
(AF) 50-112

PRELIMINARY SURVEY REPORT ON DEVELOPMENT OF FISHERIES RESOURCES IN

THE PHILIPPINES

MARCH 1976

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団 整計 相 84.-5.21 //8 登録No. 06075 89 开D 受入 月日 **84.-5.21** 登録No. 06075

PRELIMINARY SURVEY REPORT

ON

DEVELOPMENT OF FISHERIES RESOURCES

IN

THE PHILIPPINES

MARCH 1976

JAPAN INTERNATIONAL COOPERATION AGENCY

Preface

The Government of the Republic of the Philippines, which has been exerting great efforts for the development of offshore fishery. It is particularly interested in the exploitation of fisheries resources in the waters east of the Philippines and in the Celebes Sea -- the seas which still remain unexploited -- and has called on the Japanese Government to render cooperation. In response to this request, the Japan International Cooperation Agency dispatched a survey team for 22 days in October 1975 to conduct a preliminary survey with a view to formulating concrete plans for the forthcoming full-fledged survey.

This report is a summary of the preliminary survey and it is printed to serve as a reference for the parties concerned both in the Philippines and Japan.

Availing myself of this opportunity, I wish to express my most sincere appreciation to those in the Philippines and Japan who have extended great cooperation as well as each member of the preliminary survey team.

March 1976

Shin Mu

Shinsaku Hogen President, JICA

		alari dan sana sana sana sana sana sana sana
	and the second secon	
and and a second se	and the second	
	$\mathbf{Contents}$ is a second sec	
	n an the second seco Second second	
I. Introduct	n an	•
1. Circ	umstances Leading to Preliminary Survey	ł
2. Purp	ose of Preliminary Survey	ł
	ods Employed in Preliminary Survey	· 1
4. Orga Secto	nization of Preliminary Survey Team and ors Covered	2
5. Sche	dule for Preliminary Survey	3
II. Particula	\mathbf{rs} . The second s	
1. Outlo	ook of Fisheries	- 5
	nvironment of Fishing Grounds and	· . 5
1-1-		5
1-1		19
1-1-		26
1-1	and the second	39
	tructure of Fisheries and Production	43
1-2-		43
1-2-		52
	larketing and Foreign Trade	55
1-3-		55
1-3-3	•	
		62
1-3-		63
	isheries Administration and Policy	67
] -4 -		67
1-4-2		71
	ral Outline on Skipjack Resources and Bait Fish	73
2-1	Skipjack Resources	73
2 -	1-1 History of Development of Skipjack Fisheries in Philippines	73
2	1-2 Skipjack and Tuna Fisherics in Philippines	76
2-	1-3 Exploitability of Skipjack Resources in Philippines	76
•		

	2-2 Bait Fish	78
	2-2-1 Necessary Conditions for Live Baits	• 78
	2-2-2 Distribution and Exploitability in Philippines of Fish Suitable as Baits	79
	2-2-3 Past Findings on Live Baits in Philippines	83
	2-2-4 Conclusion	84
3.	and the second	85
н н	3-1 Infanta and Its Perimeter	85
	3-2 Davao and Malalag	87
	3-3 Tacloban	92
4.	Plans for Maritime Survey on Bait Fish for Skipjack	94
	4-1 Reasons for Selection of Survey Method	94
· .	4-2 Survey Method	96
	4-2-1 Maritime Survey by Survey Vessel	96
•	4-2-2 Stocking Survey with Preserving net	98
	4-3 Region, Period and Season of Survey	99
	4-4 Dealing of Catches and Dealing of Survey Findings 1	100
	4-5 Procedure Necessary for Collaboration System for Survey	100
	4-6 Tasks To Be Shared by Both Countries and Sharing of Cost	02

-

.

 $(1, \dots, n, n) = \sum_{i=1}^{n} (1, \dots, n) = \sum_{i=1}^{n} ($

٩

Appendices

Introduction

1.

1. Circumstances Leading to Preliminary Survey

The Government of the Republic of the Philippines has been exerting great efforts for the development of offshore fisheries. Above all, the Philippine Government is placing particular emphasis on the development of fisheries in the underdeveloped fishing grounds and the improvement of the fishing methods. In this conjunction, the Government of the Republic of the Philippines sent verbal notes to the Japanese Government both in March and May, 1975, and called for Japan's cooperation in its plans for a survey on fisheries resources.

The verbal notes proposed a joint survey on the acquatic living resources both in the Pacific Ocean off the Philippines and in the Celebes Sea. Specifically, the verbal notes called on the Japanese Government to send a skipjack pole-and-line fishing vessel and Japanese experts.

Being convinced that this survey would deepen friendship and goodwill between both countries, the Japanese Government decided to comply with this request from the Philippine Government and dispatched a preliminary survey team to assure that a forthcoming joint survey could be conducted in an effective manner.

2. Purpose of Preliminary Survey

The preliminary survey aimed at:

(1) Checking upon on the plans of the Philippine Government for a survey on tuna (skipjack) resources and the related circumstances;

(2) Gathering information necessary for the planning of the survey on tuna (skipjack) resources;

(3) Obtaining information concerning availability in the survey areas of the live baits indispensable for pole-and-line fishing; and

(4) Selecting places suitable for stocking.

3. Method of Preliminary Survey

To accomplish the aforementioned purpose, field surveys were conducted on the land and sea and in the air. In parallel with the field surveys, officials of the central government, local fisheries administrators and nongovernmental persons were interviewed to exchange views.

The survey regions were selected with consideration given to the following conditions:

(1) A port with equipment to permit supply of fuel oil, fresh water and food is available.

(2) The base for the survey ship is close to the place where stocking facilities and live wells will be established. The base is also situated at the place where bait available for stocking purposes.

(3) The base is close to the fishing grounds for offshore fisheries were bait fish may be supplied by local fishermen to the survey ship as well as the stocking facilities and live wells.

(4) The base is not far away from potential skipjack fishing grounds.

(5) The base is readily accessible from the land and assures communication and liaison with other cities without difficulty.

(6) The boarding facilities for the Japanese stocking experts may be assured at places close to the base.

With due consideration given to the aforementioned conditions, the following regions were selected:

Infanta on Luzon Island and its peripheral area

Davao on Mindanao Island

Tacloban on Leyte Island

In addition to these regions, the survey team visited Iloilo to have interviews with officials of the Oceanic Fisheries (Phil.) Inc. which is engaged in the pole-and-line fishing of skipjack in the Sulu Sea.

4. Organization of Preliminary Survey Team and Sectors Covered

Fishing grounds Michiie Hashimoto

Fish resources Takeshi Asahi

President, Japan Marine Fishery Resource Research Center

Development and Extension Division, Research and Development Department, Fishery Agency

International Division, Oceanic Fisheries Department, Fishery Agency

- 2 -

Bait fish		Shimonoseki Branch, Seikai Region Fisheries Research Laboratory,
an an tao ao amin' a Amin' amin' amin		Fishery Agency
Planning	Shigeo Miyamoto	Fisheries Advisor, Japan International Cooperation Agency
Liaison and coordination	Shuji Ishida	Japan Marine Fishery Resource Research Center

5.		Preliminary	

5, Schedule for Fi	
October 14	Arrived at Manila at 16:30 via KL-862.
October 15	Talked with officials of the Japanese
	Embassy and JICA Manila Office.
October 16	Visited the Navotas Fish Market, interviewed market
	officials and surveyed hauled fish. Paid a curtesy visit
e de la companya	to Mr. Felis R. Gonzales, Director, BFAR, and briefed
	him on the plans for the preliminary survey. Checked
	with Mrs. Aurora D. Rayes, planning staff
	officer of the Bureau of Fisheries on the survey schedule.
October 17	Had technical talks with Mrs. Rayes and other officials
	concerned. Conducted an aerial survey on Infanta and its
•	peripheral region.
October 18	Left Manila for Davao.
October 19	Conducted sea and aerial surveys on the coastline and
	visited a local market on Samal Island.
October 20	Called at the BFAR Davao Office and interviewed its
	deputy director, Mr. Horracio B. Torres. Called on
	Mrs. Marcianz Lozada, owner of Banca and gathered
•	information on the local fishing industry. Conducted an
	on-the-spot inspection of the Basnig fishing method from
	8 to 11 p.m.
October 21	Visited the local market and the fish landing place and
·	checked hauled fish. Started an aerial survey on the
	Davao Gulf at 9 a.m. Surveyed the Malalag Bay from

the land in the afternoon. Talked with Mr. Torres and

Mrs. Lozada at night.

October 22 Moved to Tacloban.

October 23

Visited the BFAR Tacloban Office and talked with Mr. Gregorio L. Escritor, its director, and other officials. Had talks with the members of the Agricultural Cooperation Corps sent by the Japan International Cooperation Agency at night.

October 24

October 25

Visited the markets, fishing landing places and fisheries product processing plants in Tanauan and Tacloban. Conducted an aerial survey along the Bay of San Pedro up to Catbalogan. Had a technical talk with Mr. Antonio Pulanco of the local BFAR Office.

October 26

Left Tacloban for Iloilo. Visited Iloilo Port. Interviewed the Japanese fishing masters engaged in the pole-andline fishing of skipjack in the Sulu Sea to gather information on their operations and the bait fish used. Met Mr. Toshiaki Sugiyama, Vice President of the Oceanic Fisheries (Phil.) Co.

October 27

Visited the Iloilo Central Market. Met Mr. Guieb, Regional Director, BFAR and other officials to be briefed on the local fisheries. Visited the SEAFDEC Culture Fisheries Office.

October 28

Proceeded to Manila from Iloilo. Talked with officials of the Japanese Embassy and the JICA Manila Office for the preparation of a interim report.

October 29

Prepared the interim report.

- 4 --

October 30

Paid a courtesy visit to Mr. Antonio J. Aguenza, Assistant Secretary, Department of Natural Resources, who was provided with an outline on the findings of the preliminary survey. Discussed with Mrs. Aurora D. Reyes, planning staff officer of BFAR, on the planning of future surveys. Attended the dinner party given by the Japanese Embassy.

October 31	Talked with Mr. Toshiaki Sugiyama, Vice President of
	the Oceanic Fisheries (Phil.) Co.
November 1	Engaged in the preparation of the interim report at the
· · ·	hotel.
November 2	Engaged in the preparation of the interim report at the
£	hotel.
November 3	Had talks with officials of the Japanese Embassy and the
	JICA Manila Office.
	Engaged in the preparation of the interim report. Hosted
	a dinner party.
November 4	Paid a curtesy visit to Mr. Felis R. Gonzales, Director
	of BFAR, who was briefed on the findings of the survey
	and provided with the provisional report. Left Manila

and arrived Tokyo at 16:15 via NW-006.

II. Perticulars

1. Outlook of Fisheries

1-1 Environment of Fishing Grounds

1-1-1 Meteorological and Oceanographic Conditions

Weather

Meteorological information about the Philippines and its periphery is provided by the Fleet Meteorological Agency at Sangley Point. Weather reports are broadcast at 2,350 KHz on a regular basis. Besides, meteorological information is furnished by the Fleet Meteorological Agency and the Meteorological Office at the Philippine Navy's Cubic Point Air Station on request.

Meteorological data on the Philippines are given below:

Winds: The winds that sweep over the Philippines are seasonal. The northcasterly monsoons are predominant in the winter time, the southwesterly monsoons in the summer time, and the northeasterly trade winds in the spring time. With respect to the northeasterly monsoons, The Asian anticyclone in the winter time has grown both in dimension and strength

- 5 -

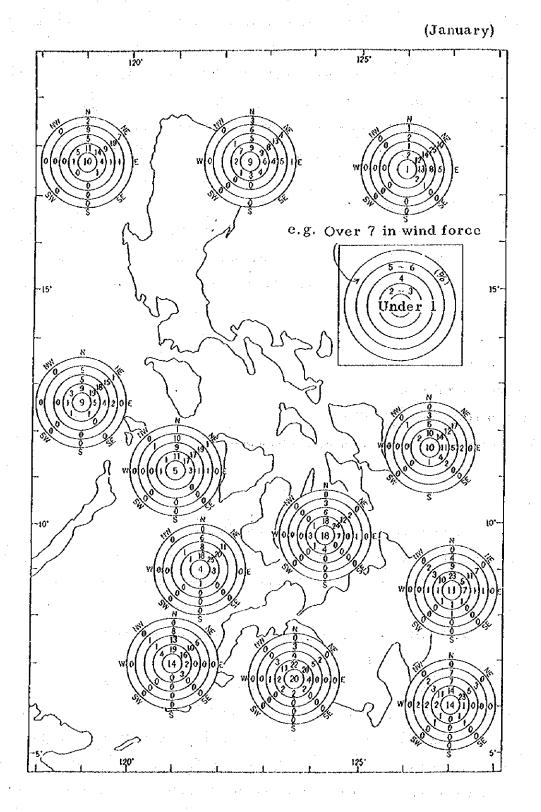
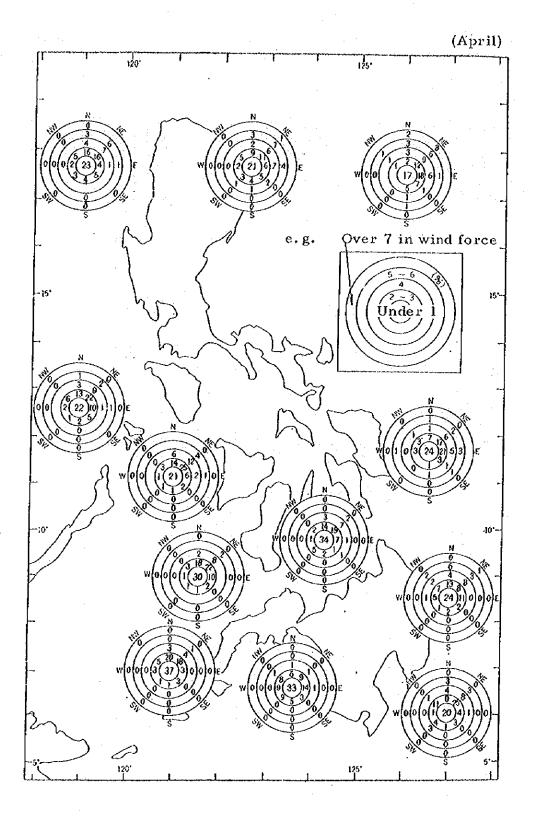
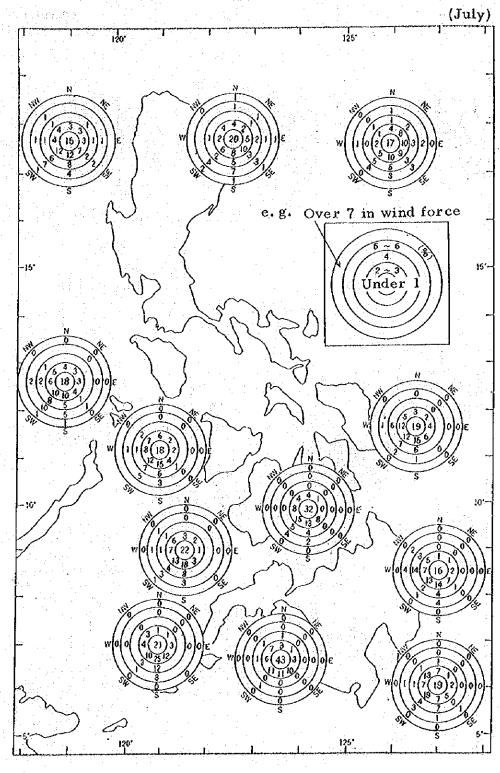
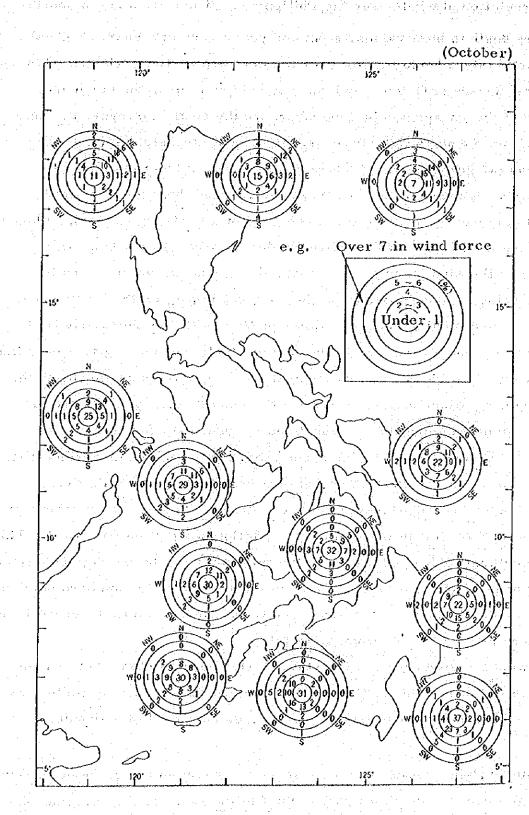




Fig. 1 Wind Rose of the Philippines

- 6 -



- 7 --

. .

- 8 --

\$

Se par

أطاطيني وروي

 $\{ \xi \}$

医静脉 新航空 医外空口的

11/1

ं का

ż

-- 9 --

before October or November and jutted out to the east to hold sway over the circulation of winds over the Philippines. The time when the northeasters begin to blow varies, from one year to another. year. Normally, the northeaster's begin to blow over the northern section of Luzon Island in the first decade of October and come to hold sway over the north and center of the Philippines by November. In the south, however, the impacts from the northeasterly monsoons are not strongly manifest. Over the seas off Luzon Island which have no influences from the land, the northeasterly monsoons, when they have reached their highest zenith, sometimes exceed the wind force category of six (strong breeze), although the mean wind force stands at five (moderate breeze), and become as strong as the wind storms. In March, the Asian anticyclone is on the wane, being no longer able to product a great impact on the Philippines. In March and April -- and sometimes in May -- the northeasterly trade winds are predominant. When the northeasterly monsoons give way to the northeasterly trade winds, the tropical maritime air mass envelopes the Philippines, bringing it fine weather, the least amount of cloud and the year's highest temperature. The direction of the northeasterly trade winds is instable. In many instances, they blow from north-northeast to south, but there are cases in which they blow in different directions, depending on the local topographical conditions. In May, the northeasterly trade winds are felt in the south of the Philippines for the first time. This is the outcome of a combination of the influences left by the semipermanent Asian area of low pressure in the summer time with the southern hemisphere trade winds which lean eastward. The trade winds to up to the central and northern parts of the Philippines in July.

This wind is southeasterly or southwesterly and is predominant in June through October. The southwesterly trade winds gradually begin to blow, but the shift to the northeasterly trade winds starts all of a sudden.

Atomospheric Pressure: Minor seasonal variations in atmospheric pressure are observed over the northern part of the Philippines. The mean atmospheric pressure at Aparri, the northern tip of Luzon Island, stands at 1,015 mil. libars in January and 1,005 millibars in July and August. At Iloilo on Panay Island in the south, the mean atmospheric pressure is 1,011 millibars in January and 1,008 millibars in July and August, showing an insignificantly small difference in atmospheric pressure between the two places.

The irregular variations in atmospheric pressure are brought about by changes in the strength and position of the anticyclone in the winter time. In other instances, they are influenced by the typhoons approaching the Philippines in summer and autumn. The variations in atmospheric pressure daily take on a regular pattern, reaching the highest at 9 a.m. and the lowest at 3 a.m. and about 3 p.m. The daily differential between the highest and the lowest is about 3 millibars. When the reading obtained from the barometer is 3-6 millibars lower than the monthly mean atmospheric pressure of the given hour of the month, this phenomenon must be taken as a warning for generation of approach of a tropical wind storm (see Table 1).

Table 1 Mean Atmospheric Pressure in Major Areas for

Months

Weather Sta.	Jan.	Feb.	Mar,	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec,	Anmal average	Years of statistics taken
Aparri	1.015	1.014	1,013	1.011	1.008	1,007	1.005	1.005	1.007	i.010	1.012	1.014	1,010	15
Manila	1.015	1.015	1.014	1.013	1,011	1.010	1.009	1.009	1.010	1.012	1, 013	1.014	1.012	52
Legaspi	1.012	1.012	1.012	1.010	1.009	1.008	1.007	1.007	1.007	1.008	1.009	1.011	1.009	15
floito	1,011	1.010	1.010	1,009	1.008	1,008	1.008	1.008	1.008	1.009	1,009	1.009	1.009	15

Typhoons: In the Philippines, the typhoon is called "baguio." The English word "typhoon" is used in weather forecasts and warnings. It is used only when the surface winds exceed 33.4 m/sec. When the velocity is less than this speed, the winds are known as "tropical disturbance" or "tropical storm." As it is true that even the storms degraded in wind force are extremely perilous to seiling vessels, there is a need to pay full heed to weather messages. The majority of the wind storms which influence the Philippines are generated over the seas from 5° -20°N, 170°E, to the Philippines 24 particularly, over the seas centering around the Caroline

-11-

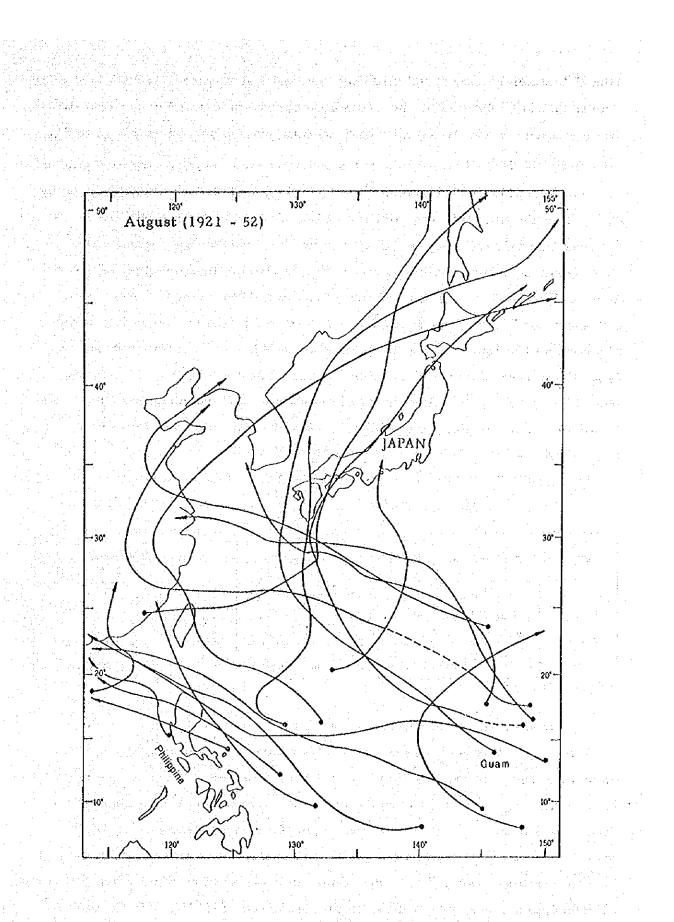


Fig. 2 Courses of Typical Typhoons and Wind Storms

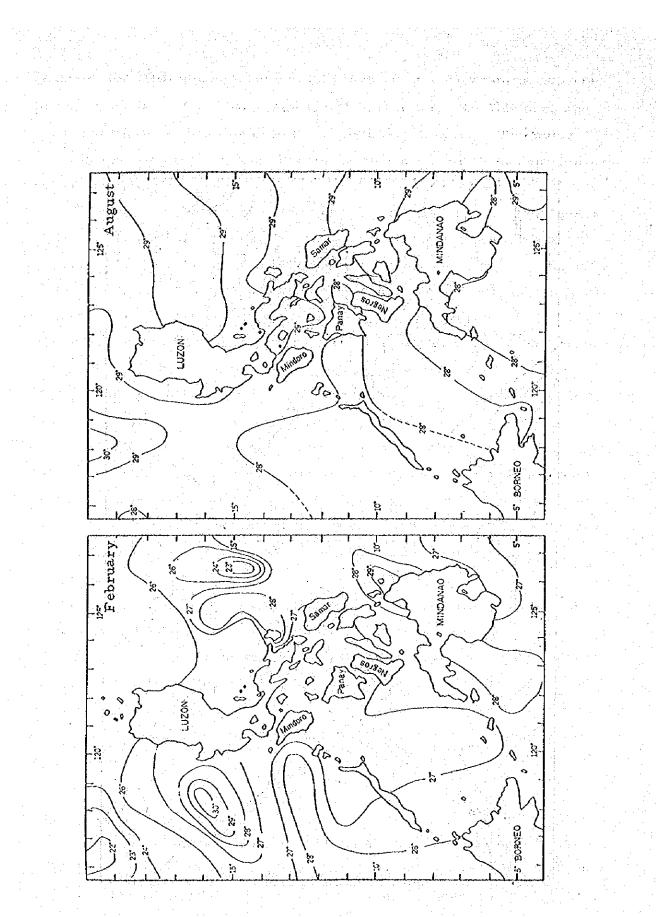
Islands. They are also sometimes generated over the seas between the Paracel Islands in the middle of the South China Sea and the Macceficlol Bank. At their zenith (in July through October), the typhoons churn across the seas north of the Philippines on their way to Taiwan or Japan. Otherwise, they roll across the South China Sea to reach the Chinese coast. In this season, a considerable number of wind storms and typhoons reach the north and center of the Philippines, which are threatend with the year's most fierce typhoon. Although there are signs that they churn relatively straight to the west or northwest, but there are no fixed courses for them. Strictly precautionary measures must be taken when a typhoon or strong wind storm is approaching (see Fig. 2).

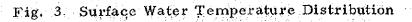
Precipitation: The extremly irregular coastlines and mountainous terrain are responsible for great variations in the maximum rainfall depth and the rainfall duration in the north and middle of the Philippines. Normally, the rainfalls are severe, reaching over 3,800 millimeters every year. Considerably different seasonal patterns of rainfalls are created due to the influences from local topographical conditions, northeasterly and southwesterly monsoons and degrees to which they are checked. In broad terms, the seacoast which is exposed to the northeasterly monsoons but has the southwesterly monsoons checked by mountains is pluvial in the winter time, whereas the seacoast which faces the southwesterly monsoons but has the northeasterly monsoons checked by mountains features the highest rainfall both in summer and autumn.

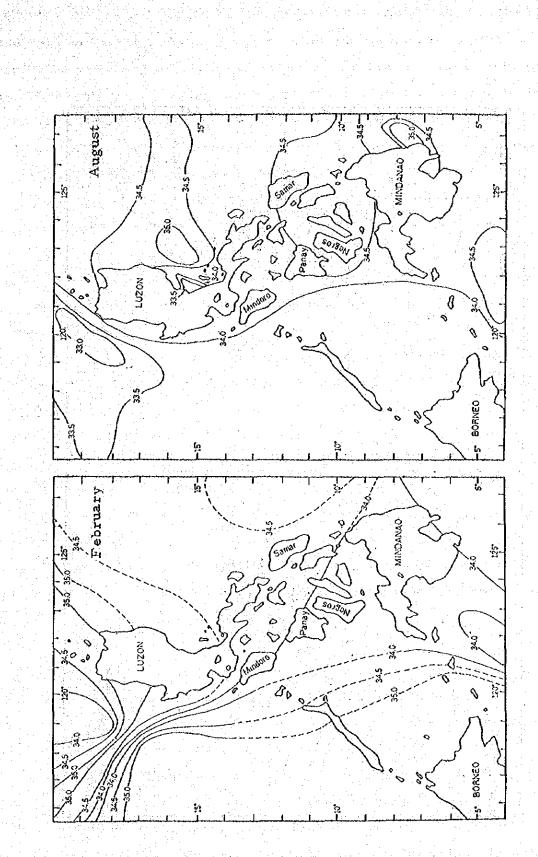
Oceanographic Conditions:

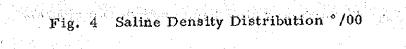
Volcanic activities were responsible for the appearance of the Philippine Islands. The continental shelf enclosing the Philippines is slanted at 11 degrees on the average and has a depth up to about 1,800 meters. A number of troughs are carved out from the slanted continental shelf east and north of Luzon Island, and the troughs stretch out from the points about three nautical miles from the coastline and about 90 meters in depth. The tides in this region consist of daily cycling and mixed tides. Off the seacoasts facing the South China Sec, the seacoast of Palawan Island facing the Sulu Sea and Mindanao Island's seacoast as well as in Surigao and San Juanico Straits, there is a cycle of high and low tides twice a day in general. There exist considerable inequities in daily tidal cycle between two high tides or between two low tides or between high and low tides, resulting in the appearance of mixed tides.

In broad terms, the ocean currents in this region consist of the north equator ocean current and the drift current brought in by the various monsoons. The westernmost point to which the north equator ocean current runs is the seas off the eastern seacost of the Philippines, so that the current in the Celebes Sea takes on a relatively stable pattern. The current in areas other than the Celebes sea has seasonal features and in normal circumstances drifts in tune with the seasonal monsoon.


Waves: The entire area of the Philippines is affected by the predominant northeasters in the winter time and the waves in the north are higher than those in the south for the seas off the coast exposed directly to the northeasters. The appearance of waves over 1.5 meters in wave hight off the east coast of Luzon Island is more than seven times as many as off the east coast of Mindanao Island. Waves more than 6.1 meters in wave height are reported in the seas north to Luzon Island, although no such reports are available for the seas south to Luzon Island. No high waves are reported off the west coasts of the Philippines, and the waves over 1.5 meters in wave hight account for only less than three percent of those that have been reported, and the waves registered at zero to three in the state of sea on the Japanese Meteorological Agency's scale of zero to nine account for 90 percent of the waves that have been observed. The offshore regions in the Sulu, Celebes and Visayan Seas are limited in area, so that the waves are calm.


The pattern of waves in summer is generally contrary to that of the winter time. The waves along the Pacific seacoasts are low, whereas the waves along the northeast and east coasts in the north of Luzon Island are high as the north and east winds are predominant. In this season, however, the typhoons which have been churned over the west of the Pacific Ocean frequently roll across these seas, with the consequence that there are chances at all times for the waves to become extremely high. On the other hand, the waves along the west coasts of the Philippines are registered at zero to three in the state of sea in quite many instances. In the Sulu Sea which is hemmed in by many islands, the waves registered at four to five in the state of sea account for about 17 percent, whereas practically 100 percent of the waves in the Visayan Sea are less than 1.5 meters in height. Surface Temperature: The mean annual surface temperature stands at 27.8° C in the seas around the Philippines. The mean annual range is 4.4° C for the Bashi and Balintany Straits and the South China Sea, 5.6°C for the Pacific side facing the east coast of Luzon Island, and 2.2°C for the North Pacific side south to Luzon Island. The lowest water temperature is registered in January-March and the highest temperature in August-October (Fig. 3).

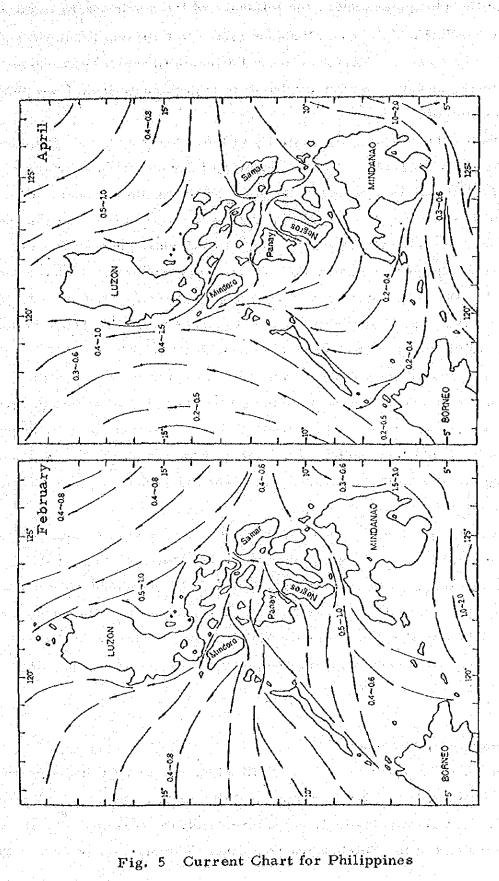

The water temperature in winter, which is represented by the mean value registered for February, ranges from 26.7 to 27.8°C, showing a relatively insignificant difference in the seas southeast to the Philippines, whereas the difference is relatively great in the seas northeast to the Philippines. In the seas east to the Philippines, the water temperature widely ranges from less than 23.3°C to more than 27.8°C. In January through May, a ligulate cold water mass makes its appearance, stretching over the seas off the northeast down to the south of Luzon Island. This mass, however, does not appear in summer and autumn but once again appears in January. In the South China Sea northwest to the Philippines, the water temperature ranges from less than 23.3°C to more than 30.0°C, and the water temperature drops when a ligulate cold water mass stretching out from the west makes its appearance. High water temperatures are registered in the seas off Cape Bolinao. In the seas southeast to the Philippines and also in the Sulu Sea, no significant changes appear in water temperature, as it ranges from 26.7 to 27.8°C.


In the summer time whose water temperature is represented by the mean value registered for August, the water temperature of the entire seas off the Philippines is exceedingly equilibrated, ranging from 26.7°C in the north to 28.9°C in the southeast. The water temperature along the east

-16-

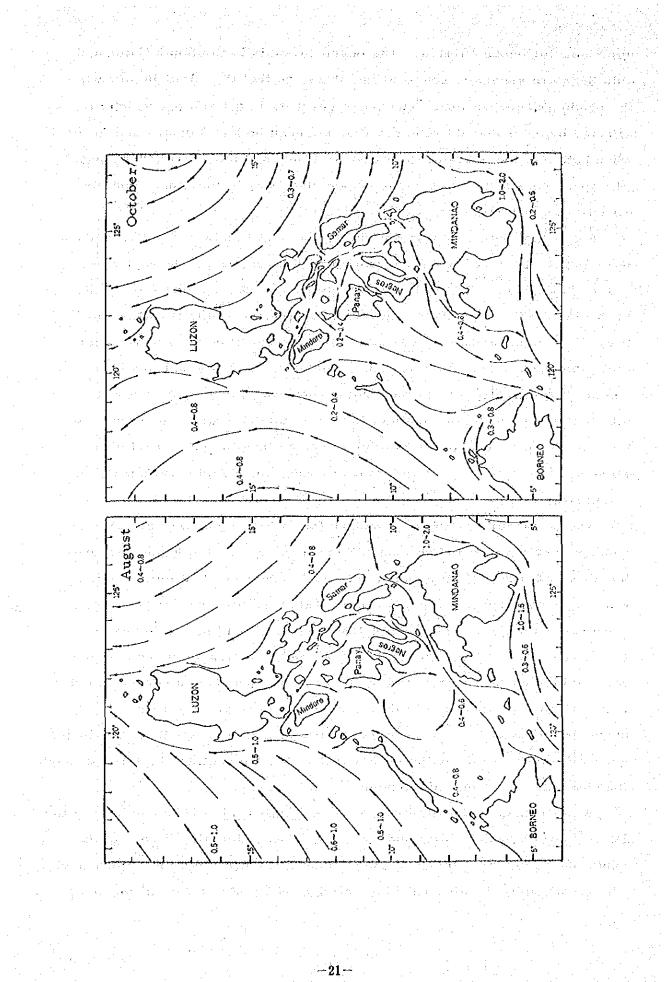
coasts of the Philippines under the influence of the northeastern monsoon in November is 28.9° C from Mindanao Island to Cape San Ildefonso and 27.8° C from Cape San Ildefonso to the Balintang Channel. The water temperature, however, gradually drops as it goes north from Cape Bolinao to the Bata Islands.

Salinity: The mean annual salinity in the seas around the Philippines stands at about 34.4 per mill. The mean salinity on the sea surface ranges from about 33 per mill in the seas off the northwest coast of Luzon Island in late summer to over 35 per mill in the seas east to the Philippines in summer and in the North Pacific north to the Philippines in winter. The extreme salinity values of 30.5 per mill and 35.9 per mill have been observed in the past, but the normal values range from 33.0 per mill to 35.5 per mill. The lowest value is registered in the water whose salinity has been diluted by the effluents from the land (Fig. 4).


In winter, a ligulate mass of water low in salinity flows into the Philippine region from the seas northwest to Lugon Islands. In the seas northeast to Luzon Island and the South China Sea west to the Philippines, the salinity is high, exceeding 35 per mill. The salinity of the east section of the Sulu Sea as well as that of the Mindanao and Sibuyan Seas are less than 34 per mill.

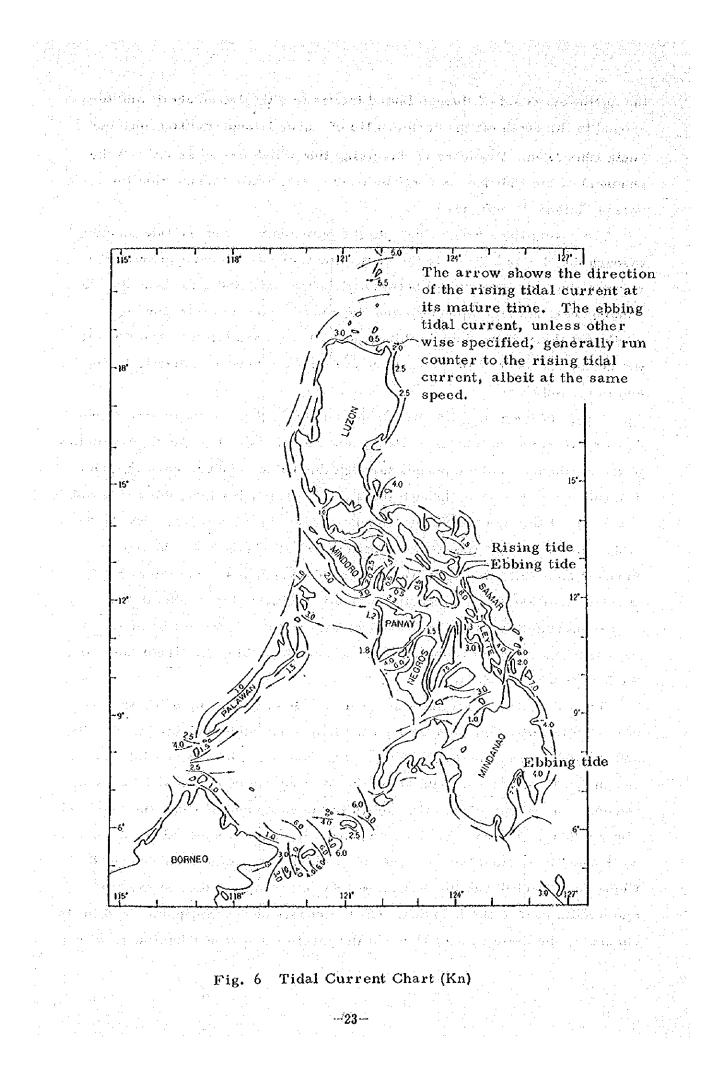

In Summer, a ligulate mass of water with its salinity standing at less than 33 per mill hangs around in the waters northwest to Luzon Island, whereas the salinity off the east coasts of both Luzon Island and Mindanao Island is high, exceeding 35 per mill. The massive rainfalls on the South China Sea in May through October and the flows of water from the many rivers of the Asian Continent into the South China Sea are responsible for its low salinity.

1-1-2 Ocean and Tidal Currents


The ocean currents around the Philippines are drifted by the northeasterly and southwesterly monsoons and the north equator ocean current (Fig, 5). The relatively stable sea currents off the east coasts of the Philippines and in the Celebes Sea constitute the westernmost part of the

-19-

-- 20 --

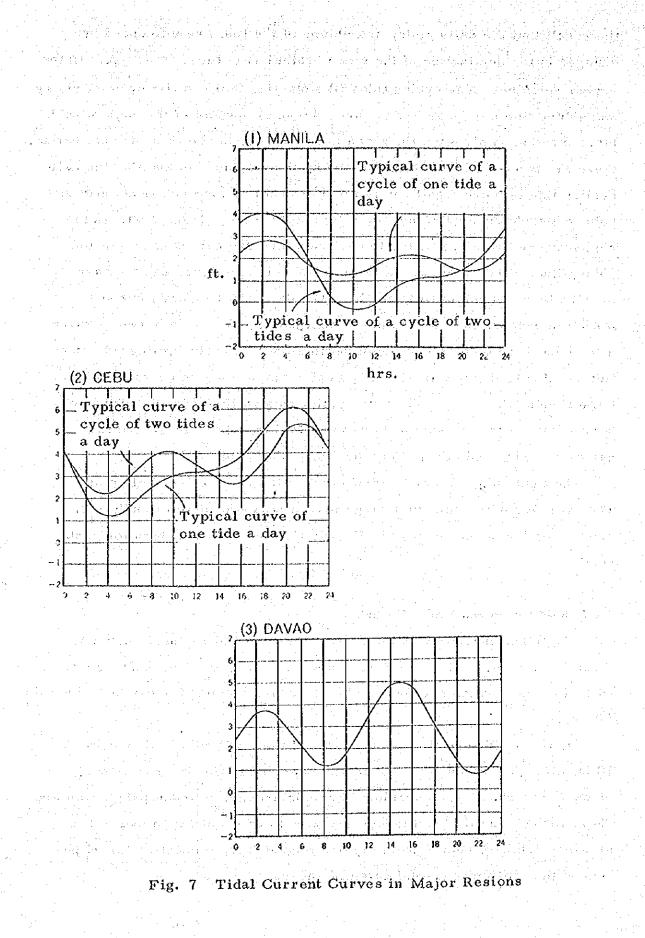

north equator ocean current. The ocean currents in the South China and Sulu Seas are generally seasonal in nature, so that they drift in tune with the predominant monsoon. The ocean currents in the regions which are affected by monsoons develop the highest speed both in January and August when both monsoons are at their mature time, and there are few changes. The speed goes down when one monsoon gives way to the other, and the direction is instable.

A check of the ocean currents along the east coasts of the Philippines reveals that the north equator ocean current bifurcate off the east coasts of the Philippines. One main stream goes up north, sending some of its branches into the seas of the Philippines and pushing others further north to let them join Kuroshio. The other main stream advances down south along the coast of Mindanao Island, some of its branches shifting to the southeast and finally joining the counter-equatorial ocean current and others turning around the south of Mindanao Island to drift southwest into the Celebes Sea. The ocean current running along the east coast of Mindanao Island is fast and constant in speed, the speed occasionally exceeding three knots.

The ocean current running through the Celebes Sea connects with the southern portion of the north equator ocean current. After going around the Southeast coast of Mindanao Island, this ocean current moves to the west and cuts across the north section of the Celebes Sea. It later goes down south along the east coast of Borneo Island and then advances to the east along Sulawasi's north coast. Most of the portion which goes to the east join the counter-equatorial ocean current. The ocean current which returns counter-clockwise in the Celebes Sea is relatively powerful and constant. The ocean current in the various channels of the Sulu Archipelago generally flows to the southwest generally, but the southwesters run through the channels in spring and early summer.

With respect to the tidal currents, the rising tide drifts north along the Pacific coasts of the Philippines (Fig. 6). Exceptionally, it goes down south off the coasts south to Palanan Point and moves into the Lamon Bay. The rising current which runs the entire west coasts of the Philippines and

-- 22 -


the northwest coast of Borneo Island moves into the Luzon Strait and turns around to the south off the northern tip of Luzon Island, drifting into the South China Sea. Branches of the rising tide which branches into all the channels of the Philippines continue to the east, while meandering the various islands' configurations.

The rising tides which flow into the Sulu Sea come in the tide running through the Balabec Strait to the east, tide moving southeast through the various channels sandwiched between Palawan and Mindanao Islands, the running west between Mindanao and Negros Islands, and tide flowing northwest through the Sulu Archipelago. These tides join one another off the northeast coast of Borneo Island and the east coast of Palawan Island and in the Sulu Sea.

A part of the rising tide which has run through the Mindro Strait goes down south along the coasts of Panay and Negros Islands. Another switches to the northeast and then passes through the Tabias and Guimaras Straits. The tide which has gone through the Tablas Strait joins the ebbing tide which has run east through the Verde Island Passage. It also meets with the rising tide which has moves south off the Pondoc Point from the San Bernardino Strait. A part of the rising tide which has come from the Surigao Strait heads to the north, instead of drifting into the Sulu Sea, and passes through the Tanon and Bohol straits and the Canigao Channel. At the north end of each channel, it meets the rising tide which has come from the San Bernardino Strait.

The tides, flowing to the west from the Pacific Ocean, enter the seas of the Philippines, running through the San Bernardino and Surigao Straits and the Philippines' many channels. The tide which has moved into the Luzon Strait goes down south along the west coasts of Luzon and Parawan Islands. Some part of this tide shifts to the east, passing into the Sulu and Sibuyan Seas, whereas the other continues to go down south along the northwest coast of Borneo Island. The tides which have come from the South China Sea, Pacific Ocean and Celebes Sea meet one another in the east and middle part of the Sulu Sea. Off the coasts of the Philippines and in its channels, the daily cycling tide and the mixed tide are predominant, with

-24-

-25--

the result that the daily rising and ebbing of the tide are influenced by changes in the declination of the moon, rather than those in its age. In the region which has daily cycing tides like Manila, there is one cycle of rising and ebbing tide per lunar day (24 and 48 hours) in most of the days of each lunar months. Only when the moon is in the neighborhood of the declination, there are two cycles of rising and ebbing tides a day. In Manila, the daily cycling tide is more significantly manifest both in June and December than both in March and September due to the solar effects (Fig. 7-1). In the region where there are mixed tides, there are two cycles of rising and ebbing tides a day when the moon is close to the equator, and they are practically the same in tidal height. The daily tidal inequity becomes larger in proportion to a rise in the declination. The tide in two or three days around the moon's maximum declination is a daily cycling tide or a tide similar to it (topic tide). A typical example may be observed in the Cebu region (Fig. 7-2). The tide cycling in a pattern of half a day is observed only in the harbors of Davao and Pollok, where there are two cycles of rising and ebbing tides per lunar day (Fig. 7-3).

The tidal range is intermediate for all the seas of the Philippines. The averages maximum tidal range over a period of half a month is 0.6 meters for the coasts facing the Pacific Ocean and 2.1 meters for each strait.

1-1-3 Main Species and Fishing Grounds

The fishes inhabiting in the seas around the Philippines, including those in its inland waters, are reported as coming in about 2,200 species. Of them, those which may be considered commercially important include the following:

Sharks -- Observed in every water of the Philippines, they come in 10 families and 49 species. Of them, blue shark (<u>Galeocerda artcus</u>), black-finned shark (<u>Carcharhinus melanopterus</u>), <u>Scoliodon palasorrah</u> and short-lobbed hammerhead (<u>Sphysiazygaena</u>) are great in number. The greatest fish haul comes from the San Miguel Bay, accounting for 94 percent of the Philippines¹ total catch of sharks.

--- 26---

Rays --, Many of the rays inhabit in bays. It is known that sawfish (<u>Prisitis cuspidatus</u>) and <u>P. microdon</u>, which are saw sharks, go up rivers to lakes. The main species include guitar fish (<u>Phynchobatus</u> <u>djiddensis</u>), blue-spotted sting-ray (<u>Dayatis kuhlii</u>), cow-nosed ray (<u>Rhino-</u> <u>ptera javanica</u>) and giantic devil ray (<u>Mobula eregoodoo-tankee</u>). The main fishing grounds are the Visayan Sea and San Miguel Bay. The Visayan Sea accounts for about 70 percent of the Philippines' total haul of rays.

Herrings and Sardines -- Twenty-five species of herrings and sardines are recorded. Of the sardines, nine are main species. Of them, the most common species are Sardinella perforata and S. sirm ("Mizun" in Japanese). Particularly, S. sirm is the biggest species inhabiting in the waters off Minadanao Island and the Sulue Sea and commercially important. In addition, those sardines which are commercially hauled are Sardinella fimbriata (which also belongs to the family of "Mizun" in Japanese) and big-eyes herring (Ilisha hoevenii) (the family of "Hira" in Japanese). Harengula tawilis (the family of "Sappa" in Japanese) is the only fresh water sardine, inhabiting in the Taal Lake in the State of Batangas. Of the commercially recognized herrings, those inhabiting in the Visayan Sea are greatest in number, accounting for 65 percent of the Philippines' total haul. The Visayan Sea is followed by the Samar Sea and the Malampaya Sound in terms of catch. Those which are generally termed sardines are caught all over the Philippines, but the biggest haul is registered by the Sulu Sea with 16,000 tons, or slightly over 40 percent of the Philippines' total catch. The Sulu Sea is followed by the Visayan Sea with 22 percent and the Malampaya Sound with 17 percent.

Deep-bodies Anchovies -- Thirteen species are recorded. Of them, long-jawed anchovy (Stolephorus commersonii) and Indian anchovy (S. indicus), inhabiting in the bays and shallow seas around the Philippines, are commercially important as the resources for fish paste (Bagoong). These species were caught to the tune of about 11,000 tons in 1973, of which 1,700 tons came from the Visayan Sea, 1,100 tons from the San Miguel Bay and 800 tons from the Manila Bay. The species which is commercially important as a species close to anchovy is milk fish (<u>Chanos</u>

-27--

chanos), which is widely cultivated in the culture ponds in the shallow seas, brackish and inland waters and whose output is great in amount.

Catfishes -- Twenty-five species are recorded. In Manila City, sea-born <u>Arius thalassinus</u>, <u>A.</u>

leitetocephalus and A. manillensis are put on the market, but their hauls are extremely small in amount. Practically every fishing ground is situated in the San Miguel Bay. They may also be caught in Laguna de Bay.

Lizard fishes -- Lizard fish (Sauride tumbil) and lizard fish (Trachinocephalus myops) are observed on the sand beds of shallow waters and bays. In the open sea off Vicol on Luzon Island, deep-sea lantern fish (Myctophum), which is one of the hummalos, is hauled in a blanket net fishing method. Of the total amount of about 7,500 tons of lizard fishes caught in the Philippines, 77 percent come from the Visayan Sea, which is followed by the San Miguel Bay in terms of catch. The catch in the San Miguel Bay is only eight percent. These fishes are processed for fish meal.

Garfishes and halfbeaks -- Of the garfishes, <u>Tylosurus</u> and garfish (<u>Ablennes hians</u>) are hauled with what is known as "fish coral" (a kind of driver-in net) at times. Of the halfbeaks, some of those which belong to <u>Hemiramphus</u> are known to the fishermen, and they go up rivers, lakes and marshes. For the flying fish species, <u>Cypselurus</u> sp. is caught by a special fishing method seen in Cebu. The hauls of these fishes are not so great in amount. The region which features the biggest haul of flying fish is the Malambaya Sound.

Horse Mackerels -- They inhabit in the waters off all the coasts of the Philippines and are commercially important. They are hauled along all the coasts. Particularly important are long-finned cavalle (<u>Caranx</u> <u>armatus</u>), cavalla (<u>C. malabaricus</u>), spotted cavalla (<u>C. stellatus</u>), cavalla (<u>C. sexfasciatus</u>) and others. Rainbow runner (<u>Elagatis bipinnulatus</u>), hard tail (<u>Megalaspis cordyla</u>), big-bodies round scad (<u>Decapterus sp.</u>) and big-eyed scad (<u>Selar sp.</u>) are also commercially important. Cavalla (<u>C. malabaricus</u>), spotted cavalla (<u>C. stellatus</u>) are caught colloq. about 6, 300 tons in the Philippines. Their major fishing grounds include the Visayan Sea, Malampaya Sound and Sulu Sea. Big-eyed scad (Selar sp.)

-28-

is hauled colloq. 14,000 tons, of which about 70 percent come from the Visayan Sca, which is followed by the Davao Gulf, Malampaya Sound and Moro Gulf, each with 500 tons. Of all the horse mackerels, big-bodied round scad (<u>Decapterus</u> sp.) is greatest in haul, as the gross national haul runs up to a total of about 17,000 tons. Their main fishing grounds include the Malampaya Sound (62,000 tons), Sulu Sea (43,000 tons) and Visayan Sea (37,000 tons). These fishing grounds are followed by the Mindoro Strait, Asid Gulf, Tayabas Bay, Coron Bay and Moro Gulf.

Mackerels -- They are one of the most commercially important species for the Philippines. Spanish mackerel (<u>Scomberomorus commer-</u> <u>son</u>) is caught in all the regions of the Philippines. Short-bodied mackerel (<u>Rastrelliger brachysomus</u>) is commonly observed in all the bays and inlets of the Philippines. Its hauls are particularly great in the Malampaya Sound in February through August. <u>R. chrysozonus</u>, which is one of the close species, is caught off Palawan and Zamboanga all the year. Mackerels are hauled to the tune of 26,000 tons, of which the Visayan Sea accounts for 55 percent and the Manila Bay for 25 percent. Of the total haul of Spanish mackerel (<u>Scomberomorus commerson</u>), 38 percent come from the Burias Pass and 27 percent from the Davao Gulf. Hairtail (<u>Trichiurus hanmela</u>) is caught in many bays and inlets, but its haul in the Visayan Sea is greatest with 70 percent.

Tunas and swordfishes -- The species which are frequently observed in the Philippines and considered commercially important include skipjack (<u>Katsuwonus pelamis</u>), blue bonito (<u>Euthunnus yaito</u>), yellow fin tuna (<u>Neo-</u> <u>thunnus macropterus</u>), frigate mackerel (<u>Auxis thazard and A. tapeinosome</u>). In addition, double-lined mackerel (<u>Grammatorcynus bicarinatus</u>), dog fish tuna (<u>Gymnosarda sp.</u>), <u>Kishinoella tonggol</u>, albacore (<u>Germo alalunga</u>) and bluefin tuna (<u>Thunnus thynuus</u>) are recorded. Bluefin tuna (<u>Thunnus</u> <u>thynuus</u>) is caught in the waters north to Luzon Island in some specific seasons, whereas <u>Germo alalunga</u> is rarely caught. Some of the swordfishes are recorded but they are not hauled in great quantities. Of the total haul of bonitos, 74 percent come from the Visayan Sea. As regards yellowfin tuna (Neothunnus macropterus), 55 percent are hauled in the Sulu Sea and 20 percent in the Visayan Sca. Of the total haul of <u>Auxis thazard</u>, 34 percnet come from the Malampaya Sound and 12 percent each from the Davao Gulf and the Visayan Sca.

Groupers -- The grouper is known as "lapu-lapu" in the Philippines and highly valued for cooking on festive occasions. The species which are commonly observed include Epinephelus spp., Variola spp., Cromileptes spp. and Plectropomus spp. The groupers in the Philippines come in various species. With respect to the snappers, 36 species are recorded. Of them, those which are commercially important are malabar red snapper (Lutjannus malabaricus), hampbacked red snapper (L. gibbus), aliso (L. argentimaculatus) and dolesen (L. decussatus). Groupers are caught to the tune of 2, 400 tons in the Philippines, of which 78 percent come from the Sulu Sea, Malampaya Sound and Visayan Sea. The amount of snappers caught in the Philippines is 3,100 tons, of which slightly over 40 percent comes from the Visayan Sea, 27 percent from the Sulu Sea and 20 percent from the Malampaya Sound.

Caesio -- <u>Caesio</u> spp., <u>Pomadasy hasta and Scolopsis</u> spp. are considered important. Theraponids are observed in bays and brackish waters, and more than 20 species of common porgies (<u>Lethrinus</u> spp.) are known to the fishermen and important for use in cooking. About 19,000 tons of caesio are hauled in the Philippines. Of them, 46 percent come from the Visayan Sea, 25 percent from the Malampaya Sound and 23 percent from the Sulu Sea. Ribbon-finned nemipterids (<u>Nemipterus taeniopetrus</u>) are caught to the tune of nearly 26,000 tons, of which 54 percent come from the Visayan Sea and 24 percent from the Manila Bay. Practically every haul of common porgies comes from the Visayan Sea and San Miguel Bay. Mullets -- Twenty-five species of mullets are inhabiting the seas of the Philippines. Long scaled mullet (<u>Mugil vaigiensis</u>), long finned mullet (<u>M. caeruleomaculatus</u>), black-finned mullet (<u>M. melinopterus</u>) and thicklipped mullet (<u>M. dussumieri</u>) are typical species, many of them inhabiting in the seas. But, <u>M. dussumicri</u>, <u>M. troscheli</u> and <u>M. melinopterus</u> grow

in fresh water and go back to sea in the spawning season.

