 125 131 132 134 135 136 137 138 139 140 141 143 147 148 149 150 151 152 153	Ag 0.9 1.7 1.8 2.1 0.7 1.6 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.4 5.2 6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Pb 25 17 16 18 27 99 16 18 20 21 15 16 23 12 16 7 66 18 48 61 86 29 40 205	(1 Zn 22 42 51 94 45 66 50 44 40 63 49 92 4 40 63 49 92 4 10 29 6 4 4 19 9 4 11 20 20 13 14 33	Ppm) Ba 104 142 223 225 225 225 225 225 225 22

.

Fig. 1 Cumulative frequency distribution

A-60

Fig. 1-5 Cumulative frequency distribution of Cu, Zn, Ni and Co in the IV-6 Area Σ*

Fig. 1-7 Cumulative frequency distribution of Cu, Zn, Mo and Ag in the Silver belt Mine Area Σ*

Fig. 1-9 Cumulative frequency distribution of Cu., Zn., Ni. and Co in the Tagbiga Area

Fig. 2 Correlation diagram

.

.

. .

.

,

.

.

.

.

. . .

.

.

.

.

.

.

.