Chapter 4. Results of Drilling Survey

4-1 General Description

The drilling exploration was conducted to confirm the subsurface extension of the manganese outcrop No.110 that is the largest one in the area A. In this exploration a total drilled length of 300.00 m was achieved by 17 drill holes at 8 sites.

The manganese outcrop No.110 is located along ridges of low hills, 75 to 90 m above sea level, in the area A. The general strike and dip are N45°W and $30 \sim 80^{\circ}$ S in the eastern part while E-W and N-dipped in the central to western part. The manganese beds show a tendency that in the eastern part ore beds are thicker than those in the western part.

According to these surface ore occurrence, 12 drill holes out of all 17 holes were drilled in the eastern part and the remaining 5 holes in the western part.

By this exploration ore beds were confirmed in 11 drill holes, although the proven range of the extensions are generally less than 20 m below surface. The maximum depth of the ore bed confirmed is 24.70 m by the No.9 drill hole.

The geology, ore beds, and ore grade in each drill hole are described hereafter. The details are shown as geological logs on a scall of 1:200 in Fig. A-5. In this drilling exploration, the drill-hole lithology was compiled by the observations of cuttings. Cuttings were distinguished according to their tone as red chert, white chert, brown to light brown chert, and black chert. The black chert includes manganese minerals, therefore, black chert can be treated as ore bed. Shale was not distinguished clearly because it generally tended to be minutely pulverized.

Based on the geology of each hole geological profiles were made as shown in Fig. II $-2-1\sim2$.

4-2 Geology of Drill Hole

4-2-1 No.1 drill hole

The No.1 drill hole was, as shown in Fig. II-1, conducted at the western end of the manganese outcrop No.110 to check the subsurface extensions of the outcropping ore beds. The drilling area is underlain by the alternation of light gray to light pink chert and reddish brown shale. General strike and dip of the alternation are N70°E and 80°N. A 1-m-thick manganese bed, EW-trended and 85°N-dipped, is exposed to the south of the drilling site.

The drill-hole geology is as follows: 0-3.00 m; red chert and white chert, 3.00-4.50 m; red chert and rare black chert, 4.50-5.00 m; manganese ore, 5.00-6.50 m; brown chert, 6.50-10.00 m; manganese ore, 10.00-11.50 m; brown chert, 11.50-13.50 m; red chert and white chert, 13.50-15.50 m; red chert and light brown chert.

LEGEND

ieri	nert	brown own shale			Fe (%)	0.67	
white ct le	white ch shale	reddish ddish br	ore	ore	Elements SiOz(%)	73.82	
g bed of gray sha	g bed of h brown s	g bed of rt and re	layered	nodular	Mn (%) MnOz(%) SiOz(%) Fe (%)	11.53	
alternating bed ot white chert and light gray shale	alternating bed of white chert and reddish brown shale	alternating bed of reddish brown muddy chert and reddish brown shale	manganese layered ore	manganese	Mn (%)	7.65	
				Table and the second se	Sampling width (m)	0.50	

Geological Profile of the Drilling Area (No. 1~5) Fig. II-2-1

Fig. II-2-2 Geological Profile of the Drilling Area (No. 6-17)

• -6-,

By this drilling two ore beds were encountered. The lower ore bed is, as shown in Fig. II-2-1, considered to be the lower extension of the outcrops. The ore beds are estimated to continue showing small-scale anticline and syncline. The assay of the ore beds is shown below. The ore grades are generally low as about 10% MnO₂.

Sample No.	Depth(m)	Interval length(m)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
L1	4.50 - 5.00	0.50	7.65	11.53	73.82	0.67
L2	6.50- 7.00	0.50	5.23	8.04	84.71	0.86
L3	7.00- 7.50	0.50	7.55	11.46	80.31	0.67
L4	7.50- 8.00	0.50	9.05	14.08	77.01	0.61
L5	8.00- 8.50	0.50	4.94	7.49	83.17	0.88
L6	8.50- 9.00	0.50	5.27	7.70	85.26	0.63
L7	9.00- 9.50	0.50	9.71	14.77	76.61	0.49
L8	9.50-10.00	0.50	5.65	8.04	85.94	0.47

4-2-2 No.2 drill hole

The No.2 drill hole was conducted to make clear the lower extension of the manganese beds in the western part of the outcrop No.110. The drilling area is underlain by the alternation, of light gray chert and reddish brown shale trending N70°E and dipping 70°N. 20 to 30 cm thick of manganese beds trending N60°E, dipping 60° to 70°N are exposed to the south of the drilling site.

The drill-hole geology is as follows; 0-10.00 m; mainly red chert (4.00-6.00 m and 8.00-10.00 m; white chert), 10.00-11.00 m; brown chert, 11.00-11.50 m; manganese ore, 11.50-13.50 m; brown chert, 13.50-15.50 m; red chert and white chert, 15.50-16.00 m; manganese ore, 16.00-18.30 m; red chert and brown chert (rare white chert).

The two ore beds encountered are considered to be the lower extension of the 10 cm-think of ore beds to the north of the main outcrop. The assay of the ore beds is shown below. The ore grades are low as about $5\% \, \text{MnO}_2$.

Sample No.	Depth(m)	Interval length(m)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
L9	11.00-11.50	0.50	2.83	4.78	79.97	1.58
L10	15.50-16.00	0.50	2.84	4.43	85.25	1.16

the contract of the contract o

A CANADA CAN •

• . .

. , • ŧ

, - ;

t % · · · · · · e v

 $\mathcal{L}_{\mathbf{k}}$

e de la companya della companya della companya de la companya della companya dell

Control and the Control of the Control

• . * *

, , ,

المراجع والمراجع والمراجع والمسترين والمناجع والمنطور والمراجع والمراجع se e

4-2-3 No.3 drill hole

The No.3 drill hole was, as shown in Fig. II-1, conducted at the point to the south of the No.2 drill hole in the western part of the outcrop No.110. The drilling site is under lain by the alternation of reddish brown chert and reddish brown shale.

The drill-hole geology is as follows: 0-8.00 m; mainly red chert (3.00-5.00 m; rare black chert, 4.00-7.00 m; white chert), 8.00-11.00 m; brown chert and rare black chert, 11.00-15.00 m; red or purple chert and minor white chert, 15.00-20.00 m; brown chert and rare black chert.

By this drilling no main ore bed was recognized but 3 minor black chert beds. These beds are, as shown in Fig. II-2-1, probably lower extensions of the ore beds of the surface and upper extensions of the ore beds in the No.2 drill hole. From these mode of occurrences the ore beds are estimated to be intermittent in both directions of strike and dip.

4-2-4 No.4 drill hole

The No.4 drill hole was, as shown in Fig. II—1, conducted to make clear the subsurface extention of the ore beds in the western part of the outcrop No.110.

The drilling site is underlain by the thick alternation of brown muddy chert, brown chert, and reddish brown shale and by the thin alternation of light gray chert and light gray shale. These alternations trend N70°E to EW and show small-scale paired anticlinal-synclinal structures.

The drill-hole geology is as follows: 0-5.00 m; red chert, 5.00-6.00 m; red chert and white chert, 6.00-11.00 m; white chert, 11.00-14.00 m; red chert.

No ore bed was encountered in this drill hole, however, the fold structure was clearly deliniated as shown in Fig. II-2-1.

4-2-5 No.5 drill hole

The No.5 drill hole was conducted to confirm the deeper extension of the exposed ore beds at the same site of No.4.

The drill-hole geology is as follows: 0-1.00 m; red chert and white chert, 1.00-9.00 m; white chert, 9.00-14.50 m; white chert and red chert.

No ore bed was recognized by this drilling, however, as shown in Fig. II-2-1, the white chert part of this hole continues to the white chert part of the No.4 drill hole and, farther, to the alternation of light gray chert and shale on surface deliniating an anticlinal structure.

`

.

•

.

4-2-6 No.6 drill hole

The No.6 drill hole was conducted at the eastern end of the outcrop No.110 as shown in Fig. II-1. The drilling was aimed to confirm the subsurface continuation of the exposed ore beds.

The drilling site is occupied by the alternation of brown muddy chert and shale. The alternation trends N45°W and dips 15° to 40°S. A 2-m-thick ore bed lies on the slope and another 50-cm-thick one comes under the main bed.

The drill-hole geology is as follows: 0-1.00 m; red chert and white chert, 1.00-2.00 m; brown chert and minor black chert, 2.00-3.00; manganese ore, 3.00-9.50 m; mainly brown chert (7.00-9.50 m; brown chert and rare black chert), 9.50-16.00 m; red chert and white chert (14.00-15.00 m; white chert only), 16.00-17.00 m; light brown chert.

In this drill hole, one ore bed was recognized. The ore bed is, as shown in Fig. II-2-1, the extension of the ore bed exposed 7 m north of the drill hole. This drill hole did not reach the extension of the target outcrop. The assay of the ore bed encountered is shown below.

Sample No.	Depth(m)	Interval length(m)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
L11	2.00-2.50	0.50	11.18	16.98	61.74	2.07
L12	2.50-3.00	0.50	11.55	17.44	60.68	2.07

4-2-7 No.7 drill hole

The No.7 drill hole was conducted at the same drilling site of the No.6 drill hole to confirm the lower part of the outcrops.

The drill-hole geology is as follows: 0-2.00 m; red chert and brown chert, 2.00-4.00 m; manganese ore, 4.00-8.00 m; brown chert and rare black chert, 8.00-11.00 m; brown chert, 11.00-13.00 m; red chert and white chert, 13.00-16.00 m; white chert, 16.00-18.00 m; red chert.

By this drilling one ore bed was recognized. The bed is the same one found in the No.6 drill hole. The assay of the ore bed is shown below.

Sample No.	Depth(m)	Interval length(m)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
L13	2.00-3.00	1.00	21.04	32.00	49.41	0.88
L14	3.00-4.00	1.00	12.86	19.80	65.94	1.21

-2.1

. .

The second of the second secon *a 1* r ·

, ...

•

• . , • •

4-2-8 No.8 drill hole

The No.8 drill hole was conducted at the same site of the No.6 drill hole to confirm the lower part of the outcrop of ore beds and white chert beds.

The drill-hole geology is as follows: 0-1.00 m; red chert and white chert, 1.00-3.00 m; red chert and rare black chert, 3.00-3.50 m; manganese ore, 3.50-8.00 m; brown chert and rare black chert, 8.00-10.50 m; manganese ore, 10.50-21.00 m; mainly red chert (15.00-18.00 m; white chert).

In this drill hole two ore beds were recognized. The upper bed is likely the extension of the ore bed in the No.6 drill hole, and the lower bed probably continue to the black chert bed found in the depth interval of 7.00 to 9.00 m of the No.6 drill hole. Consequently, the main ore bed was not reached even by this hole. As shown in Fig. II—1 the extention of the main outcrop probably lies in deeper part. The assay of the ore beds in this hole is shown below.

Sample No.	Depth(m)	Interval length(m)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
L15	3.00- 3.50	0.50	9.44	15.51	68.18	0.65
L16	8.00- 8.50	0.50	3.04	5.03	83.23	1.45
L17	8.50- 9.00	0.50	2.58	4.10	80.19	1.67
L18	9.00-10.00	1.00	1.74	2.89	81.48	0.65
L19	10.00-10.50	0.50	4.75	7.40	75.04	1.62

4-2-9 No.9 drill hole

The No.9 drill hole was, as shown in Fig. II-1, conducted to confirm the lower part of the relatively continuous outcrops in the eastern part of the outcrop No.110. The drilling site is occupied by the alternation of brown muddy chert and shale that trends N45°W and dips 60° to 70°S. To the north of the site 2 m thick of ore bed is exposed with another samll-scaled 3 ore bes.

