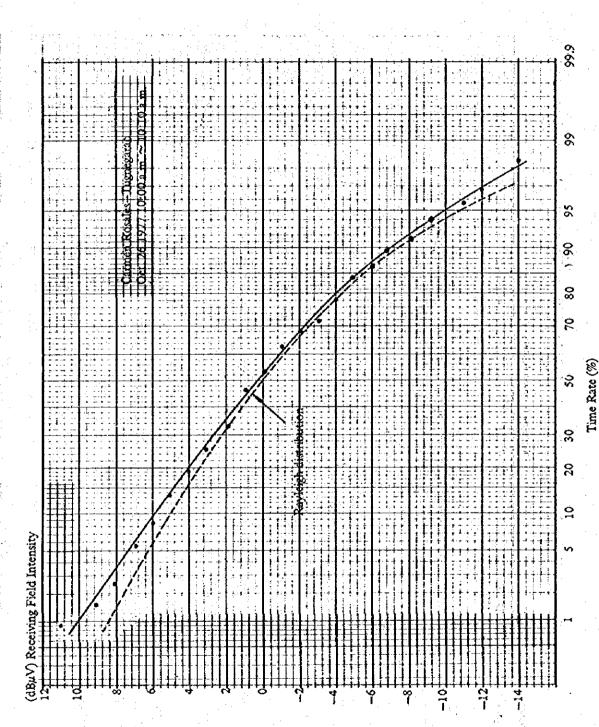
4. Studies and Analysis of Radio Propagation Test Result

4-1. Analysis of Receiving Field Intensity

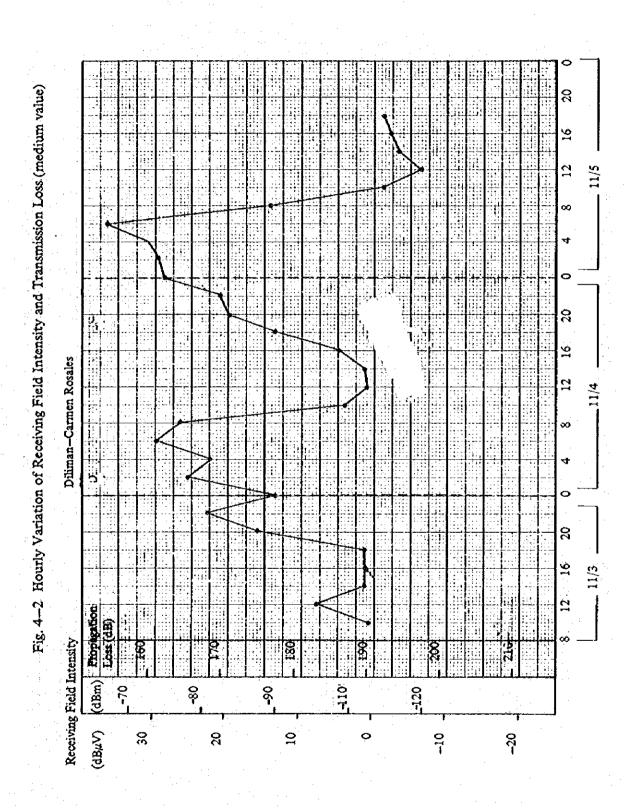
Basic field intensity for each span has been obtained in such a manner as to read out and sum up the field intensity values recorded on the instrument's recording paper to know the instant cumulative distribution and then hourly medium value's cumulative distribution.

The process of the test is as follows;


- (1) Ten minutes continuous recording of receiving field intensity was made at every hour. In the case the recording speed was 180 mm/min., the value was read out with 1dB step at every 3.3 sec., and in the case the recording speed was 60 mm/min., at every 5 sec., totalling 120 times.
- (2) The values obtained by above (1) have been written down with IdB step time rate distribution.
- (3) Further the above have been rewritten in the form of cumulative distribution. This shows the hourly instant receiving field intensity cumulative distribution, an example of which is shown in Pig. 4-1. It looks similar to Rayleigh distribution.
- (4) The 50% time rate value taken from the hourly receiving field intensity cumulative distribution of above (3) shows the medium value of the span at every hour. Such medium values are shown in Fig. 4-2 ~ Fig. 4-4.
- (5) The medium values obtained in above (4) are expressed in time rate and further in cumulative distribution form. Refer to Fig. 4-5 ~ Fig.
 4-7.
- (6) The receiving levels of 50% time rate shown in Fig. 4-5 ~ Fig. 4-7 are the measured basic receiving field intensities (50% medium value).

- 49 --

The	y (Pr) are as follows;		
A.,	Diliman - Carmen Rosales	12dBµV	
B	Carmen Rosales - Tuguegarao	1dDµV	
, :	Penner Node	EABUV	


β. Cavaan Bosalos - Tuguegavao
 JöhμV
 G. Tanay - Naja
 JöhμV

— Ś1 —

.

- 52 -


(

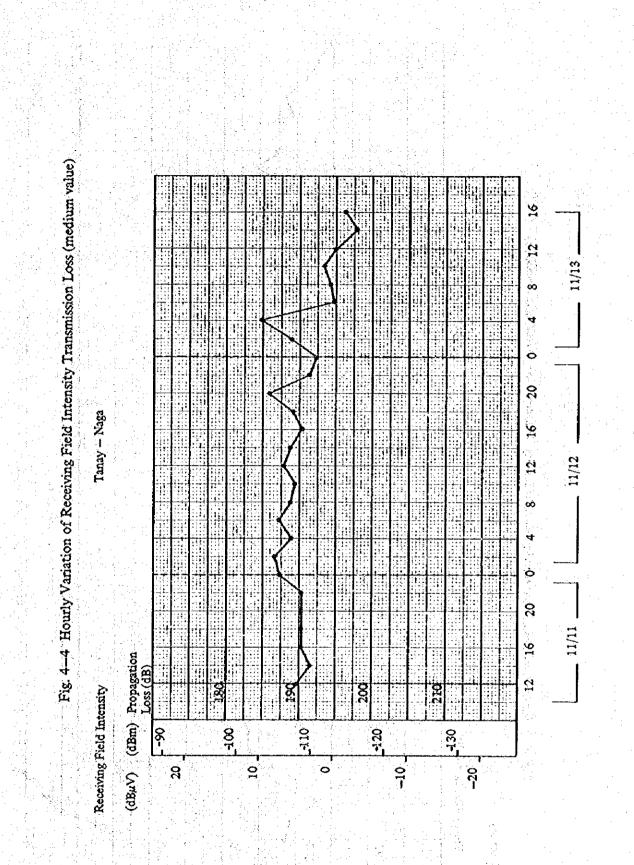
Fig. 4-3 Hourly Variation of Receiving Field Intensity Transmission Loss (medium value)