Other fishes which are considered commercially important include

-30-

English and Local Nomenclatures of Major Fish Species in the Philippines

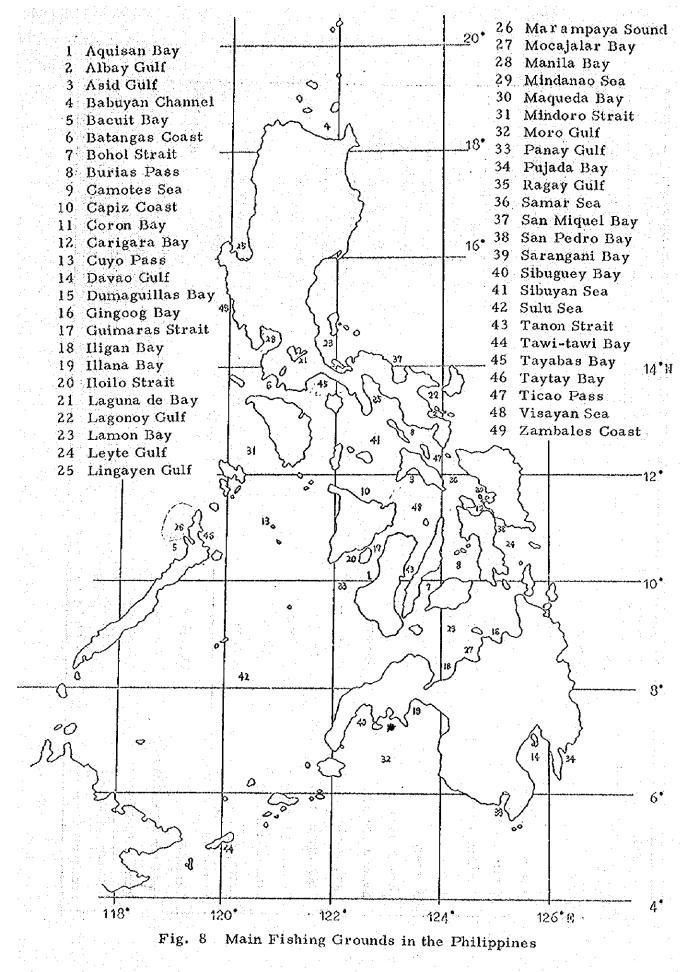
Table 2

English name	Local name	Japanese name	Scientific name
Tiger shark			Galeocerdo arcticus
Black-finned shark	Pating inglesa	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Carcharhinus melanopterus
			C. menisorrah
Sharp-nosed shark	Pating	· · · · · · · · · · · · · · · · · · ·	Scoliodon palasorrah
Short-lobed hammerhead	Binkungan	シュモクザメ	Sphyma zygaena
Sawfish	Tagan	ノコポリエ	Pristis cuspidatus
Guitar fish	Pating sodsod	リオント	Rhynchobatus djiddensis
Blue-spotted sting-ray	Dahonan	4 > 11 H	Dasyatis kuhlii
Marbled sting-ray	Paging bulik		D. uamak
Eagle ray	Paol	レイブエイ	Aetobatus narinari
Cow-nosed ray	Palimanok	クシバナトとエイ	Rhinoptera javanica
Gigantic devil ray	Salangn	L H H L L	Mobula eregoodoo-tenkee
Ten pounder	Bid-bid	セットレッ繊	Elops saurus
Tarpon	Buan-buan	よ よ 人 人	Megalops cyprinoides
Lady fish		~ ~ 7 ~	Albula vulpes
Silver-bar fish	Parang-parang	よチトワシ	Chirocentrus dorab
Short-finned gizard shad	Kabasi		Anodontostoma chacunda
Milkfish	Bangos	ן גע ג	Chanos chanos

-31-

Stolephorus commersonii Scutengraulis hamiltonii Scientific name Sardinella perforata Sardinella fimbriata Nematabramis spp. Nematalestes spp. Spratelloides spp. Harengula tawilis Dussumieria spp. Thrissocies spp Etrumeus spp. Lisha hoevenii Thrissina spp. Engraulis spp. Rasbora spp. S. longiceps Puntius spp. Cyprinidae S. indicus S. sirm 817271/3 セタクキムワシ猶 Japanese name セラメムロシ鑑 イン ドナメショ ドロクノ繊 ミメン類 ふい麓 キッパ繊 ı٨ لد Local name Tunsoy Tuwabak Dumpilas Tuakang Tawilis Tamban Lapad Kasig Dilis Long-jowed anchovy, dilis Deep-bodied anchovy English name Fimbriated herring Big-eyed herring Round herring Indian sardine Indian anchovy Sardines

Scientific name	Mandibularca spp.	Cephalakompsus spp.	Ospatulus spp.	Sprallellicypris spp.	Cyprinus carpio	Misgurnus anguillicandatus	Arius thalassinus	A. leitetocephalus	A. manillensis	Clarias batrachus	Clarias gilli	Hito taytayensis	Penesilurus palavenensis	Saurida tumbil	Trachinocephalus myops	Myctophum spp.	Tylosurus sp.	Ablennes hians	Hemiramphus spp.	Cypselurus spp.
Japanese name					х- Л	4 m 2 X					•	•	· ·	レート	> H 子	くダセムワシ類	*	イトダン	するし数	トドマギ類
Local name					· · · · · · · · · · · · · · · · · · ·	Dojo, jojo	· · ·	Arahan, kanduli	I	Hito	Balik, pantat			Kalaso	-	-	Kambabalo	• • • • • • • • • • • • • • • • • • •	Buguing	Bolador
English name					Common carp	Weather fish	Sea catfish		Manila sea catfish	Freshwater catfish	Catfish			Lizard fish		Deep-sea lantern fish	Garfish	••••••••••••••••••••••••••••••••••••••	Halfbeaks	Flying fish


		Alliput Achimatel	Scientific name
Long-finned cavalla	Lawayan, talakitok	4+6#72(?)	Caranx armatus
Cavalla	Sebo	セメドレシ	C. malabaricus
Spotted cavalla	Talakitok	ちょう	C. stellatus
Cavalla	Pinkit	ホンガメレジ	C. sexfasciatus
Golden jack	Garopeche	コガネシュアシ	Gnathanodon speciosus
Crevalles		トンタントアシ趨	Atule spp.
Rainbow runner	Salmon	× ▲ ブ リ	Elagatis bipinnulatus
Hardtail	Orites	チェレシ	Megalaspis cordyla
Big-bodied round scad	Galongong	イロング	Decapterus macrosoma
Big-eyed scad		メレッ繊	Selar sp.
Leather jacket	Dorado	く ケガシャ繊	Scomberoides sp.
Spanish mackerel	Tanguingue	ヨニシャワシ	Scomberomorus commerson
Short-bodied mackerel	Hasa-hasa	ド ち ご グ ろ ひょう	Rastrelliger brachvsomus
	Alumahan	1212	R. chrysozonus
Hairtail	Balila	ダナウギ科の一種	Trichiurus hanmela
Skipjack	Skipjack	Ч У Ж	Katsuwonus pelamis
Blue bonito	Katchorita	× ×	Euthynnus yaito
Yellow fin	Albacora	X \ +	Neothunnus macropterus
Frigate mackerel	Bonito	トリングダ	Auxis thazard
	-	トマングダ	A. tapeinosoma

English name	Local name	Japanese name	Scientific name
Double-lined mackerel		ンキタロショ	Grammatorcynus bicarinatus
Dogfish tuna		ログマント	Gymnosarda nuda
			Kishinoella tonggol
Albacore			Germo alalunga
Bluefin tuna		п Д Ц Д	Thunnus thynnas
Sailfish	Malasugi	С Г	Istiophorus orientalis
Marlin		к к 4 я ў	Maraira mitandia:
Swordfish		<u>)</u> ?	Vinhise missing
Wany-lined grouper	Lapu-lapu		Fujnenhelus som
Yellow-margined grouper	Lapo-laoing senorita	1 15	Variola spp.
Painted thick-lipped grunt	Labian	メ シン シン シン シン シン シン シン シン シン シン シン シン シン	Plectropomus spp.
High-finned grouper	Lapu-lapu	ややせく々酷	Cromileptes spp.
White sea bass	Apahap	オオイ	Lates calcarifer
Malabar red snapper	Maya-maya	ア 子 ズ	Lutiannus malabaricus
Humpbacked red snapper			L. gibbus
Aliso	Ĭso	у Ч Ц Й Ц	L. argentimaculatus
Snapper	Dolesan		L. decussatus
Caesio	Dalagang bukid	ダムや立鱗	Caesio spp.
Spotted pomadasid	Agoot	ホッシントサキ	Pomadasys hasta
Striped scolopsid	Tagisang lawin	ダイガシラ猶	Scolopsis spp.

Chonophorus melanocephalus Sicyopterus lacrymosus Scientific name Rachycentron canadus Nemipterus Japonicus Coryphaena hippurus Tilapia mossambica Glossogobius giurus Scatophagus argus Leiognathus spp. N. taeniopterus Upeneoides spp. Acanthurus spp. Lethrinus spp. Mene maculata Siganus spp. Sillago spp. Therapon Gerres spp. Sciaena spp. Demia spp. Pelates spp. クロセシレンショクダイ Japanese name ンエンキダイ類 ニュトノイトョン シャムや米数 オトョン猶 ちょうま数 ドナダイ猶 モンドンド クロヤキ織 レドヘ点繊 チょうじょ スメッ猶 Ή in 黻 糍 アムリ猶 オンロム ĸ Y \$ # ĸ ij Bucto, biyang boto Babansi, bagaong Local name Biyang boto Malakapas Samarals Sapatero Ayungin Sapsap Agaak Hele Kilang Bisugo Bitilla . • Ipon Ribbon-finned nemipterid Long-tailed nemipterid English name Four-barred grunt Common porgies Spotted mojarras Spotted moonfish Silver perch Sergeant fish Surgeon fish Theraponid Goat fishes Slipmouth Dulphin Rock goby Croakers Palileng Tilapia Whiting

- 36-

Scientific name	Eleotris melanosoma	Rhyacichthys aspro	Mistichthys luzonensis	Microgobius lacustris	Ophicephalus striatus	Anabas Testudineus	Clarias batrachus ⁺	Trichogaster trichopterus	Osphronemus gouramy	Trichogaster pectoralis	Mugil vaigiensis	M. caerulleomaculatus	M. melinopterus	M. dussumieri	Sphyraena jello	S. abtusata	Eleutheronema tetradactylum	Polynemus microstoma	Psettodes crumei	Pseudorhombus arsius	Tunod oselies in the form
Japanese name	カワイナビ道	ギンオンダ			× * 1	キノボックチ					繁 ~ ※	II I I I I I I I I I I I I I I I I I I		<i>"</i>	K ↑ R k k	オッス猶		後にメロノシロ数	まウメゼント	「シン教」	
Local name	Birot	Campa			Dalag	Martiniko				Pla-salit	Banak	Banak	Talilong	Talilong	Asogon		* Mamale	Mamaleng bato	Kalangkao	Dapang bilog	Danano haha
English name	Sleepers	*		Transparent goby	Murrel	Climbing perch		Gouramy	Giant gouramy	Dwarf gouramy	Large scaled mullet	Long-finned mullet	Black-finned mullet	Thick-lipped mullet	Barracuda		Threadfins	Small-mouthed threadfin	Indian nurbot flatfish	Smooth-scaled brill	Specked sole

-- 38 --

barracuda (Sphyraena jello), Sobtusata sp., surgeon fish (Acanthurus spp.), Siganus spp., slipmouth (Leiognathus spp.) and whiting (Sillago spp.). of these species, slipmouths are hauled to the tune of 41,000 tons, the main fishing grounds being the Visayan Sea (56%), Manila Bay (16%) and San Miguel Bay (8%).

Table 2 provides the English and local nomenclatures of major fish. species in the Philippines, whose main fishing grounds are shown in Fig. 8.

1-1-4 Outlook of Major Ports and Harbors

The following is a summary on Manila, Davao, Tacloban, Legaspi, Jose Panganiban and Cebu, which are important open ports and likely to be used by the survey for a forthcoming survey. Manila

The Manila, Philippines' largest port, is divided into the north and south ports and Pasig River. The south port, used mainly for deepdaught vessels, have five piers (Piers 3, 5, 9, 13 and 15), and the water depth ranges from 7.9 to 12.1 meters (in 1966). The north port has eight piers (Piers 2, 4, 6, 8, 10, 12, 14 and 16) mainly for coastwise ships, the distance between the respective piers being 135 meters. Pier 2 is set aside for exclusive use by fishing vessels. The water depth of the north port is shallower than that of the south port, ranging from 1.7 to 6.1 meters (in 1957). Pilotage is mandatory for any ocean-going vessel coming into Manila Port. In normal circumstances, embarkation is authorized at the quarantine anchorage upon completion of a quarantine.

The cargo gear arrangements available at Manila Port are modern. The cargo gear available alongside a ship is used for cargo loading and unloading in most instances, but port workers, barges, tugboats and mobile cranes and cargo gear are fully available.

With respect to the supplies, food, ship articles, and spare deck and engine parts are readily available. Fresh water may be piped at 40 tons an hour, and water supply ships are also available. Fuel oil and lubricating oil may be supplied from piers and barges. Fuel oil may be taken in from barges at a rate of 150 tons an hour. For an oil supply, however,

- 39-

thère is a need to file an application at least 72 hours before the supply. Practically every type of repair work may be conducted at Manila Port. The Mariveles shipyard has a 10,000-ton dock. One thousand four hundred-ton and 300-ton slipways are available at Engineer Island, and 2,000-ton and 1,500-ton slipways at Varadero de Manila, Cavite. Davao

Four privately-managed piers are available in addition to the government-operated Santa Ana and Sasa Marginal wharves. The water depth is 0.9 to 3 meters (in 1966) at the Santa Ana Wharf and 7.6 meters at the Sasa Marhonal Wharf. The private wharves, owned by Shell, Macleod, Stanvac and Caltex, have water depths of 8.2, 18, 9.1 and 7.6 meters, respectively.

At Davao Harbor, pilotage is mandatory for all foreign vessels putting out to sea from their anchorages or shifting from one anchorage to another within the harbor. Pilotage is also mandatory for any foreign vessel which is to moor at a voernmental wharf or leave the wharf in the event that its gross tonnage exceeds 100 tons. Pilotage, however, is optional for mooring at a private wharf. In normal circumstances, the pilot embarks at an anchorage off the Santa Ana Wharf. Ocean-going vessels are subject to quarantine and customs clearance at the anchorage off the wharf.

As regards the supplies, perishables may be supplied, but excessive hopes cannot be pinned on the supply of deck, engine and other ship articles. Fresh water may be supplied at a wharf at a rate of 50 tons a day, and a water supply vessel with a capacity of 60 tons may be used. If ordered well in advance, fuel oil may be obtained. Diesel oil may be pumped in from the wharf of an oil firm at Sasa. Repairs are limited to those of winor scale, but machine plants capable of welding and casting are available in the city. Slipways are available only for small-sized launches and barges.

Tacloban

Tacloban is the Leyte Island's main port. The main part of this port is a small inlet which penetrates about one mile to the south between the

Panviugan Point and the Arbong Point, about one mile northwest-by-west to the Panviguan Point. Most of the small inlet are walled with coastal embankments, four to five meters, and an extremely narrow fairway turns at a point immediately close to the Panirugan Point and leeds to the Tacloban Wharf. The water depth of this fairway is about 5, 4 meters (in 1958). Pioltage is mandatory for any vessels coming in toward Tacloban through the San Juenico Strait, and no port entries are made at night in normal circumstances. The vessel which calls for pilotage must radio an application containing necessary items 24 hours in advance. Fresh water may be pumped in at the wharf but its water pressure is low. Perishables may be obtained at markets in the city of Tacloban to some extent, but vegetables are not available in abundance. Fuel oil is available but only in a small amount, and it is required to place an order in advance. High hopes cannot be pinned on the supply of deck, engine and other ship articles. Repairs are enable so far as they are of small scale. Neither slipways nor building berths are available: Tacloban has three general hospitals and one clinic. Legaspi

Legaspi is the open port situated deep in the Albay Gulf. Being one of the main ports and situated on the east coast of Luzon Island, Legaspi Port is exposed to the northeasterly monsoons and there are cases of rough water surface. Further, the fairway leading to the wharf is narrow, measuring about 110 meters in breadth, so that safety cannot be assured for port entries unless the weather conditions are favorable. Pilotage is mandatory for any vessel, 50 tons and heavier, The area within a radius of three miles from the lighthouse is subject to pilotage. The water depth in areas within 100 meters from the wharf is about six meters. Perishables and ship articles may be obtained in small quantities, but neither fresh water nor feul oil is available. Diesel and lubricating oils are available in drums and other cans, but it is advisable to place orders in advance. Small workshops are available for minor repair work and welding. There are a number of hospitals in the city, and they are equipped with modern medical facilities.

-41-

Jose Panganiban device de la production device de la sectoria de la production de la production de la production

Situated almost in the middle part of the east coast of Luzon Island, this port is exposed to the southwesterly monsoons. From the last decase of March through September, the sea is generally calm, but chopping seas are raised and surges run high during the season when this area is exposed to the northeasterly monsoons. A 67-meter-long L-shaped wharf and a passway are situated at a point about 1.7 miles northwest-by-north to Jose Panganiban. The water depth is 6.1 meters. Pilotage is mandatory for any vessels, over 50 tons in gross tonnage. Diesel oil pipes are available on the wharf for refueling purposes. Perishables may be obtained to some extent:

Cebu

Being the capital of the State of Cebu, it is the open port which faces the strait that goes between Cebu Island and Mactan Island. Cebu is a commercial hub in the middle and southern parts of the Philippines. All types of vessels can be enter the port from the northeast and south. The northeast fairway is 7.6 meters in water depth and its minimum breadth is 140 meters, but this fairway is relatively straight. The moorage includes nine berths, their aggregate length being 1,650 meters, and three wharves, each measuring 155 meters in length. The water depth is 3.6 to 8.2 meters at the berths and 3.6 to 7.9 meters at the wharves. Labor power is adequately available, so barges and loading gear. Food may be procured in considerable large quantities. Water pipes are equipped to Berth No. 7, Wharf No. 1 and Wharf No. 2 for fresh water supply. Fresh water may also be procured from water supply ships at a rate of 40 to 50 tons an hour. Fuel oil, diesel oil and lubricating oil are procurable from the wharves used by oil firms on Mactan Island or oil barges. Pilotage is mandatory for a trip to any oil firm's wharf. A dry dock for vessels of the 1,000-ton class is available on Mactan Island, and a 1,200-ton dry dock is under construction, making is possible to conduct repair work. There is a national hospital. Cebu also has several clinics where seamen may be treated.

1-2 Structure of Fisherles and Production

1-2-1 Production Structure

The population of the Philippines' fishing industry is estimated at 2,200,000, and its output is 1,230,000 tons (in 1975). When the Philippines' total population of 40,000,000 is taken into consideration, it is evident that its dependency on the fisheries industry is fairly high. Administratively, the fisheries industry is divided into three sectors; commercial fisheries, fish ponds, and municipal fisheries and sustainance fishing. Anybody who intends to commit himself in fisheries must secure a license from the local government.

and the pair to be a second

"Commercial fisheries" mean the kind of fisheries in which fishing vessels, over three tons in gross tonnage, are used with an approval of the State (Department of Natural Resources and the Bureau of Fisheries and Aquatic Resources), and fishing operations are authorized only in the waters with depths exceedings seven fathoms. Control and guidance are provided by BFAR, and the fishermen in this are obligated to file reports on their fish hauls. The population of this category of fishermen was 47,000 in 1973, and their output was 465,000 tons.

Those who are falling under the category of "fish ponds" are the fishermen who operate hatcheries. The hatcheries, as referred to here, include the privately owned or public plots which are rent by the State or local governments to individuals, organizations, cooperatives or businesses to construct hatcheries. The rent hatcheries must not exceed 50 hectares for individuals and 500 hectares for organizations and businesses. The rental period is set at 25 years, which may be extended for another 25 years. With the exception of the hatcheries rent by the central Government, practically no data are available on area, working population, production, etc., with respect to the hatcheries leased by individuals and local governments. Consequently, the production data are based on extremely rough estimates. As of the end of 1973, the hatcheries owned by individuals meansured 85,000 hectares in area, those on loan from the government were 91,000 hectares, and the total output form both types of hatcheries was estimated at about 100,000 tons. Milk fish is practically the only fish

-43-

raised in these hatcheries.

"Municipal fisheries and sustenance fishing" are the kind of fisheries to be conducted in use of fishing vessels, less than three tons in gross tonnage, fishing vessels and of or without used culturing oysters. Licenses for this type of fisheries are granted by local governments in accordance with their ordinance which is approved by the State. Almost all of the fishing population of 2, 200,000 of this country belongs to this category, which constitutes an important sector in administrative terms. It is not an exaggeration to say that practically no attempts are made to collect data on this sector at the national level. With respect to statistics, local governments are obligated to file reports with the State, but extremely rough estimates are made at present, as the statistical data collecting system has not been integrated. The output in this category was estimated at about 640,000 tons in 1973.

the provide a state of the sector of the

The yearly outputs in each sector in terms of quantity and value are shown in Table 3.

The production structure of the commercial fisheries whose statistics are relatively well provided is shown in Tables 4 through 10. These tables reveal that the Philippines highly relies on the pelagic fish fishing industry in which purse seines and bagnets (a kind of lift net) are mainly put to use. This type of fishing industry accounts for 58.7 percent of all the fish haul and is followed by the trawl net fishing industry with 32.8 percent and the drive-in net fishing industry with 5.7 percent. A check of the numbers of fishing vessels, as classified by types of fishing industries, shows that the trawlers which were greatest in number tended to decrease from 1969. In 1973, however, the trawlers were increased in number, up 100 vessels over the previous year. There has also been a remarkable rise in the number of purse seine fishing vessels in recent years. As compared with 1969, there was an increase of 217 vessels, or about 85 percent. With respect to the bagnet fishing vessels, there are relatively drastic annual changes within the range of 750 to 850 vessels. The drop in 1972 was more conspicuous than in the average year, as the vessels decreased to 650 ships. There signs for a slight increase

(In 1,000 metric tons Fish Output and Value by Fishing Industries Table 3

peso 785.0 82.6.0 322.4 464.4 806.5 1,361.9 1,457.4 1, 725.3 2,827.5 3, 295, 3 963.1 2, 331. 1 Value and 1 mil. Total :•; 937.7 940.8 988.9 362.9 667.2 746.1 444.6 603.5 705.3 1,122.4 1,204.8 1,023.1 Amount ÷... 201.5 274.6 292.2 330.0 403.9 857.7 328.2 709.6 631.1 1,599.5 1,123.8 1, 389.1 Value Municipal fisheries Sustinance fishing 219.0 2.64.5 282.7 303.9 598.7 326.7 351.2 477.5 444.2 542.9 Amount 510.5 639.8 129.9 332.4 45.9 96.2 104.1 106.2 135.5 182.4 191.0 252.7 323.0 434.3 Value Fishponds Amount 63.9 9..6 60.1 62.7 63.2 63.7 86.7 94.6 96.5 97.9 98.9 36.7 1,261.6 389.7 366.1 42.3.7 614.8 75.0 93.6 372.1 879.2 Commercial fisheries 548.4 556.8 1,106.1 Value Amount 330.9 406.8 381.9 382.3 107.2 258.1 300. I 368: 7 120.0 424.8 465.4 314.9 1955 1.9:60 1973 1964 1965 1966 1968 1969 1972 1967 1970 1971

Source: Fisheries Statistics of the Philippines, 1973

-45-

	1969	1970	1971	1972	1973
Total	2,273	2,284	2,180	2, 222	2,513
Otter trawl	667	653	652	690	794
Bagnet	796	858	743	650	791
Purse seine	253	245	265	320	470
Hand line	97	88	83	94	81
Drive-in net	24	26	37	39	37
Others	436	414	400	429	340

Table 4 Numbers of Fishing Vessels Used by Fishing Methods

Source: Fisheries Statistics of the Philippines, 1973

Table 5 Numbers of Fishing Vessels by Fishing Methods and Tonnage, 1973

	Total	3 - 5 (t)	5-10 (t)	10-20 (t)	20-50 (t)	50-100 (t)	100 - 200(t)	200- (t)
Total	2,513	268	426	529	534	495	203	58
Otter trawl	794	35	64	95	297	247	55	1
Bagnet	791	123	234	265	99	38	32	-
Purse seine	469	21	50	69	30	168	90	41
Hand line	81	1	2	20	45	13	- -	-
Drive-in net	37	1	· · ·	-	5	1	20	10
Others	341	87	76	80	58	28	6	6

Source: Fisheries Statistics of the Philippines, 1973

				(in 1,000) metric	tons)
	1969	1970	1971	1972	1973	
Total	368.7	381.9	382.3	424.8	465.4	a United
Otter trawl	134.1	135.6	146.4	144.0	152.8	
Bagnet	115.3	125.5	85.9	104.2	40.6	
Purse seine	80.1	86.7	117.7	148.5	232:6	1 7 18 1 8 1 8 1 8 1 8 1
Hand ling	9.3	8.3	7.6	5.3	6,5	
Drive-in net	19.3	16.8	17.9	16.8	26.5	
Others	10.6	9.0	7.1	6.0	6.4	

Table 6 Fish Hauls by Fishing Methods

我们的问题。

老子的一家

Source: Fisheries Statistics of the Philippines, 1973

Table 7Fish Hauls by Fishing Methods and Tonnage, 1973(in 1,000 metric tons)

<u> </u>			1		a statu i a statu i a	.:			
	Total	3 - 5 (t)	5 - 10 (t)	10-20 (t)	20-50 (t)	50-100 (t)	100-100 (t)	200- (t)	Unk - nown
Total	465.4	8.9	16.6	36.3	68.5	160.6	103.7	41.7	29.1
Otter trawl	152.8	1.5	2.4	8.3	48.8	69.2	14.2	0.5	8.0
Bagnet	40.6	3.0	9.9	14.3	5.9	2.2	1.5	-	2.8
Purse seine	232.6	1.7	2.7	10.7	9.3	85.2	76.4	29.9	16.6
Hand line	6.5	-	0.1	1.0	3.5	0.9	~	-	1.0
Drive-in net	26.5	-	-		0,9	2.2	11.4	11.3	0.7
Others	6.4	2.7	1.5	2.0	0.1	0	0,2	0	0

Source: Fisheries Statistics of the Philippines, 1973

Table 8 Fish Hauls by Specie

한글 같은 것이 가 않는다.

(in 1,000 metric tons)

	1969	1970	1971	1972	1973
Total	368, 727	381, 877	382, 276	424,754	465, 442
Big-bodied round scad	109, 729	150, 713	142, 921	150, 356	169,968
Dulphin	30, 926	30, 254	32, 579	42, 101	40,571
Sardine	34, 347	32, 883	44,086	40, 161	39, 740
Short-bodied mackerel	23, 944	21,010	19,992	20,556	25, 875
Nemipterid	18,919	17, 154	16,654	21, 852	25,610
Caesio	9, 974	7,159	9, 315	9,150	19, 165
Big-eyed scad	17,014	14, 373	18, 414	11, 325	13,517
Skipjack	12, 392	7,247	4,256	7,253	11,071
Engraulis spp.	11,005	9, 241	7,410	21,491	11,056
Shrimp	10,970	10, 378	12,702	12,893	10,369
Tuna	2,656	1, 892	3, 812	1,918	6, 865
Croakers	15,338	10,073	9,404	7, 966	8,736
Lizard fish	14,559	12, 278	12, 305	9,052	7,563
Squid	6,366	5,862	5,713	7,451	7,174
Spotted cavalla	5,303	6,369	4,830	5,658	6, 327
Ribbonfish	8, 871	6,738	7,066	5,086	4,869
Others	41, 414	38, 253	30, 827	50,485	57,065

Source: Fisheries Statistics of the Philippines, 1973

					<u>.</u>		U	mt : tons
	Total	Asid Gulf	Burlas Pass	Coron Bay	Daváď Gulf	Guimaras Strait	Lamon Bay	Malampaya Sound
Total	465, 442	4, 223	3, 847	4, 281	5, 189	3, 844	3, 227	88,043
Anchovy	11,056	9	450	329	25	230	924	395
Big eyed scad	13, 516	53	4	118	565	233	33	553
Bonito (Oceanic)	11,071	22	995	82	1, 316	67		3, 779
Caesio	19,066				21		17	4, 749
Cavalla	6, 327		56		41	119	139	1, 554
Crab	2,072	1.1.9		-		29	6	
Crevalla	3,012	47	· · .	8		139	15	37
Croaker	8,736	45	23			219	45	47
Flatfish	2, 240		$= - \frac{1}{2} \sum_{i=1}^{n} $			36		19
Flying fish	1,000	• ·			- 8			354
Grouper	2,364					22		60 1
Hairtail	4,869	50		· ·	3	33		193
Herring	4, 265	2	14			88	54	321
Lizard fish	7,563	16				212		71
Macherel chub	25,875	16	3	29	11	25	27	934
M. fligate	3, 201		1,209		851			
Mackerel sp.	1, 327			1:	1	3	a de la companya de l	92
Moon fish	3, 599		41	· ·	350	279	and the second	537
Nemipterid	25, 610		1997) 1	19		343	17	927
Panpano	1,658			27		36	. 7	164
Porgy	1,076					15		
		1.1	. ·	· ·			1.1	100 and

Prawn

Runner

Sardine

Shrimp

Skipjack

Snapper

Squid

Slipmouth

Surgeon fish

Tuna (Y, F.)

Round sead

433

3, 795

2

20

84

50

3

713

117

71

9

122

3, 341

143

10

1

41

169,968

2, 810

39,740

10, 369

1,463

3, 146

7, 174

3,466

6,865

40, 571

Catch by Fishing Grounds, 1973 Table 9

a da a Unit : tons

25

61

130

118

324

689

13

7

298

3

543

407

279

594

1

41

62, 188

6,707

164

177

169

600

102

902

324

6

1, 175

87

182

75

213

13.

52

49--

Total Anchovy	30,683	9,788						1
Anchow		1	7,921	4, 987	14, 647	77, 330	10, 515	169,
Μισπογγ	800	55	582	429	1, 133	17	110	1,
Big eyed scad	489	10	449	314	138	268	89	9
Bonito (Oceanic)		524	591	38	22	155	95	1,
Caeslo	821		12		32	4, 287	12	8,
Cavalla	011	53	99	21	360	650	86	1,
Crab	145			103	463	22	10	1,
Crevalla	121	14		168	82	32	1	1,
Croaker	288			108	1,677	54	3	5,
Flatfish	101			2	30	45	17	1,
Flying fish	36					n e tá sei Literet ta		
Grouper	6	184	1. A. A.	18	2	518		
Hairtail	159	49	5	303	14	90		3,
Herring	14		21	420	109	5	25	2,
Lizard fish	120			65	536	76	211	5,
Mackerel chub	6,435	227		649	52	1, 315	1,134	14,
M, fligate	•,		340	3	3	60		
Macherel sp.	99	80		54	137	178	3	
Moonfish	26			8	4	51	39	1,
Nemipterid	6,017	166		238	381	1,607	1, 374	13,
Panpano	117	73		18	85	337	9	
Porgy	117				402			171.037
Prawn		1 ¹			2			
Round scad	220	7,919	2,053	453	821	42, 890	3,976	37,
Runner		,,,,,,,	10	6		203		2,
Sardine	515	62	2, 155	527	449	16, 334	618	8,
Shrimp	2,270	5	-,	84	1,819	299	284	4,
Skipjack			284	· · ·			75	1
Slipmouth	6,460	35	803	534	3,048	901	1,035	22,
Snapper					17	840		1,
Squid	594	10	73	117	1,039	109	155	2,
Surgeon fish	401		11			774	15	1,
Tuna (Y.F.)		19	420	190	16	3, 769	11	1,

	Number of fishing vessel A	Number of workers B	Fish haul C	Number of crew members a ship B/A	Fish haul per ship C/A	Fish haul per person C/B
Total	2,513	46,506	tons 465,442	18.5	185,2	0.9
Otter trawl	794	· · ·	152,766	and the second second	192.4	11.4
Bagnet	791	14, 363	40,601	18,2	51.3	2.8
Purse seine	470	9,779	232, 587	20,8	494.9	23.8
Pole-and-line	81	1,949	6,521	24.1	80.5	3.3
Round Hand Seine	50	1,754	3,657	35 , 1 a	73, 1	2.1
Muro Ami		1,793	26, 475	48.5	715.5	14.5
Others	290	3, 813	2,835	13.5	9.8	0.98

Table 10 Catch Per Unit Effort, 1973

n de la companya de No companya de la comp

مرجعتهم وأبرار المعاري أوأنكم أأتحق متحربها المتحدية فالمتحد وتقار مناكرته فيعتقب المتحا

-51-

in the number of drive-in net fishing boats.

1-2-2 Outlook of Major Fisheries

Otter Trawl Fishing Industry

This fishing industry was introduced to the Philippines for the first time in 1909. It was not employed suspended actually for some time, as its operations had not proved successful in the initial years. It was in 1947 that the industry began to operate on a full scale. Due to the subsequent successes, 130 groups were in operation in 1950. The trawl nets come in two types -- mestiso and balloon. The otter trawl vessels come in four types -- the open dugout type, 2 to 3 tons, which is equipped with a 25 HP engine; the launch type, 30 to 40 feet, which is motorized; the sampan type, 10-30 tons; and the 30-80 ton type. The vessels of 20 to 100 tons in tonnage were greatest in number 1973, and the crew was 16.8 men per ship.

The fish hauls in the trawl fishing industry totaled 153,000 tons. Then classified by fish species, the hauls of slipmouths were greatest with 37,000 tons. They were followed by ribbon-finned nemipterids with 24,500 tons, mackerels (<u>R. chrysozonus</u>) with 18,300 tons, shrimps with 10,000 tons, croakers with 8,400 tons and lizard fishes with 7,000 tons. When classified by fishing grounds, the hauls in the Visayan Sea were greatest with 94,000 tons, accounting for about 60 percent of the Philippines' total fish hauls. The Visayan Sea was followed by the Manila Bay with 27,000 tons (18 percent) and San Miguel Bay with 11,000 tons (seven percent). The hauls in these three seas accounted for 84 percent of the Philippines' total hauls. Trawl fishing is also conducted in the Sulu Sea, Toyabas Bay, Samar Bay, Magilas Bay, Leyte Bay and Camotes Sea, but the hauls of each region ranged from 2,000 to 4,000 tons.

Purse Seining

The two-boat purse seining system was introduced to the Philippines in 1962, but the Philippine Government strived to introduce one-boat purse seining of the 24.4-meter type, which would be more efficient. In actuality, however, those converted from larger, second-hand Japanese purse seine and trawl ships were put to use, with the result that the ships ranged from about 60 to 145 tons. The average tonnage stood at 145 tons.

Purse seining is conducted at night. Purse seine ships and transports, positioned at an interval of 800 to 1,600 meters, hang their underwater lamps at depths ranging from 5.5 to 10.0 meters, using their own generators, to attract fish. Watching the air bubbles which come from under the sea, the fishing masters judge whether fish have been attracted by the lamps. The purse seines used to catch sardines generally measure 400 to 550 meters in length and 65 to 85 meters in breadth, each purse seine consisting of wing, main body and bag, and each mesh normally measures 22 millimeters. For fish gathering purposes, what is locally known as "payaw," or the raft which is made of palm and other trees and from which palm leaves hang down is used to gather sardines, mackerels and others during the daytime, and purse seining is conducted with the lamps switched on in the neighborhood at night. This seining method is put to common use. In normal circumstances, the fishing vessels are put to sea for about one week.

The statistics available for 1973 reveal that the hauls in purse seining totaled 232, 500 tons, of which big-bodied round scads accounted for 159, 800 tons or about 69 percent. They were followed by sardines with 30,700 tons (13 percent), frigate mackerels with 7,900 tons (three percent), tunas with 6,200 tons (three percent), big-eyed scads with 6,500 tons (three percent) and short-bodied mackerels (R. chrysozonus) with 4,500 tons (two percent). The hauls of skipjack were very small with only 1,400 tons, or less than one percent of the total hauls in purse seining. When classified by fishing grounds, the hauls in purse seining were greatest in the Malampaya Sound with 25, 900 tons. It was followed by the Sulu Sea with 62, 700 tons, Visayan Sea with 60, 700 tons and Mindoro Strait with 8,900 tons. The hauls in these four regions accounted for 89 percent of the total hauls in purse seining. By seasons, the hauls are great in March through September, although purse seining is done all the year. Of these months, purse seining comes to a peak in May through September. The big-bodied round scads the hauls of which are greatest consist mainly

-53-

of <u>Decapterus russelli</u> and <u>Decapterus lajang</u>. In the Sulu Sea, Decapterus russelli are predominant in winter and <u>D</u>, <u>lajang</u> in summer.

Basnig Net (Bagnet)

Basnig net fishing is one of the lift net fishing methods and conducted roughly in the following manner.

Fish is gathered during the day time with raftshaped "payaw" which has been described with respect to purse seine fishing. In its neighborhood at night, one 500 - 1000W underwater lamp and several bow lamps are switched on to attract sardines, anchovies, big bodied round scads and others. With the air bubbles coming up from under the sea, a full gathering of fishes is ascertained, all the lamps with the exception of the undersea lamp are immediately switched off and at the same time crew members position themselves on the edges of the outriggers which stretch overside. At a depth of 20 meters, they set a square net, each side measuring 20 meters, which shapes like "furoshiki" or a Japanese cloth wrapper, while positioning themselves at its four corners. When the net has been set, the undersea lamp which hangs down from either bow or stern of the vessel is gradually moved amidships. When there is no longer any doubt that fishes have gathered at the center of the net, the undersea lamp is raised. At it has come close to the water surface, the lamp is capped from above with a cylinder the inner part of which is painted in red. At the same time, the crew members who have been standing by at the four corners pull the ropes. When the edges of the net emerge out of the sea surface, the net will be closed tight and brought alongside the ship to catch the fish. This seining procedure is normally repeated two or three times a night. The spreading and drawing of the net at done only with manpower, and the crew is organized by 16 to 20 men. Each mesh measures 8 - 10 millimeters in the fishing catching section and 10 - 20 millimeters in other sections. During the daytime, the ship is berthed at Payaw and put to sea for two or three days or for one week at the longest. The fish haul is carried by the fishing boat at some time and transports at other times.

With respect to the fish hauls, the catches were extremely lean in

1973, as they were registered at 40,600 tons. In the average year, the catches run up to a total of 100,000 to 120,000 tons. Of all the fishes, the hauls of Engraulis spp., big-bodied round scads, sardines, were the largest, each accounting for 16 ~ 20 percent. They were followed by slipmouths (nine percent), frigate mackerels (six percent), squids (five percent) and short-bodied mackerels (R. chrysozonus) (five percent). By regions, this type of fishing is conducted all around the coasts of the Philippines. Above all, the Visayan Sea turned out to be the biggest fishing ground with about 50,000 tons and is followed by the Moro, San Miguel, Manila and Lamon Bays, each accounting for 3,000 to 3,500 tons. The fishing boats engaged in this type of fishing are relatively large in size. Their hulls are slim and supported by two outriggers. Their broadsides are low, and they are not so strong against waves. For the landing of fish, the fishing boats move to a region on the leeward of an islet to avoid a monsoon. In the northeasterly monsoon season, fishing is done on the east sides of the Sulu and Visayan Seas, whereas it is done on the west side of the Visayan Sea and along the west coast of the Pacific in the southwesterly monsoon.

1-3 Marketing and Foreign Trade

1-3-1 Marketing and Prices and an end of the second second

There are 203 fish markets and 54 fish landing centers throughout the Philippines. The fish markets which make their appearance in the statistics of the Bureau of Fisheries total 119. Of them, the Navatas Fish Market north to the city of Manila is biggest, landing fish to the tune of 283,000 tons a year, or 61 percent of the Philippines' total fish hauls. Cadiz and Bacolod Ports on Negros Island land 29,000 and 26,000 tons, respectively. They are followed by the north harbor of the city of Manila with 26,000 tons and Hoilo Port on Panay Island with 18,000 tons. These five fishing ports account for 82 percent of the Philippines' total fish hauls. The main fishing landing ports other than these five ports include, among others, Camaligan, Mercedes and Pio Duran on Luzon Island, General Santos on Mindanao Island and Madridejos on Bohol Island, each landing

a guarda a construction de la const

- 55 -

3,000 to 7,000 tons. Practically every fishing port other than those just listed land less than 1,000 tons each. On the basis of the statistics available for 1973, the relationship between the fishes landed at main fishing ports and the fishing grounds is shown in Table 11.

With the Philippines put under martial law, fish landing for markets must be conducted after 4 a.m. It appears to be a common practice to start fish landing at 5 - 6 a.m., whereas fish landing is begun at some places near midday. At Iloilo, fishing landing was started near midnight with a special approval from the government authorities. Incidentally, fishermen are able to conduct fishing operations at night upon approval by the government authorities, notwithstanding the martial law.

In general, the hauled fishes are sold to brokers, processors and general consumers by the shipowners and wholesale dealers who borrow parts of the market. In 1971, there were 98 fresh fish brokers, 146 salted and dried fish dealers and 84 other brokers.

In the Philippines, practically no fishing boats are equipped with freezing facilities. The fishes caught by purse seining and trawl ships are cooled with cracked ice and landed at fish markets, whereas those caught by small-sized fishing vessels are landed in most instances as they are. At the markets, therefore, these fish are treated as fresh fish. For shipment to inland areas, iced fish are trucked, with the consequence that it is difficult to retian their freshness and most of the fish for consumption are preserved with salt.

There are refrigeration houses and ice plants at 265 places, but they are extremely small in scale. These refrigeration houses are rarely used for dealing with fisheries products for domestic consumption. They are used for preservation of tunas, shrimps and other fisheries products for exportation. The operation rate of the refrigeration houses is only 30 - 40 percent. BFAR officials at the Navotas fish market said that consumers are of the belief that the iced fish are those which are preserved with ice because of the drop in their freshness, with the result that the response to the iced perishables is unfavorable and their purchases are extremely sluggish.

Fishing Fishing Port round	Total	Navotas	Cadiz City	Bacolod City	Manila North Harber	Iloilo	Camaligan	Mercedes	Gen Santos City	Pio Duran	Madridejos	Tacloban	Davao
Total landing	465.442		28,879	26,350	26.204	18.002				· · · · · · · · · · · · · · · · · · ·		······································	
Asid Gulf		rs 3,701	ск 351										
Babuyan Ch				• •	BO 430								1997 - B. S.
Burias Pass					·					MF BO 3,577		· · ·	
Darigara Bay												AN SL 1,037	
oron Bay		rs 3,596											
Davao Gulf												· .	BO RS MF 2,128
uimaras St.			sl. 9	ne sl cv 862		an sl 426							
loilo St.						mc sl. 67		. •					
amon Bay								an sq rs 3,148					
eyte Gulf				-								si. cv sq 1,667	
alampaya Sound		RS SA CA 77,986			ca sf 7,783						· · · ·		
anila Bay		MC NE SL 28,252											
findro St.		rs во 8,884			GR NE PO							. ·	
foro Gulf									SI. RS BO YF 3,140				
anay Gulf				sl ne 34		he an 14							
lagay Gulf		SI. RS NE SH 114										•	
amar Sea		cr lf.ne sa sl 840	HE SA RS BS 2,249						i i i i i i i i i i i i i i i i i i i			SQ SH FL 8	
Miguel Bay							CK SL SH 8,059	AN RS SQ 3,875					
Pedro Bay												CR NE SL	
arangani Bay									mf rs 996	-			NE 22
ibuyan Sea			ck cv hr sl 772										CV CA 601
ulu Sea		Rs SA YF 69,373		•	ca sf 6,975								
ayabas Coast		RS NE MC 8,147			4								
isayan Sea			BSCKHTLFNE SL 25,390	bs ck lf sl sa 25,454	ca sf cv fl 10,896	BS SL RS NB 17,494					sa rs sl mc 3,459	MC SL SQ 117	
ax, Canding	× -	32, 308 (Sep.)	3, 147 (Feb.)	5, 297 (May)	4,714 (May)	2, 411 (Aug.)							
fin, landing		11,210 (Nov.)	1,285 (Aug.)	565 (Mar.)	(Jan. Feb.)	821 (Mar.)		е н.					

Marks AN: Anchovy BS: Big-eye scad BO: Frigate mackerel OA: Caesio OV: Cavalla MC: Short-bodied Mackerel MF: Spanish Mackerel NE: Nemipterid PO: Snapper RS : Round scad SA : Sardine SH : Shrymp CR : Crob CK : Croakers FL : Flat fish GR : Grouper HT : Hairtail HE : Herring LF : Lizand fish SL : Slipmouth SQ : Squid SF: Surgeon fish YF: Yellow fin tuna

-57-

g for se

. . e setto se ta divida Recordential C

g tel großer, gestelle

1. 19. 1

The fluctuations in the prices of main fish tabulated by the Navotas Fish Market every month are shown in Table 12. In the latest survey, the fish hauls classified by months and fish species could not be ascertained, so that no accurate statements cannot be made here. What could be stated in broad terms on the basis of this table is the fact that the price of every fish registered rises of 50 to nearly 100 percent in the months of January, February, October and November, 1973, when the fish hauls were not much. Because refrigeration houses and other preservation facilities are not fully replenished and because there is no other alternative but to dispose of landed fish in one way or another within the day of their landing, it might be said that the prices are knocked down in the season with big catches but soar in the season with small hauls. The various fish species may be divided into the expensive and cheap types with 150 pesos per 30 kilograms as the borderline. If those which come in the high price range could be called fish of the high grade, shrimps, Spanish mackerels, spotted cavallas, squids and caesios come in the category. If those whose prices are cheap may be called popular fish, lizard fishes, big-bodied round scads, slipmouths, hairtails and sardines come in this category.

A check of the price fluctuations indicates that there have been no big fluctuations in the prices of shrimps with the exception of those in January 1973 and that there are signs for a rise in their prices. The prices of squids are practically levelling off. With respect to other fish species, their prices are cheap in summer when there are big catches, whereas the prices go up in winter when there are not big hauls. The fluctuations in the prices of Spanish mackerels and milk fish take on an extremely similar pattern. Now taking the chub mackerels and short-bodied mackerels, they belong to the mackerel family and are of very close Kinship, yet their price fluctuations take on extremely different patterns. For example, chub are traded at prices some 80 Pesos higher per 30 kilograms in some instances, whereas short-bodied mackerels are sold at prices about 80 Pesos higher per 30 kilograms in others. A check of the price fluctuations in the year indicates; however, that there exists no scasonal synchronization.

- 59 -

Average Wholesale Prices at Navotas Fish Market by Months Average Wholesale Prices at Navotas Fish Market by Months 92 169 147 145 149 156 172 155 187 211 93 182 174 178 190 206 222 - - - 93 182 187 187 208 179 211 240 185 -		Rg)	Dec	215	1		611	126	86 T	747 247	169	i	407.		133	201	305	138	
Average Wholesale Prices at Navotas Fish Market by Mon eb. Mar. ab. Mar. box Mar. box 147 147 145 149 156 92 169 147 174 178 190 20 187 93 182 187 187 187 187 187 187 188 91 93 181 18 187 187 187 188 187 208 113 181 151 1146 143 122 113 122 113 123 127 124 148 125 149 126 133 127 133 128 133 208 359 208 355 208 136 208 135		ဗ္ဂ			1999 1997 1997 1997 1997 1997	4				165 1		136	409	uux ina 1 Uux ina	126	212	274	154	
Average Wholesale Prices at Navotas eb. Mar. Apr. May Jume Jull 92 169 147 145 149 156 92 182 174 178 190 206 93 182 174 178 190 206 93 182 174 178 190 206 93 182 187 187 208 179 94 89 91 93 76 97 180 67 122 113 127 155 97 180 67 122 113 127 155 97 180 67 122 113 127 155 97 180 128 102 75 83 81 88 78 123 102 75 83 359 400 181 182 183 151 113 151 475 93 75 554 469 421 475 93	onths	n Pesos	Oct.	187	1	185	86	96	121	2	150	104	390	I	108	205	248	130	
Average Wholesale Prices at Navotas eb. Mar. Apr. May Jume Jull 92 169 147 145 149 156 92 182 174 178 190 206 93 182 174 178 190 206 93 182 174 178 190 206 93 182 187 187 208 179 94 89 91 93 76 97 180 67 122 113 127 155 97 180 67 122 113 127 155 97 180 67 122 113 127 155 97 180 128 102 75 83 81 88 78 123 102 75 83 359 400 181 182 183 151 113 151 475 93 75 554 469 421 475 93	et by M	C	Sept.	155		240	63	64	164	911	103	1 - 1x	363	11 - 12 - 1 	28	172	193		
Average Wholesale Prices at Navotas eb. Mar. Apr. May Jume Jull 92 169 147 145 149 156 92 182 174 178 190 206 93 182 174 178 190 206 93 182 174 178 190 206 93 182 174 178 190 206 94 89 91 93 76 97 180 67 122 113 127 155 97 180 67 122 113 127 155 97 180 67 122 113 133 151 113 128 102 75 83 81 89 78 128 102 75 83 359 400 188 102 75 83 55 410 181 188 178 208 157 475 93 75	sh Mark		Aug.	172	222	211	80 80 80	ŝ	163	148		68	365	524	116	208	238	123	
Average Wholesale Prices eb. Mar. Apr. May 92 169 147 145 93 182 174 178 93 182 174 178 93 182 174 178 93 182 174 178 93 182 174 178 93 182 187 187 93 182 187 187 94 81 75 72 93 75 554 469 93 75 554 469 93 75 554 469 93 75 554 469 94 187 188 170 95 186 189 180 197 186 189 180			July	156	206	179	26	94	6	113	180	78	400	475	е б	159	158	114	 - - -
Average Wholesale eb. Mar. 92 169 92 169 93 182 93 182 93 182 93 182 93 182 93 182 93 182 94 89 98 81 75 98 81 75 98 81 75 98 81 75 98 81 75 98 83 75 98 83 75 97 559 554 93 75 70 94 187 188 95 182 197 95 182 197			June	149	190	208	93	ŝ	1 2 2 1	151	26	68	359	421	93	2.08	206	186	
Average Wholesal eb. Mar. 92 169 92 169 93 182 93 182 93 182 93 182 93 182 93 182 93 182 94 89 98 81 67 122 146 143 67 122 122 113 28 102 75 75 28 102 28 102 29 559 559 554 93 75 94 187 182 186 182 186 182 187			May	145	178	187	16	72	127	133	ŝ	81	336	469	67	178	180	170	
	lolesale		Apr.	147	174	187	68	75	113	143	75	88	350	554	20	188	189	197	· · ·
	rage Wh		Mar.	169	182	182	94	81	122	146	102	80	283	55.9	75	187	186	182	
			reb.	192	193	215	106	686	167	167	128	123	308	265	93	194	204	195 1	•
Table Jan. Jan. 191 191 191 191 192 192 192 121 153 153 153 153 153 153 153 2560 2560 2560	Table 12		Jan.	161	222	219	126	108	192	175	153	121	461	654	103	280	2.60	229	
(1974) (1974) Species Caesio Caesio Grouper Hairtail Lizard fish Short bodied mackerel (<u>R</u> - brachysomus) Ribbon-finned mackerel (<u>R</u> - brachysomus) Ribbon-finned scad Short bodied round scad Shrimp (large- sized) Shrimp (large- sized) Shrimp (large- sized) Short-bodied Short-bodied		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Species	Caesio	Spotted cavalla	Grouper	Hairtail	Lizard fish	Short bodied mackerel (<u>R.</u> brachysomus)	Ribbon-finned nemipterid	oodied	Sardine	Shrimp (middle- sized)	Shrimp (large- sized)	Slipmouth	Squid	Spanish mackerel	Short-bodied mackerels	(R. chrysozonus)

	T*									(1997) 			ş			e Second	
Dec.		. : . : : : : : :	: 	د ژ و د بر		1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997											
Nov.			· · ·														
Oct.					·····												
Sept.	121	- 	1	87	104	181 181	170	66	I	47.7		26	187	1 1 1	181	202	144 44
Aug.	169		1	848 84	104	200	164	06	i.	473	н 1 а. ет	06	200	200	186	184	136
July	151	ı	•	78	101	150	149	16	62	45.3	•	26	201	•	166	168	138
June	193	266	192	65	101	140	157	101	86	472	 I	106	201	500	159	179	1
May	204	189	267	າຮ	104	130 13	165	122	1	46 94	1	114	206	251	175	181	1
Apr.	200	\$.	 *∳. :	ین 6	104	180	158	6 6	· · ·	461	1	111	208	250	175	223	 I
Mar.	177	1	: انست ا	86	104	00 00 1	164	120	•	469	•	113	210	302	176	238	ì
Че Че Ч	202	1	· · · · ·	101	104	197	148 8	124	1	422	•	113	210	316	119	231	1
Jan	245	-	1	136	135	220	170	180	ŀ	443		142	226	325	н Б С	234	. 1
Species	Caesio	Spotted cavalla	Grouper	Hairtail	Lizard fish	Short bodied mackerel (<u>R</u> . brachysomus)	Ribbon-finned nemipterid	Big-bodied round scad	Sardine	Shrimp (middle-sized)	Shrimp (large-sized)	Slipmouth	Squid	Spanish mackerel	Short bodied mackerel (R. chrysozonus)	Milk fish	Yellowfin

-61-

1-3-2 Outlook of Nabotas Fish Market

The Nabotas Fish Market is outlined below:

The Nabotas Fish Market is situated at a point about 40 minutes north by car from downtown Manila and is the Philippines' largest fish market dealing with 283,000 tons of marine products a year. It turns out to be the strategic point for the supplying of marine products to Manila and its periphery. The fish landing facilities of this fish market, constructed on a filled-in land of the coast of the Manila Bay in 1971, consist of two roofed and concrete-floored cargo handling stations, a small ice plant and an office for BFAR. Each cargo handling station has a floor space of 4,800 square meters, which is divided into 6.93 x 2.3m. blocks, and each block is on loan to consignees at 500 Pesos.

As the sea is shallow for some distance from the coast of the fish landing place, fishing boats stop one to two kilometers off the coast, and the fish brought in by them are put into cylindrical metal containers (shaping like whashhand-basins), each with a capacity of 30 kilograms, and moved to the fish market by amphibious vehicles known as "Amphibias." The fish lined up on the floor of the cargo handling station are sold by auction to consignees. The auction is conducted with countersigns.

Of the main fish species landed at this fish market, big-bodied round scad is greatest in amount with 155,000 tons, which is followed by sardine with 29,000 tons, chub mackerel with 20,000 tons, ribbon-finned nemipterid with 18,000 tons, slipmouth with 17,000 tons, bonito with 16,000 tons, shrimps with 5,000 tons, yellowfin with 6,000 tons, swordfish with 4,000 tons, caesio with 4,000 tons and butterfly fish with 4,000 tons. By sea regions, most of the fish traded at the fish market come from three sea regions -- the Visayan Sea (82,000 tons), Malambaya Sound (178,000 tons) and Sulu Sea (69,000 tons). They are followed by the Manila Bay (28,000 tons), Mindanao Strait (9,000 tons), Tayabas Strait (8,000 tons) Coron Bay (4,000 tons) and Asid Gulf (4,000 tons).

A check of the interrelations between these fish species and fishing grounds reveals that the hauls of big-bodied round scad are great in the Malambaya Sound with 62,000 tons, which is followed by the Sulu Sea with 43,000 tons, Visayan Sea with 31,000 tons and Mindanao Strait with 8,000 tons. Sardine is caught to the tune of 16,000 tons in the Sulu Sea and this amount accounts for about 56 percent. It is followed by the Malanipaya Sound with 7,000 tons and the Visayan Sea with 6,000 tons, suggesting that practically every haul of sardines comes from these three sea regions. With respect to ribbon-finned nemipterids, 9,000 tons come from the Visayan Sea, 6,000 tons from the Manila Bay, 1,000 tons from the Sulu sea and 1,000 tons from the Tayabas Strait. Chub mackerels are hauled in the Visayan Sea, Manila Bay, Sulu Sea and Tayabes Strait practically at the same rates as ribbon-finned nemipterids. Practically every haul of slipmouths comes from the Visayan Sea and Manila Bay.

1-3-3 Processing and Foreign Trade

The typical examples of the processed marine products in the Philippines are salted, dried and smoked sardines, anchovies, shrimps and slipmouths, and they are produced on a scale of cottage industry in many instances.

Of the foods preserved with salt, those which are put to frequent use are Bagoong, the salted guts of anchovies and other tiny fishes; Patis, a fish sauce; and fish paste. There were 132 registered Bagoong production plants and 82 registered Patis production plants in 1971. The production process of Bagoong is the same as that of Patis. First, anchovies, slipmouths and other small fishes are cleaned with fresh water to remove forcign objects. Salt is sprayed over them at a rate of one part of salt to three parts of fish or two parts of salt to seven parts of fish. Then, the salted fishes are preserved for two weeks to one year. The temperature will be kept at 45°C in the first week and 37°C in the second week. After this process, they will be kept at the room temperature for more than six months. When the fishes have been preserved for six months to one year, they are fermented, producing the kind of supernatant fluid which is fragrant and looks like soy sauce. The fish sauce known as Patis is produced by isolating and filtering this supernatant fluid. Incidentally, this liquid contains nine to 10 percent of protein. Bagoong is produced by

--63--

crushing with a meat grinder the grounds squeezed from Patis. Bagoong and Patis are sold in bottles or cans.

The production method of fish paste is practically the same as that of Bagoong. After the heads and intestines have been removed, salt is added to the fishes at a rate of one part of salt to 2.5 to three parts of fish. For their preservation, weights are put on the fishes. After three or four months of preservation, the fishes are taken out and washed with dense salt water and their skin and bones are removed before their meat is minced with meat grinders. In the case of seabed and other less fatty fishes, high-quality salad oil is added at a rate of two ounces of oil to one pound of fish meat.

As regards to the dried fishes, sardines, anchovies and other tiny fishes are dried in the shade. In the case of fairly large fishes, both sides of meat are separated and then kept in 10 percent salt water for about half an hour. After the blood has been removed, the slices of meat are evenly salted at a rate of one part of salt to three or four parts of fish meat and then preserved in basket-like containers for about two days (one-and-a-half days for relatively small fishes). Next, Salt is sprayed over the fishes, while they are put into another container one after another, and preserved for about one week (one-and-a-half days for relatively small fishes). Then they are taken out of the containers, and the blood and foreign objects are washed away with clean salt water, before they are dried in the sun. On the first day, they are dried in the sun all day. From the second day on, they are dried for three to six hours a day. On the last day, they are once again dried in the sun all day. To accelerate their drying, a weight is sometimes put on the dried fishes that have been piled up. The drying period is three for middle-sized fishes and 10 days for large-sized ones.

There are 48 plants for smoked products in the Philippines. After fully rinsed fishes have been preserved in salt water for one to four hours (a full day for large-sized fishes), they are placed on wirenetted crates for drying. After the fire in the kilns has been fully made up, the sawdust of lauan is sprayed over the fire to emit smoke, and the crates of the dried fishes are put over the smoke.

