FEASIBILITY REPORT

ILOCOS NORTE IRRIGATION PROJECT

i. N

THE PHILIPPINES.

(PHASE I)

APPENDIX (

MAY 1979

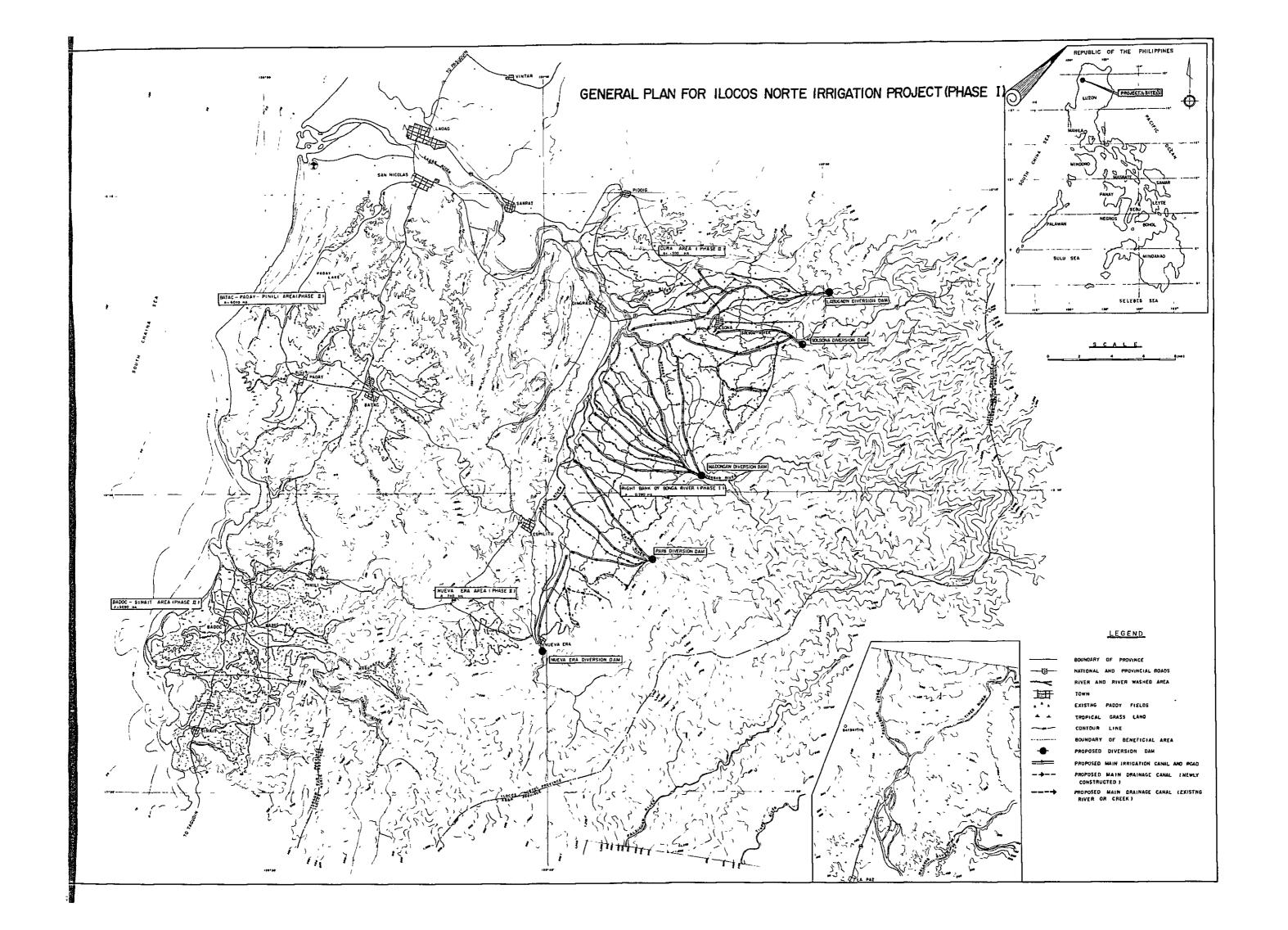
JAPAN, INTERNATIONAL COOPERATION AGENCY

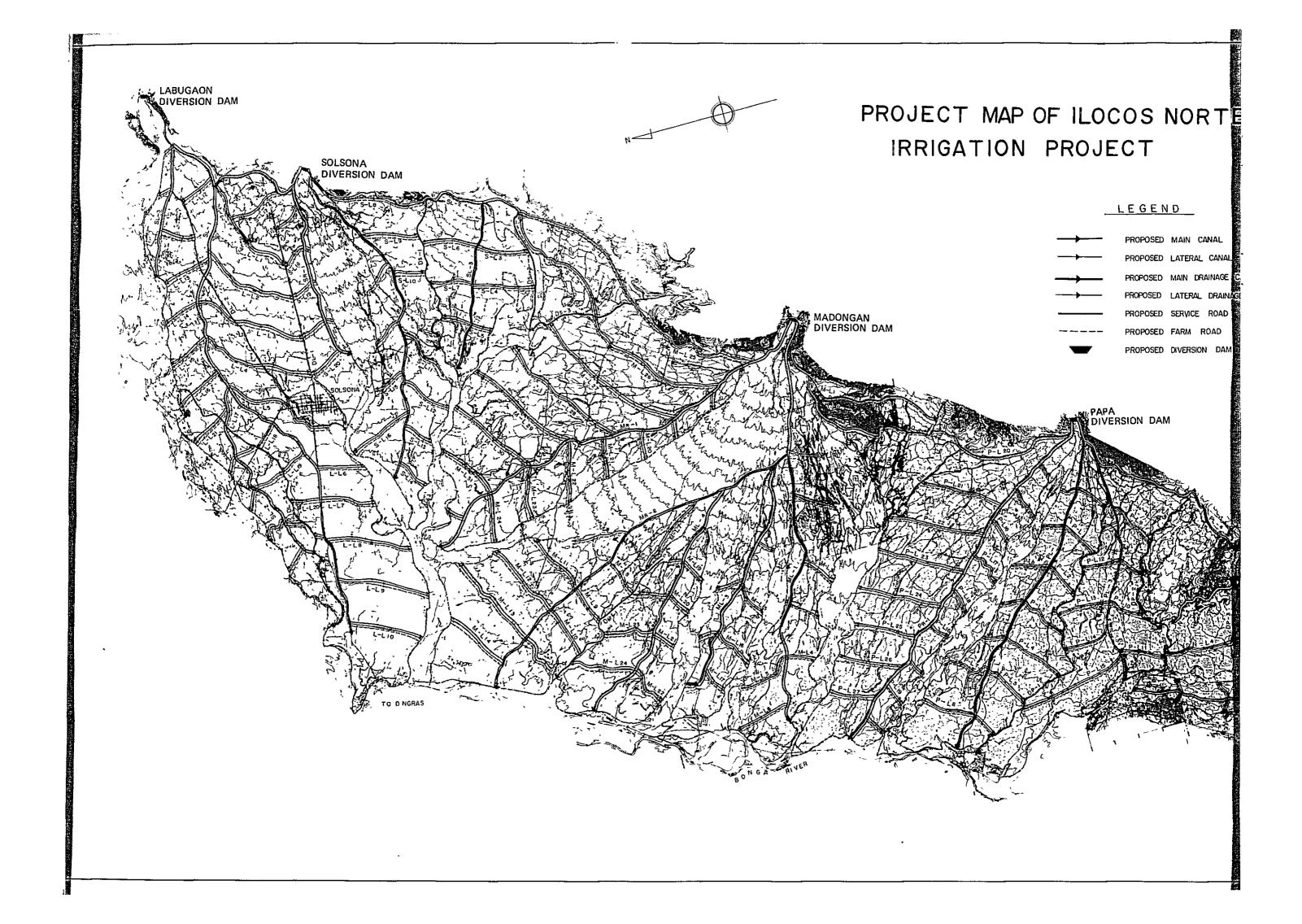
LIBRARY 1044864[5]

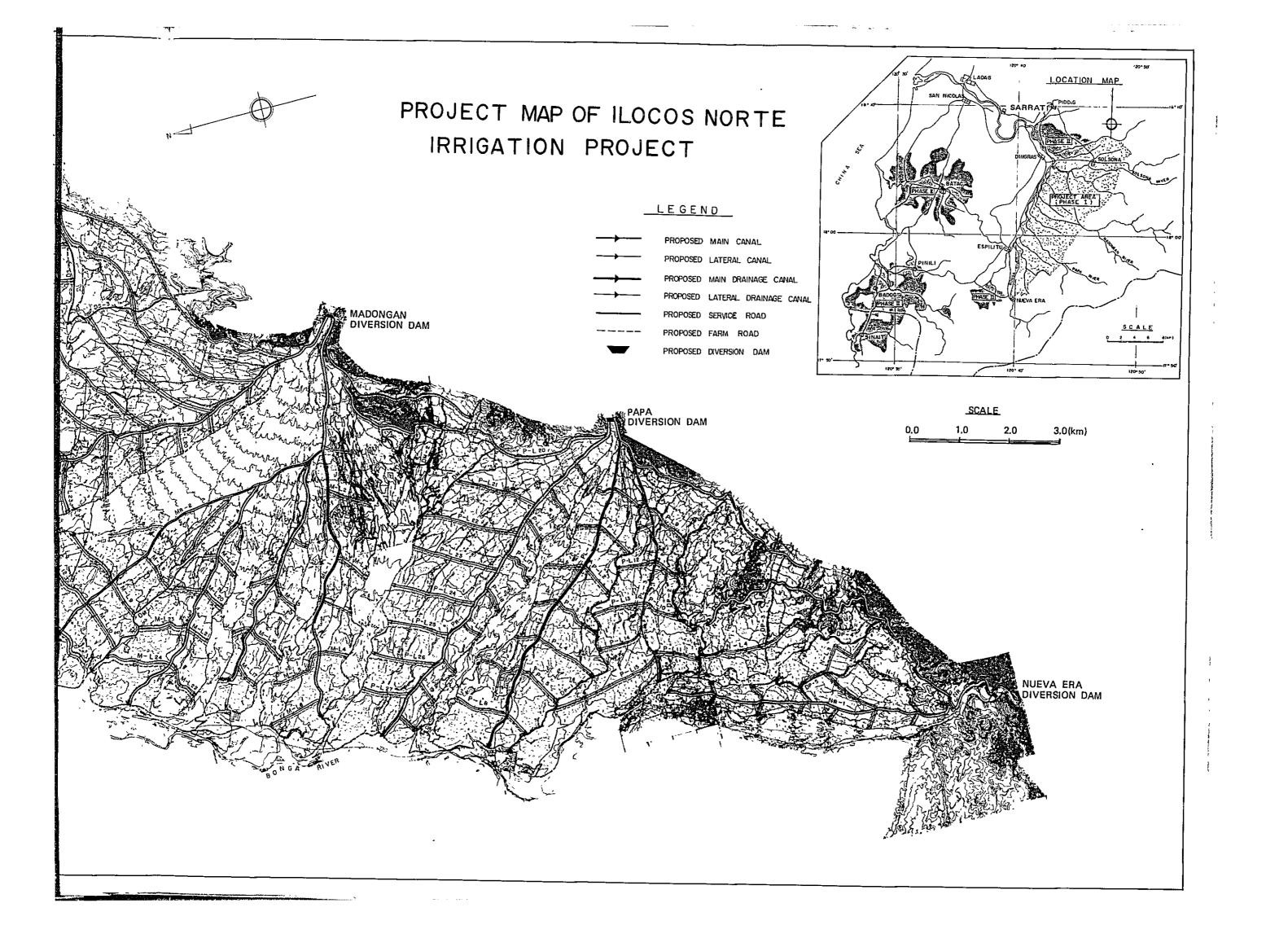
FEASIBILITY REPORT O N

ILOCOS NORTE IRRIGATION PROJECT

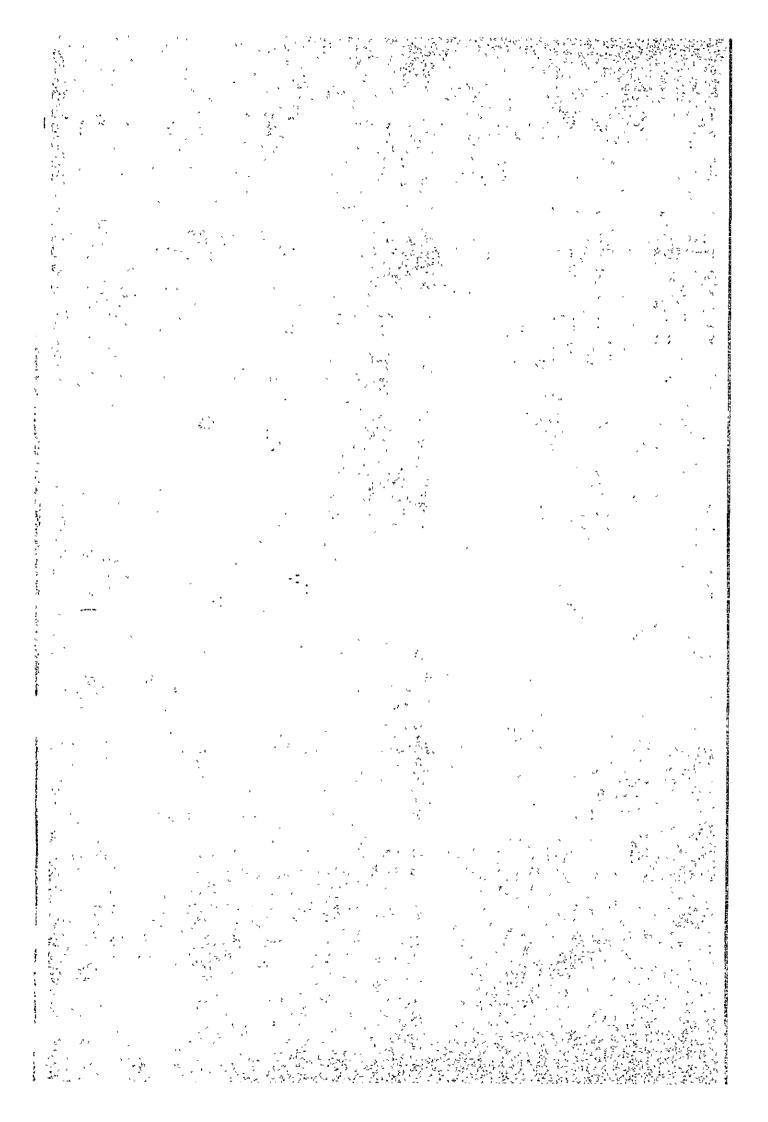
I N
THE PHILIPPINES
(PHASE I)
APPENDIX


MAY 1979


JAPAN INTERNATIONAL COOPERATION AGENCY


AFT CR (7) 79-22

国際協力事業団 (R) 184. 5.16 118 (R) 83.3 83.3 AFT



128,20

	16 14 72	Spetal in C. O'N IT EN IT Species	l Ca	
	200 - 5	rende fahr Taregam.	L.C.	
		Same of many	3 Gb	
CHAPTER I.	INTRO	DUCTION 1 1912	1 33	
	1-1 P	ersonnel Concerns the Team C	ontacted	
٠ ٧	1-2	Data List used for Feasibility St	udy 🔒	
CHAPTER II.	ECON	DMIC AND SECTORAL BAC	KGROUN	ND LY REPTARES
	12B-1	Regional Economic Status	1 30	
	77	I The Transfer was a factor	r trae	~* ·
CHAPTER III.	THE P	ROJECT AREA	- 7.	
	3B-1	Climate and Hydrology		y**α, '€ ~ ₹
	38-2	Climate Data	Z1. 11. 23	C 85)49(j)
	38-3	Hydrological Data and Analy	sis 🔑	
,	3B-4 ~	- Flood Analysis		
	3B-5	Soil and Land Classification	. j.,	
	3C-1	Present Irrigation Conditions	7,47,5	
	3D-1 -	Farming Status	1.27	-
	3D-2	Present Cropping Production	•	,
•	3D-3	Farm Labor Balance	•	
	3D-4	Animal Husbandry		, , ,
	3D-5	Farm Economy		* .
		, ,		•
CHAPTER IV.	THE P	ROJECT		• '
	48-1	Project Formulation		
	4B-2	Irrigation Plan		
	4B-3	Drainage Plan	,	\$ 24 F
	4B-4	On-farm Development .	e	v ×=1
	4C-1	Market Prospect	` .	
	4C-2	Estimation of Target Yield for	·	oosed Crops
	4C-3	Recommended Farm Practice	es	
	4C-4	Forecasting of Population an	d Labor	γε
	4C-5	Farm Mechanization		
•:	4C-6.	Farm Machinery Cost		•
3	4C-7	Farm Labor Balance	*	
	4C-8	Requirement of Input Materi	•	2 - 448 - 1545
	- '	Proposed Facilities, Diversion		
	4D-2	Geological Conditions of the	Proposed	Diversion Dam Sites

	4D-4	Proposed Facilities, Drainage Canals
	4D-5	Proposed Facilities, Roads
	4E-1	Cost Estimate
	4E-2	Disbursement Schedule
	4E-3	Additional Investigation (Pre-Engineering Works
CHAPTER V.	PROJE	CT IMPLEMENTATION AND OPERATION
	5B-1	Construction Planning of Major Civil Works
	5C-1	Operation and Maintenance Cost
	5D-1	Terms of Reference for the Consultant's Services
CHAPTER VI.	PROJE	CT JUSTIFICATION
	6C-1	Economic Evaluation
	6C-2	Economic Cost of Farm Labor
	6C-3	Evaluation of Agricultural Benefit
	6D-2	Internal Rate of Return

Irrigation Fee Collection Rate

Proposed Facilities, Irrigation Canals

4D-3

6G-1

LIST OF TABLE

CHAPTER I.	INTRO	DUCTIO	N
	j-1	Person	nel Concerns the Team Contacted
	1-2	Data Li	ist Used for Feasibility Study
CHAPTER IL	ECON	IOMIC A	ND SECTORAL BACKGROUND
	2B-1	Region	al Economic Status
		2B-1	Regional Population Target, 1975-2000
		28-2	Gross Domestic Products by Industry
		28-3	Per Capita Gross Regional Domestic Products, 1975-2000
		2B-4	Average Size of Farm by Province
CHAPTER III.	THE I	PROJECT	AREA
	3B-1	Climate	and Hydrology
	3B-2	Climate	e Data
		3B-1	Monthly Rainfall at Laoag, Ilocos Norte
		3B-2	Mean Monthly Temperature at Lacag Station
		3B-3	Mean Monthly Relative Humidity
		3B-4	Mean Monthly Wind Direction at Lacag Station
		3B-5	Monthly Maximum Wind Speed at Lacag Station
		38∙6	Monthly Total Evaporation by Penman Method
		3B-7	Comparison of Evaporation Data
		3B-8	Monthly Total Adjusted Evaporation
	38-3	Hydrol	ogical Data and Analysis
		38-9	Status of Hydro-Meteorological Observation Relevant to Phase I Project
		3B-10	Monthly Run-off Data of the Solsona River
		3B-11	Monthly Run-off of the Labugaon River
		3B-12	Monthly Run-off of the Solsona River
		3B-13	Monthly Run-off of the Madongan River
		3B-14	Monthly Run-off of the Papa River
		3B-15	Monthly Run-off of the Bonga River
	3B-4	Flood	Analysis
		3B-16	Flood Peak in Laoag River Basin
		3B-17	Flood-Frequency Analysis by Hazen Method
		3B-18	Maximum Consecutive Rainfall (1951-1977)

3B-5	Soil an	d Land Classification
	3B-19 3B-20 3B-21 3B-22	Physical and Chemical Properties of Soils in the Project Area Soil Characteristic Conducted from the Analytical Items Land Classification Specification for the Project Area Hectares Summary of Major Land Classes in the Project Area
		Treatment of Interpol Edito Globals III did 110/001/1408
3C-1	Present	: Irrigation Conditions
	3C-1	Area of Communal Irrigation System (CIS) in the Project Area
	3C-2	National Irrigation Project in Ilocos Norte
3D-1	Farmin	g Status
	3D-1	Population and Household of Farmers and Non-farmers in Project Area
	3D-2	Present Cultivated Area and Arable Area in Each Municipality
	3D-3	Gradual Number of Farm Size
	3D-4	Gradual Number of Farm Size
	3D-5	Relation of FIA and Barrio in the Project Area
3D-2	Present	Crop Production
	3D-6	Present Paddy Production
	3D-0	Estimated Area Harvested, Yield and Production of Major
	05 7	Crops in Five Municipalities Concerned
٠	3D-8	Crop Yield in the Project Area, without Project
	3D-9	Paddy Production under Masagana 99 Program by Municipality
	3D-10	Input Materials used in the Project Area
	3D-11	Input Materials per Hectare at Present
	3D-12	No. of Farm Machinery in the Project Area
3D-3	Farm L	abor Balance
	3D-13	Farm Labor Balance, without Project
3D-4	Animai	Husbandry
		·
	3D-14	Livestock and Poutry Population (1978)
	3D-16	Number of Carabao by Municipality Distribution of Farm and Area by Tenure and Size of Farm
	3D-10	Present Cropping Pattern
	3D-17	Average Yield of Palay
	3D-19	Disposition of Palay Production
	3D-19	Farm Population and Labor Force
	3D-20	Inventory Ending and Capital Investment
	3D-21	Livestock and Poultry Inventory
	3D-22	Labor Days and Hired Labor Cost
	3D-23	Other Source of Income
	3D-25	Total Annual Cost of Family Living Allowance

CHAPTER IV. THE PROJECT

4B-1

Project Formulation

	4B-1	Summary of Alternative Studies
4B-2	Irrigatio	on Plan
	4B-2	Percolation Test in the Project Area
	4B-3	Water Requirement for Land Soaking and Land Preparation
	48-4	Irrigation Water Requirement in the Probability of 10-year (1965)
	4B-5	Run-off Volume and Irrigation Water Requirement in Each Sub-Area
	48-6	Summary of Water Balance in Phase I Area
	4B-7	Irrigable Area in Each Sub-Area
	4B-8	Probable Analysis on Rainfall and Water Requirement
	4B-9	Monthly Diverted Water in the Lower Reaches of Bonga River
	4B-10	Water Balance at Dingras RIS Intake after Completion of Phase I Project
4B-3	Drainag	ge Plan
4B-4	On-farr	n Development
	4B-11	Quantities of On-farm Facilities
	4B-12	Proposed Length of On-farm Facilities
4C-1	Market	Prospect
	4C-1	Balance of Supply and Demand of Rice at Present
4C-2	Estimat	tion of Target Yield for the Proposed Crops
	4C-2	Paddy Rice Production "after the Project" by Land Class
4C-3	Recom	mended Farm Practices
	4C-3	Recommended Farm Practices and Input Materials (Paddy Rice)
	4C-4	Recommended Farm Practices and Input Materials (Tobacco)
	4C-5	Recommended Farm Practices and Input Materials (Garlic)
	4C-6	Recommended Farm Practices and Input Materials (Onion)
4C-4	Forecas	sting of Population and Labor
	4C-7	Projection of Total Population
	4C-8	Protection of Farm Household Population by Area and Municipality

	40-9	Cultivate in the Project Area		
	4C-10	Household Population - Gainful Workers of 10 Years Old and Over by Major and Mainor Industries		
	4C-11	Population of 10 Year Old and Over		
4C-5	Farm M	echanization		
	4C-12	Efficiency of Farm Operation		
	4C-13	Labor Requirement of Farm Operation		
	4C-14	Labor Requirement of Tobacco Cultivation with Project		
	4C-15	Labor Requirement of Garlic Cultivation with Project		
	4C-16	Labor Requirement of Onion Cultivation with Project		
4C-6	Farm M	achinery Cost		
	4C-17	Farm Machinery Cost		
4C-7	Farm La	abor Balance		
	4C-18	Farm Labor Balance with Project		
4C-8	Require	ment of Input Materials		
4D-1	Propose	d Facilities, Diversion Dam		
	4D-1	Summary of Scouring Sluice of Diversion Dam		
4D-2	Geological Conditions of the Proposed Diversion Dam Site			
4D-3	Propose	d Facilities, Irrigation Canals		
	4D-2	List of Canal Length and Service Area		
	4D-3	List of Related Structures		
4D-4	Propose	d Facilities, Dramage Canals		
	4D-4	Total Length of Drainage Canal		
	4D-5	List of Related Structures		
4D-5	Propose	d Facilities, Roads		
	4D-6	List of Road Length		
4E-1	Cost Estimate			
	4E-1	Investment Cost of the Project		
	4E-2	Labor Cost		
4E-2	Disburse	ement Schedule		
	4E-3	Disbursement Schedule of Investment Cost		
4E-3	Addition	nal Investigation (Pre-Engineering Works)		

