

FIGURE 48-12. DRAINAGE SYSTEM IN THE PADDY FIELD

. • • ٢ . ,

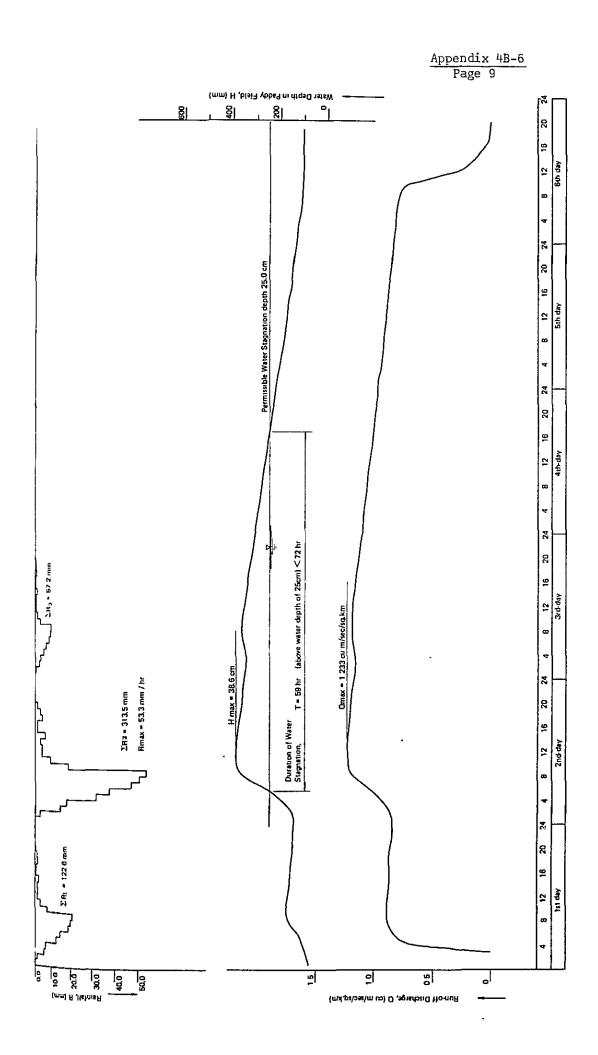
Run-off Discharge mm3/ cu.m/sec/sq.km	4.43 1.231												4.25 1.1B1															4.21 I.169		4.17 1.15B	4.15 1.153	4.12 1.144	~	-1	4.07 1.131
LUN LUN	 +	3	77, 44	1	÷	Ŧ	÷	÷,	Ŧ	1	=	.	3		÷	4	а.	÷	3	Ŧ	4	4	Ŧ	÷	Ξ.	±.	a	3	=	2	±.	±.	Ŧ	4	4
Lffective Water Depth Rainfall in Paddy Field2/ (mm)	385.5	384.3	386.0	383.0	380.0	380.1	379.0	376.3	372.0	367.7	363.5	359.2	354.8	351.5	349.7	348.8	350.4	353.2	357.9	363.0	368.5	367.9	364.8	361.5	358.0	354 .4	351.5	347.6	0.446	340.6	337.2	333.7	329.7	325.8	321.6
Lffective Rainfall (mm)	4.7	3.1	6.3	1.6	1.6	4.7	3.1	1.6	0	a	0	Ō	0	0.6	2,6	3.2	5.7	6.9	8.5	9.2	9.7	3°4	1.7	6.0	6'0	0.6	1.1	0.3	0.3	0.9	0.6	0.3	0	0	0
Hourly Rainfall (mm)	4.7	3.1	6.3	1.6	1.6	4.7	3.1	1.6	Ð	c	0	¢,	0	9.0	2.6	3.2	5,7	6,9	8.6	9.2	9.7	а. С	1.7	6.0	0.9	0.6	1.1	0.3	0.3	6.0	0.6	0.3	0	Ð	0
Time	12	E T	1	15	16	17	18	61	20	21	22	23	24	Ч	7	സ്	7	ŝ	Ð	7	8	თ	10	Ħ	12	13	14	15	16	17	18	19	20	21	22
t A E						0	_		_											-	г		-												
Run-off Discharg- mm ³ / cu.m/sec/99.km	0		0	.70																3.11 0.864						3.10 0.861	3.16 0.878	3.35 0.931	3.52 0.978	3.80 1.056				Η	4.43 I.23I
Water Depth in Paddy Field2/ (mm)	0		0	1.70	2.90	3.00	3.09	3.19	3.20		3.19	3,18	3.18	3.18	3.17		3.14	3.15	3.14	3.11	3.10	3.08	3.05	3.04	3,04	3,10	3.16	3.35	3.52	3.80		4,33	1 011 1	E 4.4	
, <u>spi</u>	/ 81.2 0	86.7 0	93.4 0	1.70	118.6 2.90	134.0 3.00	3.09	168.2 3.19	172.8 3.20	173.1 3.20	171.6 3.19	170.0 3.18	168.2 3.18	167.4 3.1B	164.8 3.17	3.15	160.8 3.14	159.0 3.15	156,7 3.14	153.6 3.11	150.5 3.10	147.5 3.08	144,5 3.05	141.2 3.04	141.5 3.04	152.2 3.10	166.0 3.16	194.2 3.35	227.5 3.52	271.0 3.80	00 h 2 LTE	366.5 4.33 1	380.8 4.40 1	385.5 4.43 1	H.43 1
Water Depth in Paddy Field2/ (mm)	0 <u>1</u> / 81.2 0	0 86.7 0	0 93.4 0	105.0 I.70	14.7 118.6 2.90	18.4 134.0 3.00	19.6 150.5 3.09	20.8 168.2 3.19	7.4 172.8 3.20	3.7 173.1 3.20	1.9 171.5 3.19	1.9 170.0 3.18	1.2 168.2 3.18	2.5 167.4 3.1B	0.6 164.8 3.17	0.6 162.2 3.15	1.8 160.8 3.14	1.2 159.0 3.15	0.6 I56.7 3.14	0 153.6 3.11	0 150.5 3.10	0 147.5 3.08	0 I44,5 3.05	0 141.2 3.04	3.1 141.5 3.04	14.1 152.2 3.10	17.2 166.0 3.15	31.4 194.2 3.35	37.6 227.5 3.52	47.0 271.0 3.80	50.2 317.2 H.00	53.3 366.5 4.33 1	380.8 4.40 1	9.4 385.5 4.43 1	4.7 385.5 4.43 1

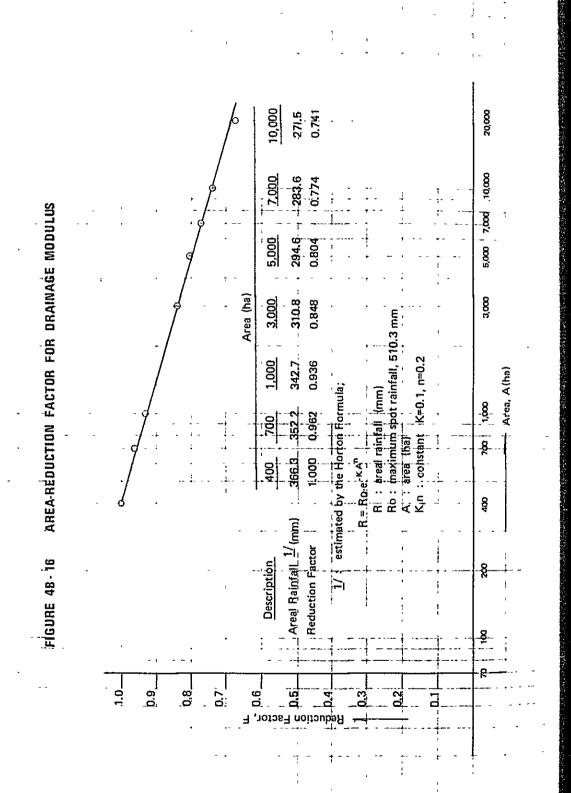
Talle 40 11 Recut of Run-off Routing in Luddy IIcid (1)

Rainfail of 20 mm is neglected as initial losses in paddy fields height of notch : 100 m above field surface Water level : 80 mm 귀 Note:

2/: Obtained from Figure 3/: Obtained from Figure

Appendix 4B-6 Page 7


arge	/sq.km	416.	.906	006	897	889	886	378	.875	367	.861	358	358	353	34.7	.842	833	131	128	122	.817	811	806	806				٩g	e	8	_		5	
Run-off Discharge	cu.m/sec/sq.km	5°0	0.9	0.9	0.8	•	•	0.878	0.8	9.0	3.0	3.0	9.0	3.0	0.6	0.5	0.8		0.6	0.6	0.8	0.8		0.8	0,8	0.7		0.4	0.278	0.2	0.139	0.033	50.0	
Run-c	uu uu	3.29	3,26	3.24	3.23	3.20	3.19	3.16	3.15	3.12	3.10	3.10	3.09	3.07	3.05	3.03	3.00	2.99	2.98	2.96	•	2,92	2.90		•	2.86	2.30	1.60	1.00	0.90	0.50	0.30	0. 20	· · · ·
in Paddy Field	(<u>um</u>)	185.6	-	-	175.0		-		161.5		154.8		148.4	145.0	143.8	139.O	135.8	133.0	130.3	127.2	124.3	121.3	118.6	115.7	113.0	110.2	107.3	105.4	103.7	192.7	102.0	5.101	2.111	
Rdinfall	(tum)	ı	,	ı	ı	ł	ſ	ı	ł	ı	ı	ı	ı	ı	ı	ı	ı	1	I	ı	1	1	ı	ı	ı	ı	ł	I	I	I	ı	ı	ı	+ I
Rainfall	(uu)	1	ı	ı	ı	ı	ł	1	ı	ı	I	1	ı	ı	ı	ı	I	ı	ı	ł	ı	,	ı	ł	t	,	ı	ı	ï	1	ı	ł	ţ	I
Tîme		6	10	11	12	13	14	15	16	17	1.8	19	20	21	22	23	24	~1	2	ო	t,	ы	g	٢	æ	ဇာ	10	11	12	13	14	1.1	14.	
[Discharge	cu.m/sec/sq.km	1.125	1.113	1.108	1.100	1.097	1.089	1.083	1.081	1.077	1.066	1.061	1.055	1.053	1.042	1.039	1.028	1.025	1.019	1.014	1.005	1.000	-	•	٠		0.972	•	•	0.944	0.442		•	
Run-off		4.05	4.01	3,99	3.96	3.95	3.92	3.90	3.89	3.88	3.84	3.82	3.80	3.79	3.75	3.74	3.70	3.69	3.67	3.65	3.62	3.60	3.60	3.55	3.54	3.51	3.50	3.50	3.48	3.40	3,39	3.37	3,36	1. 1. 1.
Water in Pad	(mm)	317,6	313.8	310.0	306 4	302.4	298.5	294.8		287.4		279.8	276.0	٠	268.5	264.7	260.9	257.0	253.0	249.9	245.0	241.0	237.0	233.0	229.0		221.0	217.1	213.3	209.1	205.2	201.2	197.7	1931
Effective Rainfall		0	Q	ı	1	t	t	ı	I	I	ı	ı	t	1	ı	I	ı	ł	ł	ı	I	ı	t	ı	r	ı	ı	ł	ł	ı	ı	I	ı	1 -
Hourly Rainfall	(0	0	ł	ı	ı	I	I	ı	I	1	1	1	1	1	1	ı	ı	1	I	I	ł	ı	ı	ł	ı	1	1	ŀ	ŧ	i	ł	,	+ 1
Time		23	24	1	2	თ .	ב ו ו	ມ ເ	ιο		ω (ה ה י	01:	11	21	<u>5</u> 1	H T	15	16	Т7	18	19	20	21	22	23	24	Ч	2	ო	7	ç	ى	. 2


Table 4B-11. Result of Run-off Routing in Paddy Field (2)

•

50

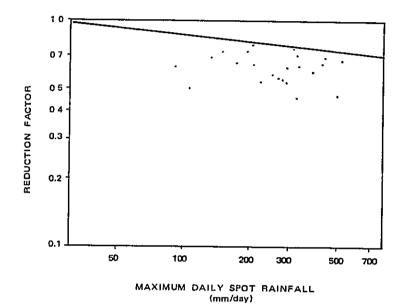
٠

Appendiy 48-1 Page 10

E. Drainage Discharge from Hilly Land $\frac{1}{}$

Drainage areas located in the hilly land are mostly less than 10 - 4.4m. The flood time of concentration for such a small drainage area will be less than one hour. Only hourly peak rainfall, theretore, was considered for drainage discharge analysis. Relationships -etween observed peak discharges from drainage areas less than 100 1.4.4m and hourly peak rainfall intensity was plotted as shown in 1.1gure 4B-17. This shows the peak discharge and hourly rainfall increase in a rather constant rate. So, the run-off coefficient was et = 1.14m and f = 0.269 from the figure. This run-off coefficient 1.14m adopted to estimate the peak discharge from hourly rainfall.

The obtained run-off coefficient might be on a high side, recause the available peak discharges are mostly in the mountainous area. Normally run-off coefficient for small areas in hilly land ranges from 0.1 to 0.3. So, the obtained value of 0.269 is considered to be acceptable.


The estimation of peak discharge was made based upon the Rational formula;

Q = 0.2778.f.r_t.A
where f : run-off coefficient of 0.269
r_t: areal hourly peak rainfall intensity (mm/hr)
A : catchment area (sq.km)

In order to estimate the peak discharge, the peak rainfall as Ltained from the reduction factor of daily rainfall (see figure -5-18), was considered as average rainfall in the Project Area, and used in the Rational formula for areas smaller than 100 hectares. The areal hourly rainfall obtained from the relationship of spot "ourly rainfall to areal hourly rainfall (see Figure 4B-19) was adopted to estimate the peak discharge for large areas up to 20,000 rectares using as basis for estimation of areal hourly rainfall "Ltained from Laoag and Vigan. The results are shown as follows;

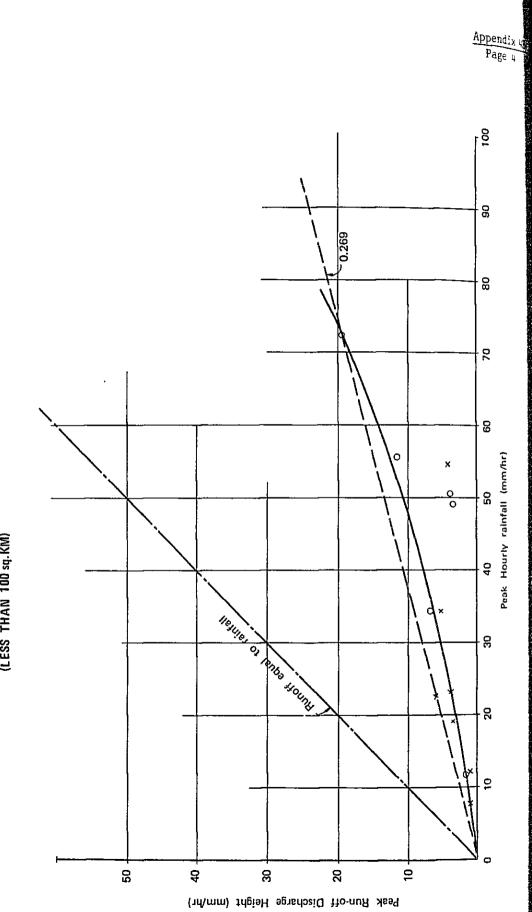
^{27:} reference was made to the study of NISIS-I, prepared by NIA, 1976.

Figure 4B-18. Reduction Factor of Areal Rainfall to Maximum Daily Spot Rainfall

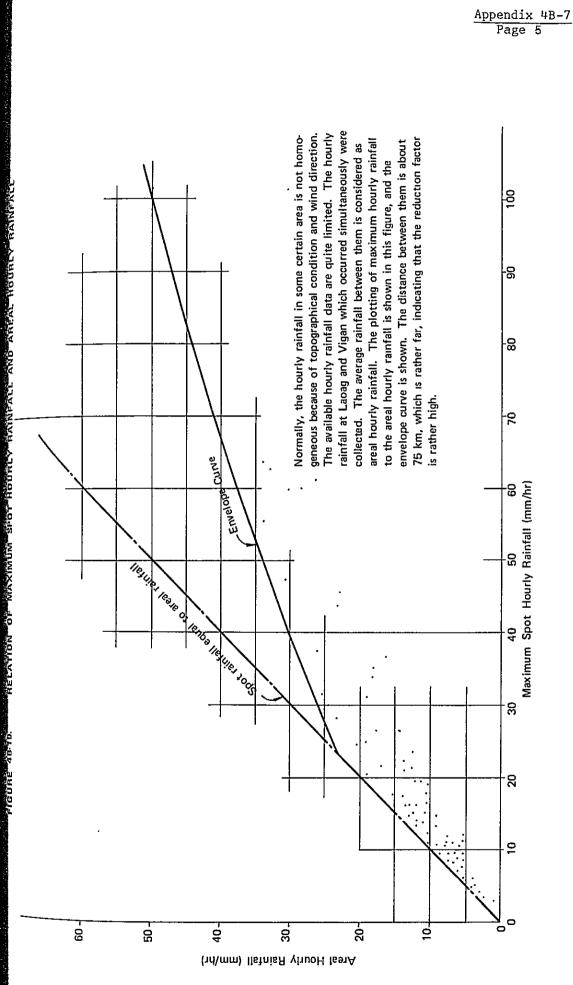
Note: Arithmetic mean method was adopted to estimate a reduction factor of spot rainfall to the areal rainfall. The maximum rainfall and the reduction rate to the areal rainfall was plotted on the logarithmic paper.

Areal Hourly Rainfall of Each Return Period

Return Period	Spot Peak Hourly Rainfall (mm)	Areal Hourl (1) (mm)	y Rainfall (2) (mm)
5-year	53.3	41.0	35.5
10-year	66.2	49.7	40.0

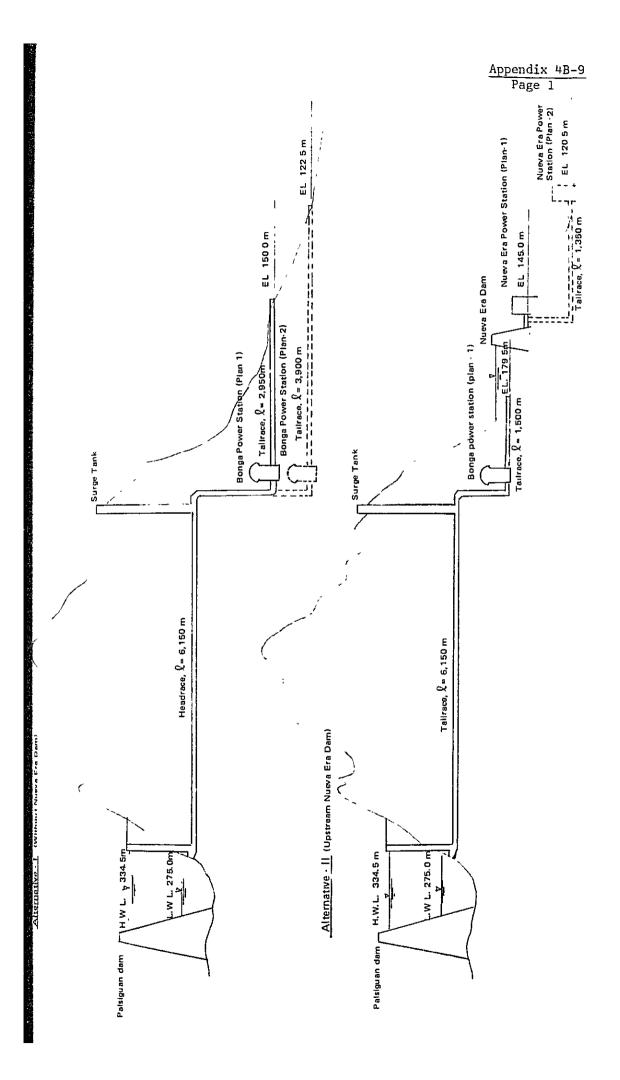

(1) : Obtained from the reduction factor of areal daily rainfall. (Fig. 4B-18)

(2): Obtained from the relation ship of spot hourly rainfall and(Fig. 4B-1:) areal hourly rainfall.


Appendix 4B-7 Page 3

	<u>Peak</u> Dis	charge of Hi	lly Land Area	
Ieriod	Drainage Area (sq.km)	Hourly Rainfall (mm/hr)	Peak Discharge (cu.m/sec)	Specific <u>Discharge</u> (cu.m/sec/ha)
1,5	1.0	41.0	3.1	3.064
	200.0	35.5	530.5	2.653
1,10	1.0	49.7	3.7	3.714
	200.0	40.0	597.8	2.989
	,			

Peak Discharge of Hilly Land Area



Description	Unit	FL 265.00 m	Low Water Level Et 275.00 m EL 2	Level EL 285.00 m	EL 295.00 m
Max. Discharge at Bonga P/S	D a	28,225	28,225	28,225	28,225
Design Effective Head	£	146.26	150.82	155.40	161.22
Installed Capacity	ΧW	35,200	36,000	37,400	38,800
Annual Generation	GWh	154.83	159.66	164.51	170.67
Effective Output	КW	32,586	33,776	35,198	36,718
Construction_Cost Bonga P/S_	P10 ³	527 , 241	538,325	566,564	584,127
Palsiguan Dam ^{2/}	₽10 ³	798,963	844,483	889,080	954,738
Tunnel	P10 ³	160,140	140,330	138,330	138,330
Power Plant	₽10 ³	143,600	144,400	145,600	146,900
Annual Cost Ratio	0 ⁰ 0	15.43	15.43	15.43	15.43
Annual Cost Value of Bonga P/S (C)	₽10 ³ /Year	81,353	83,064	87,421	90,131
Annual Unit Capacity Value	₽/KW	700.0	700.0	700.0	700.0
Annual Unit Energy Value	₽/KWh	0.429	0.429	0,429	0.429
Annual Capacity Value (B)	₽l0 ³ /Year	82,599	85,288	88,156	91,599
Annual KW Value ^{3/}	₽l0 ³ /Year	22,810	23,643	24,639	25,703
Annual KWh Value ^{±/}	Pl0 ³ /Year	59,780	61,645	63,517	65,896
(C) - (B)		- 1,246	- 2,224	- 735	- 1,468
Note: <u>1</u> /: (Palsiguan dam cost	dam cost + Tunnel cost) x	+ +	Power plant cost		

Table 4B-12. Comparison of Low Water Level

Appendix 48-8

Table 4B-13

Comparison of Alternative Plans

					Appendi: Page	
Table 4B-13 Compari	<u>son of</u>	Alternat	ive Plan	5		
1. Major Dimension						
ltem	Unit	Proposed Plan	Alterna Plan-1	Plan-2	Altern Plan-l	ative-11 Plan-1
a. Bonga Power Station						
Full Water Level	m	334.50	334.50	334.50	334.50	334 .50
Tail Water Level	m	150.00	150.00	122.50	179.50	179.50
Tailrace Length	km	2,95	2.95	3.90	1.50	1.50
Effective Head	m	150.82	150.82	177.32	119.82	119.82
Installed Capacity	KW	36,000	36,000	42,000	29,000	29,0 00
Firm Peak Capacity	KW	30,510	-	-	24,600	24,600
Annual Generation	MWh	159.660	159.660	185.300	123.400	123.400
Turbine	type	Deriaz	Francis	Francis	Deriaz	Deria:
	set	1	1	1	1	1
b. Nueva Era Power Station						
lligh Water Level	m	150.00	-	-	179.50	179 50
Lower Water Level	m	148.50	-	-	177.50	177.50
Tail Water Level	m	120.50	-	-	145.00	120.50
Tailrace Length	km	-	_	-	-	1 35
Effective Head	т	27.92	_	-	32,32	55 tai
Installed Capacity	KW	6,800	-	-	7,900	13,600
Annual Generation	MWh	39,540	-	_	54,700	73,200
Turbine	type	Kaplan	-	-	Kaplan	Kaplan
	set	1			1	1
c. Nueva Era Dam						
Catchment Area	sq.km	52.40	_	-	45.10	45.10
Dam Height		45.50	_	_	47.10	47.10
Crest Length	m	220.00	_	-	187.00	187.00
Dam Volume		141,000	_	_	130,000	
Diversion Channel		Open Channel 10mx7m	-	-	Tunnel Ø8m	Tunnel ø8m
d. Diversion Dam		No Provision	Provided	Provide	ed Provid	ted No Provisi

2 Evaluation of Alternative Plans

Item	Unit	Proposed Plan	Alterna Plan-l	ntive-1 Plan-2	Alterna Plan-1	Plan-2
Luctabled Canacity						<u>1 1011-2</u>
Bonga Power Station	KW	36,000	36,000	42,000	29,000	29,000
Nueva Era Power Station	KW	6,800	-		7,900	13,600
Jotal		42,000	36,000	42,000		-
h Annual Generation		-	•	,		,
Bonga Power Station	MWh	159.660	159.660	185.300	123.400	123.400
Mueva Era Power Station	M₩h	39.540	-	-	45.700	73.200
Total		199.200	159.660	185.300	169.100	196.600
Effective Output						
Bonga Power Station	KW	33,780	14,720	17,490	26,690	26,690
Nueva Lra Power Station	KW	4,510	-	-	5,210	8,410
Tota1		38,290	14,720	17,490	31,900	35,100
5 Construction Cost						
Bonga Power Station	10 ³ ₽	144,400	171,700	198,000	113,600	113,600
Nueva Era Power Station	10 ³ ₽	40,900	-	-	46,000	75,200
Nueva Era Dam	10 ³ ₽	121,600	-	-	119,500	119,500
Diversion Dam	10³₽	-	10,000	10,000	10,000	-
lotal		306,900	181,700	208,000	289,100	298,300
n. Unit Valve						
Annual Cost Ratio	00	15.43	15.43	15.43	15.43	15.43
Annual Unit Capacity Value	₽/KW	700	700	700	700	700
Annual Unit Energy Value	₽/KWh	0.429	0.429	0.429	0.429	0.429
7. Annual Value						
kh Value ¹ /	10 ³ ₽	26,803	10,304	12,243	22,330	24,570
Wh Value ² /	10 ³ ₽	76,911	61,645	71,544	65,290	75,907
Total (B)	10³₽	103,714	71,949	83,787	87,620	100,477
8 Annual Cost Value (C)	10 ³ P	47,355	28,036	32,094	44,608	46,027
⁹ . (B) - (C)	10 ³ ₽	56,359	43,913	51,693	43,012	54,450
¹⁰ . Use Ratio of Effective Output ³ /	0) 0	0.281	0.134	0.138	0.275	0.261
Note: 1/: Effective out		700₽/KW				

Note: <u>1</u>/: Effective output x 700 \mathbb{P}/KW <u>2</u>/: Annual generation (KWh) x 0.90 x 0.429 \mathbb{P}/KWh <u>3</u>/: Effective output x 4hr x 365days/Annual Generation (KWh)

Table 4B-14 Hydro Power Operation Study for 10 Year (1960 – 1969) - Bonga Power Station	Table 4B 15 Hydro-Power Operation Study for 10 Year (1960 – 1969) - Nucva Era Power Station	Note Bonga Power Station	Max Loss 13 B5 m (28 225 m ³ /s) Mini Loss , 4 23 (9 5 m ³ /s)	Turbin Efficiency $d = H W L$, $-W.L$.	Efficiency (1) = 0 000454 × d + 0 865 (28 225 m³/s) Efficiency (2) = 0.00134 + d + 0 700 (9 50 m³/s)	Generator Efficiency 0.975	Nucva Era Power Station Loss = 0 0015 x Q ² + 0 30	Turbine Efficiency Discharge Efficiency	2	m ³ /s m ³ /s 27.273 ~ 25.00 0.890 24.99 _ 20.00 0.895	- 17 50	- 12 50	12.49 - 10.00 0.872 9.99 - 9.00 0.850 8.99 - 0.800	iciency. 0 965	H W.L. : High Water Level (m)	-	Losses Losses (m)			Paak Kw Prak Duitput (Kw) Detroversee SWH see Studiet Grugerstick/SWH)
Table	Table																			

Appendix 4B-10 Page 1

Appendix 4B-10 **)** 3-**.** 3 , i Э 3 ٢ 3 Page 2 . Э 1 | 1 ٦ ţ 268569666 T N Z ¥ 1600J. 3600J. 56000-56000-36000-36,000. 5,6000. 5,6000. \$6000. \$6000. \$6000. \$600). \$eu0). \$600J. \$600J. 36000. \$6000. 36000. \$6000. \$6003-36003-16000. 16000. 56000. 3600J. 3600J. 3600D. 16003 16003 1 F F K 36000. 32610. 34646. 20991. 36000. 16551. 36000. 36000. 36070. 36070. 36000. 26961. 24224. 75178. 36000. \$5913. \$6000. \$6000. 36000. 36000. 36000-36000-36000-3 6000 -3 6000 -350al. 29432. 32665. 3433. 30000-30996-0.890 0.890 U.890 0.890 0.890 0.440 0.889 0.888 0.868 0.892 0.892 J.892 0.390 0.890 0.340 0.840 0.840 0.840 0.840 0.840 0.890 0.690 0.890 0.890 U.8P4 U.891 D.897 0.890 0.891 0.891 0.892 0.892 0.890 0.891 0.891 0.890 P . F F F 0.88.0 0.890 0.885 0.885 0.885 0.887 0.890 0.890 0.890 0.886 U.877 U.877 U.884 0.884 U.863 0.054 6.854 0.892 0.882 0.870 0.873 0 841 0 842 0 871 EFF ILF 0.888 0.887 0.885 0.884 0.890 0.890 U.877 0.872 U.874 0.887 0.887 0.887 ٤. 0.0 0.0 C 0 0 0 0 0 000 000 000 0.00 000 000 000 000 000 15.010 28.225 11.532 20.366 23.129 24.758 17.766 17.939 28.225 24.844 20.774 22.842 25.971 27.672 26.983_ 27.493 26.797 25.928 27.137 28.225 28.225 25.260 26.265 25.850 29.225 28.225 28.225 28.225 28.225 27.644 26.014 26.521 19.862 T.DIS. (CM/S) 6.055 28.225 22.016 RFQ.DI (CM/S) 6.019 4.700 4.700 7.949 9.894 9.125 11.210 10.980 4.700 5.764 7.514 4.700 4 70U 4 700 4 700 8.186 7.188 5.869 4.700 4.7004.4 4.700 4.700 4.700 4.700 9.546 9.546 8.531 10.893 13.808 12.453 P.HEAD (M) 170.050 170.050 167.213 169.736 170.650 170.650 164.251 167.947 170.650 166.891 168.681 169.315 167.750 167.525 167.044 167.278 166.739 160.465_ 166.543 166.778 167.078 165.840 165.349 165.008 166.576 167.182 166.337 163.589 162.353 162.563 166.152 166.081 165.652 166.081 166.054 165.936 E.HFAN (M) 176.255 170.650 168.537 164.000 162.651 164.616 167.123 170.723 170.650 167.552 170.429 170.462 174-033 170-650 172-455 166.216 166.081 165.652 165.846 165.849 165.707 166,917 166,254 167,017 168.320 167.886 167.488 166.081 126.054 105.936 167.698 160.833 160.686 164.609 167.034 167.507 L 055F5 [M] 8.245 13.850 12.476 9.553 13.850 12.045 13.509 12.778 13.170 10.978 11.074 13.850 13.786 13.050 13.850 13.850 13.850 13.850 13.850 13.850 13.751 13.189 12.102 12.703 13.430 .3.750 13.629 13.439 13.552 11.797 3.280 3.489 3.406 13.724 3.593 13.421 I 1,77.439 176.203 176.413 178.101 181.797 184.500 180.741 182.531 183.105 183.586 184.500 184.500 179.696 179.699 179.458 GROSS H (M) 184.500 184.500 184.500 181.063 181.600 181.375 180.894 181.128 180.549 180.315 180.393 180.628 180.928 180.092 179.931 179.502 179.931 179.904 179.766 180.426 181.032 180.187 H.W.L. (M) 334.500 334.500 331.063 327.439 326.203 326.413 328.101 331.797 334.500 333.586 334.500 334.500 329.696 329.699 329.458 330.426 331.032 330.187 330.741 332.531 333.165 331.128 330.549 330.315 330,393 330,628 330,928 330.002 329.931 329.502 329.931 329.904 329.786 331.600 331.375 330.894 NOV 2 S.TOTAL JAN 2 JAN TOTAI 1 0 Э Э))) ÷))) Э Э •) Э) С Э Э