The drill-hole geology is as follows: 0-2.50 m; brown chert and red chert, 2.50-3.50 m; manganese ore, 3.50-10.00 m; brown chert and minor red chert, 10.00-11.50 m; manganese bed, 11.50-16.00 m; brown chert and rare black chert, 16.00-24.70 m; manganese ore.

Among the 3 ore beds found in this drill hole, the upper 2 beds are small-scalled. The 2-m-thick ore bed on the surface is considered to continue to the lowest ore bed of the drill hole. This bed extends more than 30 m from the surface showing a gentle fold structure as shown in Fig. II-2-2.

The assay of the ore beds is shown below. The relatively high-grade part (32.22% MnO₂)

is recognized in the depth interval of 21.00 to 21.50 m. The remaining parts are generally of low grade $(5.19 \text{ to } 17.88\% \text{ MnO}_2)$.

Sample No.	Depth(m)	Interval length(m)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
L20	2.50- 3.00	0.50	11.65	17.25	65.60	1.48
L21	3.00- 3.50	0.50	7.79	12.20	71.99	1.58
L22	10.00-10.50	0.50	4.05	6.59	79.03	1.44
L23	16.00-16.50	0.50	9.94	14.98	71.79	0.92
L24	16.50-17.00	0.50	5.67	9.20	76.31	1.55
L25	17.00-17.50	0.50	4.08	7.10	75.48	2.01
L26	17.50-18.00	0.50	8.50	13.22	75.32	1.26
L27	18.00-18.50	0.50	7.19	10.97	77.33	1.14
L28	18.50-19.00	0.50	5.66	7.32	82.81	0.74
L29	19.50-20.00	0.50	4.79	7.54	78.64	1.80
L30	20.00-20.50	0.50	6.01	8.46	85.25	0.57
L31	20.50-21.00	0.50	8.79	12.54	77.26	0.83
L32	21.00-21.50	0.50	21.76	32.22	54.03	0.99
L33	21.50-22.00	0.50	4.94	7.45	86.93	0.69
L34	22.00-23.00	1.00	3.11	5.19	82.60	1.49
L35	23.00-24.00	1.00	5.99	9.49	77.94	1.26
L36	24.00-24.70	0.70	10.79	17.88	66.41	1.23

Manganese minerals and gangue minerals were identified by X-ray diffraction on 3 samples (L26, L32, L35) and by microscopic observation on 1 sample (L32). The results are shown in Table A-2 and A-4. The noteworthy points are that relatively much amount of cryptomelane was detected from L32 and that a weak peak of rhodochrosite was obtained from L35.

4-2-10 No.10 drill hole

The No.10 drill hole was conducted at the same site of No.9 drill hole to investigate the deeper extention of the outcrops.

The drill-hole geology is as follows: 0-3.00 m; red chert and white chert, 3.00-4.00, brown chert, 4.00-6.00; manganese ore, 6.00-19.00; mainly brown chert (minor black chert at 10, 15, and 16 m).

The ore bed found in this drill hole is, as shown in Fig. II-2-2, the extension of the small-

-

•

` * *

. -

-

.

scale bed on surface and the black chert beds from 10 to 16 m depth might continue to the ore bed at 10 m depth of the No.9 drill hole. The assay of the ore beds found in this drill hole is below. The ore beds are of low grade.

Sample No.	Depth(m)	Interval length(m)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
L37	4.00-5.00	1.00	10.95	17.88	65.30	1.98
L38	5.00-6.00	1.00	8.25	12.28	80.25	0.71

4-2-11 No.11 drill hole

The No.11 drill hole, as shown in Fig. II-1, was conducted to catch the subsurface extension of the exposed ore beds in the eastern part of the outcrop No.110. The drilling site is underlain by the alternation of brown muddy chert and shale that strikes N45°W and dips 75° to 85°S. Two ore beds, 1.9 m and 0.5 m in thickness, are exposed to the north of the drilling site.

The hole-geology is as follows: 0-8.50 m; mainly red chert, 8.50-12.50 m; manganese ore, 12.50-13.50 m; brown chert and minor black chert, 13.50-18.00 m; manganese ore and minor brown chert, 18.00-21.00 m; brown chert.

By this drilling 2 ore beds were recognized. These ore beds are considered to continue up to the two outcrops as shown in Fig. II-2-2. The assay of the upper bed is as follows:

Sample No.	Depth(m)	Interval length(m)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
L39	9.50-10.50	1.00	13.52	21.36	63.82	1.43
L40	10.50-11.50	1.00	22.99	34.05	53.48	0.51

4-2-12 No.12 drill hole

The No.12 drill hole was conducted at the same site of the No.11 drill hole to check the deeper continuation of the outcrops.

The drill-hole geology is as follows: 0-15.00 m; red chert and rare white chert, 15.00-16.00 m; brown chert and minor black chert, 16.00-16.50 m; manganese ore.

The ore bed recognized is inffered to continue to the ore bed found in the No.11 drill hole.

The assay of the ore bed is below. The ore bed shows extremely high Fe-content comparing to those of other ore beds. The high Fe content is probably due to the Fe-rich chert. However, the detail is not yet clear.

and the second of the second o P

- 162 P 30 -

*** 7

.

-

Sample No.	Depth(m)	Interval length(m)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
L41	16.00-16.50	0.50	10.01	16.03	62.46	6.28

4-2-13 No.13 drill hole

The No.13 drill hole was conducted at the same site of the No.11 and 12.

The drill-hole geology is as follows: 0-12.50 m; mainly red chert, 12.00-12.50 m; black chert, 12.50-15.50 m; manganese ore.

The ore bed found is the extension of that of the No.11 drill hole. The assay of the ore bed is below. The relatively high-grade part occurs in the depth interval of 12.50 to 13.00 m. $(26.32\% \text{ MnO}_2)$. The deeper parts show slightly high Fe contents.

Sample No.	Depth(m)	Interval length(m)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
L42	12.50-13.00	0.50	16.23	26.32	59.27	1.37
L43	13.00-13.50	0.50	10.08	15.53	66.44	1.95
L44	13.50-14.00	0.50	5.96	9.92	72.46	1.99
L45	14.00-15.00	1.00	6.95	11.02	67.08	2.20
L46	15.00-15.50	0.50	6.47	10.10	70.32	2.30

4-2-14 No.14 drill hole

The No.14 drill hole, as shown in Fig. II-1, was conducted to check the lower extensions of the ore outcrops in the eastern part of the outcrop No.110.

The drilling site is occupied by the alternation of brown muddy chert and shale that strikes N50°W and dips 60°S. Many ore beds are exposed to the north of the drilling site.

The drill-hole geology is as follows: 0-3.50 m; mainly brown chert, 3.50-4.00 m; manganese ore, 4.00-19.00 m; mainly brown chert (rare black chert).

The ore bed found in this drill hole is likely a small lens as shown in Fig. II-2-2. The black chert beds might be the extension of the ore beds on surface. The assay of ore sample is as follows:

Sample No.	Depth(m)	Interval length(m)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
L47	3.50-4.00	0.50	26.45	41.47	45.60	0.80

4-2-15 No.15 drill hole

The No.15 drill hole was conducted at the same site of the No.14 to check the lower continuation of the outcrops.

The drill-hole geology is as follows: 0-5.50 m; mainly red chert, 5.50-15.00 m; mainly brown chert. The black chert is found from 6.50 to 9.00 m in small scale.

No major ore bed was recognized in this drill hole, however, the minor black chert beds are, as shown in Fig. II-2-2, considered to be the extensions of the ore bed found in the No.14 drill hole.

4-2-16 No.16 drill hole

The No.16 drill hole, as shown in Fig. II-1, was conducted to check the subsurface extension of the ore beds in the eastern part of the outcrop No.110.

The drilling site is occupied by the alternation of reddish brown muddy chert and shale and by the alternation of brown muddy chert and shale. These beds strike N30°W and dip 70° to 80°S. Many ore beds are exposed to the north of the drilling site.

The drill-hole geology is mainly composed of brown chert. Minor black chert beds occur in the depth intervals of 5.00 to 6.00 m and 8.00 to 9.00 m.

No ore bed was found by this drilling. The two black chert beds are probably the extensions of the outcrops.

4-2-17 No.17 drill hole

The No.17 drill hole was conducted at the same site of the No.16.

The drill-hole geology is mainly composed of brown chert. Minor black chert beds were recognized in the interval of 1.00 to 10.00 m. Those black chert beds are the extensions of those found in the No.16 drill hole.

4-3 Summary of Results

By the drilling exploration it was confirmed that one ore bed near the No.9 drill hole extends to the depth of 30 m from the surface. However, the ore beds on surface show a tendency to grade into thin black chert beds within the range of 10 to 15 m below surface.

Therefore, it could be said that the dip-side continuity of the most ore beds is poor as same as the strike-side one.

According to the X-ray diffractions and microscopic studies, the manganese-mineral assemblage of the deeper part is almost similar to that of the outcrops.

and the second

. 1.

. . ,

, , , , ,

. ' 4 • • . . ı \mathbf{z}_{i_1} , \mathbf{z}_{i_2}

1 1 1 2

, F

• • , • • • 1 × 2

,

, , i s

• £x By the results of the ore assaying, it was proven that the ore grades are generally low as an average grade of 13.49% MnO₂ although some small-scale high-grade parts occur. In contrast, Fe contents show higher values than those of outcrops. Particularly, the ore bed found in the No.12 drill hole shows the exceptionally high Fe content (6.28% Fe).

		,

APPENDICES

wedness states

E Mer De

2300M399A

Fig. A-1 Microphotograph of Thin Section

Abbreviations

qz : quartz

pl : plagioclase

hy : hypersthene

au : augite

cal : calcite

chl : chlorite

serp .: serpentine

Mn min. : manganese mineral

op : opaque mineral

Angert Leven

Lagar Lagar

F., . 401 7

4 mg 4 m

, b 6°-

A sea - See

only lower polar

Sample No. : G124

Location : N2457.5, E761.0 Formation : Halfa formation (Hmr)

Rock Name : yellow chert

onlý lower polar

Sample No. : K104

: N2485.0, E777.5 Location

Formation : Halfa formation (Hmw)

Rock Name : light grey chert

only lower polar

Sample No. : K106

Location : N2484.5, E778.5 Formation : Halfa formation (Hmr)

Rock Name : reddish brown chert

only lower polar

Sample No. : K112

: N2484.5, E778.5 Location

Formation : Halfa formation (Hmr)

: light brown muddy chert Rock Name

only lower polar

crossed ploars

only lower polar

crossed ploars

Sample No. : H014

Location : N2453.5, E761.0

Rock Name : trachyandesite

Sample No. : K006

Location : N2453.5, E772.0

Rock Name : dolerite

only lower polar

crossed ploars

Sample No. : K150

Location : N2455.5, E763.5

Rock Name : Pyroxenite

Fig. A-2 Microphotograph of Polished Section

Abbreviations

pyrl : pyrolusite

.

only lower polar

Sample No. : G015

Location : N2458.0, E760.5 Formation : Halfa formation (Hmr)

Ore Name : manganese ore

Type of Ore : banded

only lower polar

Sample No. : G020

Location : N2456.5, E761.0 Formation : Halfa formation (Hmr)

Ore Name : manganese ore

Type of Ore : network

only lower polar

: G058 Sample No.

