Therefore, the following procedure was adopted to make formulae for the said seven sites.

- i) For bed load, the values K₁ and P₁ were estimated by use of the Sato-Kikkawa-Ashida formula.
- ii) For suspended load including wash load, the value P₂ estimated by use of the Engelund Hansen formula, and the value K₂ was estimated from the observed data.

The obtained coefficients of the above equations are as follows:

		Coeffi	cient	
Site	K ₁	Pl	K ₂	P ₂
Talavera	6.745 x 10 ⁻⁷	1.736	8.166 x 10 ⁻⁶	1.579
Zaragoza	4.920 x 10 ⁻⁸	1.678	2.825 x 10 ⁻⁶	1.601
Bamban	1.567 x 10-4	0.868	7.638×10^{-7}	2.677
San Isidro	1.186 x 10 ⁻¹¹	2.602	1.186 x 10 ⁻⁵	1.463
Arayat	1.479 x 10 ⁻⁶	0.990	1.986 x 10-6	1.610
Candaba	1.667 x 10 ⁻⁷	1.465	3.631 x 10 ⁻⁸	2.134
Sulipan	2.239 x 10 ⁻⁸	1.652	2.296×10^{-10}	2.903

2.6.3 Formula of Sediment Discharge

Sato-Kikkawa-Ashida formula:

$$\frac{q_{B}}{U_{*}d_{m}} = \phi F (T_{O}/T_{C}) \cdot \frac{U_{*}^{2}}{(\frac{r_{S}}{r_{W}} - 1)g d_{m}}$$
 (2.4)

where, qg: bed load per unit river width per unit time (m3/s/m)

U*: friction velocity (m/sec)

d_m: mean diameter (m)

g: acceleration of gravity (9.8 m/sec²)

 T_0 : tractive force of flow (t/m^2)

 T_c : critical tractive force (t/m^2)

F: function of T_0/T_c

rs: unit weight of bed material (t/m³)

 r_w : unit weight of water (t/m^3)

Engelund-Hansen formula:

$$q_s = 0.05 r_s V^2 \sqrt{\frac{d_{50}}{g(\frac{r_s}{r_w} - 1)}} \left[\frac{T_o}{(r_s - 1)d_{50}} \right]^{3/2} \dots (2.5)$$

where, qs: suspended load per unit river width per unit

time (t/sec/m)

V: mean velocity (m/sec)

 d_{50} : grain size of 50% of bed materials

2.6.4 Sedimentation

Applying the daily discharge during the period from 1966 to 1975, annual sediment yield at the said seven sites are calculated as shown in Table 2.18, using the eq. 2.3. The annual sediment yields in 10-year average are as follows:

River	Site	Catchment Area (km ²)	Ave. Annual Sediment (t/km²/yr)
Talavera	Talavera Br.	401	262
Rio Chico	Zaragoza Br.	1,675	134
Bamban	Bamban Br.	206	1,213
Pampanga	San Isidro Br.	3,472	685
Pampanga	Arayat Br.	6,532	387
Pampanga	Candaba Br.	7,270	163
Pampanga	Sulipan Br.	7,715	59

CHAPTER 3 FLOOD DISCHARGE

3.1 Methodology for Analysis

3.1.1 Review of Previous Study

Report on PD/CS Area Development Project

In the study, the synthetic series of daily rainfall were adopted on the basis of the principle of random events of rainfall in everyday. Using these rainfall, 30 years daily discharges were calculated with the runoff simulation program named MMO8. This is called "natural discharge" during the period of 30 years from 1946 to 1975. The probable peak discharges were estimated on the basis of the natural daily discharge as shown in Table 3.1.

However, such a synthetic rainfall series differs from the actual precipitation characteristics explained as follows:

- a) Tropical cyclones, tropical storms and depressions which are the main causes of large floods in the Pampanga River Basin bring the successive heavy precipitation over as much as several days or more. The time-wise distributions of the synthetic rainfall are not similar to the observed rainfall data, even if the total volume of monthly rainfall is the same as the observed one.
- b) In case of actual rainfall, the high correlation exists usually among the adjacent rainfall stations on the distributions of daily rainfall. However, the intensity and distribution of calculated synthetic series of daily rainfall are so random and no relation exists among the adjacent stations in the basin. The outflow at the confluent points have therefore a tendency to smaller amount than the real flow when it is calculated from the synthetic rainfall data.

For example, the synthetic series of daily rainfall is compared with the observed data as shown in Fig. 3.1. The definite difference on the rainfall pattern can be recognized between two rainfall series. Furthermore, probabilistic evaluation is made on the peak discharge at some tributaries and main channel stations for both calculated values and observed discharge data. The results are shown in Table 3.2. The values derived from the observed data are bigger than the ones from the synthetic rainfall at three stations out of four. Those differences are presumed mainly due to the different patterns of rainfall.

Report on Hydraulic Design Studies of Pampanga River Control Project, MPW, 1961

In the study, 100-year daily rainfall was adopted as design rainfall on the basis of rainfall records in the Pampanga basin. Using the rainfall, flood discharges were calculated by the unit hydrograph method. The adopted 100-year design rainfall and the estimated flood peak discharges are shown in Table 3.3. The assumption and used data for the method are as follows:

- a) The daily rainfall records in the period from 1911 to 1937 were used to estimate the maximum 1-day through 7-day rainfall magnitude. The annual maximum basin rainfall was calculated by the Isohyetal map methods based on the records mentioned above.
- b) The unit hydrographs were prepared at the following 3 stations based on the observed discharge hydrograph in the period from 1920 to 1955.

	Watershed	Station	Catchment Area (km ²)
7.	Upper Pampanga and Rio-Chico	Arayat	6,126
2.	Candaba	Calumpit	1,485
3.	Angat	Calumpit	939
	Total at Calumpit, Bul	acan	8,550

c) The rainfall loss was considered in the form of infiltration on the basis of the data on the past typical floods.

In the estimation of 100 year design rainfall, it was not considered large rainfall such as May 1976 rainfall which was the biggest rainfall in the past with 7-day continuous rainfall of 877 mm at Cabanatuan City. This fact implies an underestimate in runoff volume of flood hydrograph, although the estimated peak discharge may be accepted as reasonable.

3.1.2 Methodology for Analysis

After reviewing the previous study reports and scrutinizing all the existing data, it was concluded to analyze by adopting the design rainfall based on the historical flood rainfall pattern with probabilistic analysis and runoff simulation model. There are many methods to estimate discharge from the rainfall. Among them, the storage function method was adopted, because discharge hydrograph is necessary to study the storage effects due to discharge control by dam, channel, and swamp.

The storage function method needs the time-wise and aerial distribution of rainfall. The typical flood from the past records was selected in consideration of aerial distribution of rainfall, magnitude of discharge and other elements. The selected flood is May 1976 which was a biggest in rainfall volume at Cabanatuan City and also a biggest in water level at Arayat and Sulipan since 1960. The storm characteristics of the flood are as follows:

Storm Characteristics of Flood of May 1976:

The flood was caused by the typhoon "DIDANG" which crossed the Luzon Island from May 21 to May 23, 1976. The typhoon made a loop over Central Luzon while crossing the Luzon Island. The amount of point rainfall at Cabanatuan City from May 21 to May 27 was 877 mm. The maximum daily rainfall was 226.1 mm on May 23. The daily discharge at Arayat exceeded 1,700 m³/s from May 24 to May 30. The maximum peak discharges at Arayat and Sulipan were 2,780 m³/s on May 25 and 2,710 m³/s on May 27 respectively.

Probable Discharges:

In runoff calculation, probability of exceedance of average rainfall over the Pampanga River Basin was estimated based on the correlation between the basin average rainfall and rainfall at Cabanatuan City.

The probable discharges were calculated by storage function method by use of an electronic computer.

3.2 Runoff Analysis

3.2.1 Rainfall Probability of Exceedance

Using 1-day through 7-day annual maximum rainfall records in the period from 1951 to 1979 at Cabanatuan City as shown in Table 3.4, the probable rainfalls are estimated by Gumbel method as shown in Table 3.5 and Fig. 3.2. To estimate the probable rainfall of the basin average of the Pampanga River, the rainfall correlations between Cabanatuan City and basin average for 1-day through 7-day are established as shown in Fig. 3.3, using the daily rainfall records on high range

in the period from 1970 to 1979. Then the probable rainfalls of the basin average are estimated from the rainfall at Cabanatuan City through the correlation curves. The estimated rainfalls of the basin average are shown in Table 3.6.

3.2.2 Flood Runoff Calculation

The equation of the storage function method is as follows:

Equation for the drainage area:

where, S1: storage in a drainage area

q₁: effective rainfall

r: rainfall in the drainage area

K,p: storage-coefficient

The factors such as primary runoff percentage, f1, and saturation rainfall, Rsa are used for estimates of effective rainfall. The following assumptions were used in the calculation.

- i) The runoff consists of flood and base flows.
- ii) The drainage area is divided into the infiltration and primary areas.
- iii) In the infiltration area, the rainfall is infiltrated up to saturation point after that all rainfall becomes runoff. The rainfall volume from the beginning to saturation point is called the saturation rainfall (Rsa).
- iv) In the primary area, all rainfall changes to runoff, and a ratio of primary and drainage areas is called the primary runoff percentage (f_1) .

The effective rainfall in the primary area, q_1 is calculated by the following equation which is a transformation of Eqs. 3.1 and 3.2.

$$q_{1}(t) = 2 \left[r_{(t)} - \frac{K}{\Delta t} \left\{ q_{1}^{p}(t) - q_{1}^{p}(t - \Delta t) \right\} - q_{1}(t - \Delta t) \dots (3.3) \right]$$

Where $\triangle t$ is time interval in calculation. In the calculation, the trial and error procedure is used. The effective rainfall in the saturation area, q_{sal} is calculated by the following equation.

Where ≥r is cumulative rainfall from the beginning.

The discharge from a drainage area was calculated by use of the following equation.

$$\overline{Q} = \frac{1}{3.6} f_1 A q_1 + \frac{1}{3.6} (1 - f_1) A q_{sa1} + Q_1 \dots (3.6)$$

$$Q(t) = \overline{Q}(t - T_1)$$
 (3.7)

where, Q: runoff from a drainage area (m^3/s)

 $\overline{\mathbb{Q}}$: hypothetical runoff (m^3/s)

 $\boldsymbol{q}_1\colon$ effective rainfall in the primary area

q_{sal}: effective rainfall in the saturation area

fi: primary runoff percentage

A: drainage area (km²)

 Q_1 : base flow (m^3/s)

 T_1 : lag-time

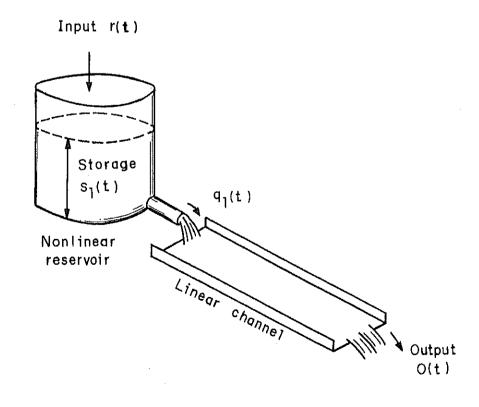
Equation for the channel:

$$I - O_1 = \frac{ds_1}{dt} \quad \text{(continuity eq.)} \quad \dots \tag{3.9}$$

$$0 (t) = 0_1 (t + T_1) (eq. of retarded runoff) (3.10)$$

where, S_1 : storage in the channel (m^3/s)

 O_1 : discharge at the middle point in the channel (m3/s)


I: inflow at the channel entrance (m^3/s)

K,p: storage coefficient

T₁: time-lag

0: outflow at the channel exit (m^3/s)

Basic model element of storage function method

The Pampanga River and the Guagua River Basins were divided into 45 sub-basins for the analysis as shown in Fig. 3.4. The calculation model for the analysis is shown in Fig. 3.5.

3.2.3 Estimate of Storage Coefficients

To determine the storage coefficients in the Pampanga Basin, the runoff calculations were carried out about selected floods of Oct. 1973, Aug. 1974 and May 1976 which were selected in consideration of the data on hourly rainfall and water level records. The following check points were selected for the calculated runoff hydrographs.

River	Check Point
Pampanga	San Isidro
Rio Chico	Zaragoza
Angat	Longos

Thiessen's method was used for the calculation of average rainfall. For the estimation of storage coefficients, trial and error procedure was used. After several tentative calculations, the storage coefficients in the Pampanga River Basin were obtained as shown in Table 3.7. The storage coefficients on channel were assumed as shown in Table 3.8, based on the channel conditions as shown in Table 3.9. The calculated discharge hydrographs at the checking points are shown in Fig. 3.6 together with the observed discharge. The calculated discharges at the stations are compiled in DATA BOOK IV.

3.3 Probable Flood Discharge

Using the estimated storage coefficients, the flood runoff hydrographs were calculated for the return periods of 5-year, 10-year, 20-year, 50-year and 100-year. The hourly rainfall distribution in the flood of May 1976 was applied as the basic rainfall for the calculation. The probable rainfall on each sub-basin was assumed in proportion to the actual basin rainfalls.

For the calculation in the case of the present conditions, the storage coefficient of the channel for the flood of May 1976 was applied assuming that the river channel condition has not been changed since 1976. For the case of the probable flood, the storage coefficient of the channel was obtained from channel capacity in the conditions after completion of the projects of the Proposed San Antonio-Cabanatuan Levee and the Rio Chico River Control. These storage coefficients are shown in the foregoing Table 3.8.

The storage effects by reservoirs were also considered: the Pantabangan and Angat dams for the present conditions. The results of calculation are shown in Table 3.10. The outputs of computer on flood discharge are compiled in DATA BOOK IV.

3.4 Comparison of Flood Discharge

For comparison purpose, the peak flood discharges at main stations are summarized in Table 3.11, which shows differences in values as estimated by MPW, TAHAL and the Team.

As described in the foregoing Section 3.1.1, the adopted rainfall for runoff analysis by TAHAL is the synthetic rainfall. When it is calculated from the synthetic rainfall, the outflow at the confluent points have a tendency to be smaller than the real flow. On the other hand, the method for runoff analysis as adopted by MPW is the unit hydrograph. In the estimation of the design rainfall, it was not considered large rainfall such as May 1976 rainfall which was the biggest rainfall in the past. This fact implies an underestimate in runoff volume of flood hydrograph, although the estimated peak discharge may be accepted.

The method for runoff analysis as adopted by the Team is the storage function method. The adopted coefficients of the method are obtained from the data on the past flood records. The calculated flood hydrographs agree with the observed values of the past floods of Oct. 1973, Aug. 1974 and May 1976 as shown in Fig. 3.6. Thus the probable flood discharges as estimated by the Team may be accepted as reasonable.

CHAPTER 4 HYDRAULIC ANALYSIS BY SIMULATION MODEL

4.1 Simulation Model

4.1.1 General

The hydraulic simulation model was developed by the Team in order to calculate the flood water level on the San Antonio Swamp, the Candaba Swamp and the Pampanga River for the purposes of flood control planning. The model includes:

- a. San Antonio Swamp
- b. Candaba Swamp
- c. the Pampanga River on the stretch (Cabiao-Manila Bay),
- d. the rivers flowing into the Candaba Swamp such as San Miguel, Bulu, Garlang and Maasim originating in the Sierra Madre,
- e. the Cabiao-Candaba Floodway,
- f. the Angat River as far east as the expressway bridge,
- g. the Labangan Floodway on the stretch (Calumpit-Manila Bay),
- h. the various natural and artificial openings between the Candaba Swamp, the Pampanga and Angat Rivers.

The network of hydraulic simulation model is shown schematically in Fig. 4.1. The model is considered to calculate the flood retarding effects of the swamps of the lower Pampanga River, simulating the existing natural system giving hourly flood levels and the flooded areas in the San Antonio and Candaba Swamps. It also simulates flood water levels and discharges at intermediate points along the Pampanga River.

The simulation model program was drawn up to simulate hydraulic conditions in and around the Candaba Swamp. In principle, this program follows the natural sequence of flows, i.e., rivers coming from the east discharge into the swamp.

The discharges from the Upper Pampanga Basin at Cabiao and the Rio Chico-Talavera Basin are considered as inputs. As long as water levels at Cabiao are below +9 m (the assumed crest of the floodway), no water enters the Candaba Swamp at that point. However, when water levels at Cabiao exceed +9 m, the Cabiao - Candaba Floodway passes the excess flows to the Candaba Swamp according to gradient of water level between Cabiao and the Candaba Swamp. The direction of flow i.e., from the river to the Candaba Swamp or vice versa, as well as the rate of calculated flow at 5 points along the Pampanga River and I point along the Angat River are determined by comparison of calculated water levels in the river and in the swamp.

Model outputs are: discharges and water levels at 18 locations along the Pampanga River, the Angat River, the Hagonoy River and the Labangan Floodway, water levels and volumes retained in the swamps, and inflows and outflows of the swamps.

4.1.2 Equation for Water Level on Swamp

When water passes through a swamp, the difference between inflow and outflow is equal to the rate of storage of water in a swamp; that is,

$$\frac{ds}{dt} = I - Q \qquad (4.1)$$

where, ds/dt: change in storage during a period dt

I: average inflow during dt

Q: average outflow during dt

Eliminating ds from the above equation using the following eqs. 4.2, 4.3 and 4.4,

ds =
$$F\Delta H = \frac{F_{t-\Delta t} + F_{t}}{2} (H_{t} - H_{t-\Delta t})$$
 (4.2)

$$I = 1/2 (I_{t-\Delta t} + I_t)$$
 (4.3)

$$Q = 1/2 (Q_{t-\Delta t} + Q_t)$$
 (4.4)

and solving for Ht, the equation 4.5 is obtained.

$$H_{t} = H_{t-\Delta t} + \frac{\Delta t}{F_{t-\Delta t} + F_{t}} \left\{ (I_{t-\Delta t} + I_{t}) - (Q_{t-\Delta t} + Q_{t}) \right\} \dots (4.5)$$

where, H: water level of swamp

F: water surface area of swamp

4.1.3 Equation for Water Level on Channel

In general equation for unsteady, nonuniform flow in open channel is expressed as follows:

$$-\frac{aH}{ax} = \frac{av}{2g} \cdot \frac{av}{ax} + \frac{1}{g} \cdot \frac{av}{at} + S_f \qquad (4.6)$$

The dimensionless form of the forms in the eq. 4.6 is

$$\frac{aH}{ax}$$
 = Total slope

$$\frac{av}{2g} \cdot \frac{av}{ax}$$
 = Acceleration slope with distance

$$\frac{I}{q} \cdot \frac{av}{at}$$
 = Acceleration slope with time

 $S_f = Friction slope$

All 4 terms are dimensionless slopes. It is significant to examine the magnitude of each in any real problem to evaluate the relative significance of each. The magnitude of each term shows that the terms of the acceleration slope with distance and with time are to be rather small compared with the friction slope. As a result, neglect it so that,

$$-\frac{dH}{dx} = S_f \qquad (4.7)$$

where, dH/dx: rate of change of depth H with distance x

Eliminating Sf from the above equation using the following equation,

$$S_f = \left(\frac{Q \, n}{AR^2/3}\right)^2 \dots (4.8)$$

and solving for $H_{\rm t}$, the following equation is obtained.

$$H_{t} = H_{t-\Delta t} + \left(\frac{Q n}{AR^{2}/3}\right)^{2} \cdot \Delta x \qquad (4.9)$$

where H: water level of channel

Q: average discharge during dt

A: average cross-section of channel during dt

R: average hydraulic depth during dt

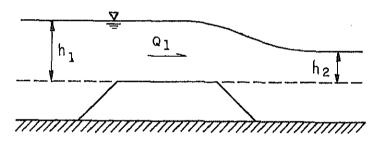
4.1.4 Equation for Overflow-discharge

The flow over a wide-crested weir with free flow may be expressed by

$$Q = KBh_1\sqrt{2gh_1}$$
 (4.10)

where, Q: overflow discharge

B: length of weir crest


hj: difference between elevation of water surface upstream from weir and elevation of weir

g: acceleration of gravity

k: coefficient

The coefficient K is determined experimentally. In this study, K = 0.35 was used.

The submerging of a wide-crested weir is illustrated in the following figure.