)

)

,	ر))			J		ŗ	•	•)	_	2	;		,			;	,	J	ł		,			<u>}</u>	jbī	B	nc ag	li je	<u>×</u> کر	<u>4</u> E))	.0	1	i	,
K II	4176960. 7119600.	L C C R	18943360. 7732460.	7642681.	ē	237475ad.	$\circ \circ$	0255153. 0264632.	4	3977080.	512072d.	32	1052/01	1.154124	1156544	3277444	I)41647.	1.332720.	1 12 1840.	00 987 0	10167940.	LUL0890.	. +UEU/IE	1306329.	57	02.02	593232.	.00-4111	1 31 32 30.	3 35 1072.	1409700.	14456).	3	451468U.	54571501	7323140.	1942404.)	* *		
FFK XX	16000.	36000.	16004		35000.		34581 . 23316	131		3.7214.	\mathbf{r}	2 Bf U1.	4		· ?	1	30	27761.	21544.	-	- 	.1777	•	27487.	20004.	27445.		5 056 Z	5 10 C	• ()) 0 0 0	36000.	000	J 0000.	10031	16000	1000		36001. 36637.	. [•
Z Z	17404.	32070.	12214	857	649		34096. 27634	5 1		10542.	13003.	12105.	4627	4413.	+361		4341.	4303.	4264	-	+000+	4304-		5443.	\sim	+251.		4654.	3 "		5874.	э.	6290.		27014	30534.		-10667 -10672	445	
P.I FFI.	0.890 0.890		0.697		ΗĤ		0.431	- ^- - ^2		0.873	20	0.870	- 2	0.870	÷			U.868		3		0.368		U. du 9	.84	0.8/8		0.472			- 33	0.847	α.	0	, 0 1 1 1 1 1 1	0.890				
. EFFICE	0,881		. 8.7	0.875	87		0.880			0.815	0.784	s, , , 0		0.772	ς.		~	0.709	•	٢				0.176	. 8.	•			0.67.0	•	.	018,0	-	9	• α	0.473				
OVFR F	0.0	0*0	0.0	0 0	0.0	1		0.0		0.0		0.0		0.0	0.0	9	0.0	0.0	0. 0	0		0	 - -	0*0	0.0	0•0					0.0	0*0	0.0	0		0.0		0.0		
. T.DIS. (CM/S)	12.149	23.335	10.4		25.785		21.655	ľ		10.073	13.340	-	700	4.700	00.7.4	•	4.700	4.700	4.100		•	4.700		Η.	14.593	5	ļ	4.793	• *		4.700	4.700	4.700	÷	12.00	21.693	4 4	16-571 20-846	1+45	
	~ -		5	24.413	7.8		23.855	20.225		16.073	13,340	12.194	7.00	4.700	4.700		4.700	4.700	भ	002 1		4.700		5.891	16.593	4.700	4	4.700	4. 700	•••	•	4.700	٠			4.700		4.700	4-700	
P "HF/D (M)	169.307	63.17	59_44	155 320	50.64	, , ,	145.521 160 675	89°26	•	128.309	24-67	21.84	1 5	121.265	20.4		6. 9	118.569	17.6			118.640		10.9	113.889	17.2		127.157	4 - • • • •	00.00	56.0	159.431	65.4		07*80	167.272	i	169.730	70.45	
E.HFAD (M)	144.213	64.19	0, 20	55	1.10	1	145.532	132.69		131.598	30.12		ŗ	127.301	20.) 	5.54	124.605	1. 69	, ,	7 - C 7 - C	124.676	i		117.309			133.193	77.57	14.00	62 • C9	105.467	71.44	ļ	11.54	168.739		173.167 171.863	72.00	
. LOSSES (M)	12.978	2.83	0 0	3.0	13.392	ہ ا	13.789	9.850		10.161	•	ς.	ā	7.014	81		. 81	7.014	. 31	č		7.814		_	10.430	7.814		7.014	ະ	•	а •	7.814	2	, , ,		12.383		10.419		
GROSS H (M)	183.157	77.02			9		159.371	40.54		142.159		с п 1	15 46	135.115	94. 34		33.36	132.419	31.51		20	137.490		32.79	127.739	31.07		141.007	10		69.90	173.281	79.26		11.28	181.122		183.586	4	
H.W.L. (M)	333.157	27.02	PC - F C	12	5		309.371 106 676		•	292.159	88	85.7	7 30	285.115	84.1	2	'n.	282.419	÷.	ç		287.490	;	82.79	77	1.07		291.007	ny•11		19.	323.281	5.9	:	32.11	331.122		333 .586 734.008	101 1 *	
		NOV 3	S.TUTAL	DEC 2	DEC 3	S.TUTAL			S. TOTAL	FEB 1	FEB 2	FEB 3	5.TUTAL	MAR 2	MAR 3	S. TOTAL	APR 1	APR 2	APR 3	S.TOTAL	1 7 AM	2 TAM 4 4 4	S. TOTAL	1 NNF	JUN 2	E NUL	S _e TOTAL			S. TOTAI	AUG 1	AUG 2	AUG 3	S.TOTAL	1 1 1	SEP 3	S. TOTAL			2410140
,-)	2)))))					ر			2		0			0			כ			, .)	•

-

T.W.L=L5J.N

BUNGA P/S

1961

		¢)))	ı	,	4)	ۯ	ł)	i	ţ	i a)		;		<u>.</u> נ			di: uge		+B- ,	- <u>1(</u> ,	<u>0</u>		 ,	;	¢
	HWX	310512J. 671424U.	2881200. 12735030.	7440240.	8253432 8253432	6790320.	7432824.	195	3406244.	44+3528. 17	10.12 80	1474320. 2117220.	590683J.	1396240.	1741040.	5534430. 1770240.	1724440.	2498496°	2315520.	1456000.	1144680. 4522400.	12070-0.	1224320.	3935520.	1439940.	167534+	1542400.	782 ,520.	7394160. 17116040.	7197600.	6н]]]69. 6005736.	22	141403248.	
	PFAK KH				00001	36000.	3349.J.		32494	51 834.	51.5	17611		10631.	1042 ·J.	30213.	30001.	- 29743.	2453\$.	J0143.	30750.	-\$ 1 3 1 3.	52742.	• ()) 0 (36003.	36000	36000-	36 000.	36003.	16600.	16000 . 36000.	+ + + + +		
	х 3	12438. 27997.	.40051	31001.	11203	28293.	2804L	176.24	• • •	14143.	1172.	4 0 Z O		7401.	7421.	1376.	206	9464.	8394.	6075-	4787.	5032°	5118. 5100	• • • • • • • •	5946. 2153	¢346.	7885.	32 623.	30809.	29490.	28334	-		
07641	, FFF1 .	0.842 0.301		0.989 U.BBB	0.886	88	0.879	5		0.876	5	0.875 0.574		0.474	0.873	0.873	U. 972	0.872	87	0.873	d7	87	0. 477	C uu • n	U.887 D.884	0.890	0.892	U- 490	0.890	7	0.892 0.392	,		
0-CC1+1+M+1	1 67 1 64	U - 845 U - E 67	U.838	U.874 U.861	478.C	0.860	0,8.0 לים.יט	128-11	1.0 • 0	1.794	0.7vd	0.795	ECE -	162.0	197.U	0	0.792	018-0	0.400	0.785	0.741	0.784	0.789	201-0	018-0	0.ALA	0.425		0.473	0.971	U.868 J.844			
	суян Г. (СМУS)	c 0 0	0.0		0.0	0.0	0.0	0-0	0.0	0.0		0.0	c c	0.0	0.0	u•0	0.0	0•0	0*0	0.0	0.0	0*0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	000			
75 1467	T.015. (CM/S)	9.206 13.933	9.745 22.720	19.440	· · ·	22.088		- 15.666	12.265	12.	7.354	7.699		7.674	7.282	7.297	7.175	4.114	4.43L	6.062	4.700	4-840		•	4.700 4.700	4.700	5.686	÷.	21.901	21.334	19.837			
295.1	REQ.DIS . (CM/S)	9.206 19.933	8.145	19.440		2,2.088 35.038	23.571	15-646	12.245	512.61	4-700	4.700	. 100	4.100	4.700	4.700	4.700	5	8°431	6.062	4.700	4.840	4.700		4.700	4.700	4.700	4.700	4.700	4.700	4.700 4.700			
BUNCA PIS	Р.НЕДП (4)	170.02U L67.521	67 . 09	163.963 161.754	57-20	4.	2.97	07.05		4.93	5.9	131.535	1	159.651	.21	29.30	127-548	64°9	25.77	õ	30.43	32.78	138.410	0.1c	158.796 14.7 481	5.0	0.19	67.0	7.23	67,33	170.158	`		
11	1.5	174:066 169-549	1.442	163.958	9 ° 1 4	54	0.40 0.43	دم . F	138.047	0.43	<u>8. 61</u>	136.454 136.454	0 1 1	134.857	4.33	.41	132-710	2	U. 3J	133.610	6.47	36.77	144.446	e • 1 e	L64.E32 168.617	72.75	5.52	166.067	d.64	H.91	172.220	•		
	- O X	9.804 11.822	<04.4	12.0U3 11.646	2.914	12.497	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	13.179		~	6.673 8.931		8.924 B.924	٠	5	8.688	-	31	8.247	5	• 85	7.814	•	7.414	e e		12.787		2.27	11.788 10.168			
	N 2	183.870 181.371	ว่า เ	175.604	71.	167.297	56.30	53,5	151.226	н. Н	E L	145.385	1.1	144.010 143.781	43.06	42 .1 5	45	• 30	39.62	141.857	4 4 • 28	46.63	152.240 145 520		172.046	0.57	4.04	180.954	1.08	81.18	184.008 184.500			
		333.870 331.371		325°604	21.0	317.297	00.823	13.555	301.226	98°,	97.380	295.385 295.385	717 70	293.731 293.731	93 . U£b	92.1	291.398	£ 0.6	8	291.857	- - - -	9.06	302.260		322.646	30.57	34.0	330.854	31.0	31.18	334.008 334.500			
		2 707																															TOTAL	
)))		ว)))	J)		С)		C)))		ł		`)	2

\$, 3	>	>)	٢))))	ъ з)	<u>Ap</u>] 2	Page	x 4B-1(5')	0.892 17464. 16031. 4311.17. 4 0.812 15915. 56311. 5614.03. 0.817 1302. 51000. 115004.04.
	K NH	3779040. 7334640.	4842003. 15955680. 4813643	84m1630. 9504000.	24390100 7836723. 74400400. 5932552.	21009004. 3291300. 3201300. 7504954.	1405/688. 1403043. 23251241	2205132 6190392	2001000 1426480 1973640	1476490. 17304-00. 5163712. 9047392.	1167340. 1190640. 1233120. 3577600.	1272720. 1313693. 1903493. 403490.	13346240 23542240 2577528	1,48,500 1,514160 4,995120 60110900	6.5[1.16]. 501-16]1. 50550043. 1156030194.
	CEAK KW	36000.	36000.	30000	3545+. 3545+.	23995. 33495. 33495.	12402 .	52551.	32243.	30174. 30176.	41233- 31952- 32870-	23472. 34944. 34000.	56000. 56000. 56000.	3600). 3600). 3600).	16001. -6111. -1112.
	х Т	15746. J0561.	20175-	36000.	32453. 30835. 22093.	13714. 13589. 10753.	3107.		4027. 4027. 9211.	8237. 8045. 1945u	4760. 4984. 5134.	5487. 5487. 5695.	5977.	0142. 6409. 20813.	17464- 15985- 148075
.W.L=150.A	*1433*d	0.892 U.891	0.891	0.886 0.886	0.884 0.882 0.880	0.300 0.375 0.877	0.878	- F P	U. 476 U. 476	U.876 0.475 U.473	0.875 0.J76 0.878	U. 879 U. 881 U. 683	0.895 0.896 0.886	0.8°9 198.0 198.0	268 ° 0 27 8 ° 0 26 8 ° 0
T.W.L	ц Ц	0.473	р •	0.883 0.863	0.877 0.471 0.844	0.855 U.855 U.855	0.804 0.05	U.804	108°0 108°0	U.802 0.800 U.835	0.783 0.786 0.790	0.793 0.793 0.793	U .KOC 0 . 23 0 .804	0.314 0.414 0.440	0 #728 0 #472 0 # # 7
	OVFR F (CM/S)	000	0.0		000°0	0.00	0.0			0000	000	0.00	200°0	000 000 000	000
- E	. T_DIS. (CM/S)	21.499	14.648 10 603	26.188	25.205 24.690 14.529	11.531 11.053 7.541	7.183	7.027	7.027	7.706 7.591 14.472	4 • 700 4 • 700 4 • 700	4.700 4.700 4.700	4.700 7.832 4.700	4.700 4.700 14.432	12.488 13.543 4.774
- 1 4h3	RFU.DIS	4.700 13.082		28.168	25.205 24.e9U 18.529	11.581 11.653 9.541	4.773 4.700	4.700	4.700	4.700 4.700 18.872	- 4. 709 - 4. 700 4. 700	4.700 4.700 4.700	4.700 7.832 4.700	4.700 4.700 4.700	4 - 700 4 - 700 4 - 700
RUNGA P/S	H - 4	170.050	167.692	163.687 158.436 158.436	153.063 149.325 145.302	143.216 141.102 139.937	138.928 138.374	, -, -, -, -, -, -, -, -, -, -, -, -, -,	136.457 135.536	134.570 133.677 128.134	m N F	142.859 147.064 151.887	154.980 156.726 158.487	163.000 168.211 169.315	120-736
æ	E.HFAD (M)	173.091	172.216	164.203 158.439 158.439	154.231 149.721 147.854	144。954 142。740 143。713	143.597	14	141.764 141.513 140.490	139.486 138.648 130.556	138.369 141.258 144.829	148.895 153.100 157.523	161.016 161.579 164.523	169.116 174.247 173.660	175.463 171.064 174.202
	L DS S (M)	11.409 12.326	9°32	13.354 13.354 13.847	13.201 13.154 11.298	12.112 12.212 10.044	8.781 0.010	, , , , , , , , , , , , , ,	8.794 8.896	8.934 8.879 11.433	7.814 7.814 7.814	7.814 7.814 7.814	7.814 8.997 7.814	7.814 7.314 9.505	8.121 0.010 10.010
-	GROSS (M)	184.500	81.54	177.537 177.537 172.266	167.513 162.875 159.152	157.066 154.952 153.757	152 - 778	51.4×	150.307 150.307 149.386	148.420 147.527 141.969	146.193 149.072 152.643	156.709 160.914 165.737	168-830 170-576 172-337	176*930 182•061 183•165	183.500 184.008 184.500
	Ξ.	334 . 500 332 . 742		327.537 322.286	317.513 312.875 309.152	307.066 304.952 303.757	302.178		300.307 300.307 299.386	298.420 297.527 291.989	296.183 299.072 302.643	306.709 310.914 315.737	318.830 320.576 322.337	326.930 332.041 333.165	333 586 334.008 114.500
	-	1 100 I	NDV 3 S.TOTAL	DEC 2 DEC 3	14N 1 14N 1 14N 2 14N 2	5.10TAL FEB 1 FEB 2 FEB 3	S.TOTAL HAR I HAR 2	HAR 2 HAR 3 S.TOTAL	APR 2 APR 2 APR 3 101 3	5. TDTAL HAY 1 HAY 2 HAY 3 S. TDTAL	JUN 1 JUN 2 JUN 3 S.TOTAL	JUL 1 JUL 2 JUL 3 S.TDTAL	AUG 1 AUG 2 AUG 3	SEP 1 SEP 1 SEP 2 SEP 3	001 L 001 Z 001 Z
J	o	c)	2)	S)	2	С	с с	Э З))	}	[2~

כ

.

,

,		J)	1		,			j)	ł	i)	•		,)			ڊ ۱		-	J	\$))			<u>۔</u> ک	<u> P</u> I		_	ge	_	3	+ <u>B</u>		, T(<u>)</u>		,	F F)			3	
K NH	61676.HQ -	7941120.	6567/60.	L 405 45 40.	.000000		04000to	14498445.	7397420.	8142000.	8212428.	24250448.	515a490.	2412683.	4271542.	17163672.	1972163.	2 3624 60.	2309205.	6313648.	2130-00.	712440.	2 14 15 40	L. L.D.C.P. J.	17.164+0.	1741440-	1+53072	6146157.	1361260		6046430. 6946430.	6 1 m 7 m 201 .	4 01 01 01 0 0		1437044.	7 34 42 48 .	133 co 1 .	1383640.	1ol 7528.	4342728.	1525203.	5355044.	7-14-16-00.	1442 8400	7016107	5H24F00	271 9/42	L5050792.		145024736.			
IFAK KJ	36000-	.(['('at	.(C0a£	00044		-0000F		• • •	36000	36003.	35154.		14558	34595.	34413		14623.	14805.	14922.		4-36-4	34947			15037.	4483	15183.	•	155ሥራ.	26500	14041		. 7 5 2 5 4	16225	4580		3544).	11 003.	16000.		36000.	16001.	6000		16007.	.0000.	16001.						
X Z	1282	3 50 48.	27374.	26417	1004		• > = + + >		12 9UB	33925.	111 32.		14	37	3752		.019.	d677.	9747.		2	P 8 5 2	9541)	7111.	15754.	5523.		5531.	11997	20644		17509-		5417		5564.	578h.	.1213		6345	24396.	29340.		2	24270.	12	2					
P.€Ff].	9.9	0.840	н В +	- 1	0.848		٠	ć	1	• 89	0.882		• 88	0.8AL	. 88		0.881		.88		۴P°	•	a		0.881	чß.	0.882			0.882	0.481	•		• •	0.681		٠	÷	ి			0.891	. 8 c		. 89	œ	89						
. EFFICE	•	0.878	•		0.815	•	•			0.880	0.874		•84	0.614	٠		J - 807	0.811	0.811		9	В	. 01			۰.	0.744		0.400	÷	0.438		- H 2	0.802			ъ.	01.400	18.			c?b.U	τa.		~		E.	•					
UVER F		0.0	0.0	0.0	0.0	0.0	•	0		0.0	0.0		0.0	0-0	0.0		0-0	0.0	0.0		0*0	0.0	0.0		đ.0	0.0	0.0		0.0	0.0	0.0	ı I	0.0	0.0	0.0		0.0	0.0	0.0		0*0	0*0	0.0		0.0	0.0	0.0	•					
⊢ u	12.045	- (~	ŝ	1				c.	<u>.</u>		14.021	9.636	il.47u		6.480	7.340	7.426		6١.	• 49	• 25		-0	L3.426	4.700		4.700	9ª 764	17.106		ି,	1	4.700		4.700	4.700	5	1	4.700	7.4	۳,		٠	. 17.141	m						
ພິບ	12.005	m ;	2	. 77	4.770	- 3B		40 V		5-42	2.5		130.021	8.636	11.476		4.700	4.700			4°200	4.700	•		4.700	4.700	•		5.	. 7	17.166		- 95	. 20	4.700		4.700	٠	•			4.700	5		• 70	4.700	.70						
	169.540	Ξř		61.3	162.397	60.2		ני 12			41°7		45°42	145.579	44.07		145.635	40.4	40.9		4	7.14	47.02		47.	6.81	7.66		49.57	9.25	147.045		2	44 . U	145.514		148.964	54.00	61.76		2	9°04	67.42		~	70.1	70.5						
Ē	170.552	01.24 A 76		63.41	168.201	62.87		57. J.A	151 700		48°36	•	4 4	149.991	4 u . B5	-	150.573	51.52	52.00		152.159	52.15	52.15		153.045	52.19	53°91		55.60	52.83	150.188		46.39	0.39	151.550		155.000	60.04	67.80	;	22	t.05	69 . 1 4		69.0	16.	75.72						
ŝĒ	12.438	2 G 		11.767	5.	٩.		2	12 520	ດ ເ ຈັງ	2.5		• 1 8	9.434	- 6.	1	H 564	-		i	8.845	• 83	.72		8.242	, , ,	. 81		. H	~	70		٠	8.299	8.		7.814	• 8 I	. H1	:	1.814	е. С	2 • L		12.163	0.¢9	. 77						
	183.390	77,59		175.180	6.24	74.11		æ	1	3	01.61		12.65	15 9. 429	28.82		250°461	60.31	0.80		161.004	60.99	60.87		161.287	00.60	61.73		63.42	163.103	60.8		158.919	58.69	59.30		162,814	67.85	75.01		8 . .8	5	81.27		181.251	84.00	84.50						
	333.390	27.59		325.180	26.24	24.11		20.38	6CC-71F		10.11	r r		104.429	8.82	د د	910.7UC	5	a .		311.004	10.9	10.8		311.287	10.66	11.73		13.42	313.103	10.89		308.919	08.69	09.36		312.814	L (. 8	25.0		τ.	31.89	31.27		331.251	34.0	34.5						
		NON 3	S. TOTAL	DEC 1	DEC 2	DEC 3	S.TOTAL	JAN 1	C NVI		0 2147 10101				7 T T 5 3	2• 1014L		NAK A	345 3	3. TUIAL	APK 1	APR Z	APR 3	S. TOTAL	HAY I	HAY Z	HAY 3	S.TUTAL	I NNC	JUN 2	S NUL	S. TOTAL	Jur I	JUL 2	JUL 3	S.TOTAL	1 904	AUG 2	AUG 3	5. TUTAL		SEP Z	SEP 3	S. TOTAL	001 1	0CT 2	OCT 3	S. TOTAL	TOTAL	5			
						S				>																																									J		

ţ	;)	ţ)	,)	3	ز	.	3		pendix Page	7	,
		232320. 804300J. 5374500.	16946880. 1487840. 4441880.	8491520. 22211040.	6000. 8640000. 5504003. 26734003.	4444443. 444444444444444444444444444444	42336444. 76440790. 8640030.	- 55 J4:00.	864 JUVO. 864 JOJJ. 84403J0.	<pre>2345 3000 3 15 3 30 6 5 1 1 t uu 9 2 3 4 b t d0 9 2 3 4 b t d0</pre>	2002/122. 5396000. 5116560.	16017120. 81216JO. 645160JJ. 74180Jd.	7725690. 8916880. 8915016.	644[040. 61 J264J. 5355120. 179+3400.	0.0 0.910 0.497 16.422 16.421 15.410 - 5.117.410
	PFAK KW	36000. 36000. 36000.	30001. 44000.	.00032	4:00). 4603). 34503.	\$6000. 76000. 36000.	\$6000.	1e000.	34000. 5600. 5600.	16000 36000 10005	s6000. 36000.	56000. 36000. 36000.	46000- 46000- 46000-	\$6000. \$6000. \$6000.	1000
	X X	9718. 36000. 24394.	32300.	33680.	36000. 36000. 36990.	36000. 36000. 37000.	3¢000.	3600 U .	36000. 36000. 36000.	34612. 35465. 3445.	24505. 21319. 23854.	33840. 24405. 27722.	32207. 33412. 33769.	27040. 25426. 22313.	-10011
1.4.1=150.0	P.È.F.T.	0.892 0.892 0.891	583	0.840	сн. 28. 28.	0.889 0.889 0.849	0.838 0.838	0,888	0.883 0.887 0.897	0.847 0.47 0.847	0.958 0.869 0.841	675 888	0-840 0-450 0-490	U. 471 U. 471 U. 47	2010 2010 2010
ן <i>א</i> יר	<u>u</u>	0.831 0.892 0.457	U,885	479 U	U . F 3 F U . 485 Q . 885	с.447 С.947 С.934	3.888 U.338	6 . 886	0.8888 0.8897 U.PA4	, 881 1, 6, 7, 5 1, 882	0.855 0.842 0.842	U.840 0.867 0.867	0.870 0.875 0.880	0.000 0.450 0.457 0.474 0.474	200 212 201
	UVFA F (CM/S)		0.0	0.0			0.0	0°0	000	0000	0.0	000	000	000	
2	• T.DIS.	6.958 24.225 17.795	24.945	23.904	ഹാ	27.177 28.389 24.225	28.225 28.225	28.225	24.225 24.225 26.847	25.634 20.344 26.100	14.24J 15.632 15.039	23.997 23.997 18.479 19.798	22.877 23.7U3 23.957	201	484 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
(76 1	RFQ.D1 3 (CM/S)	4.700 4.700	8,651 4,700	6.499		8.813 8.412 0.569	4.700 4.700	4.700	4.700 4.700 4.700	4 - 700 4 - 700 4 - 700	4.700 4.700 4.700	4.700 4.700 4.700	4.700 4.700 4.700		4.700 4.700 4.700
B'JNCA PZS	P.HEG() (M)	170.050 170.050 167.982	167.399	. e .	107.543 166.261 165.109	164.446 103.708 164.014	102.352 162.004	161.062	161.007 160.426 160.171	158-910 158-215 158-703	162.184 104.970 168.485	166.452 167.785 167.342	166.500 166.305 166.500	67.7 68.0 69.3	169.737 170.155 170.450
5	<u>.</u>	175.505 170.650 170.841	68 . 7 2.		167.705 166.708 165.454	lf 4. 631 l63. 788 l64. 014	162.352	161.062	le1.007 l60.426 160.418	164.430 159.560 159.097	164 . 354 164 . 354 172 . 764	323	168-194 167-833 167-357	69-97 71-42 73-08	1 71 . 605 1 74 . 970 2 97 . 347 2 05
	~ ~	8.595 13.850 10.991	~ ~ ~	N I	0411	13.005 13.830 13.850		Э° В	13.850 13.850 13.605	13.160 13.505 13.454	11.190 9.953 9.571	993 436 775	12.712 12.922 12.993	1.10 0.08 0.08	11, 481
	C P O	184.500 184.500 181.832	81.	80.72	81°3 80°1 78°9	178.296 177.618 177.844	176.202 175.354	74.91	174.957 174.276 174.021	173.760 173.065 172.553	176.034 178.820 182.335	1. 19	180,906 180,755 180,350	81.5 82.5 83.1	163.546 184.038 164.500
	ч.Е ч	334.500 334.500 331.832	31.2		280. 280.	328.296 327.018 327.864	326.202 325.854	24.	324.857 324.276 324.021	323.760 323.065 322.553	326.034 328.820 332.335	330.702 331.635 331.192	330.906 330.755 330.350	33-15	333.586 334.008 334.500
		1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S.TOTAL DEC 1 DEC 2	DEC 3 S.TOTAL	JAN I JAN Z JAN 3 S.TQTAL	FEB 1 FEB 2 FEB 3	S.TOTAL NAR <u>1</u> MAR 2	MAR 3 S.TDTAL	APR 1 APR 2 APR 3	2. 1014L MAY L MAY 2 MAY 3	JUN 1 JUN 2 JUN 2 JUN 2	S.TOTAL JUL 1 JUL 2 JUL 3 JUL 3	AUG 1 AUG 1 AUG 2 AUG 3 S_TOTAI	SEP 1 SEP 2 SEP 3 S-TOTAL	001 1 001 2 001 2 001 2 8.101 4
,	C	C)	С)	Э.))	с	5) :)))		ي.

