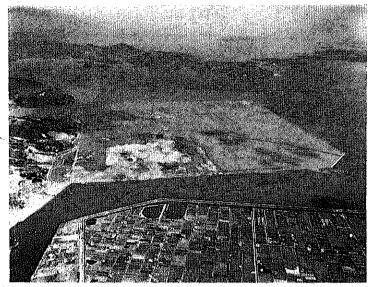
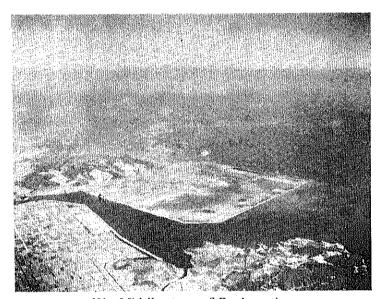


Fig. 6-2-7 South Revetment

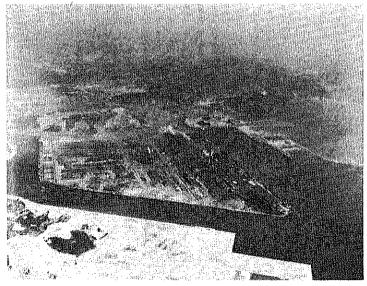
6-2-3 Subsoil improvement


NKK, the owner of the project, started the construction of the mill upon completion of Phase I, where a paper-drain machine, which had just been innovated in Japan, was employed in autumn, 1963 to be enagaged in its first test work of the subsoil improvement.

A comparative experimental work of the paper drains and sand drains was conducted, since the silt was uniform and its thickness was even.


Thus it was proved that the equivalent result could be obtained, should the design for the sub-soil improvement be made just in the same conditions as of a sand drain with Barron's formula, assuming that the effect of a paper drain is equivalent to that of a sand drain 5 cm in diameter.

It was also appreciated that the period for consolidation could be shortened because of shorter pitch driving due to its small cross-section, and thereafter the method was adopted to the great extent for the subsoil improvement in this project.


In this project other improvement methods such as replacement, sand drains, and sand compaction piling were widely employed corresponding to the purposes, time, and the design load on the reclaimed land, which resulted in the successful completion of the entire project.

(1) Early stage of Reclamation

(2) Middle stage of Reclamation

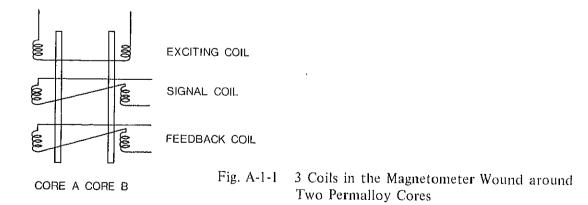
(3) Completed Steel Mill

W. APPENDICES

List of Appendices

[A]	Magnetic Detection
[B]	Surface Layer Improvementb-1
[C]	Outline of Sonic Prospecting with Sonostrator
[D]	Results of Present Survey

APPENDIX A MAGNETIC DETECTION


The following is a summary of the method of magnetic detection for detecting dud shells or bombs burried in sea/river bottom or subsurface of ground to be conducted by Magnetic Detector TYPE MB-100 and TYPE 200 developed and manufactured by "Shimazu Seisakusho Ltd. as the typical equipment among those available in Japan. Both types of equipments mainly consist of detecting probe, controller, recorder and connecting cables. The principle of detection and the method of operation are entirely same in both types. The difference is that MB-100 is for single use and another set is used in combination of more than two probes. (MB-200 set has 3 probes, 4 channel controller (1 chan. is for spare) and 4 channel recorder (1 chan. is for spare).)

The operation work at the site seems rather simple, because all the work is to carry the probes closely above the sea bottom and the surface of the ground keeping them approxise abottom materials.

However, to carry the probes with long and thick cables and to keep them horizontal sometimes needs a special technique according to the topographical condition and the sea bottom materials.

Although the set of MB-200 has a frame with a gradient gauge which enables the probes to be kept horizontal, it would not always be adaptable to any sites. The frame is rather large and heavy for easy carrying or setting, so that at the actual field work the most suitable method of setting probes should sometimes be deviced according to the circumstances.

A-1 Principle of Flux Gate Type Magnetometer

The magnetometer is an instrument capable of detecting changes in the magnetic field of the order of one gamma. It contains two permalloy (highly permeable material) cores

which approaches saturation easily in the weak magnetic field. The two cores are wound by 3 wirings of exciting coil, signal coil and feedback coil as shown in Fig. 1. When a 1000 Hz cycle current is superimposed by the exciting coil, the two permalloy cores are completed to be magnetically saturated during some period of every positive and negative cycle.

If there is no magnetic field around the magnetometer the magnetic satulation levels in core A and core B is same, and they are linearly symmetric each other. Therefore, the induced currents are also simmetrical, and there will be no output signal in signal coil (See left side of Fig. A-1-2).

On the other hand, if there are some magnetic field near the magnetometer, it causes a slip of the saturation level, and the magnetic flux of each core shall become non-symmetrical, shown as b' in Fig. A-1-2.

Consequently, the output signal may be shown as e' and the measurement of output current means the intensity of external magnetic field.

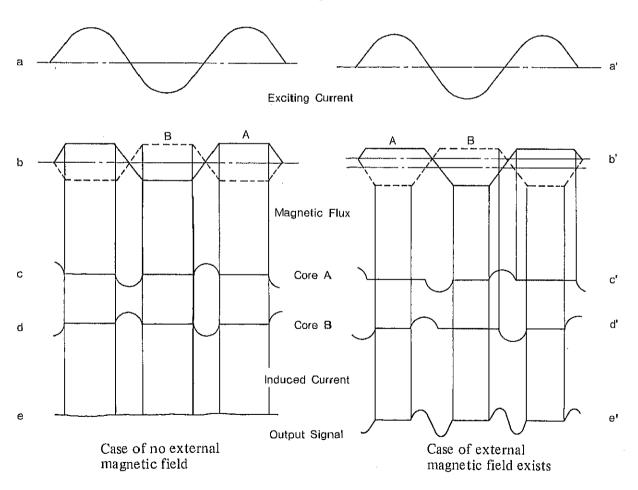
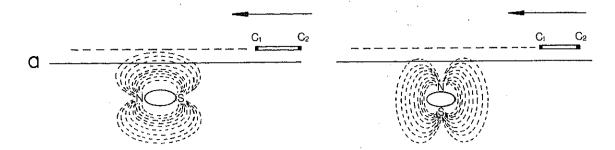


Fig. A-1-2 Relations Each Other of Exciting Current, External Magnetic Field, Magnetic Saturation of Permalloy Cores, Induced Current, and Output Signals

A-2 Principle of Detection of Feeble Magnetic Field of Buried Material by the MB-100 Probe


Each probe of MB-100 and MB-200 has a pair of flux gate type magnetometer connected differentially and being fixed one meter apart in it. Although the magnetometer is sensible enough to detect changes in the magnetic field of the order of one gamma, sole magnetometer can not distinguish the magnetic field of object materials against the electro motive force by the shaking or pitching of magnetometer itself in the earth's magnetic field which is much stronger than the field of buried materials.

A pair of magnetometers, however, make it possible to detect the feeble magnetic field of object materials, because the two magnetometers nullify the induced electro motive forces each other by receiving them equally.

The two magnetometers, which are fixed 1 meter apart, detect the field of object materials respectively, and the difference of strength of the magnetic field may be the output signal.

Thus the probe can detect the feeble magnetic field of buried materials even if it pitches and rolls in the strong earth's magnetic field.

Fig. A-2-1 shows two examples of detection of buried magnetic materials by the probe with two magnetometers of C_1 , C_2 , and how the indicated records appears.

Where a magnetic material is buried and the magnetic field is as shown in a, the intensity of the magnetic field in the level of closely above the ground surface (along the dotted line) would be illustrated like b.

When the MB-100 probe, being kept horizontal as shown in a, is moved from right to left along the dotted line, magnetometer C_1 's and C_2 's signal would be shown as C (if they were indicated).

And the output signal, which will be made by C_1 and C_2 curves, may be indicated on the recording paper as shown in d.

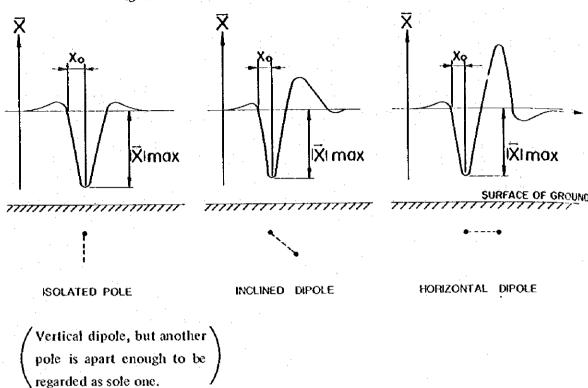
Fig. A-2-1 A Few Examples of Magnetic Anomaly Record Detected by the MB-100 Probe

A-3 Typical Forms of indicated Magnetic Anomalies caused by the Buried Materials

In most of the cases the forms of the magnetic anomalies caused by the object materials are classified to several conventional patterns, and they would be conveniently approximated by a few simple models.

The approximation would of course be accompanied with some errors in calculation of depth and mass, and these errors would not be small enough to be completely ignored.

In many cases, however, the errors are usually allowed if the removal operation will carefully be performed.


If the models of the shape and the direction of the object material were given, the intensity of the magnetic field would only depend on the relation between the depth and the mass of the object materials. So that if the following two kinds of tables were previously prepared, the depth and the mass of the object materials would easily be given by the indicated anomaly curves.

- 1. The table showing the relation between the form of the curve and the probe-material distance.
- 2. The table showing the relation between the distance and the maximum absolute value of the amplitude of the curves.

The models of indicated curves are shown in Fig. A-3-1.

Reading the values of x_0 shown in the figures on the recording paper we can know the distance of object material from the probe. And reading the maximum value of |X| max., we can estimate the magnetic mass of the material.

Fig. A-3-1 The Models of Form of Anomaly Curves

All we have to do is to read x_0 and |X| max. on various records to determine the distance and magnetic mass. The x_0 will indicate the depth (exactly saying, not depth but distance from probe to object material), and the |X| max. will give the magnetic mass in relation to the distance.

A-4 Procedure of Detection Work

A-4-1 Procedure of the Detection Work at Site

1. Preparing

- The preliminary inspection of the site and/or the careful looking of large scaled map for planning.
- The planning for the arrangement of the survey lines, and for the most suitable method of carrying the probes.

2. Surveying

- o Setting the control point in the object area.
- o Marking the position of survey line by painting or the wooden stake.
- o Sounding (measuring the depth of water) if necessary.

3. Conveyance, Fixing and Adjustment

If the frame prepared by the maker is adaptable to the site, it should be carried to the site and be fixed up. And if it is not adaptable, the other type of the frame should be deviced according to the circumstance.

- o Fixing the probes to the frame.
- Connecting the probes, the controller and the recorder.
- Adjusting the detector set.

4. Operation of the Detector

The recorder has an event marker which shows, on the recording paper, the very point where the probes pass. So that we can know the position of the probe on the recording paper. If the probes cannot be moved in a constant speed, the event mark should be dotted at a close interval of unit distance so as to make it possible to locate the probes on the paper. And if the probes are moved at a constant speed, the maker may be put in a constant interval of time.

The name of the survey line and the distance of dotted point should be hand-written on the paper. The probes are moved along the survey line being kept approximately horizontal, and being kept in a constant level of $0.5 \sim 1.5$ m above the sea bottom.

The method of moving the probes is usually by towing by the boat. If the magnetic anomaly is indicated on the recording paper, the very point of anomaly is easily known by the from of anomaly curves on the paper.

A-4-2 Procedure of Detecting Work at the Office

The location of the buried magnetic materials is easily known by inspecting the recording paper at the site quickly, but it takes a considerable time to estimate what the material is or the depth and the magnetic mass of the material. Therefore the records should be brought into the office and should be offered to analysis.

The process of the office work is as follows;

- (1) The arrangement of the recording papers.
- (2) Inspecting the records and sifting out the records which seem to due to non dangerous materials such as cans, wires, old tires and the other pieces of iron fragment.
- (3) Determining the depth of the magnetic material which seems to be dangerous things.
- (4) Determining the magnetic mass of the buried material.
- (5) Considering what the materials are.
- (6) Dotting the location of the buried materials on the map, and planning where and how deep the removal operation should be made.

A-5 Method of Detection Work at the Site by MB-200 Probes

When a probe is towed above the sea bottom, it can sweep the width of about 2 meters of the sea bottom.

Therefore, the distance of the probes each other may be allowed 2 meters at the most, and the 3 probes can sweep the sea bottom at the width of 6 meters. (See Fig. A-5-1)

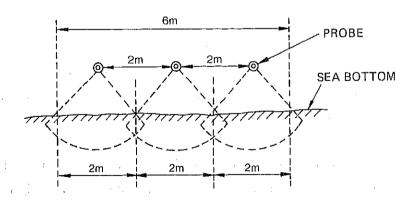


Fig. A-5-1 Width of Sweeping when 3 Probes are Fixed Every 2 Meters Apart (Profile)

Although the interval of the survey lines might at least be taken in 6 meters, it had better to be taken in 5 meters having 1 meter overlap of sweeping width. Because it is not easy to move the probe frame exactly along the surveyline. (See Fig. A-5-2)

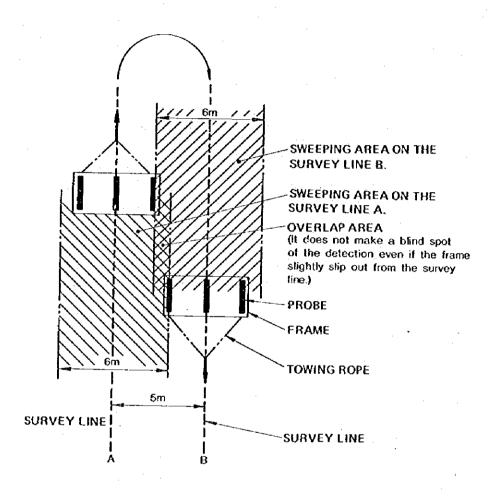


Fig. A-5-2 The Manner of Taking an Overlap Area

- How to Move the Probes with Frame

All equipment and instruments but the probes are taken on the boat, and the frame with probes are towed by the boat. The distance between the probe and the boat should be kept in about 7 meters. Because if the distance is less than 5 meters, the boat itself will disturb the magnetic field of the object material, and if the distance is more than ten meters, the position control of the frame will become difficult.

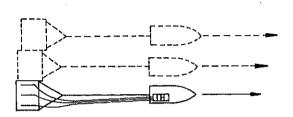


Fig. A-5-3 Towing the Frame by a Boat

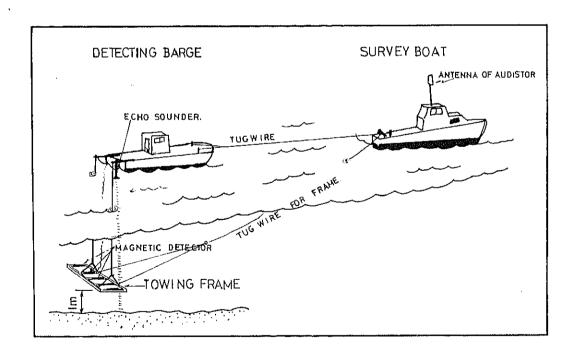


Fig. A-5-4 The General Method of Magnetic Detecting

APPENDIX B SURFACE LAYER IMPROVEMENT

Since the sunshine is so strong all the year round in Singapore that no surface layer improvement may be necessarily required. Nonetheless it might be a good practice in a certain circumstance where some parts of land are required to be covered with hill-cut soil over muddy soil surfaces. It will therefore be significant to introduce some methods of improvement which prevail in Japan.

Surface layer improvements may be classified into the following three methods which will be detailed herebelow:—

- a) Replacement method
- b) Surface covering method
- c) Surface solidification method

B-1 Replacement Method

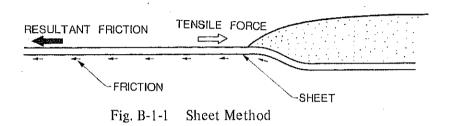
With this method soft soil near the surface is entirely or partially replaced with good material, which is limitedly adopted for partial improvement of the reclaimed land (e.g. for road).

Ordinary method of replacement is to excavate soft soil and replacing it with good material.

There is another method of replacing in which the good soil is forcibly pushed into the soft ground by means of bulld ozer.

B-2 Surface Covering Method

If a reclaimed land is left for a considerably long time, the surface of the land will naturally get dried with cracks, where sand or hill-cut soil can be scattered in a thin layer with belt conveyors or trollies running on the surface.


In Japan, however, the surface of the land has been covered with a good material in rather early stages after reclamation by adopting some methods as being introduced herebelow, in order to allow employment of the subsoit improvement techniques as explained in Chapter 5, for the purpose of early utilization of the reclaimed land without waiting for drying in natural conditions.

The followings are some of the typical surface covering practice usually taken in Japan:—

B-2-1 Sheet Placement

A chemical sheet of high tensile strength is spread over the soft ground that would not naturally allow any surface covering practices, over which good soil is scattered in a layer.

As shown in Fig. B-1-1 below, the principle of this method is that the resultant friction between the sheet and the clayey surface of the ground equals the tensile force in the sheet so that there occurs a resistance to the scattered mass.

The procedures: first, a sheet of synthetic membrane to be spread by hand over the soft surface of the ground with its one end secured to firm ground; then sand to be scattered over the sheet, beginning from the secured end of the sheet, with a small type of swamp bulldozer, belt conveyor or a jet conveyor.