Carmen Rosales - Tuguegarao

Receiving Field Intensity

(dBµV) (dBm) Propagation Loss (dB)

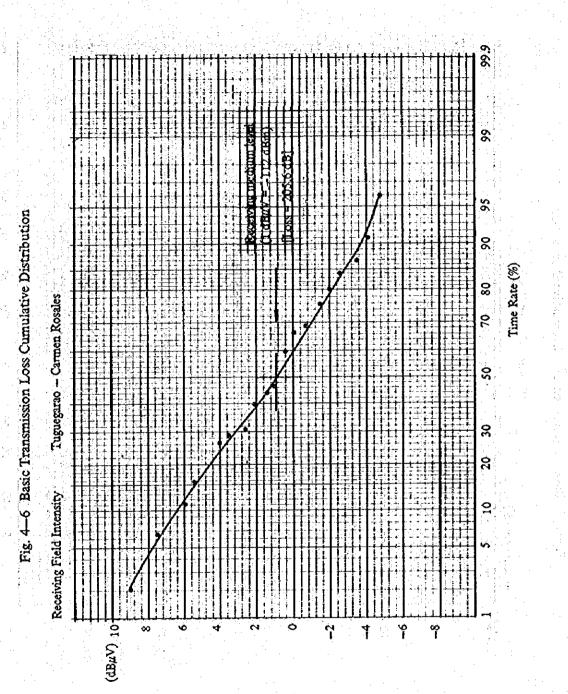
10/28

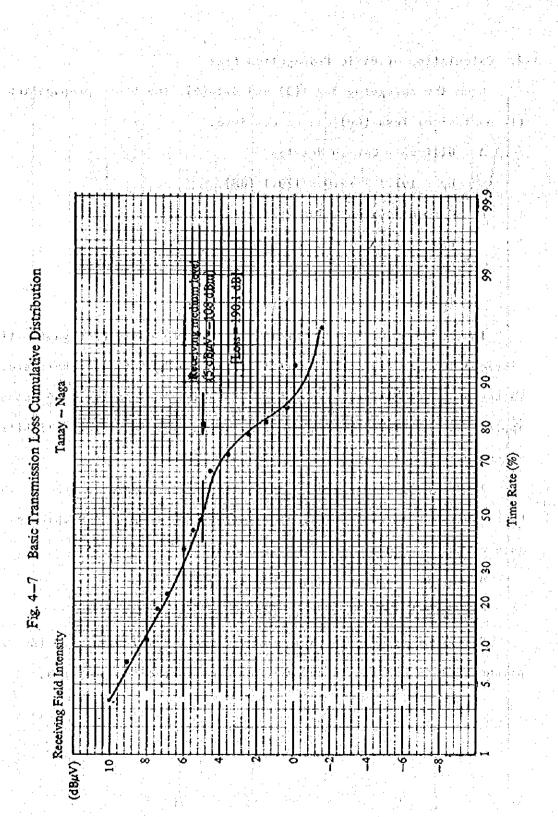

10/27

10/26

10/25

10/24


-- 53


-- 54 --

- **5**5 ·

56 ----

4-2. Calculation of Basic Propagation Loss

From the foregoing 3-2-1(3) and 4-1-(6), the basic propagation (transmission) loss (Lp) can be obtained.

A. Diliman - Carmen Rosales

Lp = 191.1 - 12.0 = 179.1 (dB)

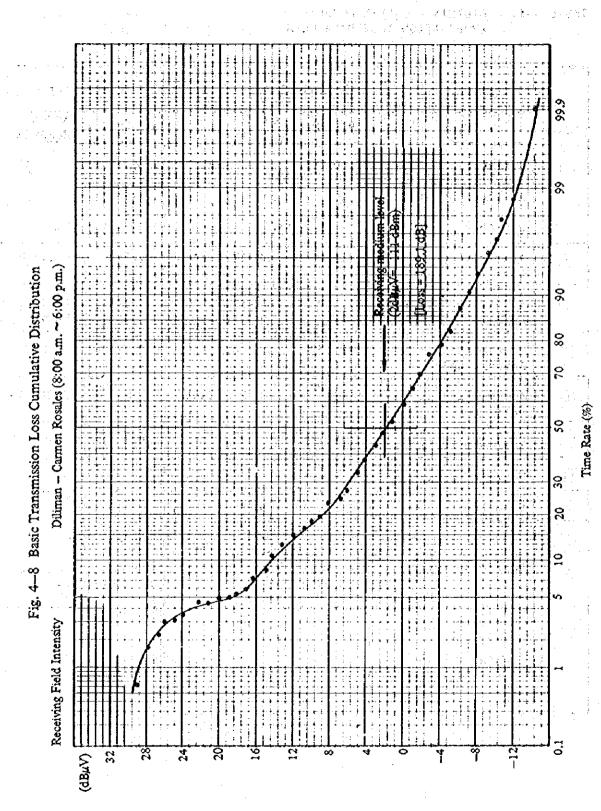
B. Carmen Rosales - Tuguegarao

Lp = 206.6 - 1.0 = 205.6 (dB).

C. Tanay - Naga

Lp = 195.1 - 5.0 = 190.1 (dB)

In the span, Diliman - Carmen Rosales, the basic propagation (transmission) loss differs greatly at daytime and night time. Therefore, the values of basic measured propagation loss obtained in Fig. 4-5 cannot be applied to the system circuit design, which will cause low reliability of transmission at daytime.


