The construction of the Work Division-I and Division-II will be commenced in January 1984 and completed in June 1987 within 4 dry seasons. The irrigation water will be supplied from November 1987. The construction of the Work Division-III is commenced in January 1987 and completed in December 1989 within 3 years.

4.2.6 Cost Estimate

4.2.6.1 Construction Cost

The construction cost comprises direct construction cost, engineering cost, land aquisition cost and cost for operation and maintenance facilities. All of the costs are estimated based on the current prices in September 1981. A physical contingency of the cost estimate is 15% of the construction cost in principle. 10% of the construction cost is considered as a physical contingency for engineering cost. No physical contingency is taken into account for manufacturing cost of gates for the diversion dam. A price contingency applied is assumed 6.5% per annum for the foreign currency component and 10% per annum for the Peso currency component. Further, the ratio of foreign and Peso currency components of each unit price is estimated on the basis of the following assumption referring to NIA criteria.

		(Unit: %)
Item	Foreign Currency	Peso Currency
Cement	75	25
Steel Bar and Hardware	80	20
Fuel and Oil	50	50
Equipment Rental	75	25
Sheet Pile and Steel Pile	100	0
Labour	0	100
Gate for Diversion Dam	100	0

The direct construction cost is estimated based on the detail unit price analysis and quantity calculation of the project works.

The total construction cost of the project facilities is estimated to be P432.5 million by financial basis, consisting of P191.8 million equivalent to foreign currency and P240.7 million of Peso currency.

The price contingency is estimated taking into account of annual price escalation rates and the cost disbursement schedule based on the construction schedule. Thus, the financial construction cost for the implementation of the project is estimated to be P628.1 million consisting of P256.5 million equivalent to foreign currency and P371.6 million of Peso currency as shown in Table 4.2.7.

4.2.6.2 Operation and Maintenance Cost

Annual operation and maintenance costs at the full stage of the project are estimated at #4.0 million comprising salaries and wages of staff and labours, office expenses, operation cost of vehicles and equipments, repairing cost of the project facilities.

4.2.6.3 Replacement Cost

Gates and attachments and the O&M equipments are to be replaced at a certain time within 50 years of the project life. The useful life is assumed to be 25 years for the gates and attachments and 10 years for the O&M equipments, respectively.

4.2.7 Irrigation Benefit and Farmer's Economy

4.2.7.1 Irrigation Benefit

Irrigation benefit to be expected is defined as the difference of primary profit from crops between future with project and without project conditions. On the basis of the estimated production cost and gross income, primary profit for crop per ha is calculated both on future with and without project conditions as follows:

	h	lith Proje	ct	Wi	<u>(Unit</u> thout Pro	
Item	Gross Income	Pro- duction Cost	Primary Profit	Gross Income	Pro- duction Cost	Primary Profit
1) Paddy						
Irrigated (wet)	8,415	3,206	5,209	4,413	2,422	1,991
Irrigated (dry)	9,350	3,334	6,016	4,899	2,534	2,365
Rainfed (wet)	-	·	-	3,871	2,273	1,598
2) Mongo beans	1,840	1,097	743	1,840	1,097	743

Applying the primary profit per crop estimated above the crop area, total primary profits accrued from agricultural production for the irrigation project are estimated both on without and with project conditions. Based on this result, irrigation benefit is calculated. The benefit will be expected to increase linearly year by year and reach the full benefit in and after five years after the completion of the project. The irrigation benefit at the full stage is estimated at about P93.4 million.

4.2.7.2 Farm Economy

In order to assess the irrigation project from farmers' economy view point, analyses of farm budget for typical farmer are examined under both the future without project and the future with project conditions.

After the implementation of the irrigation project, year round irrigation will permit double cropping of paddy per annum for the entire project area and increasing unit yield of paddy to 5 ton per ha for dry season paddy and 4.5 ton per ha for wet season paddy, respectively. As a result, drastic increase on farm income in the future with project condition can be expected in the typical farmer. On the other hand substantial increase on farm income will be expected in the future without project condition. The typical farm budgets in both future without and with conditions are as shown below.

·	-	(Un	it: P 10 ³)
Item	Single Crop of Paddy (Rainfed)	Single Crop of Paddy (Irrigated)	Double Crop of Paddy (Irrigated)
I) Gross Income	14.3	14.8	19.4
 Farm income Off-farm income 	5.3 9.0	5.9 8.9	11.3 8.1
II) Gross Outgo	14.0	14.6	18.9
 Production cost Living Expenses 	3.6 10.4	4.2 10.4	8.5 10.4
III) Net Reserve (Capacity to pay)	<u>0.3</u>	<u>0.2</u>	<u>0.5</u>
IV) Net Farm Income (1-3) 1.7	1.7	2.8

a) Without Project Condition

b) With Project Condition

	Item	P103
1)	Gross Income	29.9
	 Farm income Off-farm income 	21.2 8.7
II)	Gross Outgo	26.5
	 Production cost Living expenses 	13.0 13.5
III)	Net Reserve (Capacity to pay)	3.4
IV)	Net Farm Income (1 - 3)	8.2

Farm incomes with project on the typical farm under single cropping of paddy will be expected to become about 4 times of that of without project condition and about 2 times on the typical farm under double cropping of paddy.

Net farm incomes with project on the typical farm on single cropping of paddy will be expected to increase 5 and about 3 times on the typical farm under double cropping of paddy.

Annual net reserve or capacity to pay will be P200 to P300 on single cropping farm and P500 on double cropping of paddy farm in without project condition and become P3,400 in with project condition.

The increased net reserve will offer incentives to the farmers and substantial capacity to pay will enable them to pay irrigation fee.

From the productivities of land and labor, it is expected that the irrigation project will highly improve such productivities to 49 P/man-day of labor productivity and 6,300 P/ha of land productivity.

CHAPTER 5 ORGANIZATION

5.1 Flood Control Project

5.1.1 Present Organization

The river administration in the Philippines is centralized under the Ministry of Public Works and Highways (MPWH), and the Ministry have responsibilities in flood control and drainage.

At present, the flood control works of the Pampanga River are being managed under an organization which was established for the implementation of the Pampanga River Control Project in 1950. The organization at present is shown in Fig. 5.1.1, and the Pampanga River Control System-Project Management Office (PRCS-PMO) is located in Apalit, Pampanga. At present, however, PRCS-PMO deals not only with the construction works but also the operation and maintenance of completed river facilities such as levee, bank protection, flood gate and so on.

5.1.2 Organization in Implementation Stage

The MPWH will entirely be responsible for the implementation of the project, and necessary consultations will be made to the organization concerned. The present organization will be developed for implementing the new project as shown in Fig. 5.1.2.

The MPWH will be the executing agency for the new project. The Minister will take charge of coordination with all the relevant government agencies and regional administrative organizations in implementing the project.

5.1.3 Organization for Operation and Maintenance

After completion of the flood control facilities, the operation and maintenance of those facilities will be entrusted to the PRCS-PMO under the control of the MPWH. The present organization of the PRCS-PMO will be able to conduct the operation and maintenance for the project.

At present, during flooding time, an emergency force is organized for flood fighting activities as shown in Fig. 5.1.3. This emergency force would be enforced to cover the whole new project area in the future.

5.2 Irrigation Project

5.2.1 Organization for the Project Execution

The National Irrigation Administration is given responsibilities for planning, developing, operating and managing all national irrigation systems in the country. NIA's powers are exercised by a Board of Directors and an Administrator. The Administrator is responsible for management of the agency and is assisted by four Assistant Administrators.

The NIA will become the executing agency for the Proposed Irrigation and Drainage Project. It will be responsible for design, construction of project works and supervision for the Project. The Assistant Administrator for Project development and implementation will be responsible for overall execution of the Proposed Project, who will coordinate activities of all relevant governmental agencies in connection with implementation of the Project.

The Project Execution Office will be established in the irrigation development area. A project manager of the proposed project will manage all field works in the Project Execution Office, assisted by three divisions, construction management division, administrative and accounting division and engineering division. Necessary staff will be supplied by the NIA. The proposed organization chart is as shown in Fig. 5.2.1.

5.2.2 Organization for Operation and Maintenance

5.2.2.1 0&M Office

For operation and maintenance purposes, operation and maintenance office will be established and the project would be administrated by a project manager after the implementation of the Project. The project manager will be responsible for management of the irrigation service area divided into five irrigation districts being assisted by four support divisions which deal with administration, collection of irrigation fee, operation and agricultural development. The proposed organization is illustrated on Fig. 5.2.2. Staff necessary for the office accounts for about 200 persons as shown in Appendix IX.

Water management will be carried out for the area more than 50 ha of terminal irrigation unit by the 0&M office. One ditchtender will manage two irrigation units (100 ha), while one water management technician would supervise five ditchtenders (500 ha). One irrigation district supervisor would be in charge of a water management division with five water management technicians (about 2,500 ha). For effective operation of irrigation water supply, measuring device will be installed at one turnout in each irrigation unit (50 ha) at least and irrigation water is recorded. Further the 0&M office will install office computer programed irrigation water distribution diagrams for the irrigation service area according to the irrigation schedule decided in the Coordination Committee mentioned later. It will provide radio operation networks in the irrigation services area in which branches of networks

- 62 -

will be established by each 500 ha of irrigation area. Each branch will be facilitated with one set of meteological gauging equipment. The staff of each branch, usually water management technician, will inform daily rainfall and discharge of water to the 0&M head office through radio operation network. The head office will calculate and modify diversion water requirement at each irrigation block with 500 ha by the office computer on the basis of the said rainfall and cropping calendar prevailing in the blocks and will direct gate operation at each said block. Through water management technician, gate operation will be directed in the irrigation block at lower level.

From the standpoint of staffing, it is inevitable for effective water management that qualities of ditchtenders be upgraded. For the purpose special education program for ditchtenders will be carried out in one irrigation district, Arayat irrigation district (1,333 ha), where irrigation and drainage facilities will be completed first.

With regard to maintenance of irrigation and drainage facilities, the O&M office will maintain these facilities. Rehabilitation of large scaled structures in these facilities, however, will be executed as a new project.

As far as collection of irrigation fee is concerned, collection service division will collect irrigation fee through the Project Federation of Irrigator's Group in the final stage, however, the collection service division will collect fee from each irrigator's group with joint responsibility at the initial stage. Management of collection fee will be done by introduction of the office computer mentioned before which will registrate name of beneficiaries and other any items necessary for collection of fee.

5.2.2.2 Coordination Committee

Farm management is one of the most essential factors for success of the Project through extension services and credit supply. It is proposed for the purpose that coordination committee at the field level will be instituted among the Project Manager, representatives from irrigator's group, Region III of Ministry of Agriculture, CBP, PNB, ACA and LBP. The Project Manager will be appointed Chairman of the Coordination Committee.

Through the Coordination Committee irrigation schedule for the land of each irrigator's group and program of Masagana 99 will be planned and decided. Extension services for the beneficiaries will be provided through Region III office of Ministry of Agriculture. Credit services will be supplied through CBP, PNB, ACA and LBP. Water management will be executed under responsibility of the Project Manager.

5.2.3 Farmer's Organization

For the management, operation and maintenance of irrigation and drainage systems below terminal irrigation unit of 50 ha, irrigator's group (IG) will be organized by beneficiaries in the irrigation development area. The IG will be organized by each irrigation unit of 50 ha consisting of about 20 beneficiaries and 220 of IGs will be established in the area. For good coordination and cooperation, one-project federations of irrigator's groups will be established through affiliation of irrigator's groups taking into consideration canal network and organization of 0&M office. Further governmental agencies (0&M office) and irrigator's groups will be closely interlinked through the liaison between a supervisor of each irrigation district and a representative of each irrigation district federation and through the liaison between water management technician of each 500 ha irrigation block and a representative of each irrigator's group in view of technical aspect for the project-wide irrigation water control. Administratively the inter-linkage will be realized through the participation of representatives of project federation of irrigator's groups and project manager in field coordination committee meetings.

With regard to implementation schedule of irrigator's groups, irrigation district federations and project federation, organization of these will be executed for the period of two years from July 1985 to June 1987 after preparation of parcellary maps in the irrigation development area as shown in Fig. 5.2.3.

From the social aspects, the irrigator's groups will be organized by farmers who live in same administrative unit of Barangay under the help of project manager and Barangay captain. In their institutional process, the Project Manager should hold meeting with beneficiaries and inform the beneficiaries that the proposed project will be constructed for their own benefit and on their part and it is their obligation to improve and make the project productive. And he should stress to them that project investments incurred are their money and in return they should partly pay their obligation and dues for maintenance of the project. In the meeting, the beneficiaries will take part in designing of farm ditches and farm drains. Through the meeting, mutual agreement between the beneficiaries and the Project Manager will reach with regard to right of way of the canal facilities, how to manage irrigation water, collection of irrigation fee, etc.

CHAPTER 6 EVALUATION

6.1 General

The project formulation for both flood control and irrigation projects has been based on the development goal containing i) improvement of flood conditions in the South Candaba and lower coastal area, ii) rice production increase both for self sufficiency in the project area and rice supply to Metro Manila, iii) improving income and living standards of the rural population and iv) promoting employment.

In flood control sector, plan with 20-year design flood was studied. The irrigation project with diversion dam was studied for the area of 11,000 ha in net service area.

In this chapter, the evaluation of these projects is carried out in view of economic, financial and socio-economic aspect. Details are explained in Appendix X, Evaluation.

6.2 Flood Control and Irrigation Benefits

Flood control benefits are the expected reduction of flood damages for farm crops, fisheries, private properties, public facilities and so on, and the expected development effect for the land having not been utilized during the wet season. Irrigation benefits are expected to be the increment of farm income of crops between future with and without project conditions. The flood control and irrigation benefits to be expected from the projects are P91.9 million and P98.4 million respectively.

6.3 Economic Cost

Economic construction cost for the projects is estimated taking into consideration deducting tax and contractor's profit for the construction cost. With respect to compensation cost for the paddy field where river improvement facilities, irrigation and drainage facilities are installed, land compensation cost is evaluated in terms of negative benefit. The economic construction costs for flood control and irrigation projects are estimated at P639.8 million and P356.2 million, respectively.

6.4 Internal Rate of Return

Based on the benefit and economic cost, internal rate of return for the flood control and irrigation projects is calculated under the assumption of the project life of 50 years. The projects are expected to yield internal rate of reutrn of 10.8% in the flood control project, and 15.4% for the irrigation project.

6.5 Project Effect and Social Impacts

6.5.1 Flood Control Project

6.5.1.1 Stabilization of Peoples Livelihood

At present, the flood damage occurs every year. Many houses and farm lands in the project area suffer large damage from floods. After the proposed project completed, about 19,000 ha of land and 13,400 houses in the protect area will be relieved from floods.

The other unquantified benefit is reduction in casualty for human life. The casualty by flood in the Pampanga River has occurred almost every year. The casualty will be largely reduced by the implementation of the project.

6.5.1.2 Incremental Rice Production

The increase in the rice production by the project is expected from the reduction in flood damage and improved land conditions. The production increase will be expected to be 14,800 tons of rice per annum.

6.5.1.3 Employment Opportunity

The implementation of the project will provide employment opportunities to landless workers and farmers in and around the project area. The unskilled labor requirement for the project is estimated to be 1.5 million man-days during the construction period.

6.5.1.4 Fisheries

Even after the proposed levee completed along the South Candaba Swamp, its lower area of about 2,000 ha will remain as the same swampy condition. It is recommended that the lowest part of 20 ha will be digged at the depth of 1.5 m for the area of fish sanctuary during dry season. The remained adult fishes will breed enough eggs to increase the fish production of the said area of 2,000 ha during rainy season.

By dredging the lowest reaches of the Pampanga River, seawater intrusion will increase in the lower reaches. Accordingly, the productivity of the upper fishpond area will be increased at 30 - 40% from the present level, owing to supply of the high salined water to the said fishpond.

6.5.1.5 Relocation of Houses

There exist about 6,700 houses in the location of the proposed channel which are needed to shift to the highland newly created. The base mound area allocated to the two municipalities of Apalit and San Simon is planned to be 260 ha. The existing area of Apalit and San Simon amounts to 180 ha. Accordingly the area for relocation of two municipalities is sufficient.

6.5.2 Irrigation Project

6.5.2.1 Incremental Rice Production

The project will provide a basis on increasing unit yield and expansion of irrigated field through provision of irrigation and drainage facilities. The project will produce incremental rice production of 47,000 tons which plays an important role in self sufficiency of rice in the project area and rice supply to Metro Manila.

6.5.2.2 Employment Opportunity

It is estimated that the project will generate employment opportunities totalling about 1.9 million man-days during the construction period. Most of the manpower will be supplied from landless workers and farmers in and around the irrigation development area. In addition the project will create a demand for farm labor requirement accrued from increased farm activities due to intensive use of the land and high productivity. The incremental farm labor requirement is estimated at 1.5 million man-days per annum.

6.5.2.3 Farmer's Income

The farmer's income will be expected to improve considerably as a direct result of the increase of rice production. The net farm income on the typical farmer both in present and with project conditions represents in the following table.

	Typical Farmer with 1.5 ha	Present	With Project
		(9)	(Ÿ)
i.	Rainfed land	1,377	8,199
ii.	Irrigated land with single cropping of rice	1,491	8,199
	Irrigated land with double cropping of rice	2,291	8,199

The net farm income of the typical farmers on rainfed land and irrigated land with single cropping of rice will increase 6 times of the present farm income. For the typical farmer on irrigated land with double cropping of rice, the project will bring about 4 times of the present net farm income. Accordingly, net reserve for the farmers will be expected to be improved from present subsistence level to P3,400.