Location : N2457.5, E760.5 Formation : Halfa formation (Hmr)

Ore Name : manganese ore

Type of Ore : nodular

only lower polar

Sample No. : H048

Location : N2462.5, E759.5 Formation : Halfa formation (Hmr)

Ore Name : manganese ore

Type of Ore : massive

only lower polar

Sample No. : K018

Location : N2458.0, E758.5

Formation : Halfa formation

Ore Name : manganese ore

Type of Ore : fine-banded, breccieted

only lower polar

(outside of nodule)

Sample No. : K069

Location : N2455.0, E771.0

Formation : Halfa formation

Ore Name : manganese ore

Type of Ore : nodular

only lower polar

(inside of nodule)

only lower polar

Sample No. : K100

Location : N2484.5, E778.5

Formation : Halfa formation

Ore Name : manganese ore

Type of Ore : massive

Fig. A-3 Microphotograph of Fossil

Plate I

- 1. Eucyrtidium(?) ptyctum Riedel and Sanfilippo
- 2. Saitoum sp.
- 3. Thanarla conica (Aliev)
- 4. Parvicingula boesii Parona
- 5. P. sp.
- 6. P. cf. citae Pessagno
- 7. Pseudodictyomitra sp.
- 8. Dictyomitra sp.
- 9. Xitus(?) sp.
- 10. Xitus(?) sp.
- 12. Sethocapsa sp.
- 13. S. sp.
- 14. S. sp.
- 15. Tricolocapsa sp.

All specimens taken from Sample K-106

Magnification:

x 250 for No. 2

x 175 for the other specimens.

There are the state of the second

v A

. . .

Plate II

- 1. Archaeodictyomitra apiara (Rust)
- 2. Thanarla conica (Alieve)
- 3. Pseudodictyomitra carpatica (Lozyniak)
- 4. Parvicingula cf. cosmoconica (Foreman)
- 5. P. boesii Parona
- 6. P. sp.
- 7. P. sp.
- 8. Sethocapsa sp.
- 9. S. sp.
- 10. Hemicryptocapsa sp.
- 11. H. sp.
- 12. Stichocapsa sp.
- 13. Gen. sp. indet.
- 14. Alievium cf. helenae Schaaf
- 15. Pantanellium cf. corriganensis Pessagno
- 16. Emiluvia sp.

All specimens taken from Sample K-103

Magnification: x 100 for No.4

x 175 for the other specimens

•

,

e 1, 5 8 5 45 7

Plate III

- 1. Archaeodictyomitra vulgaris Pessagno
- 2. A. lacrimula (Foreman)
- 3. Dictyomitra sp.
- 4. Thanarla purchra (Squinabol)
- 5. Pseudodictyomitra carpatica (Lozyniak)
- 6. Parvicingula citae Pessagno
- 7. Eucyrtis tenuis (Rust)
- 8. Podobursa sp.
- 9. Siphocampium sp.
- 10. Gen. sp. indet.
- 11. Sethocapsa sp.
- 12. Hemicryptocapsa sp.
- 13. Acaeniotyle umbilicata (Rust)
- 14. Pantanellium cf. riedeli Pessagno
- 15. Cecrops septenporatus (Parona)

All specimens taken from Sample K-93

Magnification: x 175 for all specimens.

•		
		24

Plate IV

- 1. Archaeodictyomitra apiara (Rust)
- 2. Archaeodictyomitra sp.
- 3. Eucyrtidium (?) ptyctum Riedel and Sanfilippo
- 4. Pseudodictyomitra aff. carpatica (Lozyniak)
- 5. Parvicingula sp.
- 6. Zhamoidellum sp.
- 7. Napora aff. bukryi Pessagno
- 8. Zhamoidellum ovum Dumitrica
- 9. Stichocapsa sp.
- 10. Eucyringium (?) sp.
- 11. Alievium (?) sp.

All specimens taken from Sample H-37.

Magnification:

x 260 for all specimens.

Fig. A-4 Chart of X-ray Powder Diffractive Analysis

Fig. A-5 Geological Log and Assay (1:200)

No. I	(15.50m)	No. H	(21.00 m)					
,,	(10.00 1117		(21,00 m)					
No.2	(18.30 m)	No. 12	(16.50 m)					
No. 3	(20,00 m)	No. 13	(15.50 m)					
No.4	(14.00 m)	No. 14	(19.00m)					
No.5	([4.50 m)	No. 15	(15.00 m)					
No.6	(17.00 m)	No. 16	(19.00 m)					
No.7	(18.00 m)	No. 17	(12.00 m)					
No.8	(21.00 m)							
No.9	(24.70 m)							
No.10	(19.00 m)							
	red to reddish brown muddy chert and brown shale white to light gray chert and light gray shale brown muddy chert and brown shale black chert and manganese lens							
	manganese ore with bromanganese ore	own muddy	chert					
	- -							
	ch = chert							

No. I

Depth	Core			Assa	У			B
(m)	Log	Sample No.	Width (n)	Mn (%)	Мп02(%)	S102(%)	Fe (%)	Description
0 1								0.00-3.00 red ch and white ch
								3.00 - 4.50 red ch ≫ black ch 4.50 - 5.00
5 —	 	L-1	0.50	7 65	11.53	73 82	0 67	manganese ore 5.00 - 6.50 brown ch
-		L-2 L-3 L-4 L-5	0,50 0 50 0,50 0,50	5.23 7,55 9 05 4 94 5,27	8 04 11,46 14,08 7,49	84 7(80,31 77,0(83,17	0.86 0,67 0.61 0,68	6.50-10.00 manganese ore
10-		L-6 L-7 L-8	0.50 0.50 0.50	5, 27 9 7(5 65	7 70 14.77 8.04	85 26 76 61 85,94	0 63 0 49 0.47	black colored 1000–11.50
_								brown ch 11.50-13.50 red ch and white ch
15 15,50								13.50-15.50 red ch and pale brown ch

Depth	Core			Assa	у			Da autoria
(m)	Log	Sample No.	Widih (m)	Mn (%)	МпО2 (%)	\$102(%)	Fe(%)	Description
0 -								0.00-4.00 reddish purple ch ≫ white ch
5 -								4.00-6.00 red ch and white ch 6.00-8.00 reddish purple ch
10								8.00-10.00 red ch and white ch 10.00-11.00 brown ch
	: : =	L-9	0.50	2.63	4,78	79 97	1.58	11.00-11.50 manganese ore 11.50-13.00 brown ch ≫ black ch 13.00-15.50 red ch and white ch
15 — — — 1830—	:- : : :	L-10	0,50	2,84	4,43	85 25	1,16	I550-16.00 manganese ore I6.00-18.30 brown ch > red ch and white ch

Depth	Core			Assa	у			Daniel de la constante de la c
(m)	Log	Sample No.	Width (m)	Mn (%)	MnOz(%)	S102(%)	Fe(%)	Description
0 -	!!							0.00-2.00 red to purple ch
5		:						200-300 3.00-4.00 3.00-4.00 4.00-5.00 purple ch ≫ white ch>black ch 5.00-7.00 red to purple ch and white ch
								7,00–8,00 dark purple chand red ch 8,00–10,00 brown ch ≫ black ch
10								10.00-11.00 dark brown ch with manganese 11.00-15.00 purple ch > red ch > white ch
- 15	~						;	
20.00	~ : - :_						1	19.00-20.00 dark brown ch

=			<u></u>					
Depth	Core			Asso	у			Do
(m)	Log	Sample No.	Width (m)	Mn (%)	Mn02(%)	Si02(%)	Fe (%)	Description
0 1 1 1								0.00-5.00 red ch
5 —								5.00-6.00 red ch and white ch 6.00-11,00 white to gray ch
10								11.00-1400 red ch

	T							
Depth	Core	<u> </u>		Assa				Description
(m)	Log	Sample No.	Width (m)	Mn (%)	MnO2(%)	SiO 2(%)	Fe (%)	Description
0 -			-				_	0.00-1.00 red ch and white ch 1.00-9.00 white ch
5—		j						
- - 10 —							J	9.00-12.00 white ch and red ch
14.50								12.00-14.50 purple to red ch and white ch

<u>No. 6</u>

Danth	Cara			Assa	· ·			
1 . 1	Core	Sample	WINE		/	1041	- 1011	Description
(m)	Log	Sample Na	(m)	Mn (%)	MnO2(%)	Si0 2(%)	Fe(%)	<u> </u>
0	=_							000 - 1.00
[-					ĺ			dark purple ch, red ch and white ch
1	~~	L-11	0.50	11 18	16.98	61.74	2 07	dark brown ≫ black ch
(_:		1-12	0.50	11.55	17.44	60 68	2 07	2.00-3.00 manganese ore
	≂-							1300 - 400 i
{ 7								red ch and white ch > black ch
15—	<u></u>							4.00-7.00 brown ch > red ch and white ch
1 4								
i l								1
1 7								7.00 ~ 9.50
-	~							brown ch ≫ black ch
1 4	~]
1	=							9.50 ~ 10.00
110-	==		1					loced ch
\ -	==							10,00-11,00 red ch and white ch
] 4				:				11.00-14.00
								purple ch, red ch and white ch
	—							1
I ⊸								14.00 - 15.00
15 —						į		white ch 500- 600
["	=					·		i white ch > red ch i
17.00			ľ					1600-1700 grayish brown ch
17.00								dialion piakir ril

Depth	Core			Asso	у			B
(m)	Log	Sample No.	Width (m)	Mn (%)	MnO2(%)	S102(%)	Fe (%)	Description
0								0.00 — 100 dark purple ch, red ch, white ch 1.00 — 2.00
]		L	_		<u> </u>			1.00 2.00 dark brown ch and red ch
		L 13	1.00	21.04	32 00	49.41	0.88	2.00 — 400
		L 14	1.00	1286	1980	65 94	1.21	¶ manganèse are ≫ red ch
5	₩~							400 - 500 red ch ≫ black ch
٦					!			500 - 6.00 brown ch and red ch
	<u></u> ~							6.00 — 800 brown ch ≫ black ch
]	· - ~							PIGAN ON SPIGOR CN
	<u></u>							8.00 — 11.00 brown ch
0 —	·)
								11.00 - 12.00
\Box								red ch and white ch
]							1200 13.00 white ch ≫ red ch
]								1300 — 1600 white to gray ch
5 —								3 ,2, 4 ,1
``				!				
	==							16.00 — 18.00 red ch
18.00	=_							

=	7							T
Depth	Core		rail and	Asso	/	Description		
(m)	Log	Sample No.	Width (m)	Mn (%)	MnO (%)	SiO (%)	Fe(%)	·
0								000 - 100 dark purple ch, red ch, white ch
1 -	<u> </u>		1					1.00 - 300
_	~							dark purple ch >> black ch
_	~_							3.00 - 3.50
		L 15	050	9 4 4	15.51	68.IB	0.65	manganese ore
-	=_~							3.50 - 5.00 purple chand black ch
5 —	╀═┈┤							500 - 750
_	· - ~							brown ch ≫ black ch
								•
]	<u>~</u> _							7.50 - 8.00
_	****	L 16_	0.50	3,04	5.03	83.23	1.45	pale brown ch 8.00 - 10.00
_			0.50	2.58	4.10	80.19	1.67	manganese ore ≫ brown ch
10-	$\times\!\!\times\!\!\times\!\!\times$	L (8	1.00	1.74	2.89	81.48	0.65	1000 - 10.50
10	=	L 19	0.50	4 75	7.40	75 04	1, 62	manganese ore
-	[_] =		,			J		10.50 — 13.00
_	=							red ch
_								13.00 - 1350
								rad ch > white ch
_	1							13.50 - 15.00 white ch > red ch
15			1					15.00 — 18.00
_	-							white to gray ch
			ŀ					, ·
]							
-	t = 							18.00 - 1900
_	<u> </u>							red ch > white ch
20))					brown to red ch
21,00								2000 - 21.00 white ch > red ch
21,00	<u></u>							1

