Chapter 9. Design Engineering

Chapter 9. Design Engineering

0.1 Dasic engineering design data

This paragraph indicates the conditions relating to the basic design for the EXPORT REFINERY PROJECT.

9.1.1 General

(1) Measurement system

Metric system

(2) Laws, and regulations

Plant is to be designed in accordance with laws and regulations are indicated as the TENDER DOCUMENTS.

(3) Codes and standards

The codes and standards indicated as applicable to this project is the TENDER DOCUMENTS will be followed as a rule, but conformance to them will be adjusted from the following standpoints:

- (a) Since this engineering base has been prepared based on the procurement of Japanese-made equiment, the equipment will be designed and fabricated in accordance with the codes and standards indicated in the TENDER DOCUMENTS to the extent this is economically practicable in Japan.
- (b) Also, world-wide procurement has been considered. Conformance to the codes and standards followed in the countries where the equipment and materials will be manufactured, will be regarded as permissible.

- (c) Rotary equipment, electrical equipment, instrumentation equipment, and package facilities will be designed and fabricated in accordance with the codes and standards used by the maker and the maker's standards.
- (d) Regarding steels and other materials to be used for nonpressure parts, it is understood that the use of JIS
 (Japanese Industrial Standards) materials will be permitted unconditionally.

그리는 그 나는 얼마나라 잘 잘 보고 살았다. 스탠,

电扩射器 海绵的复数 医克勒氏病 医直线的

THE WHICH HAVE HELDER

randi Batiki ing Kabupatèn Sanjanja Batika Salingta Batik Batik Batik Kabupatèn Sanja Kabatan Batik Batik

the Historia and the section is shown in the configuration as well the to

tan jagadi - Antonian dalah mangan pelangan kenada penggalan selangan pelanggalah kebilah selangan. Antonian dianggalah selanggalah dianggalah selanggalah selanggalah selanggalah selanggalah selanggalah selangg

rance di all'altri erangela dina di disabetha

t programme a programme del plus programme del programme del programme del programme del programme del programme

Nagarahan Alberta

"包括我们的经验",被他们对关系,可是包括这个

9.1.2 Utility

(1) Steam

		Press. (kg/cm2G)	Temp.
(a)	Generated steam at boiler plant	35	365
(b)	Supply rating (nor. conditions)		
	High press. steam	32	350
	Middle press. steam (super heated)	1.5	300
	Middle press. steam (saturated)	15	200
	Low press. steam (saturated)	3,5	147

(2) Electric power

(a) Receiving conditions for Zubair Refinery Site

Number of phase and wire: 3 phase - 3 wire

Rated voltage 33 KV

Rated frequency : 50 Hz

Approx. 152 MVA/4 feeders Required capacity:

Number of feeders 5 feeders

Grounding system Neutral resistor grounded

Short circuit capacity at receiving point

Max. 25 KA (1,600 MVA) at 33 KV with 4 feeders

Water system

(a) All water is supplied from the Shatt-Al-Arab river. Raw water is regulated as follows:

Cation			7 . TH	
Ca ⁺⁺	365	ppm	as	CaCO3
Mg++	230	•	H	
Fe ⁺⁺ + Fe ⁺⁺⁺	4		li .	
Na ⁺ + K ⁺	358		11	
Total Cation:	957	ppm	**** · · · · · · ·	CaCO3
Anion	4, 5 3 1/2 2			
ClT	365	ppm	as	CaCO3
SO4	414		(i	
HCO3	178		ŧì	
Total Anion:	957	ppm	as	CaCO3
рН	7.6			ngridi.
Free CO ₂	9	ppm	as	co ₂
sio_2	10.3	ppm	as	sio_2

(b) Cooling water

Cooling water conditions

	a Miljarja (1907)			<u> </u>	upply		Retu	<u>rn</u>	
	Pressure	(kg/cm ² G)) ,		4.5		2.	5	
	Temperature	(°C)			32	re to the	Max. Ave.	46 40	
1 - 13			1,880,100				v 1		

(c) Boiler feed water

Supply condition: 6.0 kg/cm²G, 38°C

(4) Fuel system

(a) Fuel oil

jega i dri

(i) Specifications

Net heating value : 9,810 kcal/kg

Sulfur content : 6.07 wt%

Viscosity @50°C : 529 FUROL

" @98.9°C : 74.08 c.st

sp. gravity @15.6°C: 0.9923

Ash content : 0.033 wt%

Vanadium : 112 ppm

Nickel: 17 ppm

Asphaltenes : 2.32 wt%

(ii) Supply conditions

Pressure : 12 kg/cm²G

Temperature : 120°C

(b) Fuel gas

(i) Specifications

	Home	LF	≻ G	Natural		
	Fuel	Summer	Winter	Gas		
Net heating value (kcal/Nm ³)	16,645	10,096	10,090	12,413		
Molecular weight	34.8	20.578	20.419	25.13		

(ii) Gas analysis

	Home Fuel	Lo Summer	GP Winter	Natural Gas
H ₂ (mol%)	20.3			
c_1	4.6	72.413	72.780	60.157
c ₂ "	14.6	22.561	22.057	18.700
c ₃	42.9	1.566	1.761	10.475
C ₄ "	16.9	0.250	0.244	4.990
C5 "	0.6	0.031	0.027	1.722
C6 ⁺ "	0.1	0.005	0.004	1.392
co ₂		2.675	2.605	2.140
N ₂		0.499	0.522	0.424

(iii) Supply conditions

Pressure : 3.5 kg/cm²G

Temperature: 40°C

(5) Air and inert gas system

(a) Plant air conditions

Pressure: $7.0 \text{ kg/cm}^2\text{G}$

Temperature: 40°C

(b) Instrument air conditions

Pressure: 7.0 kg/cm²G

Temperature: 40°C

Dew point : -15°C

(c) Inert gas

(i) High pressure inert gas conditions

Pressure : 28.0 kg/cm²G

Temperature: 40°C

(ii) Low pressure inert gas conditions

Pressure : 7.0 kg/cm²G

Temperature: 40°C

9.1.3 Site conditions

THOU HAVE BUT IN LIST

(1) Wind

(a) Direction of prevailing wind.

(b) Wind pressure

- (c) Max. wind velocity: 160 km/hr at 15 m above grade
- (2) Temperatures
 - (a) Dry bulb temp. max.: 43.3°C min.: 1.7°C
- (b) Wet bult temp. for cooling tower design: 28.3°C
- (3) Rainfall intensity : 25 mm/hr
- (4) Snow load : None
- (5) Earthquake : None

(6) Site elevation

: 3.45

EL + 100,000 mm = M.S.L. at FaO + 16,000 mm

Process unit area : FI + 100,000

Utility unit area : EL + 100,000

Storage tank area : EL + 98,500 and EL + 102,000

Administration area: EL + 100,000

(7) Soil exploration data

depth below grade level

i i garati fark iyaarkiyo afaa madk

nas realizable

SERVICE SERVICE SERVICE

Book rooms on great and account the confidence of the confidence o

。2011年成份公主部、1981年代(1785)

ACTIVE IN THIS EXPENSE WAS CONTROL OF A CONT

alegang began kanggang palenggang palenggang berapada berapada berapada berapada berapada berapada berapada be Turanggang berapada Turanggang berapada berapada

produced to the second second resident and the second seco

9.1.4 Anti-pollution measures

(1) Water disposal

The effluent from refinery shall be regulated as follows:

рн 6-8

oil 25 ppm and less

Water pollution has been reviewed based on the Basis of Design given in Sect. 9.7.14 of TENDER DOCUMENTS Vol. II; specially severe conditions have not been considered.

(2) Waste gas

The waste gas from stacks of refinery shall be regulated as follows:

SO₂ 40 PPHM at ground

Air pollution problems have been reviewed based on a SO₂ ground level concentration indicated in the TENDER DOCUMENTS (Vol. III Class B Specification B-2 Steel Stacks Article 2.1.3 (3)). Also, it has been checked whether individual stacks or few common stack should be provided, and their heights have been reviewed from the overall standpoint.

(3) Noise

The noise level indicated in the TENDER DOCUMENTS specification has been considered. It is understood that all other noise reduction requirements are optional, and no specially severe conditions have been considered.

(4) Standard of pollution control in Japan have not been applied for this project.

9.2 Equipment design

9.2.1 Fired heater

(1) In general, Fired Heater design are based on the following specifications which are given in TENDER DOCUMENT Vol. III.

Specification Class B-1 Furnace

Class B-2 Steel stacks

KIC B40-1869 Furnace tubes, headers and fittings

Of these specifications, the requirements considered inadequate or incompative with CONTRACTOR's engineering practice will be listed as "Deviation and Clarification" in Technical Proposal.

- (2) In precaution against air pollution, it has been so designed that the flue gases from all the furnaces except those for the hydrogen units and gas oil desulphurization units will be introduced into the common stacks.
- (3) High heating efficiency of furnaces except those for residue desulphurization units has been attained by providing extended surfaces in the convection sections.
- (4) Materials of the furnaces will conform to ASTM or will be the equivalents of the ASTM materials.
- (5) By providing wind boxes, the noise level at a distance of 1 m from each furnaces will be 90 dB(A) or less.
- (6) Climate data for thermal calculation

Wind velocity : 2 m/sec

Ambient temperature: 20°C

- (7) Sootblowers will be automatically operated when push the start button.
- (8) A pilot burner will be provided on each burner except for steam reformer furnaces.

9.2.2 Heat exchanger

- (1) Heat exchangers for general use are designed in consideration of operation and maintenance of the relative units and facilities involved in the refinery.
- (2) Deviations and clarification of the TENDER DOCUMENTS will be listed and attached to technical proposal.
- (3) Applicable codes and standards
- (a) ASME boiler and pressure vessel code Sect. VIII, Div. 1
 "Pressure Vessel" (Winter Addenda 1975)
- (b) ASME boiler and pressure vessel code Sect. IX "Welding Qualifications" (Winter Addenda 1975)
- (c) TEMA standard class "R" (1970 Addenda)
- (d) ASTM standard (1975 Annual)

(e) ANSI	В	1.1 - 1974	"Unified Inch Screw Threads"
	В	2.1 - 1968	"Pipe Threads"
	В	16.5 - 1968	"Steel Pipe Flanges and Fittings" (Including supplements (a) and (b) 1971)
	В	16.20 - 1973	"Ring-joint Gasket and Groove"
	В	18.2.1 - 1972	"Square and Hex Bolts and Screws"
The state of the s	В	18.2.2 - 1972	"Square and Hex Nuts"
	В	36.10 - 1970	"Wrought Steel and Wrought Iron Pipe"
	В	16.21 - 1962	"Non-metallic Gaskets for Pipe Flanges"

(f) API 605 - 1967 (for 26 inches and over)

"Large Diameter Carbon Steel Flanges"

- (g) API 601 1974 "Metallic Gasket for Piping"
- (h) TENDER DOCUMENTS Vol. III, Class C
- (4) Special notes for design
 - (a) Standard bolts and nuts for pressure parts

Threads : ANSI B 1.1

Thread series : One inch nominal diameter and under;

UNC series, 1-1/8 inch nominal diameter

and over; 8 UN series

Tolerance classes: 2A, 2B

Shape of nut : ANSI 18.2.2 "Heavy Hex Nut"

- (b) Sliding shoes will be provided on the bundles of shells which are equal to or larger than 400 mm in diameter. Wherever applicable, longitudinal sealing strips can be used in common with the sliding shoes.
- (c) Reinforcing pads will be used for nozzles 2 inches and larger, unless otherwise specified, and for 1-1/2 inches and smaller nozzles coupling or intergrally forged type (long welding neck type) will be used.
- (d) One set of test rings will be provided for each floating head and U-tube type heat exchanger installed. When more than one idential exchanger is supplied, the following is required.

Two identical exchangers*: One set of test ring

More than two identical
exchangers : Two sets of test rings

- * For stacked units: Test shall be done in the stacked condition.
- (e) Regarding the equipment for which strength weld is specified in the drawings, the following requirements will also be satisfied in addition to conformance to KIC Spec. C4-LIP-74.
 - o No tube hole groove is provided in the case of strength welding.
 - o Tubes will be expanded with a light expanding.
- (f) Each equipment will be provided with earth lug.
 (Inclusive of upper equipment where two equipment items are stacked.)
- (g) Installation of instrument nozzles for each nozzle will conform to TEMA "R" and KIC Spec. C40-1068.

Alaberta in a mini agai sa a sa sa s

(h) Hardness of the base metal, and the weld metal and the related heat affected zone (HAZ) of all welds will not exceed the limits given below.

These test will be made with a Brinell Testing Machine or a portable hardness tester such as Talebrineller using a 10 mm ball. The hardness test for the HAZ will be made with the ball centered in the HAZ (representing a composite of weld metal, HAZ and base metal.)

ASME "P" Number of Material

Brinnel Hardness

1 - 4

225 or less

5 - 6

235 or less

Note: Base metal hardness tests are not required on P-1 material.

- (i) anchor bolts or setting bolts at sliding side for horizontal heat exchangers will have double nuts.
- (j) Nozzles and manways, and their reinforcement will be attached to the heat exchanger with full penetration welds.
- (k) Regarding the material of the nozzle necks, which is presently specified to be Al06-Gr.B, it may be changed to A53-Gr.B for the nozzle necks subject to design temperature of 399°C or under. However, in the case of A53-Gr.B, seamless type must be used for the nozzle necks.
- (1) The baffle spacer material may be changed from A106-Gr.A to A53-Gr.A.
- (5) Materials
 - (a) Metal lined nozzle

Following type of lining for nozzle neck will be used.

- 6 inches NPS and under: Tubular liner
- 8 inches NPS and over : Deposit or clad plate

Strip lining can be used to Mild conditions.

(b) In the following cases, after bending, annealing will be done: (Austenitic stainless steel tubes will not be annealed.)

- (i) Chromium molybdenum, and ferrite stainless steel tubes which have been bent to a radius smaller than five times their diameters, will be annealed at their bends only.
- (ii) Copper alloy and cupronickel tubes which have been bent, will be annealed full length. Annealing shall be done by the best method recommended in the applicable specification or by the fabricator according to the types of materials used.

(c) Gaskets

(i) Spiral wound gasket will be as per API 601 and filled material is asbestos, except for the following:

Materials of hoop and outer ring for "Spiral Wound" gaskets will be used as follows:

Design temperature below 426°C: Hoop - TP 304

Ring - CS

Design temperature over 426°C: Hoop - TP 347

Ring - TP 347

(ii) Ring-jont gaskets and grooves will be in accordance with ANSI B 16.20. Meanwhile, the ring-joint gasket will be of the "OCtagonal Ring Type".

(iii) Gasket for internal parts

Design Temperature	Gasket Material
232°C or lower	85% asbestos
233°C ~ 399°C	AAA grade
400°C - 483°C	AAAA grade
484°C or higher	Pure asbestos

9.2.3 Air cooled exchanger

API standard 661 (Aug. 1968) and KIC Purchasing Specification for air cooled exchangers Spec. C45-LIE issued an appendix to specification C-1 of TENDER DOCUMENTS Vol. III will be conformed to as a rule, but the basic requirements are indicated in the following:

- (1) Ventilation system type : Forced draft type
- (2) Dry bulb temperature for designing air cooled exchangers: 43.5°C
- (3) Fouling factor: Air side 0.0004 (kcal/m²hr·°C)⁻¹

 Process side ... Conforms to TEMA
- (4) Header type : Box type

 However, the cover type will be applied to those of reflux coolers and regenerator O.H. condensers.

(5) Fin tube

Length 301-0"

As regards the fractionator 0.H. condensers in the crude unit, the fin tube length shall be 40'-0".

Thickness (seemed or seamless)

C-steel : Welded BWG #12 Stainless steel: Seamless BWG #13

Tube O.D. : 25.4 mm

Fin material : Alminium

Type : Embedded and L-foot

(6) Type of drive : Gear driver with motor

with (7) Vibration swith Not provided.

And British and James British and I have been properly and the green place.

gekerkiri ing<mark>an sensis kulunun akali p</mark>ropik esa eli informinya gerfileksyli gelia ingon geris keji, gelia Distrik firikal ingan kulungan punak alaktan pengangan kanadakan kan di sebingan belia keji sebin sebin sebin

t de proposition de la completa de la faction de la faction de la faction de la completa de la faction de la c La completa de la faction de la faction

a Valles (1987), Million al Japan de la Jeren de Langer (1984), des la completa de la Francia de la

This was taken below the artists of the graduating

e la emporativa de la la chia della especia di especializza di la coloria di la coloria di la coloria di la co La coloria di la coloria d

Tarakan di maki sembah dan dalah kecampatan

gitt timbe seither en Erne - Appellief styren.

entario legiri i grennen shiribala por centi satism

lakinase varagam

Elember of Arthrefield of the

(8) Control devices : As necessity

- 9.2.4 Unfired pressure vessel
- (1) In general, unfired pressure vessels are designed to facilitate operation and maintenance of relative units and facilities involved in this refinery.
- (2) Deviations and clarification of the TENDER DOCUMENTS will be listed and attached to technical proposal, which are used as the design basis.

多用证的证据 医线线电影线线 化多多氯

- (3) Applicable codes and standards
 - (a) ASME boiler and pressure vessel code Sect. VIII, Div. 1
 "Pressure Vessel" (including Winter Addenda 1975 with nonmandatory appendices)
- (b) ASME boiler and pressure vessel code Sect. IX "Welding Qualifications" (including Winter Addenda 1975)
- (c) ASTM standard (1975 annual)

(d) ANSI	В 1.1 - 1974	"Unified Inch Screw Threads"
	В 2.1 - 1968	"Pipe Threads"
	В 16.5 - 1968	"Steel Pipe Flanged and Fittings" (Including supplements (a) and (b) 1971)
	в 16.20 - 1973	"Ring-joint Gasket and Groove"
	в 18.2.1 - 1972	"Square and Hex Bolts and Screws"
	В 18.2.2 - 1972	"Square and Hex Nuts"
	в 36.10 - 1970	"Wrought-steel and Wrought Iron Pipe"
	B 16.21 - 1962	"Non-metallic Gaskets for Pipe Flanges"

(e) API standard 601 - 1974 "Metallic Gaskets for Refinery Piping"

API standard 605 - 1967 "Large Diameter Carbon Steel Flanges" (For 26 inches and over)

Salada estre en Sinvigo

- (f) AISC "American Institute of Steel Construction"
- (4) Special notes

COMMITTEE SAA

- 36 (a) Ti Gaskets ov adirekte i har på edek det tran je en pro
- (i) Corrugated jacketed asbestos filled will be as per API 601.
- (ii) "Spiral Wound" gasket

Spiral wound gasket will be as per API 601 and filled material is asbestos, except for the following:

Materials of hoop and outer ring for "Spiral Wound" gaskets shall be used as follows:

Design temperature below 426°C: Hoop - TP 340

Ring - CS

Design temperature over 426°C: Hoop - TP 347

Ring - TP 347

(iii) Ring-joint gasket

Ring-joint gaskets and grooves will be in accordance with ANSI B 16.20, mean while, the ring-joint gasket will be of the "Octagonal Ring" type.

Rock Plane Park Carrier and the Significal States

(iv) Gasket for internal parts

Design Temperature	Gasket Material
232°C or lower	85% asbestos
233°C - 399°C	AAA grade
400°C - 483°C	AAAA grade
484°C or higher	Pure asbestos

(b) Hardness of the base metal, and the weld metal and the related heat affected zone (HAZ) of all welds will not exceed the limits given below.

These test will be made with a Brinell Testing Machine or a portable hardness tester such as a Telebrineller using a 10 mm ball. The hardness test for the HAZ will be made with the ball centered in the HAZ (representing a composite of weld metal, HAZ, and base metal).

	ASME	npn:	Numbe	er of	Mat	eria	1		B	rinne	<u> </u>	lardne	SS
. :	120122											-	
			1 -	4) 1. 2519	u Mes i		225	or	less	1
` i.					· · . · . · · ·					225	ar	less	· / / .
			5 -	6						233	OT	1035	

Note: Base metal hardness tests are not required on P-1 material.

- (c) Reinforcing pads will be used for nozzles 2 inches and larger, unless otherwise specified, and for 1-1/2 inches and smaller nozzles, coupling or integrally forged type (long welding neck type) will be used.
- (d) Anchor bolts holes of baseplate for vertical vessels will straddle the vessel center line in construction north direction.

- (e) Anchor bolts or setting bolts at sliding side for horizontal vessels will have double nuts.
- (f) Nozzles and manways, and their reinforcement will be attached to the vessel with full penetration welds.
 - (g) Standard bolt and nuts for pressure parts

Thread : ANSI B 1.1

Thread series : One inch nominal diameter and under;

UNC series, 1-1/8 inches nominal diameter and over; 8 UN series

Tolerance classes: 2A, 2B

navali poje po jednja se pojek pojek produkt

क्षा सुरक्षेत्रके प्रकर्ण स्तित्वकर्णी स्थाप स्टब्स्ट के स्था

and the least thinks with purify the driver of the late of the

production and the solution of the solution of

a. 1 自己条件是关系统统 4.15 (4.15)

egy pagala kajagsi kagaja produkty garaj skralit ali baja cere i si karar i sura si bita ka

Shape of nut : ANSI B 18.2.2 "Heavy Hex Nut"

(h) For material of the nozzle necks, ASTM A53-Gr.B will be used seamless type.

9.2.5 Pumps and drivers

- (1) Safety and economy based on the Specification, Class J per the TENDER DOCUMENTS will be considered in the designs, especially with regard to the high temperatures, humidity, sand storms, etc. at the job site.
- (2) Proposed deviations from the Specifications per the TENDER DOCUMENTS will be listed and attached to the Technical Proposal. Further, it is desired that SCOP possible changes in these deviations at the time of actual pump selection.

with about the State State Believe Clark

erapeara la leja elaj

- (3) The driving motors will be designed based on the TENDER DOCUMENTS Class N.

 The deviations therefrom will be listed and explained in the Technical Proposal.
- (4) As for the selection of driving motors or steam turbines, turbine drive will be used only for the pumps required to shut down the process units safety at an emergency (power failure, etc.).

Motor drive is considered even for furnace feed pumps in cases where turbine drive is used for the compressors on the gas sides of combined feed design.

Though the base for the above-mentioned has been decided, consideration has been given to deciding the details at the time of carrying out the project.

9,2,6 Compressor and driver

te transfer for foreign for the first for the contract of

(1) Regarding the selection of compressors; the final specification details have not yet been fixed at the present stage.

Therefore, at the time of carrying out the project, it will be necessary to take the local climatic conditions and process requirements into consideration for re-study and to select suitable manufacturers accordingly.

Therefore, some items of deviation in Technical Proposal will be subject to change at the time of carrying out the project.

(2) It will be understood that the present specifications and deviations for rotary equipment are subject to change.

Especially, as the compressors are the most important items of equipment in the plant, their selection must be made with adequate care.

gerkal bekir kebira bib silibas da Nasib serkan sesah ebib sejasah buruk kebira beraikan beraikan besar 1

ekiel Makke kulliger die de getek blikke, region beste de een en de kontre bij 1992 de eerste de keer te. Bijke kulligie kan die getek het die kontre de eerste de lijke trop te die de trop de eerste de eerste de die Bijke kan die kan bij die kontre die kontre de tot die die de kan die kontre tot eerste de eerste de eerste de

solar (elegantica especialista filosoficiales elegantica), especialista de la contractional de la contraction

Greature Editor, por preparating activities

But stated to be a train

医克勒氏性皮肤 医克勒氏试验检尿 医二氏虫虫 医二甲基苯甲酚

9.3 Piping design

Piping will be designed in accordance with requirements of TENDER DOCUMENTS Vol. III Class M.

The deviations therefrom will be listed and explained in the Technical Proposal.

9.3.1 General note for piping specification

- (1) Pipe and fitting
 - (a) Edge preparation
 - (i) Galvanized

1/2" to 6" NPT with a coupling, 8" and larger bevel end.

- (ii) Carbon and alloy2" and smaller plain end.2-1/2" and larger bevel end.
- (b) Make it a rule to all elbow are to be long radias.