The flow over a wide-creasted weir with submerged flow may be expressed by

$$Q_1 = K_1 B h_2 \sqrt{2g(h_1 - h_2)}$$
(4.11)

where, h_1 , h_2 : defined in the above figure K_1 : coefficient

The coefficient K_1 is determined experimentally. In this study, $K_1 = 0.91$ was used.

The following value is used to discriminate the flow conditions.

 $h_2/h_1 \le 2/3$: free flow

 $h_2/h_1 > 2/3$: submerged flow

4.1.5 Flow Charts of Model

The flow charts of the program of the simulation model used in this study are presented in Fig. 4.2.

4.2 <u>Calculations and Results under the Existing Conditions</u>

To determine hydraulic parameters and to establish interrelation-ships between phenomena, hydraulic calculations by use of the simulation model were carried out with regard to the selected floods of July 1972, Oct. 1973, Aug. 1974 and May 1976. The water gage stations at Arayat, Candaba and Sulipan were selected as check points for the calculated water level hydrographs. After several tentative calculations, the parameters were determined. The calculated results are summarized in Table 4.1 in terms of maximum. The calculated water level hydrographs at the check points for the above-mentioned floods are shown in Fig. 4.3 together with the observed water levels. As the calculated water level hydrographs agree with the observed values, the simulation model developed by the Team may be accepted as reasonable.

Using this hydraulic simulation Model, flood water levels under the existing conditions were calculated with regard to the probable floods of 5-yr, 10-yr, 20-yr, 50-yr and 100-yr. The calculated results are summarized in Table 4.2 in terms of maximum. The flood discharge distribution and the maximum water level at the major stations for the 100-yr flood are illustrated in Fig. 4.4. The output of computer on calculations for the probable floods are compiled in DATA BOOK V.

Table 2.1 (1) LOCATION OF RAINFALL STATION

No.	Station Name	Lat. N	Long. E	Province
1.	Tris Dam Tayabo San Jose City	15°51'08"	121°01'04"	Nueva Ecija
2.	Pantabangan Dam	15°50'45"	121°08'45"	11
3.		15°49'34"	121°06'25"	Ħ
4.	Camanacsacan San Jose City	15°46'25"	120°59'17"	n n
5.	D1 - D D.1 1	3 6 0 4 9 1 4 9 11	121°05'35"	, II
6.	Tondod San Jose City	15°43'16"	120°58'06"	H
7.	Ltris Dam Llanera	15°42'10"	121°00'10"	11
8.	Ltris Dam Llanera Baloc Santo Domingo	15°38'24"	120°53′16"	и
9,	Sibul Talavera	15°38'12"	120°57'34"	11
10.	Pinahan General Natividad	15°37'43"	121°03'36"	ii.
11.	Dhwin Dam Natividad	1502612011	1210061000	n
12.	Sapan Buho General Tinio Murcon Dam Talavera Ilog Baliwag Quezon San Juan Aliaga Bantug Talavera Bangad Cabanatuan	15°35'32"	121°05'24"	ti .
13.	Murcon Dam Talavera	15°34'31"	120°59'18"	11
14.	Tlog Raliwag	750331	120°48'	н
15.	Milezon	75032147"	120°48'45"	n
16.	San Juan Aliaga	15 32 47	120°46'	II
17.	Bantua Talayona	12 27	120°54'47"	н
18.	Bangad Cabanatuan	10 30 33	120 54 47 121°02'20"	н
19,	Danyau Cabana Cabana tuan	10 30 12	120°55'30"	II
	Pamaldan Cinco-Cinco Cabanatuan	15°29'32"		II .
20.	Cabanatuan City	75°29'	120°58'	11
21.	San Jose Peñaranda	15°28'50"		 11
22.	Gabaldon	15°28'	121°20'	н
23.	Zaragoza	15°26'55"	120°46'54"	 II
24.	Concepcion Zaragoza	15°26'48"	120°45'02"	
25.		15°26'12"		11
26.	Zaragoza	15°26'08"		II
27.	Mallorca San Leonardo		120°58'48"	11
28.	Lambakin Jaen	15°22'12"		11
29.	Papaya	15°20'08"	121°02'24"	11
30.	Gapan	15°19'	120°57′	14
31.	Mangino Gapan	15°18'45"		II .
32.	San Isidro		120°54'10"	II
33.	Manggs San Isidro	15°14'50"	120°54′50"	H H
34.	Concepcion Cabiao	15° 1 4'30"	120°49'15"	II .
35.	Bulak Gapan	15° 1 4'10"	120°58'45"	П
36.	Cabiao	15°14'05"	120°54'30"	И
37.	Sibul Spring	15°09'54"	121°06′22"	Bulacan
38.	Batasan San Miguel	15°09'30"	120°55'15"	tt.
39.	Salacot San Miguel	15°09'	120°59'	n
40.	Santa Rita San Miguel	15°08'30"	120°57'30"	11
41.	Calawitan San Ildefonso	15°05'	120°551	II
42.	Talacsan San Rafael	14°58'	120°59'	u
43.	Sabang Baliwag	14°58'	120°55'	и
44.	Marungo Angat	14°56′	121°02'	11
45.	Makinabang Baliwag	14°55'	120°53'	II
46.	Angat	14°54'	121°10'	11

(to be continued)

Table 2.1 (2) LOCATION OF RAINFALL STATION

No.	Station Name	Lat. N	Long. E	Province
47.	San Lorenzo Norzagaray	14°54'	121°02'	Bulacan
48.	Ipo Norzagaray	14°52'	121°09'	11
49.	Catmon Malolos	14°51′	120°49'	II.
50.	Borol II Balagtas	14°49'	120°54'	BI
51.	Minuyan San Jose del Monte	14°49'	121°03'	H
52.	Santa Maria	14°49'	120°57'	II
53.	Obando	14°42'	120°56′	11
54.	Surgui Camiling	15°51'	120°25'	Tarlac
55.	San Clemente	15°43′	120°21'	tt
56.	Anoling Camiling	15°40'	120°15'30"	II
57.	Santa Ignacia	15°36'	120°25'	Ð
58.	Gerona	15°36'	120°37'	ii .
59.	Mambaran Mayantoc	15°34'	120°20'	II.
60.	San Jacinto Victoria	15°33'	120°35'	Ħ
61.	Amucao Tarlac	15°28¹	120°41'	11
62.	Carangian Tarlac	15°27'30"	120°33'	n
63.	Hacienda Luisita San Miguel	15°27'	120°38'	n
	Armenia Dam Tarlac	15°27'	120°30′	II.
65.	La Paz	15°23'	120°43'	¥I
66.	Dolores Capas	15°21'30"	120°35'30"	И
67.	Arayat	15°09'50"	120°46	Pampanga
68.	San Agustin Arayat	15°09'	120°46'	п
69.	Candaba	15°07'06"	120°51'43"	• H
70.	Santa Cruz Porac	15°04'	120°331	11
71.	Bahay Pare Candaba	15°02'24"	120°52'48"	U
72.	San Fernando	15°02'	120°42'	ŧI
73.	Cabambagan Bacolor	15°00'	120°39'	Ð
74.	San Matias Santo Tomas	15°00'	120°42'	в
75.	Becuran Santa Rita	15°00'	120°341	II
76.	Balucoc Apalit	14°58'	120°51'	Ħ
77.	Cansinala Apalit	14°58'	120°46'36"	H
78.	Sulipan Apalit	14°56'08"	120°45'30"	II
79.	Masanto1	14°52'	120°42'	П
80.	Lubao	14°50'	120°36'	0
81.	Talisai Balanga	14°41'	120°33'	Bataan
82.	Mariveles	14°26'	120°29'	11

Table 2.2 (1) RAINFALL AT CABANATUAN CITY

Month	Average	Monthly Rainfall (mm) Maximum	Minimum
Jan.	7.4	67.3	0
Feb.	5.3	49.5	0
Mar.	10.9	69.8	0
Apr.	31.2	261.4	0
May	172.3	931.1	7.7
June	262.8	590.8	64.2
July	302.2	1,064.7	141.9
Aug.	406.6	622.7	213.0
Sep.	309.7	628.7	144.6
Oct.	173.4	514.1	12.2
Nov.	125.7	344.4	14.0
Dec.	52.0	197.1	0
Annua1	1,868.6	2,369.5	1,338.9
Wet Season (May - Oct.)	1,627.0		
Percent (%)	87.1		

Source: PAGASA

Table 2.2 (2) MONTHLY RAINFALL AT CABANATUAN CITY (1951-1979)

			ì						•			un)	Unit: mm)
Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
1951		0	0	4	93.	24.	78.	46.	88	5.	4.	8	.695.
1952	3.1	3,5		10.9	231.1	355.7	142.6	308.4	308.4	210.1	42.5	62.9	1,693.7
LO	•	3.0	27.4	т,	55.	80	3.	85.	33.	ö	$\dot{\infty}$,775.
LO		•	5.3	φ.	33	94.	25.	89.	62.	52.	62.	ö	,338.
S		_•	0	9	9	0	8	17.	78.	34.	95.	•	,424.
LO	•	0	2.5		ė,	4.	62.	55.	05.	3,	9	ö	.916,
1957	•	•	•	13.	∞:	33.	71.	65.	77.	82.	76.	0	,600
S	0	19.0			<u>ئ</u>	0	86.	64.	. 79	t		•	ı
LΩ	1			0	ر.	94.	79.	58.	7.	ö	$\dot{\circ}$	•	
Q	2.6	49.5	10.2	•	60.	Ŋ.	31.	22.	52.	403.2	39.9	გ	,27
9				2	56.	90.	60.	92.	67.	58.	ä	•	,268.
Q	4.6		•		33.	98.	58.	80.	53.	ĸ,	~	•	,782.
9		27.4			45.	28.	17.	89.	85.	2	<+	63.	,783.
9	9.3	7.4			24.	00	23.	29.	88	30.	87.	7.	,369.
Q		0		rv.	$\dot{\sim}$	54.	89	62.	45.	6	ů.	•	23.
9		0	•	4.	86.	16.	23.	62.	26.	14.	44.	4	,162.
9		0	0.8	4.	02.	84.	62.	90	28.	55.	တ	0	,238.
9		0	0	3	44	90.	42.	67.	38.	25.	_:		,586.
9	•	0		6.	۲,	83.	60.	42.	74.	28.	۲.	ကဲ	,500.
1			•	2	16.	34.	69.	61.	79	22.	76.	34.	,325.
~	1.3	2.3	11.5		79.	37.	54.	33	33	60.	•	186.7	,048.
~	•	0	•	ζ.	$\dot{\circ}$	44.	64.	34.	05.	7.	38.	œ	,325,
7		3.3	•	_	26.	49.	46.	10.	46.	ı	_:	φ.	
\sim	1	0	•		4	23.	28	28.	44.	•	26.	72.	2,142.4
~	•	0.3	•	ô.	7.	2].	05.	53.	96	55.	'n	6	,348.
\sim		1			3].	68.	41.	38.	50.	28.	o.i	4.	,350.
\sim	•	0	•	•	တံ	70.	89.		85.		0		1
\sim		5.4	0	1		91.	33.	604.9	63.	514.1	33.		1
~	1	ı	ı	0.2	194.4	1	24.	02.	40.	<u>.</u>	/	ς.	•
Average	7.	100	10.9	31.		100	302.	96.	00		٦٠.	52.0	868.
Max. Min.	6/.3 0	ν. υ. Ο			ر م	54	1,064.7	213.0		7	14	ñ	338
					1				- 1	- 1	ı		

Table 2.3 STAGE-DISCHARGE RELATION OBSERVED BY TEAM (AUG. - NOV., 1980)

Station	Observed Date	Gage Height (El. m)	Discharge Area (m ³ /s)	Discharge (m ³ /s)
Sulipan, Apalit,	Sep. 12, 1980	1.83	710.4	817.7
Pampanga	Sep. 19, 1980	2.58	811.5	930.2
	Sep. 26, 1980	1.66	641.7	618.9
	Nov. 7, 1980	4.28	845.0	1,571.0
Pasig, Candaba,	Son 12 1000	2 22	562.3	518.9
Pampanga	Sep. 12, 1980	3.23		
	Sep. 19, 1980	5.36	827.8	1,078.7
	Sep. 26, 1980	2.58	489.2	440.4
San Agustin, Arayat,	Sep. 10, 1980	5.07	431.0	433.2
Pampanga	Sep. 17, 1980	6.58	597.0	706.5
	Sep. 24, 1980	4.88	412.0	387.3
	Nov. 10, 1980	8.60	1,832.0	2,035.4
San Isidro,	Aug. 13, 1980	9.74	69.8	24.0
Nueva Ecija	Sep. 11, 1980	10.40	204.7	165.9
	Sep. 18, 1980	11.52	427.6	557.2
	Sep. 25, 1980	10.20	190.0	129.0
	Nov. 6, 1980	16.38	1,460.7	3,140.8
	Nov. 7, 1980	15.14	1,191.2	1,848.3
	Nov. 10, 1980	11.30	400.2	440.5
Sto. Rosario,	Aug. 14, 1980	11.50	106.2	79.0
Zaragoza, Nueva Ecija	Sep. 11, 1980	13.39	214.2	217.4
	Sep. 18, 1980	14.23	328.7	315.4
	Sep. 25, 1980	12.61	201.4	155.6

Table 2.4(1) DISCHARGE RATING CURVE

-	Station		Per	riod		a	b	n
1.	Pampanga R. Pialuan, Pantabangan, N.E.	up	to	Aug. Aug. Jun. Jul. Jun. Feb.	69 71 71 72	80.0 80.0 80.0 80.0 80.0	1.00 0.68 1.00 1.60 1.00	2.19 2.19 2.19 2.19 2.19 2.19
2.	Coronel R. Bangkerohan, Bongabon, N.E.	ир	to	Aug.	78	84.0	0.70	1.23
3.	Pompanga R. Valdefuente, Cabanatuan City, N.E.	up	to	Dec. May Nov. Oct. Dec. Jul. Feb. Apr. Dec. Dec. Dec.	66 68 68 69 70 70 70	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	-0.50 0.75 0.69 0.89 0.79 0.70 0.32 0.65 0.55 0.75	3.62 3.62 3.62 3.62 3.62 3.62 3.62 3.62
4.	Chico R. Gen. Tinio, N.E.	ир	to	Jun. Jul. Dec.	72	28.25 28.25 28.25	1.15 1.00 0.70	3.82 3.85 3.85
5.	Sumacbao R. Pias, Gen. Tinio N.E.	up	to	Jul. Dec.		49.5 49.5	0.40 0.22	1.29 1.79
6.	Penaranda R. (R.R. Bridge) San Jose, Peñaranda	ир	to	Dec.	75	15.1	25.90	3.87
7.	Penaranda R. San Vicente, Gappan, N.E.	ир	to	Aug. Dec.	74 75	3.0 3.0	1.90 0.20	5.00 5.00
8.	Pampanga R. San Vicente, Cabiao, N.E.	ир	to	Dec. Mar. Nov. Dec.	66 67	44.0 44.0 44.0 44.0	3.10 3.00 3.10 1.62	1.53 1.53 1.53 1.53

Remarks: Form of rating curve: $Q = a(H - b)^n$

Table 2.4(2) DISCHARGE RATING CURVE

	Station		Pei	riod		a	Ь	n
9.	Talavera R. Kaboboloonan, Taravera, N.E.	ир	to	Sep. Nov. Dec. Nov. Nov. Mar. Dec.	66 66 67 69 70	4.85 4.85 4.85 4.85 4.85 4.85	0.80 0.30 0.15 0.70 -0.10 -0.30 -0.75	2.40 2.40 2.40 2.40 2.40 2.40 2.40
10.	Rio Chico R, Sto. Rosario Zaragoza, N.E.	чр	to	Oct. Jun. Apr. Nov. Feb. Apr. Dec.	61 66 73 74 74	0.65 0.65 0.65 0.65 0.65 0.65	2.00 0.50 0.90 1.00 6.50 1.00 6.80	3.10 3.10 3.10 3.10 3.10 3.10
11.	Pampanga R, San Agustin, Arayat, Pampanga	up	to	Nov. Dec.		16.82 16.82	3.48 0	2.13 2.13
12.	Bulu R. Malibay, San Miguel Bulacan	чр	to	Dec.	75	1.86	1.00	2.22
13,	San Miguel R, San Vicente, Sn. Miguel, Bulacan	ир	to	Jun. Nov. Mar. Jul. Dec.	67 68 68	10.7 10.7 10.7 10.7 10.7	18.10 18.00 18.65 18.24 17.00	1.72 1.72 1.72 1.72 1.72
14.	Garlang R, Garlang, San Ildefonso, Bulacan	ир	to	Dec. Dec. Jun. Jul. Dec.	67 72 72	3.55 3.55 3.55 3.55 3.55	1.55 1.25 1.55 1.00 1.55	1.85 1.85 1.85 1.85 1.85
15.	Maasim R, Diliman, San Rafael, Bulacan	up	to	Dec.	75	13.25	0.44	2.07
16.	Maasim R, Bahay-Pare, Candaba, Pampanga	up	to	Sep. Sep. Nov. Dec.	68 72	3.02 3.02 3.02 3.02	0.55 0.83 1.30 0.30	2.33 2.33 2.33 2.33
17.	Angat (below Ipo Dám) Norzagaray, Bulacan	up	to	Dec.	75	25.2	0.90	3.31
18.	Labangan R, Bagbag Calumpit, Bulacan	up	to	Nov, Jan. Dec.	67	9.5 9.5 9.5	9.4 9.7 9.4	2.59 2.59 2.54

Table 2.4(3) DISCHARGE RATING CURVE

	Station		Per	riod		a	b	n
19.	Pasig-Potrero R, Cabetican, Bacolor, Pampanga	uр	to	Dec.	75	16.0	0	2,10
20.	Parac R, Del Carmen, Floridablanca, Pampanga	up	to	Sep. Dec. May Dec. Apr. Dec.	66 67 67 68	19.55 19.55 19.55 19.55 19.55	2.91 3.08 3.22 3.00 3.22 3.17	1.83 1.83 1.83 1.83 1.83
21.	Gumain R, Pabanlag, Floridablanca,	up	to	Jul. Jun. Dec. Apr. May Aug. Jul. Dec.	64 66 66 69 72	69.0 69.0 59.6 59.6 59.6 59.6 59.6	0 0.09 0.03 0.14 0 0.3 0.53	2.50 2.51 1.08 1.08 1.08 1.08 1.08
22.	Caulaman R, Pabanlag, Floridablanca, Pampanga	ир	to	Aug. Dec. Jan. May Jul. Dec. Aug. Feb. Jul. Aug. Sep. Mar. Nov. Mar. Jul. Dec.	63 66 67 67 68 69 69 71 71 72 72	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	0.40 0.50 0.18 0.55 0.74 0.69 0.62 0.62 0.66 0.61 0.57 0.66	3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37
23.	Baliwag R, Catalanacan, Muñoz, N.E.	up	to	Dec.	75	17.1	0	2.31
24.	Bayabas R, Pulong, Sampaloc, Angat, Bulacan	ир	to	Jun. Aug. Dec. Dec.	69 71	27.75 27.75 27.75 27.75	0.60 0.97 0.66 0.54	2.94 2.94 2.94 2.94
25.	Pantabangan R, Pantabangan, N.E.	ир	to	Dec.	75	42.0	1.05	2.06

Table 2.4(4) DISCHARGE RATING CURVE

	Station			Per	riod		a	b	n
		-off Channel, alit, Pampanga	ир	to	May Dec. Nov. Nov. Nov.	75 77 77	36.0 36.0 72.966 47.087 28.794	9.80 10.80 -1.229/ -1.934/ -3.170/	2.24 2.24 2.24 2.27 2.27 3 2.7
27. Anga Bula		ngos, Pulilan,	up	to	Jun. Nov. Dec.	72	36.2 36.2 36.2	10.60 10.25 0.65	1.75 1.75 1.75
28. Pamp Pamp		Pasig-Cardaba,	ир	to	May Jun. Oct. Dec. Sep. Oct. Apr. Jun. Dec. Nov. Nov.	67 68 68 69 74 74 75 77	38.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 91.470/1	10.25 10.40 10.85 10.28 10.39 11.00 10.10 9.90 10.25 0/4 5-0.270/7	1.70 1.55 1.55 1.55 1.55 1.55 1.55 1.55 2/6
	anga R, it, Pam	Sulipan, panga	up	to	Dec.	76	26.0	-8.50	2.00
Remarks:	/1: /2: /3: /4: /5: /6:	$\begin{array}{c} H \leq 1.65m \\ 1.65m \leq H \leq 2.50m \\ 2.50m \leq H \leq 5.0 m \\ H \leq 1.00m \\ 1.00m \leq H \leq 2.25m \\ 2.25m \leq H \leq 7.0 m \end{array}$	***************************************				,		