Depth	Core			Asso				
(m)	Log	Sample No	Width (m)		MnO2(%)	S102(%)	Fe (%)	Description
0	=	_,.0	(1117		,,,,			000 - 2.00 red ch, white ch > brown ch
1	:	L 20 L 21	0.50 0.50	1) 65 7, 79	17 25 12 20	65.60 71 99	1.48	200 — 250 brown ch ⇒ red ch 250 — 350 manganese are 350 — 400
5-					:			4.00 - 6.50 red ch 6.50 - 8.00 brown ch ≫ red ch
10-	i i i				!			8.00 — 10.00 brown ch
2 1 1	~	L 22	0 50	4 05	6.59	79.03	1.44	manganese ore 1050 — 11.50 manganese ore >> brown ch 11.50 — 1600 brown ch >> black ch
15 —	i	L 23	0 50	9.94	14 95	71 79	0,92	1600 — 1900
1		L 24 L 25 L 26 L 27 L 28	0.50 0.50 0.50 0.50 0.50	5.67 4.08 8.50 7 19 5.66	9.20 7.10 13.22 10.97 7.32	76.31 75.48 75.32 77.33 82.01	1,55 2.01 1,26 1,14 0,74	manganese ore
20	*****	L 29 L 30 L 31 L 32 L 33	0 50 0 50 0 50 0 50 0,50	4, 79 6, 01 8,79 21,76 4,94	7.54 8 46 12 54 32 22 7.45	78 64 65.25 77 26 54.03 86.93	(.80 0 57 0.83 0.99 0 69	manganese ore ≫ brown ch 1950 — 2200 manganese ore 2200 — 23.00
2470 25	****	L34 L35 L36	1 00 1 00 0 70	3.11 5.99 10.88	5. 19 9.49 17.88	82.60 77.94 66.41	1.49	manganese ore ≫ brown ch 23.00 — 24.70 manganese ore

No. 10

Depth	Core			Asso	У			
(m)	Log	Sample No.	Width (m)	Mn (%)	MnO2(%)	Si02(%)	Fe (%)	Description
0	=_		1					000 - 200
} _	=_							red ch and white ch
-	=_							200 - 3,00 red ch
-					[3.00 - 3.50
ļ -	~	L 37	100	10.95	17.88	65.30	1.98	brown ch 3.50 — 4.00
5								brown ch ≫ black ch 4,00 — 6,00
		L 38	100	8.25	12.28	80.25	071	manganese ore 600 — 800
-	·		i	+				brown ch >> black ch
								800 — 900
ل ا	=	[' l		brown ch ≫ red ch
	11		}					9.00 - 10.00 red ch
10 -	1~							10.00 — 11.00 brown ch ≫ black ch
1 1						Ì		11.00 — 14.00
-			j			- 1		brown ch
▎╶┤		ļ]		i			
1 -	-==	ľ			1	ł	1	14.00 — 15.00
15	~	İ]			1		brown ch ≫ black ch 15.00 - 16.00
	<u>:-</u>		l				!	brown ch 1600 — 17.00
1	··~~	•	ł			1	1	brown ch and black ch
	·	J]		17.00 — 19.00 brown ch
19 00				_			!	

A-24

	^-		·	A 000				
Depth		Sample	Width	Assay		212 1211	F (0.)	Description
(m)	Log	Sample No	Width (m)	Mn (%)	MnO2(%)	5102(%)	re (%)	
0	=_							0.00 - 2.00
] -	=							red ch and white ch
-								2.00 - 6.00
	=							red ch
1	_=							
7	_=							
5 -	=							
] _								600 - 8.50
	=		1			·		red ch and brown to orange ch
1 7	=							les ou and plout is plange of
[-			· •			·		050 050
_	XXXX							850 950 manganese ore ≫ brown ch
10-	*****	L 39	100	13.52	21.36	63.82	1.43	950 — 11,50
		L40	100	22.99	34,05	53.48	0.5)	manganese ore
	(XXXXX)							1150 - 12.50
1 7	XXXXX							manganese ore >> brown ch
1 -	~						ı	1250 — 13.50 pale brown ch ≫ black ch
	XXXX	ļ						1350 - 1800
1	⋘⋘							manganese ore >> brown ch
15	x		J					
-	⋘							
]]	$\times\!\!\times\!\!\times\!\!\times$							
	\bowtie							
J		j						18.00 21.00
1 -					•	1		pale brown ch
20	·-							
21.00	[- 1		

<u> </u>	0.12		·					
Depth	Core			Assa	у	Donariasian		
(m)	Log	Sample No	Width (m)	Mn (%)	MnO2(%)	SiO2(%)	Fe (%)	Description
0	==						_	000 — 1.00 red ch
] -	=_]			100 3,00
-	=_							red ch ≫ white ch
-	=			ļ				3.00 - 4.00
_								brown to red ch 400 500
5	_=							arange ch
								5.00 - 700 red ch
	= _							
	11]					700 - 9.00 oronge to red ch
-	==							
-	=		l l			ļ		900 - 1100
10-	==							red ch
_	_=							11,00 - 13,00
-	_='							white ch and red ch
_	_=					·		13.00 - 14.50
_	=				j			red ch
`	를							1450 1500
15 —	·- ~							15.00 — 16.00 brown ch ≫ black ch
16 50	XXXX	L41	050	1001	16,03	62.46	6.28	1600 — 1650 manganese ore ≫ brown ch

No. 13

								T
Depth	Core			Assa				Description
(m)	Log	Sample No.	Width (m)	Mn (%)	MnO2(%)	SiO2(%)	Fe (%)	Description
0	[==							0.00 — 1.00
-	=		<u> </u>	1				Purple to red ch and white ch
_	_=		[ſ	l l			red ch
]≕			ŀ	ļ '			2.00 — 400
-	[≈		1	i	ĺ			orange to red ch
_	_=							4.00 - 5.00
Î_ i	▎▀▁╵				ĺ			red ch > white ch
5	=		İ					500 - 8.00
-	_			1	1 1			red to orange ch
	\ * _							
! -	==		1					}
	_=							8.00 - 11.00
ł	==:.—				!			brown ch and red ch
7	==							biown on and rea on
110								
								ļ
1 7	=					J		11.00 — 12.00
-	_=				i			red ch 12,00 - 12,50
]	$\widetilde{x}\widetilde{x}\widetilde{x}$	L 42	050	16.23	26,32	59 27	1 37	red chand black th
1 7		L 43	0.50	10.08	15.53	66 44	1.95	12.50 — 13 00
] -	$\times\!\!\times\!\!\times\!\!\times$	44	0.50	5,96	9.92	72.46	1.99	manganese ore ⇒ brown ch 13.00 — 13.50
15 _	⋘⋈	L 45	1.00	6,95	11.02	67.08	2.20	manganese ore
15.50		L 46	0.50	6 47	10.10	70.32	2 30	13.50 — 15.00
]		ļ			[[manganese ore ≫brown ch 15.00 — 15.50
		1				1		manganese ore
1 7		[[[ĺ	ļ		
					<u></u>			L

No.14

	<u> </u>		<u> </u>					
Depth	Core			Assa	у			Description
(m)	Log	Sample No	Width (m)	Mn(%)	MnO2(%)	5102(%)	Fe (%)	Description
0	∰							0.00 - 2.50 yellow to grange chand red ch
-	=							Sellow to oldude cu dur leg cu
	=							250 - 300
-	Ē							brown ch >> black ch
-		L 47	0.50	26.45	41.47	45,60	0 80	73.00 — 350 purplish red ch ≫ black ch
5 —	:=~		' I					3.50 - 4.00 manganese ore
	~							400 - 500 black th
	·				1		'	15.00 — 6.00
	_=					:	i	brown ch, red ch \gg black ch $600-700$
	: <u>-</u> =		3					grayish brown ch
[_	 -		ĺ					7.00 9.00 brown ch > red ch and white ch
10	·-]							9.00 — 11.00
-	≔≕				i			brown to dark brown ch
-	~	i	' l					II,00 — I2,00
-	:=]					12.00 - 13.00
	╼크		l					dark brown ch 1300 — 14.00
15	<u>:==</u>		ł					brown ch, red ch and black ch
	·							14.00 - 15.00 brown ch, red ch and wihite ch
	·]	ſ	ĺ					15.00 - 19.00
7	·-							brown ch
+								
1900	<u> </u>							<u> </u>

No.15

Depth	Core			Assa	٧			
(m)	Log	Sample No	Width (m)		MnO2(%)	Si02(%)	Fe (%)	Description
0 -								0.00 - 2.00 orange to red ch 2.00 - 6.00 red to brownish red ch > white ch
5								6.00 - 6.50 red ch 650 - 700 brown ch ⇒ black ch 700 - 900 brawn ch, red ch, white ch and black ch 300 - 13.00 brown ch
- - 15 00	i i i i				:			13.00 — 15 00 reddish Drown ch

No. 16

Depth	Core			Assa	у			B
(m)	Log	Sample No	(m)	Mn(%)	Mn 02(%)	Si02(%)	Fe (%)	Description
5		Nó.	(m)	MIN (7 ₀)	MT (217 ₀)	5 02(70)	re (%)	000 - 1.00 dark brown ch >> red ch, white ch 100 - 3.00 dark brown to brown ch 3.00 - 5.00 brown ch >> red ch and white ch 5.00 - 6.00 brown ch >> red ch and white ch 6.00 - 7.00 brown ch, red ch and white ch 7.00 - 8.00 brown ch >> red ch and white ch 800 - 9.00 brown ch >> black ch 9.00 - 19.00 brown ch brown ch
19 00	·- <u> </u>							

No. 17

Depth	Core		Asso	у			Donosiasias
(m)	Log	Sample Width Na (m)	Mn (%)	MnO2(%)	Si02(%)	Fe (%)	Description
5							dark brown ch, red ch, white ch 1,00 - 4,00 dark brown ch and black ch 400 - 5,00 dark brown ch, red ch, white ch, black ch 5,00 - 10,00 brown ch > black ch > red ch and white ch
10	~ <u></u>						1000-1200 dark brown ch ≫ red ch

·	Company of the second of the second	u urus	· +
		<u></u> 2	
			•
			1
••		·	

and the second of the second o

Schematized Distribution of Manganese Ore Beds

T = Ta + Tb + Tc + Td + Te + Tf / n n : number of sampling site Ore Reserve = LxFixTxFzxDxS length of dip side (30m) shape factor (0.8) length of strik side length factor (0.8) average thickness F2 Ē

specific gravity

Fig. A-6 Calculation Method of Manganese Ore Reserve

Te = e1 + e2 + e5

Tf=f1+f2

T b = b1 + b2

Tc= C1 Td= di

To = 01 +

thickness of manganese layers in

each sampling sites

; .