CHAPTER V. PROJECT IMPLEMENTATION AND OPERATION

5B-1	Construction	Planning	of	Major	Civil	Works

- 5B-1 List of Required Construction Equipment
- 5B-2 Construction Schedule of Irrigation and Drainage Canals
- 5B-3 List of Required Construction Equipment
- 5B-4 Construction Schedule of O & M Roads
- 5B-5 List of Required Construction Equipment
- 5B-6 On-farm Development Area
- 58-7 Yearly Construction Schedule of On-farm Development

5C-1 Operation and Maintenance Cost

5D-1 Terms of Reference for the Consultant's Services

CHAPTER VI. PROJECT JUSTIFICATION

6C-1 Economic Evaluation

- 6C-1 Price Structure for Rice, 1978 and 1985
- 6C-2 Price Structure for Tobacco, 1978 and 1985
- 6C-3 Price Structure for Onion, 1978 and 1985
- 6C-4 Price of Fertilizer for 1978 and 1985
- 6C-5 Petroleum Price Structure, 1978 and 1985
- 6C-6 Export of Garlie
- 6C-7 Garlic: Average Price Recieved by Farmers
- 6C-8 Garlic: Retailed and Wholesale Price
- 6C-9 Export of Onion, Fresh or Chilled
- 6C-10 Garlic Production
- 6C-11 Onion Production
- 6C-12 Production of Garlic and Onion
- 6C-13 Average Monthly Wholesale Prices of Garlic
- 6C-14 Farm Gate Price of Onion
- 6C-15 Farm Gate Price of Onion (Continue)
- 6C-16 Retail Price of Onion

6C-2 Economic Costs of Farm Labor

- 6C-17 Available Farm Labor Force Inside the Project Area (with Project)
- 6C-18 Available Farm Labor Force Inside the Project Area (without Project)
- 6C-19 Unemployment Labor Force Inside and Outside the Project Area
- 6C-20 Available Farm Labor Force per Month
- 6C-21 Total Labor Demand by Month without Project
- 6C-22 Agricultural Labor Demand by Month with Project
- 6C-23 Construction Labor per Year

	6C-24	Total Labor Demand by Month with Project
	6C-25	Monthly Farm Labor Demand as Percentage of Potential Full Employment
	6C-26	Monthly Labor Demand as Percentage of Potential Full Employment (Continue)
	6C-27	Wage Rate by Month without Project
	6C-28	Wage Rate by Month with Project
	6C-29	Farm Labor Costs by Month without Project
	6C-30	Farm Labor Costs by Month with Project
6C-3	Evaluat	tion of Agricultural Benefit
	6C-31	Cropping Area with Project
	6C-32	Production and GPV with Project
	6C-33	Production and GPV without Project
	6C-34	Production Cost per Hectare in Farm Development
6D-1	Interna	l Rate of Return
	6D-1	Present Worth Value of Incremental NPV
	6D-2	Present Worth Value of Economic Cost
6G-1	Cost R	ecovery
	6G-1	National Irrigation System, Ilocos Norte (1977)
	6G-2	Irrigation Fee Collection Rate

LIST OF FIGURE

CHAPTER I.	INTR	ODUCTIO	IN
CHAPTER II.	ECON	IOMIC AI	VD SECTORAL BACKGROUND
CHAPTER III.	THE	PROJECT	AREA
	3B-1	Climate	and Hydrology
		3B-1	Climate Map
	3B-3	Hydrol	ogical Data and Analysis
		38-2	Location of Hydro-Meteorological Station
	38-4	Flood A	Analysis
		3B-3	Flood-Frequency for Each River
		3B-4	Frequency for Each Maximum Consecutive Rainfall at Lacag
	3B-5	Soil and	l Land Classification
		3B-5	Present Lans Use Map
		3B-6	Soil Map
		3B-7	Representative Soil Profiles of Each Soil Series in the Project Area
		38-8	Relation Between pH and Base Saturation
		3B-9	Land Classification Map
	3D-1	Farming	g Status
		3D-1	Relation of Rotational Area, AIF, FIG and FUG
CHAPTER IV.	THE	PROJECT	
	4B-1	Project	Formulation
		4B-1	Alternative Plans of Overall Development for Ilocos Nor Irrigation Project
	48-2	Irrigatio	n Plan
		4B-2	Measuring Site of Percolation Rate
		4B-3	Calculation of Weighted Crop Water Requirement for Phase I Area
		4B-4	Calculation of Weighted Crop Water Requirement for Phase (1 Area
		4B-5	Water Balance in Each Sub-Area
		4B-6	Probability of Rainfall
		4B-7	Probability of Water Requirement
	4B-3	Drainage	e Plan
		4B-8	Area-Reduction Factor for Drainage Modurus

	4B-9	Reduction Factor of Areal Rainfall to Maximum Daily Spot Rainfall
	4B-10	Accumulative Hourly Rainfall (Laoag Station)
	4B-11	Hourly Rainfall Distribution
	4B-12	Relation of Maximum Spot Hourly Rainfall and . Area Hourly Rainfall
	4B-13	Relation of Peak Hourly Rainfall and Peak Run-off
4B-4	On-farm	n Development
	4B-14	Typical Layout of On-farm Facility
4C-5	Farm M	echanization
	4C-1	Proposed Farm Operation System
4C-6	Farm L	abor Balance
	4C-2	Labor Use for All Crops with Project
4D-2	Geologi	cal Conditions of the Proposed Diversion Dam Sites
	4D-1	Location Map of Bore-hole Drilling at Labugaon Dam Site
	4D-2	Location Map of Bore-hole Drilling at Solsona Dam Site
	4D-3	Borehole Log at Solsona Diversion Dam Site
	4D-4	Location Map of Bore-hole Drilling at Madongan Dam Site
	4D-5	Borehole Log at Madongan Diversion Dam Site
	4D-6	Location Map of Bore-hole Drilling at Papa Dam Site
	4D-7	Borehole Log at Papa Diversion Dam Site
4D-3	Propose	d Facilities, Irrigation Canal
-	4D-8	Schematic Diagram of Proposed Irrigation System (Labugaon Area)
	4D-9	Schematic Diagram of Proposed Irrigation System (Solsona Area)
	4D-10	Schematic Diagram of Proposed Irrigation System (Madongan Area)
	4D-11	Schematic Diagram of Proposed Irrigation System (Papa Area)
4D-4	Propose	d Facilities, Drainage Canal
	4D-12	Schematic Diagram of Proposed Drainage System (Labugaon Area)
	4D-13	Schematic Diagram of Proposed Drainage System (Solsona Area)
	4D-14	Schematic Diagram of Proposed Drainage System (Madongan Area)
	4D-15	Schematic Diagram of Proposed Drainage System (Papa Area)
	4D-16	Hydraulic Most Effective Cross-Section
	4D-17	Discharge Curve of Proposed Drainage Canal
550 IF	or 4660:	ENGRITATION AND ORDATION

CHAPTER V. PROJECT IMPLEMENTATION AND OPERATION

5B-1 Construction Planning of Major Civil Works

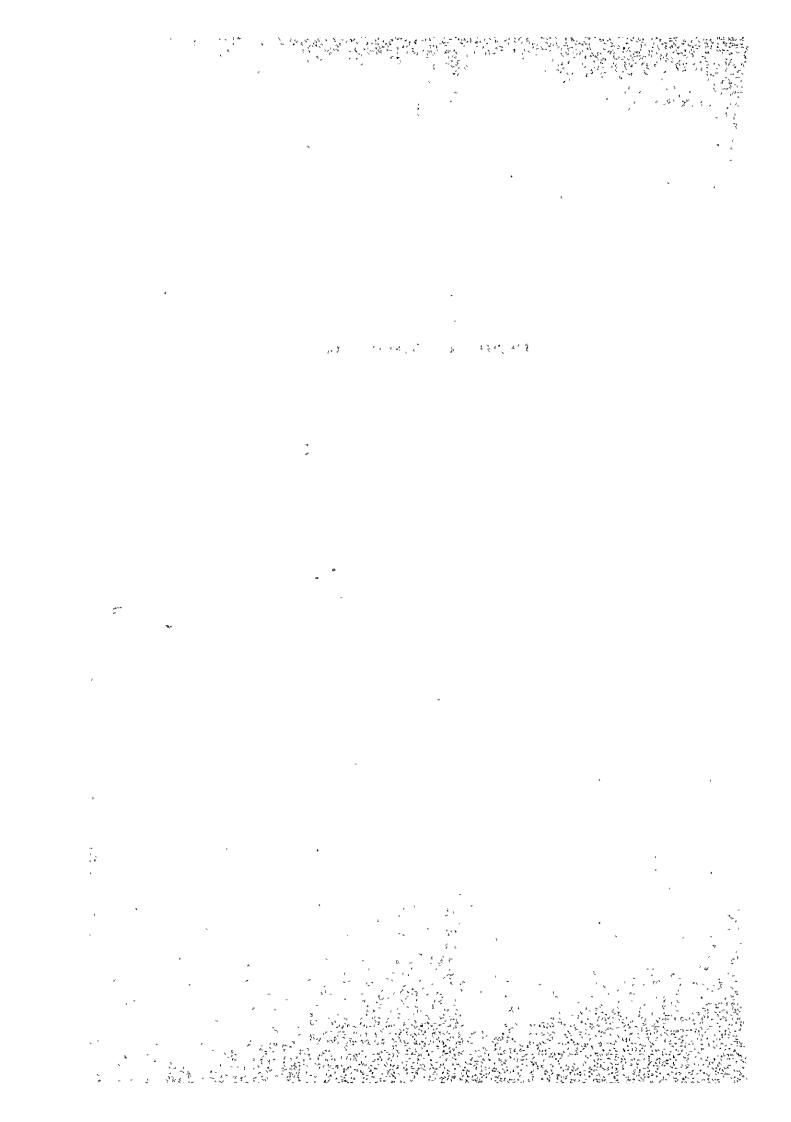
5B-1 Construction Schedule of Diversion Dams

5B-2 On-farm Development Schedule

5D-1 Terms of Reference for Consultant's Services

5D-1 Proposed Schedule for Consultant's Services

CHAPTER VI. PROJECT JUSTIFICATION


6C-2 Economic Costs of Farm Labor

6C-1 Typical Opportunity Cost Curve for Farm Labor

6C-2 Opportunity Cost Curve for Farm Labor

CHAPTER I. INTRODUCTION

Personnel Concerns the Team Contacted

Dean Alfred L. Junio	Secretary DPWTA and Administrator, NIA
Mr. Eduardo Corpuz	Assistant Director General, NEDA
Mr. Conrado G. Mercado	Assistant Administrator for Engineering & Operation, NIA
Mr. Benjamin U. Bagadion	Assistant Administrator for Finance & Administration, NIA
Mr. Cesar L. Tech	Assistant Administrator of Special Project, NIA
Hon Elizabeth Marcos Keon	Governor of Ilocos Norte Province
Hon Atroy V. Barbero	Governor of Abra Province
Hon Naoleon L. Foz	Mayor of Manicipality Dingras
Hon Atty E.P.Acosta Aguinald	Mayor of Manicipality Batac
Hon Felis A. Aguinaldo	Mayor of Manicipality Pasuguin
Hon Ulpiano B. Acnam	Mayor of Manicipality Nueva Era "
Mr. Lelito G. Valdez	Provincial Irrigation Engineer, NIA, Ilocos Norte Province
Mr. Sinesio T. Jimenez	Provincial Irrigation Engineer, NIA, Abra Province
Mr. Benito P. Visaya	Project Manager of Quiom Maypalig Reservoir Project
Mr. Alfred C. Villamar	Irrigation Super Intendent, Angat River Irrigation System Office, NIA
Mr. Cornelio G. Patangan	Assistant Irrigation Engineer, NIA, Lacag City
Mr. Leopoldo D. Kagahastian	Chairman, Task Force for Flood Control & Related Activities (Chief, Water Resources Survey Division), BPW
Mr. Eliseo O. Tayao	Co-Chairman, Task Force for Flood Control Related Activities, BPW
Mrs. Julita G. Blando	Assistant Director Forester, Bureau of Forest Development
Mr. Carlos Borromeo	Program Manager, Farms System Development Corporation
Mr. Manuel M. Sabas	Assistant of District Engineer, Bureau of Public Works, District Office
Mr. Floramante Bautista	Agronomist, Ilocos Norte NISIP Sub-Region
Mr. Melanio Santos	Agriculturist, Ilocos Norte NISIP Sub-Region

	ļ
	Appendix 1-1
	Page 2
Mr. Manuel Garvida	Supervising Construction Engineer Ilocos Norte, NISIP Sub-Resion
Mr. Loreto T. Mendoza´	Supervising Construction Engineer Ilocos Norte, NISIP Sub-Resion Design Engineer, Ilocos Norte NISIP Sub-Region Manager, Lural Bank System Engineer, Ilocos Norte Irrigation Service Chief, Planning and Programming Section, PPDO, DPH Supervision Design Engineer, Flood Control & Drainage Division, BPW Assistant Civil Engineer, PPDO, DPH Senior Hydrologist, NIA Sangouniang Bayan Secretary of Manicipality Batac Provincial Agriculturist, BAEx Acting Provincial Agricultural Extension Supervisor, BAEx Agricultural Extension Specialist, BAEx Provincial Plant Pests Office, BPI Assistant Plant Pests Industry Officer, RPI
Mr. Lago	Manager, Lural Bank
Mr. Cornelio Quedado	System Engineer, Ilocos Norte Irrigation Service
Mr. Artemio C. Agustin	Chief, Planning and Programming Section, PPDO, DPH
Mr. Reynaldo B. Molina	Supervision Design Engineer, Flood Control & Drainage Division, BPW
Mr. Jose P. Gloria	Assistant Civil Engineer, PPDO, DPH
Mr. Calixto P. Timonera	Senior Hydrologist, NIA
Dr. Antero N. Lutap	Sangouniang Bayan Secretary of Manicipality Batac
Mr. Pacifico P. Mariano	Provincial Agriculturist, BAEx
Mr. Agripino M. Abra	Acting Provincial Agricultural Extension Supervisor, BAEx
Mr. Francisco A. Pilar	Agricultural Extension Specialist, BAEx
Mrs. Aurea P. Bautista	Provincial Plant Pests Office, BPI
Mr. Marcelo B. Barroga	Assistant Plant Pests Industry Officer, BPI
Mr. Gregorio Deeling	Superintendent of Experimental Station, Dingras Experiment Station, BPI
Mr. Antonio A. Tomaneng	Senior Research Associate, PTRTC
Mr. Salvador Sanbuir	President, PVTA Compact Farm
Mr. Juan T. Agustin	Senior Operations Officer, NGA
Mr. Epitanio M. Cabello	Livestock & Poultry Technologist, BAI
Mr. Engr P. Mon Viernes	District Land Officer, BL
Mr. Francisco A. Abad	Provincial Incharge, BAEcon

Data List used for Feasibility Study

A. Hydrology

- 1. Daily rainfall at Laoag and Vigan, prepared by PAGASA
- 2. Daily Discharge on Solsona, Bonga, Laoag, Tineg and Abra rivers, prepared by Water Supply Bulletin
- 3. NISIS, Package I, Appendix A, Hydrology, prepared by NIA

B. Geology and Soil

Geology

 Result of Boring Test at the Proposed Diversion Sites at Labugaon, Solsona, Papa and Madongan, conducted by NIA, 1977

Soil

- 5. Summary of Soil and Land Classification (Ilocos Norte Area Development Project), prepared by NIA, 1976
- 6. Revised Soil Map, prepared by NIA, 1978
- 7. Revised Present Land Use Map, prepared by NIA, 1978.
- 8. Revised Land Classification Map, prepared by NIA, 1978

C. Irrigation and Drainage

Maps

- 9. Military Map showing Province of Ilocos Norte, Ilocos Sur and Abra, 1/50,000
- 10. Topographic Map of the Project Area, 1/4,000

Reports and Other Data

11. Project Identification Report "Palsiguan River Multi-purpose Project, prepared by NIA, 1977

- 12. National Irrigation System Improvement Project, Package I, prepared by NIA, 1976
- 13. Appraisal Report of the National Irrigation System Improvement Project I, prepared by IBRD, 1977
- 14. Preliminary Report on Ilocos Norte Irrigation Project, prepared by JICA Survey Team, 1977
- 15. Appraisal Report of the Technical Assistance to the Republic of the Philippines for the Ilocos Norte Rural Development Project, prepared by ADB, 1976
- 16. Ilocos Norte Rural Development Project, Road Component, prepared by PPDO, DPH, 1977
- 17. Communal Irrigation Systems and Their Irrigation Areas in the Project Area as of 1977
- 18. Nine National Irrigation System Improvement Project in the Vicinity of the Project Area
- 19. Irrigation Project Plans by FSDC in the Vicinity of the Project Area
- 20. Quiom-Maypalig Irrigation Project Plan
- 21. Percolation Test at Paddy Field and Infiltration Test at Upland Fields conducted by NIA.
- 22. Flood Damages on Agricultural Crops in Ilocos Norte Province

D. Agriculture

- 23. Estimated Area Harvested, Production, Yield of Palay, Corn, Tabacco, Garlic and Mongo Bean by Manicipality (1972-1978), prepared by BAEcon in Ilocos Norte
- 24. Barangay Screening Survey by Manicipality, prepared by BAEcon in Ilocos Norte, 1976
- 25. Number of Farmers, Area Harvested and Production of Paddy Rice under Masagana 99 by Manicipality (Phase VII-X), prepared by BPI in Ilocos Norte

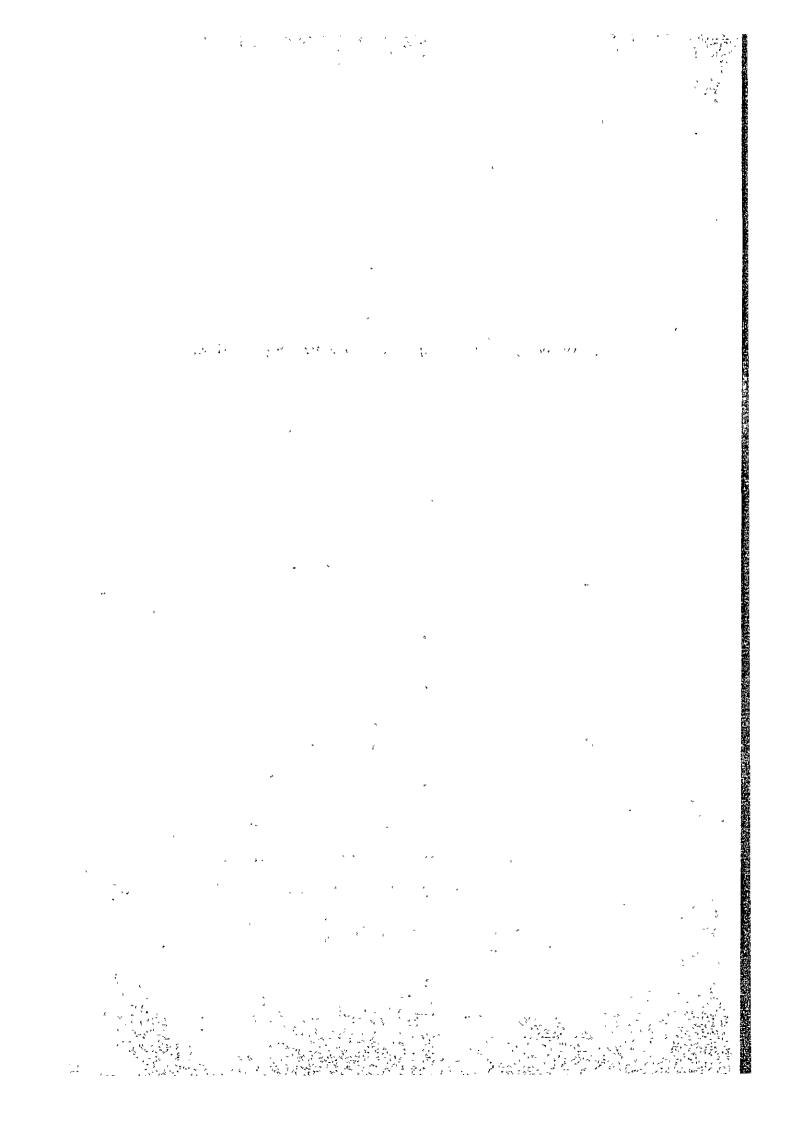
- 26. Recommended Paddy Rice Varieties in 1978 for Masagana 99 prepared by NFAC, 1977
- 27. Philippine Virgina Tobacco, Production, Processing and Marketing, prepared by PVTA, 1964
- 28. Masagana 99 Rice Culture, 16 Steps, prepared by DA, 1978
- 29. Philippines Recommends for Vegetables, prepared by PCARR, 1977
- 30. Grow Garlic for Profit, prepared by NFAC/UPLB, 1977
- 31. Census of Agriculture, 1971, prepared by NCASO, NEDA
- 32. Agronomic Survey in the Palsiguan Irrigation Project Area, prepared LRED, NIA, 1978

E. Design and Cost Estimate

Maps

- 33. Profile of Each Diversion Dam Axis, prepared by NIA
- 34. Parcellary and Topographic Map of Water Management, Laoag-Vintar Irrigation System, 1/4,000, prepared by NIA Provincial Office, Laoag City
- 35. Topographic Map of Sample Area, No. 1 and No. 2, 1/2,000, prepared by NIA
- 36. Parcellary and Topographic Map of Water Management, Quiom Maypalig Irrigation System

Reports and Other Data


- 37. Canals and Related Structures, prepared by U.S. Bureau of Reclamation
- 38. Criteria for Diversion Dam, prepared by Agricultural Structural Improvement Bureau, Ministry of Agriculture, Forestry and Fishery, Japan
- 39. Jaraul River Multi-Purpose Project Report, prepared by NIA

- 40. Report on the Workshop in Water Management, prepared by NIA, 1978
- 41. Operation Cost of Equipment by Using Heavy Equipment, prepared by Yasuo Itami
- 42. Construction Planning Equipment and Method, prepared by R.L Peurifoy

F. Economy

- 43. Integrated Census of the Population and Its Economic Activities, 1975, prepared by Ilocos Norte National Census and Statistical Office, NEDA, 1975
- 44. Census of Population, Ilocos Norte, prepared by NCSO, NEDA, 1970
- 45. Population Dimension of Planning, Population Projection of Cities and Manicipalities in the Philippines, 1970-2000, prepared by NEDA, 1975
- 46. Philippine Statistical Yearbook, prepared by NEDA, 1977
- 47. The Philippines, Priorities and Prospects for Development,
 A World Bank Country Economic Report, prepared by NEDA, 1976
- 48. Long-Term and Five Year (1976-1982) Development Plans Draft Summary, prepared by NEDA, 1977
- 49. Grain Industry Development Plan, Planning Issue, prepared by NGA, 1976
- 50. Farm Management Survey, Sum Up Data, prepared by Economic Section, LRED, NIA, 1978
- 51. The Philippines Gold Leaf, 1978, prepared by PVTA
- 52. Garlic Marketing, prepared by DA, 1974
- 53. Garlic Production and Marketing, prepared by DA, 1978
- 54. Philippine Economic Indicators, prepared by NEDA, 1978

CHAPTER II.	ECONOMIC AND SECTORAL BACKGROUND
and the second s	
ر با توان من المواثق الأنتيان المؤتم الله والمدار المواثق المواثق والتراق المواثق والمدار المواثق المواثق الم المراقع المواثق المواث والمواثق المواثق الموا	