6.5.2.4 Fisheries

The proposed irrigation project with diversion dam will form a year round water body of about 1,800 to 2,600 ha located in the lowest part of the San Antonio Swamp. This reservoir will engage in an influential function of the Pampanga River eco-system. At the same time it is expected that potentiality of the fisheries resources will be highly increased by the following management of the reservoir; 1) Setting a year round fish sanctuary of about 1,000 ha, 2) Setting regulation on the minimum limit of gill net mesh and bamboo fence mesh, and prohibition of dynamite fishing in the reservoir, and 3) Establishment of a permanent research station to collect basic data on the eco-system of the Pampanga River system.

6.5.2.5 Social Impacts

Traditionally harvesting and threshing of paddy have been carried out by community activities so called "hunusan". Any villagers can take part in such farmings, from which a harvester gains one sixth of output that seems equivalent to the marginal product of labor at a market wage rate at present low productivity condition. After implementation of the irrigation project, introduction of improved irrigation farming in the project area will be expected to provide increasing land productivity, which will result in increasing unit yield of paddy to 4.5 tons/ha for wet season paddy and 5 tons/ha for dry season paddy. In such circumstances the one sixth of output for harvesting and threshing will become substantially larger than the prevailing market wage rate. Consequently farmer employers could increase their incomes by reducing harvester's share to lower than one sixth or replacing "hunusan system" by hired labor at the market wage rates.

It is, however, predicted that the "gama system", <u>A</u> a contractual arrangement wherein those who want to participate in harvesting agree to do weeding in the paddy field in exchange as a harvesters and receive one sixth of output, will be developed under a patron-client relation between farmer employers and landless workers in the project area without destruction of traditional system.

6.5.3 Seawater Intrusion

The implementation of the projects for both flood control and irrigation will promote seawater intrusion to the Pampanga River. As a result, the production from fishpond will increase owing to supply of high salined water to fishpond, on the other hand, it will give some adverse effect to ground water used as a source of water supply by inhabilants. The adverse effect varies depending on the volume of excavation of low-water channel by flood control project and intake water volume by irrigation project.

<u>/1:</u> Rapid diffusion of "gama system" are recognized in the irrigation projects around the Laguna de Bay.

To know the extent of adverse effect, the seawater intrusion distance and its affected period are estimated without and with project as shown in Table 6.5.1. The effects are summarized as follows:

- a. The salinity condition near the water surface would not be much changed by the implementation of the projects for both flood control and irrigation.
- b. Due to excavation of the channel, the seawater intrusion near the bottom of the channel will be extended to about 7 km in the basic plan and about 4 km in the stepwise plan.
- c. Due to diverting water in the upstream by the irrigation project, the seawater intrusion near the bottom of the channel will be extended to about 6 km.
- d. In the case of the condition after completion of the projects for both flood control and irrigation, the seawater intrusion near the channel bottom will be extended to about 10 km in the basic plan and about 8 km in the stepwise plan.

The new intrusion of seawater at the bottom of the river has a possibility to raise the salinity pollution to the ground water in the vicinity of river course where the saltwater will intrude. The behavior of polluted ground water is usually defined by many factors such as location and depth of intake well, intake water volume from a well, elevation of ground water surface, geological condition, permeability of ground and so on. Those factors can be only studied by the field survey in the vast area including boring test, hydraulic well test, long term field observation of ground water and others.

One of the solution of salinity pollution problems is construction of salinity control gates in the downstream of the Pampanga River and the Labangan Floodway. By the salinity control gates, the seawater intrusion to the upstream can be stopped perfectly, however much fund will be required to construct the gates. One of the economical countermeasure for the problem is to construct the facility of small water supply system for the area to be polluted by salinity.

On the other hand, the future development projects in the Pampanga River Basin and in the vicinity area such as the Balog-Balog Irrigation Project, the UPRIIS project and so on have a great effect to increase the discharge of the Pampanga River by newly created return flow. Accordingly, the practical solution will be found after the detailed investigation on the above mentioned various measures in the future.

6.6 Assessment of the Project

6.6.1 Flood Control Project

Implementation of the flood control project will be expected to provide large reduction of flood damages and effects to the stabilization of people's livelihood in the project area. The results of evaluation and effects for the project are summarized in Table 6.6.1.

The result of studies indicates that the flood control project is technically sound and economically feasible. The project is needed to implement for the regional development and the public welfare.

6.6.2 Irrigation Project

Implementation of the irrigation project will be expected to provide greater benefits and effects to the peoples in and around the irrigation development area. The results of evaluation and effects for the project are summarized in Table 6.6.2.

The result of studies indicates that the irrigation project is technically sound and economically feasible. The irrigation project is financially justifiable from the standpoint of farmer's economy.

Table 1.4.1(1) MEMBER LIST OF ADVISORY COMMITTEE. THE TEAM AND COUNTERPART GROUP

Advisory Committee

- 1. Mr. Toshihiko Iwamoto
- 2. Mr. Ken-ichi Sasaki
- Mr. Hideomi Ohi 3.
- 4. Mr. Hideo Tokuhiro
- 5. Mr. Masakuni Kawamata
- 6. Mr. Shiqekazu Yoshida
- Mr. Hideki Abe 7.
- Mr. Hitonori Ono 8.
- 9. Mr. Yukihisa Sakurada

JICA Survey Team

- 1. Mr. Tadashi Sakamoto
- Dr. Akihiko Tsuchiya 2.
- 3. Mr. Tadaharu Murono
- 4. Mr. Kenjiro Onaka
- 5. Mr. Yukinori Sano
- 6. Mr. Tadashi Ohori
- 7. Mr. Yukihiro Kawahara
- 8. Mr. Hiroshi Ono
- 9. Mr. Toshio Terashima
- 10. Mr. Yoshitada Ogawa
- 11. Mr. Kazuhiko Takebayashi
- 12. Mr. Toshikatsu Imai
- 13. Mr. Toshikazu Tay
- 14. Mr. Fumihiko Furuichi
- 15. Mr. Hideaki Mitsui
- 16. Mr. Keisuke Sumikawa
- 17. Dr. Torahiko Moritani
- 18. Dr. Tamotsu Tomiyama
- 19. Mr. Masaru Yonaj
- 20. Mr. Ryosaku Nagata

- Chairman of the Committee
- Chairman of the Committee
- Advisor for River Engineering
- Advisor for River Engineering
- Advisor for Irrigation
- Advisor for Irrigation
- Coordinator
- Coordinator
- Coordinator
- Team Leader
- Senior River Engineer
- Agro-Economist
- Agricultural Expert
- Irrigation Engineer
- Irrigation Engineer
- Irrigation Engineer
- River Engineer
- River Engineer
- River Engineer
- Hydrologist
- Hydrologist
- Project Economist
- Project Economist
- Soil Mechanical Engineer
- Soil Mechanical Engineer
- Geologist
- Inland Fisheries Expert
- Survey Engineer
- Structual Engineer

- to be continued

Table 1.4.1(2) MEMBER LIST OF ADVISORY COMMITTEE, THE TEAM AND COUNTERPART GROUP

Counterpart Personnel Group

- 1. Mr. Rogelio A. Flores
- 2. Mr. Jose C. Guanzon
- 3. Mr. Avelino Rivera
- 4. Mr. Dioles Suelen
- 5. Mrs. Celester Escallera
- 6. Mr. Leonardo T. Costa
- 7. Mr. William Reodica
- 8. Mr. Robert L. Jamilla
- 9. Mrs. Sofia Santiago
- 10. Mr. Juanito P. Pacleb
- 11. Mr. Miguel Lugue
- 12. Mr. Armando Maulawin
- 13. Mrs. Trinidad R. Cutaran
- 14. Mr. Milo Landicho
- 15. Mr. Reynaldo L. Llamoso
- 16. Mr. Restio V. David
- 17. Mr. Epifanio C. Gacusan
- 18. Mr. Rodolfs Galapan
- 19. Mr. Manuel Guiad
- 20. Mr. Danilo Fajardo
- 21. Miss Sally Janga

- Chief Counterpart, MPWH
- Chief Counterpart, MPWH
- Chief Counterpart, NIA
- Agro-Economist, NIA
- Economist, MPWH
- Agronomist, NIA
- Irrigation Engineer, NIA
- River Engineer, MPWH
- River Structural Engineer, MPWH
- Senior Soil Technologist, NIA
- River Engineer, MPWH
- Irrigation Engineer, NIA
- Sr. Hydrologist, NIA
- Hydrologist, NIA
- Hydrologist, NIA
- Hydraulic Engineer, MPWH
- Project Economist, NIA
- Soil Technologist, NIA
- Soil Technologist, NIA
- Geologist, NIA
- Fishery Biologist

SUMMARY OF CLIMATIC CONDITIONS Table 3.2.1

	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	ANNUAL
Mean Temperature (°C)													
San Miguel (1968 - 1979) Baliwac (1970 - 1979)	25.1	25.0	27.0	28.6	28.8	28.1	~ ~	26.8 26.8		÷	90	1 I I I I I I I I I I I I I I I I I I I	•
(1976 -	25.9	s m	52		~ 00	28.3	28.2	27.1	27.6	27.7	27.04	20-27 26-5-5	26-5 27_3
<u>Mean Maximum Tenperature (</u>	(c))				•	• .						•	•
San Miguel (1968 - 1979) Baliwag (1970 - 1979)	31.0 29.6	31.7 29.5	33.9 31.9	35.3 33.0	34.7	33.3 32.1	32.1 31.1	30.9 29.4	31.6 31.2	31.7	30.2	30.7	33.3
<u>Mean Minîmum Temperature (</u>	(°C)												• • •
San Miguel (1968 - 1979) Baliwag (1970 - 1979)	18.8 19.9	0.91 7.61	20.3 20.3	21.9	23.1 22.8	23.2	22.8 23.6	23.2	22.6 23.3	22-3 22-3	21.6	20.2	21.6
Mean Relative Humidity (%)						•	•	,))				4 - 1 - 1
San Miguel (1968 - 1979)/2 Cabanatuan (1976 - 1979)/1	23.1	75.4	77.6 66 1	21.9	79.2	86.0 86	87.9 87.9	0.7	8 9 8 8 8 8 8 9 8 9 9 8 9 9 9 9 9 9 9 9	86.5 01 0	82.5	82.3	82.7
Sunshine Hour (hr/day)	• •			•	;		•	5	*			0	1-01
San Miguel (1968 - 1979)	6.2	7.3	7.1	0°3	7.5	5.2	5.1	3.9	4.1	5.6	6.3	ي. و	6_1
Mean Wind Speed (km/hr.)												•	
San Miguel (1968 - 1979) Cabanatuan (1976 - 1979)	- 2.4	3.1 8.8	3.0 3.7	3.1 3.6	3.2	2.5	2.9	9.0 	- 4 6 6	3.2	4 7 9 9	6.4 4.0	07 W
Evaporation (mm/month)	•											•	
San Miguel (1968 - 1979) Baliwag (1970 - 1979)	145.8 143.5	152.3	194.1	204.2	170.2	138.2	127.5 1	12.5 33.0	126.9 1 152.4 1	130 5 143 3	131.4	134-5 134-3	1,768.1 1,815.0
<u>/1</u> : Data since 1949 are collec <u>/2</u> : Relative Humidity measured	ol lecto sured	cted, ana d at 8:00	analysis :00 A.M.	has n	not been	n completed	eted s	o far					

- 73 -

•

			(Unit: mm)
Month	Auguago	Monthly Rainfall	Minimum
	Average	Maximum	PLETE HIEROR
Jan.	7.4	67.3	. 0
Feb.	5.3	49.5	0
Mar.	10.9	69.8	0
Apr.	31.2	261.4	0
May	172.3	931.1	7.7
Jun.	262.8	590.8	64.2
Jul.	302.2	1,064.7	141.9
Aug.	406.6	622.7	213.0
Sept.	309.7	628.7	144.6
Oct.	173.4	514.1	12.2
Nov.	125.7	344.4	14.0
Dec.	52.0	197.0	0
Annua)	1,868.6	2,369.5	1,338.9
Wet Season			
(May - Oct.)	1,627.0	-	_
Percent (%)	87.1	-	-

Table 3.3.1 RAINFALL AT CABANATUAN CITY (1951 - 1979)

Source: PAGASA

DISCHARGE
MONTHLY
MEAN
AVERAGE
e 3.3.2(1)
6

C	m3/s) Obser. Period	10	11	οQ	13	12	6	10	4	14	18	14	
	(Unit: Annual	46.2 281.5 0	44.5 175.0 0	131.0 866.5 8.5	10.5 118.5 0.1	87.4 559.5 3.5	29.3 260.7 0.2	106	184.8 657.5 6.1	16.7 50.0 0.7	48.6 406.6 0	250.1 612.8 2.8	0.7
	Dec.	24.2 45.5 0	59.8 93.5 29.4	238.1 866.5 37.4	23 8 23 4 2	34 5 72 8 7 11 7	54.9 54.9 240.2	209.8 537.3 2 0	146.9 312.1 44.0	14.3 28.5 2.45	21 4 133 6 0	158.4 358.3 55.4	4000
	Nov.	62.9 260.4 6.6	71.0 152.1 26.6	247 7 615 5 36 9	404 804 807 8	47 1 85 8 15 9	67.8 226.3 3.1	289.0 289.0 105.6 1	253.2 483.0 75.6	16.9 42.0 5.6	47.2 406.6 0.6	302.8 906.1 49.2	8. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
	Oct.	761. 135.7 0	82.0 119.0 9.05	174.0 299.9 75.2	16.8 52.0 0.7	784.9 7,559.5 16.3	50.2 260.7 1.1	258.9 1,426.0	250.6 458.5 112.0	21.6 42.5 3.4	87.7 87.7 256.2 11.4	504.6 042.7 94.7	0 N O
ម្ម	Sep.	1.	68.1 137.5 27.3	1	:	31.7 31.7 49.3	22.22 40.8 6.0	1,015.2	452.0 605.2 332.8	23.6 47.5 6.9	138.5 243.0 49.3	606.1 538.0 1 231.9	800
DISCHARGE	Aug.	95.7 120.4 66.8	73.5 163.5 19.1	246 6 435 7 74 6	25 55 6 8 8	29.4 69.9 11.8	38.4 54.0 18.7	111.9 756.8 0.3	387.8 657.5 191.1	255 50.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	144 3 314 1 60 5	606.6 173.0	1.5 3.6 0.7
MONTHLY DI	Jul.	79.8 177.4 13.4	53.5 175.0 7.1	99 2 131 7 52 6	20.7 118.5 2.7	31.8 79.0 14.5	50.2 191.9 2.8	67.7 68.8 1.2	230 1 359 9 84 3	39.0 39.0	93.9 233.8 0.8	417.1 612.8 52.6	- 40 - 1.2
	Jun.	34.3 63.0 10.4	31.3 85.0 2.1	66 3 97 6 28 4	33.76	26.9	22.3 130.6 0.5	29.2 29.2	145.3 274.2 19.6	30 S 30 S	23 2 79 5 0	165.1 434.2 17.2	0.7
AGE MEAN	May	20.5 20.5 3.9	23.7 168.7 0	61 5 189 6 14 6	4 4 4 4 6 6 6 6 6 6 7 6 6 7 6 6 7 6 7 6	13.6 42.5 3.5	50.9 00.0 00.0	9.0 149.1	89.0 249.2 7.7	33.6 31.6 1.8	11.7 125.4 0	78.3 634.8 3.2	140
AVERAGE	Apr.	40 800	9 6 0 8 8 0 7 0	20.9 41.4 8.5	5.7 0.1	10.7 16.3 6.6	2.6 7.6	10. 4. L 0	30_8 87_3 6_1	12.9 37.7 1.9	10.2 0.5	22.5 51.7 2.8	- ⁴ 000
3.2(1)	Mar.	121	12.4 42.9 0	22 42.8 12.8	1.2 5.5 0.1	37.3 37.3 8.3	3.7 12.6 0.2	0 2 0 4 7	42.5 105.9 12.9	35.9 0.8	2.2	24 43.96 4.8	- ⁸
Table 3.	Feb.	7 3 0 9	18.7 55.1 0.2	26.6 33.7 16.4	- 9 0.6 .9	14.1 24.7 7.3	18.7 0.2	8- 090	52.3 110.9 20.8	10,2 22,8 0,7	.0.0 30.0 30.0	36.1 73.4 11.3	1.00
Тa	Jan.	31-7 31-7 5-9	31.1 73.3 3.2	40.7 73.6 23.9	2.5 0.8 2.5	38.2 38.2 4.4	13.7 62.2 0.7	166.8 1.457.2 0	127.4 211.3 32.4	12.2 24.6 0.7	6.7 41.8 0.1	79.2 299.7 19.6	000
		Ave. Max. Min.	Ave. Max. Mîn.	Ave. Max. Min.	Ave. Max. Min.	Ave. Max. Min.	Ave. Maxî. Mîn.	Ave. Max. Min.	· · · · •	Ave. Max. Min.	Ave. Max. Min.	Ave. Max. Min.	Ave. Max. Min.
	River & Catchment Area (km ²)	Pampanga R. 890	Coronel R. 718	Pampanga R. 2,482	Chico R. 152	Sumacban R. 299	Penaranda R. S13	Penaranda R. 568	Pampanga R. 3,512	Talavera R. 401	Rio Chico R. 1,675	Pampanga R. 6,532	Bùlu R. 60
	Station Name	Pantabangan N.E.	Bongabon N.E.	Cabanatuan City N.E.	Gen Tinio N.E.	Gen Tinio N.E.	San Jose N.E.	Gaban N.E.	Cabiao N.E.		Zaragoza N.E.	Arayat	San Miguel Bul.
	2	-	5.	ຕໍ່	4	5	9		60 .	6	10.	=	12.