In designing the system circuit, it is reasonable to take up the basic propagation (transmission) loss obtained in Fig. 4-8 which has the data measured from 8:00 a.m. to 6:00 p.m.

D. Diliman - Carmen Rosales (daytime)

Lp = 191.1 - 2 = 189.1 (dB)

Reference is made to Table $4-1 \sim$ Table 4-3 which compare the desk planned values and the measured values for correction purposes.

- 58 ---

- 59 ---

		Calcul	ation	Measur	ement
	Span	DILIMAN -	CARMEN ROSALES	DILIMAN -	CARMEN ROSALES
	Altitude	<u>60m</u>	<u>15m</u>	<u>60m</u>	<u>15m</u>
	Antenna ^H eight	<u>29m</u>	<u>19m</u>	<u>29m</u>	<u>19m</u>
	Distance	<u>144</u>	<u>.9km</u>	<u>144</u>	<u>.9km</u>
0	Transmitting Peeder Loss	-3.2dB	RG-17/U, 40m	-3.2dB	RG-17/U, 40m
2	Receiving Feeder Loss	-7.2dB	RG-17/U, 40m 8D-2W, 25m	-7.2dB	RG-17/U, 40m 8D-2V, 25m
3	Transmitting Antenna Gain	+25.5dB	6mø G.P.	+25.5dB	6mø G.P.
0	Receiving Antenna Gain	+14dB	12 ELE YAGI	+14dB	12 ELE YAGI
6	Propagation Loss	-177.2dB		-189.1dB	(6-()-(2-(3-())
6)	Corrective Value			-11.9dB	
6	Span Loss	-148.1dB	(()+@+3+()+())	-160dB	()-()
\odot	Transmitting Power	+49dBm	80W	+49dBm	80W
(8)	Receiving Power	-99.1dBm (13.9dBµV)	(@+ <i>@</i>)	-111dBm (2dBuY)	Measured Value
	Note				

ŧ

Table 4-1.DILIMAN - CARMEN ROSALESPROPAGATION TEST DATA SHEET

- 60 -

1. N	a a a a a a a a a a a a a a a a a a a	Calcul	ation	Measur	ement
	Span	CARMEN ROSALES	TUGUEGARAO	CARMEN ROSALES	TUGUEGARAO
t a satur	Altitude	<u>15m</u>	<u>15m</u>	<u>15m</u>	<u>15m</u>
	Antenna Height	<u>19m</u>	<u>16m</u>	<u>19m</u>	<u>19m</u>
	Distance	<u>224</u> .	<u>5km</u>	224	5km
0	Transmitting Feeder Loss	-3.2dB	RG-17/U, 40m	-3.2dB	RG-17/U, 40m
2	Receiving Peeder Loss	-3.2dB	RG-17/U, 40m	-3.2dB	RG-17/U, 40m
3	Transmitting Antenna Gain	+25,5dB	6mø G.P.	+25,5dB	6mø G.P.
•	Receiving Antenna Gain	+25,5dB	ómø G.P.	+25,5dB	6тф С.Р.
5	Propagation Loss	-199.5dB		-205.6dB	(@-(1-(2-(3-(4))
6.1	Corrective Value	-		-6.1dB	
6	Span Loss	-154.9dB	(0+2+3+(+5)	-161dB	(®-⑦)
$\overline{\mathbf{O}}$	Transmitting Power	+49dBm	80W	+49dBm	80W
8	Receiving Power	-105.9dBm (7.1dBµV)	(©+⑦)	-112dBm (1dBµV)	Measured Value
	Note				

Table 4-2.CARMEN ROSALES - TUGUEGARAO
PROPAGATION TEST DATA SHEET

- 61 --

		Calcu	lation	Measur	ement
	Span	TANAY	– NAGA	TANAY	– NAGA
+ .1	Altitude	<u>530m</u>	<u>5m</u>	<u>530m</u>	<u>5m</u>
	Antenna Height	<u>10m</u>	<u>19m</u>	<u>10m</u>	<u>19m</u>
· .	Distance	2	<u>22km</u>	2	22km
0	Transmitting Feeder Loss	-3.2dB	RG-17/U, 40m	-3.2dB	RG-17/U, 40m
2	Receiving Feeder Loss	-3.2dB	RG-17/U, 40m	-3.2dB	RG-17/U, 40m
3	Transmitting Antenna Gain	+14dB	12 ELE YAGI	+14d8	12 ELE YAGI
(Receiving Antenna Gain	+25.5dB	6mø G.P.	+25,5dB	6mø G.P.
(5)	Propagation Loss	-186.1dB		-190.1dB	(61-2-3-4)
()	Corrective Value	-		-4dB	
6	Span Loss	-153 dB	(1)+@+3;()+(5)	-157dB	(87)
\odot	Transmitting Power	+49d815	80W	+49 dBm	80W
8	Receiving Power	~104dBm (9dBµV)	(©+7)	-108dBm (5dBµV)	Measured Value
· . . ·	Note				

TABLE 4-3. TANAY - NAGA PROPJGATION TEST DATA SHEET

- 62 --

(

5. Multiplex Telecommunication Network

5-1. General

After the survey, it has become necessary to give some modifications to the previously submitted report in regard to the multiplex telecommunication network covering the routes from all the subcenters to New PFC and BPW via relay stations in its routes, radio frequencies, transmitting powers, antenna characteristics, type of diversity system and etc.

and the strategy state get

With this requirement for modifications, it has also become necessary to increase the budget for equipment, installation, adjustment and etc.

5-2. Multiplex Telecommunication System Routes

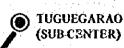
The multiplex telecommunication system routes running from the subcenters in basins to New FFC, BPW and PAGASA have been planned as shown in Fig. 5-1. Out of the above routes, Diliman - Carmen Rosales, Carmen Rosales - Tuguegarao and Tannay - Naga are planned to have troposcatter telecommunication systems because of their out of line-of-sight conditions and the other spans to have line-of-sight telecommunication systems.