Regional Population Targets, 1975-2000

Table 2B-1

																	•
2000	83,444	14,485	5,387	3,660	046.8	11,905	9,180	5,413	15,479	6,029	5,704	3,746	23,480	2,891	5,966	7,274	5,349
1987	59,204	32,344	4,170	2,642	6,735	8,043	6,639	4,115	11,937	4,739	4,312	2,922	14,887	3,265	3,797	4,555	3,270
1982	52,348	28,606	3,778	2,324	6,041	406,9 9	5,868	3,691	10,958	4,313	3,867	2,778	12,784	2,803	3,197	3,817	2,967
1977	45,252	24,551	3,437	2,039	806, 4	2,692	5,117	3,358	10,088	3,998	3,500	2,590	19,613	2,387	2,634	3,088	2,504
1975	42,517	.22,927	3,310	1,933	4,402	5,212	4,823	3,247	9,791	3,896	3,371	2,524	9,799	2,233	2,421	2,812	2,333
	1. Philippines	2. Luzon	Region I	II	JII	O IV - (MMA)	IV - A	A 155 70 16 16	3. Visayas	Region VI		VIII	4. Mindanao	Region IX	×		IIX CONTROL

Source: Long-Term and Five Year (1978-82) Development Plans (Draft Summary), 1977

Gross Domestic Products by Industry (1971-1976) (1972 year Constant Price) Table 2B-2

			G D P (10 peso)	0 peso)				Growth	Growth Rate (%)	(5	
Industry	1971	1972	1973	1974	1975	1976	1971/72	1971/72 1972/73 1973/74 1974/75 1975/76	1973/74	1974/75	1975/76
Agriculture etc.	15,457	16,040	17,026	17,465	18,095	19,144	3.77	6.15	2.58	3.61	5.80
Mining	1,282	1,346	1,400	1,403	1,423	1,457	66*†	4.01	2.14	1.43	2.39
Manufacture	12,611	13,388	15,252	15,981	16,537	17,464	6.16	13.92	4.78	3.48	5.61
Construction	1,889	2,240	2,433	2,665	4,059	4,952	18.58	8.62	9.54	52.31	22.00
Electric etc.	044	468	201	581	618	664	6.37	7.05	15.97	6.37	7.44
Commercial	12,484	12,688	13,589	14,200	14,991	15,786	1.63	7.10	4.50	5.57	5.30
Service	7,179	7,487	8,073	8,680	9,124	9,525	4.29	7.83	7.52	5.12	04.4
Transportation	2,184	2,418	2,657	2,933	3,263	3,491	10.71	9.88	10.39	11.25	65*9
GDP	53,526	56,075	60,931	63,908	68,291	72,576	4.76	8.66	ф.80	6.87	6.27

Source: NEDA, Philippine Economic Indicators, Sept. 1976

Table 2B-3 Per Capita Gross Regional Domestic Product, 1975-2000

2000	5,617	6,122	3,655	3,970	5,505	9,174	6,637	3,463	5,239	5,442	6,163	3,504	4,911	3,834	4,871	096,9	3,155
1987	2,807	3,207	1,834	2,013	2,295	5,848	3,004	2,019	2,346	2,666	2,390	1,764	2,311	1,934	2,145	3,211	1,627
1982	2,150	2,483	1,226	1,312	1,701	5,087	2,329	1,163	1,828	2,285	1,842	1,098	1,680	1,291	1,662	2,461	1,064
1977	1,734	2,047	1,026	1,016	1,324	4,637	1,719	886	1,462	1,877	1,405	968	1,269	1,018	1,230	1,821	867
1975	1,601	1,911	955	917	1,300	4,515	1,529	791	1,333	1,728	1,257	825	1,141	928	1,098	1,629	800
Item	1. Philippines	2. Luzon	Region I	II	III	IV - (MMA)	IV - A	Λ	3. Visayas	Region VI	IIA	IIIA	ψ. Mindanao			XI	XII
	1975 1977 1982 1987	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 5	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,226 1,834	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,834 II 917 1,016 1,312 2,013	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,834 II 917 1,016 1,312 2,013 III 1,300 1,324 1,701 2,295	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,226 1,834 II 917 1,016 1,312 2,013 III 1,300 1,324 1,701 2,295 IV - (MMA) 4,515 4,637 5,087 5,848	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,226 1,834 II 917 1,016 1,312 2,013 IV - (MMA) 4,515 4,637 5,087 5,848 IV - A 1,529 1,719 2,329 3,004	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,226 1,834 II 917 1,016 1,312 2,013 III 1,300 1,324 1,701 2,295 IV - (MMA) 4,515 4,637 5,087 5,848 IV - A 1,529 1,719 2,329 3,004 V 791 886 1,163 2,019	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,834 1,834 II 917 1,016 1,312 2,013 IV - (MMA) 4,515 4,637 5,087 5,848 IV - A 1,529 1,719 2,329 3,004 V 791 886 1,163 2,019 Visayas 1,333 1,462 1,828 2,346	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,226 1,834 II 917 1,016 1,312 2,013 IV - (MMA) 4,515 4,637 5,087 5,848 IV - A 1,529 1,719 2,329 3,004 Visayas 1,333 1,462 1,163 2,346 Region VI 1,728 1,877 2,285 2,666	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,226 1,834 II 917 1,016 1,312 2,013 IV - (MMA) 4,515 4,637 5,087 5,848 IV - A 1,529 1,719 2,329 3,004 Visayas 1,333 1,462 1,828 2,346 Region VI 1,728 1,842 2,390 VII 1,257 1,405 1,842 2,390	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,226 1,834 III 917 1,016 1,312 2,013 IV - (MMA) 4,515 4,637 5,087 5,848 IV - A 1,529 1,719 2,329 3,004 V sayas 1,333 1,462 1,163 2,346 Region VI 1,728 1,842 2,386 VIII 1,257 1,405 1,842 2,390 VIII 825 896 1,098 1,764	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,226 1,834 III 917 1,016 1,312 2,013 IV - (MMA) 4,515 4,637 5,087 5,848 IV - A 1,529 1,719 2,329 3,004 Visayas 1,333 1,462 1,828 2,346 Region VI 1,728 1,877 2,285 2,566 VIII 1,257 1,405 1,842 2,390 VIII 1,141 1,269 1,680 2,311	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,226 1,834 II 1,300 1,324 1,834 2,913 IV - (MAA) 4,515 4,637 5,087 5,848 IV - A 1,529 1,719 2,329 3,004 Visayas 1,529 1,719 2,329 3,004 Visayas 1,333 1,462 1,828 2,346 Region VI 1,728 1,877 2,285 2,386 VIII 825 1,405 1,842 2,390 VIII 825 1,098 1,764 Mindanao 1,141 1,269 1,680 2,311 Region IX 928 1,018 1,594 1,934	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 917 1,026 1,226 1,834 III 1,300 1,324 1,712 2,013 IV - (MMA) 4,515 4,637 5,087 5,848 IV - A 1,529 1,719 2,329 3,004 Visayas 1,529 1,719 2,329 3,004 Visayas 1,333 1,462 1,828 2,666 Region VI 1,728 1,877 2,285 2,666 VIII 1,257 1,405 1,680 2,316 Windanao 1,141 1,291 1,594 Region IX 2,28 1,018 1,591 1,934 1,230 1,598 1,594	Item 1975 1977 1982 1987 Philippines 1,601 1,734 2,150 2,807 Luzon 1,911 2,047 2,483 3,207 Region I 955 1,026 1,226 1,834 II 917 1,016 1,312 2,013 IV - (MMA) 4,515 4,637 5,087 5,848 IV - A 1,529 1,719 2,329 3,004 V 791 886 1,163 2,019 Visayas 1,728 1,462 1,828 2,346 Region VI 1,728 1,462 1,842 2,346 VIII 825 1,405 1,842 2,346 VIII 825 1,098 1,098 1,098 1,934 Region IX 2,286 2,311 2,311 2,311 2,311 Region IX 1,098 1,291 1,934 2,145 2,145 XI 1,699 1,291 2,461

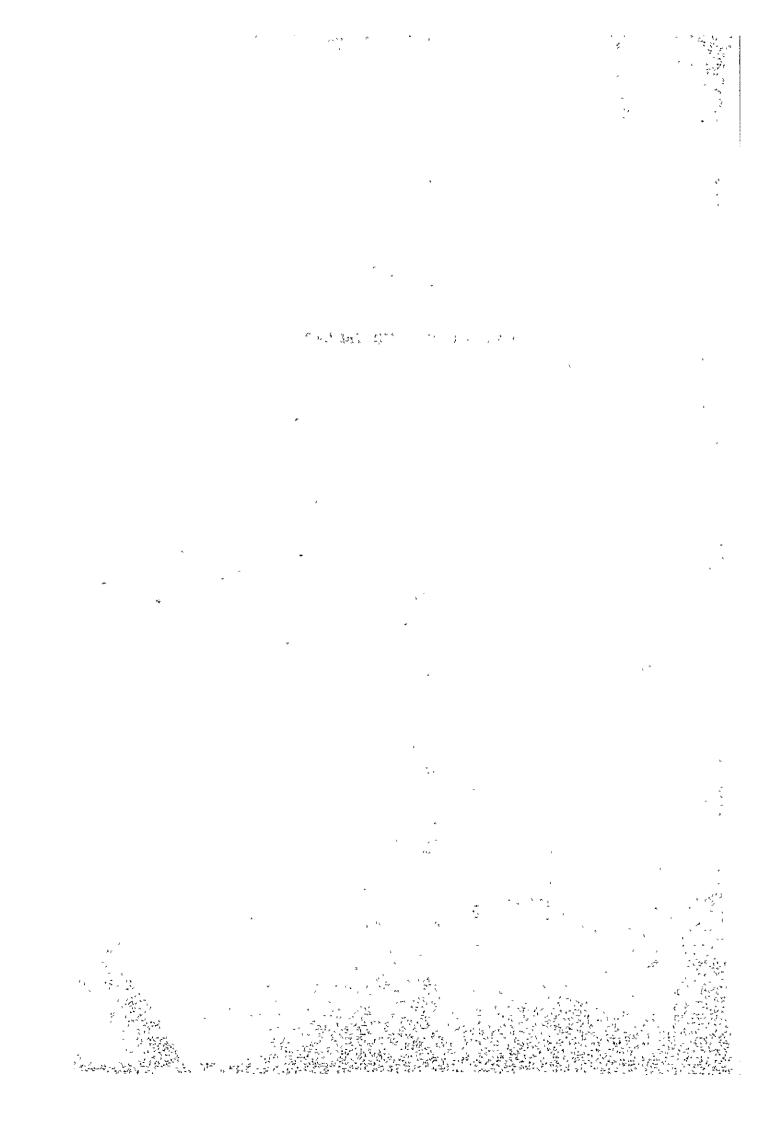

Source: NEDA

Table 2B-4 Average Size of Farm by Province

				Land Planted	l Total	Average
	Region and	Total No.	Area of all	to Permanent	Farm	Size of
	Province	of Farms	Arable Land	Crops	Area	Farms
		(A)	(B)	(c)	(B)+(C)	(B+C)
						$\left(-\frac{A}{A}\right)$
I.	Ilocos					
	Abra	13,405	22,616	889	23,505	1.75
	Benguet	12,315	18,600	2,567	21,167	1.72
	Ilocos Norte	31,047	32,335	2,683	35,018	1.13
	Ilocos Sur	27,671	32,207	1,705	33,912	1.23
	La Union	27,285	28,190	2,688	30,878	1.13
	Mt. Province	14,085	17,679	2,085	19,764	1.40
	Pangasinan	89,305	148,530	9,025	157,555	1.76
ıı.	Cagayan Valley					
	Batanes	1,447	2,376	414	2,790	1.93
	Cagayan	53,389	133,182	6,251	139,433	2.61
	Ifugao	10,310	16,596	2,182	18,778	1.82
	Isabela	69,704	187,055	8,004	195,059	2.80
	Kalinga-Akayas	16-,921	32,703	3,958	36,661	2.17
	Nueva Viscaya	20,287	38,278	4,183	42,461	2.09
ш.	Central Luzon					
	Bataon	8,176	22,785	4,959	27,744	3.39
	Bulacan	28,694	58,869	1,282	60,151	2.10
	Nueva Ecija	•	•	-	•	
	Pampanga	23,841	87,237	411	87,648	3.68
	Tarlac	35,596	99,812	1,423	101,235	2.84
	Zambales	15,504	24,341	2,400	26,741	2.13

Source: 1971 Agricultural Census

CHAPTER III. THE PROJECT AREA

FIGURE 3B-1 CLIMATE MAP

LEGEND:

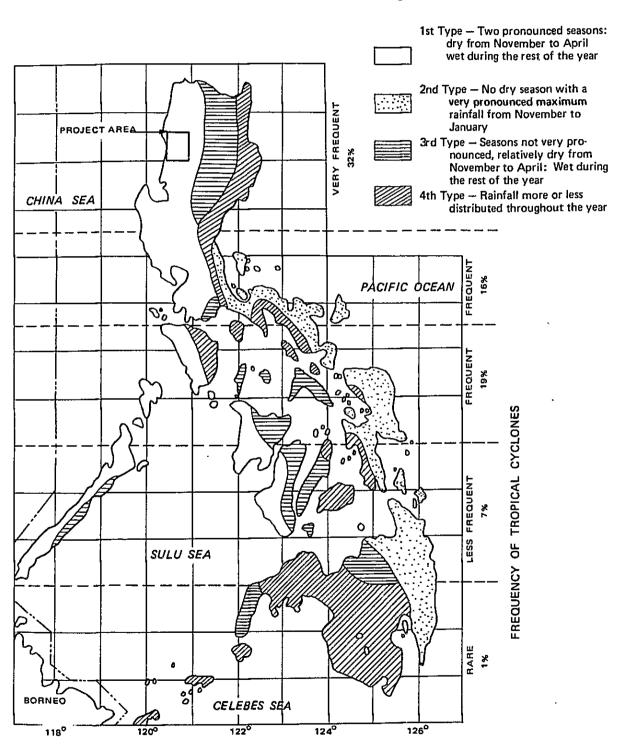


Table 3B-1 Monthly Rainfall at Laoag, Ilocos Norte-

(Unit: mm)

		Dry Se	eason				Wet Se	ason			Dry Se	eason	
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1949	2/	3.3	0	-	11.9	343.4	321.6	240.8	717.6	357.1	19.8	31.2	_
1950	1.3	3.0	_	1.8	126.5	267.7	797.6	666.8	202.4	36.3	7.4	_	_
1951	1.5	0	0	0	110.1	510.8	282.4	799.1	508.6	116.8	10.4	1.1	2,340.8
1952	0.5	0	0	3.0	122.8	311.4	300.0	523.1	199.5	10.7	43.5	4.6	1,519.1
1953	0.3	1.3	1.0	0	276.6	579.2	316.5	775.4	199,4	70.8	147.3	14.6	2,381.8
1954	10.1	0.5	2.8	16.0	12.5	357.8	98.9	566.8	481.9	86.8	103.9	1.0	1,737.4
1955	1.0	6.3	0	0	74.7	281.0	355.6	265.6	123.3	49.6	35.6	6.1	1,198.8
1956	32.7	2.1	0	67.0	66.2	181.6	296.6	553.9	523.2	120.2	12.2	0	1,855.7
1957	0	0	0	0	117.0	712.6	113.2	571.8	389.2	53.9	84.8	8.9	2,051.4
1958	0	4.1	0	0	143.8	694.4	387.9	264.8	281.7	64.0	0	0	1,840.6
1959	3.1	1.0	0	41.6	64.4	87.2	287.3	602.7	170.4	45.4	138.7	0.3	1,442.1
1960	1.5	0	1.0	4.1	266.9	121.3	295.4	699.0	80.7	72.4	0	0	1,541.4
1961	0	0	18.3	0	101.0	529.5	1,306.8	921.3	352.6	6.6	6.9	2.3	3,245.3
1962	3.6	0	0	0.8	22.9	282.0	1,252.9	914.6	89.7	20.1	14.5	0	2,609.1
1963	0.6	0	0.5	0	10.7	1,134.5	369.7	76.2	628.0	6.4	0.9	43.7	2,271.2
1964	18.3	0.7	20.8	0	38.1	304.1	139.6	648.4	601.5	104.3	88.4	120.5	2,084.9
1965	0	0	0	4.6	250.3	582.2	395.4	209.1	393.6	7.5	45.2	2.0	1,889.9
1966	0	0.3	1.3	0.3	217.4	49.8	122.8	517.8	600.5	15.6	194.8	4.3	1,724.9
1967	0	0	0	122.9	210.5	1,082.7	231.3	727.1	233.6	229.3	36.1	0	2,873.5
1968	0	1.0	0	6.8	25.4	108.3	582.4	914.6	497.4	24.4	0	0	2,160.3
1969	9.4	2.8	4.9	0.8	215.8	327.6	733.7	328.7	1,007.3	115.6	12.8	0	2,759.4
1970	0.5	0	0	7.1	81.4	481.0	217.5	494.8	438.6	77.3	27.9	27.3	1,853.5
1971	0	6.2	0	0	37.2	140.2	269.7	344.0	590.1	495.5	27.5	65.1	1,984.3
1972	1.1	1.0	0	2.8	94.3	323.5	1,456.8	303.6	40.2	0.3	0.5	0	2,224.1
1973	0	0	0	12.7	22.2	164.3	320.0	218.2	564.7	376.5	49.2	0	1,728.0
1974	0	0	0.3	28.5	125.4	424.3	25.5	988.8	454.0	494.0	118.3	4.5	2,663.6
1975	0	0	0	12.2	55.7	375.4	$175.7\frac{3}{}$	812.9	65.6	132.6	0	5.7	1,635.8
1976	0	0	0	3.3	261.3	284.1	211.1	173.3	154.7	63.4	11.8	0	1,163.0
1977	9.6	0	0	20.4	33.2	189.0	456.8	627.3	619.8	0	86.0	0	2,032.5
Mean	3.4	1.1	1.8	12.7.	106.7	387.3	418.0	543.1	386.5	112.2	45.7	12.3	2,030.8
Percent((%) <u>0.2</u>	0.1	0.1	0.6	5.3	19.1	20.5	26.7	19.0	5.5	2.3	0.6	100.0

Note: $\frac{1}{2}$ Observations are made at Laoag Airport and records are compiled at PAGASA $\frac{2}{3}$ No record $\frac{3}{2}$ Data were interporated, applying monthly mean ratio to Vigan, Ilocos Sur.

26.8

Table 3B-2 Mean Monthly Temperature at Lacag Station

	Dec.	25.65	24.65	26.20	26.00	26.35	25.40	23.50	26.20	25.50	24.80	26.20	25,30	25.20	24.70	25.70	24.20	25.40	26.00	24.00	24.40	25.80	26.60	26.00	26.00	25.10	26.10	25.4
	Nov.	26.45	26.10	27.60	26.30	26.95	25.40	26.55	27.20	25.20	26.60	26.40	26.70	26.20	26.70	26.70	26.30	27.00	26.90	26.20	25.60	26.30	27.30	26.20	28.40	26.90	26.60	26.6
t: °C)	Oct.	27.20	27.15	27.35	28.45	27.65	26.80	27.20	27.20	27.40	27.60	26.80	27.30	26.80	27.40	27.10	27.30	27.10	27.30	26.40	26.60	27.00	27.60	27.00	28.20	27.60	27.40	27.3
(Unit:	Sep.	27.20	27.45	27.35	27.35	27.20	27.00	27.90	26.60	27.00	27.20	27.40	27.50	26.70	27.50	27.60	27.40	27.30	26.60	27.00	26.40	27.40	27.20	27.40	28.40	28.10	27.40	27.3
	Aug.	27.55	27.08	27.35	27.35	27.45	27,60	27.10	27,10	27.60	27.80	27.20	27.00	26.90	27.30	28.20	27.10	27.60	27.70	27.20	26.00	27.60	27.50	27.60	27,30	27.40	27.20	27.4
	Jul.	27.95	27.10	27.45	28.35	27.65	28.10	27.45	27.60	26.80	27.60	27.80	28.20	26.40	27.20	27.20	27.90	27.40	28.10	27.90	28.00	27.90	28.30	27.50	27.20	28.00	28.60	27.2
	Jun.	28.90	27.90	27.80	29.82	28.55	29,00	28.10	28.00	28.00	27.40	29.00	28.40	27.90	28.40	27.20	27.90	27.40	28.50	27.20	28.80	28.90	27.90	28.00	29.10	29.00	27.80	28.3
	May	29.30	28.60	28.35	29.20	28.55	29.65	29.00	28.20	28.50	29.40	29.00	29.20	28.90	29.10	28.80	29.20	28.50	28.50	28.40	28.60	29.30	29.60	29.00	29.50	30.00	29.00	29.0
	Apr.	28.00	28.20	28.30	31.40	28.10	28.55	28.00	28.20	28.20	28.20	27.80	28.50	23.10	27.70	26.50	27.90	27.70	28.30	27.40	27.20	28.10	28.60	27.50	28.50	29.20	27.90	28.0
	Mar.	26.35	26.00	26.30	27.00	27.10	27.80	25.50	26.40	26.80	26.20	27.00	26.60	26.50	26.50	24.80	26.20	25.70	26.70	26.00	25.70	26.70	27,00	25.80	25.50	26.90	25.70	26.3
	Feb.	25.05	•		•	•	•	24.35	•	•			•	•		•	•		•	•		•	•	•		•	•	24.9
	Jan.	23.90	24.90	24.60	25.20	24.80	25.10	24.65	24.40	25.00	24.90	23.50	25.20	23.30	23.90	22.50	25.00	23.90	24.70	24.40	23.80	24.80	24.60	23.60	24.70	25.00	23.30	24.4
	Year	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	Mean