-64

There are 22 canning plants in the Philippines. Canned mackerel and fruit are produced, but many of the plants are small in scale. In the Philippines, the canning industry has not made much progress, as the can production cost is high and the price competition with foreign products is intense. For this reason, the Philippine Government began to control the imports of cannned mackerel to protect the domestic canning industry. Foreign Trade

The foreign trade of marine products is shown in Table 13. The exports have been increasing at a steady pace year after year. They totaled 18,000 tons (125,480,000 Pesos) in 1973, up 68 percent in quantity and 78 percent in value over the previous year. On the other hand, the imports amounted to 41,000 tons (135,600,000 Pesos) in 1973, down 36 percent in quantity and 46 percent in value from the previous year. Although the difference between exports and imports were narrowed in 1973, the imports still remained exceeding the exports.

As regards the exports, frozen tunas and shrimps are greatest in terms of quantity with 8,500 and 3,100 tons, respectively. These two species account for nearly 90 percent of the exports. Others include processed sea food and shell fishes. In value, the tunas earned 3, 120, 000 Pesos and the shrimps 60,830,000 Pesos, the shrimps account for about half of the total export values. A check of the countries to which the Philippines' marine products are diverted reveals that 76 percent is shipped to the United States and 17 percent to Japan. Eighteen percent of the shrimp exports go to Japan and slightly less than 16 percent to the United States: A check of the export growth in the last five years indicates that the exports are 14.5 times as much as in 1969 in terms of value. By types of sea food, the exports of frozen sea food registered an epochal rise of 27 times. Of them, the exports of frozen shrimps increased by 26.5 times and those of frozen tunas by 23 times. The processed sea foods consist mainly of Patis and salt-preserved sea food, but the rise in their exports was relatively low, as they registered an increase of eight times. The exports of frozen marine products have registered such an epochmaking increase, as they have been sustained by strong demands from

-65-

1,000 Pesos) 1973	Value	125,484	102,067	30, 120	60, 830	4,180	4,062	6, 850			1973	Value	135,597	132, 917	in the second seco	2, 634	37	
d 1,000 P 1973	Q [†] ty	18,053	13, 322	8, 545	3, 143	603	1,433	1, 862				Q'ty	41,204	39, 879	e	1, 322	3	
(in tons and 1972	Value	70,527	57,818	17,737	36, 978	2,486	1,414	4,564			972	Value	143, 131	130,918	10 1	12, 141	55	
(in to 1972	Q'ty	10,746	8,068	5, 161	2,227	609	484	1,095		*	61.	Q'ty	64, 202	52,596	، ا-م	11,602	2	
971	Value	40,053	31,067	8,719	20,768	1,491	676	4,384			11	Value	142,847	132, 620	20	10,142	65	
19	Q ¹ ty	7,300	4,473	2,770	1,472	471	340	1,747			197	Ω^{t} ty	68, 883	58, 743	2	10,134	5	
1970	Value	17,986	11,091	2,519	7,951	612	527) 4,274				Value	108, 119	98, 716	4 70	9, 105	264	
1	Ω^{t} ty	3,404	1,589	820	574	279	3 318	066			1970	Q'ty	2,746	2, 987	~	9,614	137	
1969	Value	8,648	3,792	1,287	2,295	509	\$ 478	2,948			6	Value	77, 748 62	71, 190 5	107	5, 976	275	
ř.	Q'ty	2, 841	1, 165	841	244	259	428	842			1969	Q^{t} ty	71,034 7	58,267 7	300	12, 423	306	
υ υ υ υ υ υ υ υ υ υ υ υ υ υ			l frozen		··· • *	rd		• • •						u1 			ed.	an a
Exports		Total	Fresh and	Tunas	Shrimps	Processed	Seaweeds	Shell fish		Imports	•		Total	Canned	Fresh	Meal	Processed	
					<u></u>		<u></u>		J 		L				L. L.		<u>- Alesia</u> - 2 - 2 - 2 - 2 - 2 - 2 - 2	1

foreign countries and aggressive measures to encourage exports have been instituted to assure an adequate reserve of foreign currency.

The imports in 1973 totaled 41,000 tons in quantity and 135,600,000 Pesos in value. The imports began to drop from 1971 in quantity and 1972 in value. Canned foods account for the majority of the imports, amounting to 40,000 tons in quantity and 132, 920,000 Pesos. This amount accounts for 98 percent of the total import values of marine products. Of the canned foods, canned mackerel accounts for three fourths, most of it being diverted to Japan. Canned mackerel is followed by canned sardine, the imports of which amount to 26,550,000 Pesos, or about 20 percent of the total import values. They are diverted to Morroco and Japan. A check of the import fluctuations in the past five years reveals that the imports of canned sea food had levelled off (52,000 to 58,000 tons) until 1972 in terms of quantity. There had also been signs for a slight rise in terms of value, but the imports drastically dropped to about 40,000 tons (1,355,900 Pesos) in 1973. The drop may be attributed to the high tariffs on imports and the import control necessiated by a shortage of foreign currency. In addition to the imports of canned marine products, those of fresh and processed sea food and fish meal also registered sharp drops. Particularly in 1973, the imports of fish meal dropped to 1,000 tons, or one-tenth of the quantity imported in the previous year.

1-4 Fisheries Administration and Policy

1-4-1 Administrative Structure

The fisheries in the Philippines are administered by the Bureau of Fisheries and Aquatic Resources of the Department of Natural Resources. With the Bureau of Fisheries and Aquatic Resources as the core of fisheries administration, the local districts are classified into regions and each region is placed under the jurisdiction of a BFAR branch office. As indicated in Fig. 9, the Bureau of Fisheries and Aquatic Resources has six divisions of Administration Fisheries Research, Fish Propagation, License and Protection, Technological Services, and Fishery Economic and Information under its Director, and also the Planning and Management

-67-

(ILOILO CITY) REGIONAL VI AQUACULTURE SECTION OCE ANOGR APHI FISHING TECHNOLOGY SECTION UTILIZATION LIMNOLOGY FISHERLES BIOLOGY SECTION SECTION SECTION RESEARCH FISHERLES NOISIVIO FISH REGIONAL XI (DAVAO CITY) BR ACKISHWATER FISHERIES FRESH WATER FISHERIES SECTION REGIONAL V (NAGA CITY) PROPAGATION DIVISION MARINE FISHERUES COMMUNAL FISHERIES FISHERIES SECTION SECTION SECTION SECTION MINOR OFFICE HSH CAGAYAN DE FISHPOND PERMITS & LEASES SECTION BFAR^ts Organizational Chart RECIONAL X MARITIME SAFETY PROTECTION & REGULATION SEC. QUARANTINE & INSPECTION SECTION FESHING BOAT REGISTRATION LICENSING SEC. REGIONAL IV MISC, FISHERY PRODUCT RIZAL PERMIT SEC. **NSPECTION** PROTECTION DIVISION LICENSES & FISHERY SECTION (ZAMBOANGA CITY) FISHERY PRODUCTS QUANTITY CONTROL SECTION RECIONAL IX OFFICE OF THE DIRECTOR PRESERVATION & PROCESSING SECTION DEVELOPMENT TECHNOLOGICAL INDUSTRIAL DEEP-SEA FISHERIES COASTAL FISHERIES SECTION SECTION SECTION SAN. FERNANCO,) SERVICES NOISIVID FISH თ REGIONAL III -अन् म FISHERY ECONOMIC (TACLOBAN CITY) FUBLIC INFORMATION REGIONAL VII & INFORMATION ASSIST ANCE SECTION STATISTICS SECTION ECONOMIC FISHERIES REGIONAL SECTION MARKET NOISIVIO (TUGUEGARAO,) REGIONAL II ADMINISTRATIVE ACCOUNTING PERSONNEL GENERAL SERVICE SECTION RECORDS BUDGET LEGAL REGIONAL VII SECTION (CEBU CITY) DIVISION MANAGEMENT (DAGUPAN CITY) MANAGEMENT PLANNING REGIONAL I PLANNING & STAFF STAFF STAFF

-68-

Staff under his direct control. Thirty-two sections and two staffs are placed under their umbrella. The administrative regions are demarcated as shown in Fig. 10.

The Bureau of Fisheries and Aquatic Resources has jurisdiction over, and is responsible for, the management, protection, exploitation, utilization and disposal of marine resources in all water regions other than the municipal water regions which are placed under the jurisdiction of local governments or municipal assemblies (the sea region hemmed in by the line drawn three miles offshore in parallel with the coastline at the low tide and the inland waters placed under the management of local governments). With an approval of the Marine Product Industry Development Council, the Bureau of Fisheries and Aquatic Resources prepares and implements plans for the development of the marine product industry.

The Marine Product Industry Dévelopment Council is established to formulate integrated administrative guidelines for the management, protection and utilization of aquatic resources in the Philippines and also for the creation of an environment necessary for financing the development of marine product industry. With the Secretary of Natural Resources acting as Chairman, the Marine Product Industry Development Council is organized by the Secretary of Agriculture, Secretary of National Defense, Secretary of Industry, Secretary of Public Works, Transportation and Communication, President of the Philippine Central Bank, President of the Philippine Development Bank, Chairman of the Investment Council, Director of the Bureau of Fisheries and Aquatic Resources, and representatives of the inland water and oceanic fisheries organizations. The Executive Board of the Marine Product Industry Development Council meets twice a month and passes votes for necessary regulations, etc.

The municipal waters are managed by local governments or municipal assemblies in accordance with the ordinances approved by the Secretary of Natural Resources. One of the main lines of duty of the local governments is to select and license the qualified persons from those who intend to engage in fisheries using fishing boats of less than three tons in gross tonnage or in fisheries without any fishing boats, those who intend to con-

--69--

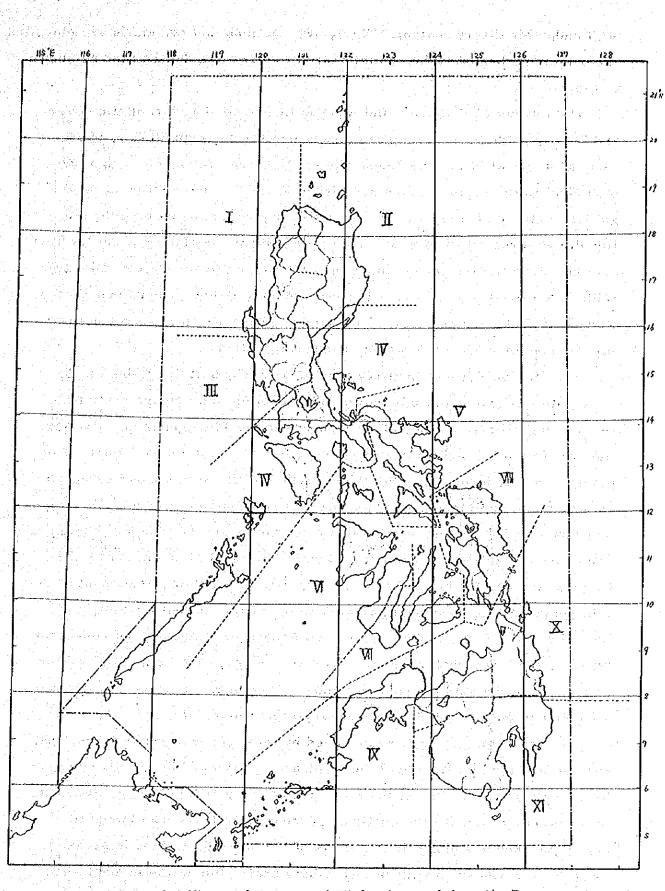


Fig. 10 Regional Offices of Bureau of Fisheries and Aquatic Resources and Areas of Jurisdiction

struct and manage oyster nurseries; and those who intend to catch bangos (milk fish) and other fry in accordance with the procedure set forth by the Bureau of Fisheries and Aquatic Resources. Another is to file reports with the Bureau of Fisheries and Aquatic Resources on the data gathered with respect to the fisheries.

للهجي والجملأ وبالجا الرجون والمارية المراجع

化化学学 化化学学 化化学学 医子宫炎 医子宫炎 化

1.4-2 Fisheries Policy

The President of the Philippines amended and consolidated the laws which had been in existence for the fisheries industry and issued the 1975 Aquatic Product Industry Decree on May 16, 1975.

The 1975 Aquatic Product Industry Decree is made up of a preamble and seven chapters. The decree is outlined below:

Chapter 1 sets forth the policy of expediting and stepping up an integrated development of the aquatic marine product industry in the Philippines and sustaining it in a reasonable state of productivity through appropriate preservation of aquatic resources. At the same time, it also defines the legal terms used in the Decree.

Chapter 2 concerns the Bureau of Fisheries and Aquatic Resources and provides the scope of its jurisdiction and duties of the Bureau. According to this chapter, the Bureau of Fisheries and Aquatic Resources, in addition to the duties described in the preseding paragraph, provides assistance and formulates training programs for the development of the aquatic product industry. It also offers assistance in conjunction with the research and educational activities of aquatic product industry training institutes, conducts researches and surveys on fish species and aquatic products, licenses commercial fishing boats, and designates fish landing places.

Chapter 3 stipulates the organization of the Aquatic Product Industry Development Council and the roles of the departments and other government agencies which take part in the Aquatic Product Industry Development Council.

Chapter 4 concerned with the utilization and exploitation of aquatic resources, and stipulates that no persons shall be allowed to engage in fishing operations without a license or approval of the central or local

-71-

government and also that the persons who are engaged in commercial fisheries with an approval of the Bureau of Fisheries and Aquatic Resorces are prohibited from operating in any sea region of a depth less than seven fathoms. The Chapter obligates the Philippine Coast Guards to inspect ships for security reason, set forth the qualifications of navigators and other ship officer, and formulate standards for medical care facilities. It also contains provisions for a ban on the exportation and importation of unauthorized aquatic products and also for the scope of authority invested on local governments and other institutions.

As qualified persons for licenses for operation in commercial fisheries are listed the Philippine citizens and legitimately registered organizations or businesses. More than 60 percent of capital of these organizations or businesses must be owned by the Philippine citizens. The persons engaged in commercial fisheries, including the licensed businesses, may conclude assistance contracts with foreigners or alien businesses upon approval from the Secretary of Natural Resources.

These provided contracts must conform to the guidelines set forth by the Aquatic Industry Development Council, and the contract fees must be paid in the form of fishes or aquatic export products. To promote the rearing industry and, at the same time, for effective use of the public plots they are leased to individuals or businesses who are going to construct culture ponds, over a period of 25 years. This period may be extended for an additional period of 25 years.

Chapter 5 stipulates that the Government or its related agencies may designate waters for its exclusive use.

Chapter 6 contains provisions for illegal fishing operations and disposal of illegally hauled fishes and illegal aquatic products. This Chapter also prohibits the use of explosives, toxicants and electricity in fishing operations and places a ban on the use of fishing nets whose meshes are smaller than those stipulated under the provisions of Article 7. Penal clauses are contained in this Chapter for such violations.

Chapter 7 contains miscellaneous provisions.

For example, it , provides for the establishment of a Fisheries Loan

Credit Fund, which will be controlled by the Philippine Central Bank to advance funds to persons engaged in commercial fisheries for the development of the aquatic product industry. It also contains provisions for the exemption of persons engaged in commercial fisheries from application of the Blue Sunday Act and the Eight-hour Work Act.

2. Outline on Skipjack Resources and Bait Fish

2-1 Skipjack Resources

There are not a few reports which indicate that there is much room left for further exploitation of tunas or, more particularly, skipjack in the Philippine seas. But, in reality large-scale fisheries oriented toward the fishing of tunas and skipjack are not present. Thus, it seems that some of these reports contain estimates assumed from the actual records of the skipjack hauled in other seas or their exploitability.

2-1-1 History of Development of Skipjack Fishing in Philippines

The history of the fishing of skipjack and tunas in the Philippine seas is relatively new. No modern tuna and skipjack fisheries industry had existed in the Philippines before 1935 (Warfel, 1950). Domantay (1940) gave a full account of the activities of Sea Foods Corporation established with Japanese capital in Zamboanga in 1935. He reported that this corporation had four skipjack pole-and-line fishing boats, 24 to 40 tons, and a cannery, turning out 200 to 300 cases of canned food in terms of 21 pounds per case every month from 1937 to 1939. The output was reported as reaching a total of 400 cases during World War II. The fishing boats, machinery and methods were unexceptionally of the Japanese type, and practically every crew was made up of Japanese seamen, for whom a limited number of Filipino fishermen worked. The fishing grounds included the Sulu Sea, Moro Gulf and Celebes Sea, and the main fishes caught in these regions were skipjack and yellowfin. In 1938, the hauls of yellowfins totaled about 250 tons and those of skipjack ran up to a total of 1,050 tons. The brisk fishing sea extends from April through June, the hauls reaching the highest peak in May. The catches remained slack from July to November (Table 14).

	Table 1	4 Ca	ntch of Tuna:	8 	Unit : to
	1969	1 9 7 0	1971	1972	1973
Total	368,726	381,877	382,275	424,754	465.441
Yellow fin tuna	2,522	1,685	3,774	1,855	6,864
Skipjack	2,316	122	225	130	1,462
Blue bonito	12,391	7,247	4,245	7,252	11.071
Prigate Mackerel	• • • • • • • • • •			··· _·· ··	3.200

Source ; Fisheries Statistics of the Philippines, 1973

A small-scale skipjack fisheries industry made its appearance in Davao in 1936. This firm produced dried skipjack and supplied fresh fish to many Japanese residents there (reportedly about 20,000) (Martin, 1938). The skipjack fisheries industry of a similar scale also made its debut at Apari and Bangui in the northern part of Luzon Island in the latter half of the 1930's. The skipjack fishing operations sustained with Japanese capital came to an end in the last days of World War II and have never been restored.

Martin also reported that the Philippine Packing Corporation established with American capital conducted the experimental seining and pole-andline fishing of skipjack and tunas in the sea region extending from the south of the Philippines to the Pacific Ocean for about two years from 1934. Based on his interviews with surviving fishermen, Warfel (1950) reported that the seining did not prove successful and that only 265 tons were hauled in the pole-and-line fishing in the two years. Particularly, difficulties were encountered in securing to live baits for the pole-andline fishing operations.

Immediately after World War II, the U.S. Government dispatched the Spencer F. Baird and two other ships to these sea regions for an oceanic and aquatic survey. The Spencer F. Baird was concentratedly engaged in pole-and-line fishing experiments. As live baits could not be adequately

-74-

secured, however, the results were not favorable (Warfel, ibid.).

Under the South China Sea Fisheries Development and Coordinating Program, the Food and Agriculture Organization (FAO), chartering two seining vessels of Canadian registry, has been conducting a large-scale exploitation survey since 1974. The ships are the 112, 5-foot Southward Ho and the 96-foot Royal Venture. Equipped with fish finders, radar and sonar equipment, and large-sized seining gear, they are ships of the latest type. The two vessels conducted experimental fishing operations during their four navigations in Sulu Sca, Celebes Sea and Moro Gulf until May 1975. In the first (December 1 through 13, 1974) and second (January 5 through February 3, 1975) navigations, no worthwhile hauls were recorded either in the Sulu Sea or the Celebes Sea (Peterson et al., 1975). In the third navigation (February 9 through March 26), the favorable hauls of 8.5 tons (6.8 percent) of yellowfin tuna, 84 tons (67.2 percent) of skipjack, and 32 tons (26.0 percent) of bonitos and frigate mackerels were recorded mainly in the Moro Gulf (the figures qouted here represent the total hauls of both ships). In the fourth navigation (April 9 through May 24), 69 tons (24.4 percent) of yellowfin tuna, 81 tons (63.8 percent) of skipjack, and 30 tons (10.8 percent) of frigate mackerels were hauled in the Morö Gulf and the Sulu Sea. Particularly, when favorable conditions lasted for two weeks during the period, 25 fishing operations were conducted with as much yield as 294 tons (11.8 tons per operation). The skipjack hauled in these fishing operations were large in size, weighing 5.1 kilograms on the average (Rosenberg et al., 1975). In every navigation, many dispersed small schools were observed in each navigation during the daytime, but it was reported that the schools were too small for seining and that the fishes had dived deep and escaped through the net before the net bottom was tightened up. For this reason, the schools of fish which were swimming near floating logs and rafts were gathered with lamps at night and seined before the sunrise.

-75-

2-1-2 Present Status of skiplack and Tuan Fisheries in Philippines

The hauls of skipjack and tunas are reproduced in Table 14 from the 1973 edition of the Philippines' fisheries statistics (Bureau of Fisheries and Aquatic Resources, Fisheries Statistics of the Philippines). Sortages of the Philippines' fisheries statistics have been pointed out in the past (e, g., Kume, 1973), and the statistics contain incomprehensible factors, such as the fact that no reference whatsoever had been made to the hauls of skipjack before 1972. The hauls shown in the statistics are only those hauled by the fishing boats of 3.0 tons and over (which fall under the category of commercial fisheries in the statistics), and the statistics do not contain data on the yellowfin tuna and other fishes angled by smaller fishing boats in considerably great quantities. On the basis of this table, it might roughly be said that skipjack and tunas are relatively small in the total hauls of the Philippines' aquatic product industry and that there are markedly big yearly fluctuations in the hauls of yellowfin tuna and skipjack. In 1973, yellowfin tuna and skipjack accounted for only 1.5 percent and 0.3 percent, respectively, of the total hauls. With respect to the fishing grounds, 3,768 tons of yellowfin tuna came from the northern part of the Sulu Sea, which was followed by the Visayan Sea with 1,395 tons, and the remainder was hauled in a large number of fishing grounds, each with small quantities. In the hauls of skipjack, the Visayan Sea came on top of the list with 1,084 tons and was followed by the Moro Gulf with 283 tons. As in the case of yellowfin, the remainder was hauled in many fishing grounds, each with small quantities.

As classified by fishing methods, practically all yellowfin tuna and skipjack were seined (with purse seines). The pole-and-line fisheries, as far as we came to know in our latest survey, are limited to those conducted experimentally the Pure Food Co., a cannery in Manila and in a small scale by the Oceanic Fisheries (Philippine) Inc., a joint Philippine-Japanese undertaking, with its base at Iloilo.

2-1-3 Skipjack Resources in Philippine Seas and Their Exploitability

The skipjack are highly migratory, so that there is a need to have a broad perspective when one argues about the skipjack resources. The

-76-

resources of large-sized tunas are levelling off in the entire part of the Pacific Ocean, and no increase in the hauls expectable. But, with respect to the skipjack, it is reported that there still remains room for their exploitation. Nevertheless, the hauls of skipjack in the seas off the Philippines are smaller than expected, and there is a need to study the reason.

The fishing boat fisheries conducted in the seas off the Philippines consist mainly of offshore fisheries with small fishing vessels, as far as we know from the statistics available from the Bureau of Fisheries and Aquatic Resources. Most of the 756 fishing vessels exceeding 50 tons are trawl and seining ships.

As reported in the findings of the several surveys (ibid.) conducted by the Food and Agriculture Organization (FAO), on the other hand, the skipjack in the seas off the Philippines, are often dispersed in small schools and move too fast to be caught with seines. In the FAO surveys, therefore, a special device was worked out whereby the groups swimming close to floating logs are seined at dawn. In the Philippines, the raft which is locally known as Payaw is used in the same way as the Japanese raft for dorados. The method of seining the yellowfin tuna and skipjack gathering at the Payaw rafts seems to be put to considerably widespread use. The fisheries statistics indicate that a greater portion of the yellowfin tune and skipjack were hauled in the seas off the Philippines with seines, but they do not indicate the amount of the fishes caught with Payaw rafts.

The seining fisheries for yellowfin tuna and skipjack prove successful in the Pacific Ocean off the east coasts of the Philippines islands, and the background for this success consists of the existence of a shallow spring layer and schools of porpoises. Few schools of porpoises were observed in the Philippine seas according to FAO's extensive surveys, and it is hardly inconceivable that there exist shallow spring layers in the seas situated at low latitudes. When this fact and the ecological features of the schools of skipjack in these seas are taken into account, we are inclined to think that pole-and-line fishing would be preferable to seining for the hauling of skipjack at least in the Philippine seas.

When it is taken into consideration that many schools of skipjack,

-77-

although small in size, are extensively observed and that skipjack can actually be hauled in considerably great quantities with specially devised seines, it seems that the fact that the hauls of skipjack in the seas off the Philippines are small in quantity suggests the less development of skipjack fisheries, and not <u>vice verse</u>. As has been described earlier, no largesized fishing vessels are available on these seas for offshore skipjack. When consideration is given to the facts that the several navigation surveys conducted by the Food and Agriculture Organization (FAO) produced favorable results and that the Japanese type of fishing of skipjack were conducted off the south coast of Mindanao Island before World War II, we would rather be inclined to conclude that there still is room for the exploitability of skipjack in the seas off the Philippines and pole-and-line fishing is preferable for their exploitation.

When pole-and-line fishing is to be introduced to these sea regions, the question does not lie in the availability of skipjack but in the difficulties encountered in securing live baits.

2-2 Bait Fish

To put the pole-and-line fishing of skipjack on the right track, the abundance and availability of skipjack as well as the adequate local procurability of bait fish turn out to be determinants. When an actual survey is to be conducted, there will be a need to conduct a full study on the fish species which are usable as bait fish in the seas off the Philippines and their quantities as resources (or the actual hauls). In the following, an attempt will be made to describe bait fish in detail on the basis of the results of the latest preliminary survey and also the existing data and research reports,

2-2-1 Conditions Necessary for Bait Fish

Brock and Tanaka (1955) specified various conditions necessary for the fishes which would be used as baits in the pole-and-line fishing of skipjack. In the following, some of the conditions are cited:

a. Exist in massive quantities.

b. Available. It is more desirable to catch bait fish in commonly used

fishing methods, such as with fish lamp-using lift nets, rather than in special fishing methods, such as with drive-in nets.

c. The following conditions have to be satisfied with respect to the configuration.

c-1 The size must be appropriate. In the spraying of baits, the number of fish is more important than the gross weight. If the bait fish is large in size, there will be a limit to the number of fish which may be stocked. As a general yardstick, it might be said that the sizes ranging from four to 10 cm are appropriate.

c-2 The bodies must be in loud silver white color.

c-3 There should be no thorny shrubs and other objects inconvenient to their treatment.

d. When baits have been scattered about, the skipjack must follow the fishing boat in schools, instead of diving deep.

e. The baits must be strong enough to resist shocks at the time of their catch and also survive stocking and transportation.

Of those fish species which satisfy the aforementioned conditions and serve as live baits in the pole-and-line fishing of skipjack, those whose distribution extends over the low-altitude seas of the Pacific Ocean are anchovies, herrings and sardines, sprats, silversides, mackerels, scads and round scads, and caesios. Also conceivable as live baits are mullets, goatfishes and cardinal fishes.

2-2-2 Distribution and Quantities of Fish Species Conceivably Suitable as Baits in Philippine Seas

To know the quantities of the aforementioned fish species in the seas off the Philippines in offshore fisheries, the hauls as classified by types of fishes and fisheries are extracted in Table 15 from the Fisheries Statistics of the Philippines, BFAR, 1973. As these statistics do not indicate the hauls as classified by types of fishes, there is no way of knowing in detail about the types, but we are able to know that the fish species which are considered suitable as live baits are caught in large quantities by the coastal fisheries of the Philippines. The fish hauls indicated in the stati-

-79-

stics are those of fishing boats of 3.0 tons and over and consequently do not include those of the municipal fisheries in which smaller fishing boats and stationary nets are used. The various fish species referred to here are unexceptionally small coastal fishes. In the municipal fisheries whose hauls are not included in the statistics, fishing operations are unexceptionally conducted immediately off the seacoast, and their total fish hauls are estimated at being about 1.4 times those of fishing boats of 3.0 tons and over. From the foregoing, it might be safely said that the fish species fitted as live baits, as argued here, are not only caught in the seas off the Philippines in large quantities but also constitute greater portion of the total fish haul of these seas. In the latest survey, the fishes landed at the

	Bagnet	Beach seine	Muro ami	Purse seine	Round haul seine
Total (A)	40,600	1,627	26, 475	232,587	3,656
Anchovy	8, 368	838	-	517	542
Herring	1,107	21	al and a 🚽 🖓	2, 589	122
Sardine	6, 881	237	n an	30,684	594
Silver side	222	-		1 1 1 1 4 1 1	n an trai n ag
Round scad	7,727	46	- 1	159, 823	1,126
Big-eyed scad	774	1.9.	al i 🖷	6,456	150
Chub mackerel	1,900	12	-	5,472	210
Caesio		-	18, 593	an la 🕂 🕂	
Total (B)	26,979	1,173	18, 593	205,541	2,744
в/а (%)	66.5	62.1	70.2	88,4	75, 1

Table 15 Hauls of Main Bait Fishes by Fishing Method, 1973

in a sub-second of the second degree of the second second (in metric tons)

Source: Fisheries Statistics of the Philippines, 1973

-80-

Navotas Fish Market on the outskirts of the city of Manila and those in Davao, Tacloban and Iloilo were checked, and we were under the impression that they are mostly from the costal fisheries in terms of fish species composition and quantity.

As has been described earlier, the Fisheries Statistics do not indicate hauls in terms of fish types. For statistics' sake, similar fishes are grouped (which does not correspond to the taxological family), and a maximum of 72 groups, including "miscellaneous fishes," are cited in the statistics. Gonsequently, it would be impossible to argue what types of fishes are fitted as live baits on the basis of the statistics and where their distribution and quantities stand, and there is no alternative but to depend on individual research reports to secure information. In the following, an attempt will be made to sort out for each fish group the findings which will be of use in the forthcoming full survey on the basis of the data that have been gathered.

Anchovy: The anchovies (Engraulis japonicus) which are exclusively used as live baits in Japan do not inhabit this sea region (Herre, 1950). The fishes of this family which are usable as live baits in this sea region consist mainly of Stolephorus. Tiews and Ronquillo (1970) reported that eight species, including a new species yet to be registered, are distributed in the Philippines and that these species except one are widely distributed. in this sea region. Mr. Sugiyama of the Oceanic Fisheries (Philippine Inc.), which is headquartered in Iloilo and was conducting experimental pole-and-line fishing of skipjack mainly in the Sulu Sea at the time of the latest survey, reported that at least three species -- Dilis putch, Dilis bulino and Dilis bahora -- where distinguished from this species for use. The interviews with others engaged in fisheries and officials of fish markets revealed that what is called Dilis putch does not represent a specific species but seems to be the general appelation of alveins of the Stolephorus species (known as Shirasu or Kaeri in the Japanese language). The other two species -- D. bulinao and D. bahora -- seem to correspond to Stolephorus indicus and S. commersoni, but we could not ascertain them with samples. Later, the samples brought back from the Iloilo and Tacloban

-81-

fish markets were surveyed and these two species were ascertained. In the same species, they were quantitatively predominant.

Round herring: In the observations conducted at fish markets, round herrings (<u>Dussumieria hasselti</u>) was predominant. From the Philippines, <u>D. acuta</u>, another species of the same family, was reported (Herre, 1953), but whitehead argued that these two are one and the same species with different appellations. The two species of <u>Spratelloids delicatulus and S.</u> <u>gracili (= S. japonicus</u>) were not observed in large quantities at fish markets contrary to our expectation. The observations at the fish markets must probably be of underestimate, because they are consumed in large quantities as fish sause (<u>Patis</u>) or a kind of salted fish guts (<u>Bagoong</u>) but not as fresh fish.

Herrings and sardines: <u>Sardinella</u> spp. of this family are classified into herrings and sardines in the fisheries statistics of the Bureau of Fisheries and Aquatic Resources, but the ground for this classification is not clear. Of this species, it seems that those with large body heights are called sardines and those with small body heights are known as herrings. Roxas (1934) documented 16 species of this family in the Philippines sea, whereas Herre (1950) listed 11 species. Manacop (1951) reported that of these species, three species -- Indian sardines (<u>Sardinella longiceps</u>), fimbribated sardines (<u>S. fimbriata</u>) and perforated sardines (<u>S. perforata</u> -- were hauled in large quantities.

Big-eyed scads and round scads: In the fisheries statistics of the Bureau of Fisheries and Aquatic Resources, the scads are classified into a large number of species, such as big-eyed scads, caballas, crevalles (in the same genus as cavallas), hard tails (only the species of jacks), round scads, and runners. Of them, big-eyed scads and round scads seem to be of importance as live baits. Tiews and Ronquillo (1968) reported that of the four species of round scads reported from the Philippines, <u>Decapterus macrosoma</u> could not actually be distinguished from <u>D. lajang</u> and that this species and the species of <u>D. russellii</u> are commercially important.

Mackerels: Of the mackerel family, the mackerels which belong to the <u>Rastrlliger</u> species are the only genus available as baits. Monacop (1951) reported that only two species of the chub mackerel genus -- that is, short-bodied mackerels (<u>R. brachysoma</u>) and striped mackerels (<u>R. chrusozonus = R. kanangurta</u>) -- are industrially important. Matsui reported that <u>R. faughni</u> is one species of the <u>R. brachysoma</u> genus most commonly observed in the Philippines.

2-2-3 Conventional Findings on Live Baits in Philippine Seas

It was introduced in the descriptions on skipjack resources that the pole-and-line fishing of skipjack, although on a small scale, was conducted in the Philippine seas before World War II. To sustain the operations of its four fishing boats, the Sea Foods Corporation with its base at Zamboanga used indigenous fishing instruments with fish lamps in its attempt to catch sardines, among others, as live baits (Domantay, 1940). Sardinella melanura, S. perforta, S. fimbriata, S. leiogaster and one more species plus an additional two species "with big eyes and yellowspotted gillds" were used as baits. Of these species, the last two species were favored due to its long suvival. When the aforementioned sardines were not available, the anchovy genus (Stolephorus indicus and others), silverside genus (Atherira duodecimalis and others), barracuda genus, silver sardine genus, chub mackerels, queen fishes and hard tails are reported as having been used. There is no record of on the baits used for the pole-and-line fishing boats operating with their base at Davao, but the interviews with the elderly people who had once participated in fishing operations as seamen indicated that a wide variety of fishes were actually used as baits but the round scad genus (the species unknown) was the most favored bait due to their robustness. The bait grounds used in the periphery of Zamboanga in those days are illustrated by Damontay (ibid.) and Warfel (1950).

Martin (1938) reported that the experimental pole-and-line fishing of skipjack conducted by the Philippine Packing Corporation for about two years from 1934 ended in faliure because live baits could not be secured at

--83--

a smooth pace. In these fishing operations, the most favored balts were the yellow mackerel genus (Selar sp.).

The pole-and-line fishing operations experimentally conducted by the United States in the same sea region with the Spencer F. Baird and other vessels after World War II also proved abortive partly because the fishing of sardines was generally slack off the middle and south coasts of the Philippines (Warfel, 1950). In this survey, the bait seines commonly used off the west coast of North America were utilized, but adequate quantities of baits could not be secured. For this reason, an attempt was made to use milkfish as a substitute for the natural baits. They were favorable as they inhabit stocking ponds over a long span of time. In the Philippines, however, they are dear and therefore could not be placed on a commercially paying basis (Warfel, ibid.).

2-2-4 Conclusion

It is almost certain that the fishes which may be considered generally fitted as baits are inhabiting in the seas off the Philippines. It is also certain, however, that all these species, as pointed by Domantay (1940), are not just as strong as the Japanese anchovies. A check of the specific fish species or fishing grounds reveals that the fluctuations in their hauls are considerably great. The Sea Foods Corporation which operated four fishing boats with their base at Zamboanga had 16 bait fishing grounds to sustain their operations and these fishing grounds were put to use on a shift basis, depending on the situation (Warfel, 1950). This fact reflects the difficulties encountered in the supplying of live baits in this sea region as well as the instability of the supplying.

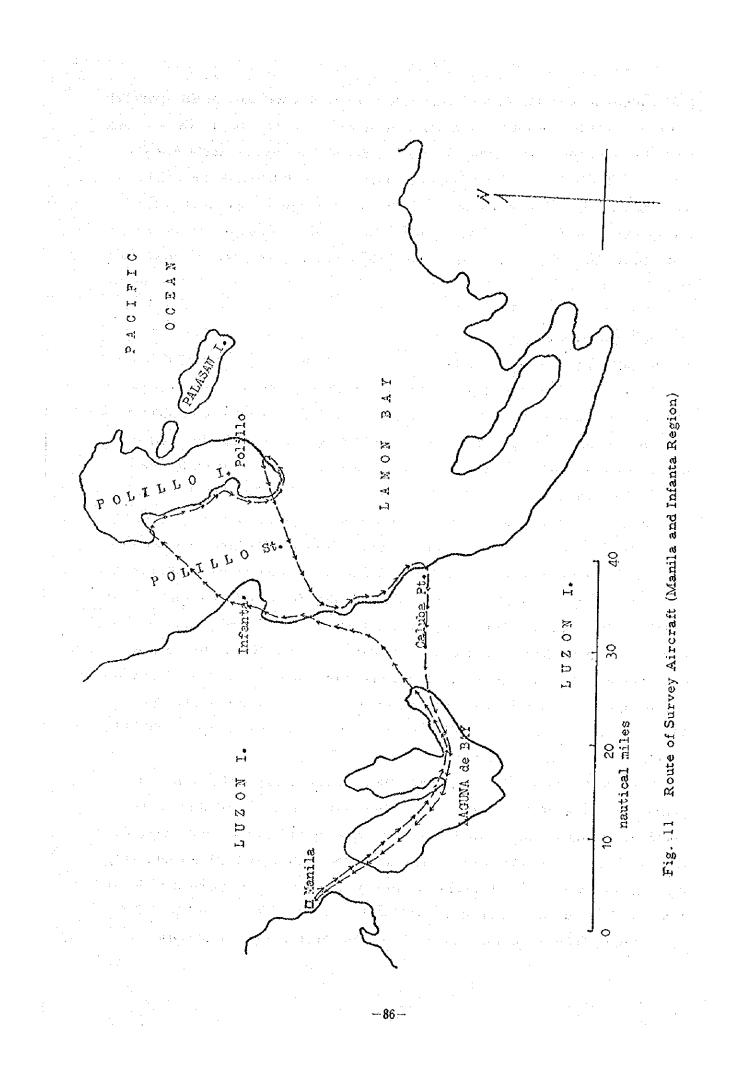
From the foregoing, it is surmisable that when a survey is to be conducted or pole-and-line fisheries are to be introduced in the future, the availability of live baits will constitute the most important question. The excessive dependence on specific species of fishes would presumably be too risky, and special care will have to exercised about the selection of bait fishing grounds. In spite of the necessity of live baits surviving over a long span of time for a full-fledged pole-and-line fishing operation, the

-- 84 --

fish species expectable in this sea region are problematical, in this respect, and there will be a need for special devices or techniques for their stocking. When these difficulties are taken into account, it seems advisable to purchase fish hauls from local people or businesses engaged in fisheries in the forthcoming full-fledged survey. Of all the fisheries operated in the Philippines, the Basnig or bag net or stationary net fisheries are most suitable for the purpose in that hauled fishes may be purchased as they are alive.

3. Outline on Survey Areas

3-1 Infanta and Its Periphery (Fig.11)


Infanta is situated east to Manila and along the east of the central part of Luzon Island (lat. 14°45' N, long. 121°39' E). The survey team had anticipated before the preliminary survey that this region will be good for the base from which the entire part of the Pacific coast of Luzon Island would be surveyd.

On October 17, an aerial survey of the entire part of this region was conducted aboard two light aircraft. The cast coastline of the central part of Luzon Island is monotonous and not protected by sleeve, barrier and other reefs. Particularly, the seabed stretching from Infanta to the Caluba Point in the south becomes suddenly deep. It is hardly conceivable that these topographical conditions are fitted to the hauling of live baits. One exception to the monotonous coastline is the inlet situated at the mouth of the Pulo River which flows into the Pacific Ocean by way of Infanta. The water in this area is muddy, and it was not conceivable that it would be usable as a bait fishing ground.

The west coast of Polillo Island, like the coast south of Infanta, is generally monotonous, but there is a bight in the Polillo region near the south tip of this Island. However, reefs develop in complicated configurations on the seabed close to the entrance to this inlet, and it is presumably difficult for large-sized vessels to enter port. The chart warns that the tidal currents in this periphery are fast.

Judging from its color, the water of the Polillo Strait is oceanic,

-85-

suggesting the possible distribution of high-sea fishes.

The Lamon Bay constitutes the sea region south of Polillo Island, and statistics indicate that 3,227 tons of fishes were hauled in 1973. The main fishing method is the lift net fishing method in which what is locally known as Basing or bag nets are used. The fish hauls in this method totaled 2,979 tons, the trawled fishes amounted to 168 tons, and the remainder was caught with round haul and other seines. The hauled fishes included anchovies with 924 tons, squids with 594 tons, mackerel scads with 543 tons, and sardines with 407 tons. The hauls of skipjack and yellowfin tuna are extremely small, as yellowfin tuna were caught to the tune of 0.6 tons.

When the various environmental and geographical conditions are taken into account, it would not be advisable to set up a base in Infanta and its periphery for the forthcoming survey. However, this should not be taken as denying the possibility of this sea region being used as a skipjack fishing ground.

3-2 Davao and Malalag Region (Fig.12)

Surveys were conducted on this region from October 18 through 21. The surveys included a survey on the configurantion of the coast from the land, a small aircraft and the sea, a survey on hauled fishes at the landing places and markets, interviews with regional administrators and other officers of the Bureau of Fisheries and Aquatic Resources, and an on-thespot inspection of the lift net which is known as Basnig and used in the local fisheries.

The city of Davao is situated at lat. 7°05' N, long. 125°38' E. It is a modern city situated deep in the Davao Gulf with Samal Island on the east side and Talikud Island on the southeast side. The Davao Gulf is fully equipped for the port calls of the surevy ship. There seems to be no trouble with respect to the supplying of fresh water, fuel oil and food.

According to statistics, the fishes hauled in the Davao Gulf in 1973 totaled 5,188 tons, of which 4,159 tons were caught with round haul seines, and the round haul seines were followed by Basnig seines with 934 tons and drive-in seines with 94 tons. By fish species, skipjack totaled 1,316 tons,

-- 87 --

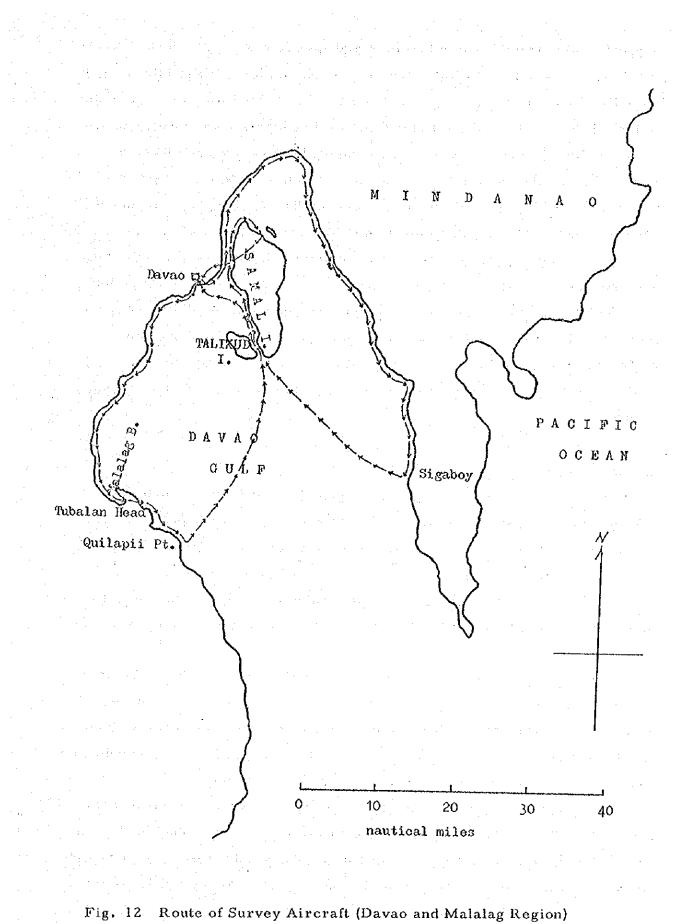
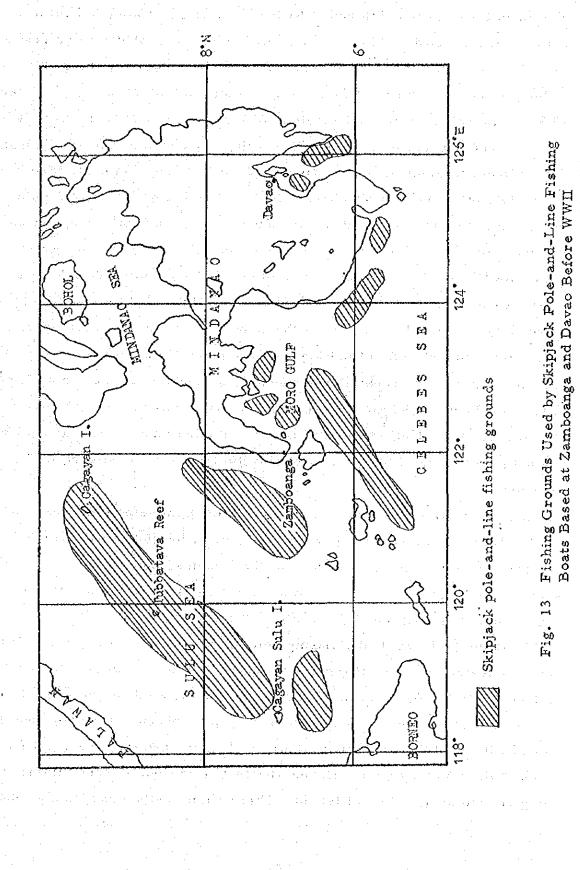


Fig. 12 Route of Survey Afferant (Davao and Malalag Kegi


- 88 --

mackerel scads 1, 175 tons, frigete mackerel 850 tons, yellow mackerels 564 tons, moon fishes 349 tons, and short bodied mackerel 110 tons. Yellowfin fund were registered at 51 tons, but it was stated no haul of skipjack was recorded. It was not immediately clear whether this is due to some statistical shortage or there were hauls actually but by smaller fishing boats of the kind not included in the statistics. As a matter of fact, skipjack were seen being landed along with yellowfin fund during the survey period. The Ricsan Development Co. with its bases at Davao and General Santos use a freezing career, converted from a Japanese tuna fishing boat of the 250 tons class, in purchasing skipjack from smaller local fishing boats for export to Japan. It is our understanding that these skipjack were hauled in the Davao Gulf and its adjacent Moro Gulf with the lift seines, known locally as Payaw, which are similar to the Japanese dorado raft. Statistics indicate that 420 tons of yellowfin fund and 283 tons of skipjack were hauled in the Moro Gulf, but these hauls seem to have been underestimated. In addition to the Ricsan Development Co., two Japanese freezing careers are reportedly engaged in purchasing skipjack and tunas at General Santos. From every datum and circumstantial evidence, the Davao Gulf, Moro Gulf and their adjacent Sulu Sea appear to be favorable grounds for fishing of skipjack and yellowfin tuna. As mentioned in the description.

On skipjack resources, the experimental round haul seine fishing operations conducted by the Food and Agriculture Organization (FAO) have gained favorable results, and it is a fact that the Japanese pole-and-line fishing ships based on Zamboanga and Davao before World War II made this sea region their fishing ground (Fig. 13).

Inside the Davao Gulf, Basnig seining is conducted practically all the year. Located at a low latitude, this sea region is seldom affected by typhoons, but the fishing boats used in this fishing mathod move to the sea region leeward of the seasonal wind during the typhoon season because they cannot withstand the wind due to their small sizes and the structural features of their fishing gear. During the survey period, Basnig seining was being conducted near Samal Island. This fishing method has been gradually

-89-

replaced by the round haul seine fishing method in recent years but still accounts for the greater part of the coastal fisheries. The main fishes hauled with Basnig seines in this sea region are short bodied mackerel, big-eyed soad, moon fishes and others. In addition to these fishes, sardines and anchovies are reportedly caught in considerably large quantities by smaller fishing boats, In view of the features of their fishing gears, it seems easy to take in hauled fishes alive. The forthcoming survey will be easy to conduct, should baits be purchased from Basnig or hauled on a charter basis.

With respect to the places where crawls are to be installed or the places where live baits are to be stocked in the enclosures floating on the sea, Malipano and Malalag appear to be suitable places. Malipano is situated on the west coast of Samal Island or the coast across the bay from the city of Davao, and there is an inlet which is hemmed in by a number of small islands. Obviously, this inlet is suitable for the installation of crawls, and there seems to be no need to worry about seasonal winds because this inlet is fully protected from the high sea. The Agiraldo Pearl Farm is reported as having the right to exclusively use the waterfront of Malipano under a long-term contract, so there will arise a need for an advance adjustment, should crawls be installed at this place. Malalag is also an inlet fully protected from the high sea, and its water depth is suitable for the installation of crawls. Malalag may be reached from Davao on the land but is not best fitted for living, as this area is studded only with small hamlets. As far as the natural conditions for the installation of crawls are concerned, there is nothing to choose between Malipano and Malalag, but the conditions of Malipano are better in the light of its convinient transportation and communication, housing and proximity to the port of call of the survey ship. Davao is the most promising base for the full-fledged survey. This is due to its fully equipped port and harbor facilities, promising skipjack

resources in its neighboring seas, and availability of live baits from the daily fish hauls from the coastal fisheries.

-- 91 ---

3-3 Tacloban Region (Fig.14)

Surveys were conducted on this region from October 23 through 25. The items surveyed there are practically the same as in the case of Davao. The city of Tacloban is situated at lat. 11°15'N, long. 125°00'E on Leyte Island. It is located at the deepest point of the San Pedro Bay which is situated deep into the Leyte Gulf. It has a well equipped port for the calls of ocean-going vessels. No probems what-soever will crop up on the supply and other factors for the port call of the survey ship.

Even at the deepest part of the Leyte Gulf, the depth is less than 120 meters, and the Leyte Gulf turns out to be a favorable fishing ground for local trawlers. The statistics in 1973 indicate that 1,645 tons of the total fish haul of 1,667 tons were hauled by trawlers. By the types of fishes hauled in the Leyte Gulf reveals, slipmouths (530 tons), goatfishes, horse mackerels, flatfishes, nemipterids and flounders share the greater portion, indicating that the fishes hauled in this gulf are of the inland sea type. Essentially, the skipjack is oceanic, and a local specialist pointed out that skipjack are distributed in the waters as far as Guian near the Gulf but do not move further deep into the Gulf. He also said that yellowfin tuna are hauled in a considerably large quantity in the hand lining of small-sized fishing boats operating off the east side of Samar Island but that surface schools of skipjack are seldom seen in this sea region. As his statement is not the outcome of a deliberate survey, there seems to be no need to take it as a denial of the significance of skipjack hauling experiments in this sea region.

According to the same informed source, the fishes which may be used as live baits for pole-and-line fishing are greater in quantity on the Pacific side of Leyte Island -- that is, on the Samar Sea side including the Maqueda Bay -- than the San Pedro Bay and the Leyte Gulf. We also understood that the places suitable for the installation of crawls are greater in number in the periphery of Catvalogan on the Samar Sea side. It was pointed out that the hauls of sardines in the Leyte Gulf are stable but that extreme fluctuations are observed in the hauls of anchovies. The fish hauls of the San Pedro Bay and Leyte Gulf totaled 1,865 tons, whereas the total fish hauls

-- 92--

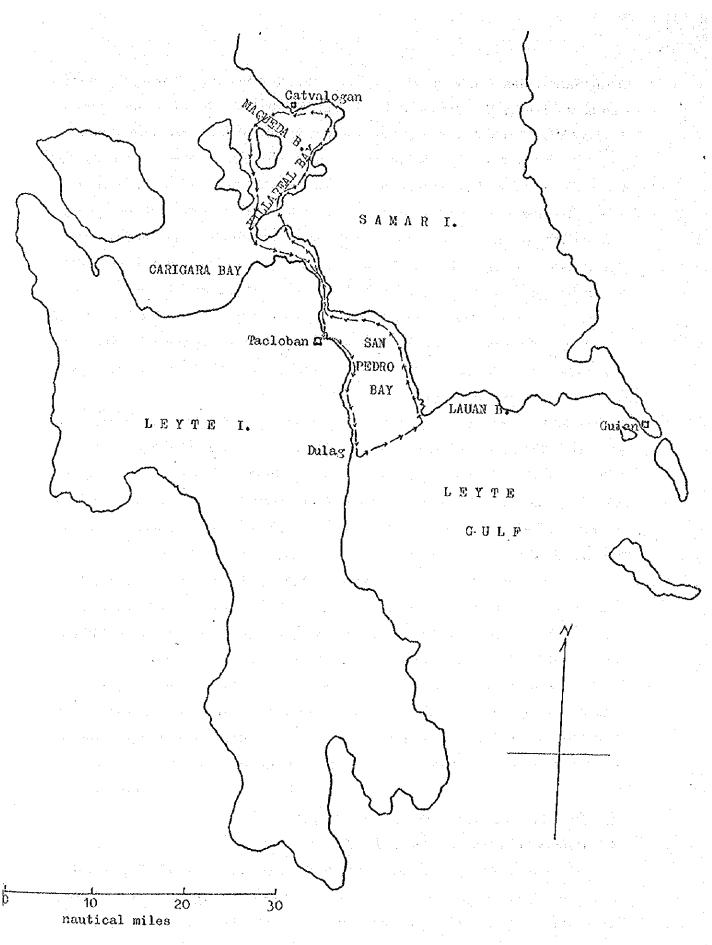


Fig. 14 Route of Survey Aircraft (Tacloban Region)

--- 93 ---

of the Samar Sea and Maqueda Bay totaled 5,008 tons, indicating the latter's fish hauls are by far greater. However, the distance between the mouth of the Leyte Gulf and that of the San Pedro Bay is about 50 kilometers and it takes about two hours and a half to get to Catvalogan from Tacloban via the San Fanico Strait. We understood, however, that this strait features in fast tidal currents, shallow water depths and a narrow way, turning out to be a trying spot for navigation and calling for the accompaniment of a local pilot. In the forthcoming fulfiledged survey, as it is hardly expectable that the techniques for the stocking of live baits in crawls over a long span of time will be developed with ease. It will become necessary for the survey ship to make frequent trips between the skipjack fishing grounds and the bait base. Consequently, it does not seem appropriate to establish a bait base on the Samar Sea side.

Should the survey base including crawls is established in the periphery of Tacloban, the inlet situated on the north side of Lipata on Samar Island will presumably be the appropriate place. Because this inlet is close to Tacloban and geographically shielded to the full extent and because Basnig seining is conducted in its periphery, it will be technically possible to have access to live baits from local fishing boats.

Summing up what has been described in the foregoing, we will come to realize the existence of one difficulty with Tacloban as the survey base. That is, the skipjack fishing ground is considerably away from the place suitable for the stocking of live baits. When other conditions are taken into account, this region is fully recommendable as the survey base. There are no problems about the port and harbor facilities, and the conditions for the hauling of baits seem fairly favorable. It is also possible to have access to live baits from the local coastal fisheries.

4. Plans for Sea Survey on Bait Fish for Skipjack

4-1 Reasons for Selection of Survey Method

As described in the foregoing, the dependence in the Philippines on fisheries products as a source of animal proteins is greater as compared with other foods, and the demand for fisheries products will become all

-94-

the greater in the future. Presently, utilization of skipjack in the sea regions east and south of the Philippines is not necessarily great, and there is room for skipjack resources. For these reasons, the forthcoming survey on the exploitation of fisheries resources should desirably be directed toward the exploitation of skipjack resources in these regions. For the exploitation of skipjack resources, the traditional Japanese poleand-line fishing method and the purse seine fishing method developed in the United States may be cited. In the purse seine fishing method, it is possible to assure big hauls with relatively small manpower. On the one hand, the conditions necessary for the formation of fishing grounds, such as the existence of the kind of thermocline which prevents the dispersion of fishes under the seine in fishing operations and the stability of the oceanic conditions, must be satisfied. Then there are other restrictive conditions. One is that capital outlays, such as in fishing gears, fishing boats and other equipment, are greater than in the pole-and-line fishing operations. Another is that the operation will call for a considerably high level of technical skill and will not prove effective unless the ships to be used in the purse seine fishing operations are large enough in scale. On the contrary, there are relatively few restrictive conditions for the fishing grounds insofar as the pole-and-line fishing operations are concerned. As long as live baits are secured, the pole-and-line fishing operations may be conducted even on a relatively small scale. There will be no need for great capital outlays. There will also be increased job opportunities in that a relatively large number of fishermen must be used. Technical cooperation, if called for, may readily be rendered be the Japanese experts who are well acquainted with the pole-and-line fishing operations. It will then be most effective to develope the pole-and-line fishing operations. Fortunately, that the anchovies and sardines usable as baits in the skipjack pole-and-line fishing operations inhabit abundantly in the seas around the Philippines. If these fish species could put up with stocking, the chances would be extremely great for the exploitability of skipjack resources in the future.

For these reasons, it is advisable that sea surveys focused mainly on

- 95 -

the development of pole-and-line fishing operations and surveys on the stocking in crawls of the fish species available as bait fish should be closely tied in with each other and conducted in parallel when the forthcoming surveys on the development of oceanic fisheries are conducted.

4-2 Survey Method

The premise for the forthcoming sea and stocking surveys is that they will be conducted with the cooperation of both Philippine and Japanese Governments. The outline of the surveys is as follows:

4-2-1 Sea Survey by Survey Ship

The sea survey will be conducted by Japanese surveyors and crew members and filipino surveyors and crew members. The survey will be focused on the following items.

Survey on Skipjack Resources:

1) Survey on the hauls of skipjack in pole-and-line fishing.

2) Survey on the hauls and survey on the distribution of schools of skipjack in observations.

3) Oceanic and meteorological observations.

4) Biological surveys on hauled fishes.

Survey on Bait Fish:

1) Survey on the bait fish hauls by the survey ship.

2) Survey on the distribution of bait fish.