Table 2.5 DISCHARGE CORRELATION COEFFICIENTS BETWEEN STATIONS

	Gage Station	-	2	6	4	5	9	1	80	•	2	=	12	£	Ä	15	ع	11	82	19	50	212	22	23 2	24 25	92 5	23	28	53
-:	. Pampanga R. Pialuan, Pantabangan, Nueva Ecija	ď	B.497 0	0.843 (0,504	0.288	0,151	0,212	0.821	0.606	0.585	0.770	-0.676	0.033 0	0.338 0	0.058 (0.683	0.075 (0.373 -0	-0.001 0	0.544 0.	0.737 0.	0,742 0.	0.535 0.0	0.034 0.653	53 0.620	20 0.488	8 0.756	, '
2.	. Coronel R, Bangkerohan, Bongabon, Nueva Ecija	0.497	0	0.808	0,785	0.712	0.468	0,456	0.916	0.423	0.663	0.830	916.0	0.563 0	0.606	0.271	0.661) 362.0	0.678	0.137 0.	0.413 0.	0.391 0.	0.575 0.	0,666 0.3	0.349 0.703	U1 0.606	36 0,646	6 0.737	7 0.457
e,	. Pampanga R. Yaldefvente, Cabanatuan City, M.E.	0.843 0.	908.0		0.729	0.703	0.402	5\$2.0	0.949	0.565	0.549	0.953	9.716	0.546 0	0.130	0.565 0	0,782	0.575 (0.720 -£	-0.001 G	0.683 0.	0.831 0.	0.810 0.	0.745 0.027	127 0.593	93 0.893	13 0,738	8 0.925	, IO
4.	. Chica R., Gen. Tinio, Mueva Ecija	0.504 0.	0.785 0	0,729		D. 683	0.511	0,331	0.803	0.558	0.708	0.823	0.881	0.581 0	0.695	0.341	0.682	0.412 (0.731	0,241 0	0.361 0.	0.566 0.	0.696 0.	0.773 0.4	0.464 0.702	02 0.667	57 0.573	3 0.762	2 0.282
'n	. Sumacbao R, Pias, Gen. Tinio, Nueva Ecija	0.288 0.	0 211.0	0,703	0,683		965.0	0,454	0,740	0.458 (0.502	0.655	0.716	0.554 0	0.541 0	0.282 0	0.677	0.401	0.546	0.109 0.	0.293 p.	0.513 0.	0.403 0.	0.498 0.2	0.272 0.435	35 0.482	Z 0.452	2 0.575	5 0.007
6	. Penaranda R. (R.R. Bridge) San Jose, Penaranda	0.151 0.	0.468 0	0.402 (0,511	0.596		0,295	0.533 1	0.306	0.320	0.433	0.270	0.178 0	0.483 0	0.185 0	0,409 0	0,496	0.323	0.052 0.	0.017 0.	0.390 0.	0.249 0.	0.384 0.2	0.289 0.240	40 0.277	7 0,318	9 0,361	_
7.	. Penaranda R, San Vicente. Gapan. Nueva Ecija	0.212 0.	0,456 0	0.245 (0,331	0.454	962-0	•	0.107	0.295 (0,399	0.434 -	-0.499	0 277'6	0,396 0	0.670 0	0,423 (0.293 (0.353 (0,106 0	0.329 0.	0.269 0.	0.492 0.	0.326 0.2	0.260 0.317	17 0.380	N 0,552	2 0.466	6 0.691
В.	, Pampanga R. San Vicente, Cabiao, Kueva Ecija	0.821 0.	0.936 0	0.949 (0,803	0.740	0.533 -0.107	0.107		0.816	0.904	0.953	0.783	0.715 -0	-0,475 0	0.624 0	0.814 0	0.429	0.879 -0	-0.031 0.	0.848 0.	0.883 0.	0.711 0.	0.799 0.5	0.524 0.391	91 0.871	7 0.852	2 0.965	, ,
6	Talavera R. Kabobolooman, Talavera, Mueva Ecija	0.606 0.	0.423 0	0.565 (0,558	0.458	0.306	0.295	0.816	_	0.623	0,621	0.662	0.245 0	0.473 0	0.276	0.576	0.228	0.486	0.064 D	D.307 D.	0.581 0.	0.472 0.	0.502 0.2	0.205 0.486	86 0.385	35 0,465	5 0.732	2 0.112
	, Rio Chico R, Sto. Rosarlo, Zaragoza, N. Ecija	0.585 0.	0.663 0	0.549 (0,768	0.502	0.320	0,399	0.904	0,623		0.834	0.729	0.365 0	0.549	0.325 (0.794 0	0.357 (0.700	9.162 8	0.529 0.	0.576 0.	0.524 0.	0.671 0.5	0.528 0.673	73 0.623	3 0,526	6 0.769	9 0.142
=	, Pampanga R, San Agustin, Arayat, Pampanga	0.770 0.	0.830 0	0.953 (0.823	659.0	0.431	0.434	0.953	0.621	0.834		0.810	0.510 0	0.679 0	0.365	0.770	0.426	0.774	0,198 0.	0.510 ¢.	0.626 0.	0.683 0.	0.730 0.3	0.363 0.748	48 0,736	16 0,660	0 0.936	6 0.062
12.	Bulu R, Malibay, San Miguel, Buiacan	-0.675 0.	0.916 0	9.716	0,881	0.716	0.270 -0.499		0.783	0,662	0.729	0.810		0.442 -0	-0.360	0.506	0,760 0	0,323	0.811	0.154 0.	0.698 0.	0.542 0.	0.768 0.	0.928 0.1	0.131 0.607	07 0.884	¥ 0.301	1 0.801	1 0.620
E.	. San Miguel R, San Vicente, Sn. Miguel, Bul.	0.033 0.	0.563 0	0.546	0,581	0.554	0.17B	0,442	0.715	0.245	0.365	0.510	0.442	0	0.543 0	0,568 0	0.385	0.312 0	0.549	0.274 0.	0.384 0.	0.342 0.	0.519 0.	0.493 0.571	571 0.506	06 0.232	22 0.422	2 0.337	7 0.079
Ŧ.	, Sarlang R, Garlang, San Ildefonso, Bulacan	0.338 B.	0.60% 0	0.139 (0,695	0.541	0.483	0,396 -	-0.475	0.473	0.549	- 629"0	-0.360	0.543		0.630 0	0.622	0.408 0	0.403 0	0,489 0.	0.097 6.	0.554 0.	0.609 0.	0.620 0.1	0.108 0.656	56 6.434	A 6,245	5 0,423	,
15.	. Maasim R. Diliman, San Rafael, Bulacan	0.058 0.	0.277 0	0.565	0,341	0.282	0,185	0.610	0.624	0,275	0.325	0,365	0.506	0.568 0	0.630	-	0,400 0	0.227 0	0.321 0	9.144 0.	0.152 0.	0.320 0.	0.334 0.	0.335 0.4	0.424 0.266	66 0.338	18 0.257	161.0 7	1 0.006
16.	. Maesim R. Bahay-Pare, Candaba, Pampanga	0.683 0.	0 199"0	0.782	0,682	0.677	0.409 .0.423		0.814	0.576	0.794	0.770	0.760	0.385 0	0.622 0	0.400	-	0.479 0	0.648	0.174 0.	0.533 0.	0.550 0.0	0.670 0.	0.623 0.3	0.339 0.662	62 0.745	5 0.597	922.0 /	9 0.117
17.	, Angat (below Ipo Dam) Morzagaray, Bulacan	0.075 0.	0.395 0	0.575 (0,412	0.401	0.496	0.293	0.429	0.228	0.357	0.426	0.323 (0.312 0	0.408 0	0.227	0.479	-	0.196	0.097 0.	0.105 0.	0.342 0.	0.443 0.	0,291 D.3	0.325 0.282	£2 0.394	14 D.184	1 0.255	, m
18	. Labengen R. Bagbag, Calumpit, Bulacan	0.373 0.	0.638 0	0,720 (0.731	0.546	0.323	0,353	6.879	0.486	0.700	0.774	0.811	0.549 0	0.403 0	0.321 0	0.548 0	0.196		0.187 D.	0.551 0.	0.582 0.	0,594 0.	0.631 0.4	0.445 0.583	83 0.551	0.646	5 0.754	t 0.248
19.	. Pasig-Potrero R. Cabetican, Bacalor, Pampanya	-0.001 0.	0.137 -0	-0,001	0,241	0.109	250.0	0.106	-0.031	0.064	0,162	0.198	0.154 (0.274 0	0.489 0	0.144 0	0.174 0	0.097	0.187	Ó	0.003 0.	0.128 0.2	0.298 0.	0.140 0.0	0.092 0.180	80 0.288	8 0.045	5 0.033	3 0.492
8	Porac R, Del Carman, Floridablanca, Pampanga	0.524 0.	0.413 0	0.583	0,361	0.293	710.0	0.329	0.848	0.307	0.529	0.5.0	0.698	0.384	0.097 0	0.152 0	0.533 0	0,105	0,551	0.003	ď	0.529 0.	0.517 0.	0,345 0.1	0.102 0.440	40 0.563	3 0.458	3 0.450	,
<u>د</u>	. Gumain R. Pabanlag, Floridabianca, Pampanga	0.737 0.	0.391 0	0.831	0,566	0.513	0.390	0,269	0.883	0.581	9.576	929.0	0.542	0.342 0	0.554 0	0.320	0.550 0	0.342 0	0.582 0	0 821.0	0.529	6	0.433 0.	0.591 0.1	0.174 0.601	01 0.491	1 0.496	69.0	0.140
23	, Caulaman R. Pabanlag, Floridablanca, Pampanga	0.742 0.	0.575 0	0.810	969'0	0.403	0.249	0.492	0.711	0.472	0.524	0.683	0.768 (0.519 0	0.609	0.334 0	0.670 0	0.441 0	0.594 0	0.298 0.	0.571 0.	0.433	e,	0.505 0.425	125 0.616	16 0.665	5 0,236	5 0.732	711.B S
ន់	. Baliwag R. Catalancan, Munoz, Nueve Ecija	0.535 0.	0.666 0	0.745	0.713	0.498	0,384	9350	0.799	0.502	0.671	0.730	0.928	0.493 0	0.620 0	0.335 0	0.623 0	0.291	0.631	0.140 0.	0.345 0.	0.591 0.	0.505	0.2	0.297 0.716	16 0.611	1 0.634	1 0.717	7 0.148
22	. Bayabas R. Pulbing, Sampaloc, Angat, Bulacon	0.034 0.	0.349 0	0.927	0.404	0.272	0.289	0,260	0.524	0.205	0.52B	0,363	0.131	0 571 0	0.108	0.424 0	0.339 0	0.325 0	0.445 0	0.092 0.	0.102 0.	0.174 0.4	0.425 0.	0.297	0.259	59 0.314	4 -0.003	0.053	3 -0.062
25.	. Pantabangan R, Pantabangan, Muewa Ecija	0.653 0.	0,701 0	0.593	0.702	0.435	0.240	71E.D	0.391	0.486	0.673	0.748	9.607	0.506 0	0,556 0	0.266 0	0.662 0	0.282.0	0.583 (0.180 0.	0.440 0.	0.601 0.	0.616 0.	0,716 0.259	52	0.673	3 0,369	9, 0,554	,
26.	. Sulipen Eut-off Channel, Sulipan, Apalit, Pamp.	0.620 0.	0,606 0	0.893	0.667	285'0	0.288	0.380	0.871	0.385	0,623	0,736	0.884 (0.232 0	0.484 0	0.338 0	0,745 0	0.394 0	0.551 0	0,288 0,	0.563 0.	0.491 0.0	0,665 0.	0.611 0.3	0.314 0.673	73	0.425	5 0.712	2 0.401
72	. Angat R. Longos, Pulilan, Bulacan	0.488 0.	0.646 0	0.738	6.573	0,452	0.318	255.0	0.852	0.465	9750	0.660	0.803	0 727 0	0.246 0	0.257 0	0.597 0	0.184 0	0.645 0	0.045 0,	0,458 0.	0.496 0.	0.236 0.0	0.634 -0.003	0.369	69 0.425	so.	0.70	0.250
8	. Pampanga R. Pasig-Candaba. Pampanga	0.756 0.	0.737 0	0.925	D. 752	0.575	0.361	0,456	0.965	0.732	D.769	0.936	0.801	0.337 0	0,423 0	0.191.0	0.729 0	0.255	0.754 0	0.033 0.	0.450 0,	0,6910	0.732 0.	0,717 0,053	53 0.554	54 0.712	12 0.781	_	0.033
23.	, Pampanga R, Sulipso, Apalit, Pampanga	6	0.457	I	0.282	0.007	1	169'0	I	211.0	0.142	0,062	02910	0.079	1	0.006 0	711.0	ı	0.248 0	0.492	9	0.140 0.	0.717 0.	0.148 -0.062		- 0.401	1 0.258	0 0.033	•

Table 2.6 (1) DISCHARGE CORRELATION FORMULA BETWEEN STATIONS

	Station		a	b
1.	Pantabangan, N.E.	3. Cabanatuan City, N.E.	0.4643	-0.87
		_8. Cabiao, N.E.	0.1481	5.04
	•	11. Arayat, Pampanga	0.1634	6.05
		<pre>12. Floridablanca, Pampanga (Gumain R.)</pre>	4.7496	-0.74
		22. Floridablanca, Pampanga (Caulaman R.)	11.9462	13.53
		28. Pasig-Candaba, Pampanga	0.1823	0.92
2.	Bongabon, N.E.	3. Cabanatuan City, N.E.	0.3281	22.55
		4. Gen Tinio, N.E. (Chico R.) 5. Gen Tinio, N.E.	1.8304 1.6122	26.90 9.63
		(Sumacbao R.)		2.00
		8. Čabiao, N.E.	0.2170	34.10
		11. Arayat, Pampanga	0.0984	23.15
		12. San Miguel, Bulacan (Bulu R.)	36.1991	39.21
		25. Pantabangan, N.E.	1.3564	19.13
		28. Pasig-Candaba, Pampanga	0.1005	28.22
3.	Cabanatuan City,	1. Pantabangan, N.E.	1.5626	14.87
	N.E.	2. Bongabon, N.E.	2.0234	-24.12
		4. Gen Tinio, N.E. (Chico R.)	4.9417	25.57
		5. Gen Tinio, N.E. (Sumacbao R.)	5.8471	-33.31
		8. Cabiao, N.E.	0.6595	11.60
	•	11. Arayat, Pampanga	0.2922	19.92
		16. Candaba, Pampanga	6.7135	19.17
		18. Calumpit, Bulacan	0.7779	16.71
		21. Floridablanca, Pampanga (Gumain R.)	8.8928	10.39
		22. Floridablanca, Pampanga (Caulaman R.)	20.7257	32.32
		23. Muñoz, N.E.	6.0048	26.06
		26. Aparit, Pampanga	0.4673	25.74
		27. Pulian, Bulacan	0.9646	11.45
		28. Pasig-Ćandaba, Pampanga	0.3907	8.64

Remarks: Y = ax + b

Table 2.6 (2) DISCHARGE CORRELATION FORMULA BETWEEN STATIONS

	Station		a	b
4.	Gen. Tinio, N.E.	2. Bongabon, N.E.	0.3386	-4.55
т.	(Chico R.)		0.1100	0.67
	(cirred K.)	3. Cabanatuan City N.E.		
		8. Cabiao, N.E.	0.0750	0.90
		10. Zaragoza, N.E.	0.2130	3.10
		11. Arayat, Pampanga	0.0448	0.94
		12. San Miguel, Bulacan (Bulu R.)	10.4767	5.56
		18. Calumpit, Bulacan	0.1243	1.42
		23. Muñoz, N.E.	0.9033	3.25
		25. Pantabangan, N.E.	0.7131	-5.61
		28. Pasig-Candaba, Pampanga	0.0439	0.83
5.	Gen. Tinio, N.E.	2. Bongabon, N.E.	0.3176	8.60
	(Sumacbao R.)	3. Cabanatuan City, N.E.	0.0870	11.19
		8. Cabiao, N.E.	0.0665	11.37
		12. San Miguel, Bulacan,	19.4489	13.57
		(Bulu R.)		
8.	Cabiao, N.E.	1. Pantabangan, N.E.	5.3782	-19.88
	•	2. Bongabon, N.E.	3.9388	-117.08
		3. Cabanatuan City, N.E.	1.3809	-5.42
		4. Gen. Tinio, N.E. (Chico		30.46
		5. Gen. Tinio, N.E. (Sumacbao R.)	8.7671	-50,22
,		9. Talavera, N.E.	15.6389	-80.19
		10. Zaragoza, N.E.	2.3439	36.37
		11. Arayat, Pampanga	0.4371	27.49
		12. San Miguel, Bulacan (Bulu R.)	237.9469	52.06
		13. San Miguel, Bulacan (San Miguel R.)	3,9002	-10.94
		20. Floridablanca, Pampanga (Porac R.)	62.6906	-51.34
		21. Floridablanca, Pampanga	15.5798	11.09
		(Gumain R.) 22. Floridablanca, Pampanga	26,9083	65.05
		(Caulaman R.)		
		23. Muñoz, N.E.	8.1707	34.46
		26. Apalit, Pampanga	-0.3879	49.37
		27. Pulilan, Bulacan	1.7817	21.22
9.	Talavera, N.E.	8. Cabiao, N.E.	0.0444	7.44
	•	28. Pasig-Candaba, Pampanga	0.0341	11.65

Table 2.6 (3) DISCHARGE CORRELATION FORMULA BETWEEN STATIONS

Station		a	b
10. Zaragoza, N.E.	4. Gen. Tinio, N.E. (Chico F	R.) 2.3742	15.68
•	8. Cabiao, N.E.	0.3562	-7.17
	ll. Arayat, Pampanga	0.1713	4.13
	12. San Miguel, Bulacan (Bulu R.)	29.8953	26.21
	16. Candaba, Pampanga	3.2656	4.09
	18. Calumpit, Bulacan	0.4574	11.86
	28. Pasig-Candaba, Pampanga	0.1884	0.23
11. Arayat, Pampanga	1. Pantabangan, N.E.	3.6813	54.39
	2. Bongabon, N.E.	7.0262	-86.03
	 Cabanatuan City, N.E. Gen. Tinio, N.E. (Chico F 	3.1198	-49.03 60.46
	8. Cabiao, N.E.	2.0978	-40.41
	10. Zaragoza, N.E.	4.0759	70.02
	12. San Miguel, Bulacan (Bulu R.)	535.1787	32.87
	16. Candaba, Pampanga	16.5825	43.84
	18. Calumpit, Bulacan	2.3874	55.44
	23. Muñoz, N.E.	17.9582	68.47
	25. Pentabangan, N.E.	14.2920	-95.84
	26. Apalit, Pampanga	1.2963	121.48
	28. Pasig-Candaba, Pampanga	1.1809	-25.80
12. San Miguel, Bulacan	2. Bongabon, N.E.	0.0235	-0.82
(Bulu R.)	3. Cabanatuan City, N.E.	0.0037	0.01
	4. Gen. Tinio, N.E. (Chico F 5. Gen. Tinio, N.E.		-0.21
	(Smacbao R.)	0.0291	-0.21
	8. Cabiao, N.E.	0.0028	. 0
	10. Zaragoza, N.E.	0.0189	-0.19
	ll. Arayat, Pampanga l6. Candaba, Pampanga	0.0013 0.0918	0.10 -0.31
	18. Calumpit, Bulacan	0.0144	-0.34
	22. Floridablanca, Pampanga	0.0946	0.18
	(Caulman R.)		
	23. Muñoz, N.E.	0.0807	-0.27
	26. Apalit, Pampanga 27. Pulilan	0.0060	-0.42
	28. Pasig-Candaba, Pampanga	0.0163 0.0017	-0.36 0.07
	rasiy-bandaba, rampanya	0.0017	0.07