Annual Mean

Mean Monthly Relative Humidity Table 3B-3

86 88 87 76 71 88 68 78 76 71 85 85 79 70 73 88 87 78 80 80 88 87 81 82 74 89 87 80 75 74 89 87 80 75 74 86 86 80 75 74 86 83 75 74 74 86 83 75 74 74 86 83 75 74 74 86 85 77 74 74 86 85 77 74 74 84 84 74 74 71 84 84 74 74 71 84 84 74 74 74 84 85 80 78 70
68 78 76 85 79 70 87 81 82 87 81 82 87 80 75 86 80 75 88 82 71 83 75 73 87 75 73 87 77 73 87 77 73 86 80 76 84 74 84 84 74 74 85 80 76 86 80 78 87 77 73 87 77 73 86 80 78 87 77 73 86 80 78 87 80 78 88 82 76 89 78 89 78 89 82 76 81 78 89 76 81 82 76 82 82 76 83 86 87 78 84 87 79 70 85 89 76 78 86 82 76 87 84 78 79
85 79 70 87 81 82 87 81 82 87 81 82 87 80 75 86 80 76 88 82 71 83 75 71 83 75 73 84 74 74 84 74 74 84 74 74 85 80 78 86 80 78 87 77 73 86 80 78 87 77 73 86 80 78 87 77 73 86 80 78 87 77 73 86 80 78 87 80 78 88 82 76 89 89 78 81 78 70 81 78 70 82 86 87 76 83 86 87 74 84 74 76 85 80 78 86 82 76 87 84 78 79 88 89 78 76 89 89 78
87 78 80 87 81 82 87 81 82 87 80 75 86 80 76 83 76 74 83 76 74 84 77 73 84 74 74 84 74 74 84 74 74 85 80 74 86 82 76 87 84 72 86 78 72 87 84 78 86 82 76 81 74 70 82 80 78 84 84 79 84,9 78.3 75.7
87 81 82 87 81 78 87 80 75 86 80 76 83 76 74 83 75 77 85 77 73 86 80 78 84 74 74 85 80 74 85 80 74 85 80 74 85 80 74 85 80 74 85 80 74 86 82 76 81 74 70 85 89 78 70 86 82 76 81 84 78 70 81 84 78 70 82 82 76 83 84 78 70 84 85 86 78 86 87 88
87 81 78 87 80 75 86 80 75 88 82 71 83 75 74 87 75 73 87 77 73 86 80 78 84 74 74 85 80 74 85 80 74 85 80 74 85 80 74 85 80 78 86 82 76 81 74 70 85 89 78
87 80 75 86 80 75 88 82 71 83 76 74 83 75 73 87 77 73 87 77 73 86 80 78 84 74 74 84 74 83 85 80 74 85 80 74 85 80 74 85 80 74 85 80 76 81 74 70 85 82 76 81 84 78
87 80 75 86 80 76 83 76 74 83 75 73 87 75 73 87 77 73 86 80 78 84 74 74 84 74 83 85 80 74 85 80 74 85 80 74 85 80 78 86 82 76 81 74 70 85 89 78
86 80 76 88 82 71 83 76 74 83 75 73 87 75 76 85 80 78 84 74 74 84 74 83 85 80 74 85 80 74 85 80 74 86 82 76 81 74 70 85 89 78 85 89 78
88 82 71 83 76 74 83 75 73 87 75 76 85 80 78 84 74 74 84 74 83 85 80 74 85 80 74 85 80 74 85 80 74 86 82 76 81 74 70 85 89 78 85 89 78
83 76 74 83 75 73 87 75 76 85 80 78 84 74 74 84 74 74 84 74 74 85 80 78 85 80 74 85 80 74 86 78 72 87 84 72 87 84 78 88 82 76 81 74 70 89 82 76 81 84 78
83 75 73 87 75 76 85 87 77 73 86 80 78 84 74 74 74 85 80 74 85 71 65 86 78 72 87 84 78 86 82 76 81 74 70 85 80 78 86 82 76 81 84 79 84 84 79
87 75 76 85 77 73 87 72 74 86 80 78 84 74 74 84 74 74 85 80 74 85 71 65 86 78 72 87 84 78 86 82 76 81 74 70 84 84 79 84,9 78.3 75.7
85 77 73 87 72 74 86 80 78 84 74 74 84 74 74 85 80 74 85 71 65 86 78 72 87 84 78 81 74 70 81 74 70 81 82 76 81 82 76
87 72 74 86 80 78 84 74 74 84 74 74 85 80 74 85 71 65 86 78 72 87 84 78 81 74 70 81 74 70 81 84 79 84 84 79
86 80 78 84 74 74 84 74 74 85 80 74 85 71 65 86 78 72 87 84 78 81 74 70 85 80 78 84 84 79
84 74 74 84 74 83 85 80 74 85 71 65 86 78 72 87 84 78 86 82 76 81 74 70 85 80 78 84 84 79
84 74 83 85 80 74 85 71 65 86 78 72 87 84 78 86 82 76 81 74 70 85 80 78 84 84 79
85 80 74 85 71 65 86 78 72 87 84 78 86 82 76 81 74 70 85 80 78 84 84 79
85 71 65 86 78 72 87 84 78 86 82 76 81 74 70 85 80 78 84 84 79
86 78 72 87 84 78 86 82 76 81 74 70 85 80 78 84 84 79
87 84 78 86 82 76 81 74 70 85 80 78 84 84 79 84.9 78.3 75.7
86 82 76 81 74 70 85 80 78 84 84 79 84.9 78.3 75.7
81 74 70 85 80 78 84 84 79 84.9 78.3 75.7
85 80 78 84 84 79 84.9 78.3 75.7
84 84 79 84.9 78.3 75.7
84.9 78.3 75.7

Ann

NNE NN
NOV. NA NA NA NA NA NA NA NA NA N
NE NNE NNE NN NNE NN NNE NN NN NNE NN NN
Sep. SW S
SW SSW SSW SSW SSW SSW SSW SSW SSW SSW
SW SSW SSW SW SW SW SW SW SW SW SW SW SW
SSW SSW SSW SSW SSW SSW SSW SSW SW SW SW
SSW NNW NNW NNW NNW NNW NNW NNW NNW SSW SS
Apr. NW NW NW SE N NW NW NW NW NW NW NW NW NN NW NN NN N
NAN NAW NAW NAW NAW NAW NAW NAW NAW NAW
Teb. NNN NNE NNN NNN NNN NNN NNN NNN NNN NN
NNE NNE NNE NNE NN NNE NN NN NN NN NN NN
Year 1950 1951 1952 1953 1953 1955 1956 1960 1961 1965 1965 1966 1966 1967 1966 1967 1968

Table 3B-5 Monthly Maximum Wind Speed at Lacag Station

		Dec.	34	33	34	36	33	28	34	31	37	36	42	0+	20	32	36	37	37	39	30	33	37	Ţη
	le/hr)	Nov.	31	ਲੈ	1 †1	67	09	35	45	36	36	20	33	0+	32	04	31	t 1	† †	41	37	35	36	ဗ
	Unit: Wile/hr)	Oct.	1 11	28	27	20	35	27	38	31	33	35	37	30	38	33	32	23	†	75	29	33	30	Ľħ
})	Sep.	19	65	† ‡†	32	30	04	34	20	28	30	30	30	37	45	56	40	39	33	85	† 8	21	84
		Aug.	0#	04	32	84	62	30	50	36	29	9	64	37	65	25	78	36	48	33	52	36	39	1 4
) 1 1 3 5 5		Jul.	4.5	73	33	45	20	26	30	84	37	29	36	04	20	39	20	06	25	47	52	62	38	55
))))		Jun.	45	04	33	. 45	32	30	29	20	30	30	35	26	1 6	56	30	††	† †	99	36	37	04	35
		May	24	0+1	25	31	56	30	21	32	32	27	27	33	32	26	26	31	94	94	04	37	32	36
		Apr.	35	25	30	32	28	30	94	32	30	37	32	34	33	39	17	23	36	55	35	26	1 1	38
: 1		Mar.	28	30	31	29	35	30	30	30	36	36	32	33	37	33	35	37	39	39	33	31	36	38
		Feb.	36	32	33	0+	33	32	35	34	04	32	32	32	0+1	38	35	28	32	48	37	32	30	37
		Jan.	30	28	37	32	32	30	29	32	35	04	04	04	36	30	26	ဗ	35	39	35	30	33	35
		Year	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1961	1965	1966	1967	1968	1969	1970	1971

Monthly Total Evaporation by Penman Method (Vigan City Ilocos Sur) Table 3B-6

(Unit: mm/month)

Total	1,951.3	2,048.2	2,069.7	2,003.2	1,953.7	1,982.9	1,995.7	1,888.7	1,973.9	1,964.3	1,953.1	2,065.5	1,976.1	2,001.5	1,946.3	1,994.8	2,186.2	2,319.2	2,309.6	2,011.9	1,909.3	1,954.6	1,974.7	1,989.9	1,843.1	1,753.3	1,906.2	1,998.3
Dec.	144.2	144.2	153.5	136.7	133.9	133.6	133.3	136.4	145.7	152.8	151.6	150.4	139.5	130.2	152.8	138.0	175.2	153.5	170.5	137.0	103.9	156.2	163.1	127.1	138.0	127.1	139.2	143.2
Nov.	151.5	147.0	144.0	123.6	129.0	141.6	137.4	150.0	162.0	147.6	153.9	156.0	148.5	129.0	143.1	144.6	164.7	210.0	192.3	138.0	136.2	163.2	137.4	136.5	132.0	125.7	147.0	147.8
Oct.	155.0	175.2	158.1	139.8	151.9	167.7	161.2	158.1	165.9	159.7	159.7	167.4	133.3	164.3	176.7	192.2	170.5	204.6	188.5	134.9	129.6	177.9	139.5	144.2	130.2	138.9	165.9	159.7
Sep.	148.5	147.0	142.5	127.2	153.6	123.0	135.6	130.5	148.5	147.6	123.0	148.5	135.0	146.4	146.4	167.4	146.1	174.0	222.0	125.4	114.6	150.0	135.3	157.5	150.4	125.4	124.8	144.3
Aug	137.0	138.0	155.0	180.1	146.3	155.0	151.9	153.5	139.5	151.9	134.9	167.4	120.9	141.4	152.8	163.7	138.0	168.6	179.8	128.6	149.4	134.9	139.8	108.5	124.0	122.5	142.6	145.4
Jul.	164.3	164.3	179.8	172.1	155.0	181.0	174.2	161.2	155.0	162.8	130.2	145.7	157.5	157.8	151.9	164.3	171.1	181.4	142.6	177.3	160.3	113.2	165.9	176.7	155.0	142.3	143.2	259.5
Jun.	161.4	176.4	189.0	168.0	165.0	190.5	165.0	135.0	174.0	165.0	174.0	171.9	139.5	162.0	143.1	168.0	174.6	192.6	168.0	177.0	126.9	168.0	170.1	168.0	150.0	162.0	176.4	166.0
May	197.8	207.1	203.1	225.7	208.0	191.4	213.9	204.6	195.3	195.3	201.5	229.4	232.5	203.1	189.1	157.5	231.9	238.7	240.3	215.5	184.5	166.8	223.2	218.6	192.2	186.0	207.4	205.9
Apr.	195.0	211.5	214.5	210.0	207.0	200.7	210.0	201.0	204.0	198.0	207.0	208.8	237.0	214.5	203.4	206.4	217.5	217.5	253.5	234.0	210.7	208.5	212.4	198.0	198.0	180.0	193.2	209.3
Mar.	187.6	204.6	207.7	193.8	197.8	207.7	194.7	190.7	190.7	189.1	195.3	191.9	210.8	203.1	181.4	191.6	217.6	215.1	240.9	209.3	221.7	197.2	200.9	231.9	201.5	181.4	173.6	201.1
Feb.	154.0	171.1	158.2	158.2	151.2	153.7	163.5	134.4	141.4	158.1	148.4	166.9	169.7	179.8	150.6	157.6	180.6	195.8	154.0	182.0	207.8	158.1	147.0	169.4	140.0	130.2	145.6	160.3
Jan.	155.0	161.8	164.3	168.0	155.0	137.0	155.0	133.3								143.5		167.4		182.9								155.8
Year	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1961	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	Mean

Table 3B-7 Comparison of Evaporation Data

poration) (A) (Unit: mm/month)	Jun. Jul. Aug. Sep. Oct. Nov. Dec. Total	177.0 177.3 128.7 125.4 134.9 138.0 137.0 2.042.0	103.9	113.2 134.9 150.0 177.9 163.2 156.2	165.9 139.8 135.3 139.5 137.4 163.1		158.7 132.3 136.6 145.2 142.3 137.5	Evaporation) (B)	Jun. Jul. Aug. Sep. Oct. Nov. Dec. Total	126.8 165.6 144.5 190.8 174.2 189.2	159.0 156.7 197.9 200.4 191.3 200.2	214.1 174.0 143.0 194.0 160.5 205.5	1	190.2 166.6 165.4 161.8 195.0 175.3 198.3 2,258.1	1.17 1.05 1.25 1.18 1.34 1.23 1.44 1.14
ed Open-pan Evaporation) (A)	r. May Jun.	215.5	.6 184.5	8.5 166.8 168.0	2.4 223.2 170.1	218.6	2.7 201.7 162.0	ed Open-pan	r. May Jun.	3.9 190.5 198.5	1.3 189.0 169.4	8.0 218.2 217.9	3.4 196.1 174.8	4.2 198.5 190.2	86.0 96
ur (Observed Open-p	Mar. Apr. Ma	209.3 234.0 21				231.9 198.0 21		Ilocos Norte (Observed Open	Mar. Apr. Ma					216.0 204.2 190	
Vigan, Ilocos Sur (Observe	Jan. Feb.	182.9 182.0	163.7 207.8	160.6 158.1	140.1 147.0	153.5 169.4	160.2 172.9	Laoag, Ilocos No	Jan. Feb.	215.9 175.3	200.9 202.2	201.4 178.3	200.2 173.0	204.6 182.2	1.28 1.05
ا ﴿	Year Je	1970 18	1971 16	1972 16	1973 14	1974 15	Mean 16	La	Year Ja	1970 21	1971 20	1972 20	1974 20	Mean 20	Ratio (B/A)

Table 3B-8 Monthly Total of Adjusted Evaporation

(Unit: mm/month)

	Total	2,248.1	2,352.9	2,355.1	2,290.2	2,236.5	2,272.2	2,282.3	2,165.5	2,271.7	2,258.4	2,249.0	2,373.8	2,244.2	2,289.3	2,245.5	2,302.4	2,513.5	2,667.3	2,664.7	2,324.1	2,166.4	2,261.5	2,259.6	2,262.8	2,106.1	2,009.1	2,193.1	2,291.8
	Dec.	207.6	207.6	221.0	196.8	192.8	192.4	191.5	196.4	209.8	220.0	218.3	216.6	200.9	187.5	220.0	198.7	252.2	221.0	245.5	197.3	149.6	224.9	234.9	183.0	198.7	183.0	200.4	206.2
	Nov.	186.3	180.8	177.1	152.0	158.7	174.2	169.0	184.5	199.3	181.5	189.3	191.9	182.7	158.7	176.0	177.9	202.6	258.3	236.5	169.7	167.5	200.7	169.0	167.9	162.4	154.6	180.8	181.8
· · · · · · · · · · · · · · · · · · ·	Oct.	207.7	234.8	211.9	187.3	203.5	224.7	216.0	211.9	222.3	213.9	213.9	224.3	178.6	220.2	236.7	257.5	228.5	274.1	252.6	180.8	173.7	239.4	186.9	193.2	174.5	186.1	222.3	213.9
	Sep.	175.2	173.4	168.2	150.1	181.2	145.1	160.0	153.9	175.2	174.2	145.1	175.2	159.3	172.7	172.8	197.5	172.4	205.3	261.9	147.9	135.2	177.0	159.6	185.9	177.5	147.9	147.3	170.3
	Aug.	171.3	172.5	193.8	225.1	182.9	193.8	189.9	191.9	174.4	189.9	168.7	209.3	151.1	176.7	191.0	204.6	172.5	210.8	224 5	160.8	186.8	108.6	174.8	135.6	155.0	153.1	178.3	181.8
	Jul.	172.5	172.5	188.8	180.7	162.8	190.1	182.9	169.3	162.8	170.9	136.7	152.9	165.4	165.7	159.5	172.5	179.6	190.5	149.7	186.1	168.3	118.9	174.2	185.5	162.8	149.4	150.4	167.5
	Jun.	188.8	206.4	221.1	196.6	193.1	222.9	193.1	157.9	203.6	193.1	203.6	201.1	163.2	189.5	167.4	196.6	204.2	225.3	196.5	207.1	148.5	196.6	199.0	196.5	175.5	189.5	206.4	194.2
	May	193.8	203.0	199.0	221.2	203.8	187.6	209.6	200.5	191.4	191.4	197.5	224.8	227.9	199.0	185.3	154.4	227.3	233.9	245.5	211.2	180.8	163.5	218.7	214.2	188.4	182.3	203.2	202.2
	Apr.	187.2	203.4	205.9	201.6	198.7	192.7	201.6	193.0	195.8	130.1	198.7	200.5	227.5	205.9	195.3	198.1	208.8	208.8	243.4	224.6	202.2	2007	203.9	190.1	190.1	172.8	185.5	201.0
	Mar.	197.6	211.8	211.9	197.7	201.8	211.9	198.6	194.5	194.5	192.8	199.2	195.7	215.0	207.2	185.0	195.4	221.9	219.4	245.7	213.4	226.1	201.1	204.9	236.5	205.5	182.0	177.1	205.1
	Feb.	161.7						171.7							-				-	-		-		-			-	-	168.3
	Jan.	198.4	207.1	210.3	215.0	198.4	175.4	198.4	170.6	194.4	174.6	222.2	206.3	194.4	217.4	198.4	183.7	253.9	214.3	201.2	234.1	209.5	205.6	179.3	196.5	168.7	168.7	188.5	199.5
	Year	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	Mean

Table 3B-9 Status of Hydro-Meteorological Observation Relevant to Phase I Project

Note	No record period	op t	ı ı op ı	Newly installed Station		- op -	- op -		No cable way	Newly installed Station		Newly installed Station	
Available Period	1949-present 1950-present	1976-present	1946-present 1976-	1978		1978	1978		1978	1978	1946-present	1978	1946-1976 1959-1974
Agency	PAGASA BPW & PAGASA	NIA	BPW & NIA NIA	e op		- op -	ор .		- do -	- op -	ВРМ	NIA	BPW - do -
Installed Date	1935 1948	Aug. 11, 1976 App. 1.	Apr. 1, 1976 Sept. 1976	July 11, 1978		July 5, 1978	June 22, 1978	Ang	1978	June 20, 1978	Apr. 1, 1946	July 24, 1978	
Recorder	Automatic Standard	- do -	- do -	Automatic		- do -	- op -		Staff Gauge	Automatic	Staff Gauge	Automatic	Staff Gauge - do -
Location	Lacag Airport, Lacag City Bonga RGS Bangay, Dingras	Lumbad, Dingras	Alabaan, Dingras Manalpac, Solsona	San Marcelino, Padong, Dingras		Lumbad, Dingras	Alabaan, Dingras		Maananteng, Solsona	Manalpac, Solsona	ı do ı	San Marcelino, Padong, Dingras	Bangay, Dingras Pablacion, Laoag City
Item Station	Rainfall Laoag Bonga	Lumbad	Alabaan Solsona	Madongan	Evaporation	Lumbad	Alabaan	River-stage	Labugaon	Solsona	op ı	Madongan	Bangay Pablacion

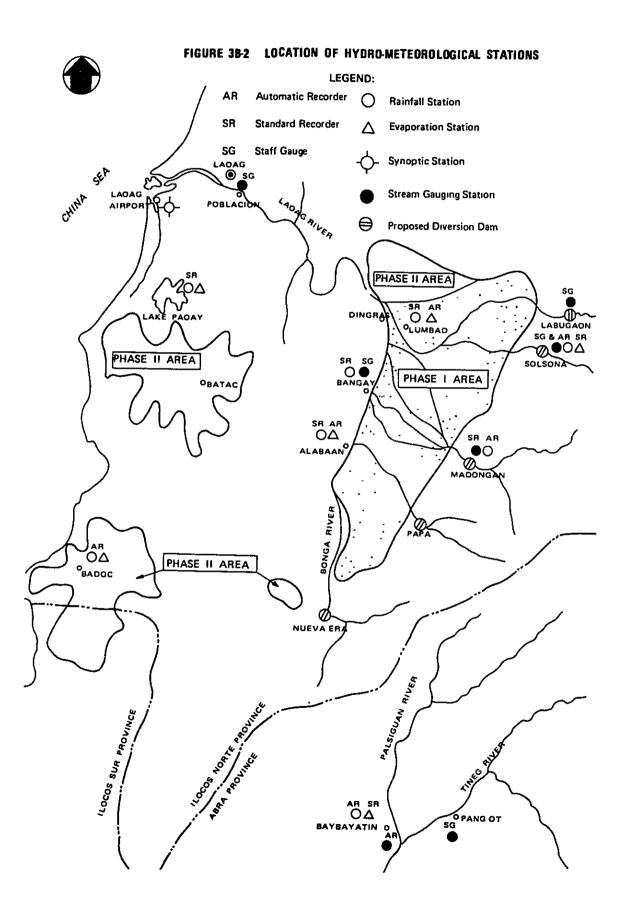


Table 3B-10 Monthly Run-off Data of the Solsona River

Catchment Area: 73 sq.km (Unit: MCM)

Year	Jan.	<u>Feb.</u>	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total	Depth of Run-off (mm)(A)	Rainfall at Langangilang (mm) (B)	Run-off Coefficient (A)/(B)
1946	_	_	_	17.56	10.70	41.50	89.71	43.36	29.49	15.25	8.18	7.10	_			
1947	3.14	2.01	3.33	3.77	10.58	56.49	33.05	38.13	31.27	99.19	115.13	23.80	419.89	5,752	-	-
1948	9.61	3.62	2.20	3.80	7.66	23.10	40.64	34.83	46.90	26.94	37.38	20.85	257.53	3,528	<u>-</u>	_
1949	5.98	3.30	2.12	2.31	1.73	8.71	13.71	22.46	63.15	35.76	12.46	17.51	189.20	2,592	-	-
1950	6.70	4.62	4.05	2.42	14.10	28.02	40.41	39.89	25.00	24.07	16.42	9.08	214.78	2,392	-	-
1951	7.22	3.30	3.59	3.29	15.49	24.38	20.33	42.13	73.29	24.54	11.62	10.15	239.33	3,278	<u>-</u>	<u>-</u>
1952	3.31	2.51	1.57	2.18	8.31	19.74	19.98	45.05	43.78	29.29	35.97	23.22	234.91	3,218	_	<u>-</u>
1953	9.27	4.99	3.95	3.99	12.76	66.50	48.91	57.91	35.99	32.04	32.67	17.73	326.71	4,475	_	
1954	46.14	5.64	4.75	8.62	9.55	20.30	30.61	47.38	26.50	21.09	25.05	13.28	258.91	3,547	3,709	0.96
1955	10.33	3.65	2.90	3.50	5.35	11.04	18.80	21.99	20.29	18.19	23.98	10.83	150.85	2,066	5,703	0.50
1956	4.22	2.92	3.39	4.39	6.88	7.15	21.04	35.84	38.54	18.92	20.14	13.92	177.35	2,429	3,662	0.66
1957	7.74	3.09	2.62	3.80	5.55	27.23	26.00	29.23	85.90	22.80	17.80	9.31	241.07	3,302	3,780	0.87
1958	5.62	2.89	2.27	1.80	3.22	26.78	25.13	21.18	38.85	20.14	10.11	6.14	164.14	2,248	3,188	0.71
1959	3.68	2.13	4.31	1.77	4.14	11.91	23.48	51.41	26.78	13.07	27.75	13.12	183.55	2,240	2,663	0.94
1960	8.94	8.75	3.28	2.30	4.02	16.32	13.43	35.44	14.27	17.91	6.03	6.16	136.85	1,875	3,115	0.60
1961	4.84	2.26	2.24	1.46	7.27	13.18	57.93	42.41	34.00	24.79	9.37	7.20	206.95	2,835	3,447	0.82
1962	4.87	2.94	1.63	1.86	3.97	20.33	46.12	44.48	44.61	22.88	11.38	7.73	212.80	2,915	3,758	0.78
1963	5.13	4.20	1.66	1.56	1.44	33.93	35.16	26.96	36.75	11.84	5.83	8.18	172.64	2,365	3,089	0.77
1964	4.43	4.05	2.85	2.08	12.00	35.25	20.27	56.59	63.47	24.36	34.91	30.06	290.32	3,977	3,602	1.10
1965	10.78	4.81	2.38	4 06	12.11	46.76	31.41	21.38	28.05	13.31	6.97	6.32	188.34	2,580	3,266	0.79
1966	2.88	1.73	0.92	0.65	12.49	16.31	14.03	46.85	31.25	8.31	30.78	12.91	179.11	2,454	4,029	0.61
1967	16.95	10.14	6.43	5.61	5.50	30.62	88.36	17.65	17.50	19.44	17.24	16.18	251.62	3,447	3,281	1.05
1968	8.83	4.03	2.03	3.36	9.52	28.83	35.91	32.57	27.98	11.03	5.73	5.50	175.32	2,402	2,760	0.87
1969	3.78	2.15	1.24	1.33	4.95	14.20	28.10	11.61	24.20	19.99	10.62	7.81	129.98	1,781	3,450	0.52
1970	4.06	3.08	3.83	5.56	11.67	14.55	9.56	13.44	14.04	11.89	16.02	16.37	124.07	1,700	4,094	0.42
1971	9.06	5.71	4.70	2.67	3.67	4.96	30.66	18.76	10.87	10.26	6.54	6.40	114.26	1,565	2,620	0.60
1972	4.53	3.14	3.29	3.71	6.64	8.34	28.18	11.89	5.79	5.57	5.81	6.47	93.36	1,279	2,650	0.48
1973	4.70	3.28	2.96	2.80	4.57	5.61	4.47	7.61	9.02	26.00	4.40	2.64	78.06	1,069	-	-
1974	1.33	0.63	0.39	0.71	1.24	2.26	3.90	7.24	8.01	15.14	15.57	3.93	60.35	827	_	_
1975	4.02	2.68	1.37	1.07	2 24	6.28	4.62	13.46	4.78	4.73	3.60	11.63	60.48	828	_	_
1976	3.28	3.61	2.03	1.17	6.11	15.47	13.07	11.61	6.88	7.39	11.60	4.11	86.33	1,183	_	-
Mean	7.51	3.73	2.81	3.39	7.27	22.13	29.58	30.67	31.20	21.17	19.26	11.47	190.19	2,483	3,342	0.75