The second and third layers of sand may follow as required, and heavier machinery can be employed for each successive layer. Fig. B-1-2 shows a procedure with a jet conveyor.

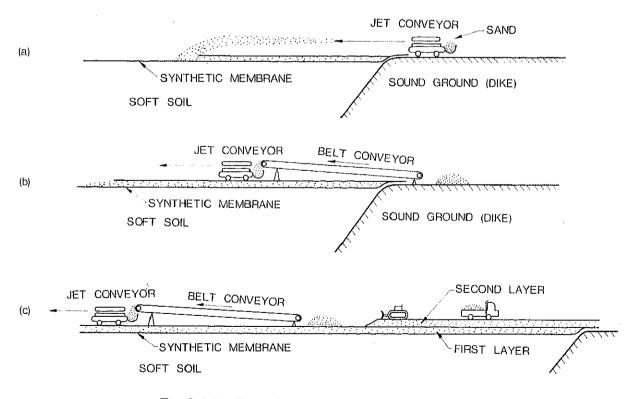


Fig. B-1-2 Sheet Method with Jet Conveyor

B-2-2 Rope-net Placement

This is a variation of the Sheet Placement which is impracticable to the extremely soft ground because of breakage of the sheet being caused by greater tensile force in the sheet exceeding its tensile strength on such unfavourable ground.

Yet, principle and procedures of the variation slightly differ from the originals:—

First, a sheet (whose tensile strength is not necessarily high) to be spread all over the ground, followed by further spreading of lattice-formed rope-net with its every ends secured to the surrounding firm ground; then, levee bodies of small cross-section called 'counter-banks' to be formed on the rope-net into lattice form with a belt conveyor or a small type of swamp bulldozer (Fig. B-2-1). The rope-net within the areas surrounded by the counter-banks will then be tensed by the lifting force resulting from the mass of the banks (Fig. B-2-2). After completion of counter-banking, soil can be scattered over the area surrounded by the counter-banks.

Even a big lorry can run about on the ground once completed with some 50 cm thick layer.

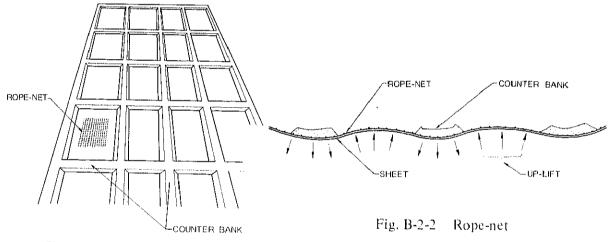


Fig. B-2-1 Counter Bank

B-2-3 Bamboo-net Placement

This method has the same principle as of the traditional fascine mattress improvement.

The procedures: first, rafts on the bamboo-net to be spread over the soft ground, followed by further spreading of a sheet; then, hill-cut soil or sand to be scattered in a layer over the net/ sheet, in the same way as explained in B-2-1 above.

The Bamboo-net Placement may be employed for improvement either of the whole area of the relaimed land, or of such belt parts as to be utilized for temporary roads, etc.

B-3 Surface Solidification Methods

Surface solidification is a chemical improvement method which is to stabilize the surface layer of 1 m to 3 m thickness of the soft ground by reaction of mixing agents, which may be classified into cement mixing and lime mixing according to the kinds of the mixing agents.

B-3-1 Cement Mixing

Cement has been used anywhere in the world to improve the subgrade soil in road construction, which is today adapted for improvement of ultrasoft ground as introduced herebelow:—

In Japan, the cement milk is grouted into and mixed up with mud of the surface layer in the ultra-soft ground with floating equipments, shortly sfter reclamation. The cement milk so mixed is hydrated to form lime aluminate (3CaO. Al_2O_3 . mH_2O) and lime silicate (mCaO. SiO_2 . nH_2O), which compounds bind the solid particles each together to stabilize the soil.

Fig. B-3-1 presents a flow sheet of this practice, while Fig. B-3-2 shows an example of combined usage of the practice together with other surface improvement methods such as the Rope-net Placement.

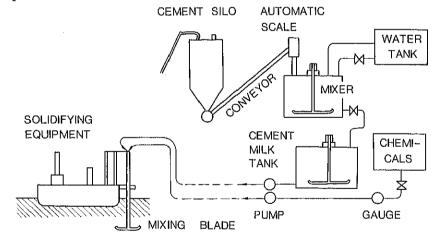


Fig. B-3-1 Flow Chart of Cement Mixing

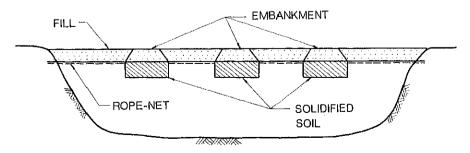


Fig. B-3-2 Combined Usage of Cement Mixing and Rope-net

B-3-2 Lime Mixing

Lime has also been used for a long time to stabilize ground surfaces, and is applied in particular cases to improve ultra-soft ground.

Granulated quick lime is usually used instead of powdery quick lime, since the latter reacts too rapidly to be desirably mixed in soft soil of high water content. The quick lime, when mixed with the soft soil, absorbs water therein, is hydrated and increases its volume, turning into slaked lime with resultant heat of 280 Kcal/kg giving off, which results in decreased water content and improvement of the soil. At the same time, the quick lime reacts on silica (SiO_2) and alumina (Al_2O_3) in the clay and the colloid to form lime silicate and lime aluminate respectively, which results in increasing particle bonding force and shear strenght of the soil.

APPENDIX C OUTLINE OF SONIC PROSPECTING WITH THE SONOSTRATOR

C-1 Sonostrator

The Sonostrator is essentially a high-power long wave echo-sounder. It is used in water-covered area to obtain continuous acoustic profiles of the bottom and the sub-bottom geologic formations.

The sound source which is installed on the boat creates a strong acoustic pulse, which transmits sound wave toward the bottom and the sub-bottom geologic formations. The reflected energy is received by the hydrophone, amplified, filtered and recorded on a time graphic sweep recorder.

The sound source of the Sonostrator consists of a magneto-strictive oscillation transducer which creates an acoustical elastic pulse mainly 1 to 9 kHz. The significant energy is 3 to 4 kHz. These frequencies are approximately ten times higher than other equipment such as Speaker, Soner Boomer, etc. and about 100 times higher than that of conventional seismic method. Since higher frequencies and a shorter pulse improve the resolution, thinner beds and finer stratigraphic changes are detectable. The Sonostrator consists of two electronic units, the transmitting and the receiving section. Fig. C-1-1 shows a block diagram of the Sonostrator.

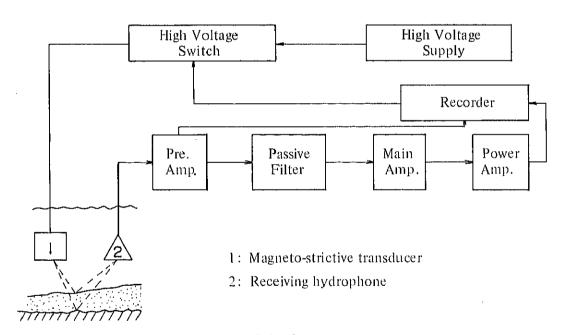


Fig. C-1-1 Block Diagram of the Sonostrator

The recorder provides the synchronized trigger pulse corresponding to a writing stylus positioned at the top of the recording paper. The trigger pulse switches on the current which charged up to 1,500 volts.

The current passing through the magneto-strictive oscillator produces a loud sound of short duration. The repetition rate of the acoustic pulse is three times per second. The

Time Variable Gain (T.V.G.) printed amplifier is used to give a clean record of shallow layers while a higher gain is used on the deeper layers.

As the sound velocity within the sediments is not precisely known, the depth scale was based on a velocity in water of 1,500 meter per second in the present investigation.

C-2 Analysis and Interpretation

Analysis and interpretation of records are made as follows;

- (1) Extract geologic information from various reflections.
- (2) Classify the geologic strata based on the characteristics shown on the records.
- (3) Determine the depth of a reflective horizon and compose geologic profiles with adjustment of tidal height, draught and the other corrections. In this case, the depth is determined by following equation on the assumption that the transmitting velocity in water and layers equal to 1,500 m/sec.

D =1/2 V.T (m)

V:average transmitting velocity in water and sediments

T: reflective travel time

- (4) In correlation with the geologic information, dredging data, penetrating data, geological map, and etc. around prospecting area, clarify the relation between the records and the actual geologic strata and interpret them geologically.
- (5) Compile the above results such as the geologic profile and other drawings.

C-3 Particular Pattern of Sonostrator

Clay, silt, fine sand:

In general, the particular pattern on sonic prospecting records (limited only Sonostrator is characterized in proportion to lithologic condition of sediments as follows;

parallel to the surface of stratum.

Medium to coarse sand: Shows striped to bedded pattern, at places includes many fine

reflections oblique to surface of stratum.

Gravel: Shows fine radial pattern congregated irregularly (diffraction

> waves) and wavy pattern that is congregation of irregular reflections. Below this pattern, records are normally poor or too light.

> Shows a light pattern, sometimes has several weak reflections

Rock: Most of the sonic waves are reflected and not absorbed into the

> surface of rocks, therefore relatively stronger reflections are recorded. There is almost no trace of reflected data recorded

under rocks.

In many cases, these characteristics are not so evident, and have so many varieties in the actual conditions. Accordingly, much attentions must be paid for analysis.

APPENDIX D RESULTS OF PRESENT SURVEY

- Plan of Present Survey
- Coordinates of Boring Points
- Drilling Logs
- Summary of Soil Tests
- Outer Shoal , Geological Cross Section

L-1&L-2

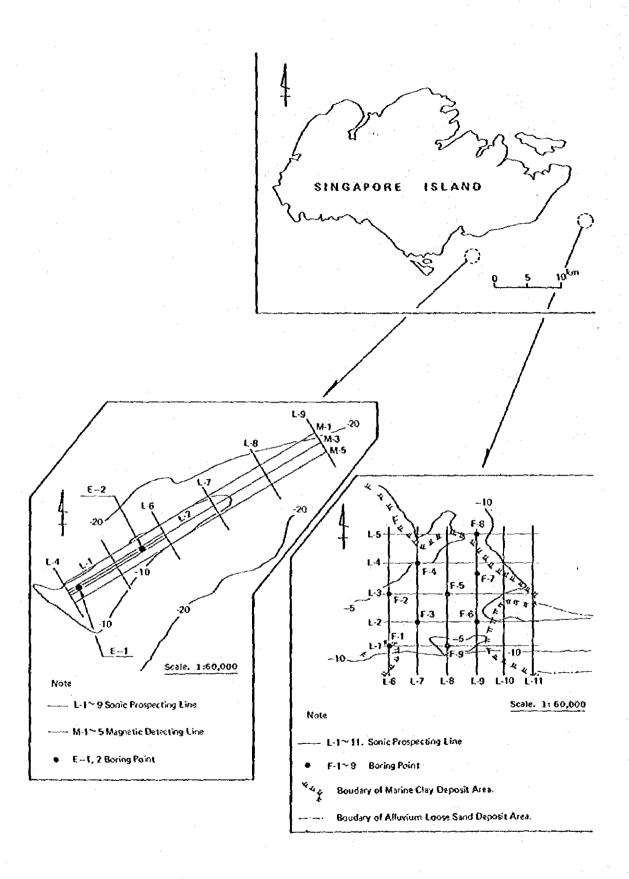
, L-3, L-4 & L-5

, L-6&L-7

L-8&L-9

- Outer Shoal Track Chart for Sonic Prospecting
- Outer Shoal Sounding Map
- Outer Shoal Track Chart for Magnetic Detecting
- Outer Shoal , Location Map of Magnetic Anomalies for Magnetic Detecting
- Offshore Changi , Geological Cross Section , L-1 & L-2

, L-3&L-4


, L-5&L-6

L-7 & L-8

, L-9 & L-10

. L-11

- Offshore Changi , Track Chart for Sonic Prospecting
- Offshore Changi , Sounding Map
- Offshore Changi , Track Chart for Magnetic Detecting
- Offshore Changi , Location Map of Magnetic Anomalies for Magnetic Detecting

Plan of Present Survey

CORDINATES OF BORING POSITIONS

	PLANE RECTANG	PLANE RECTANGULAR COORDINATES	GEOGRAPHI	GEOGRAPHICAL COORDINATES
	(P.S.1	(P.S.A. GRID)		
POSITIONS	X	χ	lan.	LONG.
T-E	-3875.00	1880.00	1 15 9.3596	103 52 11.6284
Z-E	-3225.00	2960.00	1 15 30.5230	103 52 46.5679
다 변	3020.00	18845.00	1 18 53.8370	104 1 20.4813
F-2	3975.00	18840.00	1 19 24.9312	104 1 20.3216
주-작	3465.00	19345.00	1 19 8.3248	104 1 36.6582
F-4	4485.00	19335.00	1 19 41.5354	104 1 36.5370
H-5	3995.00	19835.00	1 19 25.5801	104 1 52.5119
н Э-г	3425.00	20335.00	1 19 7.0201	104 2 8.6865
7-E	4510.00	20330.00	1 19 35.8351	104 2 8.5269
F-8	5000.00	20325.00	1 19 58.3011	104 2 8.3668
P-9	3035.00	19850.00	1 18 54.3231	104 1 52.9949

Drilling Logs

	DI	п	•	IMI	\sim	ŧ,	\wedge	\wedge
u	n	iL,	L	IIN'	G	Ľ	U	u

Remarks Name of Project Fill Materials for Reclamation Projects Type of Drilling Rotary Hole Number No. E-1 Elevation ACD -8.60 m. Date 18th to 21st November, 1978 Driller Koken Boring Water Table

Ę	E E	Ė			Š		18:ty Pncy	narks			Sta	ndard	Penet	ration	Test o	Core	Recove	ery	
⊊	Elevation is	. £	Thefmess	Legend	ਰੰ	Colour	Relative Density or Consistency	General Remarks	Ë	Sampling for Lab.	Value	Blows	Per]		(N	Value \		
Scale	E	fa G	Ĕ	Leg	Type	3	Rela or (ee.	Depth in m.	Samp	11 145	Leacr	10cm	4	lo 1			10 ;	50 1
1_															Î	Core	Recover	ny Ty	·
l j																·			
<u>-</u>								·	2.15 2.45		0	Se l Pen	f etra	ion	(Yt	1.5	g/c	3,	
3-1					•							Sel Pen		ion	·		ļ		
1									4.15	P=2	0	wit wei	h	l	= 1	55)		}	
5									4.45			Sell	f	tion	t · · · ·	}			ļ
6_									6.15	<u> 7-3</u>	0	wit	h		 = 1	63)	ļ	ļ	· '
3 3 4 5 6 7									6.45						t		ļ	.	
								Very sticky. Uniform. High	8.15	pad re	,	30		10-	= 1	, ED)	ļ	 	ļ .
9								water content. Contains some sea	1	P=411	-	الالا	+	[` ' t	ļ		ļ		-
<u>L0</u>		9				Green ish		shell fragments.	1	2=5		30			ļ		ļ 		
<u> </u>	20.10	11 50	11 SO	7	Marine Clay	grey to Grey	Very soft	sand. With some organic matters.	10,45	2-5	<u> </u>	30) (Y _t	= 1	53)			-
12 					Clay	urey.	5016	maccers.	12.15	P=6 1		ا ا_لا	_	<u> </u>				Ĺ	
 <u>13</u>				77					12.45	P-6 8	2	1157	15	(Y	= 1	.60)			-
11								Contain 5th											-
<u>15</u>								Contains fibrous organic matters. Less organic	14.45	P-/	3		1 1	(Y	= 1	59)			-
<u>16</u>				<u>, - ' - </u>		Brown	-	matters at 14m. Observed some	,,,,										
17	25.60	17.00	5.50		Clay with organic		Soft	laminae of organic matters.	16.15 16.45	P-8-1	3	1	1 1	Y (Y	- i	57)	ļ		-
_ 18									,,,,								}	h	
									18.15 18.45	P-9 B	3	1	1	₹(Y	<u> </u>	[61]	· • • • •	<u> </u>	
	28.70	20.10	3.10		Marine Clay	Dark grev	Soft	Sticky Uniform									····	} <i>-</i>	-
21 21					Silty	io Red-	5010	Sticky. Uniform. With some muds tone gravel (Ø=2~5mm) With some sand pockets	20.15 20.45	2-10	11	3 4	1 4		(_Y	 - 	. 90)		
	30.00 30.70				Clay	gish Brown	Stiff		•			LI.				ļ:	· • • • •		-
23			· · ·	*	Organic Clay	gřey to black	Soft	With decomposed wood	22.15 22.45	2=11.	2.1	15	15	1 (t *	73)			
21				目		Grey		111-111							<u> </u>	···-	}		-
25						to Red- dish		High plasticity with some decomposed	24.15 24.45	F-12	3	1 1	1	(t =	.80)			
26	34.05	25,45	3.35		Clay	brown	Soft	vegetables.		P-13		1 1	1) . (.	 	.89)			
					:	End	of Dr	lling								} <u>.</u>			
27				نسسا					<u> </u>		ļ		Щ.,	<u> </u>	<u></u>	<u> </u>	age	Ц	

page

D	R	11	IN	IG	L	lacksquare	G
		느ㄴ	. 113	u	L-'	v	J

Name of Project Fill Materials for Reclamation Projects

Type of Drilling Rotary

Hole Number

No. E-2 Elevation ACD -8.30 m.

Water Table m.

