REPORT OF AN ANALYTICAL SURVEY OF COCONUT FORESTS IN TAVEUNI ISLAND OF FIJI

June, 1978

Japan International Cooperation Agency

Taveuni Island, Fiji

· · · · · · · · · · · · · · · · · · ·	new start and a start of the st
国際協力事	業団
受入 '84. 46	202
登録No. 03050	84.1 FDP

CONTENTS

CONTENTS	
	Page
I. Purpose of Survey	1
1. Objectives of the survey	1
2. Implications of the survey of coconut forests .	1
II. Survey Background	4
1. Background of the realization of the survey	4
2. Organization for the realization of the survey	5
3. Survey team	5
4. Fijian agencies and personnel connected with the survey	7
III. Survey area	9
1. Location	9
2. Outline of the survey area	11
IV. Present Situation of Coconut Forests	14
1. Present situation of coconut forests and copra production in Fuji	14
2. Present situation of coconut forests in Taveuni	20
V. Photographing Operation	23
1. Planning	23
2. Photographing operation	23
3. Processing and editing	24
4. Preparation of an aerial photo mosaic	26
VI. Preparation of a Topographical Map	27
1. Field working	27

		Page	
2.	Aerial triangulation	29	· ·
3.	Mapping of a topographical map	30	
VII.	Coconut Forest Inventory	32	
1.	Formation of survey method	32	
2.	Planning and preparation	36	
3.	Preliminary interpretation	37	
4.	Stratification	37	
5.	Sampling of sample plots	41	
6.	Field working	42	
7.	Preparation of a volume table	53	· · ·
8. 8.	Arrangement of the results of a survey on sample plots	58	
9.	Preparation of aerial photo volume table	65	
10.	Preparation of standard interpretation cards	72	
11.	Preparation of a block map	74	
12.	Interpretation by block	78	
13.	Calculation of the total volume by sampling	87	
14,	Evaluation of the accumulative total volume	91	
15.	Preparation of distribution and location maps of coconut forests	92	
/III.	Utilization Plan of Coconut Forests	• 96	÷
1.	Preparation of a table of actual volume and area by age class	96	
2.	Preparation of a growth prediction table	100	
3.	Preparation of a succession table	102	
• . •	- ii -		

	•	
	Page	
4. Establishment of standard rotation period and calculation of cutting area and cut volume	106	
5. Calculation of sustained yield	106	
6. Cutting plan	116	
7. Transport plan, etc	116	
IX. Preparation of a Manual of Coconut Forest Inventory	117	
1. Evaluation of inventory procedure	117	
2. Manual of coconut forest inventory	117	
X. List of the products	119	
Appendix	-	
 Table of field Survey Results (results of the survey for estimation of the total volume) Manual of Coconut Forest Inventory 	121 130	
III. Scope of Work	141	
IV. Instructions for the use of Relaskop		
a se di se se se se se detta se se detta se se se denta se		
	al de la composition la composition la composition	

. Objectives of the survey

The survey was conducted for the purpose of providing data such as a coconut distribution map, results of coconut forest inventroy and other information necessary for utilization of coconut timber, by means of aerial photography. It was also intended for establishing a procedure of the research on coconut forests in tropical areas by means of aerial photography.

2. Implications of the survey of coconut forest

Copra, which provides one of the important resources for export in developing countries of the tropics, is made from coconuts. Since it is fairly easy to grow coconut even on barren land, it is widely cultivated in plantations of the Southeast Asia and the Oceania, and provides a major industry for these regions.

In Fiji, too, copra is an important export item with the total value of \$5,669,000 (1973) which comes after sugar (\$34,280,000) and gold (\$6,125,000). Copra production in Fiji amounts to 25,000 metric tons, making the country the second largest producer of copra in Melanesia and Polinesia, only next to Papua New Guinea (Pacific Island Year Book 1977). It is hoped, therefore, that management of plantations will be continued, producing stable yield of copra. However, an important problem has arisen in recent years in connection with coconut plantation. That is, those coconut trees cultivated in plantations are expected to over-mature in 40 to 50 years with continuous cropping of coconuts. This will result in lower yield of copra per unit area and threaten the management of plantations as an industry. (See Table 3 in IV-1.)

- 1 -

Most of those coconut plantations in Fiji, which were actively cultivated throughout the long colonical period, now seem to be in such a situation, and there is a pressing need for some measures to maintain the country's major industry.

For that purpose it is necessary to carry out regeneration of over-matured coconut forests at an early date to change them into young forests. Further, not only the problem of regeneration but also the problem of how the yield of plantations as a whole can be raised by utilizing as timber the stems of those coconut trees which are to be felled in large numbers has come to the fore.