,

					,			•			,	ł	נ	•		2	-	2	ł		3		đ.	9,		3		-	>		,	<u>Ap</u>	-			ix ک		<u>B-</u>	_	-)		ų	
	K 111	٢	1986010.	++2000J	3	7386400. 6543000		1	- 04 - 74 C 2 - 44 F 2 20			22	4472400.	3551240. 427167.	22		200	1129923.	32224 bJ.	1715083.	1)7344).	•0~505f	5410040.		1252512.	3245712.	3270000.		5653960-	5	467090.	1075272.	1011040.	1116720.	128462+.	3413134	1 24 24 2 1	12+0484.	. ((21212	1541600.		1202003. 422476ª.	1 40 4472 54 .	
	0. 6K K.	r (1600).	16000.		6033		16003.	1	1947.	í le l	•	~	242344 24608	· once o	242542	27485.	7041		1311	102	26703.	4444	5.00	27275		26324 . Jeogr		2	593	24054	635	27214.	906	31236.		210	183591°		3357.	. 4	1.6		
	T Y		4275	27904.		32360.		.	1603	1991	1914		20719	12112		4342.	1.5	280		4232.	181	-	1003	+100V	4858.		14625. For7		• • • • •	ŝ	4032	6	4216.	6 53	4800.			5252		659J.		747		
-11,00	P . I F F T .		ŝ	0.8.0		3.889 0 407	5	- 1 8	HH H	0.480	2 B	2	87		-	U.869	0.469	3.86B		0. JAB	8	ŝ	4	946 0	0.867		0.8nt		•	. 96	U. 265	. 85	ۍ . د	0.872	. 87	ţ		0.379		0.879	55			
- 1 - 1 - 1	64 10		0.820 11 0.11	0.400		0.875		U.883	704-0	0 48-1	0.875		U •840	0,440		~	5	0.704		0.767	٠	•	5	: ^	0.773		197.0		-	•70	P - 1	.70	.70	0.778	0.743	r F	. n	0.792		0.740 1.740	•	-		
	3 1 1 1 1	~	0.0 0	0.0		000		0.0		0.0			٠		٠	0.0	0.0	0.0		0.0	0.0	0.0	0.0) C	0.0				2	0.0	0-0	0*0	0*0	0.0	0.0	;	4	0	•					
	. 1.015.	(CM/SI	130.047	20.006	1	23-907	* •	n°1	2.44	23 225	8.22		C.	12.771		4.700	٠.	4.700		4.700	~	~	~		5.192	1	15.337	2 1	-	4.	4.700	· ·	ς.	4.700	4.700	r	•			5.468	•	•	•	
	н ^г 11,	にいくかしい	4.700	20.006	1	206°EZ		1.64	~	28.611			ີ	12-771	•	4.700	4.700	4.700		4.700	4.700	4.700	4,709	002 - 4	5.392		15.337	י ד - כב	-	•	4.700	•	•	4.700	٠		•	4.700	•	5.868		5		
SZA VUNIH	P . HE & U	Ĩ	24	166.550		162.959	,	18.64	44.50	143 184	35.08		28.9	124.431	•	664.051	19.38	118.058		1 2	15.5	I4.30	13.0		116.627	1	112.702			н.	111.794	12.	16.3	127.145	32.3	i r	30.8	141.631		141.626		4F•14		
1		(M)	10.24 74.25		-	163.838 141 506		06.62	50.61	143.184	35.09		÷	128.734	-	•	25.	124.094		22	1.54	20.33	19.74		122.455		116.803	91 ° C 1		17.25	117.830	18.67	22.40	133.141	36.36		42.50	147.667		147.297		41.30		
	C	(H)	ۍ پ ^ت • •	48	 	12.013		3. fb	2 - 7	13.850	3.5		• 74	144.6		16.	16.	7.914		1.314	5	18.	8.	1	8.022	i	9.740 8.536		F 2 *	5	7.814	3	~	7.014	в.	;	.	7.814	•	8.179		5		
	GRUSS H	(W)	84- >U	180.409		176.809	3.	6 I. 66	63-35	157-034	46.93		42.7	136.241	•	36.4	33.23	131.908		130.667	29.35	28.15	27-05	26.00	130.477		126.552	20.00		25.00	125.044	26.68	30.2	140.995	46.1	r c	50°71	155.481		155.476		7 7. 47		
		(11)	97 - 76 97 - 76			328.809 323.600		-	2	307.034	8		92°76	284.281		4 . 38	83.23	281.908		280.667	79.3	78.1	77.		280.477		276.552			5.0	275 . 644	6.6	80.21	290.995	96.19	i	1/ 00	305.481		305.476		ň		
				NOV 3	S. TDTAL			S.TOTAL		JAN 2	JAN 3	S.TOTAL	FEB 1	FEA 2 FFA 3	5. TOTAL	HAR L	MAR 2	HAR J	S. TUTAL	APR 1	APR 2	APR 3	S. TUTAL MAY 1	C AVW	MAY 3	S. TOTAL	I NOP		S.TOTAL	111 1	JUL 2	JUL 3 S.TOTAL	AUG 1	AUG 2	AUG 3	SITUTAL		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S. TOTAL		1	S. TOTAL	TOTAL	
)		>)			כ		כ			כ))			כ		c	>		C		1.	>		2		•	,)		,	١					

.

)

.

ŀ

	١))))	3 3	. (Append Pag	lix 4B-10 (e) ⁹ /)
Кын 1266483. 2986720. 134666	5457640. 1559030 5034720. 3938032 10430532. 3485520.	3404560. 3411632. 3411632. 2447103. 2447103. 244120.	9203033. 1402003. 1565923. 1933536.	13454296. 13454299. 1545299. 1652240. 14625240.	171,40) 1646,80 5164200 1257560 127740 127740	131120 1320460 1484416 1484416 1331240 1331240	147340 147340 147340 147340 144040 7146400 7146400 7146400 7146400 714747
РЕАК КН 53701. 33301.	34241. 34237. 33846. 33386.	33291. 52935. 176935. 17694.	12145. 12003. 16693.	224 229 219	31012 51517 528c1 528c1 53967	34439. 55273. 15767. 15767. 15000.	
КМ 5277. 12028. 6232	6492° 20976 14538	14454. 14438. 13199. 13199. 138.	60°5. 06J8. 7324.	5771. 0597. 6934. 7513.	7135. 6245. 5137. 10585. 5321.	5463. 5619. 5619. 5751. 5822.	
P.r.FF]. U.879 0.878 0.878	0. 881 0. 881 0. 880 0. 879 0. 379	0.878 0.976 0.577 0.477 0.477 0.477	0.876 0.876 0.975	0.876 0.877 0.376 0.376 0.376	0.876 0.876 0.878 0.878 0.870	U, 831 U, 832 U, 882 U, 883 U, 845 O, 8845	0.848 0.849 0.840 0.840 0.840 0.841
. EFFICF 0.793 0.835 0.797	U.831 U.831 U.864 U.864	0,796 0,736 0,419 0,419 0,419	962 ° 0 862 ° 0 162 ° 0	U.790 0.795 U.795 0.795		797.0 205.0 206.0	
0.0 0.0 0.0		00 000 000 000	000	000 0 000 0	000 000		
. T.UIS. (CM/S) 4.700 13.498 4.700	5-553 17-767 12-214 12-277	12.988 13.120 9.170 7.025 0.394	5.631 6.184 6.432	5.373 6.119 6.414 7.039	6.701 4.935 9.459 9.459 4.700	4.700 4.700 4.700 4.700 4.700	4-700 4-700 4-700 4-700 4-700 4-700
RFQ.015 (CM/5) 4.700 10.494 4.700		12.988 13.12) 9.170 7.625 6.394	4.700 4.700	4.70U 4.70U 4.700 4.700	4.700 4.700 9.459 4.700	4 - 700 4 - 700 4 - 700 4 - 700 4 - 700	4 - 700 4 - 700 7 - 7 7 0 0 7 - 7 7 0 0
P.HELD (M) 142.138 140.611 145.452	47.J 44.2 42.7 41.6	140.593 139.068 138.228 137.380 137.371	136.210 135.400 134.240	450 ~ ~	134.632 133.79J 138.752 138.788 143.18J	146.006 149.041 150.169 153.229 154.841	162.116 166.561 163.319 169.319 169.73 169.73 10.000
E.HFAU (M) 148.174 143.601 151.2888	152.840 147.107 143.513 142.304	146.320 144.6PB 142.298 142.335 142.252	141.944 141.025 139.519	142.303 142.110 141.703 140.580	139.973 139.438 144.788 142.654 149.210	152.642 154.077 156.205 150.205 159.265 160.677	1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. LDSSTS (M) 7.814 10.860 7.914	8.073 10.979 13.049 13.200	8.123 8.230 9.789 8.849 8.369	8.116 d.291 A.571		8.489 4.202 7.814 9.364 7.814	7.814 7.814 7.814 7.814 7.814 7.814 7.814	7.814 7.814 7.814 12.674 12.674 12.541 12.541 12.541
6ROSS H (M) 155.988 154.461 154.461	5 5 8 0 5 5 8 0	154.443 152.918 152.078 151.230 151.230	150-060 149-316 148-090	150.318 150.378 150.060 149.196	148.482 147.640 152.602 152.538 157.030	160.456 161.891 164.019 164.019 167.079 168.691	N .A.— A @A.A.
H.H.L. (M) 305.908 304.461 309.707	310.912 308.086 306.602 305.504	304.443 302.918 302.078 301.230 300.621	300.060 299.310 298.090	00°33 00°00 99.1	296.492 297.640 302.602 307.030	310.456 311.891 314.019 314.019 314.079 318.691	
NOV 1 NOV 2 NOV 3	5.TOTAL DEC 1 DEC 2 DEC 3 5.TOTAL 5.TOTAL JAN 1	JAN 2 JAN 3 S.TOTAL FEB 1 FEB 2 FEB 2 FEB 3	5.70746 HAR 1 HAR 2 HAR 2 HAR 3 S_TOTA1	5. TOTAL APR 1 APR 2 APR 3 5. TOTAL HAY 1	HAY 2 HAY 3 5.TOTAL JUN 1 JUN 2 JUN 3 5.TOTAL	JUL 1 JUL 2 JUL 3 JUL 3 S.TOTAL AUG 1 AUG 2 AUG 2	S-1014L SEP 1 SEP 2 SEP 3 SEP 1 SEP
С	ر ر	ن ن	၁ ၁	с с		5 5)))

T.w.L=150.0

1961

BONGA P/S

	, , ,	·	((<u>Ap</u> د د د	pendix 4B-10 Page,10 , , ,)
ымл 1973160. 14423120.	12512140. 6173040. 454760. 474528. 155090. 4032030. 592723.	18557195. 5547200. 5547200. 5942816. 16124256. 2015010. 214600. 214664.	6192344. 197123. 197123. 1972403. 194240. 194523. 194523. 194523.	1944444 2423720 2423720 2430120 2430120 1143750 1143750 11437528 11455288	1276560 1344490 1549449 154944 4166944 1622320 1522320 162456 1924950 41394944 41394944 41394944 41394944 413949444 413949444 413949444 4139494444 4139494444444444
4645 K4 16003. 36003.	\$404]. \$6000. \$6000. \$6000. \$6000. 36000.	35173. 34415. 34034. 33534. 33534. 32994.	32711. 32463. 32214. 51214. 31634. 31227.	30684. 2487). 2916 J. 23926. 23547.	33472. 35648. 36001. 36000. 36000. 36000. 36000.
К₩ Н204. 14433. 25492.	25721. 19115. 17977. 16800. 24283. 33334.	27476. 14780. 5590. 8340. 1276.	8238. 7645. 7009. 6703. 5778.	7974. 11753. 10153. 4974. 8193. 5247.	5319. 5585. 5471. 6218. 6343. 10129. 36000. 27541. 15373.
₩., Ffl. 0.842 0.841 U.891	0. 300 0. 840 0. 889 0. 888 0. 888 0. 884	0.482 U.840 U.840 U.879 U.478 U.478 G.878	0,877 0,876 0,876 0,876 0,876 0,875 0,875	U.874 U.872 U.871 U.870 0.870 U.879 U.879	0,830 0,842 0,842 0,8430
・「FFI(+ し。およた し。出たり し。出たり	€48 0.831 0.824 0.824 0.937 0.937 0.937	0.864 0.864 0.809 0.809 0.809 0.809 0.805	U.804 0.501 0.796 U.788 U.788	U.798 0.840 0.413 0.413 0.4776 U.798 U.798	0.794 0.800 0.507 0.515 0.815 0.815 0.815 0.845 0.8450 0.8460
1445 164751 040 040	0.00 0.00				000 000 000 000 000
. T.015. [CM/S] 5.849 [13.3d3 [18.214	202+81 14-110 11-51 12-51 12-51 12-55 13-468 12-55 25-973	22.317 12.852 7.494 7.337 7.447 7.447 7.447	7.218 7.218 6.503 6.272 5.488 5.488	7.748 11.3448 10.181 5.194 8.331 4.700	4.700 4.700 4.700 4.700 4.700 21.413 21.413 21.413 21.413 21.413 21.413 21.413 21.413 21.413
HF0.01 J (FM/S) 4.700 4.700 8.055	13.221 13.459 13.519 12.291 12.291 18.468 25.973	22, 317 12, 852 7,494 4, 841 4, 700 4, 700	4.700 4.700 4.700 4.700 4.700 4.700 6.012	7.748 11.344 10.131 5.184 7.381 4.700	4.700 4.700 4.700 4.700 4.700 4.700 4.700 4.700
P.HE/1) [M] 170.054 [68.442 [67.434	166.783 165.728 163.589 161.937 161.937 152.567	147.841 144.999 143.380 141.447 140.563 139.310	L38.28) L37.230 L36.332 L36.332 L35.084 L34.029 L32.278	130°17J 127°029 127°154 124°154 123°250 123°550 121°491	143.121 149.420 155.957 165.639 166.639 167.323 170.650 170.650
E.HEAD [4] [76.310 [74.335 170.5[9	169.345 170.610 168.899 162.557 161.136 152.552	149.130 150.828 148.397 140.709 145.602 144.352	143.302 142.373 141.772 141.772 140.6J3 139.627 137.898	L35.065 L29.080 L27.438 129.150 L28.210 L28.210 L28.210 L47.527	149.157 155.456 161.993 169.891 172.675 168.473 172.411 173.395
. LOSS ¹ S Imi 8.190 8.437 11.109	11.283 8.967 8.540 13.225 11.273 13.430	12.561 0.011 8.633 8.783 8.783 8.814	8,828 8,707 8,410 8,331 8,331 8,052 8,230	8.455 11.799 10.566 7.960 7.814	7.814 7.814 7.814 7.814 7.814 12.300 113.850 11.597 11.104
GROSS H (M) 144.500 182.742 181.688	180.633 179.578 177.439 175.782 172.409 172.409 166.412	161.691 158.839 157.230 155.497 154.413 153.166		144.020 140.879 138.004 137.110 137.500 137.500 135.341	156.971 163.270 169.a07 177.705 177.705 180.489 181.173 184.500 184.500
H.W.L. (M) 334.500 332.742 331.688	330.633 329.578 327.439 325.782 325.409 316.412	311.691 308.839 307.230 305.497 305.497 303.166	302.130 301.08J 300.182 200.182 293.834 292.128	294.020 290.879 268.004 287.110 287.500 287.500 287.500	306.771 313.270 313.2705 327.705 330.489 331.173 334.500 334.500 334.500
1 VON 2 VON 5 VON		5.1014L FEB 1 FEB 2 FEB 3 FEB 3 S.T01AL MAR 1 MAR 1 MAR 1 MAR 3	5. TOTAL APR 1 APR 2 APR 3 S. TOTAL MAY 2 MAY 3 MAY 3	S.TOTAL JUN 1 JUN 2 JUN 2 5.TOTAL 5.TOTAL JUL 2 JUL 2 JUL 2 JUL 2 JUL 2	AUG 2 AUG 2 AUG 2 S.FOTAL S.FOTAL S.FP 1 S.FP 3 S.FP 3 S.FP 3 CT 1 OCT 1 OCT 1 OCT 2 UCT 3 S.FOTAL
'))	ر ر ر	נננ	ג ג),))	, .))

0.041 - 1.W.T

ž

\$ 1 4

A-DMC-A

Ċ.

3

)

				,)			;			د			ز			3		1	Ð		å	8		3	•			,		ر	Ap	op	er Ba	nc ae	li; ge	א זינ	4		10	2	J	;
Кын	6204433.	8640000. 7819620.	22724400.	BJ04430.	618764J.	6095832.	22484144.	7464560.	6)474×0.	741(512.	22321872 2232187	4 4 2 4 1 2 9 . 2 4 5 1 5 - 2		840+010.	1345010°	- CE 26 C 1 1			3396238.	*/ 5/2/ 1/ T	101000		• C 0 5 5 C C C C C C C C C C C C C C C C	-010110 -10003	1.359450.	3 J J 3 C 0 J .	L60443U.	1043420.		وريديد 22،	111)24J.	1135430.	1448992.	3748032.	1 + 4 3 4 4 U	1/34963.	9504C00.	12007400. 2446434		244411.01	7171520.	4 6 JL JU.		
NFAK KW	• {*00.9 \$	26000. 26000.				35811.		345HZ.	53323	31362.		• 01.144		200	21260	7027	7762		17363	7, 5, 1,	76024		21.141.4	26034	25404.		26673.	.19491	24174.		23763.	1047d.	56003.	1 1 1 1 1 1 1			10001	11041	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1600.3				:
¥ z	.26132	30000. 32543.		33352.	34114.	25463.		- 11 1C	-25514-	29108.	00671	12714		10127	4747		62.67	12121	6667	4174.	4114		717.4	4025	43154		b937.	4418.	1448J.		4020.	4745.	.879¢	5031		- 227	-00005	1 1 1 4 -	1414	12454		19575.	- 1050[7	
1 1 1 1 d	0.891	.8 ⁸ . 88		0.687	٠	0.883	5		÷,	1) P • A	•	υœ	0.00		0.849	0.849	0.860		0.847	0.867	0.406	•	0.266	0.865	0.865		٠	. 3/	0.870		87	c) (Ê.	<u>Л.</u> ВАК				0.486	•	0.890		204 0	1010	
• FFFICE	0.861	U.877		0.479	U.880	0.657				110.0	1. AL 7	1910	0.776		0.773	0.7.0	0.769		0.747	0.766	u.764		0.763	0.762	0.762		U.784	J.772	0.800		111-0	u./80	700.0	0.404	•		5 5	0.435		0.840		464 1	1991	
NVEF F (CM/S)	0.0	0.0		0-0	0.0	0.0	c						0.0	,	0"0	0.0	0-0	•	0-0	0.0	0°0		0.0	0.0	0-0		0.0	¢•0	0.0	1	0,0			0-0	0.0			0.0	0.0	0*0		0.0	20.0	
. T.DIS.	18.567	210.62		24.907	20.239	20.345	25. K16	101111		11111	16.117	13.034	12.875		5.049		4.700		4.703	4.700	4.700		4.700	4.700	4.700		7-7-1	2.	14.918		4.130	1001-1		4.700	ហា÷ហ ហ	10	1	- m	4.700	4.151		14.065	542-1	
HEQ.DIS (CM/S)	19.567	23.912		4 907	0.634		25.516	1, 4.73	26.710		16.317	13.048	12.875		5.049	4.700	4.700		4.700	4.700	4.700		4.700	4.700	4.700	1	1.177	4.700	14.918	001				4.700	5.159	29.032		9.304	4.700	121-6		4 - 700		
P.HEAD (M)	68°3	161.733	1	158.788	L94.204		د 5	140.703	5	5	28.2	124.553	21.5	 	0.3	119.183	7.8		16.5	115.295	13.9	•	12.7	111.578	11.2		114.184	5 - 1 2 0	22.6		10000001	+ • • • •		¢7.4	161.428	57.3		57.9	4.4	65.		150.154	1	
E.HEAD (M)	•	62. él	-	3.	2	52.54	6	147.148	15		31.79	130.199	27.3U		20.28	125.219	23 . b7		22.56	121.331	20.01		18.79	117.614	17.31	ć	119.005	5 ° ° °	20.5H	21 E71	125.213			63.457	67.207	57.344		1.970	70.528	<i>6</i> 4.634		175 . 346	15.595	
• LOSSI 5 (M)	11.313	5 6	ć	507.51 10 2 51	5 4 5 4 6 4	0 r	5.J3	12.415	3.57		?	8.204	э.		7.928	. 81	. 81		.81	7.914	1 5.		. 81	7.814	31	Z	1010		7 7 4	0	710.7			7.914	З,	ъ.		9.472	814	767		37.45		
GROSS H (M)	182.195	75.58	1 	112.538		02460	59.37	154.553	46.73	 	42.08	138.403	35.41		34	3.03	31.08		30.37	129.145	27.82		26.01	125.428	25•13		126.034 136 350		14.00	95 03	143-270	11111		71.	5.2	71.1		171.842	9+34	9 • 40	1 (184.000	94 5	
ч. Н	332.195 328.364	25.58	ŗ	211 815	2	-	9°3	304.553	6.7		92	288.403	85.		~	83.033	81.685		80.378	279.145	77.828		76.013	275.428	061.47	100 01	205.054		514°00	00.387	040	15.470		321.271	25.2	21.1		842	28.342	29.401	1	000.465	94 - S	
	NDV 1 NDV 2	NOV 3	S. TUTAL			S.TOTAL																																			S.TUTAL	nc T 2	067 3 5.107AL	- YOTAL
2))		1 1))	I)			ر			2)			Э)		-	2		-))			,)

T.W.L=150.0

1964

BUNGA P/S

		ŗ		2)		,	,	J		ر		2		,		ر		,			<u>Ap</u>				4 <u>1</u> 2		ر 10)	, .			
														-																				
Kan	+44030. 1632030. 1632000.	3704000.	1632000.	1795200. 5059200.	1632000.	1632700. 17952JC.	5059201	1032000.	4732830.	1632000.	151904J.	5027232.	1626240.	1611640.	4853520	1014720. 1542000	1795203.	5041920.	1632030.	1632000.	4956000.	1635010	156868H.	483269F.	1632003.	179520J. 2822734	1032030.	1402320. 1536040	430 930	409(593	3647355	5459300 8 .	
¥	185J. 6800. 6800.		6 840.	600°	6800.	6890. 64JU. 1		6800. 6800.	o 8.)0.	• 6410.	c746.	•	270	c (4 1.		6720°	6800 .		009	6800.	00.	008	5942.	0.00	6870.	6800.		5843 .	.0750	204	6 800. 3 972.			
ا بار . ا	0.800 0.803 0.843		0.863	. 84	. aß	0.843 0.843		0.883 0.883	0.883	. 88	0.883		0.883 0.683	2.6		688.0 688.0	8.8		9.9	0.833	Ş	80 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.895	50	0.883	h'a'	0.883	0.845	5.0	94	0.883 0.882			
	12.734		0.0). 0	0.0	0°0 0°0		0.0	0*0	0-0	0.0		0.0			0.0	0.0	•	.	0.0			0 0 0		;;	د2 1.52	0.0	0.0	n• n	°.	6.977 0.0			
1.DIS. [M/S]	9-079 6-273 672.9	0.373	5	e.	្លុំ	9.273 9.273		9.273	9.27	ੰ	8.845 6.745		(9,036 10,057	8-634		P.792	29.273		29.273	29.273		24.273	4 592	90 V	142.65	_	612.6	24.133 14 015	CUK • 0.	P.21	29.273 14.841			
E E E	7.915	7 0 15	416.7	16.7	7.915	7.915 2		16.7	7.915	7.915	7.969 2		27.948 2	808		27.943 2	416.		7.915	21.915		7.915	28-549		516-22	416°2	7,915	28.008 3	4+7 • A	a.307	27.915			
5 7	0.398 3 L.585 2	1 1 1 1	1.585	• 545	• 585	1.585 2 1.585 2		1.585 2 1.585 2	• 585	, 5 45	1.552 2	1	L.565 2	5.14		1.543 2	- 585 -		, 5d5 645	1.585		5H2	1.207	766	1.585	. 545	• 585	1.174	200	- 79B	1.585 U.630			
22	0.66J 9.50U 9.500	e	9.500	•	÷.	9.500 9.500		9.500	ት 2	÷	9.521 9.526		c c	202	•	9.520 9.500			ເ ເ ເ ເ ເ ເ เ เ เ เ เ เ เ เ เ เ เ เ เ เ	9.500			9-750	6	9.500	÷.	9.50	29.782	, o,	0.1	29.500 30.290			
- X- L -	8,593 3 0,500 2 0,500 2	0.500	0.500	200	500	0.500 2 0.500 2		0.500 Z	500	. 500	0.465 2 0.453 2		0 0	0.447		20.457 2	500		0.500	0.500 2			0,079 2		0.540 2	0.500	. 500	20.037	192.	9.505	0.500 9.201			
- 2	49.253 11 50.000 12 50.000 12		50.000 12	0*000 12	0.000 12	50.000 121 50.000 121		50.000 12	0.000 12	0°000 12	49.986 121 44.981 17		992 12 205 12	71 010 12		49.983 12 49.943 12	0.000		0.000 12	50.000 12		0.000 12	49.835 12	1 170 0	20.000 12	1 000-0	50,000 1	49.819 1	1 ,17,964	49.610 1	50.000 12 49.491 11			
	1 7 700 1 7 700 1 7 700	' -	، است ا	-	4	ແ ສ ສ		 -	15			4		-	•		• •	•			•	-		•			-		-	-		S. TOTAL	TOTAL	
	2)		C)		5)))		c		C		כ			5		5)		د		2	-)	

1467

The second second

NUFVA FRA M/S

					})			,					,										•		;			J			ţ	Aj	op	e P	ag	li ge	× آر	4	<u>B-</u>	-1	0	
	KWH	840483.	1331760. 1435680.	1000 CT1	1477920	1495440.	1700664	4683024	1628100.	1460840.	1755204.	4894243.	1039430.	d 262 10.	<300° f 6.	4137496.	251840.		317326.	911808.	2026343	0 t L t n L	242240.	¹⁵⁰⁵⁰ J.	29F92J.	31272.	52-050.	1137096.	4H,84J.	1104900.	027600.	2222400.		1126022	414CU24.			82080U.	13926UC. 2023300	2343240 . 1541730		1037000. 1432000.	4424720.		1028401
	Хĸ	3502.	5549. 5482.		¢158.	c 231.	u470.		6784.	6 UNT.	6 ÅUQ.		4202.	• 1 4 4 4 • 1 4 4 4	•0/fc		1216.	•1021	12021		•2011		. 11/6 .		1231.	- f (if]	2004		<041.	4504.	2 01 2°			4 0 0 0 4		301.			•••••	0503.	- 00X4	6401-	•	- CO 3 -	с 7.85 .
	EFFICT.	0.88.2	0.845 0.845		0.890	0.890	0.890		0.883	0.840	0.883		518°0	200.0	700-0				0.00	0000			0.08.0		0.800	0.800	00ו0		0.660	264-0	7/8.0	6 10 0				0.872				0,890	0.863	0.683		0.890	0.643
	UVER F.	0.0	0.0	•	0.0	0.0	0.0		0.0	0.0	0.0	•								c c							0.0				n •n	0.0				0-0				0.0	0.0	0.0		0.0	2.2
	T.DTS.	14.123	24.778		25.765	26.114	27.292		29.075	25.427	29.273		12 007			5 34.00	2.2.5	101		6.130	5,124	5.000	000.0	5 233		0.10.0	0.1.0	310 0			000.00	14.254	20.177	17.513		12.230	13.881	21.547		27.422	20.273	29.273		25.19)	7.0.7
	E.HFAN (M)	.731	28.520		3.16	8.350	191			8 - 440	7.915	177 0	20.751			10 5.44	10.044	ប		3.0.5.85	30.0584	10.644		673 08				101.04				717.92	. 7	29.343	!	9.909	9.753	28.427		8.174	7.415	27-916		21	
	LOSSES (M)	0.599	1.221		L 296	I+323	41		1.268	1.270	•	C 73.7		0.575		1	0.345	1	5	330	0.339	110		26			-		000	222	-		577	0.760		524	589	955 0	2	• 428	585	585		1 - 252	2
	GROSS.H (M)	30.330 30.055			29.692	24+0 (3	<u>_</u>		114.62	29.500	004+62	30.173	145-05	30.375	•	30-411	30 394	30.917		30.925	30.923	30.427		30.405	177	3) - 6 2 2		30.613	CHCLOR	30.525 .		30.322	29.506	30.143		30.433	30.342	29.923		29.602	24.500	29.500		24.51.5	- 1
	T.W.L. (M)	119.136	20.095		1.1.4	017			204°02		nnc • n 7	19.302	119 117	19.062	I	139	356	EEE		.32	118.327	. 32		345	1	118.655			244	118.815	•	148	fo]	119.442			L15	805		20.333	20.500	20.500	-	120.133 120.463	100
	Н.К.L. (М)	49.466 49.771	49.842		44°876	10000	1 03.6*64		1 046.04			49.566	49.458	49.437			149.250 1			49.250	44.250	49.250		49.250	49 250	775 04		49.283	49.626	49.340		49.470 1	.997	585		49 . 399	457	49.728		49.935]	50.000 1	50,000		000-04	104-04
		I I AON	-	•		.,	UEC 3 1	-			-									-	_	-			. –	-						-	-	-		-	-	7		-	-	~			
)		C		Э	٩		` ر)	-				ر. ر))			' ;			2			<u>ວ</u>)			,			-1			•	,		

P/S 1961

NUEVA FRA P/S

					ر	, -		3)		J)		2)			,		<u>ا</u> ر	Ap			ix ej		B'				;)	
KWI	6dRQ8J.	1274800. 728640.	5.5	14 26 UUU.	1595352.	4290312.	1371840.	1544F90. 1565348.	45025u 8.	· 57440.	782880.	- 17472. - 17472.	439640	43a68.3	483640. 123000	439680.	439680.	439480.	1314040 .	4 146 H J	71F0°0.	1557440.	70584J.	647840.	2146080.	54072C.	d5a080. 1a75672.	3072672.	1)78500.	750000.	3060120.	1632000. 1632000.	1632000.	4856000.	1632000. 1499280.	2	4454184.	37567392。	
х г	2 du 7 .	1010. 1010.	0011	1290	4043			643/. 6007.		150	3262.	•	1d32.	1632.	1d32.	1432.	1332.	1832.		1250T	2720.		2941.	2866.	1	2253.	.1942 .348.		4494.	5125. 4665.		6800. 6400.	6800.	00	6.247.	°1105		•-	
EFFICF.	19.	2.872 0.872		0.895	0.840	10010	0.845	0.845 0.895		0.889 0.000	0.442	700-0	0.800	0.890	0.000	0.8.0	0.800	0.800	000 0	0.800	0.472		0.872	0.872	1	5 a a	0.890 0.890	•	68°	0.892		0.883	.83	ċ	0.840	29			
ICM/S1	0.0			0.0	0.0	e e	0.0	0.0		0°0				0.0	0.0	0.0	0-0	0.c		0.0	0.0	;		0.0	4			1	0.0	0.0	. 1		0.0	c c		0•0 			
T.DIS. CM/S]	1.603	- 144 - 313	205 2	21.787	ŝ	_	יו ניי	24.842		J (11°710		000°9	8.000	H.000	B.JOO	8.000	8.000	000.8	9.000	10.987		12-580	;		9.290	14.398 26.672		8 - 1 7	12.538 18.920		29.273	9.27		26.190	20.371			
		20.40	a	26.898	8.40	0 2 0		28.511			29,756 29,756		2	30.269	N	0.20	30.269	0.20	10	0.26	37.020		24.931		•		28.275		9.31	23.230		214.72	1.91	د ۲	28.339	C*6			
L () S S E S { M }	3.9	52	1	1.012	۲ 2 -	-		L.229	i	25	0.548		.39	0.390	5.	. 39	0.396	. 39	2	0.346	•	;	0.537	13		3:	u.011 1.367		5.5	0.637		1.500 1.500	. 58	r u	L. 329	• 52			
GF (155.H (M)	2.	20.428	1	29.910	• 72	14 0		29.740			30.144		66	30.665	00	3	30.665	ΰ,	7.46	30.065	0.50		30.413	. 4		- - -	29.642		0.10	30.067	() (29.500	9.50	u o	29-608	6			
ž	18.91 0 23	118.974	20.2	26	20.	10.00	20-20	20.106		ԾՇ	119.112	•	18.50	81	9C*91	18.5	18.5F	18.58	1 8.55	18.585	18.85	0	18.978	18.90	0 1 1	10.14	120.266		a .	119.568		20.500	20.5	20.50	20.223	19.69			
11	377	49,402	49.828	149.736	49.857	101 07	760.02	149.840 I		49.560 40 430	149.456		49°2	149.250 1	7 ° 7	9.250	49.2	49 . 250	052.64	149.250 1	49.355	000 00	149.411	17	200	47 47 40 474	149,908		9,609	49.635	000	150.000 1	0000.0	0,000	49	49.680			
				-																					S.TOTAL		101 3	S. TOTAL		AUG 3			SEP 3				35.0.0	TOTAL	
	,)																																				