3) Stocking survey on live fish in the hold of the survey ship.

4) Testing on the aptitude of bait fish in skipjack pole-and-line fishing operations.

Survey Ship:

It is necessary that the survey ship should be provided with the following conditions and gears.

1) The survey ship must have adequate accommodation space for the

personnel required for the survey on skipjack hauls and many other surveys to be conducted by the survey ship and also for the navigation of the survey ship (about 20 persons) plus the surveyors to be dispatched by the Philippine Government and the crew members (several).

2) The survey ship must have various facilities permitting a long period of navigation and be equipped with adequate wave making resistance.

3) The survey ship must be equipped with fishing gears necessary for skipjack pole-and-line fishing operations, such as fishing tackle, water sprayer, live fish hold, hauled fish stocking facilities (freezing or icing facilities).

4) The survey ship must be equipped with facilities for the stocking of bait fish, such as stick-held dip nets and other hauling equipment, fish lamps, fish finders and auxiliary, smallsized crawls.

5) The survey ship must be equipped with equipment necessary for oceanographic and meteorological observations, such as B.T., surface water samplers, Secchi discs, thermometers, manometers, anemometers and anemoscopes.

6) The survey ship must be equipped with equipment necessary for biological surveys, such as body length measurement plates, scales, anatomical instruments and various chemicals required for sampling.
7) The survey ship must be equipped with equipment necessary for navigation, such as loran, radar and radio equipment.

8) The survey ship must have mounted thereon a small fishing boat which will be used for trips and bait fish collection.

Survey Method

In order to survey the aforementioned items, the survey ship will conduct its surveys in the following manner:

In the evening, the survey ship will drift on an inlet where the hauling of bait fish is deemed feasible. At night, bait fish will be collected with fish lamps and stick-held dip nets, and their composition, distribution and density will be checked. The hauled bait fish will be accommodated in the ship's live fish hold. At sunrise, the survey ship will move out of the inlet to conduct a survey on the hauls of skipjack. Here, surveys will also be

- 97 -

conducted on the distribution and density of schools of skipjack, oceanographic and meteorological observations carried out, and the sustainability of the bait fish in the ship's live fish hold checked. If the bait fish may survive in the live fish hold for over two days, the survey ship will be kept at sea for two or three days, instead of making a homeward trip every day. An appropriate number of skipjack will be chosen for biological survey, such as on the body length, body weight and weight of the genital gonad.

As there is the necessity of securing a certain quantity in the hauling of bait fish, it is advisable that one or two of the Basnig seining and other small fishing boats engaged in the hauling of bait fish be hired in an attempt to secure bait fish and that local persons engaged in fisheries be trained in the stocking technology of bait fish for skipjack and in the transferring of bait fish alive into the live fish holds of fishing ship.

4-2-2 Stocking Survey with Crawls

Stocking surveys will be conducted by a stocking expert of the Japanese survey team and the surveyor and assistant surveyor to be disptached by the Philippine Government. Crawls will be set up in an appropriate sea region and testing conducted on the sustainability of bait fish. The following is the items to be included in the surveys.

1) Studies on an appropriate fishing method for the hauling of bait fish.

2) Survey on the stocking of bait fish in crawls.

3) Selection of the places suitable for stocking in the survey areas.

4) Studies on the stocking methods fitted to the local conditions.

5) Studies on the ways of transporting bait fish from their hauling boats to the crawls and from the crawls to the live fish hold of the survey ship.

6) Biological surveys on bait fish.

7) Environmental surveys.

Places for Installation of Stocking Crawls

It is necessary that stocking crawls be in a sea region which may satisfy the following conditions: 1) Crawls must be floated on the surface which is not so much influenced by the tidal current and which is fully shielded from high-sea waves and calm. The water depth must be enough to allow the crawls to be fixed with anchors.

2) As the surveys will be conducted in collaboration with the survey ship, the water depth must be enough to allow the survey ship to approach with case. There should be neither shallows nor rocks hazardous to the navigation of the survey ship.

3) There should be appropriate land facilities where the stocking experts may reside and engage in clerical work.

4) Appropriate communication facilities must be available for liaison with the survey ship or related agencies.

5) The places where crawls are to be installed must be adequately near the bait fish hauling grounds where live bait fish may be procured from local fishing boats.

Survey Method

The stocking experts will install the survey ship-transported crawls on the water surface which satisfy the aforementioned conditions, accommodate in the crawls the bait fish caught by the survey ship and the local fishing boats hired during the survey period, and survey the possibility of stocking bait fish. At the same time, they will study the most appropriate method for accepting bait fish from the aforementioned ships without injuring bait fish. Biological surveys on the stocked bait fish and environmental surveys (water temperature, natural enemy relations between fish species, distribution as classified by fish species, ecology) will be conducted. In this instance, these surveys will be carried out in clollaboration with local surveyors and persons engaged in fisheries, as it is difficult for the Japanese stocking experts to conduct them by themselves.

4-3 Survey Sea Region, Period and Time

With the various conditions taken into account, Davao and Tacloban are considered appropriate for the aforementioned surveys. The afore-

-- 99---

mentioned two surveys referred to in the preceding paragraph, and there is the necessity of their being closely tied in with each other, should be conducted in one and the same sca region.

With respect to the survey period, the most ideal thing would be to carry on the surveys all the year. To ckeck changes in each year, it would also be advisable to conduct them for more than one year. In the light of the considerable amount of money to be required for the surveys, it is advisable to conduct them over a total period of six months, each survey being carried out at different times over a length of more than one year.

The date at which the survey is to be started is timed in with the smallsized fishing boats which will be hired for the hauling of bait fish. Consideration will also have to be give to interrelationship between the seasonal wind and the survey region, the bait fish hauling season and their trips, so that the most apropriate time may be selected. In the light of these considerations as well as the various procedures to be required for the surveys, it seems advisable to carry out the surveys from the last decade of September or October through February or March of the following year.

4-4 Dealing of Hauled Fish and Survey Findings

The fish to be hauled in the sea survey will in principle be turned over to the Philippine Government with the exception of those which will be necessiated by the Japanese side as research samples.

A report on the findings of the surveys will be compiled by the Japanese surveyors in the English language and submitted to the Philippine Government within one and half years after completion of the surveys. The Japanese side will receive cooperation from the Filipino surveyors aboard the survey ship and those engaged in the survey on stocking with respect to the matters on which such cooperation is obtainable.

4.5 Survey Cooperation System and Necessary Procedures

To step up the forthcoming survey on the exploitation of skipjack resources in an effective manner, there will be a need to establish a system of close cooperation between the Philippines and Japan beforehand. For this purpose, the following matters will have to be dealt with beforehand.

 Negotiating and Administrative Service Agencies of Both Countries In order to make preparations for, and carry out, the forthcoming survey in a smooth and prompt manner, it is necessary to clarify the names of negotiating agencies between both countries and the agencies or individuals of both countries who will be engaged in actual administrative service.

2) Administrative Procedures Necessary for Survey

The steps that are to be taken by the Japanese side may be cited as follows:

(1) Budgetary measures for the expenses to be shared by the Japanese Government.

(2) Steps stipulated in the Ship Law which will enable Filipinos to go aboard the survey ship, which will be selected from among the general fishing boats.

(3) Steps necessary for using the survey ship as an ocean-going vessel.

The steps which are to be taken by the Philippine side may be enumerated as follows:

(1) Budgetary measures for the expenses to be shared by the Philippine Government.

(2) Authorization of a survey ship of Japanese registry for engaging in survey activities in the Philippine territorial waters.

(3) Exemption of the surveyors, including the Japanese surveyors, from application of the legal measures for the prohibition of nocturnal outings under martial law, as the survey will have to be carried out day and night.

(4) Measures for the treatment of the survey ship as a coastal vessel in the Philippines during the survey period.

(5) Simplification of the formalities for embarkation and disembarkation to facilitate the survey and tax exempting measures for embarkation and disembarkation.

(6) Prevention of troubles to, and security measures for the naviga-

tion of the survey ship and the stocking surveyors.

(7) Advance notice to related agencies (Philippine Navy, Philippine Coast Guards, related persons engaged in fisheries and other parties concerned) on the activities of the survey ship and the stocking surveyors.

(8) Simplification of embarkation and disembarkation for the Japanese people associated with the survey, and the offering of facility to them.

(9) Other administrative measures necessary for the execution of the survey.

(10) Offering of facilities necessary for smooth communication between the survey ship and the land.

4-6 Items and Expenses to be Shared by Both Coutries

The forthcoming survey should be conducted while the Japanese Government closely collaborates with the Philippine Government. To conduct the joint survey in an effective manner, it would seem advisable to have both Governments share the items and expenses as follows:

The items of which the Japanese side should take charge and the incidental expenses are as follows:

(1) Preparation of ship fitted to the conditions of the survey described in 4-2, above.

(2) Personnel expenses and the expenses for the dispatch of the Japanese surveyors and the crew who will man the survey ship.

(3) Personnel expenses for the stocking specialists who will take part in the stocking survey and the expenses for their dispatch.

(4) Expenses required for the hiring of the survey ship (depreciation cost, interest, taxes and other public charges, etc.).

(5) Fuel cost necessary for the navigation of the survey ship.

(6) Cost for the fishing gears and observation instruments required for the surveys of the survey ship.

(7) Various expenses other than the taxes required for the entering and clearing of Philippine ports and harbors by the survey ship.

(8) Expenses for communication and liaison with Japan.

(9) Expenses for survey equipment, such as the crawls to be used in

the stocking survey.

(10) The expenses for the conferences required in Japan.

(11) The expenses required for the analysis of the findings of the surveys and their compilation by the Japanese side.

(12) The expenses for the preparation of the survey report and its transmittal to the Philippine Government.

(13) Risk bearing for the Japanese people associated with the survey.

The items of which the Philippine side should take charge and the incidental expenses are as follows:

(i) Preparation in each sea region of a local fishing boat or boats which will take part in the survey for the hauling of bait fish and the offering of bait fish as they are alive, and all the incidental expenses therefor.

(2) Offering of places suitable for stocking.

(3) Offering of more than one ferryboat to be for trips in the stocking survey, and all the incidental expenses therefor.

(4) All the expenses necessary for the dispatch of the Filipino surveyors aboard the survey ship and its Filipino crew, including their personnel expenses and the cost of their meals while aboard the ship.

(5) Personnel expenses for the surveyors participating in the stocking survey and the expenses for their dispatch.

(6) Offering of manpower required for the stocking survey and their personnel expenses.

(7) All the taxes required for the entering and clearing of Philippine ports and harbors by the survey ship (in case no tax exemption is available).

(8) Assurance of a moorage for the survey ship and offering of facility preferential to other vessels in supplies, etc.

(9) Offering of an office necessary for the stocking survey, and the expenses therefor.

(10) Dispatch of security and other officers for security, and the incidental expenses required for their dispatch.

(11) Offering of an automobile for liaison and transportation, and all the incidental expenses therefor.

(12) Assurance of a means of communication between the survey ship and the land station, and all the incidental expenses therefor.

(13) Offering of convenience to the Japanese personnels concerned.

(14) The expenses for the conferences required by the Philippine side.

(15) Expenses required for the analysis and compilation of the findings of the surveys conducted by the Philippine side.

(16) Risk bearing for the Filipinos associated with the survey.

(17) All other incidental expenses required for the on-the-spot surveys.

References

Philippines: Collection of ARC Reports, Sekai Joho Service Sha. (In Japanese)

Sailing Dictionary for the Philippines, Vols. 1-4, Japanese Maritime Safety Agency. (In Japanese)

Ichthyographic Picture Book: Albert W. Herre, Circular 14, Fish and Wildlife Service, United States Department of the Interior.

Fish Processing Handbook for the Philippines: Arthur C. Avery, Research

Report 26, Fish and Wildlife Service, United States Department of the

Interior.

The Philippine Journal of Fisheries: Vol. 18, No. 2, Department of Agriculture and Natural Resources.

Fisheries Statistics of the Philippines, 1973: Bureau of Fisheries and

Aquatic Resources, Economics and Information Division. Proposal for live bait tuna fishing survey: Pelagic Fisheries Department,

SCS/75/WP/9, South China Sea Fisheries Development and Coordinating

Program, FAO.

The principal marine fisheries: Porfirio R. Manacop.

Methods of preservation and processing of fish: Claro Martin and Augusto D. Manado.

Oceanographic background of Philippine fisheries: Teodoro G. Megia,

Philippine Fisheries.

Commercial aquatic fauna of the Philippines, II. Vertebrates: Inocencio A. Ronquillo, Philippine Fisheries.

-104-

Fishing gear commonly used in Philippine fishing: Santos B. Rasalan, Philippine Fisheries.

- Handbook for fishing law enforcement office: Philippine Fisheries Commission, Department of Agriculture and Natural Resources.
- Multinational Dictionary of Fish and Fish Products: Fishing News (Books) Ltd.
- Brock, V.E., and M. Tanaka (1955). Contribution to the problems of bait fish capture and mortality together with experiments in the use of Tilapia as live bait. Final Rep., IRAC Grant, 49: 1-39.

Domantay, J.S. (1940). Tuna fishing in southern Minadanao. Phil. Jour. Sci., 73: 423-436.

Herre, A.W. (1950). Check list of Philippine fishes. U.S. Dept. Int. Fish Wildl. Serv. Res. Rep. 20: 1-977.

Kume, S. (1973). Tuna resources in the South China Sea. FAO South China Sea Fish. Dev. Coord. Progr., SCS/DEV/73/4/Rome. vi 18 p.

Manacop, P.R. (1960). The principal marine fisheries. In Sebastian, A.R. (Ed.) Geographic setting of Philippine fisheries. Fisheries Gazette,

Coll. Fish., Univ. Philippines, 4(1): 15-21.

Martin, C. (1938). Tuna fishery and longline fishing in Davao Gulf, Philippines. Phil. Jour. Sci., 67(2): 189-199.

Matsui, T. (1967). Review of the mackerel Genera Scomber Rastrelliger with description of a new species of Rastrelliger copeia, 1967(1): 71-83.

Peterson, C., K.J. Rosenberg and A.C. Simpson (1975): Trip reports of chartered purse seine vessels. Royal Venture and Southward Ho. Voy. 1 and 2. FAO South China Sea Fish. Dev. Coord. Progr. SCS/75/WP/ 8:37 p.

Rosenberg, K.J. and A.C. Simpson (1975). Same title with the above, Voy.
3. Ibid. SCS/75/WP/ : p. and C.M. Renwick (1975). Same title with the above, Voy. 4. Ibid. SCS/75/WP/12: 35 p.

Roxas, H.A. (1934). A review of the Philippine isospondylous fishes. Phil. Jour. Sci., 55: 231-295.

Tiews, K. and I.A.R. Ronquillo (1970). On the biology of anchovies

(Stolephorus lacepede) in Philippine waters. Proc. Indo-Pac. Fish. Coun, 13(II): 20-48.

- Warfel, H.E. (1950). Outlook for development of a tuna industry in the Philippines. U.S. Fish Wildl. Serv. Rep. no. 28: 37 p.
- Whitehead, P.J.P. (1963). A revision of the recent round herrings (Pisces: Dussumicriidae). Bull. Br. Mus. (Nat. Hist.), Zool. 10(6): 305-380.
- Anonymous (1974). Fisheries statistic of the Philippines. Bureau Fish. Aquat. Resour., Rep. Phil. 110 p.
- Japan Aquatic Resources Protection Association (1971): Record of Research Counil on Exploitation of Skipjack Resources, 1-73. (In Japanese)

Although no reference has been made in the report, the following two books have been referred to in conjunction with the appellations of fishes (in English) and fishing gears.

Herre, A. W. and A. F. Umali (1948). English and local common names of Philippine fishes. U.S. Fish. Wildl. Serv., Circular 14: vi 128 p.
Umali, A. F. (1950). Guide to the classification of fishing gears in the Philippines. U.S. Fish. Wildl. Serv. Res. Rep. no. 17: 1-96.

ppendices		
Appendix 1	Local BFAR Offices and Areas of Jurisdiction	108
Appendix 2	Oceanographic and Fisherles Research Institutes and Major Researchers in Philippines	109
Appendix 3	Main Fishing Grounds and Their Locations	112
Appendix 4	Meteorological Data for Main Districts	114
	1) Manila	114
	2) Cebu	115
	3) Tacloban	116
e i e proces	4) Davao	117
Appendix 5	Tidal Currents in Philippines, 1976	118
Appendix 6	Landings of Tuna and Suitable Tuna Baitfish by Month	137
Appendix 7	Monthly Production of Commercial Fishing Vessels by Kind o	f
	Gear Used, 1973	141
Appendix 8	Monthly Production of Commercial Fishing Vessels by Kind,	· · ·
	January to June, 1973	142
Appendix 9	Interim Report	145
Charts	Depths of Survey Regions and Their Peripheries	169
· · · ·	1) Infanta and Polillo Island and Their Peripheries	169
	2) Davao	171
	3) Tacloban and Its Periphery	173
the second second second	the second s	

Appendix 1 Local BFAR Offices and Areas of Jurisdiction

BFAR Office No.	Location	Area of Jurisdiction
Ĭ	Dagupan City	States of Abra, Benguet, Ifugao, Ilocos Norte, Ilocos Sur La Union and Mountain Province, and City of Pangasinan
II	Tuguegarao, Cagayan	States of Batanes, Cagayan, Isabela, Kalinga Apayao, Nueva Vizcaya and Quirino
III	San Fernando Pampanga	States of Aurora Sub-province, Bataan, Bulacan, Nueva Ecija, Pampanga, Tarlac and Zambales, and the cities these states
¥	Navotas, Rizal	States of Batangas, Cavite, Laguna, Marinduque, Occ. Mindoro, Or. Mindoro, Palawan, Quezon (except the substate of Aurora), and the cities in these states
V	Naga City	States of Albay, Camarines Norte, Camgrines Sur, Catanduanes, Masbate and Sorsogon
VI	Iloilo City	States of Aklan, Antique, Capig, Iloilo, Negros Occ. and Rombion
VII	Cebu City	States of Bohol, Cebu, Negros Or. and Siquijor
VIII	Tacloban City	States of Bastern Samar, Leyte, Northern Samar, Southern Leyte and Western Samar, and the cities in these states
IX	Zamboanga City	States of Basilan, Sulu, Tawitawi, Zamboanga del Norte, and Zamboanga del Sur, and the cities in these states
x	Cagayan de Oro City	States of Agusan del Norte, Agusan del Sur, Bukidnon, Camiguin, Lanao del Norte, Lanao del Sur, Mizamis Occ., Mizamis Or., Surigao del Norte and Surigao del Sur., and the cities in these states
XI	Davao City	States of Datu Kudarat, Davao del Norte, Davao Or., Davao del Sur, Maguindonao, Norte Colabato and South Cotabato, and the cities in these states

-108-

Oceanographic and Fishery Research Institutes and Major Researchers in Philippines	Alcala, Dr. Angel C. I Marine ecology Alrasid Confreda 1 2 Conchology	raterno 3	io r 12 Baens 5 2	Blanco, Dr. Guillermo J. 7 Fisheries biology, taxony		Canlas, Dr. Jominador 3 Physical oceanography Castillo, Bartolome 9 Hydrography	astillo, Nestor 10	Comsti, Francisco A. 11 Marine geology Domantay, Prof. Jose A. 12 Marine biology and invertebrate	Esquierrez, Pablo 7 Fisheries	Flores, Jesus F. 4 Meteorology Gutierrez, Prof. 3 Micropaleontology	Fernando I. Kintanar. Dir. Roman I., 4 Administration and meteorology	egaspi, Capt. Constancio 13	M. oceanography. Legasto, Mrs. Rizalina M. 8 Plankton (general)			
Appendix 2 Oceanograp in Philippine	l. Silliman University Dumaniate City		2. National Museum Herran, Manila	3. College of Arts and Sciences	Diliman, Quezon City	4. Weather Bureau Port Area	Manila	5. National Institute of Science and Technology	Herran Manila	o. Philippine Atomic Energy Commission Herran	Manila	isheries Commission	Intramuros Manila			

		0	0101														at i i	•					·.		- 	·	
	•	ies and exfr vorale		•		,	· .	 : 	ries	e in Sine Sine		• •	a far A	· ·	•				•	• .	•	··· ·					
		lies and a				phy	.: •	λ Q	Administration and fisher			· .	· · · ·			- 	· · · ·	. ·		· . :	. '						
		al stud	Concerner.			nogra	y hiolo		n and			13			· · .		1		.*		: • •	•	: · ··				
-	-	Environmental studies	5	Marine algae	• :	Physical oceanography	Marine botany	の ション 	stratic	•				· · ·		- 1 ° • • •			÷			·				÷.,	
·	•	nviron		arine		lysica	arine	4) 4))	lminis	 									:				•:•				
	•••	ធីតំ	0 -1	N		<u>д</u>	Z	-	Ϋ́	:	: 								· .								
		67 6)	20		13	ς α	4	ις ·		e si		. •	· ·							·		. 1				
			·	. '		• •	1. 		·, ·		· . · · ·			• .			•										
		ro R.				Antonio	lose	Ж	đ				• •							4.	· .	•					
	rdeliz	Cdr. Pedro R	men C.	- 1 - -	io T.	I	Dr. Jose	Dean Domiciano K	, Dean	а. •	· .	:			· ·	÷											
•	(Miss) Flordeliz		(Miss) Carmen	uez,	Dr. Gregorio T.	a, Cdr.	Vera Santos, Villalua	Domie	Yapchiongeo,	(DT.) Jose)			ı	2		•											
	(Miss	Velasco, Velascue	(Miss	Velasquez,	Dr. O	Ventura,	Vera San Villalua	Dean	apchi	()						°.				÷	- :			1.			
	÷	> >	•	2			> >	•	۲	*											. *			e.			
		÷			·		· · · ·	•	'	. [.] .						ល ប	:					· ·					
			. • •					•	· · .							nu ppi											
													: 		1 - -	נים בים אינוי											
		ines						• :	ila	di e			· .			10		: È									
	es	Philipp			sity		Last ast		e Man			. :	:		Č			10707	40-10-1 10-1								
:	isheri	f the I			Jniver		f the I		orio de	lts	yantı Tali	17.75	- -		40400			te l'in					· ·,	• •			
	e of F	sity o	L City	•	rlos L	ity	sity o	•	ervato	Heigt	City	N eni	Blvd.		1 Doc		L City	ac Sta	i City	•	•				•		
	College of Fisheries	University of the Philippines	Quezon City		San Carlos University	Cebu City	University of the East	Manila	El Observatorio de Manila	Loyola Heights	Quezon City	Philinnine Marr	Roxas Blvd.	Manila	larion.	Diliman research Council of the Fullippines	Quezon City	Mindanao State University	Marawi City					· · .			
	ls. O	ιμ	10		16. S.S.	ر	17. U	2	ਸ .8		0	0 10		2	2 0 0		<i>Y</i>	21- M				1 . 	•				
	•				•				•			•			•	-	1.1										

Appendix 3 Main Fishing Grounds and Their Locations

T

1.	Aguisan Bay	Western coastline of Central Negros Occidental Province (opposite Himamaylan).
2.	Albay Gulf	Eastern coastline of Albay Province (opposite Legaspi City).
3.	Asid Gulf	Southern coastline of Masbate Province.
4	Babuyan Channel	Northern coastline of Cagayan Province.
5.	Bacuit Bay	Northwestern coastline of Palawan Island.
6.	Batangas Coast	Western coastline of Batangas Privince (Verde Island Passage).
7.	Bohol Strait	Between Bohol and Cebu Islands.
8.	Burias Pass	Between Burias Island and Albay Province.
9.	Camotes Sea	Between Bohol, Cebu and Leyte Islands.
10.	Capiz Coast	Northern coastline of Aklan and Capiz Provinces.
11.	Coron Bay	Between Busuanga, Coron and Colion Islands (northern Palawan Province).
12.	Carigara Bay	Northern coastline of Leyte Province.
13.	Cuyo Pass	Around Cuyo Islands (northwestern Palawan Province).
14.	Davao Gulf	South of Davao City.
15.	Dumaguillas Bay	Northwestern coastline of Zamboanga del Sur Province.
16.	Gingoog Bay	Northern coastline of Misamis Oriental Province.
17.	Guimaras Strait	Between Iloilo and Negros Occidental Provinces.
18.	Iligan Bay	Between Misamis Occidental, Lanao del Norte and Misamis Oriental Provinces.
19.	Illana Bay	Between Northwestern Zamboanga del Sur, Lanao del Norte and Lanao del Sur Provinces.
20,	lloilo Strait	Between Iloilo Province and Guimaras Island.
21.	Laguna de Bay	Between Cavite, Rizal and Laguna Provinces.
22.	Lagonoy Gulf	Between Catanduanes Island and Camarines Sur Provinces
23.	Lamon Bay	East of Central Quezon Province.
24.	Leyte Gulf	Bast of Leyte Island.
25.	Lingayen Gulf	North of Pangasinan Province.
26.	Malampaya Sound	Northwestern coastline of Palawan Island.

 $\tau >$

27.	Macajalar Bay	Southern coastline of Misamis Oriental Province.
28.	Manila Bay	Between Cavite, Rizal and Bataan Provinces (west of the city of Manila).
29.	Mindanao Sea	Between northern Mindanao and the Visayas.
30.	Magueda Bay	Western coastline of central Samar Province (south of Catabalogan).
31.	Mindoro Strait	Between Mindoro Occidental Palawan Provinces.
32.	Moro Gulf	Between Zamboanga del Sur and Cotabato Provinces.
33.	Panay Gulf	Between southern Iloilo and southwestern Negros Occidental Provinces.
34.	Pujada Bay	Eastern coastline of Davao Oriental Province.
35.	Ragay Gulf	Between southern Quezon and Camarines Sur Provinces.
36.	Samar Sca	Between Samar and Masbate Provinces,
37.	San Miguel Bay	Between eastern Camarines Norte and northern Camarines Sur Provinces.
38.	San Pedro Bay	Between Samar and Leyte Provinces (opposite Tacloban City).
39.	Sarangani Bay	Southern coastline of Cotabato Province.
40.	Sibuguey Bay	Southern coastline of Zamboanga del Sur Province.
41.	Sibuyan Sea	Between Romblon and Masbate Provinces.
42.	Sulu Sea	Between Palawan, Mindanao and Visayas Islands.
43.	Tanon Strait	Between Cebu and Negros Islands.
44.	Tawi-Tawi Bay	Eastern coastline of Tawi-Tawi Island, Sulu.
45.	Tayabas Bay	Southern coastline of Quezon Province,
46.	Taytay Bay	Northern coastline of Palawan Province.
47.	Ticao Pass	Between Ticao Island and Sorsogon Province.
48.	Visayan Sea	Between Panay, Negros, Cebu, Leyte and Masbate Island.
49.	Zambales Coast	Western coastline of Zambales Province.

-113-

٠

Appendix 4 Meteorological Data for Main Districts

Manila's Meteorological Table

0

		Temperature (°C)	ature	Û				Cloudness	(14°34'N., 120°58'E.)	Z	12005	ы х	E.) Precipitation	g			Wind	2		
	J	Mean	8	Extreme value		Mean himidity		Average number	Average number	Mean	Max	Min.	Max. in	Max. in Number 24 hee	Number of days of		Direction	ion (%)	6	
Mean		Max.	Min. 2	Max. N	Min.	8	Mean	or days of cloudness less than 2	or days or cloudness more than 8	(mm)	(mra)	(mm)			and rain on average	E N N N	S E S	SW	M.N. M	
່ ເ ລ	25.6	32.8	17.8	33.9 1	14.4	- 82	5.5	M	S	25.4	195.6	0	185.4	v	0	23 15 16	r v	6 ()	4	
Ň	25.6	33.9	17.9	35.6 1	15.6	74	4.9	່. ເ	M	12.7	40.6	0	38.1	. ന	т.0	11 14 25	\$	3 10	2	
č-5	27.2	35.6	18.9	36.7	16.1	7	4.5	4	ല	17.8	99.1	ο.	61.0	n	6.0	9 13 27	11	3 20	6	
	28.3	36.1	20.0	37.8 1	17.2	70	4.0	4	0.5	30.5	172.7	0	142.2	4	. 2.7	6 9 27	2	4 11	8	
	28.9	36.7	22.2	38.3 2	20.2	76	5.7	Ŕ	ഗ	129.5	487.7	0	167.6	3	9.3	8 8 1S	ទ	8 18	5	
	28.3	34.4	22.8	37.8	21.1	51	7.0	0	9	251.5	660.4	25.4	254.0	9	11.6	8 9 12	6 11	8	3	
	27.2	33.3	22.8	36.1 2	20.6	83	7.8	0.2	12	431.8	1,191.3	134.6	289.5	23	7.7	7 6 7	8 15	28	ه ا	
	27.2	32.8	22.8	35.0 2	20.6	85	7.8	0	14	421.6	421.6 1.983.7	711.2	226.1	5	8.4	\$ 9	S IS	32	4	
	27.2	33.3	22.8	35.6 2	20.6	86	7.5	0.2	11	365.8	365.8 1.470.7	50.8	335.3	21	8.0	7 6 7	6 15	33	1 4	
	27.2	33.3	21.1	35.0 3	19.4	\$	6.7	0.1	10	195.6	589.3	10.2	193.0	12	5.7	13 11 10	1~	8 15	4	
	26.7	32.8	20.0	34.4	16.7	\$3	6.4	0.7	15	142.2	594.3	5.0	180.3	13	1.7	21 15 9	in	4	\$ 9	
	25.6	32,5	18.3	33.3 1	15.6	\$1	6.2	-	1-	63.5	279.4	ο.	66	\$	0.5	33 14 11	~	5	S.	
	27.2	36.7	17.8	38.3	14.4	80	6.2	18	16	2,087.9	3.921.6	937.2	335.3	146	56.6	13 10 14	8	8 17	€ `	
		53		49		48	8 4 8	07	*		13		\$	72	OI		-	- 2	4	
c	aber	of day:	i of pr	ecipita:	tion of	Number of days of precipitation of over 0.3 mm	3 mm 3													
	nber	of day:	s of wi	Number of days of wind velocity of over	city of	over 8	 	. •						:	÷	. \ '			:	
	de .	Viethiliter channe of 080	0000																	

0.3 1.1 2.2 0.6 1.1 2.7 1.9 2.6 5.0 3.0 5.6 12.1 0.9 3.4 7.0

.--

-1

<u>г</u>, 4 н.

.0

Q

0 *

20 3.7

7

Ϊ.

:6

3

ß

0.9 2.1 5.2

0.9 2.0 3.1

0.3 0.6 4.1 0.3 0.3 1.3 0.6 0.9 5.4

0 0

0

Celm

Visibility (Number of days on average)

Altinde 10. 1. m

•

Visibility shown at 0800

--114--

Cebu's Meteorological Table

	;								(100	(10°18'N., 123°54'E.	, 12	3054	. E.)			1							¥	Altitude 7 m
		ĺ	Temp	Temperature	С С			CC o	Cloudness			Precij	Precipitation					Win	d Di	Wind Direction	(%) u			Number of
Month	Mean		Each month	month	EXI	Extreme	Mean		Number of					Number of days on average	of days	ł	ŀ							strong winds
	pressure Mean	Mean	Max. Mean	Min. Mean	Max.	Min		Mean	days of under 3/10 on average	Mean (mm)	Max. (mm)	Min. Min.	24 hrs. (mm)	Over 10 mm	Thunder and storm	 7.	а 7.	о ш	SE SE	MS	8	MN	Calm	of over 15.3 m/s on average
2	6001	26.1	31.1	21.1	32.8	18.9	76	5.1	ي. ي. ي	107.4	327.7	7.8	180.3	4	1.6	37	 39	<u>o</u>		** 	*	بم 	53	0.5
61	0101	26.1	31.1	21.2	32.2	18.3	75	5.2	6.4	71.3	218.2	5.0	66.0	1	2.5	23	Ţ	2		×. 	*		5	0.1
<i></i>	1011	26.7	31.7	21.1	32.8	18.9	73	4.4 4.4	10.5	51.0	106.9	0.5	40.6	\$	ي. 4.	22	ę.	13			*		53	0.2
4	1101	27.8	32.8	22.8	33.3	21.1	73	4.2	8.1	43.2	145.2	1.0	63.5	ŝ	9.8	15	5	13	н	~	*	<u>رہ</u>	38	••0
ى د	1009	28.3	33.9	22.8	35.0	21.1	75	5.0	5.5	114.4	176.5	29.1	66.0	11	15.8	40	20	9		10	<u>N</u>	<u>হা</u>	37	~
9	1005	27.8	53.3	22.8	35.0	22.2	76	5.9	5.9	162.6	302.9	33.0	86.4	16	18.0	0	12	~		11 15	*	ر م.	37	5
+	1005	27.2	32.8	22.8	34.4	21.7	77	6.3	2.4	183.6	339.3	34.2	63.5	17	15.9	ŝ	4	~	- 	14 32	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	с)	33	1-
s	1008	27.8	32.8	22.8	33.9	21.1	76	6.0	2.4	141.2	328.6	15.8	68.6	IS	14.9	1	 ო	~	~~	14 34	<u></u>	<u>.</u>	8	~
ۍ د	1008	27.2	32.8	22.2	33.9	21.1	11	6.4	1.7	175.4	391.5	45.5	121.9	16	\$ *	ო	4	61	н г	15 28	~	" 	33	4
01	1008	27.2	32.\$	22.2	4.43	20.6	78	5.9	4.0	195.2	588.2	43.7	299.7	18	16.9	\$	13	\$		7 15		*	15	61
11	1008	26.7	32.2	22.2	33.9	20.0	78	5.5	4.8	161.5	366.5	37.8	\$8.9	15	9.1	61	8	~	~	4	3	**	32	1.5
12	1009	26.7	31.7	21.7	32.8	20.0	78	5.2	4.2	127.7	425.7	29.4	114.3	15	6.5	34	37	ŝ		3	~	61 	36	0.4
Year	6001	27.2	32.2	22.2	35.0	18.3	76 -	5.5	1.	1540.0	2243.0	780.3	299.7	165	131.5	13 SI	53	~	63	7 12	8	м 	8	. 26
Number of years recorded	15	16	16	16	16	76	16	16	01	36	36	36	16	36	UT .	16	16	16 1	16 1	16 16	\$ 16	19	\$9 11	15

• Under 0.5 %

-115-

ogical Table	
: Meteorol	
Tacloban's	

			lavs	H H H H H H H H H H														
	Altitude 22 m		Number of days	of thunder and storm on average	00	10	2.2	4-5 2-4	10.5	11.4	10.2	7.6	8.7	8-0	2.9	1.6	69.5	9
	R	Procinitation		Max, II 24 hrs. (mn)	246.4	132.1	96.5	73.7	142.2	134.6	243.8	61.0	116.8	68.6	132.1	134.6	246.4	16
		Preci		um (mm)	83.8 8	12.7	30.5	22.9	17.8	53.3	25.4	25.4	73.7	<u> </u>	137.2	139.7	1813.6	36
	• • •			хари Huran	1409.7	551.2	S61.3	322.6	383.5	492.8	355.6	284.5	274.3	358.6	558.9	\$66,1	3807.5	34
le				(uuu)	337.8	215.9	170.2	137.2	154.9	182.9	165.1	139.7	154.9	213.4	302.5	373.4	2540.7	34
Tacloban's Meteorological Table	0. E.)	Cloudness	Number of	days of under 3/10 on average	4°S	6.2	6.6	7.9	5.0	3.5	1.4 ·	2.0	1.0	1.5	2.3	3.7		97
orolo	125°00'E.	ð		Mean	T*2 -	6.9	6.3	6.0	6.7	7.4	8.0	7.7	7.8	7.2	1.7	7.4	1.7	1
t's Mete	(11°15'N.,		Mean	humidity (%)	\$4	83	80	is.	\$2	\$3	82	80	S1	84	8	99 90	82	15
cloban	011)		Extreme	Min.	18.9	17.8	17.8	20-0	22.2	22.2	21.7	21.1	21.7	21.7	30.0	17.8	17.8	16
Чэ		رە م	EXT	Max.	33.3	34.4	34.4	36.1	36.1	36.1	35.6	35.6	36.1	35.6	34.4	33.3	36.1	16
		Temperature	Each month	Min. Mean	21.7	21.1	22.2	22,5	23.9	23.5	22.8	22.8	22.8	22.8	22.2	22.2	22.8	16
		Tem	Each	Max. Mean	31.1	32.2	33.3	34.4	35.6	35.0	34.4	33.3	33.9	33.3	32.8	31.7	33.3	16
				Mean	25.6	25.6	26.1	27.2	27.8	27.2	27.2	27.8	27.2	26.7	26.7	26.1	26.7	15
			surface	pressure (mb)	- 1	•	•	י	t	•	•	•	1		•		,	•
			1	Month		~	 რ	•#	ŝ	•••	t	ur -	ጥ	01	н. Н.	13	Year	Number of years

Davao's Meteorological Table

(7⁰01'N., 125⁰35'E.)

Altitude 3 m

482 19 118 11 25 1 2 0 2 2 12 45 307 14 89 11 19 4 3 3 2 2 8 45 418 91 100 5 9 4 4 4 13 4 11 46	91 100 5 9 4 4 98 9 9 5 6 4 88 9 5 6 4 4 88 8 8 8 8 8 89 99 5 6 4 4 46 94 1 1 1 6 53 4 1 1 1 1 11 1 1 1 1 6 53 11 1 1 1 1 54 9 9 11 1 1 53 11 1 1 1 1 54 12 22 4 1 1 55 9 17 4 1 1 55 9 17 1 1 1 55 9 17 1 1 1 56 9 9 1 1 1 57 4 1 1 1 1 56 9 1 1 1 1 57 4 1 1 1 1 57<	400 30 4.03 0 0 5 4 0 11 40 290 33 7.4 7 14 2 2 6 4 21 42 494 30 154 4 8 1 1 1 4 7 15 46	121 154 6 11 2 3 5 10 4 13	T C C C C C C C C C C C C C C C C C C C
19 118 11 25 1 2 0 2 2 14 89 11 19 4 3 3 2 2 91 100 5 9 4 4 4 15 4	91 100 5 9 4 4 4 98 99 5 6 2 5 4 4 38 68 1 1 1 4 4 4 46 94 1 1 1 16 5 33 68 1 1 1 16 5 34 94 1 1 1 1 16 35 124 1 1 1 22 4 35 124 1 1 1 22 4 1 1 1 2 9 17 7	30 1,55 74 7 14 2 2 6 4 33 74 7 14 2 2 6 4 30 154 8 1 1 2 2 6 4 30 154 8 1 1 2 2 6 4 30 154 8 1 1 2 2 6 4	121 154 6 11 2 3 5 10 4	• •
19 118 11 25 1 25 0 2 14 59 11 12 4 3 3 2 91 100 5 9 4 4 4 13	91 100 5 9 4 4 4 98 99 5 6 2 5 4 4 38 98 1 1 1 3 1 16 38 92 1 1 1 3 1 16 34 123 1 1 1 2 3 1 16 53 12 1 1 1 2 9 17 17	30 154 1 2 4 154 7 14 2 4 30 154 4 7 4	121 154 6 11 2 3 5 10	• •
19 118 11 25 1 2 0 14 89 11 12 4	91 100 92 99 93 99 94 94 95 99 96 94 94 94 9	30 154 1 2 4 154 7 14 2 4 30 154 4 7 4	121 154 6 11 2 3 5	• •
19 118 11 25 1 2 14 89 11 19 4 3 91 100 5 9 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30 1.55 5 5 5 33 7.4 7 1.4 2 2 4 30 1.55 4 7 1.4 2 2 4 30 1.5 4 7 1.4 2 2 4 30 1.5 4 8 1.1 2 2 4	121 154 6 11 2 3	• •
19 118 11 25 1 14 89 11 19 4 91 100 5 9 4	92 92 92 92 92 92 92 92 92 92 92 92 92 9	30 154 7 14 2 3 33 154 4 8 1	121 154 6 11 2	16
19 116 11 2 14 89 11 2 91 100 5	91 100 92 46 93 99 94 66 94 66 95 94 96 95 96 95 97 96 98 95 97 96 98 95 98 95 99 95 9	30 154 4 8	121 154 6 11	16
19 116 11 2 14 89 11 2 91 100 5	98 88 99 90 90 90 90 90 90 90 90 90 90 90 90	30 154 7 1 33 154 7 1 30 154 4	121 154 6	16
19 14 15 91 100 100	98 88 99 90 90 92 92 92 92 92 92 92 92 92 92 92 92 92	30 154 33 154 30 154	121 154	16
16 17	2 8 8 4 5 5	8 8 8	121	16
482 307 418	118 115 128 128 15 15 15 15 15 15 15 15 15 15 15 15 15	405 494	12	
	א ארי היי אריי	· · · -	3527	36
131 146 235	235 236 164 165 171	155	1970	
6.1 6.3	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	6.5 6.5	6.2	IŚ
8 80 8 8 80 8	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	0 60 60 7 4 4	\$3	Ś
17.2 18.9 20.0	20.0 20.6 20.0 13.3 20.0	16.7	16.7	÷.,
36.7 36.7 37.2	37.2 55.0 55.0 36.1 34.4 34.4	36.1 36.1 34.4	37.2	
19.8 20.7 21.2	21.2 21.4 21.6 21.0 21.0 21.0	20.5 20.1	20.5	16
34.6 34.6 34.4	32.5 33.2 33.5 33.2	33.1 33.1	33.7	
26.9 27.6 27.5	27.5 26.9 26.9 27.0 27.0	26.9 26.4	26.9	
8 8 8	999999	0101	1010	16
1011 26 1010 27 1010 27			Year	of years
		·	·	101 1010 1010 1010 1010 1010 1010 1010

-117-

* Under 0.5 %

Appendix 5	Tid	al Cu	rrents	in	Philip	dines,	1976		·
jā K Place	位 Pos 拼 段 Lat.	海 ition 林白 Long.	Corr. Corr. May A: A Diff.		47.55 (2003) 2010 2010	943900 30130143 M. L. W. L. W. L	大:41川 Sp. R.	- 31 II- Np. R.	平 均 水 萌 M.S.L. (Zo)
	N	E	h m i		h m	h m	m	m	m
PHILIPPINE ISLANDS Luzon's Northcoast and its Periphery						r. : 8	hE.)		
Bascol Balan L. Bahuyan L. Camiguin L.	20 28 19 34	121 59 121 56 121 50	-1 30 C -1 15 C) 50) 70) 65	6 41 5 56 6 14	n Naha	0.8 1.1 1.0	0.5 0.8 0.7	0-40 0-55 0-49
Fuga 1. Claveria Bay	18 52 18 37	121 17	-4 45 0 -4 10 0	3 - 50	6 29		0.6	0.4	0.30 0.24
Port San Vicente Aparri[Cagayan River]			ard Port -1:50 (-1:10 (0.75	5 39	n Naha	р. 35 1.2 1.0	0.8	0.58 0.52
Luzon's West Coast			ard Port lia- 2 +l /				nila p		
† Naga Bungan		120 34 120 25		0.55 0.55	6 56 (19 55) 8 10	(950)	0.4 (0.7) 0.4	0-3 (0-0) 0-4	0.31
t Salomague t San Fernando	16 37	- · .		0.55		(650)			0.37
† Sual (Lingayen Gulf)	16 4		!	0.65	9 31	(620)	0.5	(0-0) 0-4	0.34
† Bolinao	16 24	119 54	10.000	0.70	9 35	(6 50)	0.4	(1) 0-3	0.27
† Santa Cruz	15 46	119 54	14-1 0 14-0 0	0,70	(21 5) 9 21 (20 50)	(6 15) (6 40)	(0.9)	(~.2) 0.4 (~.1)	0.34
† Port Masinlac			115-915	0.75	9 35	(5 45)	0.6	0.5 (1)	0.43
1 Olongapo Subic Bay	14 49	120 17	(A- + B (B- + B)	0.90	10 6 (21 35)	(5 45)	0.7	0.5 (1)	0.43
Manila Bay † Corregidor I.	14 23	J.		0.90		(640)	(1-2)		
†MANILA	14 35	Stanoa 120 58	rd Port		10 29	·	0.7	0.6	0-42
† Anilaof Balayan Bayl	13 46	120 55	144 0 15 91 - 9 15	t i 10	(21 55) 10 43 (22 10)	(60) (550)	0.9	0.7	0.55
Luzon's Eust Coast		l Standa	 rd Port -1 20] (*	- 11 o	n Naha	p. 35		
Port likebian Diapitan Bay Bater Ray Umiray River Entrance	15 45	122 20 122 13 121 35 121 26	-1 20 0 -1 30 0	0.85	6 8 5 54 5 52	• • • • • •	1.3	0.9 1.0 1.0	0.64 0.67 0.67
Lamon Bay Port Lampon Atimonan Jose Panganiban Barabad	14 0 14 18	121 37 121 55 122 41 123 39	-1 20 -1 20	1 • 10 1 • 00	6 6 6 8 6 10 6 14	• • •	1.6 1.7 1.6 1.6	1.1 1.2 1.1 1.1	0.79 0.79 0.76 0.76
Cabgan I. [Sun Mixuel Bay] Port Anajao [Catonduanes I.] Tabaco Tabaco Bay Legaspi! Albay Gulf]	13 57 13 22	123 16 124 20 123 44 123 45	-1 20 (-1 35 (0-95 0-95	6 17 6 17 6 2 6 5	• • • •	r - 1	1.3 1.0 1.0 1.0	0+88 0-73 0-73 0-73
Luzon's South Coast]) ard Port			n Cebu			
Lucena Aguase Bay Ruray Gulf		121 36 122 31	+0 5 0 0 0 1			***	1.3 1.5	0.9 1-0	070 079
Port Pusgo Guinayangan Pasacao Sorsogon Bagatao L	13 53 13 30 12 58 12 50	122 27 123 2 124 0 123 48	+0 10 1	1 - 10 1 - 10 0 - 90 1 - 00	11 29 11 43 11 31 12 2 11 37	• • •	1.5 1.2 1.4	1.0 1.1 1.0 0.8 1.0	0.82 0.85 0.79 0.64 0.76
Butag Bay	1 12 37	•	+0 10 (1.1	0.7	0.61

† denotes that the daily tide inequity is so large there are many cases in which there appears one cycle of tiding a day. The equinoteal tide is shown in the upper row, hereas topic tide is parenthesized in thelower row.

								1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
	 		e e e				e ster		
	, ,	16	in	R. H		1819.5			n B
地名			Ition	Cor		清閒居	ल्यामहत	【大胡升 [赤茂]	" K
Pince		待 1火 Lat.	注他。我们 Long-	語思す者。 Diff.	利為北 北iio	-Malka W. L	M.L. W.L.	Sp.R. Np.B	. M.S
		-		li m		ի տ	h m	m n	i farmain
		N	E		(12)	1時 5.	T. 8	6E.)	
Luzon's South Coast			Stand	ard Po	rt : N	ANILA	on Ma	inila p. 5	9
† Port Tilic Lubang		13 49	120 12					0.8 0.6	0.5
Mindoro						(21 40)	(5 40)	(1 2) (1)
1 Paluan		13 23	120 29	a- 0 5	1.05	10 27		0.9 0.7	0-5
† Mangaria		12 21	121 5	14++-5		(21 50) 10 43	(5 50)	(1.3) (1	
				191-420		(22 00)	(5 10)	0.9 0.7	
Mansalay			Standa	rd Por			n Cebu	p. 62	
Calapan		13 26	121 26 121 11			11 8	***	13 1.0	
Port Balancen [Marinduque] Maestre de Compo I.		13 32	121 52	~0 5	0.90	11 14	***	1.3 1.0	
Port Concepcion		12 55	121 44	-0 5	0.90	11 12		1.3 1.0	0.74
Looc Tublas 1.1 Rombion Rombion 1.1		12 16 12 35	122 0 122 16		0.90	11 17		1.4 1.0	0.7
Masbale		15 00		0 0		11 21	•••	1.5 1.1	0.82
Nin Bay Port Barrera		12 14 12 22	123 17	+0 5	2 1 1	11 29		1.5 1.0	0.79
Cataingan	-		123 37 124 0	+0 10				1.5 1.0	0.79
		Ì	Stand		1.1.1	EBU o	n Cehu		1 0.16
San Pascual Burias 1.	1.1.1.1.1	13 8	122 59		1.10	11 27		1.6 1.1	0.8
Batuan Bay Ticao L		12 25	123 46	10 15	0.75	11 43		1 1 0.7	0.51
Luzon's South to Luzon Sumar				1 A				a a d	
Calbayog		12 4	124 35			11 50	• • •	1 1 0.7	
Catbalogan San Juanico Strait		11,47	124 52	+0 15	1.10	11 46	•••	1.5 1.0	0.7
Santa Rita		11 27	124 57					1 1 2 0.7	
								onila p.5	1
† Santa Elena R. Entrance	t. An an	11 21	124 59	in- # 25	0.85	10 46	(555)	0.7 0.5	10.40
			Stand	ard Poi	rt:C		n Cebu		
Guivan		11 2	125 44					0.7 0.6	0.3
**** h *		10 0	Standa 125 34	ard Por			n Naha I	⊨ p. 35 1.5 1.0	10.7
Hilaban I. Laoang Bay	an a	1	125 34		•			1.5 1.1	1 A
						RAISO		loaraiso	
Birl L	1	12 39				5 43		0.7 0.5	0.3
Leyle		11 3				EBU 0	n Cebu	⊨ p.°62 I1-6 I1-1	10-8
Palompon Baybay		11 3 10 41	124 23	0 0	1.05	11 33		1.5 1.0	0.8
Maasin		10 8	124 50	-0 16	0.80	1 11 17	•••	1 2 0 9	0.70
	:			ard Po			n Kaoh		
Liloan Sogod Bay		10 9				1		100.7	
	:					IANILA	on Ma		
t Hinunangan Bay		10 24	125 12	14-1 N	0.70	8 25		0.5 0.4	
			C Land			いばの			
t Tacloban		11 15	Standa 125 0					51011g p.	
	-							(0.8) (0.0	
Bohol Garcia Hernandez		9.36	124 17	+2 30	2.20	11 12		1.1 0.8	0.6
(1) All the second sec second second sec		[•	19 - ST				n Caku	, ,	
Cebu Bantayan Bantayan I.		11 10	Standa 123 43			EBU o 11 60	n Cebu	р. 02 1.7 1.2	0.9
Balamban Bay		10 30	123 43	+0.15	1 - 50	11 43		1.6 1.1	0.8
Noalboai Rolloon			123 24 123 29	+0 10 0 15		11 37 11 12	• • •	1.6 1.0	
CEBU		10 18	123 54	0 0	1.00	11 23	• • • •	1.4 0.9	0.7
	-	11 4	124 0	ו היה היה ו	1.15	11 48		1.6 1.1	0.8

† denotes that the daily tide inequity is so large that there are many cases in which there appears one cycle of tiding a day. The equinotical tide is shown in the upper row, whereas the topic tide is parenthesized in the lower row.

-119-

	-						1 g		
	67.	<u>in</u>	1 24 11		103325	નુગકાત	大湖村	小湖井	14 K)
通 Place 名 · · · · · · · · · · · · · · · · · ·	Pos 14 PY Lat,	ition it 12 Long	Con 的時意 Diff,	····	の開節: A. H. W. L.	3918384 M. L. W. L.	Sp.R.	Ne.R	* 61 M.S.I. (70)
	N	E	h m	(13)	h w Kulf S.		hE.)	m	វា
Negros Bacolod Illinamaylan	10 6	122 57 122 52 122 25	10 20 -0 5 -0 20	0.90	11 41 11 17 11 2	• • • •	1.6 1.3 1.3	1.2 1.0 0.8	0.91 0.76 0.67
Componanes Bay Port Bunbonon Larenal Siguifor I.1 Bais	9 3 9 15 9 36	123 7 123 35 123 8	-0 25	0.90 0.90 1.20	11 0 11 6 11,31	***	1.3 1.2 1.5	0-8 0-8 1-0	0.67 0.64 0.76
	i in 1955	Standa	ard Po	t : c	EBU o	n Cebu	р 6	2	
San Carlos Cadiz Panay	10 29 10 57	123 25 123 19	+0 15 +0 30			•••	$1.7 \\ 1.9$	1 1 1 3	0-88 1-01
Borocay I. Tiblao Aniniv	11 57 11 17 10 20	121 56 122 2 121 55	-0 20 -0 25 -0 25	1 05 0 95 0 90	10 54	*** ***	1.5 1.4 1.3	1.0 1.0 0.9	0.79 0.82 0.73
lioilo Bagate Estancia	10 40 11 0 11 28	122 35 122 49 123 9	+0 5 +0 25 +0 20	0,95 1,20 1,40	11 48	• • • •	1.4 1.8 2.0	1.0 1.4 1.4	0.76 1.07 1.04
Copiz Landing	11 36	122 43	+0 10	1 10	11 33		1.5	1.0	0.79
Comiguin I. Mambajao	9 15	Stand 124 43	ard Po +2 35		推 o 11 19	n Kaoh	siung	р. 4 0.7	
Mindanao's North and Westcoast									
Macabalan Point[Macajalar Bay] Iligan Bay	8 30	124 40	+2 35	2.40	11 19	•••	1-1	0.7	0-55
lligon Misamlø	8 14 8 9 8 37	124 14 123 51 123 43	+2 40 +2 45 +2 25	2 40 2 65 2 40	11 27	*** ****	1.2 1.2 1.2	08 07 08	0-64 0-58 0-64
Plaridel Dopitan Port Sanla Maria	8 40 7 46	123 25 122 7	+2 10	2 40 1 95	10 60	•••	1-1 1-0	07	0.55
Sibuco Bay	7 19	122 4	+2 0	2.05	10 35		1•1 	07	0.61
Mindanao's Eastcoast Surigao	9 48	125 29	+2 35	1.50	11 25	• • •	0.8	0.6	0.52
201 Bao		Standa	l , e e			n Naha		1. j. 1. j.	• • • •
Dahikan Bay	9 27 9 52	125 56		0.95	6 25	•••	1.6	1.1	0.79
Port Pilar Siargao I.) Tandag	9 5	126 12	-1 25	1.00	6 19	•••	1.5	1.0	0.70
Hinatuan Caraga Bay	7.17	126 20 126 34	-1 35	1.00	6 12	• • •	1.6		0.76
Mati Pujada Bay Mindanao's Southcoast	6 57	126 13	-1 30	0-95	6 10	•••	1+6	1-1	0.76
Darao Gulf Sigaboy		126 4 125 40		1.05		• • •	1.6		0.76 0.75
Davao			1.1.1	:	读词 o	n Chin	• - • •	p. 2	•
Port Lobak Iliana Bay		124 3	-3 30	0.40	66	3 • • •	1.9	1.2	0.88
Polloc Harbour Ticouan Point Sidusuey Bay	7 21 7 45	124 13 122 44		0 40 0 45		• • •	1.9	$1 \cdot 1$ $1 \cdot 2$	0.85
Sulu Archipelago		Standa	rd Por	1 . M		on Ma	inita	o. 59	
Jolo I. †Jolo			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.95		1 # #	0.6	0.4	
n an an Arran an Arr Arran an Arran an Arr					1 南浦 0				1
Natinbung Bongao (Tricitaici I.)		121 2 119 46				• • •	1.2	0.7 0.7	0.52 0.55
Palawan Periphery						1 A A	inila	p: 59	
† Apo Recf Mindoro Strail	12 40	120 24	14+ 0 15	1 • 15	10 35 (22 0)	(545)		0.7 (~:1)	
t denotes that the dail	v tide	inequit	y is so	large	that th	ere are	many		

† depotes that the daily tide inequity is so large that there are many cases in which there appears one cycle of tiding a day. The equinotical tide is shown in the upper row, whereas the topical tide is parenthesized in the lower row. -120--

						A	· · · · · · · · · · · ·		
過 名	fi). Pos	iltion	Cor		i († 14) Referenci	-10246 1841866	大将小	4.83.1	平均水面
Place	掉 19 Lat.	té 12 Long	词明子A Diff.	ALCS H Ratio	М. Н. W. T.	M. L. W. T.	Sp. H.	Np.H	SLS.1. (Zo)
	N	E	b m	(信)	hm (AL) S.	hm T 8		m	m
		Standa	ard Por	t : M	ANILA	on Ma	nila	p, 59	
† Coron	12 1	120 12	5 51 4 8 X	1.20			1.0	0.8	0.67
† Haisey Cution 1.]	11 48	119 57	1014 0 15 115 0 0	1 - 15	(22 10) 10 43		0.9	0.8	0-61
t Cuyo [Cuyo] I.]	10_51	121 0	1A+ 130 131- 130	1.45	(22 5) 10 43 (22 25)	(555) (555)	1.2	0.8	0.67
Palawan's Westcoast					- 14 - 1				
† Ulugan Bay	10 6	118 47	13+ ¥ 30 3 + 0 \$	1.10	10 41 (21 55)	(60)	0.9	0.7	0.61
† Eran Bay	93	117 44	(A+ 6 % 181+ 6 %				0.9	0.7	0.61
Palawan's Eastcoast									
t North-west Bay [Linapacan 1.]	11 28	119 46	1A+015 14 00	1 • 20				0.7	0.61
† Puerto Princesa	944	118 42	14-425 14-14-5	1.40	(22 5) 10 35	(\$ 55)	1.1	0.8	0.67
† Balabac (Balabac 1.)	80	117 4	1 A + 4 40 [M + 0 23	1.20	(22 15) 10 54 (22 15)	(550) (610)	(1.5) 1.0 (1.4)	0.8	0.64

t denotes that the daily tide inequity is so large that there are many cases in which there appears one cycle of tiding a day. The equinotical tide is shown is shown in the upper row, whereas the topical tide is parenthesized in the lower row.