In planning the above system routes, the following points have been taken into account;

- (1) The multiplex telecommunication station (subcenter) for Tuguegarao is planned to be located at its BPW office. It is to be noted, however, that PAGASA weather station is located at better point in view of propagation of troposcatter waves. This fact deserves studies.
- (2) The center of the systems is to be located at the new building of PAGASA (tentatively called New FFC) due to the information that the originally planned FFC in present PAGASA building will be changed to its new building. For this reason, small capacity multiplex telecommunication system is added to link present PAGASA and its new building as it is required until the present PAGASA facilities are completely

- 63 -

moved to the new building.


(3) In the route from Naga to New PFC through Tanay, it is considered more advantageous to connect Tanay directly to New PFC in view of communication quality, servicing at the time of faults, and etc. than to connect Tanay, Diliman and then to New PFC.
However, in order to have direct connection between Tanay and New PFC by 7000 MHz band multiplex system, a big type antenna tower is required to be built at New PFC site.
In view of this difficulty, the present plan has been made to have a relay station at Diliman tentatively with the consideration that in future the route may be changed by installing a suitable tower at the roof of the new PAGASA building.

and a start of the second start

如果是我们都能说了,你就不是你们的?""你你,我们就是你了,你们是你们的你?""你说你?""你说,你们就是你的,你不能不能。""你们,你们不能不能。""你们,你们

-- 64 --

Fig. 5-1 Multiplex Telecommunication System Route

SNTER)

CARMEN ROSALES (SUB-CENTER)

> DILIMAN (RELAY) REF. TANAY NEW FFC

D BPW

PAGASA

(FFC)

Legend: SUB CENTER RELAY PAGASA (FFC) NEW FFC BPW Troposcatter span Line-of-Sight standard system span

REF

-11

_____ Reflector-used span

NAGA (CAMALIGAN) (SUB-CENTER)

 (\mathbf{O})

- 65 -

5-3. Studies on Diversity System

The diversity system is generally believed to be an essential factor in designing a communications system for the span which is out of line of sight because such span has great variations in field intensity and propagation phase distortion. There are two types of diversity system; space diversity and frequency diversity, and in the previous report, the latter was proposed.

The frequency diversity system has disadvantages compared with the space diversity system in the following points;

a) Many radio frequencies are required. How we

b) Two sets of radio equipment being operated in parallel, the power consumption is bigger and the maintenance costs more.

The space diversity system, however, needs two arrays of antenna, and their construction is costlier than that of frequency diversity's antenna.

After the present radio propagation test and the site survey, it has been known that the span, Carmen Rosales - Tuguegarao is very long and the propagation loss is great and also that the frequency allocation for 400 MHz band is difficult. Therefore, it has been planned to use 800 MHz band space diversity system although originally 400 MHz band frequency diversity multiplex telecommunication system which needs high power and many radio frequencies was planned. It should be noted, however, that in the case of employing space diversity system, the distance between the transmitting antenna and the receiving antenna must be more than 80 m. Both in Carmen Rosales and Tuguegarao, the BHW's site is not so spacious as to accommodate the two antennas with more than 80 m's separation, and therefore, it is possible that there arises necessity to install an auxiliary antenna system (for receiving only) at both stations. Diliman - Carmen Rosales is planned to have looW transmission

-- 66 ---

power, and Tanay - Naga, 50W transmission power. The radio equipment for these two spans are of all solid-state, and therefore easy in servicing and maintenance. Also there is almost no restriction for frequency allocation of 800 MHz.

Due to above reasons, the frequency diversity system; low in construction cost, has been planned.

Alternative set of the expect general set of the set of t

The results of studies on radio frequencies to be used for the multiplex telecommunication network are as follows;

5-4-1. Spans out of Line of Sight

(1) Diliman - Carmen Rósales and Tanay - Naga, as described in the foregoing chapters, will use 800 MHz band radio frequencies due to difficulty in obtaining frequency allocation for 400 MHz band in Manila and nearby areas.

Carmen Rosales - Tuguegarao, however, will use 400 MHz band (400 MHz - 470 MHz) because this span is far away from Manila enough to be less subject to cross-talk or interference and also because it has great propagation loss, requiring a high transmission power.

(2) The radio frequencies required for the spans which are out of line of sight are as follows;

	Item Span	Frequency Band	Number of Frequency	Remarks
	Diliman - Carmen Rosales	800 MHz	4 (2 pairs)	Frequency diversity
	Carmen Rosales - Tuguegarao	400 MHz	2 (1 pair)	Space diversity
	Tanay - Naga	800 MHz	4 (2 pairs)	Frequency diversity
-		800 MHz	8 (4 pairs)	
	Total	400 MHz	2 (1 pair)	a di tangén Alamatan

A A CALL AND A

- 67 ---

5-4-2. Spans within Line of Sight

(1) After the radio propagation test and the radio path survey, it has been known that either 400 MHz or 800 MHz band can be applied to New FFC - Diliman and Diliman - Tanay However, 400 MHz band frequencies are so congested in Manila and nearby areas that a new allocation for that frequency band is difficult. Also 800 MHz band is not recommendable due to the fact that high power troposcatter multiplex system expected to be installed at both Diliman and Tanay for communications with other directions will cause mutual interferences.

In view of the requirements as the trunk line for excellent circuit quality, sufficient capacity and future expansions, 7000 MHz band multiplex telecommunication system has been planned for these two spans.

(2) It has been confirmed after the line of sight survey and the site survey that high quality circuit can be secured by 800 MHz band,

It is not recommendable to use 7000 MHz band which needs a high antenna tower due to the tall buildings existing on the radio path.