,		3		÷		3			,			J		j	•)			3		1	0)	1)			<u>/</u> ,	<u>}</u> p]	Pe P	a,	di ge	x J	4		- <u>10</u>)	t -	
	•	•	•			_•		•	•			_				_		•	•			•		• •		•	•	_		•		•			•	•					
Кин	927120	1393206	101/000.	1414120	1535283	1795200.	4744600	1304800	1318444	4011064	741700	753400	142 10 × 0	3374449.	439690.	43° c ⁿ 0.	483648	1363005	4 2466 4	0001 C L	1314040-	4 14680-	439640.	1255534.	2134944.	787920	u79360.	850083.	2517360 . 760003	0000128	944850	2605650.	693120	1003690.	68 ⁴ 344.	2382144.	100.4/11	808400.	3240240	1017124	
л Х	. t .j.t.	5 805.	* 0 * 7 *	5413.	6347.	6800.		-1170	1 10 4 -		3299.	3140.	2629.		1832.	LH32.	L 832.	6 6 9 1	1432.	1832.	•	1432.	1832.	4156.		J 2 H 3 e	3064.	3542.	1 205		57.0		2888.	4 IN2.	259a.	5000		10,50 10,50		- 23H.	
EFFICC.	0, PBG	0.895	A88.0	0.895	ŝ.	0.863	000 0		0.895		0.882	0.882	0.472		0.800	0.800	0.800	0000	0.810	0.800		0.800	0.800	6.892		0.882	0.842	0.882	0.842	0.882	0.882		0.872	0.889	0.872		759.0	258.0		0.684	
AVEK F. (CM/S)	0.0	0 0		0*0	0.0	0.0			0.0		0.0	0.0	0.0		0.0	0.0	0.0	5			, ,	0.0	0.0	0-0		0.0	0.0	n *n	0-0	0.0	0.0		0.0	0.0	0.0	0			•		
T.DIS. (CM/S)	15.527	23.954		24.455	5	542.01	24. 100	26, 705	20.302		13.268	12.601	10.603		000.8	P-000	8+000	000 8	8.000	8.000		8.000	8.000	19.317		13 199	14.807	14.210	13.249	14 642	14.448		11.691	16.8°1	10.471	610 01	314 441	21.471		17.130	
F.H.AD (M)	29.540	28.63U 20.434		с . Р	23.244	0	Ŧ		570.62		218.95				°,		20	040 L F	30.269	90.2.0E	:	-1	0.200	-			29.463		9 - H	9.6	29.698		29.957	~ '	~		•	28.947		104 - N	
(M)	0.602	1.141		1.147		1.563	755-1	202	0.518		0. 5e4	3	÷		0.396	0 346	0.396	0. 40A	0.396	0.376		0.346	U . 396	0.500		ខ្ល	0.629	0.00	0. 563	0.622	0.613		0.505	0.728	0.464	g	5 4	0.585	i	0.740	
SE	~	29.164	•	29.764		•			199.991		37.376				500 ° 05	203-01	4 317 TOF	ć	30. 565	0		30.665	30.065	30.045		0 0	262 05		0.3	30.301	5		30-462	Οł	0	5	2	26.932		30.165 30.386	
T.W.L.	119.263	120.071 119.40H		120.066	~	<u>~</u>	1.23	20.18	119.693		119.040	119.000	118.820		118 285	10 0 0 0 0 0 0 0 0	500	8.58	114.585	9.58		8.58	118.585	9.60		119-015	110 163	207 44 11	9.05	119.183	9.10	;	118.918	9° 38	8.80	19.45		119.789		119-044	c
~ ~		149-572	-	149-330	5	149.9999	149.895	۰o			149.436	¢.	149.342	0		144 420		144.250	144.250	149.250		149,250	149.250	143 643		7 (144.440	r r	ď	149.484	ç		149 380	6 6 4	6.64	149-671	149.446	149.721	1 1 1	149.430	1 1 1
			S. TOTAL	DEC 1	0.EC 2	DEC 3	JAN I	JAN 2	JAN 3	S. TOTAL	FEB 1	FEB Z	FE0 3	5. TUTAL		7 A A A A A A A A A A A A A A A A A A A	C TOT 2	APR	2 742	APR 3	S. TOTAL	I YAM	MAY 2	MAY 3	S. TOTAL			S. TOTAL	JUL 1	JUL 2	JUL 3	S.TOTAL	1 202	AUG Z	AUG 3	SFP]	250	55P 3	S.TOTAL	100	F LUD
•)		ر			2		3)		с С			2)		ر ر)			c		-)		J	,)			,					

P/S 1963

•

NUFVA FHA P/S

																																		A	PI								10						
)	>		7)			,			3	-		2			`)))			£	ag	ge)-	16	•)			}		2))
					•															•									-			•														•		-	
н К М Г	30400	1430640.	08044	12490	3 3 6 9 0	122904	1295.0	144500	32312	08872	129240	03150	27172	154072	089464	396.80	83644	6300-	39630	1968.0	35620	040610	34680	047281	17580	770070	1002 200					15280	26720	635976.	47976	002174	0 - 7 - 0 				137000°	000250	4456000	079760	20120		-	186352	
	ສ	4 - -	95	7	4		0 -		191	[4	Π	U	21	36	4	5	4	13	1	4	1	13				` <i>د</i>	; 0	· =	4 4		: :	3'	~	2	ς. γ		- n		- n				10 4 47 -			4	2	381	
¥	40.0	5486.		30 Z	N 1	-	25	5	6183.		4701.	2509	3057.		æ	1472.	832		1832.	1832	4 1 Z		1832.	1678	1646.	•	4141.	* **	1001		500	- :	078	2 40 V		5.5	1 204	• 01/00		*200	0000	0.809.	000.	0404	2005	• c n'o 3			
• L	62	e e e		95	00	<u>م</u>	00	5.5	668		92	72	72		00	DOR	00		00	00	00		00	82	72	8	80	. 60	1.5		50	2	22	50		20	200		c t	0.0		^	10	1.4		4			
	ů. 0	0.849		0.89	0	P - 0			E O		0.89	0.8	0.8			0. H	0.8		0.8	0.4	0.300		0.8	0.8	0.87		0. H	6H . U		2	0		7 P • 0	0.8		•		•		•		•	- -						
VER F.	0.0			0.0	0.0		0.0	0		2	0.0	0.0	0.0		0.0	0.0	. .(0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0						0 •1	<		202		7 044						•				
							_											•																		^ r		- -	-		1 4	•	~	1.4					
	13.94	24.796		21.664			26.46	27.73	25, 884		19.076	10.10	12.40		•	d.000			•		8.000		B.U00	÷	10.67		ċ	19.354			a	٠	N (•		r <	14.00	•	c		20. 27	÷ .	đ	24.71	-				
41 AD	747	204		.913	- 2 69	5	.303	130	.381		.212	090	.892		269	.269	269		.269	209	•269		_^v	-0	044		+0+	181	518		116		202.	• 103	* *				5	15	015 015		ō		۱ä				
-	N	2 G 2 G 2 G		50	5	1	23	28	28		29	30	0		30	So	00		30	30	30		30	202	30.		20	5	8	1	20		אר ל אור	05			4 6	4	7.6	3 ~	3 6		27	20	1				
N N	5.	1.010		1.004		2	35.	45.	1.305		0.840	۰ <u></u>	£3.		ΎΕ.	0.346	. 39		0.396	ŝ	0.396		.34	. 63	0.471		12	0.862	2	1	08	- -		* *	5	3 -	1.545	2	ŝ	2.4	1 5101	•	5,0	1.216	13				
~- ^'	23	542 912		917	25	-	54	84	ge		59	÷	ŧŃ.		(Q)	o 65	65		65	ζĴ,	665		9	æ	17		9B	43	.43	2	-		1 4	n –	0	2 4		2	00	200		222	C	64	÷œ	;			
5	P e	29.62	1	29					29.6		30.0	30.5	30.4		30.6	30.6	30.¢		30.6	30.6	30.6		30°E	30.2	30°5		30.1	30.02	29.7			-				•			à	: -	10		÷	29.7	: 6	•			
Ē	51.6	628°6	i	9.815	• • •	5	24	36	0.195		9.502	7.7	õ		• 58	6.585	- 58		8.585	8	ŝ		58	20	8.827		9.370	9.607	101.0		5	•	0.4.0	-	1		0.500		_ 12	ነፍ	0.500	۱.	20	060 0	999)			
	32	35 11			==				1 120.		3	11	11		1	50 116	1		50 11£	11	Ξ		50 118	7	11		Ξ	1	12			:=	12	4	=	:=	: _	1	5	12	12	1	2	39 12(;			
		149°73	1 1	149.73	7 0 7 7 0 7		÷.	.	149.881		149.640	Ġ.	ç.		49.2	145°25	49.2		2	2.5	9.2		49.2	40.4	149.34		~	149.650	~		49.	0		•			150.000	•	50.	105	150.000		50.0	149.83	49.3				
		u m v ~																																				-			-							TOTAL	
			S. 10	2 2		S. 10	JAN	JAL	VAL	S. 10			500	s. TC	НАВ	MAR	AAA	S. TC	APR	APR	APA	S. TC	HΑΥ	HAY	MAY	S. 70	Ϋ́ΩΓ	YON NON	JUL L	S. TC	IIIC	5 =	5				AUG	S. TC	SEP		S E E			12	10	S.10		2	
	,)))	ł)			כ			נ))			0			Э))		-)		2)			1))		,)

1 34 4

-Appendix 4B-10)

							,	,		,	•		;		13	•		1	•)		3	;		Э			נ))	Ap	1	er Pa	nd ig	ix e J	1	+B 7	<u>۱-۱</u>	.0	
КМН		705840.	1632000.	402484.1.	163200 2.	1632000	1795204.	5359200.	1-32000.	1632040.	1795200.	-010111	1632000.	4724624.	7492024.	1020960.	1614560.	1770984.	5014504.	1610840.	100440.	1632000.	4852320.	1637000.	1 + 32 60 0.	1795200.	5059200 .	163/000.	1632000	4.440.00°	1632000.	16 32000.	175200.	5 ,1542,00.	1632000.	1632000.	1755200.	5.054200.	1642000.	1441200	1312500.	0711FL	178,240° 444,444
л Т		-1616	-000 V		6800.	r 800.	£ 8JO.		F 800.	6800°	6800.	6.800.	oEJO.	6734.		0754 .	c 744.	o 711.		6712.	6 706 •	¢ 800.		680J.	1 400.	€ BOJ.		6 800°	6,800. 6,800.		c 800.	6 d00.	6800.		< 400.	6800.	6 A00.		6.800.	6005.	5469.	1051.	7 87 6. 1 6 9 2 -
EFICF.		0.882	0.99.0		0.853	0.883	0.883	1	0.883	. 88	F88-0	0.843	0.883	0.843		E94.0	0.883	0.843		0.883	0.853	0.883		0.883	گ ا.	0.843	5		644.0	•	0.883	0.883	0.883		0.883	0.883	0.883		0.843		0.845	64F9	0.872
NVFR F.	(CM/S)		0.0	2	0.0	0.0	0.0			0.0	0-0	0.0	0.0	0.0		0.0	0-0	0.0		0.0	0 .0	0.0		0.0	0.0	0.0	5		0.0		0.0	0*0	0.0		0.0	0.0	0.0	1	0.0		0,0	0-0	0.0
T.D.15.	(CN/S)	<15.71	54.243) 	29.273	29.273	29.273	f	272.62	512.62	24.213	27.273	29.273	29.122		28.921	28.871	28.806		28.713	28.684	29.273	1	£72.95	29.273	29.27}	626 06	24.27	29.273		29.273	29.273	29.273		29.273	29.273	29.273		512.62		214.22	16.4P7	11.411 H. 100
F . HF AD	(M)	27.015	27.915	, ,	5	16.7	27.915	3	C16.12	16.7	· ·	27.91F	27.915	27.937		· ·	27.972	~		· · ·	27.998	r .	1	16.1	27.915	· ·	-	516.75	16.7		27.915	r.	27.915		5	16-7	r.		214-72 22 115		128-82	2c * 4 6 1	24,481 30,263
LOS SE S	- 3	t 3	1.585		1+585	5	58	4	1 - DC	ສຸດ ເ	PC •	• 58	1.585	. 57		ភ្លូ	1.550	• 54	į	n,	l. 534	Ę,	ļ	÷ 58	1.585	55.	Ľ,	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- 58		1.585	1.585	. 58			9	• 58	1	CRC • 1	4 4 4 4 4 4	5	. 70	0.496 U.J96
GR 055. H	(W)	29, 500	29.500		29.500	29.500	29.500	000 00	000.42	000 . 62	6.06 - 62	29.500	29.500	29.509			29.522			066.62	29.532	24.500			29.500		20.500		29.500		٠	29.500	ċ.		29.500	29.500	ۍ م		006.62			20	30.677
Т. М. L.		120.500	120.500		120.500	120.500	120.500	120 600			000.0021	120.500	120.500	120.486		÷.	120.464	n,		120-450	120.447	120.000		006.021	120.500	106-121	d	120.500			120.500	120.500	120.500		120.500	0	05	(1	1004-021	19.88	1 7+ 00	19-34	118-894
Н-Н-С.	(H) 140 430	ទីត	150.000		150.000	n i	150.000	150,000	150.000		•	150.000	150.000	149.995	(44°48	149.985	144°444		184.44	149.979	000.05	150 000	000.061	150,000	000.001	150.000	150.000	ų,		150.000	150.000	41		150.000	150.000		((140 045		ř	- 65	149.250
•	I NUN		NDV 3	S. TOTAL		DEC 2	0 EC 3	De l'ULAL			S. TOTAL	FEG 1	FFB 2	FEB 3	S.TOTAL	MAK -	MAR 2	NAK J	2. JULAL	1 7 7 4 1 7 1 4	2 772 2	5 Y 4 5	5. TUTAL		MAY 2	1 TAT 0	JUN 1	Z NNF	2 UUN 3	S. TDTAL	1 JUL 1	JUL 2	JUL 3	S. TOTAL	AUG 1	AUG 2	AUG 3	5. TOTAL		2 U U	S. TOTAL	001 1	0101 2 017 1 5. TUTAL
)))))))			C		÷	c			5)		2			2)))		

2961

.

NUFVA FFA P/S

.

					1	>)		.,		5)		3		Ð		2	•)		,			<u>-</u> >	Apj		nd ag	ix e)	4 18	_)	•	2	
																		•																						
					•																																			
КМН	4 3968 3.	925200.	127536U. 2420360	1472400.	1322640.	1783844	45788885	1414340	1771704.	+797144.	L194720.	2311416.	4428216.	282240.	271200	6522A4.	272640.	247600.	2/312U.	384000.	40920 .	672672.	1400 342 . 1444 0.	7 93680.	447a40.	234136J. 661730	501240. 42456.02	443364.	1459224.	1401280	1092432	3164832.	901200-	567360.	237Pg 0.	48240U.	342568.	1246968.	30217968.	
KH	5	en i	31	135	5511.	b757.	5 ARU -	725	671L.	• {	44/8°	125		176	1130.	n. -	E I	1115.	1 	1 600.	1708.	2548.	4791.	307	œ	500	4 r-	Ē	- 2	1422	138	202		104	:	2010-	447			
C F F T C E .	. 80	0.485	.84	89	0.895	. 38	0	2	0.883	Ċ	688°0	.88		• 80 - 2	0.800	-	•	0.800	•	80	0.800	5	99	0.892	.80		0.800		0	0.695	88	0.000	98.	0.850		0.800	2.0			
1 VEP F.	.	0.0	0.0	0-0	0.0	0.0	. 0.0	0.0	0.0	с с		0.0		0 0		•	0.0	000	;	0.0	0.0	0.0	0.0	•	0.0							0.0	0.0	•		0.0	0.0	ſ		
1.DIS.	8.000	31	1. (2	5 6	99	5	4.30	8.78	24.706	5	15 437	3.36	1	30.	4 8 4	5	c6.	4.815 4.015		f. • 96 l	7 442	612.0	47	ŝ	-15	4.4	7.715	5	00 6	22.207	6.70	5.73	15.072	• 76	¢,	6.739	45			
f .HF ∆[[4]	0.264	9 594	9.406	411	6 790 	106.	8.586	7.984	27.995	150.0	29.600	9.8U3		5°0	50.400		°.0	30.616 20.605		30.345	m * • •	2°.	4.167		•	0.1	30.301	0.2	0.844	28 847 2	o.470	12.9.6	29.636	1.0	2 2 2	014.05	44.0			
	.396	0 :		.287		•	• 186	543	• 536	410	0.657	568		6 E E •	996	1	335		5	373	• 383 • • • •	+ 40 0	569	0.565	400	.435	0.389	• 396	055	1.040	.718	648	0.641	° 443	212	0.468	£9F.			
(W)		°, °	*	29 - 69H	.		6	9.52	29.531	00.0	30.257	0.37	-	2 2 2	30.945	•	6°0	30,947	;	30.75U	l 2 n	+ 0 + 5	਼	30.374	0	0.5	30.640	0.6	0.30	29,837	0.1 P	0.2	30.277	۰°	- 0	30.778	8			
	585	9.260		0.175	. 006 °6		053	456	449	9.686	19.255	9,068		0 - 2 C C	18.305	•	8,307	18.308		402		061.0	9.518	19.063	8•599	8.718	18.560	8.585	9,027	19.864	9.369	9.236	19.222	B. 744	8. 657	8.472	8.447		<u>.</u> •	
3.1.	49.250 1	49.514 1 49.734 1		50	49. (05 40 - 080		49.825 1	49.483 1	49.980 1	49-681 1	49.512 1	49.439 1		49.250 1 49.250 1	49.250 1		49.250 I	49.250 l		49.250 1	1 052464		49.054 1	49.437 1	1 662.64	49.302 1	49.250 1	49.250 1	49.423 1	49.751 1	49 . 557 l	49.505 1	49.499 1	49°312 1	9.278	11 052 01	9.250			
		-	4	 -		4	-	-	-	-	-	-	-		• -•			-	•			4	-		•		-	٦	-	-	6	• SEP I I		1	-	•	 t	Se IUIAL	TOTAL	
	J		2			>		2		נ	•		S		2			2)		2)	-	.		2		ر)))						

NULVA FRA PIS

1944

·	,				ļ)		ŗ		;			>		2		1)		3))		<u>A</u> >	<u>PP</u>		1d 1g		10	<u>B-</u>		J	
LWI	1)24 a60.	160540.	2709120.	040040°	1004784	2817744.	1020480.	1096 920.	3197160.	723360.	046840. 1526329.	2396488.	43968C.	4306AC.	443648. 	13030U8. 43769C.	439680	439680.	1319040.	439680.	443648.	1363005	1104260.	1561440.	3c30Fr0.	1519440.	1706760.	4858200. 5 2014 0	535200.	o35184.	170.0544	674160. A 314 80	934840.	20956J0.	1632000.	1214634
X X	3854.	3109. 4265.		- E F H 4	3806.	777	4 374	4155.		3014. 3106	2133 .		1432.	1532.	1832.	1832.	1432.	1832.	1 4 3 3	Ld32.	1832.	7 00 7	4 60 J -	6 506.	000 7	6331.	6465.	. 000 0	2230.	2406.		2407	3916.	1.847	6.00	* \$] \$
FFFICF.	0.885	0.889		0 892	0.889	600 0	0.842	0.889		210-0	0-850		0.800	•	0.800	0.600	0.800	0.800	0.900	0.800	0.800	6 00 0	0.892	0.890	ere o	0.890	0. F90	0.850	0.850	0.850		217.0	0.889	. Н 4	0.843	2
OVER F. (CM/S)	0.0	0.0		0.0	0.0	0,1	0.0	0.0	0		0-0		0.0	0.0	0.0	0.0	0.0	•••	0.4	0.0	0.0		0.0	0.0	2.158	0.0	0.0	0.0	0.0	0.0	0		C •C	0.0	0.0	
T.DIS.	L5.489	17.247	243 10	19.877	15.280	17.364	17.654	16.774	166 61	10.884	9.036		8,01U	н, 000	8.000	в.000	8.000	8.030	8.000	6 000	А.000	19.752	6	~	29.273	26.593	27.239	9.107	6 [J]	0+0-6	1		5	24.075	29.273	101-11
F.H ^r An (M)		29 412	d	29.122	a 0	5	29,369	6 .4	0		30.146		30,269	<u>`</u>	¥.	0.2	30.269	0.2	~ C	30.269	0.2	1.1	29.261	B.1	7.9	28.286	4 . 1		30.172	σ.	0 0	• •	5	8.6	27.915	•
LUSSES (M)	0.660	0.746	0.474	0.893	0.450	. 76	0.707	. 72	ŝ	15	0.422		0.396		065.0	90	0.396	ŝ	30	0.396	33				. 58	1.361	41	0.424		- 4-	707 0		0.672	- 16	1.585	
25	30。255 30。407		0.5	30.015	0.26	30.135	30.130	30.184	7	30.507	ð (:	30.665 30.655	0 4 0 4	3	0.66	30.665	0.00	30.665	30.665	30-65	30.021	30.082	29.600		29.647	•		30.594		4 4	30.622	÷ 2 4	9.78	29.500	
Т. Ч. (М)		19.41	18.83	6	19.24	9.45	119.454	9.37	4 1 1	118 845	8-07		110-545			10.50	18.545	20.01	8.585	118.585	8.585	9-64	119.543	0.33	20.50	20.259	20.31	18.68	18.	18.76	8.88	18.656	19.28	20.03	.20.500	
Н.Ч.L. (М)	149.514 1 149.417 1	49.576	49.348		9.507	49.591	49.590	49 . 559	945.94	49.352	49.287		162.64	022-07	2	49.250 1	49.250 I	1 002.44	49.250	49.250	49.250	49.664	49.025	49 . 935	50.000 1	49*906 1	49.928 I	49°289 I	49.292 1	49.318 l	49.368	149.278	49.523	49.817	150-000 1	
			S.TDTAL DEC 1 1		DEC 3 1		JAN 2 1				-			• -	4	-	-	-	٦	-		JUN 1 1	-	-	-		-		-	-			-			
,)		2	ļ	5		3		3)	ţ	2		0)		C		C			נ		2		נ		2)		;			S.TOTAL

1901

NIIEVA ERA P/S

			J	1		•		,		1							J	1	<u>ر</u>	c ،	C	•	•	3		<u>י</u> כ	Api		ndi age				10)		,	;	•	
									•																						ſ							
									t																													
									•																													
				.				•	, , ,	••••		۲.	•••		• •			• •	••••	••••		••	••	• •		•	••	•••	•••		•	• •	1.	å d		۲.		
HMX .	669840.	1074000. 1314240.	305806	1339680.	116028	3595080	01141	1705170.	396125		1560432.	373771	439680. A 10-40	48364	1363004. 230540	439684	39, 65	1319040.	80.64	549280	147864	87144	1209840	3152880.	70512	84792	2877264.	75848	141040	2507104	071606	1632000	0267920	1632000. 1280140.	14057	375321	33921206	
х х	2791.	5476.	•	5582. 4423	4395.	0.40		459		2000.	242.	•	1832.	1832.	6 5 0 1	1412.	132	(C)		2270.		3631.	5041.	+ + 0 7 *	2438.	3533. 5014	• 310 6	5327.	3476.		, 10G.	6800.		6800. 5336.	3184.			
I FF TCE .	0.472	568.0		0 895	0 892	a	6 9	0.840	2000	0.942	0.450		0.800	0.800	0.04.0	0.800	00+0	0.000	0.800	0.850		<u>ب</u>	0.895	•	0.872	0.862		0.842	0.882		0.850	0.863		0.855	.8.			
TVER F	0.0 			0.0	0.0	0.0		0.0			0.0	•		0 0	0.0	0.0	0.0	0 - 0		0.0		0 0			0.0	0.0			0.0	0		0.0	1 360	0.0	° 0°0			
T_DIS. (CM/S)		52.449		22.434 18.474	1.747	15, 494	10-844	21.208	6.211 1.6	12.472	0,245		8.000	8.000	8 - 000	8,000	8.000	0.000	8.000	9.304		14.668 20.200	20,503		11.898	[4.253 20.39]		13.305 13.366	14.010	16 300	10	29.273	c	21.817	÷.			
H7 A7 4]	5°044	6.817		PC1 - B2	9.359	543.0	9.010	28.203	0 77.4	9-745	169	2	~~	20	400	30.264	20			30.158	i	0,676 , 2,2			9.939	9.717 9.062		9.801 6.413	9 742	264.0	141-0	7.915	7 014	6.742 P.A94	9.858			
N	104.	050	0	0.812	772	679	95.2	10 1	400	203	0.428	101	90.106	340	. 346	0.396	.396	404	306	0.432	i	623	154-0		512	0.605 2		569 566	0.594 2	547	110	1.585 2	5 a 5	1.014 2	• 545			
РОSS.н (м)	•	9.6	2	20.09L	13	52.4	29.962	19		0.138	30.597	377 0	30.665	0.665	0.665	30.665	0.465	0.065	0.065	30.540		°¦ ′	006-02	4 6	0.45	0.922 9.936		7 2 0	0.336	5		29.507	d	9.908	•			
T.H.L.	8 ° 8	9.886	010	528	463	296	741		010.4	9 123	A. 697	202	585	585	. 585	8.585	.585	8.585	8.585	8.708		.186	111		d.936 0.110	9.701 2.		9.070 9.058		762.0	8.727	0.5.0	. 500	9. 429 2'	•016			
M.W.C. (M)	9°9	9.759 I		49.619 119.		528 1	49.703 11	.927	1 087.	49.461 11	.294 1	G	49-250 116	õ	250 1	49.250 11	250 1	20	.0	49.298 11			49.604 119.		9.387	9.687 11		49.435 11 49.435 11	462	1 905	305 1	8	0-000 1	9.737 11	9.419 I			
		14	-			1		٦			-	-	•	-	-	-	-		. –	-	•		•	•	4 - 1 -	4 4	• •		-	-		-	េះ		14		TOTAL	
	zz	ź	• •	5	ē,		3	, , , , , , , , , , , , , , , , , , ,	s S		Ē,	• ³ 4	Ĩ	ĩ,	, A	F.	A.	, Ì	ĥ	Ĩ		5=	55	5		55	5	71	A		ŝ	S	, G	ŏ	σ,	; '		
	·		נ)		ر		-)		С		2		5)		Э		3))		D))		נ		2		