-121-

···· A MANILA

1976		Lat.	14° 35' N.	Long. 120° 58' E.		F
1 時刻潮高	月前刻潮高	2 時 納 禍高	月時刻潮高	<u>3</u> 月 時刻湖高 時刻湖高	4 時刻 湖高	月 時刻 開高
Time Hu.	Time Ht.	Time Ht.	Time HL.	Time Ht. Time Ht. h m co h m co	Time Ht. hm cu	Time Ht. h m cu
1 05 19 -30 21 27 119	16 04 50 -27 16 21 13 116	1 06 12 -21 22 62 101	16 05 28 -18 11 34 37 0 15 19 18 22 45 110	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 05 04 27 11 16 76 17 47 6	16 03 54 37 10 42 107 18 20 -15
2 27 07 116	17 05 26 -30 22 00 119 O	2 06 39 15 12 13 30 16 54 21 23 28 91	17 05 58 -12 11 58 43 E P 16 28 15 23 37 101	2 05 55 3 17 05 04 15 11 44 49 10 59 67 E 16 35 15 P 16 59 3 23 33 79 23 40 79	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 00 46 49 04 03 37 11 19 116 19 18 -18
3 06 34 -30 22 45 113	18 06 01 -30 22 48 119	3 07 04 -9 13 03 37 8 16 50 21	18 06 26 -3 12 25 55 17 38 12	3 06 13 9 12 04 55 17 27 15 18 05 26 21 11 27 79 18 05 -3	3 00 53 49 05 20 34 12 06 85 19 22 3	18 01 50 40 04 10 37 S 11 58 119 20 17 -18
4 07 10 -24 23 23 107	19 06 36 -27 13 05 30 15 47 24 23 35 113	4 00 02 82 07 25 -3 13 25 43 17 49 24	19 00 27 85 06 51 9 12 54 64 18 53 12	4 00 06 70 19 00 32 67 06 27 15 19 05 42 27 A 12 27 61 11 59 91 18 20 15 19 11 -6	4 01 42 43 05 07 37 12 32 88 20 13 3	19 12 43 116 21 18 -12
5 07 43 -18 14 23 27 15 56 27 23 59 98	20 07 10 18 13 32 37 P 16 65 27	5 00 34 73 07 42 6 A 13 52 49 18 57 24	20 01 17 70 07 11 15 13 28 76 20 11 9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 02 58 37 04 18 37 N 12 58 88 21 08 6	20 22 24 10
6 08 13 -12 14 47 34 17 02 30	21 00 23 101 07 42 9 E 14 02 46 18 13 27	6 01 05 61 07 53 12 14 21 58 20 16 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 13 28 91 22 11 6	21 14 34 104 c
7 00 36 85 08 40 -6 E 15 15 40 18 18 37	22 01 11 85 08 10 3 14 34 55 19 49 27	7 01 36 49 08 00 15 14 56 64 21 49 27	22 03 27 34 07 38 21 c 14 58 88 23 17 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 14 09 91 23 31 6	22 15 44 94
8 01 12 73 09 02 3 15 49 49 20 06 40	23 02 03 67 08 34 9 15 12 64 21 33 24	8 02 10 37 07 55 18 D 16 37 70 23 54 21	23 05 47 24 07 35 24 \$ 16 03 91	8 02 45 30 05 52 27 14 24 79 23 50 15 C	8 15 11 91 ⊅	23 17 04 85
9 01 48 58 09 18 9 16 26 58 22 21 37	24 03 05 49 08 51 15 ¢ 15 58 76 23 31 18	9 02 58 24 07 26 18 16 25 76	24 01 18 -3 17 20 94	9 15 09 82 24 00 29 -6 ≥ N	9 00 47 6 16 26 91	24 01 19 9 08 14 52 11 14 46 18 33 76
10 02 26 46 09 29 15 17 07 64	25 04 56 30 09 04 21 16 56 85	10 02 11 12 12 12	25 02 37 -12 18 34 98	$10 \begin{array}{ccc} & _{00} \begin{array}{ccc} 58 & 9 \\ 16 \end{array} \begin{array}{ccc} 9 \\ 85 \end{array} \begin{array}{cccc} 25 \end{array} \begin{array}{cccc} 01 \\ 17 \end{array} \begin{array}{cccc} 43 \\ 58 \end{array} \begin{array}{cccc} -6 \\ 51 \end{array}$	10 11 35 6 17 48 91	25 01 69 15 08 33 58 E 13 29 37 19 57 70
00 43 30 03 18 30 09 31 18 17 48 73	26 01 41 8 07 29 21 09 05 21 17 59 94	11 02 56 3 18 13 91 N	26 03 26 -15 19 41 98	$11_{17}^{02} \frac{07}{17} \frac{3}{91} 26_{19}^{02} \frac{31}{17} \frac{-3}{88}$	11 03 10 12 19 12 88	26 03 28 21 08 55 67 14 40 27 21 06 67
2 03 21 18 06 54 21 09 30 18 18 27 82	27 03 01 -9 18 58 101 S	12 19 07 101	27 04 04 -15 20 40 98	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 02 40 15 04 59 55 E 13 49 30 20 35 82	27 03 52 27 09 18 76 A 16 31 18 22 01 61
3 03 11 6 19 07 91	28 03 51 -18 19 53 107	$13 \begin{array}{c} {}^{03}_{20} \begin{array}{c} {}^{66}_{20} \begin{array}{c} {}^{+15}_{107} \end{array}$	28 04 36 -15 10 49 34 13 35 27 21 32 94	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 03 05 21 09 15 67 16 12 18 21 49 76	28 03 11 34 09 41 85 16 24 9 22 49 58
4 03 46 -9 19 48 104 N	29 20 44 107	14 04 25 -21 20 56 113	29 05 06 -12 11 06 37 14 47 21 22 17 91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 03 27 30 09 40 82 PO 16 19 6 23 50 70	29 03 25 37 10 07 91 17 10 3 23 35 52
15 34 17 -18 30 30 110	30 05 67 -27 21 30 107	15 04 66 -21 11 19 30 14 00 24 21 61 113	-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 03 44 34 10 08 98 17 21 -9 23 47 61	30 03 36 40 10 31 98 17 51 -6
	31 05 41 -27 22 14 104			31 01 52 21 10 53 70 ●A 17 00 9 23 33 64		

Hrs. : 8 hE.

·

満済の基準領:平均水河下 - 17 co Datum: 47 co below mean sea level

MANILA

Lat. 14º 35' N. Long. 120° 58' E. Tide 1976

, -

5	Я	6	Я	7	Я.	8	月
05 刻 湖高 Time Ht.	時刻 MAG Time Ht	时刻 湖高 Time Ht.	時刻湖高 Time Ht.	ay al main Time Ht.	85 刻 湖高 Time Ht.	時刻 納高 Time Ht.	時刻 納筋 Time Ht.
h m c 1 00 23 49 1 03 44 40 11 02 101 18 37 -9	h m ca 16 10 50 131 19 19 -21	h m ca 1 11 38 119 1 19 52 -12	h m cr 16 12 05 125 20 31 -3	h m cu 1 12 12 125 1 20 06 3	h m c 16 02 13 55 05 09 49 E 12 37 107 20 26 18	h m ce 1 02 09 79 07 22 49 P 13 46 94 20 13 34	h m ce 16 01 57 85 03 11 49 A 13 35 70 19 42 43
2 01 22 46 03 37 43 11 30 104 19 21 -9	17 11 34 131 20 10 -18	2 12 13 116 20 34 -6	17 12 49 113 21 11 6	2 13 56 116 20 40 12	17 02 40 64 06 26 52 13 14 91 20 47 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 02 33 91 09 39 46 14 13 58 19 39 46
3 11 58 104 20 06 -9 N	18 12 19 125 20 59 12	3 12 53 113 21 16 3	18 13 34 101 21 44 12	3 03 37 61 06 09 58 E 13 41 104 21 08 21	18 03 12 70 08 03 55 13 49 82 21 02 30	3 03 23 98 10 39 43 → 16 08 58 20 42 46	18 03 15 94 11 24 43 15 13 49 19 08 46
4 12 25 104 20 54 +6	19 13 07 116 21 50 6	4 13 36 107 21 54 9	19 04 46 58 07 42 55 E ¢ 14 19 88 22 12 21	4 04 01 70 08 13 58 14 33 88 21 32 27	19 03 50 79 09 54 55 ¢ Å 14 28 67 21 13 37	4 04 15 110 12 44 34	19 01 05 101 13 29 37
5 12 57 104 21 44 -3	20 14 09 104 22 38 6	5 14 30 94 22 26 18 3	$\begin{smallmatrix} 20 & 05 & 20 & 67 \\ 10 & 00 & 55 \\ 16 & 06 & 73 \\ 22 & 34 & 27 \end{smallmatrix}$	5 04 32 79 10 19 55 15 39 70 21 49 37	20 04 32 88 11 49 49 15 16 55 21 19 40	5 05 19 119 14 28 21	20 05 00 107 14 33 27 N
6 13 39 101 22 38 6	21 14 56 91 23 20 12 C	6 06 22 64 09 04 61 E 15 34 82 22 53 27	21 05 64 79 12 05 49 16 08 58 22 50 34	6 05 09 91 12 29 46 17 35 55 22 01 40	21 05 19 98 13 42 40 17 35 43 21 18 40	6 06 22 125 15 27 12 S	21 05 55 113 15 08 21
7 14 38 98 7 23 27 9 ⊅	22 06 47 68 09 46 55 E 16 01 79 23 56 18	7 06 18 73 11 51 52 17 07 67 23 14 34	22 06 29 88 13 41 40 A 18 16 49 23 03 37	7 05 54 104 14 19 30 P 19 50 46 22 10 43	22 06 04 104 14 51 30	7 07 21 131 16 11 6	22 06 49 122 15 39 15
8 15 51 88	23 07 07 67 12 05 49 17 24 67	8 06 40 85 13 48 37 19 18 55 23 30 40	23 07 03 98 14 52 27 20 30 43 23 14 40	8 06 43 116 15 29 15	23 06 49 113 15 36 18	8 08 17 131 16 49 3	23 16 07 12 128
Q 00 08 18 08 06 55 E 10 15 55 17 19 79	24 00 26 27 67 34 76 13 39 40 19 17 58	9 07 12 101 15 06 21	24 15 13 18	9 07 32 128 16 21 3 S	24 07 32 122 16 10 12 N	9 09 09 134 17 23 6 23 45 49	24 08 35 131 16 35 12 22 56 55
10 00 40 24 07 13 64 13 00 43 19 03 70	25 00 49 30 07 59 85 A 14 47 27 - 20 44 52	10 07 50 116 P	25 08 13 116 16 24 9	10 08 20 134 17 04 -9	25 16 16 128 16 11 6	10 01 22 49 09 57 131 0 17 54 9 23 59 52	25 01 46 49 09 30 131 17 04 15 23 11 61
11 01 03 30 11 07 59 79 14 33 27 20 41 64	26 01 05 .37 08 26 94 15 41 15 21 51 49	1 08 31 125 16 69 -9	26 08 49 122 N 17 02 -3	11 09 08 137 17 44 -9 0	26 09 01 134 17 13 3	1 1 02 40 46 10 41 125 18 23 15	26 03 02 46 10 24 128 17 34 21 23 35 70
12 01 25 37 08 24 94 13 41 16 21 58 58	27 01 21 40 (8 55 104 16 28 6 22 49 46	12 09 13 134 17 47 -15 SO	27 09 27 128 17 37 -9	12 19 54 137 18 22 -9	27 09 47 137 17 47 -3	12 00 19 58 03 43 46 11 20 116 18 47 21	27 04 11 40 11 16 122 E 18 02 27
13 01 41 43 08 56 107 P 16 43 -6 23 06 49	28 01 38 43 09 26 110 17 10 -3 23 47 46	13 18 56 137 18 32 -18	28 10 07 131 18 15 -9	13 10 38 134 18 57 -3	28 10 35 137	13 00 10 61 13 04 12 46 11 55 107 19 08 27	28 00 01 79 05 20 37 P 12 06 110 18 26 37
14 01 53 43 09 33 119 O 17 37 -15	29 01 52 43 09 57 116 • 17 49 -9	14 10 38 137 19 14 -15	29 10 48 131 18 51 9	14 11 20 128 19 29 6	29 00 46 55 03 36 49 11 21 131 18 53 9	14 01 01 70 05 44 46 12 29 94 19 25 34	29 00 29 91 06 33 31 12 68 91 18 47 43
15 10 11 128 18 29 -21 S	30 10 31 119 N 18 30 -12	15 11 21 131 19 55 -12	30 11 28 131 19 29 -6	15 01 50 49 04 00 46 11 59 119 19 59 12	30 01 11 61 01 12 19 E 12 09 122 19 24 18	15 01 28 76 06 54 46 13 01 82 19 36 40	30 (1 01 101 07 48 31 13 55 76 19 01 46
	31 11 04 119				31 01 39 70 05 56 19 12 57 110 19 50 27		31 01 39 110 09 08 30 15 08 61 19 10 49

llrs. 8 hE.

福高の基準領:学校休師ド 47 cm Dotum: 47 cm below mean sea kvel

.

	én 1			MAN	NLA -			
	Tide 1976		Lai.	14º 35' N.	Long. 120°		مىرىيىتىنىتىتىتىتىتىتىتىتىتىتىتىتىتىتىتىتىت	
	9	A.	10 14 (1) (MAN)	月時刻初高	11 时刻 湖高	月的刻湖高	12 時刻 潮高	月前刻潮前
	Time Ht.	Ry & Millis Time Hu	Time Ht.	Time Ht.	Time Ht.	Time Ht.	Time Hu	Time Ht
	h m co 1 02 27 116 1 10 39 27 3 17 14 49 19 05 49	16 02 06 101 10 48 34 N	h m cm 1 02 44 122 1 11 66 12	16 03 43 104 16 11 19 18 ¢	h m ce 9 0f 38 91 12 60 15 19 63 61 23 47 55	h m ca 16 03 04 88 10 11 37 15 20 34 61 21 44 61	h m cu 1 00 09 43 05 07 58 11 59 21 19 15 73	16 04 16 5 10 39 2 18 18 7
	2 03 29 119 12 34 24 S	17 02 54 104 t	2 13 10 15	17 02 40 104 12 22 18	2 06 11 82 13 26 21 E 20 11 70	17 04 32 76 12 05 21 E 19 34 67	2 01 42 30 07 14 49 12 20 24 19 43 85	17 01 42 3 06 39 4 10 55 2 18 47 8
	3 04 43 122 34 03 18	18 03 61 107 13 41 24	3 05 27 110 14 02 15	18 03 66 101 13 04 18	3 01 29 43 07 38 73 13 57 27 20 34 79	18 00 57 49 06 20 67 12 29 30 19 38 82	3 02 47 18 08 41 43 12 37 30 20 11 91	18 02 54 08 37 3 11 10 2 19 24 10
-	4 05 59 122 14 56 12	19 04 57 110	4 06 47 107 14 41 18 21 05 64	19 05 14 98 13 35 21 20 56 64 23 40 61	4 02 37 34 08 49 67 14 20 34 20 56 88	19 02 21 30 08 07 58 12 49 34 20 09 98	4 03 39 6 09 49 40 A 12 51 34 20 40 101	19 03 49 20 06 11 P
	5 07 08 122 15 37 12	20 14 47 18	5 00 50 52 07 59 101 15 13 24 21 25 70	20 06 36 94 14 02 27 20 40 70	5 03 30 21 09 49 64 14 35 37 21 20 94	20 03 25 12 09 30 52 13 04 37 20 30 113	5 04 22 -6 10 48 37 13 05 34 21 09 107	20 04 38 -2 30 48 12 5
	6 08 11 122 16 11 15 22 21 58	21 07 07 116 15 18 21 21 46 61	6 02 11 46 09 01 98 E 16 40 30 21 46 76	21 01 39 46 08 00 88 E 14 26 34 20 49 82	6 04 18 12 10 38 58 A 14 44 43 21 44 104	21 04 21 -6 10 38 46 P● 13 21 40 21 05 125	6 05 02 -15 11 47 34 13 18 34 21 40 110	21 05 23 -3 21 32 13
	7 01 15 62 09 08 119 16 42 18 22 39 61	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 03 12 37 09 53 91 16 03 37 22 07 85	22 02 55 30 09 16 82 14 47 40 21 12 98	7 05 02 3 11 27 52 0 14 51 43 22 10 107	22 05 14 -18 11 45 40 13 36 37 21 44 134	7 05 40 -18 22 12 113 ON	22 06 06 -3 22 15 12
	8 02 31 46 09 58 113 0 17 07 24 23 00 67	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 04 03 27 10 39 82 0 16 18 43 22 28 91	23 04 00 16 10 21 76 P 15 02 43 21 40 113	8 05 44 -3 22 36 110	23 06 06 -27 22 24 137 5	8 06 16 -21 22 45 113	23 23 00 12
	9 03 30 43 10 41 107 E 17 30 30 23 20 73	24 03 32 34 10 18 107 16 31 37 22 32 91	9 04 50 21 11 20 76 16 26 46 22 49 98	24 05 00 3 11 21 67 15 13 46 22 12 125	9 06 26 -6 23 04 113	24 06 56 -27 23 06 134	9 06 53 -21 23 17 110	24 07 28 -2 23 44 11
	10 04 25 37 11 20 98 17 48 37 23 40 79	25 04 39 24 11 14 98 P 16 50 43 23 00 104	10 05 38 18 12 01 67 A 16 29 49 23 13 101	25 05 68 -6 12 22 55 15 23 46 22 49 131	10 07 08 -9 23 33 110 N	25 67 45 -24 23 51 128	10 07 32 -21 23 48 107	20 14 56 3 16 14 3
	11 05 17 37 11 55 88 17 59 43	26 05 44 18 12 09 85 17 06 49 23 31 116	11 06 26 16 12 44 61 16 25 49 23 40 104	26 06 56 -12 13 29 46 5 16 29 43 23 28 134	11 07 52 -6 23 59 110	26 08 34 -18	11 08 11 -18	26 08 12 -1
	12 00 02 88 06 12 34 12 30 79 18 05 46	27 06 49 12 13 07 70 17 14 49	12 07 14 15 13 39 62 16 06 49	27 07 53 -12	12 08 38 -6	27 09 23 -12	12 00 20 101 08 49 -12	27 01 10 8 09 15 E 16 04 4 19 25 4
	13 00 27 91 07 10 34 A 13 07 67 18 04 49	28 00 08 122 07 55 12 14 16 58 17 16 49	13 00 06 107 08 04 16	28 00 13 131	13 00 26 107. 09 26 -3	28 01 31 104 10 10 -3	13 00 67 94 09 26 -6	28 01 53 7 3 16 45 5 21 47 4
	14 00 56 98 08 11 34 13 50 58 17 49 49	29 00 49 125 9 09 06 12 8	14 00 34 107 09 01 16 N	29 01 03 128 09 59 -3	14 01 00 101 10 18 6	29 02 28 68 10 52 6 18 29 55 21 39 52	14 01 41 82 8 C	29 02 41 5 10 05 1 17 27 6 23 58 3
	15 01 28 101 09 20 34	30 01 39 126 10 25 12 3	·15 01 04 107 10 04 18	30 02 03 116 ⊅ 11 04 16	15 01 49 94 •	30 03 34 73 11 28 16 E 18 49 64	15 02 40 70 10 21 15 18 04 61 23 34 46	30 03 46 4 10 21 1 18 08 7
				31 03 15 104 12 02 9				31 01 42 2 06 50 2 A 10 34 2 18 47 8

CEBU

Lat. 10° 18' N. Long. 123° 54' E.

Tide 1976

1	А	2	В	3	Я	4	Я
時刻 約約 Time Hi	a) al Milli Time Ht.	精 約 約 約6 Time Ht.	時刻 湖南 Time Ht.	時刻 削高 Time Ht.	时刻 胡高 Time Hu	時 納 湖高 Time Ht.	時刻 樹高 Time Hi.
h m ce 1 05 37 34 1 11 55 76 • 16 03 43 22 48 177	h m cm 16 05 31 -24 13 51 73 15 67 46 22 39 168	h m cm 1 06 30 -27 12 32 88 17 33 24 23 58 162	16 06 09 -27 12 08 98 0 17 23 12 23 19 166	h m c 1 03 56 +12 1 155 110 17 33 12 23 48 149	h m n 16 05 30 -9 11 27 122 E O 17 21 -6 23 42 152	h m cm 1 00 03 128 05 51 16 11 66 149 18 23 -12	h m c 16 00 16 122 05 37 27 11 49 177 18 43 -37
2 06 15 -37 12 30 76 16 46 40 23 27 180	17 06 05 -34 12 18 76 0 16 41 37 23 19 177	2 06 53 -21 12 53 94 18 06 18	17 06 34 -24 12 30 107 E P 18 05 3	2 06 15 -9 12 15 119 E 18 04 6	17 05 55 -3 11 52 137 P 18 04 -21	2 00 30 122 06 09 18 12 18 152 18 53 -16	17 00 67 110 06 02 30 12 22 183 19 26 -34
3 06 60 -34 12 58 79 17 26 37	18 06 36 -37 12 41 82 17 20 30 23 55 177	3 00 29 155 07 (4 -18 E 13 14 104 18 41 15	18 00 27 162 06 58 -15 12 57 119 18 49 -9	3 00 16 143 06 33 -6 12 34 125 18 34 3	18 00 22 143 06 19 6 12 20 149 18 46 -27	3 00 58 116 06 27 24 12 40 165 19 22 -12	18 01 36 98 06 26 37 5 12 57 160 20 13 -21
4 00 04 174 07 19 -27 13 25 82 18 04 34	19 07 04 -34 13 05 88 18 02 21	4 00 57 146 07 32 -12 13 36 110 19 15 16	19 01 05 149 07 22 -9 13 25 131 19 34 -9	4 00 43 134 06 50 3 A 13 56 131 19 04 -3	19 01 00 131 06 41 12 12 50 158 19 31 -27	4 01 26 107 06 44 27 13 04 158 19 56 -9	19 02 17 82 06 50 40 13 35 174 21 02 -9
5 00 37 168 07 46 -21 13 50 85 18 41 34	20 00 33 174 07 32 -27 P 13 32 94 18 46 15	5 01 24 134 07 50 -6 A 14 00 116 19 50 18	20 01 45 131 07 46 6 13 57 140 20 23 -6	5 01 10 126 07 08 9 13 17 137 19 35 -3	20 01 39 113 07 04 21 13 24 165 20 17 -18	5 01 57 94 07 03 34 N 13 32 155 20 37 -3	20 03 05 73 07 12 46 14 17 158 22 03 9
6 01 08 165 08 11 -15 14 17 91 19 21 34	21 01 11 165 07 59 -21 E 14 02 104 19 34 15	6 01 53 122 08 10 5 14 27 119 20 31 21	21 02 26 110 08 09 16 14 35 143 21 20 6	6 01 36 116 07 26 15 13 42 137 20 10 6	21 02 19 94 07 25 27 14 00 162 21 11 -6	6 02 31 82 07 21 40 14 06 149 21 27 12	21 04 14 64 07 35 55 C 15 08 140 23 34 24
7 01 41 143 7 08 34 -6 E 14 47 98 20 03 37	22 01 50 146 08 26 -9 14 35 113 20 27 15	7 02 24 107 08 31 12 14 59 119 21 20 27	22 03 09 85 08 31 24 ¢ 15 19 140 22 36 15	7 03 07 101 07 45 21 14 09 137 20 52 12	22 03 04 76 07 46 37 \$ 14 42 152 22 19 12	7 03 22 70 07 39 46 14 48 143 22 42 21	22 16 25 122
8 02 13 128 08 58 6 15 22 101 20 55 43	23 02 33 125 08 54 6 15 16 122 21 30 21	8 02 59 88 08 52 21 2 15 39 119 22 28 34	23 04 08 61 08 51 34 5 16 18 137	8 02 41 85 08 02 30 14 42 134 21 49 21	23 04 07 58 07 59 46 c 15 37 140	8 04 52 61 07 53 55 9 15 51 131	23 01 00 30 08 33 79 11 48 76 18 29 110
9 02 48 110 09 25 15 A D 16 04 107 22 01 46	24 03 22 98 09 22 18 ¢ 16 05 128 22 55 27	9 03 47 70 09 13 34 16 32 119	24 00 34 21 17 48 131	9 03 25 70 08 17 40 D N 15 27 128 23 17 27	24 00 08 21 17 07 125	9 00 30 24 17 38 122	24 02 10 30 08 59 94 14 19 61 20 13 110
10 03 32 91 09 56 24 16 56 110 23 38 49	25 04 25 73 09 53 30 17 07 131	10 00 22 37 05 24 52 09 26 43 17 51 119	25 02 47 15 19 38 131	10 04 49 5? 08 17 46 16 36 123	25 13 21 19 17 119	$\begin{array}{ccccccc} 10 & \begin{smallmatrix} 02 & 06 & 21 \\ 09 & 09 & 79 \\ 13 & 03 & 67 \\ 19 & 39 & 122 \end{array}$	25 02 55 27 09 23 110 E 15 23 43 21 19 110
11 04 36 70 10 31 34 18 02 116	26 00 64 24 66 22 55 10 29 40 18 27 134	11 02 47 24 19 28 125 N	26 03 64 3 10 41 67 14 02 58 21 01 137	11 01 48 27 18 32 123	26 03 18 15 10 00 79 14 23 61 20 47 125	11 03 02 18 09 27 91 14 45 49 20 59 128	26 03 29 27 09 49 125 16 07 24 22 07 113
12 01 46 40 06 51 58 11 21 43 19 14 122	27 03 52 12 19 53 143 S	12 03 56 6 10 59 61 13 17 61 20 45 137	27 04 35 -9 10 56 79 15 25 46 21 67 146	12 03 15 15 10 32 67 13 01 64 20 16 131	27 03 57 12 10 15 91 15 32 43 21 44 131	12 03 41 15 09 51 113 E 15 41 24 21 58 134	27 03 57 27 10 12 140 A 16 43 9 22 46 116
13 03 19 21 09 26 58 12 43 52 20 19 131	28 04 01 -6 10 43 61 13 46 52 21 91 152	13 04 38 -9 11 09 70 14 55 52 21 41 149	28 05 07 -12 11 16 88 16 17 34 22 41 149	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 04 26 9 10 35 107 16 17 27 22 28 134	13 04 14 15 10 19 131 16 34 - 3 22 49 134	28 04 24 27 10 38 149 17 16 -3 23 20 113
14 04 14 6 10 41 64 N 14 06 55 21 12 146	29 04 52 -18 11 17 70 15 11 49 22 00 168	14 05 11 -21 11 27 76 15 54 40 22 29 162	29 05 34 -12 11 35 98 16 67 21 23 17 152	14 01 34 -6 10 43 91 15 51 34 22 15 149	29 01 50 9 10 56 122 E 16 53 12 23 03 134	14 01 13 18 10 18 119 PO 17 17 -21 23 34 131	29 01 16 30 -11 02 158 -17 45 -12 23 62 113
15 04 55 -15 11 21 70 15 09 52 21 58 168	30 03 31 -27 11 45 .76 16 08 40 22 46 165	15 05 41 -27 11 47 85 16 41 27 23 10 168		15 05 03 -9 11 01 107 16 38 12 23 00 155	30 05 13 9 11 16 131 17 26 3 23 34 131	15 05 10 21 11 17 165 18 01 -30	30 05 09 34 11 24 165 18 15 -18
	31 06 02 -27 12 09 82 16 53 30 23 26 165				31 05 33 12 11 37 140 ●A 17 55 6		

Hrs. : 8 hE.

1983の基礎的:平均水面下 - 72 cm Datum: 72 cm below mean sea level

CEBU

Tide 1976

Laf.	10° 18' N
	.,

Long. 123° 64' E.

-

1976		1.af.	10° 18' N	Long. 123° 64' E.	
5	月	6	A	7 <u></u> Я	8 A
R\$ 41 ABAS	時刻湖高 Time Ht.	時刻湖高 Time Hu	時刻 潮高 Time Hu	時刻潮高 時刻 湖高 Time Hu Time Hu	時朝 納茲 時朝 時 朝 南高 Time H1. Time H1.
h m ce 1 00 23 107 05 30 37 11 48 171 18 44 -18	h m cm 16 00 57 94 05 28 43 12 04 195 19 25 -30	h m ca 1 01 26 91 05 49 49 12 27 183 19 49 -18	h m cu 16 02 04 88 06 30 49 13 11 177 20 30 -6	$ \begin{array}{c} h & m & cm \\ 1 & o1 & 45 & 98 \\ 1 & o6 & 25 & 46 \\ 12 & 58 & 183 \\ 12 & 58 & 183 \\ 20 & 07 & -12 \\ 20 & 20 & 12 \\ \end{array} , \begin{array}{c} h & m & cm \\ 16 & 02 & 02 & 110 \\ E & 13 & 34 & 158 \\ 20 & 20 & 12 \\ \end{array} $	h m cu 1 02 09 134 1 06 02 27 P 14 10 146 20 27 18 h m cu 16 02 07 140 A 14 04 122 20 27 18 A 14 14 122 20 11 30
2 00 53 104 05 61 40 12 13 174 19 17 -18	17 01 36 88 05 59 46 12 41 189 20 07 -21	2 01 59 88 06 20 52 13 01 180 20 24 -12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 02 44 143 17 02 37 143 08 58 30 17 09 04 40 14 54 122 14 47 107 20 54 30 20 31 40
3 01 24 91 06 11 43 N 12 40 174 19 50 -15	18 02 17 82 06 30 49 13 19 180 20 52 -9	3 02 34 85 06 57 52 13 39 171 21 02 -3	18 03 16 94 08 00 68 14 26 143 21 33 21	3 02 47 110 07 59 46 18 02 59 122 08 42 49 5 14 17 155 14 37 125 21 08 9 21 04 27	3 03 27 149 10 08 37 16 46 99 21 20 40 1 20 49 1 20 49 1 20 49 1 20 49
4 01 57 88 06 32 46 13 10 171 20 31 -9	19 03 02 76 07 04 65 14 00 162 21 37 9	4 03 16 88 07 43 65 14 23 158 21 44 9	19 01 00 101 09 02 64 E ¢ 15 06 125 22 07 30	4 03 26 116 09 01 49 15 05 134 16 05 134 21 41 21 21 29 37	4 04 21 149 11 47 40 17 10 73 21 49 52 10 64 00 137 11 40 52 16 41 70 20 59 58
5 02 37 82 06 57 49 13 46 165 21 18 3	20 03 67 76 07 48 61 14 45 143 22 29 21	5 04 08 91 08 49 61 D 15 16 140 22 32 21	20 04 63 107 10 29 67 16 00 104 22 45 40	5 04 15 125 10 21 52 1 16 05 110 22 18 34 20 04 22 128 11 03 61 16 07 88 21 57 49	5 05 34 162 14 00 34 20 21 64 22 26 64 N 22 26 64
6 03 27 76 07 29 55 14 30 162 22 16 12	21 05 11 82 08 59 70 c 15 43 122 23 27 34	6 05 10 101 10 26 64 E 16 28 119 23 26 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 05 13 134 12 09 49 17 34 85 23 03 46 21 05 24 131 13 10 58 17 56 70 22 34 58	6 07 07 155 16 34 18 5 22 28 73 23 07 79
7 04 42 73 08 19 64 > 15 29 137 23 26 21	22 06 34 91 11 21 76 E 17 11 104	7 06 18 116 12 33 68 18 12 101	22 07 00 125 14 23 52 A 19 35 76	7 06 23 146 7 14 07 34 P 19 52 73 22 06 40 134 16 04 43	7 00 49 70 08 33 165 16 29 6 23 00 82 22 69 88
8 06 23 79 10 10 70 16 59 122	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 00 23 40 07 19 131 14 19 37 20 67 91	23 00 34 55 07 67 137 15 30 37 21 19 79	8 00 04 58 07 36 158 15 32 15 21 49 76 20 07 57 143 16 04 24 22 38 79	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9 00 43 27 9 07 36 94 E 12 53 64 18 56 113	24 01 25 13 08 20 122 15 01 46 20 38 91	9 01 24 49 08 14 149 16 32 15 21 36 88	24 01 41 58 08 45 149 16 17 18 22 25 82	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 03 50 58 10 29 180 17 45 -9 23 52 101 23 33 107
10 01 46 30 08 23 113 14 33 43 20 33 110	25 02 14 43 08 56 137 A 15 50 27 21 41 94	10 02 19 62 09 04 168 P 16 28 -9 22 42 91	25 02 38 61 09 29 162 16 56 6 23 11 88	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 03 41 46 11 11 183 25 04 31 46 0 18 13 -9 17 51 -6 23 51 116
1 1 02 37 34 09 01 131 15 37 18 21 44 110	26 02 55 46 09 30 149 16 29 12 22 31 98	1 1 03 09 52 09 50 183 17 17 -24 23 34 91	26 03 26 61 10 07 171 N 17 33 -9 23 49 91	11 03 40 58 0 17 59 -21 26 03 51 61 10 29 189 17 52 -12 17 52 -12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
12 03 18 37 09 37 155 16 29 -9 22 41 110	27 03 32 46 10 01 162 17 04 -3 23 11 98	12 03 53 52 10 34 192 5 0 18 01 -30	27 04 04 58 10 42 180 18 05 15	12 00 13 91 04 31 52 11 13 195 18 34 -21 27 00 06 94 01 34 55 11 07 186 18 22 -15	12 00 37 116 05 59 30 12 20 174 19 00 6 12 39 6 12 128 12 128 12 00 12 128 12 00 12 128 13 12 128 14 E 13 12 174 18 39 6
13 03 54 40 10 14 171 P 17 16 -24 23 30 107	28 04 03 46 10 31 168 17 38 -12 23 48 98	13 00 18 91 04 34 52 11 16 198 18 43 -30	28 00 22 91 04 39 55 11 16 186 18 37 -21	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
14 04 28 40 10 50 186 O 17 59 -31	29 04 32 49 10 59 177 • 18 11 -18	14 00 57 88 05 13 49 11 55 198 19 21 -27	29 60 60 91 05 13 52 11 49 189 19 08 -21	14 01 11 98 29 00 50 107 12 05 56 43 29 05 51 37 12 29 183 12 -19 186 19 34 -9 19 14 12	14 01 19 131 07 08 27 13 17 149 19 35 18 19 22 21
15 00 15 101 04 59 43 5 11 27 192 18 43 -37	30 00 22 98 04 59 49 N 11 27 180 18 41 -21	15 01 32 88 05 61 49 12 34 189 19 57 -18	30 01 17 94 05 47 49 12 23 169 19 38 18	15 01 36 104 06 34 43 13 03 174 19 57 3 19 30 01 14 116 19 57 3 19 38 -3	15 01 42 137 07 42 27 13 45 137 19 53 24 19 45 30 19 45 30
	31 00 54 94 05 24 19 11 56 183 19 14 -21			31 01 39 125 07 14 27 13 32 165 20 02 9	31 02 07 165 08 51 12 14 43 107 20 07 40

Hrs. · 8 hE.

潮高の基準詞:平均水面下 , 72 🖛 Datum : 72 cm below mean sta level CEBU

 (x_1,y_1)

Lat. 10° 18' N. Long. 123° 54' E.

Tide 1976

·····		10		11	1 1	10	8
9	月 1 15 61 8870		月時刻湖高	时刻湖高	月時刻潮高	12 时刻初高	月 約 約 約65
時刻 削高 Time Ht.	時刻 補高 Time Ht.	Time Ht.	Time Ht	Time HL	Time Ht.	Time Ht.	Time 'Ht.
h m cm 1 02 48 165 09 56 24 D 15 36 85 20 28 49	h m c 16 02 23 152 09 27 30 N 16 11 85 20 00 55	h m cn 1 - 03 08 158 11 13 27 17 37 67 19 56 64	h m c 16 02.27 152 10 12 24 c 16 25 73 19 46 64	h m ca 1 05 38 116 13 26 34 20 23 98	h m ca 16 04 12 122 11 54 24 18 53 91	h im cm 1 01 04 61 06 26 85 12 46 40 19 48 116	h m cm 16 05 13 91 11 34 30 18 34 119
2 03 39 158 11 30 34 5 17 07 67 20 42 58	17 03 02 146 10 43 40 c 16 21 70 20 04 61	2 04 21 143 13 12 34	17 03 20 140 11 42 30	2 01 43 67 07 35 110 E 14 21 37 20 56 113	17 00 01 67 05 59 107 E 13 00 30 19 48 110	2 02 41 43 08 11 62 13 39 43 20 33 131	17 01 34 37 07 10 76 12 32 40 19 36 137
3 04 53 149 13 49 34	18 04 01 137 12 56 43	3 06 23 131 14 40 30 21 33 91	18 04 49 128 13 21 34 20 44 85	3 03 04 49 08 56 110 15 01 37 21 26 128	18 01 59 49 07 49 101 13 56 37 20 31 128	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 03 02 15 08 59 73 13 34 43 20 33 152
4 06 47 143 15 20 24 22 24 82	19 05 47 131 14 47 34 22 35 82	4 01 46 73 08 13 131 15 27 24 21 51 101	19 00 18 79 06 54 122 14 27 30 21 05 101	4 03 53 30 09 51 110 15 33 37 21 54 143	19 03 13 24 09 13 101 14 42 40 21 11 149	4 04 21 9 10 21 82 A 15 08 43 21 46 152	19 04 05 -9 10 18 16 P 14 33 46 21 25 171
5 01 15 76 08 28 149 16 10 15 22 35 94	20 00 22 82 07 48 134 15 37 24 22 14 94	5 03 11 65 09 22 137 16 03 24 22 14 119	20 02 23 61 08 30 125 15 12 27 21 30 119	5 04 32 12 10 35 110 16 01 37 22 21 155	$\begin{array}{ccccccc} 20 & \begin{smallmatrix} 04 & 08 & -3 \\ 10 & 18 & 101 \\ 15 & 23 & 40 \\ 21 & 50 & 168 \end{array}$	5 04 57 6 11 04 85 15 44 43 22 18 162	20 01 57 27 11 14 76 \$ 15 25 46 22 12 183
6 03 02 64 09 36 158 16 46 9 22 56 107	21 02 40 70 09 04 146 16 12 15 22 26 107	6 04 03 37 10 12 140 E 16 29 24 22 36 134	21 03 27 37 09 36 131 E 15 47 27 21 57 137	6 05 07 -3 11 11 110 A 16 28 37 22 46 165	21 04 56 -21 11 10 101 P • 16 00 43 22 28 183	6 05 31 -15 11 41 88 16 17 43 22 49 168	21 05 44 40 12 01 79 16 12 43 22 57 189
7 04 03 49 10 25 162 17 14 9 23 17 116	22 03 39 62 09 58 155 16 42 12 22 46 119	7 04 42 21 10 52 137 16 53 24 22 59 146	22 04 17 15 10 28 131 16 18 30 22 26 155	7 05 38 -9 11 45 107 O 16 52 40 23 11 171	22 05 42 -34 11 58 98 16 35 43 23 07 192	7 06 04 -21 12 15 88 ON 16 46 43 23 19 171	22 06 26 -43 12 40 79 16 57 37 23 41 189
8 04 46 34 11 04 165 O 17 38 9 23 38 128	23 04 26 30 10 43 158 E 17 09 15 23 07 137	8 05 16 9 11 24 137 0 17 14 27 23 20 155	23 05 00 -9 11 14 131 P 16 46 34 22 56 171	8 06 08 -15 12 16 104 17 14 40 23 35 174	23 06 26 40 12 10 91 \$ 17 09 43 23 47 195	8 06 34 -27 12 47 85 17 14 43 23 47 174	23 07 05 -40 13 15 79 17 40 37
9 05 23 24 11 38 162 E 17 59 12 23 58 137	24 05 07 12 11 24 158 17 33 18 23 31 152	9 05 47 3 11 55 131 17 33 30 23 41 162	24 05 44 -24 11 58 125 17 13 37 23 28 186	9 06 37 -18 12 46 101 17 37 43	24 07 10 40 13 21 85 17 42 43	9 07 05 -27 13 18 85 17 42 43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10 05 55 15 12 08 155 18 18 18	25 05 48 -6 12 04 152 P 17 56 21 23 59 165	10 06 16 -6 12 23 125 A 17 62 34	25 06 26 -30 12 39 113 17 40 40	10 00 01 174 07 08 -18 N 13 17 94 17 58 46	25 00 26 192 07 52 -30 14 02 79 18 18 43	10 00 18 174 07 38 -24 13 49 82 18 12 43	25 01 01 174 08 16 -21 14 21 83 19 05 37
11 00 18 146 06 26 12 12 36 146 18 31 21	26 06 29 15 12 13 140 18 19 27	1 00 04 168 06 44 -6 12 50 119 18 11 37	26 00 02 192 07 10 -30 5 13 19 104 18 06 43	11 00 27 174 07 42 -15 13 49 88 18 22 49	26 01 05 183 08 35 -18 14 45 76 18 57 45	1 3 00 49 171 08 09 -21 14 21 82 18 47 43	26 01 38 158 08 47 9 14 55 88 19 53 40
12 00 39 152 06 56 9 13 01 137 18 51 27	27 00 27 177 07 11 -18 13 21 125 18 41 34	12 00 26 171 07 14 6 13 18 113 18 29 40	27 00 39 192 07 55 -24 14 02 91 18 33 46	12 00 58 171 08 19 -9 14 27 82 18 47 52	27 01 48 168 09 19 -6 15 33 76 19 45 52	12 01 24 165 08 44 -15 14 66 82 19 31 46	27 02 16 137 09 16 6 E 15 34 94 20 49 46
13 01 00 155 07 26 12 A 13 28 125 19 08 34	28 01 01 183 07 56 -12 14 00 110 19 05 40	13 00 50 171 07 46 3 13 49 101 18 49 46	28 01 17 186 08 42 -12 14 48 79 19 01 49	13 01 31 165 08 59 -3 15 13 79 19 19 65	28 02 33 146 10 05 12 2 16 34 79 20 51 61	13 02 03 152 09 19 -6 15 39 88 20 27 49	28 02 55 116 09 44 15 D 16 19 101 22 04 52
14 01 24 158 08 00 15 13 57 116 19 26 40	29 01 36 180 08 47 -3 5 14 41 91 19 28 46	14 01 18 168 08 24 6 N 14 24 91 19 08 49	29 01 59 174 09 37 6 15 49 73 19 34 58	14 02 11 155 09 49 9 16 14 76 20 06 61	29 03 25 125 10 55 21 17 45 89 22 42 67	14 02 49 134 09 58 6 E ¢ 16 31 94 21 46 53	29 03 41 94 10 15 27 17 16 107 23 49 82
15 01 50 158 08 38 21 14 30 101 19 45 46	30 02 17 174 09 47 15 D 15 40 76 19 49 55	15 01 49 162 09 11 16 15 11 82 19 28 58	30 ¹⁰² 48 155 10 46 21 D 17 28 73 20 19 67	15 03 01 140 10 48 18 ¢ 17 35 82 21 32 70	30 04 38 104 11 48 31 E 18 51 301	15 03 49 113 10 43 18 17 30 107 23 35 49	30 04 50 73 10 53 37 18 22 113
			31 03 53 134 12 09 30 19 32 82 22 48 76				31 01 55 43 00 66 61 A 11 47 43 19 26 125

-127-

Hrs. : 8 hE.

満時の基準領:平井水前下 72 cm Datum: 72 cm below mean sea level

那 别 NAHA

T'ide 1976

Lat. 25º 12' N.

Long. 127º 40' E.

1	Я	2	Я	3	Я	4	月
時 刻 翻高 Time Hi.	时刻湖高 Time Ht.	特别 例為 · Time Ht.	時刻 閉高 Time Ht.	時刻 潮高 Time Ht.	時刻湖高 Time Ht.	時刻潮高 Time Ht.	時刻 湖高 Time Ht.
h m cm 1 00 37 - 6 07 25 181 • 12 44 68 18 46 200	h ni cm 16 00 28 3 07 17 177 12 37 70 18 33 193	h m cm 01 40 2 03 18 148 13 60 53 19 68 196	h m cm 16 01 28 - 7 07 59 197 0 13 39 34 19 52 211	h m cm 1 01 17 15 07 47 185 13 29 39 19 43 190	h m cm 16 01 06 1 07 26 198 EO 13 21 9 19 40 210	h m cm 1 01 43 35 07 56 184 14 03 14 20 29 176	h m cm 16 01 58 27 08 06 202 14 22 -19 20 58 195
$\begin{array}{ccccccc} 2 & \begin{smallmatrix} 01 & 19 & -10 \\ 08 & 05 & 186 \\ 13 & 26 & 64 \\ 19 & 29 & 201 \\ \end{array}$	17 01 07 6 07 52 185 0 13 16 62 19 16 200	2 02 12 6 08 48 189 14 24 50 20 34 192	17 02 06 - 5 08 33 200 EP 14 19 27 20 34 209	2 01 46 18 08 12 188 E 14 00 34 20 16 188	17 01 43 4 08 00 202 P 14 00 1 20 23 209	2 02 09 41 08 21 183 14 32 13 21 01 172	17 02 37 39 08 43 197 15 05 -13 21 44 183
3 01 68 + 9 08 41 188 14 07 62 20 10 198	18 01 45 -11 08 26 191 13 55 55 19 59 204	3 02 43 14 09 16 188 E 14 59 49 21 08 184	18 02 42 4 09 07 199 14 58 24 21 17 202	3 02 13 23 08 37 188 14 30 31 20 47 183	18 02 21 14 08 35 202 14 39 - 1 21 07 201	3 02 37 48 08 47 181 15 03 15 21 36 165	18 03 16 53 09 22 188 \$ 15 50 • 1 22 33 169
4 02 35 7 3 09 17 187 14 46 63 20 50 191	19 02 23 · 9 09 01 193 14 35 60 20 41 203	4 03 12 24 09 44 185 15 33 51 21 43 174	19 03 20 18 09 41 195 15 40 25 22 02 189	4 02 39 31 09 02 186 A 15 00 32 21 20 175	19 02 58 28 09 10 197 15 22 3 21 52 187	4 03 05 58 09 15 176 15 37 20 22 15 157	19 03 59 68 10 05 175 16 40 15 23 27 155
5 03 10 8 09 52 184 15 26 65 21 29 181	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 03 40 37 10 12 180 A 16 08 55 22 19 162	$\begin{array}{cccccc} 20 & \begin{smallmatrix} 03 & 57 & 36 \\ 10 & 18 & 189 \\ 16 & 27 & 31 \\ 22 & 51 & 173 \end{array}$	5 03 06 41 09 27 182 15 32 35 21 53 166	20 03 36 45 09 48 189 16 07 13 22 41 170	5 03 37 68 09 49 169 N 16 18 27 23 03 148	20 04 52 83 10 53 160 17 44 32
6 03 45 21 10 25 179 16 07 68 22 08 169	21 03 40 12 10 12 189 E 16 00 48 22 12 186	6 04 08 51 10 42 175 16 49 60 22 59 150	21 04 37 56 10 57 180 17 23 40 23 48 155	6 03 33 53 09 54 177 16 07 40 22 32 155	$\begin{array}{ccccccc} 21 & {}^{04} & {}^{15} & {}^{63} \\ {}^{10} & {}^{27} & {}^{177} \\ {}^{17} & {}^{00} & {}^{26} \\ {}^{23} & {}^{37} & {}^{153} \end{array}$	6 04 15 80 10 32 161 17 11 37	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7 04 18 36 11 00 174 E. 16 52 73 22 50 155	22 04 21 29 10 51 184 16 51 50 23 03 171	7 04 38 65 11 16 168 17 40 65 23 50 138	22 05 24 77 11 43 170 © 18 40 48	7 04 01 66 10 26 170 16 49 46 23 20 144	22 05 03 82 11 14 164 5 18 11 40	7 00 03 140 05 13 91 11 29 151 18 32 45	22 01 53 138 08 13 92 13 16 133 20 37 51
8 04 52 51 11 35 168 17 48 76 23 37 142	23 06 04 48 11 32 178 17 53 54	8 05 14 80 11 56 162 2 18 56 67	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 04 36 80 11 07 162 17 49 53	23 00 49 138 06 23 97 (C 12 14 151 19 49 48	8 01 19 136 07 12 96 3 12 47 144 20 12 46	23 03 23 141 09 34 81 15 02 132 21 43 51
9 05 31 67 12 14 163 A D 19 01 77	24 00 03 155 05 57 68 © 12 20 172 19 14 54	9 60 67 128 06 16 94 12 49 157 20 29 62	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 00 23 134 05 29 94 ∋ N 12 01 154 19 24 66	24 02 35 133 08 30 99 13 39 142 21 16 47	9 02 47 140 09 01 85 14 22 145 21 29 39	24 04 25 148 10 28 66 16 30 139 22 33 50
10 00 34 131 06 24 81 12 59 159 20 21 72	25 01 18 142 07 13 85 13 17 167 20 41 49	10 02 39 126 08 22 102 13 69 155 21 44 50	25 04 50 141 09 59 96 15 36 156 22 42 34	10 01 63 130 07 39 102 13 16 149 21 00 50	25 04 22 140 09 54 89 15 27 142 22 20 41	10 04 00 151 10 05 66 15 51 156 22 27 29	25 05 07 156 11 08 51 E 17 25 148 23 13 48
11 01 52 124 07 48 92 13 53 157 21 28 61	26 03 01 136 08 44 94 14 27 165 21 55 38	1 1 04 37 136 09 52 98 N 15 22 159 22 40 35	$\begin{smallmatrix} 26 & \begin{smallmatrix} 05 & 45 & 153 \\ 10 & 58 & 85 \\ 16 & 53 & 165 \\ 23 & 31 & 25 \end{smallmatrix}$	11 03 44 137 09 28 95 14 50 152 22 07 37	26 05 16 150 10 49 75 16 49 151 23 07 36	11 04 52 165 10 54 44 17 00 171 23 16 21	26 05 37 164 11 43 38 18 07 156 23 47 47
12 03 42 127 09 13 95 14 56 159 22 22 47	27 04 50 144 10 02 93 5 15 47 169 22 54 25	12 05 36 151 10 52 87 16 36 169 23 27 19	27 06 22 164 11 44 72 17 49 175	12 04 64 151 10 31 79 16 15 163 23 00 22	27 05 52 160 11 31 60 17 40 162 23 46 32	12 05 36 178 11 38 22 E 17 54 186 23 59 16	27 06 05 170 12 13 26 A 18 41 163
13 05 10 138 10 18 93 16 00 165 23 07 31	28 05 53 156 11 02 86 16 56 177 23 44 13	13 06 16 166 11 39 73 17 34 183	28 00 10 18 06 52 173 12 22 59 18 32 183	13 05 39 166 11 19 60 17 19 179 23 45 11	28 06 20 168 12 06 46 18 22 170	13 06 14 189 12 20 3 18 43 197	28 00 18 47 06 30 175 12 42 16 19 13 167
14 06 01 152 11 10 87 N 16 57 174 23 49 16	29 06 37 167 11 52 77 17 52 186	14 00 09 5 06 52 179 12 22 59 18 23 196	29 00 46 15 07 21 180 12 57 48 19 69 188	14 06 17 179 12 01 40 18 10 194	29 00 20 29 06 45 175 E 12 37 34 18 56 176	14 00 40 15 06 52 198 P O 13 00 -11 19 29 202	29 00 47 48 06 54 179 13 11 9 19 44 170
15 06 40 165 11 55 79 17 48 184	30 00 26 5 07 14 177 12 35 68 18 38 193	15 00 50 - 4 07 25 190 13 01 45 19 08 206		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 00 49 29 07 09 180 13 06 25 19 28 178	15 01 20 19 07 28 202 13 41 -18 20 13 202	30 01 15 50 07 20 182 13 40 4 20 16 171
	31 01 05 1 07 47 183 13 13 59 19 20 196				31 01 16 31 07 33 183 A 13 35 18 19 58 179		

Hrs. : 9hE.

.

潮高の基準固:平均水面下 118 cm Datum:118 cm below mean sea level

Datum : 118 ca below mean sea leve

那 約 NAHA Lat. 26° 12' N. Long. 127' 40' E.

Tide 1976

i	26° 13' N.	Long.

