Table of Design of Telecommunication Links and Terrain Profile.

#### 1 Agno River System

#### (1) DESIGNATION TABLE OF PROPAGATION PATH

Carmen Rosales (Sub-Center) - Tibag (R&W)

Carmen Rosales (Sub-Center) - Wawa (R&W)

Carmen Rosales (Sub-Center) - Banaga (W)

Carmen Rosales (Sub-Center) - Sta. Barbara (R&W)

Carmen Rosales (Sub-Center) - Mt. Sto. Tomas (Repeater)

Carmen Rosales (Sub-Center) - Carmen (R&W)

Carmen Rosales (Sub-Center) - San Roque (R&W)

Mt. Sto. Tomas (Repeater) - Binga Dam (R&W)

#### (2) TERRAIN PROFILE

Carmen Rosales (Sub-Center) - Tibag (R&W)

Carmen Rosales (Sub-Center) - Wawa (R&W)

Carmen Rosales (Sub-Center) - Banaga (W)

Carmen Rosales (Sub-Center) - Sta. Barbara (R&W)

Carmen Rosales (Sub-Center) - Mt. Sto. Tomas (Repeater)

Carmen Rosales (Sub-Center) — Carmen (R&W)

Carmen Rosales (Sub-Center) - San Roque (R&W)

Mt. Sto. Tomas (Repeater) — Binga Dam (R&W)

#### 2 Bicol river System

#### (1) DESIGNATION TABLE OF PROPAGATION PATH

Naga (Sub-Center) — Barongay (W)

Naga (Sab-Center) — Ocampo (R)

Naga (Sub-Center) — Ombao (R&W)

Naga (Sub-Center) - Sipocot Hill (Repeater)

Naga (Sub-Center) — Iraga (Repeater)

Sipocot Hill (Repeater) - Sipocot (R&W)

Sipocol Hill (Repeater) - Napolidan (R)

Iraga (Repeater) — Buhi (R&W)

Iraga (Repeater) - Ligao (R)

Iraga (Reapeater) — Bato (R&W)

#### (2) TERRAIN PROFILE

Naga (Sub-Center) — Barongay (W)

Naga (Sab-Center) — Ocampo (R)

Naga (Sub-Center) — Ombao (R&W)

Naga (Sub-Center) - Sipocot Hill (Repeater)

Naga (Sub-Center) - Iraga (Repeater)

Sipocot Hill (Repeater) - Sipocot (R&W)

Sipocot Hill (Repeater) - Napolidan (R)

Iraga (Repeater) — Buhi (R&W)

Iraga (Repeater) — Ligao (R)

Iraga (Repeater) — Bato (R&W)

#### 3 Cagayan Rever System

#### (1) DESIGNATION TABLE OF PROPAGATION PATH

Tuguegarao (Sub-Center) — Tuguegarao (R&W)

Tuguegarao (Sub-Center) -- Tumauini (R&W)

Tuguegarao (Sub-Center) — Iragan (Repeater)

Iragan (Repeater) — Dalibubun (R&W)

Iragan (Repealer) - Maris Dam (R&W)

Iragan (Repeater) — Tumauini (R&W)

#### (2) TERRAIN PROFILE

Tuguegarao (Sub-Center) — Tuguegarao (R&W)

Tuguegarao (Sub-Center) — Tumauini (R&W)

Tuguegarao (Sub-Center) — Iragan (Repeater)

Iragan (Repeater) — Dalibubun (R&W)

Iragan (Repeater) — Maris Dam (R&W)

Iragan (Repeater) — Tumavini (R&W)

Date: 18th Mor. '77

Agno River System

### Carmen Rosales (Sub-Center) — Tibag (R&W)

| Tio.         | ODE OF COMMINGATION - CLASS CH         | T. 10        |             |             |                   |               |               |          |              |                     |                                                  |
|--------------|----------------------------------------|--------------|-------------|-------------|-------------------|---------------|---------------|----------|--------------|---------------------|--------------------------------------------------|
|              | ODE OF COMMUNICATION : SIMPLEX ME      |              | F MODU      | LATION:     | EM TIMPE          | DANCE :       | 50 (0.)       | SPECIFIE | D RELIAB     | HLITY :             | 99.9 (%)                                         |
| L ¢          | CALCULATION OF FADING VALUE PRESUN     | ED:          | 0,1 {       | dB/Km) x    | d (Km) t          | <u>3</u> (dB) |               | 1.3      |              |                     |                                                  |
| _            |                                        |              |             | Cara t      |                   | Last          |               | T        |              | Income.             |                                                  |
|              | CALCULATION NO.                        |              |             | I DESIG!    | TED<br>VALUES     | BEFORE        | TED DATE      | DATE OF  | AL TEST      | DESIGNAL<br>DETERMI | VALUES<br>NAI                                    |
|              | SPAN                                   |              |             | CARMEN      | - TIBAG           | 1             | · · · · · · · |          |              |                     | TER TEST-                                        |
| [            | ALTITUDE                               |              | 1           | SNS CENTE   | TIBAG<br>RI (RBW) | <u> </u>      |               | l        |              | <del> </del>        |                                                  |
| S            | ANTENNA HEIGHT                         | H1, H2       | m<br>m      | 24.5        | 10                | 24.5          | 50            | 24.5     | 50           | 24.5                | 50                                               |
| SPAN         |                                        | hi, h2       | <del></del> | 30          |                   | 10            | 10            | 10       | 10           | 30                  | 10_                                              |
|              | · · · · · · · · · · · · · · · · · · ·  | *** , *** 2  | 1 153       |             |                   |               |               |          |              | l                   | <del></del>                                      |
| COND         |                                        |              |             |             |                   |               |               |          |              |                     |                                                  |
| ē            | OUTLINE OF PROPAGATION PATH            |              |             | ]           |                   |               |               | Į        |              |                     |                                                  |
| TION         |                                        | 4            |             | l ———       |                   |               |               | <u> </u> |              |                     |                                                  |
| Š            | DISTANCE                               | O .          | Km          | 4.          | 4.4               | 44            | .4            | 44       | . 4          | 4                   | 1,4                                              |
| l            |                                        | MQDE         | <u> </u>    |             |                   |               | YAGI 3E       |          |              |                     |                                                  |
| !            | ANTENNA                                | POLARIZ      | ATION       | V           | V                 | V             | V             | V        | V            | V V                 | V                                                |
|              | <u> </u>                               | PATTE        |             |             | <del> </del>      | 1             |               | ļ        | <del>`</del> | <del>-</del>        | <del>                                     </del> |
|              | FEEDER                                 | MODE         | Ĺ           | AFZE50-4    | AFZE50-4          | 50-2V         | 5D-2V         | 50-2V    | 50-2V        | AFZE50-4            | AFZE50-4                                         |
|              | LEGER                                  | LENGT        | H m         | 45          | 15                | 16            | 16            | 16       | 16           | 45                  | 15                                               |
|              | TRANSMITTING OUTPUT POWER              | Pt           | W           | 10          | i                 | 10            | 10            | 7        |              | 10                  | 3                                                |
|              | PROPAGATION LOSS                       | Lpf          | <b>d8</b>   |             |                   | <u> </u>      |               | - 1      |              | - 1                 | <del></del>                                      |
|              | SPHERICAL TERRAIN LOSS                 | Lpp          | đВ          |             | 27.1              | - ;           | 37. 5         |          | 37.5         |                     | 27. 1                                            |
|              | TERRAIN REFLECTION LOSS                |              | ļ           |             |                   |               |               | ļ        |              |                     |                                                  |
|              | A                                      | ;            |             |             |                   |               |               | ]        |              |                     |                                                  |
|              | SHADOW LOSS                            | Lps          | ₫8          |             |                   |               |               | 1        |              |                     | 1.31                                             |
| SPA          | [2]                                    | •            |             |             |                   | \$            |               | 1        |              |                     |                                                  |
| Z            | CORRECTIVE VALUE                       | Lpc          | <b>dB</b>   | -           |                   |               |               |          | 0            |                     | 10                                               |
|              | (TOTAL LOSS)                           | Lp.          | . dB        | - 13        | 7.1               | - 14          | 7. 5          | - 15     |              | - 14                |                                                  |
| LOS          | ANTENNA GAIN                           | GA           | dВ          | 6           | 8                 | 8             | 8             | 8        | 8            | 6                   | 8                                                |
| S            | AZIMUTHAL PATTERN LOSS                 | Lo           | dB          |             | ·                 |               | 1. 1          |          |              |                     |                                                  |
|              | Z ANTENNA H Y B LOSS                   | 3            |             |             |                   |               |               |          |              |                     |                                                  |
|              | FEEDER LOSS                            |              |             | - 1.575     | - 0.525           | - 2           | <b>– 2</b>    | 2        | - 2          | -1.575              | -0.525                                           |
|              | FILTER LOSS                            |              |             |             |                   |               |               |          |              |                     | <b>L</b>                                         |
|              | Z (TOTAL)                              |              | 48          |             | .9                |               | 2             | 13       |              |                     | 9                                                |
|              | (GRAND TOTAL)                          | Ls L         | dВ          | 12          |                   | - 13          |               | - 14     | 5.5          | - 13                |                                                  |
|              | TRANSMITTING OUTPUT POWER              | PL           | d Bm        | 30          | 40                | 40            | 40            |          | 38.5         | 34.8                | 40                                               |
|              | RECEIVING POWER LEVEL                  | Pr           | d Bm        | -95.2       | -85.2             |               | -95.5         |          | ~107         |                     | - 95.2                                           |
| Ý            | (e, m, f, ) INCOMING NOISE POWER LEVEL | er           | dBu         | 17.8        | 27.8              |               | 17.5          |          | 6            | 12.6                | 17.8                                             |
| 2            | (e.m.f.)                               | Prne<br>erne | dBm<br>uBb  |             |                   |               |               | <u></u>  |              | <u> </u>            | <u> </u>                                         |
| S            | INTERNAL NOISE LEVEL                   | Prnl         | u8b         | !           |                   |               |               |          |              | ·                   |                                                  |
| ٷ            | NOISE INCREASE                         | Δ0           | dB          | <u> </u>    | -                 | İ             |               |          |              | ·                   |                                                  |
| - T          | TOTAL RECEIVING NOISE POWER LEVEL      | Pro          | d Bm        | <del></del> |                   |               |               |          |              | <del></del>         |                                                  |
| 3            | THRESHOLD LEVEL                        | Pth          | dBm         | - IIO       | -110              |               |               |          |              | -110                | - 110                                            |
| ş            | CRESTFACTOR                            | Cf           | dB          | 9           | 9                 | i             | 7: 1          |          |              | 9                   | 9                                                |
| ~            | THRESHOLD MARGIN                       | Mith         | 48          | 14.8        | 24.8              | i             |               | Ī        |              | 9.6                 | 14.8                                             |
| - [          | S/N IMPROVEMENT                        | I            | dB          | 12          | 12                |               |               |          |              | 12                  | 12                                               |
| [            | STANDARD S/N                           | S/N          | dΒ          | 35.8        | 45.8              |               |               |          |              | 30.6                | 35.8                                             |
| _င်          | FADING VALUE PRESUMED                  | LF           | 48          | - 7.        | 4                 |               | 1             |          |              | 7.                  | 4                                                |
| MOSE<br>NOSE | (Mth > LF)                             | T            | dВ          | 7.4         | 17.4              | T             |               |          |              | 2.2                 | 7.4                                              |
| 5''          | S/N AT FADING                          |              | dВ          | 28.4        | 38.4              |               |               | i        |              | 23.2                | 28.4                                             |
|              | REMARKS                                |              |             |             |                   |               |               |          |              |                     |                                                  |
|              |                                        | 1            |             |             | :                 |               |               |          |              |                     |                                                  |

Date; 18th Mor. 177

Agno River System

Carmen Rosales (Sub-Center) — Wawa (R&W)

MODE OF COMMUNICATION: SIMPLEX METHOD OF MODULATION: FM [MPEDANCE: 50 (N.) SPECIFIED RELIABILITY: 99.9 (%)

CALCULATION OF FADING VALUE PRESUMED: 0.1 (d8/km) x d (km) + 3 (d8)

| Г           |                                                        |                  |                 | CALCUL AT            | ΕO                 |              | TEÒ DATE       | DATE OF      |                                                  | DESIGNAL.                             |                                                  |
|-------------|--------------------------------------------------------|------------------|-----------------|----------------------|--------------------|--------------|----------------|--------------|--------------------------------------------------|---------------------------------------|--------------------------------------------------|
|             | CALCULATION NO.                                        | : : : : <u></u>  | <u> 1, 1, 1</u> | DÈSIGN               | VALUES             | BEFORE       |                | ACTU         | IL TEST                                          | DETERMIN<br>AFT                       | IAL<br>ER TEST                                   |
|             | SPAN                                                   |                  |                 | ROSALES              | - WAWA<br>ERILROWI | L            |                |              | _                                                |                                       |                                                  |
|             | ALTITUDE                                               |                  | m               | 24.5                 | 15                 | 24.5         | 15             | 24.5         | 15                                               | 24.5                                  | 15                                               |
| ŝ           | ANTENNA HEIGHT                                         | H1, H2           | Er.             | 30                   | 10                 | 10           | 10             | 10           | 10                                               | 30                                    | 10                                               |
| SPAN        |                                                        | hi, ha           | ĮŃ              | <u> </u>             |                    |              | <u> </u>       |              |                                                  | <b> </b>                              |                                                  |
| N CONDITION | OUTLINE OF PROPAGATION PATH                            |                  |                 |                      |                    |              |                |              |                                                  | · · · · · · · · · · · · · · · · · · · |                                                  |
| <u>2</u>    | DISTANCE                                               | D.               | Km              |                      | 2.1                | 22           |                | 22           |                                                  | 2.2                                   |                                                  |
|             |                                                        | MODE             | ·               | 3-STAGE<br>CO-LINEAR | YAGI 3E            | YAGI 3E      | YAGI 3E        | YAGI 3E      | YAGI 3E<br>V                                     | 3-STAGE<br>CO-LINEAR<br>V             | YAG1 3E                                          |
|             | ANTENNA                                                | POLARIZ<br>PATTE |                 | V                    |                    |              | <u> </u>       | <u> </u>     | <del> </del>                                     | <del> </del>                          | <u>'</u>                                         |
|             |                                                        | MODE             |                 | AE7550 A             | AFZE50-4           |              | 50-2V          | 50-2V        | 5D-2V                                            | AFZE50-4                              | ΔΕΖΕ50 - 4                                       |
|             | FEEDER                                                 | LENGT            |                 | 45                   | 15                 | 16           |                | 16           | 16                                               | 45                                    | 15                                               |
|             | TRANSMITTING OUTPUT POWER                              | Pt               | w               | 10                   | 13                 |              | 10             | 7            | !                                                | 10                                    | 1                                                |
|             | PROPAGATION LOSS                                       | Løf              | 48              |                      | )3.9               |              | 3.9            |              | 3.9                                              | - 10                                  | 3.9                                              |
| ł           | SPHERICAL TERRAIN LOSS                                 |                  |                 |                      | 25.1               |              | 31.1           | - 3          | 11.1                                             | - 2                                   | 5. 1                                             |
| 1           | TERRAIN REFLECTION LOSS                                | Lpp              | 48              |                      |                    | 1.           |                |              |                                                  |                                       |                                                  |
|             |                                                        | -                | : -             | l                    |                    |              |                |              |                                                  |                                       |                                                  |
| '           | SHADOW LOSS                                            | Lps              | 48              |                      |                    |              |                |              |                                                  |                                       |                                                  |
| Ś           |                                                        |                  |                 |                      |                    | -            |                |              | •                                                |                                       | ÷ 3                                              |
| SPAN        | S CORRECTIVE VALUE                                     | Loc              | dВ              | <del> </del> -       |                    | `            | ; :            | -            | 10                                               |                                       | 0                                                |
|             | (TOTAL LOSS)                                           | Lp               | ₫B              | ; -12                | 9 :                | - 1          | 3 5            | - 1          | 45                                               | - 1:                                  | 39                                               |
| SSOI        | The state of the state of                              | GA               | dB              | 6                    | 8                  | 8            | 8              | 8            | 8                                                | 6                                     | 8                                                |
| SS          | ANTENNA GAIN AZIMUTHAL PATTERN LOSS ANTENNA H Y B LOSS | Lo               | dВ              | 1 -                  |                    | 1            |                |              |                                                  |                                       | L                                                |
|             | ANTENNA HY B LOSS                                      |                  |                 |                      |                    |              |                | - 4,         |                                                  |                                       | <u>[</u>                                         |
| 20          | FEEDER LOSS                                            |                  |                 | - 1.575              | -0.525             | - 2          | 2              | 5            | -2                                               | -1.575                                | - 0.525                                          |
|             | S FILTER LOSS                                          |                  |                 |                      |                    |              | L              |              | L                                                | ļ                                     |                                                  |
|             | (TOTAL)                                                |                  | ₫B              | 11                   |                    |              | 2              |              | 2                                                |                                       | .9                                               |
|             | (GRAND TOTAL)                                          | Ls               | dB              | - 11                 | 7. 1               | - \$         |                | _ 1.         |                                                  |                                       | 27.1                                             |
|             | TRANSMITTING OUTPUT POWER                              | Pt               | d Bm            | 30                   | 40                 | 40           | 40             |              | 38.5                                             | 30                                    | 40                                               |
|             | RECEIVING POWER LEVEL                                  | Pr               | d Bm            | -87.1                | 77.1               | 2            | - 83           |              | -94.5                                            | - 97.1                                | 87.1                                             |
| Ś           | (e, m, f, )                                            | er               | 486             | 25.9                 | 35.9               |              | 30             |              | 18.5                                             | 15.9                                  | 25.9                                             |
| Ž           | INCOMING NOISE POWER LEVEL                             | Prne             | dBm             |                      | <u> </u>           |              |                | ļ            | <u> </u>                                         |                                       | ļ — — —                                          |
|             | (e.m.f.)                                               | erne             | dBy             | ·                    | <b> </b>           | 1 1 1 1      | )<br>          | <b> </b>     | <u> </u>                                         | ļ                                     |                                                  |
| CALCULAT    | INTERNAL NOISE LEVEL                                   | Peni             | ₫BJJ            |                      | ļ                  |              | ļ              |              |                                                  | <del> </del>                          | <del>                                     </del> |
| 5           | NOISE INCREASE                                         | Δο               | d8              |                      | <u> </u>           | 1 2 2        |                | <b> </b>     | -                                                | -                                     |                                                  |
| Þ           | TOTAL RECEIVING NOISE POWER LEVEL                      | Prn              | dBm             | 2 .7274              | 11.0               |              | <u> </u>       | <del> </del> | 1                                                | -110                                  | -110                                             |
| ŏ           | THRESHOLD LEVEL                                        | Pin              | dBin            | -(10                 | -110               |              | -,             |              | <u> </u>                                         | 9                                     | 9                                                |
| ž           | CRESTFACTOR                                            | Cf               | <u>dB</u>       | 9                    | 1 9<br>32.9        |              |                |              | 1                                                | 12.9                                  | 22.9                                             |
|             | THRESHOLD MARGIN                                       | Mih              | 48              | 12                   | 12                 |              | <del> </del> - | <del> </del> | <del>                                     </del> | 12                                    | 12                                               |
|             | S/N IMPROVEMENT                                        | I C/Al           | 4B<br>8b        | 43.9                 | 53.9               | -            | <del> </del>   | <b></b>      | ļ                                                | 33.9                                  | 43.9                                             |
| <u> </u>    | STANDARD S/N                                           | S/N              |                 |                      | 2                  |              | <del></del>    |              | <del> </del>                                     |                                       | .2                                               |
| ζŠ          | FAOING VALUE PRESUMED                                  | LF               | 48              | 17.7                 |                    | <del> </del> | <del></del>    |              |                                                  | 7.7                                   | 17.7                                             |
| MENT        | (MID > LE)                                             |                  | dB<br>dB        |                      | 48.7               | 1 2          | <del> </del>   | <del> </del> | <del>}</del>                                     | 28.7                                  | 38. 7                                            |
|             | S/N AT FADING                                          | <b>!</b>         | 1 00            | 38.7                 | L48./_             |              | <b>!</b>       | <b> </b>     | <del></del>                                      | <del> </del>                          |                                                  |
|             | REMARKS                                                |                  |                 |                      |                    |              |                |              |                                                  | 1                                     |                                                  |
| L           |                                                        |                  | -               |                      |                    |              |                | <u> </u>     |                                                  | <u> </u>                              |                                                  |

Date : 18th Mor. '77

Agno River System

### Carmen Rosales (Sub-Center) —— Bonaga (W)

| Гмо         | DE OF COMMUNICATION : SIMPLEX MI      | THOO C       | E MÝNÍ | LATION :             | eu Liups      | DANCE I | 50 (0.1)   | SPECIFIE | O DELIAC      |                                         | 99.9 (%)                              |
|-------------|---------------------------------------|--------------|--------|----------------------|---------------|---------|------------|----------|---------------|-----------------------------------------|---------------------------------------|
|             | ALCULATION OF FADING VALUE PRESU      |              |        |                      | d (Km) t      |         | 30 (11.7 ) | STECIFIE | O RECIAD      | ILII .                                  | 33.3 (7.)                             |
|             | CALCULATION NO.                       |              | 1.14.5 | CALĈULA<br>DESIĜI    | TED<br>VALUES | CALCULA | TEO DATE   | DATE OF  | F<br>AL TEST  | DESIGNAL<br>DETERMIN                    |                                       |
|             | SPAN                                  | <del></del>  |        | CARMEN<br>ROSALES    | - BANAGA      |         |            |          | <del></del>   |                                         | TER TEST                              |
|             | ALTITUDE                              | 1.1          | m      | (SUB CENT            | (W) (R3       | 24.5    | 2          | 24.5     | 2             | 24.5                                    | 2                                     |
| SPAN        | ANTENNA HEIGHT                        | H1, H2       | T/M    | 30                   | 10            | 10      | 10         | 10       | 10            | 30                                      | 10                                    |
| ž           |                                       | hi, ha       | m      |                      |               | l       |            |          |               |                                         |                                       |
| COND        | OUTLINE OF PROPAGATION PATH           |              |        | *.<br>*              |               |         |            |          |               |                                         |                                       |
| TION        |                                       | <del> </del> |        | <u> </u>             |               |         |            |          |               |                                         |                                       |
| ž           | DISTANCE                              | D            | Km     | 42                   |               |         | .8         | 42       |               | 42                                      |                                       |
|             |                                       | MODE         | L      | 3-STAGE<br>CO-LINEAR | YAGI 3E       | YAGI 3E | YAGI JE    | YAGI 3E  | YAGI 3E       | 3-STAGE<br>CO-LINEAR                    | YAGI 3E                               |
|             | ANTENNA                               | POLARI.      | ATION  | ٧                    | V             | ٧       | ٧          | ٧        | V             | ٧                                       | ٧                                     |
|             |                                       | PATT         | RN     |                      |               |         |            |          | 1             | :                                       |                                       |
|             | FEEDER                                | MODE         |        | AFZE50-4             | AFZE50-4      | 50-2V   | 5D-2V      | 50-2V    | 50-2V         | AFZE50-4                                | AFZE50 - 4                            |
|             | recoen                                | LENGT        | H m    | 45                   | 15            | 16      | 16         | 16       | 16            | 45                                      | 15                                    |
| <u> </u>    | TRANSMITTING OUTPUT POWER             | Pt           | W      | 10                   | 10            | 10      | 10         | 7        | 8             | 10                                      | 10                                    |
| 1           | PROPAGATION LOSS                      | Lot          | ₫B     |                      | 09.7          |         | 9.7        |          | 9.7           | - 10                                    |                                       |
|             | SPHERICAL TERRAIN LOSS                | Lpp          | dВ     |                      | 20.3          | - 2     | 25.3       | 2        | 5.3           | - 2                                     | 0.3                                   |
|             | TERRAIN REFLECTION LOSS               |              |        |                      |               |         |            |          |               |                                         | <u> </u>                              |
|             |                                       |              |        | 1                    | · I           | · - ı   | 1.5        | 1        | 1, 5          | - 1                                     | 1                                     |
| 1           | SHADOW LOSS                           | Los          | đВ     | _ 4                  | . 3           | : 4     | .3         | _ 4      | 3             | 4                                       | . 3                                   |
| တ္ဆ         | 2                                     |              |        | · 6                  |               | - 6     |            | - 6      |               | - 6                                     |                                       |
| PAN         | 2 CORRECTIVE VALUE                    |              |        |                      | · '           |         |            |          |               |                                         |                                       |
| _           | (TOTAL LOSS)                          | Lpc          | dB     |                      |               | 16      | 6.0        | - I 5    | 0.8           | - 15                                    | 0.6                                   |
| 5           | I - I                                 | Lρ           | dB     | - 15                 |               | 8       | 6.8        | 8        | 8             |                                         |                                       |
| SS          | ANTENNA GAIN A AZIMUTHAL PATTERN LOSS | GA<br>Lo     | d8     | 6                    | 11            |         |            |          |               | - 6                                     | 8                                     |
|             | 2 ANTENNA H Y 8 LOSS                  | LU           | uo.    |                      |               |         | 41.4       |          | 1 1 1 1 1 1 1 | 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | <u> </u>                              |
|             | FEEDER LOSS                           |              |        | -1575                | 0.525         | 2       | - 2·       | -2       | -2            | ·                                       | - 0.525                               |
|             | S FILTER LOSS                         |              | -      |                      | 0.020         |         | <u>-</u>   |          |               |                                         | 0.02.0                                |
| ļ l         | Z (TOTAL)                             |              | dB     | 14                   | 1.9           | 1 1 1   | 2          |          | 2             | 11                                      | ġ.                                    |
| l           | (GRAND TOTAL)                         | ĹS           | ₫₿     | 13                   |               | - 144   |            | - 14     |               | 13                                      | · · · · · · · · · · · · · · · · · · · |
|             | TRANSMITTING OUTPUT POWER             | Pt           | d Bm   | 40                   | 40            | 40      | 40         | 39       | 38.5          | 40                                      | 40                                    |
| lł          | RECEIVING POWER LEVEL                 | P            | d Bm   | - 96.4               | - 96.4        |         | -104.8     | - 105    | -103          | -98.6                                   |                                       |
|             | (e.m.f.)                              | er           | dBu    | 16.6                 | 16.6          |         | 8.2        | 8        | 10            | 14.4                                    |                                       |
| S/          | INCOMING NOISE POWER LEVEL            | Prne         | dBm    |                      |               |         |            |          |               |                                         |                                       |
| 2           | (e.m.f.)                              | erne         | dВµ    |                      |               | i       | ···        |          |               |                                         |                                       |
| ₽           | INTERNAL NOISE LEVEL                  | Prni         | ىر8ە   |                      | ·             | !       |            |          |               |                                         | 1.1                                   |
| [5]         | NOISE INCREASE                        | Δn           | ďВ     |                      |               | 125     |            | : j      | . 1,5         |                                         |                                       |
|             | TOTAL RECEIVING NOISE POWER LEVEL     | Pro          | dBm    |                      |               |         |            |          |               |                                         |                                       |
| 5           | THRESHOLD LEVEL                       | Pih          | m8b    | -110                 | -110          |         | 17.        |          |               | -110                                    | -110                                  |
| 7<br>0<br>2 | CRESTFACTOR                           | Cf           | dB     | 9 1                  | 9             |         |            | i        |               | 9                                       | 9                                     |
| 7           | THRESHOLD MARGIN                      | Mth          | ₫₿     | 13.6                 | 13.6          |         | 1.77       | <u>j</u> |               | 11.4                                    | 11.4                                  |
| - 1         | S/N IMPROVEMENT                       | ľ            | dB     | 15                   | 12            |         |            |          | - 14 × 15     | 12                                      | 12                                    |
|             | STANDARD S/N                          | S/N          | dB     | 34.6                 | 34.6          | ]       |            | 35       | 32            | 32.4                                    | 32.4                                  |
| _E[         | FADING VALUE PRESUMED                 | LF           | dB     | <b>– 7</b> .         | 3             |         |            |          | \$ 4.0 E 44 E | - 7.                                    | 3                                     |
| MENT<br>OGE | (Mih > LF)                            |              | 68     | 6.3                  | 6.3           | !       |            |          |               | 4.1                                     | 4.1                                   |
| 37T         | S/N AT FADING                         |              | 48     | 27.3                 | 27.3          |         |            |          | 1.1           | 25.1                                    | 25.1                                  |
|             | REMARKS                               |              |        |                      |               |         |            |          |               |                                         | <u> </u>                              |
|             |                                       |              |        |                      |               |         |            |          |               | -                                       |                                       |