Date 22nd to 25th November, 1978 Driller Koken Boring (

Remarks

Ę	E	Ę	lý.		Sei		Density stency	emærks		· · · · · · · · · · · · · · · · · · ·	Sta	ındard	Per	etratio	xı Tes	t or C	one Rec	overy	
Scale in	Elevation	Depth	Thickness.	Legand	1 ₇ 78	Color	Relative Density or Consistency	General Remarks	Depth in m.	Sampling for Lab.	SN-Vaiue	Eeac	s Per h 10d	m	10	20	Y—Valu		
Γ	1					-								-	<u> </u>		30 e Reco	40 Verny	50 100 %
1 2			i									Sel	f		-				
<u></u> 3				0_				Sticky, uniform. High water	2.15 2.45	P-1	0	Per	ıetir	a	(Y) =	1 62	ġ/ċm	a ₃	· <u>-</u>
								content. Contains seashell		i		Sel	f etr	.					
<u>1</u> 5								fragments.	4.15 4.45	P-Z	0	tib	n	-1	Ϋ́t	T 61			
6								With small quantity of fine	6.15			Se l Pen	e tira	,		•			
7								sand. With small	6.45	P-3 B	0	tip	n	• (۲t ≠	1 70)		
8						Green ish		quantity of organic matters.	8, 15	P-4 9	,	30	ŀ						-
9	17.90	9.60	9.60	\ <u>\</u> \ <u>\</u>	Marine Clay	grey to Grey	Very soft	With lots of organic matters.	8, 45			30	1) (Y t =	1 .62)) 		-
10					Organic	Dark brown to		With some fine sand pockets.	10.15 10.45	⁷ -5	3	1	1 1	J.,	Y t =	1.79)			-
12	19.70	11.40	1.80		Clay	Black ellow ish	Soft	With decomposed woods.				!].\					-
	21.30	13.00	1.60		Silty Clay	orang to Grey	stiff	High plasticity. Low water content.	12.15 12.45	P-6 p	13	3 4	1 6	} -		(γ _t =	1.88	,	-
14								Sand is fine	14.15			.							
15	23.80	15.50	2.50			Light brown	Stiff	grained. With small quantity of seashell fragments	14.45	P-7	14	4 5	5		<u>لم</u> ر.	(Yt	= 1.80	o} 	-}
16 17		İ							16.15 16.45	P-8 p	4	1 1	2		/ (†t	=]1.7¦			-
18					ļ				İ						` !-		1		-
19		İ			ļ			Contains some	18.15 18.45	P-9 B	3	1 1	1		(t	.77	7)		
20							l.	fine sand at upper portion.							-}	•			· · •
<u>?1</u>							41	upper portion. Gradually change to uniform marine clay,	20.15 20.45	-101	3 1	4	1		(t	.74)	 	-
22	0.75	22.45	6.95		Marine Clay (Grey S	:	dith some seashell fragments,	22.15 22.45 P		, ,		1				J		
23				$\neg \sqcap$		End	of Dri		cc . 45E	-11.8	~ '	+	†		(+t =	78	<u>'</u>		-
24				ĺ				/119						ļ					ļ i
25		,	1											L			page.		

n		11	1 1	M	\wedge	1	^	\wedge
U	К	lL	LI	IN	G	L	U	u

Remarks Name of Project Fill Materials for Reclamation Projects Type of Drilling, Hole Number No. F-1 Elevation ACD -7.00 m. Date 13th to 15th December, 1978 Water Table m. Driller Koken Boring (

Ę	E E	Ę			, je		ensity tency	smarks				ndard	Pen	etral	lion T	est or	Core	Rec	covery		
Scale in	Elevation	Depth in	Thickness	Legend	jo ací	Color	Relative Density α. Consistency	General Remarks	Depth in m.	Sampling for Lab	¥.Vaite	Blows Eeacl	Per 100	m		٠.	_(<u>.</u> N-		<u>.e)</u>		Ì
- 3	ដី	8	Ē	. ii) - 1 -		<u>سی</u>	<i>(</i> 5	Ä	2 5	Diows.	1	-	+	<u></u>		<u>.</u>	.111	40	50	
1			•	م م		Green	-	Sand is medium to coarse grained.					ļ				Lore	- Kec	overny	-	
2	9.10	2.10	2.10	P	Sand with Gravel	ish grey		With seashell fragments	2 15				ie tir	·a			ļ				
3									2.45	<u> </u>	0	tic	n	1		L	ļ				-
1									4.15				ne tir	a							
5								Uniform, sticky.	4.45	P-2-	.0	ti		-	,,						
<u>6</u>								With some fine sand and seashell	c 15			Se Pe	ne tr	^a							
7						Grey		fragments. Contains black	6.45	P-3	<u> </u>	ti	on	┪							
	13.20	0.20	e 10		Marine	to Dark	Very	organic matters and sand below 7.5m	0.15			し									
9	13.20	0.20	0.10		Clay	grey	soft	/ . JIII	8.45	P-4 p	1	30		\dashv							_
10								Sand is medium to						1	\						(
11						Brown-		Sand is medium to coarse grained. With some fine	10, 15 10, 45	P-5	3	1	1	1	1						-
	18.80	11.80	3.60		Clayey Sand	ish grey	Very loose	gravel (Ø = 2 to 5mm)						Ì	1				•••	- • • •	-
13					-	Reddis	 -		12.15 12.45	P-6	18	5	6	7							
14] Silty	brown		Sticky. With	ļ. , , <u>,</u>					Ì	,						-
15	21,40	14.40	2.60		Clay	Grey	stiff	organic matters	14.15 14.45	7-7	6	5	2	2	1			-			-
16																				••••	
17					1				16.15 16.45	P-8]	3	1	1	1	•					· ·	
	•																				
<u>18</u>							ļ	<u> </u>	18, 19 18, 49	P-9	4	1	1	2	•	ļ					
19	<u> </u>		ļ		Marine	Dark		Uniform.									-			. I	
	27.20	20.20	5,80		Clay	grey	Soft	Very sticky.	20.15 20.45	P=10	6	2	2	2		ļ	-		'		
31	100 10			亞	Clay with		 	With black				ļ			· · · · ·	1>	\				
22	29.10	22.10	1.90		organic	grey	neatur	organic matters	22.19 22.4	<u> </u>	38	12	15	11	}··	· · · ·	1		$\mathbf{>}$		
23													Ì			·}···		/			· • ·
1									24,19 24,4	PE12	17	4	5	8		<u> </u>				ļ··	
".									}							-	\ 		.	} · ·	
.26						C		Sand is medium to coarse grained.	26.1 26.4	5 P=13	18	4	6	8		-	1				.}
27	_					ish grey	!	Partly changes to fine sand. With some fine gravel	1								<u> </u>				+
28	35.6	0 28.6	6.50	,	Clayey Sand	to Grey	to Den se	and organic matters	28.1 28.4	5 P=15		5	5	5		+ 6	+				
29					× L Silty	Green grey to	1					ļ	25			-			_	1	+
30	37.3	5 30.3	5 1 . 7!		Clay		t Hard of D	With fine sand	30.1 30.3	5 2=1		í9 <u>2</u>	5/9	-				}		-	
1				!		Lind	ט יטן	Tiring		<u> </u>				1_				p	age	<u></u>	

D	RI	П	IN	IG	1	a	G
$\boldsymbol{\nu}$	111	ᄔ	.111	ıu	L	v	u

DRILLIN	IG LOG	Remarks
Name of Project Fill Materials for Reclamation Projects	Type of Drilling	
Hole Number No. F-2 Elevation ACD -6.60 m.	Dale 9th to 14th December, 1978	
Water Table m.	Driller Koken Borifig ()	

Ę	É C	E			Soil		ensity tency	smarks				ndaro	Pe	netr	ation	Test o	Core	Recov	ery	
Scale in	Elevation	Depth ii	Thickness	Legend	75 8	Colour	Reiztive Density or Consistancy	General Remarks	Depth m.m.	Sampling for Lab	% Y3 ue	Blov Eca	rs Pr	er Oczn			(N-			
S				70510	ļ		0x 6		<u></u>	 Ω Ω	312 MA	1	:			10 .	20 1 Core	Recove		50
1	8.10	1.50	1,50	8	Sand with	Green⊣ ish grey		With seashell fragments							. 	ļ	[Recove		<u> </u>
2	0,110	1.50	1,50	×	ur uve i	grey		11 agillettes	2.15 2.29	D_1_	50 14	 26	24				ļ		. .	
3						Green-		Uniform. Sand	2.29			 	_			 	<u> </u>		_	1
1	10.70	4.10	2.60	x x	Silty Sand	ish grey	Very dense	is fine to medium grained	A 16							L				/ :
5									4.45	P-2	47	14	17	16	- ***	[[•	\ -
6									6 16		50. 12		12							1
7				8					6.15 6.27	P-3	12	33	2	-			ļ			
				E							50.		22			} - -				
9				E					8.15 8.30	2-4	50 /15	28	75							
				E				-			SO.		21.							<u>-</u>
10								Semi-angular to round gravel	10.15 10.29	P-5	50, /14	29	4		· • • • •		·		<u>-</u> -	
11				d.		Yellow	_	with dia. of 2 to 3mm. Max. dia. is about							. -	}	ļ			
12				\equiv	Clayey	ish brown	Dense to	5mm. Majority is quartz gravel.	12.15	P-6	50 12	41	9/2			 		ļ		ļ <u>.</u>
13	20.10	13.50	9.40		Sand with		Very dense	Contains some feldspar gravel.	12107							}	}	} .		
14				* *		-		3	14.15 14.25	P=7	50	50					ļ		<u></u>	
<u>15</u>									14.23								ļ			
16					C 2 1 A	Pur-	Manue	Hadfana Cond	16.15		50 8	50					ļ			
<u>17</u>	23.60	17.00	3.50	(1) X X	Silty Sand	plish grey	dense	Uniform. Sand is fine grained.	16.23	P:-11 p	-								_	-
18				` x					18:15		50	50		ĺ						-
19			İ	×					18.25	<u>6~8</u> ■	9	4		-		ļ				-
20				×					00 15		50,	5a		ľ						-
				, <u>, </u>					20.15 20.22	P-10.	7	15	-	_		····-	····			
21				* *		Grey to					50.		14	ŀ				· ·		
22	20. 40	22 22		×	Clayey	ellow ish		With some fine	22.15 22.29	P-11-	50 14	36	4	_			ļ	ļ		
	73.0U	23.00	0.00	× 🗀	S11t	brown Whitis		sand.								ļ	ļ	ļ <i></i> .		
24				*	6474	to rellow			24.15 24.29	P 12 -	50. 14	36	4			ļ	ļ	 .	- <u></u> -	
<u>25</u>	31.87	25.27	2.27	MŁ.	Silty Sand	ish grey	Very dense	Sand is fine grained.	25.15 25.27		50. 12	40	2	╛					ļ. <u></u>	
26						End	of Dr	illing	25.27					\perp						
																	1	PARC.		,

DRILLING LOG	DRIL	LING	LOG
--------------	------	------	-----

Name of Project Fill Materials for Reclamation Projects Type of Drilling Rotary

Hole Number No. F-3 Elevation ACD -9.80 m. Date 28th Nov. to 4th Dec. 1978

Water Table Driller Koken Boring ()

Water Table Driller Koken Boring (m. Re-stive Density or Consistency Remarks Standard Penetration Test or Core Recovery Ę Ī ⊊. Ckness .⊑ Elevation ₽ ₽ Depth in m. Blows Per Eeach 10cm D.ega-Sampling for Lab. Seneral | 충 (N----Value) 77 ĸ to 11 - 10 20 30 40 Core Recoverny Sand is fine to medium grained. 2.15 With small P=1 15 4 5 2.45 Clay .3 quantity of Whitish gravel with dia. brown Medium of 2 ~ 3 mm. Clayey 13.70 3.90 3.90 50 20 15 30 5 4 4.15 4.30 5 50 9 12 41 2 6.15 6.27 Semi-angular to round gravel.
Dia. of gravel is generally 2~3 mm.
Max. dia. is 7 Clayey Claye Sand with Whitish brown 50 20 21 29 R to Very 8.15 18.50 8.70 4.80 grave1 Grey dense about 5 mm. 8.35 9 Yellowish brown 50/ 16 26 6 10 Silty to Well cemented. 10.15 Clay Silty 20.30 10.50 1.80 Hard Grey Uniform. 10.31 Greenish |grey | Hard Fairly well 11.15 21:25 11.45 0.95 **kclay** 47 15 16 cemented. Uniform. 16 11.45 12 of Dr 11ing End 13 14 15 <u>lti</u> 17 18 19

page

Remarks

	DRILLIN	G LOG	Remarks
Name of Project Fill Materials for	r Reclamation Project	Type of Drilling Rotary	
Hole Number No. F-4 Eleva	vation ACD -5.30 m.	Date 6th to 7th December, 1978	
Wate	er Table m.	Onlier Koken Boring ()	

É	Ę	Ę			Soi		ensity tency	in Officer Kok	T				indar	d Pe	eneti	ation	Test	or Core	Reco	very	
Scale in	Elevation	Depth in	Thickness	Legard	Type of	Colour	Relative Density or Consistancy	Gereral Remariss	Section m.		Samping for Lab	100 A	Blov Eea	ws P	er Ocm		10	<u>(N</u> -	-Value		50
	7.10	1.80	1.80		wi th	Yellow ish grey	į	Semi-angular to round gravel wit Ø of 2-3mm. With shell fragments	0.1	5 1	-	18		5	9		 	Core	Recove		
3	0.40	4.10	0.00		Si1ty	Whitis grey t Yellow ish	h o Very	Sand is fine to	2.1	5 12	-2	50/8						-		-	
5	9.40	4.10 5.80	1.70		Sand Clayey Sand with Gravel	Whit- ish grey		medium Contains a lot of gravel at some portion. With angular feldspar	4.15 4.26	5 <u> </u> 2 	-3	50/ /11	47	1/1							
7	13.30	8 00	2.20			hitis	n	Sand is fine to medium grained.	6.15 6.45	j 	-4)a				15				ļ		
9	15.10		1.80	8	Clayey Sand Y with :	grey ellow ish	Dense Very dense	Uniform Gravel is generally semi- round quartz with dia. of 2-3 mm.	8.15 8.32	2	5	50 17	26								
1						,	40.730		10.15 10.37	5 1		50/ 22			9/2						
	18.90	13.60	3.80		Clayey		1	Sand is fine to medium grained. With some fine gravel	12.15 12.29		.7	50/ 19	23	27		· · · · ·				} <u>-</u> -	-
15	20,55	15.25	1.65	` >• ⊢ •	layey Y	ellow- ish	Very	Ouartz gravel.	14.15 14.29 15.15		8	50 14 50 10	32	4	_	• • • • •				<u> </u>	
16 17				1		End	of Dri	ling	15.25							· · · · ·			 <i>-</i>		-
18 19		į																	· • • • •		-
20									'									J	age .		

DRILLING LOG	
--------------	--

DRILLIN	NG LOG	Remarks
Name of Project Fill Materials for Reclamation Projects	Type of Drilling Rotary	
Hole Number No. F-5 Elevation ACD -8.20 m.	Dale 29th to 30th November, 1978	
Water Table m.	Driller Koken Boring ()	

É	E E	É			Soi		ensity itency	emarks							tion To	est or	Core	Recove	ry	
Scale in	Elevation	Depth in	Thickness	Legend	Type of	Cclour	Relative Density or Consistency	General Remarks	Depth in m.	Sampling for Lab.	euley -N S	Blow: Eeacl	Pe 1 10	r cm			(N—			.
8	<u></u>	ă	<u> </u>		£.		∞ 8	<u></u>	<u> </u>	Ω.₽	Dium	100-	10 + 1		10 1 20	l i		(I) 4	0 5	
				E				i									Core	Recover	Y	
3																				
				E				Almost semi- round quartz	2.15 2.45	P-1 1	22	6	7	9			•			
3						Red-		gravel. Generally gravel is fine					.					-		} }
1					Clayey Sand		Medium	grained, i.e. Ø=2 - 3mm. Max.	4.15 4.31	P=2		25	6				1		<u>-</u>	
5	13.90	5 7N	5.70		with gravel	to Grey	Very	dia. of gravel is about 5mm.	5.15 5.39	P-3	50 24	21	22	7				}	} <u>-</u>	
6	.5.50	3.75	30				- 3		6.15	P-4 1	46	17	15	14					-	
7				j : [Clayey	Grey		Sand is fine to medium grained.	6.45									·	<u>.</u>	\
<u>8</u>	16.10	7.90	2,20		Sand	Brown	Dense	With fine gravel.	8, 15	ln c	50. 17	23	27							
9								Almost semi-	8,32	للفتي			<u></u>							-
10				d	3	Dad		round quartz gravel. With	10,15		50 14	24	26 4		l		l		<u>.</u>	-
11					Clayey Sand	Red- dish brown		feldspar gravel. Gravel is fine grained, Max.	10.29	تعتا	50	50							-	-
_	20.20	12.00	4.10		with gravel	to	Very dense	dia, of gravel	11.15	2	710	50		H	1				-	
<u>12</u>	20120	12.00	7,10		1 graver	D. 0111	delise	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1											
<u>13</u>						End	of Dr	lling				Ì			ļ -		.			 - -
14					1															· · · · ·
15	1																·			
<u>16</u>	1						i					ļ				· - -				
17	1															ļ				
18	1															ļ				
19	-						t 										_}			
20	-																			
ئىتىد			<u> </u>															page		

D	ווא	I IN	lC.	LOG
	I 111	LIN	ıu	レレノして

Remarks

page

Name of Project	Fill Materials	for Reclamation Project	Type of Drilling Rotary
Hole Number	No. F-6	Elevation ACD -8.90 m.	Date 1st to 4th December, 1978
		Water Table m.	Driller Koken Boring ()