		Lai.	26° 13' N.	Long. 127'40'E.			1976
5	А	6	Л	7	А	8	Я
時 組 Mani Time Ht.	時刻 潮高 Time Ht.	By & Main Time Ht.	島寺 刻 初語 Time Hi		刻 胡浩5 me Ht.	助 刻 湖高 Time Ht,	時刻 潮高 Time Ht
h in cm 1 01 44 54 07 46 182 14 10 1 20 49 170	h m cm 16 03 19 53 08 23 200 \$ 14 51 -17 21 35 185	h m cm 1 02 36 74 08 34 188 15 07 4 21 55 176	h m cm 16 03 33 75 09 34 192 15 59 20 22 43 185	15 34 21 E 22 15 196	h m cm 03 52 79 09 57 196 16 06 51 22 42 200	h m cm 1 04 20 70 10 36 201 P 16 35 69 23 02 208	h m cm 16 04 33 \$3 10 48 183 A 16 24 95 22 57 200
2 02 14 59 08 15 181 14 43 2 21 25 167	17 03 01 62 09 01 191 15 35 - 4 22 23 176	2 03 16 77 09 15 183 15 47 13 22 37 173	17 04 22 81 10 19 178 16 41 38 23 25 178	16 16 35 22 54 193	04 36 85 10 38 182 16 39 69 23 17 193	2 05 14 74 11 30 189 17 21 89 23 45 202	17 05 19 91 11 34 170 16 55 110 23 35 192
3 02 46 65 08 48 178 N 15 19 7 22 06 162	18 03 47 72 09 49 179 16 22 12 23 10 166	3 04 01 80 10 03 176 16 33 25 23 22 170	18 05 19 87 11 07 163 17 27 56	E 17 00 52 23 37 190	05 26 91 11 22 168 17 14 86 23 53 187	3 06 24 78 12 37 174 3 18 22 108	18 06 24 97 12 35 159 (° 17 40 125
$\begin{array}{ccccccc} 4 & \begin{array}{cccc} 03 & 22 & 72 \\ 09 & 25 & 172 \\ 15 & 59 & 15 \\ 22 & 52 & 156 \end{array}$	19. 04 41 82 10. 37 164 17 15 31	4 04 58 82 10 59 167 17 27 39	19 00 09 172 06 31 90 E C 12 03 149 18 22 73	4 05 43 78 19 11 47 175 17 55 70 CA	06 31 95 12 16 155 17 57 102	4 00 38 196 07 53 78 14 06 165 19 55 121	19 00 22 185 08 01 97 14 09 154 19 46 136
5 04 07 80 10 12 163 16 50 26 23 45 151	20 00 03 157 05 56 88 11 34 148 18 21 48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 00 56 167 07 53 88 13 10 138 19 30 87	D 12 57 164	00 36 181 07 53 94. 13 27 146 19 11 1)6	5 01 45 192 09 19 70 16 04 165 21 27 123	20 01 28 180 09 23 88 N 16 23 162 21 35 133
6 05 08 87 11 10 151 17 56 37	21 01 02 152 07 33 88 © 12 43 135 19 37 60	6 01 08 167 07 44 73 E 13 24 152 19 56 63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 08 25 68 41 14 25 159	01 26 177 09 09 88 15 22 145 20 49 123	6 03 06 194 10 26 57 \$ 17 25 179 22 37 116	21 02 51 182 10 23 75 17 25 176 22 37 123
7 00 47 149 06 46 87) 12 25 146 19 22 45	22 02 07 150 08 54 80 E 14 12 129 20 48 67	7 02 08 170 09 00 58 14 53 153 21 09 67	22 02 45 165 10 00 69 A 16 25 138 21 44 98	P 16 06 163	02 29 177 10 08 76 17 08 155 22 03 122	7 04 26 201 11 21 45 18 15 193 23 30 106	22 04 16 191 11 11 60 18 03 191 23 25 109
8 01 55 150 08 25 76 13 52 145 20 45 46	23 03 12 152 09 53 67 15 51 131 21 46 70	8 03 10 176 10 02 39 16 19 161 22 10 68	23 03 40 169 10 45 57 17 31 149 22 36 98	8 03 32 192 10 38 38 17 24 174 22 45 97	03 39 181 10 56 62 17 57 169 22 57 116	8 05 29 212 12 07 36 18 53 204	23 05 17 205 11 52 46 18 36 205
9 03 03 157 09 34 57 B 15 22 151 21 50 44	24 04 05 157 10 38 54 17 02 139 22 32 71	9 04 09 185 10 54 20 17 28 173 23 04 67	24 04 29 175 11 23 44 18 14 160 23 28 96	3 18 21 187 N	04 42 189 11 37 48 18 33 183 23 42 108	9 00 16 94 06 21 221 12 47 30 19 27 213	24 00 06 93 06 07 219 12 31 36 19 07 216
10 04 01 168 10 28 35 16 38 164 22 43 40	25 01 45 163 11 16 12 A 17 49 148 23 11 71	10 05 03 195 11 43 d P 18 23 184 23 52 65	25 05 12 182 11 59 32 18 50 171 23 59 92	10 12 17 13 20	05 34 200 12 15 36 19 06 195	10 00 56 81 07 05 228 0 13 23 29 19 59 219	25 00 43 78 06 51 230 13 08 30 19 38 224
1 01 52 179 11 15 14 17 39 177 23 31 38	26 05 19 170 11 49 30 18 27 156 23 47 70	11 05 52 204 12 28 - 8 19 12 192	26 05 52 190 12 33 21 N 19 23 181	O 13 01 7	00 22 98 06 19 211 12 53 26 19 37 205	11 01 34 76 07 45 229 13 58 33 20 30 221	26 01 21 65 07 33 218 13 45 31 20 10 229
12 05 37 190 12 09 - 4 18 31 188	27 05 50 176 12 20 19 19 01 164	12 00 37 64 06 38 210 5 0 13 12 -14 19 57 197	27 00 37 88 06 31 197 13 07 13 19 56 188	12 07 12 222 2.1 13 41 7 9	01 01 89 07 00 220 13 28 20 20 08 213	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 01 58 56 08 14 210 E 14 21 37 20 43 231
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 09 29 70 06 24 181 12 51 10 19 34 170	13 01 22 65 07 23 212 13 51 -14 20 39 198	28 01 13 81 07 08 203 13 42 8 20 29 194	10 07 56 222 20	01 37 80 07 41 226 14 04 19 20 40 217	13 02 45 70 08 58 219 E 15 00 52 21 28 219	28 02 36 50 08 56 236 P 14 53 49 21 16 229
14 00 56 40 07 00 204 O 13 25 -24 20 05 195	29 00 52 69 06 50 186 13 22 3 20 07 175	14 02 04 66 08 07 210 14 37 - 7 21 21 196	29 01 50 81 07 48 206 14 18 7 21 04 197	14 56 22	02 15 73 08 22 228 14 40 25 21 13 219	14 03 20 72 09 34 209 15 29 65 21 57 214	29 03 16 50 09 39 226 15 33 64 21 52 224
15 01 37 45 07 40 205 14 07 -24 20 50 192	30 01 25 70 07 22 189 N 13 54 0 20 41 177	15 02 48 70 08 51 203 15 18 4 22 02 191	30 62 27 19 08 28 207 14 55 12 21 38 198	15 32 35 E	02 63 69 09 05 225 15 17 35 21 47 217	15 03 55 27 10 09 196 15 56 80 22 26 207	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	31 02 00 72 07 56 189 14 29 0 21 17 178				03 35 68 00 49 217 15 54 51 22 22 214		31 04 50 63 11 19 191 16 53 103 23 12 206

Hrs. : 9 hE

観高の基準面:平均水面下 118 ㎝ Datum : 118 cm below mean sea level

•			·	那	JJ NAHÀ			
	Tido 1976		Lat	26° 12' N.	Long. 127 ⁹	40' E.		
	9	月	10	<u>Ą</u>	11	Я	12	<u>A</u>
	时刻 湖志 Time Hit.	時刻潮高 Time 担。	時刻 湖高 Time Ht.	时 刻 NAG Time Ht.	時刻 湖高 Time Ht.	時刻潮高 Time Hu	時刻落死 Time Hil	時刻 湖高 Time Ht.
· · ·	b m cm 1 06 54 73 1 12 23 177 D 17 52 121	b m cm 16 05 22 82 12 02 166 N 17 03 124 23 34 183	h m cm 1 06 59 72 13 40 165 19 40 127	h m cm 16 05 54 69 12 49 162 © 18 28 121	h m cm 1 02 17 152 09 09 71 15 45 167 22 01 85	h m cm 16 01 12 155 08 02 63 14 22 169 21 03 76	h m ca. 1 03 14 122 109 19 14 15 32 162 22 19 6 1	h m cm 16 02 07 148 08 27 69 14 30 173 21 30 45
	2 00 05 195 07 25 80 \$ 13 54 167 19 40 132	17 06 45 89 13 22 160 C 18 53 135	2 00 58 173 08 35 75 15 28 167 21 20 119	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 03 55 155 10 07 71 E 16 37 173 22 48 70	17 02 41 157 09 15 62 E 15 24 176 22 02 54	2 04 41 141 10 11 41 16 22 161 23 01 44	17 03 38 152 09 37 71 15 32 179 22 28 25
	3 01 17 187 09 00 77 15 59 170 21 24 130	18 00 43 176 06 29 86 15 10 164 21 07 129	3 02 41 169 09 48 72 16 40 176 22 23 104	18 01 43 164 08 55 70 15 24 172 21 41 95	3 05 04 163 10 52 71 17 14 180 23 26 55	18 04 05 167 10 13 59 16 19 186 22 52 32	3 05 38 147 10 55 11 17 01 172 23 37 35	18 04 58 162 10 37 70 16 32 188 23 20 7
	4 02 52 185 10 12 69 17 14 181 22 33 118	19 02 16 175 09 43 76 16 31 176 22 14 114	4 04 17 176 10 42 67 17 23 186 23 09 87	19 03 17 171 09 59 62 16 22 183 22 33 73	4 05 52 171 11 30 70 17 45 187	19 05 13 180 11 05 56 17 07 197 23 37 12	4 06 21 15 11 34 80 A 17 36 15 A 00 10 01	19 06 00 174 11 28 67 P 17 25 197
	5 04 23 193 11 06 60 17 56 193 23 22 103	20 03 49 184 10 38 63 17 18 190 23 02 95	5 05 19 187 11 25 62 17 57 195 23 48 71	20 04 33 185 10 51 63 17 07 196 23 18 51	5 00 00 43 06 31 177 12 03 70 18 13 192	20 06 08 192 11 51 54 17 52 206	5 00 10 2 06 55 14 12 08 17 18 07 18	20 06 52 185 S 12 17 63 18 16 205
. x.	6 05 26 204 11 50 52 18 30 204	21 04 57 199 11 24 51 17 55 204 23 43 75	6 06 05 196 12 01 60 E 18 25 202	21 05 32 200 11 36 47 E 17 49 207 23 59 30	6 00 31 32 07 05 182 A 12 34 70 18 40 195	21 00 22 - 4 06 59 200 P 12 35 54 18 36 213	6 00 41 17 07 28 17 12 41 75 18 38 14	21 00 52 -17 07 37 192 13 02 61 19 03 209
· .'	7 00 04 88 06 14 214 12 27 48 19 00 212	22 06 51 215 12 06 42 18 29 216	7 00 22 58 06 43 202 12 34 60 18 52 207	22 06 22 212 12 17 45 18 26 217	7 01 01 25 07 37 184 0 13 03 72 19 07 197	22 01 05 -14 07 45 204 ● 13 17 57 19 19 215	7 01 12 16 08 00 174 ON 13 14 17 19 10 186	13 46 59 19 49 209
	8 00 40 75 06 55 221 O 13 01 47 19 28 218	23 00 22 56 66 37 227 E 12 44 38 19 03 225	8 00 52 47 07 18 205 0 13 03 62 19 18 210	23 00 39 14 07 08 220 P 12 57 46 19 05 222	8 01 30 19 08 08 185 13 32 74 19 34 197	23 01 48 -17 08 31 203 \$ 13 59 61 20 02 213	8 01 44 5 08 32 177 13 48 76 19 43 19	20 09 02 195 14 30 60
	9 01 14 65 07 32 223 E 13 32 50 19 55 221	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 01 22 40 07 50 205 13 31 65 19 42 211	24 01 21 3 07 53 222 13 37 51 19 42 224	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 02 31 -14 09 16 198 14 42 67 20 45 206	9 02 17 4 09 05 174 14 22 76 20 19 186	24 03 00 7 8 09 42 191 15 14 62 21 18 194
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 01 38 29 08 04 237 P 13 59 46 20 11 231	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 02 01 - 1 08 38 218 14 16 60 20 21 221	10 02 31 17 09 15 182 N 14 34 82 20 34 192	25 03 15 - 4 10 01 191 15 28 75 21 30 195	10 02 52 6 63 39 175 15 00 77 20 58 185	25 03 42 6 10 22 186 16 02 60 22 04 181
	11 02 18 55 08 38 217 14 28 64 20 47 220	26 02 18 24 08 47 232 14 36 57 20 46 229	A 1 02 22 36 08 53 198 14 24 78 20 33 207	$\begin{smallmatrix} 26 & \begin{smallmatrix} 62 & 43 & 2 \\ 09 & 24 & 209 \\ 14 & 56 & 72 \\ 21 & 00 & 213 \end{smallmatrix}$	1 03 05 21 09 52 178 15 08 88 21 09 185	26 04 02 11 10 48 182 16 20 83 22 18 180	11 03 28 12 10 17 176 15 42 76 21 42 179	16 54 71 22 51 165
	12 02 49 56 09 11 209 14 54 74 21 13 215	$\begin{array}{ccccccc} 27 & \begin{smallmatrix} 02 & 58 & 26 \\ 09 & 31 & 221 \\ 15 & 13 & 72 \\ 21 & 22 & 222 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 03 28 11 10 12 197 5 15 39 85 21 43 202	12 03 42 27 10 35 173 15 50 93 21 52 178	27 04 52 29 11 37 173 17 24 89 23 12 161	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	13 03 20 60 09 45 199 A 15 21 86 21 39 209	$\begin{smallmatrix} 28 & \begin{smallmatrix} 03 & 42 & 33 \\ 10 & 19 & 206 \\ 15 & 52 & 88 \\ 22 & 62 & 211 \end{smallmatrix}$	13 03 24 43 10 05 183 15 23 95 21 32 194	28 04 16 26 11 04 183 16 29 98 22 31 187	13 04 26 37 11 22 168 16 43 98 22 45 169	28 05.50 47 12 31 165) 18 50 91	13 04 56 35 11 43 171 17 36 79 23 33 169	
:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 04 31 45 11 11 190 5 16 37 105 22 47 198	14 04 01 50 10 48 175 N 15 59 105 22 11 185	29 05 14 43 12 02 171 17 40 108 23 27 171	14 05 22 48 12 17 165 18 04 100 23 52 160	29 00 15 149 06 59 62 13 30 161 20 17 85	14 05 51 19 12 33 169 E C 18 57 74	29 00 46 135 06 58 77 13 20 159 20 36 71
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 04 48 59 11 41 167 16 50 115 23 03 175	30 06 28 58 13 11 164 3 19 26 110	15 06 37 58 13 18 165 © 19 45 92	30 01 35 139 08 13 73 E 14 33 160 21 25 74	15 00 44 152 07 07 61 13 29 189 20 21 62	3) 02 09 126 138 13 83 14 15 157 31 40 62
				31 60 40 158 07 54 68 14 33 162 20 58 100				31 04 06 127 09 23 93 15 15 157 22 31 51
	tirs. : 9 hls		L <u></u>	Le n an ,		: ¥KJKJNF 118 below mean sea		

KAOHSIUNG 裔

22' 37' N.

Tide 汐 1976		Lat.	22° 37′ N.	Long. 120° 16' Ê.	
1	月日	2	Я	3 月	4 A
時刻 湖高 Time Ht.	时刻 湖湖 Time Ht.	時刻 潮高 Time Ht.	移身 組 約165 Time Hu	時 約 8875 時 約 7077 Time Ht. Time Ht.	時刻湖高 Time Ht. Time Ht.
h m cm 1 02 45 10 08 40 42 • 12 19 32 19 48 105	h m cm 16 02 19 12 08 27 44 12 09 34 19 30 100	h m cu 1 03 30 16 09 15 47 13 39 29 20 52 93	h m cm 16 03 00 17 08 57 57 0 13 51 28 20 47 97	$ \begin{array}{c} h & m & c_{0} \\ 1 & 02 & 45 & 21 \\ 1 & 08 & 38 & 57 \\ \bullet & 13 & 46 & 29 \\ 20 & 36 & 81 \end{array} , \begin{array}{c} h & m & c_{0} \\ 02 & 19 & 25 \\ EO & 14 & 03 & 25 \\ 20 & 36 & 81 \end{array} $	$\begin{smallmatrix} h & m & cs \\ 1 & 03 & 20 & 36 \\ 08 & 42 & 78 \\ 15 & 00 & 28 \\ 15 & 00 & 28 \\ 21 & 21 & 66 \\ \end{smallmatrix} \begin{smallmatrix} h & m & cs \\ 02 & 21 & 39 \\ 16 & 00 & 20 \\ 22 & 11 & 62 \\ \end{smallmatrix}$
2 03 24 10 09 14 42 12 55 31 20 27 104	17 02 55 11 08 69 45 0 12 60 33 20 10 102	2 03 63 20 09 41 50 14 18 30 21 24 87	17 03 32 21 09 29 62 E P 14 40 28 21 31 91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 02 32 38 09 07 81 15 40 28 21 53 61 17 02 42 41 09 43 101 17 05 21 23 06 55
3 64 01 13 09 48 43 13 31 32 21 66 100	18 03 32 12 09 31 47 13 31 32 20 52 101	3 04 18 23 10 10 53 E 14 57 32 21 57 80	18 04 03 25 10 04 68 15 35 29 22 17 81	3 03 19 30 09 23 65 18 03 13 33 15 00 29 15 51 23 21 37 74 22 13 72	3 02 43 39 09 34 83 16 27 29 22 32 56 18 02 59 43 10 29 100 16 27 29 5 18 20 23
4 04 37 16 10 23 44 14 07 33 21 43 94	19 04 09 16 10 06 50 14 17 33 21 34 97	4 04 41 27 10 43 56 15 40 34 22 30 73	19 04 33 30 10 44 70 16 40 31 23 06 70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 02 56 39 10 07 85 17 28 31 23 22 51 19 41 25
5 05 13 20 11 02 46 14 46 36 22 21 87	20 04 48 19 10 44 53 P 15 08 34 22 20 89	5 05 05 29 11 18 58 A 16 32 31 23 04 65	20 05 01 35 11 29 73 18 07 33	5 03 48 34 20 03 56 40 10 18 70 20 10 54 88 16 27 32 18 17 27 22 41 61	5 03 13 41 10 50 86 N 18 48 31
6 05 50 23 11 44 48 15 30 40 22 59 78	21 05 26 24 11 26 56 E 16 13 37 23 09 79	6 05 25 32 11 58 60 17 47 40 23 41 67	21 00 02 59 05 24 38 12 23 76 19 54 32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{smallmatrix} 6 & 00 & 28 & 47 \\ 03 & 32 & 42 \\ 11 & 42 & 85 \\ 20 & 15 & 31 \end{smallmatrix} $
7 06 26 27 12 32 51 E 16 29 44 23 38 70	22 06 05 29 12 15 61 17 48 40	7 05 43 34 12 45 63 19 42 40	22 01 13 48 05 35 40 c 13 26 79 21 46 29	7 04 13 37 22 01 30 45 11 36 73 22 03 49 43 19 05 35 \$ 12 49 86 21 33 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8 07 03 29 13 22 54 18 31 46	23 00 05 68 06 43 33 13 09 66 19 50 39	8 00 30 49 05 55 36 D 13 40 66 21 31 37	23 14 39 81 23 20 24 5	8 00 18 47 04 21 38 12 29 75 20 49 34 20 52 52 24	8 14 06 84 23 06 24 57 22 21 28 23 09 36 52 16 02 78 23 29 30
9 00 22 61 07 38 32 A D 14 16 58 20 39 45	24 01 12 56 ¢ 14 11 72 21 42 34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 15 56 84	9 01 51 42 24 15 23 83 0 01 37 40 0 N 13 35 77 22 13 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 02 47 46 08 03 37 15 18 77 23 19 27	10 04 37 39 06 03 39 15 51 75 23 56 25	25 00 25 19 07 47 43 09 26 42 17 06 87	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 05 26 40 08 51 38 16 23 84	11 07 08 41 09 10 40 N 16 52 82	26 01 10 17 07 48 44 10 39 40 18 02 89	11 16 12 83 26 00 29 23 07 14 52 10 49 41 17 44 82	11 46 16 64 11 20 40 17 57 85 26 00 20 36 12 35 39 18 54 70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 00 31 20 07 11 39 S 09 45 37 17 22 89	12 00 41 20 07 16 43 10 27 39 17 47 89	27 01 43 17 07 53 46 11 37 36 18 49 90	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 01 24 14 07 47 39 10 40 36 18 14 94	13 01 20 16 07 37 45 11 24 37 18 36 95	28 02 08 19 08 01 49 12 25 33 19 29 90	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 01 01 31 07 10 80 13 16 27 19 45 82 20 00 55 40 13 07 27 80 13 51 31 20 00 55
14 01 05 21 07 18 12 N 10 50 36 18 11 89	29 02 05 12 08 09 40 11 30 33 18 59 97	14 01 54 14 08 02 49 12 15 33 19 21 98	29 02 27 21 08 20 63 13 07 31 20 04 88	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	31 03 05 13 08 52 44 12 59 30 20 17 96			31 03 07 35 08 22 74 ● A 14 34 29 20 50 70	

]]rs. 1 8 hR.

湖高の基階面;平均水面下 60 cm Datum : 60 cm below mean sea level

-131--

約13分、約25分等を周期とする海側の昇降があるが顕著でない。

雄 KAOHSIUNG 阁

22° 37' N. Lat,

Long. 120° 16' E.

Tide 1976

P 2	6	Я	7	Я	8	Я
5月 时刻湖高 时刻湖湖	時刻潮高	BY \$1 69.65	Dy si Mas	時刻 關係	時刻 約65 Time Ht.	财 编 湖高 Time Ht.
Time Ht. Time Ht.	Time Ht. bm.ca	Time Ht. hm.com	Time Ht.	Time Ht.	h m cm	h m en
h m ct h m ct h m ct 1 01 35 42 16 09 24 113 16 09 24 113 15 43 27 17 06 21 21 51 56 23 02 53	1 01 39 47 09 28 107 17 22 29 23 25 53	16 02 14 51 10 39 107 18 31 33		16 03 48 57 10 59 99 E 18 10 47	1 05 14 59 11 14 93 P 18 00 57	16 05 54 61 11 51 80 A 17 30 69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 02 13 49 10 12 106 18 16 31	17 00 22 59 03 30 55 11 26 99 19 18 37	2 03 23 56 10 56 105 18 27 42	17 00 07 73 04 53 60 11 40 90 18 45 56	2 00 30 90 07 00 59 12 46 82 18 44 59	17 00 25 89 07 31 62 12 42 73 17 40 62
3 02 07 43 09 11 97 N 17 29 28 10 59 103 23 29 50 19 14 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 01 20 62 04 15 59 12 15 90 20 00 10	3 00 28 70 04 38 59 E 11 51 96 19 10 45	18 00 54 77 06 29 63 12 25 82 19 20 53	3 01 28 95 08 49 57 D 14 01 72 19 22 61	18 01 18 91 09 07 69 ¢ 13 69 67 17 44 63
4 02 31 43 10 24 97 18 35 29 11 52 96 20 14 29	4 01 18 58 03 55 55 12 01 96 20 01 36	19 03 19 66 19 07 07 61 E C 13 07 81 20 37 43		19 01 45 80 08 13 62 (C A 13 16 74 19 52 55	4 02 32 100 10 25 51 16 58 65 20 07 62	19 02 17 93 10 27 55 16 12 64 17 36 64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 02 15 63 05 53 59 3 13 07 88 20 47 39	20 03 14 71 03 53 60 14 07 73 21 12 46	5 02 14 83 08 41 58 9 14 05 77 20 31 51	20 02 37 84 09 46 59 14 25 67 20 26 56	5 03 39 106 11 45 45 18 25 63 21 08 61	20 03 22 97 11 29 51 N 19 13 66 20 48 66
6 01 59 50 21 03 23 59 03 30 49 C 13 55 81 12 18 91 C 13 55 81 20 46 30 21 47 35	6 03 08 70 08 37 57 E 14 23 80 21 28 41	$\begin{array}{ccccccc} 21 & \begin{smallmatrix} 04 & 01 & 76 \\ 10 & 19 & 56 \\ 15 & 23 & 66 \\ 21 & 43 & 48 \end{array}$	6 03 11 90 10 16 52 15 37 68 21 10 53	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 01 46 111 12 47 41 5 19 16 63 22 11 60	21 04 26 102 12 16 47 18 58 68 22 09 65
7 03 25 54 22 05 07 64 04 32 54 22 09 22 56 3 13 31 87 E 15 07 74 22 37 32 22 23 8	7 03 58 78 10 12 51 15 51 73 22 07 44	22 04 41 81 11 29 51 A 16 50 62 23 12 50	7 04 10 98 11 37 45 P 17 22 63 21 52 54	22 04 32 93 12 05 50 18 09 61 21 42 59	7 05 44 116 13 35 38 19 42 64 23 09 58	22 05 23 108 12 51 44 19 16 70 23 07 62
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 01 46 87 11 28 43 17 19 68 22 43 46	23 05 18 87 13 24 46 18 11 59 22 39 51	8 05 06 106 12 33 38 18 47 60 22 34 53	23 05 09 99 12 51 45 19 10 62 22 26 59	8 06 36 119 14 12 38 20 05 66	23 06 13 113 13 29 42 19 38 74 23 58 59
9 04 52 67 E 16 18 79 E 16 18 79 23 02 35 23 02 35 23 16 42	9 05 33 97 12 33 35 18 35 64 23 18 46	24 05 51 92 13 09 41 19 10 59 23 06 52	9 05 58 114 13 39 33 5 19 42 60 23 18 52	24 05 53 105 13 29 41 N 19 44 63 23 09 58	9 00 01 55 07 22 121 14 43 39 20 29 69	24 07 00 117 14 02 42 20 04 78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 05 17 106 13 31 28 P 19 36 61 23 52 46	25 06 23 98 13 47 37 19 53 58 23 31 52	10 06 47 119 14 26 30 20 22 60	25 06 35 111 14 04 38 20 13 65 23 62 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 00 46 55 07 44 118 • 14 34 44 20 31 82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 07 01 113 14 24 24 20 26 59	26 06 55 101 14 22 34 N 20 30 58 23 58 61	11 00 02 51 07 32 122 O 15 07 30 20 57 61	26 07 14 116 14 37 37 20 10 67	1 01 33 62 08 42 116 15 37 46 21 22 77	26 01 33 53 08 27 117 15 04 48 21 01 87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 00 25 16 07 44 118 50 15 14 23 21 12 57	27 07 28 110 14 59 32 • 21 05 59	12 00 45 50 08 15 123 15 46 32 21 31 62	27 00 31 55 07 51 119 • 15 12 38 21 10 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{smallmatrix} 13 & 00 & 39 & 41 \\ 3 & 07 & 23 & 102 \\ P & 14 & 17 & 21 \\ 20 & 28 & 65 \\ \end{smallmatrix} \begin{smallmatrix} 00 & 16 & 46 \\ 07 & 19 & 95 \\ 14 & 27 & 31 \\ 20 & 28 & 65 \\ \end{split} $	13 00 58 16 08 21 120 16 01 23 21 56 56	28 00 29 61 48 01 114 15 37 31 21 39 59	13 01 27 50 08 56 120 16 22 35 22 06 65	28 01 17 54 08 35 120 15 47 40 21 41 73	13 03 60 53 09 55 101 E 16 26 53 22 24 83	28 03 14 61 09 57 104 P 16 03 67 23 12 96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 01 31 46 09 10 118 16 52 26 23 42 56	29 01 03 61 08 41 116 16 17 32 32 17 60	14 02 10 51 09 37 115 16 59 39 22 42 67	29 03 03 51 09 18 117 16 22 44 22 16 76	14 03 46 56 10 31 96 16 50 56 23 00 85	29 01 17 52 10 18 95 16 29 61 22 56 99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 02 07 48 09 53 114 17 42 29 23 30 67	30 01 41 53 09 23 115 16 59 35 22 57 62	15 02 56 53 10 18 108 17 35 43 23 22 70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 04 41 59 11 09 88 17 13 59 23 40 87	30 05 35 51 11 44 81 16 52 64 23 48 103
31 01 12 40 08 19 107 16 31 28 22 36 53				31 03 51 37 10 51 103 17 31 503 23 39 85		31 07 13 54 12 63 74 17 07 65
1[rs. : 8 hE.	I		温濤の基準領:	ТЕЛХИГЕ 60		L,

約13分、料23分符を周期とする海湖の昇降があるが新著でない。

-132-

高 雄 KAOHSIUNG

Tide

22° 37' N. Long. 120° 16' E.

Lat,

lirs : 8 hE

「諸語の基準約:甲巴水酮下」 60 cm 「Datum: 60 cm below mean sea level

約13分、約25分算を周期とする海通の昇降があるが頻響でない。

鎖 南 渝 CHINNAMPO

Lat.

-38° 43' N

Long. 125° 24' E.

Tide 1976

				1,0116			
	月	2	<u>Я</u>	3	A	4	月 時刻 (M/35
时 组 湖南 Time Ht.	83 84 8985 Time Ht.	時刻 初高 Time Hi	時刻 湖高 Time Hu	時刻 潮話 Time Ht.	时刻 湖高 Time Ht.	时刻 湖高 Time Hu.	Time Ht.
h m ca 1 02 53 73 09 06 433 14 43 37 21 33 576	h m ca 16 02 37 94 08 48 411 14 28 55 21 14 516	h m c 1 01 03 61 10 15 163 15 56 43 22 33 561	h m c 16 03 35 43 09 46 485 0 15 35 21 22 06 579	h m ca 1 03 38 67 09 56 488 • 15 40 55 22 13 543	h m cu 16 03 06 37 09 27 630 EO 15 20 21 21 47 567	h m ce 1 04 02 64 10 27 536 16 23 70 22 37 503	h m cm 16 03 59 15 10 30 610 16 37 30 22 48 521
2 03 41 61 09 51 412 15 29 31 22 12 579	17 03 19 73 09 23 430 0 15 09 40 21 49 561	2 04 35 55 10 47 473 16 32 46 23 03 552	17 04 12 24 10 26 509 E P 16 17 12 22 43 579	2 04 07 58 10 26 500 E 16 13 52 22 38 536	17 03 17 18 10 07 558 P 16 04 12 22 26 564	2 04 29 61 10 51 543 16 54 73 23 02 494	17 04 40 21 11 12 610 17 23 49 23 28 500
3 04 21 55 10 30 448 16 09 37 22 49 573	18 03 57 55 10 02 118 15 17 27 23 23 573	3 05 06 52 11 17 179 E 17 04 62 23 30 539	18 04 49 15 11 02 530 16 59 15 23 20 567	3 04 35 55 10 53 509 16 45 65 23 04 527	18 04 25 9 10 46 576 16 48 18 23 04 549	3 04 57 64 11 18 546 17 25 79 23 28 485	18 05 23 40 11 51 594 5 18 10 76
4 04 58 55 11 06 451 16 46 43 23 23 561	19 01 33 40 10 37 466 16 27 21 22 57 576	4 05 36 52 11 17 483 17 39 61 23 57 524	19 05 27 15 11 41 539 17 43 30 23 57 543	4 05 02 52 11 18 515 A 17 15 61 23 28 515	19 05 04 12 11 27 582 17 33 37 23 41 524	4 05 27 67 11 47 546 18 00 91 23 69 475	19 00 10 472 10 06 06 67 12 39 567 19 02 107
5 05 33 58 11 39 448 17 25 58 23 55 513	20 05 10 30 11 15 482 P 17 09 24 23 33 570	5 06 08 58 12 16 182 A 18 16 76	20 06 08 24 12 24 536 18 32 61	5 05 31 55 11 47 518 17 49 73 23 55 500	20 05 44 27 12 08 573 18 21 64	5 06 00 76 12 21 539 N 18 40 107	20 00 57 442 06 57 101 13 30 533 20 01 134
6 06 09 64 12 13 148 18 03 73	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 00 29 503 06 42 64 12 80 482 48 58 98	21 00 37 509 06 50 43 13 11 521 19 25 98	6 06 00 61 12 16 518 18 26 88	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 00 31 457 06 40 91 13 03 531 19 30 128	21 01 51 415 07 56 137 ¢ 14 25 497 21 08 155
7 00 29 521 06 45 73 E 12 48 445 18 48 94	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 01 03 479 07 19 76 13 30 473 19 45 122	22 01 21 466 07 40 70 C 14 04 497 20 30 137	7 00 26 482 06 36 73 12 52 509 19 09 113	22 01 08 451 07 17 85 \$ 13 45 515 20 15 140	7 01 17 439 07 30 116 13 53 506 20 30 146	22 02 57 393 09 08 165 15 36 466 22 17 165
8 01 01 497 07 25 83 13 30 439 19 35 119	23 00 53 521 07 17 46 13 27 485 19 40 98	8 01 38 451 08 07 94 → 14 18 460 20 44 149	23 02 15 421 08 44 104 15 10 469 21 48 165	8 01 01 460 07 17 91 13 35 494 20 01 137	23 01 59 411 08 18 122 C 14 47 482 21 29 168	8 02 12 418 08 35 137 14 52 488 21 44 155	23 04 24 390 10 27 174 17 00 454 23 25 155
9 01 40 469 08 10 94 A ⊅ 14 17 433 20 31 146	24 01 40 479 08 10 61 0 14 25 472 20 47 131	9 02 25 421 09 00 113 15 15 448 21 55 168	24 03 24 378 09 57 125 5 16 40 451 23 14 171	9 01 46 433 08 10 113 DN 14 28 475 21 07 162	24 03 10 378 09 34 149 16 11 457 22 51 174	9 03 21 402 09 53 149 16 07 475 23 00 146	24 05 53 408 11 40 165 18 17 457
10 02 25 436 09 03 101 15 13 430 21 37 168	25 02 36 433 09 13 85 15 37 460 22 08 155	10 03 21 387 10 07 125 16 30 442 23 10 171	25 05 11 360 11 16 131 18 19 466	10 02 41 402 09 15 134 15 32 460 22 24 171	25 04 57 369 10 57 158 17 48 457	10 04 49 405 11 11 140 17 32 479	25 00 20 137 07 00 112 E 12 41 149 19 18 469
11 03 18 405 10 01 113 16 21 137 23 47 165	26 03 47 393 10 22 101 17 07 457 23 33 155	1 04 39 369 11 16 125 N 17 56 451	26 00 30 155 06 51 378 12 29 122 19 31 491	1 1 03 53 381 10 32 140 16 56 157 23 40 158	26 00 04 158 06 33 390 12 09 146 19 04 175	1 00 01 122 06 17 436 12 19 116 18 46 497	26 01 10 119 07 49 179 13 34 128 20 05 479
12 04 27 381 11 03 113 17 42 439 23 58 158	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 01 34 131 07 67 411 13 31 101 20 24 518	12 05 29 381 11 45 128 18 22 475	27 01 01 137 07 39 127 13 10 125 19 57 491	12 01 03 88 07 24 479 E 13 21 85 19 47 518	27 01 50 101 08 29 506 A 14 16 110 20 42 485
13 05 48 372 12 01 101 18 51 463	28 00 49 140 06 59 378 12 14 88 19 47 509	13 01 20 128 07 31 393 13 17 88 20 05 512	28 02 21 104 08 45 442 14 21 79 21 06 536	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 01 49 113 08 21 463 14 00 104 20 40 509	13 01 50 58 08 19 527 14 14 55 20 37 533	28 03 26 88 09 01 530 14 56 98 21 18 485
14 00 59 140 07 04 378 N 13 55 91 19 49 494	29 01 51 116 08 08 402 13 41 73 20 40 536	14 02 11 98 08 26 424 14 06 61 20 50 513	29 03 04 82 09 23 469 16 03 64 21 41 643	14 01 09 91 07 57 418 13 44 70 20 21 536	29 02 30 91 09 00 491 E 14 42 85 21 15 518	14 02 37 34 09 06 567 PO 15 01 31 21 25 539	29 02 58 82 09 35 513 15 30 91 21 46 482
15 01 51 116 08 00 393 13 44 73 20 34 521	30 02 42 91 08 58 427 14 32 58 21 22 555	15 03 54 67 09 08 454 14 51 37 21 30 567	:	15 02 24 64 08 43 491 14 34 43 21 06 558	30 03 01 76 09 32 512 15 19 73 21 46 515	15 03 19 18 09 48 597 15 51 27 22 07 536	30 03 28 76 10 03 553 16 02 88 22 12 475
	31 03 27 73 09 41 418 16 17 49 22 01 564				31 03 31 70 10 00 527 ●A 15 51 70 22 12 512		le series le series le series
Hrs : 8 hl	¢				:平均水山下 305 below dican sea		

Datum : 305 on below mean sea level

CHINNAMPO ili 釟 南

Tide

Tide 1976		Lat.	38° 13' N	Long. 125° 24' E.	
5	Я	6	А	7 Я	8 Л
BY 88 Mass Time Ht.	時 納 納茲 Time Ht.	By 树 湖高 Time Ht.	時刻 湖高 Time Ht.	B5 刻 別高 B5 刻 別高 Time Ht. Time Ht.	時刻 翻合 時刻 詞的 Time Ht. Time Ht.
h m cm 1 03 57 76 1 10 28 558 16 34 91 22 38 469	b m cm 16 04 19 40 10 59 632 5 17 12 67 23 17 482	h m ce 1 01 38 85 11 09 579 17 26 101 23 22 463	h m ce 16 05 31 91 12 08 591 18 26 104	h m ci 1 04 59 88 11 29 597 17 47 98 23 47 494 h m ci 16 00 03 503 55 11 00 55 4 113 E 12 16 573 18 32 113	h n cs h n cs 1 00 13) 545 16 00 45 530 0 61 107 16 06 45 146 P 12 29 573 A 12 46 521 18 47 88 19 03 128
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 05 04 55 11 42 607 18 00 85	2 05 14 88 11 44 579 18 05 104	17 00 29 469 06 16 113 12 45 564 19 09 119	2 05 42 94 12 03 591 18 29 94 18 29 94 19 11 122	2 01 00 516 07 09 131 13 11 539 19 35 104 19 48 146
3 04 58 76 11 25 564 N 17 41 98 23 37 463	18 00 00 466 05 49 82 12 24 679 18 47 107	3 00 00 466 05 55 98 12 21 573 18 60 107	18 01 11 463 07 06 140 13 27 533 19 54 131	3 00 30 503 06 29 110 E 12 48 573 19 14 98 18 01 19 497 07 22 158 13 30 518 19 54 134	3 01 51 536 08 12 165 18 02 03 509 08 28 195 1 102 500 c 14 12 463 20 33 125 2 0 44 165
4 05 31 85 12 00 561 18 21 107	19 00 45 448 06 38 110 13 09 549 19 40 128	4 00 44 466 06 45 113 13 06 561 19 40 110	19 01 59 457 08 02 165 E ¢ 14 10 503 20 47 140	4 01 17 506 19 02 04 191 07 25 131 19 08 15 180 13 33 519 C A 14 10 488 20 07 104 20 44 146	4 02 54 524 09 26 192 15 03 460 21 42 140 21 48 177
5 00 15 457 06 15 98 12 40 552 19 08 119	20 01 33 433 07 33 140 13 59 515 20 35 143	5 01 37 466 07 43 134 D 13 56 536 20 38 113	20 02 55 451 09 03 186 15 02 472 21 40 146	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 04 13 515 20 04 11 488 10 49 201 10 50 216 16 29 430 N 16 21 418 22 57 146 22 57 177
6 00 58 448 07 03 116 13 25 536 20 04 128	21 02 33 421 08 36 168 4 14 55 482 21 34 149	6 02 36 466 08 54 152 E 14 55 512 21 42 113	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 05 46 524 12 09 193 5 18 11 424 21 05 34 491 12 02 204 17 56 418
7 01 51 436 7 08 06 137 9 14 23 515 21 10 134	22 03 42 418 09 48 183 E 16 01 460 22 34 149	7 03 48 472 10 11 158 16 04 485 22 46 107	22 65 08 466 11 16 195 A 17 13 433 23 32 143	7 04 39 512 22 05 16 465 11 05 180 22 11 37 207 P 16 51 448 17 23 421 23 20 116 23 40 158	7 00 09 140 22 00 02 165 07 07 552 22 06 51 515 13 18 168 12 59 180 19 31 445 19 12 439
8 02 57 430 09 21 149 15 29 497 22 19 128	23 05 01 430 10 58 183 17 14 445 23 30 140	8 05 08 494 11 27 152 17 23 469 23 50 94	23 06 17 485 12 19 186 18 26 430	8 06 02 530 12 19 168 18 19 412 23 06 30 503 12 38 195 18 43 421	8 01 12 125 08 08 579 14 13 143 20 29 472 20 05 466
9 04 18 439 10 39 149 E 16 43 485 23 24 110	24 06 11 454 12 01 171 18 23 445	9 06 27 524 12 38 134 18 43 466	24 00 23 134 07 15 512 13 15 171 19 26 433	9 00 22 107 9 07 18 561 5 13 26 146 19 36 451 19 44 436	9 02 08 107 9 08 58 600 14 59 122 21 17 500 9 08 48 497 24 01 49 119 08 29 573 14 32 125 20 48 497
10 05 40 466 11 53 131 18 04 483	25 00 22 128 07 07 485 A 12 58 155 19 20 418	10 00 46 79 07 31 564 P 13 39 113 19 49 472	25 01 12 125 08 03 533 14 03 155 20 17 439	10 01 23 94 06 19 591 14 24 125 20 37 166 20 32 454	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 00 25 85 06 53 506 12 59 107 19 12 494	26 01 07 116 07 57 512 13 47 140 20 05 451	11 01 41 64 08 29 597 14 37 91 20 48 479	26 01 55 116 08 45 555 N 14 45 140 20 56 448	11 02 17 82 09 09 616 0 15 17 110 21 27 485 26 02 13 116 08 58 576 15 01 131 21 11 469	11 03 36 88 26 03 14 79 10 16 610 16 09 16 604 16 18 101 15 19 82 22 32 527 22 02 519
12 01 18 61 07 52 552 13 57 79 20 11 503	27 01 49 104 08 34 536 14 29 128 20 46 457	12 02 32 55 09 19 619 5 0 15 27 83 21 36 485	27 02 31 107 09 20 570 15 22 128 21 31 454	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 04 15 88 27 03 54 67 10 50 600 27 10 20 607 16 51 98 E 16 25 70 23 04 533 22 38 570
13 02 06 43 08 45 591 P 14 50 61 21 03 500	28 02 26 98 09 09 552 15 119 119 21 30 457	13 03 19 55 10 01 628 10 15 79 22 22 185	28 03 11 101 09 53 582 16 00 119 22 03 463	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
14 02 53 34 09 31 616 O 15 38 52 21 51 506	29 02 59 91 09 41 561 15 43 113 21 51 457	14 01 04 68 10 47 625 16 59 62 23 07 485	29 03 45 94 10 24 591 16 35 110 22 35 472	14 04 33 82 14 10 613 17 20 98 23 28 503 22 55 524	14 05 28 110 11 47 567 17 52 107 17 39 67 23 55 583
15 03 37 30 10 15 628 16 27 55 22 34 497	30 03 33 88 10 10 570 N 16 18 110 22 18 457	15 04 49 73 11 27 613 17 43 91 23 47 479	30 01 21 88 10 51 597 17 10 101 23 10 485	15 05 16 98 11 44 694 17 56 104 E 17 27 82 23 31 539	15 00 07 536 06 03 125 12 16 516 18 26 116 30 06 03 98 12 10 555 18 20 83
	31 01 01 85 10 39 573 16 51 107 22 49 460			31 05 31 88 11 48 597 18 05 83	31 00 40 576 06 55 131 12 53 518 19 09 167
L		L			

Hrs. 8^hF

満式の基準約日:平均水间子 305 ca Datum:305 ca below mean sea level

鎖南 油 CHINNAMPO

Lat. 38° 43' N

Long. 125° 24' E.

Tide 1976

		1	b 10 10	Long. 1.0	2	10	
9	A A A A A A A	10 BE 50 2810	月時刻潮高	時刻潮高	月時刻副高	12 科 刻 初高	月 時刻 翻高
By \$1 ABA	時刻 湖高 Time Hi.	By 刻 湖高 Time Ht.	Time Ht.	Time Ht.	Time Ht.	Time Ht.	Time Ht.
h m cu 1 cl 33 355 1 07 56 165 D 13 45 475 20 06 137	h m cu 16 01 19 527 07 16 177 N 13 33 160 19 51 168	h m cu 1. 02 15 531 08 55 183 14 39 411 20 69 171	h m cm 16 01 33 515 08 10 165 C 13 51 427 20 10 158	h m cu 1 04 27 457 10 59 152 17 27 411 23 17 171	h m ce 16 03 57 485 09 18 123 16 11 421 23 09 119	h.m. cv 1 05 47 421 11 10 123 17 51 430 23 43 158	h m c 16 03 24 454 10 10 82 16 23 454 22 60 134
2 02 33 530 09 11 195 8 14 47 436 21 20 162	17 02 10 509 08 49 198 C 14 27 433 20 57 177	2 03 34 491 10 18 192 16 16 396 22 25 180	17 02 29 497 09 21 171 15 01 411 21 29 171	2 05 60 457 11 58 131 E 18 38 415	17 01 09 166 10 55 107 E 17 05 115 23 24 131	2 06 01 415 12 04 110 18 51 460	17 04 37 433 11 15 73 17 45 479
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 03 15 491 10 05 201 15 37 415 22 14 183	3 05 09 485 11 34 177 17 59 418 23 43 171	18 03 40 482 10 34 162 16 23 415 22 48 165	3 00 22 152 06 51 466 12 49 116 19 31 482	18 05 26 463 11 56 83 18 22 485	3 00 43 140 07 04 418 12 51 94 19 41 488	18 00 04 119 06 01 421 13 17 58 18 59 515
4 05 32 509 11 56 195 18 11 418 23 58 162	19 04 36 485 11 21 193 17 09 415 23 27 171	4 06 30 197 12 37 155 19 07 134	19 05 02 482 11 40 137 17 50 442 23 58 140	4 01 15 131 07 41 475 13 31 91 20 13 512	19 00 30 107 06 39 465 12 49 58 19 24 527	4 01 34 123 07 52 424 A 13 34 82 20 24 512	19 01 10 94 07 18 427 P 13 15 40 20 01 555
5 06 56 530 13 02 168 19 26 451	20 05 58 500 12 22 165 18 35 112	5 00 16 119 07 31 515 13 28 128 19 57 491	20 06 17 497 12 35 107 18 59 185	5 02 00 110 08 26 479 14 09 82 20 50 533	20 01 28 79 07 11 479 13 39 34 20 17 570	5 02 19 107 08 34 430 14 13 73 20 59 530	20 02 11 67 08 21 439 5 14 06 21 29 54 585
6 01 02 140 07 55 555 13 55 140 20 19 488	21 00 28 143 07 05 527 13 13 131 19 34 179	6 01 41 125 08 17 530 E 14 08 107 20 40 521	21 00 59 107 07 18 516 E 13 26 73 19 52 530	6 02 42 98 09 02 479 A 14 43 73 21 22 549	21 02 24 52 08 34 485 P 14 26 15 21 06 600	6 02 58 91 09 11 133 14 48 67 21 31 639	21 03 03 49 09 14 451 • 14 56 12 21 43 604
7 01 57 119 08 42 573 14 37 119 21 01 516	22 01 23 113 07 57 552 14 00 101 20 21 518	7 02 24 107 08 56 536 14 42 91 21 15 543	22 01 50 76 08 13 530 14 09 49 20 38 573	$\begin{array}{cccccc} 7 & 03 & 17 & 88 \\ 09 & 33 & 475 \\ O & 15 & 14 & 70 \\ & 21 & 50 & 535 \end{array}$	22 03 14 37 09 23 488 • 15 11 9 21 51 619	7 03 33 85 09 13 133 ON 15 20 61 22 02 516	22 03 52 37 10 01 457 15 43 9 22 26 607
8 02 42 104 09 20 582 O 15 14 104 21 38 536	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 03 01 94 09 28 533 0 15 15 82 21 45 558	23 02 40 52 08 56 539 ● P 14 51 30 21 22 604	8 03 49 85 09 59 469 15 44 67 23 18 558	23 04 00 34 10 07 182 5 15 55 12 22 35 619	8 04 05 82 10 12 433 15 54 58 23 29 549	23 04 37 37 10 41 460 16 29 18 23 08 597
9 03 21 91 09 51 583 E 15 48 91 23 10 549	24 02 56 61 09 20 582 15 19 55 21 42 585	9 03 38 88 09 57 527 15 41 79 22 12 564	$\begin{smallmatrix} 24 & \begin{smallmatrix} 03 & 27 & 40 \\ 09 & 38 & 536 \\ 16 & 31 & 21 \\ 22 & 04 & 622 \end{smallmatrix}$	9 04 21 85 10 27 460 16 13 70 22 44 558	24 04 46 40 10 52 472 16 39 24 23 18 607	9 04 37 79 10 39 433 16 25 68 22 67 552	24 05 22 40 11 27 457 17 12 31 23 48 576
10 03 57 91 10 25 573 16 16 .91 22 38 535	25 03 10 49 09 59 582 P 15 56 43 22 19 607	10 01 09 88 10 10 21 515 A 16 12 79 22 38 564	25 04 12 37 10 20 534 16 11 24 22 45 625	10 04 53 88 10 52 457 N 16 43 73 23 12 555	25 86 35 55 11 36 457 17 23 46	10 05 11 76 11 07 136 16 58 61 23 28 649	25 06 03 52 12 08 451 17 57 58
1 1 04 30 91 10 50 558 16 46 91 23 06 558	26 04 23 49 10 38 570 16 35 43 22 58 613	1 04 39 91 10 49 503 16 40 82 23 06 561	26 04 56 49 11 01 506 16 53 37 23 28 613	11 05 27 94 11 23 451 17 17 79 23 44 519	26 00 00 582 06 23 73 12 21 139 18 13 76	1 1 05 47 73 11 41 439 17 36 67	26 00 26 516 06 17 67 12 19 412 18 45 85
12 05 02 101 11 15 513 17 15 98 23 33 558	27 05 06 61 11 14 549 17 14 52 23 40 610	12 05 11 101 11 15 491 17 10 88 23 33 561	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 06 03 101 11 57 415 17 55 91	27 00 45 519 07 14 91 13 11 424 19 06 110	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 01 07 512 07 32 82 E 13 38 430 19 35 116
13 05 36 113 11 41 537 A 17 45 101	28 05 52 85 11 53 518 17 57 73	13 03 47 113 11 41 479 17 44 101	28 00 13 588 06 34 101 13 29 431 18 25 91	13 00 21 539 06 48 110 12 37 436 18 40 110	28 01 33 509 08 07 113 ⊅ 14 07 408 20 09 140	13 00 42 503 07 11 76 13 09 442 19 11 98	28 01 49 176 08 20 98 D 14 28 121 20 36 143
14 00 03 555 06 12 131 12 13 509 18 21 119	29 00 21 588 06 11 119 5 12 10 182 18 15 101	14 00 08 552 06 24 128 N 12 18 463 18 24 116	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 01 05 524 07 38 119 13 30 427 19 38 131	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 01 27 512 08 01 82 E C 14 03 412 20 15 119	29 02 39 439 09 13 110 15 29 418 31 45 163
15 00 39 513 06 60 162 12 48 485 19 01 137	30 01 17 558 30 07 43 155 3 13 30 445 19 43 140	15 00 45 536 07 11 146 13 01 415 19 09 137	30 01 56 516 08 39 159 ≥ 14 28 402 20 39 162	15 01 56 503 08 41 125 c 14 31 421 20 49 146	30 03 32 142 E 16 34 408 22 36 168	15 02 20 185 09 03 85 16 08 412 21 32 131	30 03 37 495 10 13 116 16 41 421 22 54 168
			31 03 05 179 09 19 158 15 51 393 21 68 177				31 04 50 384 11 12 113 A 17 59 436
lirs, : 8 h	hanness an				· #E1/K1/6 F 305		

lirs, 18bE

編碼の基準間:平均水師下 305 cm Datum:305 cm below mean sea level

pendix 6 Landings of Tuna and Suitable Tuna Baitfish by Month 4,	
pendix 6 Landings of Tuna and Suitable Tuna Baitfish by M	चर्म
pendix 6 Landings of Tuna and Suitable	Month
pendix 6 Landings of Tuna and Suitable	q
pendix 6 Landings of Tuna and Suitable	Baitfish
pendix 6 Landings of Tur	Tuna
pendix 6 Landings of Tur	Suitable
pendix 6 Landings of Tur	and
pendix 6 Landings	í Tuna
pendix 6	
d P	Appendix 6

.

Species	Month	Visayan Sea 1/	Sibuyan Sea	Davao Gulf	Eastern Moro Gulf 2/	Basilan Zamboanga	Northwest Mindanao <u>3</u> /	TOTAL
Anchovy		60.9		0.8			5.1	66.8
Big-eye scad		692.4	52.9	24.7	2.3			772.3
Herring	R	668.3	10.0					678.3
Round scad		385.4	9.8	21.5	- 11.8	15.9		<u>444</u> .4
Sardine	January	450.5	10.9	8.6	·	24.4		694.4
Silverside	^							
Bonito				32.0	112.9			144.9
Skipjack					10.1			10.1
Yellowfin		85.8	9.7	1.2	48.9			145.6
Anchovy		88.2		1.2				89.4
Big-eve scad		880.4	10.7	22.5	0.4			914.0
Herring	February	166.3						166.3
Round scad	•	361.1		12.1	45.8	1.2		420.2
Sardine		211.6		2.9		1.0		215.5
Silverside					1			
Bonito				40.4	96.0			136.4
Skipjack		40.9			50.9			9.16
Yellowfin		174.6		0.6	54.8			230.0
Anchovy		26.9		0.7	0.2		2.8	30.6
Big-eye scad		456.5	19.8	11.3	7.1	1 4		496.1
Herring		170.4						170.4
Round scad	March	843.8		17.0	9.4	5.1	<u>.</u>	875.3
Sardine		361.0		2.6		4.6	5.4	373.6
Silverside		4.4		0.2		-	·	4.6
Bonito		70.8		47.1	5°.8			123.7
Skipjack					64.5			64.5
Yellowfin		118.7		0.6	51.3			170.6
1/ This includes catches fro	les catches f	from Asia Gulf,	lf, Guinar	Guinaras Strait., Jintatola,	Samar	Sea, Tonon Strait,	, Visayan Sea, Panay Gulf	, Panay Gulf

Z/ This includes catchs from Jilana Bay, Moro Gulf, Saragani Bay
Z/ This includes catches from Dipolog, Margos, Dapitan
Z/ Date includes those Landings by boats over 3 G/T.)
Source: Bureau of Fisheries, Regional Office XI, VI and III