Table A-1 Microscopic Observation of Thin Section

(Sedimentary Rock)

			Characteristics														
		ξ	Charac		laminated	laminated			laminated	laminated	laminated		laminated	laminated	laminated	Iaminated	famainted
ļ		-		sloibst	0	0		0	0	0	0		0	0	0	0	•
1		erais		opaque	•	•	<u></u>		•				•	•	•		{
			9	inomi					_]							
١				hemad	•	•		•	•					•	•	<u>•</u>	[
ļ		st		զգչ այ	\dashv	•		•		•	•	•		•	•	•	의
1	Matrix	<u> </u>		carpon													
[X			kaoline	•			•	•	•	•					•	
1				sericite					•	•	•	0	•			•	
ļ				esicite	•	•	0		•		•		0		•		
ŀ				Strang	0	<u> </u>		©	Ø	0	©	©	0	©	0	0	0
ļ				opaque stanim													
1		, I		ericite													
1	ınts	Minerals		biotite													-
J	Fragments	Mir		plagioc													
ļ	Fr			potash feldspa							!						
1				STIEUP	ļ] 										
		Rocks		chert			٠.								<u> </u>		
Ĺ		x		Hesed			0						<u> </u>				
		Rock name			reddish brown chert	redish brown chert	limestone	reddish brown muddy chert	reddish brown chert	light grey chert	light red chert	light grey chert	light grey chert	reddish brown chert	light brown muddy chert	reddish brown muddy chert	white muddy chert
		ıtion		Longitude	E 777.5	E 777.5	7 71.0	7 71.0	7 71.0	7 71.0	7 71.0	7 71.5	7 78.5	7 78.5	7 78.5	7 78.5	7 78.5
	Location	Co-ordination		Latitude	N 24 85.0	24 85.0	24 49.5	24 54.5	24 54.5	24 54.5	24 54.5	24 54.5	24 84.5	24 84.5	24 84.5	24 84.5	24 84.0
			Area		\ \	Y	۵	Q	Q	D	Ω	Q	<	4	4	V	V
			Sample No.	-	1083	1084	K010	K073	K074	K075	K076	K079	K104	K106	K112	K113	K114
			Š		15	16	17	18	19	20	77	22	n	22	22	97	27

🔘 : abundant

о : сошшои

• : rafe

A-30

. -• . . . •

(Sedimentary Rock)

	Characteristics			laminated	laminated	laminated	brecciated	laminated	with Mn mineral			with Mn mineral		with Mn layer		brecciated	
	liss	oj e	ingloiber	0	0	0	0	0	0		0		0		0	0	0
	sler	ouim	obrđo		•	•	0	•	0	•	•	0		0	•	0	
			erinomil														
		1	otitemad ,														
		erap	շյցչ այս			•		•					•				•
Matrix		9	carbonal	•	•	•										L	
M			kaoline			•					•						
\			91ioi198		•	•		•			•						[
			alicite	•		•	•			0		•		0	0	0	•
_			ziteup	0	0	0	<u>©</u>	0	<u> </u>		0	<u>©</u>	0	0	0	0	<u>©</u>
			opaque sleranim								_						
		<u> </u>	ətioirəs			<u> </u>											<u> </u>
nts	Minerals		biotite														
Fragments	Min	əs	plagnocla														
Fra			potash feldspar													ļ <u>.</u>	
1			zireup	<u> </u>			_			ļ 			<u> </u>	<u> </u>	ļ		
,	Rocks		chert					<u> </u>						<u> </u>			
	R		basalt											<u> </u>	<u> </u>		
		Rook name		white chert	light grey chert	red muddy chert	yellow chert	reddish brown muddy chert	black chert	limestone	brecciated red chert	black chert	grey chert	black chert	limestone	yellow chert	light grey chert
	nation		Longitude	E 761.5	761.0	761.0	761.0	761.0	7 61.0	7 69.5	761.5	7.61.0	767.0	7 60.0	7 58.0	7 59.5	7 59.0
Location	Co-ordination		Latitude	N 24 55.5	24 57.5	24 57.5	24 57.5	24 57.5	24 57.5	24 53.5	24 58.5	24 59.5	24 51.0	24 61.0	24 61.5	24 62.0	24 61.0
		Area		m	m	8	22	B	æ	a	B	133	S	В	m	æ	В
	Sample No. A			G027	G064	G077	G124	G125	G126	H012	H032	H035	3033	J040b	J047a	1053	1058
		Š		-	2	3	4	S	9	7	8	6	01	Ξ	12	13	14

⊚ : abundant O : common

• : rare

A-31

_				 -		
		Remarks		An40 Ab60		
_		T	setpentine	†	†	•
	ł	┝	bicpuite	┼~	-	+-
	됥	├─	tianite	┼╌	┼─	╆-
	Secondary minerals	 -	кзопис	╁╌╴	+-	-
	7.13	一	calcite	•		-
	nda	 	auctite	┿	+-	+=
	8	┝	ztraup	1	+	┼~
) ,	\Box	2111032	1		
	}	┌	SCLICILE	1	\top	_
		\vdash	epidote	1	•	†-
]	1	chlorite	•		†-
			opaque			\vdash
	}		Stristier	1		1
	}		zircon			
	1		apatite		1	
	Ì _ '		attayds			
als.	Groundmass	эu	остроругох			
Minerals	nug.	31	chnopyroxe		0	
Z	g.		potupjende			
			pronte			
		<u> </u>	plagiociase feldspar	ļ	0	<u> </u>
		L	fizelog		L.	<u> </u>
	_		Ainerals Straup	<u> </u>	<u> </u>	1_
		<u>_</u>	anbrdo	•	<u> </u>	1_
		<u> </u>	olivine	<u> </u>	 	•
		_	hy petsthene	<u> </u>	<u> </u>	0
	Phenocryst	<u> </u>	antitic audificole	ļ	<u> </u>	0
	- noc		alkali	_		_
	Ph		hornblende		<u> </u>	
Ì		<u> </u>	potite		-	 -
		-	feldspar plagnoclase	<u>"</u>	-	├
			nserod dserod	 	ļ	
	لـــا	L	ZIJEND		 _ _	 _ -
			Texture	trachytic	рогрууние	equigranular
			Rock Name	D N 2453.5 E 761.0 trachyandesite trachy	772.0 dolerite	763.5 pyroxenite
	_			0.197	772.0	763.5
	Location		nation	3.5 E	2453 5	2455.5
	Loc		Co-ordi	N 245	245	2455
			Area	Δ	α	я
_			Sample No. Area Co-ordination	H014	K006	K150
_					لــــا	

• upmuqrut (): common

.

€

.

~~

Table A-2 Microscopic Observation of Polished Section

1 G015		-	Co-ordinates	ates	T. C. C. C.	Tachite		Ore Mineral	neral		1000	27
	Sample No. At	Area	Latitude	Longitude	Type of Ote	Texture	Pyrl	man	crpt	hcm	I OSSII	Religirks
		m m	N 2458.0	E 760.5	banded		•	-				
			2456.5	761.0	network		0	٠			0	secondary segregation vein
3 G058		<u>m</u>	2457.5	760.5	nodular	banded,	0					
4 G063		м	2457.5	761.0	massive		©			<u> </u>		
S G109	<u>—</u> —	—	2457.5	761.0	massive		©					
6 G110			2457.5	761.0	banded		0				_	
7 H048	_		2462.5	759.5	massive		©	ė.	-			
8 1037		Д	2452.5	771.5	veinlet		©	-				secondary segregation vein
9 K018		<u>m</u>	2458.0	758.5	fine-banded, brecciated	colloform-banded	©		۲۰		_ 	
10 K060			2455.0	771.0	nodular		©					
11 K069		Ω	2455.0	771.0	nodular		0	٠.	٠.		0	secondary segregation vein
12 K092			2457.5	761.0	massive		0					
13 K100	-		2484.5	778.5	massive	colloform	©	٠.				_
14 K102		<	2484.5	778.5	brecciated		0					secondary segregation vein
15 K108		٧	2484.5	778.5	massive		0					
16 L032		<u> </u>	Drilling No.	0.0N	massive?		©		•			drilling cutting

(in the common, it is the common, it is the common, it is the common, it is the common in the common in the common in the common is the common in the common

?; uncertain

Abbreviations

pyrl: pyrolusite man: manganite

crpt: cryptomelane

te crpt :

nelane hem : hematite

Table A-3 List of Fossil (Radiolaria)

410	KIC	V	Hmr	Early Crete, ~ Barremlan?)			0)											0		0				0)			C)		_	0								
490	KIC	¥	ımH	Faily Creta. (Valanginian ~ Berriasian)		0	0 0)			-			0		_							0	0	0				0									0			0	
72(KIC	Y	Hmt	Not estimated (Radiolaria not detected)			_																																			$\neg \neg$
7110	KIC	V	wmH	Early Creta. (Barremian ~ Aptien)		0)	(0		0				0 ()			0				0		0	·						0									(00
4EC	KIC	V	AWH	Early Crets, (Valanginian ~ Barremian)		0	00	1										0	0	0)		0	0					0										00)		
456	K03	B	Hmt	Early Creta, (Barremian ~ Aptian)	0	_ 0)		0 0			0			0 (<u> </u>			0	0)		0	0	0					0 0			0					0	0			\neg
37E	KOS	a	Hmt	Early Creta. (Valanginlan ~ Barremian)	0		0	()					(D				-				0	0					0	С) (0 0						0			0	\neg
318	KOS	a	wmH	Early Creta. (Valanginian)		0)			0)	0									()			С) (0 0		0				0	C			
361	K0.	a	aH	Not estimated (Radiolaria not detected)																																						
487	ко.	α	wmH	Early Creta, (Bartemian ~ Aprian)			00									0		0											0					0	0				0			
all	к0.	a	ımH	Early Creta, (Valenginian ~ Berriacian)																																						$\neg \neg$
494	ко.	a	sIH	Late Jura. ~ Early Creta. (Tithonian) (Hauterivian)				0				C)	0			0			0)			0	0	0 ()	0						0			0	0		0		
#27	ко	α	ग्रम	Early Creta, (Stage not specified)			0			0				0) ()														-	\neg
417	ко.	a	1mH	Early Creta, (Valanginian ~ Barremian)			0_				0	C)										0	0)	0 ()							5	(0 0				0		0
401	ко	a	ımH	Not estimated (Redioraliz not detected)																							<u>-</u> -															\neg
451	ко	э	ımH	Eatly Creta, (Valanginlan "Barremlan)						0			0						_	0	ı	0 0	0	0	0		0 ()	0	C	0	0)									\neg
121	ко	0	tat H	Late Jura, ~ Eatly Creta. (Tithonian) (Berriacian)			0					0		0										0	0 (>	Ō		00		0			0				0				一
375	OH	B	πн	Late Jura ~ Early Creta. (Tithonian) (Berrlacian)			0							0	5						(5			0 (_	0	0		0				0						0	$\neg \neg$
471	он	a	пн	Not estimated (Radiolatia not detected)																																						\neg
460	он	a	wmH	Estly Creta. (Valanginian ~ Barremlan)		0	0							0			0					,	0	0		()		0	C))			0	0	0	5		$\overline{}$
Sample No.	Van Van	Member	/	Estimated age Spectes of Foraminifera	Acseniotile diaphorogona Foreman A. sp.	Acenthocircus dieranocanihos (Squinabol) Alterium helenae Schaaf	A. sp. Archaeodictyomitra apiara (Rūst)	A. aff. apiora (Růst) A. docrmula (Foteman)	A. preudoscalarıs (Tan Sın Hok)	A. cf. tehamaensis Pessango	A. spp. Ceclops septemporatus (Pasona)	Cucella sp. Dietromited sp.	Emilvia sp. cf. purisimaensis Pessango	E. sp. Eucyridium (?) psyctum Redel and Sanfilispo	Eucyrts meropora (Squinabol)	E sp	Hemicryptocapsa cf. capita Tan H. sp.	H. spp. Holocryptocanum sp.	Н. spp. Ништ (?) sp.	Mirifusus baileyl Pessango M. sp.	, (1) sp.	Napora sp. Oberacapula sp. cf. Morroensis Pessango	Pantanelium sp. P. spp.	Parvicingula boessi (Parona) P. sp. cf. boessi (Parona)	P. sp.	Patalibracchium sp. Podchura co.	P. spp.	Podocapsa (1) sp. Protunuma sp.	Pseudodietyomiina carpainca (Lazymak) P. asft. minoensis Mizutani	P. cf. pseudomacrocephana P. sn.	Sattoum sp.	Sethocapsa lelostraca Foreman S trachyostraca Foreman	S cf. trachyostraca (Foreman)	S. sp.	S (1) sp. Sponeozoruntis (1) sv.	Spongosatunatis (1) sp. Staurosphaeta æptempotata Foreman	S. septemporatus (Paxona) Sitchomitra sp.	S. (†) sp. Thanarla conica (Abev)	T. asf. conica (Alive) T puichra (Squinabol)	Tractoma celtulosa Foreman Tractoma celtulosa Foreman	Theology ip.	Ultanapora sp. Xins sp.