Date: 18th Mar. 177

Agno River System

### Carmen Rosales (Sub-Center) — Sta. Barbara (R&W)

|      | L salawayayaya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |            | CALCULAT          |                       | CALCULA     | TEO DATE                              | DATE OF       | L TEST       | DESIGNAL             |              |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-------------------|-----------------------|-------------|---------------------------------------|---------------|--------------|----------------------|--------------|
|      | CALCULATION NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                   | VALUES<br>Sto Borbora | BEFORE      | TEST                                  | ACTO          | L IESI       | DETERMIN             | ER TESI      |
|      | SPAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |            | ISUB CENTE        | R)[R&W]               |             |                                       | 24.5          | 8            | 24.5                 | 8            |
|      | ALTITUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | m          | <u>24.5</u><br>30 | <u>8</u><br>10        | 24.5        | 10                                    | 24.5<br>10    | 10           | 30                   | 10           |
| ;    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H1, H2       | W          | -30               |                       |             |                                       |               |              |                      |              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hi, ha       | m          |                   |                       | <del></del> |                                       |               |              |                      |              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            | ,                 |                       |             |                                       |               |              |                      | 1.           |
|      | OUTLINE OF PROPAGATION PATH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |            | 1                 |                       |             |                                       | * .           |              |                      |              |
| ì    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100          |            |                   |                       |             |                                       |               |              |                      |              |
| A    | DISTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D            | Κm         | 25                | . 6                   | 25          | 6                                     | 25            | . 6          | 25                   | 6            |
|      | DISTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MODE         |            |                   |                       | YAGI 3E     |                                       |               |              | 3-STAGE<br>CO-LINEAR | YAGI         |
|      | ANTENNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | POLARIZ      |            | CO-LINEAR         | V                     | V           | V                                     | V             | V            | V                    | V            |
|      | antenna de la companya de la company | PATTE        |            | •                 |                       |             |                                       |               |              |                      |              |
| ł    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODE         |            | AE7E50-4          | AFZE50-4              | 50-27       | 5D-2V                                 | 50-2V         | 50-2V        | AF7E50-4             | AFZE50       |
|      | FEEDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LENGT        |            | 45                | 15                    | 16          | 16                                    | 16            | 16           | 45                   | 15           |
|      | TRANSMITTING OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pl           | W          | 10                | 10                    | 10          | 10                                    | 7             | 8            | 10                   | . 1          |
| -    | PROPAGATION LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lpf          | dB         | - 10              | 5.2                   | - 10        | 5.2                                   | - 10          | 5.2          | – I C                |              |
| 1    | V CONCOLCAL TERRALM LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.          |            | -9                | -20                   | -18         | , -20                                 | -18           | , - 20       | -9                   | , -20        |
| NAGN | TERRAIN REFLECTION LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lpo          | d B        | · · · · ·         |                       |             |                                       |               | 2 11 1 1 1 K |                      | <u> </u>     |
|      | TERRAIN REFLECTION LOSS SHADOW LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |            | 7                 | , 5                   |             | 8.6                                   | 1             | 8.6          | l                    | 7.5          |
|      | SHADOW LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 40         | - 6               |                       | Ĭ           | 6                                     | _ (           | 6            |                      | 5            |
|      | 2  31125011 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lps          | ₫B         |                   | 5.5                   |             | 6.5                                   |               | 6.5          | -                    | 6.5          |
|      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |            |                   | J. J                  |             |                                       | 1             |              |                      |              |
| •    | CORRECTIVE VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lpc          | dB.        | 15.4.0            |                       |             |                                       | - 14          | 15.3         | <u> </u>             | 5.3          |
| ,    | (TOTAL LOSS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lρ           | dB         | - 15              |                       | 16          |                                       | 8             | 8            | 6                    | 8            |
| 3    | ANTENNA GAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GA           | 48         | 6                 | 13                    | 8           | 8                                     |               | <u> </u>     | l —                  | <u> </u>     |
| •    | AZIMUTHAL PATTERN LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lo           | dB         |                   |                       |             | ļ                                     | ļ             |              | 1                    |              |
| 1    | Z ANTENNA H Y 8 LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - '          |            |                   | 0.505                 |             |                                       | 2             | -2           | -1.575               | -0.52        |
| ٠    | FEEDER LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |            | -1.575            | - 0.525               | 2           | -2                                    | \ <del></del> | <u> </u>     | 1.515                |              |
|      | Director Coss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |            |                   | .9                    |             | ـــــــــــــــــــــــــــــــــــــ |               | 2            | i i i                | . 9          |
|      | 2) (TOTAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | dB<br>dB   | -137              |                       | -152        |                                       | -13           |              | -1                   |              |
| -4   | (GRAND TOTAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ls           | d 8m       |                   | 40                    | 40          | 40                                    | 39            | 38.5         | 30                   | 40           |
| ٠    | TRANSMITTING OUTPUT POWER RECEIVING POWER LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PL           | d Bm       | 40<br>97.3        | - 97.3                | 40          | -112.3                                | - 98          | -98.5        | -97                  | -87          |
| - 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Pr<br>- er | ови        | 15.7              | 15.7                  |             | 0.7                                   | 15            | 14.5         | 16                   | 26           |
|      | INCOMING NOISE POWER LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | d8m        |                   |                       |             |                                       |               |              |                      | !            |
|      | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prne         | 48b        |                   |                       |             |                                       | -             | <del>]</del> |                      | <del> </del> |
|      | INTERNAL NOISE LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prol         | dBy        |                   |                       | : :         |                                       | <del> </del>  | 1            |                      | 1            |
|      | NOISE INCREASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Δn           | 48         | -                 |                       |             |                                       |               | j            |                      | 1            |
|      | TOTAL RECEIVING NOISE POWER LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pro          | d Bm       |                   |                       |             |                                       |               | !            |                      |              |
|      | THRESHOLD LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pth          | d8m        | -110              | -110                  |             |                                       |               |              | -110                 | -110         |
|      | CRESTFACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ċf           | ₫ <b>8</b> | 9                 | 9                     |             | 1.00                                  |               | <u> </u>     | 9                    | 1 9          |
| ٠    | THRESHOLD MARGIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mih          | đВ         | 12.7              | 12.7                  |             |                                       |               |              | 13                   | 23           |
|      | S/N IMPROVEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I            | dB         | 12                | 12                    |             | !<br>{                                | ļ —           |              | 12                   | 12           |
| _    | STANDARD S/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S/N          | ₫₿         | 33.7              | 33.7                  |             | i                                     | 35            | 35           | 34                   | 1 44         |
| Ξ    | FADING VALUE PRESUMED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LF           | 48         | - 5               |                       |             | ·<br>• — — — —                        | <u> </u>      | 16 4 7       | - 5                  |              |
| BGE  | (Mth > LF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -            | 48         | 7.1               | 7.1                   | <u> </u>    | <u> </u>                              | <u> </u>      | <u> </u>     | <del></del>          | 17.4         |
|      | S/N AT FADING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | dβ         | 28.1              | 28.1                  | E .         | 1                                     |               |              | 28.4                 | 38.          |

Dote: 18th Mor. '77

Agno River System

# Carmen Rosales (Sub-Center) — Mt. Sto. Tomas (Repeater)

| M            | ΝĎΕ      | OF COMMUNICATION & SIMPLEX M          | ETUAN A       | E NAM    | e Atlana              | cu Luc                                | TOANICE A        | 50 (0.)                               | COCCUEIC                                       | 0.001140    |            | 00.0441       |
|--------------|----------|---------------------------------------|---------------|----------|-----------------------|---------------------------------------|------------------|---------------------------------------|------------------------------------------------|-------------|------------|---------------|
|              |          |                                       |               |          |                       |                                       |                  |                                       |                                                | D RELIAE    | ILITY:     | 99.9 (%)      |
| LS           | ALI      | CULATION OF FADING VALUE PRESU        | MEO :         | 0,1 {    | d8/Kmlx               | d (Km) t                              | _3 (dB)          | 1 4/4/1/11                            | 357 1                                          | Alle to the | e en en en | o stantistica |
|              | Τ        | CALCULATION NO.                       |               |          |                       | TED                                   |                  | TEO DATE                              | DATE O                                         |             |            | VALUES        |
|              | ┢        | SPAN                                  | <del></del> . |          | CARMEN                | N VALUES                              | BETORE           | TEST                                  | ACTO                                           | AL TEST     | DE TERMIN  | TER TEST      |
|              | $\vdash$ | <del></del>                           |               |          | ROSALES<br>(SUB CENTI | Mt. Sto.Toma:<br>ER) [Repeater]       |                  | ·····                                 |                                                |             | ļ <u>-</u> |               |
| 1.           | }        | ALTITUDE                              | T             | m        |                       | 20 24                                 | 24.5             | 2024                                  | 24.5                                           | 2024        |            | 2024          |
| SPAN         | 1-       | ANTENNA HEIGHT                        | HI, H2        | 1        | 30                    |                                       | 15               | 8                                     | 15                                             | 8           | 30         | 30            |
| Įź           | $\vdash$ | · · · · · · · · · · · · · · · · · · · | hi, ha        | m        | ·                     |                                       |                  |                                       |                                                |             |            |               |
| 18           | 1        |                                       |               |          |                       |                                       |                  |                                       |                                                |             |            |               |
| Sono         | 1        | OUTLINE OF PROPAGATION PATH           |               |          |                       | :                                     |                  |                                       | 100                                            | 2           |            |               |
| Tion         | ı        |                                       |               | 100      | <del></del>           | <del></del>                           | l ——             | <del></del>                           |                                                | <del></del> | <u> </u>   |               |
| Į            | $\vdash$ | DISTANCE                              | D             | Km       | 5                     | 1.8                                   |                  | 1.8                                   |                                                | 1.8         | 5          | 1.8           |
| 1            | H        |                                       | MODE          |          |                       | YAGI 3E                               |                  | YAGI 3E                               |                                                |             |            | YAGI 3E       |
| 1            | L        | ANTENNA                               | POLARI        |          | CO-LINEAR             | Y V                                   | TAGI SE          | V                                     | V                                              | V           |            |               |
| 1            | Ι `      |                                       | PATT          |          | <b>v</b>              | · · · ·                               |                  | l v                                   | - · ·                                          | V           | V .        | V             |
| 1            | ┢        |                                       | MODE          |          | AEZESO-A              | AFZE50-4                              |                  | 50-2V                                 | 50-2V                                          | 50-2V       | AEZEŚO . A | AFZE50 - 4    |
| ĺ            | '        | EEDER                                 | LENGT         |          | 45                    | 45                                    | 25               | 25                                    | 25                                             | 25          | 45         | 45            |
|              | Ŀ        | RANSMITTING OUTPUT POWER              | Pt            | W        | 10                    | 10                                    | 8                | · · · · · · · · · · · · · · · · · · · | 8                                              |             | 10         | iŏ            |
|              | <b>1</b> | PROPAGATION LOSS                      | Lpf           | ďΒ       | - 11                  | 1.3                                   | 18               | 1.3                                   | - 111                                          | .3          |            | 1.3           |
|              | 景        | SPHERICAL TERRAIN LOSS                |               |          |                       |                                       |                  |                                       |                                                | 1 1 2 3 3   |            |               |
|              | R        | TERRAIN REFLECTION LOSS               | Lpp           | 48       |                       |                                       |                  |                                       |                                                | 1.1         |            |               |
| 1            | AGA      |                                       |               |          | - 3                   |                                       | - 3              | 1                                     | 3                                              | 1           | - 3        |               |
|              | 5        | SHADOW LOSS                           | Los           | ₫₿       | ľ                     | •                                     | l :              | •                                     | ľ                                              | •           | Ĭ          |               |
| က္ဆ          | z        |                                       | LβS           |          | 1                     |                                       | 1                |                                       |                                                |             |            |               |
| 0<br>2<br>2  | 8        | CORRECTIVE VALUE                      | ļ <u>.</u>    | - 45     |                       |                                       |                  | <del></del>                           | ļ <u>.                                    </u> |             |            |               |
| _            | Ö        | (TOTAL LOSS)                          | Lpc<br>Lp     | dB<br>dB | - 14                  | 2.3                                   | -14              | 2 1                                   | - 14                                           | .5          |            | 1.5<br>0.8    |
| 6            | ,        | ANTENNA GAIN                          | GA            | dB       | 6                     | · · · · · · · · · · · · · · · · · · · | 2                | 8                                     | 2                                              | 8           | 6          | 6             |
| SS           | ž        | AZIMUTHAL PATTERN LOSS                | Lo            | 48       |                       | - 6                                   | -                |                                       | -                                              | -           |            | <u> </u>      |
|              | ξį       | ANTENNA H Y B LOSS                    |               |          |                       |                                       |                  |                                       | i                                              | <del></del> | -          |               |
|              | 5        | FEEDER LOSS                           |               |          | ~1.575                | -1.575                                | -1.6             | -1.6                                  | -1.6                                           | -1.6        | -1.575     | - 1.575       |
| 1            | Ŷ        | FILTER LOSS                           |               |          |                       |                                       | -                |                                       |                                                |             |            |               |
|              | ź        | (TOTAL)                               |               | 48       | : 8.                  | 9                                     | 6.               | 8                                     | 6                                              | 8           | 8          | ġ             |
| L            |          | (GRAND TOTAL)                         | Ls            | 48       | - 133                 | 3.4                                   | - 135            | 5.5                                   | - 13                                           | 4           | <u> </u>   | 1.9           |
|              | TF       | ANSMITTING OUTPUT POWER               | ∙∙Pŧ          | d Bm     | 40                    | 40                                    | ,                | 39                                    |                                                | 39          | 40         | 40            |
|              | RE       | CEIVING POWER LEVEL                   | Pr            | d Bm     | -93.4                 | -93.4                                 | 45.1             | <b> 96.5</b>                          |                                                | -95         | -91.9      | -91.9         |
| S            | [ 6      | , m, f, )                             | e r           | цвь      | 19.6                  | 19.6                                  | j                | 16.5                                  |                                                | 18          | 21.1       | 21.1          |
| ž            | IN       | COMING NOISE POWER LEVEL              | Prne          | dBm      |                       |                                       |                  | 1 12                                  |                                                | 12.4        | -          |               |
| ဂ္ဂ          |          | + m • f • )                           | erne          | 480      |                       |                                       |                  | <u> </u>                              |                                                |             |            | J             |
| ALC          | <u> </u> | TERNAL NOISE LEVEL                    | Prni          | dB)      | i                     |                                       |                  | N11 (1)                               |                                                |             | <u></u>    |               |
| טר           |          | ISE INCREASE                          | Δn            | - 48     |                       |                                       |                  |                                       |                                                |             |            |               |
| Ð            | _        | AL RECEIVING NOISE POWER LEVEL        | Prn           | d Bm     |                       |                                       |                  |                                       |                                                |             | •••        | 116           |
| Ö            |          | RESHOLD LEVEL ESTFACTOR               | Pth           | dBm      | -110                  | -110                                  |                  |                                       |                                                |             | -110       | 1-110         |
| 2            |          | RESHOLD MARGIN                        | Cf            | ₫B<br>dB | 9 1                   | <del>-</del>                          | i                |                                       | <u>'</u>                                       |             | 18.1       | 9<br>18. I    |
|              |          | N IMPROVÉMENT                         | Mth           | dB       | 16.6                  | 16.6<br>12                            | <del>-}</del> -1 |                                       | i                                              |             | 12         | 15            |
|              |          | ANDARD S/N                            | S/N           | 48       | 37.6                  | 37.6                                  | - !              |                                       |                                                | -           | 39.1       | 39.1          |
| 5            | _        | DING VALUE PRESUMED                   | LF            | dB       | - 8.                  |                                       | 1                |                                       | لب                                             |             |            | 2             |
| žχ           |          | th > LF }                             |               | dB       | 8.4                   |                                       | 1                | <del></del>                           |                                                |             | 9.9        |               |
| MENT<br>BOOK |          | N AT FADING                           |               | dB       | 29.4                  | 29.4                                  | <del>-  </del>   | i                                     | <u>i</u>                                       |             | 30.9       | 30.9          |
| الند         |          | EMARKS                                |               |          |                       |                                       |                  |                                       |                                                |             |            |               |
|              | •7       | LIVING                                |               | ļ        | 1                     | l l                                   |                  |                                       |                                                |             |            | - 1           |

Date; 18th Mar. 177

Agno River System

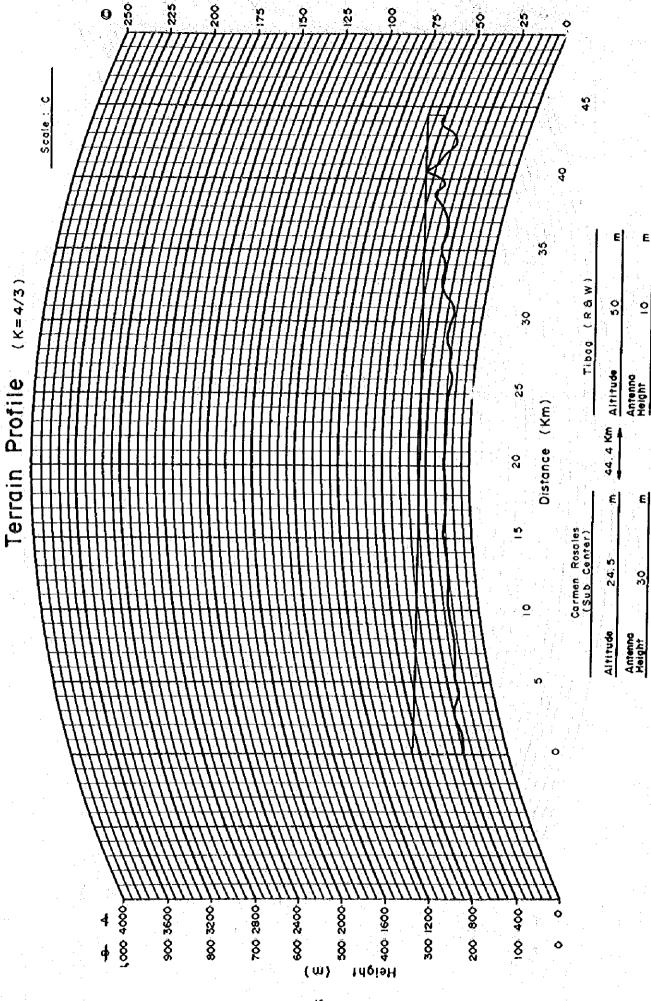
Carmen Rosales (Sub-Center) —— Carmen (R&W)

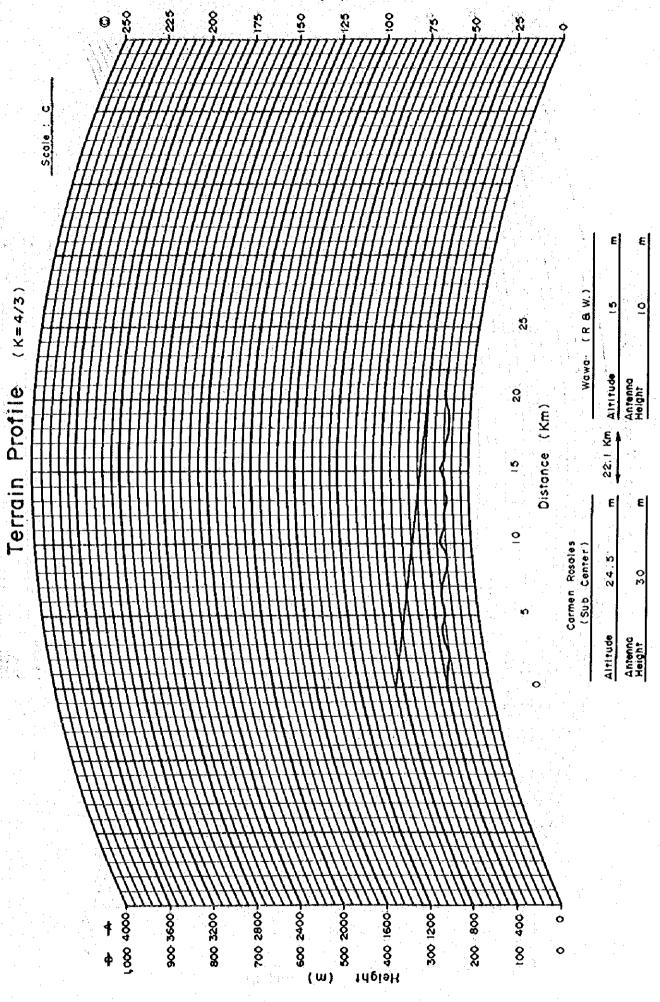
|                                                                                 |                                     |          |                |                                 |                                                    | DANCE 1                                          | 50 (Å )                                       | SPECIFIE         | RELIAB       | LITY : 9                                         | 9.9 (%)    |
|---------------------------------------------------------------------------------|-------------------------------------|----------|----------------|---------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------|--------------|--------------------------------------------------|------------|
| CA                                                                              | ALCULATION OF FADING VALUE PRESUME  | D:       | 0.1 (          | B/Km) x o                       | 1 (Km) +                                           |                                                  |                                               |                  |              |                                                  |            |
|                                                                                 | CALCULATION NO.                     |          |                | CALCULAT<br>DESIGN              | VALUES                                             | CALCULA<br>BEFORE                                | TED DATE<br>TEST                              | DATE OF<br>ACTUA |              | DESIGNAL<br>DETERMIN<br>AFT                      |            |
|                                                                                 | SPAN                                | :        |                | CARMEN<br>ROSALES<br>(SUB CENTE | Cormen<br>esten Wi                                 |                                                  |                                               |                  |              |                                                  |            |
|                                                                                 | ALTITUDE                            |          | W              | 24.5                            | 24                                                 | 24.5                                             | 24                                            | 24.5             | 24           | 24.5                                             | 24         |
| <u>io</u>                                                                       | ANTENNA HEIGHT                      | 11, 112  | m              | 30                              | <u> 10</u>                                         | 10                                               | 10                                            | 10               | 10           | 30                                               | :10        |
| PAN                                                                             |                                     | hi , be  | m              |                                 | <u> </u>                                           |                                                  |                                               |                  |              | <u></u>                                          |            |
| CONDITION                                                                       | OUTLINE OF PROPAGATION PATH         |          |                | <u> </u>                        |                                                    |                                                  | ··                                            |                  |              |                                                  |            |
| 9                                                                               | DISTANCE                            | D        | Km             | (.                              | 7                                                  | 1.                                               | 7                                             |                  | 7            | I. STAGE                                         |            |
| 1.                                                                              |                                     | MODE     | L              | 3-STAGE<br>CO-LINEAR            | YAGI 3E                                            | YAGI 3E                                          | YAGI 3E                                       | YAGI 3E          | YAGI 3E      | 3-STAGE<br>CO-LINEAR                             | YAGI 3E    |
| 1.4                                                                             | ANTENNA                             | OLARIZ   | ATION          | V                               | V                                                  | ٧                                                | V                                             | ٧.               | V            | V                                                | V          |
|                                                                                 |                                     | PATTE    | RN             |                                 |                                                    |                                                  |                                               |                  | FO 211       | AFZE50-4                                         | AE7E50 - A |
|                                                                                 | CCCDEO                              | MODE     |                |                                 | AFZE50-4                                           |                                                  |                                               | 50-2V            | 50-2V        | 45                                               | 15         |
|                                                                                 |                                     | LENGT    |                | 45                              | 15                                                 | 16                                               | 16                                            | 16<br>7          | 16           | 10                                               | 13         |
|                                                                                 | TRANSMITTING OUTPUT POWER           | Pl       | W              | 10                              |                                                    | - 8                                              |                                               | -8               | 1.7          | - 81                                             | . 7        |
|                                                                                 | PROPAGATION LOSS                    | Föl      | ₫B             | <u> - 81</u>                    | · <u>'</u>                                         |                                                  |                                               | <u>-</u>         |              |                                                  |            |
|                                                                                 | SPHERICAL TERRAIN LOSS              | Lop      | ₫₿             | <u> </u>                        |                                                    | ļ — —                                            |                                               |                  |              |                                                  |            |
|                                                                                 | TERRAIN REFLECTION LOSS             |          | <del></del>    |                                 |                                                    |                                                  |                                               |                  |              |                                                  |            |
| S                                                                               | SHADOW LOSS                         | Lps      | đΒ             |                                 |                                                    | :                                                |                                               |                  |              |                                                  |            |
| SPAN                                                                            | S CORRECTIVE VALUE                  | Lpc      | ₫₿             |                                 |                                                    |                                                  |                                               |                  | 13           | - 1                                              |            |
| _                                                                               | (TOTAL LOSS)                        | Lp       | dB.            | -81                             | 7                                                  | - 8                                              | 1.7                                           | 94               | . 7          | 9                                                |            |
| 5                                                                               | > ANTENNA GAIN                      | GA       | dВ             | 6                               | 8                                                  | - 8                                              | 8                                             | 8                | 8            | 6                                                | 8          |
| SS                                                                              | AZIMUTHAL PATTERN LOSS              | Lo       | dB             |                                 |                                                    |                                                  | <br>                                          |                  |              |                                                  | <u> </u>   |
|                                                                                 | ANTENNA H Y B LOSS                  |          |                |                                 |                                                    |                                                  | <u>                                      </u> |                  | i            | 1 5 7 5                                          | - 0.525    |
| 100                                                                             | FEEDER LOSS                         |          |                | ~1.575                          | -0.525                                             | <u>- 5</u>                                       | -2                                            | -2               | -5           | -1.515                                           | -0.323     |
|                                                                                 | S FILTER LOSS                       |          |                |                                 |                                                    | l                                                | <u>i</u>                                      |                  | 2            | (1                                               | 9          |
|                                                                                 | Z (TOTAL)                           |          | dB             |                                 | 9                                                  | - 6                                              | 2                                             | - 82             |              | - 82                                             |            |
|                                                                                 | (GRAND TOTAL)                       | Ls       | dB             |                                 | .8                                                 |                                                  | 40                                            |                  | 38.5.        | 30                                               | 40         |
| 45                                                                              | TRANSMITTING OUTPUT POWER           | PL       | d Bm           | 30<br>-39.8                     | -29.8                                              | 40                                               | -29.7                                         | <del> </del>     | -44.2        | -528                                             | - 42.8     |
|                                                                                 | RECEIVING POWER LEVEL               | Pr<br>er | dBm<br>dBu     | 73.2                            | 83.2                                               |                                                  | 83.3                                          | <del> </del>     | 68.8         | 60.2                                             | 70.2       |
| Ŋ                                                                               | (e.m.f.) INCOMING NOISE POWER LEVEL | Prne     | dBm            |                                 |                                                    |                                                  |                                               | I                | <u> </u>     |                                                  |            |
| Z                                                                               |                                     | 8019     | 480            |                                 | <u></u>                                            |                                                  | Ī                                             |                  | <del> </del> |                                                  |            |
| Ç.                                                                              | (e.m.f.) INTERNAL NOISE LEVEL       | Prni     | dΒμ            |                                 |                                                    | : -                                              |                                               |                  | !            |                                                  |            |
| رد ا                                                                            | NOISE INCREASE                      | Δp       | d8             |                                 | <del>.                                      </del> |                                                  | i                                             |                  |              |                                                  | <u> </u>   |
| اج                                                                              | TOTAL RECEIVING NOISE POWER LEVEL   | Pin      | d Bm           |                                 | ]                                                  |                                                  | 1                                             |                  |              |                                                  | i          |
| 4                                                                               | THRESHOLD LEVEL                     | Pth      | d₿m            | -110                            | -110                                               |                                                  | 1                                             | <u> </u>         | <u> </u>     | <del> </del> -                                   | -110       |
| ATION                                                                           | CRESTFACTOR                         | Cf       | <b>d8</b>      | 9                               | 9                                                  | <u> </u>                                         | 1 1                                           | ļ                | <del> </del> | 9                                                | 9          |
| ~                                                                               | THRESHOLD, MARGIN                   | Mth      | 48             | 70.2                            | 80.2                                               | 1                                                | <del></del>                                   | <del> </del>     | -            | 57.2                                             | 67. 2      |
|                                                                                 | S/N IMPROVEMENT                     | <u>I</u> | 48             | 1.2                             | 12                                                 | <del>                                     </del> | <del>i</del>                                  | ļ                | <del>!</del> | 78.2                                             | 88.2       |
|                                                                                 | STANDARD S/N                        | S/N      | dB             | 91.2                            | 101.2                                              | <del> </del>                                     | L                                             | <del> </del>     | <del></del>  | - 3                                              |            |
| ٦                                                                               | FADING VALUE PRESUMED               | LF       | - <del>8</del> |                                 | 2                                                  |                                                  | · · · · · · · · · · · · · · · · · · ·         | 1                | <u> </u>     | 54                                               | ·          |
| NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>N | (Mih > LF)                          |          | ₫ <u>₿</u>     | 67                              | 77                                                 | 1                                                | 1                                             | <b></b>          | !            | 75                                               | 85         |
| É.,                                                                             | S/N AT FADING                       |          | L. "           | 88                              | 98                                                 | 1                                                | J                                             | <b> </b>         |              | <del>                                     </del> | 1          |
|                                                                                 | REMARKS                             |          |                |                                 |                                                    |                                                  |                                               |                  |              |                                                  |            |

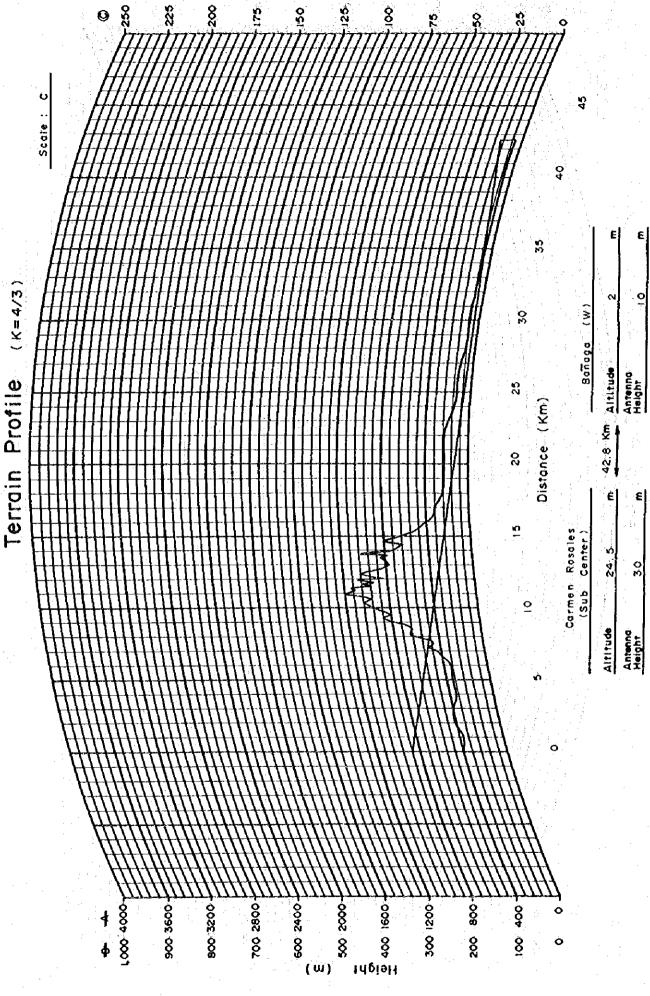
Date ; 18th Mor. '77

Agno River System

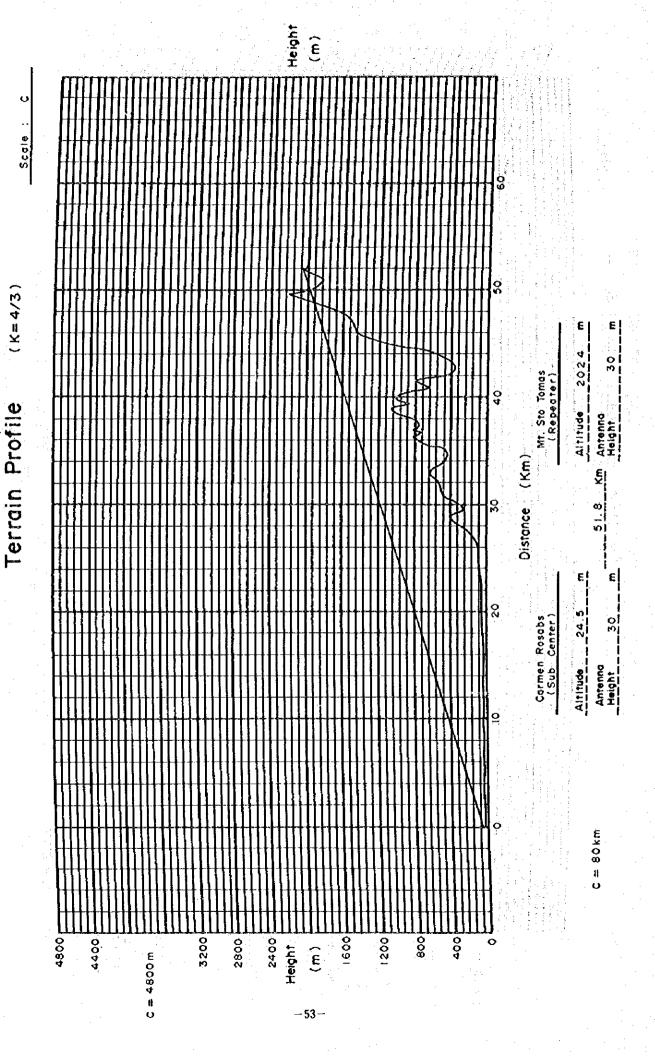
Carmen Rosales (Sub-Center) — San Roque (R&W)