(2) Branch connections

In cases where pipes larger than 2-1/2" are jointed by butt welding, the following pipe fittings (except flanges and elbows) will be used. In the case of reducing tees and reducers, if there are differences in wall thickness between the larger size side pipe and the smaller size side pipe, the larger wall thickness will be used.

Branch pipes will conform to the table below.

	-		····											
							Main P	ipe						
		1/2"	3/4"	1"	1-1/2"	2"	3"	4"	6"	8"	10"	12"	14"	16" & Over
	1/2"	Ţ	T	Т	В	В	В	В	В	В	В	В	В	В
) 2 {	3/4"		T	Т	В	В	В	В	В	В	В	В	В	В
	1"			T	T	В	В	В	В	В	В	В	В	В
	1-1/2"				Т	Т	В	В	В	В	В	В	В	В
1)	2"					т	S.N *1 +C	В	В	В	В	В	В	В
edta.	3"	1 e				4,3	М	М	M	W.O	W.O	W.O N	W.O N	W.O N
100	4"					1		М	М	М	W.O N	W.O	W.O N	W.O N
DT GIICII	6"					——————————————————————————————————————		-	M	М	М	W.O N	W.O N	W.O N
	8"									М	M	M	W.O N	W.O N
	10"										M	М	М	R.S N
	12"											М	М	R.S N
	14"								: -	****			М	R.S N
	16"					2 - 1						:	М	R.S N

Remarks: 1. The above symbols mean as follows:

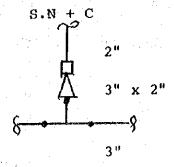
B : Socket or screw boss

T : Socket or screw tee

W.O: Weld-o-let

R.S: Reinforcing saddle

and the fighter at the control of figure and only


n ga sakka depak menjada ing belik bepakingak i Repebbora diaggan kai makalih langgan ang masak

M : Butt welding tee

N : Nozzle welding

S.N: Swaged nipple

Cal: Coupling

(3) Reducing piping Reducing piping will conform to the table below.

					Liá	arge Sid	de l	31 z (}					
		3/4"	1"	1-1/2"	2"	2-1/2"	3"	4"	5"	6"	8"	10"	12"	14"
	1/2"	N or	N	N	N		•							
	3/4"		N or	N	N								. 5 677 	
	1"			N or C	. N			<u> </u>			111			
	1-1/2"				C N or	N	N							
ב ב ב	2"					N	N	N					140	
	2-1/2"						R	R	R					
3770	3"							R	R	R				
	4 "								R	R	R			
דדשווכ	5"		<u> </u>							R	R	R		
	6"										R	R	R	
	8"											R	R	R
	10 ⁿ												R	R
	12"													R

Remarks: 1. The above symbols mean as follows:

C: Reducing or straight coupling

R: Butt welding reducer

N: Swaged nipple

2. In the case of reducers larger than 2-1/2", as a standard, the reducing size will be smaller than three nominal sizes. If required reducing sizes are larger than three nominal sizes, the larger size will be reduced by three nominal sizes and then to the required smaller nominal size.

			. e					
	9.3	2 Pipi	na ana	agi fi	cat	ion (al acces	
	9.3.	Z	uid abe	, 1. 1. 1.	.cac.		o radoco	
		Class No.		Rat	ing		Max. Temp.	Service
	(1)	A11.1	ANSI	125	lbs	FF	66	Plant air
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(2)	A112	* 6	125	lbs	FF	66	Cooling water and industrial water
	(3)	A121		125	lbs	FF	66 2004 - 100	Instrument air and drinking water
	(4)	B111		150	1bs	RF	232	Low pressure steam and steam condensate, fuel oil, fuel gas, inert gas, hydrocarbon/ hydrogen
	(5)	B112	u .	150	lbs	RF	350	Hydrocarbon/hydrogen
	(6)	B113	u .	150	lbs	RF:	232	Foul water and acid gas and amine
	(7)	B114	ų	150	lbs	RF	232	Catacarb solution
)	(8)	В115		150	1bs	RF	232	Low pressure steam (steam heating)
	(9)	B116	0	150	1bs	RF		Hydrogen
	(10)	в117		150	lbs	RF	232	Outer pipe for sulfur line
	(11)	B118) in (150	lbs	RF	399	Sulfur line
	(12)	B211	"	150	1bs	RF	Minimum -46	Freon
	(13)	B311		150	lbs	RF	Minimum -47 - 100	Freon
	(14)	B321		150	1bs	RF	47 300	CO ₂ + H ₂ O vapor
	(15)	C111	11	300	lbs	RF	232	Hydrocarbon/hydrogen and fuel oil

Class No.	Rating	Max. Temp. °C	<u>service</u>
(16) C112	ANSI 300 lbs RE	350	Hydrocarbon/hydrogen
(17) C113	" 300 lbs RF	399	Amine and hydrocarbon
(18) C114	" 300 lbs R	232	Catacarb solution
(19) C115	" 300 lbs RE	300	MED pressure steam and boiler feed water
(20) C117	" 300 lbs RE	399	Hydrocarbon/hydrogen
(21) C311	" 300 lbs RE	232	Deionized and oxygen
(22) C321	" 300 lbs RI	232	Comverted gas + CO2 + H2O
(23) C331	" 300 lbs RI	430	Hydrocarbon liquid and vapor
(24) C411	" 300 lbs RI	450	Comverted gas
(25) C421	" 300 lbs R	399	Transfer line
(26) D111	" 600 lbs Ri	232	Hydrocarbon/hydrogen
(27) D112	" 600 lbs RI	370	High pressure steam
(28) D113	" 600 lbs RI	F 232	Hydrocarbon/hydrogen
(29) D211	" 600 lbs Ri	F Minimum -46	Hydrogen gas
(30) D311	" 600 lbs RI	F Minimum -47 - 100	Hydrogen gas
(31) D331	" 600 lbs RI	F 427	H ₂ S
(32) D411	" 600 lbs Ri	420	Reformer feed gas
(33) Ell1	" 900 lbs RI	F 300	Hydrogen gas
(34) F131	" 1,500 lbs	RTJ 300	Hydrocarbon liquid and vapor
(35) F132	" 1,500 lbs	RTJ 300	HP amine solution
		9-30	

	Class No.	Rating	Max. Temp.	Serv	<u>lce</u>
(36)	F331	ANSI 1,500 lbs RTJ	350	Hydrocarbon and vapor	liquid
(37)	G131	" 2,500 lbs RTJ	320	Hydrocarbon	liquid
(38)	G331	" 2,500 lbs RTJ	450	Hydrocarbon and vapor	liquid

et for the english and representation of the source of the first of the contract of the contract of the first of the contract of the contract

9.4 Civil design

9.4.1 General

Civil design engineering involved in works such as site preparation, foundations, roads, tank dikes, fence, etc., are based on the following specifications which are given in TENDER DOCUMENTS Vol. III.

- (1) Specification Class A

 Site preparation, foundations, structures and concrete
 structures
- (2) Specification Class H
 Steel structures, platforms and industrial buildings

Of these specifications, the requirements considered inadequate or incompatible with CONTRACTOR's engineering practice will be listed as "Deviation and Clarification in Technical Proposal.

9.4.	2 Code	es and s	standards applicable to the design work
(1)	ACI	ing the state of the	American Concrete Institute
(2)	AISC		American Institute of Steel Construction
(3)	ASA		American Standard Association
(4)	ASTM	• • • • •	American Society for Testing and Materials
(5),	AASHO		American Association of State Highway Officials
(6)	JIS	••••	Japanese Industrial Standards
	William Websit		그 보다는 그의 물이 있는 말을 받는 것이 되는 것이 되는 것이 되는 것이 되었다. 그 일 없는 사용을 가는 것이 되었다.

To the Control of the

energie en 2000 fantagen in de skriver fan de skriver en de skriver fan de skriver en de skriver en de skriver De skriver fantagen in de skriver komment de skriver fan de skriver fan de skriver en de skriver en de skriver De skriver fan de skriver en de skriver

Transform epopulational population is found by extraolitical and anomerous of the contri-Barkara ja vietek kaji ja kaji komen kalandar ja teratori kalandar et eksteratori. le come and application of the first to be all and a second common processing a strict to the second

Commenciated Annals of Emblight Commission of the Commission Commission of the Commi

9.4.3 Concrete work a suggestion with the second and all all all and a second and a second as a second

(1) This paragraph covers the design work in connection with concrete foundations, roads, paving, structures, concrete pit, water pond, etc.

(2) References and codes

TENDER DOCUMENT Vol. III Specification Class A A-CE-4
Para. 3 "Concrete Work", AIC and AISC.

(3) Materials

The following standards will be applied with regard to materials to be used for Concrete Work.

(a) Cement : ASTM C 150 or equivalent National Code and equivalent JIS Code JIS R 5210

(b) Reinforcing bars: ASTM A 615 and equivalent JIS Code JIS G 3112

(c) Steel wire : ASTM A 185 and equivalent JIS Code
JIS G 3551

(d) Anchor bolts : KIC engineering standard A17-L151 or equivalent JIS code JIS B 1178

(e) Sound concrete blocks: ASTM C 145 or equivalent National Code

(f) Hollow concrete blocks: ASTM C 90 and equivalent National Code

(g) Building lime : Locally available

(h) Bitumen : Locally available

(4) Design strength

Concrete (except levelling concrete) will be designed for minimum allowable 28-days compressive strength of 175 kg/cm². Reinforcing bar will conform to JIS G 3112. In the case of using JIS G 3112, yield point will be 3,000 kg/cm² minimum.

- (5) Proportioning and slump
- (a) Maximum aggregate size : 37.5 mm
 - (b) Water cement ratio : 0.4 0.7 by weight
 - (c) Fineness modulus : 2.5 3.0
 - (d) Ratio of coarse aggregate to fine aggregate: 65 - 35

(6) Slump

	Type of construction	Slump (cm)		
(a)	Mass concrete	2.5 - 7.5		
(b)	Foundations	7.5 - 12.5		
(c)	Superstructure	10 - 15		
(d)	Paving	5 - 10		

- (7) Form-work
 - (a) Form-work will conform to the Specification Class A, A-CE-4, Para. 4 "Form-work".
- (b) Forms will be made of wood, plywood or metal of the dimensions as called for in the drawings and be remained in place for the period as shown below.

 Air Temperature	Age of Concrete Department of Side of Beam, Column, Wall	Slab Bottom & Beam Bottom
15°C up	2 - 3	4 - 6
Up to 15°C	4 - 5	8 - 10

(8) Reinforcement

Reinforcement will conform to the above Specification, Para, 5 "Reinforcement".

(9) Mixing and placing

In principle, concrete will be mixed at the central plant and transported to the job site as specified ACI means.

weighod by the will's

Age the backet

SECTION STREET

(10) Joint

Joints will conform to the above Specification, Para. 3.7 "Joints".

(11) Finish

Finish will conform to the above Specification, Para. 3.8 "Finish".

ng ng kalay gili piganség san kabapat ban Mésar kabilah kabilah Kith

atina kalendari di kalendari di kalendari di kalendari kalendari kalendari bili kalendari bili kalendari bili Barangan kalendari kalendari di kalendari di kalendari bili kalendari bili kalendari bili bili kalendari bili

9.4.4 Site preparation

- (1) Elevation of each area inside the refinery has been determined by using "Topographical Site Survey" drawing (Dwg. No. 508-C-01) attached to TENDER DOCUMENTS Vol. VI so as to minimize soil movement.
- (2) Top soil, excessive soil and other refuse such as concrete chips, etc., will be collected at a SCOP designated area. Within a distance of 1 km outside the refinery fence. No grading or levelling will be applied.
- (3) Contour lines and intervals given in the topographical site survey drawing (Dwg. No. 508-C-1) has been prepared on an approximate basis and therefore must be detail surveyed before enter upon detailed design work.

gyalan salah jajarah kerinterpada melancah kerindan adalah pengunakan kerinda m

Paris Segret to the larger to be a larger to the first and the first and

9.5 Structural steel design

9.5.1 General

Structural steel design engineering involved in works such as pipe racks, equipment supporting structures, miscellaneous steel structures, industrial buildings, etc., are based on the following specifications which are given in TENDER DOCUMENTS Vol. III.

Charles of Action Control of the Section

- (1) Specification Class H
 Steel structures, platforms and industrial buildings
- (2) Specification Class P

 Insulation and paint

Of these specifications, the requirements considered inadequate or incompatible with CONTRACTOR's engineering practice will be listed as "Deviation and Clarification" in Technical Proposal.

- 9.5.2 Codes and standards applicable to the design work
- (1) AISC American Institute of Steel Construction
 - (2) ASA American Standard Association
 - (3) ASTM American Society for Testing and Materials
 - (4) JIS Japanese Industrial Standards

(5) AWS American Welding Society

al salah libigi kecamatan labi dari beraran salah Majarah salah salah

全国的 (1966年) [1986年] 作副第二

gjirke ga edin one o oculie prafiti

and the Stage grown are Nill Selection Co.

9.5.3 Structural steel work

(1) This paragraph covers the design in connection with steel structurs, inclusive of painting work and fireproofing work.

(2) Materials the state of the

The following standards will be applied with regard to materials to be used for structural steel construction.

- (a) Structural steel : ASTM A 36 or equivalent JIS Code,
 JIS G 3101 SS 41 or equal
- (b) Structural steel sections : JIS G 3192 or equal
- (c) Structural steel
 pipes : ASTM A 53, types E or S Gr. B or
 JIS G 3444 STK 41 or equal
- (d) Bolting

High strength friction grip bolts: ASTM A 325 or equivalent JIS Code, JIS B 1186 Gr.F10T and Torque controlled bolts Gr.F10T

Black bolts : ASTM A 307 or equivalent JIS Code

Quality ... JIS G 3101 SS 41

Shapes, dimensions and permissible

variations of hexagon head bolts and nuts ... JIS B 1180 and B 1181

(e) Welding rod : AWS A 5.1 or equivalent JIS Code, JIS Z 3211 Gr.43

- (f) Painting and fireproofing

 Painting and fireproofing will conform to the "Insulation and Painting" in Subsection 9.9 hereon
- (3) Fabrication, erection and inspection

Teaching the section as it is the first the section of the section

Programme and the contract of the contract of

ang ang kabupatèn dan menggunak dalah Menjer Gallacan di Kabupatèn

(a) The fabrication and election of structural Steel will conform to the AISC specification.

(b) The inspection of structural steel will conform to the "Inspection Procedure for Construction Work".

rang kang panggalang panggalang panggalang panggalang panggalang panggalang panggalang panggalang panggalang p

nenisti karangan kebuah ke

Bendand with the work of the deligation of

9.6 Architectural design

9.6.1 General

Architectural design engineering involved in works such as administration type, process and industrial type buildings are based on the following specifications which are given in TENDER DOCUMENTS Vol. III.

- (1) Specification Class A Site preparation, foundations, structures and concrete structures
- (2) Specification Class H Steel structures, platforms and industrial buildings
- (3) Specification Class K Buildings
- (4) Specification Class M Piping
- (5) Specification Class N Electrical
- (6) Specification Class 0 Instruments
- (7) Specification Class P Insulation and paint

Of these specifications, the requirements considered inadequate, or incompatible with CONTRACTOR's engineering practice will be listed as "Deviation and Clarification" in Technical Proposal of CONTRACTOR.

9.6.	2 Codes	s and s	standards applicable to the design work
(1)	ACI		American Concrete Institute
(2)	AISC		American Institute of Steel Construction
(3)	ASA	(agita barb Jiriva dika	American Standard Association
(4)	Nationa	ıl Plun	nbing Code
(5)	ASHRAE		American Society of Heating, Refrigeration and Air Conditioning Engineers - Guide
(6)	ASTM		American Society for Testing and Materials
(7)	AASHO	• • • • • ·	American Association of State Highway Officials
(8)	BS		British Standards
(9)	JIS		Japanese Industrial Standards

.... dapanese industriar commer-

9.6.3 Foundations

(1) Building foundations and floors for administration type and process buildings will be treated with 1.0 percent chlordane solution, this may be prepared by diluting a concentrated chlordane solution with water.

(2) References and codes

TENDER DOCUMENT Vol. III, Specification Class A, A-CE-4

Para. 2, Para. 2.1 "Termite Attack".

Transfer and part of the second

9.6.4 Concrete work

(1) Concrete work, inclusive of design strength; proportioning and slumps, slumps; form-work, reinforcement and applicable references and codes to be in accordance with the "Civil Design" in Subsection 9.4.3 "Concrete Work" hereon.

(2) Materials

The following standards will be applied for materials to be used for Buildings.

(a) Cement

ASTM C 150 or equivalent National Code or equivalent JIS Code JIS R 5210

(b) Reinforcing bars

ASTM A 615 or equivalent JIS Code JIS G 3112

(c) Structural steel

ASTM A 36 or equivalent JIS Code, JIS G 3101 SS 41 or equal

(d) Structural steel pipes

ASTM A 53, type E or S Gr.B or JIS G 3444 STK 41 or equal

(e) Steel wire

ASTM A 185 or equivalent JIS Code, JIS G 3551

(f) Material for covering of sheet roof and wall

Corrugated aluminium

Quality JIS A 1100 P-H14

Shapes, dimensions, permissible variations and mechanical properties of aluminium plate JIS H 4000

- (g) Ceramic tile

 JIS A 5209 or equivalent
- (h) Accoustic boards

 JIS A 6301 or equivalent
- (i) Glass

 JIS R 3201, 3202, 3203, 3204 and 3205 or equivalent

9.7 Electrical design

9.7.1 General we disa made serve two two

The following clauses cover the specific requirements for design, fabrication and testing of equipments and materials for the electrical facilities included in the scope of the Export Refinery Project.

9.7.2 Codes and standards to be applied

The following codes and standards will be applied for design, fabrication and testing of equipment and materials for electrical facilities:

(1) Where equipment and materials are manufactured in Japan, the following codes and standards will be applied:

JIS: Japanese Industrial Standards

JEC: Standards of the Japanese Electro-technical Committee

JEM: Standards of the Japanese Electrical Machine Industry Association

JCS: Standards of the Japanese Cable Manufacturers' Association

- (2) Where equipment and materials are manufactured in the countries other than Japan, the codes and standards of those countries will be applied.
- (3) The area classification of hazardous areas will be in accordance with the latest edition of the American Petroleum Institute Recommended Practice RP-500A.
- (4) The limits of the various dangerous areas will be defined in accordance with the requirements of API RP-500A.
- (5) Where electrical equipment and materials in the various hazardous areas are manufactured in Japan, the following codes and standards will be applied:

JIS: Japanese Industrial Standards

JEC: Standards of the Japanese Electro-technical Committee

JEM: Standards of the Japanese Electrical Machine Industry Association

IIS: Recommended Practice for Electrical Equipment for use in Explosive Gas Atmospheres for General Industries - 1974 (The Research Institute of Industrial Safety of Japanese Ministry of Labour).

(6) Where electrical equipment and materials in the various hazardous areas are manufactured in the countries other than Japan, the codes and standards of those countries will be applied.

9.7.3 System voltages

- (1) Allowable limits of voltage and frequency regulation at power receiving point.
- (a) Allowable limits of voltage and frequency regulation at power receiving point will be as follows:

Voltage regulation : Within 110% of rated voltage

Frequency regulation: Within ±5% of rated frequency

Combined regulation in

voltage and frequency: Up to 10% in sum at absolute

value of voltage and frequency

regulation

(2) Refinery site system voltage

•		Phase	<u>Wire</u>	<u>Voltage</u>	<u>Hz</u>	Neutral Grounding System
(a)	Power receiving	3 - 1	3	33 KV	50	Resistance
(b)	Power distribution fac	ilities				
	For secondary S/S	3	3	33 KV	50	Resistance
	For motors					
* .	Larger than 1,500 KW	3	3	11 KV	50	Resistance
	110 KW to 1,500 KW	3	3	3.3 KV	50	Resistance
	Smaller than 110 KW	3	3	380 V	50	Solid
(c)	Lighting facilities					
	For normal	3	4	380 - 220 V	50	Solid
	For normal/emergency	3	4	380 - 220 V	50	solid
÷	For emergency	DC	2	110 V		Non

		Phase	Wire	Voltage	Hz	Neutral Grounding System
	For portable exten- sion hand-lamps			50 V	·	Solid
	For welding socket outlets	3	4	380 - 220 V	50	Solid
	For power outlets	1	4	380 - 220 V	50	Solid
	(In safe areas or non	-process	areas		ļai.	
(d)	For instruments	1	2	110°V	50	Non
(e)	For analyzer (Instrument)	11	4	380 - 220 V	nd, i	Solid
(f)	For controlling					
	Switchgears	DC	2	110 V		Non
	L/V motor starters	1	2	110 V	50	Non

9.7.4 Design basis

(1) Equipment and materials will be designed in accordance with the following basic conditions:

Latine that he district

- (a) Abrasive dust stroms.
- (b) Maximum wind velocity : 45 m/sec
- (c) Maximum ambient temperature : 50°C
- (d) Minimum ambient temperature : -1°C
- (e) Relative humidity : 85%
- (f) Altitude : Less than 1,000 m
- (g) Maximum exposed metal surface temperature in direct sun-light: 82°C

9.7.5 Description of power distribution system

k kan kilomia ya katawa bani dawa ata an ukto na masa kata an basa k

કાૂ, અમેમુકો નોકાર્રેપુર્વેલ એક્સ**ા ,મ**ાર્ગ્યુક્તિના મુક્કોર્કો પણ કરી જિલ્લામાં જે અનુ કોલા છે. અને મુક્કાર્પો

Brookling hidroxym tyletiner, yd holffelson i go itterniele

- (1) Refinery site
 - (a) The incoming power will be received by means of five (5) undergrounded feeders of 3-phase, 3-wire, 33 KV, 50 Hz, neutral resistance grounded, for a total power requirement of 152 MVA, which will be connected to the primary substation through five (5) receiving circuit breakers.
 One of the above-mentioned feeders will be a spare for increased reliability.

additional their louise for our too had there is

(b) Power distribution system from the primary substation to each critical secondary substation such as process area substation or utility area substation will be by means of duplicated radial feeders of 3-phase, 3-wire, 33 KV, and single distribution feeder of 3-phase, 3-wire, 33 KV, will be used for non-critical off-site or administration area substations. The above-mentioned distribution feeder cables will be connected to the step-down power transformers directly in the secondary substations.

In each process and utility area substation, there will be two (2) sets of step-down power transformer, and each group of 11 KV, 3.3 KV and/or 380 V switchgears will consist of two (2) normally closed incoming breakers and one (1) normally opened bus section breaker with an automatic transfer facility between each incoming breaker and bus section breaker.

(c) Each group of 380 V critical motor control center (MCC) will consist of two (2) normally closed incoming disconnecting switches and one (1) normally opened bus section disconnecting switch with a interlock between them.

- (d) Each substation in the utility and process areas will contain two (2) sets of main step-down power transformer according to the voltage requirements in each area. Each individual power transformer will be capable of supplying 100% of the required power consumption of failure or during maintenance of its counterpart.
- (e) The following secondary substations will be served:
 - (i) Process area S/S: #01 #06
 - (ii) Off-site area S/S: #07 #13
- (f) Generally, each motor starter will be divided into two (2) sections in cases where two (2) or more 11 KV, 3.3 KV and/or 380 V motors are provided for the same service.

 One (1) or more of such motors will be covered by one (1) section of the starter, with the other section serving the standby motor.
 - (g) The emergency generator will be a diesel engine driven unit rated at 3-phase, 380 V, 50 Hz, and will be installed in each substation in the utility and process areas. The unit will normally be stationary and will automatically start-up and operate upon power failure of a 380 V critical supply feeder.

Power supply to the critical loads such as normal/emergency lighting system, battery charger unit for switchgear controlling and emergency lighting system, battery charger unit for instrument DC/AC converter, will be fed from each emergency generator unit.

(h) Generally, 33 KV, 11 KV, 3.3 KV and 380 V power cables and control cables will be installed by the underground method.