Table 2.6 (4) DISCHARGE CORRELATION FORMULA BETWEEN STATIONS

	Station		a	b
13.	San Miguel Bulacan (San Miguel R.)	8. Cabiao, N.E.	0.1403	16.56
16.	Candaba, Pampanga	3. Cabanatuan City, N.E. 8. Cabiao, N.E. 10. Zaragoza, N.E. 11. Arayat, Pampanga 12. San Miguel, Bulacan (Bulu R.)	0.0928 0.0656 0.1943 0.0360 6.5736	0.70 0.21 3.53 2.87 6.25
		26. Apalit, Pampanga 28. Pasig-Candaba, Pampanga	0.0577 0.0407	5.71 1. 4 8
18.	Calumpit, Bulacan	3 Cabanatuan City, N.E. 4. Gen. Tinio, N.E. (Chico R. 8. Cabiao N.E. 10. Zaragoza, N.E. 11. Arayat, Pampanga 12. San Miguel, Bulacan (Bulu R.) 28. Pasig-Candaba, Pampanga	0.6834 4.3316 0.4807 1.0788 0.2523 47.2982	15.96 27.88 6.94 28.17 15.45 37.93
20.	Floridablance, Pampanga (Porac R.)	8. Cabiao, N.E.	0.0119	1.30
21.	Floridablanca, Pampanga (Gumain R.)	l. Pantabangan, N.E. 3. Cabanatuan City, N.E. 8. Cabiao, N.E.	0.1162 0.0788 0.0514	3.77 1.03 0.88
22.	Floridablanca, Pampanga (Caulaman R.)	 Pantabangan, N.E. Cabanatuan City, N.E. Cabiao, N.E. San Miguel, Bulacan (Bulu R.) 	0.0469 0.0322 0.0201 6.7328	0.25 -0.54 -0.40 -0.25
		28. Pasig-Candaba, Pampanga 29. Aparit, Pampanga	0.0109 0.0848	-0.20 -27.18
23.	Muñoz, N.E.	3. Cabanatuan City, N.E. 4. Gen. Tinio, N.E. (Chico R. 8. Cabiao, N.E. 11. Arayat, Pampanga 12. San Miguel, Bulacan (Bulu R.)	0.0945 0.5668 0.0446 0.0299 10.8393	0.22 2.76 1.37 2.25 4.46
		25. Pantabangan, N.E. 28. Pasig-Candaba, Pampanga	0.4940 0.0312	-3.52 0.84

Table 2.6 (5) DISCHARGE CORRELATION FORMULAE BETWEEN STATIONS

Station		a b
25. Pantabangan, N.E.	4. Gen. Tinio, N.E. (Chico R.) 0.7 11. Arayat, Pampanga 0.0	3683 5.89 7021 16.71 0397 14.88 0537 15.97
26. Apalit, Pampanga	8. Cabiao, N.E. 1.1	7206 -28.52 -165 -5.87 1213 -0.10 0229 97.01
	16. Candaba, Pampanga 9.6	5924 -8.53 3934 -6.34
27. Pulilan, Bulacan	8. Cabiao, N.E. 0.4 12. San Miguel, Bulacan 40.7 (Bulu R.)	5793 18.37 1221 5.37 1777 35.57 1836 25.77
28. Pasig-Candaba, Pampanga	2. Bongabon, N.E. 5.4 3. Cabanatuan City, N.E. 2.1 4. Gen. Tinio, N.E. (Chico R.) 13.3 8. Cabiao, N.E. 1.5 9. Talavera, N.E. 15.9 10. Zaragoza, N.E. 3.1 11. Arayat, Pampanga 0.7 12. San Miguel, Bulacan 404.7 (Bulu R.) 16. Candaba, Pampanga 13.2 18. Calumpit, Bulacan 1.7 22. Floridablanca, Pampanga 49.6 (Caulaman R.) 23. Munoz, N.E. 16.6 26. Apalit, Pampanga 1.3	5899 -30.30 765 90.51 7438 45.91 7615 39.31 2323 76.83 7797 66.99
29. Apalit, Pampanga		3194 393.35

Table 2.7(1) TEN-DAY AVERAGE DISCHARGE AT ARAYAT OF PAMPANGA RIVER

Year	Period	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1968	1 - 10 10 - 11 11 - 20 12 - 11	46.8 41.6 38.8	35.8 29.8 26.2	28.1 32.7 23.0	22.3 20.1 19.9	22.6 21.2 24.6	28.1 25.3 26.3	46.4 36.9 318.7	399.0 463.0 916.3	1,365.5 855.9 647.9	829.7 261.6 103.0	53.9 42.7 51.0	171.8 48.8 34.5
1969	1 - 10 11 - 20 21 - 31	36.7 36.1 30.1	28.4 19.1 16.5	13.8 14.6 12.9	14.6 16.1 10.8	9.4 15.8 16.9	22.4 60.9 25.4	29.7 43.6 375.0	1,318.0 778.9 144.4	284.8 585.7 301.0	339.5 207.5 104.4	43.2 33.0 130.4	50.5 76.2 41.0
1970	1 - 10 11 - 20 21 - 31	32.7 26.3 23.1	20.7 16.2 13.7	12.9 11.4 12.4	20.2 20.1 14.9	11.3	24.8 133.9 101.3	75.1 188.5 92.1	177.8 290.0 456.9	1,429.5 1,032.5 342.9	405.4 933.9 620.5	500.0 215.6 391.8	243.7 136.5 94.9
1971	1 - 10 11 - 20 21 - 31	56.1 42.0 35.9	31.6 32.4 28.8	22.9 53.7 24.9	21.7 19.0 15.3	64.3 54.2 48.0	278.9 507.3 359.9	304.4 711.8 1,076.8	583.4 590.7 139.0	195.6 263.0 326.5	845.8 1,730.2 596.9	125.5 119.3 448.7	455.1 219.3 282.0
1972	1 - 10 11 - 20 21 - 31	739.3 114.2 68.8	78.9 66.0 34.1	25.4 26.7 35.4	34.8 25.6 22.4	21.0 23.1 68.6	73.1 79.5 70.2	704.0 2,070.8 2,022.7	1,897.2 1,438.9 1,301.5	566.1 728.0 489.3	189.9 57.4 42.1	160.7 94.8 66.6	97.9 63.1 32.0
1973	1 - 10 11 - 20 21 - 31	23.3 19.4 16.5	23.8 22.4 15.0	6.7 5.0 2.9	3.5 4.5	3.4	4.4 19.2 28.1	19.8 92.4 46.3	45.5 144.3 602.8	372.0 219.0 138.3	354.8 1,496.2 710.8	64.6 63.8 595.1	94.8 63.7 34.4
1974	1 - 10 11 - 20 21 - 31	27.7 21.3 16.1	12.3 11.2 10.2	19.8 13.5 10.9	8.7 7.5 15.2	18.2 7.7 10.3	42.8 538.7 64.3	40.3 119.3 666.3	1,102.4 1,216.0	336.2 253.5 106.0	95.4 974.6 1,021.7	1,323.6 990.1 404.6	345.3 391.1 243.8
1975	1 - 10 11 - 20 21 - 31	151.8 109.1 160.8	101.1 59.3 56.4	42.8 40.7 47.7	43.8 43.2 61.4	44.5 41.6 64.4	117.5 81.5 102.1	84.8 41.2 45.5	62.3 240.1 212.5	150.6 202.5 359.4	159.0 84.0 358.7	173.7 41.9 26.3	41.9 98.7 376.3
1976	1 - 10 11 - 20 21 - 31	223.1 159.9 96.0	56.6 37.6 24.5	27.4 23.3 15.2	13.4 23.3 12.8	15.8 28.6 1,720.7	277.0 244.5 255.4	969.2 280.0 226.7	336.6 642.0 568.6	394.8 524.9 651.9	559.5 376.2 363.1	367.3 347.2 195.4	98.2 94.4 70.4
1977	1 - 10 11 - 20 21 - 31	77.9 64.7 47.2	32.3 23.1 19.8	17.8 15.8 14.8	13.5	10.1 9.2 36.9	46.1 39.0 70.8	87.1 92.9 231.4	364.9 336.4 430.5	640.2 726.8 616.5	500.8 242.0 138.1	111.6 887.6 887.6	221.7 131.6 132.4
1978	1 - 10 11 - 20 21 - 31	81.7 91.1 91.7	87.6 72.4 57.8	33.2 37.9 42.3	47.3 52.0 55.9	59.5 44.8 42.5	113.2 153.2 220.0	169.1 307.7 495.5	281.3 662.3 1,117.0	1,087.0 896.0 1,075.9	1,030.0 1,074.9 626.9	1,727.3 475.4 407.1	429.6 375.1 305.9

TEN-DAY AVERAGE DISCHARGE AT ZARAGOZA OF RIO-CHICO RIVER Table 2.7(2)

8 (0)	Donitor	2	101	1	1	1				+ 100	4	3	à
<u> </u>	rer 100	Jan.	- FED:	Mar.	Apr.	may	oune	oury	Aug.	Sept.	UCE.	NOV.	nec.
968	1 - 10 11 - 20 21 - 31	4.4. 0.9.	3.7 2.7	2.7 2.6 1.8	1.1	9.23.63 9.83.63	4 7. 4 8 6. 7.	9.8 8.7 92.8	144.3 118.2 199.0	203.1 71.0 69.9	146.0 46.7 7.6	2.0 7.1 0.6	13.4 5.4 2.4
696	1 - 10 11 - 20 21 - 31	1.8 2.1 2.1	0.52.5	1.6	1.4	3.9 2.7	2.8 5.3	272.4 183.5 33.6	39.0 105.9 36.7	48.8 100.3 51.6	52.1 48.3 15.0	2.8 5.5 5.5	4.8 3.4
970	1 - 10 11 - 20 21 - 31	23.5 9.55	2.5 2.6 4.6	2.2 2.0 2.1	0.0	0.1	8.2 31.1 10.5	14.2 35.4 29.3	48.9 61.8 131.3	262.3 244.8 45.6	47.6 113.9 51.7	37.4 11.9	11.2 7.3 8.5
176	1 - 10 11 - 20 21 - 31	6.7 5.6 5.6	ນ.ນ.ນ ດີນ.ນ	3.6 1.7 0.5	0.00	1.0	18.6 100.2 95.9	47.2 121.9 213.2	88.4 142.1 15.6	41.1 69.4 58.1	155.4 279.1 56.6	10.5 15.6 37.2	32.1 11.3 7.6
1972	1 - 10 11 - 20 21 - 31	46.1 7.3 6.4	8.4 7.7 6.4	0.4.0 6.0	2.1	5.4 6.6 8.7	10.1 23.6 20.4	113.0 272.3 308.8	337.4 226.7 272.7	136.3 164.7 143.6	43.3 9.7 5.8	2.4.6. 6.0.5.	4.3
1973	1 - 10 11 - 20 21 - 31	3.2	0.0	1.1	0.6 0.6 4.0	0.4 3.4 2.3	1.7	10.7	18.9 42.9 157.1	109.0 56.0 28.0	52.3 314.2 81.5	9.7 6.3 31.7	6.3 4.3
1974	1 - 10 11 - 20 21 - 31	4 4 4 6.6	3.0 2.1	د 0 د 6	0.2 1.3 3.0	2.3	21.1 68.8 8.3	7.1 18.8 104.1	51.2 226.2 223.4	57.7	19.5 207.3 251.1	20.9	242.9 112.6 29.5
1975	1 - 10 11 - 20 21 - 31	26.0 18.7 0.1	0.0	0.00	0.0	2.4 6.9	4.3 5.4 8	15.1 8.7 16.8	10.7 41.1 36.4	25.8 34.7 61.6	27.2 14.4 61.4	29.8 7.2 4.5	7.2 16.9 64.5
976	1 - 10 11 - 20 21 - 31	40.5 32.5 20.2	6.1 6.1 4.2	4.7 2.6	2.3	2.7 4.9 346.3	177.1 0.5 38.8	195.2 70.7 93.0	68.3 132.8 171.9	9.0 122.6 229.1	251.4 47.8 11.4	8.7 7.3	6.9 6.1
977	1 - 10 11 - 20 21 - 31	0.3 71.1 8.1	5.5 4.0 3.4	3.0 2.7 2.5	4.1 5.1	3.2	4.5	39.6 39.6	23.3 12.6 26.9	139.9 175.2 174.3	105.7 42.2 16.7	9.8 10.2 200.6	37.2 15.1 15.3
978	1 - 10 11 - 20 21 - 31	14.0 15.6 15.7	15.0 12.4 9.9	11.2	10.2 8.9 9.6	10.2 7.7 9.8	10.6 20.4 36.8	24.3 58.3 104.4	193.4 252.1 355.7	262.6 261.0 205.4	262.0 306.4 205.3	406.6 92.3 79.2	83.5 73.1 59.8

Table 2.7(3) TEN-DAY AVERAGE DISCHARGE AT FLORIDABLANCA OF GUMAIN RIVER

Table 2.8 TEN-DAY AVERAGE DISCHARGE AS INFLOW TO SAN ANTONIO SWAMP

1968		.101.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
11 - 10 21 - 31 21 - 31 21 - 31 21 - 10 21 - 10 21 - 20 21 - 31 1 - 10 21 - 31 1 - 20 21 - 31 1 - 20 21 - 31 21 - 3	8.7 7.3 6.3	6.6 7.1 5.0	3.9	6.1 5.7 7.2	8.7 6.9.6 8.1	17.7	261.1 213.9 360.1	367.6 128.5 126.5	264.2 84.5 13.8	9.5	37.2
1 - 10 21 - 11 21 - 31 1 - 10 21 - 11 1 - 10 11 - 20 21 - 11 21 - 11 21 - 11 21 - 11 21 - 11	6.4.4 9.69	3.7	6.5. 4.6.6.	1.9 6.1 5.0	5.1 9.6 89.0	493.0 332.1 60.8	70.6 191.6 66.4	88.3 181.5 93.4	94.3 87.4 27.1	8.8 7.1 23.6	11.3 15.4 9.1
1 - 10 21 - 11 21 - 31 1 - 10 - 1 1 - 10 1 - 1 20 - 11 20 - 11 20 - 11 20 - 11	5.7 4.8 4.3	4. E. E. B.	2.9 2.1 2.1	1.7	14.8 56.3 19.0	25.7 64.1 53.0	88.5 111.8 237.6	474.7 443.0 82.5	86.1 206.1 93.6	106.7 41.8 68.2	45.0 26.2 21.7
1 - 10 21 - 11 21 - 31 1 - 20 21 - 11 20 - 11 21 - 10 21 - 11		6.8 9.1 0.4	2.0	9.9	33.7	85.4 220.6 385.8	160.0 257.2 28.2	74.4 125.6 105.1	281.2 505.1 102.4	27.9 32.1 99.4	93.8 41.7 46.7
1 - 10 21 - 11 21 - 31 1 - 10 21 - 11 21 - 30	19.3 16.9 11.1	8.8 8.3 8.7	6.4 9.9 5.9	8.3 9.8 18.2	18.3 42.7 36.9	204.5 492.8 558.8	610.6 410.3 493.5	246.7 298.1 259.9	78.4 17.6 10.5	27.6 18.0 12.4	17.5 13.1 8.6
1 - 10 11 - 20 21 - 31	3.7	2.0 1.6 0.9	0.8	0.7 4.0 2.8	3.1	7.8 19.4 19.5	34.2 77.6 284.3	197.3 101.3 50.7	94.6 568.6 147.5	18.7 15.1 114.2	22.6 15.1 9.1
	4.7 3.5 3.5	3.0 2.1 2.1	1.4 5.1	2.3 2.4	38.2 124.5 15.0	12.8 34.0 188.4	92.7 409.4 404.3	104.4 129.6 30.9	35.3 375.2 454.4	204.5 150.6 66.2	290.8 166.8 63.3
	14.0 8.2 7.8	9.00 9.00	6.1 8.5	8.6 8.1 15.8	25.9 9.8 8.7	27.3 15.7 30.4	19.4 74.4 65.9	46.7 62.8 111.5	49.2 26.1 111.1	53.9 13.0 8.1	13.0 30.6 116.7
	11.0	8.5 7.2 4.7	4.2 7.2 4.0	4.9 8.9 626.7	320.5 0.9 70.2	353.3 127.9 168.3	123.6 240.3 311.1	16.3 221.9 414.6	455.0 86.5 20.6	59.6 56.2 13.2	12.5
	10.0 7.2 6.1	2.4.4 6.9.5	7.4 9.2 8.3	7.2 5.8 5.2	8.1 7.6 0.4	7.6 10.1 71.7	42.2 22.8 48.7	253.2 317.1 315.4	191.3 76.4 30.2	17.7 18.5 363.0	67.3 27.3 27.7
1978 1 - 10 25.3 11 - 20 28.2 21 - 31 28.4	27.1 22.4 17.9	15.8 16.8 18.1	16.8 16.1 17.4	18.5 13.9 15.7	19.2 36.9 56.6	44.0 105.0 188.9	350.0 456.2 643.7	475.2 472.3 371.7	474.1 554.5 371.5	735.8 167.0 143.3	151.1

Table 2.9 MONTHLY MEAN TIDE LEVEL AT MANILA HARBOR (1951 - 1979)

above MSL)	Average		0.53 0.77 0.32		0.39 0.63 0.16		0.30 -0.19		-0.37 -0.02 -0.56		-0.47 -0.11 -0.67	
meter a	Dec.		0.53 0.78 0.30		0.38 0.61 0.10		-0.06 0.18 -0.25		-0.47 -0.20 -0.68		-0.56 -0.28 -0.75	
(Unit:	Nov.		0.55 0.78 0.30		0.40 0.63 0.12		0.01 0.28 -0.21		-0.37 -0.05 -0.56		-0.48 -0.16 -0.70	
	Oct.		0.56 0.84 0.34		0.43 0.73 0.21		0.07		-0.28 0.17 -0.49		-0.39 0.08 -0.60	
	Sep.		0.61 0.84 0.45		0.47 0.72 0.30		0.12		-0.23 0.14 -0.42		$\begin{array}{c} -0.31 \\ 0.07 \\ -0.52 \end{array}$	
	Aug.		0.66 0.92 0.42		0.50		0.14		-0.23 0.08 -0.42		-0.31 0.01 -0.49	
	Jul.	į	0.65 0.93 0.45		0.51 0.79 0.29		0.09 0.37 -0.08		-0.30 0.04 -0.54		-0.40 -0.05 -0.61	
	Jun.		0.61 0.87 0.40		0.49 0.75 0.22	-	0.04 0.34 -0.12		-0.37 0 -0.55		-0.47 -0.09 -0.64	
. [May		0.51 0.76 0.30		0.39 0.61 0.17		0.41 -0.18		-0.39		-0.52 -0.09 -0.69	
	Apr.		0.44 0.64 0.23		0.32 0.52 0.11		-0.05 0.23 -0.23		-0.40 -0.04 -0.59		-0.52 -0.13 -0.72	
	Mar.	(MHHL)	0.39 0.58 0.20		0.25 0.45 0.06		-0.10 0.18 -0.27		-0.44 -0.09 -0.62	MLLL)	-0.53 -0.14 -0.73	
;	Feb.	h Level	0.41 0.62 0.23	(MHL)	0.22 0.42 0.04	(MSL)	-0.13 0.14 -0.29	(MLL)	-0.47 -0.13 -0.64	Level (-0.56 -0.18 -0.74	
	Jan.	her Hig	0.45 0.72 0.21	h Level	0.27 0.57 0.01	Leve1	-0.13 0.13 -0.32	Level	-0.51 -0.21 -0.69	er Low	-0.61 -0.31 -0.80	
	Item	Mean Higher High Level (MHHL)	Ave. Max. Min.	Mean High Level	Ave. Max. Min.	Mean Sea Level (MSL)	Ave. Max. Min.	Mean Low Level (MLL)	Ave. Max. Min.	Mean Lower Low Level (MLLL)	Ave. Max. Min.	