|                                                                                 | DDE OF COMMUNICATION : SIMPLEX ME               |          |             |                   |                           |                   | 50 (n.)         | SPECIFIE        | D RELIAB       | HERTY :      | 99.9 (%)      |
|---------------------------------------------------------------------------------|-------------------------------------------------|----------|-------------|-------------------|---------------------------|-------------------|-----------------|-----------------|----------------|--------------|---------------|
|                                                                                 | CALCULATION OF FADING VALUE PRESUR              | WED:     | 0.1 (       | dB/Km) x          | d (Km) +                  | <u>3</u> (48)     |                 |                 | 237            | 1214.37      | 10.00         |
|                                                                                 | CALCULATION NO.                                 |          |             | DESIĞI            | TÉD<br>N VALUES           | CALCULA<br>BEFORE | TEO DATE        | DATE OF         | AL TEST        | DETERMI      | VALUES<br>NAL |
|                                                                                 | SPAN                                            |          |             | CARMEN<br>ROSALES | - Sah Roqué<br>(ER) (R&W) | 1 1 1 1           | <del></del>     | 100 -           |                | AF           | TER TEST      |
| 1.                                                                              | ALTITUDE                                        |          | m           | (SUB CENT<br>24.5 | ER) (88W)<br>98           | 24.5              | 98              | 24.5            | 98             | 24.5         | 98            |
| Ϋ́                                                                              | ANTENNA HEIGHT                                  | HI, Hz   |             | 30                | 10                        | 15                | 8               | 15              | 8              | 30           | 10            |
| SPAN                                                                            |                                                 | hì, hà   | <del></del> | 1                 |                           |                   |                 |                 |                |              | ·             |
|                                                                                 |                                                 |          | • -         |                   |                           |                   | <del></del>     |                 |                |              |               |
| CONDITION                                                                       | OUTLINE OF PROPAGATION PATH                     |          |             |                   |                           |                   |                 |                 | e dez e Polici |              |               |
| ١ğ                                                                              | DICTANCE                                        |          | 1 3 3 3     |                   |                           |                   | <u> </u>        |                 | <del></del>    |              |               |
| Z                                                                               | DISTANCE                                        | D        | Km          |                   | 7 :                       |                   | 7               | 27.             |                |              | 7. 7          |
|                                                                                 | ANTONNA                                         | MODE     |             |                   | YAGI 3E                   |                   |                 |                 |                | CO-LINEAR    | *             |
| ĺ                                                                               | ANTENNA                                         | POLARI   |             | ٧                 | <u> </u>                  | V                 | : - V           | ٧               | . V            | V            | <u> </u>      |
|                                                                                 |                                                 | PATTI    | <del></del> |                   | <u> </u>                  |                   | 1.4             | l- <u>-</u>     |                |              |               |
| •                                                                               | FEEDER                                          | MÓDE     |             |                   | AFZE50-4                  |                   |                 | 50-2V           |                |              | AFZE50-4      |
|                                                                                 | TOMICULTING OUTGOT COMES                        | LENGT    |             | 45                | 15                        | 25                | 25              | 25              | 25             | 45           | 15            |
|                                                                                 | TRANSMITTING OUTPUT POWER                       | Pt       | W.          | 10                | <u>i l</u>                | 8                 |                 | 8               |                | 10           | <u></u>       |
| 1                                                                               | PROPAGATION LOSS                                | Lof      | dB          | <u>~ 10</u>       |                           | - IÓ:             |                 | - 10            |                | 10           |               |
| 1                                                                               | SPHERICAL TERRAIN LOSS TERRAIN REFLECTION LOSS  | Lpp      | dΒ          | <del>z</del>      | 1.7                       | - 3               | 1.6             | - 3             | 1.6            | <u> </u>     | 1 .7.         |
| ļ                                                                               | S LEUWHUR WELFECTION FO22                       |          |             |                   |                           | !                 | <del></del>     |                 |                |              |               |
| SPAN                                                                            | TERRAIN REFLECTION LOSS SHADOW LOSS SHADOW LOSS | Lps      | d8          |                   |                           | · . :             |                 |                 |                |              |               |
| 2                                                                               | CORRECTIVE VALUE                                | Lpc      | dВ          | 1 1 1             |                           |                   |                 |                 | . 3            | _            | 1. 3          |
| -                                                                               | (TOTAL LOSS)                                    | Lp       | ₫B          | 12                | 7. 6                      | - 13              | 7.5             | 138             | 3.8            | 12           |               |
| SO                                                                              | ANTENNA GAIN                                    | ĠA       | dB          | 6                 | 8                         | 2                 | 8               | 2               | 8              | 6            | 8             |
| Ś                                                                               | AZIMUTHAL PATTERN LOSS                          | Lo       | dВ          |                   |                           |                   |                 | 4 :             |                |              |               |
|                                                                                 | ANTENNA H Y B LOSS                              |          |             |                   |                           |                   |                 |                 |                |              |               |
| . j                                                                             | FEEDER LOSS                                     |          |             | - 1.575           | - 0.525                   | - 1.6             | -1.6            | <b>-1.6</b>     | I.6            | -1.575       | -0.525        |
|                                                                                 | FILTER LOSS                                     |          |             | 1                 |                           |                   |                 |                 |                |              |               |
|                                                                                 | Ž (TOTAL)                                       |          | ďΒ          | . []              | 9                         | 6                 |                 | 6.              | 8              | 11           | .9            |
|                                                                                 | (GRAND TOTAL)                                   | L s      | dB          | ~ 113             | 5.7                       | 130               | ). 7            | 13              | 2              | 11           | 7             |
|                                                                                 | TRANSMITTING OUTPUT POWER                       | Pt       | d Bm        |                   | 40                        |                   | 39              |                 | 39             | 30           | 40            |
| ٠.                                                                              | RECEIVING POWER LEVEL                           | ٧.       | dBm         | - 85. 7           | ~75.7                     |                   | - 91.7          |                 | -93            | <b>⊷87</b> . | -77           |
| ý                                                                               | (e.m.f.)                                        | er :     | 4B)         | 27.3              | 37.3                      | 1                 | 21.3            |                 | 20             | 26           | 36            |
| z                                                                               | INCOMING NOISE POWER LEVEL                      | Stue     | dBm         | <u> </u>          |                           |                   |                 |                 | 3.3            | 31 11 11     | A 1 1 2       |
| Q.                                                                              | (e.m.f.)                                        | erne     | uBb         |                   |                           | <del></del>       | 5 2 2           |                 |                |              |               |
| Ě                                                                               | INTERNAL NOISE LEVEL                            | Proi     | qBh         | <u> </u>          |                           |                   |                 |                 |                | . y . 1 1 1  |               |
| Ę                                                                               | NOISE INCREASE                                  | Δn       | d8          |                   |                           |                   | - · · · · · · · |                 |                |              |               |
| >                                                                               | TOTAL RECEIVING NOISE POWER LEVEL               | Prn.     | dBm<br>dBm  |                   |                           | <u>-</u>          | * * * *         | j               |                | 100          | 110           |
| ਰ                                                                               | THRESHOLD LEVEL                                 | Pih      | dBm         | ÷110              | 110                       |                   |                 | <u> </u>        |                | -110         | -110          |
| ž                                                                               | CRESTFACTOR                                     | Cf       | - B         |                   | 9                         | <u>-ii</u>        |                 |                 |                | 9 2          | 33            |
| . ]                                                                             | THRESHOLD MARGIN S/N IMPROVEMENT                | Mth      | 48          | 24.3<br>12        | 34.3<br>12                | i                 | <u> </u>        | <del></del>     |                | 23<br>12     | 12            |
| . }                                                                             | STANDARD S/N                                    | I<br>S/N | : dB        | 45.3              | 55.3                      | <del>- i</del>    |                 | <del></del> - į |                | 44           | 54            |
| اءِ -                                                                           | FADING VALUE PRESUMED                           | LF.      | dB          | 45.5<br>5.        |                           |                   | <del></del>     |                 |                |              | 8             |
| ≅ĕl                                                                             | (Min > LF)                                      |          | dB          |                   |                           |                   |                 |                 |                |              | 27.2          |
| MÖ<br>MÖ<br>MÖ<br>MÖ<br>MÖ<br>MÖ<br>MÖ<br>MÖ<br>MÖ<br>MÖ<br>MÖ<br>MÖ<br>MÖ<br>M | S/N AT FADING                                   |          | 48          | 39.5              |                           | <del>j</del>      |                 |                 |                |              | 48.2          |
|                                                                                 | SZE AL CAUING                                   | _::      |             | 39.5              | 49.5                      |                   |                 |                 |                | 38.2         | 40.2          |
|                                                                                 | REMARKS                                         |          |             | 1                 |                           |                   |                 |                 |                |              |               |


Date : 18th Mor. 177


Agno River System

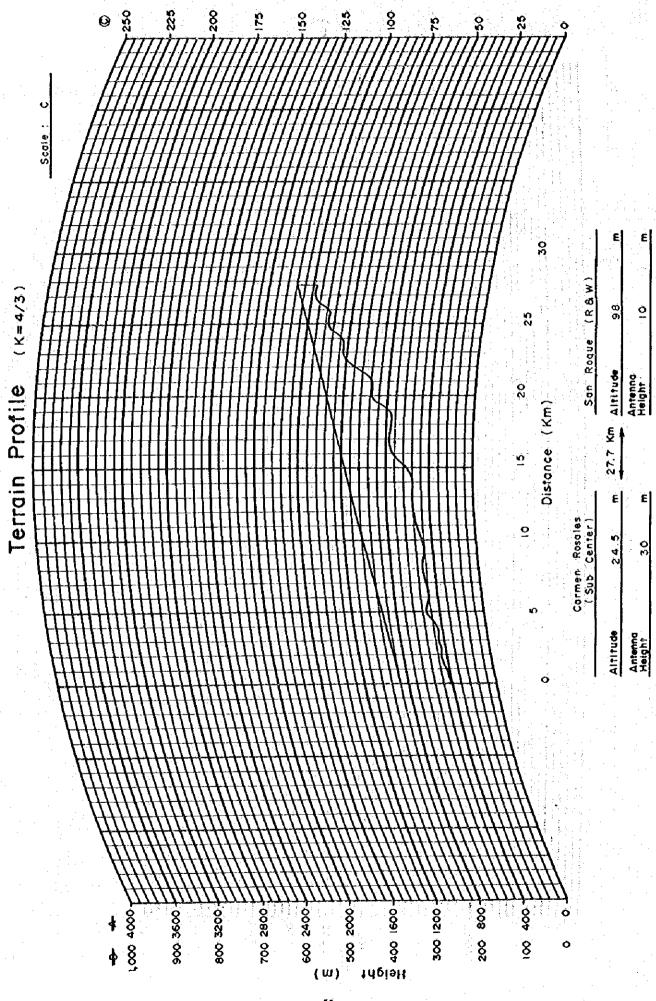
Mt. Sto. Tomos (Repeater) — Binga Dom (R&W)


|          | CALCULATION NO.                 |         | 3.1         | CALCULAT          |                                                  | CALCUL A<br>BEFORE                               | TED DATE     | DATE OF                                           |                                                  | DESIGNAL<br>DETERMIN |                                                  |
|----------|---------------------------------|---------|-------------|-------------------|--------------------------------------------------|--------------------------------------------------|--------------|---------------------------------------------------|--------------------------------------------------|----------------------|--------------------------------------------------|
| ┝        | SPAN                            |         |             | MI.SIO.           | VALUES _ Binga Dom                               | BEFURE                                           |              | -                                                 | -                                                |                      | TEST                                             |
| 1_       |                                 |         | <del></del> | (Repeater)        | (R&W):                                           | 20.24                                            | 480          | 2024                                              | 480                                              | 2024                 | 480                                              |
| 1—       | ALTITUDE                        | 11. 11. | m           | <u>2024</u><br>30 | <u>480</u>                                       | 10                                               | 10           | 10                                                | 10                                               | 30                   | 10                                               |
| <b>-</b> | ANTENNA HEIGHT                  | H1, H2  | m           | 30                |                                                  |                                                  |              | <del>-                                   </del>   |                                                  |                      |                                                  |
| -        | OUTLINE OF PROPAGATION PATH     | hi, h2  |             |                   |                                                  |                                                  |              |                                                   |                                                  |                      |                                                  |
| 1        | DICTANCE                        | D       | :Km         | l Ó               | 65                                               | 18.                                              | 65           | 18                                                | 65                                               | 18.                  | 65                                               |
| -        | DISTANCE                        |         |             |                   | YAGI 3E                                          |                                                  | YAGI 3E      |                                                   |                                                  | 3-STAGE              |                                                  |
|          |                                 | MODE    |             |                   |                                                  | V V                                              | V            | V                                                 | V                                                | V                    | V                                                |
| 1        | ANTENNA                         | POLARIZ |             | V                 | <u> </u>                                         | _ <u>v</u>                                       | <u> </u>     | <del>-</del>                                      | <del>                                     </del> | -                    | <del>                                     </del> |
|          |                                 | PATTE   |             | 1 C 7 C 2 A 3     | IAFREA A                                         | 60 012                                           | 50-2V        | 5D-2V                                             | 50-2V                                            | AFZE50-4             | AFZE50                                           |
| 1        | FEEDER                          | MODE    |             |                   | AFZE50-4                                         | 5D-2V                                            | 16           | 16                                                | 16                                               | 45                   | 15                                               |
| L        |                                 | LENGT   |             | 45                | 15                                               | 16                                               | 10           | 7                                                 | 9                                                | 10                   | 3                                                |
| 4-       | TRANSMITTING OUTPUT POWER       | Pt      | W           | 10                | 3                                                |                                                  | 2. 4         | - 10                                              |                                                  | -10                  |                                                  |
| 15       | PROPAGATION LOSS                | Lpf     | d₿          | -10               | 2. 9                                             | - 10                                             | 2.4          |                                                   |                                                  |                      |                                                  |
| 18       | SPHERICAL TERRAIN LOSS          | Lpp     | dВ          | ·                 |                                                  |                                                  |              |                                                   |                                                  |                      |                                                  |
| ROPAG    | TERRAIN REFLECTION LOSS         |         |             |                   |                                                  |                                                  |              | <del>                                      </del> |                                                  | <u> </u>             | ^                                                |
| 18       |                                 |         |             | - 1               | 2                                                | -1                                               | _            | 1                                                 |                                                  | - 1                  |                                                  |
| ATION    | SHADOW LOSS                     | Los     | đВ          |                   | 9                                                |                                                  | 9            | -                                                 | 9                                                |                      |                                                  |
| z        |                                 | ,       |             | - 2               | 2                                                | - 2                                              | 2            | - 2                                               | 2                                                | - a                  | 2                                                |
| ΙŅ       | COPOCCENIC MALUE                | 1.06    | 48          | <del></del>       |                                                  |                                                  | 1.9.         | 1                                                 | 9                                                |                      | . 9                                              |
| Š        |                                 | Lpc     | 48          | -145              | 4                                                | -145                                             |              | 143                                               |                                                  | -143                 | . 5                                              |
| -        | (TOTAL LOSS)                    | Lp      | 48          | 6                 | 8                                                | 8                                                | 8            | 8                                                 | 8                                                | 6                    | 8                                                |
| B        | ANTENNA GAIN                    | GA      | dB          | 0                 |                                                  |                                                  | -            | <del></del>                                       | <del>                                     </del> |                      | !                                                |
| 급        | AZIMUTHAL PATTERN LOSS          | Lo      | 00          |                   | ļ                                                |                                                  |              |                                                   | i                                                |                      | i                                                |
| EZ.      | ANTENNA H Y 8 LOSS              |         |             | -1.575            | 0.535                                            | -2                                               | - 2          | - 2                                               | - 2                                              | -1.575               | - 0.52                                           |
| P        |                                 |         |             | - 1,575           | -0.323                                           |                                                  |              |                                                   | <del> </del>                                     |                      | -                                                |
| I≧       | FILTER LOSS                     | ·       | 40          | 11.               | <u> </u>                                         | 1                                                | 2            | <u>-</u> -                                        | 5                                                | 1 1                  | .9                                               |
| Z        | TOTAL T                         | ·       | 48<br>48    | - 133             |                                                  | - 133                                            |              | -131                                              |                                                  | -13                  |                                                  |
| ┵        | (GRAND TOTAL)                   | L S     |             |                   | T                                                | 40                                               | 40           | 39.5                                              |                                                  | 34.8                 | 1 40                                             |
| _        | RANSMITTING OUTPUT POWER        | Pl      | d8m         | 34.8              | 40                                               | -40                                              | -93.4        | -88                                               | -93                                              | -96.8                | 1-91.6                                           |
|          | ECEIVING POWER LEVEL            | Pr      | dBm<br>dB u | - 98.7            | -93.5<br>19.5                                    | 100                                              | 19.6         | 25                                                | 20                                               | 16.2                 | 1 21                                             |
|          | e. (n. f. )                     | er      |             | 14.3              | 19.5                                             |                                                  | 13.0         |                                                   | 1                                                | 10.2                 | <del> </del>                                     |
| -        | COMING NOISE POWER LEVEL        | Prne    | dBm         |                   |                                                  | 7 7 7                                            |              | <b> </b> -                                        | <del> </del>                                     | 1.0                  | <u> </u>                                         |
|          | e.m.f.)                         | erne    | 48)         | <del></del>       | <del>                                     </del> |                                                  | <b>!</b>     |                                                   | <u>i</u>                                         |                      | i —                                              |
|          | ITERNAL NOISE LEVEL             | Prnl    | 485         |                   |                                                  |                                                  | ļ            | <del> </del>                                      | <b>!</b>                                         | <del> </del>         | ļ                                                |
|          | OISE INCREASE                   | Δη      | dB          |                   | <del> </del>                                     |                                                  | <u> </u>     |                                                   | 1                                                |                      | <del>!</del>                                     |
|          | TAL RECEIVING NOISE POWER LEVEL | Prn     | <b>68m</b>  |                   |                                                  |                                                  | <u> </u>     |                                                   | <b>!</b>                                         | -110                 | -110                                             |
|          | HRESHOLD LEVEL                  | Pth:    | d8m<br>d8   | -110              | j -110<br>l 9                                    |                                                  | <u> </u>     | <b></b>                                           |                                                  | 9                    |                                                  |
|          | RESTFACTOR                      | Cf      |             | 9                 | 16.5                                             | <b> </b>                                         | ,            | <b> </b>                                          | i                                                | 13.2                 | 4                                                |
|          | HRESHOLD MARGIN                 | Mih     | dB .        | 11.3              |                                                  | <del>                                     </del> | <del> </del> | <del> </del>                                      | <u> </u>                                         | 12                   | 15                                               |
|          | /N IMPROVEMENT                  | T CAN   | 4B          | 12                | 37.6                                             | <del></del>                                      | !            | 46                                                | 35                                               | 34.2                 | 39                                               |
|          | TANDARD S/N                     | S/N     | dB          | 32.3              |                                                  |                                                  |              | 1 7 8                                             | 1 33                                             |                      |                                                  |
| i E      | ADING VALUE PRESUMED            | LF      | dB          | -4                |                                                  |                                                  | 1            |                                                   | 1                                                | 8.3                  | 1 13.5                                           |
| ; I      |                                 |         |             |                   |                                                  | <b>=</b>                                         | -            |                                                   |                                                  | . 8.                 |                                                  |
| 11       | MIN > LF ) /N AT FADING         |         | dB<br>dB    | 27.4              | 32.6                                             |                                                  | <u> </u>     | - <del></del> -                                   | }                                                | 29.3                 | 34.                                              |








14gisH



0

Scale: B.

(K=4/3)



D

Binga Dam (R.A.W)

Mt. Sto Tomas (Repeater)

480

Km Antenna Height

Altitude 202.4 Antenna Height 30

C = 80 km

Scale : C

(火=4/3)

Date : 18th Mor. 177

Bicol River System

Naga (Sub-Center) — Barongay (W)

| _                                                            | NODE OF COMMUNICATION : SIMPLEX ME                         |                                       |           |               |                                                  |                    |              |                | D RÉLIAE                                 | HLITY:              | 99.9 (%)                                 |
|--------------------------------------------------------------|------------------------------------------------------------|---------------------------------------|-----------|---------------|--------------------------------------------------|--------------------|--------------|----------------|------------------------------------------|---------------------|------------------------------------------|
| Ċ                                                            | CALCULATION OF FADING VALUE PRESUM                         | ED:                                   | 0.1 (     | d8/Km) x      | d (Km)+                                          | <u>3</u> (dB)      | 1 St. 14. 2" | ing graph      | k Ethija N                               |                     | ojih sare i j                            |
|                                                              | CALCULATION NO.                                            |                                       |           |               | TED<br>N VALUES                                  | CALCUL A<br>BEFORE | TED DATE     | DATE OF        | AL TEST                                  | DESIGNAL<br>DETERMI | VALUES                                   |
|                                                              | SPAN                                                       |                                       |           |               | Barongay                                         |                    |              | _              | _                                        | AF.                 | TER TEST                                 |
|                                                              | ALTITUDE                                                   |                                       | m         | 2 2           | er} (W)                                          | 2                  | 1            | 2              | 1                                        | 2                   | <u> </u>                                 |
| Ŷ                                                            | ANTENNA HEIGHT                                             | HI, Ha                                |           | 30            | 10                                               | 10                 | 10           | 10             | 10                                       | 30                  | 10                                       |
| SPAN                                                         |                                                            | hi, hà                                | m         | 1             | ·                                                |                    |              |                |                                          |                     | ·                                        |
| 1                                                            |                                                            | · · · · · · · · · · · · · · · · · · · | *         | 1             | , —                                              |                    |              |                | ·—                                       | ·                   | -                                        |
| COND                                                         |                                                            |                                       |           | 1             |                                                  |                    |              |                |                                          |                     |                                          |
| õ                                                            | OUTLINE OF PROPAGATION PATH                                |                                       |           | i             |                                                  | ľ                  |              |                | 1000                                     |                     |                                          |
| NOIL                                                         |                                                            |                                       | 4.7       |               |                                                  | i                  |              |                | <del> </del>                             |                     |                                          |
| ž                                                            | DISTANCE                                                   | D                                     | Κm        | 11            | . 2                                              | 11.                | 2            | 11.            | 2                                        | 1, 201              | 2                                        |
| 1:                                                           |                                                            | MODE                                  | L         |               | YAGI 3E                                          |                    | YAGI 3E      |                |                                          |                     | YAGI 3E                                  |
|                                                              | ANTENNA                                                    | POLÁRIZ                               | ZATION    | V             | V                                                | V                  | V            | v              | V                                        | V V                 | V                                        |
|                                                              | ì                                                          | PATT                                  |           |               | <del>                                     </del> |                    | 3.5          |                |                                          |                     |                                          |
|                                                              |                                                            | MODE                                  | L         | AF7E50-4      | AFZESO-4                                         | 5D-2V              | 5D-2V        | 50-2V          | 50-2V                                    | ΔΕΖΕ5Ω - 4          | AFZE50-4                                 |
| ľ                                                            | FEEDER                                                     | LENGT                                 | H m       | 45            | 15                                               | 16                 | 16           | 16             | 16                                       | 45                  | 15                                       |
|                                                              | TRANSMITTING OUTPUT POWER                                  | Pl                                    | W         | 10            |                                                  | 10                 | 10           | 7              |                                          | 10                  |                                          |
|                                                              | PROPAGATION LOSS                                           | Lof                                   | dB        | - 91          | 8.5                                              | - 9                | 8. 5         | - 98           | 3.5                                      |                     | 3.5                                      |
|                                                              | SPHERICAL TERRAIN LOSS TERRAIN REFLECTION LOSS SHADOW LOSS |                                       |           | - 15          |                                                  | - 24               |              | -24            | 4.5                                      | -19                 | •                                        |
|                                                              | TERRAIN REFLECTION LOSS                                    | Lpp                                   | 48        |               |                                                  |                    |              |                |                                          |                     |                                          |
|                                                              | 6                                                          |                                       |           |               |                                                  |                    |              |                |                                          |                     |                                          |
|                                                              | 5 SHADOW LOSS                                              | •                                     | ا ہر ا    | :             |                                                  |                    |              |                |                                          |                     | 1. 1                                     |
| US.                                                          |                                                            | Los                                   | ₫₿        | l:            |                                                  |                    |              |                |                                          |                     |                                          |
| SPAN                                                         | CORRECTIVE VALUE                                           |                                       |           |               |                                                  |                    |              |                |                                          |                     |                                          |
| 2                                                            |                                                            | Lpc                                   | .dB       |               |                                                  |                    |              | -10            | )                                        | -1                  | 0                                        |
| Z.                                                           | (TÖTAL LOSS)                                               | Lρ                                    | dB        | - 117         | 7.5                                              | 12                 | 3            | -13            | 3                                        | -12                 | 7.5                                      |
| F0S:                                                         | ANTENNA GAIN                                               | GA                                    | dΒ        | 6             | 8                                                | 8                  | 8            | 8              | 8                                        | 6                   | 8                                        |
| S                                                            | AZIMUTHAL PATTERN LOSS                                     | Lò                                    | dB        | <u> </u>      | <b>.</b>                                         |                    |              |                | 10000                                    | - 10 as A           | <u> </u>                                 |
|                                                              | Z ANTENNA H Y 8 LOSS                                       |                                       |           |               | !                                                |                    |              |                |                                          |                     |                                          |
|                                                              | FEEDER LOSS                                                |                                       |           | -1.575        | -0.525                                           | - 2                | - 5          | <u>-2</u>      | s                                        | -1.575              | -0.525                                   |
|                                                              | FILTER LOSS                                                | ·                                     |           |               | i                                                | i                  |              |                |                                          |                     | <u> </u>                                 |
|                                                              | Z (TOTAL)                                                  | <del></del>                           | dВ        |               | 9                                                | 1                  |              |                | · · · · · · · · · · · · · · · · · · ·    | - 11                |                                          |
|                                                              | (GRAND TOTAL)                                              | Ls                                    | dB        | <u> </u>      |                                                  | !!                 |              | -13            | 21                                       |                     | 5.6                                      |
| į                                                            | TRANSMITTING OUTPUT POWER                                  | Pt                                    | d Bm      |               | 40                                               | 40                 | 40           |                | 38.5                                     | 30                  | 40                                       |
|                                                              | RECEIVING POWER LEVEL                                      | Pr                                    | dBm       | -75.6         | - 65.6                                           | i                  | - 71         |                | -82.5                                    | -85.6               | l – 75.6                                 |
| ý                                                            | (e, m. f.)                                                 | er                                    | dΒμ       | 37.4          | 47.4                                             |                    | 42           | <u> </u>       | 30.5                                     | 27.4                | 37.4                                     |
| . <del>2</del>                                               | INCOMING NOISE POWER LEVEL                                 | Prne                                  | dBm       | -             | <b>}</b> ——↓                                     |                    |              |                | 1 3 1 1 1                                |                     | i                                        |
| δ                                                            | (e.m.f.)                                                   | erne                                  | 48µ       | *             |                                                  |                    |              |                |                                          |                     | <u> </u>                                 |
| ALCU                                                         | INTERNAL NOISE LEVEL                                       | Prni                                  | dBu       | <del></del> . | <u> </u>                                         | i                  | <u> </u>     |                | 7.50                                     |                     | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |
| È                                                            | NOISE INCREASE                                             | $\Delta n$                            | 4B        |               | <b>!</b> -                                       |                    |              |                |                                          |                     |                                          |
| Þ                                                            | TOTAL RECEIVING NOISE POWER LEVEL                          | Prn                                   | dBm       |               | 11.                                              |                    |              |                |                                          | 110                 | -110                                     |
| NOIL                                                         | THRESHOLD LEVEL CRESTFACTOR                                | Pih Cf                                | dBm<br>dB | -110          | -110                                             |                    |              |                | 15                                       | -110<br>9           | -110                                     |
| z                                                            | THRESHOLD MARGIN                                           |                                       | - dB      | 9<br>34.4     | 9 44.4                                           | 1                  |              | <del>'</del> i |                                          | 24.4                | 34.4                                     |
|                                                              | S/N IMPROVEMENT                                            | Mip I                                 | dB        | 12            | 12 :                                             | <del> j</del>      |              | i              | 1 4 4 4                                  | 12                  | 12                                       |
| }                                                            | STANDARD S/N                                               | S/N                                   | d8        | 55.4          | 65.4                                             | <u>!</u>           | <del></del>  | !              |                                          | 45.4                | 55.4                                     |
| ٤                                                            |                                                            | LF L                                  | dB        | - 4.          |                                                  | <u> </u>           |              |                |                                          | - 4.                |                                          |
| ∟⊊L                                                          | (MID > LF)                                                 |                                       | ₫₿        | 30.3          |                                                  | 1 17 1             |              | 1              | 3 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20.3                |                                          |
| 좋었                                                           |                                                            |                                       | dB        | 51.3          |                                                  |                    |              |                |                                          | 41.3                | 51.3                                     |
|                                                              | ESZN AT FAOING                                             |                                       |           |               |                                                  |                    |              |                |                                          |                     |                                          |
| A CO                                                         |                                                            | 1                                     |           | 1             |                                                  | <u>- 19 (i</u>     | I            |                |                                          |                     |                                          |
| MACH<br>MACH<br>MACH<br>MACH<br>MACH<br>MACH<br>MACH<br>MACH | S/N AT FADING REMARKS                                      |                                       |           |               |                                                  |                    |              | <b>.</b>       |                                          | 41.3                |                                          |