Cables inside process or other well-defined operating areas will be laid in concrete trenches of adequate width and depth. Cable trenches will be filled with sand and covered with coloured concrete of adequate thickness.

Cable outside operating areas will be laid directly in the ground and protected by concrete cover tiles with route markers.

Single layer installation of cables in the concrete trenches or the ground will be performed, but where a number of cables are installed, the multi-layer arrangement will be adopted, taking into account cable amperge capacity.

provide the provide and the second of the execution of th

graphy gardenia guifu en la cita esta en la cita en la

gradient Figgi, subspices that regions for the protection is a

edali og hage skalasere atjob og ski blevite

tage for the transfer and the second of the second of the second of

archings but not be an exercise and the content of

9.8 Instrument design

9.8.1 General

(1) The instrument system has been fully considered in the process design with regard to the safe operation of the plant, easy operability, etc. This paragraph describes the instrument design as a whole.

graph of the Control of the Control of the

land of the growing make the fact of a fifther

(2) Though the design is, in principle, based on TENDER DOCUMENT Spec. Class 0, the deviations and clarifications will be shown in Technical Proposal.

The main item of deviation is that the explosion proof code is not restricted to B.S., and JIS and NEC codes are also adopted. As conformance TENDER DOCUMENTS would require a large number of control boards, the design provided for 4 rows of large type recorders.

Moreover, the fact that TENDER DOCUMENT Spec. Class 0 specifies the ambinet temperature at 65°C is inconsistent with the fact that Vol. III specifies the temperature at maximum 50°C. Therefore, considering the relation with the intrinsically-safe explosion proofing code, the ambient temperature has been decided at 50°C.

(3) The philosophy for the instrumentation design is that the bases as shown below are according to CONTRACTOR's past experiences and as based on TENDER DOCUMENTS.

9.8.2 Det	il engineering design	gn basis of	instrument	ation	
	Check mark: X	Applie	d fully		
(1) Gener					
(a) Inst	rumentation system				
	Fransmitter Y Pneumatic X Electronic	(Signal: (Signal:	0.2 - 1.0 1 4 - 20 mA,	kg/cm ² G) DC 24 V)	
(ii)	Local controller				-
	X Pneumatic:	0.2 - 1.	0 kg/cm ² G		. •
(111)	Local indicator or r		0 kg/cm ² G		
(h) Ann	icable code and stan	ıdard			
and the second second second second	Electrical equipment		NEC X	jīs	
and the second s	Flange and fitting			jis	
(iii)	2. 2. 2. 2		 Compared to the compared to the c	JIS	
	Material	医格尔氏 法产生的	ASTM X	jis	٠
(v)	Installation	X •••	API RP		
(C) Ins	crument housing				
(i)	Transmitter (conver	ter)			
	x Waterproof	type (for	ntrinsic sa	afety type)
	z Explosionpro				
		ca			
	9-	91		•	

(ii) Local indicator (gauge)

X ... Weaterproof type

(iii) Local switch

X ... Weatherproof type (for Intrinsic safety type)

Z ... Explosionproof type

(iv) Board instrument and equipment

X ... General type

(v) Others

X ... Barrier (for Intrinsically safe circuit)

(d) Colour

X ... Manufacturer's standard

Y ... Specified as follows

(i) Local instrument

o Pressure gauge : Manufacturer's standard

o Thermometer : ditto

o Transmitter : ditto

o Other local instrument: ditto

o Control valve

Body : Silver

Actuator : Red or yellow

anti apaidi a manis inperioliti

(ii) Board instrument : Manufacturer's standard

(iii) Control board

Board face : Light green finish

o Channel base : Green

o Inside : Light green

- (e) Spare parts (i) Complete spare instrument is not required. General spare parts for 12 months use. (ii) X ... Chart, X ... Pen, (2) Instruments 医性性性坏坏 计多级计 Pressure gauge (a) (i) Accuracy : X ... ±1.5% Gadager a fact ger was lake tomorra tyck kan in met och fill (ii) Zero adjustable pointer is required. Pagasal to sign with Blow out disc is required. (iii) prince professional leading the leading strain of an expension of the Connection: X ... 1/2" (iv) X ... Wrench flat X ... Bottom Z ... Back Dial size : Z ... 200 mm (8") Ø (v) x ... 100 mm (4") ø . 75 mm (3")ø Syphon type: Z.... JGS (vi) (vii) Adapter : Z ... JGS The Company of the Co (b) Pressure instrument/differnetial pressure instrument Z ... Bellows (i) Type X ... Diaphragms
 - (ii) Connection: X ... 1/2" NPT 2 ... 1/4" NPT

wash was any improved by X ... Bourdon

(iii) Local indicator is required.

(c) Flow instrument

- (i) Differential pressure type
 - Orifice assembly
 - o Design basis: X ... ASME
 - o Quantity

expression: Liquid: X ... kl/hr at 15°C

Gas/Vapor: X ... Nm3/hr (at 0°C)

Steam : X ... kg/hr

o Orifice tap: X ... Flange tap for up to 8 inches

Z ... Radius tap for above 10 inches

slip-on flange

PROVISO: Weld neck type flanges shall be used

flange tap.

o Standard differential pressure

X ... 2,500 mm (100") W.G

- Instrument
 - o Connection : X ... 1/2" NPT

 $Y \dots 1/2$ " butt weld

o 3-valve manifold is required.

X ... Block type

Y ... Piping type

- o Local indicator is required.
- o Local

recorder : 2 ... 24 hr spring chart drive

X ... 7 day spring chart drive

- (ii) Positive displacement type
 - o Accuracy : X ... ±0.5%
 - o Transmitter is not required.
 - o Temperature compensation is not required.
 - o Strainer is required, if necessary.
 - o Air releaser is not required.

(iii) Turbine type

- o Accuracy : X ... ±0.5%
- o Temperature compensation is not required.
- o Strainer is required, if necessary.

(iv) Area type

- o Accuracy : X ... ±2%
- o Taper tube: Y ... Metal Z ... Glass
- o Transmitter is required, if necessary.
- (d) Temperature instrument
 - (i) Element : X ... Filled type
 - (ii) Instrument : X ... With temperature compensation

(iii) Well

- o Type : X ... Drilled bar-stock
- o Connection: X ... Flange 1", 1-1/2"*1 or 2"*2
 Y ... Screw 3/4"

Well type selection shall be in accordance with TENDER SPEC. VOLUME IV Para. 2.2

*1 1500# and over services will be used 1-1/2 flange.

*2 Flange 2" will be used for special service.

(e) Temperature gauge (thermometer) : Z ... Filled type Element (i) X ... Bimetal type Type : X ... Direct (ii)Z. . . Capillary Dial size : 100 mm (iii) Gauge connection: X ... 1/2" NPT (iv) : Refer to Para. 4.3 (v) Well · 自己的 《唐·黄山》(1864年),第二年中国,第二年中国 (f) Thermocouple one fil Na Kingki es leus quayo Applicable standard: X ... ANSI (i) Thermocouple (ii)X ... CA Material: Y ... CC Z ... General for flue gas service X ... Metal sheath (sheaths material: 304 22 generally) 2 ... 8 AWG for flue gas service Diameter: X ... 16 AWG for metal sheath type Z ... Other for special service (ex. RX temp.) Well Refer to Para. 4.3 Terminal head: X ... Weatherproof type

9-62

Carling Comment on School has lightly the comment of the wine

类的 医乳腺病 医抗性性 医电影 医动物 的复数医原物

(v) Junction to be non-grounded type

(iv)

	· Andrew Angle (Angle Belleville) (Angle Angle
(a) Re	sistance bulb
	Element
	o Material : X Pt 100 ohm at 0°C
	o Lead Wire : X 3 wire
	o Tune Y Metal sheath
(ii)	Well: Refer to Para. 4.3
(iii)	Terminal head: X Weatherproof type
(h) Le	vel instrument
(i)	Displacer type
	o Displacer: X External
	2 Internal
	o Connection: X 1-1/2"
taya waka di	Differential pressure type
***	o Instrument: Z Bellows
	X Diaphragm
	o Connection: X 1/2" NPT for both side
	Z 3" flange for high and 1/2" NPT for low side
	Z 3" flange for both side
	o Local indicator is required.
(iii)	Ball float type
	o Float X External
	Z Internal
	Very State of the state of the size of the state of the s
grade de la company grade de	
	29-63

o Connection: X ... 1-1/2"

y ... 1"

Y . . . 4

o Alarm switch is required. If necessary.

(i) Tank gauge

(i) Indication: Z .. Direct

X .. Remote Z .. Pneumatic

X .. Electronic Z .. Analogue

X .. Digital

(ii) Alarm contact is not required.

(iii) Temperature measuring device is required for Remote type.

(j) Control valve

(i) Valve actuator : X ... Pneumatic diaphragm

Z ... Pneumatic cylinder

z ... Electric motor for off-site

(ii) Valve body

o Connection : X ... Flange

o Minimum size : 1 inch

o Minimum rating: 300 lb ANSI

(iii) Type : X ... Globe type

Y ... Cage type

z ... Angle type

z ... Butterfly type

z ... Comflex type

z ... Parallel slide type

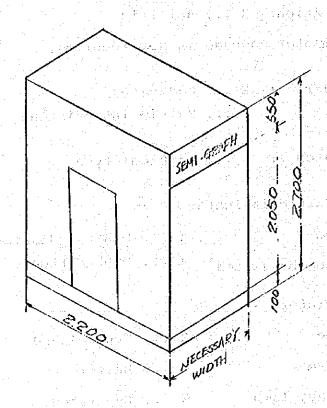
- (iv) Positioner/converter: 2 ... Pneumatic volume booster, if necessary
 - X ... Pneumatic positioner
 - X ... Elec. pneum. converter
- (k) Board Instrument
 - (i) Controller
 - o Type : Z ... Recording cntroller (if required)

X ... Indicating controller

- o Location: X ... Built in
- o Computer cascade is not required.
- (ii) Recorder : X ... Dedicated

Y ... Multipoint printing

- (iii) Indicator : X ... Vertical type
 - (iv) Temperature indicator
 - o Type : X ... Digital display
 - o Selector switch: X ... Push button
 - (v) Annunciator
 - o Type : X ... Centralized
 - o Alarm : X ... Buzzer


kaliki kaliki kata da kata da katika basa terbasa kata keta dalam da maren ili data.

o Relay, lamp : X ... Separated

િલા કાલ માણે દેવી કરે છે. જો માનું પાત્રી માનું પાત્રી તેમાં મોટી તેમાં પાત્રી કરો છે. તેમાં માટે કરો છે. તેમાં પીકીનું માણે પ્રોટીન્સ માનું માહિતા માનું પાત્રી માનું પ્રોટીની પાત્રી માનું પ્રાથમિક પ્રાથમિક પ્રાથમિક

X ... DC 24 V

- (1) Control board (in control room)
- (i) Location: X ... Non-hazardous area
 X ... Air conditioned
 - (ii) Type : X ... Semi-graphic
- (iii) Constructionand approx. dimensions

Miniature type Indicators and Indicating controllers shall generally be located in the top row of Instruments on the panel with recorders located in a 1 % row.

The number of rows of electronic analog instruments shall not exceed three but shall be commensurate with good operator visibility and operation.

The multi-point recorder may be located in a fourth row.

(iv) External connection
Wiring: X ... Lower section

हेर पुरिस्केष्ठ स्ट्री एक्टरी, इन्हर्म बेरिक्ट स्ट्रीन

- (v) Master air set is not required.
- (iv) Power supply diagram for board instruments

 As per Tender Spec. Class 0 Sect. 2, 2.15.5.
- (m) Local Board
 - (i) Location: Y ... Hazardous area for process plants
 Y ... Non-hazardous area for UTILITY plants
 - (ii) Explosionproof equipment is required, if the local panel is installed in Hazardous area.
 - (iii) Pressurizing is required, in case, if it is not able to apply explosion proof equipments.
 - (iv) Constructionand approx. dimensions

 By Package Vendor
 - (v) Master air set is required, if necessary. (Two sets in parallel)

(n) Operator's console desk is required as follows. (i) Equipments: X ... Temperature indicator with selector switch X ... Tank level indicator with selector switch (off-site CCR only) x ... Telephone and paging system define the play ford - bolk to like the (ii) Construction and approx. dimensions Later (o) Gage glass X ... Armord (i) Type Lighting housing: X ... Vapor tight type (ii) $x \dots 3/4^{n}$ Connection (iii) (p) Safety valve x ... Pressure vessel (i) Code x ... Boiler Connection: X ... Flange (ii)z ... Screwed Instrument utility (g) (i) Instrument air Pressure at B/L: Min 7, max. 8 (kg/cm²G) Dew point : -20°C

9-68

Pressure regulator for local instruments

X ... Individual

- (11) Electric power supply
 - o Supply from electric facility
 X ... AC 110 V, 50 Hz, 10

programme and and the second of the second o

things at being chapped in a first the or continue the safe

overkrapiski kom i med om filmer med på lede skille for de toller for en er betar for filmer tre tre. Stall kantikken brita i skendligde i Nelsense bandenser, selv bled. Met skole skendlig sen betar tre tre.

g pleanacht keither aichte fall i in tur die die figelieb bilde ar pitze wie er fere

de automorphism et let af i matema del de la company d

had and begin to the result is updated in the competence in the contract of th

Building the supply of the second of the second second second second second second second second second second

j pakagi kalip ipat sahirpiya jiyo tara 200 milian dibir.

Separation and the property of

and page the state so that the content that the party state of the content to the content of the content of the

o Emergency power supply is required

AC 110 V, 60 minutes hold

Interruption: Non-interruption

9.9 Insulation and painting

9.9.1 Insulation

(1) General

This paragraph describes the thermal insulation work including personnel protection, sound control and fireproofing for piping, fitting, equipment and instrumentation of Export Refinery Project.

(2) Applicable specification

All insulation work shall be carried out in accordance with the following Tender Specification except as set forth in the Proposed Deviations and Exceptions and technical description described herein.

Design Specification P40-LID-73 for Thermal Insulation.

(3) Technical description

- (a) Basically, the application of insulation will be provided in accordance with the requirements of process and mechanical operating conditions for metal temperature control.
- (b) The insulation will not be provided for flare and blowdown system, unless otherwise specified.

(4) Personnel protection

Insulation for personnel protection will be provided for uninsulated lines design temperature over 95°C and to 2 m aboveground level or operating platform.

(5) Material and application

All insulation material will be subject to "Insulation Material List" attached to Technical Proposal. For cold insulation, basically foamed polyurethane is selected as the material of cold insulation depending on the superior properties of lesser thermal conductivity and bulk density as compared to foam glass.

Detailed application and procedure for hot and cold insulation will be submitted later at the commencement of project.

Painting

General (1)

This paragraph covers the Painting Work for the Export Refinery Project.

AND THE PROPERTY OF THE SECOND PROPERTY OF THE Applicable specification

The painting work will be done, as a rule, in accordance with KIC Spec. P42-LID-72 of TENDER DOCUMENT, Matters not specified clearly by the same will conform to this.

是一个一个一个一个

The following items will be painted. (a)

			Type No.
(1)	Structural steel, support (Internal, and external)	Colored Silver	No. 1-1 No. 1-2
(ii)	Piping	Colored Silver	No. 1-1 No. 1-2
(iii)	Piping on the sea	Colored	No. 6
(iv)	Stack & furnaces, heat exchanger		
	Below 150°C		No. 2-1
	150°C to 400°C		No. 2-2
	Below 600°C		No. 2-3
(v)	Vessels and tanks, stairways,	Colored	No. 1-1
	ladders	Silver	No. 1-2
(vi)	Floating roofs and spheres		No. 3
(vii)	Under the insulation		No. 4

Type No.

(víii) Immersed to water, etc. No. 5

aleksiya pajagi ya ka a lejani. Militin kinadeni i dan eksa esileten Under sea water, etc. (ix)

No. 5

- Piping, ducts, supports of (x) by others instruments
- Piping, ducts, supports (xi) of electrical equipment by others

respondent and the property of the control of the c

figure and beauty for a fall and a consumption for the figure for the figure and a figure for the figure for th

ika kiji po ka maa in biyaha kika mili kiban in

ali yan ili waka kan harifa ni lipata kata ali ahiri ka maka masaki

Touch-up of equipment which (xii) are finish coated by the fabricator. (e.g. pump, comp. & driver, instrument, electric equip. and package : by others equip., etc.

- "Type No." will conform to "Coating Type List" attached to (b) proposal. As a rule, priming and finish coating will be applied twice respectively and their classification will be as follows.
- Items already primer-coated by the equipment fabricator will conform to the procedures indicated in "At Site" and will be subject to surface preparation, touch-up, primer, middle, and finish coat respectively.
 - Those to be fabricated at the site will be in accord-(ii) ance with the procedures indicated in "At Site" and two primer coats, one middle and finish coat will be applied.

- (3) Instructions for application
 - (a) Surface preparation (Steel surface preparation)
 - (i) Surface preparation will be in accordance with one of the following methods.(The method to be used for each item is indicated in the Painting Specification).
 - o Near white blast cleaning
 - o Power tool cleaning
 - o Hand tool cleaning

The following are definition of various methods of surface cleaning.

The surfaces to be painted are cleaned by blast cleaning before painting in accordance with the Steel Structure Painting Council SSPC-SP-10-63T.

The surface to be painted is cleaned by blast cleaning, until at least 95% of each element of surface area is free from all visible residues.

- Power tool cleaning -

The surfaces to be painted are cleaned by power tools cleaning before painting in accordance with the Steel Structure Painting Council SSPC-SP-3-63. Removal of loose millscale, loose rust, loose paint, and other foreign matter to the degree specified by power tool cleaning; (power wire brushes, power impact tools, power grinders, power sanders, or a combination of these methods).

- Hand tool cleaning -

The surfaces of galvanized metal to be painted are cleaned by hand tool cleaning, before painting in accordance with the Steel Structure Painting Council SSPC-SP-2-63.

Remove of white rust by sanding.

(ii) Cautions for surface preparation

- o Work will be done carefully not to injure the materials.
 - Work on edges, corners, angles and other complicated parts of shaped steel will be done with special care.
 - o Grease occurring in welding or rivetting will be scraped off carefully.
 - o Welding spatter and flux will be removed.

(b) Painting

Painting method will be selected according to type of paints and materials to be coated.

- (i) Brushing or roller coating
 - O Brush or roller coating will be used for paint whose "Dry to Touch" is slow.

In painting, brush or roller will be applied in lengthwise direction throughout till all the area is once covered, then recoated out broadwise, and finished lengthwise.

Care will be taken not to allow paint to "Sag" or "Flow".

At areas where application is joined, the borderline will be lapped one-forth the width of the brush.

o Brushing operation will be as follows:

Soak the brush with sufficient paint. First place the paint at several parts of the area and then spread it uniformly with as wide an action of the brush as possible. In finishing, the paint will be applied light.

(ii) Air spraying

Air spraying may be used to apply paints which dry quickly.

o It is often used in painting parts of machines and small articles.

Air pressure will be around 3.5 - 5 kg/cm²G and will depend on the viscosity of the paints.

- o Air spraying is performed vertically on the surface at a distance of 20 30 cm from the surface.
- o Moving speed of the spraygun will depend on paint viscosity, but it will be moved parallel to the surface at a speed of around 50 cm/sec.

(iii) Airless spraying

Airless spraying is preferable for all applications wherever possible.

Careful attention is paid to select the most suitable nozzle tip.

In general, operation conditions of spraying are as follows:

- o Primary pressure: 4-- 5 kg/cm²G
- o Spraying distance: 30 40 cm
- o The gun to be moved in parallel with and vertically to the surface.

(iv) Touch-up painting

Touch-up painting for finish coat is applied as a minimum in the following cases.

- o Spots
- o Swells
- o Cracks
- o Strip-off
- o Creases
- O Discoloration
- O Other improper painting

Touch-up painting of the prime coat is applied to portions damaged during transportation, handling and/or construction, before application of successive coats.

(c) Application

- (i) Painting is done with the most suitable method such as brush painting, airless spraying or roller coating in accordance with paints, materials, painting conditions, etc.
- (ii) Paints will be stored in special areas with careful consideration to fire prevention, ventilation, screening from direct rays of the sun and rearrangement after use.

(iii) Mixture of paint

o Paints are used after thorough stirring.

- o In mixing multi-component paints, it is necessary to mix them according to exact mixing ratios in accordance with the manufacturer's standards.

 And the mixed paints will be used for painting within the regulated pot life.
- o Thinner to dilute paints will be used within the regulated quantity.
- o Paints with a different base will not be mixed together.
- (iv) Painting work will not be done under the following conditions:
 - o Bad weather such as rain or fog
 - o Sandstorms or strong sea winds
 - o Temperature +5°C or below
 - o High temperatures of material surfaces which are inappropriate for applying paint
 - (v) The first prime coat is applied as soon as the surface preparation is done. If application of the prime coat is impossible due to bad weather or schedule, surface preparation will be done again before the prime coat is applied.
- (vi) Successive coats will be applied after confirming the dryness of the former coat and also repairing parts where it is injured, omitted from painting, abnormal film of paint or marked by foreign substances.

- (vii) Surface where dew is deposited or expected to be deposited will not be painted. If the painting of such surfaces unavoidable, it will be done after the surfaces are wiped clean and dry.
- (viii) Painting will be done carefully to be of an even thickness not forming droplets, holes, unevenness or holidays.

, स्कृतिक स्थिति । स्वयंत्री विश्वास

men, kelalaga dan madapah pagai dalah merendah sebigai berapada

- (ix) Special attention will be paid to complicated parts such as edges, corners, angles, welded points, bolted points, etc.
 - (x) Parts which are difficult to paint after assembly will be painted with the specified paint before assembly.

9.9.3 Fireproofing

(1) General

This paragraph describes the fireproofing work for structures, equipments, skirts and supports.

(2) Applicable specification

The fireproofing work will be done in accordance with KIC Spec. P41-ID69.

(3) Materials

(a) Mortar and concrete

Components ratio of mortar and concrete will be as follows:

	Portla	nd Cement	River S	and	Gray	<u>/el</u>
Mortar		1	 3			
Concrete		1	2		3	

(b) Reinforcements for mortar and concrete

Expanded metal 50 mm mesh, or galvanized wire netting
20 x 40 mm mesh.

Annealed steel wire or galvanized steel wire.

Nuts

(4) Application

- (a) Surfaces to be fireproofed will be free from oils, scales and any other foreign matters.
- (b) Water used for mortar and concrete will be free from foreign matter.
- (c) When ambient temperature are in the range of 5°C and less, fireproofing will not be applied.

- (d) After application of concrete or mortar, the surfaces of concrete or mortar will be kept out of the sun and in wet condition at least 3 days.
- (e) The thickness of fireproofing will be 50 mm standard.
- (f) Fireproofing of skirts will be applied with mortar.
- (g) Fireproofing of legs will be applied with concrete.

langi kaya da Magalalan lan da daga di akka ayas d

- 9.10 Fire fighting system design
 - (1) Fire fighting system will be designed based on the specificationes attached to TENDER DOCUMENT Vol. III.

 Deviationes and exceptiones therefrom will be explained in Technical Proposal, but the following are their supplementary notes.

The most offer

- (2) Piping
 - (a) Piping materials shall conform to piping Specification Class All1 and All2 given in Technical Proposal.
 - (b) Pipe surface corrosion protection for buried pipe will be used POLYKEN PIPELINE TAPE #900, half-width over wrapped spiral wound.
 - (c) Cathodic protection will not be applied to buried pipe.

- 9.11 Sewer and effluent design
 - (1) Sewer and effluent system will be designed based on the specifications attached to TENDER DOCUMENT. Deviations and Exceptions therefrom will be explained in Technical Proposal but the following are their supplementary notes.
 - (2) Sewer piping
 - (a) Piping materials shall conform to Piping Specification Class All1 and All2 given in Technical Proposal.
 - (b) Pipe surface corrosion protection materials are to be polyken pipeline Tape #900, half-width over wrapped spiral wound, with protective Tape #955 and primer coating.
 - (c) Vent pipe at the manhole is to be 4 inch.
 - (d) Soil coverage on piping will be 30 cm minimum.
 - (e) All underground piping will be directly buried.
 - (f) Catch basin will be elbow sealed piping.
 - (g) K-value of sewer pipe (carbon steel) is to be 0.6.
 - (h) Cathodic protection will not be applied to carbon steel piping.
- (3) Open ditch

K-value of the ditch is to be 0.15.