Table 2.10(1) WATER QUALITY ANALYSIS RESULT (HIGH WATER FLOW, SEPT. 1980)

Parameter		Unit	-	2	3	4	Sample Nu 5	Number 6	7	8	6	10
Chemist & Physics Conductivity P.H. S.A.R. Dissolved Solid Suspended Solid Hardness	CS	micromhos/cm mg/l	145 6.6 0.169 94 202 77	153 6.6 0.173 99 1,028	150 7.1 7.1 0.181 98 214 76	128 7.2 0.235 83 *	111 7.2 0.204 72 1,366	120 6.9 0.177 78 239 74	129 7.1 0.319 84 *	115 7.2 0.371 75 *	77 7.2 0.322 50 43	140 7.1 0.168 91 273 82
m ((M Fegga	meq/]	0.032 0.148 0.901 0.629 0.004	0.021 0.154 1.166 0.415 <0.005	0.023 0.158 0.848 0.682 0.004	61 min 161-	0.070 0.156 0.742 0.431 0.005	0.032 0.152 0.901 0.578 0.004	0.158 0.204 0.530 0.286 0.004		0.168 0.212 0.636 0.231 <0.005	0.023 0.152 0.954 0.678 0.004
- A A Chloride (C Sulphate (S Suppate (S S S	C1) S04)	meq/}	0.121	0.061	0.121	0.190	0.061	0.208	0.182	0 0.117	0.121	0.030
nate te	HC03) C03) Cu)		1.375	1.500 0 <0.05	1.406 0 <0.05	1.406	0.813 0 < 0.05	1.438 0 <0.05	1,094 0 <0.05	0.594 0 < 0.05	1.094 0 <0.05	1.406
Chromium (C Chromium (C Ead (P Zinc (Z Phosphor (P Silicon (S	(S) (S) (S) (S) (S) (S)		<0.10 <0.20 <0.01 0.112 5.6	<0.10 <0.20 <0.01 0.164 36.0	<0.10 <0.20 <0.01 0.112 5.6	<0.10 <0.20 <0.01 0.172 12.5	<0.10 <0.20 <0.01 0.181	<0.10 <0.20 <0.01 0.152 6.1	<0.10 <0.20 <0.01 0.352 53.0	<0.10 <0.20 <0.01 0.184 56.0	<0.10 <0.20 <0.01 0.410 20.0	<0.10 <0.20 <0.01 0.087 5.6

*: No analysis

Table 2.10(2) WATER QUALITY ANALYSIS RESULT (LOW WATER FLOW, JAN. 1981)

Parameter	L.	Unit		2	8	4	Sample Number 5	mber 6		8	6	10
Chemist & Physics Conductivity P.H. S.A.R. Dissolved Solid Suspended Solid	<u>ssics</u> id id	micromhos/cm mg/l	250 7.3 7.3 0.648 163 71	215 7.3 7.3 0.504 140 57	265 7.5 0.671 172 100	353 7.0 1.030 229 37	168 7.3 1.001 1.024	246 7.3 0.572 160 73	265 7.1 0.870 172 320 87		155 7.5 0.801 101 354	265 7.5 0.691 172 58
R Fotassium Sodium Calcium Magnesium Iron	(K) (Ra) (Rg) (Fe)	meq/1	0.050 0.710 1.219 1.178 0.029	0.045 0.540 1.219 0.923 0.120	0.050 0.750 1.060 1.439 0.075	0.335 1.140 1.107 1.344 0.228	0.115 0.689 0.433 0.013	0.050 0.640 1.113 1.386	0.315 0.901 0.033	no water	0.19 0.6336 0.4886 0.0133	0.068 0.0780 0.0490 0.013
nanganese Nitrogen Tota - A Chloride Sulphate	(C1)	meq/1	0.242	0.121	0.182	0.424	0.424	0.182 0.56	0.303		0.182	0.303
Phosphate Bicarbonate Carbonate Copper	(((((((((((((((((((и п Пд/1	2.283 0 0.05	1.969 0 -0.05	2.406 0 <0.05	3.156 0 <0.05	* *	2.250 0 <0.05	2.063 0 0 0.05		1.063 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.250 0 0 0 0 0
Carantum Chromium Lead Zinc Phosphor Silicon	(Pb) (Zn) (Si)	* * = = =	60.1060.2060.010.10014.5	60.1060.2060.010.06814.5	0.100.200.010.07015.4	0.100.200.010.15234.2	60.1060.2060.010.194	60.1060.2060.0112.5	60.1060.2060.01027.6		<0.10 <0.20 <0.01 0.120 27.6	60.1060.2060.010.08811.8

* : No analysis

Table 2.11(1) CHLORIDE CONCENTRATION IN RIVERS MEASURED BY TEAM AND MPW

	ling tion	Distance from Rivermouth	Sampling Date	Tide Level	Chloride Co Water Surface	ncentration Channel Bottom
		(km)		(MSL)	(ppm)	(ppm)
San	Ferna	and <u>o River</u>	•			
No.	ז	22.5	Jan. 27, 1981	-0.14 -0.01 0.11 0.22	4,850 3,650 3,500 4,900	5,500 5,450 4,350 5,500
			Mar. 3, 1981	0.23 0.49	5,400 5,700	5,600 5,700
			Mar. 24, 1981	0.37 0.21 0.05	6,100 6,150 6,200	5,600 6,200 6,150
No.	2	31.0	Jan. 27, 1981	-0.14 -0.01 0.11 0.22	2,320 2,350 2,280 2,350	2,450 2,350 2,320 2,350
			Mar. 3,1981	0.40 0.58	4,900 5,100	5,050 5,050
			Mar. 24, 1981	0.32 0.28 0.12	5,700 5,900 5,900	5,800 5,950 6,100
No.	3	35.0	Jan. 27, 1981	-0.14 -0.01 0.11 0.22	600 535 465 470	600 535 465 470
			Mar. 3, 1981	0.15 0.36 0.55	1,020 1,000 990	1,020 1,000 990
			Mar. 24, 1981	0.34 0.25 0.09	1,550 1,800 2,050	1,300 1,530 2,050
Hago	noy 1	<u>River</u>				
No.	4	9.0	Jan. 28, 1981	-0.09 0.03 0.16 0.31	2,080 2,050 6,800 8,450	3,950 6,500 8,000 9,600

1. 2. Remarks:

*****:

Data in January were measured by the Team
Data during the period of March - April were measured by MPW
less than 10 p.p.m.

Table 2.11(2) CHLORIDE CONCENTRATION IN RIVERS MEASURED BY TEAM AND MPW

Sampling Station	i roili	Sampling Date	Tide Level	Chloride Co Water	Channe1
	Rivermouth (km)		(MSL)	Surface (ppm)	Bottom (ppm)
		Mar. 3, 1981	0.16 0.37 0.54	6,000 6,400 8,000	7,100 7,900 9,600
		Mar. 24, 1981	0.36 0.28 0.16	8,600 8,400 6,300	9,800 9,900 8,700
		Apr. 29, 1981	0.39 0.51 0.62	5,500 6,300 8,400	7,600 10,200 11,500
No. 5	13.0	Jan. 28, 1981	-0.09 0.03 0.16 0.31	225 305 425 2,050	238 305 450 2,050
		Mar. 3, 1981	0.16 0.37 0.54	1,950 2,350 4,050	2,700 2,950 4,250
		Mar. 24, 1981	0.32 0.33 0.12	2,300 4,200 2,250	2,450 4,300 2,250
No. 6	18.5	Jan. 28, 1981	-0.09 0.03 0.16 0.31	74 32 28 30	74 32 28 30
		Mar. 3, 1981	0.37 0.54	100 46	100 46
		Mar. 24, 1981	0.29 0.37 0.08	22 30 26	21 24 24
		Apr. 29, 1981	0.33 0.55 0.67	11 90 32	13 96 12
Pampanga	River				
No. 7	10.0	Jan. 29, 1981	-0.07 0.06 0.28 0.37	940 820 3,950 12,600	3,100 2,850 12,700 18,600

Table 2.11(3) CHLORIDE CONCENTRATION IN RIVERS MEASURED BY TEAM AND MPW

Sampling Station	Distance from Rivermouth (km)	Sampling Date	Tide Level (MSL)	Chloride Cor Water Surface (ppm)	centration Channel Bottom (ppm)
No. 8	14.0	Jan. 29, 1981	-0.07 0.06 0.28 0.37	26 18 375 410	1,630 1,350 2,950 5,100
		Mar. 25, 1981	0.32 0.42 0.25	21 820 1,050	4,650 7,700 7,400
		Apr. 30, 1981	0.55	1,500	8,100
No. 9	17.0	Jan. 29, 1981	-0.07 0.06 0.28 0.37	13 13 30 265	13 13 30 570
		Mar. 5, 1981	-0.06 0.07 0.04 0.35	- 18 18 18 18	18 18 18 18
		Mar. 25, 1981	0.40 0.33 0.17	16 89 19	15 34 20
		Apr. 30, 1981	0.29 0.45 0.58	* * 16	* * 14
No. 10	22.5	Jan. 29, 1981	-0.07 0.06 0.28 0.37	14 13 14 13	14 13 14 13
		Mar. 4, 1981	0.09 0.31 0.54	20 17 18	17 17 18
		Mar. 26, 1981	0.33 0.44 0.37	15 16 16	16 16 16
		Apr. 30, 1981	0.22 0.36 0.51	* * *	* * *

Table 2.11(4) CHLORIDE CONCENTRATION IN RIVERS MEASURED BY TEAM AND MPW

Distance	Sampling	Tide	Chloride Con	
	Date	Leve1		Channel Bottom
(km)		(MSL)	(ppm)	(ppm)
22.6	Jan. 29, 1981	-0.07	14	14
				17 14
	·	0.37	14	14
	Mar. 4, 1981	0.03	21	22
		0.44	20 20	19 19
	Mar. 26, 1981	0.35	17]6
		0.47 0.34	16 16	16 15
	Apr. 30, 1981	0.24	*	*
			*	*
00.0	1 00 1001		7.4	7.4
26.0	Jan. 29, 1981			14 14
		0.28	14	14 13
	Mar 4 1981			17
	11011 119 1501	0.37	17	17
	N 00 7007			18
	Mar. 25, 1981	0.37	15	14 15
		0.29	15	14
	Apr. 30, 1981		*	*
		0.49	*	*
River				
9.5	Jan. 30, 1981	0.02	787	16,220
		0.16 0.36	1,080	17,183 22,160
		0.46	17,907	23,467
16.5	Jan. 30, 1981	0.02	16	16
		0.16 0.46	13 14	13 14
	from Rivermouth (km) 22.6 26.0	from Rivermouth (km) 22.6 Jan. 29, 1981 Mar. 4, 1981 Apr. 30, 1981 26.0 Jan. 29, 1981 Mar. 4, 1981 Mar. 26, 1981 Mar. 26, 1981 Apr. 30, 1981 River 9.5 Jan. 30, 1981	from Rivermouth (km) 22.6 Jan. 29, 1981 -0.07 0.06 0.28 0.37 Mar. 4, 1981 0.03 0.25 0.44 Mar. 26, 1981 0.35 0.47 0.34 Apr. 30, 1981 0.24 0.37 0.52 26.0 Jan. 29, 1981 -0.07 0.06 0.28 0.37 0.52 26.0 Mar. 4, 1981 0.14 0.37 0.59 Mar. 4, 1981 0.14 0.37 0.59 Mar. 26, 1981 0.37 0.59 Mar. 30, 1981 0.19 0.35 0.49 River 9.5 Jan. 30, 1981 0.02 0.16 0.36 0.46 16.5 Jan. 30, 1981 0.02	from Rivermouth (km) Sampling Date Index Level Level (MSL) Water Surface (ppm) 22.6 Jan. 29, 1981 -0.07 14 0.06 15 0.28 14 0.28 14 0.37 14 Mar. 4, 1981 0.03 21 0.25 20 0.44 20 Mar. 26, 1981 0.35 17 0.47 16 0.34 16 Apr. 30, 1981 0.24 * 0.52 * * 26.0 Jan. 29, 1981 -0.07 14 0.05 14 0.28 14 0.37 13 14 0.37 13 Mar. 4, 1981 0.14 18 0.37 17 0.59 17 0.59 17 Mar. 26, 1981 0.37 14 0.51 15 0.29 15 0.29 15 Apr. 30, 1981 0.19 * 0.36 1,080 0.36 15,05

Table 2.11(5) CHLORIDE CONCENTRATION IN RIVERS MEASURED BY TEAM AND MPW

Sampling Station	Distance from Rivermouth (km)	Sampling Date	Tide Level (MSL)	Chloride Cor Water Surface (ppm)	Channel Bottom (ppm)
		Mar. 5, 1981	-0.05 0.05 0.19	12 11 11	11 11 11
		Mar. 25, 1981	0.27 0.42 0.30 0.16	24 22 23 24	23 24 23 24
		Apr. 30, 1981	0.26 0.38 0.53	* * *	* *
No. 15	17.0	Jan. 30, 1981	0.02 0.16 0.46	13 13 24.	13 13 24
		Mar. 5, 1981	-0.02 0.05 0.33	11 11 11	11 11 11
		Mar. 25, 1981	0.30 0.44 0.27	24 23 24	25 28 28
No. 16	22.0	Jan. 30, 1981	0.16 0.46	12 12	12 12
		Mar. 25, 1981	0.33 0.47 0.23	15 14 15	15 15 15

Table 2.12(1) MAXIMUM POINT OF SEAWATER INTRUSION ON THE PAMPANGA RIVER UNDER EXISTING CONDITION

				(Unit: Km)
Discharge				rusion from Rivermouth
(m ³ /s)	h. = 1 ^m	h. = 2 ^m	$h = 3^m$	Bottom
1. At Time of Hig		**************************************	·	
2 5 10 20 30 40 50	42.0 18.8 8.2 2.8 1.0 0.8 0.5	45.4 32.7 18.3 8.8 4.4 2.2	- - 36.2 22.0 11.2 6.6	46.8 46.6 46.2 45.2 38.8 21.1
2. At Time of Low	/ Tide /2			,
2 5 10 20 30 40 50	40.4 18.0 7.7 2.4 0.9 0.6 0.5	45.2 32.6 14.3 5.8 3.1 1.5	- 29.2 12.3 7.4	46.5 46.2 45.4 36.7 15.4 8.1 2.9
3. Average of ab	ove /3			
2 5 10 20 30 40 50	41.2 18.4 8.0 2.6 1.0 0.7 0.5	45.3 32.7 16.3 7.3 3.8 1.9	- 32.7 17.2 9.3	46.7 46.4 45.8 41.0 27.1 16.0 7.8

Remarks: $\angle 1$: E1. = 0.53 m (MSL)

<u>/</u>2: E1. - -0.47 m (MSL)

<u>/</u>3: Average distance of high and low tides

Table 2.12(2) MAXIMUM POINT OF SEAWATER INTRUSION
ON THE LABANGAN FLOODWAY UNDER EXISTING
CONDITION

			(Uni	t: Km)
Discharge	Maximum P		er Intrusion	from Rivermouth
(m ³ /s)	h = 1 ^m	h = 2 ^m	h = 3 ^m	Bottom
1. At Time of	High Tide /I			
2 5 10 20 30	73.0 0.8 0.6 0.4	- 5.8 1.6 0.9	- 11.4 4.6 2.4	- 24.7 12.7 7.9 5.9
2. At Time o	of Low Tide /2			
2 5 10 20 30	18.0 7.5 0.9 0.5 0.3	- 4.6 1.4 0.7	8.8 3.8 1.8	18.0 15.6 9.3 6.0 4.0
3. <u>Average</u> of	f Aboye /3			,
2 5 10 20 30	- 10.3 0.9 0.6 0.4	5.2 1.5 0.8	- 10.1 4.2 2.1	20.2 11.0 7.0 5.0

Remarks: $\underline{/1}$: E1. = 0.53 m (MSL)

/2: E1. = -0.47 m (MSL)

<u>/</u>3: Average distance of high and low tides

Table 2.13(1) ESTIMATED TEN-DAY AVERAGE DISCHARGE (PAMPANGA RIVER)

Dec.	183.5	58.5	325.1	525.4	134.1	119.8	418.7	60.0	128.7	273.3	517.9
	56.8	83.6	199.3	302.8	89.2	75.4	472.5	128.5	123.7	167.2	453.8
	41.9	49.0	138.5	328.8	49.6	41.3	299.1	455.0	95.4	168.6	371.9
Nov.	69.3	61.8	721.8	178.2	204.9	86.9	1,568.9	216.8	444.4	142.5	2,043.3
	68.8	42.0	334.8	165.6	136.3	79.2	1,176.8	60.0	420.6	280.2	571.7
	62.2	138.4	518.4	609.9	110.2	715.3	488.1	38.5	242.2	1,056.2	491.2
Oct.	971.7 423.9 155.7	399.6 257.5 132.6	456.5 1,117.4 721.6	412.8 1,947.8 723.5	256.4 107.4 87.3	428.2 1,784.0 809.8	1,158.1 1,213.8	199.4 111.1 434.2	670.2 454.9 439.7	600.8 297.3 174.8	1,223.6 1,276.5 749.8
Sept.	1,520.3	337.0	1,804.0	287.1	678.4	431.6	408.0	195.3	476.8	765.2	1,290.8
	921.3	620.3	1,217.6	297.6	868.4	253.6	311.0	223.2	629.9	867.2	1,065.7
	684.1	349.4	439.7	367.5	587.7	160.6	137.4	365.8	779.0	737.3	1,277.5
Aug.	586.8	1,566.4	254.9	655.8	2,247.8	82.7	639.3	112.3	408.4	441.5	343.0
	596.0	839.7	375.1	629.0	1,760.2	174.6	1,527.5	500.2	767.6	408.2	791.0
	1,098.8	208.2	588.3	160.3	1,512.7	663.4	1,641.1	346.6	680.9	518.8	1,326.1
July	65.0	65.9	85.7	413.5	790.2	32.6	133.4	130.6	1,327.8	115.3	211.7
	66.2	62.8	225.2	828.3	2,341.6	158.4	380.5	63.5	341.7	122.2	374.0
	488.4	425.0	151.2	1,219.9	2,363.2	96.8	712.6	57.2	279.4	285.7	595.0
June	30.2	33.6	33.8	375.2	81.1	12.9	260.9	126.5	338.1	65.2	145.7
	28.5	77.4	145.6	638.2	91.2	28.8	579.7	92.1	299.8	56.0	192.5
	36.9	43.0	124.7	453.0	130.8	38.2	92.5	133.5	312.9	95.8	271.0
May	25.3 23.3 29.4	19.0 24.3 25.4	19.3 19.6 21.8	88.8 118.0 98.0	22.6 24.7 72.9	10.1	27.8 19.9 47.0	49.8 46.9 70.8	24.3 41.9 2,035.6	16.5 15.1 52.9	82.3 64.0 60.5
Apr.	23.4	23.6	28.2	35.0	43.8	12.7	15.6	49.1	20.8	20.9	67.0
	21.2	25.1	28.6	33.9	34.1	14.1	16.5	48.0	34.5	19.1	73.8
	21.0	18.8	23.4	28.6	28.8	9.3	24.8	66.2	20.2	18.0	78.2
Mar.	29.2	22.1	20.3	39.4	41.9	15.7	25.7	48.1	40.2	26.8	48.1
	33.8	22.0	19.4	66.5	35.2	14.0	19.9	45.5	34.5	24.3	54.4
	24.1	23.5	20.4	39.3	45.0	12.5	17.3	53.0	23.2	22.8	60.3
Feb.	37.4	38.5	28.1	53.9	114.5	33.4	18.2	131.4	78.9	46.7	115.8
	31.4	28.7	23.6	52.9	100.0	33.6	16.5	82.2	54.1	34.3	97.9
	29.3	26.1	22.2	48.5	48.5	25.6	15.0	79.3	36.2	29.9	80.7
Jan.	50.5 45.3 40.4	45.7 46.7 40.2	40.7 35.7 32.1	92.3 77.6 64.2	807.4 189.7 132.6	36.6 33.2 30.9	34.1 26.6 21.4	191.2	275.2 200.9 125.8	104.5 88.6 66.8	108.8 119.8 120.4
Period	1 - 10 11 - 20 21 - 31	1 - 10 11 - 20 11 - 12	1 - 10 11 - 20 21 - 31	1 - 10 11 - 20 21 - 31	1 - 10 11 - 20 21 - 31	1 - 10 11 - 20 21 + 31	1 - 10 11 - 20 21 - 31	1 - 10 11 - 20 21 - 31	1 - 10 1 - 11 20 - 11 12 - 13	11 - 10 11 - 20 21 - 31	1 - 10 11 - 20 21 - 31
Year	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978