MURA FRA P/S MURA FRA P/S 1000 MULL TAUL TAUL TAUL TAUL TAUL TAUL MULL TAUL TAUL TAUL TAUL TAUL TAUL TAUL MULL TAUL T	3												1
C C	j					Z	IUFVA FRA		1969				
C C)												
C C			н (м) (м)	1.H.L [3]	GRUSS.H (M)	LUSSFS (M)	•••	T.DIS. (CM/S)	UCK F.	EFFICF.	X	Кин	,
C C)	NOV 1 NOV 2	149。674 149。975	19.0620.43	30 . 007 29.540	0.901 1.523	29.106	20.017	0.0	- 89 - 88	4 43 L. 6680.	1143440. 14032002	
0 0	Э	NDV 3 S.TOTAL	149.876	20.18	29.692	1.296	28.396	25.764	0°C	. я	6158.	1477920.	
C C)	DEC	6,4	20.25	- 0 - 0 - 0	.35	N	5.57	0.0	0.890	0327.	1518430.	
 	c	DEC 3 DEC 3 S.TOTAL	64	19.81	66°	÷8	÷ °.	1.67		0.F83 0.895	6506. 5303.	1561440. 1399922.	ł
 			64	20.24	- e -		2		0*0	0.850	6340.	4479912. 1521600.	
FINIX Finix <td< th=""><th>2</th><th>JAN 2 JAN 3</th><th>- 0 - 4 - 4</th><th>19.92 20.34</th><th>o o</th><th></th><th>8.7 8.1</th><th>~ ~</th><th>0.0</th><th>0.895 0.883</th><th>5575. ¢478.</th><th>1338000. 1713192.</th><th></th></td<>	2	JAN 2 JAN 3	- 0 - 4 - 4	19.92 20.34	o o		8.7 8.1	~ ~	0.0	0.895 0.883	5575. ¢478.	1338000. 1713192.	
TFBS 149.450 119.070 00.192 79.770 11.703 0.00 0.882 100.1 STDTAL 149.450 119.070 00.192 79.770 11.716 0.00 128.2 111.20 STDTAL 149.450 119.070 00.192 0.318 00.314 0.318 0.0194 141.452 STDTAL 149.250 118.319 00.134 0.318 00.591 5.000 0.100 110.2 0.1172 141.452 STDTAL 149.250 118.319 00.131 0.318 00.591 5.000 0.000 111.2 141.452 STDTAL 149.250 118.319 00.311 0.0131 0.300 111.2 141.452 STDTAL 149.250 118.317 00.511 0.0131 0.000 111.2 141.453 STDTAL 149.250 118.413 00.511 0.0131 0.010 111.2 141.453 STDTAL 149.250 118.413 00.311 0.0131 0.010 111.2 141.453 STDTAL 149.250 118.413 00.511	2	S.TOTAL FEB L	_	119.402	• 1 ¢	7.57.0	- 7		0-0	0 - RH 4	4774	4564792	
0 5.7001 1.14.50 0.0101 0.0102 3.27. 2.31592 1.44.720 119.720 119.121 0.0131 0.0131 0.0131 0.0131 0.0147		FE8 2 5 20 3	49.451 20.223	119.099		U. 582	0.		0.0		1403	816723.	,
MAR 1 149-250 18-315 30.345 0.354 30.551 5.441 3.3 149-250 18-315 30.314 0.355 5.645 0.0 0.000 1124 27722 MAR 3 149-250 18-316 30.31 0.355 5.645 0.0 0.000 1114 27722 MAR 3 149-250 18.312 30.31 0.357 5.045 0.0 0.000 1114 27722 MAR 1 149-250 118.312 30.31 0.357 0.353 5.045 0.0 0.000 1141 24121 MAR 2 149-250 118.413 30.475 0.357 0.302 0.301 19.446 0.410 1144 MAR 2 149-250 118.413 30.747 0.346 30.727 5.602 0.0 0.000 1141 77440 MAR 2 149-250 118.413 30.747 0.346 30.727 5.602 0.0 0.000 1141 77440 MAR 2 149-250 118.47 30.747 0.346 30.747 0.346 30.741 119.750)	S.TOTAL	0++•	010.411	-	696.0	ž –	n -	n•n	88.	-1327.	2315592。 4146552	
 		HAR I MAC 2	49°2	18.35	30.845	16	5°0	144*5	0•0	0.800	1258.	101925. 101923.	•
<pre> TOTAL FPR 2 FPR 3 FPR 3 FPR 3 FPR 3 FPR 3 FPR 4 FPR 4</pre>	c	MAR 3	49.2	16.31	30, 931	2.2	 		0.0	0.800	1160	277920.	
<pre>C FFF 2 149-250 118-319 30-37 0-338 30-99 5-105 0-0 0-00 11012 201240 HAY 1 149-250 118-319 30-37 0-338 30-99 5-102 0-0 0-00 1191. 241400 HAY 1 149-250 118-319 30-37 0-348 30-52 5-102 0-0 0-00 1191. 241400 HAY 2 149-250 118-473 30-47 0-348 30-52 5-102 0-0 0-00 1191. 241720. HAY 2 149-250 118-473 30-47 0-348 30-52 5-102 0-0 0-00 1170. 241720. JUN 2 149-290 118-473 30-517 0-348 30-421 5-102 0-0 0-00 1170. 241720. JUN 2 149-290 118-473 30-517 0-348 30-421 5-102 0-0 0-00 1170. 11710. JUN 2 149-290 118-473 30-517 0-438 30-470 30-04 0-0 0-672 2-559. 0-31240. JUN 2 149-290 118-570 30-050 0-038 2-4228 18-945 0-0 0-090 2-326. 0-31770. JUN 2 149-290 118-567 30-019 0-019 9-633 0-0 0-090 2-326. 131740. JUL 1 149-280 118-567 30-010 0-018 2-428 18-945 0-0 0-080 2-759. 131740. JUL 1 149-280 118-567 30-102 0-018 2-429 18-944 0-0 0-080 2-075. 49700. JUL 2 149-280 118-567 30-105 0-091 2-418 30-197 0-0 0-080 2-259. 54710. JUL 2 149-280 118-567 30-105 0-901 2-418 30-197 2-000 0-080 2-259. 54710. JUL 2 149-280 118-961 30-192 2-102 2-0.047 0-0 0-080 2-259. 547100. JUL 2 149-280 118-941 30-401 0-114 29-194 11-973 0-080 2-259. 54710. JUL 2 149-280 118-941 30-401 0-114 29-194 11-973 0-00 0-080 2-259. 54710. JUL 2 149-280 118-941 30-401 0-114 29-194 11-973 0-00 0-0805 2-593. 130742. JUL 2 149-280 118-941 30-401 0-114 29-194 11-973 0-00 0-0805 2-593. 130742. JUL 2 149-280 118-941 30-401 0-114 29-194 11-973 0-00 0-0805 2-593. 130742. JUL 2 149-280 118-941 30-401 0-114 29-194 11-973 0-00 0-0472 2-951. 170740. JUL 2 149-280 118-941 30-401 0-114 29-194 11-973 0-00 0-0472 2-953. 170740. JUL 2 149-280 118-941 30-401 0-114 29-194 11-973 0-00 0-0472 2-953. 170740. JUL 2 149-280 118-941 30-401 0-114 29-194 11-973 0-00 0-0472 2-953. 170740. JUL 2 149-280 118-941 0-114 11-913 0-114 29-194 11-973 0-100 0-1072 2-953. 170740. JUL 2 149-280 118-981 29-041 0-114 29-194 11-973 0-100 0-1972 2-553. 170740. JUL 2 149-280 118-981 29-041 0-114 20-194 11-973 0-100 0-1972 2-553. 170740. JUL 2 149-240 119-914 0-114 0-114 0-114 0-1</pre>		5. TUTAL	36 07	CL 01	000 00	2							• *
APR 3 149.250 118.255 30.925 0.349 30.515 5.102 0.0 0.000 1111 73340 MAY 1 149.250 118.453 30.475 0.346 30.527 5.002 0.0 0.000 11750 11750 MAY 1 149.250 118.453 30.717 0.346 30.527 5.002 0.0 0.000 1319 11750 MAY 2 149.250 118.453 30.717 0.346 30.527 5.002 0.0 0.000 1319 11750 MAY 2 149.250 118.473 30.717 0.346 30.527 5.023 0.0 0.000 1319 11750 JUN 2 149.250 118.750 30.517 0.3463 30.1249 0.0 0.400 1314 131720 JUN 2 149.250 118.750 30.517 0.319 30.143 0.000 0.300 0.300 0.300 0.300 0.3134 0.3134 JUN 1 149.267 118.750 30.147 0.3193 0.00 0.400 1314 0.3146 J	ر	2 PR 2	49.25	18.31	30.931	n m m	30.593	5,045 5,045		• •	11/2	25	:
WAY 1 147.250 118.470 0.347 30.571 5.112 0.0 0.800 119. 11760. WAY 2 149.250 118.475 30.475 0.346 30.577 5.662 0.0 0.800 139. 11760. WAY 2 149.250 118.475 30.475 0.346 30.577 5.662 0.0 0.800 139.57 UNN 1 149.260 118.473 30.517 0.470 30.472 10.470 30.472 5.662 0.0 0.800 139.57 UNN 1 149.260 118.473 30.517 0.470 30.473 90.470 30.474 30.474 30.474 147.643 143.75 143.75 149.570 5.93.647 0.0 0.892 453.651 143.645 456.76 5.662 0.0 0.892 453.651 143.75 143.645 456.77 5.662 0.0 0.893 5.837 5.837 5.837 5.837 5.846.75 5.837 5.837 5.837 5.837 5.846.75 5.847.65 5.847.65 5.847.65 5.847.65 5.847.65 5.847.65 5.8		APR 3	49 . 25	18.32	30.925	33	30.5 Bh	5.102	0.0	0.000	1411	2+3440.	>
WAY 2 149.250 118.375 30.475 0.346 30.527 5.662 0.0 0.400 15.61 403372 WAY 3 149.250 118.473 30.747 0.346 30.421 6.638 0.0 0.400 15.61 403372 UNN 1 149.250 118.770 30.747 0.346 30.421 6.638 0.0 0.400 15.61 403372 UNN 2 149.630 118.770 30.517 0.470 30.139 9.643 0.0 0.490 133472 UNN 2 149.630 119.670 30.0617 0.418 30.113 9.643 0.0 0.490 133472 UN 1 1 149.264 119.643 30.0174 0.470 30.019 9.643 0.0 0.3922 46714 1121642 JUL 1 149.265 119.670 30.063 0.017 0.418 30.173 7.069 9.643 0.0 2055 46714 1121642 JUL 1 149.265 118.704 30.173 0.418 30.173 0.00 2075 46704 <t< th=""><th>C</th><th>PATUTAL</th><th>49.2</th><th>18.18</th><th>30.870</th><th>34</th><th>0.52</th><th>5,712</th><th>0-0</th><th>0.800</th><th></th><th>H45040. 212550</th><th></th></t<>	C	PATUTAL	49.2	18.18	30.870	34	0.52	5,712	0-0	0.800		H45040. 212550	
MAY 3 149.250 118.443 30.7131 0.3421 6.638 0.0 0.800 15/6. 403392. JUN 1 149.347 118.424 30.577 0.470 30.471 0.0 0.472 2637. 0.33300. JUN 2 1490.347 118.730 30.577 0.438 30.139 9.603 0.0 0.892 4571. 112.1347. JUN 2 1490.250 119.577 30.617 0.418 30.139 9.603 0.0 0.892 4671. 112.1347. JUL 1 1490.250 119.457 30.617 0.418 30.197 8.863 0.0 0.892 4671. 112.1347. JUL 1 1490.250 119.457 30.617 0.418 30.177 7.069 0.0 0.892 4671. 112.1347. JUL 2 1490.675 119.4670 30.177 7.069 0.00 0.892 467000. 487000. JUL 3 1490.675 119.4703 30.177 7.0697 0.00 0.0950 217597. 217597. JUL 3 1490.675 119.4703)	MAY 2	49.2	18.37	30.475	1	0.52	5.062	0.0	0.800	1305.	13720. J13720.	2
JUN I 149-343 110.824 30.517 0.470 30.449 10.648 0.0 0.572 2637 133300 JUN Z 149-367 116.730 30.577 0.470 30.139 9.603 0.0 0.350 558240 JUN Z 149-530 110.570 30.577 0.438 30.1139 9.603 0.392 4671 112.1043 S-107AL 149-250 119.670 30.617 0.418 30.1137 7.069 0.0 0.3972 4671 112.1043 JUL Z 149-250 119.670 30.617 0.418 30.1137 7.069 0.0 0.3972 4671 112.1043 JUL Z 149-250 119.670 30.617 0.418 30.173 7.069 0.0 0.3972 4671 3103640 JUL Z 149.250 119.670 30.743 30.7162 20.007 0.0 215492 54.150 JUL Z 149.250 119.670 30.743 30.7452 0.0 0.00 219740 215470 JUL Z 149.250 118.641 30.462	ç	МАҮ 3 с.тота)	4 9 •2	18.46	30,747	36	0.42	6.638	0.0	0.800	15/8.	403342.	
JUN 2 149.307 118.730 30.577 0.438 30.139 9.603 0.0 0.890 2326. 558240. JUL 1 149.250 119.570 30.617 0.418 30.139 9.603 0.0 0.892 4071. 11216443. JUL 1 149.250 118.653 30.617 0.418 30.173 7.069 9.03 4403 10.7 2175462. 446003. JUL 2 149.250 118.502 30.617 0.418 30.173 7.069 9.03 29.102. 10.416. 10.75. 446003. JUL 2 149.250 118.670 30.052 0.903 29.102 20.047 0.0 0.809 10.75. 457150. JUL 2 149.256 118.704 30.505 0.903 29.264 8.000 0.1932. 547150. 275470. JUL 3 149.256 118.585 30.505 0.356 30.264 8.000 0.1375 27916. 547150. 275470. 275470. 275470. 275470. 275470. 275470. 275470. 275470. 275470. 275470.)		49.3	18.82	30.519	0.470	40.0	ം	0.0	0.672	2639.	[]33672° 533360.	2
S-107AL JUL 1 [49-250 [18.663 30.617 0.418 30.199 8.863 0.0 0.800 2075, 486000, JUL 2 [49-250 [18.502 30.448 0.375 30.173 7.069 0.0 0.800 1024, 98765, JUL 2 [49-250 [18.502 30.468 0.375 30.173 7.069 0.0 0.895 4.934, 1303632, JUL 3 [49-250 [18.567 30.093 294102 20.047 0.0 0.895 4.934, 1303632, AUG 1 [49-250 [18.585 30.465 0.396 29.269 8.000 0.0 0.893 4.934, 1307632, AUG 3 [50:000 [20:500 29.500 [1585 27:915 29.273 1.357 0.893 6.800, 1795,00, AUG 3 [50:000 [20:500 29.500 [1585 27:915 29.273 1.357 0.893 6.800, 1795,00, AUG 3 [50:000 [20:500 29.500 [1585 27:915 29.273 1.357 0.893 6.800, 1795,00, AUG 3 [50:000 [20:500 29.500 [1585 27:915 29.273 1.357 0.893 6.800, 1795,00, AUG 3 [50:000 [20:500 29.500 [1585 27:915 29.273 1.357 0.893 6.800, 1795,00, AUG 3 [19.611 30.094 0.805 29.294 11.473 0.0 0.472 2941, 777764 SEP 3 [49:443 30.094 0.552 29.4442 12.975 0.0 0.0 0.472 2941, 777764, SEP 3 [49:443 30.394 0.552 29.4442 12.975 0.0 0.0 0.472 2951, 104792, SEP 3 [49:443 30.394 0.552 29.4442 12.975 0.0 0.0 0.472 2951, 104792, SEP 3 [49:443 30.394 0.552 29.4442 12.975 0.0 0.0 0.472 2951, 104792, SEP 3 [49:443 30.394 0.552 29.4442 12.975 0.0 0.0 0.492 4.553, 104792, SEP 3 [49:443 119.631 30.394 0.552 29.4442 12.975 0.0 0.0 0.492 4.553, 104792, SEP 3 [49:443 119.631 30.394 0.552 29.4442 12.975 0.0 0.0 0.495 4.652, 1157440, SEP 3 [49:443 119.455 1.90,114 0.4771 30.377 1.4071, 0.0 0.492 4.573 1.57440, SEP 3 [49:455 119.656 29.455 1.0,114 0.4771 30.377 1.4071, 0.0 0.492 4.573 1.57440, SEP 3 [49:455 119.656 29.451 0.4711 0.5140 0.0 0.0 0.492 4.573 1.57440, SEP 4 [19:656 20,114 0.556 20,114 0.5744 0.0 0.0 0.0 0.495 4.672, 115440, SEP 4 [19:656 20,114 0.556 20,114 0.5344 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.0	C	2 NUL E NUL	9 64 64	18.73 19.57	30.577 30.066	0.433	0.L3 9.23	• •	n.0	048.0	2326.	558240. 1121063	
ULL 149.250 119.675 30.749 0.375 30.177 9.665 0.375 30.177 9.665 0.375 30.177 9.665 0.3165 130762 466000 ULL 149.675 119.670 30.076 0.903 29.102 20.047 0.0 0.895 491761 AUG 1 149.675 119.670 30.065 0.903 29.102 20.047 0.0 0.895 4130752 AUG 1 149.256 118.704 30.592 0.430 30.162 9.316 0.0 0.0800 1003762 54/150 AUG 2 149.250 118.585 30.043 0.305 9.0162 9.010 0.0800 1003762 AUG 2 149.250 118.585 30.0443 0.0 0.0800 1432 54/150 AUG 2 150.0000 120.5500 29.590 11.453 0.0792 20.9440 7696443 AUG 2 149.4615 119.611 30.0443 0.0 0.0472 29543 769745 SFP 149.4615 <th></th> <th>S. TOTAL</th> <th>5 07</th> <th></th> <th>617 QE</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2312640.</th> <th>)</th>		S. TOTAL	5 07		617 QE							2312640.)
UL 3 149-675 119-670 30.005 0.903 29-102 20.047 0.0 0.895 4/34. S.TOTAL 149-296 118-704 30-592 0.430 30-162 9.316 9.0 0.450 2259. AUG 2 149-250 118-585 30.465 0.396 30.269 8.000 0.0 0.490 1432. AUG 3 150-000 120.500 29.500 1.585 27.915 29.273 1.357 0.893 6400. S.TOTAL 149-389 118-941 30.443 0.514 29.934 11.953 0.0 0.472 2951. SEP 2 149.615 119.517 30.094 0.605 29.293 18.346 0.0 0.472 2533. S.TOTAL 149-389 118.941 30.443 0.552 29.4442 12.955 0.0 0.472 2533. S.TOTAL 149.426 119.031 30.394 0.552 29.4442 12.955 0.0 0.472 2533. S.TOTAL 149.426 119.031 30.394 0.552 29.4442 12.955 0.0 0.472 2533. S.TOTAL 149.428 119.631 30.394 0.552 29.4442 12.955 0.0 0.472 2533. S.TOTAL 149.428 119.631 30.394 0.552 29.4442 12.955 0.0 0.472 2533. S.TOTAL 149.428 119.631 30.394 0.552 29.4442 12.955 0.0 0.472 2533. S.TOTAL 149.428 119.631 30.394 0.552 29.4442 12.955 0.0 0.495 2525. S.TOTAL 149.428 119.631 30.394 0.552 29.4442 12.955 0.0 0.495 2555. S.TOTAL 149.428 119.631 30.394 0.552 29.4442 12.955 0.0 0.0 0.495 2555. S.TOTAL 149.428 119.651 30.314 0.5719 23.255 0.0 0.0 0.495 2555. S.TOTAL 149.428 119.651 30.314 0.5719 23.255 0.0 0.0 0.495 2555. S.TOTAL 149.428 119.651 30.314 0.5719 23.255 0.0 0.0 0.495 2555. S.TOTAL 249.428 119.651 30.414 0.771 20.0555 0.0 0.0 0.495 2555. S.TOTAL 249.455 119.051 30.314 0.771 20.555 0.0 0.0 0.495 2555. S.TOTAL 249.455 119.651 30.414 0.771 20.555 0.0 0.0 0.495 2555. S.TOTAL 249.455 119.655 30.451 0.555 0.555 0.555 0.0 0.0 0.495 0.555 0	2		49.2	18.50	30. 148	31	• •	7.069		0.800		4 8 6 0 0 0 . 5 8 7 7 6) .	
O AUG I 149.295 118.704 30.592 0.430 30.162 9.316 0.3 0.450 2259. AUG Z 149.250 118.585 30.465 0.396 30.269 8.000 0.0 0.403 2490. AUG Z 150.000 120.500 29.500 1.585 27.915 29.273 1.357 0.803 6400. AUG S 150.000 120.500 29.500 1.585 27.915 29.273 1.357 0.893 6400. AUG SEP I 149.389 118.941 30.443 0.514 29.434 11.473 0.0 0.472 2941. ASEP 2 149.615 119.9517 30.394 0.552 29.4442 12.9456 0.0 0.0 0.472 2953. ASEP 2 149.4261 119.031 30.394 0.552 29.4442 12.9456 0.0 0.472 2953. ASEP 3 1449.428 119.031 30.394 0.552 29.4442 12.9455 0.0 0.472 2953. ASEP 3 1449.428 119.031 30.344 <t< th=""><th></th><th>JUL 3 S.TOTAL</th><th>44°D</th><th>19.6/</th><th>3005</th><th>6</th><th>-</th><th>20.047</th><th>0.0</th><th>C-845</th><th>ם אולו א</th><th>1303632. 3576303</th><th></th></t<>		JUL 3 S.TOTAL	44°D	19.6/	3005	6	-	20.047	0.0	C-845	ם אולו א	1303632. 3576303	
AUG 2 149.629 30.605 0.396 30.269 8.000 0.0 0.400 1432. AUG 3 150.000 120.500 29.500 1.545 27.915 29.273 1.357 0.493 6400. SFP11 149.389 118.941 30.443 0.514 29.934 11.453 0.0 0.472 2941. SEP 1 149.489 118.941 30.443 0.514 29.934 11.453 0.0 0.472 2941. SEP 2 149.615 119.517 30.034 0.552 29.4442 12.955 0.0 0.472 2753. SEP 3 149.4755 119.031 30.334 0.552 29.4442 12.955 9.273 10.922 29.253. STOPA 30.349 0.552 29.4442 12.955 9.29.33. 4537. 4547. 4547. <th>С</th> <th></th> <th>49.2</th> <th>18.70</th> <th>ം</th> <th>4</th> <th></th> <th>٠</th> <th>0°0</th> <th>• 45</th> <th>2259.</th> <th>542150.</th> <th>F J</th>	С		49.2	18.70	ം	4		٠	0°0	• 45	2259.	542150.	F J
 S.TOTAL S.TOTAL S.FP L I.49-389 I.8-340 0.443 0.514 29,934 I.453 0.0 0.472 2941. SEP 2 149.615 119.517 0.00 0.605 29,434 18.346 0.0 0.472 29,517 0.615 29,434 119.517 0.036 0.605 29,434 119.615 119.611 0.552 29,442 119.631 30,394 0.552 29,442 12,955 0.0 <li0.0< li=""> 0.0 0.0 0.0</li0.0<>		AUG 3	50.0	20.50	ာင်	÷3	N P		<u>د</u>	.80 .89	1432. c800.	434480. 179520J.	age
SEP 2 149.615 119.517 30.094 0.805 29.243 18.346 0.0 0.802 45.33 C SEP 3 149.475 119.031 30.394 0.552 29.4442 12.955 0.0 0.802 45.33 C SEP 3 149.475 119.031 30.394 0.552 29.4442 12.955 0.0 0.802 45.355 OCT 1 149.493 119.453 30.114 0.177 23.254 0.0 0.495 457.5 O 0CT 1 149.492 119.453 30.114 0.177 23.264 17.472 0.0 0.495 O 0CT 1 149.492 110.4653 30.114 0.177 23.264 17.472 0.0 0.495 O 0CT 2 149.494 110.4653 30.114 0.177 23.264 17.472 0.0 0.495	כ	S.TOTAL SEP 1	49	94 °E	30.443	3	6°6	_	0-0	0.472	7461	277704C。 764240	ix 2 2
S.TOTAL S.TOTAL <t< th=""><th>-</th><th>SEP 2</th><th>40.4</th><th>9.51</th><th>30.094</th><th>1084</th><th></th><th>1.00 10</th><th></th><th>0.992</th><th>4523</th><th></th><th>4<u>8</u>.</th></t<>	-	SEP 2	40.4	9.51	30.094	1084		1.00 10		0.992	4523		4 <u>8</u> .
(11.1 149-592 119-458 30,134 0.1710 21.14 17.0.2 0.0 0.492 4572 11.1 11.1 149-458 30,134 0.471 30,364 17.0.2 0.0 0.492 4572 11.1 10.1 10.0 0.471 30,347 130,347 130,347 130,347 130,0 0.472 4547)	S. TOTAL	0 7			: :					• • • • • • •	-cato242	- <u>10</u>
)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 0 7 - 4	19.45 18.87				10. 11. 11.			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1 5 5 5 4 4 0 . 1 5 4 1 6 4 0 .	ا ر
)	5. TUTAL			•)

, , , , starility Forecast of the Selected Major Crops

. Method of Forecasing

Paddy rice, garlic and mungbean together with virginia tobacco and cotton have been selected as the major crops in the Project. In order to analyze their demand-supply balance at the three levels of the whole country, Ilocos region and Ilocos Norte province during erroreried of 1975 to 1979, the demand of these crops has been estirated base on the NEDA data on the projected population and food erroumption per capita whereas the supply capacity estimation has been rade hased on the production data of BAEcon and the other government agencies.

The data of the projected population applied in forecasting are

Projected Population

				(0)	nit: '(000)
Year	Whe	ole Country	Ilocos Regio	on <u>Ilocos</u>	Norte	Province
1375		42,517	3,310		371	
1376		43,841	3,374		380	
1977		45,165	3,438		389	
1978		45,500	3,499		397	
1979		46,700	3,565		405	
1980		49,137	3,631		414	
1990		65,041	4,445		497	
	Source:	Population	Dimension of	Planning,	NEDA,	1975

(Medium Assumption)

To compute the demand of the selected major crops in from 1975 to -379 and 1990, the food consumption per capita shown in the following table has been applied in the computation.

Consumption per Capita

		ilippin		Iloco	s Regio	n
Crop	1975-1979	<u>1/</u> 1.Q.E.	$\frac{2}{1990}\frac{3}{}$	1975-1979	<u>1/</u> _I.Q.E.	$\frac{2}{1990^{3/}}$
Rice & rice product Garlic Mungbean	106.1kg 0.4 1.3	0.13% 0.48 0.48	112.9kg 6.5 1.6	133.8kg 0.3 1.8	0.02% 0.23 0.34	135.1kg 0.4 2.1

Note: 1/ The data on the consumption per capita for the year from 1974 to 1976 in "the Regional Consumption Pattern for Major Foods" prepared by DA in 1976.

2/ Income-quantity elasticity in the report mentioned in 1/

3/ Forecast from the assumed income increase rate at 50% From 1974-1976 to 1990, applysing the above-mentioned I.Q.E.

B. Forecast of Marketability

1. Rice

The Philippines was an importer of rice for a long time although some surplus of rice was recorded in 1979 (See Table 4C-1) It is presumed that the average rice consumption per capita will continuously increase in future, too, juding from the small average consumption per capita at present as well as from the fact that reportedly about 20 percent of the total popultaion lives on corn.

The Five-year Development Plan of the Government indicates that the total demand for rice in the year 1990 will increase to 140 percent of that as of 1978. This estimate has been made based on such a small consumption per capita as about 95 kg. Therefore, it is well anticipated that the actual demand for paddy rice will be more than the above-estimated in 1990.

In 1979 rice equivalent to 20 percent of the total demand in Ilocos region was short. The demand for rice in the region as of 1990 is forecast at 604 thousand tons. To meet the above-mentioned demand, the yield per unit area of paddy should increase to 3.1 ton/ ha if the paddy cropping area is not expanded. In fact, the paddy cropping area in the region has not been expanded these 10 years:

							1
It	Item	1975	1976	Actual 1977	1978	1979	forecasted 1990
Philippines	Supply (Paddy)	5,660.0	6,159.5	6,456.l	6,894.9	7,199.0	1
	(Rice)	3,396.0	3,695.7	3,873.7	4,136.9	4,319.4	<i>*7</i> ,329
	Demand (Rice)	4,506.0	4,647.0	4,787.0	4,140.0	4,260.0	*5,766
	Balance (Rice)	(-)1,110.0	(-)951.0	(-)913.0	(-)3.0	59.0	*1,563
Ferion I	Supply (Paddy)	422.0	577.5	511.0	575.8	638:7	ł
	(Rice)	253.2	346.5	306.6	345.5	383.2	ł
	Demand (Rice)	443,5	452.1	460.7	468.9	477.7	596
	Balance (Rice)	(-)190.3	(-)105.6	T.#31(-)	(-)123.4	(-)94.5	I
Ilocos Norte	Supply (Paddy)	50.9	72.4	83.6	83.3	92.4	I
	(Rice)	30.5	43.4	50.2	50.0	55.4	I
	Demand (Rice)	49.7	50.9	52.1	53.2	54.3	67
	Balance (Rice)	(-) 19.2	(-) 7.5	(-) 1.9	(-) 3.2	(-) 1.1	I

-

Source; Supply ---- BAEcon * ------- Five-year Philippine Development Plan (1978-1982) Note: Conversion rate from paddy to rice : 60%

Appendix 4C-1 Page 3

On the countrary, it is the tendency that the paddy cropping area is decreasing in the region recently. It might be difficult to increase in a short time the present yield per unit area to the above-mentioned 3.1 ton/ha. Under the situations, Ilocos region will remain as one of the rice digicit area in the year of 1990.

Ilocos Norte province recorded some surplus production of rice in 1979, however, the production trend indicates that the production in the province has a great yearly variation.

The demand for rice in the province as of 1990 has been forecast at 67 thousand tons. To meet the forecast demand plus the buffer stock equivalent to 15 percent of this forecast demand, the target production of rice in 1990 should be set up at 77 thousand tons, which is converted to the unhulled rice of 130 thousand tons. This volume of unhulled rice is equivalent to 150% of the averaged production in the province during the three year-period from 1977 to 1979. (The difference between the forecasted demand for the year of 1990 and the said present production is some 44 thousand tons.)

At least an area of about 10 thousand hectares of paddy harvesting area would be newly developed under on-going irrigation projects inclusive this Project. Under the situations, the above-mentioned target could be easily achieved if the yield per unit area slightly increases.

2. Virginia Tobacco

É,

PVTA data shows that the average production of virginia tobacco at the whole country level was about 42 thousand tons during 1975 to 1978. Out of this production, about 10 thousand tons were exported as one of the major export goods obtaining foreign currencies. In the Five-year Development Plan of the Government the annual increase rate of virginia tobacco production is projected at 2.4 percent during 1978 to 1987. Inocos region and Ilocos Norte province produced virginia tobacco quive ent to 94% and 10% of the national production in 1977, respectively. The Presidential Degree on the zonification of virginia + paceo production area suggests that the cropping area of virginia to.a.c will be continueously concentrated to Ilocos region.

The virginia tobacco production in the Project Area could increase at least up to 130 percent of the total production as of 1978 if 2.4 percent of annual increase rate is applied.

3. Gariic

The BAEcon data indicate that the garlic production in Ilocos ...glon maintained its share of more than 75 percent of the total roduction in the whole country for the past ten years from 1970 to ...79. Garlic production area in the region concentrates in the Project Area and its neighborhood.

At the national level, the domestic demand of garlic in each of the last five years appears larger than the supply capacity as shown in the following table.

					(Unit	thousa:	nd ton)
				Actual			Forecasted
Item		1975	1976	1977	1978	1979	1990
Pilippines	Supply Demand Balance	16.0 17.0 (-)1.0	15.2 17.5 (-)2.3	16.0 18.1 (-)2.1	16.8 18.2 (-)1.4	14.0 18.7	32.0
tigion I	Supply Demand Balance	11.8 1.0 10.8	11.9 1.0 10.9	12.4 1.0 11.4	13.6 1.0 12.6	9.6 1.1 8.5	1.8
llocos Norte	Supply Demand Balance	9.9 0.1 9.8	10.0 0.1 9.9	10.5 0.1 10.4	11.5 0.1 11.4	7.4 0.1 7.3	0.2

Table 4C-2 Demand and Supply Balance, Garlic

Source: Supply---BAEcon

However, the "Garlic Projection and Marketing, Ilocos Region" prepared by DA in 1978 suggests that the Philippines has been an exporter of garlic these years, specially in 1978. A considerably large amount of demand than the supply capacity as previously described may be derived from the underestimate of the garlic production in the production data.

The demand of garlic at national level for the year of 1990 is forecast as much as 32 thousand tons, which corresponds to about 176 percent of the total demand in 1978. The production target in the Project Area for the year 1990 could be set up at 176 percent of the total production in 1978 since the marketing share of garlic in the Project Area will be easily maintained, at least, at present level.

4. Mungbean

A marked increase of mungbean production in the whole country has been registered since 1973 according to the BAEcon production data. The production share of mungbean in Ilocos region was expanded to a great extent from seven percent in 1973 to 45 percent in 1977 due to the increase of harvested area by five times. This sharp increase in mungbean production of the region made almost 100 percent contribution to the nation-wide increase of this crop during the said period.

The mungbean production data in the Ilocos Norte province also show a moderately large increase in production and harvested area as well since 1973. The harvested area was expanded in 1979 to 1.9 times of that in 1973 whereas the production in 1979 increased only to 1.4 times of that in 1973. That is, the increse of production per unit area is not observed during the period.

As seen in the following table 4C-3, a tremendous amount of deficit is found in the demant-supply balance of mungbean at the national level.

(Unit: thousand ton)

					• • • • • •		
			_	Actual			Forecasted
Item	<u></u>	1975	1976	1977	1978	1979	1990
philincines	Supply	21.7	24.4	25.3	26.2	29.0	
-	Demand	55.3	57.0	58.7	59.2	60.7	104.1
	Balance(-)33.6	(-)32.6	(-)33.4	(-)33.0	(-)31.7	
Region I	Supply	6.0	10.8	11.3	N.A.	N.A.	
	Demand	6.0	6.1	6.2	6.3	6.4	9.3
	Balance	0.0	4.7	5.1	N.A.	N.A.	
Ilocos Norte	Supply	0.8	0.9	0.9	1.0	1.0	
	Demand	0.7	0.7	0.7	0.7	0.7	1.0
	Balance	0.1	0.2	0.2	0.3	0.3	

Table 4C-3 Demand and Supply Balance, Mungbean

Source; Supply --- BAEcon

The "Commodity Situation Report, Mungbean" prepared by BAEcon in 1979 indicates that the Philippines'imported mungbean of about 9 thrusand tons during the 10 years from 1967 to 1976 whereas the country exported the product of less than one thousand tons during the same period. The report recommends to export mungbean since it is free from tariff duties.