Table A-4 Result of X-ray Powder Diffractive Analysis

							Mine	rals			Indetermined
No.	Sample No.	Area	Rock name	pyrl	man	crpt	rhc	qz	cal	mn	small peak
1	G15PX	В	manganese ore	•				0	0		
2	G20PX	"	" (network)	0	•			0	0		3.56Å, 2.72Å
3	G58PX	"	" (nodular)	0	?			0			7.6Å
4	G109PX	,,	"	0	?	İ		•			
5	G110PX	,,	и	0				0			
6	H48PX	"	<i></i>	0	•			0			
7	J37PX	D	" (veinlet)	0				0			2.03Å
8	K18PTX	В	"	0		•		0			
9	K69PTX	D	" (nodular)	0	•	•		•	0		
10	K92APX	В	ıı .	0	?			•	0		
11	K100PX	A	,,	0	•	?		?		ļ.	
12	K102PX	"	" (veinlet)	0				0			
13	L26	,,	,,	0	?	•		0		•	
14	L32	"	,,	0	?	0		0			
15	L35	"	n	0		•	?	0		•	2.58Å
16	G34TX	,,	light pink muddy chert					0	•	•	
17	K111X	,,	light brown muddy chert		<u> </u>			0	•	•	

Abbreviations: pyrl; pyrolusite, man; manganite, crpt; cryptomelane, rdc; rhodochrosite, qz; quartz, cal; calcite, mn; montmorillonite.

the second of th

•

•

.

•

. .

•

Table A-5 Result of Chemical Analysis of Manganese Ore in Geological Survey

No.	Sample		Location		Type of	Sampling	С	ontent of E	lements	
140.	No.	Area	Outerop No.	Co-ordination	Ore	Width (cm)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
ı	G009	В	178	N-2458.0 E- 760.5	nodular	70	10.44	17.48	75.94	0.61
2	G014	В	177	N-2458.0 E- 760.5	layered	15	20.06	31.72	60.95	0.56
3	G026	В	186	N-2456.5 E- 762.0	đo	30	13,29	23.49	70.96	0.31
4	G028	В	187	N-2455.5 E- 761.5	do	10	39.61	62.71	28.86	0.11
5	G029	В	187	N-2455.5 E- 761.5	do	30	24.63	39.82	52.32	0.16
6	G043	В	179	N-2458.0 E- 760.5	do	5	18.34	28.95	63.05	0.27
7	G045	В	159	N-2458.0 E- 760.5	layered nodular	80	8.97	14.66	74.11	0.60
8	G046	В	159	N-2458.0 E- 760.5	do	40	6.76	10.75	70.85	1.16
9	G047	В	159	N-2458.0 E- 760.5	nodular	50	10.24	16.59	66.68	1.00
10	G048	В	159	N-2458.0 E- 760.5	do	30	13.32	21.38	62.78	1.04
11	G053	В	159	N-2458.0 E- 760.5	do	50	18.39	29.48	62.39	0.53
12	G054	В	159	N-2458.0 E- 760.5	layered	50	11.90	20.18	73.21	0.63
13	G055	В	159	N-2458.0 E- 760.5	đo	25	7.07	12.98	80.54	0.79
14	G056	В	159	N-2458.0 E- 760.5	do	75	15.25	26.41	66.39	0.63
15	G057	В	159	N-2458.0 G- 760.5	do	40	8.67	14.38	78.69	0.68
16	G058	В	159	N-2457.5 E- 760.5	layered nodular	120	11.50	20.79	68.72	0.66
17	G059	В	159	N-2457.5 E- 760.5	đo	30	20.57	32.24	46.45	1.46
18	G060	В	159	N-2457.5 E- 760.5	nodular~ layered	25	15.94	25.20	67.36	0.25
19	G061	В	159	N-2457.5 E- 760.5	layered~ nodular	110	29,35	46.20	46.25	0.20
20	G062	В	159	N-2457.5 E- 760.5	do	190	17.57	28.45	60.46	0.27
21	G063	В	180	N-2457.5 E- 761.0	layered	20	52.97	85.14	4.73	0.07
22	G065	В	159	N-2457.5 E- 761.0	layered ~nodular	300	20.43	32.88	56.88	0.25
23	G066	В	159	N-2457.5 E- 761.0	layered	40	37.43	59.52	31.12	0.11
24	G067	В	159	N-2457.5 E- 761.0	do	60	20.97	33.64	53.75	0.24
25	G075	В	159	N-2457.5 E- 761.0	layered ~nodular	200	13.59	22.00	47.15	0.74
26	G076	В	159	N-2457.5 E- 761.0	do	100	24.18	37.53	35.15	0.45
27	G078	В	159	N-2457.5 E- 761.0	layered	25	17.17	26.85	65.74	0.22
28	G080	В	159	N-2457.5 E- 761.0	do	130	21.81	34.47	56.05	0.22
29	G081	В	159	N-2457.5 E- 761.0	nodular	50	17.45	29.01	63.09	0.41
30	G083	В	159	N-2457.5 E- 761.0	do	30	21.21	35.46	59.67	0.52

	. *	- 1 mg#	سهاله پيادر				
		-	مايان الاستارات	•			-
					•		
			-				J
				*			
					-		
•							
						4	*
						•	
•			•				
r							
			-				
			•				
						^	
							•
	•						
,			-			~,	
						•	
							1
				•			

:

Na	Sample		Location		Type of	Sampling	C	Content of Eleme		ents	
No.	No.	Area	Outcrop No.	Co-ordination	Ore	Width (cm)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)	
31	G085	В	159	N-2457.5 E- 761.0	layered	90	28.32	44.11	45.35	0.20	
32	G086	В	159	N-2457.5 E- 761.0	do	30	26.77	44.70	40.45	0.34	
33	G087	В	159	N-2457.5 E- 761.0	do	50	18.02	31.43	61.44	0.31	
34	G088	В	159	N-2457.5 E- 761.0	do	25	39.40	62.85	30.19	0.10	
35	G089	В	159	N-2457.5 E- 761.0	do	50	27.00	44.22	43,34	0.20	
36	G090	В	159	N-2457.5 E- 761.0	do	20	16.58	26.39	67.15	0.19	
37	G091	В	159	N-2457.5 E- 761.0	do	25	5.10	8.68	84.82	0.81	
38	G092	В	159	N-2457.5 E- 761.0	do	100	32.28	52.55	37.56	0.11	
39	G093	В	159	N-2457.5 E- 761.0	do	40	17.34	28.14	67.89	0.25	
40	G094	В	159	N-2457.5 E- 761.0	đo	25	26.48	42.15	47.54	0.20	
41	G095	В	159	N-2457.5 E- 761.0	đo	100	22.28	36.02	49.03	0.22	
42	G096	В	159	N-2457.5 E- 761.0	layered ∼nodular	70	21,33	35.38	54.90	0.56	
43	G097	В	159	N-2457.5 E- 761.0	đo	110	18.53	31.47	61.92	0.58	
44	G098	В	159	N-2457.5 E- 761.0	do	50	28.46	46.92	42.41	0.37	
45	G099	В	159	N-2457,5 E- 761.0	layered	30	32.59	50.87	39.57	0.19	
46	G100	В	159	N-2457.5 E- 761.0	đo	100	20.91	34.90	61.19	0.17	
47	G101	В	159	N-2457.5 E- 761.0	do	30	27.13	44.52	48.01	0.10	
48	G102	В	159	N-2457.5 E- 761.0	do	80	41.69	68.10	23.74	0.06	
49	G103	В	159	N-2457.5 E- 761.0	nodular	100	20.26	36.47	55.12	0.30	
50	G104	В	159	N-2457.5 E- 761.0	layered	50	23.06	37.44	54.43	0.19	
51	G105	В	159	N-2457.5 E- 761.0	đo	30	24.36	40.06	56.40	0.17	
52	G106	В	159	N-2457.5 E- 761.0	do	30	28.37	46.80	47.22	0.33	
53	G108	В	159	N-2457.5 E- 761.0	do	240	14.63	23.71	72.20	0.17	
54	G109	В	159	N-2457.5 E- 761.0	do	200	25.61	40.46	52.36	0.15	
55	G110	В	159	N-2457.5 E- 761.0	do	250	33.05	52.34	36.66	0.13	
56	G111	В	159	N-2457.5 E- 761.0	do	120	32.21	53.41	31.54	0.17	
57	G112	В	159	N-2457.5 E- 761.0	nodular~ layered	100	15.64	30.44	27.55	0.65	
58	G113	В	159	N-2457.5 E- 761.0	layered	20	21.65	34.46	52.28	0.27	
59	G114	В	159	N-2457.5 E- 761.0	do	35	20.76	33.36	54.23	0.20	
60	G115	В	159	N-2457.5 E- 761.0	do	30	24.25	41.89	42.78	0.48	

N I-	Sample		Location		Type of	Sampling	С	ontent of E	lements	ents	
No.	No.	Area	Outcrop No.	Co-ordination	Ore	Width (cm)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)	
61	G116	В	184	N-2457.0 E- 761.0	layered ~nodular	250	13.63	25.09	70.23	0.47	
62	G117	В	184	N-2457.0 E- 761.0	layered	70	14.30	23.23	66.89	0.41	
63	G119	В	184	N-2456.5 E- 761.0	layered ~nodular	80	18.62	33.75	52.94	0.52	
64	G121	В	184	N-2456.5 E- 761.5	do	100	14.54	26.94	67.72	0.51	
65	G122	В	184	N-2456.0 E- 761.5	do	100	19.43	37.18	62.85	0.38	
66	G123	В	184	N-2456.0 E- 761.5	đo	60	14.02	23.23	66,25	0.40	
67	H011	D	1 9 4	N-2453.5 E- 769.0	layered	30	12.60	20.35	69.65	0.30	
68	H023	С	188	N-2452.5 E- 766.5	do	25	22,26	34.75	52.87	0.38	
69	H028	С	188	N-2452.5 E- 766.5	do	50	33.40	52.43	38.14	0.25	
70	H029	С	190	N-2452.0 E- 766.5	đo	40	29.68	47.07	44.13	0.20	
71	Н033	В	173	N-2459.5 E- 761.5	đo	80	21.20	34.07	56.37	0.19	
72	H038	В	172	N-2459.5 E- 760.5	do	60	38.01	61.36	30.26	0.11	
73	ноз9	В	172	N-2459.5 E- 760.5	do	30	11.01	18.75	73.28	0.23	
74	H040	В	171	N-2460.0 E- 760.5	do	25	29.24	46.99	45.75	0.16	
75	H041	В	158	N-2460.0 E 760.5	do	300	20.50	29.88	54.92	0.20	
76	H043	В	158	N-2460.5 E- 760.5	đo	350	29.81	47.49	45.24	0.23	
77	H044	В	158	N-2460.5 E- 760.5	đo	60	28.11	44.31	47.47	0.37	
78	H045	В	155	N-2463.0 E- 759.5	do	65	25.92	41.11	49.85	1.08	
79	H046	В	168	N-2463.0 E- 759.5	do	60	21.85	34.56	56.78	0.27	
80	Н047	В	170	N-2462.5 E- 759.5	đo	70	40.08	65.94	27.21	0.16	
81	H049	В	169	N-2462.5 E- 759.5	do	130	25.61	41.47	51.52	0.28	
82	H062	A	93	N-2484.0 E- 779.0	do	20	33.20	51.94	40.95	0.16	
83	H064	A	94	N-2483.5 E- 779.0	do	35	16.69	27,58	67.87	0.26	
84	Н070	A	69	N-2481.5 E- 780.5	do	10	20.82	34.00	61.25	0.19	
85	Н071	A	69	N-2481.5 E- 780.5	đo	10	10.27	17.24	79.44	0.36	
86	H072	A	69	N-2481.5 E→ 780.0	do	17	20.28	32.99	61.10	0.25	
87	H073	A	69	N-2481.5 E- 780.0	do	15	12.56	21.15	75.62	0.29	
88	H074	A	69	N-2481.5 E- 780.0	do	55	13.48	22,34	71.00	0.27	
89	H075	A	69	N-2481.5 E- 780.0	do	25	32.77	52,74	40.84	0.19	
90	Н076	A	69	N-2481.5 E- 780.0	đo	12	8.15	13.57	82.94	0.33	

.