Scale in m.	Elevadon in m.	Depth in m.	Thickness	puese"	Type of Soil	Colour	Relative Density or Consistency	General Remarks	Depth in m.	Sampling for Lab.			s Per	T-	Test		Recover	ry .
1 2 3 4 5 6 7 7 8 9	21.24				Clayey Sand Clayey Sand with	ellow brown to Green ish grey	-Medium to Dense sh Dense to	Sand is medium to coarse grained. With some fine gravel (0 * 2 to 3 mm) Semi-angular to round gravel. Dia. of gravel is generally 2 to 3 mm. Max. dia. is about 5mm. Contains a lot of gravel with 0 of 3 - 5mm below 12m	2.15 2.45 4.15 4.45 6.15 6.45 8.15 8.45	P=1	33	10	7 10 1 13 11 10 1 1 6	5		Core	Recovern	

D	RII	1	ING	1.0	2(
v	IIIL	_1_	IIYG	L. L.	/\7

Remarks

page

Name of Project Fill Materials for Reclamation Projects Type of Drilling Rotary

Hole Number No. F-7 Elevation ACD -7.50 m Date 9th to 11th December, 1978

Water Table m Driller Koken Boring ()

	ΕÉ	É					sity nc.y				Star	ndard	Pr	netra	tion '	Test o	r Core	Recov	ery	
Scale in m.	Elevation in	Depth in n	Thickness	puešen	iye of Soil	Colcur	Relative Density or Consistency	Ĝeneral ੇ marks	Depth in m.	Samping for Lab.	<u>1</u> 2		s Po	er Dam	***************************************			-Value)	. <u></u> -	
S		0.10					~ 8		යී	တ္တန္	* *					111	11) 	30		50 -
<u>1</u>					Clayey Sand with Gravel	Grey		With seashell fragments									Core	Recove	rny]
2					Clayey		Dense	Small quantity of gravel around 2m. Sand is fine to medium grained. Semi-angular to	2.15 2.45	- <u>-</u> -)	40	11	13	16						
<u>4</u> 5	12.30	4.80	4.70		Sand with Gravel	Green ish grey	Very dense	round gravel with diameter of 2 to 3 mm.	4.15 4.45	P-2 a	55	17	18	20			ļ			
	13.70	6.20	1.40	d d	with	ellow ish brown		Dia, of gravel is 3 to 5mm. Max. dia. is about7mm.	6.15	P-3 m	50 24	18	20	12 4				· 		
1		į		Je					6.39								ļ			/.
8				$\mathscr{S}' \equiv$					8.15	<u> </u>	.,		• •						/.	/ -
9									8.45	P-4	41	12	13	16						-
<u>10</u>				8	Clayey	0	Dense	Quartz gravel with dia. of 2 to 3mm.	10.15 10.34	P-5 m	50⁄ /19	24	26/ 9							
11 12	19.30	11.80	5.60		with Gravel	Green- ish grey	Very dense	Max. dia. is about 5mm. A lot of gravel at 10m.												
	20.74	13.24	1.44		Silty t	Brown o Gre∈ ish grey	n- Very dense	Sand is fine grained.	12,15 12,28 13,15	n 7	50/ 3/ 50/ 9	36 50 9	<u>/3</u>						<u></u>	
14						P			13.24								ļ			
<u>15</u>					,	End	וט זט	illing							- -		<u> </u>		<u> </u>	
<u>16</u>																				
<u>17</u>																				
<u>18</u>																				-
19																	† · · · ·			_
20											;				· • • •		·}	· · · ·	- 	-

Name of Project Fill Materials for Reclamation Project Type of Drilling Rotary Hole Number No. F-8 Elevation ACD -9.40 m. Date 6th to 7th December, 1978 Water Table m. Driller Koken Boring ()

Ë	in in	i. E.	55		of Soul		Relative Density or Consistency	Generai Remarks	d	1-2-					ation	Test	or Con	Reco	very	
Scale	Elevation	15. 25.	Thekness	peser	I se .	Colour	Relative or Core	Generai	Death in m.	Sampling for Leb.	14 V.B.	Blo Ee:	ows ach J	Per 10cm		Įu	(N-	Value	40	.
										177.42		 	+	-		<u></u>	-	Recov		50 E
ا													ļ				-	7	-	
2									2, 15	P-1	Se Per	lf neti	: rat	ion.				-	-	-
3 .											Sel	l f	İ		- -			ļ	.	
<u>-</u> - 5					1		İ		4.15 4.45	P-2	Per Wit	h v	ra t le i	ion ght	,	ļ	- }	ļ		
1 =															·•~		-}	·}		-
7								Sticky, uniform. High water	6.15 6.45	P-3 R	1	/30	_					· -	+	
	17.20	7.80	7.80		Marine Clay	Dark grey		content. With some fine sand.										·}		
9									8.15 8.45	P-4	3	1_	1	1						
<u>[0</u>																	ļ			-
Ш.						ļ			10.15 10.45			1	2	2	1					
12.						<u>.</u>			11.15 11.45	P-6 M	3	1	1	1	*				· • • • • • • • • • • • • • • • • • • •	
13				0	Clayey	Grey	Very	Gravel is semi- angular to round with dia, of 2 to							7			·		·
<u>!</u>	23 00	14.50	6 70		Sand with	Red- dish	loose to	3mm. Max. dia. of gravel is								\				
<u>15</u>	20.30	14.30	0.70		Gravel	brown	Loose	about 5mm.			İ									
16.																				-
17										:										
18																				
111					i			:								· -				-
20_	30 10	20.70	6 20			Dark											 .	• • • •	ļ	
31	-0.10	.0.76	0.20		Clay	grey	(Soft)								}	· • • • •				
22						Green		·												
2.1	32.90	23.50	2.80	×	Silty	ish	Medium)													-
24				Ē	<u></u>			Gravel is semi-	24.15 24.35	P = 7 Be	50/8	21 l	29					. -	<u></u>	
<u>25</u>				們		Green ish		with dia of 2 to	1	- 1	- 1	j		╡.			. , .	••••		
Г	15.52	26.12	2.62	狷		grey	dense	3 mm. Max. dia. is about 5mm.	26.00 26.12	P-0 =	12	40	2].					<u></u>	-
27				1	ĺ	End	of Dr	illing					İ				•	· • ⁻		
28				1									_].	1			'n	age		

DRIL	LIN.	G	L(0	G

Remarks

Name of Project Fill Materials	for Reclamation Projects	Type of Drilling Rotary	
Hole Number No. F-9	Elevation ACD -6.50 m.	Date 16tH to 18th December, 1978	
	Water Table m.	Oriller Koken Boring ()	

Ę	E .s.	É			Sol		nsity ency	marks				xlard	Pe	netra	ition Te	st or	Core	Recove	у	
Scale in n	Elevation is	Depth in	Thickness	Legend	Type of S	Colour	Relative Density or Consistency	General Remarks	Серів ін т.	Sempling for Lab.	90 SV-1	Ee ac Blow	s Pe)cm[jı	1	(N	-Value)	U 50	
<u>-</u>	7.90	1.40	1.40	g g	Sand with Gravel	Green- ish grey		Sand is coarse grained. With shell fragments									Core	Recover	¥_ }	
2 - 3 -				x					2.15 2.43	P-1 1	50 28	13	18	19						
1				× × ×					4.15 4.35	252	50 20	23	27							
<u>5</u>				× × ×					6,15		50 16	31	19. 6							
7 8				× × × ×			į	Sand is fine grained. With	6.31		50					- -	.			
9				× ×	Y Sandy	ellowi brown to		small quantity of fine gravel. Partly, material changes to silty	8,15 8,41	P-4 1		17		6						
11	16.60	10.10	8.70	x	Silt	Grey	Hard	clay	10.15 10.34	P=5_3	50 19	21	29						_	
13		!		8				Quartz and felds- par gravels. Semi-angular to round gravels	12.15 12.33	P-6	50 18	26	24 8					-	 	
13 14	20.77	14.27	4.17		Clayey Sand with Gravel	Green- ish grey	Very hard	with dia. of 2 to 3 mm. Max. dia. is about 5 mm.	14.15 14.27	P=7_,	50	2 2 37	13. 2				-			
<u>15</u> 16				'		End	of Di	lling	17,2,	:					ļ					
17																				
<u>18</u>	-													ŀ		ļ				
20	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>					<u> </u>			page		

Summary of Soil Tests

No.			SUMMA	RY OF S	OIL TEST					
	Project				Bo	re Hole	E-1			
	Location of pro	oject								
Sample	no.	P-3	P-8	P-9	P-10	P-12				
Sample	depth	6.00 m 6.45 m	16.00 m 16.45 h	18.00 m 18.45 m	20.00 m 20.45 m	24.00 ··· 24.45 ···	m 1 m	m t m	m 1 m	ų, ių
Conditi	on of sample	Distorted XXXXXXXX	Disturbed	Disturbed XiXiXXiXd	Disturbed UK/KeXeXeX	Disturbed (XxXxXxXxXxXxXxXxXxXxXxXxXxXxXxXxXxXxXx	Disturbed Undisturbed	Disturbed Undsturbed	Disturbed Undisturbed	Oisturbed Undisturbed
Natural	water content, %	70.4	65.7	66.9	53.2	31.50				
Specific	c gravity	2.645	2.606	2.616	2.695	2.686				
Wet der	nsity, g/cm³	(1.63)	(1.57)	(1.61)	(1.90)	(1.80)				
Dry dei	nsity, g/cm³	(0.96)	(0.95)	(0.96)	(1.24)	(1.37)				
Natural	void ratio	(1.76)	(1.74)	(1.73)	(1.17)	(0.96)				
Degree	of saturation , %	(100)	(98)	(100)	(100)	(88)				
gra	Liquid limit , %	77	92	87	55	63				
Atterberg limits	Plastic limit , %	28	37	31	22	24				
Att	Plasticity index	49	55	56	33	39				
	Gravel , %	0	1	0	1	0				
sis	Sand , %	2	3	1	12	2				
sy	Silt , %	31	21	22	25	25		i		
ie j	Clay & colloid , %	67	75	77	62	73				
Grain size analysis	Max. diameter, mm	2.00	4.76	2.00	4.76	4.76				
Grai	Diam. at 60%	0.0020	0.0020	0.0012	0.0045	0.0017				
	Diam. at 10%	_	_	-		_				
Visual s	soil description	Clay	Clay with organic	Clay	Silty Clay	Silty Clay				
Unified	soil classification	СН	СН	СН	СН	СН				
<u>8</u> 6	Undisturbed sample, kg/cm ²									<u> </u>
ress	Remoulded sample, kg/cm ²									
Unconfined compression test	Sensitivity ratio									
⊃ % ≇	Strain at failure,%									
rial ores - test	Angle of internal friction									
	araniugo									
soli- on	Preconsolidation pressure, kg/cm²			-						
Consolidation test	Compression index									
	Angle internal friction			·						
Shear	Cohesion, kg/cm²		***************************************							
4.00	Condition of Drainage				<u></u>					
Remark	(s:			_						
1		i								

No.			SUMMA	RYOFS	OIL TEST					
	Project Location of pro	oject			Во	re Hole	E-2			
Sample	no.	P-2	P-5	P-6	P-7	P-10		1		
Sample	depth	4.00	10.00 -	12.00 m 12.45 h	14.00 ₀	20.00	m J	m ! m	th I	n.
Conditi	on of sample	Disturbed XXSXXXX	Disturbed	Disturbed XXXXXX	Distriction of U.X.A.X.X.X.X	Distarbed XXXXXX	Disturbed Undistorbed	Distorted Undestarbed	Disturbed Undisturbed	Disturbed Undisturbed
Natural	water content, %	71.2	69.1	34.3	41.2	55.1			,	
Specific	gravity	2.660	2,607	2.681	2.697	2.672				
Wet der	nsity, g/cm³	(1.61)	(1.79)	(1.88)	(1.80)	(1.74)				
Dry dei	nsity, g/cm³	(0.94)	(1.06)	(1.40)	(1.27)	(1.12)				
Natural	void ratio	(1.83)	(1.46)	(0.92)	(1.12)	(1.39)				
Degree	of saturation , %	(100)	(100)	(100)	(99)	(100)				
erg	Liquid limit , %	70	99	75	62	73				
Atterberg limits	Plastic limit , %	26	40	27	24	28				
₩	Plasticity index	44	59	48	38	45				:
	Gravel , %	0	1	0	0	0				
Sis.	Sand , %	3	. 11	7	30	1				
Grain size analysis	Silt , %	41	24	23	24	20				
Ze al	Clay & colloid , %	56	64	70	46	79				
in Si	Max. diameter, mm	4.76	4.76	4.76	4.76	2.00				
Gra	Diam. at 60%	0.0063	0.0040	0.0022	0.023	0.0014	11.751			
ļ	Diam. at 10%		-	-	~ ************************************					
 	soil description	Clay	Organic Clay	Clay	Sandy Clay	Clay				
Unified	soil classification Undisturbed	СН	СН	СН	CH	СН				
sion	sample, kg/cm ² Remoulded									
onfin	sample, kg/cm²									
Unconfined compression test	Sensitivity ratio			\						
	Strain at failure,% Angle of	i			<u> </u>					
cial ores -	internal friction									
Triaxial compres sion test	Cohesion, kg/cm ² Condition of									·
	drainage									
Consoli- dation test	Preconsolidation pressure, kg/cm²		,	······································						
0 % 2	Compression index Angle									
Shear test	internal friction Cohesion, kg/cm ²									
Sh	Condition of									
Remark	Drainage				l					

No.			SUMMAI	RY OF SC	IL TEST					
Company Angel And World	Project				Bor	e Hole	F-1			
	Location of pro	oject								
Sample	no.	P-1	P-2	P-3	P-4	P-5	P-6	P-7	P-8	P-9
Sample	depth	2.00 m 2.45 d	4.00 m 4.45 m	6.00 _m 6.45 _m	8.00m 8.45m	10.00° 10.45°	12.00° 12.45°°	14.00	16.00 77 16.45 m	18.00 m 18.45 m
Condition	ion of sample	Distorbed Undesturbed	Disturbed -Undate/bod	Disturbed -Undisturbed	Disturbed -Undeturbed	Disturbed - Undisturbed	Disturbed -Undeturbed	Disturbed - Undisturbed	Disturbed Undeturbed	Disturbed - Undesturbed
Natural	l water content, %	50.4	65.2	63.2	59.0	23.9	30.1	42.9	63.2	61.9
Specific	c gravity	2.678	2.694	2.699	2.664	2.632	2.704	2.664	2.712	2.708
Wet der	nsity, g/cm³	(1.71)	(1.63)	(1.65)	(1.70)	(1.85)	(1.89)	(1.75)	(1.65)	(1.64)
Dry de	ensity, g/cm³	(1.14)	(0.99)	(1.01)	(1.07)	(1.49)	(1.45)	(1.22)	(1.01)	(1.01)
Natural	l void ratio	(1.35)	(1.73)	(1.67)	(1.49)	(0.76)	(0.86)	(1.18)	(1.68)	(1.67)
Degree	of saturation , %	(100)	(100)	(100)	(100)	(82)	(95)	(97)	(100)	(100)
rg.	Liquid limit , %	69	86	80	_	_	53	67	88	83
Atterberg limits	Plastic limit , %	24	28	29	_		24	23	30	26
Att.	Plasticity index	45	58	51		. 🛏	29	44	58	57
	Gravel , %	5	0	1	3	11	0	0	0	0
<u>.s</u>	Sand , %	20	1	4	39	68	9	5	3	4
Grain size analysis	Silt , %	22	15	17	9	4	21	27	13	9
e au	Clay & colloid , %	53	84	78	49	17	70	68	84	87
rsiz	Max. diameter, mm	9.52	2.00	9.52	4.76	4.76	4.76	4.76	4.76	4.76
3rair	Diam. at 60%	0.013	-		0.18	0.80	0.0019	_	-	
	Diam. at 10%	-	_		_	_		-	_	_
Visual	soil description	Clay	Clay	Clay	Clayey Sand	Clayey Sand	Silty Clay	Silty Clay	Clay	Clay
Unifie	ed soil classification	СН	СН	СН	(CL)	(SC)	СН	СН	СН	СН
₹ 5	Undisturbed sample, kg/cm²									
fine	Remoulded sample, kg/cm ²									
Unconfined compression	Sensitivity ratio									
58ª	Strain at failure,%									
· s	Angle of internal friction									ļ
Triaxial	internal friction Cohesion, kg/cm² Condition of									
	Grannage									
Soli-	Preconsolidation pressure, kg/cm²									
Consoli- dation	Compression index	(
	Angle									
Shear test	Cohesion, kg/cm²								<u> </u>	<u> </u>
\ \omega_\pi	Condition of Drainage									
Rema	arks:									

No. SUMMARY OF SOIL TEST F-1 Project ____ Bore Hole Location of project. Sample no. P - 10P-11 P-12 P-13 P - 14P-15 22.00 m 22.45 m 28.00 m 28.45 m 30.00; 30.35 20.00 m 20.45 m 24.00m 24.45m 26.00m 26.45m Sample depth Disturbed Disturbed Disturbed Disturbed Disturbed Orsturbed Disturbed Disturbed Disturbed Condition of sample Undisturbed Natural water content. 61.3 25.3 26.2 25.6 18.2 25.8 Specific gravity 2.717 2.590 2.623 2,621 2.634 2.689 Wet density, g/cm3 (1.60)(2.02)(2.01)(1.89)(1.92)(2.06)Dry density, g/cm3 (0.99)(1.60)(1.50)(1.53)(1.74)(1.61)Natural void ratio (1.74)(0.61)(0.64)(0.75)(0.72)(0.55)Degree of saturation, % (100)(96)(100)(92)(93)(89)Liquid limit , % 45 83 Atterber limits Plastic limit . % 24 20 Plasticity index 57 25 Gravel , % 0. 2 4 8 4 0 Sand 2 79 70 77 2 , % 86 Grain size analysis Silt 16 7 2 11 , % 10 69 12 Clay & colloid 82 8 11 9 29 Max, diameter, mm 2.00 4.76 9.52 9.52 9.52 2.00 Diam. at 60% 0.0010 0.50 0.43 0.29 0.22 0.027 0.060 0.017 Diam. at 10% 0.0033 Clayey Clayey Clayey Silty Clay Clayey Clay Visual soil description Sand Sand Sand Sand Unified soil classification CH (SC) SW (SM) (SM) CL Undisturbed compression sample, kg/cm² Unconfined Remoulded sample, kg/cm² Sensitivity ratio Strain at failure,% Angle of internal friction compres **Triaxial** Cohesion, kg/cm² sion Condition of drainage Consoli-dation Preconsolidation pressure, kg/cm² Compression index Angle internal friction Cohesion, kg/cm² Condition of Drainage Remarks:

No.			SUMMA	RY OF S	OIL TEST	•				
	Project				Bo	re Hole	F-2			
	Location of pro								-	
Sample	no.	P-1	P-2	P-3	P-4	P-5	P-6	P-7	P-8	P-9
Sample	depth	2.00	4.45 %		8.00 -	10.00 m	12.27.	14.00 m 14.25 m	16.00m 16.23m	18.00 18.25
Condition	on of sample	Distribed XXXXXX	Distorbed UK/X/X/Xect	Disturbed (XXXXXX)	Disturbed Ui XiXXXX	Disturbed UXIXIXIXX	Disturbed V&XXXXX	Distribed XXXXXX	Distarbed UXXXXXXX	Disturbed
Natural	water content, %	19.3	13.2	19.8	13.6	14.0	16.3	16.2	16.2	14.2
Specific	c gravity	2.634	2.634	2.626	2.635	2.644	2.690	2.677	2.649	2.662
Wet den	nsity, g/cm³	(2.05)	(2.11)	(2.10)	(2.11)	(2.11)	(2.12)	(2.12)	(2.11)	(2.11)
Dry der	nsity, g/cm³	(1.72)	(1.86)	(1.75)	(1.86)	(1.85)	(1.82)	(1.82)	(1.82)	(1.85)
Natural	void ratio	(0.53)	(0.41)	(0.50)	(0.42)	(0.43)	(0.48)	(0.47)	(0.46)	(0.44)
Degree	of saturation , %	(95)	(84)	(100)	(86)	(86)	(92)	(93)	(94)	(86)
erg	Liquid limit , %	-	-		-	-		- !	-	45
Atterberg limits	Plastic limit , %	-	-	-	_	-	_	_	-	16
At	Plasticity index			_	-	-	_			29
	Gravel , %	4	35	2	16	9	7	1	2	0
Sis	Sand , %	68	44	74	62	69	40	32	39	22
naly	Silt , %	14	5	10	4	3	27	30	32	35
Grain size analysis	Clay & colloid , %	14	16	14	18	19	26	37	27	43
in si	Max. diameter, mm	4.76	9.52	4.76	4.76	4.76	9.52	4.76	9,52	4.76
Gra	Diam. at 60%	0.32	1.80	0.41	1.30	1.30	0.13	0.041	0.090	0.025
ļ	Diam. at 10%	0.0010	1 1		-	-	0.0010	-		_
	soil description					l Clayey Sand with grave l	Clayey Sand with gravel	Silty Sand	Silty Sand	Clayes Silt
Unified	soil classification	(SC)	(SC)	(SC)	(SC)	(SC)	(CL)	(CL)	(CL)	CL
P9 <u>101</u>	Undisturbed sample, kg/cm ²	 								
nfin	Remoulded sample, kg/cm ²		<u> </u>							
Unconfined compression test	Sensitivity ratio			·						
- O +-	Strain at failure,%									
cial ores - test	Angle of internal friction		 		 		ļ		<u>. </u>	<u> </u>
Triaxial compres sion test	Cohesion, kg/cm²	-		·						L
,	ut utiliago									<u></u>
Consolidation test	Preconsolidation pressure, kg/cm ²				L					
Con	Compression index									ļ
 	internal friction					·			h 	<u></u>
Shear	Condition of									
	Condition of Drainage									·
Remark	.s:									:

SUMMARY OF SOIL TEST No. F-2 Project Bore Hole .. Location of project_ Sample no. P-12 P-13 P-10 P-11 25.00 25.27 22.00 ... 24.00 m 24.29 m 20.00_m Sample depth 20.22 22.29 6 Disturbed Distorbed Disturbed Disturbed. Disturbed Condition of sample KWWWJ KKKKK **WWWWX** XXXXXX Undisturbed Undisturbed Undisturbed Natural water content, 16.2 18.7 18.1 18.8 Specific gravity 2.683 2.652 2.639 2.639 Wet density, g/cm³ (2.13)(2.15)(2.10)(2.09)Dry density, g/cm³ (1.83)(1.81)(1.78)(1.76)Natural void ratio (0.46)(0.46)(0.48) (0.50)Degree of saturation, % (94)(100)(99)(99)Liquid limit 48 47 , % Atterber limits Plastic limit , % 15 17 Plasticity index 33 30 Gravel , % 0 1 2 Sand , % 22 65 71 67 Grain size analysis Silt , % 16 14 12 37 Clay & colloid , % 41 18 18 15 Max, diameter, mm 4.76 4.76 4.76 4.76 Diam. at 60% 0.016 0.21 0.17 0.34 Diam, at 10% Clayey Clayey Silty Silty Visual soil description <u>Silt</u> Silt Sand Sand Unified soil classification CL SC (SC)(SC) Undisturbed Unconfined compression test sample, kg/cm² Remoulded sample, kg/cm² Sensitivity ratio Strain at failure.% Angle of sion test internal friction compres Triaxial Cohesion, kg/cm² Condition of drainage Preconsolidation pressure, kg/cm² Compression index Angle internal friction Shear test Cohesion, kg/cm² Condition of Drainage Remarks:

No.			SUMMA	RY OF S	OIL TEST	•				
	Project Location of pro				Bo	re Hole	F-3		,	
Sample		P-1	P-2	P-3	P-4	P-5	P-6			<u> </u>
Sample		2.00 -	4.00 m	5.00 m	8.00 -	10.00 m	11.00 m	m	m	<u> </u>
<u> </u>	on of sample	2.45 m	Disturbed	6.27 h	B.35 m	Disturbed	Discurbed	Disturbed	i m Disturbed	Disturbed
·	water content, %	16.4	15.1	 	13.6	22.0	21.3	Undeturbed	Undisturbed	Undslighed
Specific	gravity	2.640	2.624	 	2.642	2.702	2.661			
Wet der	nsity, g/cm³	(2.03)	(2.13)	 	(2.15)	(1.97)	(2.06)			
Dry der	nsity, g/cm³	(1.74)	 	(1.98)	[(1.61)	(1.70)			
Natural	void ratio	(0.51)	(0.42)	∤ ` 	(0.40)	(0.67)	(0.57)			
Degree	of saturation , %	(84)	(95)	(91)	(91)	(88)	(100)			
5	Liquid limit , %	-		-		58	57			
Atterberg limits	Plastic limit , %	-	_	-	<u>.</u>	22	20			
Atte	Plasticity index	-		-	-	36	37			
	Gravel , %	1	8	15	1	0	0			
.s	Sand , %	68	69	60	46	8	14			<u> </u>
SÁ JE	Silt , %	13	4	6	22	51	48			
9	Clay & colloid , %	18	19	19	31	41	38			- -
Grain size analysis	Max. diameter, mm	4.76	4.76	4.76	4.76	4.76	4.76			
Grain	Diam, at 60%	0.25	0.75	1.18	0,15	0.015	0.024			
	Diam, at 10%	-	-	+	#	-				
Visual s	oil d es cription	Clayey Sand	Clayey Sand with gravel	Clayey Sand with gravel	Clayey Sand with gravel	Silty Clay	Silty			
Unified	soil classification	(SC)	(SC)	(SC)	(CL)	СН	СН			
po	Undisturbed sample, kg/cm²									
ofine ress	Remoulded sample, kg/cm ²						`			
Unconfined compression test	Sensitivity ratio		-							
> 5 ₹	Strain at failure,%									
A ss.	Angle of internal friction									
Triaxial compres- sion test	Cohesion, kg/cm²					•				
	u a u i a u i a u									
Consolidation test	Preconsolidation pressure, kg/cm²									
S # 8	Compression index									
<u> </u>	Angle internal friction									
Shear	Cohesion, kg/cm²									
	Condition of Drainage									·····
Remark	(\$:									

. No.	·		SUMMA	RY OF S	SOIL TEST	Γ				
	Project Location of pr				Во	ore Hole	F - 4	4	_	
Sample		P-1	P-2	P-3	P-4	P-5	P-6	P - 7	 P-8	P-9
Sample		0.00	2.00 **	4.00	6.00	8.00	10.00	12.00	14.00	15.00
	ion of sample	0.45 ⁿ	Distribution XIXXXXX	4.26 m	Disturbed	8.32 in the state of the state	10.37 Deturned	12.29 XXXXX	14.29 ⁶	15.25° Distribut XXXXXX
	I water content, %	17.0		12.9	22.2	18.4	16.4	15.6	15.6	12.4
Specifi	ic gravity	2.648	 	2.626	2.631	2.629	2.629	2.623	2.632	2.636
Wet der	nsity, g/cm³	(2.15)	(1.99)	(2.14)	(2.03)	(2.07)	ļ	(2.12)	(2.12)	
Dry de	nsity, g/cm³	(1.84)	(1.70)	(1.90)	(1.66)	(1.75)	(1.78)	(1.83)	(1.83)	(1.90)
Natural	l void ratio	(0.44)	(0.55)	(0.39)	(0.58)	(0.50)	(0.48)	(0.43)	(0.44)	(0.39)
Degree	of saturation , %	(100)	(82)	(88)	(100)	(96)	(90)	(95)	(94)	(84)
Б.	Liquid limit , %	-	, _				_			
Atterberg limits	Plastic limit , %	-	-		_	_			-	
Atte	Plasticity index	_	-	-	-		-	-		_
	Gravel , %	31	0	10	0	1	0	1	7	32
<u>.s</u>	Sand , %	56	78	69	72	76	77	77	75	50
alys	Silt , %	3	8	5	10	5	7	5	1	3
e an	Clay & colloid , %	10	14	16	18	18	16	17	17	15
Grain size analysis	Max. diameter, mm	9.52	4.76	9.52	4.76	4.76	4.76	4.76	4.76	9.52
Grai	Diam. at 60%	1.50	0.38	0.50	0.18	0.42	0.38	0.39	0.88	1.50
	Diam, at 10%	0.0040	-	-	_	_	-	_	-	0.0010
Visual s	soil description	Clayey Sand with_gravel	Silty Sand	Clayey Sand with gravel	Clayey Sand	Ctayey Sand with gravel	Clayey Sand	Clayey Sand	Clayey Sand with gravel	Clayey Sand with gravel
Unified	l soil classification	(SC)	(SC)	(SC)	(SC)	(SC)	(SC)	(SC)	(SC)	(SC)
Unconfined compression test	Undisturbed sample, kg/cm² Remoulded sample, kg/cm²									
Unco comp test	Sensitivity ratio									
→	Strain at failure,%							///		
cial ores - test	Angle of internal friction			_						
										-
Tria com sion	ar arrage									
Consolidation test	Preconsolidation pressure, kg/cm²									
Con datie test	Compression index									
}	Angle internal friction					:				
Shear test	Cohesion, kg/cm²									
	Condition of Drainage									
Remark	s:						·			
	1	i								

No.			SUMMA	RYOFS	OIL TEST	г 				
	Project				Во	re Hole	F-5		-	
Sample	no.	P-1	P-2	P-3	P-4	P-5	P-6	P-7		
Sample	depth	2.00	4.00	5.00	6.00	8.00	10.00	11.00	m	
	on of sample	2.45 de Distribuid	4.31 h	Disturbed	6.45 h	Distorbed	Disturbed	Disturbed	Disturbed	Distarbed
Natural	water content, %	14.4	10.8	12.1	18.9	14.7	14.2	<u> </u>	次次次次次	XXXXX
Specific	c gravity	2.616	2.620	2.628	2.626	2.626	2.624	2.630		
Wet der	nsity, g/cm³	(2.00)	(2.12)	(2.10)	(2.00)	(2.13)	(2.18)	(2.13)		
Dry dei	nsity, g/cm³	(1.75)	(1.91)	(1.87)	(1.68)	(1.86)	(1.91)	(1.90)		
Natural	void ratio	(0.50)	(0.37)	(0.40)	` 	(0.41)	(0.37)	(0.39)		
Degree	of saturation , %	(76)	(76)	(80)	(88)	(93)	(99)	(83)		
	Liquid limit , %	_			- (00)	1 (33)	(33)	(03)		
Atterberg Iimits	Plastic limit , %		_	*************						
Atte Iim	Plasticity index			-			-			
	Gravel , %	9	27	18	<u> </u>	14	2	19		
S	Sand , %	68	57	56	67	65	77	61		·
afysi	Silt , %	6	3	11	14	4	5	3		
Grain size analysis	Clay & colloid , %	17	13	15	18	17	16	17		
size	Max. diameter, mm	9.52	9.52	9.52	4.76	9.52	4.76	9.52		
arair	Diam, at 60%	0.56	1.20	0.95	0.27	0.90	0.42	1.00		
O	Diam, at 10%	-		0.0013		-	-			
Visual	soil description	Clayey Sand	Clayey Sand With Gravet	Clayey Sand	Clayey	Clayey Sand	Clayey Sand	Clayey Sand		
Unified	soil classification	(SC)	(SC)	(SC)	(SC)	With Gravel (SC)	(SC)	(SC)		
Unconfined compression test	Undisturbed sample, kg/cm ² Remoulded sample, kg/cm ²									
Uncor compr test	Sensitivity ratio									
⊃ 8 ₽	Strain at failure,%									
s.	Angle of internal friction							.		
Triaxial compres - sion test	Cohesion, kg/cm²									
	Condition of drainage									
Consolidation test	Preconsolidation pressure, kg/cm²									
Con dati test	Compression index									·····
	Angle internal friction									<u></u>
Shear test	Cohesion, kg/cm²									
	Condition of Drainage				-					<u></u>
Remark	(8:	<u>-</u>	<u> </u>		. 					

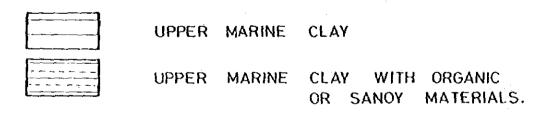
No.			SUMMA	ARY OF S	OIL TES	Τ			_	•
	Project Location of pr				Вс	ore Hole	F-(6	-	
Sample	e no.	P-1	P-2	P-3	P-4	P-5	P-6	1		T
Sample	depth	2.00	4.00 0	6.00 m	8.00 m 8.45 h	10.00 "	12.00	() (r) (1) (n)	en t m	
Conditi	ion of sample	Disturbed XXXXXXXXXX	Distribed MXXXXX	Disturbed	Disturbed (XiXsXiXiXi	Disturbed XxXXXX	Disturbed XiXXXXXX	Disturbed Undistorbed	Disturbed Undisturbed	Disturbed Undisturbed
Natural	water content, %	17.8	17.6	16.2	17.6	15.6	12.3			
Specific	c gravity	2.634	2.638	2.632	2.649	2.653	2.639			
Wet der	nsity, g/cm³	(2.12)	(2.06)	(2.12)	(2.14)	(2.08)	(2.07)			ļ
Dry der	nsity, g/cm³	(1.80)	(1.75)	(1.82)	+'	(1.80)	(1.84)			
Natural	void ratio	(0.46)	(0.51)	(0.44)	(0.46)	(0.47)	(0.43)			
Degree	of saturation , %	(100)	(92)	(96)	(100)	(87)	(75)			
<u>5</u> ,	Liquid limit , %	-	 -	 	-	-	-			
Atterberg limits	Plastic limit , %	-	_	pag		_	_			
Atte lin	Plasticity index	_	_	***************************************	_	_	-			
	Gravel , %	2	2	11	6	11	22			
Ŋ	Sand , %	7.7	74	72	66	69	62			
alysi	Silt , %	5	6	2	8	2	5			
in size and	Clay & colloid , %	16	18	15	20	18	11			
	Max. diameter, mm	4.76	4.76	9.52	9.52	4.76	9.52			
irair	Diam. at 60%	 	0.37	0.53	0.34	0.70	1.15			
· ·	Diam. at 10%	_		_	_	-	0.0028			
Visual s	soil description	Clayey Sand	Clayey Sand	Clayey Sand with gravel	Clayey Sand with arayel	Ciayey Sand				
Unified	soil classification	(SC)	(SC)	(SC)	(SC)	(SC)	(SC)			
 ਰ ਫ	Undisturbed sample, kg/cm²					\ _ /				
Unconfined compression test	Remoulded sample, kg/cm²									
Uncon compr test	Sensitivity ratio						,			
⊋ 8 \$	Strain at failure,%									
st .	Angle of internal friction									
Triaxial compres - sion test	Cohesion, kg/cm²									
	Condition of drainage									
Soli- no	Preconsolidation pressure, kg/cm²									
Consolidation	Compression index									-1
	Angle internal friction									
Shear test	Cohesion, kg/cm²					,				
S #	Condition of Drainage	~~								,
Remark					<u></u> L	— —				