- 75° -

m ³ /s)	Obser. Period (yr.)	13	00	11	12	5	15	1 0	ω.	17	13	15	=
(Unit:	Annual	21.3 126.7 0	989 979 979	13.6 215.0	10.3 61.1 0.2	36.4 476.5 0.1	77.5 674.4 12.0	484 0.1 0.1	3.5 20.8 0.1	11.6 83.1 0.1	11.6 316.2 0.1	10.7 106.8 0.1	20.4 590.0 0
	Dec.	23.6 62.0 0.5	2.2 5.0 0,7	10.6	7.2 19.6 1.3	97.9 476.5 1.4	62.1 151.0 16.8	590	670	0 8 0 8 0	10.3 8.9 2.0		17.0 110.7 0.4
	Nov.	30.7 56.3 12.3	ი. ი.ძთ	13.9 46.5 1.2	233 263 263 263 263 263 263 263 263 263	39.0 104.6 1.4	92.7 216.3 17.6	48.1 48.1 0.3	1.5 6.0 8.0	50 28 28 28 28 28 28 20 20 20 20 20 20 20 20 20 20 20 20 20	7.9 56.4	6.6 18.4	16.1 51.5 1.0
	Oct.	27.8 67.8 0.1	5.4 11.1	17 23.6 2.9	16 28 5 5 5 5 5 5 5 5 5	38.6 181.8 1.5	117.1 353.9 20.4	0.8 - 8 - 8	4.0 8.1 0.7	74 9 29 9 5 5	17.9 72.9 1.5	15.2 43.9 3.6	36.6 220.8 0.7
	Sep.	29.9 72.1 3.7	3.28 3.28 3.2	27.2 81.2 2.2	18.5 60.0 1.5	44.9 137.5 2.7	165.9 508.5 51.1	979 980	20.8 20.8 0.7	22.0 57.8 6.6	20.4 104.5 1.9	27.1 63.4 8.8	24.0 12.6
	Aug.	35.5 105.8 5.5	4.6 10.7 0.9	32.2 78.5 3.7	25.5 61.1 8.1	59.4 165.2 2.4	135.8 293.0 40.8	0.9 0.4	7.1 17.5 0.7	27.1 83.1 11.6	41.0 316.2 3.7	28.5 49.3 10.5	39.6 267.6 4.1
- 1	Jul.	32.5 126.7 12.8	မင်္ဂ ဂုန္မာ ဂုန္မာ	28.0 130.9 0.1	20.4 54.2 4.9	38.4 134.8 0.9	146.8 674.4 29.6	8.7 31.6 0.3	40 800	23.1 67.8 5.6	21.6 106.8 0.4	19 72.2 4.4	88 0.0 20 20 20 20
	Jun.	19.9 71.2 4.4		14.4 32.0 9.9	10.2 23.6 1.0	23.2 78.0 0.1	59.7 132.5 16.2	2.7 0.2 2.7	4 1 5 8 8 8 8	15.8 66.4 0.7	7.7 51.1 0.1	9 27 29 1 9	16.7 75.4 0.4
	May	12.8 42.3		3.5 31.2 0	28.6 28.6 0.4	18.1 1.011 0.1	55.5 212.6 13.9	7 0 0 0 6 7	800 400	88 96 96 96 96 96 96 96	24.7 24.6 0.1	106.8 0.9	- 20 9 - 50
	Apr.	3.2 17.2 0.2	r. 	000 7 M	1.5 0.5 2	10.8 38.3 0.1	26.0 37.7 14.3	4.0 0.9 0.8	0.5 0.8 0.8	3.7 12.8 0.1		- 80 20 20 20 20 20 20 20 20 20 20 20 20 20	89.0 070
	Mar.	31.3 0.2	7.6 0.9	20.0 215.0 0.1	8 6 - 1 8 0 - 2	12.4 32.8 0.2	22.4 34.4 12.0	400 40	400 400	3.1 10.5 0.7	1.9 17.7 0.2	6 N 8 - N 0	0.8 0.7
,	Feb.	35.2 35.2 0.5	9.0 0.9	0.8 0.2 0.2	2 5 5 0 3 4 5	20.0 65.6 1.0	20.2 31.5 15.2	400 00	5.0 5 7 7 8 7 8	2.7 10.7 0.3	2.0 7.50	2.1 5.3 0.7	۲.00 ۲.00
	Jan.	19.5 55.9 0.8	۲.94 4.4	7.6 0.6 0.6	4 <u>1</u> 3 4 0 0	34.6 198.2 1.4	26.2 94.9 12.5	96.8 96.8 96.8	- 20 - 20 - 10 - 10	3.8 14.4 0.1	2.2 17.5 0.4	8.86 0.68	1.6 5.0 2.2
		. Ave. Max. Min.	Ave. Max. Min.	Ave. Max. Mîn.	Ave. Max. Min.	Ave. Max. Min.	<ΣΣ		Ave. Max. Min.				Ave. Max. Min.
	klver å Catchment Area (km ²)	San Miguel R. 240	Garlag R. 86	Maasim R. 142	Maasim R. 229	Angat (below Ipo Dam) 629	Labangan R. 985	<u> </u>	Porac R. 103	Gumain R. 122	Caulaman R. 92	Baliwag R. 208	Bayabas R. 69
	Station Name	San Vicente Bul.	San Ildefonso Bul.	San Rafael Bul.	Candaba Pam.	Norzagaray Bul.	Calumpit Bul.	Bacolor Pam.	Florida- blanca Pam.	Florida- blanca Pam.	Florida- blanca Pam.	Muñoz N.E.	Angat Bul.
	No.	13.		15.	16.	17.	8.	61	\$9. \$	<u>ک</u> ا.	22.	23.	24.

- 76 -

						· · · · · · · · · · · · · · · · · · ·			HEAN D		D 1 U C H F K G H	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				(Unit:	
ş	Station Name	River & Catchment Area (km2)		Jan.	Feb.	Mar.	Apr.	May	ู้ วินท.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual	Obser. Period (yr.)
25.	Pantabangan N.E.	Pantabangan Pantabangan R.Ave. N.E. Max. Max.	Ave. Max. Min.	13.9 26.1 4.8	10.7 23.2 3.3	10.6 19.7 2.3	6.6 12.8 0.4	21.0 75.0 2.5	16.8 21.5 11.8	44 6 83 3 16 1	46.4 95.1 19.2	42.5 66.9 26.5	31.8 4.3 23.8	18.7 28.9 12.9	18.5 29.3 5.9	23.5 95.1 0.4	ဆ
26.	Apalit Pam.	Sulipan Cut- A off Channel M 7,715 M	Ave. Max. Min.	213.4 68.1 0	15.5 29.3 0	29.4 143.2 0	23.8 83.7 0	131.3 974.6 0.3	60.3 264.1 0	253.0 759.7 2 4.9	521.6 2,940.2 29.6	310.2 680.1 7.1	233.9 907.2 1.5	171.3 442.6 1.6	74.3 370.9 2 0.3	169.8 2,940.2 0	14
27.	Pulilan Bul.	Angat R. Ave. 918 Max. Min.	Ave. Max. Min.	30.4 112.3 2.5	25.2 66.1 1.2	29.6 105.6 2.6	30.1 92.2 4.6	43.1 179.8 1.7	50.0 187.7 6.7	77.7 224.1 10.4	104.9 224.9 28.2	110.2 265.8 21.5	74.3 189.6 2.6	63.4 172.7 1.9	62.2 180.2 0.1	58.4 265.8 0.1	91
58 .	Pasing Candaba Pam.	Pampanga R. 7,270	Ave. Max. Min.	46.1 79.0 8.7	46.2 78.0	48.0 93.1 9.9	43.0 76.1 8.8	101.9 466.8 20.9	128.5 268.2 30.3	290.6 712.4 101.7	468.0 676.2 355.9	541.2 945.7 133.3	376.0 817.4 112.2	276.2 584.4 51.6	166.0 376.8 19.8	211.0 945.7 7.7	σ
8	Apalit Pam.	Pampanga R. 7.714	Ave. Max. Min.	170.5 296.1 116.6	148.7 335.6 3 111 1	296.5 091.7 2 117.2	252.3 243.1 116.7	191.8 973.8 2 109.4	311.2 462.4 145.5	307.8 547.1 149.8	439.4 915.4 220.2	504.2 771.1 330.8	425.9 941.6 214.7	327.9 903.7 126.9	273.7 547.0 120.2	304.2 3.091.7 109.4	5
	÷							:									

Table 3.3.2(3) AVERAGE MEAN MONTHLY DISCHARGE

- 77 -

Table 3.3.3 (1) MEAN MONTHLY DISCHARGE

Stat	Station: Aravat	/at										(Unit:	т ³ /s)
Year	Jan.	Feb.	Mar.	Apr.	May	վսո.	Jul.	Aug.	Sep.	Oct.	. vov	Dec. '	Annual Mean
1965	92.2	58.5	נ.92	22.1	30.8	152.0	893.6	389.4	552.7	259.6	220.3	77 .6	231.1
1966	48.3	42.]	26.4	13.2	634.8	240.2	260.8	461.0	842.2	96.2	538.6	358.3	296.8
1967	117.6	41.7	29.8	20.3	16.9	215.5	233.5	1158.3	1038.4	638.0	468.9	67.7	337.2
1968	42.3	30.8	27.8	20.8	22.9	26.6	140.0	603.2	956.4	388.6	49.2	83.4	199.5
1969	34.2	21.7	13.7	13.8	14.1	36.2	156.7	727.7	390.5	213.5	68.9	55.4	146.8
1970	27.2	17.1	12.2	18.4	11.7	86.7	117.7	313.0	935.0	652.2	369.1	156.3	226.7
1971	44.4	31.1	33.5	18.7	55.3	382.0	709.9	428.1	261.7	1042.8	231.2	314.4	299.l
1972	299.7	60.5	29.4	27.6	33.6	74.3	1612.8	1538.0	594.5	94.7	107.4	63.3	382.1
1973	19.6	20.8	4.8	2.8	3.2	17.2	52.6	275.1	243.1	849.3	241.2	63.3	150.7
1974	21.5	11.3	14.6	10.5	12.0	215.3	287.9	833.9	231.9	707.7	1.306	324.1	300.0
1975	141.2	73.4	43.9	49.5	50.6	100.4	56.8	173.0	237.5	205.7	80.6	178.9	116.3
1976	157.6/1	40.12	27.72	16.5/2	624.9/2	259.9	483.4	517.4	523.9	430.7	303.3	87.1/3	290.3
1977	62.7	25.4	16.1	12.3/4	19.3/4	52.0/	140.2/1	- 379.0	661.2	288.6/2	369.7/2		182.6
1978	88.3/2	73.7/2	37.9	51.7	48.7	162.1/2	329.6/2	200.7	1019.6	901.4	869.9/3	368.1/3	388.7
Average	ge 85.5	39.2	24.4	21.3	113.1	144.3	391.1	607.0	606.3	483.5	344.6	168.5	252.4
राष्ट्र	Estimated discharge from Bangkerohan, Estimated discharge from Zaragoza by t	l dischar I dischar	ge from Bang ge from Zara	Bangkeroh Zaragoza		the Coronel River se of correlation	Ri ver la ti on	by use curue	of correl	correlation curue	rue		

Estimated discharge by use of interpolation curve

Estimated discharge from Bag-bag Calumpit

. 인 전 Table 3.3.3 (2) MEAN MONTHLY DISCHARGE

Year Jan. 1960 - 1961 0.3 1962 0.1 1963 0.3	Feb.	N CN							+-0		4	Annua
		וופנ	Apr.	May	Jun.	ີ. ເມເ	Aug.	Sep.	nct.	. VON	Dec.	Mean
	1	1	1	•	•		314.1	144_3	63.9	1.8	0.3	ŧ
	0.2	0.2	0.1	0	31.1	219.2	138.3	160.3	44 -5	0.6	0.2	49.6
	0.1	0.1	0.1	0	1.0	131.7	140.9	96.2	46.2	3.3	0.5	35.0
	0.5	0.2	0.2	0.3	79.5	109.6	143.2	203.7	17.1	2.5	0	46 4
1964 0.1		1.0	0	0.1	6.6	77.8	129.7	104.7	145.9	140.4	133.6	61.8
1965 41.8	29.9	0.3	0	0	0.4	160.7	132.4	150.5	78.5	56.4	4.4	54.5
1966 1.4	0	Ō	0	106.1	37.4	41.0	75.8	142.1	12.3	89.3	58.0	47.0
1967 16.1	2.9	0.9	0	0	33.1	36.3	158.4	181.0	111.7	26.5	5.4	47.7
	3.2	2.3		3.2	4,9	38.9	155.3	114.7	64.9	1.2	6.9	33.6
1969 2.0	2.0	1.5	-	2.4	19.1	159.0	59.8	66.9	37.7	3.6	4.1	30.2
	2.6	2.1	0	1.5	16.6	26.4	82.3	184.2	70.4	21.1	0°6	35.0
	ດ. ເ	9.1	0	о 0	71.6	130.2	79.9	56.2	160.2	21.1	16.7	46.9
1972 19.5	7.5	4.5	1.6	7.0	18.0	233.9	278.7	148.2	19.2	4.5	4.1	62.7
1973 2.3	0.1	0.8	0.5	2.0	3.8	8.7	75.7	64.3	147.1	15.9	6.6	27.6
1974 4.4	4.0	1.1	1.5	1.5	32.7	45.3	168.8	48.8	162.3	14.8	125.1	51.5
1975 14.5	0		0	4.0	8.2	13.6	29.6	40.7	35.2	13.8	30.7	16.0
1976 30.7	5°2	3.7	2.8	125.3	72.1	118.8	125.9	120.2	100.6	0°0	4.2	60.2
1977 6.6	4 4	2.7	4.6	3.4	3_0	17.2	21.1	163.1	53.6	73.5	22.3	31.2
1978 15.1	12.6	11.7	9.6	9.3	22.6	63.7	269.9	243.0	256.2	192.7	7.17	98.7
Average 9.4	4.5	1.9	1.3	15.3	25.7	90 - 7	135.8	128.1	85.7	36.4	26.5	46.8

- 79 -

Table 3.3.4 ESTIMATED MEAN MONTHLY INFLOW TO THE SAN ANTONIO SWAMP

												(Unit:	m ³ /s)
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua] Mean
1968	10.0	7.5	6.2	4.0	6.4	8.8 8.8	70.4	281.0	207.5	117.4	8.1	18.5	62.5
1969	6.8	4.9	3.4	3.0	4.4	34.6	287.7	108.1	121.1	68.2	13.2	11.8	56.2
1970	6.9	5.0	3.8	2.6	3.1	30.0	47.8	148.9	333.4	127.5	72.2	30.7	67.7
1971	12.1	9.8	6.5	2.6	16.6	129.5	235.6	144.6	101.7	290.0	53.1	60.3	89.4
1972	61.0	15.9	8.6	5.4	12.3	32.6	523.2	504.4	268.2	34.7	19.3	12.9	117.5
1973	5.1	3.0	. S	0.9	2.5	6.8	15.7	136.9	116.4	266.3	49.3	15.4	52.1
1974	7.4	5.6	3.1	2.9	3.1	59.2	81.9	305.4	88.3	293.7	140.4	170.1	97.8
1975	34.0	10.2	6.1	6.9	11.0	14.8	24.7	53.6	73.7	63.7	25.0	55.5	31.8
1976	55.6	6 6	6.7	5.1	226.8	130.5	214.9	227.8	217.6	182.0	43.0	7.7	111.3
1977	15.2	7.9	5.0	8.3	6.0	5.4	31.2	38.2	295.2	97.1	133.1	40.3	56.7
1978	27.3	22.8	16.9	16.8	16.0	40.9	115.3	488.5	439.7	463.6	348.7	129.8	178.1
Average 21.9	21.9	6.3	6.2	5.3	28.0	44.8	140.8	221.6	205.7	182.2	82.3	50.3	83.2

River	Site	Catchment Area (km ²)	Ave. Annual Sediment (t/km²/yr)
Talavera	Talavera Br.	401	262
Rio Chico	Zaragoza Br.	1,675	134
Bamban	Bamban Br.	206	1,213
Pampanga	San Isidro Br.	3,472	685
-do-	Arayat Br.	6,532	387
-do-	Candaba Br.	7,270	163
-do-	Sulipan Br.	7,715	59

Table 3.3.5AVERAGE ANNUAL SEDIMENT YIELDAS ESTIMATED BY THE TEAM

Remarks:

1.

Applied daily discharges during the period (1966-1975).

2. Applying the Sato-Kikkawa-Ashida formula for bed load estimated.

3. Applying a formula for suspended load established by the Team on the basis of the Engelund-Hansen Formula.

.