(4) Rainfall intensity

Rainfall intensity shall be 25 mm/hr.

APPENDICES

APPENDIX I

NORTH RUMAILA CRUDE OIL ASSAY

INSTITUT FRANCAIS DU PÉTROLE

BRANCHE CHIMIE RAFFINAGE
Division Physico-Chimic appliquee

IRAQ CRUDE OIL ANALYSIS
IRAQ NATIONAL OIL COMPANY
(BAGHDAD - IRAQ)

INSTITUT FRANCAIS DU PERROLE.

Eranche Chimie-Raflinage

pivision Physico-Chimie Appliquée

Pivision Physico-Chimie Appliquée

Pivision Physico-Chimie Appliquée

Pivision 1973 - Rapport IFP N° 21 029

TRAQ CRUDE OIL ANALYSIS

alight and all property in the control of the reading of the recognished in the control of the second of the control of the co

The first the same of the property of the property of the property of the same of the same

IRAQ NATIONAL OIL COMPANY

A CHARLES OF CHARLES A CHILD AD CARRAQUES CHARLES

M. MADEC

IRAQ crude oil analysis including the following determinations:

as following twee

- Crude oil characteristics.
- TBP distillation narrow cuts with analysis of fractions.
- TBP distillation into wide cuts approximating commercial fractions.
- Analysis of one condensate, six gasolines, three naphthas, one white spirit, one jet fuel, two kerosines, four diesel oils, two heavy diesel oils, four heavy distillates, six residus,

The analytical methods used in this crude study are shown in the back of this report.

At the request of the IRAQ NATIONAL OIL COMPANY, BACHDAD, IRAQ, letters n° B 12/6/15731 dated 3rd July 1972 and n° B 12/6/18213 dated 2nd August 1972, the INSTITUT FRANCAIS DU PETROLE has made the following crude oil evaluation.

Three drums 42 U.S. Gallon, respectively numbered 1, 2 and 3 were received in our laboratories on 31st August 1972 and were registered under the numbers E 2047-1, E 2047-2, E 2047-3.

The analysis is carried out on drum number 3 according to the program given in our on letter n° 8469 dated 10th May 1972 - Appendix 1.

material of the control of the term of the control of the control

Engineer in Charge;

M, MADEC

Rend of Division,

J. DURANDET

		3
	CONTENT	
1.	- CRUDE OIL GINERAL CHARACTERISTICS	6
	andre andre and the state of t	
	Metals content	
	Light hydrocarbons analysis on crude	
	그는 사람들이 사용되었다. 그는 그 사람들은 사람들이 되었다면 하는 것이 되었다. 그는 것이 되었다. 그런 것이 되는 것이 되었다. 그는 것이	
11,	"TRUE BOILING POINT" DISTILLATIONS - MARROW CUTS	9
	andre se de la comitación de La comitación de la comita	i Agric
	Operating conditions as a survivor of the second	10
() () () () () () () () () ()	Distillations - Balances	
	Curves	
	Narrow cuts analysis	17
	Curves	19
e villager Talasado		
111.	"TRUE BOILING POINT" DISTILLATIONS - WIDE CUTS	22
	Operating conditions	23
	Balance of wide cuts distillations	24
		~ 1
1V	CUTS ANALYSIS	26
	Condensate	กร
	Gasolines	27
	Naphthas and white-spirit	28 36
	Kerosines and jet-fuel	41
		44
	"这是我,我们在大说,"我们,我们是我们,我们,我们,我们,我们的时候,我们们会会会,我们的人,不是什么人。"	48
	Residuation	51
	医二氏性神经病 经保险通讯 医囊膜 医囊膜 网络马马克斯克克斯马克斯马斯马斯克 医多氏反应 医乳毒素 化二乙二甲基	
y	TEST METRODS APPLIED	54
		7 7

SAMPLING DETAILS

Field: Rumaila North

Station: Rumaila Degassing Station

Nature of sample : Stock tank oil from Pao outgoing line

Sample container : Three 42 U.S. Gallon drums

Date of sampling: 27th June, 1972

Time of sampling: 14.30 to 18:00 hours

Method of sampling: Cooling the oil by passing 1/2 inch coil in ice water in intermediate drum and overflowing the collecting drum equivalent to its capacity

or or or a subsecutive to see that the section

Pressure at sampling point: 17 kg/cm²

Ambient temperature : 45 °C

Crude oil temperature (after cooling) : 26 °C

Wells on stream during sampling

R-2	3 500	m ³ /	day	
R-4	4050	m ³ /6	day	
R-8	3950		day	111
R-37	3100	m ³ /	lay	

Separation conditions are the following

	Pressure kg/cm ²				Temperature °C			°C
	1 st	2 nd	3 rd	4 th	ıst	2 nd	3 rd	4 th
Bank A	42.5	15.6	1.9	0.85	51	48	43	40
Bank B	41.5	15.0	1.9	0.88	54	52	47	44

The API gravity and Reid Vapour Pressure of crude oil samples in drums are the following:

Drum n [®]	API gravity	8VP
1	34.2	••
2	34.1	•
3	34.3	7.5 1bf/in ²

CRUDE OIL GENERAL CHARACTERISTICS

CRUDE OIL GENERAL CHARACTERISTICS

Characteristics	Results
The Article and the Article an	
Specific gravity 15/4 °C	0.853
Specific gravity 20/4 °C	0.856
API gravity	34/3
Kinematic viscosity	
at 20 °C (cS)	9.72
at 37.8 °C (cs)	6.04
Pour point (C)	- 42
Plash point (°C)	< 20
Reid vapor pressure at 37.8 °C (bar)	0.515
Reid vapor pressure at 37.8 °C (psi)	7.5
Water by distillation (vol. 2)	< 0.10
B.S. and W (centrifuge) (vol. 7)	< 0.10
Total sulfur (wt %)	1.92
Mercaptan sulfur (wt %)	< 0.001
Hydrogen sulfide (w	ni l
Salt content (NaCl)	< 0.0020
Total salinity (w SEE	0.0020
Nitrogen (wt %)	::::::::::::::::::::::::::::::::::::::
Conradson Carbon regidue (wt 2)	5.0
Wax content (wt 2)/	3.7
Melting point of waxes (°C)	53
Asphalt content (wt 3)	0.98
Total acid number (mg KOH/g)	0.03
Strong acid number (mg KOH/g)	nil
Ash content (wt %)	0.008
Calculated cetane index	57
Lower heating value (mth/kg)	10.00%
Gross heating value (mth/kg)	10,690
Characterisation factor KUOP	11.75

METALS CONTENT

Methods applied = atomic absorption

Element	Content (mg/kg)
Sodium	0.5
Potassium	nit
Calcium	9/0.2
Magnesium	< 0.1
Manganese,	OFI
Copper	NOLL
Chromium SEE TAI	3LE-2
Nickel	8.0
Vanadiya	32.0
Lead	2.0
Mon	1.5

LIGHT HYDROCARBONS ANALYSIS ON CRUDE

llydrocarbons	Weight 2	Volume Z
Pthano	0.05	0.10
Propane	0.71	0.69
Isobutane.	JOH	0.35
Normal by Comment	/ D) [7	7 1.88
Isopentan St. L.	101°E"	1.28
Normal pentane	1.64	2.22

"TRUE BOILING POINT" DISTILLATIONS - NARROW CUTS

Control by the second of the second

inger ange Georg Egipt en gjærne i større erend måd om i de gjærne i som ster kærne i som et er. De større erende

lako ayon moder ayak ada ayang mendenak pakeunan beranda beranda beranda beranda beranda beranda beranda beran

"TRUE BOILING POINT" DISTILLATIONS - NARROW CUTS

Narrow cuts TBP distillations are performed on two samples of crude oil: height liters and two liters.

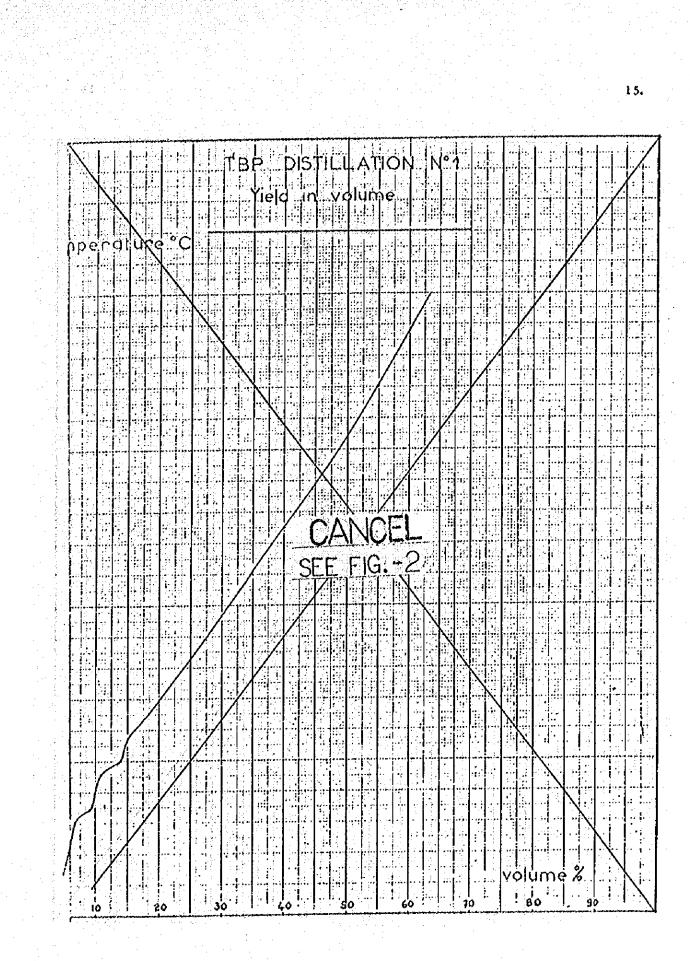
Oldershaw perforated plates columns with the following characteristics are used for fractionating :

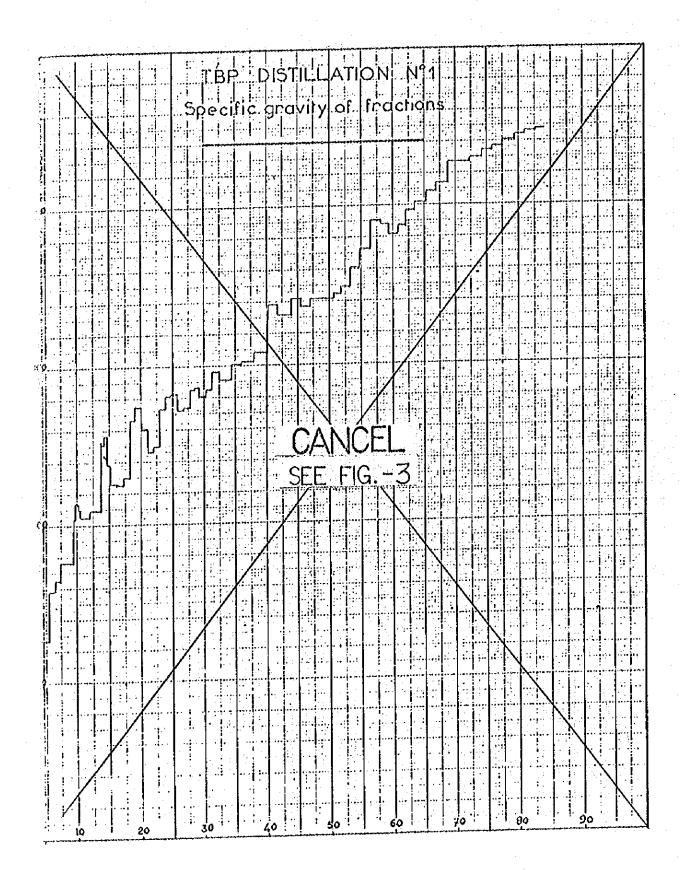
- plate diameter = one inch
- column height = 100 centimeters for thirty plates
 50 centimeters for ten plates

To convert temperatures observed at pressures other than 760 mm Hg to equivalent temperatures at 760 mm Hg, Maxwell and Bonnel vapor pressure-temperature chart is used.

Every fraction is weighed and its specific gravity determined at 15 °C. The volume yields are calculed from these values.

Due to expansion in volume observed when fractionating crude oils, the cumulative percentages in volume are higher than 100 %, the expansion being here of about 0.4 %. This last value has been deduced from the effective volume of the condensate.


TBP DISTILLATIONS - NARROW CUTS


.

Cut and usate 2 3 4 5 6 7	< 20 - 40 - 65 - 65	1.96 2.23	Compared woight 2	Specific gravity 15/4	Volume X	Cumulated volume
2 3 4 5 6	20 - 40 40 - 60		1 1 1 1 1 1			
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 40 40 40 40 40 40 40 40 40 40	65 - 70 70 - 75 75 - 80 80 - 85 85 - 90 90 - 95 95 - 100 160 - 105 105 - 110 110 - 115 115 - 120 120 - 125 125 - 130 130 - 135 135 - 140 140 - 145 145 - 150 150 - 155 155 - 160 160 - 165 165 - 170 170 - 175 175 - 180 180 - 185 185 - 190 190 - 195 195 - 200 200 - 210 210 - 220 220 - 240 240 - 250 250 - 260 250 - 270 270 - 280 280 - 290 290 - 300 310 - 320 330 - 340 340 - 350 350 - 360 360 - 370 370 - 360 370 - 360 370 - 360 370 - 360 370 - 360 370 - 370 380 - 360 370 - 360 370 - 370 380 - 360 370 - 360 370 - 360 370 - 360 370 - 370 380 - 360 370 - 360 370 - 360 370 - 370 380 - 360 370 - 360 370 - 370 380 - 360 370 - 370 380 - 360 370 - 370 380 - 360 370 - 370 380 - 360 370 - 370 380 - 360 370 - 370 380 - 360 370 - 370 380 - 360 370 - 370 380 - 360 370 - 370 380 - 360 390 - 400	2.23 0.77 0.67 1.60 0.22 0.15 0.35 0.22 1.10 1.55 0.47 0.33 0.34 0.93 0.95 0.84 0.70 0.98 0.87 0.68 1.02 0.85 0.65 0.74 1.04 0.77 1.36 1.48 1.76 2.16 1.49 2.19 1.48 1.56 1.49 1.48 1.51 1.56 1.86 1.89 1.91 1.88 1.95 1.91 1.86 1.89 1.91 1.86 1.89 1.91 1.86 1.89 1.91 1.86 1.89 1.91 1.86 1.89 1.91 1.91 1.86 1.88 1.95 1.91 1.86 1.88 1.95 1.95 1.91 1.86 1.88 1.95 1.91 1.86 1.88 1.95 1.91 1.86 1.88 1.95 1.91 1.86 1.88 1.95 1.95 1.96	1,96 4,19 4,96 5,63 7,23 7,45 7,60 7,95 8,17 9,27 10.82 11.96 12.89 13.84 14.68 15.38 16.35 17.33 18.0) 18.88 19.56 20.58 21.44 22.41 23.26 24.65 CANO E TAB 22.71 34.87 36.36 38.55 39.99 41.64 43.60 44.63 46.27 47.61 49.39 51.00 52.64 55.48 56.79 58.35 60.21 62.10 64.00 65.77 69.68 71.63 73.14 75.35 77.21 79.09 80.40 100.00	0.552 0.627 0.658 0.665 0.676 0.704 0.714 0.713 0.709 0.705 0.709 0.751 0.756 0.738 0.725 0.738 0.726 0.737 0.766 0.775 0.761 0.766 0.775 0.761 0.766 0.775 0.782 0.772 0.774 0.785 0.786 0.772 0.774 0.785 0.786 0.838 0.832 0.842 0.842 0.845 0.859 0.861 0.873 0.842 0.845 0.859 0.861 0.873 0.869 0.887 0.697 0.902 0.909 0.914 0.927 0.902 0.909 0.914 0.927 0.935 0.935 0.937 0.941 0.947 0.947 0.947 0.947 0.948	2.56 3.03 1.00 0.86 2.02 0.27 0.18 0.29 1.23 1.64 0.53 0.37 0.39 1.09 1.12 0.98 0.78 1.07 0.78 1.07 0.94 0.71 0.94 1.07 0.94 1.07 0.94 1.59 1.87 2.28 1.52 1.56 1.57 1.56 1.57 1.56 1.57 1.76 1.77 1.76 1.76 1.77 1.76 1.76 1.7	2.56 3.59 7.45 9.47 9.74 9.74 9.92 10.34 10.60 11.93 13.79 15.08 16.17 17.29 18.27 19.05 20.12 21.22 22.00 22.99 24.85 27.80 26.86 27.80 26.81 27.80 28.81 29.31 30.44 31.28 32.67 34.51 36.09 37.96 40.24 41.76 45.47 45.47 45.47 47.15 48.73 56.50 58.07 58.67 58.77 58

				TACAMBANAANAANAANAANAANAANAANAANAANAANAANAANA	A UMAAA I III TUU TARAA MAA	aso oranganisia, ocus, rusya tak
Cut	Temporature C	Waight 2	Comulated weight 2	Specific gravity	Volume 2	Cum, lates volvne
Consentate	< 20	1.98	1.98	C. 558	2.54	:/51
1 \	20 - 40	2.17	4.15	0.623	2.97	£ 51
2 \	40 - ω	0.80	4.95 5.90	0.653 0,665	1.04 1.22	6.55
3 \	65 - 70	0.95	7,07	0.676	1.48	9.25
i	70 - 75	0.37	7.44	0.692	0.46	5.71
6	λ § − 80	0.25	7.69	0.702	0.30	10.01
7	80\- 85	0.25	7.94	0.706	0.30	10.31
8 9	90 - 95	0.41	8.35 9.24	0.706 0.703	0.20 1.08	11.69
10	95 - 100	1,41	10.65	0.712	1.69	13.58
îì	100 - 103	0.61	11.26	0.733	0.71	14.29
12	105 - 115	0.89	12.15	0.738	1.03	15.32
13	115 - 120	0.70	12.85	0.728	0.62	16.14 2
14	120 - 125 125 - 130	1.06 0.86	13.91 14.77	0.726	1.25	5.39
15 16	130 - 135	3.70	15.47	0,758	0.74	13.18
17	135 - 140	0.87	16.34	0.770	0.96	25.14
18	140 - 145	0.88	17.22	0.16%	0.98	21.13
19	145 - 150	0.89	18.11	0,751	1,01	22.13
20	150 - 155	0.81	18.02 19.66	0/154 8.167	0.92 0.82	23.05
21 22	155 - 160 160 - 165	0.81	20.57	0.777	0.85	3-, 76
23	165 - 170	1.00	21.47	0.779	1.09	25.35
24	170 - 175	0.94	22,41	0.774	1.04	26.89
25	175 ~ 180	0.83	23.24	0.775	0.91	27.80
26	160 - 185	0.69	CANIC	^ 781	0.75	29.55
27	185 - 190 190 - 193	0,72 0,90		たし ¹⁸⁴	0.78	29,33 ģ 33,31 g
28 29	195 - 200	0.92	26.4	0.785	1.00	3: 71
30	200 - 210	1.73	28/20	0.799	1.85	33,16
31	210 - 220	1,60	2/9.80	0.792	1.72	34.88
32	2 20 ~ 230	1.57	/31.37	0,504	1.67	36.55
33 34	230 - 240 240 - 250	1.76	33.13 34.85	0.803 0.817	1.87	40.22
35 35	250 260	1.45	36.30	0.822	1.50	41.72
36	260 - 270	1.66/	37.96	0.828	1.71	43.43
37	270 - 780	1.4/	39.37	0.835	i .43	44.86
3.8	280 - 240	2,65 7,42	41.42	0.839	2.07 1.43	46.93
39 40	290 - 300 300 - 310	1.59	42.84 44.43	0.842	1.60	49.96
41	310 - 320	1.62	46.05	0.846	1.63	51.59
42	320 - 330	7 1.79	47.84	0.861	1.77	53.26
43	330 - 343	2.02	49.86	638.0	1.99	55.35
44	343 - 35/	1.55	51.41	0.876 0.882	2.07	56.86 B
45 46	350 - 360 360 - 370	2,14	53.55 55.03	0.884	1.\3	10,36
47	370 / 380	1,16	56.19	0.892	1.1)	61.47
48	369 - 390	1,12	57.31	0.887	1.08	€2,55
/49	390 400	1.53	58.87	0.893	1,46	64,01
50	/ "	3.27	62,11	0.905	3.08 3.03	15.12
51 6 52	•	3,25	65.36 68.78	0.915	3.15	V3.27
ا / دُرُ	_	2.79	71.57	0.933	2.55	N. 82
54	- 1	2.66	74.23	6.934	2.43	3.73
35/	1	3.15	77.38	0.945	2.84	3.00
1/4		3,40	60.73	0.955	3.04	
Résidue	*	19.22	100.00	1.033	15.87	350,00 / [

TBP DISTILLATION - NARROW CUTS ANALYSIS

Several determinations are made on TBP cuts distillation number one.

- Pour points ;

14 cuts are tested according to the ASTM method D 97, in the dissel oils and lube oils range.

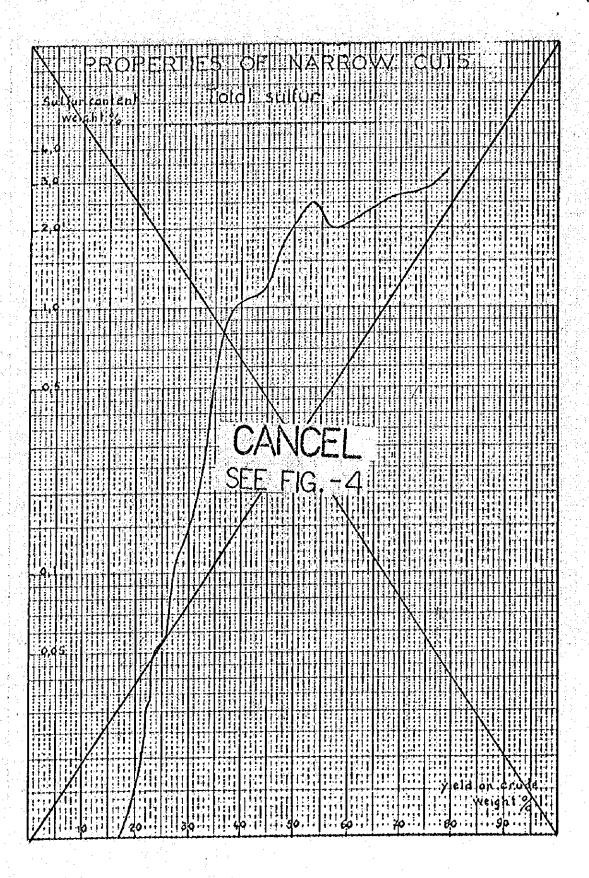
- Aniline points :

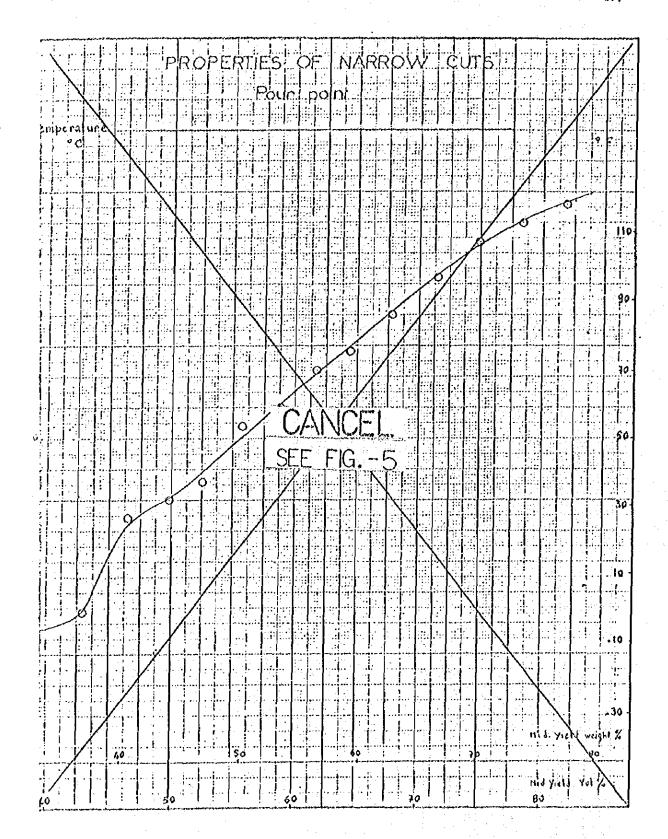
The 10 first determinations are made by the NF method M 07-021, and the last 5 by the ASTM method D 611.