Therefore, these two spans have been planned to use 800 MHz band. The radio frequencies to be used for the line-of-sight spans are as follows;

Item Span	Frequency	Number of Frequency	Remarks
New FFC - Diliman	7000 MHz	2 (1 pair)	
Diliman - Tanay	7000 MHz	2 (1 pair)	
New FFC - BPW	800 MHz	2 (1 pair)	
New FFC - PAGASA	800 MHz	2 (1 pair)	· · · · · · · · · · · · · · · · · · ·
	7000 MHz	4 (2 pairs)	
Total	800 MHz	4 (2 pairs)	

- 68 --

5-5. Circuit Design

5-5-1. Spans out of Line of Sight

- (1) The span, Carmen Rosales Tuguegarao which will use 400 MHz band has been designed by utilizing the basic propagation loss obtained by the test. The spans, Diliman - Carmen Rosales and Tanay - Naga which will use 800 MHz have been designed by calculating the basic propagation loss for 800 MHz band based on the values obtained by the test for 400 MHz band plus the data in position. The calculation has revealed the increase of the basic propagation loss by 9 dB for both spans compared with 400 MHz band.
- (2) The target values for the system circuit design have been placed on about 40 dB S/N (50% value) and about 99.0% reliability in consideration of necessary circuit quality and maintenance procedures as private communications links and also from economical view point.
- (3) The safety factor of 3 dB has been taken into account in anticipation of variations of propagation loss which may occur in a long period of time in a year because the test of propagation loss for each span was conducted only for 52 to 88 hours.
- (4) Reference is made to Table 5-1 for the system circuit design for the spans out of line of sight.
- 5-5-2. Spans within Line of Sight
 - For the spans within line of sight, the turget values for the system circuit design have been put on about 50 dB S/N and about 99.9% reliability.
 - (2) The designed values are shown in Table 5-2,

- 69 --

Table 5-1 Network System Calculation Chart (Multiplex Telecommunication Network)

Name of s	ipin Unit	Dilim	Carmen an Rosales .9Km)		- Tuguegarao SKm)	Tanay (222)	
Itent	Unn	1144	'AVIU)	(224)	5Km)	(***)	(m)
Antenna Power	dBm	+50	100W	+60	1 KW	+47	50W
Basic Propa+ : gation loss	dB	-198.1	f;800MHz scatter loss	-205,6	f:400MHz scatter loss	-197.1	f:800MHz scatter loss
Additional loss	dB						
Salety factor	dB	-3		-3		-3	
Feeder loss	dB	-1.8	SFZE50-13W 90W	-2.0	SFZE50-13W 100m	-1.8	SFZE50-13W 90m
Antenna gain (T)	dB .⁺ .	+35, 5	10m¢ G. P. B. R.	+28.5	10md G. P. B. R	135, 5	10mø G. P. B. R
Antenna gain (R)	dB	+35.5 -4	Antenna+to+ medium coupling	128.5	10mø G. P. B. R	+35,5 -4	10mg G. P. B. R Antenna-to-mediu coupling loss
Duplex system	dB	-2.5	loss	-2.5		-2,5	
loss Receiving Power	dBm	-88,4		-96.1		-92.4	
Threshold level	dBm	-105	B=469kHz, NF=338	-113	B=80kHz, NF=3dB	-113	B=80kHz, NF=34B
Margin against threshold level	d₿	16.6	in and a second seco Second second second Second second	16,9		3,05	
S/N improve- ment factor	dB	29	2019 (Crest factor)	21	12 + 9 (Crest factor)	21	12 + 9 (Crest factor)
Diversity improvement	dB	4.0	Frequency diversity	2,5	Unequal medium	4.0	Frequency diversity
Combined gain	dВ			_			ан 1. т.н
S/N in standard state	dВ	49.6		40.4		45.6	· ·.
Fading value presumed	ðВ	-16.6		-16.9		-20,6	
S/N exceeded	d₿	33. Ò	S/N exceeded	23.5	S/N exceeded	25.0	S/N exceeded
 			99.2%		99.5%		99.8%
Remarks			uency Diversity)		poscatter System ce Diversity)		oscatter System quency Diversity)

1.

and from the state of the second

الإيران المحاج والمحاج والمؤول والا

- 70 --

.

• 14

ter di per l'indiferencia esta proportazione

1

Name of sp Item	ban Unit	New FF (4K)	C - Diliman m)	(28.4K	n - Tanay m-Ref -3.2Km)	New FFC (9.9K	; - B, P, W m)	
ntenna Power d	lBm	+30	IW	+30	ŧw	+37	SW	1 -
ree space d	18	-121.0	f: 7000MHz	-257.2	f: 7000MHz	-110,4	1: 800MHz	
loss				1				1 - A.
ditional loss d	B	-20	ATT at FFC	+98.9	Feflector Gain	-18,2	Shadow loss	
	х.,	- 6 4	Experimental correction	-6	Experimental correction	-6	Experimental	-
eeder loss d	B	-1.5	FR-6H 90m	-3.5	FR-6H 70m	-5,4	AF2E50-7 90m	
	в	+35.5	1.2mø P.B.R	+43.5	3mø P.B.R	+20.0	1.8mø G.P	
ntenna gain d (R)	IВ	+35.5	1.2md P. B. R	+43.5	3mø P.B.R	+20.0	1.8mø G.P	
uplex system d loss	IB	-6.2	T: 2,0 R:-4.2	-6.2	T:-2.0 R:-4.2	-7.0	Included HYB loss	11
eceiving d Power	18m	- 56.7		-57.0		-70.0		
hreshold d level	18m	-89	B=8MHz, NF=7dB	-89	B=8MHz, NF=7dB	-101	V=460kHz, NF=7dB	· .
argin against d	İB	32.3	to ≣ing service en	32.0	ang na pilan ng pilan. Tin	31,0		
hreshold levél	194	1. 197		- Brigge			:	
N improve- d ment factor	IB	39.6	30,6+9 (Crest factor)	39.6	30, 6+9 (Crest factor)			
	18							
improvement	:	3		3	1 A. 19	3	$H^{2}(x) = h(x) + h(x)$	ŀ
ombined gain d		3 74.9		74.6		51.0		
/N in standard d state	10	1717						ľ
ading value of presumed	dB	-7.2	0, JdB/Km+6dB	-15,5	0. 3dB/Km+6dB	-8.0	0.2dB/Kmt6dB	
· .	dB	67.7		59.1		43.0		

Table 5-2 Network System Calculation Chart (Multiplex Telecommunication Network)

of we want the effective set of the set of the first of the set of

> 4.5 . . . 1.5.6181 ÷ . •

> > - 11 -

12

.

and a second

۰.