Table 3B-11 Monthly Run-off of the Labugaon River (Labugaon Diversion Dam Site: C.A=100.5 sq.km)

(Unit: MCM)

	Total	188.35	284.92	292.96	237.68	399.70	259.31	246.57	346.41	241.33	178.96	170.81	258.82
	Dec.	8.48	9.91	10.64	11.26	41.38	8.70	17.77	22.28	7.57	10.76	22.54	15.57
t	Nov.	8.29	12.90	15.67	8.03	48.05	9.59	42.37	23.74	7,89	14.62	22.06	19,38
	Oct.	24.65	34.13	31.50	16.30	33.54	18.33	11.44	26.76	15.18	27.52	16.37	23.25
	Sep.	19.64	46.81	61.42	50.59	87.39	38.62	43.02	24.09	38.51	33.32	19.32	42.07
,	Aug.	48.79	58.39	61.23	37.12	77.91	79.44	64.50	24.30	48. #	15.98	18.50	43.73
•	Jul. Au	18.49	79.75	63.49	48.41	27.90	43.24	19.32	121.65	64.64	38,68	13,16	47.59
	Jun.	22.47	18.15	27.99	46.71	48.53	64.37	22.45	42.16	39.68	19.55	20.03	33.83
	May	5.53	10.01	5.46	1.99	16.53	16.68	17.19	7.57	13.10	6.81	16.07	10.63
	Apr.	3.16	2.01	2.56	2.15	2.87	5.59	0.89	7.72	4.63	1.84	7.66	3.73
	Mar.	4.51	3.08	2,25	2.28	3.92	3.28	1.27	8.85	2.79	1.71	5.27	3.56
ć	Feb. Max	12.04	3.11	†0°†	5.78	5.58	6.63	2.39	13.96	5.55	2.97	4.24	6.03
•	Jan.	12.30 12.04	6.67	6.71	7.06	6.10	14.84	3.95	23.33	12.16	5.20	5.59	9.45
	Year	1960	1961	1962	1963	1961	1965	1966	1961	1968	1969	1970	Mean

Table 3B-12 Monthly Run-off of the Solsona River

			Total	148.09	223.96	230.30	186.84	314.18	203.83	193.83	272.30	189.74	140.66	134.27	203.45
	MCM)	Season	Dec.	6.67	7.79	8.37	8.85	32.53	6.84	13.97	17.51	5.95	8.45	17.72	12.24
	(Unit: MCM)	Dry Sea	Nov.	6.53	10.14	12.32	6.31	37.78	7.54	33.31	18.66	6.20	11.49	17.34	15.24
m)			Oct.	19.38	26.83	24.76	12.81	26.36	14.40	8.99	21.04	11.94	21.63	12.87	18.27
C.A=79.0 sq.km)		:	Sep.	15.44	36.79	48.28	39.77	68.69	30.36	33,82	18.94	30.28	26.19	15.19	33.07
C.A=79		son	Aug.	38,35	45,90	48.14	29.18	61.24	23.14	50.70	19.10	35.25	12.56	14.54	34.37
Dam Site: C.A=79		Wet Season		14,53	62.69	49.91	38.05	21.94	33.99	15.18	95.62	38.86	30.41	10.35	37.41
ion Dam			Jun.	17.66	14.26	22.00	36.72	48.15	50.60	17.65	33.14	31.20	15.37	15.75	26.59
Divers			May	4.35	7.87	4.30	1.56	12.99	13.11	13.52	5.95	10.30	5.36	12.63	8.36
(Solsona Diversion			Apr.	2.49	1.58	2.01	1.69	2.25	4.39	0.70	6.07	3.64	1.44	6.02	2.93
		con	Mar.	3.55	2.42	1.76	1.80	3.08	2.58	1.00	96.9	2.20	1.34	44	2.80
ומח בד חם!		Dry Season	Feb.	9.47	2.45	3.18	4.55	4.38	5.21	1.87	10.97	4.36	2.33	3.33	4.74
			Jan.	9.67	5.24	5.27	5.55	4.79	11.67	3.12	18.34	9.56	4.09	4.39	7.43
			Year	1960	1961	1962	1963	1961	1965	1966	1961	1968	1969	1970	Mean

Table 3B-13 Monthly Run-off of the Madongan River (Madongan Dam Site: C.A=153.8 sq.km)

		Total	201.78	300.85	394.54	323.72	446.51	285.70	271.66	439,99	251.13	240.99	156.83	301.25
MCM)	ason	Dec.	9.08	10.46	14.33	15.33	46.23	9.58	19.58	28.29	7.88	14.48	20.69	17.81
(Unit: MCM)	Dry Season	Nov.	8.89	13.62	21.10	10.9µ	53.68	10.57	46.68	30.15	8.21	19.69	20.26	22.16
		oct.	26.41	36.04	42.42	22.20	37.47	20.20	12.61	33.99	15.80	37.06	15.03	27.20
		Sep.	21.04	49.42	82.71	68.90	97.62	42.55	47.40	30.59	40.0a	44.87	17.74	49.36
	son	Aug.	52.26	61.66	82.46	50.55	87.04	32.44	71.06	30.87	46.66	21.52	16.99	50.32
	Wet Season	Jul.	19.80	84.21	85.50	65.93	31.17	49.64	21.28	154.52	51.44	52.10	12.08	56.88
		Jun.	24.07	19.16	37.70	63.63	54.22	70.93	24.74	53.55	41.30	26.33	18.39	39.46
		May	5 93	10.57	7.36	2.71	18.46	18.37	18.94	9.61	13.63	9.17	14.75	11.77
		Apr.	3.39	2.13	3.45	2,93	3.20	9.16	86.0	9.80	4.81	2.47	7.03	4.21
	son	Mar.	4.83	3.26	3.03	3.11	4.38	3.61	1.40	11.25	2.90	2.30	ħ8.4	4.08
	Dry Season	Feb.	12,90	3.28	5,45	7.88	6.23	7.30	2.63	17.73	5.77	4.00	3.89	7.01
	-•	Jan.	13.18	7.04	9.03	19.6	6.81	16.35	4.36	29.64	12.65	7.00	5.14	10.98
		Year	1960	1961	1962	1963	1961	1965	1966	1961	1968	1969	1970	Mean

Monthly Run-off of the Papa River (Papa Diversion Dam Site: C.A=51.4 sq.km) Table 3B-14

(Unit: MCM)

	Total	96.36	145.72	149.83	121.57	204.42	132.62	126.12	177.17	123.44	91.53	87.36	132.38
ason	Dec.	45.4	5.07	5.44	5.76	21.17	4.45	60.6	11.39	3.87	5.50	11.53	7.95
Dry Season	Nov.	4.25	6.60	8.01	4.10	24.58	4.91	21.67	12.14	4.03	7.48	11.28	9.91
	Oct.	12.61	17.45	16.11	8.34	17.15	9.37	5.65	13.69	7.77	14.08	8.37	11.89
	Sep.	10.05	23.94	31.41	25.88	69.44	19.75	22.00	12.32	19.70	17.04	9.89	21.52
son	Aug.	24.95	29.86	31.32	18.98	39.85	15.05	33.00	12.43	22.93	8.17	9.46	22.36
Wet SEason	Jul.	94.6	40.79	32.47	24.76	14.27	22.12	9.88	62.22	25.28	19.79	6.73	24.34
_	Jun.	11.49	9.28	14.31	23.89	24.82	32.92	11.48	21.56	20.30	10.00	10.24	17.30
	May	2.83	5.12	2,80	1.01	8.45	8,53	8.79	3.87	6.70	3.49	8.22	5.44
	Apr.	1.62	1.03	1,31	1.10	1.46	2.86	94.0	3.95	2.37	ή6.0	3.91	1.91
nos	Mar.	2.31	1.58	1.15	1.17	2.01	1.68	0.65	4.53	1.43	0.87	2.70	1.83
Dry Season	Feb.	6.16		2.07	2.96	2.85	3,39	1.22	7.14	2.84	1.51	2.17	3.08
	Jan.	6.29	3.41	3.43	3.62	3.12	7.59	2.03	11.93	6.22	2.66	2.86	4.83
	Year	1960	1961	1962	1963	1961	1965	1966	1961	1968	1969	1970	Mean

Monthly Run-off of the Bonga River (Nieva Era Diversion Dam Site: C.A=57.0 so.km) Table 3B-15

			al Har	106.85	161.59	166.16	134.80	226.69	147.06	139.85	196.45	136.88	101.51	96.85	146.78
			Total	106	161	166	134	226	147	138	196	136	101	96	146
	MCM)	ason	Dec.	4.81	5.62	40.9	6.39	23.47	4.93	10.08	12.63	4.29	6.10	12.78	8.83
	(Unit: MCM)	Dry Season	Nov.	4.71	7.32	8.89	4.55	27.26	5.44	24.03	13.46	4.47	8.29	12.51	10.99
Km)			Oct.	13.98	19.36	17.87	9.24	19.02	10.39	6,49	15.18	8.61	15.61	9.28	13.18
57.0 sq.		İ	Sep.	11.14	26.55	34.83	28.70	49.56	21.90	24.40	13.66	21.85	18.90	10.96	23.86
: C.A=!		gon	Aug.	27.67	33.11	34.73	21.05	44.19	16.69	36.58	13.78	25.43	9.07	10.49	24.80
am Síte		Wet Season	Jul.	10.49	45.23	36.01	27.45	15.83	24.53	10.95	66.89	28.04	21.94	7.46	26.99
rsion D			Jun.	12.74	10.29	15.87	26.49	27.52	36.51	12.74	23.91	22.51	11.09	11.36	19.18
ra Dive			May	3.14	5.68	3.10	1.12	9.37	94.6	9.75	4.29	7.43	3.87	9.11	6.03
(Nueva Era Diversion Dam Site: C.A=57.0 sq.km)			Apr.	1.80	1.14	1.45	1.22	1.62	3.17	0.51	4.38	2.62	1.04	4.34	2.12
		son	Mar.	2.56	1.75	1.27	1.30	2.23	1.86	0.72	5.02	1.59	0.97	2.99	2.02
		Dry Season	Feb.	6.83	1.76	2,30	3.28	3.16	3.76	1.35	7.92	3.15	1.68	2.40	3.42
			Jan.	6.98	3.78	3.80	4.01	3.46	8.42	2.25	13.23	68.9	2.95	3.17	5.36
			Year	1960	1961	1962	1963	1961	1965	1966	1967	1968	1969	1970	Mean

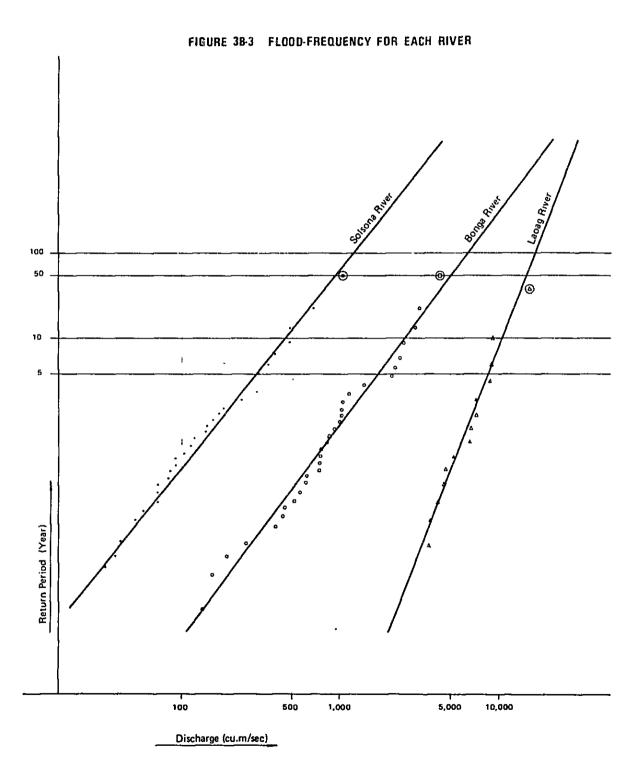
Table 3B-16 Flood Peak in Laoag River Basin

(Unit: cu.m/sec)

	Solson (73 sq		Bonga (534 sq.	R. .km <u>2/)</u>	Laoag (1,355 s	R. q.km ^{3/})	
Year	<u>Qp</u> _4/	Date	<u>Qp</u>	Date	<u>Qp</u>	Date	
1946	481.3	6/17	256.0	6/21	-	-	
1947	1,041.0	10/6	4,392.0	10/6	-	-	
1948	187.0	11/9	774.0	11/9	-	-	
1949	487.3	9/4	2,960.0	10/3	-	•	
1950	94.2	8/9	758.0	8/9	-	-	
1951	682.3	9/19	1,060.0	7/31	-	-	
1952	72.3	11/13	196.0	9/1	-	-	
1953	395.9	6/5	3,200.0	6/5	-	-	
1954	314.5	8/28	1,080.0	9/24	-	_	
1955	32.9	11/29	136.0	7/17	-	_	
1956	103.2	8/14	440.0	8/15	-	-	
1957	321.0	9/12	1,418.0	6/24	-	-	
1958	52.0	9/8	450.0	8/22	-	-	
1959	355.6	8/22	878.0	8/22	4,400.0	11/18	
1960	41.1	10/13	766.0	8/14	4,536.0	8/18	
1961	72.0	8/24	2,114.0	8/23	8,694.0	8/25	
1962	243.0	8/30	2,455.0	8/30	15,525.0	8/30	
1963	83.8	9/5	1,070.0	9/5	8,991.0	9/5	
1964	314.5	9/9	2,242.0	9/4	7,090.0	9/9	
1965	87.0	6/18	830.0	9/3	4,013.0	9/3	
1966	58.0	8/16	614.0	8/12	-	-	
1967	174.0	6/6	2,404.0	7/29	7,090.0	10/17	
1968	144.2	7/25	1,018.3	9/29	6,630.0	7/25	
1969	145.2	7/27	1,131.7	7/27	5,020.0	7/27	
1970	120.0	9/6	155.3	6/14	472.0	9/7	
1971	161.0	7/20	520.0	8/9	3,656.0	10/11	
1972	72.0	7/18	621.4	7/28	6,584.0	7/19	
1973	49.5	10/9	930.1	10/9	8,999.0	10/9	
1974	38.4	11/7	769.6	9/26	3,654.0	10/2	
1975	10.3	8/16	393.7	8/15	-	_	
1976	94.2	5/2	571.0	7/1	-	~	
1977	115.0	7/24	-	-	***	-	

Note: 1/ observation station Manalpac, Solsona, Ilocos Norte (BPW)

2/ - do - Bangay, Dingras, Ilocos Norte (BPW)


3/ - do - Poblacion, Laoag, Ilocos Norte (BPW)

4/ Qp stands for flood peak.

Table 3B-17 Flood-Frequency Analysis by Hazen Method Laoag River Basin

	Solsona River				nga Ri	ver	Laoag River			
	21-11/			2i-1			2i-1			
0rder	2N	Year	Qp	2N	Year	$Q_{\mathbf{p}}$	2N	Year	Qp	
Order	211		(cu.m/sec)			(cu.m/sec)			(cu.m/sec)	
					1007	4,392.0	0.03	1962	15,525.0	
1	0.02	1947	1,041.0	0.02	1947	3,200.0	0.10	1973	8,999.0	
2	0.05	1951	682.3	0.05	1953		0.17	1963	8,991.0	
3	0.08	1946	481.3	0.08	1949	2,960.0	0.23	1961	8,694.0	
4	0.11	1949	478.3	0.11	1962	2,455.0		1964	7,090.0	
5	0.14	1953	395.9	0.15	1967	2,404.0	0.30		7,090.0	
6	0.17	1959	355.6	0.18	1964	2,242.0	0.37	1967	6,630.0	
7	0.20	1957	321.0	0.21	1961	2,114.0	0.43	1968		
8	0.24	1954	314.5	0.24	1957	1,418.0	0.50	1972	6,584.0	
9	0.27	1964	314.5	0.27	1969	1,131.7	0.57	1969	5,020.0	
10	0.30	1962	243.0	0.31	1954	1,080.0	0.63	1960	4,536.0	
11	0.33	1948	187.0	0.34	1963	1,070.0	0.70	1959	4,400.0	
12	0.36	1967	174.0	0.37	1951	1,060.0	0.77	1965	4,013.0	
13	0.39	1971	161.0	0.40	1968	1,018.3	0.83	1971	3,656.1	
14	0.42	1969	145.2	0.44	1973	930.1	0.90	1974	3,654.0	
15	0.45	1968	144.2	0.47	1959	878.0	0.97	1970	472.0	
16	0.48	1970	120.0	0.50	1965	830.0				
17	0.52	1977	115.0	0.53	1948	774.0				
18	0.55	1956	103.2	0.56	1974	769.6			-	
19	0.58	1950	94.2	0.60	1960	766.0				
20	0.61	1976	94.2	0.63	1950	758.0				
21	0.64	1965	87.0	0.66	1972	621.4				
22	0.67	1963	83.8	0.69	1966	614.0				
23	0.70	1952	72.3	0.73	1976	571.0				
24	0.73	1961	72.0	0.76	1971	520.0				
25	0.77	1972	72.0	0.79	1958	450.0				
26	0.80	1966	58.0	0.82	1956	440.0				
27	0.83	1958		0.85	1975	393.7				
28	0.86	1973	49.5	0.89	1946	256.0				
29	0.89	1960	41.1	0.92	1952	196.0				
30	0.92	1974		0.95	1970	155.3				
31	0.95	1955		0.98	1955	136.0				
32	0.98	1975	10.3	0.20						
J2	0.30	#314	10.0							

Note: 1/i: Order, N: Number of Samples

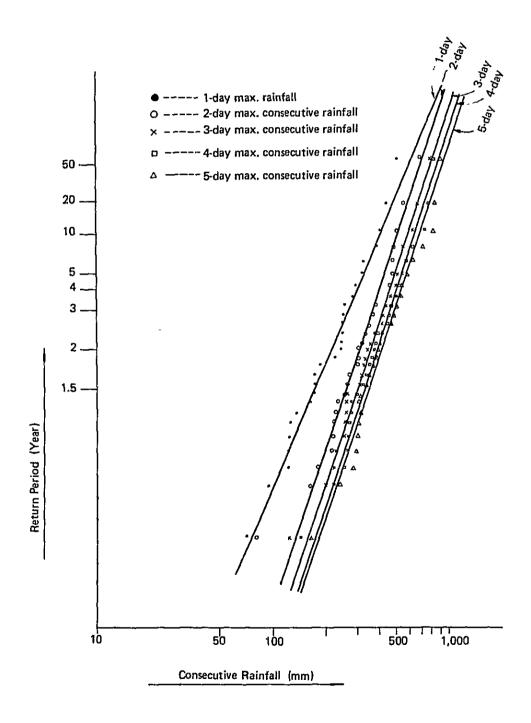

⊙----- Observed Maximum Flood Discharge

Table 3B-18 Maximum Consecutive Rainfall (1951-1977)

Station: Laoag Rainfall Gauging Station

Year	1-Day	2-Day	3-Day	4-Day	5-Day	6-Day	7-Day
1951	253.7	305.3	332.0	335.0	336.3	349.5	372.6
1952	254.0	257.6	257.9	264.0	312.7	321.1	333.5
1953	392.4	515.6	515.6	515.6	516.1	516.1	516.1
1954	170.9	268.4	268.4	294.9	300.5	318.5	319.5
1955	71.9	81.5	127.5	142.5	163.6	199.2	219.8
1956	173.7	320.0	381.2	388.3	412.0	435.4	441.0
1957	186.2	371.4	426.8	450.7	511.7	539.4	551.1
1958	127.0	237.5	321.6	366.0	391.9	409.4	422.6
1959	250.7	337.6	345.5	349.8	366.8	374.7	480.5
1960	122.2	183.9	200.4	250.4	287.5	343.1	363.4
1961	494.8	670.8	785.1	810.5	821.2	895.1	1,009.4
1962	409.2	491.3	672.1	778.0	879.1	893.3	901.4
1963	294.9	471.7	629.4	736.3	842.5	931.9	934.4
1964	162.9	221.3	268.6	268.6	301.8	405.0	407.5
1965	280.6	304.5	317.3	320.1	320.4	320.4	338.7
1966	136.2	229.2	261.2	273.9	295.5	306.7	324.6
1967	510.3	557.2	557.5	576.0	584.1	584.4	587.0
1968	248.5	308.2	337.1	384.9	404.5	434.5	454.1
1969	323,6	482.1	526.6	629.1	718.0	803.3	879.8
1970	93.5	165.6	226.8	271.6	318.0	362.8	394.1
1971	225.2	393.3	472.1	474.6	474.6	476.4	483.9
1972	249.7	358.7	438.7	557.0	615.2	666.8	716.9
1973	320.6	496.4	516.8	524.0	527.1	544.1	561.9
1974	176.5	274.7	359.3	382.9	394.6	431.4	498.3
1975	125.7	221.5	262.4	275.1	330.8	371.7	448.3
1976	128.4	219.1	228.2	231.6	234.7	236.3	237.1
1977	243.0	396.2	428.5	463.0	495.3	509.3	516.9

FIGURE 38-4 FREQUENCY FOR EACH MAXIMUM CONSECUTIVE RAINFALL AT LAGAG

Soil and Land Classification

A. Introduction

The soil survey has been carried out to classify the following items:

- To review the report on the soil survey which is conducted in the Project Area by NIA.
- ii) To re-examine the present soil condition
- iii) To collect the necessary data for the feasibility study

As to the field survey, topographic map with the scale of 1:4,000 and soil map with the scale of 1:50,000 prepared by NIA were used as the base map. And also the soil survey and land classification reports on Ilocos Norte Area Development Project (NIA, 1976) and Palsiguan River Multi-Purpose Project (NIA, 1978) were collected for the study.

During the field survey, land use survey, topographic survey and boring test were conducted and necessary data and informations were collected.

B. The Project Area

The Project area is located in the right bank area of the Bonga river, the main tributary of the Laoag river which runs in the province of Ilocos Norte. It is bounded in the north by the Labugaon and Cura rivers, in the west by the Bonga river and in the east to south by the mountainfoot of the Cordillera Central Mountain.

The Project Area is drained by the Bonga river and its tributaries such as the Labugaon, Solsona, Madongan and Papa river. These rivers make a remarkable alluvial fan, alluvial flat and river wash zone. The damage to farm lands by big flood is serious. This problem could be solved only by major flood control works.

Climate is characterized by two extremes: very dry from November to April and very wet during the rest of the year. Typhoon usually occurs during the months of June to September. The average annual rainfall in the area is 2,600 millimeters with the greatest precipitation occuring in August. The average temperature is 26.9°C and average humidity is 79 percent.

C. Geology and Parent Material

The geology of the mountains and hills surrounded the Project Area is composed of the sedimentary, intrusive and metamorphic rocks. Their geological age is mainly Pliocene to Middle Miocene. The kind of rocks is diorite, gabbro, andesite, basalt, conglomerate, limestone, tuffacious shale, mudstone, sandstone and others. The parent materials of soil in the Project Area are mainly derived from these formations.

Outlines of geological feature of the Project Area is divided into the alluvial plain and higher terrace. The alluvial plain is covered with fine to coarse alluvial sediments, while the higher terrace consists of diluvial gravelly formation.

D. Topography

The topography of the Project Area is divided into four major area-categories, namely: 1) Alluvial fan, 2) Alluvial flat, 3) High terrace and Older alluvial fan, and 4) River wash.

The alluvial fan is the most dominant topography in the Project Area. Three big corn-shaped alluvial fans were formed through the Labugaon, Solsona, Madongan and Papa rivers issued from the Cordillera Central Mountains.

The areas of the alluvial flat were mainly formed in downstream areas of the Labugaon, Solsona and Madongan rivers. These areas are topographically the same as the Dingras National Irrigation Area located on the opposite bank of the Bonga river.

The high terrace and older alluvial fan are developed along the mountain foots of the eastern border of the Project Area. They make the topographic relief vary from sloping, rolling to hilly.

The river wash is developed predominantly along the major river tributaries including the Bonga river. They are the washed areas adjacent to river at the time of flooding.