Its production target to meet the forecast demand in the year 1990 at the national level should be set up so much as 3.9 times of it tital production in 1978. In this connection, the production in the Project Area could be at least as much as to 3.9 times of the production in 1978.

5. Cotton

Philippine Cotton Cooperation (PCC) is responsible for the Development of cotton production in this country. The "National Option Production Development Program, 1979 to 1987" prepared by this organization aims to attain the self-sufficiency of cotton by 1987. The target production for this purpose is 138 thousand tons. The said program also suggests that some 146 thousand hectares are

Appendix . Page 9

identified as potential cotton production area, of which 32 thousand hectares (22 per cent of the total) and 4 thousand hectares (two %) belong to Ilocos region and Ilocos Norte province, respectively. For the identified area in Ilocos Norte, three thousand hectares are assumed to be located in paddy fields. Then, the potential cotton area in the Ptoject Area is estimated at 1.3 thousand hectares based on the proportion of paddy field area in the Project Area to the total paddy field area in Ilocos Norte province.

							(Unit:ha)	ha J	
Cropping Pattern (Wet Season + Dry Season)	Cura	Nueve Era	Sub-total	Madupayas	Batac- Paoay	Pinili	Badoc- Sinait	Sub-total	Total
l Paddy + Paddy	1,270	600	1,870	60	2,130	80	830	3,100	4,970
2 Paddy + Upland Crops									
<pre>(1) Paddy + Tobacco</pre>	40	30	70	80	1,150	280	550	2,060	2,130
(2) Paddy + Garlic	100	0 11	140	I	700	450	915	2,065	2,205
(3) Paddy + Garlic + Mungbean	ans -	I	ł	I	700	450	915	2,605	2,065
(4) Paddy + Cotton	ł	i	ı	20	510	140	360	1,030	1,030 1,030
(Sub-total)	(140)	(10)	(510)	Ū	(100) (3,060)	(1,320)	(2,740)	(1,220)	(7,220)(7,430)
Total (Physical Area)	1,410	670	2,080	160	2,190	1,400	3,570	10,320 12,400	12,400
(Cropping Area)	2,820	1,340	4,160	320	11,080	3,250	8,055	23,245	26,865
Cropping Intensity (%)	200	200	200	200	213	232	226	225	217

Tuble 4C-4. "Nouting Acta by Cropping Patters, Sub-project Mrs. (With Project, In Future)

Result of Field Survey on Farmers' Intension for Improvement of Farm Management

A. Purpose and Method of the Survey

The prupose of the survey is to know the needs of irrigation project for farm management in the Project Area and the field survey by interviewing some 70 sample farmers was made with prepared questionary in the Project Area, exclusive of Cura and Nueva Era Sub-project Areas from 18th to 28th, January, 1980.

The selected sample Barangays and sample farmers were, as a general rule, the same as those of the Farm Management Survey conducted by NIA in 1978. But some interviewees were unavoidably different from there of the NIA survey. The sample Barangays and number of farmers by Barangays are listed as follows;

No.	Municipality	Barangay	Nos. of Sample Farmers
l	Batac	San Pedro	9
2	Paoay	Cabaguan	7
3	Paoay	San Roque	5
4	Paoay	Sideg	3
5	Paoay	Bacsil	3
6	Pinili	Dart	5
7	Pinili	Puritac	6
8	Pinili	Tartarabang	9
9	Badoc	Ar-arusip (A)	6
10	Sinait	Battog	4
11	Sinait	Duy-yayat	7
12	Sinait	Barikir	6
Total			70

Sample Barangays and Nos. of Sample Farmers

3. Result of Survey

Farmers' responses to each question in the questionary are tabulated in Table 4C-5. Based on the Table 4C-5, farmers' intention for the improvement of their farm management and also the recessity of irrigation project are summarized as follows;

. (utline of Farm Management of Sample Farmers

Average farm size per farm household is 1.2 hectares, including introduces of paddy field and 0.1 hectare of upland field. Out of introduces os paddy field, 0.2 hectares are irrigated by Communal irrigation Systems and the remaining 0.9 hectares are rainfed. As for land tenure of the cultivated land, each half of 1.2 hectares i paned and tenanted.

The average cropping area by crops per farm household in this curve? are as follows;

Cropping Area by Crop per Farm Household

<u>Cro;</u>	Area (ha)	Percentage (%)
Paddy (Wet season)	1.1	52.4
Tollacco	0.3	14.3
Garlie	0.4	19.0
Mungo	0.1	4.8
Corn	0.1	4.8
Others	0.1	4.7
<u>Iotal</u>	2.1	100.0

 $\mathbb{T}^{t_{\rm of}}$ main cropping pattern by each sample farmer is shown as $fo_{\rm lows};$

Main Cropping Pattern of Sample Farmers

	<u>C</u> 1	ropj	bing Pattern	Nos. of Farmers	Percentage
1.	Pá	addy	/ (P) only	3	(%)
2.	Ρ	t	Tobacco (T)	3	4.3
3.	Ρ	+	Garlic (G)	13	18.6
4.	₽	+	Corn (C)	1	1.4
5.	Ρ	+	T / G	17	24.4
6.	Ρ	+	T / G	1	1.4
7.	Ρ	+	T / Mung Bean (M)	1	1.4
8.	Ρ	+	G / M	4	5.7
9.	Ρ	+	G / O	1	1.4
10.	Ρ	+	G / C	3	4.3
11.	Р	+	М / С	1	1.4
12.	Ρ	+	Т/С/М	1	1.4
13.	Ρ	+	Т/G/С	9	12.9
14.	Р	+	Τ/G/Ο	3	4.3
15.	Р	+	Т / М / С	1	1.4
16.	Ρ	+	G / M / C	1	1.4
17.	Ρ	+	Τ/G/C/Ο	6	8.6
18.	Ρ	+	Т/G/М/С/О	1	1.4
		-	fotal	70	100.0

2. Major Source of Family Income in Future

All of sample farmers responded that they would continue their present farm management in future as well and the major source of their family income would come from their farm mamangement.

3. Present Irrigation Condition

Seventy-seven percent of interviewees can not have enough irrigation water, especially during the dry season.

. If oding Damages in Past Five Years

Sixty percent of sample farmers have been suffered from flood damages two or three times on an average within past five years. imong the flood damages, the biggest damage experienced was such damage do scale of 0.3 hectares in the area with 1.7 meters flood intr and 3.3 days in duration.

-. Main Cropping Pattern in Future

Seventy-eight percent of sample farmers chose the cropping tattern of three croppings a year, for example, "Paddy + Garlic + "ung Bean", as the main cropping if they can have enough irrigation water throughout the year.

On the other hand, thirty two percent of sample farmers responded that they would choose such cropping pattern as "Paddy + Paddy" or "Faddy + Tobacco or Garlic + Paddy", both of which have two croppings of paddy. It may be one of the reason why so many farmers as thirty two percent of interviewees desire to plant paddy twice a year that trose farmers want to increase rice production because their rice rodu tion is limitted under small farm size at present. Table 4C-5. Farmers' Response to Questionary

1. General Information 1-1. Cultivated area: - Pady land, Owned ha 36.6 0.5 on Their Farm Management - Upland, Owned ha 6.6 0.1 1-2. Irruigated area by: - Wet season ha 12.6 0.2 1-3. Irruigated area by: - Wet season ha 12.6 0.2 1-3. Irruigated area by: - Wet season ha 12.6 0.2 1-3. Irruigated area by: - Wet season ha 12.6 0.2 1-4. Pumps - Dry season ha 51.8 0.1 1-4. Pumps - Pady, Wet ha 29.0 0.4 1-4. Planted area by: - Paddy, Wet ha 19.4 0.3 1-4. Planted area by: - Protecco ha 19.4 0.1 1-4. Planted area by: - Protecco ha 19.4 0.1 1-4. Planted area by: - Protecco ha 19.4 0.1 1-4. Planted area by: - Protecco ha 19.4 0.1 1-4. Planted area by: - Paddy, Wet ha 19.4 0.1 1-4. Planted area by: - Protecco ha 19.4 0.1 1-4. Planted area by: - Protecco ha 19.4 0.1 1-4. Planted area by: - Paddy, Wet ha 29.0 0.1 1-4. Planted area by: - Paddy for ha 29.6 0.1 </th <th>Main Item</th> <th>Sub-Item</th> <th>Unit</th> <th>Total</th> <th>Per Farm Household</th>	Main Item	Sub-Item	Unit	Total	Per Farm Household
Irrigated area by: - Wet season Communal irri.systems - Dry season Pumps - Wet season Pumps - Wet season Pumps - Dry season Planted area by: - Paddy, Wet - Dry season Planted area by: - Paddy, Dry - Paddy - Paddy, Dry - Paddy - P		- Paddy land, - Upland,	ted	36.6 43.5 6.6 3.4	0.000
Irrigated area by: - Wet season ha - Pumps - Dry season ha 51.8 Planted area by: - Paddy, Wet ha 80.1 crop - Paddy, Dry ha 19.4 - Tobacco ha 19.4 - Garlic ha 29.0 - Mungo ha 4.8 - Corn ha 11.1 - Others ha 2.5 Total Nos. of family members 420 Nos. of farm lavor within family 200		- Wet ems - Dry	ha ha	12.6 -	0.2
Planted area by: - Paddy, Wet ha 80.1 crop - Paddy, Dry ha 80.1 - Tobacco ha 19.4 - Garlic ha 29.0 - Mungo ha 4.8 - Corn ha 11.1 - Corn ha 11.1 - Corn ha 2.5 Total ha 2.5 Total Nos. of family members 420 Nos. of farm lavor within family 200		1-1	ha ha	- 51.8	- 0.7
- Others ha 2.5 Total Total ha <u>146.9</u> Nos. of family members 420 Nos. of farm lavor within family 200		ced area by:	н н н н н н н н н н н н н н н н н н н	80.1 19.4 1.8 1.1	
Nos. of family members Nos. of farm lavor within family 200			ha ha	2.5 146.9	0.1 2.1
Nos. of farm lavor within family		. of family members		420	6.0
		. of farm lavor within family		200	2.9

Appendix 4 Page 5

Main ltem		Sub-ltem		Unit	lotal	Percent
II. Source of Farmily Income in Future	II-1.	To continue farm management in future	; - Farm income only n - Farm income + Others - Others/No r-sonse		0 7 8	60 0
	II-2.	To stop farm management in future			0	0
	II-3.	No response/other reply			0	σ
III. Present Irrigation	III-l.	Sufficient			16	23
Condition (Availability of Irrigation Water)	III-2.	Deficient	 In both wet & dry season In wet season only In dry season only 	Pason	ფიფ ₽	6 C 8 9
	III-3.	No response/other reply			0	o
IV. Flooding Damages	IV-1.	Not suffered			28	011
in Past Five Years	IV-2.	Suffered	•••		42	60
			- Nos. of times	time	0 1 1	
			- Damaged area	вh	0.3	
			<pre>/Diggest itous) / Flood depth</pre>	E	1.7	
			(biggest flood) - Flood duration	day	ຕ . ຕ	
			(biggest flood)		-	

TARE 50 . A DECRET PERSON FOR THE DATE (CONTER)

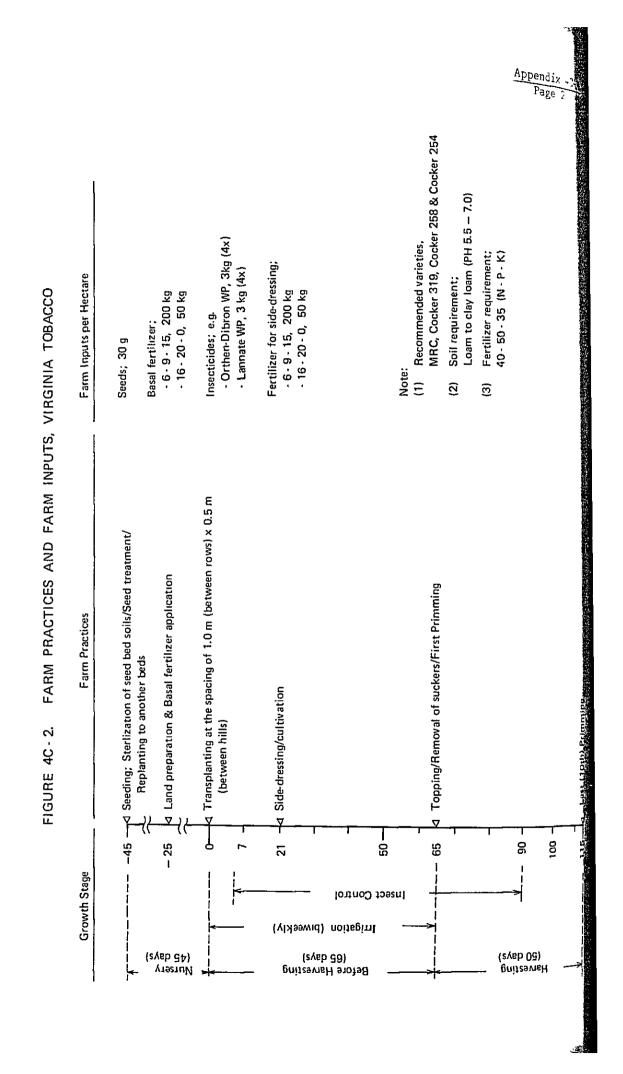

(Cont'd)

Table 4C-5. Farmers' Response to Questionary (Cont'd)

Main Item	1	Sub-Item	Unit	Total	Percent
	V-1.	One cropping a year;		0	o
fattern in futre (In case of	V-2.	÷		ω,	11
c		- Paddy + Garlic (G) - Paddv + Tobacco(T)		υC	ထင
		+	្រល្	0	9 m
	V-3.	Three cropping a year; - P + T/G + P		15	21
		- P + T/G + Corn/Others	hers	18	26
		-P + T/G + Mungo (N	(W	15	21
		- Others (EX. P+P+M)	<u> </u>		0T
VI. Needs of Agricultural Development Project	VI-1.	Construction/improvement of irrigation facilities	o%	70	100
	VI-2.	Construction of drainage facilities	0 ¹⁰	70	100
	VI-3.	Construction/improvement of farm roads	0 ^{,0}	70	100
	.μ-IV	Strengthening of extension activities	0%D	70	00T
	VI-5.	Expansion of farm credits such as M-99	0/0	70	100
	VI-6.	Land exchange for grouping dispersed parcels	0%)	70	100

Appendix 40 Page 7

	FIGURE 4C . 1 FARM PRA	ARM PRACTICES AND FARM INPUTS, PADDY RICE	NPUTS, PADDY RICE
Growth Stage	Farm Practices		Farm Inputs per Hectare
(\$	-25 - 7 Land preparation/Seed bedding (400 m ² , wet seedbed)	et seedbed)	Seeds, 50 kg
edaing -sqp34 b (25 day	20		Fertilizer for seedbeds; 14 - 14 - 14, 10 kg
ne 1 8	-10 - 0 0-4 Transplanting in the straight rows (20cm x 20cm)	20cm)	Insecticide for seedbeds; e.g. Azodrin 20.2% EC, 0.12 qts
(s/	Application of pre-emergence herbicides		Basal fertulizer; 16 - 20 - 0, 150 kg
161909V	20		Insecticide for treatment of Seedings; e.g. Furadan 22% Flowabie, 0.75 qts
(13x)	40 -		Herbicıdes (Ex.); e.g. Hednal 40% EC 2.0 qts.
re 	50		Insecticides; e.g. - Hopcin 50% EC, 1.25 qts (2x) - Hytox 50% WP, 1.5 kg (1x)
Asproduction (sysb 03)	70 - Second top-dressing		Fertilizer for top-dressing; - First; Urea, 35 kg (Wet) 45 kg (Dry)
	80 -		kg (Wet) kg (Dry)
	90 4 Drainage Note:	(1) Recommended varieties; IR • 36, 38, 40 & 42	Pa
	100 - Harvesting	(2) Fertilizer requirement; 50 - 30 - 0 65 - 30 - 0	(Wet) (Dry)

Jre	P	0 bulbs) ; (1×) qts (2×)			varıeties,	it; ity loam)	rement - P - K)
Farm Inputs per Hectare	Fertulizer: • 46 • 0 • 0, 50 kg • 0 • 0 • 60, 55 kg • 16 • 20 • 0, 325 kg	Seeds: 420 kg (25,000 bulbs) Insecticides; e.g. - Lannate EC, 1 qts {1×} - Malathion EC, 2 qts (2x)		Note:	(1) Recommended varieties, llocos White	 (2) Soil requirement; Clay loam to silty loam (PH: 5.5 - 7.0) 	(3) Fertilizer requirement 75 - 65 - 35 (N - P - K)
Farm Practices	Land preparation/Basat fertilizer application, Mulching	Start of irrigation	Weeding				

FIGURE 4C - 3 FARM PRACTICES AND FARM INPUTS, GARLIC

ļ							Арр	Page - P
Farm Input per Hectare	Basal fertılızer; - 14 - 14 - 14, 150 kg	Seeds; 25 kg	Insecticides; e.g. - Thiodam 35%, EC, 3 qts. (3x) - Furadam 3G, 16 kg	Note; (1)		 (2) Soil requirement; Clay loam to silty loam (PH 5 8 - 6.5) 	(3) Fertilizer requirement; 20 · 20 · 20 (N · P · K)	r dge .
Farm Practices	Land preparation/Basal fertilizer application	Drilling moculated seeds at the spacing of 50 cm between rows	Thinning/Off-baring, Hilling-up/Weeding		First Harvest		Last Harvest	
Growth Stage		(20 9	(xc) uc	Before Harvesti (65 days) Insect Control 2 8 8	<u> </u>	,	4	

FIGURE 4C - 4. FARM PRACTICES AND FARM INPUTS, MUNGBEAN

ر میں اور اور م

FARM PRACTICES AND FARM INPUTS, COTTON Farm Input per Hectare	Basal fertilizer, - 14 - 14, 200 kg - 46 - 0 - 0, 50 kg	Seeds; 25 kg Pesticides for seed treatment; e.g.; orthocide 50% WP, 0.75kg	Insecticides; e.g • Thiodan 35%, EC, 6 qts (4x) • Metasystoc 25% EC, 4 qys (3x)	- Kani, wr, okg (ox)	Note;	(1) Recommended varieties; Deltapine 16		(3) Fertilizer requirement; 50 - 25 - 25 (N - P - K)				endix 4C- Page 5	4
FIGURE 4C 5. FARM PRACTICES Farm Practices	Land preparation/Basaf fertilizer application	Sowing three to four seeds at the spacing of 1.00 m (major rows) x 0.75m {minor rows}	Start of insect control/cultivating & spot weeding	Off-baring	Side-dressing/Hilling-up							First Harvesting (Three to four days - interval, four times)	Last Harvesting
	50	• - 7	یں ۲	<u>7</u>	<u>₹</u>	1	50	- 19	┙╱᠇ ᢩᢩ	110 -	120 -	130 - 4 140 - 4	145
Growth Stage	1	Lation (20 d		 -	on (5x) Iour	itegi	ן וו זיי	ore Hays 10 days ect &				ן (sveb פ ראפאני	jui

Tobacco Garlic Mung Bean cotton (2,130 ha) (4,270 ha) (2,065 ha) (1,030 ha) Ground Per ha Total Per ha Total Per ha Total	kg 0 420 kg 1,793 25 kg 52 25 kg 26 Paddy 869	Tobacco 0	Garlic 1,793	, Mung Bean 52	Cotton 26		- 50 kg 214 50 kg 52 924	kg 213 1,640	- 55 kg 235 235		- 325 kg 1,388 3,994	150 kg 310 200 kg 206 640	kg 852 852	8,285		128 3.0 qt. 128 30 qt. 62 10.0 qt. 103 785	б 5.8kg б 36	` - 17 kg 35 35		антана и антана анта
249 0.03 kg							224	497 100 kg 213	i L		746	•	- 400 kg 852			104 6.0 128	7 3.0 6	, ,	1 5	1
1. 110 1010T LET. 100 1010T	50 kg 620 50 kg 3				·		35 kg 434 45 kg	75 kg 930 100 kg ^t	1		150 kg 1,860 150 kg	10 kg 124 -	, ,			2.1 qt. 260 2.1 qt.	1.5 kg 19 1.5 kg	•	2.0 gt. 248 20 dt.	,
Per ha Tota	ton 5						ton 3	2			15	4				×400 2.	ton 1.	kg	*100 2.	kg X
STOT.JACK MARK	1. Seeds					2. Fertilizer	- Urea (45-0-0)	- Ammosul (21-0-0)	- Potassium (0-0-60)	Chloride	- Compound (16-20-0)	- Compound (14-14-)	- Compound (6-9-15)	Total	3. Insecticides	- Liquid	- Water Soluble Powder	- Granular	4. Herbicides - Liquid	- Water Soluble Powder

Total Amount of Input Materials, with Project, In Future Table 4C-6.

) 11

Appendix 4C-6 Page 1

Filet field of Major Crops, "With Project"

: Paldy

____Esperimental Yield

Following experimental data on paddy yield at each amount of rithogen were used to have the quadratic equation for the regression priver yield (Y) and amount of applied nitrogen (X).

Daddy Viold at Fach Lawsl of Applied Nitrogen

raddy i	ieid at Lach	Tever	or Appile	<u>a Nitro</u>	gen	
				(un	it:ton/h	a)
		Nitroge	n Appli <u>c</u> a	tion (k	g/ha)	
Season	0	30	90	120	150	
Wet	3.3	3.9	4.5	4,2	-	
Dry	3.5	-	4.7	5.3	5.4	

Source: BPI, Average yield of the latest 6 HYVs at three national experiment stations (Maligaya Rice Research and Training Center, Bicol Rice and Corn Experiment Station and Visaya Rice Experiment Station)

... quadratic equations for above data are shown as follows; Wet season crop: $y = 3.28 + 0.025x - 0.00014x^2$ Dry season crop: $y = 3.50 + 0.029x - 0.00011x^2$

(The curves for both equations are shown in Figure 4C-6.)

The attained yield under Masagana 99 (1976-1979) in the Project Twichpalities is 3.6 ton/ha for wet season crop and 3.5 ton/ha for In Stason as shown in Table 3D-16, Appendix 3D-1.

Almost all the same level of average yields are attained in the Almost all the same level of attained in the Almost all the same level of average yields are attained in the Almost all the same level of attained in the Almost all the same level of attained in the Almost all the same level of attained in the Almost all the same level of attained in the Almost all the same level of attained in the Almost all the same level of attained in the Almost all the same level of attained in the Almost all the same level of attained in the Almost

Attained Yield in Existing National Irrigation System Areas (1977)

<u>Area</u>	Yield (cavan/ha)	Area Coverage of HYVs
Laoag-Vintar	70	more than 70%
Dingras	70	more than 75%
Cura	40	less than 50%
Bonga Bump #2	73	more than 70%
Mean	<u>71</u> (3.6 ton,	/ha)

Note: (1) The yields refer to the average yields for wet and dry season crops

(2) The mean yield is exclusive of the yield in Cura area because of small area coverage of HYVs.

The attained yield in the foundation seed farm at BPI Dingras Experimental Station (1977) was 3.8 ton/ha for wet season crop and 3.5 ton/ha for dry season crop. But the station has attained more high yield of 4.4 ton/ha for wet season crop a few years ago.

The irrigation conditions in the existing national irrigation system areas need rehabilitation under NISIP because of the inadequate irrigation water amount and on-farm facilities. Also, at BPI Dingras experiment station, the irrigation water supply during dry season is limitted very much because the irrigation water supply to the station is made by one of the existing national irrigation systems. These unfavorable irrigation conditions are considered to be the main reason why the comparatively low yield in the existing national irritation system areas and also at BPI Dingras Experimental Station.

On the other hand, the yield of 4.41 ton/ha was attained at 70 kg of applied nitrogen according to the yield record of FAO/NFAC/ JICA Fertilizer Trial (1978-1979) in three Project municipalities (See Table 3D-18, Appendix 3D-1).

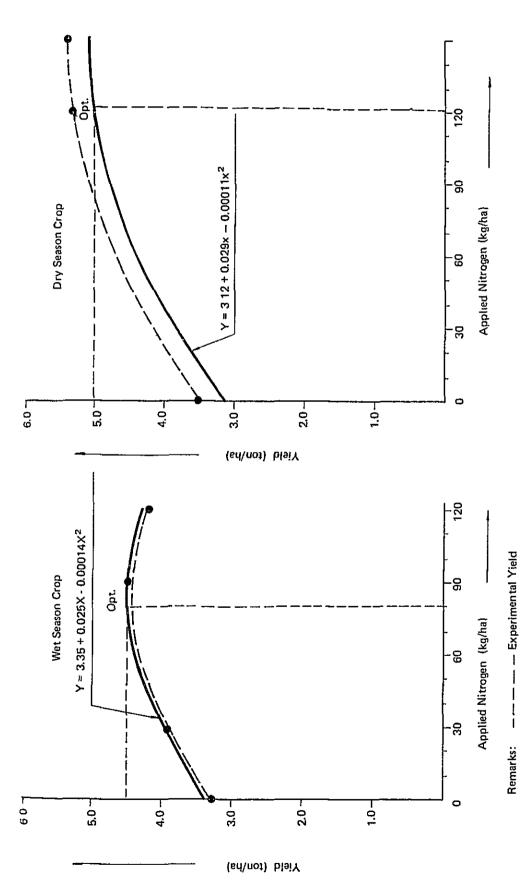


FIGURE 4C . 6. EXPERIMFNIAL AND PREDICTED YIELD OF PADDY

Appendix 4C-6 Page 3 It is considered that the proposed irrigation development of the Project will improve the irrigation conditions to attain high yield, at least such level of attained yield of 4.41 ton/ha at 70 kg of applied nitrogen for wet season paddy rice by FAO/HFAC/JICA Fertilizer Trial in the Project municipalities, as shown previously. The following equation is assumed to represent the quadratic equation for the regression between potential yield (y) and amount of applied nitrogen (x) in the Project, which is produced by substituting the above yield data into the said equation for the experimental yield data of wet season crop:

 $y = 3.35 + 0.025x - 0.00014x^2$

For dry season crop, such kind of yield data for the substitution is not available. Therefore, the assumed potential yield of 4.78 ton/ha at 70 kg of applied nitrogen is used to have the equation as follows:

The assumed potential yield for dry season crop:

4.41 ton/ha (potential yield of the wet season crop) x 4.7 ton/4.5 ton = 4.61 ton/ha

where; 4.7 tons and 4.5 tons are the above-mentioned experimental yields at 90 kg of applied nitrogen for wet season crop.

Thus the new equation with regard to potential yield for dry season crop in the Project Area is as follows:

 $y = 3.12 + 0.029x - 0.00011x^2$

3. Yield at Optimum Amount of Nitrogen Application

Optimum amount of nitrogen application and their yields are computed as follows:

Wet season crop: Opt. nitrogen (kg/ha) = $\frac{0.025Py - Pn}{2(0.00014 \times Py)}$ = 82 kg Yield at 82 kg of the nitrogen application = 4.5 ton/ha Dry season crop: Opt. nitrogen (kg/ha) = $\frac{0.029Py - Pn}{2(0.00011 \times Py)}$ = 122 kg Yield at 122 kg of the nitrogen application = 5.0 ton/ha Where Py = F 2,090 (Paddy price per ton) Pn = F 4.5 (Nitrogen price per kg) (Projected prices for the year of 1990 at the values in

1980)

4. Estimated Yield at Different Land Class

The yields at optimum amount of nitrogen application are regarded as the potential yield after Project. Hence, the yield at different land classes are estimated as follows:

	Range of	Average Productivity	Target Yield	l (ton/ha)
Land Class	Productivity (%)	Rating (%)	Wet Season	Dry Season
Potential	100	100	4.5	5.0
lR	90 - 100	95	4.3	4.7
2R	80 - 90	85	3.8	4.2
3R	70 - 80	75	3.4	3.8

Target Yield of Paddy

B. Upland Crops

1. Tobacco

2

The potential yiels of virginia tobacco varieties to be intro-duced in the Project are estimated at 2.0 ton/ha, based on the following Table.

Variety	$\frac{\text{Growth}^{1/}}{\text{Period}}$	No. of Harvested Leaves	Potential ^{2/} <u>Yield</u> (ton/ha)
NC Blight Yellow	80 - 90	29	2.08
Coker 254	90 - 100	26	2.27
Coker P-11-1	N.A.	N.A.	2.05
MRS-3	90 - 100	25	1.89
Golden Harvest	80 - 90	26	1.91
Average			2.04

Potential Yields of Selected Varieties

Note: 1/: From transplanting to flowering

2/ : Data source : "Three Years of Cooperative Research on Philippine Virginia Tobacco, UFord. PVTA Research & Training Program, 1973"

The PVTA compact farm that was organized in San Pedro, Batac by the farmer paticipants to the "UPLB-PVTA applied package technology commercial trials for virginia tobacco" attained about 1.6 tons of average yield in 1977-78, according to "the Philippine Virginia Tobacco Industry : In Search for Effective Technology for Development and Transfer in the Farmland prepared by Adolf C. Necesito in 1979"

The yield was attained by applying the PVTA-UPLB and Taiwan technology having the fertilizer recommendations of 30-60-90 and 54-54-128 (N-P-K in kg per hectare) respectivery. Reffering to

the relationship between the attained yield and the soil conditions in the compact farm, the target yield for second class land is set up at 1.7 tons per hectare.

The target yields by land class are decided in the basis of above id__.tential yield and the target yield for second class land as follows;

Land Class	Range of Productivity (%)	Average Productivity <u>Rating</u> (%)	Target Yield (ton/ha)
Potential	100	100	2.0
First	90 - 100	95	1.9
Second	80 - 90	85	1.7
Third	70 – 80	75	1.5

Target Yield of Virginia Tobacco

2. Carlie

Potential yield of garlic is estimated at 3.0 ton/ha from to experimental data on the garlic planted in October and November at ETI Dingras Experimental Station.

The high-yield farmers, one third of sample farmers in "the Ca. 1. Production and Marketing, Ilocos Region prepared by DA" had about 2.3 tons of average yield per hectare.

Following target yields by land class are decided in the basis of the above-mentioned potential yield and the yield of high-yield farmers.

Page 8

Target Yield of Garlic

Land Class	Range of Productivity (%)	Average Productivity <u>Rating</u> (%)	Target Yield (ton/ha)
Potential	100	100	3.0
First	90 - 100	95	2.9
Second	80 - 90	85	2.6
Third	70 – 80	75	2.3

3. Mungbeans

I var

The potential yield of mungbeans is estimated at 1.3 tob/ha from the following studied yield of improved varieties.

Studied Yield of Mungbeans

. .