5-5-3. Characteristics of Multiplex Telecommunication Network
(1) The Characteristics for the multiplex telecommunication network, both for out-of-line-of-sight spans and within-line-of-sight spans, are as follows;

	Span	Frequency	Output Power	Antenna	Description
Out-of- Line-of-	Diliman_Carmen Rosales	800 MHz	100₩	lOmø grid parabola	Frequency diversity
Sight Communi-	Carmen Rosalés- Tuguegarao	400 MHz	IKW	lOmø, 6mø grid parabola	Space diversity *
cations	Tanay_Naga	800 MHz	50¥	lOmø grid parabola	Frequency diversity
Within-	New FFC-Diliman	7000 MHz	1W	1.2mp parabola	lodB ATT to be inserted
Line-of- Sight Communi-	Diliman-Tanay	7000 MHz	1 V - 1	3mp parabola	2 Reflectors of 6mx4m to be used
cations	New FFC-BPW	800 MHz	5¥	1.8mø grid parabola	
	New FFC-PAGASA	800 MHz	5W	60° Corner Ref. Ant.	

Note: * The main antenna for the space diversity system will be 10m in diameter and the auxiliary antenna (receiving only), 6m in diameter.

5-5-4. Overall S/N and Circuit Reliability

The overall S/N and the system circuit reliability for the multiplex links from New PFC to the subcenters in the basins, BPW and PAGASA are

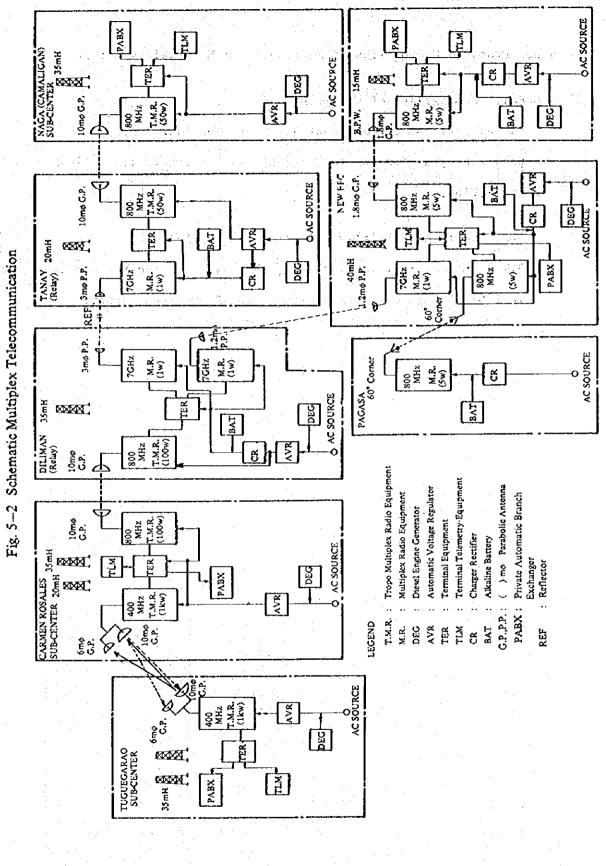
as follows;

Item	Overal	1 S/N and Reliab	ility
Span	S/N(50% value) at standard conditions	S/N at 99.0% reliability	S/N at 99.9% reliability
New FFC - Carmen Rosales	49.2 dB	33,2 dB	-
New FFC Tuguegarao	39.9 dB	25,6 dB	_
New FFC - Naga	45.4 dB	29.4 dB	-
New PFC - Diliman	59.7 dB	-	59.1 dB
New FFC - Tanay	58.9 dB		55.8 dB
New FFC - BPW	50.2 dB	-	42.9 dB
New FFC – PAGASA	57.1 dB		54.7 dB
Remarks			

- 12 -

6

5-6. Proposed Composition of Equipment and Materials and their Cost


5-6-1. Composition of Equipment and Materials

The composition of equipment which are considered necessary by the preliminary design for the present systems are listed up in Fig. 5-2 and Table 5-3.

5-6-2. Cost for Multiplex Telecommunication Network

Based on the preliminary design, the costs for the network are shown in Table 5-4 in comparison with those of previous report.

- 73 -

`

	NAME OF STATION (FUNCTION)	(MONITOR) (PAGASA)	NVVC (PAGASA)	PAGASA	DILIMAN (RELAY)	CAHMEN ROSALES (SUB)	TANAY (Relay)	NAGA (SUB)	TUGUEGAIAO	TOTAL
Multiplex Redio Tonitmeent 400 WH	Tannansson IVV Kab DV Vo 1/Vo 5		,						•	
		1	•		•	4	•	•	4	4
7 HOO WHX	" SOV Geb ZM "	•	·	ŧ	3	1	r1	~•	•	6
	" WE YOUT MOT	•	•	ı		4	. I	•	•	64
- T Chz	14 60ch FM No.1/No.2		ч	ı	64	I	-	•	I	4
1 100 Mix	54 24ch PM No.1/No.2	7	ч	1	•		ł	1	•	- es
	5W 6ch PM No.1/No.2		'n.		ŋ	I		1	•	7
Dividing Circuit	For SS-PM Multiplex	•	~	1	-1	્લ	м	1	•	\$
-	For SS-FM Multiplex	U	-	1	. с ч	ı	ч,		•	4
Ant erma	400 MHz G.P.D.R. 10m/	•	ı	ł	·		•	1	Ţ	C4
	400 MHz C.P.B.R. 6mb	•	•	1		~1		ļ	-	
	BOO MARE G.P. B. R. LOMA	•	1		· 4		r-1	. 4	•	4
	800 MHz G.F.B.R. 1.8mp	4	ч	1	• 1	· I	ľ	1	•	2
÷	800 MHR 60° Corner Meflector	•	71	-1	:	t .		j)	,	ณ
	7 GHz P.B.R. 3mb	•	•	ŀ	4		: -1	• 1	•	ିମ
	7 GH2 P.B.R. 1.2mp	•	-4	1	· н			- 1	· •	· (1
Radome	7 GHA P.B.K. for 1.2m	•	-	1	•	1	•	1	•	
Coarial Cable	Equality as SF2E-50-13W	1	4	i.	3	250	45	8	220	615
		Ş	115	ŝ	•	ł	•	ł	 . k	225
Wave Cuide	H9-84	•	100	t	500		4		- •	340
±	₩83-47-(D)	•	- 20	Þ	96	•	•	•	•	90 61
Coaxial Connector	For SF Cable	•	ŀ	5.9 F	i.	<u> </u>	н	7		90
	For AF Cable	: 	° (4	न	1	1	; ; ;	7 . •	•	4
		· • · · -	- 1 2 2	-						