ESTIMATED TEN-DAY AVERAGE DISCHARGE (LABANGAN FLOODWAY) Table 2.13(2)

Year	Period	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1968	1 - 10 11 - 20 21 - 13	3.9	8.0 6.2 7.4	4.8.8.9	14.6 13.2 24.3	16.3 15.4 10.3	9.9	16.0 12.1 4.7	42.9 31.1 86.3	149.4 51.5 84.2	71.0	2.2	3.5.0 2.2.0
1969	1 - 10 11 - 20 21 - 31	2.6 3.0 2.7	1.8	1.2	2.4 1.0 2.6	6.7 5.9	8.8 5.5	2.5 1.2 42.0	117.2 95.2 59.5	39.7 38.9 28.1	35.9 21.8 8.0	0.9 0.9	0.6 5.1 4.4
1970	1 - 10 11 - 20 21 - 31	0.9	0.6 0.6 2.0	14.9 28.3 37.4	36.9 31.3 30.2	36.8 74.0 33.0	9.2 17.9 15.4	34.3 44.8 35.3	29.9 42.5 57.8	142.2 63.5 25.5	28.2 57.4 31.8	43.6 20.4 20.6	46.8 44.1 43.8
1971	1 - 10 11 - 20 21 - 31	27.9 15.5 22.9	26.1 27.6 32.2	26.5 39.9 45.1	47.1 29.8 35.6	12.4	43.2 61.1 32.8	35.8 58.4 63.7	51.8 43.3 40.6	29.9 39.0 29.3	44.6 130.6 39.3	24.6 24.3 48.1	87.8 49.6 89.5
1972	1 - 10 11 - 20 21 - 31	63.5 43.1 40.2	18.8 27.5 23.8	46.9 33.8 35.0	33.7 42.3 42.9	33.8 19.8 26.1	13.1 13.6 12.9	63.2 21.1 167.8	157.8 121.3 31.0	31.0 65.1 46.1	28.1 119.5 49.1	13.5	16.7 12.9 5.4
1973	1 - 10 11 - 20 21 - 31	9.8 8.8 6.9	9.2 9.1 8.5	7.8	7.5	7.5	7.7 8.8 9.5	8.9 14.6	10.9 18.7 55.1	36.8 24.7 18.3	35.4 126.0 63.7	12.4 12.3 54.5	14.8 12.3 10.0
1974	1 - 10 11 - 20 21 - 31	1.1 2.6 3.2	4.5 4.3	5.2	4.4.8	1.4 0.2 0.6	2.0 35.3 51.9	1.0 2.2 25.8	1.6 133.2 59.5	19.3 14.0	4.2 35.6 29.5	85.7 87.7 43.2	28.3 57.1 58.1
1975	1 - 10 11 - 20 21 - 31	21.3 7.6 6.7	7.0 8.9 9.2	14.0 10.4 12.8	14.7 15.4 14.8	16.6 6.6 15.2	12.5 13.4 12.1	16.6 2.7 1.0	19.0 25.0 24.0	16.1 14.5 20.6	17.0 14.9 14.0	14.1 9.7 2.1	10.6 15.1 37.2
1976	1 - 10 11 - 20 21 - 31	4.6 1.0	3.7	4 4 4 4 4 9 9 9 9	14.0 8.0 13.8	9.1	44.6 37.2 54.1	91.9 24.6 34.3	28.6 42.1 41.2	22.0 56.1 37.1	30.3 3.5 15.9	12.5 8.3 5.7	8.4 4.6 9.9
7261	1 - 10 11 - 20 21 - 31	5.8 7.4 9.6	7.7 21.6 15.7	2.5	2.5	3.22	2.8 2.5	5.3 15.4 10.3	12.0 7.7 16.3	5.2 13.8 8.9	2.2 1.2 0.1	2.0 47.1 4.0	0.1 15.4 15.4
1978	1 - 10 11 - 20 21 - 31	14.9 15.6	15.3	9.9	3.7	2.6 2.1 6.0	10.6 4.9 2.1	4.9	4.7 38.6 72.9	45.2 28.6 30.5	48.5 76.7 119.3	110.4 32.4 16.9	7.6

Table 2.14(1) FREQUENCY ON SEAWATER INTRUSION UNDER EXISTING CONDITION

Km)	1978	9.4	5.4	2.4	2.4	1.4	ı																	•		4.2	
(Unit:	1977	43.3	$^{\circ}$	\sim		\circ	g	\sim	ന	∞	24.4	~	7.0	2.0		1.0	ı									26.4	
	1976	Ö	o.	ത്	ώ.	က	က်	ö	16.3	ď.		1														25.9	.
	1975	18.3	12.0		\circ	0	0.6	8.4	6.4	4.2	3.0	3.0	2.0	1.1	1											7.6	. 1
	1974	က	ന	က	ന	N	S	$\overline{}$	_	\circ	36.0	4	$^{\circ}$		က	\circ	1									36.5	
	1973	45.2	45.1	45.0	45.0	44.3	44.3	44.2	44.0	44.0	43.2	34.2	30.1	27.0	25.2	24.4	24.2	24.0	20.3	19.0	15.3	1				34.4	•
	1972	ഗ		တ်	8	-	ů.	8	12.1		•	ι														20.8	
	1971	_	25.1	\sim	7	~	9.5	7.0	6.1	1.3	1.0	1														13.7	
ver	1970	41.1	41.1	41.0	40.4	40.4	40.0	39.3	38.0	37.4	30.0	29.4	29.0	26.1	24.3	21.1	ı									34.6	. [
Pampanga Ri	1969	42.2	42.0	38.3	38.1	36.1	36.0	35.3	34.3	34.2	33.4	29.1	24.4	18.1	16.3	15.2	14.2	77.3	1.1	9.1	3.4	2.3	2.2	1.0	1	23.0	•
Bottom, Pa	1968	40.2	40.2	37.8	37.7	37.0	34.0	30.2	28.2	28.1	28.0	27.0	26.2	25.0	20.0	19.0	16.3	15.1	12.0	8.1	5.0	2.3	1.4	1.0	ı	22.6	
At Channel B	Period	1 - 10	11 - 20		۱	1	1	1	١	1	91 - 100	_ ']] -]	1	1	[-	1	61 - 19	71 - 1	81 - 1	91 - 2	01 - 2	11 - 2	- 2	31 - 2	AVA	

Table 2.14(2) FREQUENCY OF SEAWATER INTRUSION UNDER EXISTING CONDITION

.: Ka	F	00000	0.3
(Unit:	1977	1.2.2.2.5.1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	1.7
	1976	2.2 2.0 1.4 0.9 0.7 0.7 0.7	1,2
	1975	000000000000000000000000000000000000000	0.4
	1974	44.6.6.6.9.9.6.6.0.0.0.0.0.0.0.0.0.0.0.0.0	2.2
	1973	88.000.00.00.00.00.00.00.00.00.00.00.00.	3.5
	1972		6.0
River	1971	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.7
ര	1970	4.22.22.22.1. 4.8.8.2.22.1. 4.0.00.00.00.00.00.00.00.00.00.00.00.00.	1.6
m below Water Surface, Pampang	1969	8.00.00.00.00.00.00.00.00.00.00.00.00.00	1.2
Water Su	1968	2.22 2.22 2.00 2.00 2.00 2.00 2.00 2.00	1.1
At 1 m below	Period	11 - 20 21 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71 - 80 81 - 90 91 - 100 101 - 110 121 - 130 131 - 140 141 - 150 151 - 160 151 - 160 151 - 160 151 - 120 201 - 210 221 - 230	Ave.

FREQUENCY OF SEAWATER INTRUSION UNDER EXISTING CONDITION Table 2.14(3)

it: Km)	_		13.6
(Unit	1977		16.3
	1976	22222222222222222222222222222222222222	11.5
	1975	222 222 222 232 24 20 20 20 20 20 20 20 20 20 20 20 20 20	10.3
	1974	22222222222222222222222222222222222222	14.8
	1973	1.55 1.55	10.0
	1972	850 850 850 850 850 850 850 850 850 850	5.7
	1971	0.00 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4.5
> -l	1970	22222222222222222222222222222222222222	7.8
gan Floodway	1969	22.22 22.23 22.23 22.23 22.23 22.23 22.23 22.23 22.23 22.23 22.33 23.23	16.9
Bottom, Labangan	1968	222 2222 2222 2222 2222 2223 2322 244 244	12.5
At Channel Bot	Period	1	Ave.

Table 2.14(4) FREQUENCY OF SEAWATER INTRUSION UNDER EXISTING CONDITION

(Unit: Km)	1978	7.44 7.44 7.5.5 7.5.5 7.5.5 7.5.5 8.00 8.00 8.00 8.00 8.00 8.00 8.00	6.3
'n)	1761	15.0 14.4 14.5 13.8 13.8 13.8 13.8 13.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	8.0
	1976	4 E E E S S S S S S S S S S S S S S S S	4.6
	1975	441 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2.0
	1974	44444444444444444444444444444444444444	8.9
	1973	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	1.2
	1972	8 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.7
	1971	0.	0.4
an Floodway	1970	444 444 444 600 600 600 600 600	3.6
ace, Labanga	1969	4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.4	9.5
Water Surface,	1968	14.6 14.6 14.6 17.7 17.2 17.2 17.2 17.3 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	4.9
At 1 m below Water	Period	1	Ave.

Table 2.15 ESTIMATED ANNUAL SEDIMENT YIELD (PAMPANGA RIVER BASIN)

	Location	Period of Analyses	Drainage Area (km²)	Average Annual Yield (t/km²/yr)
1.	Talavera R. Lomboy, San Jose	1957 - 67	261	295
2.	Peñaranda R. Gapan	1946 - 68	573	535
3.	Sumacbao R. Pias, Gen. Tinio	1960 - 68	287	1,395
4.	Maasim R. Diliman, San Rafael	1946 - 64	150	1,595
5.	Cabu R., Cabanatuan City	1966 - 68	143	401
6.	Coronel R. Bangkerohan, Bongabon	1960 - 68	709	1,390
7.	Pampanga R. Pialuan, Pantabangan	1960 - 68	838	982
8.	Digmala R. Labi, Bongabon	1959 - 68	52	115
9.	Rio Chico R. Sto. Rosario, Zaragosa	1960 - 69	1,177	213
10.	Pampanga R. San Antonio, San Leonardo	1959 - 68	2,851	1,078
11.	Pampanga R. San Agustin, Arayat	1946 - 69	6,487	537
12.	Carranglan R. Baluarte, Carranglan	1960 - 65	258	224
13.	Peñaranda R. San Jose Peñaranda	1946 - 68	512	157
14.	Pampanga R. San Vicente, Cabiao	1959 - 68	3,467	588
15.	Madlum R. Sibul Springs, Bulacan	1957 - 64	102	388

Source: Report on Irrigation Development Plan for Central Luzon, Appendix E Jan. 1978, by NIA

Note: The yields are based on average monthly sediment discharge records.

Table 2.16 SEDIMENT DISCHARGE OBSERVED BY TEAM (AUG. - NOV. 1980)

Site	Observed Date	Discharge (m³/s)	Sediment Discharge (g/s)
Sulipan Highway Br.	Sept. 5, 1980	596.4 <u>/1</u>	0.99 x 105
	Sept. 12, 1980	817.7	1.94 x 105
	Sept. 19, 1980	930.2	2.54 x 105
	Sept. 26, 1980	618.9	0.46 x 105
	Nov. 7, 1980	1,571.0	17.17 x 105
Candaba Br.	Sept. 12, 1980	518.3	0.64×10^{5}
	Sept. 19, 1980	1,078.7	2.58×10^{5}
	Sept. 26, 1980	440.4	0.48×10^{5}
Arayat Br.	Aug. 14, 1980 Aug. 27, 1980 Sept. 10, 1980 Sept. 17, 1980 Sept. 24, 1980 Nov. 7, 1980 Nov. 10, 1980	529.5/1 520.6/1 433.2 706.5 387.3 1,645.5/1 2,035.4	1.07 x 10 ⁵ 1.57 x 10 ⁵ 1.46 x 10 ⁵ 1.43 x 10 ⁵ 0.27 x 10 ⁵ 6.77 x 10 ⁵ 5.61 x 10 ⁵
San Isidro Br.	Sept. 11, 1980	165.9	0.22 x 10 ⁵
	Sept. 18, 1980	557.2	5.73 x 10 ⁵
	Sept. 25, 1980	129.0	0.07 x 10 ⁵
	Nov. 7, 1980	1,848.3	18.67 x 10 ⁵
	Nov. 10, 1980	440.5	2.46 x 10 ⁵
Rio Chico Br.	Aug. 14, 1980	79.0	0.08 x 10 ⁵
	Aug. 28, 1980	109.1 <u>/1</u>	0.13 x 10 ⁵
	Sept. 11, 1980	217.4	0.34 x 10 ⁵
	Sept. 18, 1980	315.4	0.67 x 10 ⁵
	Sept. 25, 1980	155.6	0.27 x 10 ⁵
	Nov. 7, 1980	556.4 <u>/1</u>	2.71 x 10 ⁵
	Nov. 11, 1980	356.7	0.63 x 10 ⁵
Talayera Br.	Aug. 28, 1980	21.6	0.02 x 10 ⁵
	Sept. 10, 1980	38.1	0.07 x 10 ⁵
	Sept. 17, 1980	70.8	0.22 x 10 ⁵
	Sept. 24, 1980	41.3	0.11 x 10 ⁵
Bamban Br.	Aug. 29, 1980	25.9	0.10 x 10 ⁵
	Sept. 11, 1980	17.0	0.02 x 10 ⁵
	Sept. 18, 1980	51.0	0.70 x 10 ⁵
	Sept. 25, 1980	8.7	0.01 x 10 ⁵

Remarks: /l Estimated discharge by use of rating curve.

Table 2.17(1) SAMPLING TEST DATA OF RIVER BED MATERIAL

2	Sampling	Distance	Per	ercentage		of We	Weight	Passing	through	ugh the	Sieve	a)		(Unit:	t: mm)
Kiver	No.	from Kiver Mouth (Km)	37.5	19.0	9.5	4.76	2.00	0.600	.420	0.250 (0.106	0.053	65%	20%	dm
Pampanga	<u></u> c	0 4						100	8	66	97	17	0.08		0.105
	4 m			100	79	77	77	27	7.7	7.7	73	2 [0.0965		4.265
) 4- n	20.5))			•	100	66	66	87	12	0.086	0.0745	0.122
	ဂ ဖ	29.5						3	n n	100	66	33.6	0.074		060.0
	7	32.5						c c	001	9 9	97	37	0.073		0.092
	∞ ത	გგ. 45.5						38	3 3 5 5	ည္ ၃ တ	65 67	12 4	0.082		0.170
	10	49.5							100	66	26	44	0.069		0.089
	— . (57.5							8	66	ص ص د	26	0.074		0.097
	13	67.5 67.5							38	5 O	79	മന	0.094		0.139
	14	71.5				I		100	66	86	37	_	0.153		0.201
	ا ت	74.5	100	G	100 22	6 α α	88 2 2	31	47	27	<	ر -	0 .5]		1.249
	21	85.5	2	88	900	3.5	46	24	- I	<u>1</u> C	-	J r	35.0		5,447
	81	102.0		100	93	67	43	58	13	12	· က	·	4.25		5.351
Rio Chico	19	1.0						100	66	96	29	12		•	-
	20	0.9						100		97	63	თ ;	•		
	21	42.0							200	თ c	35	32	•	•	
	23	44.0						100	9 6 8	ກ ດາ ກ ເວ	91	34	0.077	0.064	0.106
Angat	24 25							100	96	97 74	73 29	33	0.0955 0.21	0.081	0.146
Labangan	26 27							100	99 99	86 88 86	82 84 84	333	0.0885	0.0765	0.130
Bamban	28 29	14.5 27.5		100)00 91	66 80	98 86	96 79	77 46	59 26	28 8	-	0.288	0.189	0.479 2.470
											!				

Table 2.17(2) SAMPLING TEST DATA OF RIVER BED MATERIAL

														(Unit:	:: mm)
wow.fQ	Sampling	Distance from Diver	P(Percentage	age (of We	ight	Passin	g thro	of Weight Passing through the Sieve	Sieve	aı			
או עם:	No.	Mouth (Km)	37.5		9.5 4	4.76	2.00 (0.600 (0.420	19.0 9.5 4.76 2.00 0.600 0.420 0.250 0.106 0.053) 106 (0.053	65%	20%	dm
Bamban	30	27.9	. ((100	97	6	90	98	64	49	56	F (0.42	0.25	1.547
	3.	5.87	90	% *	5	9/	72	69	40	જ			0.59	0.48	7.823
Penaranda	32			100	88	83	29	42	12	თ	Ŋ	-	1.75	0.84	4.319
Talavera	33			100	69	48	31	18	თ	œ	9	 	7.8	4.76	9.023
	3.4 35.		100	100 92	92 75	73 56	54 40	30	∞ ∞	വ വ	თ <i>ი</i> /	r F	3.15 6.2	3.1	4.862 9.234
Hagoney	36 37							900	686	57 98	16	7 24	0.28	0.21	0.319
Cabiao	38				100	67	96	93	857	8	52	9	0.15	0.098	0.579
Candaba- Floodway					-	100	26	11	47	37	27	7	0.52	0.435	0.815
Bagbag	40							100	66	98	93	16	0.081	0.071	0.113
Bebe San Esteban Channel	41							100	66	66	96	Ľ	0.082	0.0725	0.109
										.					