Variety	Studied Yield (ton/ha)	Maturity to days to lst Priming (day)
MG 50-10A(G)	1.0 - 1.3	60 - 65
MD 15-2	1.0 - 1.3	60 - 65
E.G. Glabrous	1.0 - 1.3	60 - 65
CES 55	1.0 - 1.5	65 - 68
CES 87	1.0 - 1.5	65 - 68
CES 1D-21	1.0 - 1.2	65 - 68

Source: Philippine Recommendation on Mungbeans, PCARR

According to the yield data taken from "the Angat-Magat Integrated Agricultural Development Project Applied Research Phase one Report", the yield of about 1.2 ton/ha was attained for the wet season crop in 1974 on farmers' field of Magat Project Area. (used variety; CES-55) The target yields by land class are decided as shown in the following Table, assuming the potential yield and the yield for the first class land as 1.3 ton and 1.2 ton per hectare respectively.

Target Yield of Mungbean

Land Class	Range of Productivity (%)	Average Productivity Rating (%)	Target Yield (ton/ha)
Potential	100	100	1.3
First	90 - 100	95	1.2
Second	80 - 90	85	1.1
Third	70 - 80	75	1.0

4. Cotton

The estimated potntial yield is 2.9 tons/ha (seed cotton) from the following experimental data.

	Experimental Yiel		ton/ha, seed cotton)
	Plant Density		<pre>& Planting Time</pre>
Fertiliaer Level (kg/ha)	83,882 (Oct. 1st)	93,393 (Nov. 1st)	Mean
120 - 25 - 25	2.4	2.4	2.4
90 - 25 - 25	2.9	2.9	2.9
90 - 0 - 0	1.8	1.0	1.4
50 - 25 - 25	1.2	2.0	1.6
Control	1.1	1.5	1.3

Source: PCC Annual Report (1977 - 1978) Philippine Cotton Cooperation through Cotton Development and Research Institute

Nots: (1) Experimental location : Pangasinan (Irrigated) (2) Variety : Deltapine

The target yields by land class are decided as shown in the following Table, based on the above mentioned potential.

Land Class	Range of Productivity (%)	Average Productivity Rating (%)	Target Yield (ton/ha)
Potential	100	100	2.9
First	90 - 100	95	2.8
Second	80 - 90	85	2.5
Third	70 - 80	75	2.2

Target Yield of Cotton

C. Projected Total Production with Project

1. Paddy

The aggregate projected production after full implementation of the Project is 74,492 ton, 51,916 tons of which are wet season harvest and the balance of 22,576 tons are dry season harvest. The weighted average yield at each area of different land class is 4.2tons/ha and 4.5 tons/ha for wet and dry season crop respectively. (See Table 4C-7)

2. Upland Crops

The total projected production and the weighted average yield at each area of different land class for each selected upland crops are as follows;

Crop	Weighted Average Yield (ton/ha)
Tobacco Garlic Murch	1.7 2.6
Mungbean Cotton	1.1 2.5

Total Projected Upland Crops Production

ected of the second second	
Product For	
and Upland Crops f, Future	
Paddy Nice With In Tee	
lable 40-7.	

l. Paddy

Product- ion (ton)	1,394 12,400 (4.2) 51,916	22,576
Total Product Area Yield ion (ha)(ton/ha) (ton)	(4.2)	1,254 4,970 (4.5)
Area (ha)(t	12,400	4,970
<u>3R or 3R(3)</u> Product- Area <u>Yield</u> ion (ha)(ton/ha) (ton)	1,394	1,254
3R or 3 Yield on/ha)	3.4	Э•8
Area (ha)(to	h10 3.4	330
2R or 2R(2) Product- Area Yield ion A: (ha)(ton/ha) (ton) (1	7,866	4,116
2R or 7 Yield on/ha)	3.8	4.2
Area (ha)(t	2,070 3.8	086
Product- ion (ton)	42,656	17,202
<u>IR or IR(1</u> Pro <u>Pro</u> (ton/ha) (1	4.3	4.7
<u>Area Yield</u> (ha)(ton/ha)	9,920 4.3	3,660 4.7
Season	Wet	Dry

2. Upland Crops

		1R(2) or	2R(2)		3R(3)			Total	
Crop	Area (ha)	<u>Yield</u> (ton/ha)	Area Yield Production (ha) (ton/ha) (ton)	Area (ha)	<u>Yield H</u> (ton/ha)	Area Yield Production (ha) (ton/ha) (ton)	Area (ha)	<u>Yield</u> (ton/ha)	on Area Yield Production (ha) (ton/ha) (ton)
(1) Tobacco	2,130	2,130 1.7	3,621	i	ı	I	2,130	(1.7)	2,130 (1.7) 3,621
(2) Garlic	4,190	2.6	10 , 894	80	2.3	184	4,170	(3.6)	11,078
(3) Mungbean	2,065	1.1	2,272	I	I	1	2,065	2,065 (1.1)	2,272
(4) Cotton	1,030	2.5	2,575	1	1	I	1,030	(2.5)	2,575
Total	9,415			80			9,495		

Page]

Farm Mechanization and Land Requirement

A. Proposed Farm Mechanization Plan

The farm operation systems as shown in Figure 4C-7 will be applied for the scheduled farming after completion of the Project. These systems require mechanization in such major operations as land preparation, threshing and drying. The selected machines and the assumed area coverages of mechanization area by selected machine are as follows;

Selected Farm Machinery and Assumed Area Coverage of Farm Mechanization

Operation	Selected Machine	Area Coverage
Land preparation	- Hand tractor (7-8 HP diesel)	(%) 40
Threshing	- Powered thresher (7-8 HP diesel, throw-in type)	50
	- Pedal thresher	50
Drying	- Dryer (flat-bed type, 2.0 ton bin)	50

As for all selected machines, the Philippines-made or the imported ones are available in the Philippines. The traditional way of operation for land preparation by draft animal and drying by sunshine will be employed in the areas where the above-mentioned mechanization will not cover. The farm operation efficiency are calculated for the operation of land preparation, threshing, drying and transportation in both cases of using machineries and draft animals as shown in Table 4C-8. LIGUEL W. C. TEOLOSED FARM OFTRATION POTEM

Trans-	portation
	Drying
	<u>Threshing</u>
Harvest-	ing
	Weeding
	Spraying
Trans-	<u>planting</u>
Final Harrowing	Furrowing
Plowing &	Harrowing

a) Paddy Rice

Draft Animal	W/Cart
Sunshine	<pre>& Dryer W/Cart</pre>
Powered &	Pedal Thre
Man-	Power
Rotary Weeder Man- Powered & Sunshine Draft Animal	5 Man-power
Hand	Sprayer
Man-power	Straight-row Sprayer
Draft Animal	W/Harrow & Leveler
Hand Tractor	W/Rotary

b) Diversified Crops

Sunshine Draft Animal	W/Cart
Sunshine	
Man-	Power
Power	
Man	
Hand	Sprayer
Man-power Hand	Sprayer
	W/Harrow Sprayer

- Area coverage of mechanization for the operations of plowing and harrowing by hand tractor is estimated at 40 percent of cultivated area in both cases of paddy rice and diversified crops. (1) Note:
- Area coverage of mechanization for threshing by the powered thresher and pedal thresher is estimated at 50 percent of cultivated area respectively. (2)

Appendix	40-2
D	

Page 3

										-	
(12)= (10)+(11)	Days <u>per day</u> (day/ha)	7.0	2.4	2.4	1.8	з.4	6'0	6.0	0° †	0.7	
	Hours per day (hr./day)	æ	æ	60	Ø	80	8	۵	Q	16	•
(9) (10)=(8)x(9) (11) 0pe.	Hours <u>per ha</u> (hr./ha)	\$5.6	18.9	19.2	14.3	27.4	7.4	5.6	24.0	10.5	ı
(6)	Ope. Times (time)	Ţ	-	2	г	~	N	~	-1	1	1
(8)	Hours per ha (ha/hr.)	55,6	6 . 18	9°6	14.3	13.7	3.7	5,6	24.0	10.5	ı
(7)=(5)x(6) Actual	Ope. <u>Capacity</u> (ha/hr.)	0.019	0.053	0,104	0.070	0.073	0.269	0.179	0.042 (0.19ton)	0.095 (0.4ton/hr.)	0.1 ton
(9)	Ope. Lfficiency (%)	90	08	65	80	65	80	75	75	80	BC
(5)=(3)×(4) Ope.	city hr.)	0.022	0.066	0.160	0.088	0.112	0.336	0.238	0.056 (0.25ton)	1	0.]6 tan
(†)	Efficiency in Field (%)	Bu	BO	80	80	80	90	80	BO	_	80
(3)= Theoretic	Ope. Capacity (ha/hr.)	0.026	0.083	0.200	011.0	0.140	0.420	0.298 (1.25ton/hr.)	0.070 (0.32ton/hr.)	0.119 (0.5ton/hr.)	0.2 t n
(2)	Ope. Speed (km/hr.)	2.2	1.5	2.0	2.0	2.0	3.0	ŗ	,	ı	2.5
(1)	Ope. Width (m)	0.12	0.55	1.0	0.55	0.7	1.4	ı	ı	I	I
	Machinery/ Animal	-Carabao w/plow	-Hand tractor w/rotary	-Carabao w/harrow	-Hand tractor w/rotary	-Carabao w/harrow & leveler	-Hand tractor w/ harrow & leveler	-Powered thresher	-Pedal thresher	-Dryer (Flat-bed type, 2.0 tons bin)	-Carabao w/ cart
	Operation	a) Plowing		b) Harrowing		c) Final Harrowing		d) Threshing		e) Drying	f) Transportation

Table 40-8. Efficiency of Farm Operation

٠

5. Number of Required Machinery per Compact Farm

It is considered that the required units of machinery will be introduced in each compact farm or in each two compact farms for the collective use of machinery in order to minimize the machinery costs. The required units of the machinery per compact farm (average size (s 40 hs) are computed as follows;

Hani tractor

The type of hand tractor having P.T.O. for the attachment of rotary will be chosen in most of the Project Area because of big area coverage of upland crops. One unit of the hand tractor is required for land preparation work in 16 ha (40 percent of compact farm area) in each compact farm in this chase as follows;

Efficiency: 4.2 (2.4 + 1.8) days/ha/unit (see Table 4C-8)

Possible operation days per crop season: 67 days (Lag period + land praparation period + Overtime work)

Number of required units: 4.2 days/ha x 16 ha ÷ 67 days ‡ one unit

- Thresher

One unit of powered thresher and five units of pedal threshers

Etwered Thresher

Efficiency: 0.9 days/ha/unit (See Table 4C-8) ¹Esumed possible operation days per crop season: 35 days x $0.8^{1/2}$ = 28 days

Amber of required units: 0.9 days/ha x 20 ha ÷ 28 days ÷ one unit

Pedal Thresher

Dfficiency: 4.0 days/ha/unit (See Table 4C-8)

Recipie operation days per crop season: 28 days

Number of required units: 4.0 days/ha x 20 ÷ 28 days ÷ $0.6^{2/}$ = five up.

Remarks $\underline{1}/:$ assumed rate of possible operation days to full operation days

2/: assumed reduction rate of operation efficiency

3. Dryer

One unit of the selected drier has the capacity of drying up 2.0 tons of threshed paddy in moisture content from 26% to 14% and will take eight hours. But it is considered that the traditional way of sunshine-drying will be employed at least in the half stage of drying in moisture content from 26% to 14%. In this case, the dryer has the capacity to dry up 2.0 ton with four hours of the drying time. Then, one unit of the drier is able to cover two compact farms as follows;

Efficiency: 4.2 ton/ha (unit yield of wet season crop) ÷ 2.0 tons/ unit x three rotations = 0.7 days/ha/unit (See Table 4C-8) Possible operation days per crop season: 28 days^{1/} Number of required units: 0.7 day/ha/unit x 40 ha ÷ 28 days ≑ one unit Remarks <u>1</u>/: 35 x 0.8 (assumed rate of possible operation days)

4. Working Carabao

The operation of land preparation in non-mechanization area (24 per compact farm ha) will be performed by animal power (carabao or cattle). The required heads of draft animal per compact farm is computed as follows:

Efficiency:	Plowing:		7.0	animal-days/ha
	lst	harrowing:	2.4	animal-days/ha
	2nd	harrowing:	2.4	animal-days/ha
	3rd	harrowing:	3.4	animal-days/ha
		Total	15.2	animal-days/ha

Estimated possible operation days per crop season = 55 days Required heads of working carabao: 15.3 animal-days/ha x 24 ha \div 67 days \doteqdot 6 heads

2. Labor Requirement and Machinery Cost

The labor requirements for paddy rice and concerned diversified crops are estimated as follows:

	Labor Require	
Crop	Man-day	Machinery or animal day
Paddy Rice	103.1	20.2
Tobacco	273.5	28.8
Garlic	165.0	22.5
Mung Beans	86.3	22.3
Cotton	139.3	37.3

Remarks: The detailed labor requirements by crop and operation are indicated in Table 4C-9 to 4C-13.

The machinery cost of paddy rice cultivation is calculated at 569 per ha. The cost for the diversified crops is computed at 395 per ta because of no machinery cost for threshing and drying. (See Table +C-14). Table 4C-9. Labor Requirement of Paddy Cultivation with Project in Future

(Unit: day/ma.

		Machinery	
Operation	Man-day	or Animal-day	Remarks
1. Seed-bedding			
a) Land preparation/Sowing b) Care of seedlings Sub-total	1.5 1.5 (3.0)	0.5 (0.5)	Same as the item 2
2. Land Preparation			
a) Plowing b) Harrowing c) Final harrowing/Leveling d) Repair of dikes Sub-total	5.2 3.6 2.6 2.7 (14.1)	5.2 3.6 2.6 (11.4)	Animal(60%), Machine(-,) -do- Animal(100%)
3. Transplanting			
a) Pulling/Delivery of seedli b) Transplanting Sub-total	ngs 7.5 20.0 (27.5)	0.5 (0.5)	
4. Fertilizer Application			
a) Basal fertilizer b) Top iressing (2x) Sub-total	1.0 1.0 (2.0)	0.2 0.2 (0.4)	
5. Spraying			
a) Insecticides (3x) b) Herbicides (1x) Sub-total	3.0 1.0 (4.0)		
6. Weeding			
a) lst weeding (2x) b) 2nd weeding Sub-total	7.0 6.0 (13.0)		
7. Irrigation/Drainage	5.0		
8. Harvesting			
a) Cutting/Bundling b) Hauling/Piling c) Threshing Sub-total	16.0 3.0 8.5 (27.5)	2.0 2.6 (4.6)	Powered Thresher(50%) & Pedal Thresher (50°)
9. Post Harvesting			
a) Drying b) Sacking c) Piling/Delivery sub-total	3.5 2.0 1.5 (7.0)	2.5 0.3 (2.8)	Drier(50%) & sunshine (50%)
Total	103.1	20.2	

۲

Table 4.-10. Labor Requirement of Tobacco Cultivation with Project in Future

		Machinery	
Operation	Man-day	or Animal-day	Remarks
Seed-bedding			
a) Land preparation/Sowing r) Care of seedling Sub-total	4.0 22.2 (26.2)	0.5 (0.5)	
2. Land Preparation			
 a) Plowing b) Harrowing c) Leveling/Furrowing Sub-total 	9.4 4.2 2.7 (16.3)	9.4 4.2 2.7 (16.3)	Animal(60%), Machine(40%) -do- Animal(100%)
3. Transplanting			
a) Preparing of seedijgs b) Transplanting/Replanting Sub-total	5.0 30.0 35.0		
Fertilizer Application			
a) Basal fertilizer p) ^ide-dressing	4.0 4.0 8.0		
5. Weeding/Hilling-up	8.8	8.0	Animal(100%)
<pre>c. 4rajing (8x)</pre>	8.0		
<pre> Irrigation (5x)</pre>	10.0		
 Topping/Sucker control 	10.0		
<pre> darvesting (8x)</pre>			
 a) Printing/Hauling c) Sorting/Sticking Sub-total 	60.0 40.0 (100.0)	4.0 (4.0)	Animal(100%)
1. Fost darvesting			
a: Curing z) Grading/Bundling T) Packing/Storing Sub-total	30.0 20.0 2.0 (52.0)		
Total	273.5	28.8	

Table 4C-11. Labor Requirement of Garlic Cultivation with Project in Future

		Machinery or		
Operation	<u>Man-day</u>	Animal-day	Remarks	
1. Land Preparation				
a) Plowing b) Harrowing c) Leveling/Furrowing d) Mulching Sub-total	9,4 4.2 2.7 8.7 (25.0)		Animal(60%), -do- Animal(100%) Animal(100%)	Machine(up
2. Planting				
a) Preparing of seeds b) Planting Sub-total	10.0 35.0 45.0			
3. Fertilizer Application	2.0	0.2	Animal(100%)	
4. Thinning	2.0			
5. Spraying (3x)	8.0			
6. Irrigation (4x)	8.0			
7. Harvesting				
a) Pulling/Gathering b) Hauling Sub-total	23.0 2.0 (25.0)	2.0 (2.0)	Animal(100%)	
8. Post Harvesting				
 a) Drying b) Cleaning/Cutting of roots c) Classifying/Grading d) Bundling/Trimming Sub-total 	5.0 15.0 10.0 10.0 (40.0)			
9. Removal of hay (rice straw)	10.0			
Total	165.0	22.5		

ž

Appendix 4C-7 Page 10

Table 4C-12. Labor Requirement of Mungbeans Cultivation with Project in Future

		Machinery or		
Operation	Man-day	Animal-day	Remarks	
1. Land Preparation				
a) Plowing b) Harrowing c) Leveling/Furrowing Sub-total	9.4 4.2 2.7 (16.3)	9.4 4.2 2.7 (16.3)	Animal(60%), -do- Animal(100%)	Machine(40%)
2. Planting				
a) Seeding/Covering b) Thinning Sub-total	4.0 1.0 (5.0)			
3. Fertilizing	2.0			
 Cultivation/Weeding 				
a) Off-baring b) Hilling-up c) Weeding Sub-total	2.0 2.0 10.0 (14.0)	2.0 2.0 (4.0)	Animal(100%) Animal(100%)	
5. Spraying (3x)	4.0			
6. Irrigation (3x)	6.0			
7. Harvesting				
a) Picking (4x) t) Hauling	25.0 2.0	2.0	Animal(100%)	
. Threshing/Drying/Others	12.0			
Total	86.3	22.3		

Table 4C-13. Labor Requirement of Cotton Cultivation with Project in Future

Operation	Man-day	Machinery or Animal-day	Remarks	
1. Land Preparation				
a) Plowing	9.4	9.4	Animal(60%),	Machine(4
b) Harrowing	4.2 2.7	4.2 2.7	-do-	
c) Leveling/Furrowing Sub-total	(16.3)		Animal(100%)	
	(1000)	(2010)		
2. Planting/Thinning				
a) Seeding/Covering	20.0			
b) Re-planting	2.0			
c) Thinning	1.0			
Sub-total	(23.0)			
3. Fertilizing				
a) Basal fertilizer	4.0			
b) Side dressing	4.0			
Sub-total	(8.0)			
4. Cultivation				
a) Off-baring/Hilling-up	18.0	18.0	Animal(100%)	
5. Spraying (10x)	20.0			
<pre>6. Irrigation (5x)</pre>	10.0			
7. Harvesting/Drying				
a) Picking (4x)	30.0			Ĭ
b) Hauling	3.0	3.0	Animal(100%)	
c) Cleaning	3.0			
d) Drying	4.0			
Sub-total	(40.0)			
8. Packaging/Deliverying	4.0			2 2
Total	139.3	37.3		

•

Farm Machinery Cost Table 4C-14. •

Fixed Cost

Total cost per hectare (P)	L77	ю Б	26	27	323
Coverage per unit (ha)	Wet 16 Dry 19	Wet 20 Dry 12	Wet 4 Dry O	Wet 40 Dry 12	
Total Cost (P/year)	6,210	2,962	105	1,423	
Other Fixeg/ Cost2/ (P/year)	230	194	2	83	
Repair Cost (₱/year)	1,840 (8%)	583 (3%)	ŝ	412 (5%)	
Depreci- ation/ Cost ⁻ / (P/year)	041,4	2,185	86	928	
Durable Period (Year)	വ	ω	ß	ω	
Purchasing Price (P)	23,000	19,425 <u>3</u> /	650	8,250	
Machinery	Hand tractor	Thresher	Pedal thresher	Dryer	<u>Total</u>

- Computed as (1) x 0.9 + (2) 10 IN IN Note:
 - Computed as (1) x 0.01
- Price without engine because the engine of hand tractor can be used for thresher.

Appendix " Page 13

Cost	
Variable	
N	

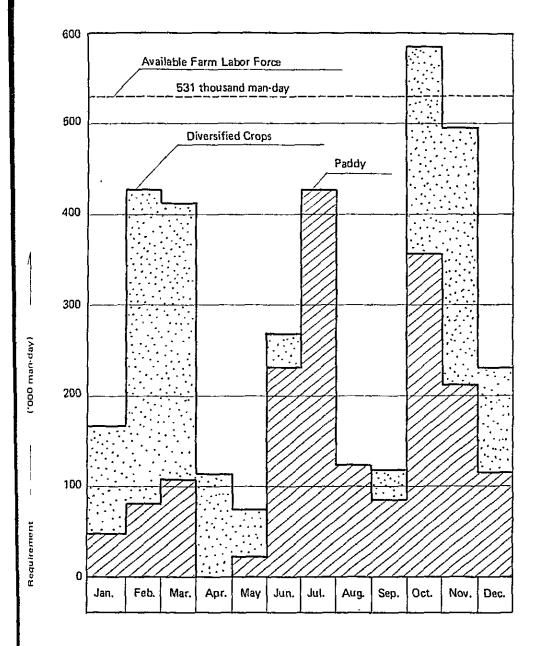
Note: G: Gasoline, L: Lubricant Oil, K: Kerosin

3. Machinery Cost per Hectare

Paddy : P323 (fixed cost) + P346 (variable cost) = 669
Diversified Crops: P177 (fixed cost) + P218 (variable cost) = P395

.

「西方」の「日本」の「日本」である」の「日本」の「日本」の


and the second second second

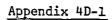
建自己进行的 的第三人称单数 化基化合金 化分配分子 化合合合合合合合合合合合合合合合合合

. کا 'ز او

Appendix 4C-7 Page 14

FIGURE 4C - 8. FARM LABOR BALANCE (WITH PROJECT, IN FUTURE)

	Remarks	Siniot(1,770ha), Nueva Era(670ha) only	Whole service area								F l,540,000/year x l.75(lst to 3rd year)	P 70,000/year x 3 years			
	Cost (₱ 1000)	78	272	(350)	150	770	20	150	1,440		r 2,690	210	2,900	4,340	
1	Unit Price (F)	32	22		1,400	7,200	20,000				14,500/year 2,690				
ł	Amount	2,440 ha	12,400.ha		s 106	106	r-4				106	lump sum			
	Items 1. Preparation of cadastral maps	(a) Production of cadastral maps	(b) Preparation of cadastres	(sub-total)	2. Arrangement for establishment of FIAs	3. Construction of FAI Offices	4. Extension of FIA Federation offices	5. Others	Total	6. Operation Cost	(a) FIA Officeş	(b) FIA Federation Offices	Total	Ground Total	


.

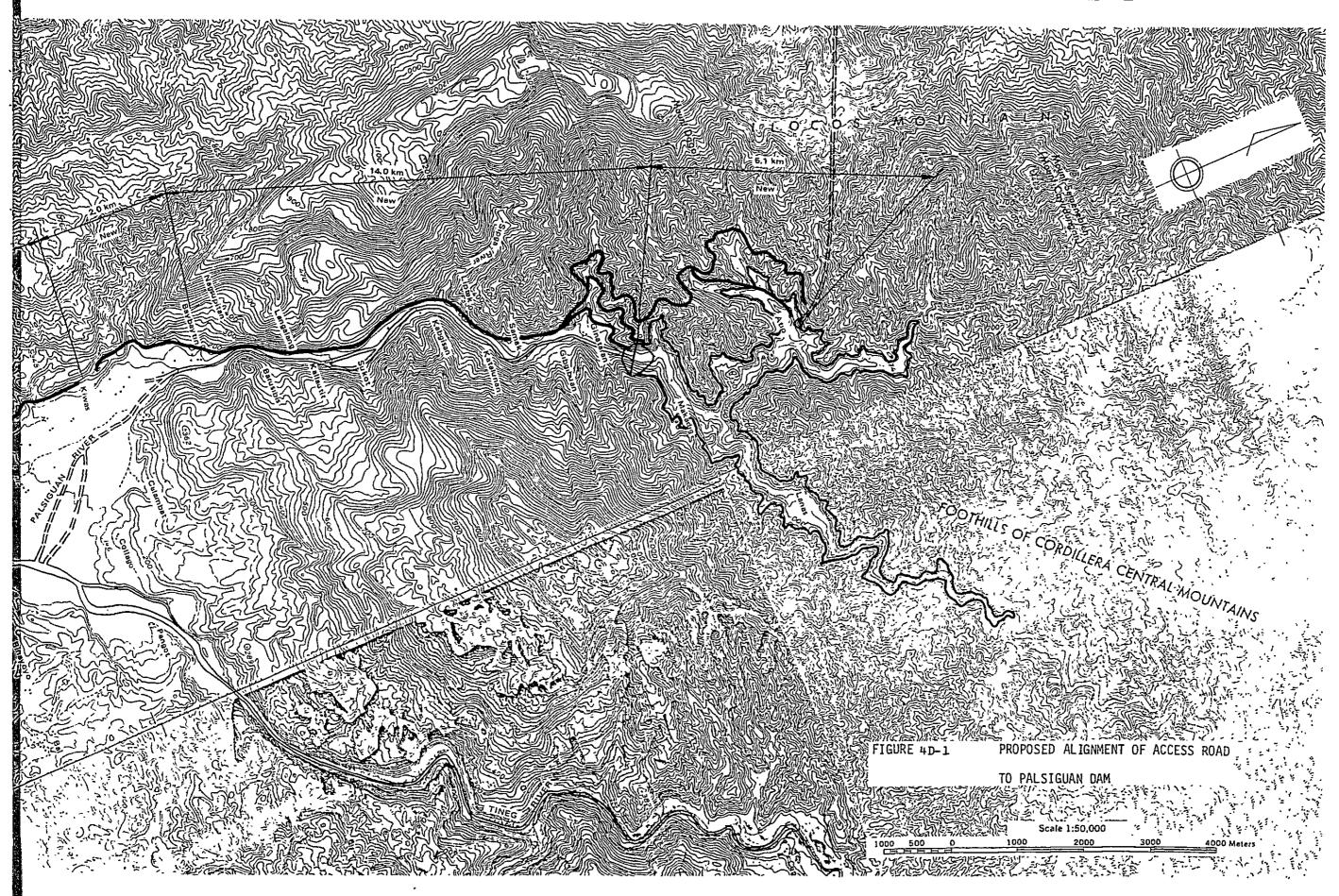
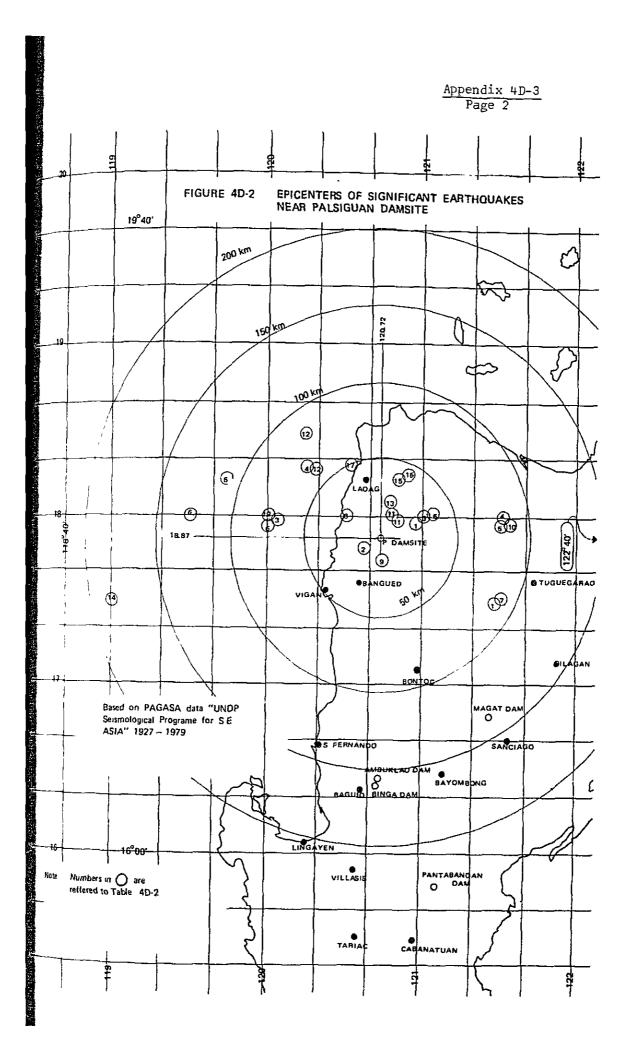

Appendix +C-C

Table 4C-15. Agricultural Development Cost

۲. ۱. ۲. •

. .


iguan Dam	Concrete Gravity Concrete Arch		$2,100,000^{\pm/}$ $500,000^{\pm/}$ $600,000^{\pm/}$	24 6 - 7	600 L,500	14,400 9,000 - 10,500	350 ~ 600 ~	600 (average 418)	need more excavation impossible	3 ~ tt	2.5 ~ 3.4	need more excavation impossible	gravel;exist gravel;exist	huge big	not economical impossible	
on Chart for Pals	Fill	140 ~			0	0	250 ~	300 ~ 6		- 1	2.0 ~ 2			1		
Dam Type Comparison Chart for Palsiguan Dam	Earth and Rock		8,900,000	JOO	n 100	10,000		rock .cm)	good	ed rock c)	d rock c)	good	earth and rock; exist	small	suitable	al condition, ,Dome type ,Constant angle type
Table 4D-1	Dam Type	l) Dam height (m)	<pre>2) Dam volume (cu.m)</pre>	3) -ditto- (ratio)	4) Unit cost ratio for Dam construction	5) Cost index 3) x 4)	6) Required compressive strength of bed rock (kg/sq.cm)	 Present compressive strength of bed rock (kg/sq.cm) 	8) Judgement 6) < 7)	 Required elastic wave velocity of bed rock (km/sec) 	 Present elastic wave velocity of bed rock (km/sec) 	11) Judgement 9) < 10)	12) Construction material	13) Concrete mixing plant	Final judgement	Note 1/ estimated at nomal condition, $\overline{2}/$ -ditto- , Dome type $\overline{3}/$ -ditto- , Constant ang.