2

Equipment Composition List

Table 5-3

- 75 -

Table 5-3 Equipment Composition List

TOTAL ŝ TUGUEGANAC NACA (SUB) ... DILIMAN CAMMEN TANAY (EELAY) ROSALES (RELAT) (SUB) • PAGASA BYN NYYC (MONITOR) (DAGASA) NAME OF STATION (FUCTION) AC 100V, 20KVA, main and stand-by AC 100V, 10KVA with starter 3/6 ch includ. Signel Pover Terminal Station, Cyclic Master Station. Cyclic With 10 telephone sets 6/12 ch 2PG Repeater 6/6 ch with FS ringer XB 60 extension line ÷ DC 24V 16 15A 100AH AC 100V, 50KVA 220V 36 40KVA 220V 16 5KVA 220V 16 15XVA AFPLICATION 9/24 oh 1PG 4 M X 6 M 24/24 ch 12/12 ch Ş Ş 5/6 ob Automatic Telephone Exchange Accessories and Spare Parts Automatic Voltage Regulator Carrier Terminal Equipment DC Power Supply Equipment Remote Control Equipment Diesel Engine Generator Telephone Exchange Converter Cabinet F Test Equipment . F Roperter Rack Reflecter Dehydrator Mail

2/2

- 76 -

Cost Comparison for Multiplex Radio Communication Facilities Table 5-4-(1)

100

þ

9

	NULLES IN TANK	MONITOR)	(PAGASA)	LAGASA	(RELAY)	CARMEN RCSALES (SUB)	TANAY (RELAY)	(SUB)	TUCUEGARAO (SUB)	TOTAL
	Revised amount	32,360	62,172	12,465	70.768	103,690	67,218	51,258	73,736	473.667
Equipment cost	Original amount	30,642	47,483	0	48,312	70,605	33, 683	34,085	58,200	323,010
	Increase/Decrease	1,718	14,689	12,465	22,456	33,085	33,535	17,173	15,536	150,657
	Revised anount	26,568	33,553	1,000	19,793	25,735	13,973	14,119	13,804	148,545
Installation and Adjustment Cost	Originel anount	26,568	33,553	0	19,293	24,735	13,473	13,619	12,804	144,045
	Increase/Decrease	0	0	1,000	200	1,000	200	20	1,000	4,500
	Revised anount	58,928	95,725	13,465	90,561	129,425	81,191	65,377	87,540	622,212
Total	Originel amount	57,210	81,036	0	67,605	95,340	47,156	47,704	71,004	467,055
	Increase/Decrease	1,718	14,689	13,465	22,956	34,085	34,035	17,673	16,536	155,157

Note: Original cost of the installation and adjustment for the New FFC is quoted based on the amount of FACASA's survey report issued on August 1977.

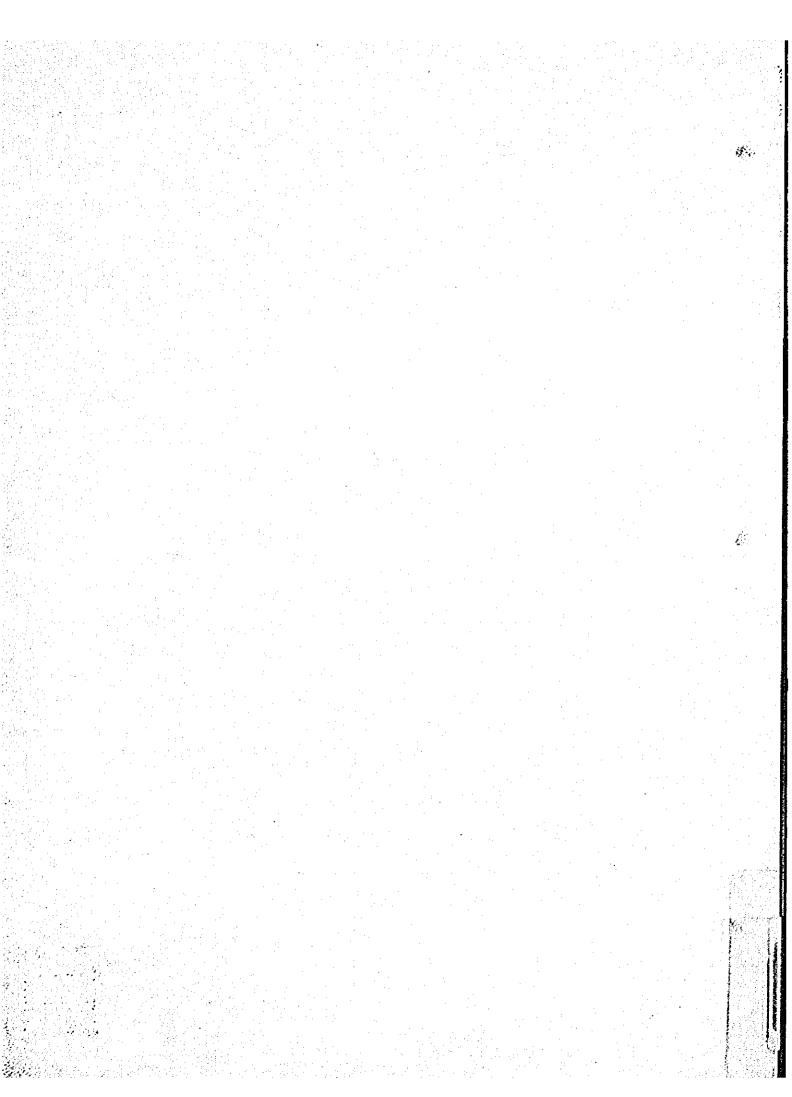
- 77 -

1/2

Revised Cost for Multiplex Radio Communications Pacilities Table 5-4-(2)