No.			SUMMARY OF SOIL TEST							
	Project Location of pro		Bore Hole F-7							<u></u>
Sample		P-1	P-2	P-3	P-4	P-5	P-6	P-7		
Sample	depth	2.00 _m 2.45 ^m		6.39 🐇	8.45		12.28	13.24		
Conditi	ion of sample	Disturbed 以及 从 从 从	Disturbed XXXXXXes	Disturbed UK/KK/K/K/K	Disturbed McXiXXXX	Disturbed U.XIXIXIX	Disturbed UK/KeXirXeX	Disturbed 1X:1X:4X.1X;3X	Distroped Undisturbed	Distorbed Undistarbed
Natural	l water content, %	20.1	13.1	21.5	16.5	16.4	14.8	14.6		
Specifi	c gravity	2.623	2.625	2.664	2.627	2.632	2.646	2.636	,	
Wet der	nsity, g/cm³	(1.98)	(2.05)	(2.00)	(2.02)	(2.05)	(2.09)	(2.19)		
Dry de	nsity, g/cm³	(1.65)	(1.81)	(1.65)	(1.73)	(1.76)	(1.82)	(1.91)		
Natural	l void ratio	(0.59)	(0.45)	(0.68)	(0.52)	(0.49)	(0.45)	(0.38)		
Degree	of saturation , %	(89)	(77)	(88)	(84)	(87)	(86)	(100)		
Đ	Liquid limit , %	-	-	~	-	_	-	-		
Atterberg limits	Plastic limit , %	_	_		-	_	_	_		
Att	Plasticity index	-		-	-	_		_		
	Gravel , %	2	23	2	4	28		0		
.s	Sand , %	73	55	57	74	58	30	39	***************************************	
iálys	Silt , %	9	6	12	6	4	24	28		
e an	Clay & colloid , %	16	16	29	16	10	45	33		
ı siz	Max. diameter, mm	4.76	9.52	4.76	4.76	9.52	4.76	4.76		
Grain size análysis	Diam. at 60%	0.25	0.89	0.24	0.48	1.30	 	0.068	· · · · · · · · ·	
	Diam. at 10%	0.0014	0.0010	-	-	0.0047		•••		
Visual s	soil description	Clayey Sand with grave!	Clayey Sand	Clayey Sand with gravel	ClayeySand with gravel	Clavey Sand	Silty	Silty Sand		
Unified	soil classification	(SC)	(SC)	(SC)	(SC)	(SC)	(CL)	(CL)		
₹ 8 0	Undisturbed sample, kg/cm ²									
fine essi	Remoulded sample, kg/cm ²	 								
Unconfined compression test		 						 		
783	Strain at failure,%				f					
s.	Angle of internal friction									
Triaxial compres - sion test	Cohesion, kg/cm²						ļ			
	Condition of drainage						· · · · · · · · · · · · · · · · · · ·			
. j c	Preconsolidation pressure, kg/cm²									
Consolidation test	Compression index						· · · · · · · · · · · · · · · · · · ·			
	Angle internal friction	ļ	 							
Shear test	Cohesion, kg/cm²					ļ,,		├ ──		
S at	Condition of Drainage				<u></u>					
Remark		[1 	— - <u>-</u> <u>-</u>							
ĺ										

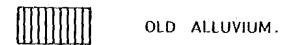
·No.			SUMMA	RY OF S	OIL TEST	Γ			·	
	Project Location of pro					re Hole	F-8			
Sample	no.	P-1	P-2	P-3	P-4	P-5	P-6	P-7	P-8	
Sample depth		2.00	4.00 m 4.45 h	6.00 m	8.00		11.00 m	24.00 ₇ 24.35	25.00 m 26.12 m	17
Conditi	on of sample	Disturbed	Disturbed ViXXIXIX	Disturbed (XXXXXXXX	Distorbed XXXXXXXXXX	Disturbed UNIX OF NEXT	Disturbed Winds (A)	Disturbed XWXWX0	Disturbed UXXXXXXX	Disturbed Undsturbed
Natural	water content, %	81.7	81.7	68.8	17.6	18.3	16.4	12.0	12.3	
Specific	c gravity	2.689	2.698	2.705	2.657	2.646	2.642	2.629	2.630	
Wet der	nsity, g/cm³	(1.56)	(1.59)	(1.60)	(2.10)	(2.02)	(2,07)	(2.11)	(2.11)	
Dry der	nsity, g/cm³	(0.86)	(0.88)	(0.95)	(1.79)	(1.71)	(1.78)	(1.88)	(1.88)	
Natural	void ratio	(2.13)	(2.10)	(1.85)	(0.49)	(0.55)	(0.49)	(0.40)	(0.40)	
Degree	of saturation , %	(100)	(100)	(100)	(96)	(88)	(89)	(80)	(81)	
rg	Liquid limit , %	98	90	86	-	-	_	-	-	
Atterberg limits	Plastic limit , %	29	27	27	_	-	_	i -	_	
Atte	Plasticity index	69	63	59	_	-	_	_	-	
	Gravel , %	0	0	1	7	6	16	42	29	
.s	Sand , %	1	1	4	60	62	58	39	52	
Grain size analysis	Silt , %	20	22	24	6	6	5	7	7	
	Clay & colloid , %	79	77	71	27	26	21	12	12	
n siz	Max. diameter, mm	2.00	2.00	9.52	4.76	9.52	9.52	9.52	9.52	
Grai	Diam. at 60%	0.0018		0.0020	0.71	0.63	0.92	2.10	1.50	
	Diam. at 10%	-	-	~		_	<u></u>	1	0.0015	
Visual s	soil description	Clay	Clay	Clay	Clayey Sand With Gravel	Clayey Sand With Gravel			Clayey Sand With Gravel	
Unified	soil classification	СН	СН	CH	(SC)	(SC)	(SC)	(GC)	(SC)	
sion	Undisturbed sample, kg/cm ² Remoulded		:							
onfir	sample, kg/cm ²	ļ		·			 _			
Unconfined compression test	Sensitivity ratio	 								,
	Strain at failure,% Angle of									
rial ores - test	internal friction									
Triaxial compres sion test	Cohesion, kg/cm ²									
1	Preconsolidation									
Consolidation test	pressure, kg/cm ² Compression index					<u></u>				
	Angle	<u> </u>								
Shear test	Internal friction Cohesion, kg/cm ²									
ج ڊ ڊ	Condition of					<u></u>				
Remark	Drainage (\$:				<u> </u>	<u> </u>	·····			

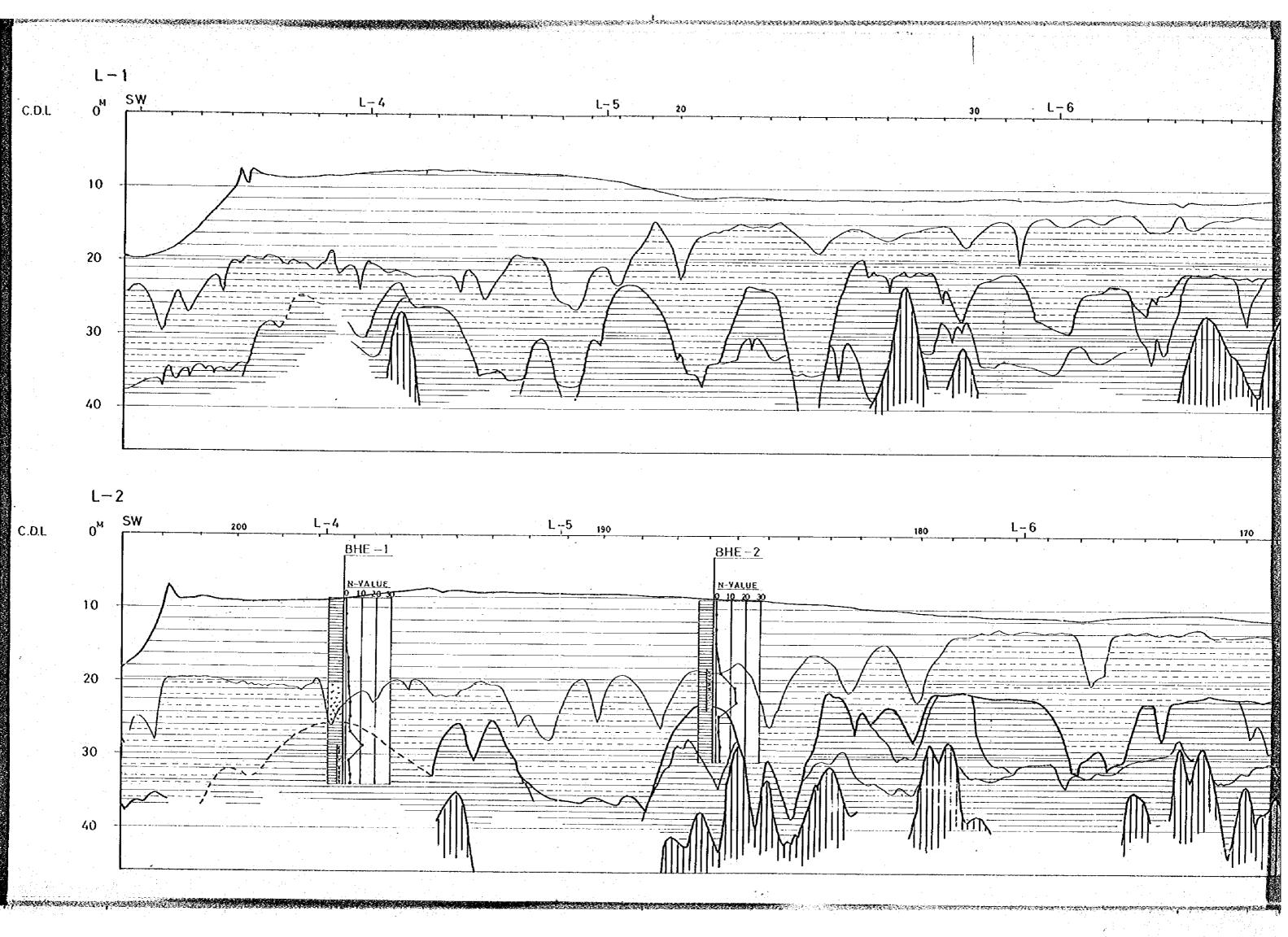
No.			SUMMA	RY OF S	OIL TEST	<u>.</u>				
-	Project Location of pro					re Hole	F-	9	•	
Sample	no.	P-1	P-2	P-3	P-4	P-5	P-6	P-7		
Sample	depth	2.00	4.00 m 4.35 d	6.00 6.31	8.00 m 8.41 m	10.00	12.00	14.00 ₀	m +	,
Condition	on of sample	Distorted MXXXXXX	Disturbed (XXXXXX)	Disturbed MWXWXI	Disturbed - UX(X)X(XXX	Distorbed UXUKXVXX	Disturbert XXXXXXXX	Distorbed XiXiXiXiXiXd	Disturbed Undisturbed	Disturbed Undisturbed
Naturai	water content, %	19.0	21.6	19.8		13.6	13.7	14.4		
Specific gravity		2.631	2.644	2.630	2.647	2.610	2.629	2.626		
Wet den	isity, g/cm³	(2.02)	(1.98)	(2.10)	(1.97)	(2.13)	(2.15)	(2.13)	ļ	
Dry der	nsity, g/crn ³	(1.70)	(1.63)	(1.75)	(1.62)	(1.88)	(1.89)	(1.86)	1100,	
Natural	void ratio	(0.55)	(0.62)	(0.50)	(0.63)	(0.39)	(0.39)	(0.41)		
Degree	of saturation , %	(91)	(92)	(100)	(90)	(91)	(92)	(92)		
£.	Liquid limit , %	51	53	48	49	-				
Atterberg limits	Plastic limit , %	19	17	21	14	_	_	-		·
Attu	Plasticity index	32	36	27	35	-		-		
	Gravel , %	5	0	0	0	2	6	4		
S	Sand , %	36	20	33	37	65	72	75		,
alys	Silt , %	24	38	40	36	8	6	5	Person	
e an	Clay & colloid , %	35	42	27	27	25	16	16		
r siz	Max. diameter, mm	4.76	4.76	2.00	4.76	4.76	9.52	4.76		
Grain size analysis	Diam. at 60%	0.077	0.035	0.063	0.063	0.49	0.70	0.65		
Diam. at 10%		_	-		-	-	0.0017	0.0017		
Visual s	oil description	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Clayey Sand	Clayey Sand With Gravel	Clayey Sand		
Unified	soil classification	СН	CH	CL	CL	(SC)	(SC)	(SC)		
Unconfined compression test	Undisturbed sample, kg/cm ² Remoulded sample, kg/cm ²									
Uncon compr test	Sensitivity ratio									
283	Strain at failure,%									
st s	Angle of internal friction						·			
Triaxial compres- sion test	Cohesion, kg/cm²									
	Condition of drainage									
Consolidation test	Preconsolidation pressure, kg/cm²		· · · · · · · · · · · · · · · · · · ·							
Con test test	Compression index									
	Angle internal friction									
Shear test	Cohesion, kg/cm²									
~ · · ·	Condition of Drainage				_	****				
Remark	s:					· · · · · · · · · · · · · · · · · · ·				