Dole; 18th Mor. 177

Bicol River System

### Naga (Sub-Center) — Ocompo (R)

| -           | LOULATION OF FADING VALUE FRESUM           |            | · · · · · · | 307 Kin7 A           | <u> </u>                                         | <u> </u>                                         |                                                  |                                                  | <u></u>            |                        |                                                  |
|-------------|--------------------------------------------|------------|-------------|----------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------|------------------------|--------------------------------------------------|
|             | CALCULATION NO.                            |            |             | CALCULAT<br>DESIGN   | ED<br>VALUES                                     | CALCULA<br>BEFORE                                |                                                  | DATE OF<br>ACTUA                                 |                    | DESIGNAL<br>DETERMIN   |                                                  |
| , fr        | SPAN                                       |            | ٠.          | Nàga —<br>(Sub-Cente | Ocompo                                           | <del>-</del>                                     |                                                  | =                                                | -                  | , ,, ,,                | EN ILOI                                          |
| 1 44        | ALTITUDE                                   | :          | m           | 2                    | 53                                               | 2                                                | 53                                               | 2                                                | 53                 | 5                      | 53                                               |
| ک           |                                            | Hi, H2     | m           | 30                   | 10                                               | 10                                               | 10                                               | 10                                               | 10                 | 30                     | 10                                               |
| D<br>A<br>Z |                                            | hı, he     | នា          |                      |                                                  | <u> </u>                                         |                                                  |                                                  |                    |                        |                                                  |
| V CONDITION | OUTLINE OF PROPAGATION PATH                |            |             | -                    |                                                  |                                                  |                                                  |                                                  |                    |                        |                                                  |
| ž           | DISTANCE                                   | Ò          | Km          |                      | 35                                               | 23.                                              |                                                  | 23                                               |                    | 23.                    |                                                  |
| [           |                                            | MODE       | L           | CO-LINEAR            | YAGI 3E                                          |                                                  |                                                  |                                                  |                    | 3 - STAGE<br>CO-LINEAR |                                                  |
|             | ANTENNA                                    | OLARIZ     |             | ٧                    | V                                                | ٧                                                | V                                                | V                                                | V                  | V                      | <u> </u>                                         |
|             |                                            | PATTE      |             | 2                    |                                                  | 4 - 4                                            | 50 011                                           | 60 34                                            | 5D-2V              | AFZE50-4               | AE 2550 -                                        |
| .           | FEEDER                                     | MODE       |             |                      | AFZE50-4                                         | 50-2V                                            | 50-2V                                            | 50-2V                                            | 16                 | 45                     | 15                                               |
| - 1         |                                            | LENGT:     | H. m<br>W   | 10                   | 15                                               | 10                                               | 10                                               | 7                                                | 9                  | 10                     | <del>                                     </del> |
|             | TRANSMITTING OUTPUT POWER PROPAGATION LOSS |            | dB          | - 10                 | L                                                |                                                  | 4.6                                              | - 10                                             | 4.6                | 10                     | 4.6                                              |
| •           | V ASSESSMENT TOOPSMENT LOCK                | L'pf       | UB          | - 6                  |                                                  | -1                                               |                                                  | -1                                               |                    | 8                      | 3                                                |
| . 1         | TERRAIN REFLECTION LOSS                    | Lpp        | d B         |                      |                                                  |                                                  |                                                  |                                                  |                    |                        |                                                  |
| •           | TERRAIN REFLECTION LOSS  SHADOW LOSS       |            |             |                      |                                                  |                                                  |                                                  |                                                  |                    | ,                      | Ė.                                               |
| 7.          | SHADOW LOSS                                | Los        | dB          | - 7.                 | 5                                                | 1.                                               | 9                                                | 1                                                | 9                  | - 7.                   | *                                                |
|             |                                            | _,         |             | - 8                  | .5                                               |                                                  | 8.5                                              | <b>.</b> – .                                     | 8.5                | - 8                    | . 5                                              |
| SPAN        | CORRECTIVE VALUE                           | Lpc        | dB          |                      |                                                  |                                                  |                                                  | - 12                                             | . 4                | -12                    | . 4                                              |
|             | (TOTAL LOSS)                               | Lpc        | dB          | - 12                 | 8 6                                              | - 13                                             | 7. 1                                             | - i4                                             | 9.5                | - 14                   | T.                                               |
| 5           |                                            | GA         | dB          | 6                    | 8                                                | 8                                                | 8                                                | 8                                                | 8                  | 6                      | 8                                                |
| SS          | ANTENNA GAIN AZIMUTHAL PATTERN LOSS        | Lo         | dB          |                      |                                                  |                                                  |                                                  |                                                  | <u> </u>           | 2.00                   | İ                                                |
|             | Z ANTENNA H Y B LOSS                       | · .        |             |                      |                                                  |                                                  | <u>i</u>                                         | 1 1 1                                            | <u> </u>           |                        |                                                  |
|             | FEEDER LOSS                                |            |             | -1.575               | -0.525                                           | - 2                                              | -2                                               | -2                                               | - 2                | -1.575                 | -0.52                                            |
|             | & FILTER LOSS                              |            |             |                      |                                                  |                                                  | i                                                | <u> </u>                                         | <b>1</b>           |                        |                                                  |
|             | Z (TOTAL)                                  |            | 4B          | 4                    | 9                                                | 1                                                |                                                  |                                                  | 2                  |                        | 9                                                |
|             | (GRAND TOTAL)                              | Ls         | dB          | -11                  |                                                  | - 15                                             |                                                  | -13                                              |                    | - 12                   | 40                                               |
|             | TRANSMITTING OUTPUT POWER                  | PL         | d Bm        | 30                   | 40                                               | 40                                               | 40                                               | 39.5                                             |                    | 30<br>- 99.1           | -89                                              |
|             | RECEIVING POWER LEVEL                      | Pr         | d Bm        | -86.7                | -76.7                                            | <u> </u>                                         | -85<br>28                                        | - 89. 5<br>23.5                                  | - 99<br>        4  | L                      | 23.                                              |
| ွှ်         | (e. m. f.)                                 | - 19       | 480         | 26.3                 | 36.3                                             |                                                  | 20                                               | 23.3                                             | <del>' ' ' '</del> |                        | !                                                |
| ì           | INCOMING NOISE POWER LEVEL                 | Prne       | dBp<br>dBp  | <del>-</del>         | <del>                                     </del> | -                                                | <del>                                     </del> | <del> </del>                                     | <del> </del>       |                        | 1                                                |
| ξ.          | (e.m.f.)                                   | erne       | 480         |                      |                                                  |                                                  | !                                                |                                                  | 1                  |                        |                                                  |
| CALCI       | INTERNAL NOISE LEVEL NOISE INCREASE        | Prol<br>An | dB          |                      | <u> </u>                                         | <del>                                     </del> | <del> </del>                                     |                                                  | 1                  | 10.0                   |                                                  |
| ۲           | TOTAL RECEIVING NOISE POWER LEVEL          | Pro        | d Bm        |                      | j                                                |                                                  | <u>.                                      </u>   |                                                  |                    |                        |                                                  |
| 4           | THRESHOLD LEVEL                            | Pih        | d8m         | -110                 | -110                                             |                                                  | ]                                                |                                                  |                    | -110                   | 110                                              |
| ATION       | CRESTFACTOR                                | C1         | 48          | 9                    | 9                                                |                                                  | l                                                |                                                  | !                  | 9                      | 1 9                                              |
| -           | THRESHOLD MARGIN                           | Mth        | dВ          | 23.3                 | 33.3                                             |                                                  | .<br>                                            | <u> </u>                                         | 1 1111             | 10.9                   | 20.9                                             |
| •           | S/N IMPROVEMENT                            | 1          | dB.         | 12                   | 12                                               | ļ                                                |                                                  | 4.7                                              | i                  | 12                     | 12                                               |
| •=          | STANDARD S/N                               | S/N        | 48          | 44.3                 | 54.3                                             | <b> </b>                                         | <u> </u>                                         | 43                                               | i 46               | 31.9<br>- 5            |                                                  |
| Ę           | FADING VALUE PRESUMED                      | LF         | 48          | - 5                  |                                                  | <u> </u>                                         |                                                  |                                                  | 1                  |                        | 1 15                                             |
| 39C         | (Mih > LF)                                 | <u> </u>   | 48          | 18                   | 1 28                                             |                                                  | i                                                | <del>                                     </del> | <del>i</del>       | 5.6<br>26.6            | 36                                               |
| ₹"          | S/N AT FADING                              |            | 48          | 39                   | 4.3                                              | 1 .                                              | 1 1 1                                            | 1                                                | j .                | 1 50.0                 | . ~~.                                            |

Dote; 18th Mar. '77

Bicol River System

#### Naga (Sub-Center) --- Ombao (R&W)

MODE OF COMMUNICATION: SIMPLEX METHOD OF MODULATION: FM (MPEDANCE: 50 (A) SPECIFIED RELIABILITY: 99.9 (%)
CALCULATION OF FAOING VALUE PRESUMED: 0.1 (d8/Km)x d (Km) + 3 (d8)

|            | <del></del>                        |         |             |          |                    |                                         |                  |              |                  | <del>,</del>                            |          |
|------------|------------------------------------|---------|-------------|----------|--------------------|-----------------------------------------|------------------|--------------|------------------|-----------------------------------------|----------|
|            | CALCULATION NO.                    |         |             |          | VALUES             | CALCUL A<br>BEFORE                      | TED DATE<br>TEST | DATE OF      | AL TEST          | DETERMIN                                |          |
|            | SPAN                               |         |             | Naga -   | - Ombao<br>r)(RBW) | -                                       |                  | _            | _                | AF.                                     | TER TEST |
|            | ALTITUDE                           | 7 1     | m           | 2        | 10                 | 2                                       | 10               | 2            | 10               | 2                                       | 10       |
| Ϋ́         | ANTENNA HEIGHT                     | Hı, Ha  | m           | 30       | 10                 | 10                                      | 10               | 10           | 10               | 30                                      | 10       |
| SPAN       |                                    | hi, hz  | rn          |          |                    |                                         | 4                |              |                  |                                         |          |
| 1          |                                    |         | <del></del> |          |                    |                                         |                  |              | <del></del>      | <del></del>                             |          |
| CONDITION  | OUTLINE OF PROPAGATION PATH        |         |             |          |                    | 1                                       |                  |              | 4 4 15           |                                         |          |
| 불          |                                    | 1.14    |             |          | <del></del>        |                                         |                  |              | <del></del>      |                                         | }        |
| ĮΣ         | DISTANCE                           | 0       | Km          |          | . 6                | 17.                                     | 6                | 17           | . 6              | 17                                      | 6        |
| i          |                                    | MODE    | L .         | 3-STAGE  | YAGI 3E            | YAGI 3E                                 | YAGI 3E          | YAGI 3E      | YAGI 3E          | 3-STAGE                                 | YAGI 3E  |
|            | ANTENNA                            | POLARIZ | ATION       | V        | V                  | V                                       | V                | ٧            | V                | V                                       | v        |
|            |                                    | PATTE   | RN          |          |                    |                                         |                  |              |                  |                                         |          |
|            |                                    | MODE    | L .         | AFZE50-4 | AFZE50-4           | 50-2V                                   | 5D-2V            | 50-2V        | 50-2V            | AFZE50-4                                | AFZE50-4 |
| ł          | FEEDER                             | LENGT   | H m         | 45       | 15                 | 16                                      | 16               | 16           | 16               | 45                                      | 15       |
| 1          | TRANSMITTING OUTPUT POWER          | Pt      | W           | 10       | ļ                  | 10                                      | 10               | 7            | 9                | 10                                      | 1        |
|            | _ PROPAGATION LOSS                 | Lpf     | dB          | – IÒ     | 2.5                | -10                                     | 2.5              | ~ 10         | 2.5              | <b>– 10</b>                             | 2.5      |
|            | SPHERICAL TERRAIN LOSS             |         | 10          | - 2      | 0.3                | - 2                                     | 8                | - 2          | 8                | - 2·                                    | 0.3      |
|            | TERRAIN REFLECTION LOSS            | Lpp     | 48          |          |                    |                                         | 1 1 1            |              |                  |                                         | + 11 F . |
|            | 8                                  |         |             |          |                    | 1                                       |                  |              |                  |                                         | 1-       |
|            | SHADOW LOSS                        |         | dВ          | - 4.     | 5                  |                                         | 5                |              | 5                |                                         | 4.5      |
| S          | Ž                                  | Lps     | 05          |          |                    |                                         |                  |              |                  |                                         |          |
| NAG        | [5]                                | 1.      |             |          |                    |                                         |                  |              |                  |                                         |          |
| 2          | CORRECTIVE VALUE                   | Lpc     | ₫B          |          |                    | 1 1 1                                   | 54.1             | <del>-</del> | *                |                                         |          |
| Į g        | (TOYAL LOSS)                       | Lp      | ₫ <u>B</u>  | - 127    | . 3                | - 135                                   |                  | -136         |                  | 5.5.                                    | 3.3      |
| ros:       | ANTENNA GAIN                       | GA      | dB          | 6        | 8                  | 8                                       | 8                | 8            | 8                | 6                                       | . 8      |
| <i>V</i> , | AZIMUTHAL PATTERN LÓSS             | Lo      | dB          |          |                    |                                         |                  |              |                  |                                         |          |
|            | Z ANTENNA H Y B LOSS               |         |             |          |                    |                                         |                  |              |                  | 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 - 2 -  |
| 1          | FEEDER LOSS                        | ·       |             | -1.575   | - 0.525            | -5                                      | ~ 2              | - 2          | -2               | -1.575                                  | -0.525   |
|            | S FILTER LOSS                      |         |             | ليسب     |                    | ļi                                      |                  |              |                  | 1. V                                    |          |
|            | Z (TOTAL)                          |         | dB          | 11.      |                    | 1                                       |                  | 1            |                  |                                         | 9        |
| L          | (GRAND TOTAL)                      | L s     | 48          | -11      |                    | - 12                                    |                  |              | <b>1.5</b>       | - 11                                    |          |
| 1          | TRANSMITTING OUTPUT POWER          | Pt      | d Bm        | 30       | 40                 | 40                                      | 40               | 39.5         | 36.5             | 30                                      | 40       |
|            | RECEIVING POWER LEVEL              | Pr      | d Bm        | -85.4    | -75.4              |                                         | -83.5            | - 85         | -85              | -86.4                                   |          |
| Ś          | (e.m.f.)                           | Ċf      | dВµ         | 27.6     | 37.6               |                                         | 29.5             | 28           | 28               | 26.6                                    | 36.6     |
| ž          | INCOMING NOISE POWER LEVEL         | Prne    | o Bm        |          |                    |                                         |                  |              | 15.1 No. 1 No. 1 |                                         |          |
| .0         | (e.m.f.)                           | erne    | dBپ         |          |                    | 1                                       | 1122             |              |                  | 1                                       |          |
| ΙĔΙ        | INTERNAL NOISE LEVEL               | Prol    | dBu         |          | ļ,                 |                                         |                  |              |                  |                                         |          |
| CALCUL     | NOISE INCREASE                     | _Δη     | dB          |          |                    | <u> </u>                                |                  |              |                  |                                         | 1-:      |
|            | TOTAL RECEIVING NOISE POWER LEVEL  | Prò     | dBm         | i        | 110                |                                         |                  |              | <u> </u>         | -110                                    | - \$ 2 0 |
| 6          | THRESHOLD LEVEL CRESTFACTOR        | Pth     | 48m<br>8b   | -110 j   | 9                  |                                         |                  |              | · · · · · ·      | 9                                       | 9        |
| Ž          | THRESHOLD MARGIN                   | Cf      |             |          |                    |                                         |                  |              |                  | 23.6                                    | 33.6     |
| ! !        |                                    | Mih     | d8          | 24.6     | 34.6               |                                         |                  |              | * : -            | 12                                      | 12       |
|            | S/N IMPROVEMENT                    | I       | 48          |          | 12                 |                                         |                  | 50           | 5.0              |                                         |          |
|            | STANDARD S/N FADING VALUE PRESUMED | S/N     | 48          | 45.6     | 55.6               |                                         |                  | 30           | 50               | 44.6                                    | 54.6     |
| ₹8         |                                    | LF      | dB          | 4.       |                    |                                         |                  |              | <u> </u>         |                                         |          |
| MENT       | (Mih > LF)                         |         | 48          | 19.8     | 29.8               |                                         |                  |              |                  | 18.8                                    | 28.8     |
|            | S/N AT FADING                      |         | 48          | 40.8     | 50.8               | نــــــــــــــــــــــــــــــــــــــ |                  | i            | ٠                | 39.8                                    | 49.8     |
|            | REMARKS                            |         | 1           | -:       |                    |                                         | į                |              | •                |                                         |          |
|            |                                    |         |             |          |                    |                                         |                  |              |                  |                                         |          |

MODE OF COMMUNICATION : SIMPLEX METHOD OF MODULATION : FM IMPEDANCE : 50 (Q)

Date: 18th Mar. 177

SPECIFIED RELIABILITY : 99.9 (%)

**Bicol River System** 

### Naga (Sub-Center) — Sipocot Hill (Repeater)

| CA          | ALCULATION OF FADING VALUE PRESUN | EO:       | 0,1 (      | d8/Km) x     | d (Km) t                                        | <u>3</u> (dB)                         |                                                  |               | <u> </u>                                         |                                                  |            |
|-------------|-----------------------------------|-----------|------------|--------------|-------------------------------------------------|---------------------------------------|--------------------------------------------------|---------------|--------------------------------------------------|--------------------------------------------------|------------|
|             | CALCULATION NO.                   |           |            |              | VALUES                                          | BEFORE                                | TED DATE<br>TEST                                 | DATE OF ACTUA | AL TEST                                          | DESIGNAL<br>DETERMIN<br>AFT                      |            |
|             | SPAN                              |           |            | Nago         | Sipocot Hi!!<br>(Repeater)                      | -                                     | <del></del> .                                    | · -           |                                                  | 174                                              | 7 17       |
|             | ALTITUÓE                          | I         | m          | 2            | 100                                             | 2                                     | 100                                              | S             | 100                                              | _ 2                                              | 100        |
| Ω           | ANTENNA HEIGHT                    | HI, He    | ľή         | 30           | 30                                              | 10                                    | 10                                               | 10            | 10                                               | 30                                               | 30         |
| PAN         |                                   | hi, h2    | m          | <u> </u>     | ·                                               |                                       | · !                                              |               |                                                  |                                                  | · <u> </u> |
| NOITION D   | OUTLINE OF PROPAGATION PATH       |           |            |              |                                                 |                                       |                                                  |               |                                                  |                                                  |            |
| န္          | DISTANCE                          | , O,      | Km         |              | 85                                              |                                       | 85                                               | 27.           | 85                                               | 27                                               | 85         |
| 11.         |                                   | MODE      | L          | 3-STAGE      | YAGI 3E                                         | YAGI 3E                               | YÁGI 3E                                          | YAGI 3E       | YAGI 3E                                          | 3-STAGE<br>CO-LINEAR                             | YAGI 3E    |
| - 1         | ANTENNA                           | POLARIZ   | ATION      | ٧            | ٧                                               | V                                     | ٧                                                | V             | .V                                               | V                                                | V          |
|             |                                   | PATTE     | RN         |              |                                                 |                                       |                                                  |               |                                                  |                                                  |            |
|             |                                   | MODE      | L          | AFZE50-4     | AFZE50-4                                        | 5D-2V                                 | 50-2V                                            | 5D-2V         | 50-2V                                            | AFZE50-4                                         | AFZE50-4   |
|             | FEEDER                            | LENGT     | Hm         | 45           | 45                                              | 16                                    | 16                                               | 16            | 16                                               | 45                                               | 45         |
|             | TRANSMITTING OUTPUT POWER         | Pt        | W          | .10.         | 10                                              | 10                                    | 10                                               | 7             | 7                                                | 10                                               | - 10       |
|             | PROPAGATION LOSS                  | Lpf       | 48         | - 10         | 6.5                                             | - 10                                  | 6.5                                              | - 10          |                                                  | - 10                                             | 6.5        |
|             | SPHERICAL TERRAIN LOSS            |           | 46         |              |                                                 | -1                                    | 0                                                | - 1           | <u> </u>                                         | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1           |            |
|             | TERRAIN REFLECTION LOSS           | Lpp       | 48         |              |                                                 |                                       |                                                  |               |                                                  |                                                  |            |
|             | ရို                               |           |            |              |                                                 | 1                                     | •                                                | _ :           |                                                  |                                                  | 2          |
|             | SHADOW LOSS                       |           | - 20       | - s          | <b>!</b>                                        | - :                                   | 3                                                |               | 3                                                |                                                  | <b>-</b>   |
| S           | SHADOW LOSS                       | Los       | 4B         | <b>i</b> :   |                                                 |                                       |                                                  |               |                                                  |                                                  |            |
| PA          | 5                                 |           |            |              |                                                 | ļ                                     |                                                  |               | ·                                                | - 2                                              |            |
| 2           | & CORRECTIVE VALUE                | Lpc       | 48         |              |                                                 | <u> </u>                              | <u> </u>                                         | - 2<br>- 13   | <del></del>                                      | - 126                                            |            |
| 5           | (TOTAL LOSS)                      | Lp        | 48         | - 108        |                                                 | 11                                    |                                                  | <del> </del>  | 8                                                | 6                                                | 6          |
| S           | ANTENNA GAIN                      | GA        | 48         | 6            | 6                                               | 8                                     | 8                                                | 8             | -                                                |                                                  |            |
| S           | AZIMUTHAL PATTERN LOSS            | Lo        | 48         |              |                                                 |                                       | ļ                                                |               | <del> </del>                                     |                                                  | [<br>!     |
| 1.          | I Z I ANTENNA H Y B LOSS          |           | ļ          |              |                                                 |                                       | - 2                                              | - 2           | - 2                                              | -L 575                                           | - 1.575    |
|             | FEEDER LOSS                       |           |            | -1.575       | -1.575                                          | - 2                                   |                                                  |               | ļ                                                | 1.0.0                                            |            |
|             | g FILTER LOSS                     |           |            | <u></u>      | <u></u>                                         |                                       | 2                                                | <sub>-</sub>  | 2                                                | 8                                                | 9          |
|             | Z (TOTAL)                         |           | 48         | 8.           |                                                 | - 10                                  |                                                  |               | 7. 5                                             | 1                                                | 9.6        |
| <u> </u>    | (GRANO TOTAL)                     | Ls        | dB.        | - 99         | ·                                               |                                       | 40                                               | 38.5          |                                                  | 40                                               | 40         |
|             | TRANSMITTING OUTPUT POWER         | Pt        | d8m        | 40           | 40                                              | 40                                    | -67.5                                            | - 89          | 30.5                                             | - 79.6                                           | -79.6      |
|             | RECEIVING POWER LEVEL             | Pr        | d Bm       | - 59.6       | - 59.6                                          |                                       | 45.5                                             | 24            |                                                  | 33.4                                             | 33.4       |
| ý           | (e. m. f. )                       | 61        | dBu        | 53.4         | 53.4                                            |                                       | 1 43.5                                           |               | 120                                              |                                                  | !          |
| 2           | INCOMING NOISE POWER LEVEL        | Proe      | dBm<br>dBm |              |                                                 |                                       | <del>                                     </del> | <b> </b>      | <del> </del>                                     | <del>                                     </del> | I          |
| ၂           | (e m, f )                         | erne      | 48,        | <b> </b> -   |                                                 | <del> </del>                          | <del>                                     </del> |               | <del>                                     </del> |                                                  |            |
| Ę           | INTERNAL NOISE LEVEL              | Prol      | 48h        | <del> </del> | <u>!</u>                                        | · · · · · · · · · · · · · · · · · · · | <del> </del>                                     | <del> </del>  | <del>i :</del>                                   | 1                                                |            |
| اغ          | NOISE INCREASE                    | Δn        | d8m        |              | <del>i</del>                                    | <del> </del>                          | <u> </u>                                         | 7 / 32        | !                                                |                                                  | 1          |
| Þ           | TOTAL RECEIVING NOISE POWER LEVEL | Prn       | dBm        | -110         | -110                                            | <b> </b>                              | 1                                                |               |                                                  | -110                                             | -110       |
| ᇹ           | THRESHOLD LEVEL CRESTFACTOR       | Pih<br>Cf | 98         | 9            | <del>                                    </del> | 1                                     | 1                                                |               | i                                                | 9                                                | 9          |
| ž           | THRESHOLD MARGIN                  | Mth       | 68         | 50.4         | 50.4                                            | 1                                     | Ţ i                                              | 1             | 1 1                                              | 30.4                                             | 30.4       |
|             | S/N IMPROVEMENT                   | I I       | 48         | 12           | 12                                              |                                       | <u> </u>                                         |               |                                                  | 12                                               | 12         |
| . 7         | STANDARÓ S/N                      | 5/11      | dB         | 71.4         | 71.4                                            | 62 1 15                               | 19.7                                             | 45            | 45                                               | 51.4                                             | 51.,4      |
|             | FADING VALUE PRESUMED             | LF        | dB         | 2 - 5        |                                                 |                                       |                                                  |               | 1 1 st 1                                         | 5                                                |            |
| <u>∡</u> 8  |                                   |           | dB         | 44.6         |                                                 | 1.3                                   | 1                                                |               | T .                                              | 24.6                                             | 24.6       |
| MÖN<br>T    | CALL AT CASINO                    |           | 48         | 65.6         | 65.6                                            | <del> </del>                          | 1                                                | <del> </del>  | 1                                                | 45.6                                             | 45.6       |
| <u>-i  </u> | S/N AT FAOING                     |           |            | 1            | 1 0 3.0                                         | <del> </del>                          | L                                                | <del> </del>  | بــــــــــــــــــــــــــــــــــ              | 1                                                |            |
|             | REMARKS                           |           |            |              |                                                 |                                       |                                                  |               |                                                  |                                                  |            |

Date : 18th Mor. 177

Bicol River System

Naga (Sub-Center) ——— Iraga (Repeater)

| MODE OF COMMUNICATION : SIMPLEX METHOD OF MODULATION : FM IMPEDANCE : 50 (1) SPECIFIED RELIABILITY : 99.9 (%)  CALCULATION OF FADING VALUE PRESUMED : 0,1 (d8/Km)x d (Km) + 3 (dB) |                 |                                              |             |           |                                         |                                                |                   |             |                                       |              |                                                  |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------|-------------|-----------|-----------------------------------------|------------------------------------------------|-------------------|-------------|---------------------------------------|--------------|--------------------------------------------------|----------------|
|                                                                                                                                                                                    |                 |                                              |             |           |                                         |                                                |                   |             |                                       |              |                                                  |                |
|                                                                                                                                                                                    | CALCULATION NO. |                                              |             |           |                                         | CALCULATED CALCULATE<br>DESIGN VALUES BEFORE T |                   |             | DATE OF                               | F<br>AL TEST | DESIGNAL<br>DETERMIN                             | VAL            |
| 1                                                                                                                                                                                  | L               | SPAN                                         |             |           | Naga — Iraga<br>(Sub-Center) (Repeater) |                                                |                   |             |                                       |              | AF                                               | TER TEST       |
|                                                                                                                                                                                    | ALTITUDE        |                                              |             | m         | E                                       | 42                                             | 2                 | 42          | 2                                     | 42           | 2                                                | 42             |
| Š                                                                                                                                                                                  |                 | ANTENNA HEIGHT                               | HI, H2      |           | 30                                      | 30                                             | 10                | 10          | 10                                    | 10           | 30                                               | 30             |
| SPAN                                                                                                                                                                               | L               |                                              | hı, he      | m         | 1                                       |                                                |                   |             |                                       | <del></del>  | <del></del>                                      | - <del> </del> |
| CONDITION                                                                                                                                                                          |                 | OUTLINE OF PROPAGATION PATH                  |             |           |                                         |                                                | 30                |             |                                       |              |                                                  |                |
| Įž                                                                                                                                                                                 | [[              | DISTANCE                                     | D           | Km        | 33                                      | 3.6                                            | 3.3               | 3.6         |                                       | 3. 6         | 33                                               | 3.6            |
| 1                                                                                                                                                                                  |                 |                                              | MÓDE        | Ĺ         |                                         |                                                |                   | YAGI 3E     |                                       |              | 3-STAGE<br>CO-LINEAR                             | YAGI 3E        |
|                                                                                                                                                                                    | ,               | ANTENNA                                      | POLARIZ     | MOITAS    | V                                       | ٧                                              | V                 | ν           | V                                     | V            | V                                                | v              |
|                                                                                                                                                                                    | L               |                                              | PATTERN     |           |                                         | !                                              |                   | 1           |                                       |              | [                                                | <del></del>    |
|                                                                                                                                                                                    | ٦,              | EEÔER                                        | MODE        | L         | AFZE50-4                                | AF2E50-4                                       | 50-2V             | 5D-2V       | 50-2V                                 | 50-2V        | AFZE50-4                                         | AFZE50-4       |
| 1                                                                                                                                                                                  | <u> </u>        |                                              | LENGT       | H m       | 45                                      | 45                                             | 16                |             | 16                                    | 16           | 45                                               | 45             |
| <b></b> _                                                                                                                                                                          | 1               | RANSMITTING OUTPUT POWER                     | Pt          | W         | 10                                      | 10                                             | ΙÒ                | 10          | 7                                     | 7            | 10                                               | 10             |
|                                                                                                                                                                                    | 77              | PROPAGATION LOSS                             | Lof         | dΒ        | - IĆ                                    |                                                | - 10              |             | - IĆ                                  |              | - 10                                             |                |
|                                                                                                                                                                                    | ð               | SPHERICAL TERRAIN LOSS                       | Lpp         | 48        |                                         | 7                                              |                   | 19          | _ [                                   | 19           |                                                  | 7              |
|                                                                                                                                                                                    | Ď               | TERRAIN REFLECTION LOSS                      |             |           |                                         |                                                | <u> </u>          |             |                                       |              | ļ                                                |                |
| SPAN                                                                                                                                                                               | GATION LC       | SHADOW LOSS                                  | Lps         | đВ        | · 6                                     | 5                                              | - 9<br>- 6<br>- 6 |             | - 9<br>- 6<br>- 6                     |              | - 6<br>- 6<br>- 7                                |                |
| ź                                                                                                                                                                                  | SS              | CORRECTIVE VALUE                             | Lpc         | dB        |                                         |                                                |                   | 1000        | 3.                                    | 5            | 3.                                               | 5              |
|                                                                                                                                                                                    | ĽÏ              | (TOTAL LOSS)                                 | Lρ          | dВ        | - 13                                    | 5 4                                            | - 14              | 8           | -144.5                                |              | - 130                                            |                |
| ပ္ပြင္                                                                                                                                                                             | ₽               | ANTENNA GAIN                                 | GA          | dВ        | 6                                       | 6                                              | 8                 | 8           | 8                                     | 8            | 6                                                | 6              |
| Ġ                                                                                                                                                                                  | 揙               | AZIMUTHAL PATTERN LOSS                       | Lo          | 4B        |                                         |                                                |                   |             |                                       |              | [                                                |                |
|                                                                                                                                                                                    | 3               | ANTENNA H Y B LOSS                           | 1.          |           |                                         |                                                |                   | 1.          | ]                                     | 1            |                                                  |                |
|                                                                                                                                                                                    | Þ               | FEEDER LOSS                                  |             |           | -1.575                                  | -1.575                                         | Ż                 | 2           | 2                                     | - 2          | -1.575                                           | -1.575         |
|                                                                                                                                                                                    | 8               | FILTER LOSS                                  |             |           |                                         |                                                |                   |             |                                       |              |                                                  |                |
| į                                                                                                                                                                                  | 2               | (TOTAL)                                      |             | 48        | 8                                       | 9                                              | 1                 | 2           | 1:                                    |              |                                                  | 9              |
|                                                                                                                                                                                    |                 | (GRAND: TOTAL)                               | L s         | dB        | -12                                     |                                                | - 13              | 6           | - 132                                 | 2.5          | - 151                                            | 1.6            |
| ļ                                                                                                                                                                                  |                 | ANSMITTING OUTPUT POWER                      | Pt          | d8m       | 40                                      | 40                                             | 40                | 40          | 38.5                                  | 38.5         | 40                                               | 40             |
| -                                                                                                                                                                                  |                 | CEIVING POWER LEVEL                          | Pr          | dBm       | - 85.1                                  | <b>−85.</b> I                                  | i                 | - 96        | -94                                   |              | - 81.6                                           |                |
| Ş                                                                                                                                                                                  |                 | am. f. )                                     | er          | dB)       | 27.9                                    | 27.9                                           |                   | 17          | 19 [                                  |              | 21.4                                             | 21.4           |
| Z                                                                                                                                                                                  | ·               | COMING NOISE POWER LEVEL                     | Prne        | dBm       | 1                                       |                                                |                   |             | L                                     |              |                                                  |                |
| 0                                                                                                                                                                                  |                 | reput Noise Fruet                            | erne        | dB)u      |                                         |                                                | المنابط           |             | <b>└</b>                              | ·            | <u> </u>                                         |                |
| ٦                                                                                                                                                                                  |                 | TERNAL NOISE LEVEL                           | Proi        | u8b       | <u> </u>                                |                                                | 1                 |             |                                       | <u> </u>     | ļl                                               |                |
| רכהר                                                                                                                                                                               | _               | NISE INCREASE                                | Δο          | dB dB     |                                         |                                                | 1                 |             | \ <b>!</b>                            | ·            | i                                                | 1 2            |
| Þ                                                                                                                                                                                  |                 | AL RECEIVING NOISE POWER LEVEL RESHOLD LEVEL | Prn         | dBm       |                                         | 112                                            |                   |             | <u> </u>                              | <u> </u>     | <del>                                     </del> | I              |
| 5                                                                                                                                                                                  |                 | RESTFACTOR                                   | Pth<br>C4   | d8m<br>d8 | ~ 110                                   | - 110                                          |                   |             | ·!                                    | 12.0         | - 110                                            | -110           |
| Ž                                                                                                                                                                                  |                 | RESHOLD MARGIN                               | Cf<br>Mth   | dB<br>dB  | 9 24 9                                  | 24.9                                           | i                 | <del></del> |                                       |              | 28.4                                             | 9<br>28. 4     |
| . }                                                                                                                                                                                |                 | N IMPROVEMENT                                | E           | 98        | 24.9<br>12                              | 12                                             | <del></del> Î     | <del></del> | · · · · · · · · · · · · · · · · · · · |              | 12                                               | 12             |
| ŀ                                                                                                                                                                                  |                 | ANDARD S/N                                   | S/N         | ₫B        | 45.9                                    | 45.9                                           | <del></del> !     |             | 35                                    | 41.5         | 49.4                                             | 49.4           |
| 딜                                                                                                                                                                                  |                 | DING VALUE PRESUMED                          | LF          | 48        | - 6.                                    |                                                |                   |             |                                       |              |                                                  | 4              |
| ZCD<br>MO<br>MO<br>MO<br>MO<br>MO<br>MO<br>MO<br>MO<br>MO<br>MO<br>MO<br>MO<br>MO                                                                                                  |                 | Ih > LF)                                     | <del></del> | 48        | 18.5                                    |                                                | 1                 |             | 1                                     |              | 22                                               | 22             |
| žή                                                                                                                                                                                 |                 | N AT FADING                                  |             | dB        | 39.5                                    | 39.5                                           | <del>- i</del>    |             |                                       | - · · ·      | 43                                               | 43             |
| !                                                                                                                                                                                  | REMARKS         |                                              |             |           |                                         | 33.0                                           |                   |             |                                       |              |                                                  | 73             |
|                                                                                                                                                                                    |                 |                                              |             |           |                                         |                                                |                   |             |                                       |              |                                                  |                |