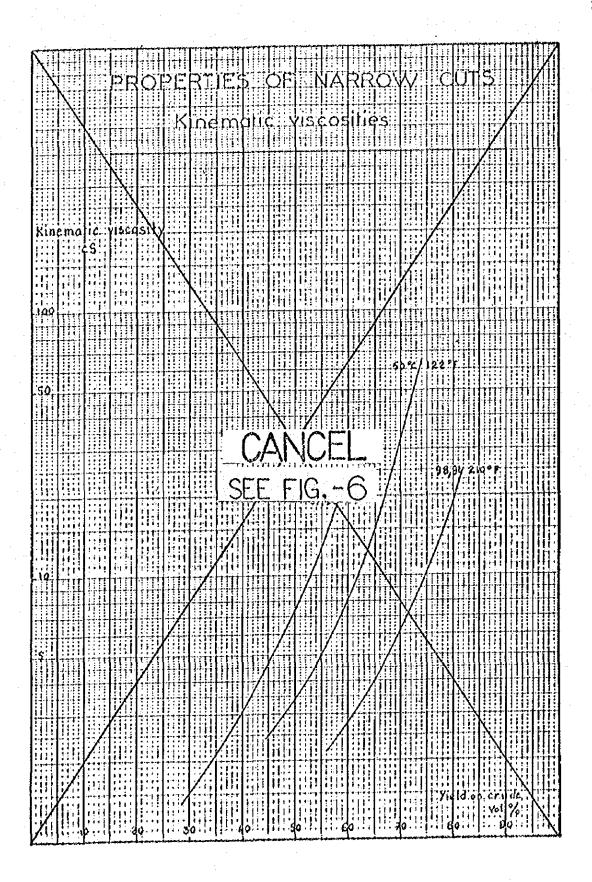
- Aromatic hydrocarbons content;

Cuts from 23 to 37 are tested by the ASTM method D 1319 and following cuts by the ASTM method D 1019.

- Sulfur content :


Determination of sulfur content is made by UOP method 727-72 until cut number 35 and then by ASIM method D 1551.


- Kinematic viscosity

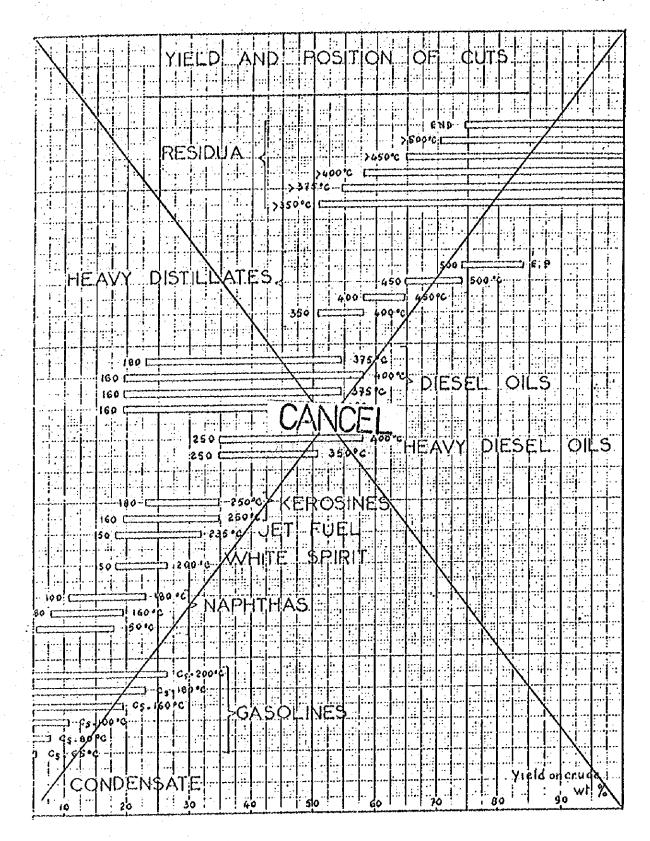

9 determinations are made at 20 °C, 9 at 50 °C and 7 at 98.9 °C (210 °F) according to the ASTM method D 445.

NARROW CUTS ANALYSIS

lesperature C	Sulfur content ucight X	Aniline point *C	Aronatica content 7 volume	rour point	Kinumatic viscosity (c5)			6 7	kofrective
					20 °C	30 °C	96,9 °C	filop	index et 70 °C
. 20			***************************************			4.041.03			
20 - 40	4 2 1	l ·	· .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100			13.00	1.3500
40 ~ ω	0.00014	[1				12.70	1,3760
(0 - 65		· · · · · ·	1					12.55	1.3603
65 - 70 70 - 75		1					1.1	12.10	1,3938
75 - 80								12.00	1.3576
80 - 85	0.00013		1. Y 1.					12.10	1.3960
85 - 90	100							12.20	1.5975
90 95	0.00011	i.	1.7				\$ 550.00	1 2 30	1.3972
95 - 100 100 - 105	0.00011			·				11.70	1.4195
105 - 110		}		es	·			13.65	.4230
110 - 115	0.00058			1		1.0		13.00	1,4132
115 - 120] :			1.		12.25	1,4066
120 - 125								17.30	1,4025
125 - 130	0.0022	ì ì			1 1			11 .75	1,4300
130 - 135 135 - 140		green the second	1		127			11 65	1.4350
140 - 145		52.6			1.1		3. 41	11 .90	1.4261
145 - 150					1 8 4	34 4 7 4		12.20	1.4175
150 - 155	0.0117	52.8			14.1			1) 85	1,4330
155 - 160 .		48.5	24.0			!		11.80	1.4380
160:- 165		40.2	24.0		80 30	Contraction	100	11.85	1.4380
165 - 170 170 - 175	U.0310	36.5	15.3				11.	12.05	1,4370
175 - 180	******							12,05	1.4330
180 - 185	0.0550	56 6	19,8				and the	11.90 11.95	1.4220
185 - 190					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5	12.05	1.4360
190 - 195	0.0565	63.2	14.1	200	1.55	1974	Marcon	2.05	1,4380
195 - 200 - 200 - 210	0.103	61.1	18.8		••••			11.95	1.3440
210 - 220	0.203	0	'''		1.92			12.10	1.4407
220 - 230	0.14	66.3	17.2					12.05	1,4460
230 - 240		1			2.40	}		12.10	1,4470
240 - 250	0.45	69.6	18.4	- 21	3,35			11.75	1.4690
250 - 260	0.00	69.7	29.6	- 18	3,33			11.90	1.4650
-2(c) - 270 270 + 280	0.98	03.7	****		4.50	4.00		11.80	1.673.0
280 - 290	1.11	72.1	25.0	- 3				11.95	1.450
290 - 300		·.	100	3,344	6.35	3.06	(A) (A) (A)	11.95	1.4(88
300 - 310	1.18	76.1	25,0	0	نه م	3.65		12.05	1.4690
310 - 320	ا ا		29.0	. و 🔸	8.54	3.82		11.90	1.4785
320 - 330	1.65	75.8	29.0		11.43	4.76	Salt govern	11.95	1.4796
330 - 340 340 - 350	2.06	25.1		+ 12	13.24		100	11.85	1,4872
350 - 360						6.63		11.70	•
360 - 370	2,50	75.1		+ 15				11.80	
370 -/ 380			A	41	attende in the	8.29	2.82	11.95	
360 - 390	1.99		ĺ	+ 21		10.72	3,39	11,85	
390 - 400	2.15			+ 24					
	2.13			•	1.0	17.00	4.58		
	2.24			+ 30					•
-						33.90	6,10		
	2.64	,	3	+ 36		57.09	9.00		
-	•	,	1 1 1 1	444		77,112	7.00		_
- <u>- </u>	2.64			+ 12			12.58		
<u> </u>	, ,,	•		. + 45			· . i		
	2.79					1.	19.80		-
- f	3.27			+ 46	2.1	1]		
									1
_ 1	4.85				I .	1	T		

TRUE BOILING POINT" DISTILLATIONS - WIDE CUTS

WIDE CUTS DISTILLATIONS


The crude oil is fractionated into cuts approximating commercial fractions with perforated plates Oldershaw column, two inches in diameter,

The distillations are performed so :

- Gasolines, naphthas and kerosines with thirty plates Oldershaw columns, 170 centimeters in lenght, at atmospheric pressure and with a 15/1 reflux ratio.
- Diesel oils with the same thirty plates column under an absolute pressure of 40 mm kg and with a 10/1 reflux ratio.
- 350 400 °C heavy distillate with a thirty plates Oldershaw column, under 10 mm lig and with a 5/1 reflux ratio.
- 400 450 °C heavy distillate with a ten plates Oldershaw column, 70 centimeters in lenght, under 1 mm Mg.
- 450 500 °C heavy distillate with an empty column 5 centimeters in diameter and 50 centimeters in lenght under 1 mm kg.
- 500 °C. end point heavy distillate with an evaporation still under a pressure roduced to the lowest level possible.

Detailed analysis of the fractions and blends of fractions prepared in the described manner are shown in the following tables and figures.

				na unersproprista		
The cuts °C	Specific gravity 15/4	Weight Z	Position on crude weight 7	Volume %	Position on crude volume %	TBP cuts
Condendate	0.55	2.1	0 - 2.1	2.8	0 - 2.8	Condensate
Casolines	0,640	3.4	2.1 - 5.5	4.5	2.8 - 7.3	Gasolines C5-149
C ₅ = 65	0.657	5.6	2,1 ~ 7.7	7.2	2,8 - 10,0	C ₅ -176
C ₅ 80	0. 674	8.7	2.1 - 10.8	11.0	2.8 - 13.8	C _S -212
C ₅ -100	0. 11	17.5	2.1 - 19.6	20.9	2.8 - /23.7	C ₅ -320
C ₅ -160	0.721	21.1	2.1 - 23.2	24.9	2.8 / 27.7	C ₅ -356
C ₅ -180	· \	4 1 5 24	2.1 - 26.3	28.3	2/8 - 31.1	6 ₅ ~392
C ₅ -200	0.729	24.2	2,1 - 20,3	2013	<i></i>	
Naphthas	J- 11.			11 5	7.3 - 21.8	Naphthas 149-302
65-150 80-160	0.724 0.737	12\3	5.5 - 17.8 7.7 - 19.6	14.5	10.0 - 2.37	
100-180	0.758	12.4	10.8 - 23.2	13.9	13.8 - 27.7	21 2-3 56
White-spirit	e)				White-spirit
150-200	0.777	8.5	17.8 - 26.3	9.3	21.8 ~ 31.1	302-392
Jet-Puel 150-235	0.783	14.0	17.8 31.8	15.3	21.8 - 37.1	Jet-Fuel 302-455
Kerosines			CANCI		23.7 - 40.1	Kerosines 320~482
1 (0-2 50 180-250	0.792 0.797	15.2	23.2 34.8	12.4	27.7 - 40.1	356-482
Diesel-oils			/ }	\		Diesel-oils
160-350	0.817	31.2	19.6 - 50.8	32.6	23.7 - 56.3	320-662
160-375	0.825	35.0	/19.6 - 54.6 19.6 - 58.2	36.2 39.7	23.7 - 59.9 23.7 - 63.4	3 20-707 3 20-7 52
160-400 180-375	0.830 0.831	38.6	23.2 - 54.6	32.2	27.7 - 59.9	356-707
Heavy				. \		Heavy
Diesel-oils	1 14				1.00	Diesel-oils
250~350	0,845	16.0	34.8 - 50.8 34.8 - 58.2	16.2 23.3	40.1 - 56.3	482-662 482-752
250-400	0.838	//317	34,0		111	lleavy
lloavy distillates	_ /	1				distillates
350-400	0,885	7.4	50.8 - 58.2	7.1	56.3 - 63.4	662-752 752-842
400~450 450~500	0.913	6.5 5.7	58.2 - 64.7 64.7 - 70.4	6.1 5.3	63.4 - 69.5	
500-End point	0.938	8.6	70.4 - 79.0	7.8	74.8 - 82.6	932-End point
Residua						Residua
> 350/	0.960	49.2	50.8 - 100.0	43.7	56.9 ~ 100.0 59.9 ~ 100.0	> 662 > 707
> 378 > 400	0.966	45.4	54,6 - 100,0 58,2 - 100,0	40.1 36.6	63.4 - 100.0	> 75%
3 450 450	0.985	35.3	64.7 - 100.0	30.5	69.5 ~ 100.0	> 842
/> 500	0.998	29,6	70.4 - 100.0	25.2	74.8 - 100.0 82.6 - 100.0	> 932 End point
End point	1.027	21.0	79.0 ~ 100.0	17.4	2412 EVVIV	

CUTS ANALYSIS

To obtain debutanized gasolines, the distillation column is put for two hours at total reflux before collecting the condensate. The column head is cooled by circulation of alcool at a temperature about - 40 °C.

Yields of condensates obtained by this way are 2.1 weight 7 on crude.

The condensates are analyzed by gas chromatography. The average of several distillations gives the composition shown below.

Specific gravity calculated from this composition is 0.550.

Composition	Weight X	Volume 2
Ethane	1.9	2.9
Propane	JCFI (29.2
Isobutane	1417	12.1
Normal butane	55.2	52.4
Isopentane	3.8	3.4

GASOLINES

CHARACTERISTICS

					400 WATER TO THE PER	
9000	C ₅ 65	C ₅ - 80	C ₅ -100	C ₅ -160	C ₅ -180	C ₅ -200
TBP cuts	C ₅ -149	C5-176	C ₅ -212	C ₅ -320	0 ₅ -356	C ₅ -392
j on crude (wt 2)	3.4	5.6	8.7	17.5	21.1	24.2
i on crude (vol. Z)	4.5	7.2	$\triangle V$	në i	24.9	28.3
ing range (wt 2)	2.1-5.5	2.1- 7.2	W-11.		2.1-23.2	2.1-26.3
ing range (vol. 7)	2.8-2.3	2.8-10.0	2.8-13.8	2.8-23.7	2.8-27.7	2.8-31.1
fic gravity 15/4	-0:640	0:65	· · · · · · · · · · · · · · · · · · ·		0.721	0.729
[ravity	89.6	-83-8	EE FIC	a / -	64.7	62- 5 -
ictive index at 20 °C	1,3665	1.3720	1.3801	1.4002	1,4050	1.4100
eterisation factor MOP	12,95	12.75	12,60	12,30	12.20	12.10
: Saybolt	> + 30	> + 30	> + 30	> + 30	> + 30	> + 30
vapor pressure at 100 °F (bar)(psi)	1.01 14.7	0.83 12.0	0.59 8.5	0.39	0.34	0.31 4.5
r content (wt %)	0+ 00020	0.0 S[E FIG.	-9.95	0.0073 -	0.0145
pean sulfur content (wt %)	nil	nil	ni1	nil	nil	nil
r test	negative	negative	negative	negative	positive	positive
ent gum content (mg/100 ml).	1	1	1	naudariji Nobel	1	1
r strip corrosion jurs at 50 °C)	1 a	1 a	1 a	2 b	2 d	2, c
gen sulfide content (wt %)	nii	nil;	nil	ni1	0.0003	0,0005
tics content (vol. %)	< 0.5	1.0	1,5	6,3	7.4	9.2
ne point (°C)	71.1	67.3	64.9	59,2	58.4	58.2
es content (vol. %)	2.5	1.1	0.9	0.5	, + ,	**
rch octane number				46	45	42
4 cm ³ /US gal. TEL.(0,3 %) 7 cm ³ /US gal. TEL.(0,6 %)	72 84 89	66 78 83	59 70 78	60 68	57 65	53- 62
octane number	70	64	57	47.	45	42
4 cc/US gal. TEL.(0.3 %) 7 cc/US gal. TEL.(0.6 %)	82 87	77 * 84	71* 78	62 70	58 67	54 62

se values are obtained graphically

CHROMATOGRAPHIC ANALYSIS OF C5 - 65 °C GASOLINE

llydrocarbons	Boiling point C	Specific gravity* 15/4 °C	Weight Z on cut
Propano.,	- 42.07	0.508	0.15
Isobutane	- 11:73	0.563	0.24
Normal butune	- 0.50	0,584	1.98
Isopentane	27.85	0.624	20.76
Normal pentang	36.05	0.631	38.79
Cyclopentane	49.26	0.750	1.89
2-2 Dimethylbutane	49.74	0.654	0.49
2-3 Dimethylbutane	57.99	0.666	2.31
2 Nethylpentane	60.27	0.658	14.71
3 Methylpentane	63.28	0.669	9.40
Normal hexane	68.74	0.664	**** 8.13
Methylcyclopentane	71.81	0.753	0.61
Benzene	80.10	0.884	0.45
Cyclohexano	80.74	0,783	#
2-3 Dimethylpentane	89.78	0,699	0.01
2 Methylhexane	90.05	0,683	0.02
3 Methylhexane	91,85	0.691	0.01
Normal heptane	98.43	0.688	0.03

x From API Technical Data Book

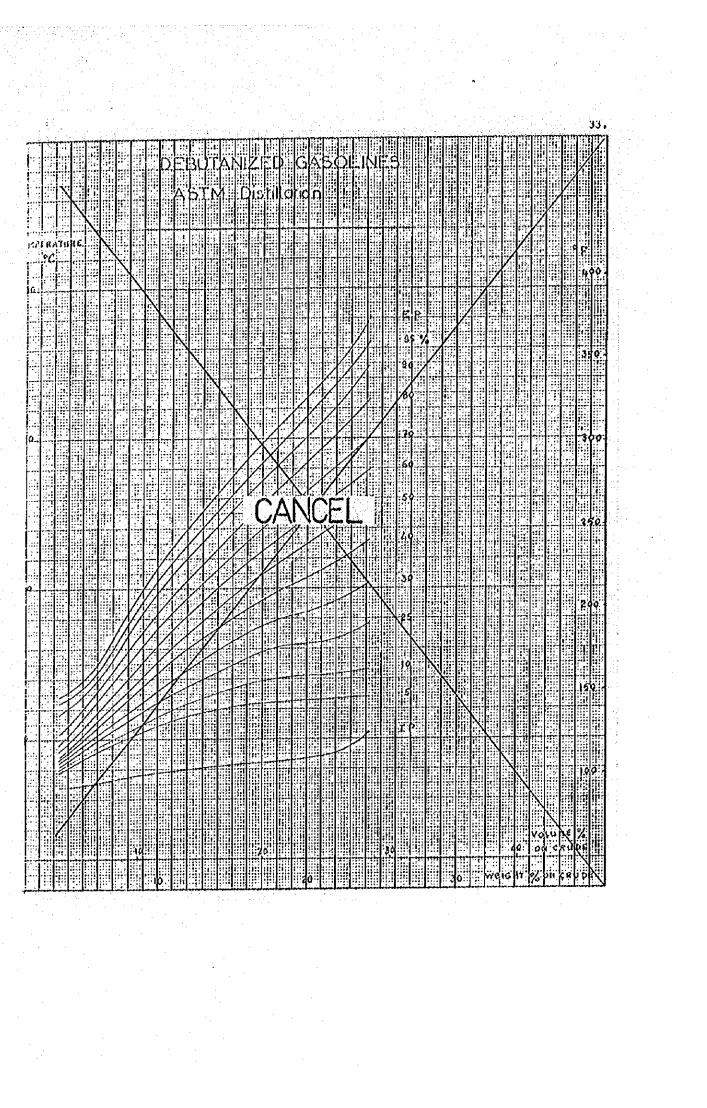
of C₅-80 °C and C₅-100 °C gasolines

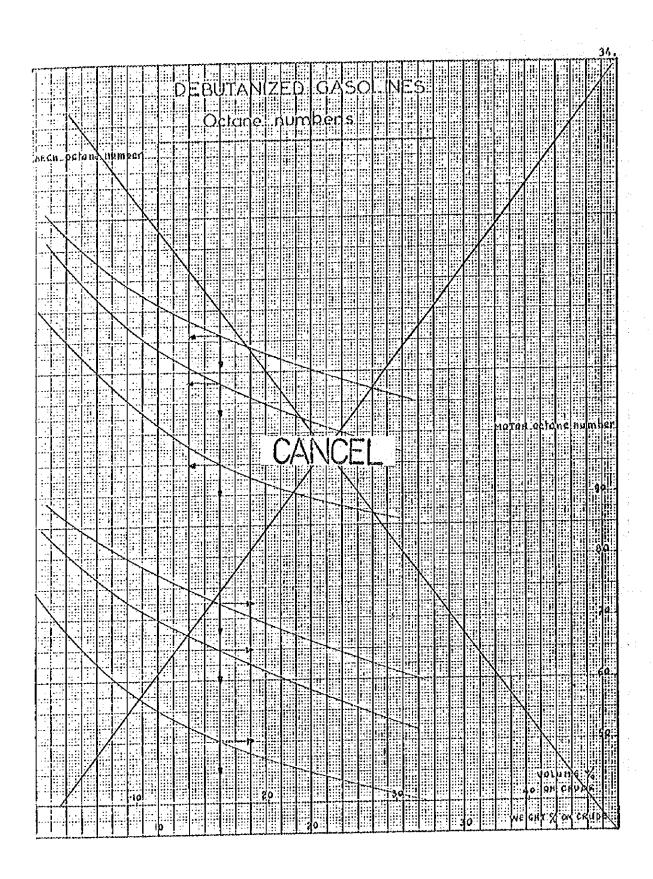
Hydrocarbons Isobutane Normal butane	Boiling* point °C - 11.73	Specific* gravity 15/4 °C	Weight Z on C ₅ -80 °C cut	C ₅ -100 °C
Market Care Control	- 11 72			cut
Market Care Control	7 11 173	0.563	0.06	0.05
170.00	· 0.50	0.584	0.82	0.73
Isopentane	27.85	0.624	15.00	9.40
Normal pentane	36.05	0.631	25.60	16.39
Cyclopentane	49.26	0.750	1.42	0.84
2-2 Dimethylbutane	49.74	0.654	0.31	0.20
2-3 Dimethylbutane	57.98	0.666	1.89	1.38
2 Methylpentane	60.27	0.658	11.91	7.53
3 Methylpentane	63.28	0.669	9,94	6.41
Normal hexane	68,74	0.664	24.60	16.30
Methylcyclopentane	63.28	0.753	3.49	2,60
2-2 Dimethylpentane	79.20	0.678	0.77	0.60
Benzene,	80.10	0.884	1.40	1.05
2-4 Dimethylpentane	80,50	0.677	0.36	0.57
Cyclohexane	80.74	0.783	1.30	2.49
2-2-3 Trimethylbutane	80.88	0.694	0.08	0.01
3-3 Dimethylpentane	86,06	0.697	0.17	0.09
1-1 Dimethylcyclopentane	87.85	0.759	0.04	0.58
2-3 Dimethylpentane	89.78	0.699	0.12	1.46
2 Methylhexane	90,05	0.683	0.32	4.45
1 cis 3 Dimethylcyclopentane	90.77	0.749	0.04	0.63
1 trane 3 Dimethylcyclopentane.	91,73	0.753	0.02	0.82
3 Methylhexane	91.85	0.691	0.23	5.82
1 trans 2 Dimethylcyclopentane.	91.87	0.756	0.02	0.75
3 Ethylpentane	93.48	0.702	0.04	1,17
hormal heptane	98,43	0.688	0.04	13.50
1 cis 2 Dimethylcyclopentane	99.53	0.777	••	0,15
Methylcyclohexane	100.93	0.773	0.01	2.62
Ethylcyclopentane	103.47	0,771		0.31
Toluene	110, 63	0.871	•	0.99
Ethylbenzene	136,20	0.872	94 ·	0.01
E Xvlenes	138,36) at 144,43	0.865) at 0.884	**	0.10