1	Municipality	Popula 1975	ation 1980	Population Growth Rate 1975/80(%)	Area (ha)	Population Density (Person/km ²)	Total House- Hold	Family Size	No. of Farm	Percentage of Farm Household
\sim	A) Municipalities Related to	Related to	the Project	ect Area						
	Apalit	41,283	48,264	3.17	6,147	785	7,682	6.3	2,139	22.7
	Arayat	52,739	56,770	1.48	13,475	421	8,726	6.5	2,049	30.9
	Candaba	48,458	52,643	1.67	20,870	252	8,036	6.5	1,857	52.4
	Mexico	48,805	53,488	1.85	11,741	456	8,051	6.6	3,602	31.2
	Minalin	25,428	27,326	1.45	2,908	940	4,000	6.8	1,198	25.0
	San Fernando	98,382	110,423	2.34	8,119	1,360	17,358	6.4	352	7.3
	San Luis	23,866	25,698	1.49	5,683	452	3,929	6.5	1,664	50.9
	San Simon	21,553	23,537	1.78	5,736	410	3,682	6.4	1,838	34.5
	Sta. Ana	22,595	25,342	2.32	4 ,596	551	4,392	5.8	984	23.9
	Sto. Tomas	21,320	24,945	3,19	2,129	1,172	4,169	6.0	358	9_4
1	TOTAL	404,429	448,436	2.09	81,404	551	70,075	6.4	16,041	22.9
\sim	<pre>B) Project Area</pre>	94,400	104,700	2.09	14,000	750	16,390	6.4	4,600	27.4

Source: National Census and Statistic Office Region III

Table 3.6.1 BASIC SOCIO DATA IN THE IRRIGATION DEVELOPMENT AREA

- 82 -

٠

	Category	Area (ha)	Proportional Extent (%)
(1)	Paddy Field <u>/1</u>	11,500	82.2
	Rainfed area	2,300	16.5
	Irrigated area	9,200	65.7
	- double cropping of paddy	(2,300)	
	- single cropping of paddy	(6,900)	
(2)	Grass Land	100	0.7
(3)	Swampy Area	900	6.4
(4)	Village/Road/Rivers/Others/2	1,500	10.7
	Total	14,000	100.0

Table 3.7.1 PRESENT LAND USE IN THE DEVELOPMENT AREA

/1: Net area

<u>/2</u>: Containing the land of about 300 ha where existing canal facilities, feeder roads and farm levee are installed in the paddy field Table 3.10.1 RESULTS OF FARM ECONOMIC SURVEY OF TENURIAL STATUS AND ESTIMATED VALUE IN THE IRRIGATION SERVICE AREA

•

Farm		Owner Dnerator	Amo	Amortized Owner	Ľe	Lessee	Share-	Share-tenant	Total	Farm	Total	al	Average
Size (ha)	No.	.Area (ha)	No :	Area (ha)	No.	Area (ha)	No.	Area (ha)	Household (No.) (%	<u>ehold</u>	Area (ha)	a (%)	Size (ha)
Below 0.25	,	0.18	1	\$	ł	ŧ	ł	1	-	0.7	0.18	0.1	0.18
0.25 - 0.75	ı	ı	,	I	4	2.00	ł		4	2.9	2.00	0.6	0.50
0.75 - 1.25	4	4.00	ഹ	4.96	33	13.25	ŧ	ı	22	15.7	22.21	6.5	۲- ۱۰
1.25 - 1.75	4	6.00	თ	13.06	14	22.80	~	1.50	5 8 58	20.0	43.36	12.6	1.55
1.75 - 2.25	2	4.00	თ	17.33	ማ	18.70	l	ı	20	14.3	40.03	11.6	2.00
2.25 - 2.75	4	10.00	2	5.00	တ	20.00	ł	ι	14	10.0	35.00	10.2	2.50
2.75 - 3.25	Ś	00.6	7	20.81	თ	27.25	\$	1	9L	13.6	57.06	16.6	3.00
3.25 - 3.75	-	3.50	ო	9.50		3.50	~	3.50	9	4.3	20.00	5.8	3.33
3.75 - 4.25	ന	12.30	~	8.00	4	16.00	ı	ı	თ	6.4	36.30	10.6	4.03
4.25 - 4.75	ı	ı	ধ	18.25	ı	t	ı	I	ব	2.9	18.25	5.3	4.56
4.75 - 5.25	ı	ı	Q	30.00	2	10.00	1	1	ω	5.7	40.00	11.6	5.00
5.25 - 5.75	r	5.50		5.50	p ari	5.50	ı	1	ო	2.1	16.50	4	5.50
5.75 - 6.25	I	ı		6.00	ı	I	ı	ı	guna 1	0.7	6.00	1.7	6.00
6.25 - 6.75	ı	ı	4	ł	ı	. 1	ı	ı	1	ł	1	ı	1
Over 6.75		7.00	ŧ	9	ł	ı	ŧ		~	0.7	7.00	2.0	7.00
Total	24	61.48	49	138.41	65	139.00	à	5.00	140	100.0	343.89	100.0	2.46
Share (%)	17.1	17.9	35.0	40.2	46.5	5 40.4	1.4	1.5	٠	۲	•	٠	ŧ
Estimated value in the Irriga- tion Service	ue ÷ 790	2,060	1,610	610 4,620	2,140	2,140 4,650	60	170					

.

	(Unit: km)
Location	Distance
River Mouth	. 0
Bifurcation of Bebe Sn. Esteban C.O.C.	18
Bifurcation of Hagonoy River	21
Sulipan Bridge	26
Apalit	27
North Manila Expressway Br.	30
San Simon	36
San Luis	42
Candaba	50
Arayat Bridge	61
Confluence of Pampanga and Rio Chico Rivers	66
Candaba-Cabiao Floodway	71
San Isidro Bridge	86
Cabanatuan	140
Zaragosa (Rio-Chico River)	101

Table 3.13.1 DISTANCE FROM THE RIVER'MOUTH

Note: The distance is measured along the center line of low water channel, on the map of a scale of 1:50,000

~

	, <u></u>		(Unit: m ³ /s) Carrying
	River	Stretch	Capacity (Bankful)
1.	Pampanga River	River mouth - Masantol	500
	ч.	Masantol - Sulipan	2,200
		Sulipan - Candaba	1,800
		Candaba' - Arayat	2,500
		Arayat - Cabiao	2,000
		Cabiao - San Isidro	2,500
2.	Bebe San Esteban Channel	River mouth - Masantol	1,700
3.	Hagonoy River	Hagonoy - Diversion Point	70
4.	Laɓangan Floodway	River mouth - Calumpit	700
5.	Angat River	Calumpit - Expressway Br.	900
6.	Maasim River	Confluence to Pampanga R. - Bahay Pare	100
7.	Candaba - Cabiao Floodway	Candaba Swamp - Diversion Pe	oint 4,000
8.	San Fernando River	Sexmoan - San Fernando	200
		San Fernando - Mexico	50

Table 3.13.2CARRYING CAPACITY OF RIVER CHANNEL
UNDER THE EXISTING CONDITIONS

•

.

Table 3.13.3STATUS OF IMPLEMENTATION OF MPW FLOOD
CONTROL SCHEME BY THE END OF 1979
(APPROXIMATE ESTIMATE IN PERCENTAGE
OF TOTAL AMOUNT OF WORK)

Name of Works	Completi	on
	Percentage	Year
Arayat-Apalit-Masantol Setback Levee	100%	1975
Calumpit-Plaridel-Bustos Levee	100%	1975
Bebe-San Esteban Channel, Dikes, Floodgates	100%	1975
Arayat-Cabiao Ring Levee (including improvement)	80%	==
Cabiao-Candaba North Dikes	100%	1977
Cabiao-San Isidro Levee	100%	1975
Luyos-Bagong Sikat Cutoff Channel	100%	1975
San Antonio-Cabanatuan Levee	0%	-
Rio Chico River Control System	20%	1
Quitangil River Control	15%	
Parua Floodgate	100%	1979
Pasig-Potrero River Control	75%	
Gumain-Porac Diversion Channel	86%	- · · ·
Sapang Maragul Floodgate	100%	1979
Labangan Floodway	50%	-
Abacan River Control	20%	-

PROBABLE FLOOD DISCHARGE OF MAIN STATION IN	BASIN AS ESTIMATED BY TEAM
FL00D	RIVER
PROBABLE	PAMPANGA
Table 3.13.4	

River	Station	Catchment Area			Discharge (m3/s)			Remarks
		(km ²)	5-yr	10-yr	20-yr	50-yr	100-yr	
Pampanga Main Sturre	Cabanatuan	2,482	1,977	2,365	2,725	3,205	3,572	-
ria I ii Screall	San Isidro	3,472	2,408	3,051	3,641	4,315	4,857	
	Cabiao	3,512	2,424	3,071	3,668	4,349	4,895	
	Arayat	6,532	2,349	2,731	3,068	3,451	3,734	After control by Swamp
	Sulipan	8,907	2,654	3,517	4,779	6,111	7,039	· · op
Rio Chico	Zaragoza	1,675	1,061	1,497	1,883	2,422	2,840	
	Inflow to San Antonio Swamp	3,020	1,508	2,212	2,853	3,721	4,368	Before control by Swamp
Peñaranda	Confluence to Main Stream	601	529	732	864	1,046	1,192	
Angat	Longos	895	737	1,015	1,367	2,050	2,429	
Gua-Gua	San Fernando	445	272	353	423	566	682	
	Rivermouth	945	326	470	573	774	1,004	

				· · ·		
	Item	1976 May	1977 Nov.	1987 <u>/2</u> Aug.	1979 -	1980 Nov.
1.	Name of Typhoon	Didang	Unding	Heling & Iling	· - ·	Aring
2.	Location of Damage Sampling	All Bulacan	All Bataan	All Bataan	-	Hagonoy Bulacan
3.	Affected Area covered by Interview Survey (ha)	687	493	(901)	-	756
4.	Producer's Price of Marketable Milkfish (P/ha)	1.22	2.05	(1.43)	- -	3.01
5.	Fish Quantity of Damage (x 10 ³ pcs)	4,849	1,223	787	-	3,609
6.	Value of Damage					· · · ·
	to Production (x PlO ³) (P/ha)	1,821 2,650	1,269 2,574	549 609	-	2,768 3,662
	to Facilities (x ₱10 ³) (₱/ha)	367 534	388 787	122 135	·	171 227
	to Total (x 910 ³) (9/ha)	2,188 3,184	1,657 <u>3,361</u>	671 744		2,939 3,889

Table 3.14.1 FLOOD DAMAGE TO FISHPOND IN THE DELTA (1976-1980)/1

Source: Survey reports on typhoon damage to fishpond by Provincial Fishery Office, Bulacan in 1976 and 1980, Bataan in 1977 and 1978.

Remarks: <u>/l</u>: Based on the data obtained from interview to pond operators

<u>12</u>: This data was not used for the estimation of flood damage because of its abnormally low damage compared with affected area.

- 89 -

	······································		Stretch		
		Unit	Candaba Sulipan	Below Sulipan	Total
1.	Excavation of Low-water channel				
	- Length	KM	18.0	22.6	40.2
	- Volume		-		
	Pampanga R.	10^{3}m^{3}	16,590	15,890	32,480
2.	Embankment of New Levee				
	- Length	КМ	35.3	61.7	97.0
	- Volume	10^{3}m^{3}	1,700	3,620	5,320
	Pampanga R.	$10^{3}_{2}m^{3}_{2}$	850	1,810	
	Maasim R.	$10^{3}m_{3}^{3}$	550		
	Bagbag R. Angat R.	103m3	260 40	340	
	Labangan R.	10 ³ ^m ³	-	1,470	
3.	Embankment of Height- ening				
	- Length	КМ	12.8	22.8	35.6
	- Volume	10^{3}m^{3}	360	990	1,350
	Pampanga R.	$10^{3}m^{3}$	360	330	
	Bebe C.O.C.	10 ³ m ³	-	660	
4.	Embankment of Base Mound				
	- Length	KM	17.6	31.2	48.8
	- Volume	10^{3}m^{3}	12,420	10,440	22,860
5.	Outlet				
	- Type $A\frac{1}{12}$	nos.	. 1	1	2
	- Type $\frac{B}{73}$	nos.	7	7	14
	- Type C <u>/</u>	nos.	1	2	3
	Intake of Fishpond	nos.		26	26
j.	Revetment	KM	2.5	1.5	4
۰.	Bridge	place	2	· –	2

Table 4.1.1 SUMMARIZED WORK QUANTITIES (STEPWISE PLAN WITH 20-YEAR DESIGN FLOOD)

Remarks: Dredged material is used for Embankment and Heightening of Pampanga R., Left of Bagbag R.

<u>/1</u> Size of Culvert: W - 5 m, H - 4.5 m, L - 42 m, 3 cell and w/sluice gate
 <u>/2</u> Size of Culvert: W - 2.5 m, H - 2.5 m, L - 48 m, 2 cell and w/flap & sluice gate
 <u>/3</u> Size of Culvert: W - 2.5 m, H - 2.5 m, L - 48 m, 1 cell and w/flap & sluice gate

Table 4.2.1 ALTERNATIVE PLANS FOR OPTIMIZATION OF IRRIGATION DEVELOPMENT

Pampanga Pump Plan Present Flow C ł Return Flow Ö t Dead Capacity by Pump Utilization Used I ói O ı ł 0 C Use lg Ò 4 O O Ċ C 0 Improvement Retent'n Volume in Swamp Dam Capacity Downstream San Antonio Reservoir Plan Maintaining Nat'l Flood ¢ Ó Ó 1 Increase 0 0 0 \circ I Upper Stream 0 O \sim Dam Axis Stream Down-O 0 0 oi 0 O 0 Irrigation Service Area (ha) 27,700 26,700 26,700 36,000 36,000 36,000 26,700 26,700 36,700 20,000 38,200 27,700 20,000 36,000 11,000 Parameters Alternative Plans 2 13 5 \sim \mathbf{m} 4 ഗ G ø σ 2 -

Table 4.2.2FUTURE LAND USE IN THE IRRIGATION
DEVELOPMENT (IN GROSS)

Duccont Conditi			<u>Unit: ha)</u>
Present Condition	Area	Future Conditio	n Area
Rainfed	2,300	Irr. paddy field <u>/1</u> Right of way <u>/2</u> Rainfed area <u>/3</u>	2,000 200 100
Irr. paddy field	9,200	Irr. paddy field <u>/l</u> Right of way <u>/2</u> Irr. land <u>/3</u>	8,100 800 300
Grassland	100	Irr. paddy field <u>/1</u>	100
Swampy area	900	Irr. paddy field Right of way/2	800 100
Village/Road/Rivers/ Others	1,500	Village/Road/Rivers/ Others	1,500
Total Total	14,000		14,000

<u>/2</u>: The right of way for the land where new irrigation facilities are installed.

 $\underline{/3}$: The rainfed and irrigated land where are not contained in the project.

- 92 -

Nursery bed Paddy field2 kgs of N/haPaddy field- 68 kgs of N/ha and 20 kgs of P/ha for wet season paddy - 88 kgs of N/ha and 20 kgs of P/ha for dry season paddyTime in paddy field- 88 kgs of N/ha and 20 kgs of P/ha for dry season paddyAll PBasic dressing Basic dressing at transplanting time 25% of N25% of NFirst top dressing at two weeks after transplanting time40% of N2nd top dressing in the late period of a young panicle formation stage1. Application of chemicals2 //ha		F AKY	11NG FOR PAUDY WITH PROJECT
 Amount of seed Amount of seed Nursery period - 20 days Area of nursery fed - 1/20 - 1/25 of paddy field Land preparation One times of ploughing, and 3 times of hallowing-leveling Planting method Transplanting Planting depth Within 3 cm from the surface Fertilization Nursery bed Paddy field - 68 kgs of N/ha - 68 kgs of N/ha and 20 kgs of P/ha for wet season paddy - 88 kgs of N/ha and 20 kgs of P/ha for dry season paddy Time in paddy field All P Basic dressing - 5% of N - 40% of N - Application of chemicals 2 {/ha 	1.	Varieties	IR series
 4. Nursery period 15-20 days 5. Area of nursery fed 1/20-1/25 of paddy field 6. Land preparation One times of ploughing, and 3 times of hallowing-leveling 7. Planting method Transplanting 8. Planting density 30 cm x 15 cm, 3 seedlings per hill 9. Planting depth Within 3 cm from the surface 10. Fertilization Nursery bed 2 kgs of N/ha Area 20 kgs of P/ha for wet season paddy - 88 kgs of N/ha and 20 kgs of P/ha for dry season paddy Time in paddy field All P Basic dressing 35% of N Basic dressing at transplanting time 25% of N 2nd top dressing at two weeks after transplanting time 40% of N 2nd top dressing in the late period of a young panicle formation stage 11. Application of chemicals 2 <i>L</i>/ha 	2.	Growing period	130 days
 5. Area of nursery fed 5. Area of nursery fed 6. Land preparation 7. Planting method 8. Planting density 9. Planting depth 9. Planting depth 9. Planting depth 9. Fertilization 10. Fertilization 10. Fertilization 11. Application of chemicals 2 (/ha 	3.	Amount of seed	60 kgs
 6. Land preparation 6. Land preparation 6. Constrained by the precision of the pr	4.	Nursery period	15 - 20 days
 of hallowing-leveling 7. Planting method 8. Planting density 9. Planting depth 9. Planting depth 9. Planting depth 9. Fertilization 1. Application of chemicals 2 kgs of hallowing-leveling 30 cm x 15 cm, 3 seedlings per hill 30 cm x 15 cm, 3 seedlings per hill 9. Planting depth 9. Planting time 	5.	Area of nursery fed	1/20-1/25 of paddy field
 8. Planting density 9. Planting depth 9. Planting depth depthence 9. Planting dept	6.	Land preparation	One times of ploughing, and 3 times of hallowing-leveling
 9. Planting depth Within 3 cm from the surface 0. Fertilization Nursery bed Paddy field 2 kgs of N/ha - 68 kgs of N/ha and 20 kgs of P/ha for wet season paddy - 88 kgs of N/ha and 20 kgs of P/ha for dry season paddy Time in paddy field All P 35% of N 25% of N 40% of N Application of chemicals Within 3 cm from the surface Kgs of N/ha Basic of N/ha and 20 kgs of P/ha for dry season paddy Time in paddy field Application of chemicals 2 £/ha 	7.	Planting method	Transplanting
 6. Fertilization Nursery bed Paddy field Paddy field S8 kgs of N/ha and 20 kgs of P/ha for wet season paddy B8 kgs of N/ha and 20 kgs of P/ha for dry season paddy Time in paddy field All P Basic dressing 35% of N Basic dressing at transplanting time 25% of N 40% of N Application of chemicals 2 kgs of N/ha 2 kgs of N/ha Ags of N/ha Ags of N/ha Application of chemicals 	8.	Planting density	30 cm x 15 cm, 3 seedlings per hill
Nursery bed Paddy field2 kgs of N/haPaddy field- 68 kgs of N/ha and 20 kgs of P/ha for wet season paddy - 88 kgs of N/ha and 20 kgs of P/ha for dry season paddyTime in paddy field- 88 kgs of N/ha and 20 kgs of P/ha for dry season paddyAll PBasic dressing Basic dressing at transplanting time 25% of N25% of NFirst top dressing at two weeks after transplanting time40% of N2nd top dressing in the late period of a young panicle formation stage1. Application of chemicals2 //ha	9.	Planting depth	Within 3 cm from the surface
 Paddy field - 68 kgs of N/ha and 20 kgs of P/ha for wet season paddy - 88 kgs of N/ha and 20 kgs of P/ha for dry season paddy Time in paddy field All P 35% of N 25% of N 40% of N Application of chemicals 2 {/ha 	0.	Fertilization	
for <u>wet season paddy</u> - 88 kgs of N/ha and 20 kgs of P/ha for <u>dry season paddy</u> Time in paddy field All P 35% of N 25% of N 40% of N 1. Application of chemicals 2 //ha		Nursery bed	2 kgs of N/ha
for <u>dry season paddy</u> Time in paddy field All P 35% of N 25% of N 40% of N 1. Application of chemicals Basic dressing at transplanting time associated transplanting time 2 //ha for <u>dry season paddy</u> Basic dressing Basic dressing at transplanting time 2 //ha		Paddy field	 68 kgs of N/ha and 20 kgs of P/ha for wet season paddy
All PBasic dressing35% of NBasic dressing at transplanting time25% of NFirst top dressing at two weeks after transplanting time40% of N2nd top dressing in the late period of a young panicle formation stage1. Application of chemicals2 //ha			 88 kgs of N/ha and 20 kgs of P/ha for dry season paddy
 35% of N 25% of N 40% of N 40% of N Application of chemicals 		Time in paddy field	
 25% of N 40% of N A0% of N 2nd top dressing in the late period of a young panicle formation stage 1. Application of chemicals 2 //ha 		All P	Basic dressing
40% of N 2nd top dressing in the late period of a young panicle formation stage 1. Application of chemicals 2 //ha		35% of N	Basic dressing at transplanting time
of a young panicle formation stage 1. Application of chemicals 2 //ha		25% of N	First top dressing at two weeks after transplanting time
		40% of N	
2. Weeding Two time about 25th and 50th day af	1.	Application of chemicals	2 //ha
	2.	Weeding	Two time about 25th and 50th day afte