E. Land Use

1. Introduction

Out of about 15,880 hectares, gross area of the project, 10,200 hectares is used as the cultivated area and remaining 5,680 hectares comprises the un-cultivated area such as 6-class lands (river wash, rolling and steep slopes, hilly area etc.), residential areas and Rights-of-way (public roads and irrigation canals).

The cultivated areas are cropped with paddy rice as first crop and secondarily with tobacco, corn, sugarcane, mongo bean, vegetables and other upland crops such as coconut.

2. Cultivated Area

a) Paddy Field

The paddy fields are almost situated on the alluvial fan, alluvial flat and older alluvial fan, while very limited extent of the upland paddy fields is located on the high terrace.

Most of paddy fields (about 8,100 hectares) are irrigated by the communal irrigation system while remaining 1,900 hectares are under the rainfed condition. Double cropping of rice is practiced within limited area of about 3,400 hectares serviced by the existing communal irrigation systems. However paddy rice is grown mostly during only the wet season. Most areas are left as follow during the dry season due to lack of irrigation water supply.

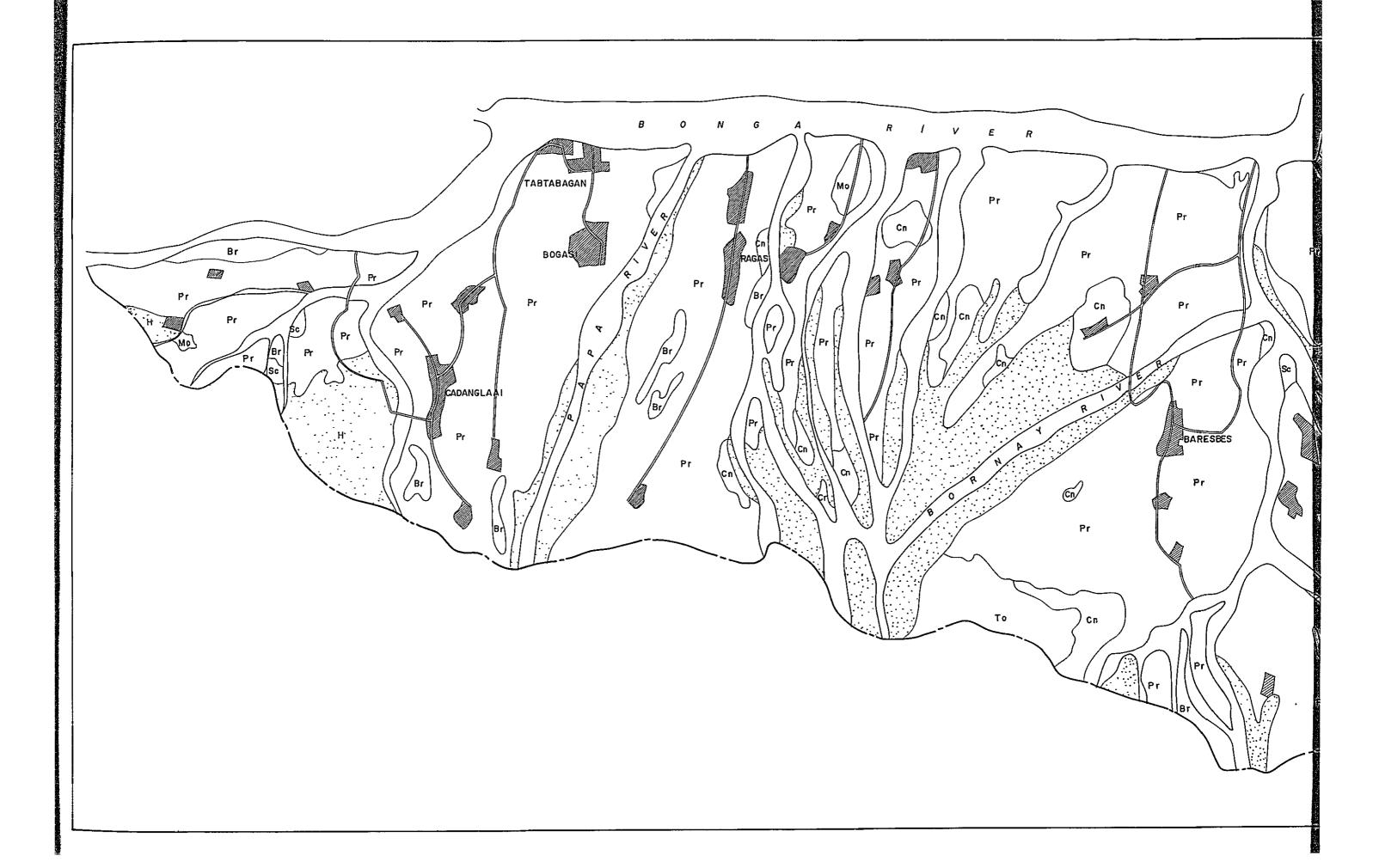
Among the diversified crops grown in the Project area, corn and tobacco cover relatively big area, but sugarcane, mongo bean and vegetables are grown in more limited scale. Tobacco is mainly cultivated at the upstream areas of the Madongan alluvial fan. Corn is generally grown at the areas adjacent to the river wash (see Figure 3B-5).

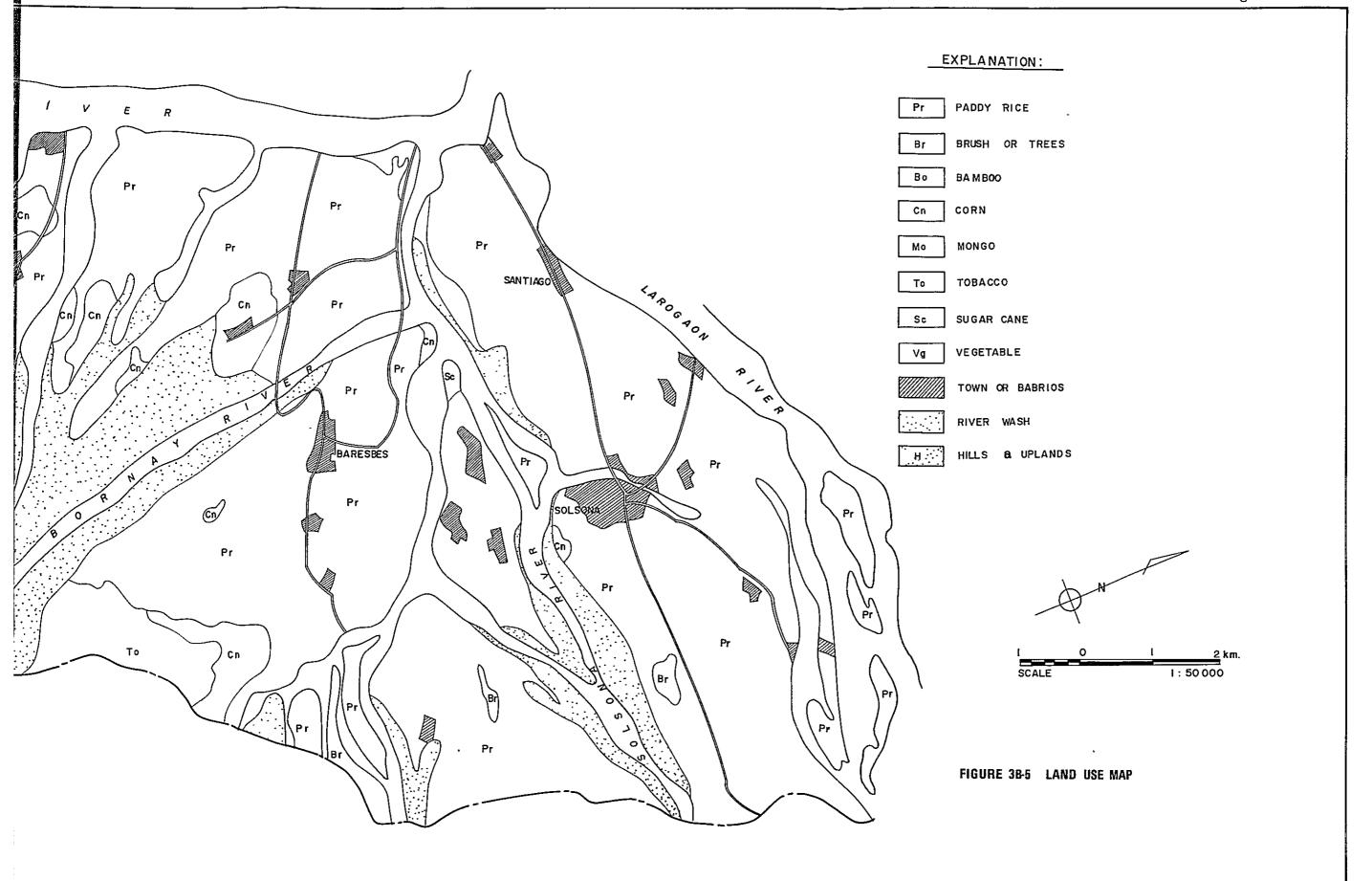
b) Upland Field

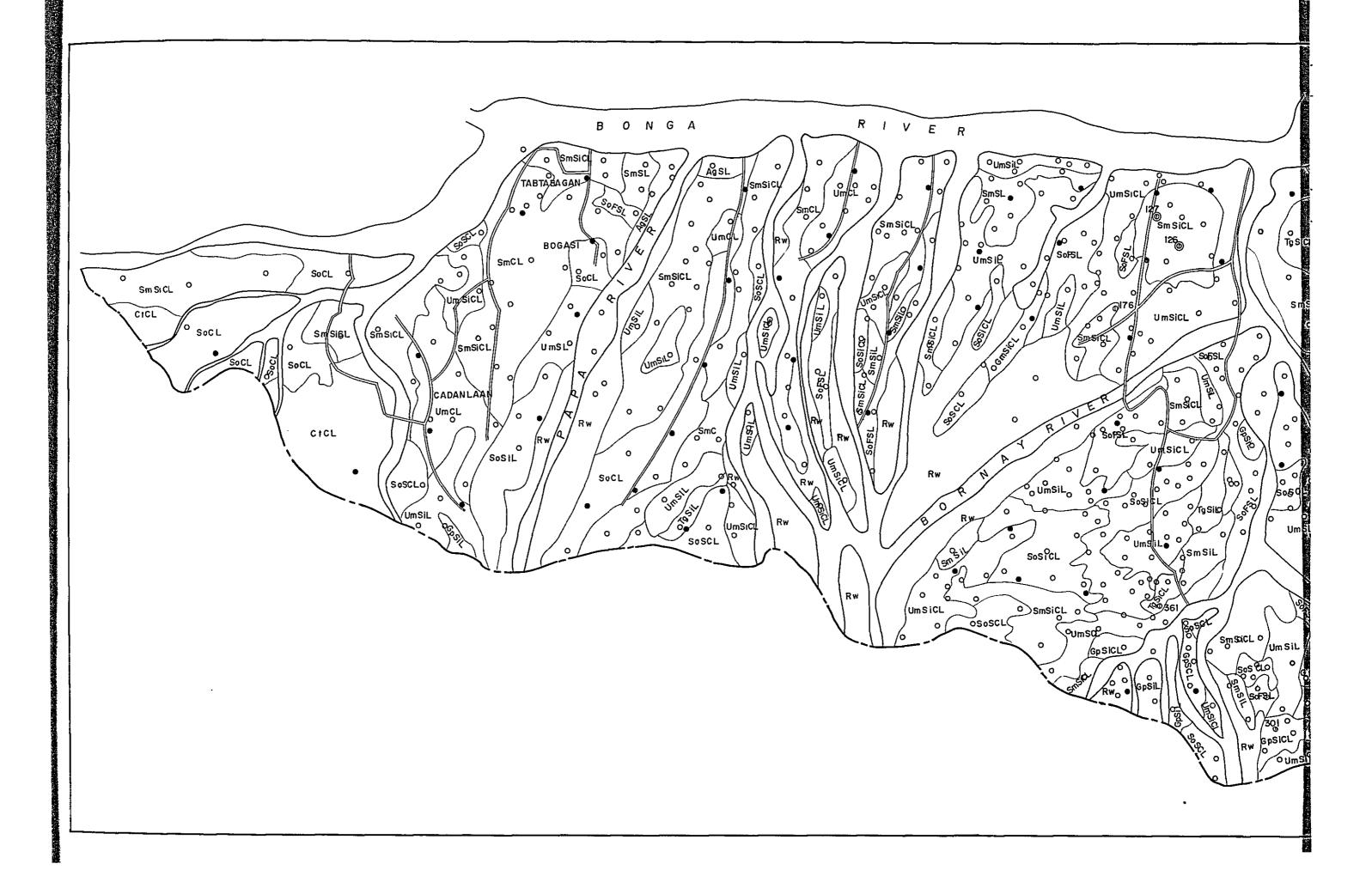
The higher portions on slightly undulating alluvial plain and terrace are used for upland crops such as corn, upland rice, vegetables, root crops and coconut. Vegetables and root crops are are primarily for family consumption and supplemental source of income of the farmers.

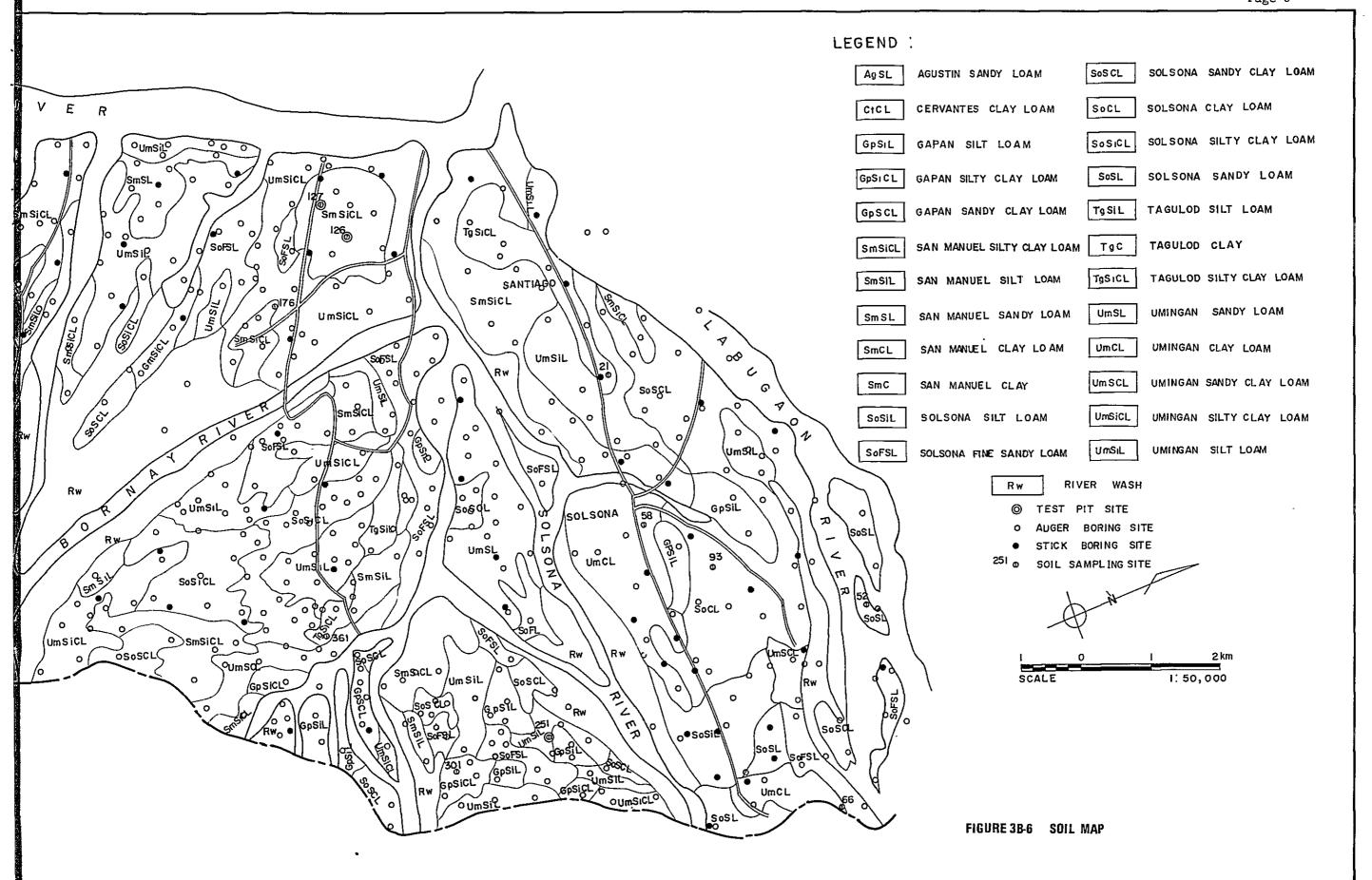
3. Un-cultivated Area

Un-cultivated areas are located on the river wash, steep slope and rolling land. The river wash areas are widely developed along the Bonga river and its major tributaries. Un-cultivated areas consist of barren strip, brush or grass growth and secondary forest.


F. Soil Classification and Description


1. Introduction


The soils of the Project Area are predominantly composed of alluvial deposits derived from adjacent hills and mountains. The parent materials of soil are fine to coarse sediments silting on gravelly alluvial strata. The residual red soils are developed on the high terrace with a limited extent.


Generally the soils of the Project Area were classified into three main groups based on landscape and physiographic position, namaly: 1) Soils of the alluvial fan and alluvial flat which constitute the alluvial plain, 2) Soils of the uplands (high terrace) which comprise the rolling and hilly areas and 3) Soils of the river wash. (See Figure 3B-6)

•		

2. Identified Soil Series

The soils of the alluvial fan and alluvial flat were classified into the six soil series such as the Agustin, Gapan, San Manuel, Solsona, Taguld and Umingan series.

The residual red soils on the upland area were named as the cervantes series.

The soils of the river wash have no development of soil profiles where lands are covered with clean sands and gravels.

The procedures on soil classification and soil mapping were based on the criteria which were established in the previous soil survey of this project conducted by NIA and BS.

3. Agustin Series

This soil series is a member of the fine loamy, moderately deep and well drained soils. Solum thickness ranges from 50 to 100 cm over sandy to gravelly skeletals. They are developed along the river levees of the Labugaon, Papa and Bonga rivers.

The surface soils have brown to dark brown silt loam and sandy loam texture. Subsoils range from brown, grayish to yellowish brown stratified loamy fine sand to sandy loam. External drainage is fair while internal drainage is good. The area is nearly level to level.

A horizons are mainly grayish brown or brown silt loam, sandy loam or silty clay loam with few to common dark brown mottlings, slightly sticky, slightly plastic and friable, pH reaction 4.3.

B horizons 50 to 100 cm deep are brown, grayish brown or yellowish brown silt loam or sandy loam, slightly sticky, slightly plastic and friable, pH reaction 4.3.

C horizon are dominantly stratified gray, yellowish brown or brown sandy loam or loamy sand, pH reaction 4.8.

Agustin sandy loam has the only one soil type mapped in the Project Area.

4. Gapan Series

This soil series is a member of the five loamy, moderately deep and well drained soils. Solum thickness ranges from 100 to 150 cm over sandy skeletals. They are mainly distributed in the Labugaon and Solsona areas. The relief is generally level.

The surface soils are brown to dark brown silty clay loam to silt loam. Subsoils range from yellowish brown to pale brown silty clay loam to fine sandy loam. External drainage is fair and internal drainage is good. The substrata are brown to grayish brown sandy skeletal with stratified gravelly sand.

A horizons are 20 to 50 cm thick, dark grayish or dark brown loam or silt loam with few to common strong brown or yellowish brown mottlings, slightly sticky, slightly plastic and friable, pH reaction 5.7.

B horizons are chiefly grayish brown, brown or yellowish brown sandy loam or loam, slightly sticky, slightly plastic and friable, pH reaction 5.8.

C horizons are mainly stratified sandy and gravelly skeletals.

The two soil types classified under this soil series are Gapan silt loam and Gapan silty clay loam.

5. San Manuel Series

This soil series is a member of the fine loamy, deep and well

drained soils over stratified sandy strata. Solum thickness ranges from 100 to 150 cm. This soil series is most widely distributed in the Project Area.

The surface soils are generally brown to dark brown silt loam, sandy loam, loam and silty clay loam and these being used for paddy rice exhibit gray to grayish brown colors. It is relatively loose and very friable. Subsoils are chiefly brown to yellowish brown friable clay loam to fine sandy loam. Underneath the subsoils are weak stratified yellowish brown to brown silty clay loam or silt loam. Drainage condition is good both externally and internally.

A horizons are 20 to 40 cm deep, brown or dark brown sandy loam, silt loam or silty clay loam with few to common strong brown or yellowish brown mottlings, slightly sticky, slightly plastic and friable, pH reaction 5.3. Where used for paddy rice the A horizons are gray or grayish brown.

B horizons 100 cm deep are characteriatically brown or yellowish brown clay laom, silty clay loam or sandy loam with strong brown and gray mottlings, slightly sticky, slightly plastic and friable, pH reaction 5.8.

C horizons are stratified grayish brown, brown or gray silty clay loam, clay loam, silt loam or sandy loam, slightly sticky, slightly plastic and friable, pH reaction 5.8.

The San Manuel series is subdivided into the three soil types such as San Manuel silt loam, San Manuel silty clay loam and San Manuel sandy loam. These soils are the most ideal for crop diversification in the Project Area.

6. Solsona Series

This soil series was developed from the most recent alluvial

deposits. They belong to a member of the fine loamy, shallow and well drained soil over gravelly substrata. Solum thickness ranges from 30 to 50 cm. The surface soils are moderately deep dark grayish brown, gray to dark gray sandy clay loam, fine sandy loam and silt loam. It has a weak structural profile development with the absence of B horizon. Subsoils are mainly gravelly sandy loam, loamy sand and sometimes with the presence of gravels.

A horizons 30 to 50 cm deep are grayish brown or brown sandy loam, silt loam, loam or clay loam with few strong brown or reddish brown mottlings, slightly sticky, slightly plastic and friable, pH reaction 5.7.

C horizon are mainly stratified sand and gravels.

The six soil types classified under this soil series are Solsona silt loam, Solsona fine sandy loam, Solsona sandy clay loam, Solsona clay loam, Solsona silty clay loam and Solsona sandy loam. Also included in this soil series are shallow soil with poor natural drainage.

7. Tagulod Series

This soil series is a member of the five clayey, very deep and somewhat poorly drained soils. Solum thickness ranges from 150 to 200 cm. It occurs on slightly elevated landscapes and its relief is nearly level. External drainage is fair and internal drainage is poor. The surface soils are chiefly dark gray or gray clay, clay loam or silty clay loam. Consistency is sticky and plastic when wet with common to many yellowish brown mottlings. The subsoils are grayish brown light clay with many yellowish brown mottlings. Beneath the subsoils gray weak stratified light clay with yellowish brown mottlings. Structure is sub-angular blocky to angular blocky in the surface soils and subsoils.

A horizons 20 to 50 cm thick are gray, dark gray or grayish brown

silty clay, clay or silty clay loam with few to common yellowish brown mottlings, sticky, plastic and firm, pH reaction 6.3.

B horizons are generally grayish brown, very dark grayish brown or light brownish grey silty clay or clay with yellowish brown mottlings, very sticky, very plastic and firm. Few Mn concretions are present, pH reaction 6.7.

C horizons below 150 cm deep are weakly stratified gray or light clay or clay loam with common yellowish brown mottlings, sticky, plastic and firm, pH reaction 5.1.

The Tagulod series is subdivided to the three soil types such as Tagulod clay, Tagulod silt loam and Tagulod silty clay loam.

8. Umingan Series

The soils of the Umingan series belong to a member of the fine loamy, moderately deep and well drained soils. Solum thickness ranges from 50 to 100 cm, the root limiting zone. Umingan soils are usually located along cources of rivers, streams and gently undulating lands on the foot of mountains. External and internal drainage are good. The surface soils are generally pale brown, light brownish gray to yellowish brown sandy loam, clay loam or silt loam. The subsoils are light yellowish to light olive gray clay loam, silty clay loam or fine sandy loam with few yellowish brown mottlings.