.

-- An ,

p7.	Sample		Location		Type of	Sampling	C	ontent of E	lements	
No.	No.	Area	Outcrop No.	Co-ordination	Ore	Width (cm)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
91	Н077	A	69	N-2481.5 E- 780.0	layered	50	9.96	17.42	77.69	0.30
92	н078	A	69	N-2481.5 E- 780.0	do	50	8.11	12.15	83.13	0.30
93	Н079	A	69	N-2481.5 E- 780.0	do	40	18.39	27.75	64.48	0.18
94	H081	A	71	N-2481.5 E- 780.0	đo	60	18.51	30.22	65.93	0.25
95	H082	A	71	N-2481.0 E- 780.0	do	40	21.56	34.73	59.32	0.22
96	H083	A	71	N-2481.0 E- 780.0	đo	315	14.80	23.24	67.03	0.53
97	H084	A	71	N-2481.0 E- 779.5	đo	190	14.72	23.57	68.26	0.57
98	H085	A	110	N-2484.0 E- 778.5	đo	70	34.98	55.38	37.16	0.11
99	но86	A	110	N-2484.5 E- 778.5	đo	30	28.31	44.36	48.47	0.17
100	Н087	A	110	N-2484.5 E- 778.5	đo	30	16,57	26.27	70.19	0.23
101	Н088	A	110	N-2484.5 E- 778.5	do	50	24.84	39.51	53.55	0.26
102	Н089	A	110	N-2484.5 E- 778.5	do	50	30.07	46.82	26.40	0.16
103	но90	A	110	N-2484.5 E- 778.5	đo	100	21.19	33.79	61.38	0.19
104	H091	A	110	N-2484.5 E- 778.5	do	35	19.06	29,90	63.19	0.32
105	H092	A	110	N-2484.5 E- 778.5	do	30	41.29	65.85	27.07	0.01
106	Н093	A	110	N-2484.5 E- 778.5	do	120	13.42	21.17	73.28	0.27
107	H094	A	110	N-2484.5 E- 778.5	do	30	34.88	56.20	36.65	0.13
108	H095	A	110	N-2484.5 E- 778.5	đo	70	17.86	28.38	64.66	0.29
109	н096	A	110	N-2484.5 E- 778.5	do	50	17.56	27.51	67.61	0.32
110	Н097	A	110	N-2484.5 E- 778.5	do	190	15.79	25.77	67.65	0.38
111	Н098	A	110	N-2484.5 E- 778.5	do	20	20.04	32.30	61.14	0.30
112	н099	A	110	N-2484.5 E- 778.5	đo	55	18.94	30.93	64.54	0.22
113	Н100	A	110	N-2484.5 E- 778.5	do	20	15.17	23.73	69.75	0.26
114	H101	A	110	N-2484.5 E- 778.5	do	23	8.38	13.34	81.78	0.28
115	H102	A	110	N-2484.5 E- 778.5	do	27	12.77	19.33	72.96	0.30
116	H103	A	110	N-2484.5 E- 778.5	do	20	15.90	24.13	68.74	0.25
117	H104	A	110	N-2484.5 E- 778.5	do	30	24.88	39,40	51.04	0.22
118	H105	A	110	N-2484.5 E- 778.5	do	70	13.24	21.05	70.64	0.34
119	H106	A	110	N-2484.5 E- 778.5	đo	60	9.67	15.09	79.25	0.32
120	H107	A	110	N-2484.5 E- 778.5	đo	55	21.55	33.64	58.12	0.25

·	
•	
•	
-	*
, ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	!
	, , , , , , , , , , , , , , , , , , ,
-	
	,
1	,
	,
,	
	,
	, 4
	V
	. ,
	•
	·-
	•
	,
-	• • •
	,
	·
•	

No.	Sample		Location		Type of	Sampling	С	ontent of E	lements	
140.	No.	Area	Outcrop No.	Co-ordination	Ore	Width (cm)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
121	H108	A	110	N-2484.5 E- 778.5	Layered	18	15.47	25,86	60.01	0.30
122	H109	A	110	N-2484.5 E- 778.5	do	60	13.69	21,87	70.48	0.32
123	H110	A	110	N-2484.5 E- 778.5	do	15	8.14	12.93	83.37	0.27
124	HIII	A	110	N-2484.5 E- 778.5	đo	75	14.66	23.35	70.61	0.27
125	H112	A	110	N-2484.5 E- 778.5	do	27	12.87	19.82	75.53	0.33
126	H113	A	110	N-2484.5 E- 778.5	đo	26	12.62	19.57	75.65	0.27
127	H114	A	110	N-2484.5 E- 778.5	đo	13	15.75	24,46	70.54	0.29
128	H116	Α	110	N-2484.5 E- 778.0	đo	17	13.90	21.88	72.00	0,45
129	H118	A	110	N-2484.5 E- 778.0	đo	13	11.85	18,45	74.01	0.79
130	H119	A	110	N-2484.5 E- 778.0	đo	20	15.36	25.03	71.29	0.34
131	H121	A	110	N-2484.5 E- 778.0	do	8	12.87	22.07	72.14	0.44
132	H122	A	110	N-2484.5 E- 778.0	do	22	14.05	23.51	71.16	0.55
133	H123	A	110	N-2484.5 E- 778.0	do	59	8.39	14.42	80.49	0,67
134	H126	A	110	N-2484.5 E- 778.0	do	13	6.16	10.83	86.44	0.48
135	H127	A	110	N-2484.5 E- 778.0	do	19	12.39	20.46	76.34	0.32
136	Н128	A	110	N-2485.0 E- 778.0	đo	54	26.77	42.77	49.64	0.24
137	H129	A	110	N-2485.0 E- 778.0	do	11	8.16	12.39	83.58	0.31
138	H131	A	110	N-2485.0 E- 778.0	do	9	21.57	34.42	49.73	0.25
139	H132	A	110	N-2485.0 E- 778.0	do	12	17.32	27.43	67.04	0.45
140	H133	A	110	N-2485.0 E- 777.5	do	28	18.34	30.18	65.83	0.27
141	Н135	A	110	N-2485.0 E- 777.5	do	28	12.32	19.22	70.39	3.00
142	Н136	A	110	N-2485.0 E- 777.5	do	17	19.70	30.61	63.64	0.27
143	H137	A	110	N-2485.0 E- 777.5	do	17	11.77	18.51	78.79	0.31
144	н138	A	110	N-2485.0 E- 777.5	do	14	21.77	32.72	60.20	0.32
145	Н139	A	110	N-2485.0 E- 777.5	đo	24	16.09	24.90	69.69	0.29
146	H140	A	110	N-2485.0 E- 777.5	do	52	20.06	31.98	61.70	0.23
147	H141	A	110	N-2484.5 E- 778.5	do	30	18.13	28.69	64.35	0.22
148	H142	A	110	N-2484.5 E- 778.5	do	135	28.81	44.98	47.85	0.19
149	H143	A	110	N-2484.0 E- 778.5	đo	95	23.89	38.18	54.24	0.26
150	J024	С	161	N-2452.0 E- 767.0	do	160	9.27	14.98	78.91	1.61

· - - -

ť

.

No.	Sample		Location		Type of	Sampling	С	ontent of E	lements	
No.	No.	Area	Outcrop No.	Co-ordination	Ore	Width (cm)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
151	J025	С	161	N-2452.0 E- 767.0	Layered	110	7,90	12.34	81.88	0.43
152	J073	A	140	N-2483.5 E- 776.0	do	51	8.30	13.88	82,96	0.29
153	J074	A	140	N-2483.5 E- 776.5	do	60	20.61	32.86	62,03	0.19
154	J075	A	140	N-2483.5 E- 776.5	do	49	19.75	31.96	62.61	0.25
155	J087	A	136	N-2484.5 E- 776.5	đo	38	17.94	28.10	66.97	0.27
156	1088	A	136	N-2484.5 E- 776.5	do	38	15.17	24.35	70.92	0.38
157	J089	A	136	N-2484.5 E- 776.5	do	37	18.16	28.98	65,36	0.29
158	1090	A	136	N-2484.5 E- 776.5	do	45	16.76	25.97	68.96	0.33
159	J091	A	136	N-2484.5 E- 776.5	đo	36	12.55	20.13	73,46	0.52
160	J092	A	136	N-2484.5 E- 776.5	do	45	25.22	39,60	53,77	0.15
161	J093	A	136	N-2484.5 E- 776.5	do	56	21.43	34.35	59.13	0.55
162	J094	A	136	N-2484.5 E- 776.5	do	23	12.97	20.25	74.16	0.33
163	J095	A	136	N-2484.5 E- 776.5	do	41	15.21	23.42	69.86	0.30
164	J096	A	136	N-2484.5 E- 776.5	đo	20	24.60	38.74	54.58	0.30
165	J097	A	136	N-2484.5 E- 776.5	đo	38	13.40	21.42	72.90	0.30
166	J098	A	136	N-2484.5 E- 776.5	do	31	7.64	12.40	84.13	0.32
167	J099	A	136	N-2484.5 E- 776.5	do	25	29.50	46.23	48.74	0.21
168	J100	A	136	N-2484.5 E- 776.5	do	42	20.31	31.97	60.17	0.32
169	J101	A	136	N-2484.5 E- 776.5	đo	62	12.98	20.35	72.97	0.29
170	J102	A	136	N-2484.5 E- 776.5	do	73	17.40	28.11	67.44	0.22
171	J103	A	136	N-2484.5 E- 776.5	do	35	18,08	29.08	65.50	0.39
172	J104	A	136	N-2484.5 E- 776.5	do	82	16.26	25.95	69.82	0.32
173	J105	A	136	N-2484.5 E- 776.5	đo	70	14.37	22.85	72.98	0.22
174	J106	A	136	N-2484.5 E- 776.5	do	35	11.22	18.19	78.96	0.30
175	J107	A	136	N-2484.5 E- 776.5	do	41	18.64	29.27	65.75	0.33
176	K004	D	160	N-2454.5 E- 771.0	do	60	18.19	29.28	66.76	0.30
177	K016	В	185	N-2456.5 E- 763.0	đo	60	22.77	36.86	56.66	0.31
178	K017	В	185	N-2456.5 E- 763.0	đo	30	21.13	35.53	59.34	0.31
179	K019	В	174	N-2458.0 E- 758.5	do	70	44.37	71.29	19.56	0.04
180	К020	В	175	N-2458.0 E- 758.5	do	20	14.71	24.74	71.51	0.33

. •

.