Appendix 4D-2

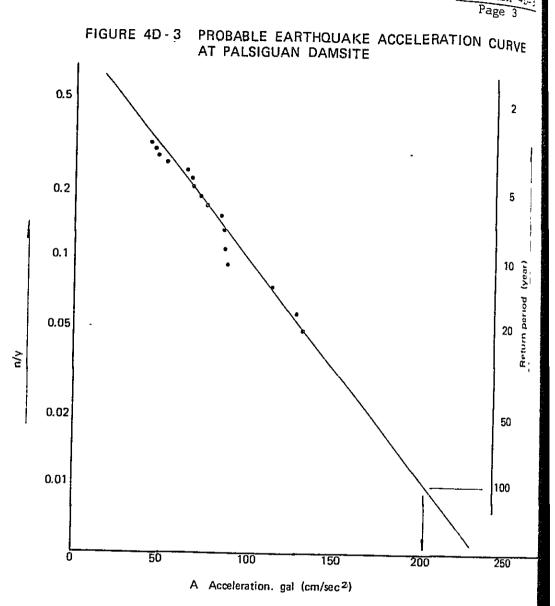

			-				
Ranl	king Date		center Longitude	Inten- sity	Distance fr Palsiguan D		/
				(m)	(km)	(001)	Averag-
4	3-19-31	18.3 18.0	120.2 121.5	6.9 6.9	72.9 83.7	121.8 104.0	112.9
7	10-28-31	17.5	121.5	6.25	98.1	84.1	84.1
12	1-14-32	18.3 18.0 18.5	120.2 120.0 120.25	6.5 6.0	72.9 77.5	85.9 44.1	66.0
14	2-14-34	17.5	119.0	6.5 7.6	86.0 186.4	68.1 51.7	E1 7
3	3-16-37	1810 18.0	121.0 120.0	6.5	33.0	174.9	51.7 127.j
		18.2	119.7	6.5 7.0	77.5 113.9	79.2 73.8	⊥ £;.J
6	3-23-38	18.0 18.0	119.5 120.0	7.0	129.8 77.5	59.1 123.1	85.3
1	12-29-49	17.5 18.0	121.5 121.0	7.2 7.2	92.2 33.0	116.8 250.3	183.5
10	1-3-50	18.0	121.5	6.5	83.7	70.9	7J
5	6-11-57	18.0	121.5	6.7	83.7	86.9	θo.
16	9-30-62	18.0	121.0	5.0	32.9	45.7	45,'
17	3-14-63	18.3	120.5	5.5	53.3	43.4	43,4
8	8-26-70	18.02	120.5	5.5	30.4	83.9	83.9
15	4-29-71	18.21 18.25	120.85 120.72	5.3 5.2	40.3 42.2	50.4 42.0	46.2
9	5-22-72	17.7	120.7	5.0	19.1	75.5	75. E
2	2-29-72	17.8	120.6	5.5	14.9	131.3	131.3
13	3-6-73	18.1	120.71	5.1	27.0	62.9	62.9
11	9-21-76	17.98 17.95		5.1 4.2	16.2 14.2	91.4 41.6	66.5
				_			

Table 4D-2 Probable Earthquake Accelerations at Palsiguan Damsite

<u>1</u>/ Okamoto's Formula: $\log_{10} \frac{\text{Galmax}}{640} = \frac{D + 40}{100} (-7.604 + 1.7244M - 0.1(3i))$

Appendix 4D-3

Based on PAGASA data "UNDP Seismological Programe for Southeast ASIA" 1927 – 1979, and Okamoto's Formula;

$$\log_{10} \frac{\text{gal max}}{640} = \frac{D+40}{100} (-7.604 + 1.7224\text{M} - 0.1036 \text{ M}^2)$$

- gal: Acceleration at the damsite
- D: Distance between damsite and epicenter
- M: Magnitude at epicenter
- n: Chronological order according to acceleration
- y: Number of years of records = 53

Seismic forth, K = gal/980

Appendix 4D-4 Page 1

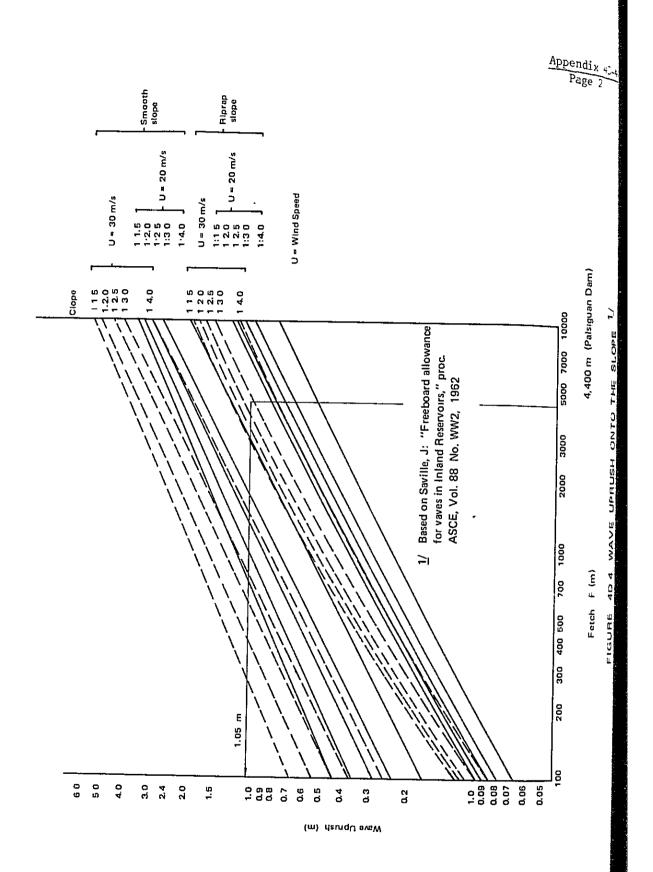
Tesian of Dam and Appurtemant Structures

. Freeboard and Crest Elevation of Dam

Freeboard is the difference between the crest elevation and the full water surface level in a reservoir and is shown in the following equation in consideration of various factors according to the Design hit-ria for Dams which was published (and revised on July 1978) by latanese National Committee on Large Dams.

Hf≧ hw + he + ha + hi

WLEIL,


Hf: freeboard of dam (m)

- hw: height of wave due to wind (m)
- he: height of wave due to earthquake (m)
- ha: rise of water level due to unexpected accident in operating spillway gates, standard value ha=0.5 m is adopted
- hi: addition of allowance according to type and importance of dam, standard value hi=1.0 m is adopted for fill type and zero for concrete type.

Height of Wave dur to Wind

h ight of wave due to the wind is considered to be caused by 1 -Jwater wave, and then, the height of significant wave is adopted based on S.M.B. (Sherdrup-Munk-Breschneider) method which is derived thom factors such as fetch and wind speed. On the other hand, since 4 rathing height varies considerably with embankment slope and chapteress of slope, height of significant wave should be adjusted ad-quately with Saville method to obtain height of wave due to the 4 and with consideration of uprushing height as well.

The calculation results with various slope, fetch and wind Teed are shown in the Figures 4D-4.

In order to obtain the height of wave due to wind in the "il.iguan damsite, the wind speed of 30 meters per second in 10 minutes on an average is to be adopted taking into account the .Derved data of maximum instantaneous wind speed in Laoag (observed raximum value is 40 m/sec in July 1965) and the following conditions.

- The maximum instantaneous wind speed does not last for the blow time (usually 10 minutes) which is required for bringing about the wave due to wind.
- In many case, the wind direction does not accord with the maximum fetch direction.
- The wind speed in the Palsiguan damsite decrease by the topographical and vegetative conditions.

z) Height of Wave due to Earthquake

The height of wave due to earthquake can be obtained by Sato's formula, as follows;

he =
$$\frac{K\tau}{2\pi} \cdot \sqrt{g.Ho}$$

- , the isotropy of the height of wave at upstream face of the dam due to the earthquake.
 - K : horizontal seismic coefficient. (K=0.2)
 - τ : period of seismic wave in second. (usually, τ is 1.0 second adopted)
 - g : gravitational acceleration (g=9.8 m/sec²)
 - Ho: depth of reservoir water (m)

c) Freeboad

Estimated freeboard of the Palsiguan dam is shown in the following table. The upstream surface of Palsiguan dam is formed with fockzone by the materials obtained from quarry site, therefore, the "tiprar slope" was adopted as the height of wave due to wind.

F	hw	Ho	he	ha	hi	<u>Hf</u> (m)
(m)	(m)	(m)	<u>(m)</u>	(m)	(m)	(m)
4,400	1.05	130	1.15	0.50	1.00	3.70 ≦ 4.00

d) Dam Crest Elevation

The Palsiguan dam will be constructed not only for irrigation the also for hydro-electric power, and its corresponding water surface elevation are tabulated as follows;

Water level	Storage capacity	Water surface elevation	Area of water surtate
	(x 10 ³ cu.m)	(EL m)	(x 10 ³ sq.")
Full water Dead water	232,000 43,000	334.5 275.0	5,040 1,560

From the above table, the Palsiguan dam crest elevation without extra bank can be obtained by adding the freeboard to full water surface;

Dam crest elevation EL. 334.50 + 4.00 = EL. 338.50 m

2. Surface slope stability

In case that the dam body will be constructed by the material with less cohesion, the critical slip circle approaches to the surface of dam body. In this case, the factor of safety^{1/} can be obtained from the following formula;

For upstream slope
$$F.S = \frac{(1-K.\frac{\gamma_{sat}}{\gamma_{sub}}.tan\alpha)}{K.\frac{\gamma_{sat}}{\gamma_{sub}} + tan\alpha} \cdot tan\phi$$

For downstream slope $F.S = \frac{1 - K.tan\alpha}{K + tan\alpha} \cdot tan\phi$

where, F.S : factor of safety

К	:	seismic coefficient	(K=0.2	see	Figure	4D-3,
		Appendix 4D-3)			_	

- γ sat: saturated density of outer shell material (γ sat=2.21 ton/cu.m $\frac{2}{}$)
- ysub: submerged density of outer shell material (ysub=ysat - l= 1.21 ton/cu.m)
- α : tangential value of slope
- φ : angle of internal friction of outer shell material (φ=45, see Appendix 3B-4)
- 1/ The factor of safety is in conformity with the Design for Dams established by Japanese National Committee on Large Dams is to say, it must not be less than 1.2 in any case.

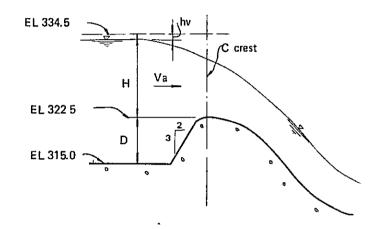
2/
$$\gamma \text{sat} = \frac{\text{Gs} + e}{1 + e} = 2.21$$

where, Gs(Specific gravity of the rock material) = 2.7
reduced as 10% allowance from the Test result;
2.95, See Appendix 3B-4.

e(Void ratio of the rock embankment) = 0.4

3. Spillway

a) Design Flood Discharge


The peak discharge (inflow) and design flood discharge of the Falsiguan dam are shown in the following table.

	Catchment	Max. Peak	Design Flood
<u>Dam type</u>	area	Discharge	Discharge
	(sq.km)	(cu.m/sec)	(cu.m/sec)
Earth and rockfil	.1 153	3,070	3,070

Note; (See Chapter III.B.2)

b) Overflow Head and Width

In general, open type spillway should be adopted to the fill type dam from view points of nonresistance against overtopping from unexpected flood and hydraulic characteristic of itself. It is considered that the gate type spillway is more suitable to be adopted than the ungated spillway from the view points of design discharge and topographical feature. In the gated spillway, at least two gates or more should be provided for the purpose of diversification of risk by gate control.

The discharge coefficient of complete overflow on the weir has a close relation with a shape of weir. On assumption that D/H is 0.61., the most effective upstream slope of weir is 3 vertical to 2 horizontal and coefficient of discharge is 2.14. Length of weir, ...g. width of spillway can be obtained from the following equation, considering the contraction by piers.

$$L = \frac{Qd}{CH^{3/2}} + N.b + 2N.Kp.H = \frac{Qd}{2.14.H^{3/2}} + (b+2Kp.H)N$$

where,

- L : length of weir (width of spillway) (m)
 - H : overflow head (m)
 - b : width of peir (b=2.50m, place for lifting unit)
 - Kp : coefficient of contraction on pier. (Kp=0 at the design discharge)
 - N : number of pier

The length of weir for various overflow heads in case of the Palsiguan dam spillway is estimated in the following table.

Qđ Number 2N.Kp.H Length overflow CH 3 12 of weir Gate size head of pier (m) (m) (m) (m) $3 - 11.5 \times 13.1$ 44.3 39.3 H = 11.0 N = 23'- 12.5 x 11.5 3 - 13.5 x 10.2 34.5 39.5 H = 12.0 N = 2'N =2 30.6 35.6 H = 13.0

Note: (a) height of gate leaf (b) width of gate leaf

21 Hydraulic Dimensions

The water depth on chute section for the Palsiguan dam is shown in the following table.

$\frac{\text{Water Depth}^{1/2}}{d(m)}$	Velocity V(m/sec)	Froude <u>Number</u> Fr
8.0	11.1	1.3
3.2	24.5	4.4
2.5	31.4	6.4
2.2	35.1	7.5
2.2	35.9	7.8
	d (m) 8.0 3.2 2.5 2.2	d (m)V(m/sec)8.011.13.224.52.531.42.235.1

1/ calculated by Manning's roughness : n=0.014

From the flip-bucket which is installed at EL 230 m $_{\rm V}$ 235 m. Length for the shall fly through following points.

Distance from the Flip (m)	$\frac{\text{Elevation}^{1/2}}{(\text{EL-m})}$
0	235.0
20	244.3
40	249.0
60	249.1
80	244.7
100	235.7
140	204.0 = river bed

1/ calculated by energy loss of 10%

4. Diversion Works

The tunnel type diversion facilities are planned for the Palsiguan dam due to the topographical condition and the diversion facilities will be used for the outlet facilities from the reservoir after completion of the dam.

a) Design Flood Discharge

The design flood discharge for diversion facilities is as follows.

Dam type	Catchment Area (sq.km)	Design Flood Discharge for Diversion Facilities (cu.m/sec)
Earth and rockfill	153	950

The open flow type tunnel has been proposed so that the dam construction will not hinder the transportation of pulpwood by the Palsiguan river flow.

Necessary tunnel sizes according to the ration of water dept to tunnel diameter is as follow;

Depth/Diameter	Tunnel Diameter 1/	Clearance (m)	$\frac{\text{Velocity}^{1/}}{(\text{m/sec})}$
0.70	10.16	3.05	14.6
0.75	9.86	2.47	14.5
0.80	9.62	1.92	14.3
0.85	9.45	1.42	14.1
0.90	9.34	0.93	13.8

1/ conditions : Q = 950 cu.m/sec Slope = 7/740Manning's n = 0.014 $_{\rm Siges}$ of pulpwood, which is measured at Baybaytin on February $_{\rm eth},$ 1980 are varied as follows;

	Normal	Longest	Thickest		
	(cm)	(cm)	(cm)		
Diameter	40	25	85		
Length	150	180	145		

In order to keep the pulpwood transportation, the tunnel clearance should be nearly two meters, so the tunnel diameter of 9.6 meters is adopted with the following hydraulic dimensions:

Tunnel		Manning's		
Diameter	Slope	Roughness	Depth	<u>Velocity</u>
(m)			(m)	(m/sec)
9.60	7/740	0.014	7.74	14.3

b) drest Elevation of Coffer Dam

The necessary elevation of coffer dam can be obtained from the recessary head for tunnel flow as shown belows;

	el flow	Necessary Head at Tunnel Front <u></u>
	Velocity Head	at Tunnel Front ^{±/}
(m/sec)	(m)	(m)
14.3	10.4	15.6

Necessary Elevation,		
Necessary Elevation 2/ at Tunnel Front 2/	Free board	Top of Coffer dam
(m)	(m)	(EL-m)
222.6	2.4	225.0

1/150% of tunnel velocity head 2/ Invert of tunnel entrance = EL 207.0 m

stability Analysis of Gravity Dam Table 4D-3 •

		2	8, 625 7, 423 5, 606 5, 477 5, 477		N 41.879 23.746 16.458 10.656 9.303 8.319 7.558 7.558		N 359, 904 255, 593 14, 595 11, 611 9, 797 7, 592 8, 528 7, 592		N 239.740 58.373 28.292 18.924 18.623 10.427 10.427 10.427 9.204		N 160.488 128.149 105.210 79.286 71.601 65.157 71.601 59.829	:	*
		00-00 00-00 00-00	52, 559 62, 898 72, 459 81, 985 91, 505		SD 10, 661 16, 398 16, 398 24, 545 33, 456 33, 456 54, 135 58, 135 58, 319 56, 214		50 5.7392 5.7392 8.7395 16.7396 16.7395 23.137 23.137 23.137 23.137 23.137 23.137 53.428 53.428 53.428		SD 1.565 3.915 3.915 10.030 17.608 34.955 34.955 34.955 51.303		80 -5.160 -5.769 -5.875 -1.703 -10.875 -10.875 -10.875 -10.875 -10.875 -10.875	ł	50 0. 367 1. 475 1. 8356 1. 8356 1. 8356 5. 029 9. 5356 12. 6329
			2.758 2.758 3.946 5.430 7.084		su 17. 498 19. 739 20. 922 21. 898 23. 521 26. 084 295 32. 374		SU 25, 758 29, 734 31, 736 32, 758 32, 758 32, 559 33, 175 35, 175 37, 242		50 23.585 34.618 37.526 39.648 40.894 40.894 45.381 48.334		su 35.779 47.576 47.576 47.576 70.898 70.898 77.301 83.274 90.595 98.732	i	50 54,051 54,051 54,054,054 55,054 76,350 83,095 90,504 90,504
Н=0.88 Nl=0.0 HF=27.00 N2=0.20		-106.06 -369.06 -964.76	2013,042 -3001,125 -6194,941 -9377,719 -13459,426		SM 48.649 51.809 -98.253 -98.253 -98.979 -1176.438 -2191.448 -3395.230		SM 144.904 324.524 409.524 409.528 287.998 -161.443 -979.735 -2235.391 -2235.391		SM 199. 361 476. 052 745. 697 924. 859 917. 478 710. 729 710. 729 710. 729 710. 729		5M 277.047 827.067 1789.781 3298.316 5174.844 7610.523 10849.355 15022.941		SH 224, 002 693, 921 1516, 435 2805, 936 4362, 995 6358, 492 9011, 992 12431, 316
Fillet		5H -79.72 185.16 338.82	-350, 272 -789, 643 -1087, 983 -1435, 213 -1831, 206		8H -42.821 -113.771 -222.221 -366.170 -351.620 -772.570 -1031.020 -1326.970		SH -20.100 -77.231 -177.231 -177.231 -177.231 -735.99 -735.972 -735.972 -735.972 -1324.031		SH -7.538 -49.988 -129.938 -247.387 -402.337 -402.337 -824.787 -1092.187		SH 11. 302 21. 384 35. 343 53. 179 75. 109 101. 758 103. 166 133. 166 133. 166	i	
ning Point of	0. 150		521.074 904.081 1258.380 1675.730 2156.131	0.0	8N 130.094 246.454 410.114 621.074 904.081 1258.380 1675.730 1675.730 2156.131	0.075	SN 143.911 262.779 428.947 642.415 926.333 1280.861 1598.439 2179.067	D. O	6N 143.911 262.779 428.947 642.415 926.333 1280.861 1280.861 1598.439 2179.067	0.075	5N 150.698 285.118 471.238 709.058 1001.457 1356.777 1775.547 2257,767	0.0	150.698 285.118 2709.698 201.238 1001.457 1356.777 1356.777 1775.547 2257.767
est to Beginn	KG*1 K= 0	00 N	22, 440 27, 540 32, 940 38, 340 43, 740	KC=2 K= (T 9.240 13.640 18.040 22.440 22.440 32.940 38.340 38.340 43.740	KC#1 KH	T 9,240 13,540 18,640 18,040 18,040 22,440 32,540 32,540 32,540 32,540 32,740	KC=2 K= 1	T 9.240 13.640 13.640 18.040 22.440 22.440 332.940 332.940 332.340	KC=1 K= -	T 9.240 13.640 18.040 22.440 22.440 32.940 332.940 38.340 43.740	¥ "	13.240 13.540 13.540 18.040 22.440 22.540 32.940 33.940 53.740
Downstream Slope Upstream Slope Distance from Cre Slope of Fillet	KA-1 KB-1	ពេលពេរ ភ្នំពេំដំ	23, 500 30, 500 40, 500 45, 500	KA=1 KB=1	× 10.500 10.500 10.500 20.500 25.5000 25.500 25.500 25.500 25.500 25	KA≖1' KB⊭2	× × 15.500 20.500 25.500 25.500 40.500 40.500 40.500	KA=1 KB=2	x 15.500 20.500 25.5000 25.5000 25.5000 25.5000 25.5000 25.5000 25.5000 25.5000 25.5000 25.5000 25.5000 25.5000 25.50000 25.50000000000	KA=1 KB=3	x 10.500 25.5000 25.5000 25.5000 25.5000 25.5000 25.50000 25.50000000000	KA≖1 KB=3	4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
S D U D	-	K=0,15			K=0.0	-		_		- 920 920		K=0.0	
	Condition Full water	Earthquake,		Full water	carthquake,							Empty Earthquake, 1	

IN PUT DATA NO.1

•

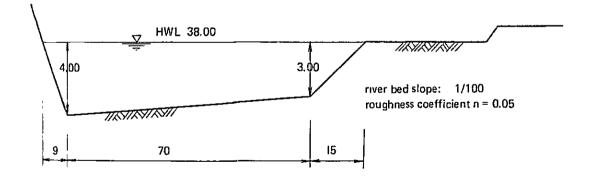
2.000	7.700	7.700	2.350	1.000	0.500	0.200	1.000	180,000
HIGH-WATER-LEVEL	LOW-WATER-LEVEL	ELEVATION OF SEDIMENT	UNIT-WEIGHT OF CONCRETE	UNIT-WEIGHT OF SEDIMENT	ő	COEFFICIENT OF UP-LIFT	COEFFICIENT OF SLIDE	ALLOWABLE SHEARING-STRESS

- Note:

- :: Dam height (m)
 : Bottom width of dam (m)
 : Vartical force (ton)
 : Horizontal force (ton)
 : Moment (ton.m)
 : Vartical stress at upstream toe (ton/sq.m)
 : Vartical stress at downstream toe (ton/sq.m)
 : Safety factor for sliding shearing friction

i i

B. Fiversion Dams

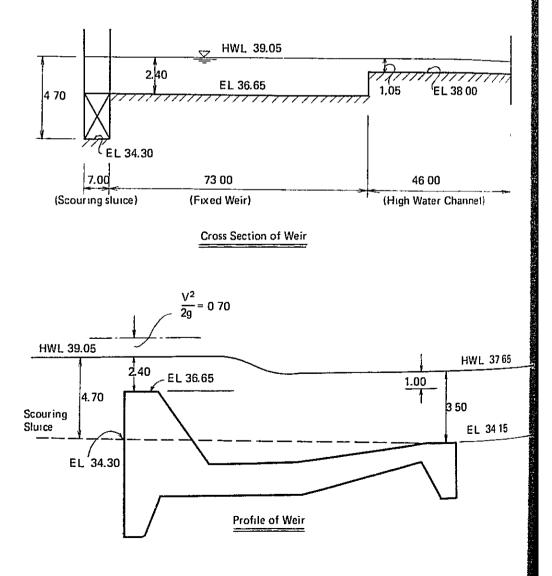

The diversion dams, Madupayas and Tibangran diversion dams, are hoppsed in the project. The subsequent paragraph gives the hydraulic disculation for determining major dimensions of the facilities in case of Tibangran diversion dam.

. De Lan Conditions

Intake discharge:	Q = 7.71 cu.m/sec
High-water discharge:	Qf = 950 cu.m/sec
Intake water surface:	NWS. 36.50 m
Dam bed elevation:	EL. 34.15 m
Dam crest elevation:	NWS. 36.50 + 0.15 = 36.65 m
Weir type:	Floating type

... Fresent High-Water Level

Frecent high-water level can be estimated depending on the prepert typical cross section of river at the proposed site as shown whom:


acw, when high-water level is assumed at WL 38.0 m, total distrange of the section is estimated at 1,188 cu.m/sec, by applying the "anning's formula.

 $A_1 = 4 \times 9 \times 1/2 = 18 \text{ sq.m}$ $A_2 = (4 + 3) \times 1/2 \times 70 = 245$ $A_3 = 3 \times 15 \times 1/2 = 22.5$ $\Sigma A = 285.5 \text{ sq.m}$

P = 9.8 + 70 + 15.3 = 95.1 m $R = 285.5/95.1 = 3.00, R^{2/3} = 2.08$ $V = \frac{1}{0.05} \times 2.08 \times \left(\frac{1}{100}\right)^{1/2} = 4.16 \text{ m/sec}$ $Q = 285.5 \times 4.16 = 1,188 > 950 \text{ cu.m/sec}$ So, high-water level is decided at WL. 38.0 m.

3. Future High Water Level

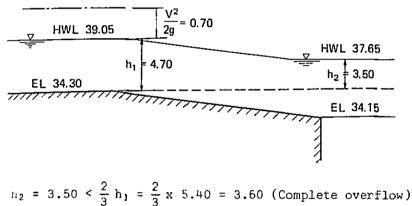
Future high water level after completion of the diversion da_{n_i} can be estimated by using the proposed section of weir.

Appendix 4D-6 Page 3

Approaching velocity:

$$A_{1} = 7.00 \times 4.70 = 32.9 \text{ sq.m}$$

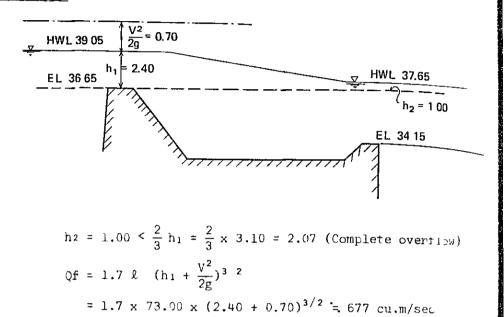
$$A_{2} = 73.00 \times 2.40 = 175.2$$

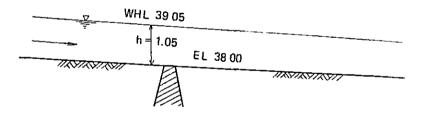

$$A_{3} = 46.00 \times 1.05 = 48.3$$

$$\Sigma A = 256.4 \text{ sq.m}$$

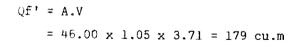
$$V = \frac{0.50}{256.4} = 3.71 \text{ m/sec} \qquad \frac{V^{2}}{2g} = \frac{3.71^{2}}{19.6} = 0.70 \text{ m}$$

oming Sluice


whe

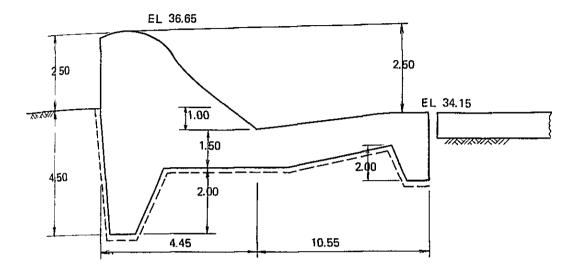

$$v_{n} = 1.70 \text{ Lm } (h_{1} + \frac{V^{2}}{2g})^{3/2}$$

= 1.70 x 6.62 x (4.70 + 0.70)^{3/2}
`= 141 cu.m/sec
re; bo = 6 - 0.04 nh_1


 $= 7.00 - 0.04 \times 2 \times 4.70 = 6.62$

Fixed Weir

High-Water Channel



Total discharge;

 $\Sigma Q = Qm + Qf + Ff' = 141 + 677 + 179 = 997 > 950 cu.m/sec$

Therefore, back water shall be determined at HWL 39.05 $\ensuremath{\texttt{m}}$ assumed.

4. Lesign of Fixed Weir


```
=) length of Fore-apron

Fy Bligh Method;

lf_1 = 0.6 \cdot C \sqrt{D_1}

= 0.6 \times 9 \times \sqrt{2.50} = 8.53 < 10.55 \text{ m}

Length = 10.55 m
```

```
.) rling (Creep Length)
```

By Bligh Method;

 $S = C \cdot \Delta h$ = 9.0 x 2.50 = 22.50 m S' = 4.50 + 2.00 + 15.00 + 2.00 = 23.50 mS < S' - 0.K

By Lane Method;

L = $C \cdot \Delta h$ = 3.5 x 2.50 = 8.75 L' = (4.50 + 2.00 + 2.00) + 1/3 x 15.00 = 13.50 m L < L' 0.K c) Thickness of Fore-apron

$$T_{a} = \frac{4}{3} \times \frac{\Delta h - hf}{r - 1}$$
$$= \frac{4}{3} \times \frac{2.50 - 1.16}{2.3 - 1} = 1.37 < 1.50 m$$
$$hf = \frac{\Delta h}{S} \times 5^{+} = \frac{2.50}{23.50} \times (4.50 + 2.00 + 4.45) = 1.16 m$$
Thickness = 1.50 m

d) Apron Protection Works

By Bligh Method; $l = 0.67 \text{ C } \sqrt{D_1 q}$ $l \text{fr} = l - l \text{f}_1$ $l = 0.67 \times 9 \times \sqrt{2.50 \times 9.3} = 46.22 \text{ m}$ where; $q = \frac{677}{73} = 9.3$ l fr = 29.08 - 10.55 = 18.53 mLength = 20.00 m

- 5. Design of Scouring Sluice
- a) Elevation

Elevation of scouring sluice shall be determined based on teaveraged river bed slope of the stream center line after construction diversion dam. Accordingly, the elevation was calculated at EL 5-... based on the averaged river bed slope derived from the elevation of the 100 m upstream point and the 150 m lowerstream point of the famsite.

b) Design Discharge for Flushing Sediment

In order to flush away sediment even during irrigation period, the normal water discharge in irrigation periods (Qo = 13.0 cu.m/cc.', is adopted.

```
3) Feculired Water Velocity for Flushing Sediment
Vc = 1.5 C √d
where; Vc: required velocity (m/sec)
C: coefficient by sand/gravel condition 4.5
d: max. particle size of sediment (m)
Vc = 1.5 x 4.5 x √0.15 = 2.61 m/sec
```

) Lith

Lunc =
$$\frac{Q_0}{q}$$

 $q = \frac{Vc^3}{g}$
where; Lunc: width (m)
 q : traction discharge per unit width (cu.m/sec/m)
 g : acceleration of gravity (m/sq.sec)
 Q_0 : design discharge for flushing away sediment
(cu.m/sec)
Vc: required water velocity for flushing away
sediment (m/sec)
 $q = \frac{2.61^3}{9.8} = 1.81$ cu.m/sec/m
Lunc = $\frac{13}{1.81} = 7.18$ m
width = 7.00 m x 1 set

-† Nope

The slope is determined to secure the critical velocity in the "ouring sluice canal, setting the control point on the upstream end i this canal as follows:

$$Ic \ge \frac{n^2g}{hc^{1/3}}$$