A horizons 20 to 30 cm deep are characteristically brown, dark brown or yellowish brown sandy loam, clay loam or silt loam, slightly sticky, slightly plastic and friable. Where used for paddy rice, the A horizons are gray or grayish brown, pH reaction 5.3.

B horizons 50 to 100 cm depth are dark yellowish brown clay loam, silty clay loam or fine sandy loam with few yellowish brown mottlings, slightly sticky, slightly plastic and friable, pH reaction 6.1.

C horizons are stratified sand and gravels.

The Umingan series is subdivided into the five soil types such as Umingan sandy loam, Umingan clay loam, Umingan sandy clay loam, Umingan silty clay loam and Umingan silt loam.

9. Cervantes Series

Cervantes soils are residual upland soils developed through the weathering and leaching. It occupies the rolling and hilly sections (high terrace) in the northeast border of Nueva Era. The distinguishing characteristics of this soil are its very friable A and B horizons and reddish color. External drainage is good and internal drainage is fair to good. The surface soils are reddish brown clay loam, friable when moist and slightly sticky when wet, ranging from 10 to 20 cm deep. The subsoils are yellowish red to red clay loam or clay extending up to 120 cm from the surface. Gravels are present in the B horizons.

Cervantes clay loam is the only soil type delineated in the Project Area. This soil is not suited to the most agricultural crops because of its relief and low natural fertility.

10. Soils of the River Wash

The soils of the river wash areas which developed along the major river tributaries including the Bonga river are composed of clean sand and gravels. There are not developed the soil cover and soil profile. The land use of this areas is barren strip, brush or grass growth and secondary forest.

The river wash areas are not suited for farming by the traditional method. This problem could be corrected only by flood control works and introducing fine soils to the land.

G. Physical and Chemical Properties

The summarized physical and chemical properties of the soils in the Project Area was shown in Table 3B-19. This results show the physical and chemical characteristics of the alluvial soils of paddy field in the Project Area.

The general characteristics on the analytical items of each soil series was shown in Table 3B-20.

Most of the soils in the Project Area belong to medium moderately fine textured soils. The depth of surface soil (Ap horizons) is 10 to 20 cm in paddy field. The effective depth of soil is more than 50 cm except for a part of the Solsona series. From these fact, it appears that the alluvial plain of the Project Area has enough soil depth for paddy rice production.

The pH and percentage of base saturation are correlated as shown in Figure 3B-8. The percentage of base saturation is very useful criteria in depicting the fertility conditions in the soil colloid-root environment. The base saturation of the soils in the Project Area is generally in the range 50 to 80 percent. This may be indicate that the leaching under rainfed and irrigated condition is medium to moderately high.

Cation Exchange Capacity (CEC) is medium to high. Avairable phosphate is medium to high except for few samples. Exchangeable calcium and magnesium are high while exchangeable potassium content is very low.

H. Land Classification for Irrigated Paddy Field

1. Objective of the Study

The main objectives of land classification are: a) to identify the arable lands which are suited for irrigation development, b) to

Table 3B-19 Physical and Chemical Properties of Soils in the Project Area (After NIA, 1976)

				Partic	le Siz	e Distr	ibution_					рН	Excha	ngeabl	.e	Cation			
Pit.				Total		03	m	Avairable	Setting	Organic		1:20.01		n (me/		Exchange	Avairable	Free	Base
No.	Series	Horizon	(cm)	Sand (%)	Silt (%)	(%)	Texture	Moisture (%)	Volume (%)	Carbon (%)	H ₂ 0	M Cacl ₂	Ca + Mg	<u>Na</u>	<u>K</u>	Capacity (me/100g)	P ₂ O ₅ (ppm)	Fe ₂ O ₃ (%)	Saturation (%)
176	Apustin	Al 9	C- 15	6.2	58.6	35.2	SicL	37.7	26.5	0.10	5.5	5.3	9.68	0.52	0.05	14.65	16	0.89	64.97
1.0		B1	15- 50	10.4	63.4	26.2	SiL	17.7	22.0	1.12	4.3	4.1	8.68	0.48	0.03	19.09	14	0.34	48.14
		P.2	50- 70	68.2	19.6	12.2	12	1.7	16.0	0.97	4.4	4.3	9.00	0.46	0.03	19.29	Trace	0.43	49.20
		C	70-220	56.6	34.1	9.3	SI.	5.4	15.5	0.36	4.8	4.6	7.42	0.50	0.04	14.66	3	1.79	54.30
66	Gapan	Ang	0- 30	-	-	-	-	-	-	-	_	-	-	•	-	-	-		-
		Bl	30~ 55 55- 75	48.2 32.0	29.9 49.2	22.8 18.8	L]4.3]6.5	21.5 19.5	0.59	5.8 5.7	5.3	9.43	0.16	0.03	16.32	14	0.14	55.88
		В3 С	55- 75 75-140		15.4	18.3	۲. آ	9.7	17.5	0.36 0.53	5.8	5.3 5.3	8.05 8.05	0.19 0.13	0.03	15.47 14.61	28 11	0.66 0.48	53.46 56.19
701	Gapan	Arg	0- 30	44.7	38.8	14	Ŧ	13.2	22.5	2.36	6.2	5.7	15.29	0.39	0.17	26.15	7	1.09	60.61
		Bl	30- 75	54.0	34.2	33.8	>L	13.3	73.0	3.02	6.2	5.8	14.30	0.35	0.03	26.08	4	0.70	56.29
		B2	75-135	47.0	42.7	10.8	L	1.4.7	23.0	1.14	6.7	6.1	15.43	0.26	0.03	24.62	-	0.25	63.85
126	3an	A. 5	0- 12	32.8	42.2	25.0	L	fl . r,	22.5	0.43	5.8	6. د	9.67	0.14	0.03	22.54	3	0.15	43.66
	Manuel	A3g	12- 30	78.a	1.6	19.6	5	4	16.0	1.58	6.3	6.0	19.00	0.54	0.00	29.84	2	1.14	65.48
		ъ1 В2	30- 90	82.4	82.4	17.6	siL -	3.4	11,.0	0.08	5.9	5.8	10.50	0.36	0.05	24.30	6	0.63	45.15
		52 53	30-110 119-170	<u>ქ</u> ს.ნ	70.4	13.0	ے۔ عند	,8,3	17.0	0.28	5.9	5.4	15.46	0.10	0.05	31.91	- 6	0.07	48.92
		r]	170-220	4.8	67.6	27.b	Sich	30.5	21.0	0.34	6.1	b.0	23.45	0.87	0.05	31.77	7	0.21	60.83
		r2	220-260	8.2	65.2	26.6	, ; ;	2.5	22.0	0.77	6.1	۴.9	22.13	0.62	0.03	38.58	12	1.75	59.02
		C3	260-300	17.0	49.0	34.0	'iCL	18,1	21.5	0.79	6.3	6.3	21.75	0.48	0.03	34.66	9	2.29	64.22
127	San	Alr	U- 11	30.3	17.7	42.0	'\ir	27.4	26.0	5.54	6.2	6.0	18.00	0.39	0.00	25.59	4	0.09	71.86
	Manue I	A: 25	11- 22	(.0	56.0	38.0	air <u>h</u>	22.2	25.0	0.80	6.3	6.0	17.48	0.54	0.03	22.25	4	1.82	81.12
		АЗ _Б В1	20- 50 50- 85	6.6 62.1	65.4 23.3	20.0 14.5	ici, SL	24.6 1.5	23.0 14.0	0.90 0.29	Շ.D 5.4	5.3 5.0	16.86 8.30	0.69	0.03	25.58 13.85	8 4	1.84	68.73 66.54
		B21	85-100	7.4	81.0	11.4	`, i	20.5	17.5	0.29	6.3	5.9	13.75	0.78	0.03	17.36	9	1.21	83.87
		322	190-104	4.2	34.2	56.r	C	26.5	27.0	0.62.	6.2	5.9	25.28	0.46	0.03	34.67	7	1.88	74.33
		B3	120-140	20.0	115.11	28.6	75	24.1	21.0	0.62	6.2	5.9	18.69	0.89	0.04	26.42	В	1.57	74.26
		r	140-	0].4	ð	¥,6	,	1.1	13.0	0.12	6.3	5.4	4.28	0.31	0.03	6.52	6	0.54	70.86
52	Solsona	A 1	0- 20	76.1	+3	17.5	, i.i	3.3	15.5	0.46	6.4	6.3	9.90	0.43	0.12	13.75	3	0.25	76.00
		A3 C	20- 35 35- 50	[6.5 69.2	18.7	11.3	1,,	6.7 5.7	17.0 16.0	0.93 0.52	6.6 6.3	6.3 6.0	12.00 10.71	0.44	0.08	15.32 14.81	3 2	0.29 0.21	81.72 75.69
93	Solsona	A: g	0- 27	31.0	40.4	23.6	CL	31.2	26.0	5.91	5.2	4.9	11.06	0.39	0.04	22.39	1	0.52	51.32
,,	5013/3/10	A3g	20~ 35	36.8	35.6	27.6	GF.	11.8	24.0	1.55	5.2	5.0	11.22	0.33	0.06	20.56	4	0.70	56.71
		¢ .	35- 50	46.0	30.4	23.6	L	10.1	21.0	0.86	5.7	5.6	11.11	0.36	0.04	18.21	2	2.36	63.21
23	Tapulod	A.g	0- 30	0.8	50.6	48.6	Sic	30.2	29.5	2.1	6.0	5.7	25.19	0.47	0.05	33.71	Trace	1.02	76.27
		B1	30- 55	2.6	43.0	54,4	3in	20.1	30.0	5.54	F.7	6.2	27.92	0.54	0.04	34.30	4	0.39	83.09
		B21 B22	55- 80	2.2	50.7	47.6	Gir Lio	25.5	27.0	0.71	7.0	6.6	30.00	0.58	0.00	32.28	2	0.84	94.73
		B3g	80-100 100-160	76.2	52.5 38.2	44.6 35.6	ric Fic	26.3 13.1	71.0	0.90 1.14	7.3 6.9	6.9 6.4	33.95 27.16	0.73 0.46	0.03	35.26 33.15	1 6	0.82	98.44 83.41
		Clp	160-180	26.6		22.6	SiL	17.4	19.0	0.69	5.6	5.4	12.45		0.03	19.96	2	0.82	64.93
		C2 F	180-220	54.0	30.4	15.6	SL	11.4	19.0	0.28	5.1	5.0	10.06		0.03	19.97	3	0.89	52.93
361	Tagulod	Ang	0- 25	4.6	4].8	53.6	sic	31.3	27.0	1.22	4.6	4.4	10.89	0.33	0.07	21.59	8	1.18	52.29
		АЗр	25- 50		44.?		Sic	25.4	26.0	0.55	6.0	5.5	21.63		0.03	28.30	16	1.09	77.38
		Bl Bala	50- 90 90-115		49.0		Sic	24.1	24.0	0.52	5.7	5.4	16.85		0.03	24.35	19	1.25	70.43
		B21g B22	115~165	13.0	31.4	55.6	- c	-	-	1.12 1.57	5.7 6.0	5.4 5.8	20.50 30.01	0.35 0.36		28.08 39.06	17 12	1.18	74.36 77.98
			165-190	13.2		51.0	Ċ	19.9	29.5	0.70	5.1	4.7	12.93	0.37		23.08	12	1.25	57.97
		С	190-220			36.0	CL	15.4	31.0	0 41	5.9	5.7	20.89	0.33		27.69	21	1.18	76.89
58	Umingan	Apg	0- 20	34.8	34.6	30.6	CL	18.9	23.0	1.90	5.2	5.2	5.15	0.30	0.08	15.83	3	0.96	34.93
	B	B1	20- 50	60.4	29.2	10.4	SL	19.2	19.0	0.91	6.4	6.0	14.95	0.25	0.05	23.25	1	0.38	65.59
		B2	50- 80	74.1		14.6	SL	4.9	15.5	0.52	6.7	6.6	16.17	0.33		21.84	1	0.34	75.73
		B3 C	80- 90 90-	82.7	5.1	12.2	5L -	3.0	15.5	0.43	6.3 -	6.0 -	8.55	0.40	0.09	17.34 -	4	0.23	52.13 -
251	Umingan	Apg	0- 10	8.8	48.6	42.6	SiC	27.7	28.0	2.01	5.4	5.2	17.20	0.04		27.49	9	0.89	62.90
- 41		Ap2g	10- 23	12.0	39.4	48.6	C	20.3	2₺.0	2.07	6.1	5.7	23.60	0.36		34.49	ų	3.30	69.56
		A3g	23- 40	17.6	43.8	38.6	SiCL	21.1	25.0	1.66	6.1	5.7	21.00		0.03	30.91	6	3.84	69.27
		B1	40~ 50 50 53		51.6	29.6	SiCL	25.8	21.0	1.00	6.3	5.8 5.6	20.10		0.02	29.02	6	2.61	70.71
		B2 B3	50- 63 63- 85	51.6 39.8	30.8 41.6		L L	16.9 21.7	19.0 19.5	0.94 1.52	6.0 5.8	5.6 5.6	19.30 16.45	1.12	0.02	29.29 26.82	4 6	3.59 2.14	66.88 65.70
		c	85-		25.2		SL	15.6	18.0	1.34	5.7	5.5	14.35		0.05	22.53	5	1.00	64.73

FIGURE 38-7 REPRESENTATIVE SOIL PROFILES OF EACH SOIL SERVICES IN THE PROJECT AREA

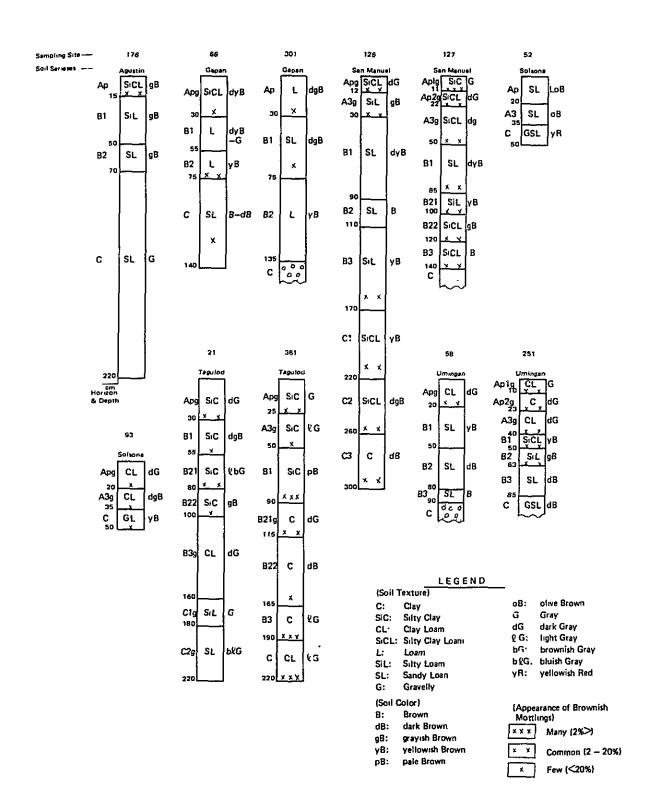
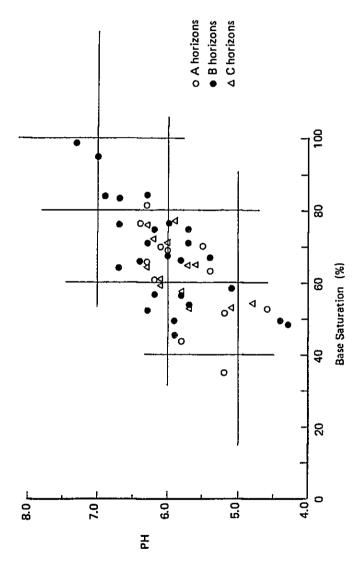



Table 3B-20 Soil Characteristics on Analytical Items

Soil Series	Solum Thickness (cm)	pH Reactiion of Top Soils	Natural Fertility	Content of Organic Matter (0.C. x 1.72)	Cation Exchange	Base
Agustin	50 - 100	ຜູ້ເ	medium	low	medium	high
Gapan	100 - 150	5.7	high	moderately high	high	high
San Manuel	100 - 150	ъ	moderately high	moderately high	moderately high	medium
Solsona	30 - 50	5.7	moderately high	high	medium	high
Tagulod	150 - 200	ь. Э	moderately high	medium	high	high
Umingan	50 - 100	5.3	medium	medium	moderately high	medium

separate and identify the arable lands according to classes and their best ultimate use under irrigation.

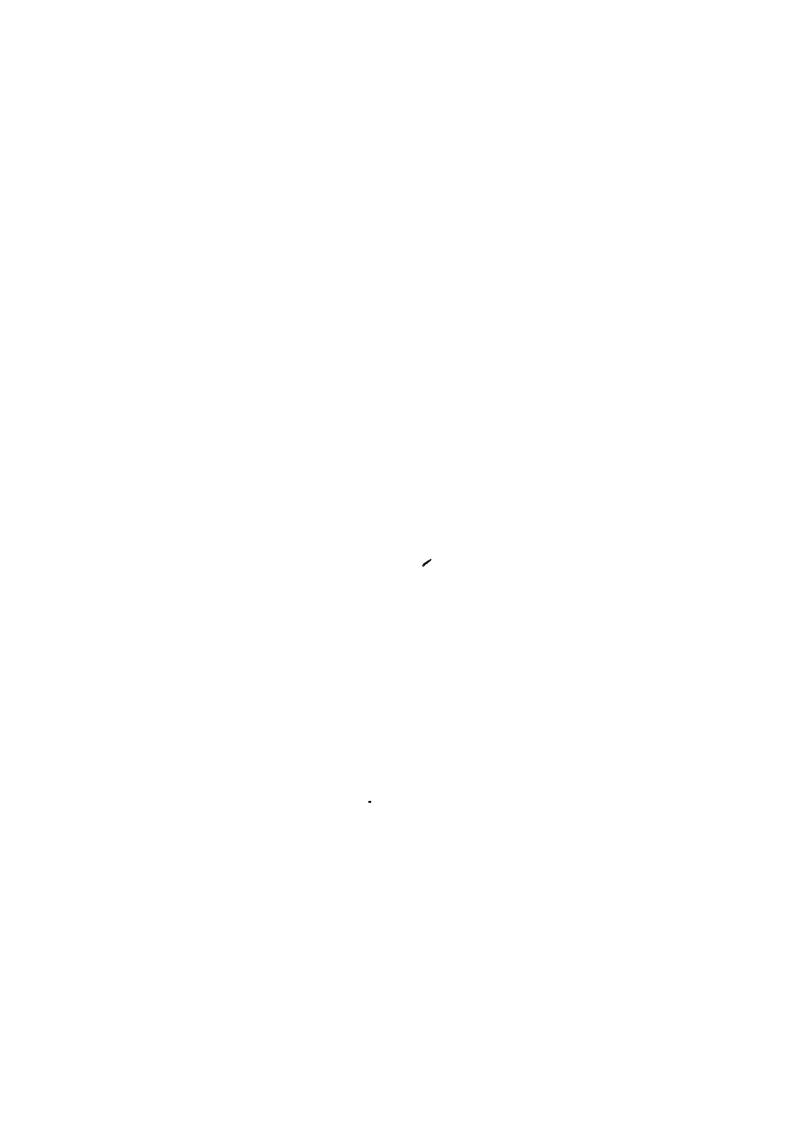
2. Mapping Simbols

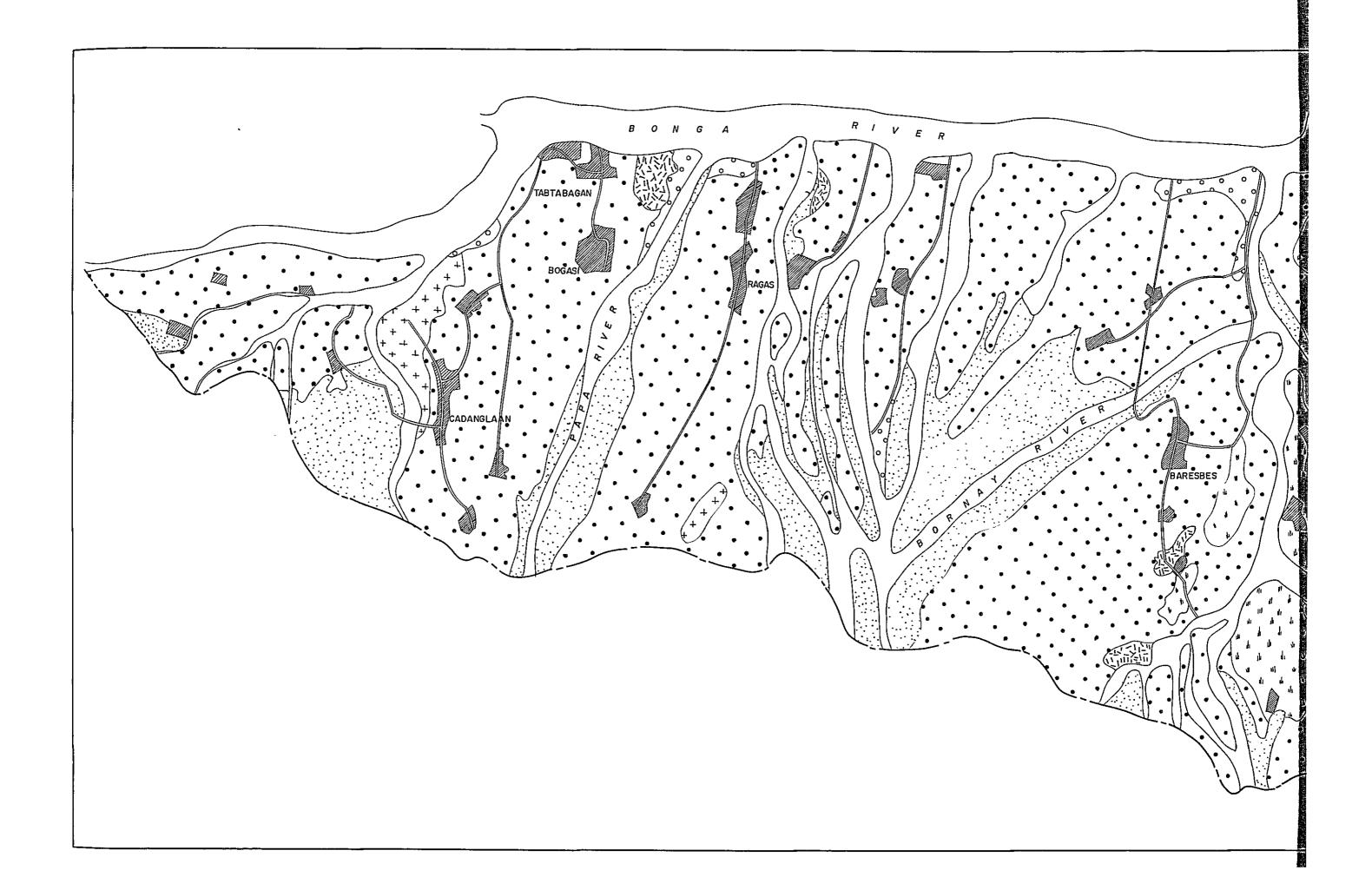
The land classification scheme of the Project Area was in accordance with the U.S. Bureau of Reclamation Land Classification Standard with some adjustment to suit local project conditions.