34,600 26,000 28,000 1,584 20,000 1,800 5,080 6, 60 9.850 5,30 980 ŝ 336 \$ 41,700 Sall Sall 720 ĝ 478 2,074 8°.80 (Unit: x10³ Yen) TOTAL 225 3 20 77 00 1,760 635 14,000 2, 630 396 20,850 TUGUEGARO (SUB) Thomas VI C Thomas VI н Ą ч ~ 4 80 220 198 16,000 1 10,000 NAGA (SUB) -4 м \$ 10,000 2.000 198 180 1 16,000 ĝ 360 244 108 48 (XVIAY) (KELAY) twi Amount 0'ty Amount -1 ÷-4 ч Ľ, ÷ ð ÷ ы 2,650 16,000 2,000 594 1 17.300 1 17.300 1 14,000 1 20.850 216 CAMMEN ROSALES (SUD) ~ . N H 520 n 16,000 86 480 1,220 198 108 360 480 2 14,000 192 (XVTER) NVHITIO н - . 8 2 ы 3 ~ 4,8,0 270 110 4 PAGASA ~ -4 Ŕ ы 5,000 242 3, 300 270 610 .000 26 216 180 ş 480 160 \$ (PAGASA) --4 ч C4 H ~1 ខ្ព 80 0 126 115 MONITOR) 3,300 Å 4 ч ġ. -1 м Troposcator, 1kW 6ch PM No.1/No.2 800 MHz 60° Corner Reflector NAME OF STATION (PUNCTION) 7 GHz P.B.R. 1.2m/ use 50V.6eh PM 100V 12 ch PM Equality as SFZE-50-13W 500 MHZ G.P.B.R. 1.8mb 7 GHZ P.B.R. 1.2m6 400 MHz C. P. B. R. 6nd 800 MHz G.P.B.R. 10m6 7. GH2 P.B.R. 3mb 7F2E-50-7 400 MHz C. P. B. R. 10mb 7 GHZ IN 60ch PM No.1/No.2 " 800 MHz 5W 24ch PM No.1/No.2 " 800 MHz 5V 6ch PM No.1/No.2 For SS-PM Multiplex for SS-FM Multiplex FR-6H APPLICATIONS For AF Cable For SF Cable RJ-7-(D) Multiplex Radio Equipment 400 MMz " 800 MHz Coaxial Connector Dividing Circuit Coxial Cable ave Guide TTEM Antenna Radome

- 78 -


2/2

9

Revised Cost for Multiplex Radio Communications Facilities Table 5-4-(2)

		Į				.											1737 APV 149741		1 11 2 4
	NAME OF STATION (FUNCTION)	(HOM)	HOT INOM)	đΨL)	NRWC (PAGASA)	PAGASA		DILIMAN (RELAY)	VX)	PNC 2016	TOSALLES CAUMEN	AT ()	TAWAY (RELAY)	NA (S	NACA (SUB)	12) 12)	TUGUEGAHAO (SUB)	101	TOTAL
										5	(e								
- Contra	OWNTRATIV	2	Amount		0' tyl Amount 0' tyl Amount 0' ty	ţ,	Amount 12' ty Amount 2' ty Amount 12' ty Amount 10' ty Amount 10' ty Amount 12' ty	N N	nount 0	3	Mount 0	tv v	mount 0	12	mount 0	2	mount 0		Amount
Dehydrator				7	230				230		230	-	230	ы	230	7	230	¢	1, 380
Carrier Terminal Equipment 6/12ch 2FG Repeater	6/12ch 276 Repeater								3,300			ч	3,300					N	6,600
1 =	12/12ch			7	3.700										<u>.</u>			F	3.700
2 X	24/24ch		5, 250	н	5,250													 (4	11,100
- - -	9/24ch 176									-	3,700					÷		-1	3,700
2 *	5/6 ch						<u> </u>							~	3,000	-i	3, 000	~	6,000
Automatic Voltage Regulator	220V 16 5KVA		500					-	300	н	8	-	8	-	30			5	2,500
=	220V 16 15KVA					-		_		а	2,500					4	2,500	6	5,000
- - -	220V 36 40KVA			н	3,000													A	3.000
DC Pover Supply Equipment	DC 24V 16 15A 100AH	~1	1,400	4	3,130				1,400	ы	1,400	-1	1,400	-	1,400	л	1.48	-	11.530
Diesel Ergine Generator	AC 100V, 10KVA with Starter	, , , ,	7.700						7.700	ч	7,700	-	7.700	4	7,700			5	38,511
I I	AC 100V, 20KVA, main and stand-by						-									11	15,200		15,200
T . =	AC 100V, 50KVA "			ศ	8.000										,			4	8,000
Remote Control Equipment	Master Station, Cyclic			-	2,700													м	2,70
±	Terminal Station, Cyclic	-1	1,800						1,600	н	1,800	-	1.800	~	1,800	-1	1.800	\$	10,800
Automatic Telephone Exchange	XP 60 extension line			~	7,500		•	<u></u>											7,500
* *	XB 40	н	7,500																7.500
Telephone Exchange	With 10 telephone sets									ы	1,200			7	1,200	~	1,200	n	3, 600
Converter Cabinet	6/6ch with FS ringer			ч	1.50					~	1,500			п	1,500	м,	1,500	4	6.000
Repeater Rack	3/6ch includ. Signal Power	-+	1,500	-	1,500					-1	450	न	450	-1	4 50		4\$	9	4.800
Reflector	4 M X 6 M			•	-							.с. са	10.000				· · ·	<u>а</u>	10,000
Test Equipment		-4	1,500	~	5,000	-	5,911	-	2,000	4	6,500		5.500	н	5,500	а.	5.500	- 	37,411
Accessories and Spare Parts		4	1,300	~	2,000	ч	1,300		2,600	rt	2.600		1,300	7	1,300	а,	1,300	. . .	137.760
Total:	•		32, 360		62,172		12,465	<u>×</u>	70.768	<u> </u>	103,690	<u> </u>	67.218	5	51,258		002.07		473,667
					-	-				-		1		_	-	-		-	

and and the second s