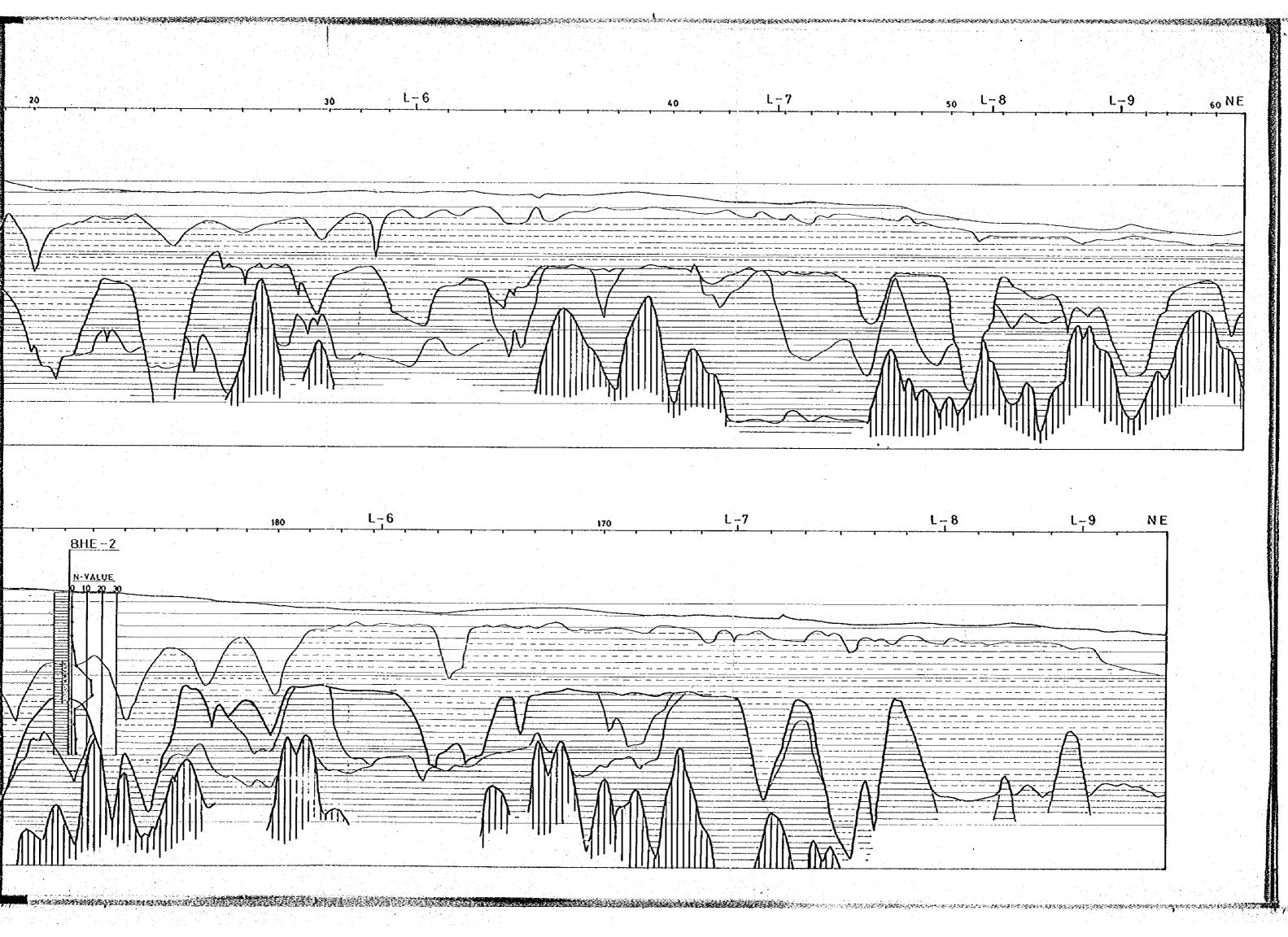
THE STUDY OF FILL MATERIALS

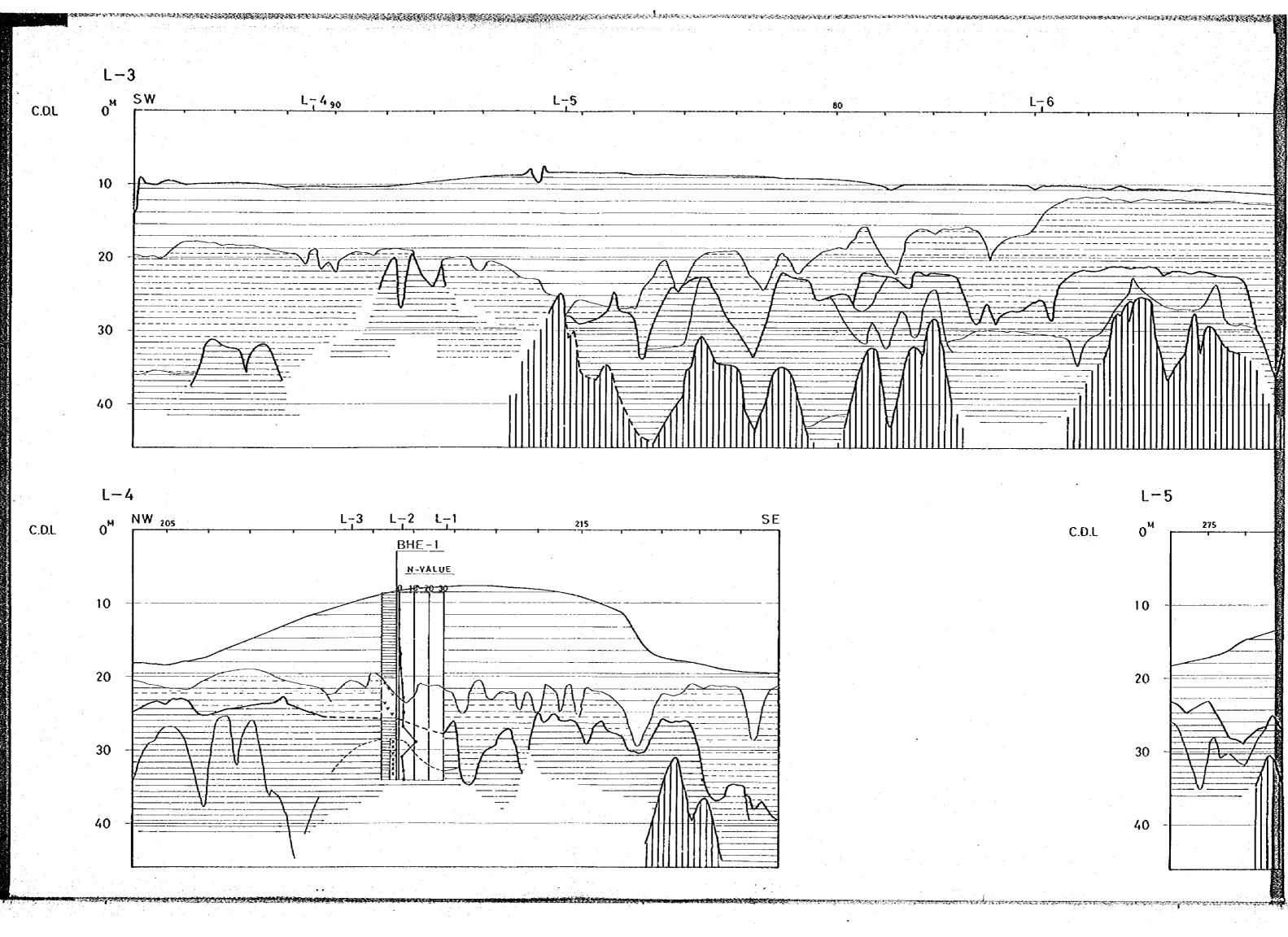

GEOLOGIC CROSS SECTIONS OF OUTER SHOAL

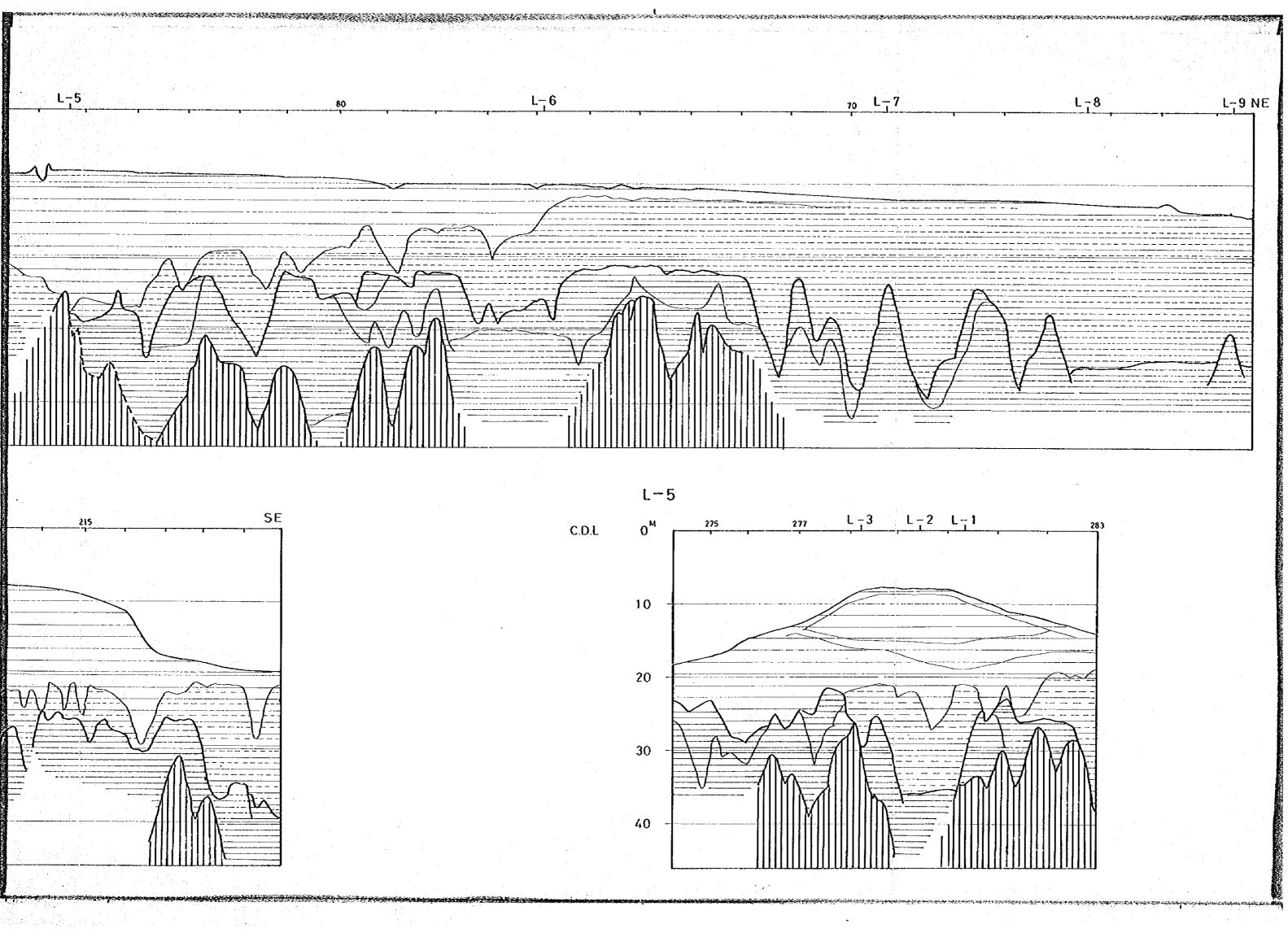
SCALE

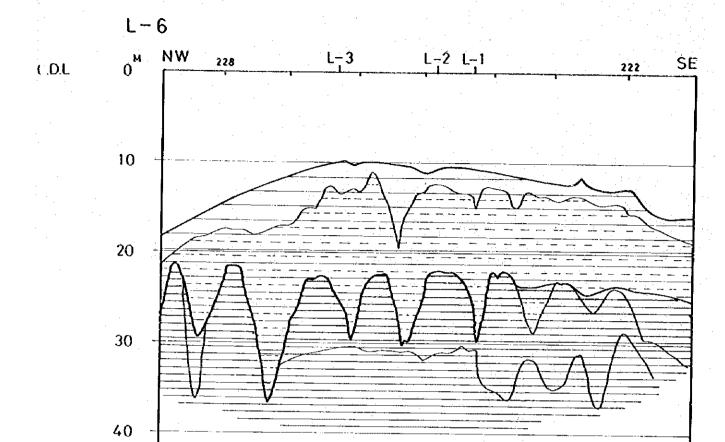

V:1/400

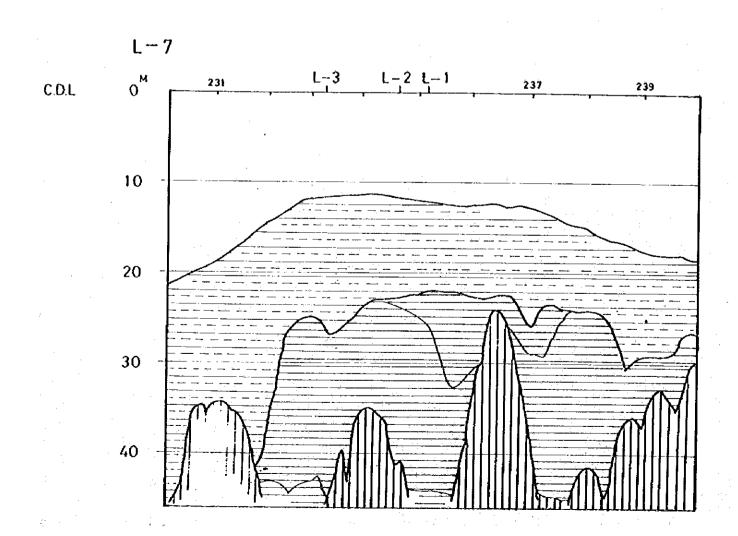

H:1/10,000

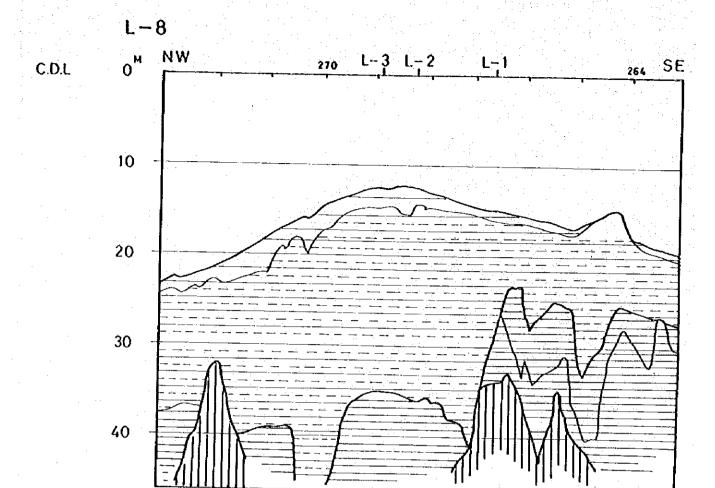

REGEND

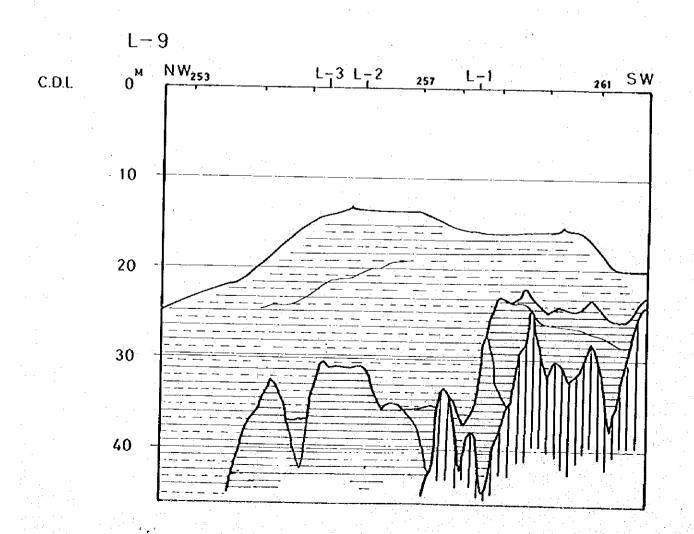


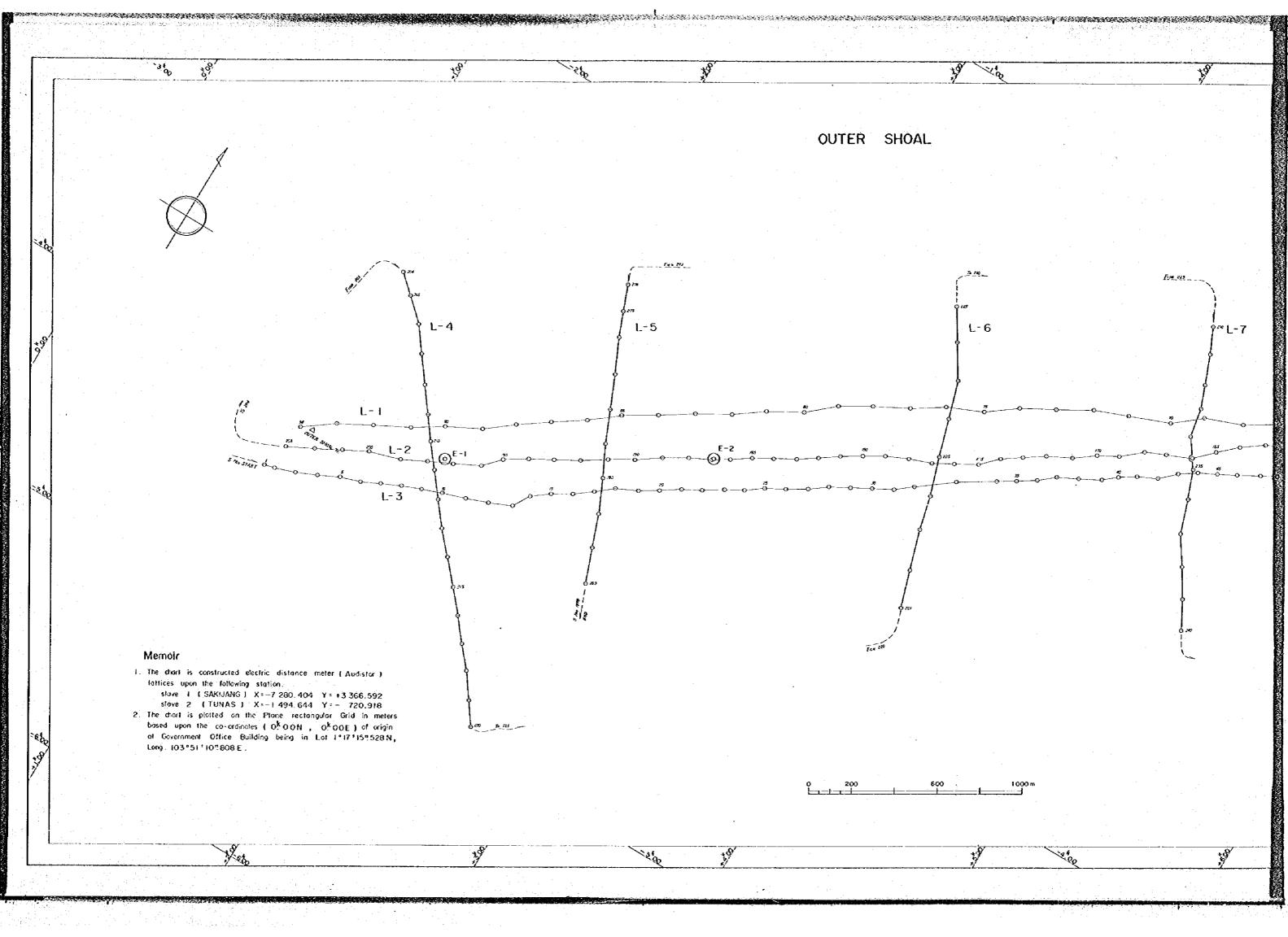


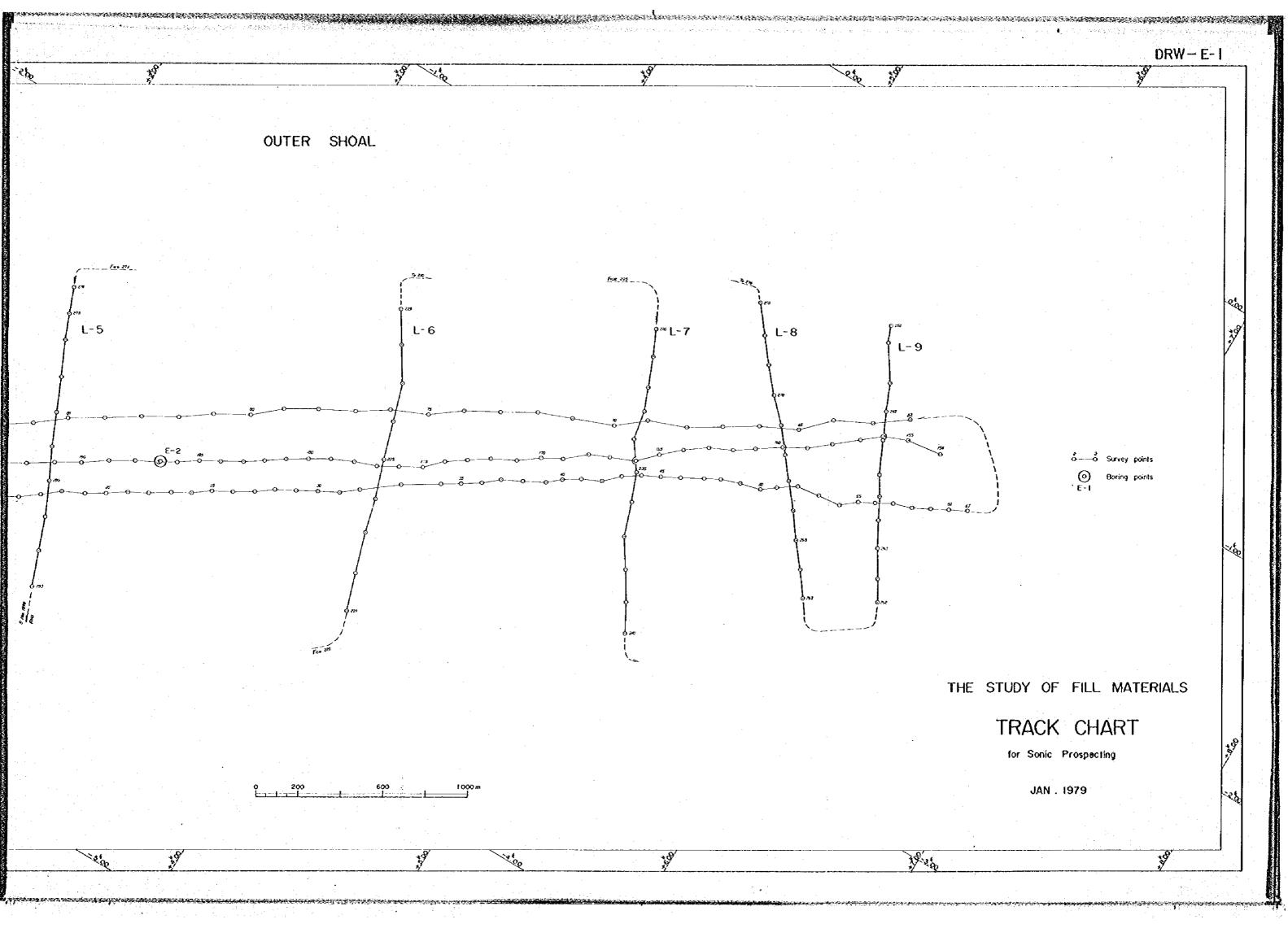


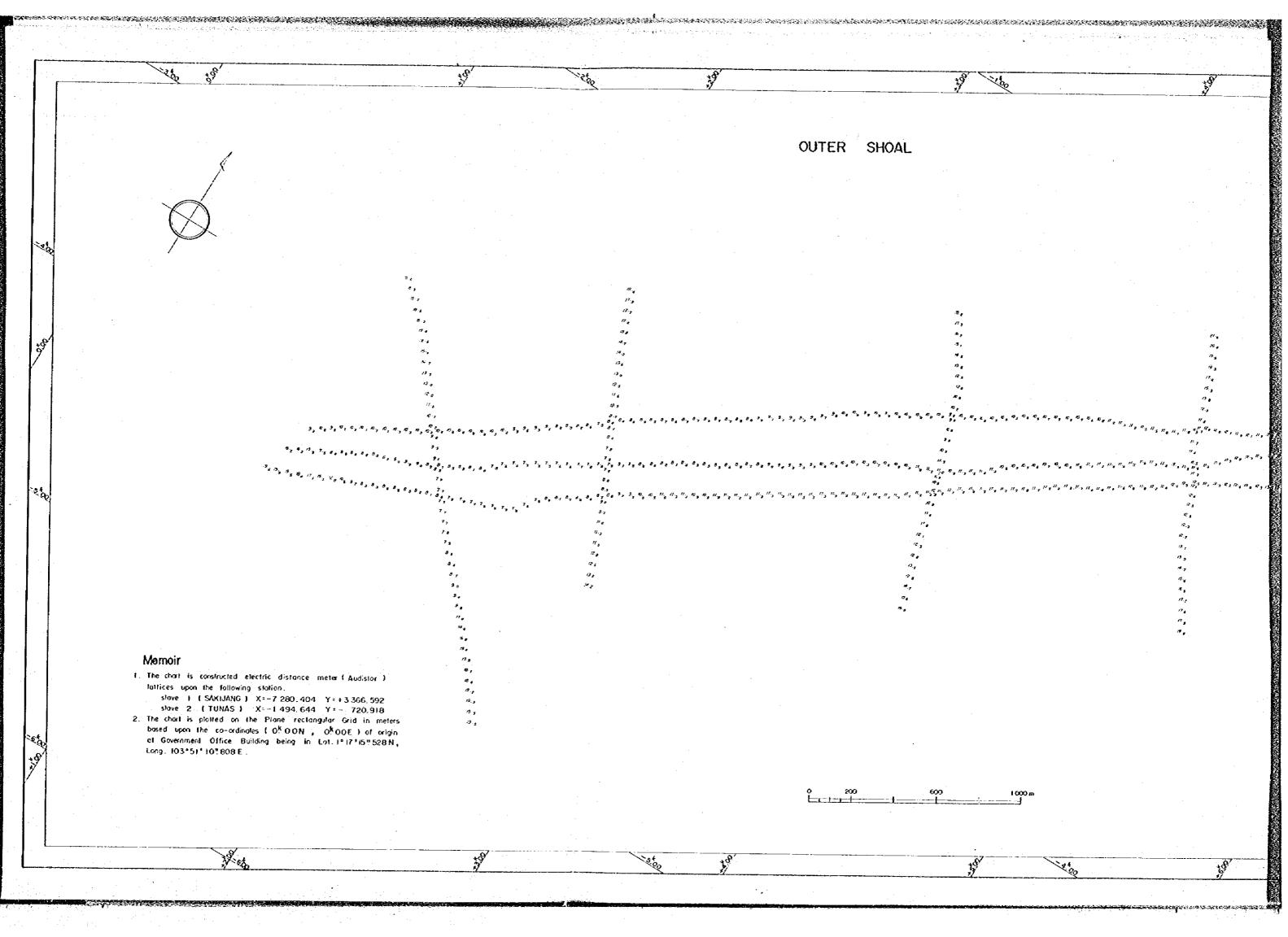


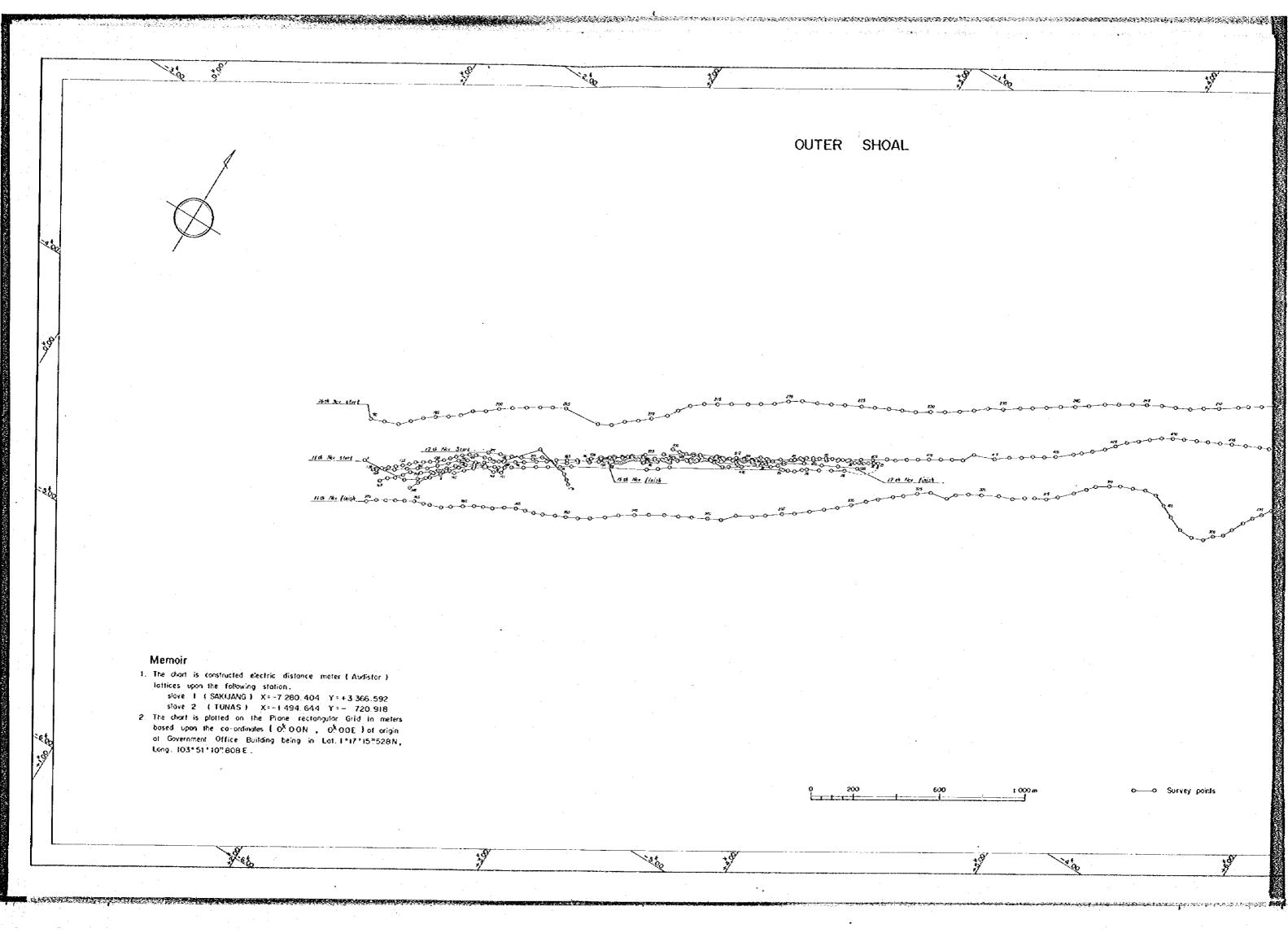





•





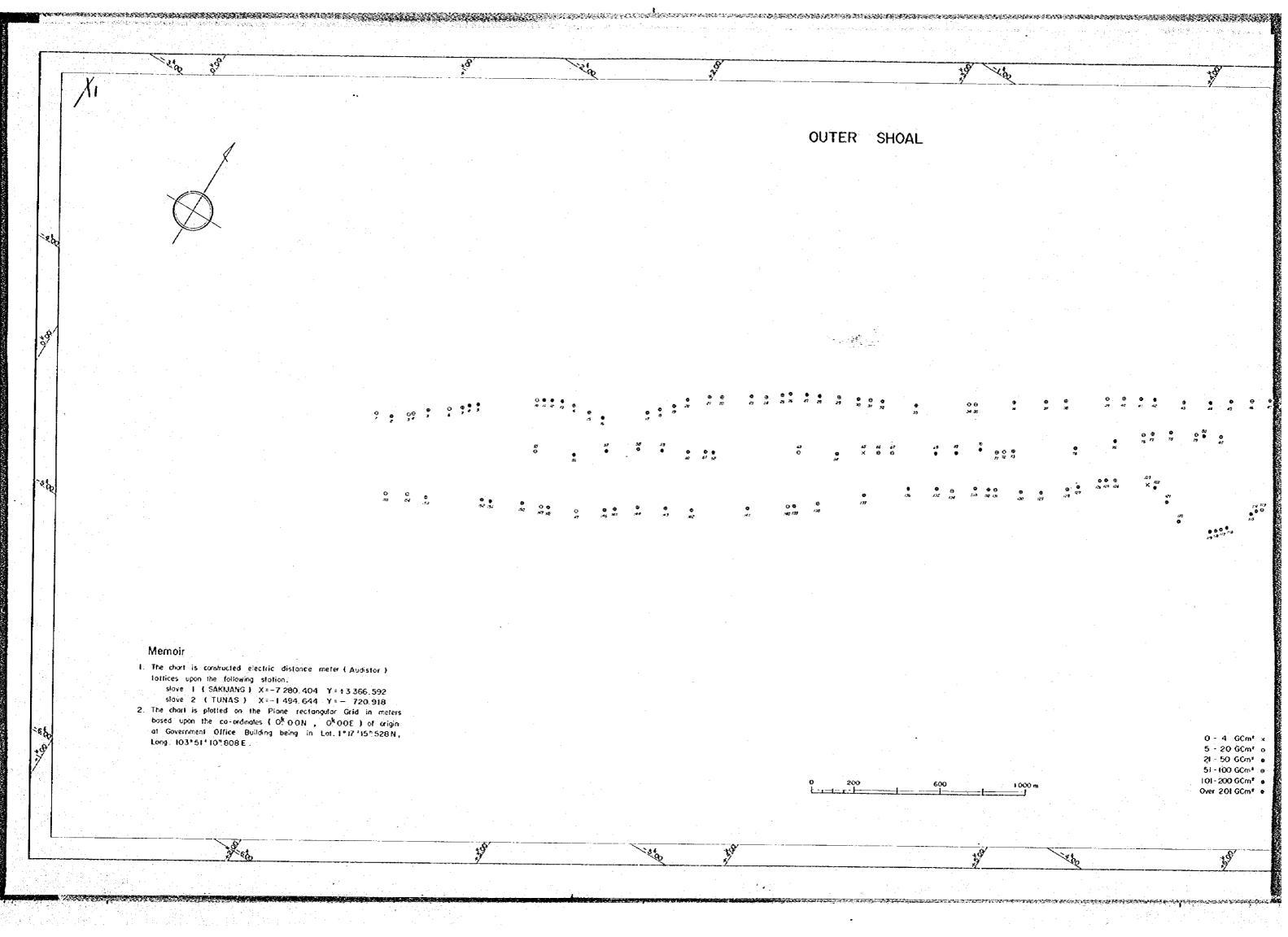