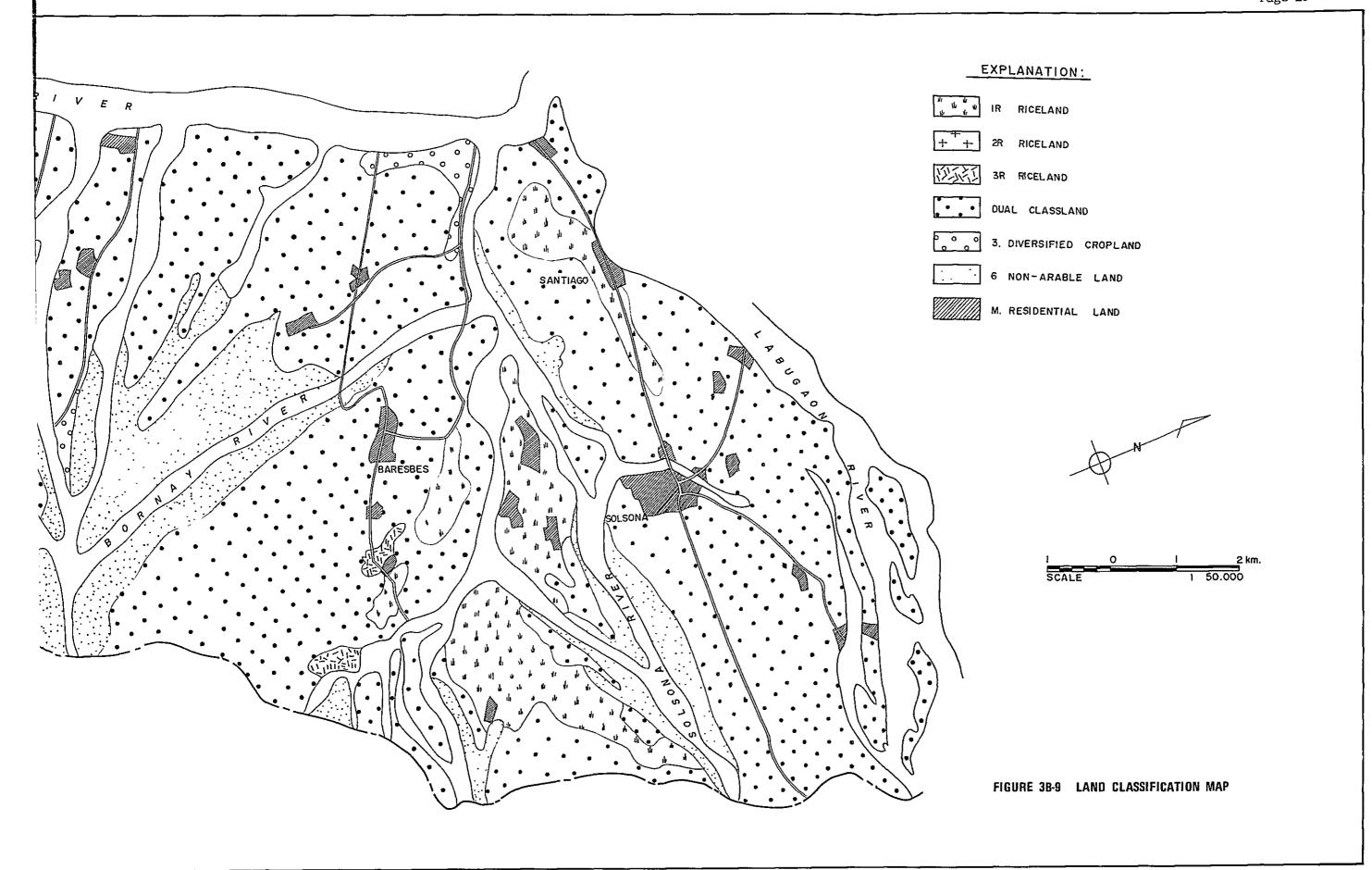
The suitability of the land for irrigation development is greatly affected by crop adaptability, yield and production cost. Crop adoptability and yield are reflected by the physical and chemical characteristics of the soil and topographic limitation, while cost of production is affected by farm labor and cost in connection with cultivation, providing irrigation and capital outlay prior to irrigation development.

Basically, the land classification survey involved identification and delineation of arable and non-arable lands. The land classes were delineated reflecting the productive capacity of the lands. They were further subdivided into appropriate subclasses according to such limitation in soil, topography and drainage condition. (See Figure 3B-9)

The soil factor includes: a) texture, b) structure, c) soil color and d) presence of mottlings and concretions. The topographic appraisal includes: a) slope class, b) position and c) surface irregularities. The drainage is evaluated in term of a) duration and frequency of flooding, b) soil drainability and c) depth of water table.


The followings are the mapping symbols used in this project study.


a) Land Class Symbols


1R : Highly suitable for irrigated paddy rice

2R: Moderately suitable for irrigated paddy rice

3R : Marginally suitable for irrigated paddy rice

-

- 2 : Moderately suitable for diversified crops
- 3 : Marginally suitable for diversified crops
- 1R(2) : Highly suitable for irrigated paddy rice and moderately suitable for diversified crops
- 2R(2): Moderately suitable for irrigated paddy rice and moderately suitable for diversified crops
- 3R(2) : Marginally suitable for irrigated paddy rice and moderately suitable for diversified crops
- 6: Non-arable

The specification for land classification which were adapted to the study on irrigation project conducted by NIA, is shown in Table 3B-21.

The semi detailed land classification study was conducted to separate the arable lands as those having potential for irrigation development and the non-arable lands having no potential to be developed in the project scheme.

The arable lands were categorized into three major groups based on their crop suitability with basic consideration on the soil, topography, drainage and other physical factors. These are: a) diversified cropland, b) rice land and c) dual class lands.

The non-arable lands consist of three major classes namely: a) class 6, b) M-lands and c) Rights-of-Way (ROW).

Aggregated areas of each groups and land classes are summarized in Table 3B-22.

- Description of Land Classes
- a) Diversified Cropland

This land class is characterized by good external and internal drainage. The soils are chiefly medium to coarse texture, or shallow

Table 38-21 Land Classification Specification for the Project Area

Land Specification	Class 1R	For Paddy Rice Crops	Class 3R	For Diversified Crops	fied Crops Class 3
Soils (dominant texture of surface layer 0-30 cm)	fine sandy loam to clay	fine sandy loam to clay	loamy sand to clay	fine sandy loam to clay	loamy sand to clay
Soil Depth	more than 60 cm	more than 45 cm	more than 20 cm	more than 60 cm	more than 30 cm
Cation Exchange Capacity (CEC at surface layer 0-30 cm)	more than 10me/100g	more than 5me/100g	more than 4me/lppg	more than 5me/100g	more than 4me/100g
pH (anaerobic)	more than 5.5	more than 5 maybe less	more than 5 maybe less	more than 4.5 less than 8.5	more than 4.5 less than 8.5
Reduction Product	ТОМ	low	ı	l	;
Topography					
Slope in general gradient	less than 2%	less than 5%	less than 8%	less than 5%	less than 8%
land leveling	low	medium	high	medium	high
land clearing	low	medium	high	medium	high
land terracing	low	medium	high	medium	high
Internal Drainage	slow	slow	slow	well	well

Table 3B-22 Hectares Summary of Major Land Classes of the Project Area

			Sub_A	reas		
		Labugaon	Solsona	Madongan	Papa	
La	and Class	<u>area</u>	<u>area</u>	area	area	Total
Ara	able Lands $\frac{1}{}$					
a)	Diversified crop land	-	_	140	50	190
	3	-	-	140	50	190
ь)	Rcie land	160	610	40	170	980
	1R	160	580	-	-	740
	2R	-	- -	30	130	160
	3R	-	30	10	40	80
c)	Dual class land	2,130	2,000	3,030	1,870	9,030
	1R(2)	1,170	860	2,200	1,020	5,250
	2R(2)	-	210	210	450	870
	3R(2)	960	930	620	400	2,910
Tot	tal Arable	2,290	2,610	3,210	2,090	10,200
Nor	n-arable lands					
	6	316	1,185	2,240	685	4,426
	М	105	75	120	145	445
	ROW	183	209	258	166	816
To	tal Non-arable	604	1,469	2,618	996	5,687
Gra	and total	2,894	4,079	2,828	3,086	15,887

Note: $\frac{1}{}$ Exclusive of the ROW (Rights-of-Way) which is estimated at 7.5% of area classified as arable land.

depth underlain by stratified sandy and gravelly strata which allow excessive water to drain out readily. They appear on small spots distributed on depressions or depressed river levees. These lands are productive for diversified crops such as corn, root crops and legumes. Class 3 is the only diversified land class delineated in the Project Area.

Class 3

The lands under this class are marginaly suitable for diversified crops. Crop adoptability and yield would be limited because of its soil depth and flooding hazard, especially surface flooding is the main problems in this area. Soil is characterized by shallow depth underlain by coarse fragment of gravelly and sandy materials with presence of stone in most places.

b) Rice Land

These are the lands best suited for rice production both during the wet and dry season under full irrigation water supply. The pre-requisite is a soil which can hold water in a longer time with slow percolation rate. This is attributed by poor internal drainage and slow permeability. In the Project Area, these are distributed into three major land classes.

Class 1R

This is the lands highly suited for irrigated paddy rice production both during the wet and dry season. The soils belong to the fine clayey, deep and poorly drained soils with color ranging from brown to dark gray. Presence of mottlings is characteristics of the soil under this class.

The class 1R lands are suitable for rice and diversified crops both during the wet and dry season, but in the Project Area most of these lies idle during the dry season due to lack of irrigation water supply.

Class 2R

This class is the lands moderately suitable for irrigated paddy rice production. These are good quality lands having moderate production lower than the class 1R lands because of its minor deficiency in topography and drainage. These deficiency factors include surface flooding and topographic irregularities.

Class 3R

This class is the lands marginally suitable for irrigated paddy rice production. The deficiency factors such as surface irregularity and surface flooding are more serious than in the class 2R lands.

c) Dual Class Land

The dual class land is the biggest group mapped in the Project Area. They have restricted subsurface drainage condition having good to excellent productivity for both rice and diversified crops.

Dual land classes differ from riceland classes in its drainability characteristics. The surface soils and subsoils are medium texture and have good soil permeability. They are classed lR(2), 2R(2) and 3R(2).

Class lR(2)

This class is the lands highly suitable for irrigated paddy rice production and moderately suitable for diversified crops. For rice it has no deficiency in soil, topography and drainage. The only deficiency is sub-surface drainage which needs to be improved for successful diversified crop production.

Class 2R(2)

This class is the lands moderately suitable for irrigated paddy rice production and moderately suitable for diversified crops. This is suited for good production both rice and diversified crops but downgraded because of topographic limitation. The lands of this class are slightly sloping and undulating with slopes not more than 3 percent.

Class 3R(2)

This class is the lands marginally suitable for irrigated paddy rice production and moderately suitable for diversified crops. The lands of this class are level to slightly sloping with slopes not to exceed 5 percent. Soils of this class are characterized by shallow depth and subjected to flooding.

d) Class 6 Land

These are the lands not suitable for irrigation development because of various physical and economic limitations. They consist of the stream channels, rolling or steep slopes, hilly areas and river wash areas. Especially the river wash areas are widely developed in the Project Area.

Not all class 6 lands are totally non-productives. Some may be valuable for agricultural use, although not suit for farming by the usual method. The sloping or hilly section could be made productive for upland crops and fruit trees.

e) M-Land

These are the lands occupied by the town, barrios, residential or industrial areas.

f) Rights-of Way (ROW)

This includes existing and future public roads, irrigation canals and farm to market roads which are part of the project constructions.

The figure of Rights-of-Way was derived at 7.5 percent of the total arable lands surveyed. This is the same percentage used for the Upper Pampanga River Project based on measurements of existing and planned Rights-of-way in representative sample areas.

- I. Summary of Conclusions and Recommendations
- 1) Of the cultivated 10,200 hectares, about 8,100 hectares are irrigated paddy field, 1,900 hectares rainfed paddy field, and 190 hectares are upland field. The un-cultivated areas consist of residential areas, Rights-of-Way, and other non-arable lands such as river wash, rolling or steep slopes, hilly areas and others. They comprise the gross area of about 5,700 hectares.
- 2) Double cropping of rice is practiced within limited area of about 3,400 hectares. Remaining paddy fields lie mostly idle during the dry season due to lack of irrigation water supply.
- 3) Corn, tobacco, sugarcane, mongo beans and vegetables are cultivated as diversified crops in the Project Area, but they are grown in very limited scale. The river wash areas are almost lacked in crops. These consist of barren strip, brush or grass growth and secondary forest.
- 4) The soils of alluvial plain were classified into the six soil series such as the Agustin, Gapan, San Manuel, Solsona, Taglod and Umingan series. These soils are considered the most productive for both paddy rice and diversified crops productions.
- 5) The cervantes series is the only identified upland soil in the Project Area. This soil is the residual soils with reddish color.
- 6) The river wash includes the lands without any soil cover or soil profile development where lands are covered with clean sand and gravels. This land don't suit for farming by usual method.
- 7) According to the land classification study, a total of 980 hectares suited for paddy rice and 9,200 hectares capable for dual crops, paddy rice and diversified crops. The class 1R and 2R cover 7,020 hectares or 69 percent of the total arable lands. This shows as to

soils, both paddy and diversified crops will produce fairly good in the most of the Project Area.

- 8) The natural fertility of alluvial soils in the Project Area ranges from medium to high in root zones of crops, but the exchangeable potassium content is very low. This is recommended that potassium would be fertilized throughout the area especially for diversified crops.
- 9) The river wash areas were widen by the big flood which over-ran even the cultivated areas. This shows the vital necessities of flood control works in the Project Area, especially in the Madongan area.
- 10) The soil profiles in the Project Area were investigated by 3 test pits, 611 auger boring holes (NIA, 1976) and 78 stick boring holes (JICA, 1978). In next stage, it is recommended that the more detailed survey by digging test pits would be given to study.

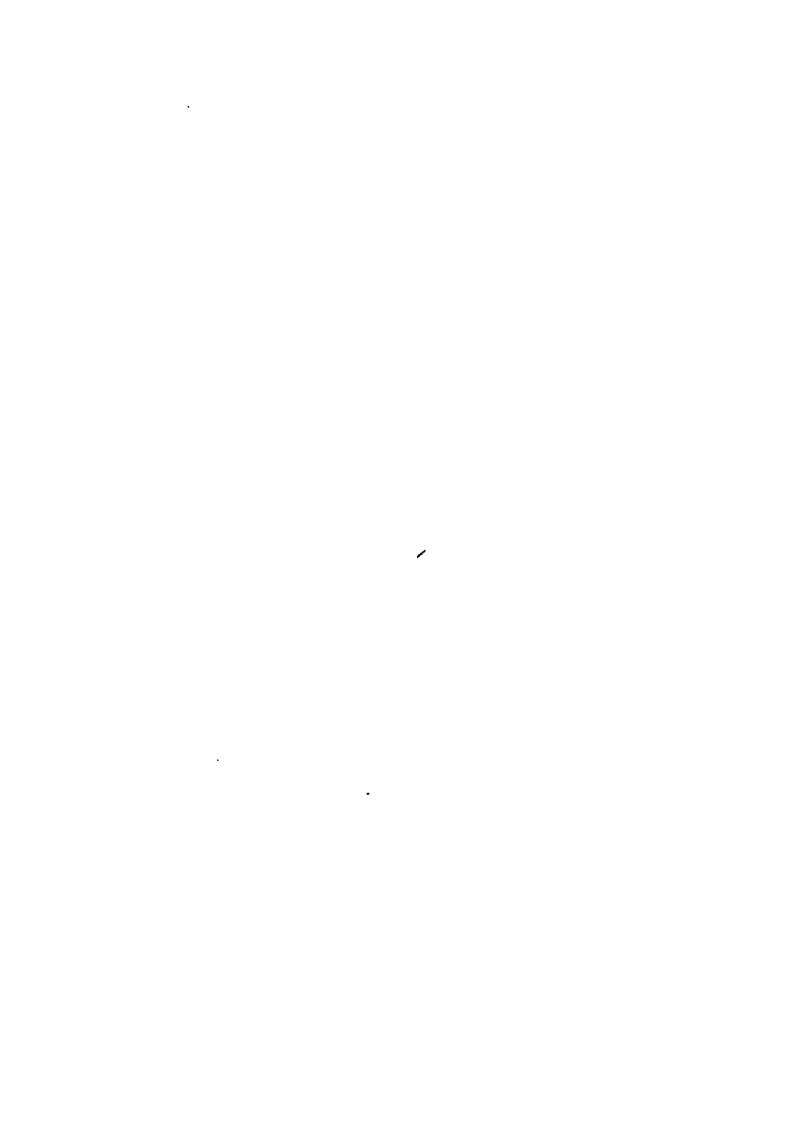


Table 3C-1

Area of Communal Irrigation System (CIS) in the Project Area

			Wet	Season				Dry Se	eason		
						In	rigated Are	ea	Non-Irrigat	ed Area	
Manicipality	No. of CIS	Potential Area	Irrigated Area	Non-Irri. Area	Sub- Total	Grav Paddy	vity Upland	Pump	Non-Cul- tivated Area	Upland Crop	Sub- Total
		(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)
Solsona	49	2,373	2,373		2,373	1,436	_	-	937	-	2,373
Dingras	47	2,476	2,476	-	2,476	1,136	-	-	-	$1,340(0)\frac{1}{}$	2,476
Marcos	22	1,791	1,791	-	1,791	548	100(V.C) ²	0(C)	1,123	20	1,791
Espiritu	16	1,407	1,351	56	1,407	281	-	73(V.T	953	100(V.T) ^{3/}	1,407
Nueva Fra	14	50	50	-	50	10	-	-	40	-	50
Total	<u>138</u>	8,097	8,041	<u>56</u>	8,097	3,411	100	<u>73</u>	3,254	1,460	8,097

Source: Provincial Irrigation Offices in Ilocos Norte and Ilocos Sur as of 1977

Note: $\underline{1}$ / Other crops

2/ Vegetable, corn

3/ Vegetable, Tabacco

		•	

Table 3C-2 National Irrigation Project in Ilocos Norte (As of 1977)

	System	Town Serve	Service Area (ha)	Irrigated Area Wet Dry (ha)	ed Area Dry (ha)	Benefited Area Wet Dry (ha)	od Area Dry (ha)	Total Rehabilitation & Extension Cost (#1000)
į.	1. Bolo RIS	Bangui	487	451	436	451	436	7,380
5	NMC-Pasuquin Extension RIS	Pasuquin, Vintar Bacarra	670	580	298	580	298	6,910
	3. Lacag-Vinter RIS	Laoag-Vintar, Bacarra, Sarrat	2,364	2,364	1,431	2,364	1,431	22,080
#	Cura RIS	Pidding	814	260	179	260	123	8,250
5.	Dingras RIS	Dingras, Marcos	1,100	1,075	1,000	1,075	1,000	068,8
9	Laoag-Sarrat- San Nicolas Pump Irrigation System							
	Bonga No. 1	Sarrat, San Nicolas	200	385	285	385	285	
	Bonga No. 2	San Nicolas, Laoag	827	671	200	657	200	0+0°8
	Bonga No. 3	Laoag	084	210	202	210	202	
	Total		7,242	6,296	4,331	6,282	4,275	

Source: Ilocos Norte, NISIP Sub-Region Office

Population and Household of Farmers and Non Farmers in Project Area Table 3D-1

. 1		endix 31
Electrifica- tion	ыны	æ∥ ⊗∥
Samahang Nayong	***	33
Net Farmers (4)+(7)= (8)	116 67 127 145 164 195 195 195 195 195 195 195 195 195 195	6,774
(2) - (4)	15 15 15 16 16 16 17 18 18 19 10 10 10 10 10 10 10 10 10 10	1,342
Outside Farmers (6)	100 100 100 100 100 100 100 100 100 100	650
Inside Farmers (5)	115 110 110 110 110 110 110 110 110 110	1,992
Farm House- hold (2) x (3)= (4)	101 67 112 95 149 128 128 129 129 129 120 1115 107 1107 1107 1107 1107 1115 1107 1115 1115	432
Farmers Total Household (3) (%)	97 655 100 93 93 100 100 100 100 100 100 100 100 100 10	88 81
House- hold (2)	1004 69 175 1112 1165 1166 1,079 1,079 1,079 1,079 1,063 1,079 1,0	6,334
Popula- tion	526 365 365 365 365 368 373 368 373 373 373 373 373 373 373 37	33,962
Name of Municipality and Barangay	1. Aquitap 2. Bagbago 3. Barcelona 4. Catangraran 5. Darasonas 6. Laureta (Pof.) 7. Tipay 8. Ma-ananteng 9. Manalpac 10. Nagpatpatan 11. Puttao 12. Santa ana 13. Tolgtog 14. Santiago 15. Juan 16. Maliquet 17. Malsin 18. Santiago 19. Sub-total 2. Culao 3. Escodo 4. Ferdinand 5. Ragos 6. Santiago 17. Malsin 18. Baresbes 19. Baresbes 2. Borong 3. Ehithabes 4. Fog 5. Lumbad 6. San Marcelino 7. Surrate 8. Naglayaan 8. Naglayaan 8. Naglayaan 9. Espilitu 1. Balioeg 2. Bagasi 3. Calstebanan 4. Macayepuep 5. Sinamar 6. Tabtabagan 7. Valdez 8. Nueva Era 1. Poblacion 7. Valdez 8. Barikir 9. Barikir 3. Caray 4. Cabittaran 5. Sto Nino 6. Acnam 5. Sto Nino 6. Acnam 5. Sub-total	Total

Source: 1975 Sencus; 1976 Jul. BAEcon Screening Survey

Present Cultivated Area and Arable Area in Each Minicipality Table 3D-2

ا ت						
Average Cultivated Area Without With Project Project (7) (ha) (8) (ha)	1.18	1.58	1.84	1.42	1.09	1.43
Average Cu Area Without Project Pr (7) (ha)	1.34	1.77	2.06	1.59	1.21	1.60
Farmers With Project	2,426	1,860	1,190	1,148	529	7,153
Numbers of Farmers Without With Project Project (5) (6)	2,273	1,774	1,129	1,092	506	6,744
able rea)(ha)	2,869	2,941	2,184	1,630	576	10,200
Total Area Present Cultivated Area Area (3) (ha) (#	3,056	3,132	2,326	1,732	9 Т9	10,860
Area Area (2)(ha)	1,890 979	400 1,631 910	2,184	1,630	116	10,200
Benefit Area Present Cultivated Ara Area Ar (1) (ha) (2)	2,013 1,043	427 1,737 968	2,326	1,732	126 488	10,860
Name of Irrigation Area	Labugaon Solsona	Labugaon Solsona Madongan	Madongan	Papa	Madongan Papa	
Munici- pality	Solsona	Gingras	Marcos	Espilitu	Nueva Era	Total

Note: 1/: (5) (6) Include Inside Farmers

$$2/$$
: (7) = $\frac{(3)}{(5)}$, (8) = $\frac{(4)}{(6)}$

Gradal Number of Farm Size Table 3D-3

		Ha/ Farmers	, <u>o</u>	9	0.	80	9	00	(2)
		Ha/ Farme		1.16	2.10	3.08	4.10	5.80	$\frac{0}{(357)}$
		%	19.5	52.7	21.0	3.9	1.8	1.1	100.0
al	Area	Area	06.464	1,339.62	532.36	98.66	45.10	29.00	2,539.64 100.00 1.0
Total	ers	%	42.5	45.6	10.0	1.3	ቱ.0	0.2	100.0
	Farmers	Farm- ers	1,082	1,160	253	32	11	വ	2,543
		Area	328.77 1,082	780.70 1,150	231.30	61,93	16.21	13.75	844.45 1,558 1,432.66 2,543
	ST	Farm- ers	742	682	108	20	#	2	1,558
	T	Area	78.10	439.67	253.06	30.73	28.89	5.00	844.45
	PO-ST	Farm- ers	159	369	122	10	7	г	668
	Se	Area	5.0	5.0	ı	1	4	ı	10.0
	Lease	Farm- ers	6	S	1	1	ŧ	1	#
	17	Area (ha)	ı	1	2.0	ř	ı	ı	2.0
	ST - L	Farm- ers	ı	1	٦	ì	t	1	႕
	P0 - L	Area	4.0	10.5	8.0	ı	1	1	22.5 1
	P0-	Farm- ers	7	10	#	1	ı	ı	21
		ers Area ers Area ers Area (ha)	165 70.03 7 4.0	103.75	18 38.00 4 8.0	2 6.0	ŧ	10.25	228.03 21
	2	Farm- ers					ı	7	281
		Farm Size	Under 1.0	1.0-1.99	2.0-2.99	3.0-3.99	4.0-4.99	5.0 over	Total

Source: NIA Agricultural Economic Survey

FO..... Full owner
PO-L... Partial owner and Lease
ST-L... Share tenant and Lease
Po-ST... Partial and Share Tenant
ST Share Tenant