Table 4.2.3 DESIGN CRITERIA OF PROPOSED FARMING FOR PADDY WITH PROJECT

- 93 -

Item	Without Project	With Project
Paddy		
Irrigated land		
Wet season paddy Dry season paddy	2.36 2.62	4.5 5.0
Rainfed land		
Wet season paddy	2.07	-
Mongo beans	0.4	0.4
	<u>Irrigated land</u> Wet season paddy Dry season paddy <u>Rainfed land</u> Wet season paddy	Irrigated landWet season paddy2.36Dry season paddy2.62Rainfed land2.07

Table 4.2.4 FUTURE UNIT YIELD OF PADDY

Table 4.2.5FUTURE CROP PRODUCTION AT FULL
STAGE FOR THE IRRIGATION PROJECT

	Item	with Project	(Unit: Without Project	ton of paddy) Increment Diversion Dam Scheme
1)	Paddy	104,500/1	25,100	75,300
	Irrigated land			
	Wet season paddy Dry season paddy	49,500 55,000	13,000 12,100	36,500 42,900
	Rainfed land	* .		х. Х
	Wet season paddy	0	4,100	-4,100
2)	Mongo beans	0	300	-300

.

Remarks: <u>/1</u>: equivalent to 54,200 tons of milled rice

Table 4.2.6 10-DAY MEAN DISCHARGE AT ARAYAT

													(Unit;	: m ³ /s)	
	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	
- 010	115.8 83.8 79.3	54.5 40.5 50.1	163.1 38.5 102.8	46.8 41.6 38.8	36.7 36.1		56.1 42.0	-	23.2 19.4	27.7 21.3 16.1	151.8 109.1	223.1 159.9	7 9 6 7 9	8 2.18 1.18	·
- 00	85.0 47.9 38.6	46.7 41.7 37.1	48. 1 35.8 36.5	35.8 29.8 28.2	28.4 19.1 16.5	i	31.6 32.2 28.8	1	23.8 22.4	12.3 11.2	101 583 283	37.6 26.6 37.6	32.3 23.1 23.1	87.6 72.4 72.8	
~ N M	32.9 26.9 25.2	32.7 26.1 20.9	36.8 27.7 23.0	28.1 32.7 23.0	13.6 14.6 12.9	12.9 11.4 12.4	22.9 53.7 24.9	25.4 26.7 35.4	5.0 2.0	19.8 13.5 10.9	40.7 40.7	27.4 27.4 23.3 15.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33.2 33.2 42.3	. :
- 20	22.0 19.6 24.6	17.7 12.3 9.6	19.6 18.4 23.0	22.3 · 20.1	14.6 16.1 10.8		21.7 19.0 15.3) j i	0, 10 10 10 10 10 10 10 10 10 10 10 10 10 1	8.7 7.5 15.2	43.8 43.2 61.4	13.4 23.3 12.8	13.5 12.2 11.1	47.3 52.0 55.9	
- 0 0	36.2 22.6 33.2	11.4	15.6 17.8 17.4	22.6 21.2 24.6	9.4 15.8 16.9		64°3 54°3 54°3		0.4 M	18.2 7.7 10.3	2 4 2 4 2 6 2 4	15.8 28.6 1.720.7	10.1 9.2 9.2	59.5 44.8 5.8	15 • 1
- 0 m	198.9 123.7 133.5	417.6 144.6 158.6	275.8 282.3 88.3	28.1 25.3 26.3	22.4 60.9 25.4		278.9 507.3 359.9	i -	4.4 19.2 28.1	42.8 538.7 64.3	117.5 81.5 102.1	277.0 244.5 255.4	46.1 39.0 70.8	113.2 153.2 220.0	
- 40	471.9 1,195.5 1,002.6	131.9 300.6 341.9	159.7 174.1 354.6	46.4 36.9 318.7	29.7 43.6 375.0		304.4 711.8 1,076.8		19.8 92.4 46.3	40.3 199.3 666.3	84.8 41.2 45.5	969.2 280.0 226.7	89.1 92.9 231.4	169.1 307.7 495.5	· *
- 01 m	622.5 328.3 233.1	38.2 631.1 322.7	1,149.2 1,224.6 1,106.2	399.0 463.0 916.3	1.318.0 778.0 144.4		583.4 590.7 139.0		45.5 144.3 602.8	145.1 1.102.4 1.216.0	62.3 240.1 212.5	336.6 642.0 568.6	364-9 336.4 430.5	281.3 281.3 662.3	n e (jek Linger el
~ 0103	293.4 588.8 776.0	598.1 1.437.1 491.4	1.073.5 902.5 1.069.8	1.365.5 855.9 647.9	284:3 585.7 301.0		195.6 263.0 326.5	-	372.0 219.0	336.2 253.5 263.5	150.6 202.5 359.4	394.8 524.9 551.9	640.2 726.8 716.5	1,087.0 896.0	-
- 0100	483.0 235.1 78.9	108.3 68.6 39.4	647.4 696.5 576.3	829.7 261.6 103.0	339.5 207.5 104.4	, ,	354.8 1,730.2 596.9	2.00	354.8 1,496.2 710.8	95.4 974.6 1.021.7	159.0 84.0 358.7	559.5 376.2 363.1	242.0 242.0 138.1	030.0	1. J. 1
- 20	365.2 209.3 86.6	85.5 171.2 1.359.3	889.0 402.9 114.9	53.9 42.7 51.0	43.2 33.0 130.4) (125.5 119.3 488.7		64.6 63.8 595.1	1,323.6 990.1 404.6	173.7 41.9 26.3	367.3 347.2 195.4	110.0 111.6 887.6	475.4 475.4	·· · · ;
	65.6 91.1 76.3	740.1 166.7 203.2	83.2 65.2 55.9	171.8 48.8 34.5	50.5 76.2 41.0		445.1 219.3 282.0	1 () () () () () () () () () (94.8 63.7 34.4	345.3 391.1 243.8	41.9 98.7 376.3	98.2 94.4 70.4	221.7 131.6 132.4	429.6 375.1 305.9	
Average	231.5	296.8	337.2	199.2	144.7	226.4	296.1	378.4	149.4	298.1	116.0	309.4	176.9	396.4	

				Unit: 110 ⁶)
	Item	Foreign Currency	Peso Currency	Total
1.	Direct Construction Cost	(146.43)	(160.53)	(306.96)
	(1) Diversion Dam	86.00	63.97	149.97
	(2) Irrigation Facilities	25.19	33.40	58.59
	(3) Drainage Facilities	28.44	42.88	71.32
	(4) Farm Road	6.15	6.64	12.79
	(5) On-Farm Development	0.65	13.64	14.29
2.	Cost for O&M Facilities	4.10	4.50	8.60
3.	Compensation Cost for Land Acquisition	-	33.00	33.00
4.	Engineering Cost	22.10	12.30	34.40
	Sub-Total	172.63	210.33	382,96
5.	Physical Contingency	19.17	30.37	49.54
	Total	191.80	240.70	432,50
6.	Price Contingency	64.70	130.90	195.60
	Grand Total	256,50	371.60	628.10

Table 4.2.7SUMMARY OF FINANCIAL CONSTRUCTION COST
FOR IRRIGATION DEVELOPMENT

-

.

DISTANCE AND AFFECTED PERIOD OF SEAWATER INTRUSION ON PAMPANGA RIVER (Average 1968 - 1978) Table 6.5.1

		Intruded	Affecter
Unannel Condition			
015t (k	Distance Period (km) (day)	Distance (km)	Period (dav)
At Channel Bottom			
	22.7 145	28.9	156
<pre>b. Improved Channel <u>/2</u> (Basic Plan)</pre>	29.6 163	32.7	173
	26.9 157	30.5	169
d. Improved Channel <u>/4</u> (First Phase, Stepwise Plan)	24.6 153	29.1	167
At 1 m below Water Surface	:		
a. Existing Channel	.3	2.3	155
<pre>b. Improved Channel (Basic Plan)</pre>	2.5 149	3.4	161
<pre>c. Improved Channel (Stepwise Plan)</pre>	2.2 146	3.2	161
l tepwise Plan)	-8	2.8	159

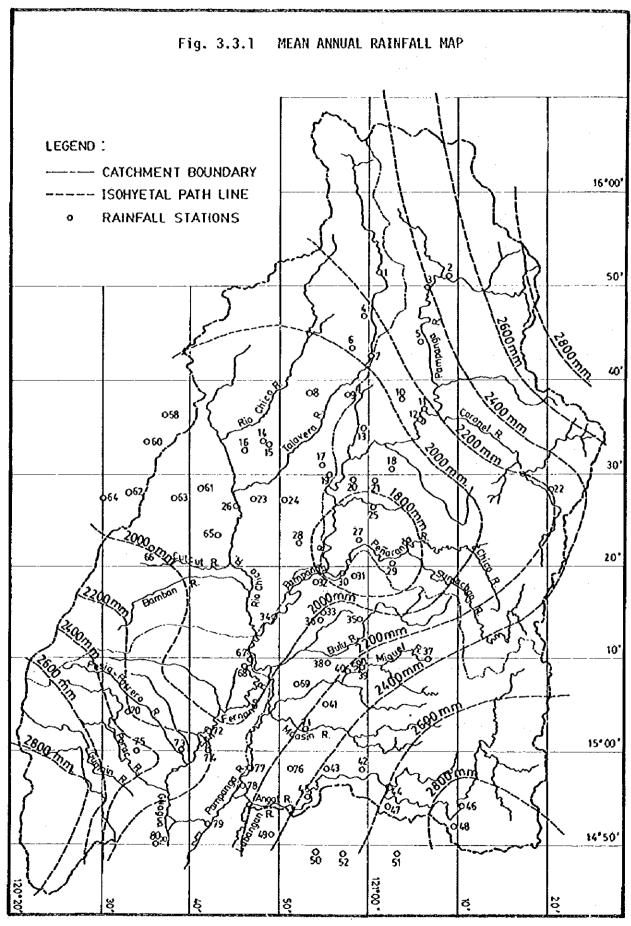
.

97 --

Table 6.6.1 SUMMARY OF EVALUATION AND EFFECTS ON FLOOD CONTROL PROJECT

.

	ltem	Stepwise Plan with 20-Year Design Flood
1.	Internal Rate of Return	10.8%
2.	Average Annual Benefit	791,900,000
3.	Construction Cost	
	Economic Cost	7639,800,000
	Financial Cost	p 796,900,000
	Local Currency	9413,500,000
	Foreign Currency	P 383,400,000
4.	Annual O&M Cost	94,000,000
5.	Decrease in Inundation Area	19,000 ha
6.	Increase of Paddy Production	14,800 tons/yr
7.	Decrease in Inundated House	13,400 houses
8.	Employment Opportunity during Construction Period	1,500,000 man-days
9.	Increase of Fish Production	2,400 tons/yr


-

.

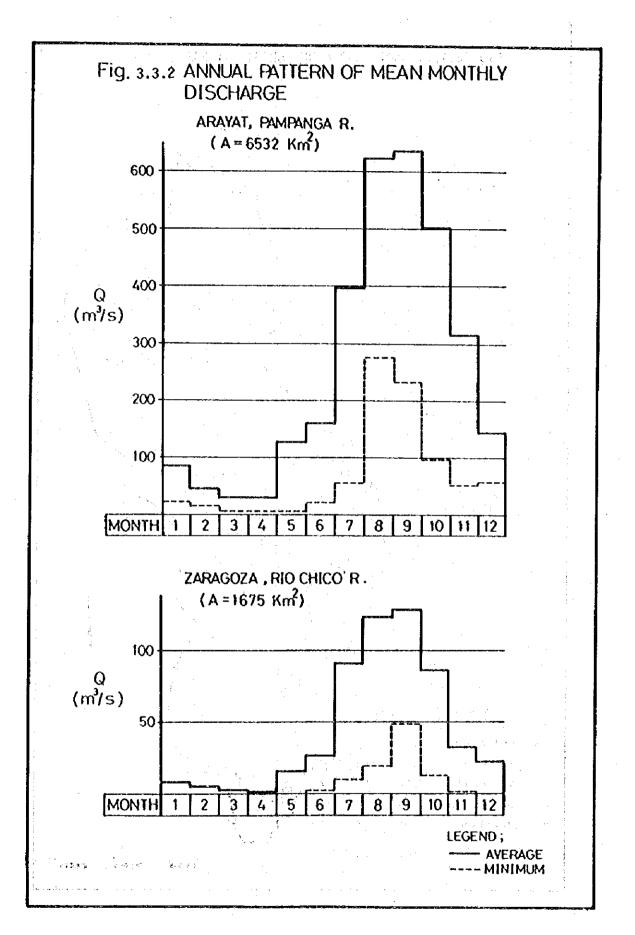
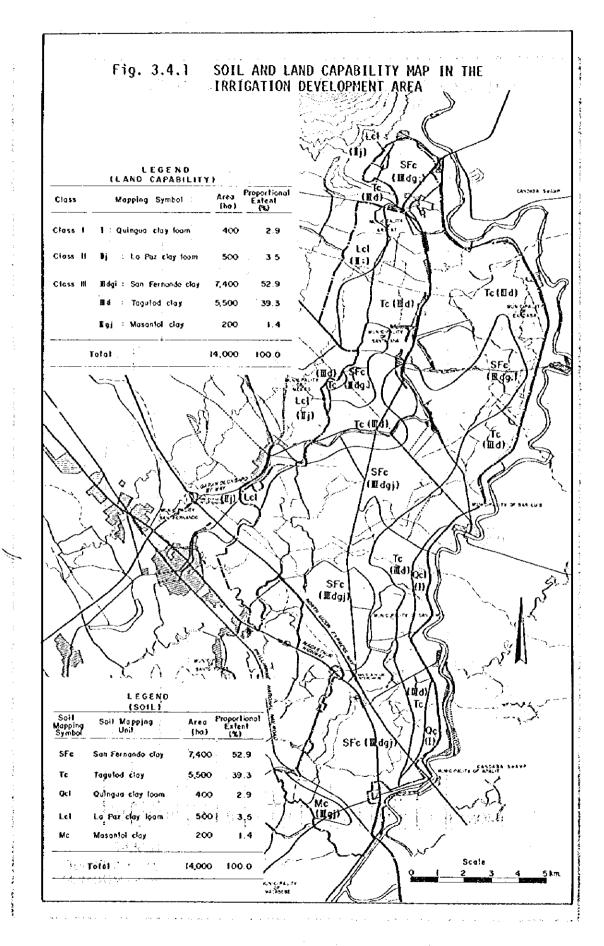
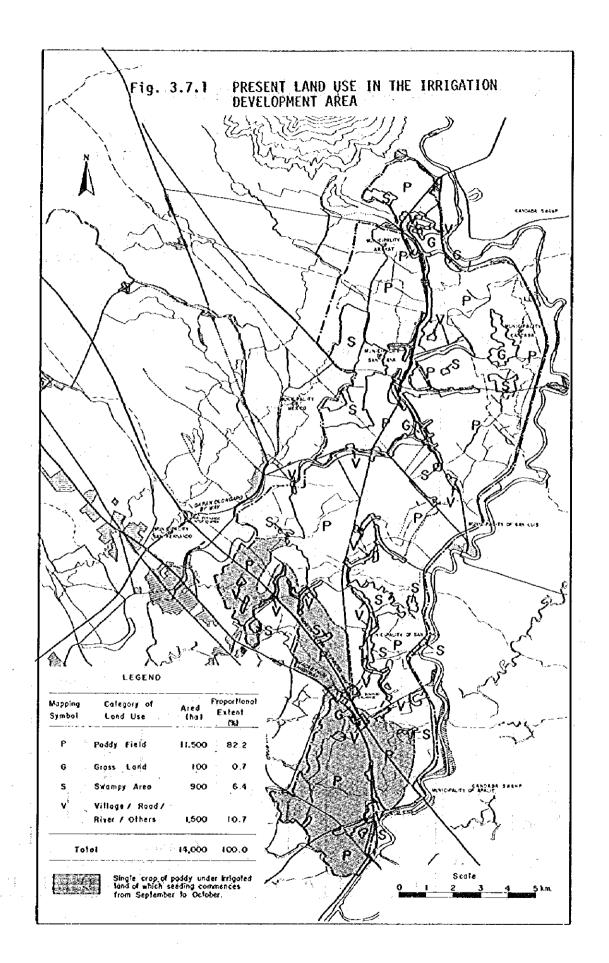