Table 2.18 ANNUAL SEDIMENT YIELD ESTIMATED BY TEAM

A H P A A A A A A A A A A A A A A A A A		Drainage					Annual	Yield (t	Annual Yield (t/km²/yr)				
6,532 471 540 290 192 318 442 797 228 512 80 7,715 166 89 55 40 10 22 171 9 26 1 3,270 199 230 94 60 182 201 391 94 150 24 3 401 1,444 1,495 835 557 906 1,284 3,039 728 1,610 233 3 401 55 97 130 90 304 347 383 355 426 434 4vo 1,675 191 184 105 97 132 81 197 30 4vo 3,472 347 383 1,083 345 596 191	Location	Area (Km ²)	9961	1967	1968	1969	1970	1971	1972	1973	1974	1975	Ave.
7,715 166 89 55 40 10 22 171 9 26 1 7,270 199 230 94 60 182 201 391 94 150 24 3,026 1,444 1,495 835 557 906 1,284 3,039 728 1,610 233 4 401 55 97 130 304 347 383 355 426 434 dro 3,472 947 1,254 460 347 785 838 1,083 345 596 191	Arayat	6,532	471	540	290	192	318	442	797	228	512	8	387
a 7,270 199 230 94 60 182 201 391 94 150 24	Sulipan	7,715	166	88	55	40	10	22	171	თ	. 56	_	59
ra 401 55 905 1,284 3,039 728 1,610 233 ra 401 55 97 130 90 304 347 383 355 426 434 za 1,675 191 184 94 105 97 132 231 81 197 30 idro 3,472 947 1,254 460 347 785 838 1,083 345 596 191	Candaba	7,270	199	230	94	09	182	201	391	94	150	24	163
401 55 97 130 90 304 347 383 355 426 434 1,675 191 184 94 105 97 132 231 81 197 30 3,472 947 1,254 460 347 785 838 1,083 345 596 191	Ватрап	506	1,444	1,495	835	557	906	1,284	3,039	728	1,610	233	1,213
1,675 191 184 94 105 97 132 231 81 197 30 3,472 947 1,254 460 347 785 838 1,083 345 596 191	Talavera	401	55	26	130	06	304	347	. 383	355	426	434	262
3,472 947 1,254 460 347 785 838 1,083 345 596 191	Zaragoza	1,675	191	184	94	105	97	132	231	8	197	30	134
	San Isidro	3,472	947	1,254	460	347	785	838	1,083	345	596	191	685

Table 3.1 (1) PROBABLE NATURAL DAILY AVERAGE PEAK DISCHARGE AS ESTIMATED BY PD/CS TAHAL

 m^3/s) (Unit: Return Periods in Years Sub-Station Name Basin 50 100 10 A1 Pampanga River, Pialuan, Pantabangan, 836 1,122 1,240 Nueva Ecija A2 Coronel River, Bangkerohan, Bongabon 961 1,344 1,504 Nueva Ecija A3 Pampanga River, Valdefuente, 1,122 1.464 1,606 Cabanatuan City, Nueva Ecija A4 Chico River, General Tinio, 267 377 422 Nueva Ecija Α5 Sumacbao River, Pias, General Tinio, 537 756 847 Nueva Ecija A6 Peñaranda River, (RR Bridge), 1,393 882 1,243 San Jose, Peñaranda, Nueva Ecija **A7** Peñaranda River, San Vicente, Gapan, 884 1,244 1,394 Nueva Ecija 8A Pampanga River, San Vicente, Cabiao, 1,959 2,673 2,970 Nueva Ecija B1 Talavera River, Kaboboloonan, 354 492 546 Talavera, Nueva Ecija B2 Rio Chico River, Sto. Rosario, 938 1,227 1,343 Zaragoza, Nueva Ecija, Pampanga **B**3 Rio Chico River, Banga Arayat, 1,135 1,466 1,604 Pampanga B4 Pampanga River, San Agustin, Aravat, 2,200 3,150 2,850 Pampanga C1 Bulu River, Malibay, San Miguel, 93 132 149 Bulacan C2 Candaba Swamp, Ducma, Candaba, 964 1,347 1,506 Pampanga C3 San Miguel, San Vicente, Gapan, 318 456 513 Nueva Ecija

(to be cont'd)

Table 3.1 (2) PROBABLE NATURAL DAILY AVERAGE PEAK DISCHARGE AS ESTIMATED BY PD/CS TAHAL

(Unit: m3/s) Sub-Return Periods in Years Station Name Basin 10 50 100 **C4** Garlang River, Garlang San Ildefonso, 109 148 164 Bulcan C5 Maasim River, Diliman, San Rafael, 255 338 373 Bulacan **C6** Maasim River, Bahay Pare, Candaba, 273 364 402 Pampanga Angat (below IPO Dam) Norzaragay, **C7** 710 944 1,041 Bulacan 63 Labangan River, Bagbag, Calumpit, 850 1,127 1,242 Bulacan Dl San Fernando River, Pampanga 306 448 508 D2 San Fernando River, Pampanga 678 992 1,123 D3San Fernando River, Pampanga 960 1,403 1,391 **D4** Pasig-Potrero River, Cabetican, 212 300 349 Bacolor, Pampanga D5 Porac River, Valdez, Floridablanca, 339 491 555 Pampanga D6 Gumain River, Pabanlag, Floridablanca, 254 369 417 Pampanga D7 Caulaman River, Pabanlag, 315 454 511 Floridablanca, Pampanga D8 Lower Gumain River 663 957 1,080

Table 3.2 COMPARISON OF PROBABLE PEAK DISCHARGE

(Unit: m^3/s)

		_	Re:	turn Per	iods in '	Years	
Station	No.	 	10		50		100
		Real	Synt	Real	Synt	Real	Synt
Chico River	A4	456	267	669	377	759	422
Arayat	B4	2,698	2,200	3,328	2,850	3,595	3,150
Gumain River	D6	365	254	564	369	649	417
Coronel River	A2	806	961	1,159	1,344	1,308	1,504

Real: Probable peak discharge calculated from observed discharge data Remarks:

Probable peak discharge calculated from synthetic rainfall series Synt:

Table 3.3 100 YEAR DESIGN RAINFALL AND FLOOD PEAK DISCHARGE AS ESTIMATED BY MPW IN 1958

100-Year Design Rainfall

Daily Rainfall	Depth	Maximum Rainfall	Depth
1 st day	54 mm	1 - day	207 mm
2 nd day	111 mm	2 - day	318 mm
3 rd day	207 mm	3 - day	382 mm
4 th day	64 mm	4 - day	436 mm
5 th day	53 mm	5 - day	489 mm
6 th day	29 mm.:	6 – day	518 mm
7 th day	28 mm	7 - day	546 mm

100-Year Flood Peak Discharge

Location	Peak Discharge (m ³ /sec)
Pampanga at Arayat 🖊	9,100
Candaba outlet at Calumpit	1,900
Angat at Calumpit	1,090

Remarks, <a>/1: Including Rio Chico River Watershed

Table 3.4 ANNUAL MAXIMUM RAINFALL AT CABANATUAN CITY

						(Uni	t: mm)
Year				Day			
rear-	1	2 .	. 3	4	5	6	7
1951	77.7	124.2	169.9	192.5	206.0	231.7	241.6
1952	61.7	94.7	95,2	139.4	170.9	172.4	172.9
1953	79.5	110.0	115.1	177.3	188.2	196.3	228.0
1954	102.4	118.1	121.1	153.7	153.7	161.6	161.6
1955	65.3	75.5	86.9	99.6	116.6	129.3	145.0
1956	110.7	110.7	119.4	133.6	154.2	170.0	206.6
1957	122.4	168.1	168.6	172.5	224.3	227.6	229.6
1958	90.9	98.0	135.9	137.7	144.8	183.4	185.2
1959	127.8	173.8	182.7	204.0	204.8	280.3	301.6
1960	137.4	223.0	260.8	262.1	265.2	270.3	312.2
1961	115.6	200.9	262.9	289.6	311.2	349.8	371.4
1962	182.4	237.0	290.6	300.3	335.9	342.3	345.1
1963	100.8	148.8	167.9	182.6	184.9	223.2	242.3
1964	140.3	175.9	179.2	182.0	192.0	197.8	201.1
1965	111.9	179.7	204.1	213.5	227.5	251.6	316.9
1966	197.4	303.3	334.3	337.9	340.7	363.8	367.4
1967	109.2	160.0	168.6	168.6	241.9	302.9	302.9
1968	90.4	104.4	159.5	173.5	199.3	213.3	228.3
1969	81.3	125.0	125.0	182.1	218.2	219.5	249.4
1970	90.7	115.8	134. 1	136.6	154.0	156.5	163.5
197 1	103.2	160.6	169.6	242.2	242.2	242.2	260.0
1972	224.2	337.0	350.2	390.9	459.4	468.1	474.7
1973	88.8	145.6	161.1	167.4	196.8	218.3	223.6
1974	228.4	347.3	404.2	426.8	445.8	447.3	462.3
1975	61.0	70.1	96.0	111.0	116.1	119.1	131.8
1976	226.1	442.0	582.9	688.8	832.0	850.8	877.0
1977	92.7	138.2	182.6	185.6	185.6	185.6	185.6
1978	230.6	300.9	306.4	319.7	319.7	325.5	335.1
1979	69.0	97.0	109.4	135.2	147.6	154.6	164.4

Table 3.5 PROBABLE RAINFALL AT CABANATUAN CITY

Return Period		Pro	obable Rair	nfall (mm)		
(year)	l-day	2-day	3-day	4-day	5-day	6-day	7-day
2	109.1	152.7	172.3	189.2	204.5	229.8	238.1
5	167.1	253.7	295.9	327.4	367.6	385.4	402.7
10	205.5	320.5	377.8	418.9	475.7	493.1	511.6
20	242.4	384.6	456.3	506.7	579.3	596.4	616.2
50	290.1	467.6	558.0	620.3	713.4	730.1	751.5
80	314.3	509.8	609.7	678.1	781.6	798.1	820.3
100	325.8	529.8	634.2	705.5	813.8	830.3	852.9
150	346.7	566.1	678.6	755.1	872.5	888.7	912.0
200	361.4	591.8	710.1	790.3	914.0	930.1	953.9
500	408.4	673.6	810.2	902.2	1,046.1	1,061.8	1,087.7
1,000	443.9	735.4	885.9	986.8	1,145.9	1,161.3	1,187.9

Remarks: 29 samples during the period 1951 through 1979 are used for calculation of probability of exceedence by Gumbel method.

Table 3.6 PROBABLE RAINFALL IN THE BASIN AVERAGE

Return Per i od			Probable	Rainfall (n	nm)		
(year)	1 - day	2 - day	3 - day	4 - day	5 - day	6 - day	7 - day
2	77.1	119.6	141.3	159.4	173.1	193.1	211.7
5	116.5	198.8	246.2	280.3	316.9	340.3	365.1
10	142.6	251.2	315.8	360.3	412.3	437.8	466.6
20	167.7	301.4	382.4	437.2	503.6	531.2	564.1
50	200.2	366.5	468.7	536.6	621.9	652.2	690.2
80	216.6	399.6	512.6	587.1	682.1	713.8	754.3
100	224.4	415.3	533.4	611.1	710.5	742.9	784.7
150	238.7	443.7	571.1	654.5	762.2	795.8	839.7
200	248.7	463.9	597.9	685.3	798.8	833.2	878.8
500	280.6	528.0	682.9	783.2	915.4	952.4	1,002.9
1,000	304.8	576.5	747.1	857.3	1,003.4	1,042.5	1,096.9

Remarks: Probable rainfalls in the basin average are estimated from the probable rainfalls at Cabanatuan City through the correlation curves.

Table 3.7 STORAGE COEFFICIENTS ON SUB-BASINS

No.		Sub-basin	Catchment	Storag	e Coeffic	ient	Lag-time
A. Upper Pampanga Basin 101 890 59.34 0.519 0.5 0.79 103 135 40.56 0.406 0.5 0.79 103 135 40.56 0.406 0.5 0.41 104 84 35.91 0.447 0.5 0.68 105 166 88.26 0.522 0.5 0.62 106 47 37.20 0.435 0.5 0.52 107 259 57.40 0.533 0.5 0.62 108 143 23.04 0.693 0.5 1.97 109 375 38.46 0.729 0.5 1.66 110 389 33.84 0.806 0.5 1.25 111 125 27.04 0.558 0.5 1.27 1112 226 24.86 0.596 0.5 2.30 113 250 45.36 0.641 0.5 0.32 114 40 11.40 1.000 0.5 0.55 Sub-total 3,512 B. Rio Chico-Talavera Basin 202 177 51.24 0.800 0.5 1.41 204 245 45.80 0.873 0.5 0.64 205 197 40.43 0.863 0.5 1.41 206 464 54.63 0.761 0.5 1.11 207 430 68.04 0.641 0.5 0.82 209 69 11.40 1.000 0.5 0.82 209 69 11.40 1.000 0.5 0.82 209 69 11.40 1.000 0.5 0.82 209 1.40 1.40 1.000 0.5 0.80 208 185 37.26 1.000 0.5 0.82 209 69 11.40 0.945 0.5 1.68 200 1.50 0.82 209 69 11.40 0.945 0.5 1.54 206 464 41.40 0.495 0.5 1.68 207 241 86.10 0.533 0.5 0.67 208 185 37.26 1.000 0.5 0.82 209 42.34 0.926 0.5 0.40 208 185 37.26 1.000 0.5 0.82 209 69 11.40 0.945 0.5 1.54 208 185 37.26 1.000 0.5 0.82 209 69 11.40 0.945 0.5 1.54 208 185 0.52 0.99 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209 129 42.34 0.926 0.5 0.80 209			Area (km2)				
101	<u>A</u> .	Unner Pampanga Ba			<u> </u>	<u>'-</u> !	(111)
103	,	701	890				
104							
105							
106							
107							
108							
109 375 38,46 0.729 0.5 1.66 110 389 33.84 0.806 0.5 1.25 111 125 27.04 0.558 0.5 1.27 112 226 24,86 0.596 0.5 2.30 113 250 45.36 0.641 0.5 0.32 114 40 11.40 1.000 0.5 0.55 Sub-total 3,512							
110 389 33,84 0,806 0.5 1.25 111							
111							
112							
113							
114							
Sub-total 3,512 B. Rio Chico-Talavera Basin 201 484 75.33 0.591 0.5 3.90 202 177 51.24 0.800 0.5 0.67 203 769 79.20 0.712 0.5 3.13 204 245 45.80 0.873 0.5 0.64 205 197 40.43 0.963 0.5 1.41 206 464 54.63 0.761 0.5 1.11 207 430 68.04 0.641 0.5 1.84 208 185 37.26 1.000 0.5 0.82 209 69 11.40 1.000 0.5 0.82 209 69 11.40 1.000 0.5 0.82 209 303 46 74.40 0.435 0.5 0.30 304 164 41.40 0.945 0.5 1.68 305 78 65.08 0.483 0.5 0.82 306 330 83.40 0.546 0.5 2.07 307 241 86.10 0.533 0.5 2.07 309 129 42.34 0.926 0.5 0.40 310 69 11.00 1.000 0.5 0.5 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 354 402 141 11.40 1.000 0.5 1.54 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 2.93 408 156 78.60 0.412 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.412 0.5 1.68 409 365 67.00 0.472 0.5 1.54 319 409 365 67.00 0.472 0.5 1.54 500 50 3.55 3.00 3							
B. Rio Chico-Talavera Basin 201							
202 177 51.24 0.800 0.5 0.67 203 769 79.20 0.712 0.5 3.13 204 245 45.80 0.873 0.5 0.64 205 197 40.43 0.963 0.5 1.41 206 464 54.63 0.761 0.5 1.11 207 430 68.04 0.641 0.5 1.84 208 185 37.26 1.000 0.5 0.82 209 69 11.40 1.000 0.5 0.82 209 69 11.40 1.000 0.5 0.82 209 69 11.40 1.000 0.5 0.82 301 62 37.26 1.000 0.5 0.82 302 220 54.52 0.762 0.5 1.09 303 46 74.40 0.435 0.5 0.30 304 164 41.40 0.945 0.5 1.68 305 78 65.08 0.483 0.5 0.82 306 330 83.40 0.546 0.5 2.07 307 241 86.10 0.533 0.5 2.09 308 140 11.00 1.000 0.5 0.82 309 129 42.34 0.926 0.5 0.40 310 69 11.00 1.000 0.5 0.33 311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.64 50.40 0.546 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.64 50.40 0.546 0.5 2.93 408 156 78.60 0.416 0.5 1.54 50.40 0.5 1.54 50.40 0.5 1.54 50.40 0.5 1.54 50.40 0.5 1.54 50.40 0.5 1.54 50.40 0.5 1.54 50.40 0.5 1.54 50.40 0.5 1.54 50.5 1.60 0.5 1.60 50.65 5.66 0.5 0.65 50.65 50.65 0.65 50.65 50.65 0.65 0.65 50.65 50.65 0.65 0.65 50.65 50.65 0.65 50.65 50.65 0.65 50.65 50.65 0.65 0.65 50.65 50.65 0.65 50.65 50.65 0.65 50.65 50.65 0.65 50.65 50.65 0.65 50.65 50.65 0.65 50.65 50.65 0.65 50.6	В.		a Basin				
203 769 79.20 0.712 0.5 3.13 204 245 45.80 0.873 0.5 0.64 205 197 40.43 0.963 0.5 1.41 206 464 54.63 0.761 0.5 1.11 207 430 68.04 0.641 0.5 1.84 208 185 37.26 1.000 0.5 0.82 209 69 11.40 1.000 0.5 0.82 209 69 11.40 1.000 0.5 0.82 C. Sierra Madre Mountain Basin 301 62 37.26 1.000 0.5 1.09 303 46 74.40 0.435 0.5 0.5 0.30 304 164 41.40 0.945 0.5 1.68 305 78 65.08 0.483 0.5 0.82 306 330 83.40 0.546 0.5 2.07 307 241 86.10 0.533 0.5 2.09 308 140 11.00 1.000 0.5 0 309 129 42.34 0.926 0.5 0.40 310 69 11.00 1.000 0.5 0 311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.54 402 141 11.40 1.000 0.5 1.54 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54			484	75.33	0.591		3.90
204 245 45.80 0.873 0.5 0.64 205 197 40.43 0.963 0.5 1.41 206 464 54.63 0.761 0.5 1.11 207 430 68.04 0.641 0.5 1.84 208 185 37.26 1.000 0.5 0.82 209 69 11.40 1.000 0.5 0 Sub-total 3,020 C. Sierra Madre Mountain Basin 301 62 37.26 1.000 0.5 0.15 302 220 54.52 0.762 0.5 1.09 303 46 74.40 0.435 0.5 0.30 304 164 41.40 0.945 0.5 1.68 305 78 65.08 0.483 0.5 0.82 306 330 83.40 0.546 0.5 2.07 307 241 86.10 0.533 0.5 2.09 308 140 11.00 1.000 0.5 0 309 129 42.34 0.926 0.5 0.40 310 69 11.00 1.000 0.5 0 311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.54 402 141 11.40 1.000 0.5 1.54 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 Sub-total 1,596							
205							
206							
207							
208							
209 69 11.40 1.000 0.5 0 Sub-total 3,020 C. Sierra Madre Mountain Basin 301 62 37.26 1.000 0.5 0.15 302 220 54.52 0.762 0.5 1.09 303 46 74.40 0.435 0.5 0.30 304 164 41.40 0.945 0.5 1.68 305 78 65.08 0.483 0.5 0.82 306 330 83.40 0.546 0.5 2.07 307 241 86.10 0.533 0.5 2.09 308 140 11.00 1.000 0.5 0 309 129 42.34 0.926 0.5 0.40 310 69 11.00 1.000 0.5 0 311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 0.45 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54							
Sub-total 3,020 C. Sierra Madre Mountain Basin 301 62 37.26 1.000 0.5 0.15 302 220 54.52 0.762 0.5 1.09 303 46 74.40 0.435 0.5 0.30 304 164 41.40 0.945 0.5 1.68 305 78 65.08 0.483 0.5 0.82 306 330 83.40 0.546 0.5 2.07 307 241 86.10 0.533 0.5 2.09 308 140 11.00 1.000 0.5 0 309 129 42.34 0.926 0.5 0.40 310 69 11.00 1.000 0.5 0 311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54							
C. <u>Sierra Madre Mountain Basin</u> 301 62 37.26 1.000 0.5 0.15 302 220 54.52 0.762 0.5 1.09 303 46 74.40 0.435 0.5 0.30 304 164 41.40 0.945 0.5 1.68 305 78 65.08 0.483 0.5 0.82 306 330 83.40 0.546 0.5 2.07 307 241 86.10 0.533 0.5 2.09 308 140 11.00 1.000 0.5 0 309 129 42.34 0.926 0.5 0.40 310 69 11.00 1.000 0.5 0 311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 0.45 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54				11.40	1.000	0.5	U
301	۲		•				
302	٠.			37.26	1.000	0.5	0.15
303							
304 164 41.40 0.945 0.5 1.68 305 78 65.08 0.483 0.5 0.82 306 330 83.40 0.546 0.5 2.07 307 241 86.10 0.533 0.5 2.09 308 140 11.00 1.000 0.5 0 309 129 42.34 0.926 0.5 0.40 310 69 11.00 1.000 0.5 0 311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54							
305 78 65.08 0.483 0.5 0.82 306 330 83.40 0.546 0.5 2.07 307 241 86.10 0.533 0.5 2.09 308 140 11.00 1.000 0.5 0 309 129 42.34 0.926 0.5 0.40 310 69 11.00 1.000 0.5 0 311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54							
307 241 86.10 0.533 0.5 2.09 308 140 11.00 1.000 0.5 0 309 129 42.34 0.926 0.5 0.40 310 69 11.00 1.000 0.5 0 311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596		305			0.483	0.5	
308 140 11.00 1.000 0.5 0 309 129 42.34 0.926 0.5 0.40 310 69 11.00 1.000 0.5 0 311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596		306	330	83.40	0.546	0.5	2.07
309 129 42.34 0.926 0.5 0.40 310 69 11.00 1.000 0.5 0 311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596				86.10			
310 69 11.00 1.000 0.5 0 311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596							
311 565 55.58 0.546 0.5 3.35 312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596							
312 212 32.81 0.480 0.5 1.54 313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596							
313 119 29.59 0.520 0.5 0.08 Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596							
Sub-total 2,375 D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 1.26 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596							
D. Zambales Mountains Basin 401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 0.45 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596				29.59	0.520	0.5	0.08
401 304 11.40 1.000 0.5 1.40 402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 0.45 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596	D						
402 141 11.40 1.000 0.5 1.11 403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 0.45 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596	υ.			11 40	1 000	0.5	1 40
403 103 59.00 0.521 0.5 1.01 404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 0.45 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596							
404 108 71.55 0.616 0.5 0.65 405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 0.45 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596							
405 183 22.80 1.000 0.5 1.26 406 106 34.20 1.000 0.5 0.45 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596							
406 106 34.20 1.000 0.5 0.45 407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596							
407 130 53.70 0.561 0.5 2.93 408 156 78.60 0.416 0.5 1.69 409 365 67.00 0.472 0.5 1.54 Sub-total 1,596			106			0.5	0.45
409 365 67.00 0.472 0.5 1.54 Sub-total 1,596		407	130		0.561		2.93
Sub-total 1,596							
				67.00	0.472	0.5	1.54
Total Area 10,503							
		Total Area	10,503		· · · · · · · · · · · · · · · · · · ·		