Date: 18th Mar. 177

Bicol River System

Sipocot Hill (Repeater) —— Sipocot (R&W)

| (e. m. f.) er d8µ 65.9 75.9 67 50.5 50.9 60.5 incoming noise power level proe d8m (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (e. m. f.) erne d8µ (    | MODE OF COMMUNICATION : SIMPLEX METHOD OF MODULATION : FM IMPEDANCE : 50 (A) SPECIFIED RELIABILITY : 99.9 (%) |                                   |          |       |                      |               |               |                                       |              |             |                                        |                                                  |   |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------|----------|-------|----------------------|---------------|---------------|---------------------------------------|--------------|-------------|----------------------------------------|--------------------------------------------------|---|--------------|
| CALCULATION NO.   SPAN   Specific Test   CATUAL TEST   CERTIMINAL  | Ċı                                                                                                            | ALCULATION OF FAOING VALUE PRESUN | ÆĎ:      | 0.1 ( | d8/Km) x             | d (Km) +      | <u>3</u> (48) |                                       |              |             |                                        |                                                  |   |              |
| SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               | CALCULATION NO.                   |          |       |                      |               |               |                                       |              |             | DETERMIN                               | IAL                                              |   |              |
| National Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               | SPAN                              | SPAN     |       |                      |               |               |                                       | _            |             | A-                                     | EK IESI "                                        |   |              |
| OUTLINE OF PROPAGATION PATH    D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               |                                   |          | m     |                      |               | 100           | 7                                     |              |             | 1                                      | 20                                               |   |              |
| OUTLINE OF PROPAGATION PATH    D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                             | ANTENNA HEIGHT                    |          | m     | 30                   | 10            | 10            | 10                                    | 10           | 10          | 30                                     | 10                                               |   |              |
| ANTENNA    MODEL   3-3165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z                                                                                                             |                                   | p1 * p5  |       | <u> </u>             | <u> </u>      |               |                                       |              | <del></del> |                                        |                                                  |   |              |
| ANTENNA    MODEL   3-3165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                             |                                   |          |       |                      |               |               |                                       |              | 1           |                                        |                                                  |   |              |
| ANTENNA    MODEL   3-3165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ž                                                                                                             | OUTLINE OF PROPAGATION PATH       |          |       | 11                   | 4             |               |                                       |              |             | 1                                      |                                                  |   |              |
| ANTENNA    MODEL   3-3165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ∃ .                                                                                                           |                                   |          |       | l                    | <del></del>   |               | <del></del>                           |              |             |                                        |                                                  |   |              |
| ANTENNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                             | DISTANCE                          | 0        | Km    | 3.                   | 75            | 3.            | 75                                    | 3.           | 75          |                                        |                                                  |   |              |
| ANTENNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1                                                                                                           |                                   | MODE     | L     | 3-STAGE<br>CO-LINEAR | YAGI 3E       | YAGI 3E       | YAGI 3E                               | YAG1 3E      | YAGI 3E     | 3-STAGE<br>CO-LINEAR                   | YAGI 3E                                          |   |              |
| FEEDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               | ANTENNA                           | POLARIZ  | ATION |                      |               | V             | V                                     | V            | V           | V                                      | ٧                                                |   |              |
| RECEIVING POWER LEVEL   Problem   Problem   Problem   Proposed   Problem   Proposed   Problem    |                                                                                                               |                                   | PATTE    | RN    |                      |               |               |                                       |              |             |                                        |                                                  |   |              |
| TRANSMITING OUIPUT POWER PI W 10 1 10 10 7 — 10 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               | FEEDER                            |          |       | AFZE50-4             | AFZE50-4      | 5D-2V         |                                       |              |             |                                        |                                                  |   |              |
| PROPAGATION LOSS   Lpf   dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               |                                   |          |       |                      |               |               |                                       |              | 16          |                                        | 15                                               |   |              |
| SPARRICAL TERRAIN LOSS   Lpp   dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                   |                                   |          |       |                      |               |               |                                       |              | <u> </u>    |                                        | <u> </u>                                         |   |              |
| Synamic Tenam Reflection Loss   Lpp   dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               | 171                               | Lpi      | GR    | - 8                  | 9             | - 8           |                                       | 89           |             | 89                                     |                                                  | 8 | <del>9</del> |
| SHADOW LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               |                                   | Lop      | đВ    |                      |               |               |                                       |              |             |                                        | <u> </u>                                         |   |              |
| STADOW LOSS   Lps   dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               | 6 TERRAIN REFEECTION COSS         |          |       |                      | <del> }</del> |               |                                       |              |             |                                        |                                                  |   |              |
| S   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | B                                 |          |       |                      |               | g             |                                       | <b>-</b> 9   | 9           |                                        |                                                  |   |              |
| TOTAL LOSS   Lp   d8   -89   -98   -113   -104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i n                                                                                                           | S SHADOW LUSS                     | Los   dB |       | 1                    |               |               |                                       |              |             | [                                      |                                                  |   |              |
| TOTAL LOSS   Lp   d8   -89   -98   -113   -104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ď                                                                                                             | 15                                |          |       |                      |               | L             | · ·                                   |              | 1, 1        |                                        | <u> </u>                                         |   |              |
| ANTENNA GAIN   GA   dB   6   8   8   8   8   8   6   8   8   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ž                                                                                                             | CORRECTIVE VALUE                  | Lpc      | d8    | -1                   |               |               |                                       |              |             |                                        |                                                  |   |              |
| AZIMUTHAL PATTERN LOSS LO 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | (TOTAL LOSS)                      | Lp       |       |                      | 9             | - 9           |                                       | <del> </del> |             |                                        |                                                  |   |              |
| AZIMUHAL PATTERN LOSS   Lo   GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS                                                                                                            | 171                               |          |       | 6                    | 8             | 8             | 8                                     | 8            | 8           | 6                                      | 8                                                |   |              |
| FEEDER LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03                                                                                                            | H AZIMUTHAL PATTERN LOSS          | Lo       | 48    |                      |               |               |                                       |              |             |                                        | <del>                                     </del> |   |              |
| FILTER LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | į.                                                                                                            |                                   |          |       |                      | 0.508         |               |                                       | - 2          | l           | -1 575                                 | - 0.525                                          |   |              |
| TRANSMITTING OUTPUT POWER   Pt   dBm   30   40   40   40   40   38.5   30   40   40   40   40   40   40   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | 1 _ 1                             |          |       | - 1.3/3              | -0.525        |               | <u> </u>                              |              | ]           | 1 3.3                                  | 0.520                                            |   |              |
| GRAND TOTAL   Ls   d8   -77.1   -86   -101   -92.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                             |                                   |          | dR    | 11                   | à             |               | 2                                     | <b></b>      | 2           | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9                                                |   |              |
| TRANSMITTING OUTPUT POWER Pt dBm 30 40 40 40 — 38.5 30 40 RECEIVING POWER LEVEL Pr dBm - 47.1 - 37.1 — 46 — -62.5 -62.1 -52.    (e. m. f. l er dBy 55.9 75.9 67 — 50.5 50.9 60.5    INCOMING NOISE POWER LEVEL Prne dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               | A                                 | l s      |       |                      |               |               |                                       |              |             |                                        |                                                  |   |              |
| RECEIVING POWER LEVEL Pr dBm - 47.1 - 37.1 - 4662.5 - 62.1 - 52.  (e. m. f. 1 er d8µ 65.9 75.9 67 - 50.5 50.9 60.5  INCOMING NOISE POWER LEVEL Prne dBm  (e. m. f. ) erne dBµ  INTERNAL NOISE LEVEL Prnl dBµ  NOISE INCREASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |                                   |          |       |                      |               |               |                                       | _            | 38.5        | 30                                     | 40                                               |   |              |
| INCOMING NOISE POWER LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                             |                                   | -        | d Bm  |                      |               |               | - 46                                  | _            | - 62.5      | -62.1                                  | -52.1                                            |   |              |
| THE SHOLD NATION   STANDARD   S   | 76                                                                                                            | (e. m. f. )                       | er       | ىر 8ە | 55.9                 | 75.9          |               | 67                                    |              | 50.5        | 50.9                                   | 60.9                                             |   |              |
| Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo   | ۲                                                                                                             | INCOMING NOISE POWER LEVEL        | Prne     | dBm   |                      |               |               |                                       |              |             |                                        |                                                  |   |              |
| TOTAL RECEIVING NOISE POWER LEVEL   P/A   dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ۵                                                                                                             | (e.m.f.)                          | erna     | d€µ   |                      |               |               |                                       |              | <u> </u>    |                                        | İ                                                |   |              |
| TOTAL RECEIVING NOISE POWER LEVEL   Prh   dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ä                                                                                                             |                                   |          |       |                      |               |               |                                       |              | <u> </u>    |                                        |                                                  |   |              |
| THRESHOLD LEVEL PIN dBm -110 -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   -110   - | 2                                                                                                             |                                   |          |       |                      |               |               | · · · · · · · · · · · · · · · · · · · |              | <u> </u>    |                                        |                                                  |   |              |
| CRESTFACTOR         CI         dB         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         1         1         7         9         9         9         9         9         9         1         9         9         9         1         7         9         9         9         9         9         1         9         9         9         1         47         9         57         9         7         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ۶                                                                                                             |                                   |          |       |                      | 110           |               |                                       | ļ            | <u> </u>    | _ 110                                  | 1 - 1 2 Å                                        |   |              |
| THRESHOLD MARGIN         Mih         dB         62.9         72.9         47.9         57.9           S/N IMPROVEMENT         I         dB         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 퀽                                                                                                             |                                   |          |       |                      |               |               |                                       | · · · · ·    | <u> </u>    |                                        |                                                  |   |              |
| S/N IMPROVEMENT     1     dB     12     12     12     12       STANDARD     S/N     dB     83.9     93.9     -     50     68.9     76.9       E FADING VALUE PRESUMED     LF     dB     -3.4     -3.4     -3.4       C (Mth ) LF)     dB     59.5     69.5     44.5     54.5       S/N AT FADING     dB     80.5     90.5     65.5     75.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ż                                                                                                             |                                   |          |       |                      |               | <del> </del>  | <del></del>                           | <b> </b>     | i           |                                        |                                                  |   |              |
| STANDARD S/N     S/N     dB     83.9     93.9     —     50     68.9     78.9       E FADING VALUE PRESUMED     LF     dB     —3.4     —3.4     —3.4       G (Mth ) LF)     dB     59.5     69.5     44.5     54.5       S/N AT FADING     dB     80.5     90.5     65.5     75.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               |                                   |          |       |                      |               |               | <del></del>                           |              |             |                                        |                                                  |   |              |
| E FADING VALUE PRESUMED       LF       dB       -3.4       -3.4         G (Mth ) LF)       dB       69.5       69.5       44.5       54.5         M S/N AT FADING       dB       80.5       90.5       65.5       75.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               |                                   |          |       |                      |               |               |                                       |              | 50          |                                        | 78.9                                             |   |              |
| Min   LF     dB   69.5   69.5   44.5   54.5   54.5   575.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   65.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75.5   75   | 딭                                                                                                             |                                   |          |       |                      |               |               |                                       |              | 7           | - 3.                                   | 4                                                |   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ខ្លី                                                                                                          |                                   |          | ₫₿    |                      |               |               | 7                                     |              |             |                                        |                                                  |   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i m                                                                                                           |                                   |          | dB    | 7                    |               |               |                                       |              | [           |                                        | 75.5                                             |   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                             | DEMARKS                           | ·        |       |                      |               |               |                                       |              |             |                                        | 1 1 1                                            |   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               | 120140411374                      |          |       |                      |               |               |                                       |              |             |                                        | ita yaka<br>Kanana                               |   |              |

Date; 18th Mor. '77

Bicol River System

#### Sipocot Hill (Repeater) --- Napolidan (R)

MODE OF COMMUNICATION: SIMPLEX METHOD OF MODULATION: FM IMPEDANCE! 50 (Ω) SPECIFIED RELIABILITY: 99.9 (%) CALCULATION OF FADING VALUE PRESUMED: 0.1 (dB/Km)x d (Km) + 3 (dB)

| Γ          | CALCULATION NO.                                 | 1         | 4                  | CALCULAT                |             |         | TED DATE     | DATE OF                 | AL TEST                          | DESIGNAL<br>DETERMIN | VALUES         |
|------------|-------------------------------------------------|-----------|--------------------|-------------------------|-------------|---------|--------------|-------------------------|----------------------------------|----------------------|----------------|
|            | · <del>  , </del>                               | DESIGN    | VALUES             |                         | BEFORE TEST |         | IL IEST      | AFTER TEST              |                                  |                      |                |
|            | SPAN                                            | (Repeater | II-Nopolisc<br>(R) | <u> </u>                |             |         |              | ( <del>1-1</del>        |                                  |                      |                |
| 1.         | ALTITUDE                                        |           | m                  | 100                     | 100         | 100     | 100          | 100                     | 100                              | 100                  | 100            |
| 13         | ANTENNA HEIGHT                                  | HI, H2    | m                  | 30_                     | 10          | 10      | 10           | 10                      | 10                               | 30                   | 10             |
| VPAN       | <u> </u>                                        | hi, h2    | W                  |                         | <del></del> | l       | <u> </u>     | <del></del>             |                                  |                      |                |
|            |                                                 |           |                    |                         |             |         |              |                         |                                  |                      | 2 5            |
| Į          | OUTLINE OF PROPAGATION PATH                     |           |                    |                         |             |         |              |                         | 3-14-55                          | 180 1900             |                |
| 1 =        |                                                 |           |                    |                         |             |         | <del></del>  | · · ·                   | · · · · · · · ·                  |                      | <del></del>    |
| CONOTITION | DISTANCE                                        | Ď         | Κm                 |                         |             | 1.5     | . 1          | 1.7                     | 5.1.                             | .13                  |                |
| '          | UISTANCE                                        | MODE      |                    | 3-STAGE<br>CO-LINEAR    | VIOL 15     | V461 26 | YAGI 3E      |                         |                                  | 3-SYAGE              |                |
|            | ANTENNA                                         | POLARIZ   | <u> </u>           | CO-LINEAR<br>V          | V           | IAGI SE | V V          | V                       | V                                | CO-LINEAR            | V              |
|            | ANIENNA                                         | PATTE     |                    |                         |             | Y       | у            | ·····                   | <u> </u>                         | _ v                  | <del>-</del>   |
|            |                                                 | MODE      | <del></del>        | ACTORA A                | AFZE50-4    | 5D-2V   | 50-2V        | 50-2V                   | 5D-2V                            | AFZE50-4             | ΔF7F50 - 4     |
|            | FEEDER                                          | LENGT     |                    | A-ZE3U-4<br>45          | 15          | 16      | 16           | 16                      | 16                               | 45                   | 15             |
| 1          | TRANSMITTING OUTPUT POWER                       | PL        | w                  | 10                      | 1           | 10      | 10           | 7                       |                                  | 10                   | 3              |
| -          | PROPAGATION LOSS                                | Lpf       | ₫B                 | - 10                    |             | - 10    |              | -10                     | 00                               | - 10                 | 00             |
|            | SPHERICAL TERRAIN LOSS                          |           |                    |                         |             |         |              |                         |                                  |                      | 10 1 N 1 1 1 1 |
|            | TERRAIN REFLECTION LOSS                         | Lpo       | d.B                |                         |             |         |              |                         |                                  |                      |                |
|            | 8                                               |           |                    | - 2                     | - 2         | - 4     | 3            | - 4                     | 3                                | 2                    | - 2            |
| 1          | 티 SHADOW LOSS                                   |           |                    | _ 2                     | - 4         | - 4     | - 4          | - 4                     | - 4                              | <b>– 2</b>           | - 4            |
| ۱.,        | 151                                             | Los       | dB                 | - 3                     | - <b>3</b>  | - 4.5   | <b>- 3</b> . | 4.5                     | - 3                              | <b>– 3</b>           | - 3            |
| 7 E        | [5]                                             |           | :                  | - 3                     |             | - 4.5   | <u> </u>     | 4.5                     |                                  | - 3                  |                |
| Z          | CORRECTIVE VALUE                                | Lpc       | 48                 |                         |             |         | <u> </u>     | - 23                    |                                  |                      | 3.5            |
| I٢         | (TOTAL LOSS)                                    | Lp        | 48                 | i i                     | 9           | 1       |              | - 15                    |                                  | - 14                 |                |
| 8          | S Parition Com.                                 | GA        | dB                 | 6                       | 8           | 8       | 8            | 8                       | 8                                | 6                    | 8              |
| ۷          | AZIMUTHAL PATTERN LOSS                          | Lò        | dB                 |                         |             | 1 Sq. 2 |              |                         | <u> </u>                         |                      |                |
| 1          | Z   ANIENNA N I B LUSS                          |           |                    |                         | <u> </u>    |         |              |                         | -2                               | -1.575               | - 0.525        |
| 1.         | FEEDER LOSS                                     | :         | ·                  | 1.575                   | 0.525       | - 2     | <u> </u>     | 2                       | <u> </u>                         | -1.575               | -0.525         |
| I          | FILTER LOSS                                     | **        | dΒ                 |                         | <u> </u>    |         | 2<br>2       | 1                       | 2                                |                      | . 9            |
| 1          | Z (TOTAL)                                       |           | 4B                 | - 10                    |             |         |              |                         | 8.5                              | - 13                 |                |
| -          | (GRANO TOTAL)                                   | Ls<br>Pt  | d Bm               |                         | 40          | 40      | 40           | , <u>'</u>              | 38.5                             | 34.8                 | 40             |
| 1          | TRANSMITTING OUTPUT POWER RECEIVING POWER LEVEL | Pr        | 48m                | 30<br>- 77. i           | -67. I      | 40      | -75          |                         | - 100                            | - 95.8               | -90.6          |
| 1          |                                                 | er        | 48 μ               | 35.9                    | 45.9        |         | 38           |                         | 13                               | 17.2                 | 22.4           |
| 1 4        | INCOMING NOISE POWER LEVEL                      | Prne      | dBm                | 33.3                    | 70.0        |         |              |                         | İ                                |                      | 1 a 1 a 4 a    |
| 2          | (e.m.f.)                                        | 8118      | dθμ                |                         | i           |         |              |                         | !                                |                      | ;              |
| {          | INTERNAL NOISE LEVEL                            | Proj      | d Bu               | +                       | ŀ           |         |              | ···                     | <u> </u>                         |                      | 401± 14        |
| CALCO      | NOISE INCREASE                                  | Δή        | dB                 |                         | L           |         |              | 7 14 7                  | !                                | 1.00                 |                |
| 18         | TOTAL RECEIVING NOISE POWER LEVEL               | Prp       | dBm                |                         |             |         |              |                         |                                  |                      |                |
| 1          | THRESHOLD LEVEL                                 | Pih       | dBm                | -110                    | -110        |         |              |                         |                                  | -110                 | 110            |
| ] 2        | CRESTFACTOR                                     | Ċf        | dB                 | 9                       | 9           | 18 33   |              |                         | 1                                | 9                    | 9              |
| 2          | THRESHOLD MARGIN                                | Mih       | dВ                 | 32.9                    | 42.9        |         |              |                         |                                  | 14.2                 | 19.4           |
|            | S/N IMPROVEMENT                                 | I         | dB                 | 12                      | 12          |         |              |                         |                                  | 12                   | 12             |
|            | STANDARD S/N                                    | S/N       | ₫₿                 | 53.9                    | 63.9        |         |              |                         | 40                               | 35.2                 | 1 40.4         |
|            | FADING VALUE PRESUMED                           | LF        | dB                 | - 4                     | 3           |         |              |                         | 1 3 4 6                          | 4                    |                |
| X.         | (MIL) LF)                                       |           | dB                 | 28.6                    | 38.6        |         |              |                         | <u> </u>                         | 9.9                  | 15.1           |
| N N        | S/N AT FADING                                   | •         | dB                 | 49.6                    | 59.6        |         |              | <u> </u>                | <u>i</u>                         | 30.9                 | 36.1           |
|            |                                                 |           |                    |                         |             |         | 7.7          |                         |                                  |                      | A Committee of |
| 1          | REMARKS                                         |           |                    | $\pm \frac{\lambda}{2}$ |             | 1.5     |              |                         |                                  |                      |                |
| L          |                                                 |           |                    |                         |             |         |              | Description of the last | وارجيه والبائدة المستحدث والجروم |                      |                |

Dale; 18th Mor. 177

**Bicol River System** 

#### Iraga (Repeater) —— Buhi (R&W)

MODE OF COMMUNICATION : SIMPLEX METHOD OF MODULATION : FM IMPEDANCE : 50 (0.1 | SPECIFIED RELIABILITY : 99.9 (%)

| CALCULATION OF FADING VALUE PRESUMEO : O.1 (dB/Km)x d (Km) + 3 (dB) |                                   |                                  |             |                   |                  |          |           |               |             |                      |          |
|---------------------------------------------------------------------|-----------------------------------|----------------------------------|-------------|-------------------|------------------|----------|-----------|---------------|-------------|----------------------|----------|
|                                                                     | CALCULATION NO.                   |                                  |             | CALCULA<br>DESIGN | EO<br>I VALUES   | CALCULA  | TED DATE  | DATE OF       | AL TEST     | DESIGNAL<br>DETERMIN | IAL      |
| 1                                                                   | SPAN                              | Iraga — Buhl<br>(Repeater) (RAW) |             |                   |                  | _        |           | AF            | TER TEST    |                      |          |
|                                                                     | ALTETUDE                          | - 1 - 1                          | m           | 42                | 95               | 42       | 95        | _42_          | 95          | 42                   | 95       |
| ξ                                                                   | ANTENNA HEIGHT                    | H1, H2                           |             | 30                | 10               | 10       | 10        | 10            | 10          | 30                   | 10       |
| SPAN                                                                |                                   | hi, h2                           | m           |                   |                  |          |           | <u></u>       |             |                      |          |
| N CONDITION                                                         | OUTLINE OF PROPAGATION PATH       | <u> </u>                         |             |                   |                  |          |           |               |             |                      |          |
| Į ž                                                                 | DISTANCE                          | D                                | Km          | 12                | . 5              | 12       | 5         | 12            | 2.5         | 12                   | 5        |
| 1.0                                                                 |                                   | MODE                             | L           | 3-STAGE           | YAGI 3E          | YAGI 3E  | YAGI 3E   | YAGI 3E       | YAGI 3E     | 3-STAGE              | YAG1 3E  |
|                                                                     | ANTENNA                           | POLARIZ                          |             | V                 | V                | V        | ٧         | V             | V           | V                    | v        |
|                                                                     |                                   | PATTE                            | RN          |                   |                  |          |           |               |             |                      |          |
|                                                                     | FEEDER                            | MÓDE                             | L           | AFZE50-4          | AFZE50-4         | 50-2V    | 50-2V     | 50-2V         | 50-2V       | WZE50-4              | AFZE50-4 |
| 1                                                                   | FEEDER                            | LENGT                            | H m         | 45                | 15               | 16       | 16        | 16            | 16          | 45                   | 15       |
| L                                                                   | TRANSMITTING OUTPUT POWER         | ۶ŧ                               | W           | 10                | 1                | 10       | 10        | 7             | 7           | iò                   | 3        |
|                                                                     | PROPAGATION LOSS                  | Lpf                              | dВ          | - 9               | 9                | - 9      | 9         | - (           | 9           |                      | 99       |
| <b>i</b> .                                                          | SPHERICAL TERRAIN LOSS            | 1                                | dВ          |                   |                  |          |           |               |             |                      |          |
|                                                                     | TERRAIN REFLECTION LOSS           | Lóp                              | 08          |                   |                  | 1        |           |               |             |                      |          |
|                                                                     | ର୍ଜି                              | -                                |             |                   |                  |          |           |               |             | _                    |          |
| SPAN                                                                | SHADOW LOSS                       | Lps                              | фB          | - 20<br>- 6       |                  | 6<br>5 l |           | → e           |             | - 6<br>- 6           |          |
| Z                                                                   | CORRECTIVE VALUE                  | Lpc                              | ₫B          | <del></del>       |                  |          |           | - 19          | ).5         | 1 (                  | ⊋. 5     |
|                                                                     | (TOTAL LOSS)                      | Lp                               | dB          | 12                | 5                | - 12     | 6         | - 145.5       |             | 14                   | 4.5      |
| [ 5                                                                 | ≥ ANTENNA GAIN                    | GA                               | dВ          | 6                 | 8                | 8        | 8         | 8             | 8           | 6                    | 8        |
| Š                                                                   | AZIMUTHAL PATTERN LOSS            | Lo                               | dB          |                   |                  |          |           | i             |             |                      | 1        |
|                                                                     | Z ANTENNA H Y B LOSS              |                                  | 11.         | i                 |                  |          |           |               |             |                      |          |
|                                                                     | FEEDER LOSS                       |                                  |             | -1.575            | -0.525           | - 2      | - 2       | - s           | - 2         | -1.575               | - 0.525  |
|                                                                     | S FILTER LOSS                     |                                  |             |                   |                  |          |           |               |             |                      |          |
|                                                                     | Z (TOTAL)                         |                                  | ďΒ          | 11.               | 9                | =        | 2         | 1:            | 2           | - 11                 | . 9      |
| لــــا                                                              | (GRAND TOTAL)                     | Lŝ.                              | dВ          | - 113             | . 1              | - 13     | 4         | - 133         | 3.5         | - 13                 | 2.6      |
|                                                                     | TRANSMITTING OUTPUT POWER         | Pt                               | d Bm        | 30                | 40               | 40       | 40        | 38.5          | 38.5        | 34.8                 | 40       |
|                                                                     | RECEIVING POWER LEVEL             | Pr                               | dBm         | - 83.1            | -73.I            |          | -74       | - 95          | 1           | - 97.8               | - 92.6   |
| S                                                                   | (e.m.f.)                          | er                               | ىز8ە        | 29.9              | 39.9             |          | 39        | 18            |             | 15.2                 | 20 4     |
| Ì                                                                   | INCOMING NOISE POWER LEVEL        | Prn#                             | dBm         | j                 |                  | 12 11 15 |           |               |             |                      | (34)     |
|                                                                     | (e, m, f, )                       | erne                             | dBju        |                   |                  |          |           |               |             |                      |          |
| CALCULA                                                             | INTERNAL NOISE LEVEL              | Prnl                             | <b>48</b> ه | i                 |                  |          |           | i             |             |                      |          |
| 8                                                                   | NOISE INCREASE                    | Δn                               | dΒ          | 1                 |                  | j        | Notice of |               |             |                      |          |
| <u> </u>                                                            | TOTAL RECEIVING NOISE POWER LEVEL | Pro                              | dBm         |                   |                  |          |           |               |             |                      |          |
| 티로티                                                                 | THRESHOLD LEVEL                   | PIh                              | dBm         | <u>-110</u>       | -110             | ]        |           | i             |             | -110                 | -110     |
| 02                                                                  | CRESTFACTOR                       | Cf 5                             | 48          | 9                 | 9                |          |           | 1             |             | 9                    | 9        |
|                                                                     | THRESHOLD MARGIN                  | Mih                              | 48          | 26.9              | 36.9             |          |           |               |             | 12.2                 |          |
|                                                                     | S/N IMPROVEMENT                   | 1                                | dė          |                   | 12               |          |           | <del></del> ¦ | - 12        | 12                   | 12       |
| ا ـــا                                                              | STANDARD S/N                      | S/N                              | 48          | 47.9              | 57.9             | i        |           | 36 j          | 40          | 33.2                 | 38.4     |
| ુદ્ધ                                                                | FADING VALUE PRÉSUMED             | LF                               | dB.         | + 4.              |                  |          |           |               | Santa Santa | - 4                  |          |
| MENT                                                                | (Mih > LF)                        |                                  | 48          | 52.6              | <del>~~~~~</del> |          |           |               |             | 7.9                  | 13.1     |
| =                                                                   | S/N AT FAOING                     |                                  | dВ          | 43.6              | 53.6             | <u> </u> |           | <u> </u>      |             | 28.9                 | 34.1     |
|                                                                     | REMARKS                           |                                  |             |                   |                  |          | · · .     |               |             |                      |          |