OUTER SHOAL

THE STUDY OF FILL MATERIALS
SOUNDING MAP

JAN. 1979

DEPTHS IN METERS

Reduced to Chart Datum


OUTER SHOAL

THE STUDY OF FILL MATERIALS

TRACK CHART

for Magnetic Detecting

JAN . 1979

OUTER SHOAL

THE STUDY OF FILL MATERIALS

LOCATION MAP OF MAGNETIC ANOMALIES

for Magnetic Detecting

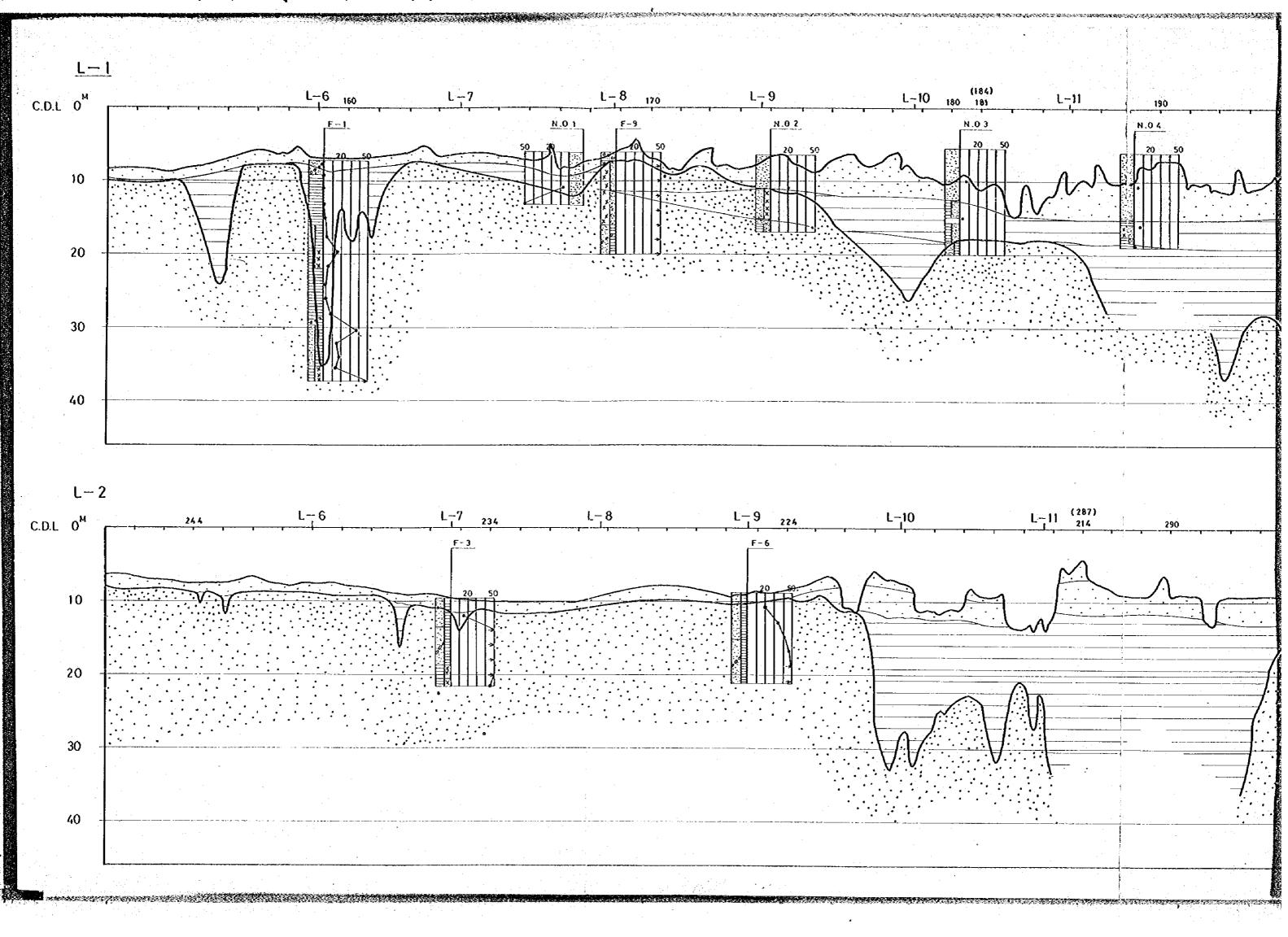
JAN. 1979

0 - 4 GCm² x 5 - 20 GCm² o 21 - 50 GCm² • 51 - 100 GCm² • 101 - 200 GCm² • Over 201 GCm² •

200 600 1000 m

THE STUDY OF FILL MATERIALS

OF OFFSHORE CHANGI


SCALE

V:1/400

H:1/10,000

REGEND

LOOSE	SAND	
UPPER	MARINE	CLAY
OLD AL	LUVIUM	