^{*} From API Technical Data Book

CHROMATOGRAPHIC ANALYSIS

of C₅-160 °C gasoline


HYDROCARBONS ARRANGED IN GROUPS OF THE SAME CARBON NUMBER


Carbon number	llydrocarbons by groups	Weight % on cut
C ₄	Normal butane Isobutane	0.37 0.03
c ₅	Normal pentane Isopentane Cyclopentane	10.85 5.80 0.46
c ₆	Normal hexane Isoparaffins Naphtènes Benzene	8.07 7.71 2.25 0.55
c ,	Normal heptane Isoparaffins Naphtenes Toluene	7.57 7.22 4.11 2.13
c ₈	Normal octane Isoparaffina Naphtenea Aromatica	6.25 7.66 4.02 3.98
c ₉	Normal nonane Isoparaffins Naphtenes Aromatics	5,40 7,56 3,92 1,36
c ₁₀	Paraffins (Normal + iso) Naphtenes Aromatics	1.17 1.56 ni1

CASOLINES

ASTM DISTILLATION

the state of the s		T		30		
TBP cuts op	C ₅ 65 C ₅ -149	C ₅ -80 C ₅ -176	C ₅ -100 C ₅ -212	C ₅ -160 C ₅ -320	C ₅ -180 C ₅ -356	C ₅ -200 C ₅ -390
eld on crude (wt %)	3.4 4.5 2.1- 5.5 2.8- 7-3		1	17.5 CEL 2.8-23.7	21.1 24.9 2.1-23.2 2.8-27.7	24.2 28.3 2.1-26.3 2.8-31.1
ASTM DISTILLATION itial boiling point (°C) 5 vol. 7	34 39 40	35: 45:45:	38 52 54	43 62 70	44 63 71	52 64 73
10 vol. 7	41 42 43 44	48 50 52 54 56	58 61 65 69 74	80 89 98 107 115	82 94 106 117 127	88 102 116 129 140
70 vol. 7	48 52 58 62	59 63 67 69	79 84 91 94	123 131 139 145	136 146 156 164 168	151 163 174 182 190
d point (*C)	64 98 0	72 98.5 0 1.5	98 98.5 0.5 1.0	98.5 1.0 0.5	98.5 1.0 0.5	98.5 1.0 0.5

NAPHTHAS AND WHITE-SPIRIT

CHARACTER ISTICS

TBP cuts	65-1 50 149-302	80-1 60 176-320	100-180 212-356	1 50 - 200 302-392
Yield on crude (wt %)	72.3	11.9	12.4	8.5
Yield on crude (vol. %)	14.5	1KÖ	icifi	9.3
Cutting range (wt %)	5.5-17.8	- (J/-\I)	WILL.	7.8-26.3
Cutting range (vol. Z)	7.3-21.8	10.0-23.7	13,8-27.7	21 .8-31 .1
Specific gravity 15/4	0.724) 	7	Q ****
API gravity	63.9-	SEE FIC		O 15-
Refractive index at 20 °C	1.4058	1.4128	1.4248	1.4350
Characterisation factor KUOP	12.15	12,15	12.05	11.90
Color Saybolt	> + 30	> + 30	> + 30	> + 30
Reid vapor pressure at 100 °F (bar)	0,160 2,32	0.093 1.35		
Sulfur content (wt Z)	0.001 C	SEE FIG	39.1	() 4 040
Hydrogen sulfide content (wt %)		0.00034		0,0030
Mercaptan sulfur content (wt %)	ni1	nil	nil	0.00025
Doctor test	negative	positive	positive	positive
Copper strip corrosion (3 hours at 50 °C)	1 a	2 b	2 d	3 b
Aniline point (°C)	56.6	56.8	55.5	57.2
Freezing point (°C)				< - 63
Flash point (°C)				46
Arsenic content (ppb)		< 5	< 5	
Lead content (ppb)		< \$	< 5	
Total acid number (mg kOll/g)		0.01	0.03	0,04
Research octane number				20
t 1.14 cm ³ /US gal. TEL	43 55	38 50	32 45	33
+ 2.27 cm ³ /US gal. TEL	65	60	54	45

CHROMATOGRAPHIC ANALYSIS

of naphtha 65 - 150 °C

INDROCARBONS ARRANGED IN GROUPS OF THE SAME CARBON NUMBER

Carbon number	llydrocarbons by groups	Weight % on cut
c ₅	Normal paraffin (pentana) Isoparaffin (isopentana) Cycloparaffin (cyclopentana)	0.36 0.10 0.25
c ₆	Normal paraffin (hexane) Isoparaffins Cycloparaffins Aromatic (benzene)	9.69 4.91 3.14 0.62
c,	Normal paraffin (heptane) Isoparaffins Cycloparaffins Aromatic (toluene)	11.50 10.70 6.10 3.06
c ₈	Normal paraffin (octane) Isoparaffins Cycloparaffins Aromatics (ethylbenzene + xylenes)	8.98 11.34 6.84 5.78
c ₉	Normal paraffin (nonane) Isoparaffins Cycloparaffins Aromatics	4.05 9.19 2.68 0.00
c ₁₀	Total hydrocarbons	0.51

CHROMATOGRAPHIC ANALYSIS

of naphtha 80 - 160 °C

HYDROCARBONS ARRANGED IN GROUPS OF THE SAME CARBON NUMBER

Carbon number	hydrocarbons by groups	Height % on cut
c ₆	Normal paraffin (hexans) Isoparaffins Cycloparaffins Aromatic (benzene)	0.61 0.14 1.22 0.13
c ₇	Normal paraffin (heptane) Isoparaffina Cycloparaffina Aromatic (toluene)	11.71 9.42 6.75 3.14
c ₈	Normal paraffin (octane) Isoparaffins Cycloparaffins Aromatics (ethylbenzene + xylenes)	9.48 11.09 6.44 7.57
c ₉	Normal paraffin (nonane) Isoparaffina Cycloparaffina Aromatica	8.91 10.34 4.78 2.06
c ₁₀	Normal paraffin (décane) Isoparaffins Cycloparaffins Aromatics	0.23 1.99 3.99

NAPHTHAS AND WHITE-SPIRIT

ASTM DISTILLATION

TBP cuts °C	65-150 149-302	80-160 176-320	100-180 212-356	1 50~200 302 ~392
Yield on crude (wt %) Yield on crude (vol. %)	12:3	11.9	12.4 OĞÎ	9.3
Cutting range (wt %) Cutting range (vol. %)	5.5-17.8 7.8-21.8	10.0-23.7	13.8-27.7	17.8-26.3 21.8-21.1
ASTM DISTILLATION	ingresio, in London (see		110	154
Initial boiling point (°C) 5 vol. 7	77 87 91 94	95 105 107 110	119 128 130 132	159 161 163
30 vol. Z	98 102 107 113	112 115 119 123	134 137 140 143	165 166 163 170
60 vol. Z 70 vol. Z 80 vol. Z 90 vol. Z	118 125 131	128 134 140	148 153 158 163	172 175 180 184
95 vol. 2	136 147 99	145 148 99	167 99	187 99
Residue (vol. %)	0	1	1 0	1 0

MASS SPECTROMETRY PONA ANALYSIS

Cuts	°C	65-150	80-160	100-180	1 50~200	65-200
cuts	• F	149-302	176-320	212-356	302~392	149-392
Paraffins content (vol. 2)		73,98	71.68	67.17	67.90	70.00
Naphtenes content (vol. %)		10 to	17.92	18.48	16.73	15,55
Aromatics content (vol. %)			10.40	14.35	15.37	12.45

NORMAL PARAFFINS

Method applied - gas chromatography

Cut s °C	100-180	200~260
Cues Yay .* F	212-356	392-500
N-Paraffins weight 7 on cut	38.4	33,5
nC, - Weight % on cut	2.1	
nCg - Weight % on cut	15.7	4
nCq - Weight % on cut	10.2	m
nC10- Weight % on cut	10.4	
nC, - Weight Z on cut	**	2.3
nC, 2- Weight % on cut	, **	10.8
nCia- Weight % on cut	•	11.3
nC14- Weight % on cut		7.9
nC, - Weight % on cut	•	1.2

KEROSINES AND JET-FUEL

CHARACTERISTICS

TBP cuts	°F	1 50~23 5 302~455	1 60- 250 3 20-482	180~250 356~482
		302-455	15,2	11,6
Yield on crude (wt %)		15.	A & 100	12 /
Cutting range (wt %)	5,5,7,3	17.8-31.0		1.8
Cutting range (vol. %)		21.8-37.1	23,7-40,1	23.7-40.1
Specific gravity 15/4		о СГ	E FIG.	Q '97
API gravity,				
Refractive index at 20 °C		1,4378		
Characterisation factor KUOP	• • • • •	11.95	11.95	11.95
Color Saybolt	• • • • •	> + 30	+ 25	+ 24
Kinematic viscosity				
at - 17.8 °C (Cs)	• • • • •	3.13	3.93	4.67
Freezing point (°C),		- 59	- 50	- 45
Flash point (°C)		52	59	63
Aniline point (°C)		60.2	62.5	64.0
Aromatics content (vol. %)		15.6	17.3	17.6
Naphtalenes content (vol. %)	• • • • •	0.22	0,60	0.68
Smoke point (mm)		26	24	24
Luminometer number		53.8	•	
Sulfur content (wt Z)		on SE	E FIG.	- 1 82
Doctor test			positive	negative
Corrosion copper strip	·			
(3 hours at 50 °C)		1 b 1 b	la '	1 a
Total acid number (mg KON/g)	.,,,,	0.04	0.03	0.03
Existent gum content (mg/100 ml)		•	3	-
Gross heating value (mth/kg)		11,110	11.060	11.045

Life and the engineering of the reflect

KEROSINES AND JET-FUEL

HASS SPECTRONETRY PONA ANALYSIS

Cuts	°C	1 50 + 23 5' 302 - 4 5 5	1 60-250 320-482		
Paraffins content (vol. %)	65,96	66,42	66.68	
Naphtenes content (vol. %)	19.37	19.06	19.84	
Aromatics content (vol. 7)	14.66	14.52	13.48	

a partition of the state of the

ASTM DISTILLATION OF CUTS

LEROSINES AND JET-FUEL

			-	
	C	150-235	160-250	180-250
TBP cuts	F	302-455	320-482	356-482
Yield on crude (wt %)	• •	740	15.2	11.5
Yield on crude (vol. %)	• •	15	ANICE	3
Cutting range (wt 2)	• •	17.8-31.8	19.6-34.8	23.2-34.8
Cutting range (vol. %)	• •	21.8-17.1	23.7-40.1	23.7=40.1
ASTH DISTILLATION				
Initial boiling point (°C).	•	1 52	171	183
5 Vol. Z	• •	1 67	182	195
10 vol. 7		170 174	184 186	197 199
30 vol. %	••	176 180	189 193	201 204
50 vol. 2		183	197	207
60 vol. %	•,•	188 194	203	210 213
80 vol. Z.,,,,,,,,,,,	•	200 208	215 223	218 224
90 vol. %	• •	203 213	228	229
End point (°C)		218	233	234
Recovery (vol. %)	• •	98.3	99	#7 99 4
Residue (vol. 2)	• •	1.4	11/1	
Loss (vol. %)	• •	0.3	0	0, 14

DIESEL-OILS

CHARACTERISTICS

TBP cuts F	160-350 160-375 160-400 180-375 320-662 320-707 320-752 356-707
Yield on crude (wt %)	31.2 35.0 38.6 31.4 32.6 00 A N 10 32.2
Cutting range (wt %)	19.6-50.8
Specific gravity 15/4	0.81 41.6 SEE FIG12 38.7
Refractive index at 20 C	1.4564 1.4606 1.4622 1.4464 11.90 11.85 11.85 11.90
ASTM color	< 0.5 0.5 0.5
at 20 °C (cS)	3.03 3.52 3.83 4.25 1.75 1.95 2.08 2.27
Cloud point (°C)	- 19 - 14 - 9 - 11 - 24 SEE FIG 1 1 - 24 - 93
Flash point (°C)	77 81 82 93 68-2 SEE FIG11 - 70-2 21 23 24 23
Sulfur content (wt %)	9-74 SEE FIG130.96
(3 hours at 50 °C)	1 b 1 a 1 a 1 a 1 b 0.04 0.02 0.03 0.04
Conradson carbon residue on 10 Z distillation residue (wt Z)	0.04 0.06 0.09 0.04
Diesel index	64.4 62.0 60.9 61.3 55.5 54.5 55.5 55.7

DIESEL-OILS

ASTM DISTILLATION

			<u> </u>	
TBP cuts or	160-350	1 60-375 3 20-707	160-400 320-752	180-375 356-707
Yield on crude (wt %)	320-662	35.0	38.6	31-4
Yield on crude (vol. %)			JOEI -	32.2
Cutting range (wt %)				
Cutting range (vol. %)	23,7-56,3	23.7-59.9	23.7-63.4	27:4-59.9
ASTM DISTILLATION Initial boiling point (°C)	179	179	179	202
5 vol. Z	190 195	190 195	193 198	213 217
20 vol. %	203 214	204 217	206 222	225 235
60 vol. %	229 244	233 251	242 262	248 264
60 vol. 2	259 273	269 286 303	282 304 322	279 293 310
80 vol. %	288 303 311	323 330	345 354	327 332
End point (°C)	316	335	358	336
Recovery (vol. %)	98.5 1.5	98.5 1.5	98.5 1.5	98.5
Loss (vol. Z)	o	0	0	0

HEAVY DIESEL-OILS

CHARACTERISTICS

TBP cuts op	250-350 482-662	250-400 482-752
Yield on crude (wt %)	16.0	23.4
Yield on crude (vol. %)	CAN	VCEL.
Cutting range (vol. 2)	49,1-56.3	40.1-63.4
Specific gravity 15/4	SEE	FIG 1
API gravity		1.4788
Characterisation factor KUOP	11.95 2	11.90
Kinematic viscosity		
at 20 °C (eS)		9.82 4.24
Cloud point (°C)	r, 5	+ 7 C 1 1
Pour point (°C)	136	140
Aniline point (°C)	ا ساساب	[G 29.1
Wax content (wt %)	< 1	2.3 47
Wax melting point (°C)		ig 13
Corrosion copper strip (3 hours at 50 °C)	1 a 1 b	1 a 1 a
Total acid number (mg KOH/g)	0.05	0.04
Conradson carbon residue on 10 % distillation residue (wt %)	0.06	0.07
Diesel index	59,2 57.0	55,8 56,0
		NACHAL SANGERS AND

HEAVY DIESEL-OILS

ASTM DISTILLATION

The state of the s	مستحيد والمستحيد والمستحار والمستحار والمستحد	
°C TBP cuts °p		250~400 482~752
Yield on crude (wt %)	16.0	23.4
Yield on crude (vol. %)	MAN	ICE
Cutting range (wt %)	34.8-30.0	J. J. J
Cutting range (vol. %)	40.1-56,3	40.1-63-4
ASTM DISTILLATION		
Initial boiling point (°C)	248	266
5 vol. 2	273	278
10 vol. Z	276	281
20 vol. Z	280	287
30 vol. %.,	282	293
40 vol. %	285 290	299 307
60 vol. Z	295	317
70 vol. 2	301	329
80 vol. Z	308	340
90 vol. 7	316	354
95 vol. 2	322	363
End point (°C)	325	370
Recovery (vol. %)	99	99
Residue (vol. %)	1	1
Loss (vol. %)	0	0

BEAVY DISTILLATES

CHARACTERISTICS

TEP cuts	350-400	400-450	450-500	500-End point 932-Ind point	Cracking feed 350 °C-End point 662 °F-End point
Yield on crude (wr Z)	12.1	6.5	5.7	8.6	78-82
Yield on crude (vol. %)	7.1	6.1		LCIV	26.3
Cutting range (wt Z)	50.8-58.2	50.8-58.2 58.2-64.7 64.27	Jan 18	ノーロシアご	50.8-79.0
Cutting range (vol. Z)	56.3-63.4	56.3-63.4 6.4-69.5 69.5-74.8	69.5-74.8	74.8-82.6	56.5-62.6
Specific gravity 15/4	0.885	0.513	0.924	0.938	0.915
API gravity	28.3	33.4	21.6	19.3	23.1
Minematic viscosity					
at 37.8 °C (cs)	12.94	29.8	i I	Ì	
at 50 °C (cS)	8.77	18.35	48.2	100	
at 98.9 °C (cs)	2.95	4.77	90.6	14.72	
Viscosity index V.I	83	ដី	I.		
Pour point (°C)	87 +	+ 27	+ 39	4.45	
Sulfur content (wt Z)	2.16	2.35	2.44	2.83	2.48
Conradson carbon residue (wt Z)	0.0	0.02	80.0	0.35	
Nitrogen content (wt Z)	0.052	0.075	0.095	0.125	830.0
Vanadium content (mg/kg)					< 0.5
Nickel content (mg/kg)					< 0.5

HEAVY DISTILLATES DEWAXING

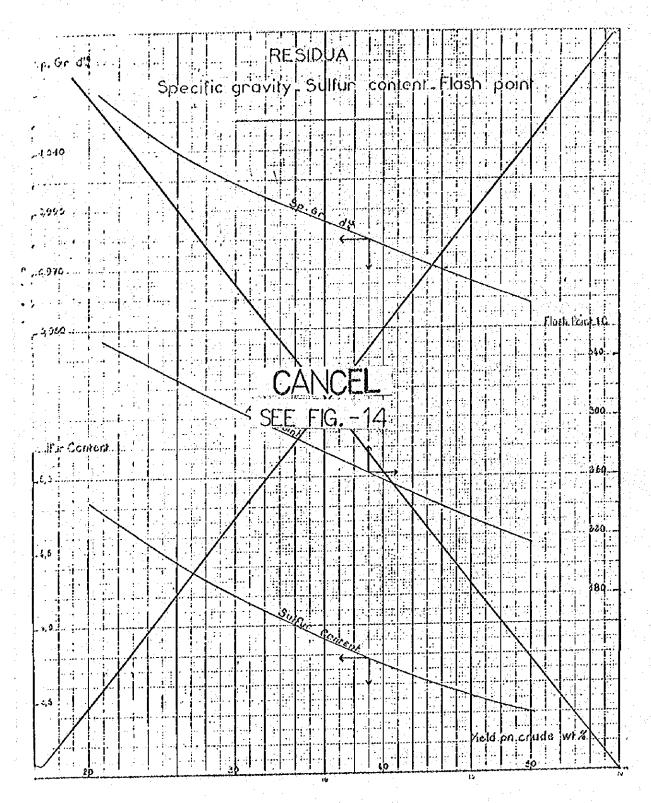
Dewaxing is achieved on 200 g samples of distillates with 400 % volume of methylinobutylketone.

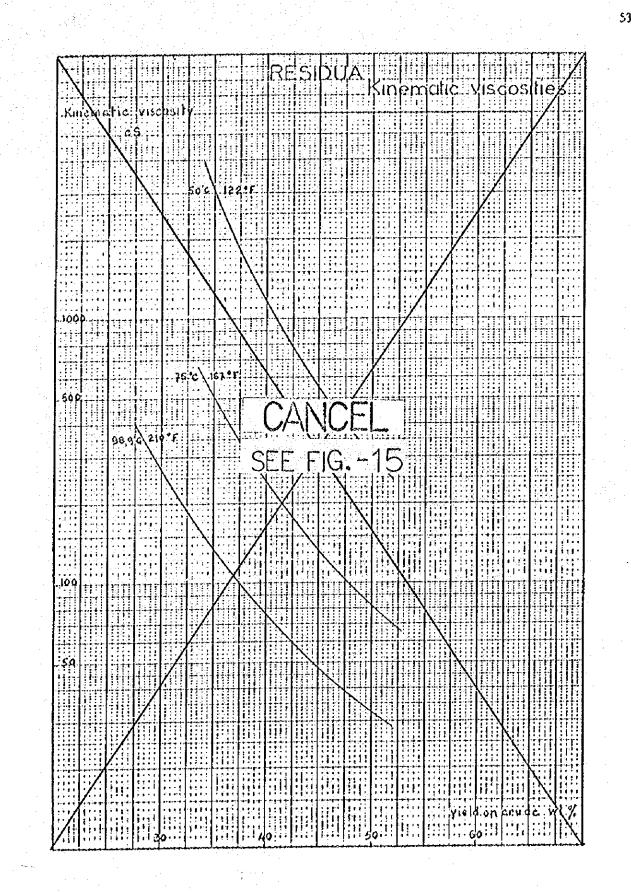
Oil and solvent are cooled slowly to - 20 °C (with a decreasing rate of 1 °C/minute). The waxes are separated by filtration in a thermostated Buchner funnel. The paraffins obtained are solubilized in warm methylisobutylketone with the same ratio solvent, crystallised and filtered at - 20 °C.

The filtrates are cleansed of solvent, then weighed in order to determine the yield of the operation.

Final waxes are also collected on the filter, stripped on a sand bath with nitrogen stream, and weighed. The melting point is determined according to the ASTM method D 87.

The weight balances of dewaxing and characteristics of dewaxed oils are shown in the rollowing tables.