Dole; 18th Mor. '77

Bicol River System

### Iraga (Repeater) — Ligao (R)

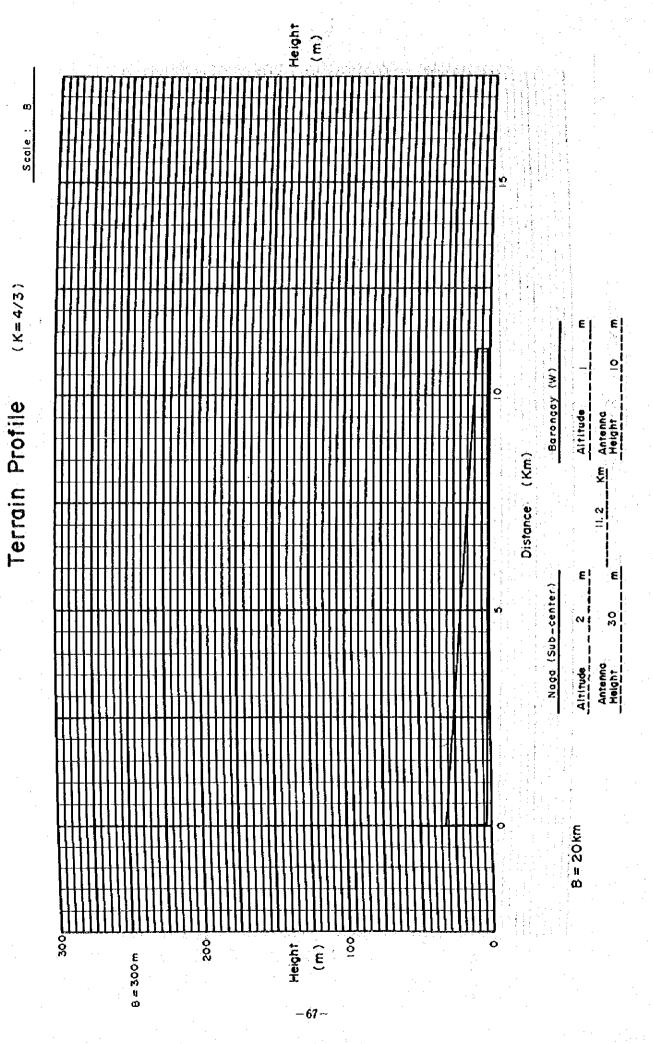
| CALCULATION NO.  SPAN  TITUDE  MATTITUDE  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODEL  MODE | MODE OF COMMUNICATION : SIMPLEX METHOD OF MODULATION : FM   IMPEDANCE : 50 (1)   SPECIFIED RELIABILITY : 99.9 (%) |            |                                        |        |       |                |                                 |             |           |             |          |          |                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|--------|-------|----------------|---------------------------------|-------------|-----------|-------------|----------|----------|---------------------------------------------------|
| OBSIGN WALTES   OFFST   ACTUAL TEST   CEFSMINAL   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TOUGH   TO   | CALCULATION OF FADING VALUE PRESUMED: 0.1 (dB/Km)x d (Km) + 3 (dB)                                                |            |                                        |        |       |                |                                 |             |           |             |          |          |                                                   |
| AUTITUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |            | CALCULATION NO.                        | 1, 4,1 |       |                |                                 |             |           |             |          |          |                                                   |
| NATIONAL   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National   National    |                                                                                                                   | L          | SPAN                                   |        | - 1   | Iraga — Ligao  |                                 |             |           | _           |          | AF       | —<br> ЕК (ES)                                     |
| OUTLINE OF PROPAGATION PATH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | L          |                                        |        | m     |                |                                 | 42          | 30        | 42          | 30       | 42       | 30                                                |
| OUTLINE OF PROPAGATION PATH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SP                                                                                                                | L          | ANTENNA HEIGHT                         | H1, H2 | m     | 30             | 10                              |             |           |             |          |          | 10                                                |
| OUTLINE OF PROPAGATION PATH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ž                                                                                                                 |            |                                        | hi, ha | m     |                |                                 |             | <u> </u>  |             |          | 1 1      | 3 <u>. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.</u> |
| ANTENNA    MODEL   SCHEER   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E   VAGI 3E  |                                                                                                                   |            | OUTLINE OF PROPAGATION PATH            |        |       |                |                                 | -           |           |             |          |          |                                                   |
| ### ANTENNA   POLARIZATION   V   V   V   V   V   V   V   V   V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ž                                                                                                                 |            | DISTANCE                               | D      | Km    | 24             | 1.5                             | 24          | 5         | 24          | . 5      | 24       | 5                                                 |
| ### ANTENNA   POLARIZATION   V   V   V   V   V   V   V   V   V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |            |                                        | MODE   | L.    |                |                                 |             |           |             |          | 3-STAGE  | YAĞI 3É                                           |
| FEEDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |            | ANTENNA                                | POLARI | MOITA |                |                                 |             |           | <u> </u>    | •        |          | V                                                 |
| TRANSMITTING OUTPUT POWER PI W 10 1 10 10 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   | $l_{-}$    |                                        | PATTI  | RN    |                |                                 |             |           | : 2 · · ·   |          |          |                                                   |
| TRANSMITING OUTPUT POWER   PI   W   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |            | FEEDLO                                 | MODE   | L,    | AFZE50-4       | AFZE50-4                        | 50-2V       | 5D-2V     | 50-2V       | 5D-SV    | AFZE50-4 | AFZE50-4                                          |
| PROPAGATION LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                   | L          |                                        | LENGT  | H m   | 45             | 15                              | 16          | 16        | 16          | 16       |          | 15                                                |
| SPHERICAL TERRAIN LOSS   Lpp   dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   | 1          |                                        | -      |       |                | <del></del>                     | <del></del> |           | <del></del> | <u> </u> |          | 10                                                |
| TERRAIN REFLECTION LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   | ٦,         |                                        | Lpf    | 48    |                |                                 | -10         |           | 1           |          |          |                                                   |
| SHADOW LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | 8          |                                        | Lop    | đВ    | <del>-</del> : | - 2 - 5                         |             |           | 5           | - 2      |          |                                                   |
| Corrective value   Lpc   dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | P          | TERRAIN REFLECTION LOSS                |        |       |                |                                 |             |           |             |          |          |                                                   |
| TOTAL LOSS   Lp   dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SE                                                                                                                | ATION      | SHADOW LOSS                            | Lps    | ₫B    |                | [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] |             |           | - · ·       |          | -        |                                                   |
| TOTAL LOSS   Lp   dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                 | ဖြင့်      | CORRECTIVE VALUE                       | Lpc    | dB    | <del> </del>   |                                 |             |           | _ 1         | 7.5      | 1        | 7. 5                                              |
| Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note      | _                                                                                                                 | ľ          |                                        |        |       | - 12           | 3.3                             |             | 6         |             |          |          | <u> </u>                                          |
| AZIMUTHAL PATTERN LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ò                                                                                                                 | Þ          | ANTENNA GAIN                           |        | dВ    |                |                                 |             |           |             |          | 6        | 8                                                 |
| FEEDER LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ζ,                                                                                                                | =          |                                        | Lo     | dB    |                |                                 |             |           |             |          |          | 7 T. F. W.                                        |
| FILTER LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | ž          | ANTENNA H Y B LOSS                     |        |       |                | 1.5                             |             |           |             |          |          |                                                   |
| TRANSMITTING OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   | Ď          | FEEDER LOSS                            | 1      |       | -1.575         | - 0.525                         | - 2         | - 2       | - 2         | - 2      | -1.575   | -0.525                                            |
| TRANSMITTING OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   | ည်         | FILTER LOSS                            |        |       |                |                                 |             |           |             |          |          |                                                   |
| TRANSMITTING OUTPUT POWER   Pt   dBm   30   40   40   40   38.5   38.5   40   40   40   RECEIVING POWER LEVEL   Pr   dBm   -9(.1   -81.1   -84   -102   -103   -98.6   -98.     -98.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   | Z          |                                        |        | 48    |                | 9                               | 1           | 2         | 1           | 2        |          | <del></del>                                       |
| RECEIVING POWER LEVEL Pr dBm -91.1 -81.1 -84 -102 -103 -98.6 -98.  (e. m. f.) er dBJ 21.9 31.9 29 11 10 14.4 14.  INCOMING NOISE POWER LEVEL Prns dBm  (e. m. f.) erne dBJ 21.9 31.9 29 11 10 14.4 14.  INTERNAL NOISE LEVEL Prns dBJ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | _          | · · · · · · · · · · · · · · · · · · ·  | Ls     | ₫₿    | - 12           | 1.1                             | 1 - 12      | 4         | - 141       |          | - 13     |                                                   |
| (e, m, f,) er d8µ 21.9 31.9 29 11 10 14.4 14.    INCOMING NOISE POWER LEVEL   Prine d8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   | _          |                                        |        |       | 30             | 40                              | 40          |           |             |          |          | 40                                                |
| INCOMING NOISE POWER LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                   |            |                                        |        |       |                |                                 | 1           |           |             |          |          |                                                   |
| Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ø.                                                                                                                |            |                                        |        |       | 21.9           | 319                             |             |           |             | 10       | 14.4     | .14.4                                             |
| INTERNAL NOISE LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ż                                                                                                                 | } <u> </u> |                                        |        |       |                | :<br>                           |             | <u> </u>  |             | 1942 P   | 171      |                                                   |
| Noise Increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q                                                                                                                 |            |                                        |        |       |                |                                 | i           |           |             |          |          |                                                   |
| TOTAL RECEIVING NOISE POWER LEVEL   Prin   d8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ř                                                                                                                 |            |                                        |        |       |                |                                 |             |           | ····        |          |          | <del></del>                                       |
| THRESHOLD LEVEL.  PIN d8m -110110  CRESTFACTOR  Cf d8 g g g  THRESHOLD MARGIN  MIN d8 18.9 28.9  THRESHOLD MARGIN  S/N IMPROVEMENT  I d8 12 12  STANDARD S/N  STANDARD S/N  S/N d8 39.9 49.9  G FADING VALUE PRESUMED  LF d8 13.4 23.4  C S/N AT FADING  d8 34.4 44.4  26.9 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ë                                                                                                                 |            |                                        |        |       |                |                                 |             |           |             |          |          |                                                   |
| CRESTFACTOR       Cf       dB       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4       11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                 |            |                                        |        |       | _ 114          | -110                            |             |           |             |          | - 110    | -110                                              |
| THRESHOLD MARGIN         MIN         d8         18.9         28.9         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ಠ                                                                                                                 |            |                                        | 2.4    | 4.4   |                |                                 | <b>i</b>    |           |             | <u> </u> |          | 9                                                 |
| S/N IMPROVEMENT     I     d8     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                                                                                                                 | _          |                                        |        |       | . 1            |                                 | i           | i         |             |          |          | 11.4                                              |
| STANDARD S/N         S/N         dB         39.9         49.9         38         37         32.4         32.           FADING VALUE PRESUMED         LF         dB         -5.5         -5.5         -5.5           CMIN > LF)         dB         13.4         23.4         5.9         5           S/N AT FADING         dB         34.4         44.4         26.9         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |            |                                        |        |       |                |                                 | - A - A     |           |             | 1,2.4    |          | 12                                                |
| FADING VALUE PRESUMED LF 68 - 5.5 - 5.6 (Mih > LF) 68 (3.4   23.4   5.9   5   5.9   5   6   6   6   6   6   6   6   6   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                 |            |                                        |        | -     |                |                                 |             | 11.1      | 38          | 37       |          | 32.4                                              |
| (Mih ) LF   d8   13.4   23.4   5.9   5   5   5   5   5   5   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ü                                                                                                                 |            |                                        |        | dB    |                |                                 | - 100       |           |             | 11.0     | 5.       | 5                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S O                                                                                                               |            | ······································ |        | 48    |                |                                 |             |           |             |          | 5.9      | 5.9                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₹(I)                                                                                                              | S          | N AT FADING                            |        | dB    |                |                                 |             | 1 1 1 1 1 |             |          | 26.9     | 26.9                                              |
| ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   | -          | · · · · · · · · · · · · · · · · · · ·  |        |       |                |                                 |             |           |             |          |          |                                                   |

Dole; 18th Mar. '77

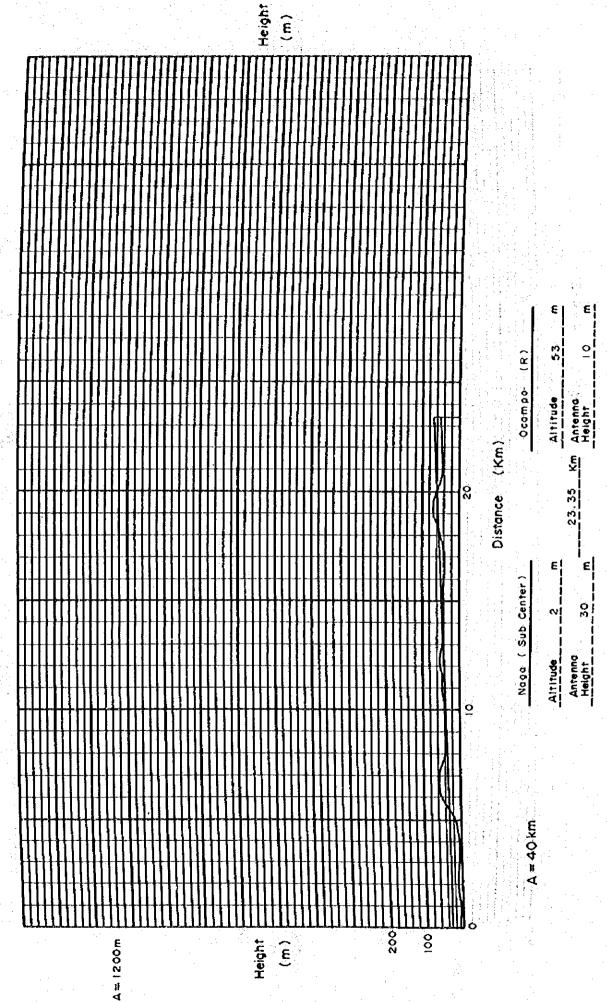
Bicol River System

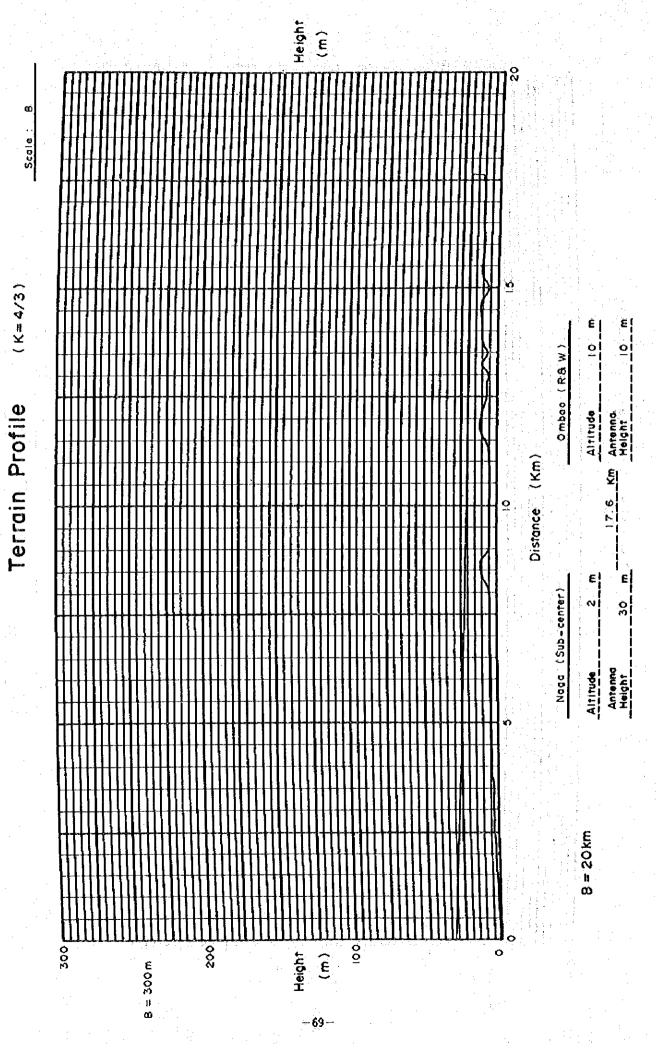
FADING VALUE PRESUMED

(Mih > LF)


S/N AT FADING REMARKS

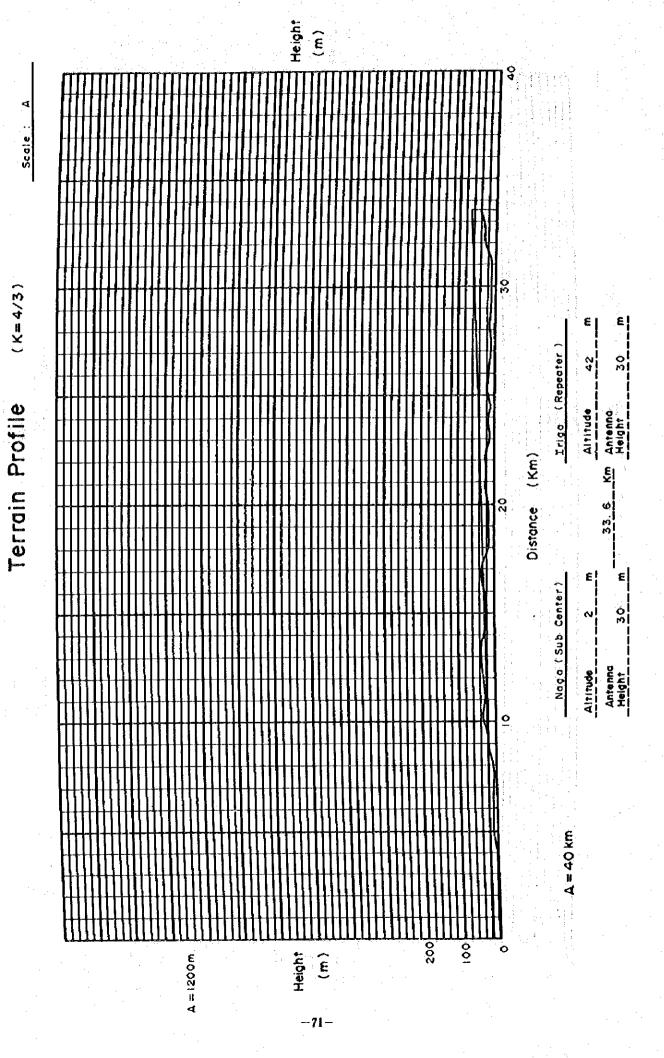
# Irago (Repeater) ---- Bato (R&W)


| MK       | DE       | OF COMMUNICATION & SIMPLEX N   | ETHOD C | F MOOL | LATION:    | FM IMP          | DANCÉ : | 50 (1)      | SPECIFIED RELIABILITY : 99.9 (%) |             |                      |          |  |
|----------|----------|--------------------------------|---------|--------|------------|-----------------|---------|-------------|----------------------------------|-------------|----------------------|----------|--|
| _ 0      | AL (     | SULATION OF FADING VALUE PRESI | MEO:    | 0.1    | d8/Km) x   | d (Km) t        | 3 (dB)  | e entre     |                                  |             |                      |          |  |
|          | T_       |                                |         |        | Icai can a | 760             | Tation  |             | I SATE S                         |             | Incorna              | VALUE OF |  |
|          | 1        | CALCULATION NO.                |         |        |            | TED<br>V VALUES | BEFORE  | TEST        |                                  | AL TEST     | DESIGNAL<br>DETERMIN |          |  |
|          | SPAN     |                                |         |        |            | Bato<br>( RAW)  |         | <del></del> | _                                | <del></del> | AF                   | TER TEST |  |
| ^        |          | ALTITUDE                       |         | m      | 42         | 10              | 42      | 10          | 42                               | 10          | 42                   | 10       |  |
| S.       |          | ANTENNA HEIGHT                 | Hı, Ha  | tn     | 30         | 10              | 10      | 10          | 10                               | 10          | 30                   | 10       |  |
| SPAN     |          |                                | hi, ha  | w      |            |                 |         | 10000       |                                  |             |                      |          |  |
| CONDIT   |          | OUTLINE OF PROPAGATION PATH    |         |        |            |                 |         |             |                                  | :           |                      |          |  |
| Š        |          | DISTANCE                       | D       | Km     | 8          | 4               | 8       | . 4         | . 8                              | . 4         | 8                    | 4        |  |
| 1        | Г        |                                |         | L      | 3-STAGE    | YAĞI JE         | YAGI 3E | YAGI 3E     | YAGI 3E                          | YAGI 3E     | 3-STAGE<br>CO-LINEAR | YAGI 3E  |  |
|          | ] /      | ANTENNA                        | POLARI  |        |            | V               | V       | V           | ν                                | v           | V                    | V        |  |
|          |          |                                | PATT    | ERN    |            | <u> </u>        |         |             |                                  |             |                      |          |  |
|          | Γ,       | - Care                         | MODE    | L      | AFZE50-4   | AFZE50-4        | 50-2V   | 50-2V       | 50-2V                            | 50-2V       | AFZE50-4             | AFZE50-4 |  |
|          | Ľ        | EEDER                          | LENGT   | Ηm     | 45         | 15              | 16      | 16          | 16                               | 16          | 45                   | 16       |  |
|          | _;       | FRANSMITTING OUTPUT POWER      | PL      | W      | 10         | 1               | 10      | 10          | 7                                |             | 10                   | 1        |  |
|          | _        | PROPAGATION LOSS               | Lpf     | đВ     | <b>–</b> 9 | 1.5             | - 9     | 1. 5        | - 9                              | - 91.5      |                      | 1.5      |  |
|          | ž.       | SPHERICAL TERRAIN LOSS         | Lóp     | dB     |            | 3.5             | - 5.5   |             | - 5.5                            |             | - 3.5                |          |  |
|          | ğ        | TERRAIN REFLECTION LOSS        | Lyp     | 08     |            |                 | ,       |             |                                  |             |                      |          |  |
| SPAN     | GATION L | SHADOW LOSS                    | Løs     | d8     | - 3        |                 | -       | 4           | - 4                              |             |                      | 3        |  |
| 2        | Ϋ́       | CORRECTIVE VALUE               | Lpc     | dB     |            |                 |         |             |                                  | 20          |                      | 20       |  |
|          |          | (TOTAL LOSS)                   | Lo      | dВ     | - 9        | 8               | - 10    | ) i         | \$                               | 2 1         | - 1                  | 8        |  |
| ő        | Þ        | ANTENNA GAIN                   | GA      | 48     | 6          | 8               | 8       | 8           | - 8                              | 8           | 6                    | 8        |  |
| Š        | Z        | AZIMUTHAL PATTERN LOSS         | Lo      | dB     |            |                 |         |             | 17.0                             |             | 5                    |          |  |
|          | 2        | ANTENNA H Y 8 LOSS             | 1       |        |            |                 |         |             |                                  |             |                      |          |  |
|          | ź        | FEEDER LOSS                    |         |        | ~1.575     | - 0.525         | - 2     | - 2         | 2                                | .– s        | - 1.575              | - 0.525  |  |
|          | ଦୁ       | FILTER LOSS                    |         |        |            |                 |         |             |                                  |             |                      | it eye   |  |
|          | Ź        | (TOTAL)                        |         | . ₫₿   | 11         | 9               | 1       | 2           |                                  | 2           | H                    | . 9      |  |
|          |          | (GRAND TOTAL)                  | Ls      | ₫B     | - 86       | 5.1             | 8       | 9           | <u>- 10</u>                      | 09          | - 108                | 5.9      |  |
|          |          | ANSMITTING OUTPUT POWER        | Pt      | d 8m   | 30         | 40              | 40      | 40          |                                  | 38.5        | 30                   | 40       |  |
|          |          | CEIVING POWER LEVEL            | Pr.     | d Bm   | - 56.1     | - 46.1          |         | - 49        |                                  | -70.5       | - 76.1               | -663     |  |
| S        |          | . m. f. )                      | 197     | עפא    | 56.9       | 66.9            |         | 64          |                                  | 42.5        | 36.9                 | 46.9     |  |
| ž        | IN       | COMING NOISE POWER LEVEL       | Prne    | d8m    |            |                 |         | 3 34 1      | 3.7                              |             |                      |          |  |
| 1 1      |          | · m. f. )                      | erne    | 48ր    |            |                 | 3.75    | f 12 % 1    |                                  | <br>        |                      |          |  |
| <b>P</b> |          | TERNAL NOISE LEVEL             | Prni    | 48)    |            | <u> </u>        |         |             |                                  |             | 1. 10.               |          |  |
| CALCULAT |          | DISE INCREASE                  | Δn      | 48     |            | 1.5             | 1 14    | 1           |                                  |             |                      |          |  |
| >        |          | AL RECEIVING NOISE POWER LEVEL | Prn     | dBm    |            |                 |         | *           |                                  |             |                      |          |  |
| 5        | _        | RESHOLD LEVEL                  | Pih     | ∂Bm    | -110       | -110            |         |             |                                  | <u> </u>    | -110                 | -110     |  |
| ž        |          | RESTFACTOR                     | Cf      | 48     | 9          | 9               |         |             |                                  |             | 9                    | 9        |  |
|          |          | RESHOLD MARGIN                 | Mth     | øΒ     | 53.9       | 63.9            |         |             |                                  |             | 33.9                 | 43.9     |  |
|          |          | N IMPROVEMENT                  | I       | dB     | 12         | 15              |         |             |                                  |             | 15                   | 12       |  |
|          | ગ        | ANDARD S/N                     | S/N     | dΒ     | 74.9       | 84.9            | ليلتيا  | L           | لبحبا                            |             | 54.9                 | 64.9     |  |


dB

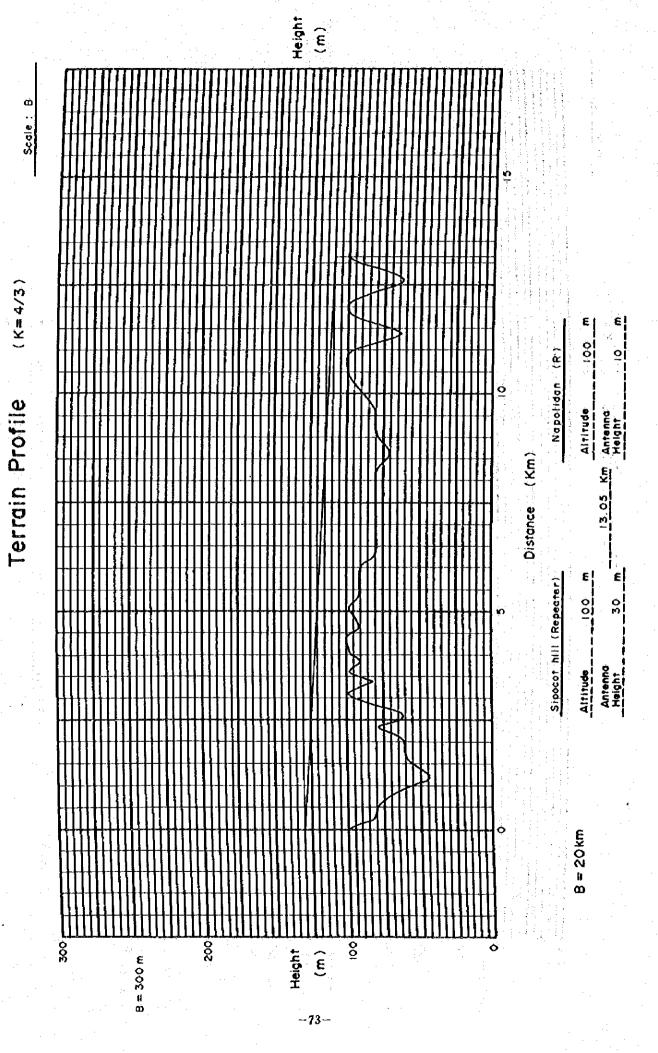
d8




(K=4/3)



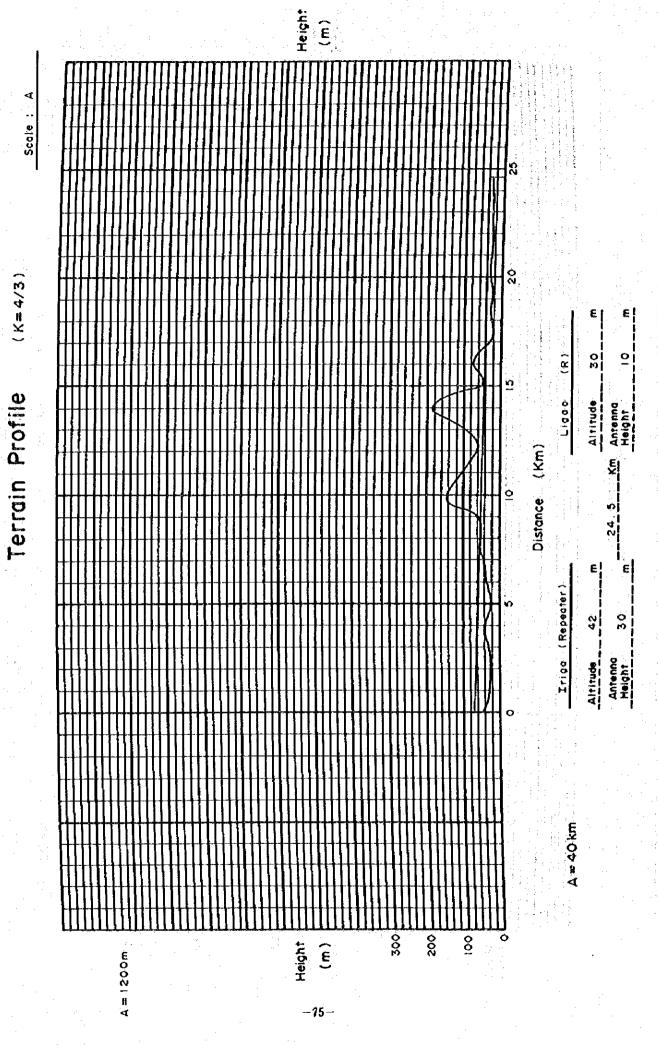



Scale : A

(K=4/3)



Scale: B


(K=4/3)



-74-

Scale: 8

(K#4/3)



Scale: B

(K=4/3)