	Item	· · · · · · · · · · · · · · · · · · ·	
1.	Internal Rate of Return (%)	15.4	
2.	Irrigation Benefit (P 10 ⁶)	98.4	
3.	Cosntruction Cost (P10 ⁶)		
	- Economic - Financial - Financial with price contingency	356.2 432.5 628.1	
4.	Annual 0&M Cost (P10 ⁶)	4.0	
5.	Irrigation Service Area (ha)		
	- Wet Season - Dry Season	11,000	
6.	Annual Incremental Rice Production (ton)	47,000	
7.	Employment Opportunity (10 ⁶ man-days)		
	- Construction Period - Annual Increase Due to Farm Activities	1.9 1.5	
8.	Incremantal Net Reserve for Typical Farm (P/household)	3,369	
9.	Irrigation Fee (P/household)	545	
10.	Balance between 8 and 9 (P/household)	2,824	•
11.	Potentiality for Fisheries Development	to be expected	
12.	Paddy Field to be Submerged (ha)	100	

Table 6.6.2SUMMARY OF EVALUATION AND EFFECTS
ON THE IRRIGATION PROJECT

- 99 -

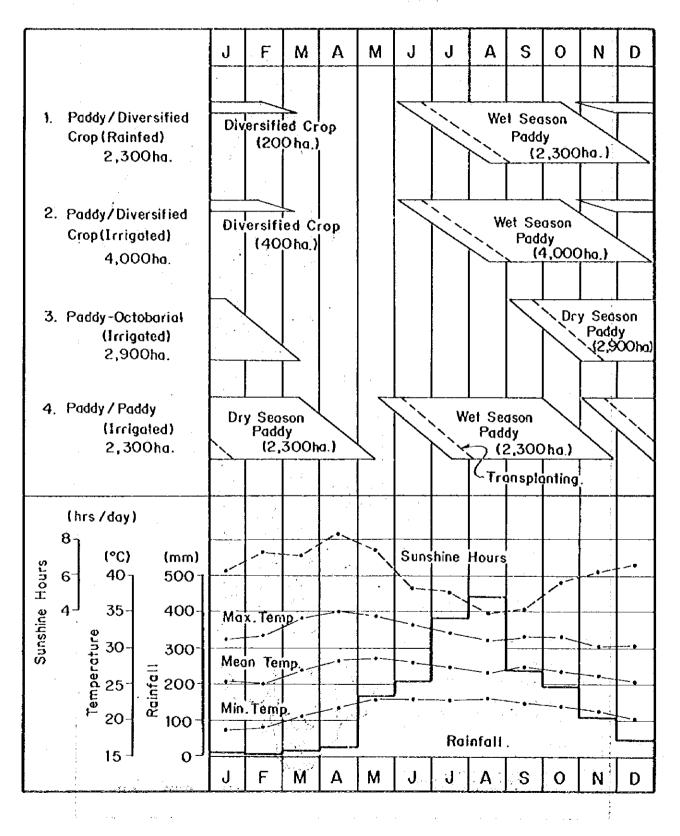


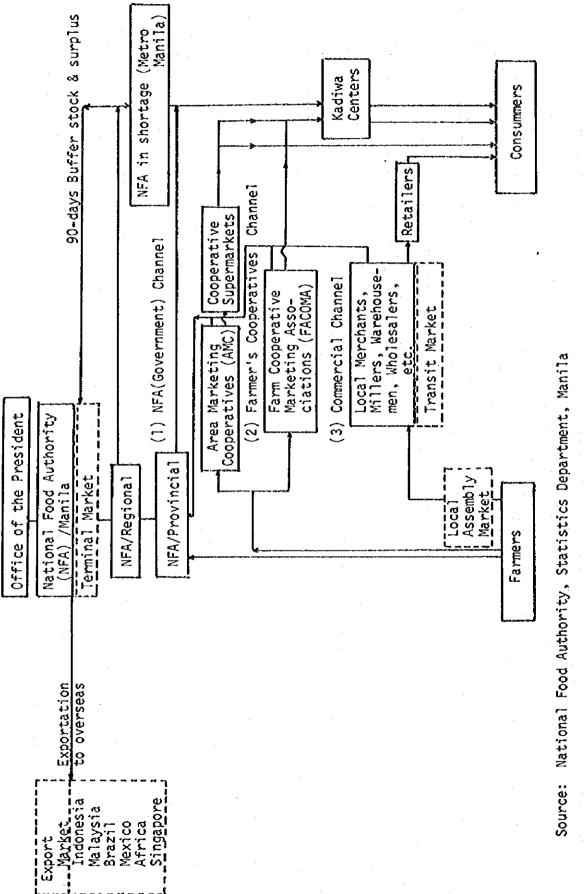
- 100 -



- 101 -

.

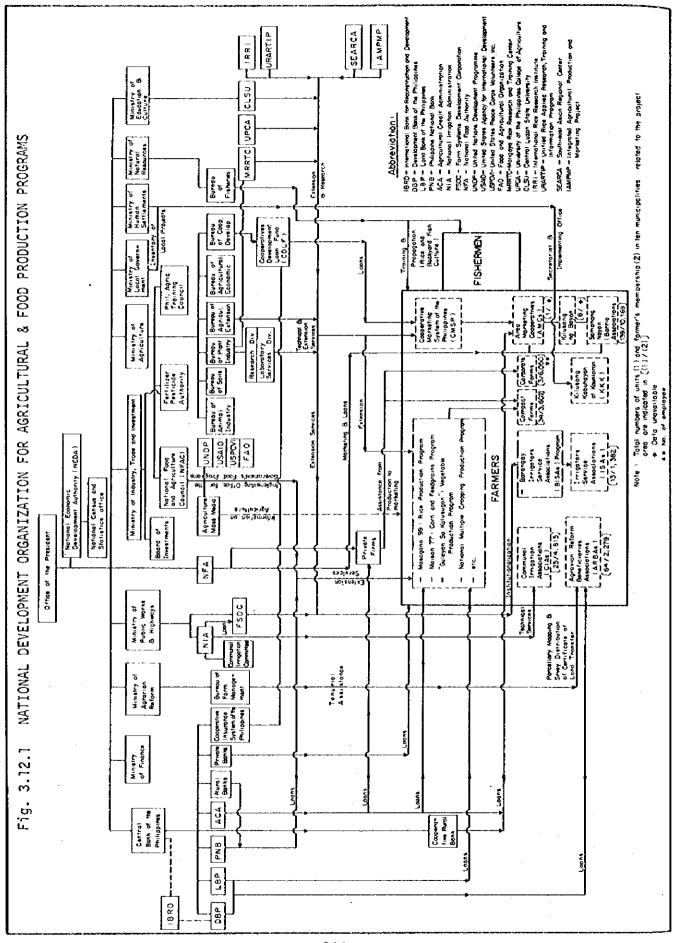

- 102 -



- 103 -

Fig. 3.7.2

PRESENT CROPPING PATTERN



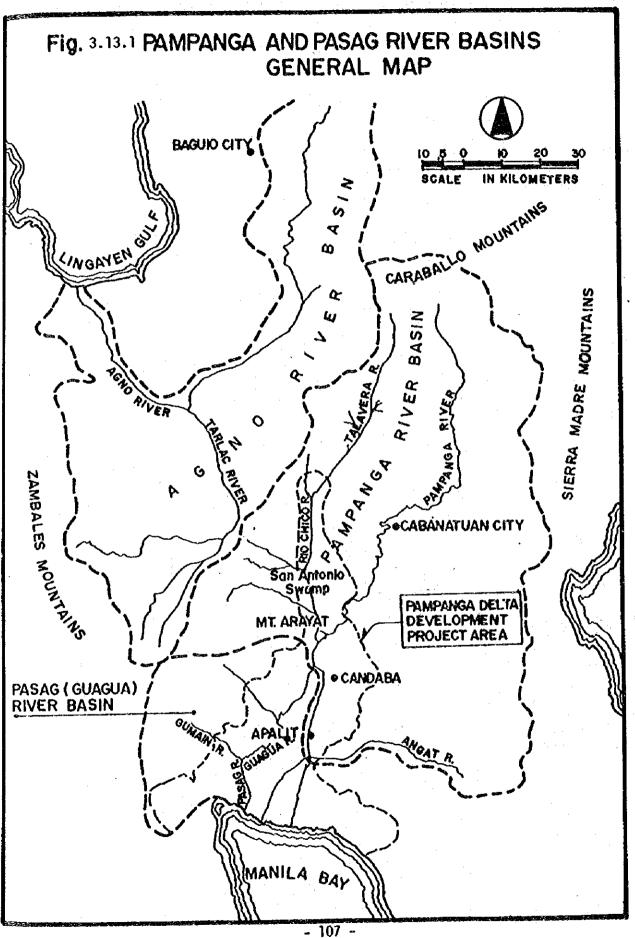
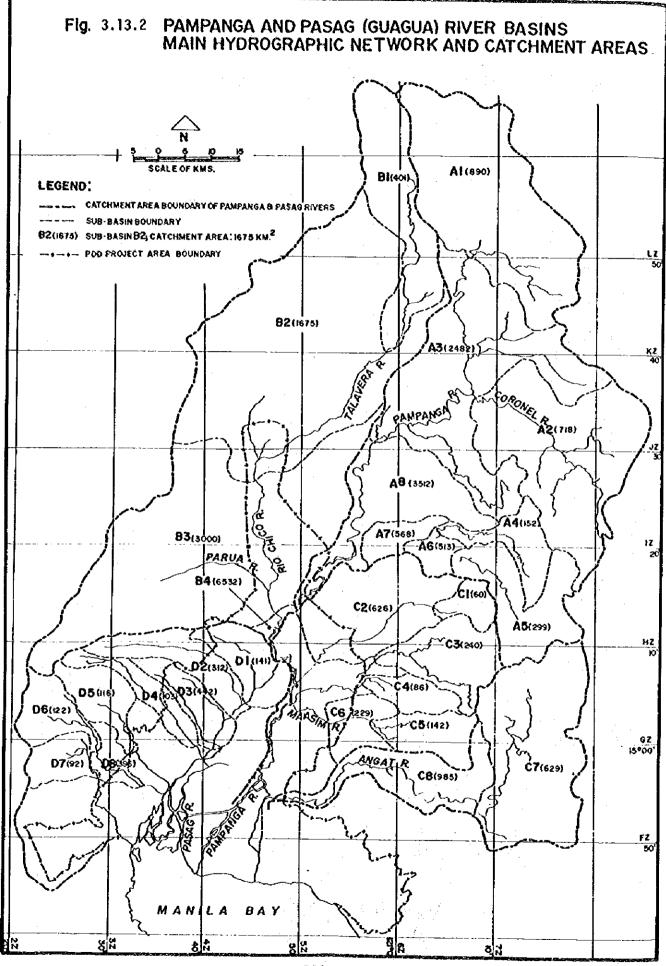
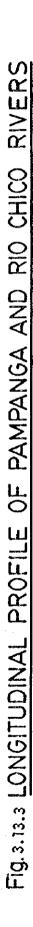
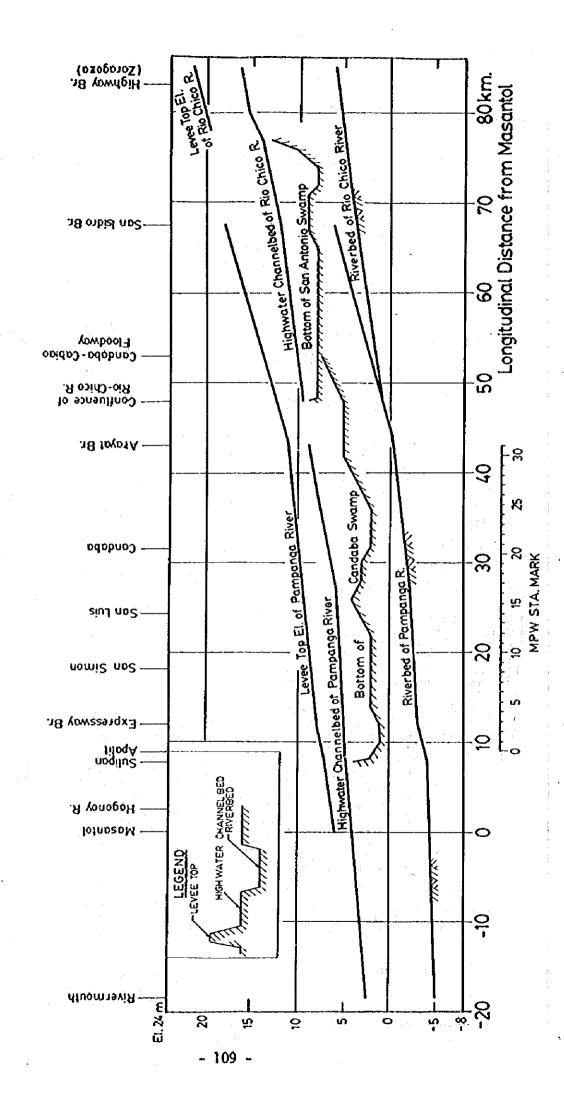

I MARKETING FLOW CHART OF RICE (OR PADDY)