No.	Sample	 	Location		Type of	Sampling	C	ontent of E	lements	
NO,	No.	Area	Outcrop No.	Co-ordination	Ore	Width (cm)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
181	K022	В	176	N-2458.0 E- 758.5	layered	30	28.55	45.14	45.00	0.24
182	K024	В	181	N-2457.5 E- 759.0	do	40	22.48	35.44	55.76	0.20
183	K026a	В	183	N-2457.0 E- 759.0	do .	31	36.10	56,89	33.76	0.44
184	K026b	В	183	N-2457.0 E- 759.0	do	39	10.87	17.49	73.94	0.41
185	K027	В	182	N-2457.5 E- 758.5	do	28	44.61	71.49	19.02	0.07
186	K050	D	160	N-2454.5 E- 771.0	do	2.5	30.22	48,82	41.96	0.16
187	K051	D	160	N-2454.5 E- 771.0	do	25	12.77	20.15	72.80	0.37
188	K052	D	160	N-2454.5 E- 771.0	do	50	15.55	24.73	69.46	0.27
189	K053a	D	160	N-2455.0 E- 771.0	đo	33	30.11	48.30	45.02	0.18
190	К053Ъ	D	160	N-2455.0 E- 771.0	do	35	14.02	22.90	70.46	0.28
191	K054	D	160	N-2455.0 E- 771.0	đo	140	18.92	30.89	64.51	0.25
192	K055a	D	160	N-2455.0 E- 771.0	do	70	16.68	26.38	69.17	0.25
193	К055Ъ	Ð	160	N-2455.0 E- 771.0	do	60	31.56	49.96	43.27	0.16
194	K055c	. Б	160	N-2455.0 E- 771.0	đo	270	28.17	45.59	43,55	0.18
195	K056	D	192	N-2454.5 E- 771.0	do	17	29.00	46,22	46.55	0.16
196	K057a	D	192	N-2455.0 E- 771.0	do	25	36.75	59.63	34.11	0.13
197	К057ь	D	192	N-2455.0 E- 771.0	do	30	19.48	30.86	57.87	0.27
198	K058a	D	192	N-2455.0 E- 771.0	do	80	25.73	42.63	45.88	0.14
199	K058b	D	192	N-2455.0 E- 771.0	do	20	23.36	37.89	47.99	0.21
200	K059	D	192	N-2455.0 E- 771.0	đo	29	39.39	64.05	26.22	0.90
201	K060	D	160	N-2455.0 E- 771.0	đo	150	32.24	51.75	36.27	0.15
202	K061	D	160	N-2455.0 E- 771.0	do	110	40.62	61.12	31.90	0.15
203	K062	D	160	N-2455.0 E- 771.0	do	20	15.45	25,45	67.01	0.34
204	К063	D	160	N-2455.0 E- 771.0	do	40	19.03	30.55	58.31	0.34
205	K064	D	160	N-2455.0 E- 771.0	do	15	6.83	11.02	82.26	0.51
206	K090	В	159	N-2457.5 E- 761.0	đo	300	23.99	37.93	46.20	1.14
207	K091	В	159	N-2457.5 E- 761.0	do	170	16.06	26.06	59.40	0.41

	- •				:	, m.)
	r			u (1	1 25 ~	, c
						~
			•		Ł	*
					*	5 CP
	-			•	1*	٨
			*		· ,	
			4		* 3	
		•		1	4	
					*	
	1 5	∞	٠,		· ·	ī
F						<u> </u>
						,
					,	
					• •	a 1
•						-
			4. 2		-	
		2			,	
	~					

Table A-6 Result of Chemical Analysis of Manganese Ore in Drilling Survey

No.	Comple No.	Mala Na	Double	Sampling	و [Content of	of Elemen	ts
140.	Sample No.	Hole No.	Depth	Width (cm)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
1	L01	No.1	4.50 ^m ~ 5.00 ^m	0.50	7.65	11.53	73.82	0.67
2	L02		6.50 ~ 7.00	0.50	5,23	8.04	84.71	0.86
3	L03		7.00 ~ 7.50	0.50	7.55	11.46	80.31	0.67
4	L04		7.50 ~ 8.00	0.50	9.05	14.08	77.01	0.61
5	L05		8.00 ~ 8.50	0.50	4.94	7.49	83.17	0.88
6	L06		8.50 ~ 9.00	0.50	5.27	7.70	85.26	0.63
7	L07		9.00 ~ 9.50	0.50	9.71	14.77	76.61	0.49
8	L08	į	9.50 ~10.00	0.50	5.65	8.04	85.94	0.47
9	L09	No.2	11.00 ~11.50	0.50	2.83	4.78	79.97	1.58
10	L10		15.50 ~16.00	0.50	2.84	4.43	85.25	1.16
11	L11	No.6	2.00 ~ 2.50	0.50	11.18	16.98	61.74	2.07
12	L12		2.50 ~ 3.00	0.50	11.55	17.44	60.68	2.07
13	L13	No.7	2.00 ~ 3.00	1.00	21.04	32.00	49,41	0.88
14	L14	i	3.00 ~ 4.00	1.00	12.86	19.80	65.94	1.21
15	L15	No.8	3.00 ~ 3.50	0.50	9.44	15.51	68.18	0.65
16	L16		8.00 ~ 8.50	0.50	3.04	5.03	83.23	1.45
17	L17		8.50 ~ 9.00	0.50	2.58	4.10	80.19	1.67
18	L18		9.00 ~10.00	1.00	1.74	2.89	81.48	0.65
19	L19		10.00 ~10.50	0.50	4.75	7.40	75.04	1.62
20	L20	No.9	2.50 ~ 3.00	0.50	11.65	17.25	65.60	1.48
21	L21	ļ	3.00 ~ 3.50	0.50	7.79	12.20	71.99	1.58
22	L22		10.00 ~10.50	0.50	4.05	6.59	79.03	1.44
23	L23		16.00 ~16.50	0.50	9.94	14.98	71.79	0.92
24	L24		16.50 ~17.00	0.50	5.67	9.20	76.31	1.55
25	L25	,	17.00 ~17.50	0.50	4.08	7.10	75.48	2.01
26	L26		17.50 ~18.00	0.50	8.50	13.22	75.32	1.26
27	L27	i	18.00 ~18.50	0.50	7.19	10.97	77.33	1.14
28	L28		18.50 ~19.00	0.50	5.66	7.32	82.81	0.74
29	L29		19.50 ~20.00	0.50	4.79	7.54	78.64	1.80
30	L30		20.00 ~20.50	0.50	6.01	8.46	85.25	0.57

mayor have	and the second of the second o	tone in a		/ wi		·
	-		۲,۰			
	, in the second		•-			
•			7.4	*		
	•		•		٠	
					i .	
	^		~ *		*	,
			, **			•
1			4 19		٠ , ١	
	•		4. 15		<u>,</u> :	
•						
			•	-	-	•
			Ç			, ,
•	. *		•			r
	יע	, 1	مي			,
			-	,2	£	-:
	•		*		•	•
			w • 5		; '	
	~					
	- ,					
•			, •			**
					¥	
			y	٠	623	
			ere in the		, ,	-
•			1		** .	
		÷	4		Ç.r	
			~		, <u>r</u>	4 4
					, w	• •
		,	_			,
			,			-
			**			v.
			•			
			^			
*					,,	***
	Ā			u ~ ~	374 4	

N. G. d. V.		Hole No.		Sampling	Content of Elements				
No.	No. Sample No.			Depth	Width (m)	Mn(%)	MnO ₂ (%)	SiO ₂ (%)	Fe(%)
31	L31	No.9	20.50	~21.00	0.50	8.79	12.54	77.26	0.83
32	L32		21.00	~21.50	0.50	21.76	32.22	54.03	0.99
33	L33		21.50	~22.00	0.50	4.94	7.45	86.93	0.69
34	L34		22.00	~23.00	1.00	3.11	5.19	82.60	1.49
35	L35		23.00	~24.00	1.00	5.99	9.49	77.94	1.26
36	L36		24.00	~24.70	0.70	10.79	17.88	66.41	1.23
37	L37	No.10	4.00	~ 5.00	1.00	10.95	17.88	65.30	1.98
38	L38		5.00	~ 6.00	1.00	8.25	12.28	80.25	0.71
39	L39	No.11	9.50	~10.50	1.00	13.52	21.36	63.82	1.43
40	L40		10.50	~11.50	1.00	22.99	34.05	53.48	0.51
41	L41	No.12	16.00 ^	~16.50	0.50	10.01	16.03	62.46	6.28
42	L42	No.13	12.50	~13.00	0.50	16.23	26.32	59.27	1.37
43	L43		13.00	~13.50	0.50	10.08	15.53	66.44	1.95
44	L44	`	13.50	~14.00	0.50	5.96	9.92	72.46	1.99
45	L45		14.00	~15.00	1.00	6.95	11.02	67.08	2.20
46	L46		15.00	~15.50	0.50	6.47	10.10	70.32	2.30
47	L47	No.14	3.50	~ 4.00	0.50	26.45	41.47	45.60	0.80

-

-

					/) 	* 1 15	4 The State of the)
		,	r ,					-* ,
					. 3			
					F. L. Styling			
					, ,			
i .	,	•	5-	ł į			5 1	
	• "		4	s.	# Fy #		***	12
		r 16	* 1		*	j.	۳ -	3
		•			,		-	r1 '
	•			e ²		,	٠ ١	,
		:			,		au. ,	٠ <u>١</u>
	74		3	*	•		}	\$ \
		<u>.</u> , _	× ,	1 ₹ ;	• ,		- 3 *	* 2 *
		, i	~		, , ,		₹ 🛊	,
		,	-				21,	is.
				1	age to the	ť	٠.,	28)
		١	* -			:	÷ ; _	n1 ',
			•		, .	\$ 1, *	* 3 * 5	* * '

Table A-7 Result of X-ray Fluorescence Analysis of Chert aud Shale

	Sample No.	K-104	K-107	K-115	K-116
	Rock Name	white muddy chert	red chert	red chert	white chert
1	SiO ₂ (%)	100.24	97,31	81.05	83.52
	TiO ₂	0.05	0.06	0.52	0.42
	Al ₂ O ₃	1.22	1.34	7.68	6.62
	Fe ₂ O ₃	0.25	0.66	4.68	2.71
ł	MnO	0.00	0,02	0.03	0.48
1	MgO	0.12	0.32	1.77	1.78
ļ	CaO	0.25	0.37	0.76	0.72
ĺ	Na ₂ O	0.15	0.20	0.19	0.20
i	K ₂ O	0.18	0.19	1.40	1.18
	P2O5	0.01	0.01	0.03	0.03
	H ₂ O ⁽⁺⁾	1.46	1.81	3.77	3.56
5	H ₂ O(-)	(0.08)	(0.11)	(3.13)	(2.23)
Chemical Composition	S(ppm)	130	260	370	450
gr.	CI	130	450	70	100
ے اور	Co			10	5
mic	Ni	10	-	30	50
Che	Cu		_	30	20
	Zn	_	20	50	50
	Ga	_	_		20
	Rb	.	16	70	35
	Sr	29	63	139	225
	Y	-	_	10	10
j	Zr	10	10	100	90
	Nb	-	_	30	10
	Ba	_	_	~	-
	Ръ	_	-	~	
	Мо	_			
	As		-	_	
	V	n.d.	n.d.	n.d.	n.d.
	Cr	n,đ,	n.d.	n.d.	n.d.
	Fotal(%)	103.93	102.29	101.88	101,22

many the second of the second

			-	~		y who we will	
				,	-		
						*	
						y 1	
					-	•	
						,	
						' :	
	•				, e	i	
		•	·			• • •	
					•	~	
						;	
						* **	
	•						
						,	
•							
		-				,	
						· ·	
						•	
5	,		t ·		THE PERSON NAMED IN		