Terrain Profile

Date : 18th Mar. 177

Cagayan River System

#### Tuguegarao (Sub-Center) — Tuguegarao (R&W)

| MIL       | ODE OF COMMUNICATION & SIMPLEX ME                                                                          | THOD O                       | F MODU                            | LATION:                        | FM IMPE                              | DANCE 1 | 50 (Ω)                                | SPECIFIE             | D RELIAE                                | ILITY :                        | 99.9 (%)                     |
|-----------|------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------|--------------------------------|--------------------------------------|---------|---------------------------------------|----------------------|-----------------------------------------|--------------------------------|------------------------------|
|           | ALCULATION OF FADING VALUE PRESUN                                                                          |                              |                                   |                                | d (Km) +                             |         |                                       |                      |                                         |                                |                              |
|           |                                                                                                            |                              |                                   |                                |                                      |         |                                       |                      |                                         |                                |                              |
|           | CALCULATION NO.                                                                                            | CALCULA                      | TED<br>N VALUES                   | BEFORE                         | TED DATE                             | DATE OF | AL TEST                               | DESIGNAL<br>DETERMIN | VALUES                                  |                                |                              |
|           | SPAN                                                                                                       |                              | ió - Tuguégaro                    |                                |                                      | AUTO.   | NE TEST                               | AF                   | TER TEST                                |                                |                              |
| 1.        | ALTITUDE                                                                                                   | (Sub-Cente                   | ir) (Raw)                         | 4                              |                                      |         |                                       |                      |                                         |                                |                              |
| က         | ANTENNA HEIGHT                                                                                             | H1, H2                       | m                                 | 30                             | 15                                   | 20      | 15                                    | 20                   | 15                                      | 20                             | 15                           |
| SPAN      | ATTENNA TELOTIC                                                                                            | hi, h2                       |                                   | 30_                            |                                      | _10_    |                                       | 10                   | 10                                      | 30                             | 10                           |
|           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                      |                              |                                   | <del></del>                    | <del></del>                          |         |                                       |                      |                                         | f                              |                              |
| β         |                                                                                                            |                              |                                   |                                |                                      |         |                                       | 1                    |                                         |                                | 1                            |
| õ         | OUTLINE OF PROPAGATION PATH                                                                                |                              |                                   |                                |                                      | 1:      |                                       |                      | 2011/06                                 | 100                            |                              |
| CONDITION |                                                                                                            |                              |                                   | <del></del>                    |                                      | ·       | ·············                         |                      |                                         |                                |                              |
| ž         | DISTANCE                                                                                                   | Ď                            | Km                                | 4                              | Ö.                                   | 4       | <b>O</b> ,                            | 4                    | 0                                       | 4                              | Ō                            |
| 10        |                                                                                                            | MODE                         | L                                 | 3-STAGE<br>CO-LINEAR           | YAGI 3E                              | YAGI 3E | YAGI 3E                               | YAGI 3E              | YAĞI 3E                                 | 3-STAGE<br>CO-LINEAR           | YAGI, 3E                     |
|           | ANTENNA                                                                                                    | POLARIZ                      | ZATION                            | ٧                              | V                                    | V       | V                                     | ν                    | ٧                                       | ٧                              | V                            |
|           |                                                                                                            | PATT                         | ERN                               |                                |                                      |         |                                       |                      |                                         |                                |                              |
| 1         | FEEDER                                                                                                     | MODE                         | <del></del>                       | AFZE50-4                       | AFZE50-4                             | 50-2V   | 50-2V                                 | 5D-2V                | 50-2V                                   | AFZE50-4                       | AFZE50-4                     |
| 1         |                                                                                                            | LENGT                        | <del>,</del>                      | 45                             | 15                                   | 16      | 16                                    | 16                   | 16                                      | 45                             | 15                           |
| <u> </u>  | TRANSMITTING OUTPUT POWER  PROPAGATION LOSS                                                                | <u>Pt</u>                    | W                                 | 10                             | <u> </u>                             | 10      | 10                                    | 7                    | <u> </u>                                | 10                             |                              |
|           | SPHERICAL TERRAIN LOSS                                                                                     | Lpf                          | dВ                                | - 89<br>- 3                    |                                      | - 89    |                                       | - 89                 |                                         | - 89                           |                              |
|           | TERRAIN REFLECTION LOSS                                                                                    | Lpp                          | <b>d8</b>                         |                                | 2.5                                  | - 10    | 5.5                                   | - 16                 | . 5                                     |                                | 2,5                          |
|           |                                                                                                            |                              |                                   |                                |                                      |         | · · · · · · · · · · · · · · · · · · · |                      |                                         | ••••                           | ·                            |
|           | SHADOW LOSS                                                                                                | · .                          | ŀ                                 |                                |                                      | 1 1     |                                       |                      |                                         |                                |                              |
| Ś         | SHADOW LOSS                                                                                                | Lps                          | 48                                |                                |                                      |         |                                       |                      |                                         |                                |                              |
| ρΔ        | [5]                                                                                                        | -31                          |                                   |                                |                                      |         |                                       | <u> </u>             |                                         |                                |                              |
| 2         | CORRECTIVE VALUE                                                                                           | Lpc                          | 48                                |                                |                                      | .i. '.  |                                       |                      | 0                                       | -                              |                              |
| ٦         | (TOTAL LOSS)                                                                                               | Lp                           | 4B                                | - 92                           |                                      | - 106   |                                       | - 116                |                                         | - 102                          |                              |
| SS        | ANTENNA GAIN                                                                                               | GA                           | dB                                | 6                              | 8                                    | 8       | 8                                     | 8                    | 8                                       | 6                              | 8                            |
| , ,       | AZIMUTHAL PATTERN LOSS  ANTENNA H Y B LOSS                                                                 | Lo                           | dB                                |                                | <b>.</b>                             |         |                                       | * ***                |                                         |                                |                              |
|           | FEEDER LOSS                                                                                                |                              |                                   |                                | A) = 0 =                             | 1       |                                       |                      |                                         |                                | 0505                         |
|           | S FILTER LOSS                                                                                              | <del> ,</del>                |                                   | -1.5/5                         | -0.525                               | -2      | -2                                    | -2                   | -2                                      | - 1.575                        | - 0.525                      |
| ,         | Z (TOTAL)                                                                                                  |                              | dB                                | 11,                            | ۵                                    |         | 2                                     | <br>                 | 2                                       | - 11                           | 9                            |
|           | (GRAND TOTAL)                                                                                              | Ls                           | 48                                | - 80                           |                                      | - 9     |                                       | - 10                 |                                         | - 90                           |                              |
|           | TRANSMITTING OUTPUT POWER                                                                                  | Pt                           | d Brn                             | 30                             | 40                                   | 40      | 40                                    | ĭ                    | 38.5                                    | 30                             | 40                           |
|           | RECEIVING POWER LEVEL                                                                                      | Pr.                          | dBm .                             | -50.I                          | 40.I                                 | 70.     | - 54                                  |                      | - 65.5                                  | - 60.1                         |                              |
| c,        | (e.m.f.)                                                                                                   | er                           | dΒμ                               | 62.9                           | 72.9                                 |         | 59                                    |                      | 47.5                                    | 52.9                           | 62.9                         |
| Ž         | INCOMING NOISE POWER LEVEL                                                                                 | Prne                         | dBm                               |                                |                                      |         |                                       |                      |                                         |                                |                              |
|           | (e.m.f.)                                                                                                   | erne                         | υBp                               |                                |                                      |         |                                       |                      |                                         |                                |                              |
| CALCU     | INTERNAL NOISE LEVEL                                                                                       | Prol                         | цВb                               |                                |                                      |         |                                       |                      |                                         |                                |                              |
| ΩΙ        | NOISE INCREASE                                                                                             | Δη                           | 48                                |                                |                                      | j       |                                       |                      | , N                                     |                                |                              |
| · C       |                                                                                                            | D-4                          | d Bm                              | 21 777                         |                                      |         |                                       |                      |                                         |                                |                              |
| Ţ         | TOTAL RECEIVING NOISE POWER LEVEL                                                                          | Prn                          |                                   |                                |                                      |         |                                       |                      |                                         |                                | _ 1 1 0                      |
| 4         | THRESHOLD LEVEL                                                                                            | PIħ                          | d8m                               | -110                           |                                      |         |                                       |                      | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | -(10                           |                              |
| ULATION   | THRESHOLD LEVEL CRESTFACTOR                                                                                | PIħ<br>Ĉf                    | d8m<br>dB                         | 9                              | 9                                    |         |                                       |                      | 4                                       | 9                              | 9                            |
| 4         | THRESHOLD LEVEL CRESTFACTOR THRESHOLD MARGIN                                                               | PID<br>Cf<br>Mth             | d8m<br>dB<br>dB                   | 9<br>59.9                      | 9<br>69.9                            |         |                                       |                      |                                         | 9<br>49.9                      | 9<br>59.9                    |
| 4         | THRESHOLD LEVEL CRESTFACTOR THRESHOLD MARGIN S/N IMPROVEMENT                                               | PID<br>Cf<br>Mth<br>I        | d8m<br>dB<br>dB<br>dB             | 9<br>59.9<br>12                | 9<br>69.9<br>12                      |         |                                       |                      |                                         | 9<br>.49.9<br>.12              | 9<br>59.9<br>12              |
| LATION    | THRESHOLD LEVEL CRESTFACTOR THRESHOLD MARGIN S/N IMPROVEMENT STANDARD S/N                                  | PIh<br>Cf<br>Mth<br>I<br>S/N | d8m<br>d8<br>d8<br>dB<br>dB       | 9<br>59.9<br>12<br>80.9        | 9<br>69.9<br>12<br>90.9              |         |                                       |                      |                                         | 9<br>49.9<br>12<br>70.9        | 9<br>59.9<br>12<br>80.9      |
| LATION    | THRESHOLD LEVEL CRESTFACTOR THRESHOLD MARGIN S/N IMPROVEMENT STANDARD S/N FADING VALUE PRESUMED            | PID<br>Cf<br>Mth<br>I        | d8m<br>d8<br>d8<br>d8<br>d8       | 9<br>59.9<br>12<br>80.9        | 9<br>69.9<br>12<br>90.9              |         |                                       |                      |                                         | 9<br>49.9<br>12<br>70.9        | 9<br>59.9<br>12<br>80.9      |
| LATION    | THRESHOLD LEVEL CRESTFACTOR THRESHOLD MARGIN S/N IMPROVEMENT STANDARD S/N FADING VALUE PRESUMED (MILL) LF) | PIh<br>Cf<br>Mth<br>I<br>S/N | d8m<br>d8<br>d8<br>dB<br>d8<br>d8 | 9<br>59.9<br>12<br>80.9<br>-3. | 9<br>69.9<br>12<br>90.9<br>4<br>66.5 |         |                                       |                      |                                         | 9<br>49.9<br>12<br>70.9<br>-3. | 9<br>59.9<br>12<br>80.9<br>4 |
| LATION    | THRESHOLD LEVEL CRESTFACTOR THRESHOLD MARGIN S/N IMPROVEMENT STANDARD S/N FADING VALUE PRESUMED            | PIh<br>Cf<br>Mth<br>I<br>S/N | d8m<br>d8<br>d8<br>d8<br>d8       | 9<br>59.9<br>12<br>80.9        | 9<br>69.9<br>12<br>90.9              |         |                                       |                      |                                         | 9<br>49.9<br>12<br>70.9        | 9<br>59.9<br>12<br>80.9      |

Dote : 18th Mor. '77

Cagayan River System

Tuguegarao (Sub-Center) — Tumauini (R&W)

MODE OF COMMUNICATION : SIMPLEX METHOD OF MODULATION : FM (IMPEDANCE : 50 (1)) SPECIFIED RELIABILITY : 99.9 (%)

| C/        | ALCULATION OF FADING VALUE PRESU            | MED:                                  | 0.1 (       | dB/Kmlx                                 | d (Km) +       | 3 (48)      |                      |                  |                                                  |                      |                         |
|-----------|---------------------------------------------|---------------------------------------|-------------|-----------------------------------------|----------------|-------------|----------------------|------------------|--------------------------------------------------|----------------------|-------------------------|
|           | CALCULATION NO.                             |                                       |             |                                         | VALUES         | BEFORE      | TEO DATE<br>TEST     | DATE OF<br>ACTU/ | L TEST                                           | DESIGNAL<br>DETERMIN | VALUES<br>AL<br>ER TEST |
|           | SPAN                                        |                                       |             | Tuguegara                               | o-Turnouini    |             | <del>- J</del> ana 1 |                  | <del>-</del> 1.11                                | _                    | -                       |
|           | ALTITUDE                                    | 77.                                   | m           | 20 20                                   | 7) (RAW)<br>30 | 20          | 30                   | 20               | 30                                               | 20                   | 30                      |
| S         | ANTENNA HEIGHT                              | H1, H2                                | m           | 30                                      | 10             | 10          | 10                   | 10               | 10                                               | 30                   | 10                      |
| PAN       |                                             | hi, ha                                | m           |                                         |                |             |                      |                  |                                                  |                      |                         |
|           |                                             | 1                                     | L           |                                         | -:             |             |                      |                  |                                                  |                      |                         |
| 8         |                                             |                                       |             |                                         |                |             |                      |                  |                                                  | 1.1                  |                         |
| Ö         | OUTLINE OF PROPAGATION PATH                 |                                       |             |                                         |                |             |                      |                  |                                                  |                      |                         |
| CONDITION |                                             | ing Pi                                | 1.5         |                                         | 5. 7. 15       | a - 1       |                      |                  |                                                  |                      |                         |
| Š         | DISTANCE                                    | 0                                     | Km          | 38                                      | 3.1            | 38          | 1                    | 38               | , 1                                              | 38                   | 11 1                    |
|           |                                             | MÓDE                                  | L" N        | 3-STAGE                                 | YAGI 3E        | YAGI 3E     | YAĞI 3E              | YAGI 3E          | YAĞI 3E                                          | 3-STAGE              | YAGI 3E                 |
|           | ANTENNA                                     | POLARIZ                               | ATION       | V                                       | V              | ٧           | V                    | ٧                | ٧                                                | ٧                    | ٧                       |
|           |                                             | PATTE                                 |             |                                         |                |             |                      |                  |                                                  |                      |                         |
|           | Tale Waller                                 | MODE                                  | <del></del> | AFZE50-4                                | AFZE50-4       | 50-2V       | 50-2V                | 50-2V            | 50-2V                                            | AFZE50-4             |                         |
|           | FEEDER                                      | LENGT                                 | H m         | 45                                      | 15             | 16          | 16                   | 16               | 16                                               | 45                   | 15                      |
|           | TRANSMITTING OUTPUT POWER                   | Pt                                    | W           | 10                                      | 10             | 10          | 10                   | 7                | 8                                                | 10                   | 10                      |
| ·         | PROPAGATION LOSS                            | Lpf                                   | 48          | <b></b> [                               | 09             | 10          |                      | - 10             |                                                  | - K                  |                         |
|           | SPHERICAL TERRAIN LOSS                      | 1 4 21                                | dВ          | ·                                       | 9              | = 1         | 4                    |                  | 14                                               |                      | 9                       |
|           | TERRAIN REFLECTION LOSS                     | Lóp                                   | UB          |                                         | <u> </u>       | 1           |                      |                  | <u> </u>                                         |                      |                         |
|           | GAIT                                        |                                       | 1           | 6                                       | - 6            | -           | 6 – 6                | (                | 6 – 6                                            | - (                  | 5 – 6                   |
|           | 3 SHADOW LOSS                               | Lps                                   | 48          | - è                                     |                |             | 6 - 6                | (                | 6 – 6                                            | _ (                  | 6 – 6                   |
| S         | SHADOW LOSS                                 | L Ch.                                 | "           | _ `                                     | · -            |             | 65 - 6               |                  | 6.5 - 6                                          |                      | 6 - 6                   |
| PA<br>Z   | 5                                           |                                       |             |                                         |                | <del></del> |                      |                  | ?                                                |                      | 2                       |
| Z         | CORRECTIVE VALUE                            | Lpc                                   | dB          | - 15 4                                  |                | - 159.5     |                      | - 157.5          |                                                  | 15                   |                         |
| 50        | (TOTAL LOSS)                                | Lp                                    | 48          | 6                                       | 11             | - 13<br>8   | Г 8                  | 8                | 8                                                | 6                    | 8                       |
| ŠŠ        | NATENNA GAIN                                | GA                                    | 1B<br>4B    |                                         |                |             |                      | 7 7 7 7          | 7 2 3 4 7                                        |                      |                         |
| , °       | AZIMUTHAL PATTERN LOSS Z ANTENNA H Y 8 LOSS | Ló                                    | V.D         |                                         |                |             |                      |                  |                                                  |                      |                         |
|           | FEEDER LOSS                                 |                                       | ···         | -1.575                                  | -0.525         | -2          | - 2                  | - 2              | -2                                               | -1.575               | - 0.525                 |
|           | P FILTER LOSS                               | 1 7, 1                                |             | -1.313                                  | -0.323         | <del></del> |                      |                  |                                                  | · · · · ·            |                         |
|           | Z (TOTAL)                                   |                                       | - d8        | 14                                      | 9              | 1           | 2                    | 1                | 2                                                | 11                   | . 9                     |
|           | (GRAND TOTAL)                               | LS                                    | 48          |                                         | 39 l           | - 14        |                      | - 14             | 5.5                                              | - 14                 | 0. 1                    |
|           | TRANSMITTING OUTPUT POWER                   | Pi                                    | d Bm        | 40                                      | 40             | 40          | 40                   |                  | 38.5                                             | 40                   | 40                      |
|           | RECEIVING POWER LEVEL                       | Pr                                    | dßm         | - 99.1                                  | - 99.1         |             | -107.5               |                  | - 107                                            | ~ 100. I             | i – 100. i              |
|           | (e.m.f.)                                    | er                                    | dВи         | 13.9                                    | 13.9           |             | 5.5                  |                  | 6                                                | 12.9                 | 12.9                    |
| S/        | INCOMING NOISE POWER LEVEL                  | Prne                                  | dBm         |                                         | 1              | 3 1111      |                      |                  | l                                                |                      | <u> </u>                |
| 2         | (e.m.f.)                                    | erne                                  | dBu         |                                         |                |             |                      |                  | i                                                |                      | i                       |
| CALC      | INTERNAL NOISE LEVEL                        | Prol                                  | цВЬ         |                                         |                | 1           |                      |                  | <u> </u>                                         |                      |                         |
| ը<br>[    | NOISE INCREASE                              | Δη                                    | σB          |                                         | 1:-,           | 1 1         | i                    |                  | <u> </u>                                         |                      | İ                       |
| ן לַ      | TOTAL RÉCEIVING NOISE POWER LEVEL           | Prn                                   | d8m         |                                         |                |             | <u> </u>             |                  |                                                  |                      | <b>i</b>                |
|           | THRESHOLD LEVEL                             | Pih                                   | dBm         | -110                                    | -110           |             | <u> </u>             |                  | <u> </u>                                         | -110                 | 1-110                   |
| 9         | CRESTFACTOR                                 | Cf -                                  | dB          | 9                                       | 1 9            | 1111        | <u> </u>             | 1                | <u> </u>                                         | 9                    | 9                       |
| ~         | THRESHOLD MARGIN                            | Mih                                   | <b>6</b> 9  | 10.9                                    | 10.9           |             | <del> </del>         |                  | <del> </del>                                     | 9.9                  | 9,9                     |
|           | S/N. IMPROVEMENT                            | Ĭ                                     | dB          | 12                                      | 12             | <u> </u>    | <del> </del>         | <del> </del>     | <del>                                     </del> | 12<br>30.9           | 30.9                    |
|           | STANDARD S/N                                | S/N                                   | dB          | 31.9                                    | 31.9           |             | <b></b>              | <del> </del>     | L                                                |                      |                         |
| _ ဋ       | FADING VALUE PRESUMED                       | LF                                    | dB          | 6                                       |                | 18 1 NO 12  |                      | <b> </b>         | ,                                                | - 6                  | <u></u>                 |
| MENT      | (Mih > LF)                                  |                                       | dB          |                                         | 4.1            |             | <del> </del>         | <b> </b>         |                                                  | 3.1                  | 3,1                     |
| <b>\</b>  | S/N AT FADING                               | •                                     | 48          | 25.1                                    | 25.1           |             | <u>i</u>             | <b> </b>         | L                                                | 24.1                 | 24.1                    |
|           | REMARKS                                     | · · · · · · · · · · · · · · · · · · · | ·           | -54                                     | 1. 4           | 1           | 1. 1                 | 1                |                                                  | 2 / /                |                         |
| ı         | TEMPINO .                                   |                                       |             | 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | er grander g   |             | 200                  | 1 .              |                                                  |                      |                         |

Dole: 18th Mor. '77

Cagayan River System

Tuguegarao (Sub-Center) — Iragon (Repeater)

| MODE OF COMMUNICATION : SIMPLEX | METHOD OF MODULATION : FM (IMPEDANCE : 50 (A) SPECIFIED RELIABILITY : 99.9 (%) |
|---------------------------------|--------------------------------------------------------------------------------|
| CALCULATION OF FADING VALUE PRE | SUMED: 0.1 (d8/Km)x d (Km) + 3 (d8)                                            |

|             | CALCULATION NO.                     |             |      | CALCULAT  | TED<br>I VALUES            | CALCULA<br>BEFORE | TED DATE                                         | DATE OF      | L TEST      | DESIĞNAL<br>DETERMIN                          | <i>i</i> AL         |
|-------------|-------------------------------------|-------------|------|-----------|----------------------------|-------------------|--------------------------------------------------|--------------|-------------|-----------------------------------------------|---------------------|
|             | SPAN                                |             |      | Tuguegara | ó – Tragán<br>r) (Repeater |                   |                                                  | _            |             | AF1                                           | ER TEST             |
|             | ALTITUDE                            |             | m    |           | 100                        | 20                | 100                                              | 20           | 100         | 20                                            | 100                 |
| S           | ANTENNA HEIGHT                      | Hi. Ha      | m    | 30        | 30                         | 10                | 10                                               | 10           | 01          | 30                                            | 30                  |
| SPAN        | RATE IN THE OTHER                   | hi hz       |      |           |                            |                   |                                                  |              |             | <del></del>                                   |                     |
| ź           |                                     |             | _ m  |           | . ———                      |                   |                                                  |              |             |                                               |                     |
| CONDITION   | OUTLINE OF PROPAGATION PATH         |             |      |           | ·                          |                   | <u>.</u>                                         |              |             |                                               |                     |
| 2           | DISTANCE                            | Ó           | Km   | 56        | . 4                        | 56                | .4                                               | 56.          | 4           | 56                                            | . 4                 |
|             |                                     | MODE        | 1:   | 3-STAGE   | YAGI 3E                    | VAGI 3F           | YAGI 3E                                          | YAĞI 3E      | YAGE 3F     | 3-STAGE<br>CO-LINEAR                          | YAGE 3F             |
|             | ANTENNA                             | POLARIZ     |      | V         | V                          | V                 | V                                                | V            | V           | V                                             | V                   |
|             | MITEMA                              |             |      | V         | <u> </u>                   |                   | <u> </u>                                         | V            | <del></del> | Υ                                             | <u> </u>            |
| 1 .         |                                     | PATT        |      |           | <u> </u>                   |                   |                                                  | 4.1          |             |                                               |                     |
|             | FEEDER                              | MODE        |      |           | AFZE50-4                   | 50-2V             |                                                  | 50-2V        | 50-2V       |                                               | AFZE50-4            |
|             | <u> </u>                            | LENGT       | Нm   | 45        | 45                         | 16                | <b> </b>                                         | 16           | 16          | 45                                            | 45                  |
| 1           | TRANSMITTING OUTPUT POWER           | Pt          | w    | 10        | 10                         | 10                | 10                                               | 7            | 7           | 10                                            | j 10                |
|             | PROPAGATION LOSS                    | Lpf         | dB   | - 11      | 2.5                        | - 11              | 2.5                                              | – U3         | 2.5         | - 11                                          | 2.5                 |
| 1           | DESCRIPTION TENDENT LOCK            |             |      |           |                            |                   |                                                  |              |             | 1.8                                           | 5                   |
|             | TERRAIN REFLECTION LOSS SHADOW LOSS | Lop         | 98   |           |                            |                   |                                                  |              |             |                                               | V                   |
|             | 8                                   |             |      |           |                            | <del></del>       |                                                  |              |             |                                               |                     |
|             | <b> ≚</b>                           |             |      | 1         | - 7                        | - 3               | - 8                                              | - 3          | - 8         | _ I                                           | - 7                 |
|             | õ SHADOW LOSS                       | Lps         | đВ   | - 5       | - 6                        | -5                | - 7                                              | - 5          | - 7         | Ś                                             | <b>- 6</b> ;        |
| to I        | 1 1                                 | -,          |      | - 7       | 14                         | <u>-</u> 8        |                                                  | 8            | '           | <b>-</b> 7                                    | 5                   |
| SPAN        | CORRECTIVE VALUE                    |             |      | <u> </u>  | <u></u>                    |                   | <del></del>                                      |              |             |                                               |                     |
| 2           |                                     | Lpc         | d8   |           |                            |                   | <u> </u>                                         | 9            |             | - : - :                                       |                     |
|             | (TOTAL LOSS)                        | Lp          | 48   | 13        | 8.5                        | <b>– 14</b>       | 3.5                                              | - 15         | 2.5         | - 14                                          | 7.5                 |
| LOSS        | ANTENNA GAIN                        | GA -        | 48   | - 6       | 6                          | 8                 | 8                                                | 8            | 8           | 6                                             | 6                   |
| Š           |                                     | Lo          | 48   |           |                            |                   |                                                  |              | All the     | FE 84 C 276                                   |                     |
| 1 .         | Z ANTENNA H Y 8 LOSS                | i           |      |           |                            |                   |                                                  |              |             | 118431                                        | ĺ                   |
|             | FEEDER LOSS                         |             | -    | -1.575    | -1.575                     | - 2               | -2                                               | - 2          | - 2         | -1.575                                        | -1.575              |
| 1           | S FILTER LOSS                       |             |      |           | l                          | 7                 |                                                  |              |             |                                               |                     |
| 1           | Z (TOTAL)                           |             | 48   | 8.        | A                          | 1                 | 2                                                | 1            | 2           | 8.                                            |                     |
| 1           |                                     |             | 48   | - 121     |                            | - 13              |                                                  |              | 0.5         | 13                                            |                     |
| <b>-</b>    | (GRAND TOTAL)                       | Ls          |      |           |                            |                   |                                                  |              |             |                                               |                     |
|             | TRANSMITTING OUTPUT POWER           | Pt          | d Bm | : 40 :    | 40                         | 40                | 40                                               | 38.5         | 38.5        | 40                                            | 40                  |
|             | RECEIVING POWER LEVEL               | Pr          | d Bm | -89.7     | -89.7                      |                   | -91.5                                            | -102         | -101        | -98.7                                         |                     |
| ان          | (e. m. f.)                          | èr          | dB)J | 23.3      | 23.3                       | <u>, , 115.  </u> | <u> </u>                                         | 11           | 15          | 14.3                                          | 14.3                |
| S/N         | INCOMING NOISE POWER LEVEL          | Prne        | d Bm | i.        | <u> </u>                   |                   | <u> </u>                                         | 1.00         | 120 4       | 1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u> | 41 f V.             |
|             | (e.m. f.)                           | erne        | dBju |           |                            |                   |                                                  |              |             | 3 A 18                                        | <b>i</b>            |
| CALCULATIO  | INTERNAL NOISE LEVEL                | Prol        | dBu  |           |                            | Ų.                |                                                  |              |             |                                               |                     |
| [5]         | NOISE INCREASE                      | Δη          | d8   |           |                            | <del></del>       | <del>                                     </del> |              |             | 1.5                                           |                     |
| 5           | TOTAL RECEIVING NOISE POWER LEVEL   |             | dBm  | ,         | i                          |                   | <u> </u>                                         |              |             | 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5       |                     |
| <b>&gt;</b> |                                     | Prn         |      | 11.6      |                            |                   | <del> </del>                                     |              |             | -110                                          | - 110               |
| 1 🔣         | THRESHOLD LEVEL                     | Pih         | d8m  | -110      | <u>[-110</u>               | <u> </u>          |                                                  | <del>-</del> |             | 9                                             | 9                   |
| Ιž          | CRESTFACTOR                         | Cf          | dB   | 9         | 1 9                        |                   | <u>'</u>                                         |              |             |                                               | <del></del>         |
|             | THRESHOLD MARGIN                    | Mth         | dß   | 20.3      | 20.3                       |                   | 11/2 3                                           |              |             | 11.3                                          | 11.3                |
|             | S/N IMPROVEMENT                     | I           | 68   | 15        | 12                         |                   |                                                  |              |             | 12                                            | 12                  |
| 1.5         | STANDARD S/N                        | S/N         | dB   | 41.3      | 41.3                       |                   | <u> </u>                                         | 34           | 32 👵        | 32.3                                          | 32.3                |
| <u> </u>    | FADING VALUE PRESUMED               | LF          | ďB   | - 8.      | 6                          |                   | 7.1 1                                            |              |             | 548.73 - <b>8</b> .                           | 6                   |
| Į≅δ         | (Mth > LF)                          |             | dB   | 11.7      | 11.7                       | 1                 |                                                  |              |             | 2.7                                           | 2.7                 |
| EN S        |                                     | <del></del> | dB   | 32.7      | 32.7                       |                   |                                                  |              | 1,00        | 23.7                                          | 23.7                |
| 川           | S/N AT FADING                       |             |      | 32.       | 32.1                       |                   |                                                  |              | L           |                                               |                     |
|             | REMARKS                             |             | į    | 5         | •                          |                   | 1. 4.                                            |              |             | 10 11 11 11 11                                |                     |
| 1           |                                     |             | _    |           |                            |                   |                                                  |              |             |                                               |                     |
| -           |                                     |             |      |           |                            | <del></del>       | 7-10-1                                           |              |             |                                               | كالمستحدث والمستحدث |

Dote: 18th Mar. '77

Cagayan River System

Tragan (Repeater) — Dalibubun (R&W)

MODE OF COMMUNICATION : SIMPLEX METHOD OF MODULATION : FM IMPEDANCE : 50 IR ) SPECIFIED RELIABILITY : 99.9 (%)

| نيا       | T          | ULATION OF FADING VALUE PRESUI        | MEU:         | 0.1 (      |                                        |                                               |                   |             |             |               |                      |                                         |
|-----------|------------|---------------------------------------|--------------|------------|----------------------------------------|-----------------------------------------------|-------------------|-------------|-------------|---------------|----------------------|-----------------------------------------|
|           | Ľ          | CALCULATION NO.                       |              |            |                                        | TEO<br>N VALUES                               | CALCULA<br>BEFORE | TED DATE    | DATE OF     |               | DESIGNAL<br>DETERMIN | NAL                                     |
|           | SPAN       |                                       |              |            | Iragan — Dalibubun<br>(Repeater) (R8W) |                                               |                   |             |             |               | AFTER TES            |                                         |
|           | 1          | ALTITUÓE                              | 44.4         | m          | 100                                    | 80                                            | 100               | 80          | 100         | 80            | 100                  | 80                                      |
| Ŷ         | $\perp$    | ANTENNA HEIGHT                        | H1, H2       | m          | 30                                     | 10                                            | 10                | 10          | 10          | 10            | 30                   | 10                                      |
| SPAN      | L          |                                       | hi, hz       | m          | ]                                      |                                               |                   |             |             |               |                      | <del></del>                             |
| CONDITION | L          | OUTLINE OF PROPAGATION PATH           |              |            |                                        |                                               |                   |             |             |               |                      |                                         |
| ž         | C          | DISTANCE                              | 0            | Km         |                                        | Ó.8                                           | 1 1 1             |             |             |               |                      |                                         |
|           | Γ          |                                       | MODE         | L          | 3-STAGE                                | YAGE 3F                                       | YARL 35           | YAGI 3E     | YAGI 3F     | YAGI 3F       | 3-STAGE              | YAGI 36                                 |
| Ī         | 1          | INTENNA                               | POLARIZ      |            | V-LINEAR                               | V                                             | V                 | V           | V           | V             | CO-LINEAR<br>V       | V                                       |
|           |            | 我们的"我们的"的"大哥"。"你们"                    | PATTE        |            | <del></del>                            | <del></del>                                   |                   | <u> </u>    | <b></b>     | · · · ·       | <del>-</del>         | i                                       |
|           | -          |                                       | MODE         |            | ACRESS 4                               | lacreso =                                     |                   |             | 50.00       | 50.311        | ACTES A              | 16E2EEQ 5                               |
| . 3       | F          | EEDER                                 | LENGT        |            |                                        | AFZE50-4                                      |                   | 50-2V       | 50-2V       |               |                      | AFZE50-4                                |
|           | Η.         | RANSMITTING OUTPUT POWER              | <del>}</del> |            | 45                                     | 15                                            | 16                | <del></del> | 16          | 16            | 45                   | 15                                      |
|           | <b>!</b> - | · · · · · · · · · · · · · · · · · · · | Pt           | W          | 10                                     | 1 1                                           | 1.0               | 10          | 8.5         | 7             | 10                   | j : 10                                  |
|           | أورا       | PROPAGATION LOSS                      | Lpf          | σB         | - !                                    | 13                                            | 1                 | 13          | - 1         | 13            | 11                   | 1.3                                     |
|           | 18         | SPHERICAL TERRAIN LOSS                | Lop          | 48         | <b>-</b>                               |                                               | <b> </b>          | ·           | <u> </u>    |               |                      | <del>:</del>                            |
|           | B          | TERRAIN REFLECTION LOSS               |              |            | <b> </b>                               |                                               | <del> </del>      |             | <b> </b>    |               | 10.00                | . · · · · · · · · · · · · · · · · · · · |
|           | [ह़        |                                       | i            | <b>!</b>   | - 6                                    |                                               |                   | 7.5         |             | 7.5           | - 6                  |                                         |
|           | ᅙ          | SHADOW LOSS                           | Los          | 48         | - 6                                    |                                               | · ·               | 6           | - 6         | - :           | 6                    | all the second                          |
| r.        | 2          |                                       | ""           | 30         | - 8.                                   |                                               |                   | 9           |             | 9             |                      | 3.5                                     |
| PAN       | [5]        |                                       | <u> </u>     | لعقيبا     | - 6                                    | الصفية                                        |                   | 8           | – ε         |               | 6                    |                                         |
| Z         | 8          | CORRECTIVE VALUE                      | Lpc          | 48         |                                        |                                               |                   |             | - 13        |               | 13                   |                                         |
| Ċ.        | Ш          | (TOTAL LOSS)                          | lρ           | ₫B         | - 13                                   | 9.5                                           | - 14              | 3.5         | - 15        | 7.3           | - 15                 | 3.3                                     |
| 5         | <u>≱</u>   | ANTENNA GAIN                          | GA           | dВ         | _ 6                                    | 8                                             | 8                 | 8           | 8           | 8             | 6                    | - 11                                    |
| S         | ايرا       | AZIMUTHAL PATTERN LOSS                | Lo           | dВ         |                                        | <u>,                                     </u> |                   |             |             |               |                      |                                         |
| l         |            | ANTENNA H Y B LOSS                    |              |            |                                        |                                               | ۱ - ۱             | į           | 1           | 1             | 1                    | !                                       |
| . "       | [ځ         | FEEDER LOSS                           |              |            | - 1.575                                | - 0.525                                       | 2                 | - S         | -2          | 2             | -1.575               | - 0.525                                 |
|           | द्वी       | FILTER LOSS                           |              |            |                                        |                                               | 100               |             |             |               |                      |                                         |
|           | ΖÌ         | (TOTAL)                               |              | dВ         | 11                                     | 9                                             | ·                 | 2           |             | 2             | 14                   | 9                                       |
|           | -, %       | (GRAND TOTAL)                         | Ls           | dB         | - 127                                  | ·                                             | -13               |             |             | 5.3           | - 13                 |                                         |
|           | TO         | ANSMITTING OUTPUT POWER               | PL           | d8m        | 3ò                                     | 40                                            | 40                | 40          |             | 39.3          | 40                   | 40                                      |
|           |            | CEIVING POWER LEVEL                   | Pr           | d Bm       | -97.6                                  | -87.6                                         | 40                | - 91.5      |             | - 106         | - 98.4               |                                         |
| 7         |            | . m. f. )                             | er           | dBu dBu    | 15.4                                   | 25.4                                          |                   |             | <b>!</b>    | 7             |                      |                                         |
| 8         |            | COMING NOISE POWER LEVEL              |              |            | 10.4                                   | 27.4                                          |                   | 21.5        | <del></del> |               | 14.6                 | 14.6                                    |
| ż         |            |                                       | Prne         | d8m        |                                        |                                               | 1 to 1            | 14 (18 1 T  |             |               | ļi                   | ļ                                       |
| Ď.        |            | · m, f, l                             | eine         | 48µ        |                                        | · · · · · · · · · · · · · · · · · · ·         |                   |             | i           |               |                      | <b>!</b>                                |
| CALCULAT  |            | ERNAL NOISE LEVEL                     | Prot         | dBp        |                                        | 1                                             | Talka s           |             | ! <b>-</b>  |               |                      |                                         |
| ۲         |            | ISE INCREASE                          | Δη           | ₫B.        |                                        |                                               |                   |             |             |               |                      |                                         |
| Þ.        |            | AL RECEIVING NOISE POWER LEVEL        | Prn          | dBm        |                                        |                                               |                   |             |             |               |                      | i                                       |
| 링         |            | RESHOLD LEVEL                         | PIN          | dBm        | -110 j                                 | 110                                           |                   |             | <u> </u>    | <u> </u>      | ~110                 | <b>→110</b>                             |
| ž         |            | ESTFACTOR                             | Cf :         | <b>6</b> 8 | 9 1                                    | 9                                             | 15 F              |             | (           |               | 9                    | 9                                       |
| 1         | TH         | RESHOLD MARGIN                        | Mth          | dB         | 12.4                                   | 22.4                                          |                   |             |             |               | 11.6                 | 11.6                                    |
|           |            | N IMPROVEMENT                         | İ            | ďΒ         | 12                                     | 12                                            |                   |             |             | - 1 T         | 12                   | 12                                      |
| [         |            | ANDARD S/N                            | S/N          | 86         | 33.4                                   | 43.4                                          |                   |             | 29          | 33.7          | 32.6                 | 32.6                                    |
| ૃદી       | FAI        | DING VALUE PRESUMED                   | LF           | ₫₿         | - 9                                    | 1                                             |                   |             |             | 45°'' 151     | - 9;                 |                                         |
| 젖         |            | h > LF J                              |              | dВ         | 3.3                                    | 13.3                                          | - 1               |             |             |               |                      | 2.5                                     |
| Z OGE     |            | N AT FADING                           |              | dB         | 24.3                                   | 34.3                                          | 1                 | <del></del> |             |               | 23.5                 | 23.5                                    |
| — I       |            |                                       |              |            |                                        |                                               |                   | +           |             | <del></del> } | 1                    |                                         |
|           | R          | EMARKS                                | - *          | : [        |                                        | l                                             |                   |             |             | l             | 200                  | 10 P                                    |
|           |            |                                       | -            |            | *                                      |                                               |                   |             | -           |               |                      |                                         |
| -         |            |                                       |              |            |                                        |                                               |                   |             |             |               |                      |                                         |