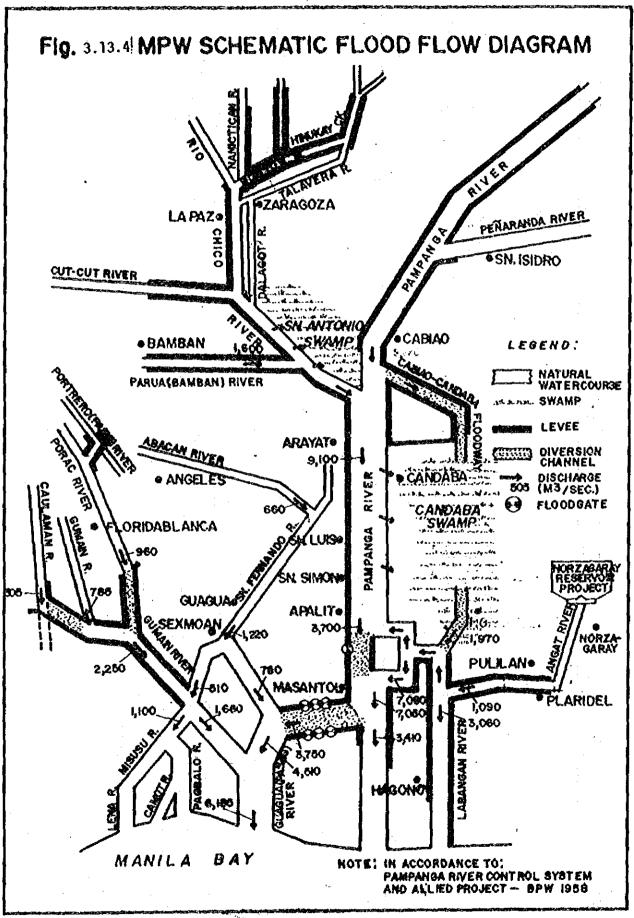
Fig. 3.11.1


- 105 -

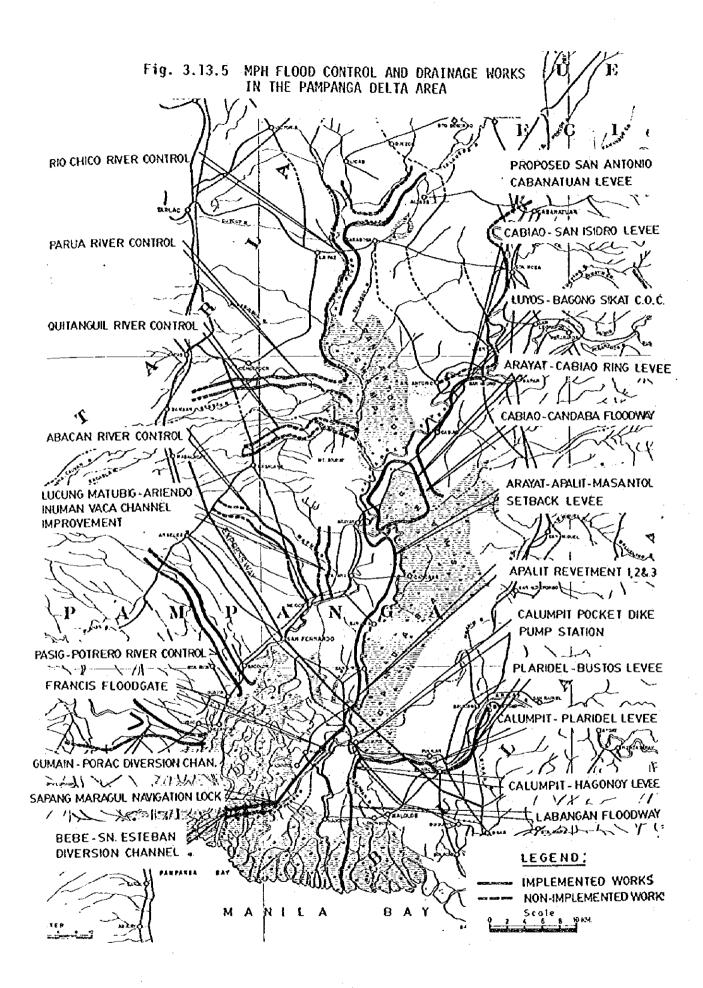
- 106 -




107 -

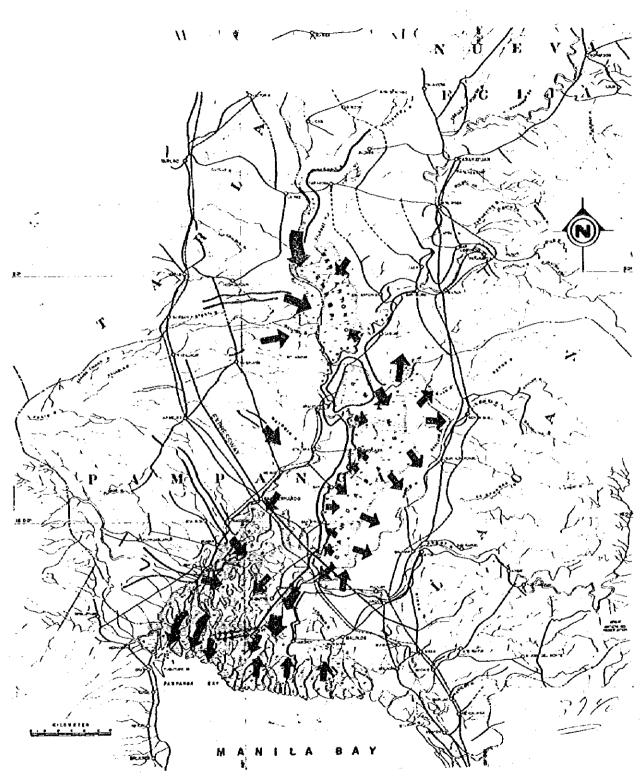
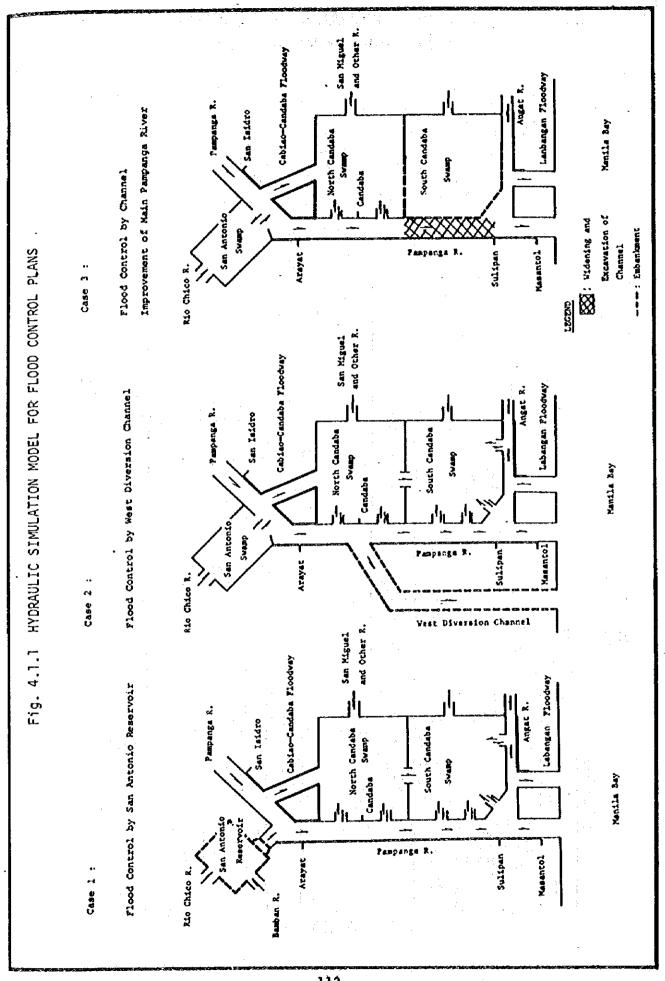
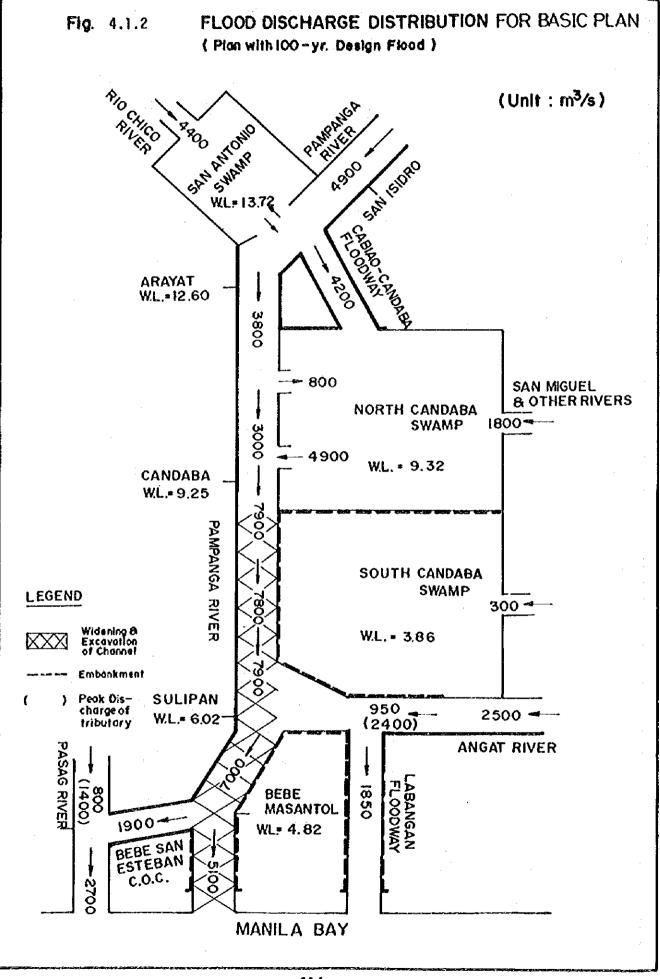


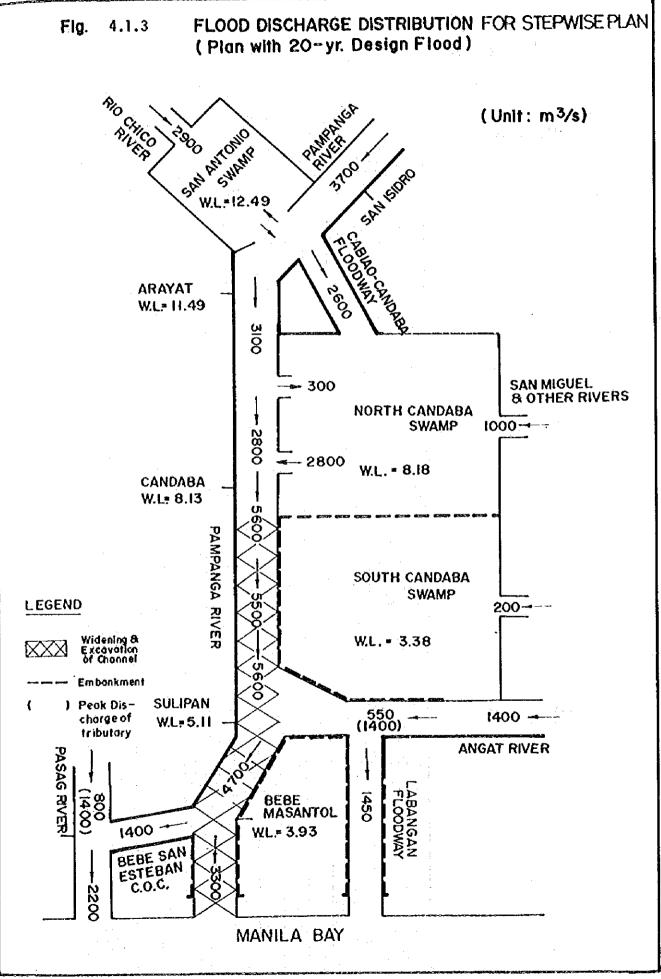
- 108 -


.

- 110 -

- 111 -


Fig. 3.13.6 POSSIBLE INUNDATION AREA AND TYPICAL FLOOD FLOW DIRECTIONS

- 113 -

- 114 -

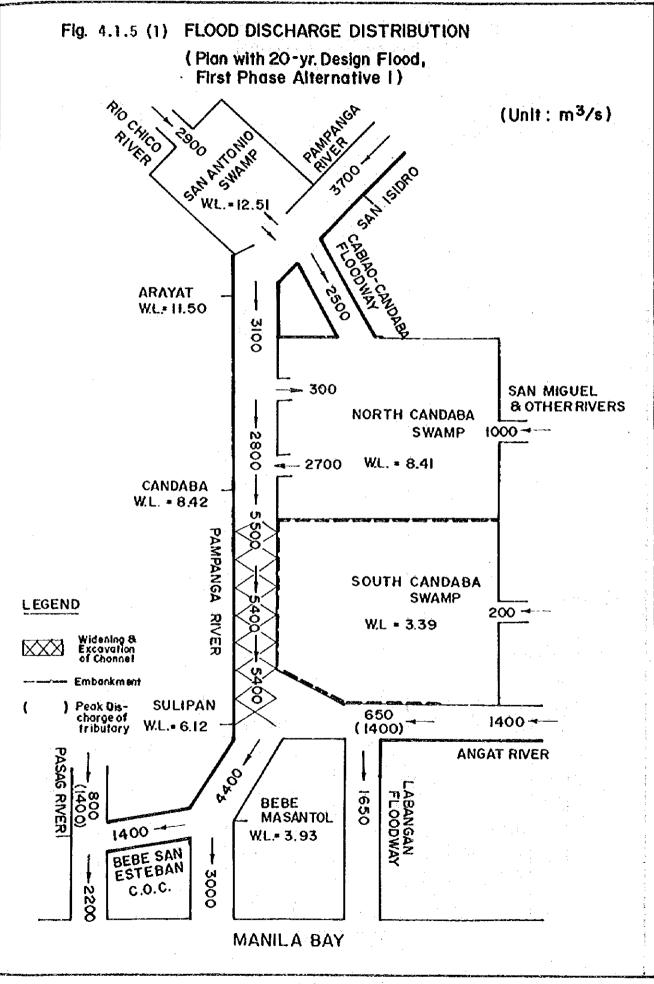
- 115 -

Fig. 4.1.4

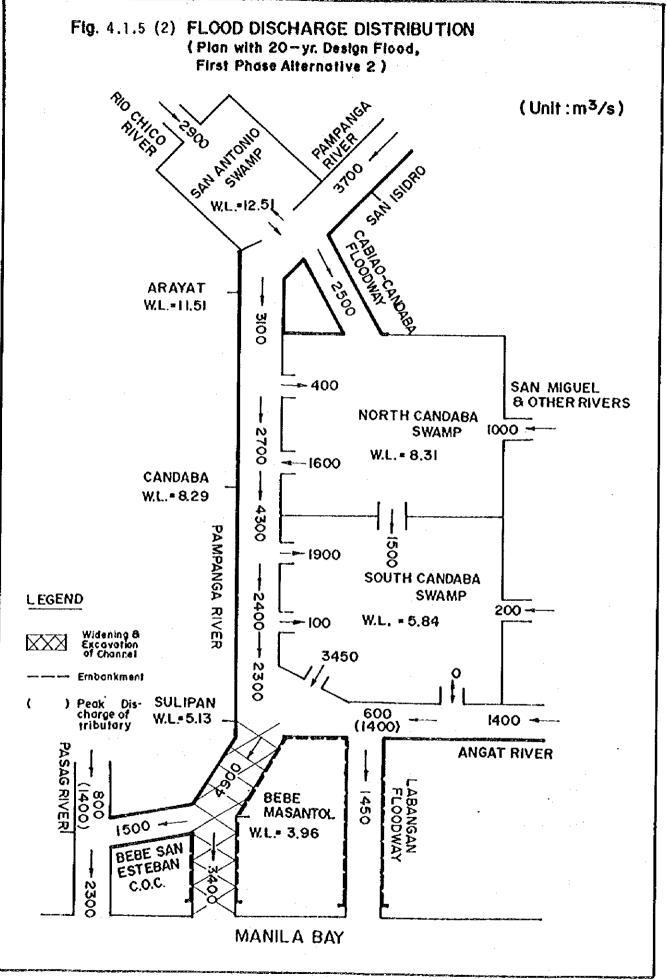
CONSTRUCTION SCHEDULE

Alternative-1

	-	-		-		-			
1.00	<u>[44</u> 2	1700	ALL DE	100	160 1	I this part	Little pr	1	Lo: 1
Discord Street	(Proves	100.00	-	-		1 march	1.46.00	T MAX	1
						-	1	1	<u> </u>
1	f	t	11	1	1	╆╼╾	ł	f	ł
	Carlos and	-	Superco.	-	-	·}	1	ŧ	
1.	-		den weren			}		f	ł
						}	┨───		
		-	Statistics				1	ŧ	<u> </u>
1		[1	1	
		-	e.trans	-			╞╼╼┈		
T			-			}	t	 	
-									
				-					
								_	
					Alternation			i	
						- Serial Property			- 63. " VC
									_

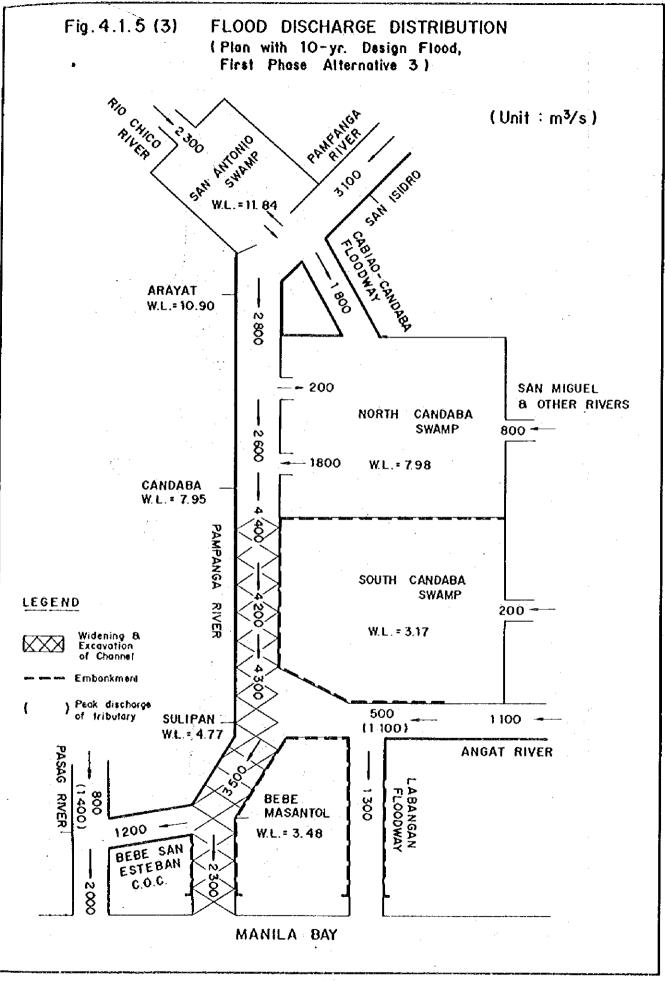

Alternative - 2

and the subscription of th										
Page	Lin yo	2nd pr	Je J ye	ALB PT	Sibe		17.1	41.8 yr		
FLEET PLANE			2356	1	L.	1	1	120.00	1.22	1011 71
E. Land acquiellion and Comparation								<u> </u>	<u></u> †	
2. Civil work		f	1		· · · -			ł		
Proparatory work		100500	-	-						
Ed externt				Direct]			
Encarat i po	T	100					}			
Outlat		STARSHED I	1.3.1.1.1.1	Sitta	Consecutive of					
Peverment							}			· · · · · · · ·
Bridge	1		·							
C.bero	1	Pratical		TOPIC -						
J. Enginvering and Administration	-		_							
Bacand Passa							_	-		
8. Lang Regulatetan M.E.Componention								-		
1. Civit wet	1									
fargaratary werb	1									
Eré artan st								<u>ح</u>		
Eac gratjon										
Our let										
Be vetennt:	T T		~~~~							101 E 2
Britge	r d	1	1							
Cem re	r1							Coloreda		
A. Engineering and Addising states			-1		-			¥154CD		