÷

-- 137--

Anchovy Big-eye scadApril100.8 2.1 1.3 2.0 106.2 Big-eye scad323.08.676.0 3.9 9.1 420.6 Big-eye scad155.81.9 2.1 8.6 70.4 $1.36.5$ Round scad1.55.81.9 8.4 15.7 70.4 $1.34.5$ Sarchne 5.7 $1.5.5$ 4.1 $2.3.8$ 7.0 211.1 Shverside 5.7 $1.5.5$ 4.8 2.7 2.1 $2.4.5$ Shverside 5.7 $1.5.5$ $4.1.7$ 1.2 2.1 $2.4.5$ Shipaci 2.7 $1.2, 7$ 1.2 $2.1.2$ $2.1.2$ Shipaci 2.7 $1.2, 7$ 1.2 $2.1.2$ $2.4.5$ AnchovyMay 64.0 0.7 0.7 $2.2.8$ $6.7.7$ AnchovyMay 64.0 0.7 0.2 $2.8.6$ $2.2.8$ $6.7.7$ AnchovyMay 64.0 0.7 0.2 $2.8.6$ $2.2.8$ $6.7.7$ AnchovyMay $6.4.0$ 0.7 0.2 $2.8.7$ $2.2.8$ $6.7.7$ Stripack $1.7.0$ 0.7 0.7 0.7 $2.2.8$ $6.7.7$ AnchovyJune 10.6 0.7 0.2 $2.8.7$ $0.7.7$ Stripack $1.7.0$ 0.7 0.2 $2.8.7$ $0.7.7$ Stripack 0.6 0.7 0.6 0.6 0.6 Stripack $1.7.9$ 0.6 0.6 0.6 <td< th=""><th>April 100.8 2.1 7.0 3.9 9.1 155.8 14.0 8.4 15.7 70.4 1 155.8 14.0 84.4 15.7 70.4 1 155.5 15.5 15.5 15.5 70.4 1 178.4 1.9 84.4 15.7 70.4 1 52.7 15.5 4.3 23.8 7.0 3.0 52.7 15.5 4.3 23.8 7.0 3.0 52.7 15.5 4.3 3.0 3.0 3.0 52.6 10.7 0.2 1.4 2.8 3.0 535.6 11.2 7.1 1.4 3.3 633.6 17.0 9.4 5.1 5.4 16.1 0.6 0.2 7.3 5.4 537.3 2.1 5.8 5.4 5.4 537.3 16.1 1.7 5.8 5.4 662.9 2.0 7.3</th><th>Species</th><th>Month</th><th>Visayan S Sea</th><th>Sibuyan Davao Sea Gulf</th><th>Eastern Moro Gulf</th><th>Basilan. Zamboanga</th><th>Southwest Mindanao</th><th>TOTAL</th></td<>	April 100.8 2.1 7.0 3.9 9.1 155.8 14.0 8.4 15.7 70.4 1 155.8 14.0 84.4 15.7 70.4 1 155.5 15.5 15.5 15.5 70.4 1 178.4 1.9 84.4 15.7 70.4 1 52.7 15.5 4.3 23.8 7.0 3.0 52.7 15.5 4.3 23.8 7.0 3.0 52.7 15.5 4.3 3.0 3.0 3.0 52.6 10.7 0.2 1.4 2.8 3.0 535.6 11.2 7.1 1.4 3.3 633.6 17.0 9.4 5.1 5.4 16.1 0.6 0.2 7.3 5.4 537.3 2.1 5.8 5.4 5.4 537.3 16.1 1.7 5.8 5.4 662.9 2.0 7.3	Species	Month	Visayan S Sea	Sibuyan Davao Sea Gulf	Eastern Moro Gulf	Basilan. Zamboanga	Southwest Mindanao	TOTAL
I 323.0 8.6 76.0 3.9 9.1 49.0 49.0 155.8 14.0 84.4 15.7 70.4 1 178.4 1.9 84.4 15.7 70.4 1 155.6 14.0 84.4 15.7 70.4 1 5.0 109.7 6.5 3.0 3.0 5.0 10.7 0.2 1.2 3.0 5.0 11.2 7.1 1.4 2.8 3.0 5.0 11.2 7.1 1.4 2.8 3.0 636.6 11.2 7.1 1.4 2.8 3.0 635.0 11.2 7.1 1.4 3.3 3.0 11.6 0.2 2.6 4.7 5.1 5.4 3.3 11.6 622.9 20.7 7.3 4.4 3.3 3.0 773.7 5.0 1.8 17.6 2.8 3.0 2.8 773.7 5.0	I 323.0 8.6 76.0 3.9 9.1 49.0 49.0 1178.4 11.9 84.4 15.7 70.4 11.7 1778.4 11.9 84.4 15.7 70.4 11.7 1775.5 12.5 4.3 1.2 3.0 3.0 50.7 15.5 4.3 1.2 3.0 3.0 50.7 11.2 7.1 1.4 2.8 3.0 50.6 11.2 7.1 1.4 2.8 3.0 50.66 11.2 7.1 1.4 2.8 3.0 287.3 11.2 7.1 1.4 2.8 3.0 570.6 17.0 9.4 5.4 3.3 3.0 177.9 6.5 20.7 7.1 1.4 2.8 117.9 0.6 5.0 0.2 4.4 3.3 3.0 1161.6 5.0 0.6 51.3 0.4 4.4 3.3 1162.6 </td <td>Anchow</td> <td>April</td> <td>100.8</td> <td>2,1</td> <td></td> <td>1.3</td> <td>· · · 2.0</td> <td>106.2</td>	Anchow	April	100.8	2,1		1.3	· · · 2.0	106.2
49.0 14.0 84.4 15.5 15.5 15.5 70.4 1 178.4 1.9 1.9 23.8 7.0 70.4 1 178.5 15.5 4.3 1.2 3.0 3.0 12.5 15.5 4.1.7 1.2 3.0 50.7 109.7 6.5 3.0 50.6 111.2 7.1 1.4 2.8 513.6 11.2 7.1 1.4 2.8 535.6 11.2 7.1 1.4 3.3 535.6 17.0 9.4 5.1 5.4 510.7 0.2 1.7.0 9.4 5.4 535.6 1.7.0 9.4 5.4 3.3 17.9 0.6 51.3 1.7.5 3.3 773.7 50.5 1.8 17.5 3.0 773.7 50.5 1.8 17.5 3.0 10.0 15.6 1.7 7.3 3.0 10.0 1.17.5 5.6 1.7.5 3.0 10.0 1.5.0 <t< td=""><td>49.0 1178.4 11.9 84.4 15.7 70.4 1 1778.4 1.9 84.4 15.5 4.3 7.0 7.0 52.7 52.7 15.5 4.3 1.2 3.0 50.7 5.0 109.7 6.5 3.0 50.7 11.2 7.1 1.4 2.8 50.7 11.2 7.1 1.4 2.8 50.5 11.2 7.1 1.4 2.8 287.3 11.2 7.1 1.4 2.8 287.3 17.0 9.4 5.1 5.4 287.3 17.0 9.4 5.1 5.4 287.3 17.0 9.4 5.4 5.4 287.0 0.2 2.6 4.7 5.4 5.4 117.9 $6.6.5$ 20.7 7.3 4.4 3.3 117.9 5.6 1.8 17.5 3.0 116.0 125.7 1.7 21.8 <</td><td>Big-eye scad</td><td>,</td><td>.323.0</td><td>8.6</td><td>76.0</td><td>3.9</td><td>9.1</td><td>420.6</td></t<>	49.0 1178.4 11.9 84.4 15.7 70.4 1 1778.4 1.9 84.4 15.5 4.3 7.0 7.0 52.7 52.7 15.5 4.3 1.2 3.0 50.7 5.0 109.7 6.5 3.0 50.7 11.2 7.1 1.4 2.8 50.7 11.2 7.1 1.4 2.8 50.5 11.2 7.1 1.4 2.8 287.3 11.2 7.1 1.4 2.8 287.3 17.0 9.4 5.1 5.4 287.3 17.0 9.4 5.1 5.4 287.3 17.0 9.4 5.4 5.4 287.0 0.2 2.6 4.7 5.4 5.4 117.9 $6.6.5$ 20.7 7.3 4.4 3.3 117.9 5.6 1.8 17.5 3.0 116.0 125.7 1.7 21.8 <	Big-eye scad	,	.323.0	8.6	76.0	3.9	9.1	420.6
1 155.8 14.0 84.4 15.7 70.4 1 1 78.4 1.5 4.3 23.8 7.0 52.7 15.5 4.3 23.8 7.0 70.4 1 52.7 15.5 4.5 1.9 23.8 7.0 70.4 1 799.2 11.2 0.7 0.2 64.0 0.7 0.2 3.0 799.2 11.2 7.1 1.4 2.8 3.0 287.3 17.0 9.4 5.1 2.6 3.0 287.3 17.0 9.4 4.9 5.4 2.8 287.3 17.0 9.4 4.9 5.4 3.3 287.3 17.0 9.4 4.9 5.4 3.3 287.3 17.0 9.4 4.4 3.3 3.0 17.9 9.6 5.0 9.6 5.1 7.3 4.4 3.3 116.1 0.6 51.3 17.3	a $ 1 55.8$ $ 4.0$ 84.4 15.7 70.4 $11.70.4$ 23.7 15.5 $4.1.7$ 1.2 3.0 5.0 5.0 109.7 6.5 3.0 5.0 5.0 109.7 6.5 3.0 5.0 109.7 6.5 3.0 5.0 109.7 6.5 3.0 5.0 11.2 7.1 1.4 2.8 5.0 11.2 7.1 1.4 2.8 287.3 17.0 9.4 5.1 5.4 5.1 5.2 11.2 7.1 1.4 3.3 237.0 0.2 2.1 0.6 5.4 3.3 17.9 0.6 5.0 1.7 5.4 3.3 17.9 0.6 5.0 1.4 3.3 3.0 17.9 1.7 5.1 1.7 5.4 3.3 17.9 1.7 5.0 1.4 3.3 3.0	Herring		49.0					49.0
178.4 1.9 23.8 7.0 32.7 15.5 $4.1.7$ 1.2 3.0 5.0 12.5 $4.1.7$ 1.2 3.0 5.0 109.7 6.5 3.0 799.2 11.2 7.1 1.4 2.8 857.3 17.0 9.4 5.1 4.9 5.4 855.6 17.0 9.4 5.1 1.4 2.8 855.6 17.0 9.4 5.1 5.4 5.1 5.4 855.6 17.0 9.4 5.1 5.4 3.3 910.6 5.0 9.4 5.1 5.4 3.3 17.9 0.2 17.0 9.4 5.1 5.4 116.1 0.6 51.3 0.6 5.4 3.3 962.9 20.7 7.3 4.4 3.3 7 962.9 20.7 7.3 4.4 3.3 7 962.9 20.7 7.3 17.5 3.0 17.5 3.0 10.0 1.5.6 1.8 17.5	178.4 1.9 23.8 7.0 12.5 5.2.7 15.5 4.1.3 1.2 3.0 12.5 10.7 0.7 6.5 3.0 3.0 12.5 10.7 0.7 6.5 3.0 3.0 12.5 10.7 0.7 0.2 2.8 7.0 10.7 0.7 0.2 1.4 2.8 3.0 287.3 11.2 7.1 1.4 2.8 3.0 287.3 17.0 9.4 5.1 5.4 3.3 287.3 17.0 9.4 5.1 5.4 3.3 287.3 17.0 9.4 5.1 5.4 3.3 19.16 16.1 0.6 51.3 3.0 3.7 116.1 0.6 51.3 0.6 51.3 3.0 116.1 662.9 20.7 7.3 4.4 3.3 116.1 662.9 20.7 7.3 4.4 3.3 116.1 0.6 51.3 0.4 4.4 3.3 175.2 <td>Round scad</td> <td></td> <td>L 155.8</td> <td>14.0</td> <td>84.4</td> <td>15.7</td> <td>70.4</td> <td></td>	Round scad		L 155.8	14.0	84.4	15.7	70.4	
52.7 15.5 4.3 1.2 3.0 5.0 5.0 109.7 6.5 3.0 5.0 5.0 109.7 6.5 3.0 79.2 11.2 7.1 1.4 2.8 3.0 79.2 11.2 7.1 1.4 2.8 3.0 773.3 636.6 17.0 9.4 5.1 2.8 236.6 17.0 9.4 5.1 1.4 2.8 236.6 17.0 9.4 5.1 5.4 3.3 212.0 2.0 0.2 4.4 3.3 3.0 116.1 5.8 17.5 3.0 3.7 3.7 116.1 5.6 0.6 51.3 0.6 2.8 3.0 773.7 50.5 1.8 17.3 3.0 7.8 17.5 2.8 773.7 50.5 1.8 17.5 2.8 0.4 2.8 0.4 2.8 0.4 2.8 0.6	52.7 15.5 4.3 1.2 5.0 109.7 1.2 3.0 5.0 5.0 109.7 6.5 3.0 5.0 0.7 0.2 1.2 3.0 799.2 11.2 7.1 1.4 2.8 799.2 11.2 7.1 1.4 2.8 287.3 17.0 9.4 5.1 2.8 287.3 17.0 9.4 5.1 2.8 287.3 17.0 9.4 5.1 2.8 287.3 17.0 9.4 5.1 5.4 512.0 2.6 2.6 4.9 5.4 116.1 0.6 51.3 $1.7.3$ 3.0 116.1 0.6 51.3 7.3 4.4 3.3 773.7 50.5 1.8 17.5 3.0 773.7 50.5 1.8 17.5 2.8 773.7 50.5 1.8 17.5 2.8 77.3 1	Sardine		178.4	1.9		23.8	7.0	211.1
52.7 15.5 4.3 1.2 3.0 5.0 5.0 109.7 6.5 3.0 5.0 5.0 109.7 6.5 3.0 799.2 11.2 7.1 1.4 2.8 287.3 17.0 9.4 5.1 2.8 287.3 17.0 9.4 5.1 2.8 287.3 17.0 9.4 5.1 2.8 287.3 17.0 9.4 5.1 2.8 287.3 17.0 9.4 5.1 5.4 287.3 17.0 0.2 4.4 3.3 116.1 0.6 51.3 4.4 3.3 116.1 0.6 51.3 17.6 2.8 2.8 773.7 50.5 1.8 17.6 2.8 2.8 773.7 50.7 7.3 4.4 3.3 2.8 773.7 50.7 7.3 4.4 3.3 2.8 2.8 2.8 $2.$	52.7 15.5 4.3 41.7 1.2 3.0 5.0 5.0 109.7 6.5 3.0 5.0 0.7 0.2 5.2 3.0 799.2 11.2 7.1 1.4 2.8 799.2 11.2 7.1 1.4 2.8 287.3 17.0 9.4 5.1 2.8 236.6 17.0 9.4 5.1 2.8 536.6 17.0 9.4 5.1 5.4 512.0 2.6 2.6 4.1 5.4 17.9 5.6 $1.7.0$ 9.4 4.3 3.3 116.1 0.6 5.0 7.3 4.4 3.3 7.4 116.1 0.6 5.0 7.7 7.3 4.4 3.3 7.4 773.7 50.5 1.8 17.5 3.0 7.4 3.7 773.7 50.5 1.8 17.5 2.8 7.7 3.0 7.8 17.5 </td <td>Silverside</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>. •</td> <td></td>	Silverside						. •	
12.5 41.7 1.2 3.0 5.0 5.0 109.7 6.5 3.0 5.0 5.0 109.7 6.5 3.0 799.2 11.2 7.1 1.4 2.8 287.3 17.0 9.4 5.1 2.8 287.3 17.0 9.4 5.1 2.8 287.3 17.0 9.4 5.1 2.8 287.3 17.0 9.4 5.1 4.9 5.4 $2.17.9$ 0.2 5.1 5.1 4.9 5.4 3.3 17.9 64.5 1.7 5.8 4.4 3.3 3.0 116.1 0.6 51.3 17.5 3.0 2.8 2.8 44.4 3.3 50.5 1.8 17.5 3.0 773.7 56.5 1.8 17.5 3.0 2.8 10.0 0.4 20.7 7.3 17.5 2.8 2.8 10.0 $1.75.$	12.5 41.7 1.2 3.0 5.0 64.0 0.7 0.2 1.2 3.0 May 64.0 0.7 0.2 1.4 2.8 3.0 Nav 64.0 0.7 0.2 1.2 3.0 2.8 3.0 Nav 64.0 0.7 0.2 1.4 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.6 4.4 3.3 3.3 3.3 3.3 3.1 3.3 3.2 3.0 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.3	Bonito		52.7	ഹ്	4.3			72.5
5.0 109.7 6.5 3.0 May 64.0 0.7 0.2 1.4 2.8 799.2 11.2 7.1 1.4 2.8 287.3 17.0 9.4 5.1 2.8 287.3 17.0 9.4 5.1 5.4 287.3 17.0 9.4 5.1 5.4 287.3 17.0 9.4 5.1 5.4 287.3 17.0 0.2 4.9 5.4 512.0 2.6 9.4 5.1 5.4 17.9 64.5 17.9 4.4 3.3 166.6 5.0 0.6 51.3 4.4 3.3 162.6 5.0 0.6 51.3 4.4 3.3 17.9 50.7 7.3 4.4 3.3 10.0 162.6 5.0 1.8 17.5 3.0 10.0 0.4 23.7 16.6 2.8 2.8 17.5 5.6 1.8 17.5 3.0 175.2 51.7 0.4 23.7 16.6 2.8	5.0 109.7 6.5 3.0 May 64.0 0.7 0.2 2.8 799.2 11.2 7.1 1.4 2.8 287.3 17.0 9.4 5.1 2.8 287.3 17.0 9.4 5.1 5.4 636.6 17.0 9.4 5.1 5.4 512.0 2.6 2.6 4.9 5.4 $2.17.9$ 47.1 5.8 4.9 5.4 17.9 64.5 17.9 4.4 3.3 17.9 66.29 20.7 7.3 4.4 3.3 484.3 50.5 1.8 17.5 3.0 773.7 50.5 1.8 17.5 3.0 10.0 0.4 23.7 16.6 2.8 175.2 50.5 1.8 17.5 3.0 175.2 50.5 1.8 17.5 2.8	Skipjack		12.5		41.7	1.2	3.0	58.4
May 64.0 0.7 0.2 7.1 1.4 2.8 799.2 11.2 7.1 1.4 $2.87.3$ 287.3 53.6 17.0 9.4 5.1 532.0 2.6 9.4 5.1 512.0 2.6 4.9 5.4 2.0 0.2 64.5 17.9 0.6 51.3 116.1 0.6 51.3 162.6 5.0 4.4 17.9 0.6 51.3 162.6 5.0 4.4 773.7 50.5 1.8 17.3 50.5 1.8 17.3 17.3 23.7 10.0 17.3 2.8 175.2 51.7 51.7	May 64.0 0.7 0.2 1.4 2.8 799.2 11.2 7.1 1.4 2.87 287.3 17.0 9.4 5.1 5.4 287.3 17.0 9.4 5.1 5.4 287.3 17.0 2.6 4.9 5.4 512.0 2.6 4.9 5.4 512.0 2.6 4.9 5.4 17.9 47.1 5.8 4.9 5.4 17.9 64.5 17.9 4.4 3.3 162.6 5.0 7.3 4.4 3.3 494.3 50.7 7.3 4.4 3.3 494.3 50.5 1.8 17.5 3.0 175.2 5.6 1.8 17.5 2.8 175.2 5.6 1.8 17.5 2.8 175.2 51.7 51.7 51.7 51.7	Yellowfin		5.0		109.7	6.5	3.0	124.2
799.211.27.11.4 287.3 36.6 17.0 9.4 5.1 287.3 17.0 9.4 5.1 536.6 17.0 9.4 5.1 512.0 2.6 4.9 5.4 2.0 0.2 47.1 5.8 17.9 0.6 51.3 4.4 17.9 0.6 51.3 4.4 17.9 0.6 51.3 4.4 162.6 5.0 7.3 4.4 484.3 50.5 1.8 17.3 773.7 50.5 1.8 17.3 20.7 7.3 15.6 2.8 10.0 175.2 5.6 $1.7.3$ 175.2 51.7 51.7 51.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Anchovy	May	64.0	0.7	0.2		2.8	67.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Big-eye scad		799.2	11.2	7.1	1.4		\$18.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Herring		287.3					287.3
512.0 2.6 4.9 5.4 2.0 0.2 47.1 5.8 17.9 47.1 5.8 17.9 64.5 116.1 0.6 51.3 16.6 5.0 4.4 5.0 20.7 7.3 484.3 50.5 1.8 17.3 50.5 1.8 17.3 50.5 1.8 17.3 50.5 1.8 17.3 50.5 1.7 10.0 125.0 17.3 175.2 51.7	512.0 2.6 4.9 5.4 2.0 0.2 47.1 5.8 17.9 47.1 5.8 17.9 64.5 116.1 0.6 51.3 162.6 5.0 4.4 662.9 20.7 7.3 484.3 50.5 1.8 773.7 50.5 1.8 17.3 50.5 1.8 175.2 0.4 23.7 10.0 125.0 17.3 175.2 51.7	Round scad		636.6	. 17.0	9. 4	5 1		668.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sardine		512.0	2.6		4,9	5.4	524.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47.1 5.8 17.9 64.5 17.9 64.5 17.9 64.5 16.6 51.3 50.5 51.3 162.6 5.0 50.5 1.8 17.3 20.7 773.7 50.5 773.7 50.5 175.2 10.0 175.2 10.0 175.2 51.7	Silverside		2.0	0.2			•	2.2
17.9 64.5 116.1 0.6 51.3 116.1 0.6 51.3 116.1 0.6 51.3 116.1 162.6 5.0 116.1 162.6 5.0 116.1 162.6 5.0 116.1 1.8 17.3 116.1 50.5 1.8 773.7 50.5 1.8 10.0 5.6 1.8 10.0 125.0 16.6 175.2 51.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bonito			47.1	5.8			52.9
116.1 0.6 51.3 June 162.6 5.0 4.4 662.9 20.7 7.3 484.3 20.7 7.3 484.3 50.5 1.8 773.7 50.5 1.8 773.7 50.5 1.8 10.0 5.6 1.8 10.0 125.0 1.5.8 175.2 51.7	116.1 0.6 51.3 June 162.6 5.0 5.0 4.4 3.3 662.9 5.0 7.3 4.4 3.3 662.9 20.7 7.3 1.8 17.3 3.0 773.7 50.5 1.8 17.3 3.0 773.7 50.5 1.8 17.3 3.0 773.7 50.5 1.8 17.3 3.0 10.0 5.6 1.7 23.7 16.6 2.8 175.2 0.4 23.7 175.2 51.7	Skipjack		17.9		64.5			82.4
June 162.6 5.0 4.4 3.3 662.9 20.7 7.3 4.4 3.3 484.3 773.7 50.5 1.8 17.5 3.0 5.6 1.6 2.8 0.4 23.7 23.7 10.0 125.0 125.0 125.0	June 162.6 5.0 4.4 3.3 662.9 20.7 7.3 4.4 3.3 773.7 50.5 1.8 17.3 3.0 5.6 1.8 17.3 3.0 0.4 23.7 10.0 125.0 125.0 175.2 51.7	Yellowfin		116.1	0.6	51.3			168.0
662.9 20.7 7.3 484.3 50.5 1.8 17.3 3.0 773.7 50.5 1.8 17.3 3.0 5.6 2.8 0.4 2.8 10.0 125.0 125.0 51.7	662.9 20.7 7.3 484.3 773.7 50.5 1.8 17.3 3.0 5.6 1.8 17.3 3.0 5.6 2.8 0.4 23.7 23.7 10.0 125.0 125.0 51.7	Anchovy	June	162.6	5.0				175.3
484.3 773.7 50.5 1.8 17.3 3.0 5.6 1.8 16.6 2.8 0.4 23.7 10.0 125.0 125.0 175.2 51.7	484.3 773.7 50.5 1.8 17.3 3.0 5.6 16.6 2.8 0.4 23.7 10.0 125.0 175.2 51.7	Big-eye scad		662.9	20.7	7.3			690.9
773.7 50.5 1.8 17.3 3.0 5.6 1.8 16.6 2.8 0.4 23.7 23.7 10.0 125.0 125.0 51.7	773.7 50.5 1.8 17.3 3.0 5.6 1.6.6 2.8 0.4 23.7 16.6 2.8 10.0 125.0 125.0 51.7	Herring		484.3				-	484.3
5.6 5.6 16.6 2.8 0.4 2.8 0.4 10.0 125.0 125.0 125.0 177 5.2 51.7	5.6 5.6 16.6 2.8 0.4 23.7 10.0 125.0 125.0 51.7	Round scad	:	773.7	50.5	1.8	17.3	3.0	846, 3
0.4 10.0 175.2 51.7	0.4 10.0 175.2 51.7 51.7	Sardine			5.6		16.6	2.8	25.0
23.7 10.0 175.2 51.7 51.7	23.7 10.0 125.0 51.7 51.2	Silverside		-	0.4				0,'4
I0.0 125.0 175.2 51.7	I0.0 125.0 51.7 51.7	Bonito			•	23.7	·	• •	23.7
175.2 51.7 226.	175.2 51.7	Skipjack		10°0		125.0			135.0
		Yellowfin		175.2		51.7			226.9

-138-

;

Species Month Visavan Sieuyan Deveo Eastern Basilan Northvest TOTAL Anchovy July 5,7 21:1 10.8 9.9 178,5 5 Anchovy 587.9 21:1 10.8 9.9 178,5 5 Berring 100.3 51.0 48.2 5.0 12.3 5 Berring 100.3 51.0 48.2 5.0 12.4 5 6 Berring 100.3 51.0 48.2 5.0 12.4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5<	d Month Vi ad July July ad August l ad September l a						
	scad July ad July ie August 1 scad August 1 scad September 1 n n n n n n n n n n n n n n n n n n n		Davao Gulf	Eastern Moro Gulf	Basilan Zamboanga	Northwest Mindanao	TOTAL
cad 587.9 26.1 10.8 524 9.9 178. 524 ad 1 100.3 5.1.0 48.2 5.0 1 204. a 402.0 5.1.0 48.2 5.0 1 204. a 1 100.3 5.1.0 48.2 5.0 1 204. a 139.9 1.2 44.2 5.0 1 20.4 43. a 139.9 1.2 47.4 6.8 1.88. 43. ad August 37.5 34.1 1.4 3.7 59. ad 1 321.7 7.2 47.4 3.7 59. ad 1 332.6 7.2 1.2.8 6.4 1.45. ad 1 332.6 1.5.2 1.7.8 4.1 4.1 ad 55.5 122.0 0.8 6.5 197. 3.7 ad 1 56.4 1.9 0.5 <td>scad ad August scad August ad September b n n n n n n n</td> <td>5.7</td> <td>2i. l</td> <td></td> <td></td> <td>2.7</td> <td></td>	scad ad August scad August ad September b n n n n n n n	5.7	2i. l			2.7	
ad 1 100.3 51.0 48.2 5.0 1204. a 402.0 5.1 48.2 5.0 1204. a 402.0 5.1 0.48.2 5.0 1204. a 402.0 5.1 0.48.2 5.0 1204. a 43.1 12 44.2 76. a 30.4 12 44.2 76. a 30.4 12 44.2 76. a 30.4 11.2 47.4 11.4 3.7 76. a 30.2 44.2 76. a 30.4 4.1 1.4 3.7 76. a 30.4 1.1 1.4 8.9 14.18. a 4.1 4.1 1.9 8.9 14.18. a 30.5 14.4 11.9 8.9 14.18. a 4.1 4.1 1.9 8.9 14.18. a 3.2 44.2 76. a 4.1 12.0 17.1 8.9 14.18. a 4.1 12.0 17.1 18.4 11.9 14.11. a 55.5 122.0 15.1 0.5 11.17. a 55.5 122.0 15.1 10.5 11.11. a 50.6 4.4 8 25.1 10.5 11.11. a 50.8 14.4 11.9 16.5 11.11.18. a 53.4 11.9 16.5 11.11.19. a 53.4 11.9 16.5 11.11.19. b 53.4 15.1 11.19. b 53.4 11.9 16.5 11.11.19. b 53.4 11.9 16.5 11.11.19. b 53.4 11.9 16.5 11.11.19. b 53.4 11.10.10.1 15.1 11.19. b 53.4 11.10.10.1 15.1 11.10.19. b 53.4 11.10.10.1 15.1 11.10.10.1 11.10.10.1 11.10.10.1 11.10.10.1 11.10.10.1 11.10.10.1 11.10.10.1 11.10.10.1 11.10.1 11.10.10.1 11.	ad ad August 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	587.9	26.1	10.8			624.8
ad 1 100.3 5.1 0 48.2 5.0 1 204. a 402.0 5.1 5.1 6.8 23.7 4.57. 13.4 3.2 44.2 76. 13.4 13.4 3.7 76. 20.4 9.8 1.2 47.4 1.8 3.7 76. ad August 37.5 34.1 1.4 3.7 76. ad 36.8 1.5.9 9.8 0.4 3.5 11.1 8.9 1 415. ad 36.8 1.5.2 7.2 17.8 4.1 415. ad 36.6 1.4 1.9 0.8 6.5 195. ad $1.040.1$ 25.5 122.0 17.8 4.1 415. ad $1.040.1$ 25.1 25.1 33.4 1.9 1.4 1.9 1.4 1.9 1.4 1.9 1.11. ad $1.040.1$ 25.5 1.12.0 1.8 6.5 195. ad $1.040.1$ 2.3.3 39.9 16.5 1.11.1 8.9 1 111. ad $1.040.1$ 2.3.3 39.9 16.5 1.11.1 1.4 1.19. ad $1.040.1$ 2.3.3 39.9 16.5 1.11.1 1.4 1.19. ad $1.040.1$ 2.3.3 39.9 16.5 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1	e e August hugust h scad September h iad September h	168.6			9.9		178.5
402.0 5.1 6.8 23.7 43.7 13.4 13.4 1.2 47.4 76. 13.4 1.2 47.4 188. 76. 139.9 1.2 47.4 188. 76. 139.9 1.2 47.4 1.4 3.7 76. 139.9 1.2 47.4 1.4 3.7 76. 37.5 34.1 1.2 47.4 188. 39.3 38.0 0.4 1.5.9 9.8 0.4 3.7 39.3 392.6 7.2 29.9 4.3.5 11.1 8.9 14.1 177. 392.6 7.2 25.1 17.8 4.1 421. 177. 55.5 122.0 8.2 25.1 0.5 583. 177. 1040.1 23.3 39.9 16.5 177. 33.3 33.4 1040.1 4.8 1.9 25.6 1.95. 583. 1.195. 27.3 93.4 33.4 33.4 1.26.3 1.195. 1.195.	August September	100.3	51.0	48.2	. 5.0		204.
13.4 32.2 44.2 76 13.4 1.2 47.4 1.88. 139.9 1.2 47.4 1.88. 139.9 1.2 47.4 1.88. 139.9 1.2 47.4 3.7 139.9 1.2 47.4 1.88. 37.5 34.1 1.4 3.7 8.0 29.9 43.5 11.1 8.0 29.9 43.5 11.11 8.1 392.6 7.2 392.4 922.6 7.2 25.1 9.8 8.2 25.5 112.1 8.9 55.5 122.0 18.4 1.77 8.2 25.1 0.8 6.5 1377 8.2 25.1 0.8 6.5 136. 156. 156. 16.5 166.5 1169. 151.4 152.0 156.5 1119. 33.4 156.6 93.4 0.8 55.6 11195. 156.7 93.4 33.4 166.3 166.3 <t< td=""><td>August September</td><td>402.0</td><td>5.1</td><td></td><td>6. 8</td><td>23.7</td><td>437.6</td></t<>	August September	402.0	5.1		6. 8	23.7	437.6
13.4 30.4 47.4 30.4 43.5 34.1 1.2 47.4 1.88. 188. <t< td=""><td>August September</td><td></td><td>32.2</td><td>44.2</td><td></td><td></td><td>76.4</td></t<>	August September		32.2	44.2			76.4
139.9 1.2 47.4 1.88. August 37.5 34.1 1.2 47.4 37.5 368.1 15.9 9.8 1.4 3.7 76.5 368.1 15.9 9.8 0.4 3.7 76.5 8.0 29.9 43.5 11.1 8.9 8.1 8.0 29.9 43.5 11.1 4.1 4.1 8.0 29.9 43.5 11.1 4.1 4.1 392.6 7.2 29.9 $4.3.5$ $1.17.8$ 4.1 4.1 8.2 55.5 122.0 25.1 0.8 53.3 $1.77.5$ 8.2 55.1 0.8 14.4 1.9 $1.77.5$ 33.3 566.8 14.4 1.9 25.6 55.5 583.5 151.4 23.3 39.9 16.5 1119.5 539.5 566.8 $1.4.8$ 25.6	August September	13.4		30.4			43.8
August 37.5 34.1 1.4 3.7 76 368.1 15.9 9.8 0.4 3.7 70 8.0 0.4 8.9 13.17 29.9 43.5 111.1 8.9 $1415.$ 8.0 $2.9.9$ 43.5 111.1 8.9 $1415.$ 392.6 7.2 29.9 43.5 117.8 4.1 $421.$ 392.6 7.2 $29.5.1$ $29.5.1$ 4.1 4.1 4.1 55.5 122.0 12.4 1.9 0.8 6.5 $137.$ 8.2 55.1 25.1 0.8 0.8 6.5 $195.$ 151.4 1.9 0.8 14.4 1.9 56.6 58.3 150.6 58.3 33.3 25.6 0.8 58.3 1040.1 23.3 39.9 25.6 53.9 53.9 27.3 93.4 33.4	August September	139.9	1,2	47.4			188.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		37.5	34, 1		+	3.7	76.7
$\begin{bmatrix} 8.0 \\ 1 & 321.7 \\ 392.6 \\ 7.2 \\ 392.6 \\ 7.2 \\ 7.2 \\ 55.5 \\ 8.2 \\ 8.2 \\ 8.2 \\ 8.2 \\ 17.8 \\ 11.1 \\ 8.9 \\ 14.4 \\ 1.9 \\ 10.8 \\ 6.5 \\ 195. \\ 17.8 \\ 4.1 \\ 421. \\ 421. \\ 421. \\ 177. \\ 33.4 \\ 117.8 \\ 4.1 \\ 107. \\ 33.4 \\ 110. \\ 538. \\ 117. \\ 107. \\ 33.4 \\ 110. \\ 538. \\ 111. \\ 107. \\ 33.4 \\ 110. \\ 538. \\ 111. \\ 107. \\ 33.4 \\ 110. \\ 538. \\ 105. \\ 105. \\ 105. \\ 107. \\ 33.4 \\ 110. \\ 100. \\ 105$		368.1	15.9	9.8			393.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	September Spetember	8.0			0.4	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L	1 321.7	29.9	43.5	11.1		1 415 1
$\begin{bmatrix} 18.4 \\ 55.5 \\ 8.2 \\ 8.2 \\ 25.1 \\ 177.9 \\ 150.6 \\ 18.4 \\ 177.9 \\ 15.2 \\ 15.2 \\ 15.2 \\ 14.4 \\ 1.9 \\ 151.4 \\ 151.4 \\ 151.4 \\ 151.4 \\ 25.6 \\ 14.8 \\ 25.6 \\ 16.5 \\ 119. \\ 1040.1 \\ 25.6 \\ 25.6 \\ 25.6 \\ 119. \\ 109. \\ 100. \\$		392.6	7.2		17.8	4.1	421.7
55.5 122.0 $177.$ 8.2 25.1 25.1 $33.$ 8.2 8.2 25.1 $33.$ 8.2 172.9 15.2 0.8 6.5 $195.$ 566.8 14.4 1.9 0.8 6.5 $195.$ 566.8 14.4 1.9 0.8 6.5 $195.$ 151.4 23.3 39.9 16.5 $1119.$ 508.6 4.8 23.3 39.9 16.5 $1119.$ 508.6 4.8 23.3 39.9 16.5 $1119.$ 508.6 4.8 23.3 39.9 16.5 $1119.$ 508.6 4.8 25.6 16.5 $119.$ 508.6 4.8 25.6 16.5 $119.$ 73.3 92.7 69.3 25.6 10.5 $162.$ 93.4 33.4 33.4 $126.$ $126.$				18.4			18.4
8.2 25.1 33. 8.2 25.1 33. September 172.9 15.2 0.8 6.5 195. 566.8 14.4 1.9 583. 583. 195. 151.4 23.3 39.9 16.5 583. 151. 151.4 23.3 39.9 16.5 119. 539. 508.6 4.8 25.6 559. 539. 27.3 92.7 69.3 25.6 162. 93.4 33.4 166.3 162. 162.		55.5		122.0	·		177.5
Image: September 172.9 15.2 0.8 6.5 195. 566.8 14.4 1.9 5.83 583. 583. 583. 583. 583. 583. 583. 583. 583. 583. 583. 583. 583. 583. 583. 583. 583. 553. 583. 553. 539. 533. 533.4 73. 73. 73. 73. 73. 73. 73. 73. <t< td=""><td></td><td></td><td></td><td>25.1</td><td></td><td></td><td>33, 3</td></t<>				25.1			33, 3
1 566.8 14.4 1.9 583. 151.4 151.4 1.9 583. 151.4 23.3 39.9 16.5 1119. 508.6 4.8 23.3 39.9 16.5 1119. 508.6 4.8 25.6 1.196. 539. 73.3 92.7 69.3 25.6 162. 93.4 33.4 33.4 126.		172.9	15.2		0.8	•	195.4
151.4 151.4 508.6 23.3 39.9 16.5 119. 539. 539. 25.6 539.		566.8	14.4	1.9			583.1
1 040.1 23.3 39.9 16.5 119. 508.6 4.8 25.6 539. 25.6 162. 27.3 92.7 69.3 45.7 73. 93.4 126.		151.4					151.4
508.6 4.8 25.6 539. 27.3 92.7 69.3 162. 93.4 33.4 126.		1 040.1	23, 3	39.9	16.5		1 119.8
a contraction of the contraction	c	508.6	4. 8		25.6		539.0
27.3 45.7 73. α 93.4 33.4	c		92.7	69.3			162.0
a 93.4 33.4 126.	c	27.3		45.7			73.0
		93.4		33.4			126.8
						- 1. 	·

-- 139 --

orderes	MORT	Sea	Sea	Gulf	Moro Gulf	Zamboanga	Mindanao	TOTAL	• .
Anchovy	October	233.1		I.6			5.9	240.6	•
Big-eye scad		599.2		21.4	I • I			621.7	
Herring		57.0		8.1				65.1	·
Round scad		364.4		30.5	25.6	16.3	1.5	438.3	
Sardine		343.3			-	61.6	3° 9	408.8	
Şilverside									
Bonito				71.5	139.4			210_9	
Skipjack		38.4		1	25.6			0 4 0	
Yellowfin		92.2		1.7	25.0			118,9	
Anchovy	November	52.3		I. 0		2.4		55.7	1
Big-eye scad		692.3		10.6	0.7			703.6	
Herring		98.6						98. 6	
Round scad		369.1		21.8	11.7	16.6	·	419.2	
Sardine		230. 2		6.1		31.1	3.5	270.9	
Silverside									
Bonito				<u>99.</u> 9	65.9			165.8	
Skipjack		3.6			76.8		0.6	81.0	
Yellowfin				2.8	4.4			7.2	
Anchovy	December	155.7		3.5		4.1		163.3	
Big-eye scad		734.5		19.4	5.0		0.9	759.8	
Herring		169.1						169.1	
Round scad		686.6		9.0	11. I	20.1		726.8	
Sardine		83.3				39.8		126.5	
Silverside									
Bonito				104.3	103. 4		0.1	207.8	
Skipjack		16.6			98.7			115.3	
Yellowfin				1.7	12.3			14.0	

÷

- - - - -		2	Q	4	7	Ň	Ť	ø	I	3	8	12	8	•
(in tons)	Total	465, 442	28, 220	28,014	41,587	36, 555	52,904	44,168	41,801	43, 835	52, 483	40, 292	29, 648	
	Push Net	179	1		•	1	1	I	I.	1.	ı	48	94	
	Round Haul Seine	3, 657	396	332	228	379	524	152	425	335	378	201	202	
·	Otter Trawl	152, 766	13, 384	9, 803	11,974	11, 292	14, 387	12, 666	11, 376	13, 552	16, 066	15, 707	11, 505	
xi) C	Purse Seine	232, 587	10, 119	10, 634	24, 567	20, 678	29, 508	23, 482	21, 822	22, 848	26,966	18,840	13,009	
ALL NILLE	Muro- Ami	26, 475	76	93	117	1	3, 981	3, 193	3, 831	3, 251	4, 418	2, 838	2, 103	
	Hook and Line	6, 521	67	414	327	484	940	458	343	400	748	744	743	
	Gillnet	1,029	94	56	141	109	82	124	113	79	29	54	66	
	Beach Seine	1, 627	86	497	264	224	180	85	76	86	72	32	25	
	Bagnet	40, 601	3, 998	6, 183	3, 969	3, 389	3, 302	4,008	3, 816	3, 282	3, 508	1, 829	1, 867	
	Month		January	February	March	April	May	June	Juły	August	September	October	November	

.

-- 141 --

171

Appendix 8 Monthly Production of Commercial Fishing Vessels by Kind of Fish: January to June, 1973

Jan	mary to Ju	ine, 1973					(Xq)
Kind of Pish	January	February	March	April	May	June	Sub-total
Total	28, 220, 040	28,013,750	41, 586, 640	36, 555, 280	52, 903, 910	44, 167, 590	231, 447, 210
Anchovy	1, 148, 290	1, 213, 410	1, 395, 830	1, 210, 320	1,099,490	1, 152, 830	7, 220, 170
Barracuda	-	1,700	8, 250	13,990	392, 600	38, 280	454, 820
Big-eyed scad	565,760	879,070	679,760	1,007,500	2, 147, 830	888,130	6, 168, 050
Bonito (Oceanic)	425, 190	829,980	1, 208, 960	2, 492, 040	1, 683, 150	517,020	- 7, 156, 340
Butterfly fish		8,760	-	-		-	8,760
Caesio	676,600	96, 610	158, 270	203, 310	2, 192, 880	2, 498, 080	5, 825, 750
Cavella	194,850	282, 480	382, 330	466, 970	1, 617, 310	419, 540	- 3j 363, 480
Cigar fish	11,420	27,010	2, 330	2, 330	280	1, 190	.44,560
Crab	149,020	102,050	148,660	111, 460	109, 830	85, 840	706,860
Crevalle	164,140	121,650	102, 310	202, 560	177, 300	321, 180	1,089,140
Croaker	606,110	632,950	368, 540	697, 540	1,408,780	750, 270	4, 464, 190
Cutlass	122, 200	60, 380	81,320	64, 470	53, 810	89,940	472, 120
Eel	-	90	. -	-		-	. 90
Flatfish	105,660	83,610	45,560	140, 330	977,400	224, 570	1, 577, 130
Flying fish	51,070	51, 290	47, 460	171,300	540, 630	43, 540	905, 290
Garfish	- ¹	180	· -	2,460	-	1, 250	3, 890
Gizzard shad	27, 240	-	2, 210	· ·	† – .	- ``	29, 450
Glass fish	-	7,480	53,940	8,930	11, 920	400	82, 670
Goatfish	. - .	23, 220	26,000	6, 380	32, 780	64, 500	152, 880
Grouper	69,550	219, 360	187, 110	229,160	180, 010	183, 500	1,068,690
Grunt	3, 300	24,120	23,070	35,050	175, 370	28, 280	289,190
Hairtail	621,900	697,860	333, 880	372, 620	329,070	358, 930	2, 714, 260
Halfbeak	31,960	14,610	1,440		-	-	48,010
Hardtail	29, 320	43, 180	77, 840	20,940	2, 960	28, 690	202, 930
Herring	299, 480	269, 510	140, 960	173,410	987, 900	410, 400	2, 281, 660
Leaf fish	3, 280	7,140	- .	-	-	-	10, 420
Leather Jacket	. - .	6,780	-	-	-	-	6,780
Lizard fish	625, 420	546, 300	476,040	617,440	503, 450	621,710	3, 390, 360
Mackerel, chub	2, 918, 480	1,938,700	2, 658, 950	2,810,920	2, 293, 870	2,039,450	14, 660, 370
Mackerel, Frigate	281,000	362, 290	235, 410	143,760	364, 700	297,130	1, 684, 290
Mackerel, sp.	26, 920	102, 880	174, 980	64,920	113, 360	177, 990	661,050
Macolor	l -	-	-	-	-	30,730	30,730
Mojarra	-	25, 480	-		2, 290	-	27,77(
Moonfish	173, 460	220, 220	- 228, 520	504,050	1, 360, 230	106,040	2, 592, 520
Mullet	31,600	300	-	-	101,760	340	134,000
Nemipterid	2, 452, 220	1, 564, 810	1,952;570	2, 189, 410	2, 303, 040	2,047,070	12, 509, 120
Ратрано	423,880	265,080	105,030	141,140	52,770	59, 680	1,047,580
Parrot fish	7,570	19, 370	30, 040	-	-	"	56, 980
Porgy	16, 870	1, 490		46, 790	21, 520	- '	86, 670
Prawns	-	-	7,220	62, 850	63, 830	-	133, 900
Ray	~	5,450	-		1,940	230	7,620
Round scad	8, 475, 830	9, 435, 080		15, 285, 980	21, 145, 530	22, 301, 080	98, 395, 130
Runner	53,040	75, 890	84, 200	183,780	350, 260	171, 360	918, 53
Sardine	1,052,800	1,040,220	840, 310	938, 270	1, 947, 840	965, 930	6, 785, 37
Sea Bass	-	4,700	14, 340	1,190			20, 23
Sea Catfish	-	6,070	11, 440	1,190	7,320	2,200	28,220
Shark	-	16, 590	14, 300	4,760	6,730	15, 580	57,960 5,474,980
Shrimp	1, 202, 250	984,050	1, 180, 460	714, 470	656, 570	737, 180	
Siganid	7,060	18, 980	10, 520		-	- 700	36, 56
Silverside	5,990	13,060	7,300	4,610	10 200	790	31,75
Skipjack	22, 270		58,050	15,800		171,090	309,90
Slipmouth	3, 392, 310	2,950,200	3, 122, 160	2,561,660	5,025,190	3,082,280	20, 133, 80
Snapper	46, 660	189, 370	164, 270	96, 400	224,770	198, 220	919,69
Squid	192,880	377, 320	346, 200	367, 310	613,890	1,059,660	2,957,260
Surgeon fish	392,050	63, 270	16, 690	24, 480	534, 240	199, 720	1, 230, 450 55, 160
Ten Pounder	100 100	0/0 100	54, 820	340	461 370	102 120	1,755,300
Tuna (Yellow fin)	182, 430	260, 180	315, 440	332,760	461, 370	203, 120	
Whiting	020 210	4,660	2, 249, 720	4,620	502 100	1 570 650	9,280
Miscellaneous	920, 710	1,817,260	2, 249, 120	1,803,310	583, 450	1, 572, 650	8,957,100

-142-

Kind of Fish	July 1	August	September	October	November	December	Sub-total	Grand Total
'ola i	41,801,270	43, 834, 620	52, 483, 300	40, 291, 960	29, 648, 260	25, 935, 280	233, 994, 690	465, 441, 900
nchovy	1,054,730	890, 980	738, 990	426, 310	401,400	323, 310	3, 835, 720	11,055,890
arracuda	18,020 947,490	89, 250 1, 550, 220	19, 990 2, 149, 030	15, 500 858, 180	1, 620 892, 440	73,060	217, 440	672,260 13,517,400
g-eyed sead	1,821,880	586,800		420, 330	193, 850	218, 300	3, 914, 920	11,071,260
mito (Oceanic) atterfly fish	- 1,021,000	.700, 000	-	420, 0.90	195,050	210,000	3, 914, 920	8,76
aesio	2, 823, 930	2, 125, 430	3, 093, 540	1,911,100	1, 471, 600	1,814,880	13, 240, 480	19,066,230
avalla	326, 940	427, 980		440, 560	429, 930	464, 200	2, 963, 480	6, 326, 96
igar fisb	380	ļ <u>-</u>	-	790		ļ _`	1,170	45,730
rab	79, 390	82,070	176, 880	331,480	465, 500	229,770	1, 365, 090	. 2,071,95
revalle	231, 130	183,750	148, 590	235,050	371, 210	753, 170	1,922,900	3,012,040
roaker	459, 840	747,670	815, 880	881,640	648,910	718,070	4, 272, 010	8,736,200
utlass	17, 380	58, 560	16, 280	58,680	117,070	100,950	368,920	841,040
el	70 670	282, 240	71,400	16, 280	29,950	44, 510	16, 280	16, 37 2, 240, 210
Jatísh	70, 670 25, 560	8,430	25, 510	104,010	590	34,400	663, 080 94, 490	999,78
lying fish arfish	5, 130		, 010		-	-	5,130	9,02
jzzard shəd	790		2,960		-	45,050	48,800	78, 250
lassfish	2, 820	4, 220	27, 150	10, 690	-	-	44,880	127, 55
oatfish	78,450	81,660	71,110	68,350	51,100	102, 300	452,970	605,85
oby	-			1,530	5,750	6, 360	13, 640	13,64
rouper	93, 120	175, 190	272, 190	202, 790	248, 620	303, 540	1, 295, 450	2, 364, 14
rant	16, 880	51,990	11, 180	47,920	1,630	59,790	189, 390	478, 58
airtail	311,610	260, 440	279, 140	435, 690	386,050	482, 110	2, 155, 040	4,869,300
alfbeak	- 9 790	41,930	- 660	7,070	3, 220 78, 250	6, 570	3, 220 143, 260	51, 230 346, 190
ardtail	8,780 327,760	350,830	399,400	195,040	470, 270	240, 420	1,983,720	4, 265, 380
erring eaf fish	327,700		-	-	-		-	10, 42
eather jacket			-	· _			Į -	6,78
izzard fish	528, 590	738, 550	910, 750	744, 400	718,680	531, 490	4, 172, 460	7, 562, 82
lackerel, chub	1, 956, 380	2, 339, 050	2, 325, 730	2,003,960	1, 540, 270	1,049,270	11, 214, 660	25, 875, 03
lackerel, frigate	283; 020	298,060	337, 120	238, 540	212, 810	146, 700	1, 516, 250	3, 200, 54
lackerel, sp.	53,000	200, 120	132, 890		65, 890	136, 840	666, 170	1, 327, 220
acolor	110,840	17,750	223, 280	145,460	65, 280	40,460	603,070	633,80
lojarra	-		20,060	32,980	146,740	54, 400 215, 730	107,440	135, 216 3, 598, 966
loonfish Sultat	118, 200	139,490 5,410		151,160	4, 330	2, 510	33, 640	167, 640
fullet lemipterid	1,909,590	2,074,410	2, 473, 420	3,049,400	1, 931, 550	1, 662, 990	13, 101, 360	25, 610, 480
ampano	20, 130	2, 220	198, 430	187, 280	198, 250	3, 620	609, 930	1, 657, 510
arrot fish	5, 360	10, 520	4,010	3, 430	1,640	6, 560	31, 520	88, 50
orgy	413, 240	254, 630	75, 460	114,750	45, 320	85, 540	988, 940	1, 075, 61
rawns	790	90,740	169, 980	2, 830	10, 880	24, 200	299, 420	433, 32
ay	5,330	31,640	155, 890	10,160	14,870	9,330	227, 220	234,84
ound sead	18, 840, 770	21, 462, 040	8,053,080	11, 631, 450	6, 926, 070	4, 659, 350	71, 572, 760	169, 967, 89 2, 809, 72
unner 	312, 450	216, 500 937, 350	583, 710 17, 913, 670	6, 564, 810	295, 780 5, 443, 650	497,830	32, 954, 850	39, 740, 22
ndine ca catfish	1, 597, 540	1,060	1, 913, 070	16,810	3,400	400	23,960	52, 18
ark	12, 540	22, 180	8, 270	27, 590	16,990	13,200	100, 770	158, 73
rinn	789, 920	903, 220	959, 720	750,060	819,530	671,950	4, 894, 400	10, 369, 38
a Bass	_	-	-	4, 660	-] -	4,660	24, 89
ganid	20, 330	17, 140	7, 850	55, 220	65, 670	17,810	184,020	220, 58
iver perch	-	÷ '	-	3,030	16, 240	3, 990	23, 260	23, 26
lverside	570	47,500	133, 610	14,030	-	850	196, 560	228, 31
cipjack	6, 620	80, 580	386, 850	105, 640	322, 480 2, 566, 350	250, 730	1, 152, 900	1,462,80 40,571,08
lipmouth happer	2, 932, 040	3, 216, 830 350, 250	4, 120, 510 338, 260	348,090	368,970	407,710	2, 227, 250	3, 146, 94
apper Sadefish	415, 970	330,230	.330, 200		7,010	5, 510	12, 520	12, 52
pid	644, 350	796, 930	884, 450	704, 400	537, 580	649, 490	4, 217, 200	7, 174, 46
urgeon fish	367, 810	476,920	547,770	307, 890	236, 230	298,850	2, 235, 470	3, 465, 92
word fish]	-	· •	2, 550	240	1 -	2, 790	2,79
arpon	- 1	-	-	-	•	7,080	7,080	7,08
en Pounder	-	· ·	•	21,080	1,060	1,230	23, 370	78, 53
una (Yellow fin)	214,870	157, 300	373, 710	218, 170	328, 180	3, 817, 290	5, 109, 520	6, 864, 82 39, 38
hiting		and and	12, 580	7,100	4, 130	6, 290	30, 100	39, 38 14, 507, 70
liscellaneous	1, 514, 130	946, 590	1,021,690	1,435,470	460, 400 2, 830	172, 320	2,830	2,83
rasse	· ·	1 1	-	-	2,000	<u>ا</u>	A, 0.00	4,00

-143-

Appendix 9

Republic of the Philippines

INTERIM REPORT

for

Skipjack Fisheries Development Project

November 1975

JICA Survey Mission

for

Skipjack Fisherics Development Project

in

the Philippines

JAPAN

Hon, Jose Leido Jr.

Secretary Department of Natural Resources Republic of the Philippines

Dear Mr. Leido:

At your govenment's request, the Japan International Cooperation Agency (JICA) dispatched a preliminary survey team in ahead of the joint survey for skipjack, that will be held under the name of "Skipjack Fisheries Development Project in the Philippines".

This interim report is an outcome of our effort, but various findings of us included in this report are tentative and suggestions herein included are subject to the approval by the Japanese Government. In the meantime, however, this could be used as a basis for your policy decision for possible follow-up actions. I hope that this report to be a stepping stone in the course of development of fisheries in your country.

Sincerely yours,

KAZUO YASUFUKU

Leader

JICA Survey Mission for "Skipjack Fisheries Development Project in the Philippines".

2

the second se

CONTENTS

L.	Part	iculars	149
2.	The	Objectives of the Preliminary Survey	149
3.	Metl	nod and Strategy of the Preliminary Survey	149
4.	Rest	ults of the Survey	1.5.0
	(1)	Infanta and environs	150
	(2)	Davao and Malalag Area	151
	(3)	Taeloban and environs	152
5.	Sugg	sestions on the Survey in the future	154
	(1)	Outline of the Coming Survey	154
	(2)	Requirements for the Research Boat	154
	(3)	Requirements for the Site for Bait-pen	155
	(4)	Base for the Research Boat	155
	(5)	Period of the Survey	155
	(6)	Responsibilities for the Future Survey and its Sharing	155
6.	Proc	edure that should be taken in the near Future	156

Appendix

1.	List	of survey team member	157
2.	Perso	mnel Interviewed	158
3.	Reco	rd of activities of survey team	160
4.	List	of possible bait fishes	162
5.		ng seasons for tunas and bait fishes by fishing ground, hing gears	163
6.	Gene	ral map	164
7.	Track	k chats of the air-born surveys	165
	(1)	Infanta and environs	165
	(2)	Davao and Malalag Area	166
	(3)	Tacloban and environs	167

I. PARTICULARS

The government of the Republic of the Philippines has exerted all her effort to promote the development of the fishing industries in her coastal waters from sometime in the past. Along this line, the effort has been focused upon the development of fishery in some unexploited waters and the improvement of fishing techniques. In this connection, the Philippine Government sent note verbals to the Government of Japan twice in the past, last March and May, requesting our coordination in a research project for fishery resources.

The note proposed a joint survey by both two countries for fishery resources in the waters off the Pacific coast of the Philippines, i.e. Southern Selebes Sea and the waters off the Pacific Coast of the Archipelago. For this purpose, the notes required the Japanese Government to provide with a tuna pole-and-line fishing boat as well as (a) Japanese expert(s).

Japanese Government determined to meet the request from the Philippine Government from the viewpoint that it would produce further promotion of friendship and good will between the two countries. So, she sent this preliminary survey team in order to make the result of the coming joint survey more efficient.

- 2. THE OBJECTIVES OF THE PRELIMINARY SURVEY The objectives of this survey is as follows:
 - To know the plan of Philippine Government toward the survey for tuna (skipjack) resources and some relevant situation.
 - (2) Collecting information necessary for the planning of the survey on tuna (skipjack) resources.
 - (3) Collecting information on the availability of live-bait in the assigned area that is indispensable for skipjack pole-and-line fishery.
 - (4) To locate some suitable sites for bait-pen to be settled.

3. METHOD AND STRATEGY OF THE PRELIMINARY SURVEY

To perform the objectives listed above, field surveys were carried out by land, sea and air. In pararell with these survey, interviews and exchanging opinions with the government officials, local fisheries officers and citizens were held.

The place to be surveyed were selected considering the conditions as follows:

 The port to be called should be properly equipped and fuel oil, water and food should be supplied with ease.

-149-

- (2) The base for research boat should be closely located to the balt-station where the balt-pen will be set and in which newly captured live-balt are supposed to be acclimatized for confinement. The balt station to be accesible for the research boat.
- (3) The base should be closely located to fishing ground of local fishery so that both the research boat and bait-pen to be supplied with bait from local fishery.
- (4) The base should not be located far from the anticipated fishing ground for skipjack.
- (5) The base should be accesible from land and easy to communicate with other cities.
- (6) Japanese specialist on live-bait should be properly accomodated somewhere near the base.

Taking into account all the conditions listed above, the following places were adopted as to be surveyed, i.e.

Infanta and environs, Lazon Id.

Tacloban, Leyte Id.

Davao, Mindanao Id.

In addition to these, Iloilo was visited in order to make interviews with the personnels of Oceanic Fisheries (Phil.) Inc. which has been operating skipjack pole-and-line fishery in the Sulu Sea.

4. RESULTS OF THE SURVEY

(1) Infanta and environs

Infanta is right in the middle of Luzon I, and is located to the east of Manila. We anticipated, prior to the survey, that Infanta might be advantageous as a base for the reserve boat because it would allow her to cover all over the Pacific coast of Luzon.

Air-born surveys were carried out on Oct. 17 by two light planes. Flight course was determined based on perior studies of marine chart. The coast line of cast central-Luzon is rather simple and is open to the ocean without being protected. In general, sea bottom go abruptly to the deep not far away from the coast. In this geographical condition, unfortunately, it is of very little hope to be successful in catching livebalt in quantity. As only exception to this, there is a cove at the mouth of River Pulo that runs all the way through Infanta and drains into the Pacific. The water in the said area was observed to be muddy enough not to allow the probability of the presence of bait fish. The west coast of Polillo I. is somewhat similar to the coast south of Infanta and has only inlet in Polillo region. Although this inlet had been expected to be suitable as the base for the research boat, it was found that the networks of submerged coral reefs would not allow the boat to center into.

In addition to this, marine charts tells that tidal current is fast in this area: Judging from the color, the water in Palillo straight is oceanic, indicating the possibility of distribution of oceanic fishes such as skipjack. Resume : Considering various environmental and geographical conditions, we are rather pessimistic in trying to locate a suitable base for the survey in Infanta and environs. This should not be take as we are denying the value of the area as possible fishing ground for skipjack.

(2) Davao and Malalag Area

In this area the following surveys were carried out; Geographical observations along the coast line both by land and air and also from shipboard, examination of fishes landed at landing spots and market, interviews and consultations with local fisheries officer and etc.

Davao is a modernized city located deep inside Davao Gulf and protected with Samal I, in the east and Talikud I. in the South-east respectively.

The port of Davao is equipped well enough to be called by research boat, and no problem is expected in supplying fuel oil, water, food and etc.

According to local information, tunas are more abundant in Moro Gulf compared to off Davao Gulf. However, tunas, specially yellowfin and skipjack, is distributed in and out of Davao Gulf and being utilized by local purse-seine in combination with "payaw". Some twenty thousands of Japanese population, mainly from Okinawa, had been settled in Davao area in prewar period and were practising pole-and-line skipjack fishery in the area.

In Davao and environs local fishery called "basnig" are commonly operated all over the area, and among the catch of them are included

- 151 -

such fishes as potential live-balt for pole-and-line fishery, i.e. sardines and anchevies, silversides and scads and round scads and etc. If it is possible to obtain supply of live-balt from these local fishery in the main survey, it will be of great help and will increase the chance of successful fishing for skipjack.

As for the site for setting bait-pen, or atacking the live-bait in floating net-enclosure, we are in the opinion that two places, Malipano and Malalag, will be best. Malipano is located on the west coast of Samal I. and there is a cove, apparently suitable as bait pen station, protected from outside by several islets. Either Malag and Malipano is enough protected not to necessitate to take monsoon into consideration. Also in both area the water is deep enough to allow the setting of bait pen. If compared among the two, Malipano is more recommendable because of its conveniences in communications, living conditions for Japanese expert (s), accessibility and etc. However, prior agreement or approval may be necessary to facilitate the setting up of bait-pen in the said area since the farm is said to have been authorized to use the area in a long team contract.

Resume : Davao region is one of the most promising area : as a base for the future survey, because of its well equipped harbour, favourable prospects for skipjack resources and also favourable aspect in supply of live-balt from the daily catch of local fishery.

(3) Tacloban and environs

The city of Tacloban is located at the inermost part of San Pedro Bay that lies between Leyte I. and Samar I., and the bay leads to Samar Sea through San Juanico Straight between these two islands. In Leyte Gulf the water is shallow to afford good fishing ground for local seiners, but skipjack which is oceanic is distribution, enter into the Gulf so far as off Guiaan but does not go further inside, according to local expert. According to him, yellowfin tuna is caught in numbers by local handliners from small skiffs off the eastern coast of Samar I., but he has not observed skipjack school often in the area. However, since this is not a result of survey conducted intentionally, it is not always necessary to believe this to deny all the possibility of finding skipjack in the area.

-152-

There is no problem either with harbour facilities or with supplies in Tacloban. The port is often called by ocean-going vessels. There are floral "basnig" fisheries distributed in San Pedro Bay area and they catch fishes like anchovies, sardines, herrings, scads and round scads, all are possible bait for skipjack pole-and-line fishery. This will be advantageous for the survey in two ways, the research boat may be able to catch live-bait herself without difficult and she may be able to obtain bait from local fisherman. As for the abundance of anchovies (Species undetermined) in the area, local fisheries officer pointed out that it undergoes drastic annual fluctuation, although the catch of sardines are staple. This should be borned in mind in planning the main survey.

Local officers added that each fishes as suitable for live-bait are caught in larger quantities in Samar Sea than in San Pedro Bay, off Catbalogan and nearby waters, and the location for the site of bait-pen will be more easier in the former. Nevertheless, the shortest distance from the mouth of Leyte Gulf to the mouth of San Pedro Bay is approximately 50 nautical miles, and it takes about two and a half hours from Tacloban to Catbalogan through San Juanico Straight. Furthermore, there are several unfovourable features with the straight such as fast tidal current, shallow water, narrow and complicated waterway. It is said to be necessary to be attended by local pilot to pass through the channel. In coming survey, it may not be easy to keep bait alive for many days in bait-pen and it means that the research boat will have to commute daily between fishing ground for skipjack and bait station. Therefore, Catbalogan and nearby area in Samar Sea will not be adequate as a base for the main survey.

All in all, we strongly recommend a cove as the site of bait-pen station north of Lipata on Samar I., as it is adequately sheltered geographically and closely located to Tacloban. In this time of survey, no more suitable site was found on the coast south of Tacloban than this Cove.

Resume : There is only one difficulty with Tacloban as the base for the main survey, that is anticipated fishing ground for skipjack is distant from possible bait-pen station. However, taking into all other conditions

-153--

into account, Tacloban is advisable as a base for the coming survey. There is no problem with the harbour facility and bait-fish catching supply of it from local fishery is promising.

SUGGESTIONS ON THE COMING SURVEY

5.

As the result of the exchanging opinions with the officials of the Philippine Government, and also as the result of field surveys, we reached to the conclusion that pole-and-line fishing is the most suitable method in exploiting skipjack resources in the assigned area. We are in the opinion that the coming survey should adopt this as its method. Along this line, we believe it's our responsibility to leave some practical suggestions to the coming survey.

(1) Outline of the Coming Survey

The survey should include two aspects, independent of each other i. e. experimental fishing for skipjack from a research boat and feasibility test of bait-fish in the bait-pen. However, these two parts of suvey should be carried out in close connection. Details of each aspect will be as follows:

(a) Survey from the research boat

Oceangraphical and meteorological observation

Experimental fishing for skipjack

Estimation of the abundance and deliniation of the distribution of

skipjack through visual observations with help of acoustic techniques.

Biological observations of skipjack caught in the above experiments. Survival test of bait-fish in the bait-well on shipboard.

(b) Feasibility test of bait-fish in bait-pen

Long-term survival test of balt-fish should be carried out in this

way. The material should be provided by the catch of the research boat or by local fishery.

(2) Requirements for the research boat

The research boat should be equipped with these as follows;

Fishing gears efficient enough to catch both skipjack and bait-fish,

- Apparatus for oceangraphical and meteorological observations.
- Living-facilities good enough to accomodate a few Philippine scientists

ta sa ato ng paga di satu ta kana kana ta ta kang di satu sa

and crews, as well as Japanese scientist.