Table 3.8(1) DISCHARGE-STORAGE RELATION ON CHANNEL

it: m ³ /s)	6. 21 Storage		099	066	3,350	7,700	26,000	000,09									099	066	3,350	7,700	18,000	26,000	40,000	000,09						
(Unit:	Channel No. Discharge S		20	100	150	200	300	400			•						20	100	150	200	270	200	1,000	2,000					•	
	No. 15 Storage		099	066	1,500	1,900	2,410	2,600	3,200	3,500	8,800	17,000	19,400	25,000																
	Channel Discharge		20	100	200	300	445	200	700	800	1,200	1,600	2,000	3,000																
	No. 14 Storage		1,090	1,650	2,500	3,200	4,400	5,350	6,000	6,700	8,600	21,000	30,000	100,000	 		1,090	1,650	3,200	4,400	5,350	6,700	8,600	21,000	32,000	38,000	45,000	52,000	64,000	
·	Channel Discharge		20	100	200	300	200	700	840	1,000	1,500	2,000	2,250	2,300			50	100	300	200	700	1,000	1,500	2,000	2,300	3,000	4,000	5,000	7,000	
	No. 13 Storage		980	1,480	2,890	3,900	4,750	5,600	11,000	18,600	28,000	36,000	61,000	92,000																·
	Channel Discharge		20	100	300	200	700	900	1,200	1,500	1,800	2,000	2,500	3,000																
	No. 12 Storage		370	570	1,100	1,500	1,810	2,600	4,400	7,000	10,000	12,300	15,700	21,000																
	Channel Discharge	ion	50	100	300	200	069	800	1,000	1,200	1,400	2,000	3,000	2,000		<u></u>														
	No. 11 Storage	Existing Channel Condition	710	1,090	1,630	2,090	2,830	3,100	7,000	12,100	17,200	24,000	36,500	47,000		After Channel Improvement														
	Channel Discharge	Existing Ch	20	100	200	300	500	580	800	1,000	1,150	2,000	4,000	6,000		After Chann														

Table 3.8(2) DISCHARGE-STORAGE RELATION ON CHANNEL (cont'd)

Channel Discharge	No. 22 Storage	Channel Discharge	No. 23 Storage	Channel Discharge	No. 31 Storage	Channel Discharge	No. 41 Storage	Channel Discharge	No. 42 Storage
Existing Ch	Existing Channel Condition	tion							
C	000	0	001	c	c	c	c	c	c
DC :	050	ה ה	00+	ָ כ) !	י ו	ָ י) (0 (
90	260	100	700	50	1,150	20	390	20	320
130	1,860	140	840	100	1,750	100	580	100	200
185	5,800	200	3,500	300	3,350	200	5,000	250	850
200	7,800	240	7,600	200	4,600	500	8,800	900	5,600
250	16,000	300	18,500	800	9,300	800	11,800	800	7,400
300	29,000	400	65,000	1,000	15,000	1,000	13,500	1,000	8,500
2,400	70,000			1,200	21,000	1,500	17,200	1,500	11,000
				1,500	24,500	2,000	20,500	2,000	13,100
				2,000	29,000	3,000	26,000	3,000	17,000
				3,000	37,000			5,000	23,000
				5,000	50,000				
After Channel	el Improvemer	ent							
50	390	50	480						
06	260	100	700						
130	1,800	140	840						
185	6,000	240	7,700						
300	7,900	300	8,700						
200	10,800	200	12,000						
1,000	16,300	1,000	18,000						
2,000	24,600	2,000	27,500						
		3,000	35,000						

Table 3.9 ASSUMED CHANNEL CONDITIONS

					Low-water Channel	. Channel	Channel Width	Width
River	Channe! No.	Length (km)	Slope	Mann Ing's n	Depth (m)	Width (m)	Existing (m)	After Improve. (m)
Pampanga	_	33.5	1/600	0.045	3.0	100	2,500	
Ξ	12	19.8	1/400	0.045	3.0	100	2,500	
=	13	30.0	1/1,200	0.040	3.0	200	4,000	
=	14	27.5	1/3,000	0.035	ж ъ	200	2,000	3,000
Peñaranda	15	25.9	1/1,000	0.045	3.0	100	2,000	
Taravera	21	32.5	1/10,000	0.030	2.0	50	000*9	3,000
Rio Chico	22	12.0	1/20,000	0.025	3.0	50	6,000	3,000
Ħ	23	12.5	1/20,000	0.025	3.0	80	7,000	1,000
Angat	33	36.0	1/1,600	0.040	3.0	150	2,000	
Guagua	41	14.5	1/10,000	0.025	2.5	50	4,000	
=	42	7.5	1/20,000	0.025	3.0	100	4,000	

s = 1/50,000 topographical maps. Remarks: The above values were assumed on the basis of

Table 3.10 (1) PEAK DISCHARGE OF PROBABLE FLOOD

					(Unit:	m ³ /sed	c)
Calcula							
Point N	No.	Location	5	10	20	50	100
A. Uppe	er Pampan	ga Basin					
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	Pantaban	gan Dam	1,534 986 874 368 1,215 172 106 132 227 59 458 207 659 71,960 340 2,297 1,977 325 2,240 2,091 146 286 392 166	2,448 1,218 975 558 1,446 229 142 182 318 80 628 911 2,431 2,431 2,431 2,431 2,431 2,629 191 405 535 235	3,394 1,450 1,088 819 1,704 316 316 194 235 406 109 789 364 1,151 978 2,661 2,889 555 3,442 2,725 545 3,133 3,101 234 234 511 511 667 301	4,686 1,450 1,292 1,198 2,041 424 4259 305 522 145 1,043 464 1,168 3,180 3,462 1,464 1,168 3,180 3,462 4,149 3,657 2,91 643 834 398	5,711 1,450 1,430 1,505 2,380 507 507 309 358 611 173 1,259 538 1,741 1,319 3,582 364 3,907 860 4,697 3,572 782 4,081 334 344 744 961 470
33 34 35	San Isid	ro Br.	541 529 2,408	753 732 3,051	947 864 3,641	1,196 1,046 4,315	1,388 1,192 4,857
36 37	Cabiao		33 2,424	47 3,071	59 3,668	74 4,349	85 4 , 895

Table 3.10 (2) PEAK DISCHARGE OF PROBABLE FLOOD (continued)

			(Uı	nit: m ³	/sec)
Calculation	1		riod (yea		
Point No. Location	5	10	20	50	100
B. Rio Chico-Talavera Basin					•
38 39 40 41 42 43 44 45 46 Zaragoza 47 48 49 50 51 52 53 54 55	597 98 675 502 500 96 583 568 1,061 1,022 86 241 1,247 193 96 1,485 56	926 146 1,048 735 722 136 834 778 1,497 1,469 116 332 1,816 285 133 2,180 76 2,212	1,272 192 1,436 932 959 173 1,110 985 1,883 1,863 147 418 2,341 386 167 2,812 97 2,853	1,753 253 1,971 1,203 1,279 222 1,482 1,269 2,422 2,398 186 528 3,069 521 211 3,667 122 3,721	2,140 300 2,401 1,410 1,531 259 1,774 1,488 2,840 2,812 217 612 3,605 627 243 4,307 140 4,368
C. Sierra Madre Mountain Basin					
57 58 59 60 61 62 63 64 65 66 67 68 69 70	26 88 24 27 106 41 154 190 59 466 89 551	36 138 35 35 121 152 60 216 264 94 655 117 764	44 184 50 50 159 209 88 294 380 130 869 142 970	55 239 74 74 211 282 127 423 546 172 1,233 187 1,393	65 280 95 95 250 336 163 530 681 201 1,520 228 1,728

Table 3.10 (3) PEAK DISCHARGE OF PROBABLE FLOOD (continued)

			(Ur	nit: m ³ /	sec)
Calculation	Ret	urn Perio	d (year)		
Point No. Location	5	10	20	50	100
72	49	70	86	106	121
73	38	55	66	82	97
74 76	86 608	120	147	182	218 2,440
77 Angat Dam	608	941 941	1,339 1,339	1,954 1,732	1,917
78 78	254	397	616	894	1,087
79	819	1,271	1,868	2,478	2,774
80	48	65	86	110	128
81	855	1,316	1,929	2,558	2,872
82 Longos	737	1,015	1,367	2,050	2,429
D. Zambales Mountain Basin					
83	185	241	289	396	482
84	88	112	134	201	265
85	272	353	423	566	682 583
86 San Fernando 87	156 44	242 66	315 85	462 121	151
88	198	297	389	574	727
89	196	268	350	492	648
90	34	52	6 8	93	114
91	229	310	409	579	763
92	80	115	139	169	202 921
93 94	292 36	418 54	509 66	705 82	921
95	326	470	573	774	1,004
96	58	84	119	167	206
97	60	93	122	178	223
98	130	184	245	351	436

COMPARISON OF FLOOD PEAK DISCHARGE Table 3.11

)	(Unit: m^3/s)	(s)
	Discharge estimated by MPW <u>(</u> 1	Dischar by PD/	Discharge estimated by PD/CS-TAHAL <u>(</u> 2	nated - <u>/</u> 2	Disch by	Discharge estimated by the Team <u>(</u> 3	timated m <u>/</u> 3	
בסכמביוסו	100-yr	10-ÿr	50-yr	100-yr	10-yr	50-yr	100-yr	10-yr 50-yr 100-yr 10-yr 50-yr 100-yr 100-yr /4
- Pampanga R. at Cabanatuan	ſ	1,122	1,465 1,606	1,606	2,365	2,365 3,205 3,572	3,572	4,273
- Pampanga R. at Cabiao	9,100 (5	1,959	2,673 2,970	2,970	3,071	4,349 4,895	4,895	5,581
- Rio Chico R. at Zaragoza	i	938	1,227	1,343	1,497	2,422 2,840	2,840	ı
- Rio Chico R. before retarding by San Antonio Swamp	:	1,135	1,466 1,604	1,604	2,212	3,721 4,368	4,368	ı
- Angat R. Longos	97060,1	850	1,127	1,242	1,013	2,050	2,429	2,850
- San Fernando R. at San Fernando	ı	306	448	208	242	462	583	ı
- Guagua R. at Guagua	1,200	960	1,403 1,391	1,391	470	774	1,004	1
		į						

Discharge estimated by MPW in 1958 with BPW Scheme III in full operation. :17 Remarks

Daily average peak discharge excluding Pantabangan and Angat Dams.

/2: Daily average peak discharge excluding P
/3: Including Pantabangan and Angat Dams.
/4: Excluding Pantabangan and Angat Dams.
/5: Including Rio Chico River Watershed.
/6: Including Angat Dam.

Table 4.1(1) CALCULATED MAXIMUM WATER LEVELS AND DISCHARGES (PAST FLOOD)

			1:011		F100d	po	
- {	Swamp/cnanne!	code	า เก	1972	1973	1974	1976
ļ.	San Antonio Swamn						
•	panga	011	m³/sec	2,687	3,199	3,177	3,509
	-do- (Rio Chico River)	q12	m ³ /sec	1,579	1,934	2,261	2,085
	at Swamp	HSA	EJ	10.91	11.18	11.35	11.96
	at Arayat	HAY	EJ.	10.06	10.30	10.45	11.01
	-op-	QAY		2,298	2,421	2,500	2,784
	Cabiao Candaba Floodway	Occ	m ³ /sec	1,101	1,313	1,365	1,839
۲,	Candab		~				- '
	Inflow (Maasim River)	013	m3/sec	1,993	1,832	3,469	1,728
	-do- (from Pampanga River)	_	m_/sec	0	7	911	419
	Q.	HCN	Ęj.	7.40	7.47	7.85	8.18 8.18
	Outflow (to Pampanga Riwer)	QCN2	m ² /sec	733	761	1,340	1,844
	-do- (to South Candaba Swa	Swamp)QMD	m ³ /sec	813	855	1,116	1,361
က်	andaba		 				
	Inflow		m3∕sec	179	306	454	218
	-do- (from Pampanga River)	0CS1	m ³ /sec	685	167	1,491	2,417
	_		m_/sec	751	779	1,117	1,184
	at Swamp	HCS	EJ.	ഹ	LD.	5.82	6.32
	Outflow (to Pampanga River)	OCS3	m ³ /sec	2,130	2,199	2,860	3,497
	-do- (to Angat River)	0CS4	m3/sec	0	0	0	25
4.	Pampanga River (Arayat-Sulipan)		1	1		!	į
		HAC	EJ.m	7.98	8.07	8,35	8.59
	at Candaba	QAC	m³/sec	2,232	2,326	2,326	2,514
	-do-	HED	Ej.	7.53	7.61	7.96	8.27
		OCD OCD	m3/sec	2,280	2,280	2,372	2,448
		HMR	EJ.=	7.39	7.46	7.84	8.16
		QMR	m³/sec	2,856	2,963	3,488	3,959
		HSP	EJ .m	6.34	6.36	6.55	6.72
		ÓSS	m ³ /sec	2,225	2,267	2,317	2,322
		HSS	EJ.m	5.82	5.85	6.20	6.52
		QSP	m ³ /sec	2,176	2,217	2,266	2,275
		HAP	ш <u>,</u>	5.23	5.28	5.81	6.32
		QPAU	m ₃ /sec	2,037	1,982	1,871	1,902

Table 4.1(2) CALCULATED MAXIMUM WATER LEVELS AND DISCHARGES (PAST FLOOD)

					Flood		
	Swamp/Channel	Code	Unit	1972	1973	1974	1976
5.	Angat River		r				-
		015	m ³ /sec	322	624	891	778
		HAG	El.m	4.88	4.92	5.47	5.97
		QAG	m3/sec	309	612	853	767
o o	Rivers (Downstream Sulipan)						
	at Sulipan	HSC	EL.m	4.88	4.93	5.47	5.96
	Pampanga River	QPAD	m3/sec	2,752	2,798	3,356	4,178
	-op-	HBH	EL.m	3.46	3.50	3.89	4.42
	-op-	QPA2	m3/sec	2.678	2,723	3,264	4,050
	at Masantol	HBM	표. 급	3.21	3.24	3.62	4.12
	Pampanga River	QPA1	m3/sec	1,528	1,557	1,918	2,467
	Bebe-San Esteban Channel	ÓBS	m ² /sec	1,151	1,166	1,346	1,584
	Hagonoy River	HSJ	EL.m	2.53	2.56	2.86	3.30
	-do-	QHA	m³∕sec	74	75	93	128
	op-	HHA	EL.m	1.93	1.96	2.24	2.71
	Labangan Floodway	HLR	EL.m	4.55	4.93	5.15	5.42
	op-	QLF	m3/sec	869	883	1,130	1,365
	-op-	HF	EL.m	3.70	4.60	4.31	4.67

Table 4.2(1) CALCULATED MAXIMUM WATER LEVELS AND DISCHARGES (PROBABLE FLOOD UNDER THE PRESENT CONDITION)

[ou a en] / amemS	- leduct	Code	Ilnit		Return	Return Period	(Year)	
owamp/ on		700	5	2	2	50	20	100
1. San Antonio Swamp			ć					
Inflow	(Pampanga River)	QI1	m ³ /sec	2,424	3,070	3,664	4,345	•
-op-	(Rio Chico River)	012	m_/sec	1,507	2,203	2,849	3,714	4,365
at Swamp		HSA	드	11.02	68.11	12.52	13.24	ന
at Arayat		HAY	E.	10.16	10.90	11.51	12.17	S
-op-	-	ĆΑΥ	m¾/sec	2,349	$\frac{2,731}{2}$	3,068	3,451	•
Cabiao Candaba Floodway	loodway	000	m_/sec	1,217	1,796	2,489	3,432	•
2. North Candaba Swar	dmi		(
Inflow	(Maasim River)	013	m ³ /sec	551	764	970	.39	•
-op-		ÒCN1	m ³ /sec	0	180	694	1,675	2,239
at Swamp		HCN	EJ.m	7.29	7.85	8.34	8.95	9.39
Outflow	Ve7	QCN2	m3∕sec	611	1,252	2,092	3,659	4,469
-op-	(to South Candaba Swamp)	QW O	m_/sec	746	1,120	1,482	ဆို	•
3. South Candaba Swamp	dw		c					٠
Inflow		014	ഗ	98	120	147	181	218
-op-	(from Pampanga River)	QCS1	m ³ /sec	520	1,610	2,883	4,081	4,705
at Swamp		ES ES	EJ.m	5.06	5.91	6.54	7.13	7.53
Outflow	(to Pampanga River)	0CS2	m ³ /sec	Ŀ	-1,077	1,855	2,520	2,961
-op-	(-op-)	0cs3	S.	1,922	2,920	3,711	4,227	4,818
-op-	(to Angat River)	0CS4	ហ	0	0	310	1,091	1,412
4. Pampanga River (A)	River (Arayat-Sulipan)							
		HAC	E.	7.90	8.42	8.72	9.10	9.46
at Candaba		OAC	m ₃ /sec	2,260	2,545	2,661	2,759	2,791
-op-		유 단 단	E]	7.43	7.98	8.42	8.96	9,38
		3	m ³ /sec	2,237	2,494	2,604	2,677	2,715
		¥.	E].=	7.28	7.84	8.32	8.92	9.35
		A. M.	m ₃ /sec	2,719	3,459	4,213	5,092	5,717
		HSP D	EJ.m	6.28	6.57	6.80	7.25	7.63
		0SS	m ³ /sec	2,194	2,233	2,227	2,179	2,109
		HSS	E. ∵⊒	2/-6	67.0	0.0/	2).	200
		QSP	m ³ /sec	2,143	2,181	2,176	2, 131	2,060
		HAP	E].m	5.08	5.92	6.53	۲./ مور ر	7,53
			III~/ Sec	00061	+7061	77061	1,500	6,115

Table 4.2(2) CALCULATED MAXIMUM WATER LEVELS AND DISCHARGES (PROBABLE FLOOD UNDER THE PRESENT CONDITION)

Commed/ mme. 2	opol	1154		Retur	Return Period	(Year)	
Swaiiip/ Citatilie i	רטמפ	Offic	5	10	20	20	100
5 Anna+ Diver							
	015	m ³ /sec	737	1,014	1,367	2,048	2,429
	HAG	EJ.m	4.73	5.59	6.31	7.06	7.48
	QAG	m ³ /sec	725	666	1,342	1,727	2,390
6. Rivers (Downstream Sulipan)							
at Sulipan	HSC	EJ.m	4.72	5.58	6.21	6.82	7.20
Pampanga River	QPAD	m ³ /sec	2,654	3,517	4,779	6,111	7,039
-op-	HBH	E] m	3.38	4.01	4.77	5.50	5.97
-op-	QPA2	m³/sec	2,584	3,419	4,626	5,902	6,793
at Masantol	HBM	EJ.m	3,14	3.72	4.46	5.15	5.62
Pampanga River	QPAI	m ³ /sec	1,466	2,026	2,880	3,791	4,372
Bebe-San Esteban Channel	ÓBS	m ³ /sec	1,118	1,394	1,747	2,112	2,422
Hagonoy River	HSJ	EJ.m	2.47	2.95	3.60	4.24	4.72
- OD-	QHA	m³∕sec	71	88	154	503	246
-op-	HHA	EI.m	1.87	2.32	3.06.	3.80	4.35
Labangan Floodway	HR	E].m	4.40	5.21	5.56	5.89	6.10
-0p-	QLF	m ³ /sec	824	1,186	1,488	1,781	1,964
-op-	모	El.m	3.56	4.40	4.85	5.30	5.57