HEAVY DISTILLATES DEVAXING


			A CONTRACTOR OF THE PROPERTY OF THE PARTY OF	
1 불 수 있는 경기를 가는 것이 되었다. 그 사람들은 그 사람들은 사람들이 되었다. 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	3 50-400	4.1	1	500-End point
TEP cuts	662-752	752-842	842-932	932-End point
Dewaxed oil ut 2 on crude	6.5	5,8	5.1	2.1
Devaxed oil wt % on cut	88.0	~ ^ ^	NICH	90.3
Wax wt Z on cut			INCEL	9.5
Loss wt 2 on cut		1.1		0.2
Wax melting point (°C)	43	52	59	61

DEWAXED HEAVY DISTILLATES

°C	350-400	400-450	450-500	500-Ind point
TBP cuts	662-752	752-842	842-932	932-End point
Specific gravity 15/4	0.895	0.920	0.935	0.947
API gravity	26.5	22.2	19.8	17.8
Kinematic viscosity				
at 37.8 °C (cS)	15.21	39.8	1 24	308
at 50 °C (eS)	10.03	23.1	63.4	142
at 98.9 °C (cs)	3.14	5.38	10.34	17.38
Viscosity index V.I	63	64	61	53
Pour point (°C)	- 27	- 18	- 15	- 15
Sulfur content (wt 2)		2.65	2.75	3.01
Concadson carbon residue (wt 2)		0.10	0.30	1,50

		RESIDU				
CONTRACTOR AND SAN		CHARACTERI	rics			
				-	girm, pri 1700 decembra de ligado Carta de la	(aculululusude)dessi de
da de la companya de	350	375	400	450	500	End point
Residue actor op	662	707	7 52	842	932	tan porte
Ald on ernde (vt %)	49.2	45.4	41.8	35.3	29.6	21.0
on crude (vol. 2).	43.7	40.1	~ ~ ~ A	السائرال	25.2	17.4
reing range (wt 2)	ຸພ. a-100.0	54.6-100.0	30. 2	YULL	20.4~100.0	79.0-100.0
ccing range (vol. Z)			63.4-100.0	69.5-100.0	74.8-100.0	82,6-100.0
scific gravity 15/47		0.966	0.975	0.985	0.998	1.027
l gravity	s litury da si si	14.9	13.5	12.1	10.2	6.2
icuatic viscosity						
at 50 °C (Cut)	307	526	875	2877	. ••	
ut 75 °C (Cst)		126.4	191	476		
at 98.9 °C (Cst)	2.13 Apr. 1977 Apr. 2	45.2	63,4	136.2	279.0	
.r point (°C)		18	12	18	27	33
ish point (°C)		238	254 3.65	285 3.92	307 4.20	350 4,77
four content (wt %)		3.55	3.02	3,72	3,40	
content (wt %)	5.2					
a meleing point (°C)						
etration (mai)						116
irening point (R and B)					18,5	43.2
)halt content (wt %)	2.70				10.5	H3.2
Timents content (wt %).						
i content (we 2)				1 Te i	4	
icadson carbon residue						
3 3)	10.2	11.2	•	15.1		23.0
	3					
vy metals content t Tron (mg/kg)	Jan 1 4 4					
Iron (mg/kg) Vanadium (mg/kg)	50					
Iron (mg/kg),,,	50 12 0.5					
Iron (mg/kg) Vanadium (mg/kg) Nickel (mg/kg)	12					

TEST METHODS APPLIED

TEST METHODS APPLIED

Determinations	Methods
1 CRUDE OIL	e William Charles and Charles
Specific gravity	IP 190
API gravity	ASTM - IP - Tables
kinematic viscosity	NF T 60-100 - ASTM D 445
Pour point	NF T 60-105 - ASIM D 97
Plash point	NF M 07-011 - IP 170
Reid vapor pressure	NF M 07-007 - ASTM D 323
Water by distillation	NF T 60-113 - ASIM D 95
B.S. and W (centrifuge)	NF M 07-020 - ASTM D 96
Sulfur content	NF T 60-108 - ASIM D 1551
Mercaptan sulfur content	NF M 07-022 - ASIM D 1323
Hydrogen sulfide content	UOP 163 - IP 103
Chlorides content (as KaCl)	NF M 07-023 - IP 77
Total salinity	
Conradson carbon residue	NF T 60-116 - ASIN D 189
Wax content	Alcool-Ether (50/50) mixture
Asphalt content	NF 1 60-115 - IP 143
Total acid number	ASTM D 664
Strong acid number	
Ash content	
Calculated cetane index	AS1M D 976
Gross heating value	
Characterisation factor MOP	UOP 375
Light hydrocarbons	Gas chromatography
Metals content	Atomic absorption

nga Coya

Determinations	Methods
11 GASOLINES - NAPHTHAS - WHITE-SPIRIT	
Specific gravity	IP 190
API gravity	rome rn - m-blog
Characterisation factor MOP	UOP 375
Color Saybolt	NP M 07-003 - ASTM D 156
Reid vapor pressure	Nº M 07-007 - ASTN D 323
Sulfur content	UOP 727-72 - ASTN D 1266
Mercaptan sulfur content	NF M 07-022 - ASIM D 1323
Doctor test	NF N 07-029 - IP 30
Bydrogen sulfide content	UOP 163 ~ IP 103,
existent gum content	NF M 07-004 - ASTN D 381
Corrosion copper strip.	NF M 07-015 - ASTM D 130
Aniline point	NF M 07-021 - ASTM D 611
Aromatics content	NF M 07-024 - ASIM D 1319
Batanes content	Gas chromatography
Research octano number	NF M 07-026 - ASIM D 908
Motor octane number	NF M 07-026 - ASTM D 357
Freezing point	ASTM D 1477
Flash point	NF M 07-011 - IP 170
Arsenic content	Neutron activation
Lead content	Atomic absorption
Total acid number	NF T 60-112 - ASIM D 974
PONA analysis	I,F,P, method
and the state of t	Mass spectrometer
Normal paraffins content	Gas chromatography
Distillation	NF H 07-002 - ASTM D 86

Determinations	Methods
III LEROSINES AND JET-FUEL	
Specific gravity	IP 190
API gravity	ASTM - IP - Tables
Color Saybolt	NF M 07-003 - ASTN U 156
Characterisation factor KUOP,	UOP 375
Kinematic viscouity at - 17.8 °C	AS 114 D 445
Freezing point,	ASIM D 1477
Flash point	NF M 07-019 - ASTM D 93
Aniline point	NF W 07-021 - ASTM D 611
Aromatics contention	NF H 07-024 ~ ASTM D 1319
Smoke point	NF M 07-028 - ASTM D 1322
Luminometer number	ASTM D 1740
Sulfur content	UOP 727-72 - ASTM D 1266
Doctor test	NP M 07-029 - IP 30
Corrosion copper strip	NF И 07-015 - ASTM D 130
Total acid number	NF T 60-112 - ASTM D 974
Existent gum content	NF M 07-004 - ASTM D 381
Gross heating value	NF N 03-005 - ASTM D 240
Distillation	NP M 07-002 - ASTM D 86

Determinations	Methods
IV DIESEL OILS	
Specific gravity	IP 190
API gravity	ASTM - IP - Tables
Characterisation factor KNOP	1. 1. 1. 1. 1. 1. 200P 375 (1.2. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1
ASTM Color	NF T 60-104 - ASTM D 1500
Kinematic viscosity	NF T 60-100 - ASIM D 445
Cloud point	NF T 60-105 - ASTM D 97
Pour point	NF T 60-105 - ASTN D 97
Plash point	NF M 07-019 - ASTM D 93
Aniline point	NF N 07-021 - ASTM D 611
Aromatics content	NF M 07-016 - ASTM D 1019
Sulfur content	NF T 60-108 - ASIM D 1551
Corrosion copper strip	NF M 07-015 - ASTM D 130
Total acid number	NF T 60-112 - ASTH D 974
Conradson carbon residue	NF T 60-116 - ASTN D 189
Diesel index	
Calculated cetane index	ASTN D 976
Wax content	Alcool-Ether (50/50) mixture
pistillation	NP M 07-002 - ASIM D 86

Determinations	Methods	
V HEAVY DISTILLATES - CRACKING FEED		
Specific gravity	IP 190	
API gravity	ASTM - IP - Tables	
Kinematic viscosity	NF T 60-100 - ASIM D 445	
Viscosity index.,	ASIM D 567	
Pour point	NP T 60-105 - ASTM D 97	
Sulfur content	NF T 60-108 - ASTM D 1551	
Conradson carbon residue	NF T 60-116 - ASTH D 189	
Nitrogen content	UOP 120	
Vanadium and nickel content	Atomic absorption	
Andreas de la Company de la constitución de la cons	nominal and the control of a service desired and the proposition of th	7 • • •

oepigiste (1960 aneko (1961). Amerika arriba (1961).

Determinations	Methods
VI RESIDUA	
Specific gravity	
API gravity	
Kinematic viscosity	
Pour point	
Flash point	
Sulfur content	NF T 60-108 - ASTM D 1551
Wax content	Alcool-Ether (50/50) mixture
Melting point of wax	NF T 60-114 - ASTM D 87
Penetration	NF T 66-004 - ASTM D 5
Softening point	NF T 66-008 - ASTM D 36
Asphalt content	NF T 60-115 - IP 143
Sediments content	1
Ash content	1
Conradson carbon residue	NF T 60-116 - ASTM D 189
Heavy metals content	Atomic absorption
Sodium content	Atomic absorption
Cross heating value	NF M 03-005 - ASTM D 240

MODIFIED TABLE/FIGURE FOR NORTH RUMAILA CRUDE OIL ASSAY

CRUDE OIL GENERAL CHARACTERISTICS	•
Characteristics Results	rireyei
Specific gravity 15/4 °C	
Specific gravity 20/4 °C	
API gravity	
Kinematic viscosity 31.5	
at 20 °C (cS) 9.72	
at 37.8 °C (cS)	
Pour point (°C) 42	
Flash point (°C) < 20	
Reid vapor pressure at 37.8 °C (bar) 0.515	
Reid vapor pressure at 37.8 °C (psi)	
Water by distillation (vol. %) < 0.10	
B.S. and W (centrifuge) (vol. 2) < 0.10	
Total sulfur (wt 2)	
Mercaptan sulfur (wt %) < 0.001	•
Hydrogen sulfide (wt 2) nil	Į
Salt content (NaCl) (wt %) < 0.0020	ĺ
Total salinity (wt %)	1
Nitrogen (wt 2) 0.12	
Conradson Carbon residue (wt %)	
Wax content (wt %)	
Melting point of waxes (°C),	
Asphalt content (wt %) 0.98	-
Total acid number (mg KOH/g) 0.03	
Strong acid number (mg KOH/g) nil	
Ash content (wt %) 0.008	
Calculated cetane index	
Lower heating value (mch/kg)	
Cross heating value (mth/kg)	
Characterisation factor KUOP	

METALS CONTENT

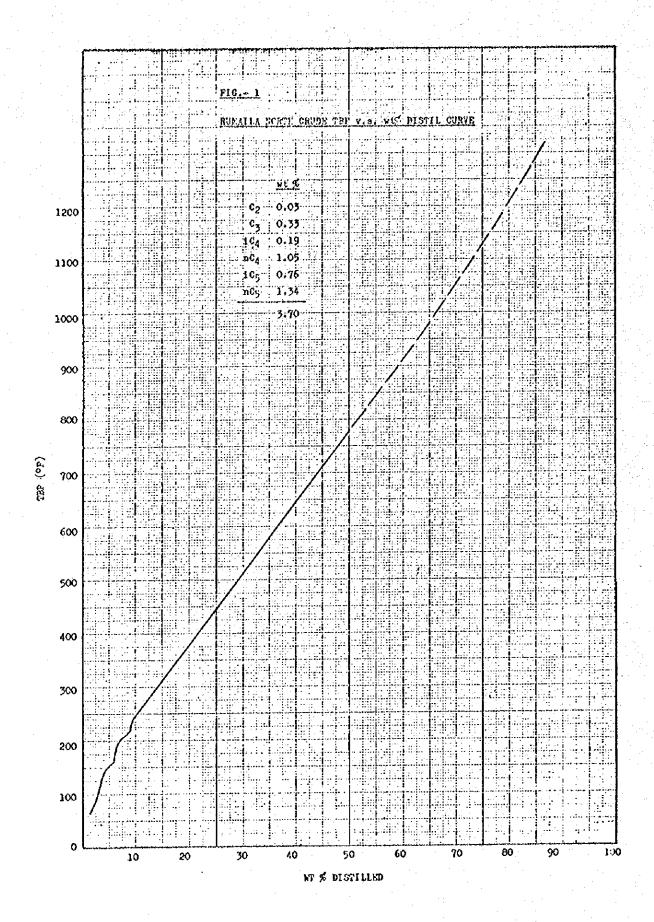
Methods applied = atomic absorption

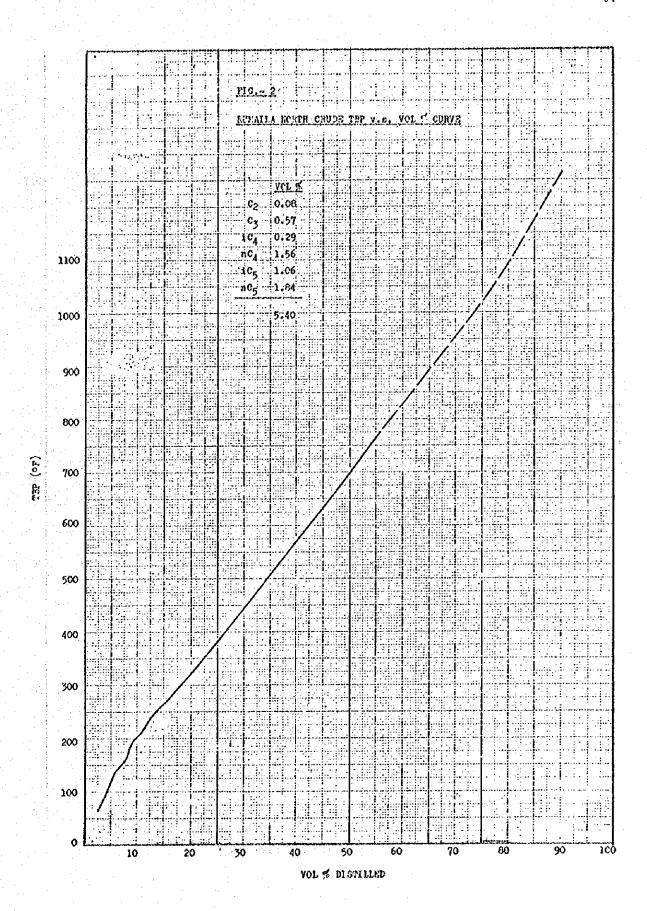
Element	Content (mg/kg)
Sodium	
Potassium	
Calcium	
Magnesium	
Manganese	HOLD with the second of the se
Copper	
Chromium	
Nickel	
Vanadium	
Lead	
Iron	en de la companya de La companya de la co
the state of the s	

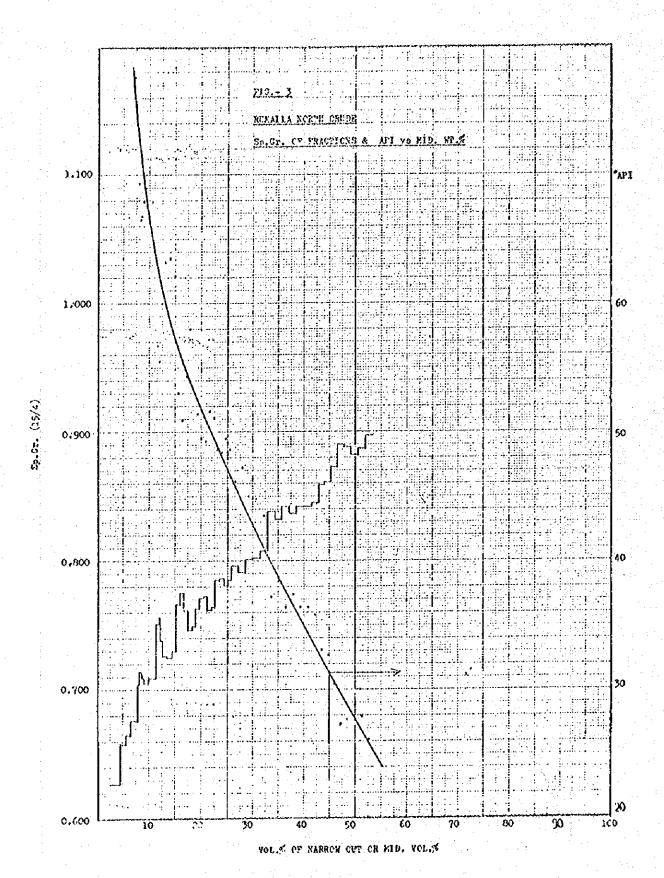
Hydrocarbons	Weight %	Volume %
Ethane	0.03	0.08
Propane	0.33	0.57
Isobutane	0.19	0.29
Normal butane	1.05	1.56
Isopentane	0.76	1.06
Normal pentane	1.34	1.84

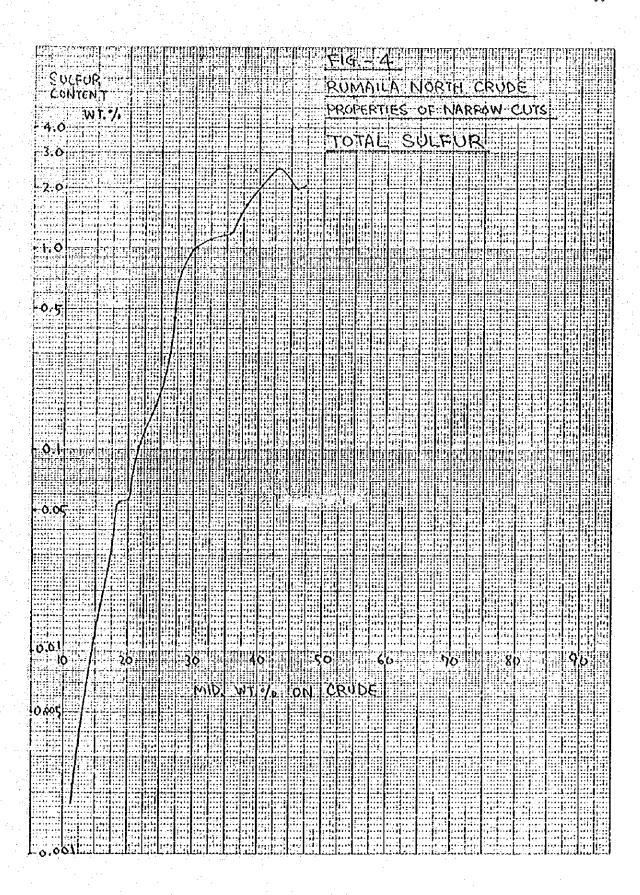
TABLE-4.

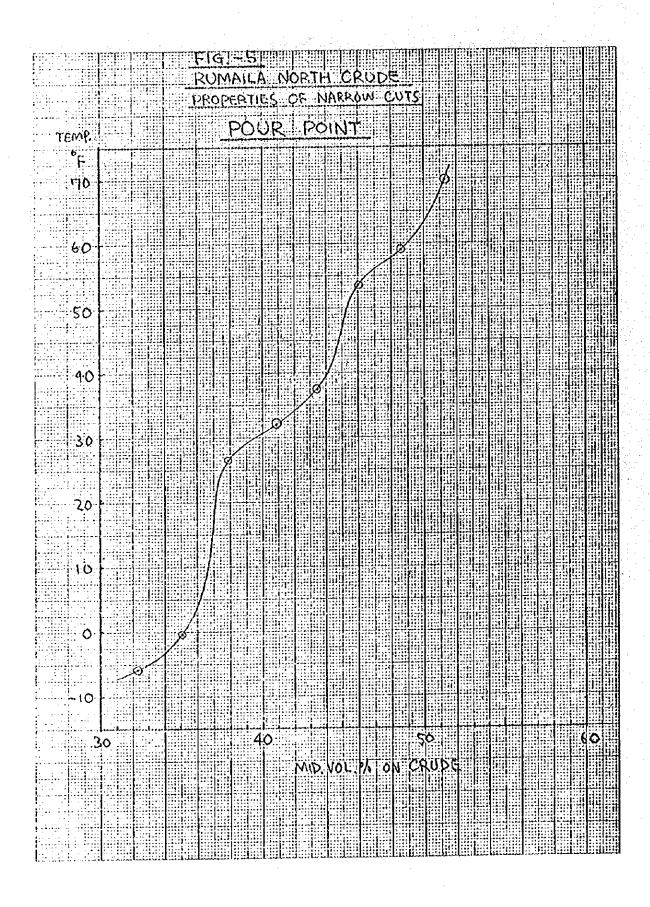
TBP DISTILLATION - NARROW CUT

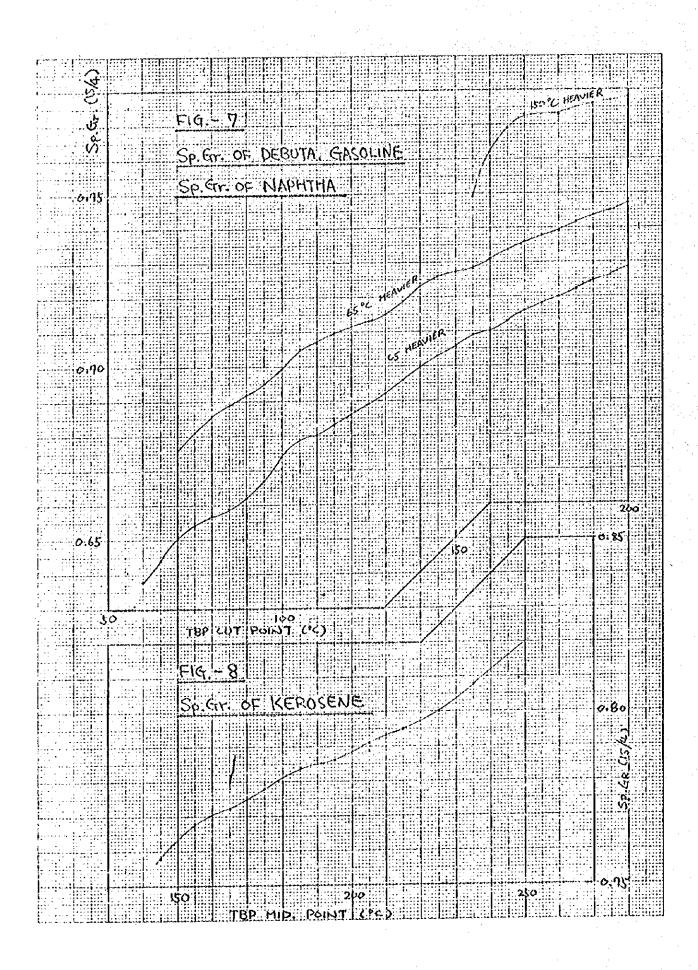

Cut	Temperature Range (°C)	wt%	Cumulated wt%	Sp.Gr. (15/4)	OAPI	vol%	Cumulated vol%
Cond.	> 20	1.60	1.60	0.557	122.3	2.5	2.5
1	20 - 40	1.52	3.12	0.627	94.0	2.1	4.6
2	40 - 60	0.83	3.95	0.658	83.3	1.1	5.7
3	60 - 65	0.69	4.64	0,665	81.1	0.9	6.6
4	65 - 70	1.01	5.65	0.676	77.6	1.3	7.9
5	70 - 75	0.24	5.89	0.704	69.3	0.3	8.2
6	75 - 80	0.25	6.14	0.714	66.5	0.3	8.5
7	80 - 85	0.16	6.30	0.713	66.8	0.2	8.7
8	85 - 90	0.33	6.63	0.709	67.9	0.4	9.1
9	90 - 95	0.65	7.28	0.705	69.0	8.0	9.9
10	95 - 100	1.23	8.51	0.709	67.9	1.5	11.4
11	100 - 105	0.52	9.03	0.751	56.7	0.6	12.0
12	105 - 110	0.17	9.20	0.756	55.5	0.2	12.2
13	110 - 115	0.43	9.63	0,738	60.0	0.5	12.7
14	115 - 120	0.67	10.30	0,726	63.2	0,8	13.5
15	120 - 125	0.84	11,14	0.725	63.5	1.0	14.5
16	125 - 130	0.67	11.81	0.730	62.1	0.8	15.3
17	130 - 135	0.62	12.43	0.766	53.0	0.7	16.0
18	135 - 140	0.71	13.14	0.775	50.9	0.8	16.8
19	140 - 145	0.70	13.84	0.761	54.3	0.8	17.6
20	145 - 150	0.69	14.53	0.746	58.0	0.8	18.4
21	150 - 155	0.52	15.05	0.749	57.2	0,6	19.0

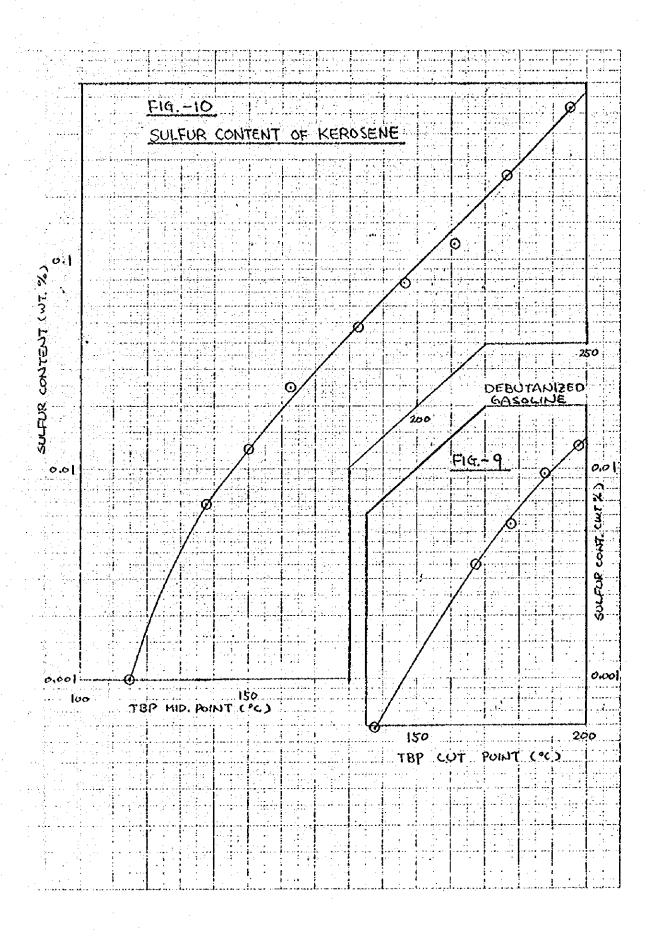

TABLE-4 (Continued)