At least one skiff for the purpose of transportation and assisting the mother boat in her bait-fish operation.

(3) Requirements for the site for balt-pen

Bait station were the bait-pen will be set and anchored to the bottom should be protected geographically from external waters. The water should be deep enough to allow the research boat to approach to the baitpen without difficulty. Accommodation for the bait-fish specialist should be secured on land close to the bait-station.

Bait station should be located so as to allow enough supply of bait from local fishery.

(4) Base for the research boat

Base for the research boat should be selected carefully so as to allow the boat to get enough supply of fuel oil, foods and also recreation of the crews. At present, we strongly suggest to take Davao and Tacloban as the base.

(5) Period of the Survey

(6)

Period and season in which survey goes should be chosen in relation with the locality of the base, fishing ground and seasonal wind in the area to be surveyed.

Responsibilities for the future survey and its sharing

It is hoped the coming survey to be carried out in close cooperation between Japanese and Philippine governments. In order to make the cooperation effective, responsibility be shared by both two countries as shown below;

(a) Responsibilities that should be taken by Japanese Government

1. To provide a research boat with Japanese Crews and shipboad scientist(s).

2. To provide Japanese expert(s) for live-balt experiment.

3. To provide necessary equipment and fishing gears,

(b) Responsibilities that should be taken by Philippine Government

1. To send personnels, including scientists or technicians, to work on shipboad as counter parts.

- 2. To provide both the research boat and bait-pen with suitable quantity of live-bait. In order to meet the requirement, either buying catch from or chartering local fishing boat may be advisable.
- 3. To provide personnel or laborers necessary for the management and maintenance of bait-pen and live-bait experiment.
- 4. To secure the site for the setting of bait-pen.
- 5. To take all the necessary procedures to avoid possible friction with local fishery and local fisherman.
- 6. To provide Japanese personnels with all the necessary conveniences,
- 7. To provide all other local expenses necessary to accomplish the survey.

6. PROCEDURES THAT SHOULD BE TAKEN IN NEAR FUTURE

This survey team, with her all of influence, will be pursuacing the Japanese Government to actualize the said plan in coordination with the Philippine Government, along the course shown in this report.

This survey team also wishes the Philippine Government to take all the necessary procedures to actualize the plan.

Out Tentative Schedule is as follows;

- Recommendations or suggestions of Philippine Government on this preliminary report are requested to be submitted to the JICA Headquarters by the end of December, 1975.
- b. Taking the above-mentioned recommendation into account, English edition of the final report of this preliminary survey will be submitted to the Philippine Government by the end of March, 1976.
- c. The Japanese Government will assign (an) expert(s) to negotiate and finalise the official terms of reference around July, 1976.
- d. The main survey will be commenced around October, 1976.

Acknowledgement

The Japanese survey mission will express the great gratitude for the kind cooperation of the Government of the Philippines and provincial governments given to them during the survey.

Appendix 1

LIST OF SURVEY TEAM MEMBER

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		the state of the state of
Leader	Mr, Kazuo Yasufuku	President,
		Japan Marine Fishery Resource Research Center

Fishing ground	Mr. Michile Hashimoto	Development and Exten- sion Division,
		Research and Develop- ment Dept.
•		Fishery Agency

Fishery resources	Mr. Takeshi Asahi	

Bait-fish	Mr. Keiichiro Mori	Shimor
		Seikai
		Resear Fisher
	•	

Planning Mr. Shigeo Miyamoto

Coordinator

Mr. Syuji Ishida

International Affairs Division Oceanic Fishery Dept, Pishery Agency

Shimonoseki Branch Seikai Regional Fisheries Research Laboratory, Fishery Agency

Fisheries Advicer, Japan International Cooperation Agency

General Affair Dept. Japan Marine Fishery Resource Research Center Appendix 2

PERSONNEL INTERVIEWED

Mr. Antonio J. Aguenca

Mr. Felis R. Gonzales

Mrs. Aurora D. Reyes

Mr. Exequiel R. Aguillar

Mr. Ricardo Caboteja

Mr. Bartolome B. Castillo

Mr. Mauel R. Brucelas

Mr. Hachiro Miura

Mr. Fumitoshi Suzuka

Mr. Horacio B. Torres

Mr, Ricardo T, Ang

Mrs. Marcianz Lozada

Mr. Gregorio L. Escritor Mr. Antonio Pulanco

Mr. Dominador Lin

Mr. Tatsuo Kawachi

Mr. Utao Kobayashi

Mr. Oshiro

Mr. Yoshiaki Sugiyama

Mr. Koike

Mr. Matias Curb

Mr. Arthur C. Simpson

Assist, -Secretary, Dept. of Natural Resources, Quezon

Director, Bureau of Fish. Aqua. Resor. Manila

Planning Staff, B. F. A. R., Manila

Supervising Fish. Technologist, Deep-Sea Fish. Sec. B. F. A. R., Manila

Senior Fishery Technologist, B. P. A. R., Manila

Chief, Oceanographic Sec., B. F. A. R., Manila

Sen. Pish, Biologist, Tech. Serv. Div. B. F. A. R.

Colombo Plan Expert, B. F. A. R.

Taiyo Fishery Co.

Asst. Regional Director, B. F. A. R., Davao

Chairman and President, Ricsan Development Corporation, Davao

Owner of bag-net boats, 293 L. Carcia St., Davao

Regional Directors, B. F. A. R., Tacloban

Supervising Fish. Technologist, B.F.A.R., Tacloban

Owner of bag-nets. Bislig, Tanawan, Tacloban City

Deputy Chief, Aquaculture Dept., SEAFDEC

Senior Researcher, Aquaculture Dept., SEAFDEC

Master Fisherman, Oceanic Fisheries (Phil.) Inc.

Vice-President, Oceanic Fisheries (Phil.) Inc.

Manager, Afro-Asia Dept., Ajinomoto Co., Inc.

Regional Directer, B. F. A. R., Iloilo

Directors, Resource Evaluation, S.C.S. F.D.C.P., FAO

-158-

Mr. Arthur Woodland	Programme Leader, S. C.S., F. D.C. P., FAO
Mr, Brling O. Oswald	Deputy Programe Leader, S. C. S., F. D. C. P., FAO
Mr. Keh-oh Kim	Fishery Training Officer, S.C.S., F.D.C.P. FAO
Mr. Kenneth J. Rosenberg	Senior Economist, S.C.S., F.D.C.P., FAO

and the second

-159-

3

RECORD OF ACTIVITIES OF SURVEY TEAM

Oct. 14 Arrived in Manila 16:30 by KL 862

15 Meeting with staffs of Japanese Embassy and JICA Manila Office.

1.44

Acres 1 and

16 Visited Navotas Fish Mkt., for interview with local fisheries officers and for examination of fishes caught by local fishery. Courtesy call to Mr. Gonzales, Director of BFAR in the afternoon, explained the mission and had exchanged opinions on general aspect of the survey.

Detailed discussion with Mrs. Reyes on itinerary schedule.

- 17 Technical discussion with Mrs. Reves and technical staffs at BFAR. Air-bornes survey in and around Infanta area in the afternoon.
- 18 Left Manila to Davao
- 19 Surveyed coastal geography from sea and from land. Examination of fishes at local fish market at Panaplata on Samar I.
- 20 Visited BFAR Davao Office, interviewed Mr. Torres, assistant director. Visited Mrs. Lozada, the owner of "banca" with Mr. Torres to get informed of local fishery.

Observation of basnig operation at sea, 08:00 - 11:00 P.M.

- 21 Visited local market and landing spot for the examination of fishes and landing facilities. From 09:00, air-borne survey along the west coast of Samar I. and South of Malalag. Visited Malalag for survey from land, 13:00 - 19:00 Technical discussion with Mr. Torres and Mrs. Lozada.
- 22 Left Davao to Tacloban
- 23 Visited BPAR Tacloban Office, to have technical discussion withMr. Escritor and his staff, 09:30 11:00

In the evening, held a meeting with Japanes experts dispatched by JICA

24 Examination of catches of local fishery at Tanauan landing and Tacloban Market. Visited fish processing plant near Tacloban in the afternoon.

- Air-born survey in San Pedro Bay, San Juanico Straight through Catbalogan areas. Technical discussion with Mr. Pulanco, BPAR in the afternoon.
- Left Tecloban to Hoilo. Visited Hoilo Port, interviewed Japanese master fisherman operating pole-and-line fishing in Sulu Sea, Technical discussion on fishing condition and on live-bait. Interviewed Mr. Sugiyama, vice-president of Oceanic Fisheries (Phil.) Inc.
- 27

25

Examination of local fish catch at Iloilo Central Supermarket. Visited BFAR Iloilo Office to meet Mr. Guieb, the director and his staff. Held technical discussion on local fishery 09:45 - 11:30. Visited SEAFDEC Mariculture Dept. in the afternoon.

- 28 Left Iloilo to Manila. Exchange of opinions on the preparation of interim report.
- 29 Preparing the manuscript of the report.
- 30 Courtesy call to Mr, Aguenzan Assist. Sec., Dept. of Nat. Resources, 09:30. Technical discussion with Mrs. Reyes at BFAR Reception dinner at Japanese Ambassador's court.

Discussion with Mr. Muraoka, Japan Ambassy and Mr. Goto, JICA

31 Interviewed Mr. Sugiyama, of Oceanic Fisheries (Phil.) Inc., 09:30 - 10:18.

Nov.

- 1 Preparation of the report at hotel
- 3 Co

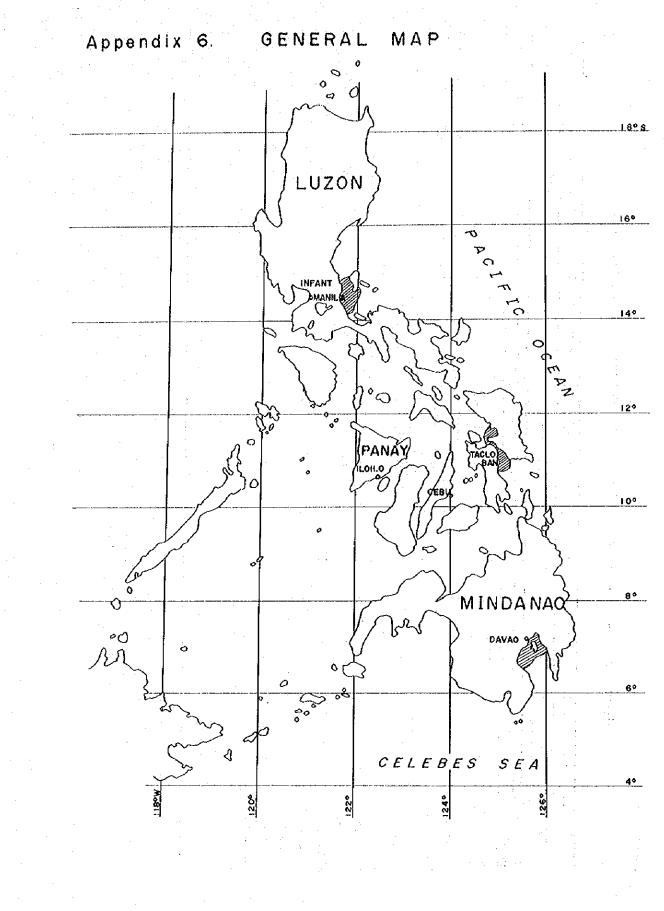
2

Courtesy call to Mr. Gonzales. Leave Manila to Japan

$= Appendix_{0} + 4 + 476 + 566 + 610 + 496 + 756 + 756 + 610 + 496 + 756 + 610 + 600 + 600 + 756 + 600 + 756 + 600 + 756 + 600 + 756 + 600 + 756 + 600 + 756 + 600 + 756 + 7$

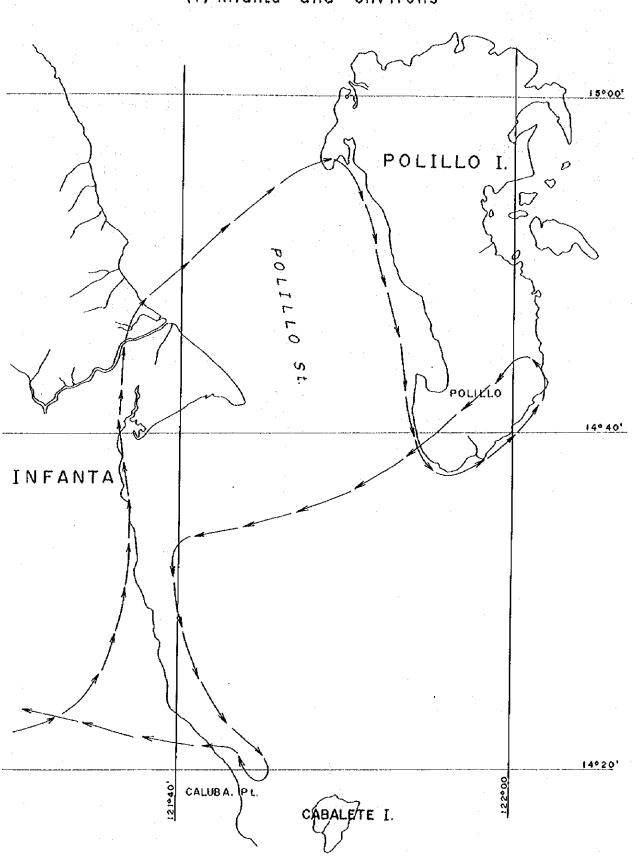
LIST OF POSSIBLE BAIT FISHES DISTRIBUTED IN PHILIPPINE WATERS

English Name	Scientific Name
	Stolephorus spp.
Anchovy, deep bodied	Scutengraulis sp.
Sardine	Sardinella spp.
Sardine, deep-bodied	Sardinella perforate
Sardine, fimbriated	Sardinella fimbriata
Herring	Harengula spp.
Sprat	Spratelloides delicatulus and
e de la composición d La composición de la c	Spratelloides japonicus
Round herring	Dussumieria spp.
Silverside	Atherina spp., Stenatherina spp.,
	Planesus spp., Alanetta spp. and
 A second sec second second sec	some other atherinid fishes
Cardinalfish	Apogon spp. and related apogonid fishes
Caesio	Caesio spp.
Cavalla	Caranx spp. and related genera and species
Scad, big-eyed	Selar crumenophthalmus
Round scad	Decapterus spp.
Mackerel	Restrelliger spp.
Mackerel, short-bodied	Restrelliger brachysoma
Damselfish	Pomacentridae, Chromidae and
	Pseudochromidae

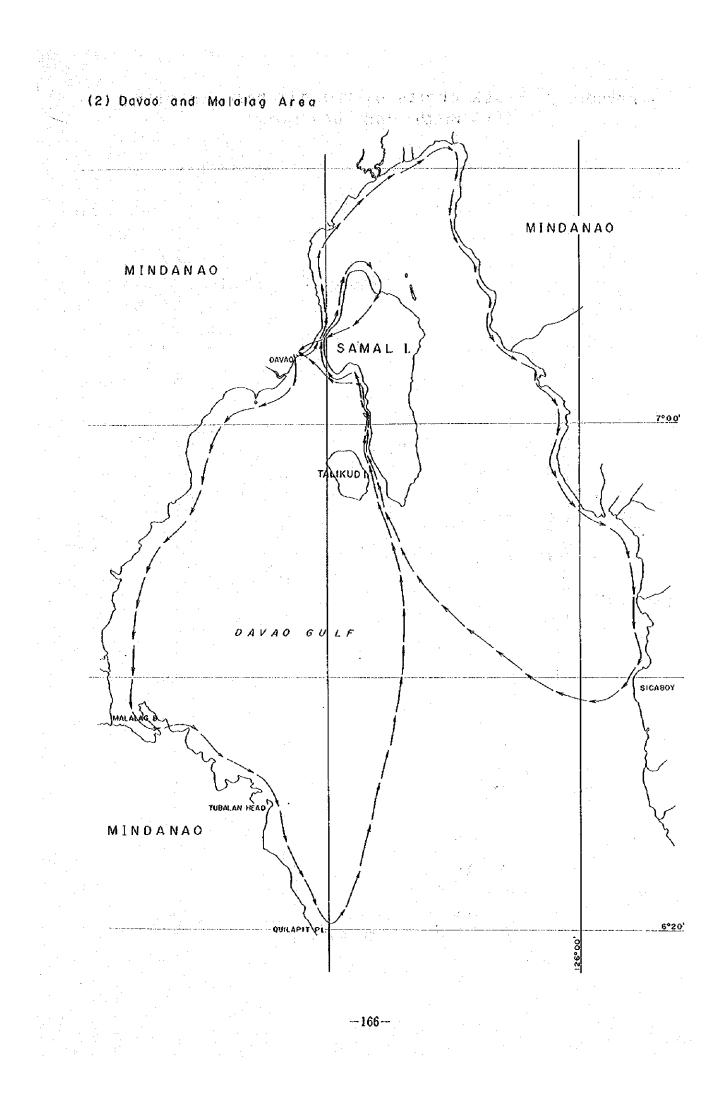

-- 162 --

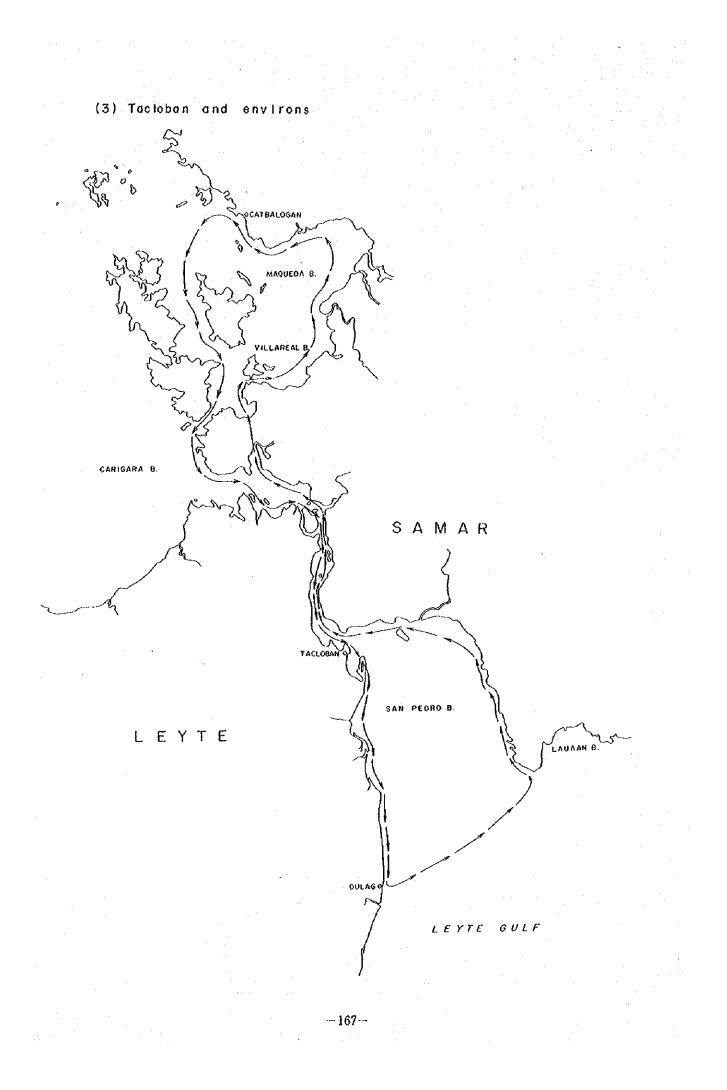
Appendix 5

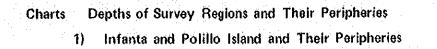
Fishing seasons of tunas and bait-fishes by fishing ground, by fishing gears

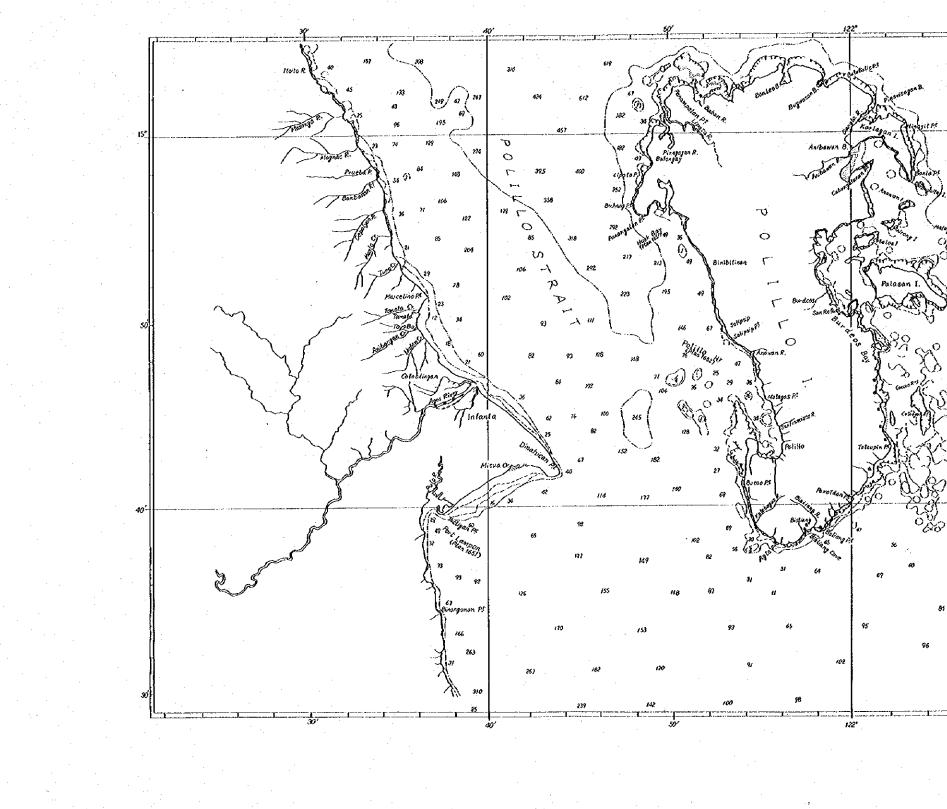

Mather Behavior Athabient Setting and Data Langeon Data Data Attrantion Data Langeon Data Data Attrantion Hamble Langeon Tranhen Langeon T	Locs/ hame	Tuna,	Tuna, Bonitos	A	Anchovy	Ŭ	Caesio	ł	Round scad	Ra	Rastrelliger	•••	Sardine, Herring	Spanis	Spanish mackerel
No. Cear Season Gear Li, H,	Ceret Lame	Alb Katc	acore herite	-	Dilis	Ц Ц Ц	agang Ikid		Golanggong	A) H,	asa-hasa umaham		Tamban Tunsov	ĩa	ngingi
L L.H.FC 1-1 L.H.FC 3-9 L.H.FC 3-9 L.H.FC 3-9 E.F.FC.SS.OT. 5-10 E.F.FC.S.COT.S.GN 6-13 FC.S.S.GN 6-14 FC.S.S.GN 6-13 E.F.FC.S.COT.S.GN 6-14 FC.S.S.GN 6-13 E.F.FC.S.COT.S.GN 6-14 FC.S.S.GN 6-15 FC.S.S.GN 6-16 FC.S.S.GN 6-12 E.R.F.FC.GN 6-16 FC.S.S.GN 6-12 E.R.F.FC.GN 6-16 FC.S.S.GN 6-12 E.R.S.FC.GN 6-13 FC.S.S.GN 6-12 E.R.F.FC.GN 6-16 FC.S.S.GN 6-12 E.R.S.FC.GN 6-12 E.R.S.FC.GN 6-13 FC.S.S.GN	ground	Season		Season		Season	Gear	Season		Season		Season	Gear	Season	Gear
3-9 L.H.FC 3-9 FC.S.B.KS 3-9 B.K.FC.SOT. 6-10 B.K.FC.S.OT. 6-10 B.K.FC.S.OT. 6-10 B.K.FC.S.OT. 6-10 B.K.FC.S.OT. 6-10 B.K.FC.S.OT. 6-10 B.K.FC.S.COT. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.S.COT. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.SC.OT. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.SC.OT. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.SC.ON. 6-10 B.K.FC.SC.OT. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.OT. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.OT. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.OT. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.OT. 6-10 B.K.FC.OT. 6-10 B.K.FC.OT. 6-10 B.K.FC.OT.S.CON. 6-10 B.K.FC.S.COT. 6-10 B.K	Babuyan Channel	1-10	L.H.FC	2•1,	FC. S. B. BS										
5-10 L.H.FC 3-4 FC.S.8.B 6-10 R.B. FC.B.OT. 6-10 R.B. OT.FC 10-2 R.B. SF.COT.S.GN 6-12 R.B. ST.FC.S.N 6-13 R.B. SF.COT.S.GN 6-14 R.B. SF.COT.S.GN 6-13 R.B. SF.COT.S.GN 6-14 R.B. SF.COT.S.GN 6-13 R.B. SF.COT.S.GN 6-14 7-14 12 1	ton Bay		L.H.FC		FC.S.B.BS			3-9	B. PS. F.C. BS OT					1	
f 5-10 L.H.FC 3-4 FC.S.S.R 2-10 R.S.GT.FC 2-10 R.S.FC.GS.GN. 7 1-4 L.H.FC 9-10 FC.S.S.R 2-10 S.S.FC.SC.GT. 2-10 B.R.S.FC.OT.S.GN. 7 1-4 L.H.FC 9-10 FC.S.S.R 5-12 S.S.FC.SC.GT. 2-10 B.R.S.FC.OT.S.GN. 7 1-4 L.H.FC 9-10 FC.S.S.R 5-12 S.S.FC.SC.GT. 2-10 B.R.S.FC.OT.S.GN. 7 1-4 L.H.FC 1-12 FC.S.S.R 5-12 S.S.FC.SC.GT. 10-2 R.S.FC.OT.S.GN. 3 L.H.FC 1-12 FC.S.S.R 5-12 S.R.FC.SC.OT. 2-6 R.S.OT.FC 1-12 R.S.FC.OT.S.GN. 3 L.H.FC 1-12 FC.S.S.R 5-12 R.S.FC.SC.OT. 2-6 R.S.GT.FC 3-6 R.S.GT.FC 3-6 R.S.FC.OT.S.GN. 3 L.H.FC 1-12 F.H.FC 1-12 R.F.FC R.S.GT.FC 3-6 R.S.GT.FC 3-6 R.S.GT.COT.S.GN. </td <td>San Miquel Bay</td> <td></td> <td></td> <td>6-10</td> <td>FC.S.B.BS</td> <td></td> <td></td> <td>6-10</td> <td>B. PS. FC. BS. OT.</td> <td>6-10</td> <td>PS. B. OT. FC</td> <td>10-2</td> <td>B. PS. BS. FC. OT. S. GN.</td> <td>6-12</td> <td>т. н т 8</td>	San Miquel Bay			6-10	FC.S.B.BS			6-10	B. PS. FC. BS. OT.	6-10	PS. B. OT. FC	10-2	B. PS. BS. FC. OT. S. GN.	6-12	т. н т 8
5-10 L.H.FC 9-10 FC.S.B.KS 5-10 B.R.B.OT.FC 2-10 B.R.G.T.FC 2-10 B.R.G.T.G.N.G.N. Y 1-4 L.H.FC 9-10 FC.S.B.KS 5-12 B.K.FC.KS.OT. 2-5 R.B.OT.FC 2-10 B.R.G.T.G.N.G.N. Y 10-2 L.H.FC 0-2 FC.S.B.KS 10-2 B.K.FC.KS.OT. 2-5 R.B.OT.FC 2-10 B.RS.FC.OT.S.G.N. 3-4 L.H.FC 1-12 FC.S.B.KS 5-12 B.K.FC.SC.OT. 9-6 R.B.OT.FC 1-12 B.K.G.OT.S.G.N. 3-4 L.H.FC 1-12 FC.S.B.KS 7-9 B.K.FC.SC.OT. 9-6 R.B.OT.FC 1-12 B.K.G.OT.S.G.N. 3 L.H.FC 1-4 L.H.FC 1-5 FC.S.B.KS 7-9 B.S.FC.OT.S.G.N. 3-5 TL.H.I. 4 L.H.FC 1-4 L.H.FC 1-79 B.S.S.FC.OT.S.G.N. 3-5 TL.H.I. 5 FC.S.B.KS 1-12 B.S.S.S.FC.OT.S.G.N. 3-5 R.H.H.I. 1-12 B.S.S.S.FC.OT.S.G.N. 3-5 TL.H.I. 5 F.S.S.S.S.S.S.S.S.S.S.S.S.	onoy Gulf	5-10	L.H.FC		FC. S. B. BS			2-10	B. R. FC. B. OT.	2-10	PS. B. OT. FC		B. PS. IS. FC. OT. S. CN.		
7-1 1-4 L.H.F.C 9-10 FC.S.3.85 5-12 3.5.7.5.6.07.1 2.5 FS.B.OT.FC 1-12 FC.S.3.85 10-2 3.5.8 1.1.1.2 FC.S.3.85 10-2 3.5.12 3.5.8.7.5.07.1 10-2 3.5.8.07.7 1-12 FC.S.3.85 10-2 3.5.8.67.7 1-12 FC.S.3.85 10-2 3.5.8.07.7 1-12 FC.S.3.85 3-5 7.1.4.1 3 L.H.FC 1-12 FC.S.8.85 7-9 3.5.8.7.07.7 7-9 3.5.8.7.07.5.03 3-5 7L.H.1 4 L.H.FC 11-5 FC.S.8.85 7-9 3.5.8.07 7-9 3.5.8.7.07.5.03 3-5 7L.H.1 5 1.4 L.H.FC 11-5 FC.S.8.85 7-9 3.5.8.7.007 7-9 3.5.8.7.007.5.03 3-5 7L.H.1 67 1.4 L.H.FC 1-12 L.H.FC 1-12 3.5.7.075.075.03 3-5 7L.H.1 1.12 L.H.FC 1-5 FC.S.8.85 7-9 3.8.8.8.7.0075.03 3-5 7L.H.1 1.12 L.H.FC 1-5 FC.S.8.85 7-9 3.8.8.8.7.0075.03 <td>Albay Gulf</td> <td>5-10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2-10</td> <td>B. PS. FC. BS. OT.</td> <td>2-10</td> <td>PS. B. OT. FC</td> <td>2-10.</td> <td>B. PS. IS. FC. OT. S. GN.</td> <td></td> <td></td>	Albay Gulf	5-10						2-10	B. PS. FC. BS. OT.	2-10	PS. B. OT. FC	2-10.	B. PS. IS. FC. OT. S. GN.		
1 1-4 L.H.F.C 9-10 FC.S.B.38 10-2 E.M.F.C 10-1 FC.S.B.38 10-2 E.M.F.C 10-2 FC.S.B.38 3-5 TL.H.F.C 1 -12 FC.S.B.38 5-12 B.FS.FC.SS.OT 9-6 FS.B.OT.FC 1-12 EC.S.B.38 3-5 TL.H.I.L.H.FC 3 1 L.H.FC 11-5 FC.S.B.38 5-12 B.FS.FC.SS.OT 9-6 FS.B.OT.FC 1-12 E.S.S.FC.OT.S.CN. 3-5 TL.H.I.L.H.FC 1 -14 L.H.FC 11-5 FC.S.B.38 7-9 B.FS.FC.ST.OT. 7-9 B.FS.G.OT.FC 1-12 B.FS.S.FC.OT.S.CN. 3-5 TL.H.I.L.H.FC 1 -14 L.H.FC 1-4 L.H.FC 1-5 FC.S.B.38 7-9 B.FS.FC.ST.OT. 7-9 B.FS.FC.OT.S.CN. 3-5 TL.H.I.L.H.FC 1 -12 L.H.FC 1-5 FC.S.B.38 7-9 B.FS.FC.OT.S.CN. 3-5 TL.H.I.L.H.FC 1 -12 L.H.FC 1-5 FC.S.B.38 1-12 B.FS.FC.OT.S.CN. 3-5 B.F.H.I.H.FC 1 -12 L.H.FC 1-5 FC.S.B.38 1-14 1-12 <td< td=""><td>Samar Sea</td><td>·.</td><td></td><td>9-10</td><td>FC.S.B.BS</td><td></td><td></td><td>5-12</td><td>B. P. FC. B. OT.</td><td>2-5</td><td>PS.B.OT. FC</td><td></td><td></td><td></td><td></td></td<>	Samar Sea	·.		9-10	FC.S.B.BS			5-12	B. P. FC. B. OT.	2-5	PS.B.OT. FC				
V 10-2 L. H. FC 10-2 FC.S.B.BS 10-2 B. R. FC. S. OT. 10-2 R. B. OT. FC 1-12 FC.S.B.BS 3-4 L. H. FC 11-12 FC.S.B.BS 5-12 B. R. FC. S. OT. 10-2 R. B. OT. FC 1-12 B. S. S. FC. OT.S. GN. 3-5 TL. H. L 3 L. H. FC 11-5 FC.S.B.BS 5-12 B. R. FC. S. OT. 9-6 R. B. OT. FC 1-12 B. S. S. FC. OT.S. GN. 3-5 TL. H. L 3 L. H. FC 11-5 FC.S.B.BS 7-9 B. R. B. OT. FC 1-12 B. R. S. FC. OT.S. GN. 3-5 TL. H. L 3 L. H. FC 11-4 L. H. FC 7-9 B. R. S. S. FC. OT.S. GN. 3-5 TL. H. L 47 L. H. FC 11-5 FC.S.B.BS 7-9 B. R. S. S. FC. OT.S. GN. 3-5 TL. H. L 1-12 L. H. FC 11-5 FC.S.B.S 7-9 B. R. S. S. FC. OT.S. GN. 3-5 TL. H. L 1-12 L. H. FC 1-12 B. R. S. S. FC. OT.S. GN. 3-5 1L. H. L 1-12 B. R. S. S. FC. OT.S. GN. 3-5 1-12 L. H. FC 1-5 FC.S.B. S. S. S. S. S. S. S. S. C. OT.S. GN. 3-5 1-12 B. R. S. S. FC. OT.S. GN	jueda Bay	1-4	L.H.FC		FC. S. B. BS				•	;					
I-12 FC.S.B.BS 5-12 B.FS.FC.SOT. 9-6 FS.B.OT.FC 1-12 E.S.S.COT.S.GN. 3-5 TL.H.I L.H.FC 11-5 FC.S.B.BS 5-12 B.FS.FC.SOT. 9-6 FS.B.OT.FC 1-12 E.S.S.COT.S.GN. 3-5 TL.H.I L.H.FC 11-5 FC.S.B.BS 7-9 B.FS.FC.ST.COT.S.CN. 3-5 TL.H.I L.H.FC 11-5 FC.S.B.BS 1-12 B.FS.FC.OT.S.CN. 3-5 TL.H.I L.H.FC 11-5 FC.S.B.S 1-12 B.FS.FC.OT.S.CN. 3-5 TL.H.I L.H.FC 1-5 FC.S.B.S 1-12 B.FS.FC.OT.S.CN. 3-5 TL.H.I L.H.FC 1-5 FC.S.B.S 1-12 B.FS.FC.OT.S.CN. 3-5 TL.H.I L.H.FC 1-5 FC.S.B.S 1-12 B.FS.FC.OT.S.CN. 3-5 TL.H.I S Sapiano FT.H.FC 1-12 B.FS.FC.OT.S.CN. 1-12 B.FC.OT.S.CN. 5-5 5-5 S Sapiano FT. Handline L.H.FC 1-12 B.FS.FC.OT.S.CN. 5-5 5-5 S Sapiano FT. Bastra	Carigara Bay	10-2	L.H.FC	· · · · · · ·	FC.S.B.BS			10-2	B. PS. FC. BS. OT.	10-2	PS. B. OT. FC				
3-4 L.H.FC II-S FC.S.B.BS 7-9 B.FS.FC.BS.OT. 3 L.H.FC 11-5 FC.S.B.BS 7-9 B.FS.FC.BS.OT. ay 1-4 L.H.FC 11-5 FC.S.B.BS 7-9 B.FS.FC.BS.OT. ay 1-4 L.H.FC 11-5 FC.S.B.BS 1-1 1-12 ay 1-4 L.H.FC 1-5 FC.S.B.BS 1-12 1-12 ay 1-12 L.H.FC 1-5 FC.S.B.SS 1-12 Sapiano ST Eaby trawit L L S Sapaiano ST Eaby trawit <td>ayan Sea</td> <td></td> <td></td> <td>1-12</td> <td>FC. S. B. BS</td> <td></td> <td></td> <td>5-12</td> <td>B. PS. F.C. 28. OT.</td> <td></td> <td>PS. B. OT. FC</td> <td></td> <td>B. PS. IN. FC. OT. S. GN.</td> <td>3-5</td> <td>TL.H.L.PS</td>	ayan Sea			1-12	FC. S. B. BS			5-12	B. PS. F.C. 28. OT.		PS. B. OT. FC		B. PS. IN. FC. OT. S. GN.	3-5	TL.H.L.PS
3 L. H. FC 3 L. H. FC 7-9 B. FS. FC. SS. OT. 7-9 bay 1-4 L. H. FC 11-5 FC. S. B. SS 7-9 B. FS. FC. SS. OT. 7-9 Bay 1-4 L. H. FC 1-5 FC. S. B. SS 1-12 1-12 L. H. FC Bay 1-12 L. H. FC 1-5 FC. S. B. SS 1-12 f 1-12 L. H. FC Sabitive 1-12 f 1-12 L. H. FC I5 FC. S. B. SS a 1-12 L. H. FC I5 FC. S. B. SS a 1-12 L. H. FC I5 I12 a 1-12 L. H. FC I5 FC. S. B. SS a 1-12 L. H. FC I5 I12 a 1-12 L. H. FC I5 I12 a 1-12 L. H. FC I5 I12 a 1-12 L. H. FC I12 I12 a I12 L. H. FC I12 I12 a I12 L. H. FC I12 I12 b Sapiano B Baby trawi I12 b B Bashig GN GN	igao Str.	9-4 5	L.H.FC		FC.S.B.BS						. '				•
id 1-4 L.H. FC 11-5 FC.S. B.BS ay 1-4 L.H. FC 1-5 FC.S. B.BS in 12 L.H. FC 1-5 FC.S. B. BS in 12 L.H. FC 1-5 FC.S. B. SS in 2 Sapiano ST Baby trawi S Sapiano ST Sapiano S Sapiano ST St OT Other trawi TL Thill thet	od Bay	m	L.H.FC					7-9	B. PS. FC. BS. OT.		-	7-9	B. 75. 85. FC. OT. S. CN.		
ay 1-4 L.H.FC ay 1-4 L.H.FC 1-4 L.H.FC 1-12 L.H.FC 1 Handline 1 E S Sapiano S Sapiano S Sapiano S Sapiano S Sapiano S <td>agat Sound</td> <td></td> <td></td> <td>11-5</td> <td>FC.S.B.BS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>:</td> <td>1.11</td>	agat Sound			11-5	FC.S.B.BS									:	1.11
Bay 1-4 L. H. FC f 1-12 L. H. FC ea 1-12 L. H. FC ea 1-12 L. H. FC ea 1-12 L. H. FC absolution B Sapiano b B Bashig GN c1 Of Of Carcutal Handline L Longline Note: FC Fish corral B Bashig GN Of Oter travit The Truit net	goog Bay	÷-7	L.H.FC												
1 1-12 L.H.FC 1-5 FC.S.B.3S ea 1-12 L.H.FC 1-12 L.H.FC Note: FC FSh corral H Handline S Sapiano BT Baby trawi B Bashig GN Gli net CN OT Otter trawi TL	ejalar Bay	1-1 4-1	L.H.FC												
1-12 L.H.FC 1-12 L.H.FC 1-12 L.H.FC Note: FC S Sapiano S Sapy trawi E Bashig CN Gill net E Branch seine OT Otter trawi TL Troll line	an Bay			1-2	FC.S.B.38							1-12	B. P. B. FC. OT. S. GN.	·	-
1-12 L.H.FC Handline Note : FC Fish corral H S Sapiano BT B Bashig GN B Bashig GN C1 Ottertawi TL D1 Ottertawi TL	ao Gulf	1-12	L.H.FC												•
FC Fish corral H Handline L S Sapiano BT Baby trawl B Bashig GN Gill net BS Branch seine FS Purse seine OT Otter trawl TL Troll line	ebes Sea		L.H.FC												
		Note :		Fish corr apiano ashig tranch se			andline aby trawl ill net roll line roll line								

-163-

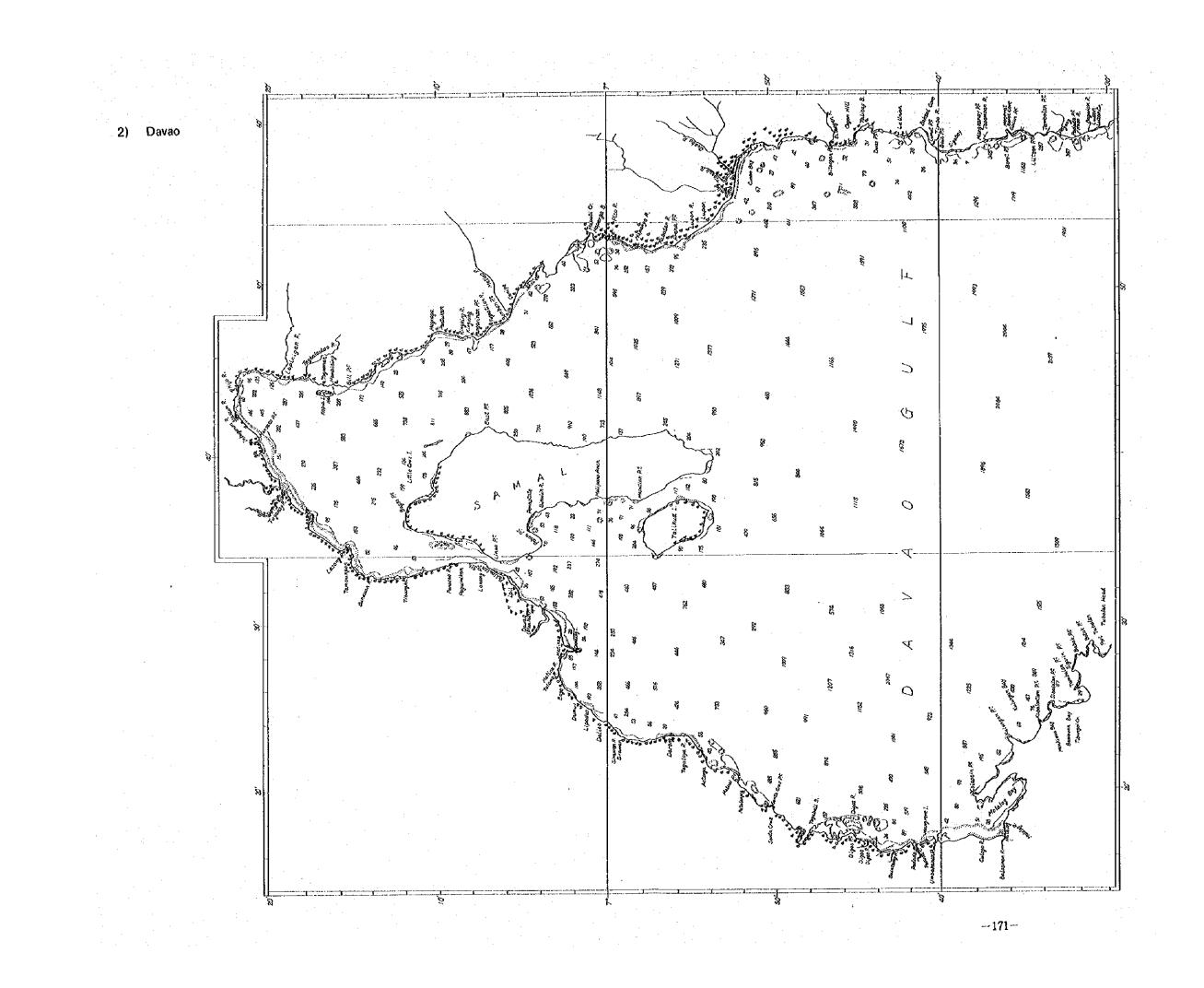

-164-

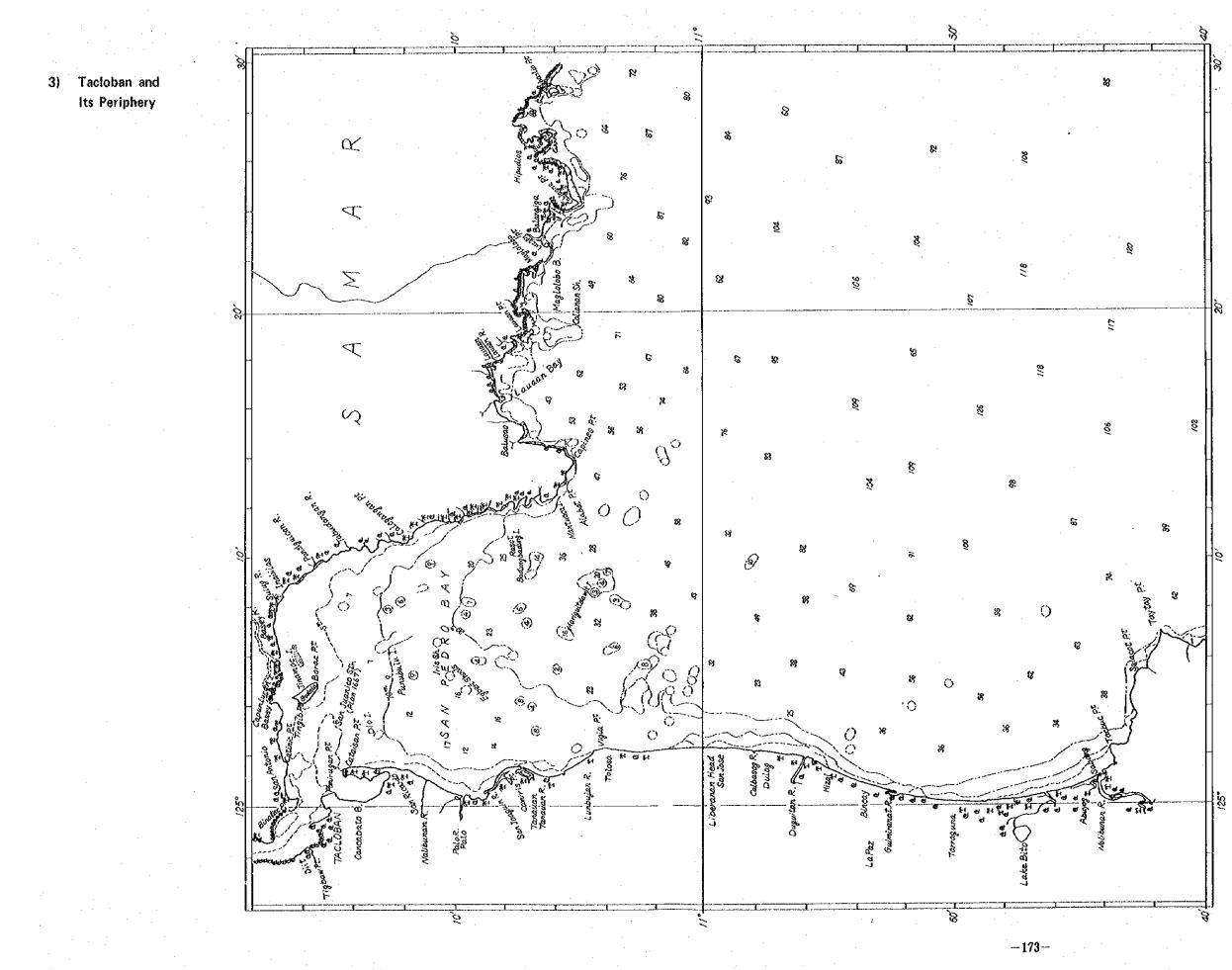

- **F**.V.




Appendix 7 Track charts of the air-born surveys (1) Infanta and environs


-165--



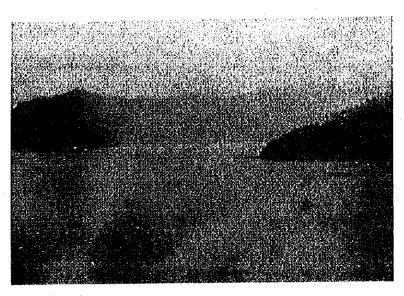


.

.

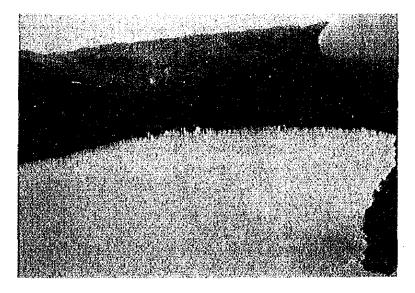
. .

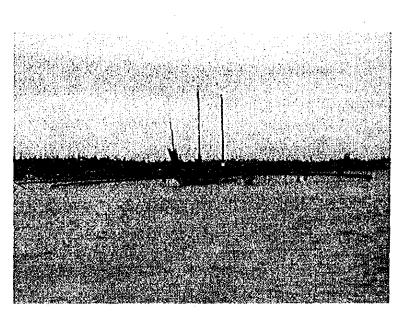
Photos


Japanese survey team visiting the Navotas Fish Market

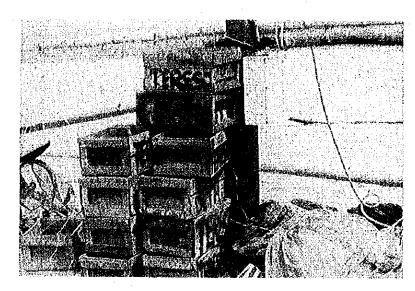
Amphibious vehicle used in landing fish at Navotas fish market.

Indian anchovies landed at the market and the iron container used as a unit for trading.


Small inlet near Sigaboy on the east coast of Davao Gulf


Periphery of Malipano on Samal Island in Davao Gulf


Small inlet at the mouth of San Pedro Bay


Small inlet at the mouth of San Pedro Bay

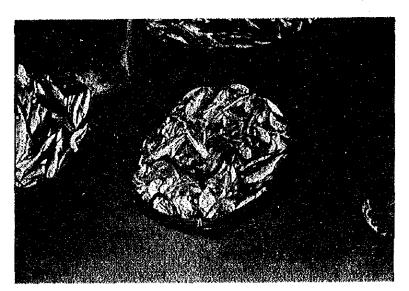
Basnig net fishing boat in Davao Gulf

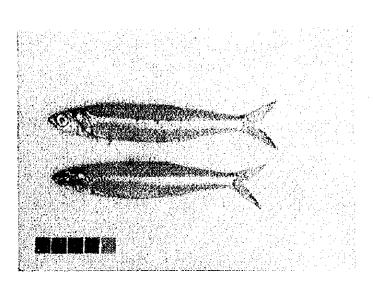
Fish gathering lamp used by a Basnig net fishing boat

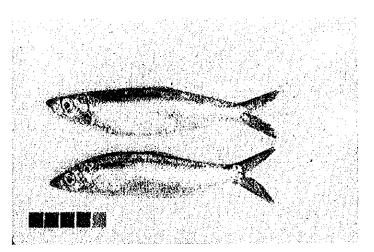
Basnig net and fish containers

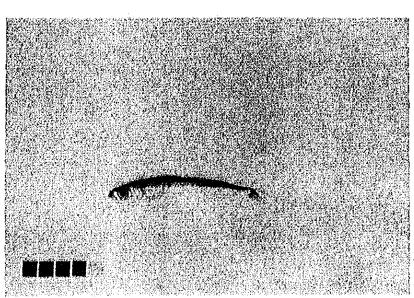
A member of the Japanese survey team, interviews a member of a Basnig net fishing boat crew.

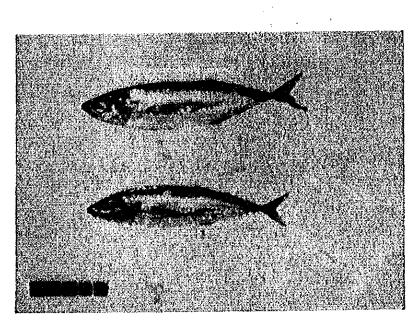
ł

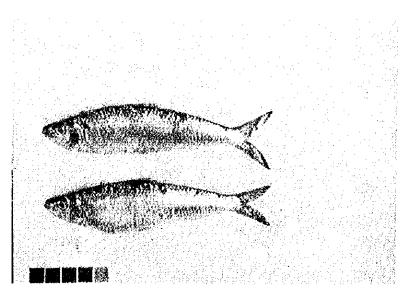

Basnig ship engaged in gathering fish with a fish gathering lamp

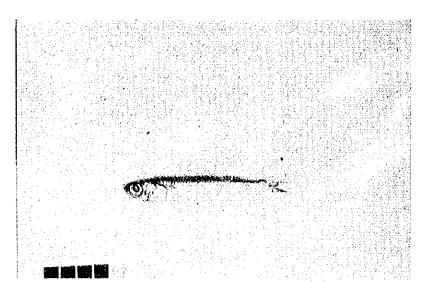

Crew of a Basnig ship engaged in drawing the net

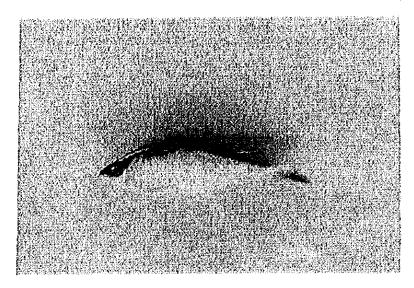

Crew of Basnig fishing boat engaged in landing fish

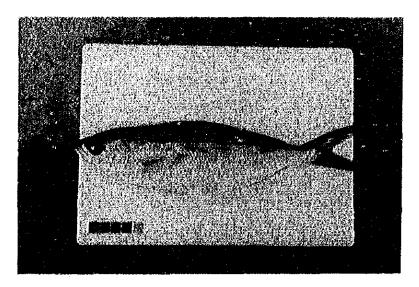

Fish caught with a Basnig net

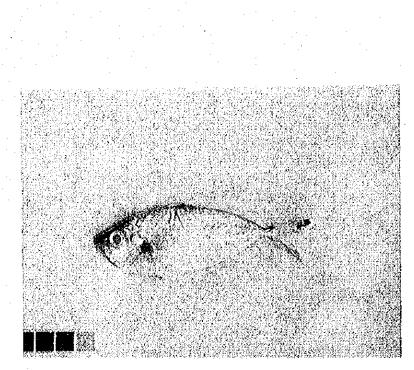

Engraulidae Engraulis sp.


Dussumieriidae Dussumieria hasselti Bleeker


Caesiodae Caesio sp.

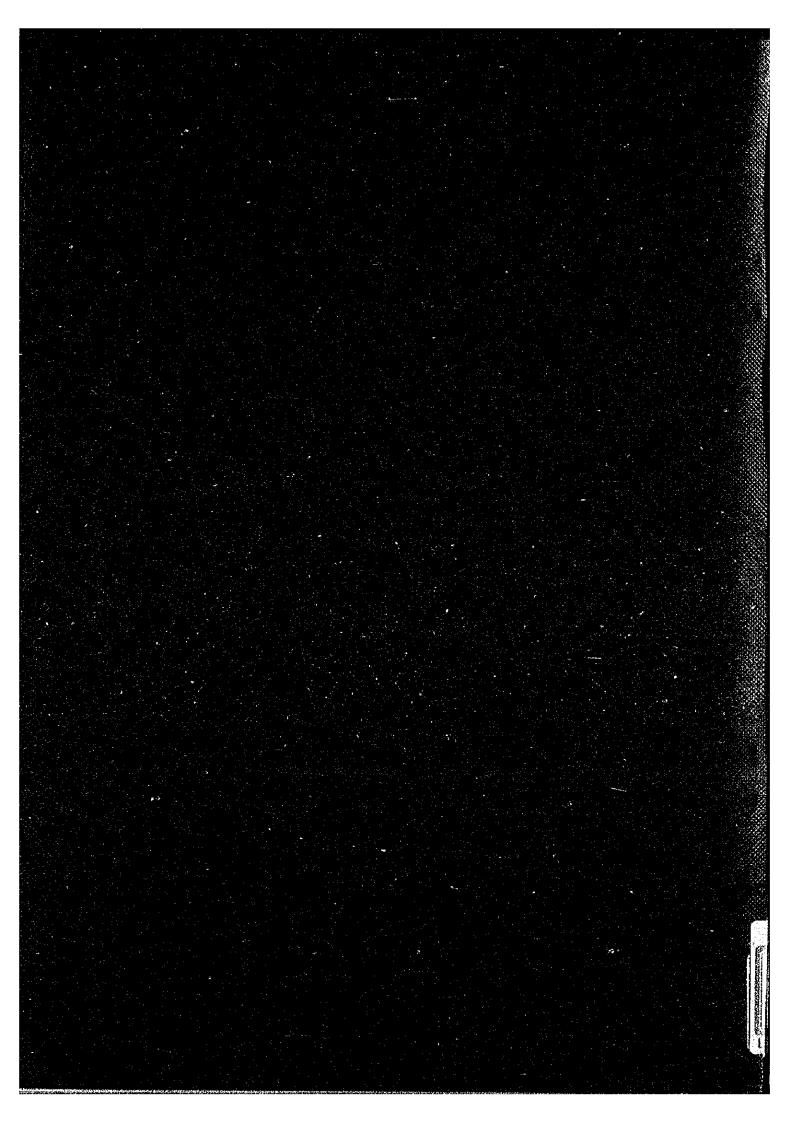

Scombridae Rastrelliger Kanagurta (Cuvier)


Clupeidae


Atherinidae Allanetta forskali (Rupell)

Clupeidae Herengula tawilis (?)

Caesiodae Caesio sp.



Leiognathidae Leiognathus equulus (Forskal)

Scombridae Katsuwonus pelamis (Linne)

Fishing vessel operating nearby "Payaw"