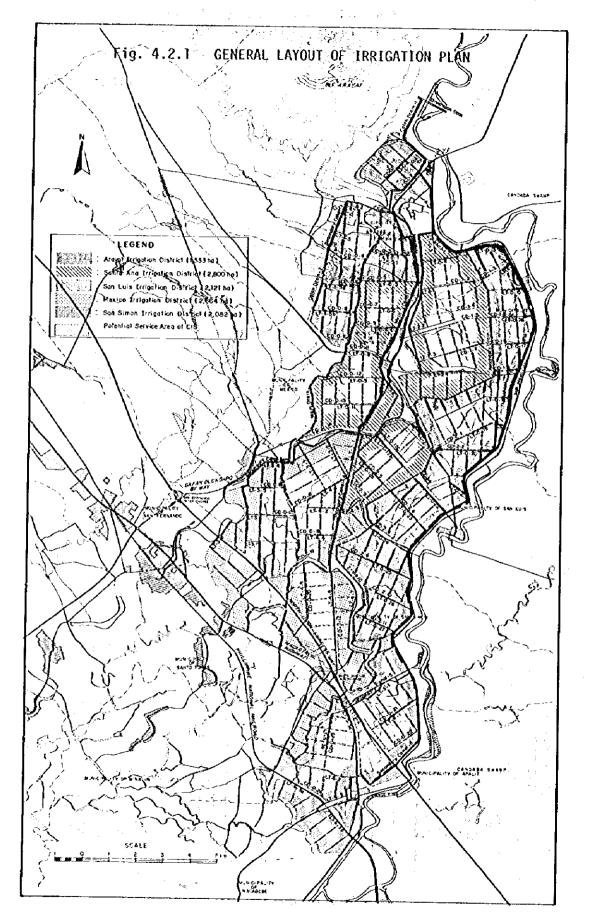

Alternative-3

والمحاوير الوالية أرقيته المراجعة المراجعة والتعار		-								
Lites	1400	2.67	1.12	ith 20	12.4	14.5	Day	Lon	In	60.5
First Pases	100.00		-	Contract of		1000	1	1 de	<u>, "</u>	f and the second se
I. Land secondates						T		1	ł	} -
and Casponsation		l and a state	Y State			\$ L LE	ai –		1	1
I. Civil vich	1		f	<u>†</u>	<u>+</u>	╂		╆╼╍	<u> </u>	╉╼╍╍
Prophetary work			-					1	 	╋╍╍╍
Sub anbases	1								┟╾╍╍	┫
Rucavat Los	1				1		y	╂╌╌╍┥		Į
Outlec				_		1				
Freiss						Part of		╉────		
frige					f		╉╍┉	↓		ļ
Gibere										
	f				2.07		Ş	ļ		[
3. Regineering and Administration	10,000	COLUMN ST	Care a			1.000	2			
ficed have										
							5	2.17		27.52
1. Lind scipisition and Comparentian	1 1							Silate		
1. Civil work							[
Proparotory wert	L	-					-			
Erd ar han st									_	
Lie erat las						Figure				
Oyt lec										
ferret aun t										
fille							_			
Quarte.								2	<u></u>	
1. Sigtnesting and				~		÷4.5.			ii ÷	
Alatinistensie					1.4.1.2.1	200 C	1	12.0		

- 116 -

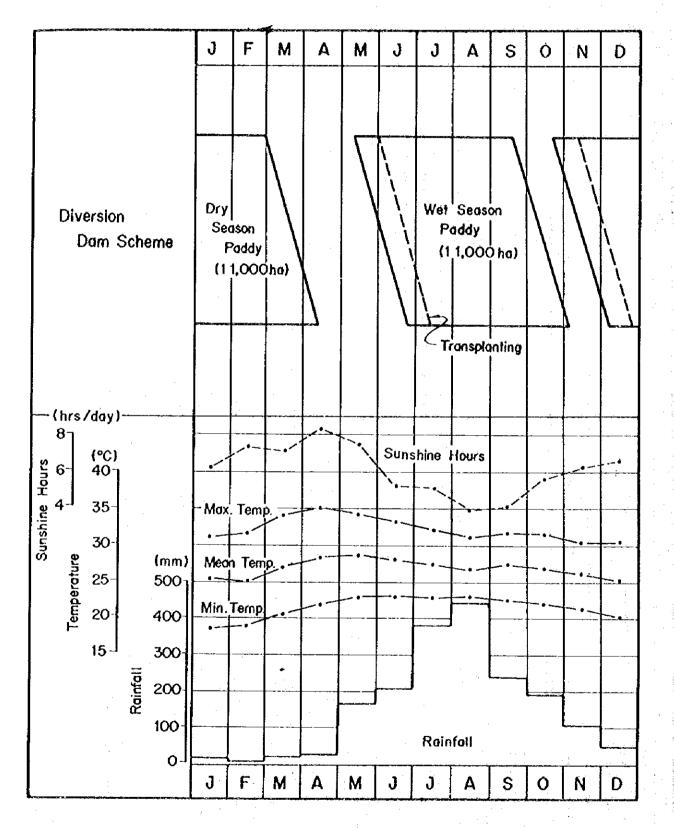


- 117 -



- 118 -

.



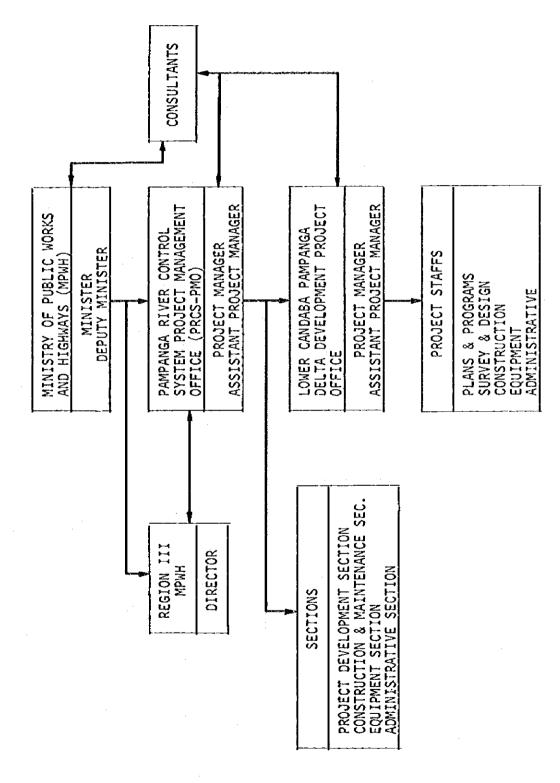
- 119 -

L

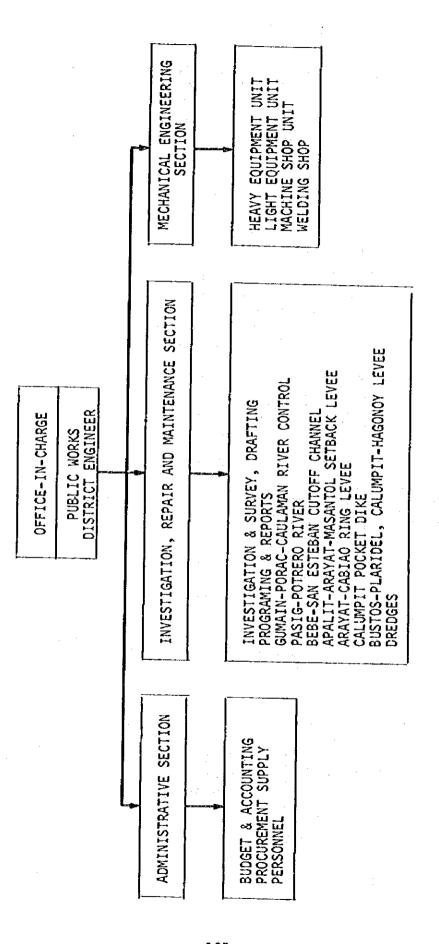
Fig. 4.2.2 PROPOSED CROPPING PATTERN

- 121 -

E SCHEME
E FOR THE
I SCHEDULE F
IMPLEMENTATION SO
Fig. 4.2.3

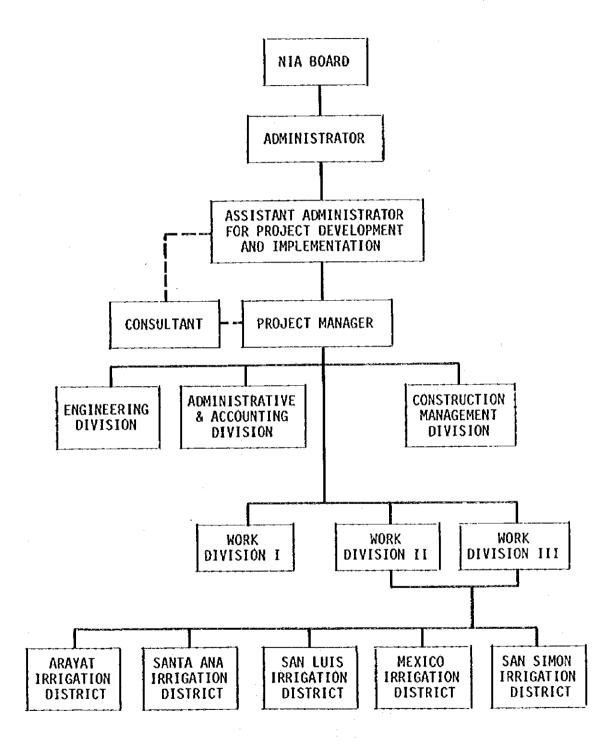

WORK ITEM	OUANTITY	JEM AMJ JAS OND JEM AMJ JAS OND VEM AMJ JAS OND VEMAMJ JAS OND JEM AMJ JAS OND JEM AMJ JAS OND JEM AMJ JAS OND
I. Mapping and Survey 2. Detail Design and		
Tender Document	1	
3. Tendering and Awarding		
4. Land Acquisition	3,300 ha	
B. CONSTRUCTION WORKS		
WORK DVISION-I		
Diversion Dom		
1. Earthworks	2,571,000 m ⁵	
2. Concrete Works	39,000 m ³	
3. Protection	166,000 m²	
4. Gate Installation	900 ton	
WORK DIVISION - H		
1 . Irrigation Facilities		
1.1 Main Canel	524,000 m	
1.2 Sub Main Canal	468,000 m ³	
1.3 Secondary Canol	375,000 m	
1.4 Lateral Canat	486,000 m ³	
2. Drainage Facilities		
2.1 Main Drain	2,307,000 m (20,5 m)	
2.2 Secondary Drain	1,104,000 m ³	
Collector Drain	286.000 m	
2.4 Catch Drain	48,000 m²	
3.1 Main Farm Road	58,000 m ³ 36,34m)	
3.2 Secondary Farm Road	E 000 04	
3.3 Tertiory Farm Road	186,000 m ³ (116.0km)	
WORK DIVISION - 田	-+	
	181,000 m ³	
y Farm Drich	343,000 m ³	
	4 16,000 m ³	
4. Drainage Ditch		

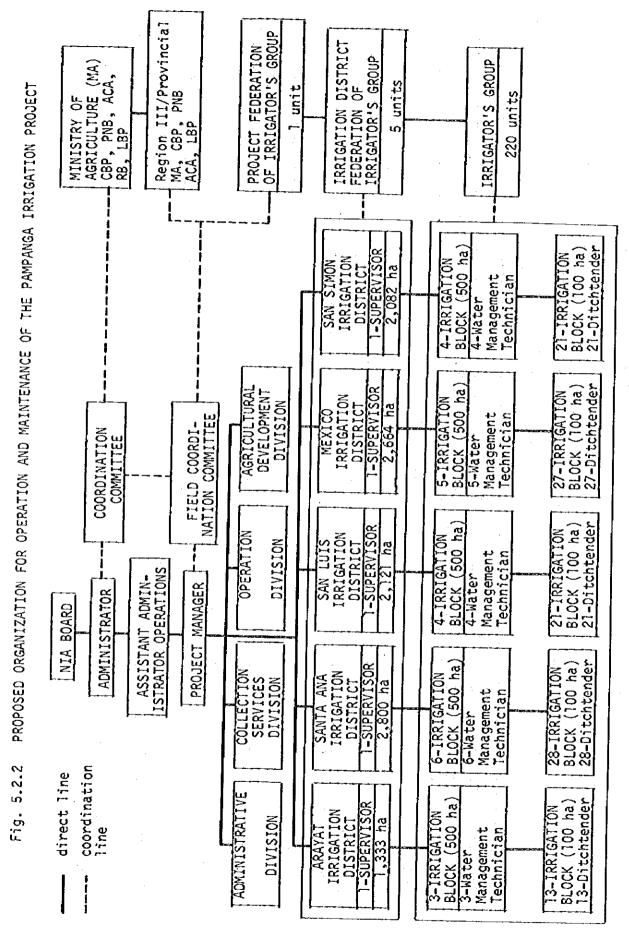
Equip., Monitoring & Control Unit Equip. Maintenance Unit Heavy Equip. Sub-Unit Light Equip. Sub-Unit EQUIPMENT Maintenance Unit Material Testing and Laboratory Unit CONSTRUCTION & MAIN-TENANCE SECTION Construction Unit PAMPANGA RIVER CONTROL SYSTEM-PROJECT MANAGEMENT OFFICE (PRCS-PMO) PROJECT MANAGER ASSISTANT PROJECT MANAGER MINISTRY OF PUBLIC WORKS AND HIGHWAYS (MPWH) MINISTER DEPUTY MINISTER Planning & Equip. Unit Field Investigation Survey & Right of Way PROJECT DEVELOPMENT SECTION Programming Unit Design Unit REGION III DIRECTOR HMdW General Service Unit Medical Unit ADMINISTRATIVE Accounting Unit Personnel Unit SECTION Legal Unit


Fig. 5.1.1 PRESENT ORGANIZATION CHART OF PAMPANGA RIVER CONTROL SYSTEM-PROJECT MANAGEMENT OFFICE (PRCS-PMO)

- 123 -

ORGANIZATION CHART AT IMPLEMENTATION OF FLOOD CONTROL PROJECT Fig. 5.1.2


EMERGENCY ORGANIZATION OF PAMPANGA RIVER CONTROL SYSTEM Fig. 5.1.3



Flood Stages along Pampange River-Mobilization of Personnel LEGEND:

Bank levee: All heads only will patrol their respective assignment Bank overflow: All heads and one aide will patrol their respective assignment Arnedo Dike overflow: All personnel will patrol their respective assignment Stage - I, I Stage - II, I Stage - III, /

Fig. 5.2.1 PROPOSED ORGANIZATION FOR CONSTRUCTION FOR THE IRRIGATION PROJECT

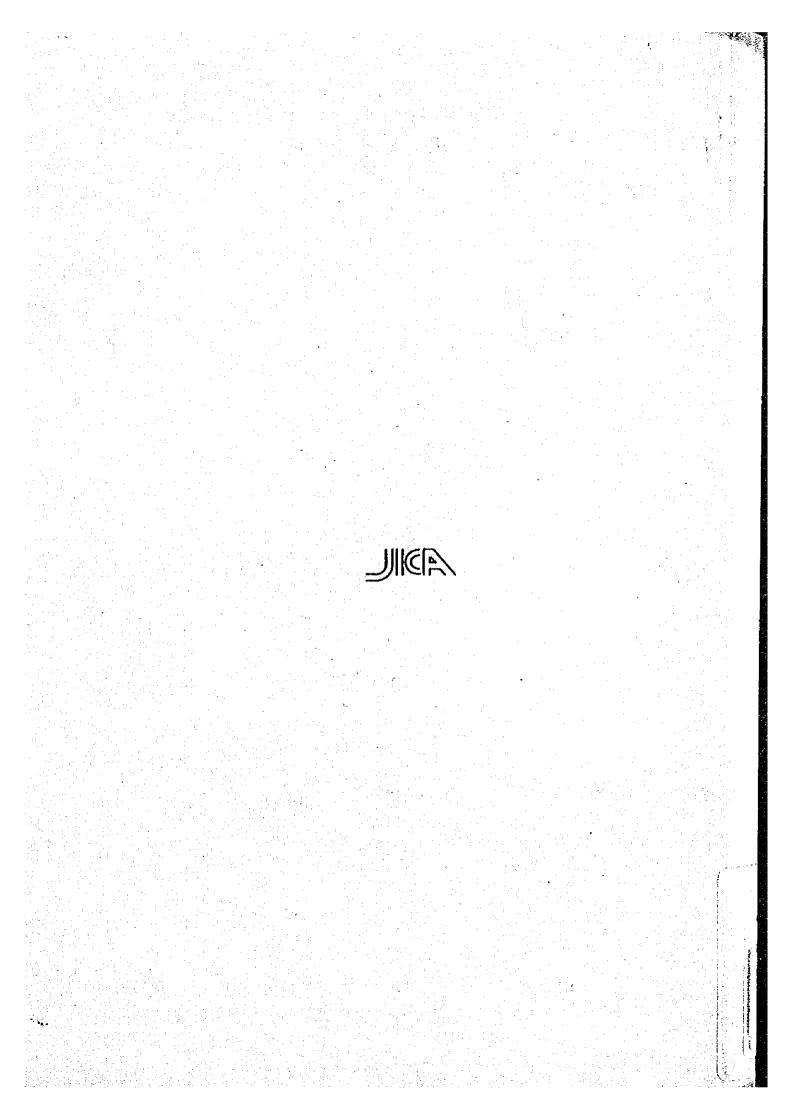
ź

- 127 -

5 S Σ 4 1987 Σ LL. Ġ D z 0 Þ S 4 1986 5 Ċ S. 4 ≥. LL. 5 \mathbf{O} 4 z o 1985 Ś 4 3 (No.)/3 No.of IG 220 20 43 ទួ 4 27 Households (No.)22 872 4,600],]]4 No. 0f 557 1,170 887 Farm 2,800 .11,000 Command 1,333 2,664 2,082 2,121 Area (ha) Irrigation San Simon Santa Ana. District San Luis Name of Mexico Arayat Total

Parcellary map necessary for setup of irrigator's group will be conducted for the entire irrigation service area (11,000 ha) during period of April, 1984 to June, 1985. Design of farm ditch and farm drain will be done in parallel with irrigator's group setup for each irrigation district ü

Estimated number of farm households in Irrigation District i i i i


Estimated number of irrigator's group in Irrigation District 13:

Establishment of irrigation district federation of irrigator's groups 1

Establishment project federation of irrigator's groups 5 -

SCHEDULE OF FARMER'S ORGANIZATION SETUP 21 Fig. 5.2.3

- 128 -