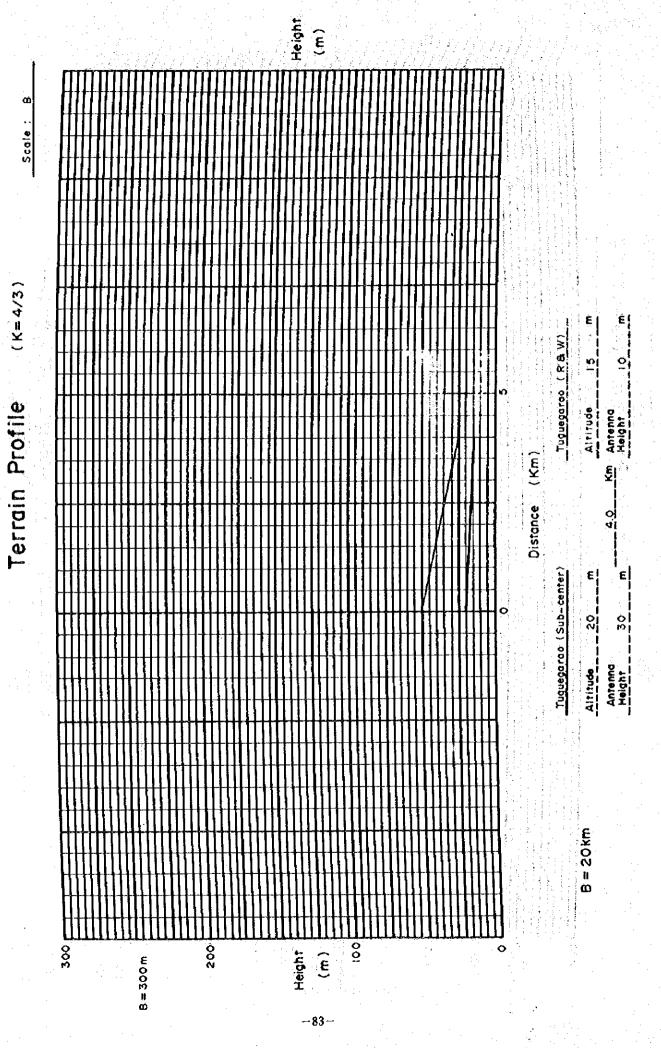
Dote; 18th Mor. '77

Cagayan River System

REMARKS

Iragan (Repeater) — Maris Dam (R&W)

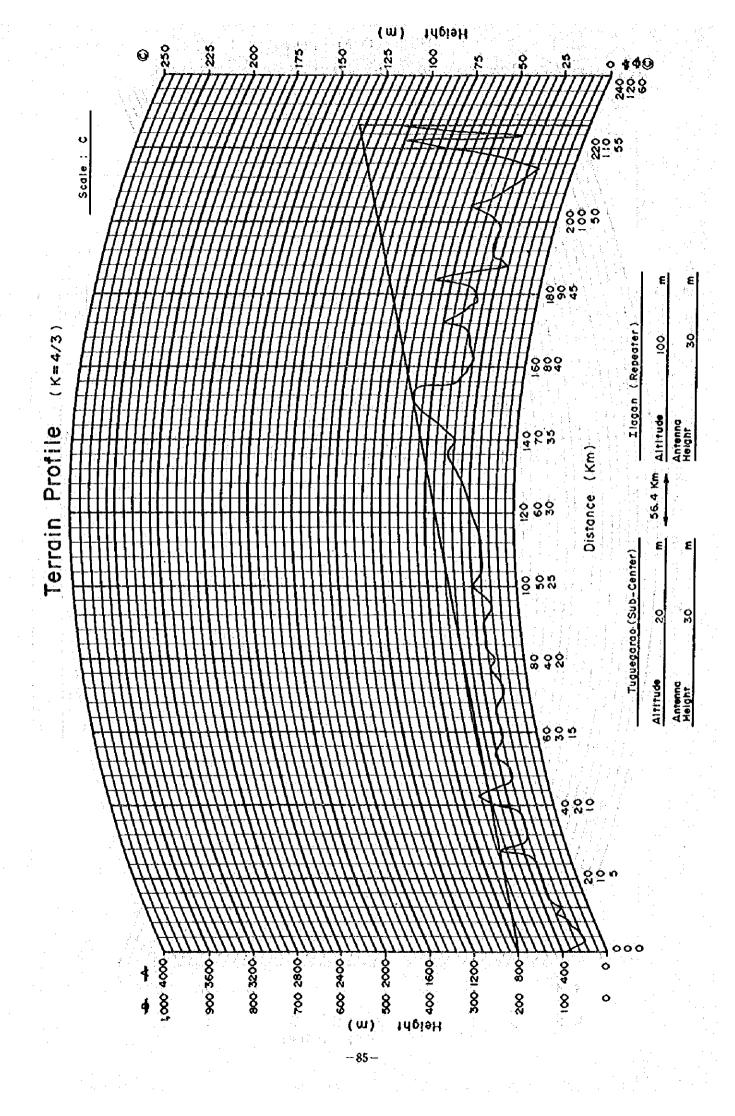
|           | <del></del> |                                          |           | and Section 2 |                  |                                                  |             |                                                  | 25 42 4                                                   |                                                  |                      |              |
|-----------|-------------|------------------------------------------|-----------|---------------|------------------|--------------------------------------------------|-------------|--------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|----------------------|--------------|
| M         | ODE         | OF COMMUNICATION : SIMPLEX ME            | THOO O    | FMOOU         | LATION:          | FM IMPE                                          | DANCE:      | 50 (N)                                           | SPECIFIE                                                  | D RELIAB                                         | ILITY : S            | 9.9 (%)      |
| П         | CALC        | WLATION OF FADING VALUE PRESUM           | MED:      | 0.1           | dB/Km) x         | d (Kml+                                          | 3 (dB)      |                                                  | Assayî kiş ç                                              | <u> 455 Strien</u>                               |                      | <u> </u>     |
|           | 1           |                                          |           |               | T. 4. 3. 3.      |                                                  | 1 4 4 4 4 4 |                                                  | LANG A                                                    |                                                  | Toros NAI            | MALLIEC      |
| 1         | 1.          | CALCULATION NO.                          |           |               |                  | CALCULATED CALCULATE<br>DESIGN VALUES BEFORE     |             |                                                  | DATE OF                                                   | AL TEST                                          | DESIGNAL<br>DETERMIN | IAL          |
| 1         | 1-          | SPAN ALTITUDE m                          |           |               | Iragan — N       | Maris Dam                                        |             |                                                  |                                                           |                                                  | AFI                  | ER TEST      |
| ı         | L           |                                          |           |               | (Repeater)       |                                                  |             |                                                  | 166                                                       |                                                  | 7                    |              |
| ۸         |             | ALTITUDE                                 |           |               | <u>100</u><br>30 | 10                                               | 100<br>10   | 90                                               | 100                                                       | 90                                               | 100<br>30            | 90           |
| SPAN      |             | ANTENNA HEIGHT                           | Hi, H2    | m             | 30               |                                                  |             | - 10                                             |                                                           |                                                  | - 30                 |              |
| Įź        | -           |                                          | 111 , 112 | 111           | <del></del>      | <del></del>                                      | <u> </u>    |                                                  |                                                           |                                                  |                      | - 115        |
| 8         |             |                                          | 1 1       |               |                  | •                                                |             |                                                  |                                                           |                                                  |                      |              |
| 8         | 1 4         | OUTLINE OF PROPAGATION PATH              |           |               | 4 1              |                                                  |             | 13.                                              | 1.01- 1                                                   | 1000                                             |                      | r. dik       |
| CONDITION | 1           |                                          |           | 1.            |                  |                                                  |             |                                                  |                                                           |                                                  |                      |              |
| 2         | $\vdash$    | DISTANCE                                 | О         | Km            | 51               | .7                                               | 51          | 7                                                | 51                                                        | . 7                                              | 51                   | . 7          |
| ı         |             | to the territory are a subject to earlie | MODE      | L             | 3-STAGE          | YAGI 3E                                          | YAGI 3E     | YAGI 3E                                          | YAG1 3E                                                   | YAGI 3E                                          | 3-STAGE              | YAG! 3E      |
|           |             | ANTENNA                                  | POLARIZ   | ATION         | V                | V                                                | ٧           | ν `                                              | V                                                         | v                                                | v                    | V            |
| ı         | 1           |                                          | PATTE     | RN            |                  |                                                  |             |                                                  | 6.                                                        | 1                                                | 100                  | N 1          |
|           |             |                                          | MODE      | L             | AFZE50-4         | AFZE50-4                                         | 5D-2V       | 5D-2V                                            | 50-2V                                                     | 50-2V                                            | AFZE50-4             | AFZE50-4     |
| 1         |             | FEEDER                                   | LENGT     | H m           | 45               | 15                                               | 16          | 16                                               | 16                                                        | 16                                               | 45                   | 15           |
| 1         |             | TRANSMITTING OUTPUT POWER                | ŕ٤        | W             | 10               | L                                                | 10          | 10                                               | 7                                                         | 7                                                | 10                   | 3            |
| [         | 1_          | PROPAGATION LOSS                         | Lpf       | ₫B            | 1   1 = 1        | 15                                               | - 1         |                                                  | 1                                                         |                                                  | 19.5 <b>- 1</b> 1    |              |
|           | ١ž          | SPHERICAL TERRAIN LOSS                   | Lpp       | dв            |                  | 4                                                | - 4         |                                                  | - 4                                                       |                                                  | - 4                  |              |
| l         | ROPAGATION  | TERRAIN REFLECTION LOSS                  | СРР       |               |                  |                                                  |             |                                                  |                                                           | <del></del>                                      |                      |              |
| l         | 18          |                                          |           | :             | - 6              |                                                  | - 6         |                                                  | - 6                                                       |                                                  | - 6                  |              |
| Į .       | 旨           | SHADOW LOSS                              | Lps       | dB            | - 18             |                                                  | <b>18</b>   |                                                  | -18                                                       |                                                  | -15                  |              |
| ဟူ        |             |                                          | 1         |               | ``               | •                                                | '           | •                                                |                                                           |                                                  | <b>!</b> '           |              |
| SPAN      | SSOT        | CORRECTIVE VALUE                         | Loc       | 48            |                  |                                                  | - 6         | .5                                               | - 6.5                                                     |                                                  |                      |              |
| •         | ۱۳          | (TOTAL LOSS)                             | Lp        | 48            | -13              | 37                                               | - 14        | 10                                               | - 15                                                      | 6.5                                              | - 14                 | 3.5          |
| 8         | P           | ANTENNA GAIN                             | ĞĀ        | dВ            | 6                | 8                                                | 8           | 8                                                | 8                                                         | 8                                                | 6                    | 8            |
| ŭ         | = =         | AZIMUTHAL PATTERN LOSS                   | Lo        | ₫B            |                  |                                                  |             |                                                  |                                                           | <u> </u>                                         |                      | 1 - 1 - 1    |
| ļ         | Ιÿ          | ANTENNA H Y B LOSS                       |           |               | 18 27            | <u> </u>                                         |             |                                                  |                                                           | ļ<br>                                            |                      |              |
| l .       | Ď           | FEEDER LOSS                              |           |               | - I.575          | - 0.525                                          | -2          | -2                                               | -2                                                        | <u>i - 2                                   </u>  | -1.575               | - 0.525      |
| i         | 18          | FILTER LOSS                              |           |               | ال حدث ا         | İ                                                |             |                                                  |                                                           |                                                  | I                    | <u> </u>     |
|           | Z           | (TOTAL)                                  |           | 48            |                  | . 9                                              | 1           |                                                  |                                                           |                                                  | 11<br>  - 13         |              |
| L_        | 4—          | (GRAND TOTAL)                            | Ls        | ďΒ            | 12               |                                                  | J;          |                                                  | - 13                                                      | 4.5                                              | <u>_</u>             | 40           |
|           |             | RANSMITTING OUTPUT POWER                 | PL        | d Bm          | 30               | 40                                               | 40          | 40<br>-88                                        |                                                           | 38.5<br>-96                                      | 34.8                 | 91.6         |
|           |             | ECEIVING POWER LEVEL                     | Pr        | dBm<br>dB µ   | -95.1<br>17.9    | -85.I<br>27.9                                    | 3 1 3 3     | 1 25                                             |                                                           | 1 17                                             | 16.2                 | 21.4         |
| Ý         | 1-          | e.m.f.)<br>ICOMING NOISE POWER LEVEL     | 1\$       |               | 37.9             | 21.3                                             |             | 23                                               |                                                           | <del>}                                    </del> | 10.5                 | <del> </del> |
| z         | 100         |                                          | Prne      | dBm<br>dBy    |                  |                                                  |             | <del> </del>                                     | 1                                                         | <del>                                     </del> | <del> </del>         | 1 1 1        |
| l g       |             | B.M. (, )<br>ITERNAL NOISE LEVEL         | Prnl      | עפט           |                  | <del>                                     </del> |             | <del>                                     </del> | -                                                         | <del>                                     </del> |                      | 11 13        |
| ١á        | -           | OISE INCREASE                            | Δη        | 48            |                  |                                                  |             | <u> </u>                                         |                                                           | <del> </del>                                     | 1                    |              |
| CALCULA   |             | TAL RECEIVING NOISE POWER LEVEL          | Pin       | dBm           |                  |                                                  |             |                                                  |                                                           | <del>}</del>                                     |                      | 4.00         |
|           | T           | HRESHOLO LEVEL                           | Pih       | dBm           | -110             | -110                                             |             |                                                  |                                                           |                                                  | -110                 | -110         |
| 9         | CI          | RESTFACTOR                               | ČI        | dВ            | 9                | 1 9                                              |             |                                                  |                                                           | 1                                                | .9                   |              |
| ~         | TI          | HRESHOLD MARÇIN                          | Mih       | dВ            | 14.9             | 24,9                                             |             |                                                  | 1.6                                                       |                                                  | 13.2                 | 18.4         |
|           |             | N IMPROVEMENT                            | ī         | dВ            | 12               | 12                                               |             |                                                  |                                                           |                                                  | 12                   | 12           |
| L         |             | IANDARD S/N                              | S/N       | 48            | 35.9             |                                                  |             | L                                                | 40                                                        | 39                                               | 34.2                 | 39.4         |
| ć         | FA          | DING VALUE PRESUMED                      | LF        | 48            | - 8              |                                                  |             | <u> </u>                                         |                                                           |                                                  |                      | . 2          |
| WEN       | CN          | hh > LF)                                 |           | ₫B            |                  | 16.7                                             | 1.          | <u> </u>                                         | 1200                                                      | <u> </u>                                         | 5                    | 10.2         |
| Ξ"        | '[s         | /N AT FADING                             | d         | dВ            | 27.7             | 37.7                                             |             | <u> </u>                                         |                                                           | Ĺ <u>.</u>                                       | 26                   | 31.2         |
|           |             |                                          |           |               |                  | 1                                                | <b>-</b>    |                                                  | <ul> <li>** ** ** ** ** ** ** ** ** ** ** ** **</li></ul> |                                                  |                      |              |

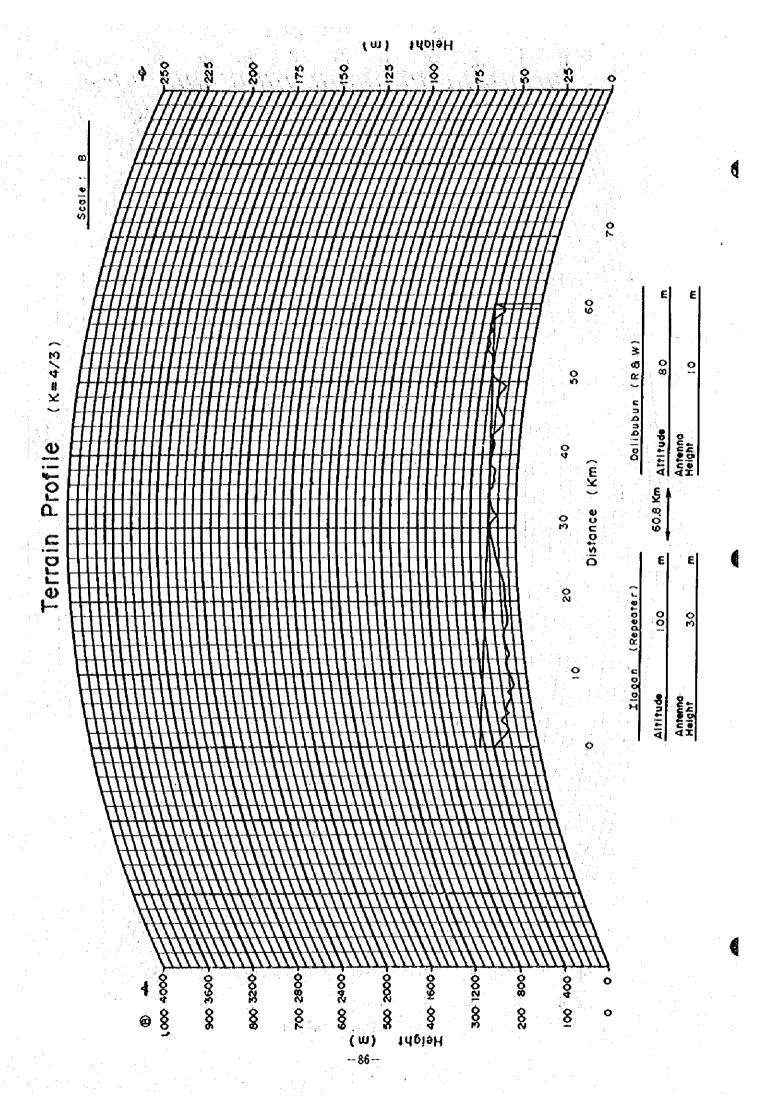

Dote; 18th Mor. '77

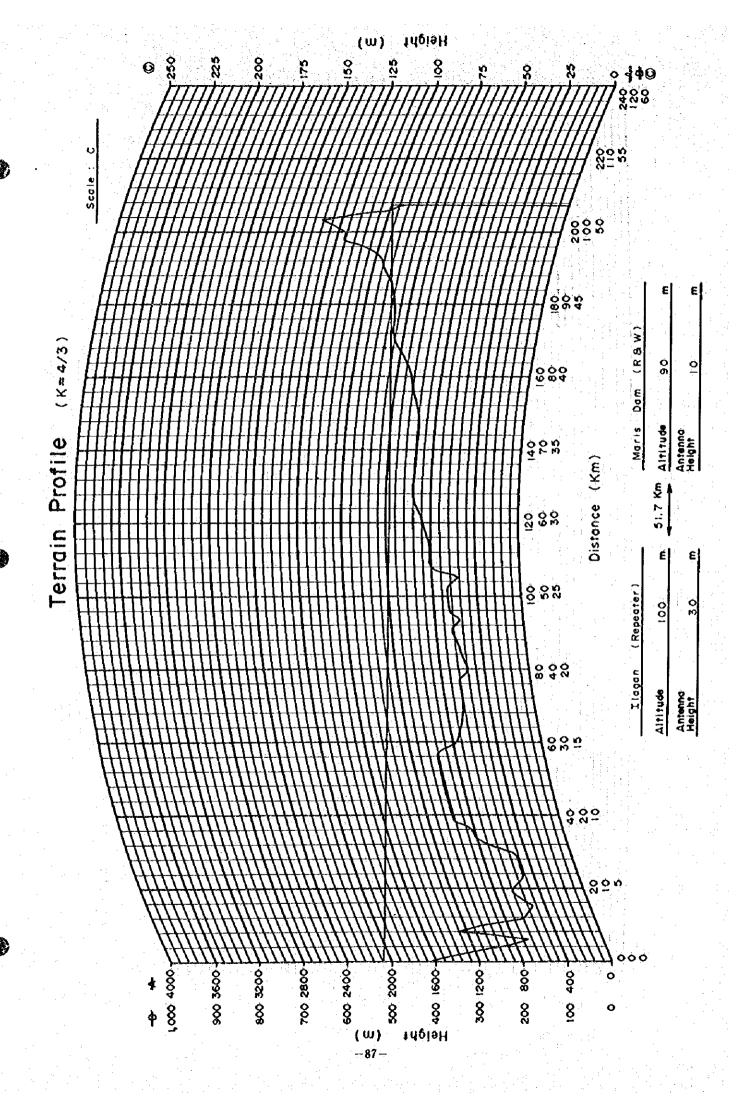
Cagayan River System

Iragan (Repeater) — Tumauini (R&W)

MODE OF COMMUNICATION : SIMPLEX METHOD OF MODULATION : FN IMPEDANCE : 50 (A.) SPECIFIED RELIABILITY : 99.9 (%)


| جيث                      | ALCULATION OF FADING VALUE PRESUM   |              |              | CALCULAT    |                   | 3 (dB)     | TED DATE    | DATE OF     |                                       | DESIGNAL        | VALUES          |  |
|--------------------------|-------------------------------------|--------------|--------------|-------------|-------------------|------------|-------------|-------------|---------------------------------------|-----------------|-----------------|--|
| 0.5                      | CALCULATION NO.                     | 213 <u>.</u> |              | DESIGN      | VALUES            | BEFORE     | TEST        | ACTU        | AL TEST                               | DETERMIN<br>AFT | IAL<br>ER TEST- |  |
|                          | SPAN                                |              |              |             | Tumouini<br>(R8W) |            | <del></del> | _           | <del>-</del> .:                       | -               | _               |  |
|                          | ALTITUDE                            |              | m            | 100         | 30                |            |             |             |                                       |                 |                 |  |
| Ϋ́                       | ANTENNA HEIGHT                      | Hi, Ha       | , Liu        | 30          | 10                | 10         | 10          | 10          | 10                                    | 30              | 10              |  |
| N d d                    |                                     | hi, ha       | m            |             |                   |            |             |             |                                       |                 |                 |  |
|                          | , <u></u>                           |              |              |             |                   |            |             |             | -                                     |                 |                 |  |
| 8                        |                                     |              |              |             |                   |            |             |             |                                       |                 |                 |  |
| 5                        | OUTLINE OF PROPAGATION PATH         |              |              | 1           |                   |            |             |             |                                       |                 |                 |  |
| ∄                        |                                     |              |              |             | 10                |            |             |             |                                       | 1.00            |                 |  |
| CONDITION                | DISTANCE                            | Ď            | Km           | 18.         | 65                | 100        |             |             |                                       | 1. 1. 1. 1.     |                 |  |
| 3.                       |                                     | MODE         | L            | 3-STAGE     | YAGE 3E           | YAGI 3E    | YAĞI 3E     | YAGI 3E     | YAGI 3E                               | 3- STAGE        | YAGI 3E         |  |
|                          | ANTENNA                             | POLARIZ      |              | V CINEAR    | V                 | V          | v           | V           | V                                     | V               | V               |  |
|                          |                                     | PATTE        |              |             |                   |            | 1.44        |             | <del></del>                           | ·               |                 |  |
|                          |                                     | MODE         |              | ACZEKAJA    | AFZESÓ-4          | 50-2V      | 5D-2V       | 50-2V       | 50-2V                                 | AFZE50-4        | ΔF7F50 - 4      |  |
|                          | FEEDER                              | LENGT        |              | 45          | 15                | 36         |             | 16          | 16                                    | 45              | 15              |  |
|                          | TRANSMITTING OUTPUT POWER           | PI           | W            | 10          |                   | 10         | 10          | 7           | 8                                     | 10              | 1               |  |
|                          | PROPAGATION LOSS                    | Lof          | 48           | - 10        |                   | 1          |             | - 10        | 03                                    | - 10            | 03              |  |
|                          | B SPHERICAL TERRAIN LOSS            | Lyi          | 0.5          |             |                   |            |             |             |                                       |                 |                 |  |
| 2.5                      | STREAM REFLECTION LOSS              | Loo          | đB           |             |                   |            | <del></del> |             | <del></del>                           |                 |                 |  |
| - 1                      | D                                   |              | <del>`</del> |             |                   |            |             |             | <del></del>                           |                 |                 |  |
|                          | SHADOW LOSS                         |              |              | 2.          | 5                 | <b>– 3</b> |             | - 3         |                                       | - 2.5           |                 |  |
| J                        | g SHADOW LOSS                       | Lps          | 98           | : 3.        | .5                | - 4.       | 5           | - 4.        | 5                                     | 3.              | 5               |  |
| ş                        |                                     |              |              |             |                   |            |             |             |                                       |                 |                 |  |
| SPAN                     | S CORRECTIVE VALUE                  | Lpc          | 48           |             | <del></del>       |            |             | -13         |                                       | <b> 1</b>       | 3               |  |
|                          | (TOTAL LOSS)                        | Lρ           | ₫B           | - 10        | 9                 | ~ 11       | 0.5         | - 12        | 3.5                                   | <b>–</b> I      | 22              |  |
| <u>5</u>                 |                                     | GA           | dB           | 6           | 8                 | 8          | 8           | 8           | 8                                     | 6               | 8               |  |
| SS                       | ANTENNA GAIN AZIMUTHAL PATTERN LOSS | Lo           | dB           |             |                   |            |             | 1 1 1 1 1 1 | i                                     | 11.0            |                 |  |
| - i                      | 2 ANTENNA-HY B LOSS                 |              |              |             |                   |            |             |             | · · · · · · · · · · · · · · · · · · · |                 | •               |  |
|                          | FEEDER LOSS                         |              |              | -1,575      | -0.525            | - 2        | - 2         | - 2         | - 2                                   | ~1.575          | - 0.525         |  |
|                          | R FILTER LOSS                       |              | -            |             |                   |            |             |             | i ————                                |                 |                 |  |
|                          | Z (TOTAL)                           | D 1 1 17     | dB           | 11          | .9                |            | 2           | )           | 2                                     | 1.1             | . 9             |  |
|                          | (GRAND TOTAL)                       | Ls           | 48           | -9          |                   | - 98       | 3. 5        | - 111       | . 5                                   | ~ 11            | O. I            |  |
|                          | TRANSMITTING OUTPUT POWER           | PL           | d Ém         | 30          | 40                | 40         | 40          | 14. 125     | 38.5                                  | 30              | 40              |  |
| . }                      | RECEIVING POWER LEVEL               | jė,          | dBm i        | -67.1       | - 57.l            | -          | 58.5        |             | -73                                   | -80.1           | -70.1           |  |
| 10.0                     | (e. m. f.)                          | er           | dВи          | 45.9        | 55.9              | Trans      | 54.5        | _           | 40                                    | 32.9            | 42.9            |  |
| 8                        | INCOMING NOISE POWER LEVEL          | Prine        | dBm          |             |                   | 77,44      | la de       |             | 7.1                                   |                 |                 |  |
| 2                        | te.m.f.l                            | 9619         | ц8р          |             |                   |            |             |             | 1                                     |                 | i               |  |
| \$                       | INTERNAL NOISE LEVEL                | Prol         | վցր          |             |                   | 100        |             |             |                                       | 1.6             |                 |  |
| ALCU                     | NOISE INCREASE                      | Δα           | 48           |             | <u> </u>          |            |             |             | 1                                     | 200             |                 |  |
| 7                        | TOTAL RECEIVING NOISE POWER LEVEL   | Prn          | dBm          |             |                   | 4 5 3      | i           | 11 11/2     |                                       |                 |                 |  |
| 4                        | THRESHOLD LEVEL                     | Pth          | d8m          | <b>11</b> 0 | -110              |            |             |             | 7.5                                   | -110            | -110            |  |
| ş                        | CRESTFACTOR                         | Cf           | ďВ           | 9           | 9                 |            |             | 1           | 1                                     | 9               | 9               |  |
| <u>^</u>                 | THRESHOLD MARGIN                    | Mih          | ďΒ           | 42.9        | 52.9              |            |             |             | [ 5.5                                 | 29.9            | 39.9            |  |
| f                        | S/N IMPROVEMENT                     | I            | dB           | 12          | 12                | 1          |             |             |                                       | 12              | 12              |  |
| - [                      | STANDARD S/N                        | S/N          | dВ           | 63.9        | 73.9              |            |             |             |                                       | 50.9            | 60.9            |  |
| 퓜                        | FADING VALUE PRESUMED               | LF           | ₫₿           | -4          | .9                |            |             |             |                                       | <b>– 4</b>      | 9               |  |
|                          | (MI) > LF3                          |              | dB.          | 38          | 48                |            |             |             | 1                                     | 25              | 35              |  |
| gi                       |                                     |              |              |             |                   |            |             |             |                                       |                 | +               |  |
| 100<br>100<br>100<br>100 | S/N AT FADING                       | -            | δB           | 59          | 69                |            |             |             |                                       | 46              | 56              |  |





Scole:

(K=4/3)

Terrain Profile







Scale: B

(K#4/3)

Terrain Profile