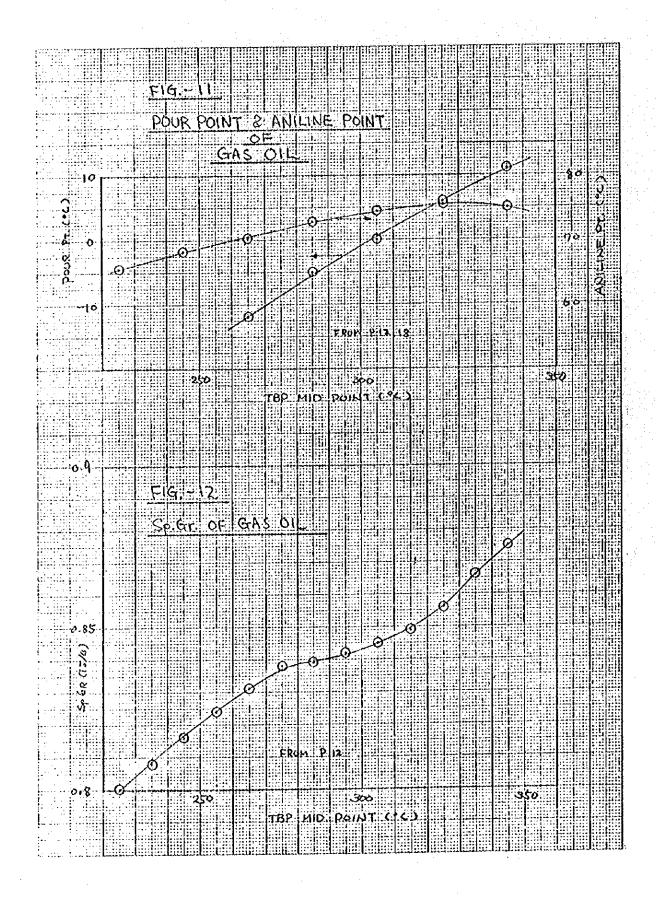

		1			1	No.	
Cut	Temperature Range (°C)	wt%	Cumulated wt%	Sp.Gr. (15/4)	ovbi	vol%	Cumulated vol%
22	155 - 160	0.62	15.67	0.773	51.4	0.7	19.7
23	160 - 165	0.72	16.39	0.781	49.5	0.8	20.5
24	165 - 170	0.72	17.11	0.782	49.3	8.0	21.3
25	170 - 175	0.62	17.73	0.772	51.6	0.7	22.0
26	175 - 180	0.62	18.35	0.774	51.1	0.7	22.7
27	180 - 185	0.72	19.07	0.785	48.6	0.8	23.5
28	185 - 190	0.72	19.79	0.786	48.4	0.8	24.3
29	190 - 195	0.63	20.42	0.781	49.5	0.7	25.0
30	195 - 200	0.72	21.14	0.785	48.6	8.0	25.8
31	200 - 210	1.19	22.33	0.796	46.1	1.3	27.1
32	210 - 220	1.37	23.70	0.791	47.2	1.5	28.6
33	220 - 230	1.20	24.90	0.801	45.0	1.3	29.9
34	230 - 240	1.48	26.38	0.802	44.8	1.6	31.5
35	240 - 250	1.40	27.78	0.808	43.5	1.5	33.0
36	250 - 260	1.35	29.13	0.838	37.2	1.4	34.4
37	260 - 270	1.25	30.38	0.832	38.4	1.3	35.7
38	270 - 280	1.46	31.84	0.842	36.4	1.5	37.2
39	280 - 290	1.35	33.19	0.837	37.4	1.4	38.6
40	290 - 300	1.46	34.65	0:842	36.4	1.5	40.1
41	300 - 310	1.46	36.11	0.842	36.4	1.5	41.6
42	310 - 320	1.27	37.38	0.845	35.8	1.3	42.9
43	320 - 330	1.19	38.57	0.859	33.1	1.2	44.1
44	330 - 340	1.19	39.76	0.861	32.7	1.2	45.3
45	340 - 350	1.31	41.07	0.873	30.4	1.3	46.6
				1.1			A CONTRACTOR OF THE CONTRACTOR

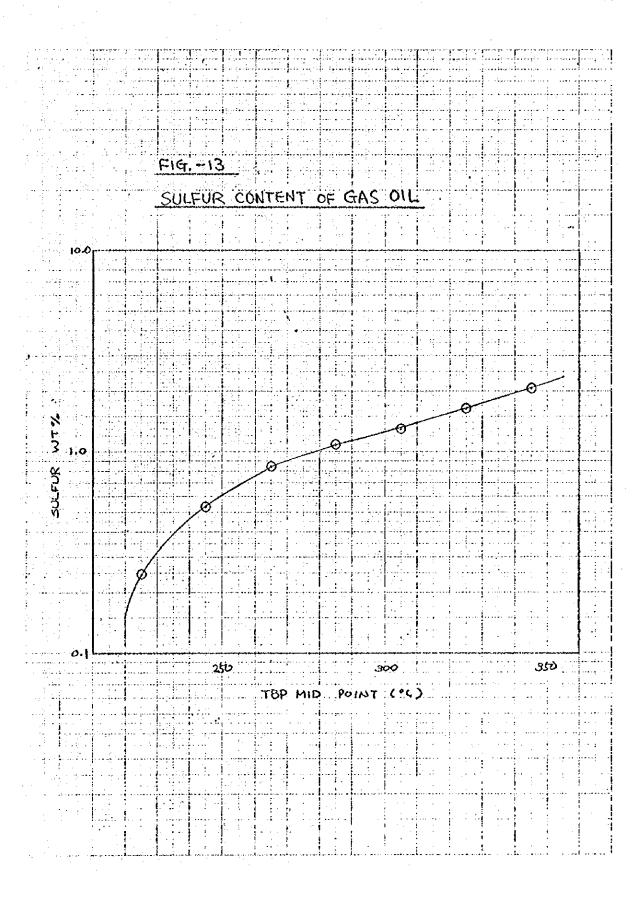

TABLE-4 (Continued)

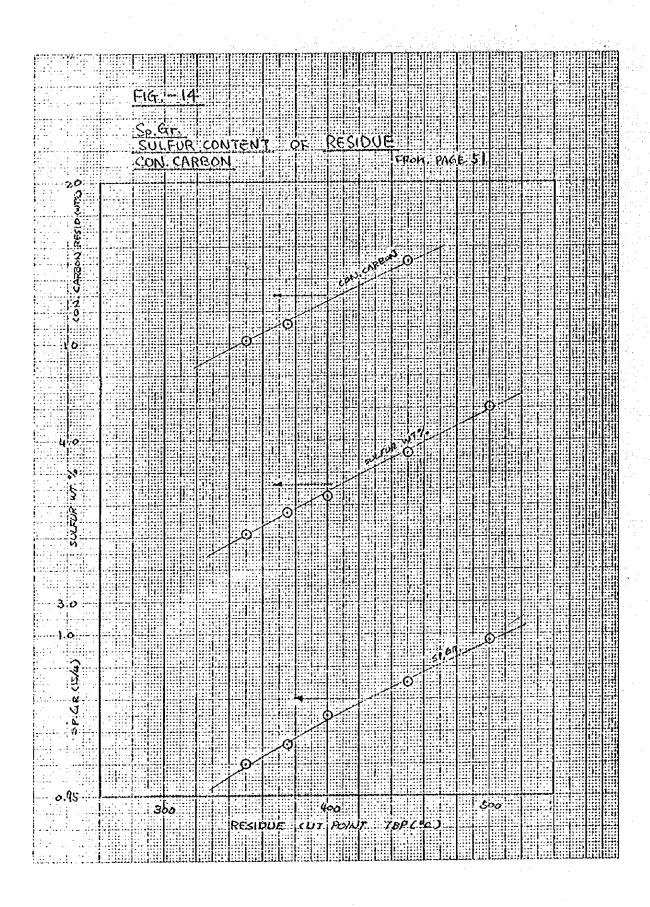

Cut	Temperature Range (°C)	wt%	Cumulated wt%	Sp.Gr. (15/4)	OAPI	vol%	Cumulated vol%
46	350 - 360	1.33	42.40	0.890	27.3	1.3	47.9
47	360 - 370	1.33	43.73	0.888	27.7	1.3	49.2
48	370 - 380	1,42	45.15	0.882	28.8	1.4	50.6
49	380 - 390	1.43	46.58	0.887	27.9	1.4	52.0
50	390 - 400	1.45	48.03	0.897	26.1	1.4	53.4
51	400 +	51.97	100.00	0.968	14.5	46.6	100.0

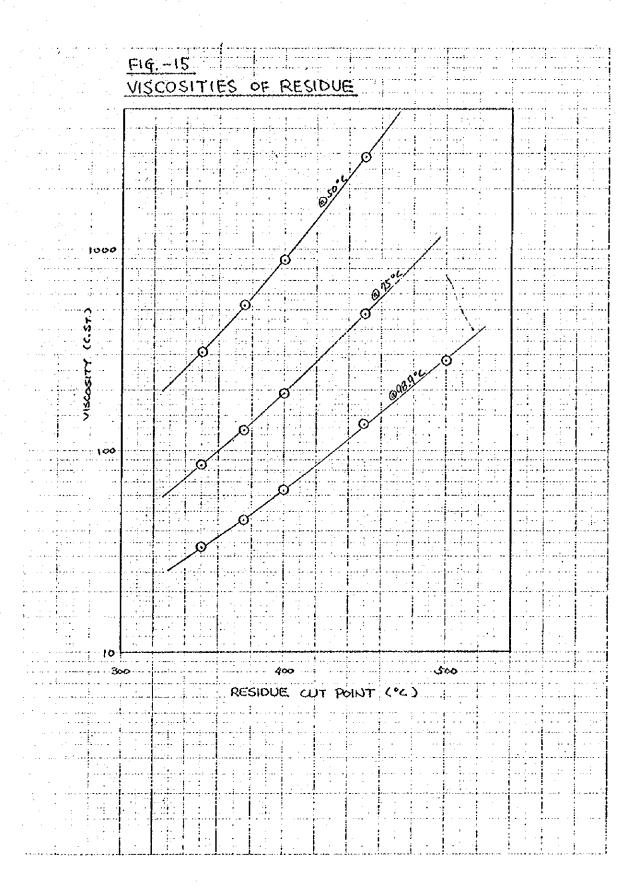


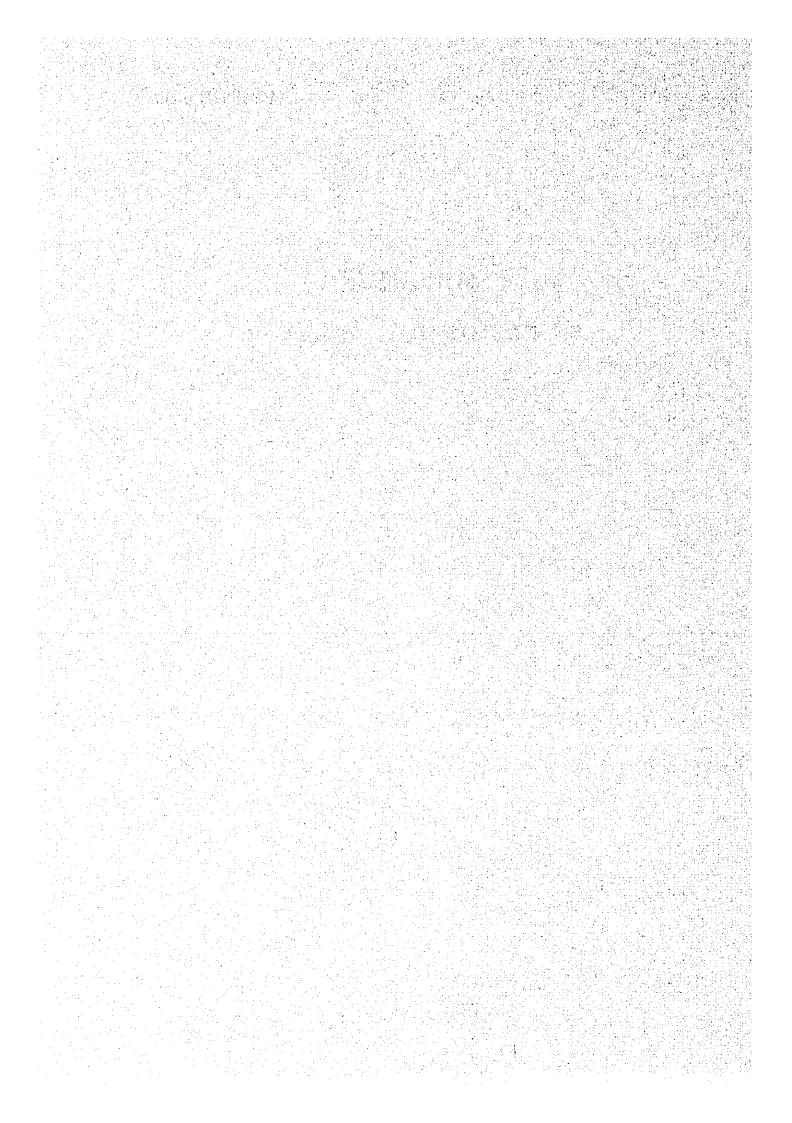







							 G,-									
. *		(#2 . 'TT'			ЙO	<u> </u>	CRI	DE.				
					.4			1			rou/		1			
	Ιζι	NEMA		VI\$.		K	INE	MAI	C.	N.I.S	CO'	\$1.1. 	65			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
• .		. 0	3													
		100														
		-50														
								, v 19	ζ I	0.4						
. •		-10														
						17	7	/		<i>6</i> €	ر د د					
		5				7	/									
				2	/											
•																
		-1 2	0.	3	2	4	0	5	0	- 6	0-1-1		o	 ò	9	٥
									2, Y0	L.°/6	0.N	Ċ.R.	ode.			
·																
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
			•									÷				
•	· '.			:					\$		ŧ,					•





MISCHRIF CRUDE OIL ASSAY

VOL VI d

COD

Universal Oil Products Company
World Headquarters
Len trup Plaza - Algoriquin & Mt. Prospect Roads
Des Plaines, Illinois 60016
Telephone 312-391-2000

traq National Oil Company
Baghdad, Iraq
UOP Laboratory Order No. 6160

Inspection values obtained on the following sample are listed in the attached tables.

Description UOP No. Size

Mischrif Crude Oil 114-4138 5 gal.

F. W. Bruining
Analytical Laboratories
Corporate Research Center

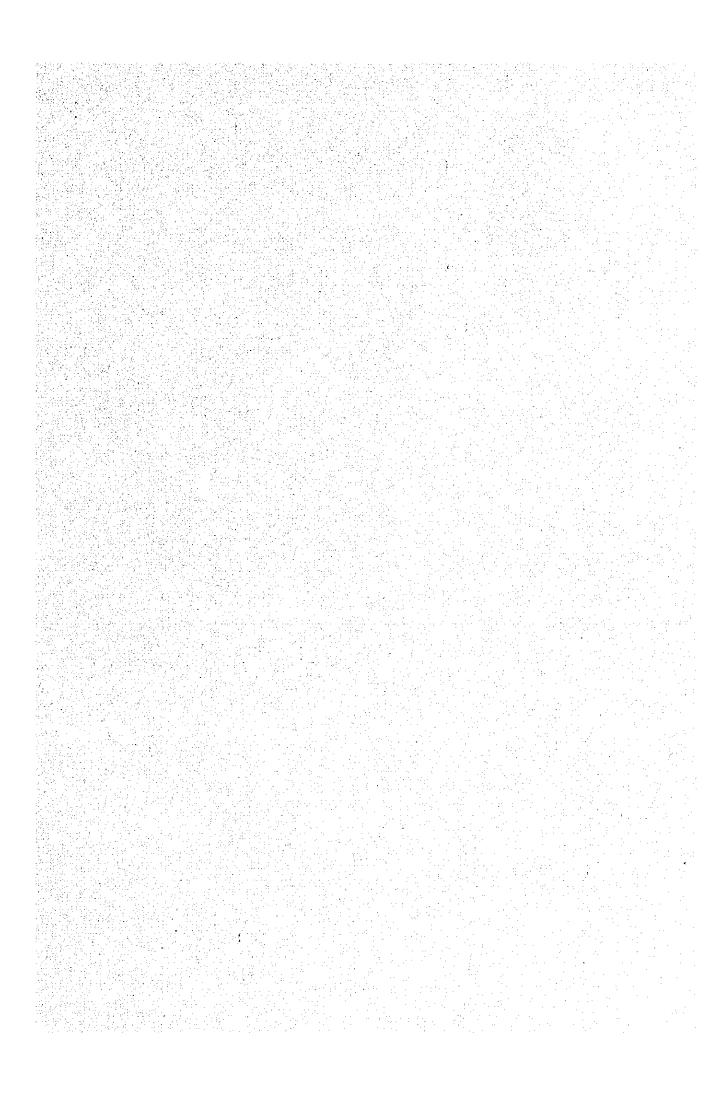
FWB:bam

	Crufs OIL	bepengun- liger Deriberd	Chipline 1312	t+ - #191 75+ 150°C	130+ 130+ 115*c	Karenine 173- 130'C	4+ + 01411 150+ 100*C	1) feel 300	> Cri 011 345- 340°C	er a breid. Above 363°C	A) + 7 + 519 * (J)
tiole tolum t pl	***	4,5	3.3	li e	2.4	19.3	1.5	7,3	77.4	50.5	16.7	0.1
tualston in Cruso dile b.v.b		0.1-6.6	6.6-10.1	10.1-11.4	21.9-24.5	11,1-31,7	к,1-ц.)	43.3-41.1	45.51.3	59, 5 -100.0	11.3-100.4	.o.o.
Autyces of fractions Creatis, "All as 60's Specifies Greatis at 60's total business, which	20.0 0.0912 3.012		\$. 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 .	60.3 0,2330 0.313	50.1 0.7844 0.781	9. 6331 9. 5331 8. 533	6:474 12:41	8 1/10 1 1/10	0.132 6.45	6:0111 11:1	1:501	
क्षाताक स्वीमा स्वत	0.0161 King		0.0151 Pans	0.0101	0.0915	paran						
Nydrogen Subited, Ve. b Oceane Musber, Mikeb 2006-1151-1151 bussesh o 9.6 cc 14b 600-021h - 2.9 cc 14b Notog Chap	Opin-led		12:3 12:3	9,0101 11.3 13.4	0.0151	0.900\$						
P.O.B.A. Goografish, k.V.L Frieffton, L Frieffton, L Atpatitus, L Atpatitus, L			16	11 10 2	11					diam.		
P.I.A. Milysto, L.V.I Prodition a Kardibreti Annualica						19.1						
Allering Training of the Allering Control of the Aller			10-1	5777		artiil.			5.011	0.224	0.155	
sin - 9130 sin - 9-14 sin - 9-14 sin - 1-14 tier i fotz cleubig francische (c.f. 4.)						12.1 11.1 11.1	151-4	7577 1777 17	uta	2. 31 10.1	4,44 18.0	
police in Augusta Insolublish, buil tools form for the ferral ferral ferral form form		1.			15.5	***	. :1	験	脫	H	123	
freeing both 's 1. 1. 10. 201. Low dolate. I 11 freeing by the folyes lath. (Allest. 12 consess, Cathon testers, U.1.)	.1 .1				110 v - \$0	-63	lete	-31	6-1 1	\$.001 11-2	8:00] 19:4	
Placestries Sincrette at 100°F, est. Sincrette at 117°F, est. Sincrette at 117°F, est. Sincrette at 117°F, esc. Sincrette at 117°F, esc. Sincrette at 117°F, esc. Sincret at 117°F, esc. Sincret at 117°F, esc. Sincret at 117°F, esc.						1.44	1.111	1:33 11:4	33.03 6.974 161.7 1924	11.01 	1904	
flarb. Tag Cloved-Cop. of foreign for find from \$ 170 g. 15 occh. soliening fraint, b. 1 b.		1.71			106	ikani Nama				1.9 1151.59	비.,	
Distributed, Type 1.5.2: 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	01160 110 170 270 363 460 185 185 185 185 185 185 185 185 185		PE 6 11 8 11 8 11 9 11 9 12 9 13 9 13 9 13 9 13 9 13 9 13 9 13 9 13	201 218 221 210 210 210 210 210 210 210 210 210	044 1113 1213 1214 1214 1214 1215 1217 1217 1217 1218 1218 1218	044 148 148 140 170 170 170 170 170 170 170 170 170 17	N 100 100 100 100 100 100 100 100 100 10	913 111 111 111 111 111 111 111 111 111	61164 6106 910 9107 9107 9107 9107 9107 9107 9107			
ficovired Leaves)3.0 31.1		113 116 b 12.3 9.2	10	9.0 9.1	17	11.0 11.0	11.0	118 1008			
totistion Spacerographic Analysis of Vet Eteoris topolise as you To Mt.	Ash meal in the	•11.							0.02 0.02 0.03	0.10 11 8)	44.	
, , ,						,			10.02	-3:31	}:11	
gs Fractionston and Compount Analysis Copposition Liquid Yelven I		:			٠							
Febons Zoppen Feboutan J-Cutenp Bu-Fedous P-Pontane Mankes Bu-Fedous P-Pontane	0.3 1.3 0.4 1.3 1.1 1.7			e. Brow be Dry :	peles Peles							
, te(b)	100.0					an in the				Maria Contract	, i	

Iraq National Oil Company Baghdad, Iraq

Baghd	ad, Iraq
	Table No.
Sample Identification UOP Number	Mischrif Crude Oil 114-4138
Fraction Analyzed Liquid Volume % of Crude Off	Light Casoline Naphtha C6-75°C 75-150°C 3.5 11.8
SUMMARY OF HYDROCARBON TYPES	ANALYSES, L.V.X by GC
Paraffins C5 C6 C7 C8 C9 C10	83.2 3.6 6.3 21,1 0.1 21.1 19.0
Cyclopentane Total C ₆ Naphthenes Total C ₇ Naphthenes Total C ₈ Naphthenes Total C ₉ Naphthenes Total C ₁₀ Naphthenes	1.2 6.5 1.0 5.4 Trace 6.3 5.8 1.3
Benzene Toluene Total C ₈ Aromatics Total C9+ Aromatics	1.3 0.1 2.2 4.9 2.0

Iraq National Oll Company Baghdad, Iraq


Sample Identification Mischrif Crude Oil UOP Number 114-4138

% Over	Temp. °F	% Over	Temp.
IBP	•	57.2	812
3.4	75	59.4	831
5.7	90	61.7	845
8.0	151	63.9	863
10.3	194	66.2	882
12,6	210	68.4	904
14.9	244	70.7	934
17.1	273	72.9	965
19.4	300	75.2	998
21.7	334	77.5	1030
23.5	343	79.3	1042
25.8	378	20.7% B	ottoms
28.1	401		, i sa
30.4	444		i de la colo
32.9	464		
35.0	489		
37.3	509		
39.5	529	and the state of the	
41.8	558		
44.1	588		site in the second
46,4	617	and the second second	e grand the
48.7	637		
51.0	667		
53.3	696		•
54.9	768	•	

ADDENDUE TO UOP RUMAILA MISHRIF ASSAY

The following tests were carried out on another kishrif sample

<u>Test</u> <u>Crud</u>	e Oil	Gns Oil	Residue	Residue
		343-54	10°C 343 &	5 408
Pour Point ?	35			
Nickel 14M			17	30
Yanadium PIW			112	182
Acidity , Mg.koll/Gram 0.2	19	0.152		
Salt Content (Lb Nacl /1000 B	BL) + 4			
Viscosity Cs at 50 8 9.0	27			
RVP PSI 8.5				