It is also important from the view point of national policy for forestry and of sustained yield of timber in the world to extend the choice of species to provide timber resources from those which have hitherto been developed to new species with possibilities of utilization such as coconut so that limited timber resources may be conserved and utilized effectively.

In order to deal with these problems, technical development for the utilization of coconut trees as timber has to be carried out first. At the same time, collection of data on the amount of the resources and the annual standard felling volume which can be supplied as timber is necessary for determining the feasibility of the industry. In short, accurate assessment of the resources is essential.

However, studies and statistics estimating the volume of coconut as timber are practically nil and even the area of plantations is approximately documented. Even a stand volume table is not available at present, nor has the procedure of research been developed.

The present survey was conducted, in view of the situation, to develop a method of estimating the total growing stock of coconut timber mainly by means of aerial photography, and, at the same time, to carry out coconut forest

- 2 -

inventory in Taveuni Island as a training area.

n Alfred Alfred States and a second state of the second

an de la factoria de la companya de la comp

المحاجبة والمحاجبة والمرجع والمتعاد والمعطور والمعور والمعاج والمعاجر والمعور

These problems mentioned above are not peculiar only to Fuji; they are equally important to other countries of Southeast Asia and the Oceania. Therefore, the results of the present research will no doubt contribute to international cooperation with expanding into other nations.

.

An experimental production of particular devices of the contract on the contract

- 3 -

II. SURVEY BACKGROUND

i, sen≴, tetiji

1. Background of the realization of the survey.

In September, 1975, the Government of Fuji made a request through the Japanese Ambassador in Australia for Japan's technical cooperation in hardwood re-afforestation and so on (Dispatch No. 0966 Australia). In response to the request, the Government of Japan and the Japan International Cooperation Agency sent in November, 1976, a preliminary survey team headed by Mr. Tomohisa Fukumori, President of Japan Forest Technical Association, to discuss the contents of the technical cooperation requested by the Fiji Government.

As a result, it became clear that Japan's technical cooperation was requested for the following purposes in connection with forest utilization in Fiji.

- (1) Hardwood re-afforestation of areas already logged.
- 2 Production of wood chips form natural forests.
- 3 Coconut utilization plan and pulping trials.

The Japanese Government and the Japan International Cooperation Agency reported back the results of the Feasibility Survey for Forestry Development in Fiji (March, 1977) to the Fiji Government on the possibility of cooperation regarding the above items, and, at the same time, asked the Fiji Government as to which of the items for technical cooperation should be given priority. In reply the Fiji Government transmitted its intention to the Japanese Government of giving priority to the item (3) in the Survey report, Planning for utilization of coconut stands in Taveuni and its adjacent areas, and aerial photographing, mapping and collection of data necessary for the purpose (Dispatch No. 0392 Australia). After examination, the Japanese Government decided to cooperate in the survey for planning utilization of coconut forest in Taveuni Island.

2. Organization for the realization of the survey.

The survey was carried out by a joint venture as below. Fiji Forest Aerial Survey Joint Venture.

Representative: Japan Forest Technical Association; President, Tomohisa Fukumori;

No. 7, Rokuban-cho, Chiyoda-ku, Tokyo. Member: as above.

Member: Kokusai Aerial Survey Co., Ltd.;

President, Kenji Masuyama;

No. 2, Rokuban-cho, Chiyoda-ku, Tokyo.

Member: Asia Air Survey Co., Ltd.,

President, Hiroshi Motojima;

2-16, 5-chome, Tsurumaki, Setagaya-ku, Tokyo.

3. Survey Team

2. Augusta

For the purposes described, the following survey teams were organized and sent to Fiji.

1) Preliminary survey team for forest exploitation.

Scope: S/W discussed and an agreement signed. (See

appendix 3.)

Collecting material and making arrangements for full-scale surveys 2) and 3).

5

Period: May 30-June 14, 1977.

Members of the team:

Leader Sadamoto Watanabe Vice Director of Forestry Road Division, Forestry Agency. Aerial survey Fumio Ishii Fiji Forest Aerial Survey Joint Venture (Kokusai Aerial Survey Co., Ltd.) and states Forest inventory Hiroshi Watanabe As above (Japan Forest Technical Association). Nobumitsu Miyazaki Vice Director of Forestry Coordinator Bedessing and a Development Division, JICA.

- 2) Survey team for aerial photographing.
 - Scope: Aerial photographing. Period: July 6-August 24, 1977. Numbers of the team:

a per l'estat de la

Coordinator Fumio Ishii Fiji Forest Aerail Survey Joint Venture (Kokusai Aerial Survey Co., Ltd.).

网络美国属长 建制造 建分析的 网络动脉网络

Aerial Masaru Shiromaru Same as above. photographing Masatsugu Miyama Same as above.

C. A. S. Martineza

 3) Survey team for mapping and coconut forest inventory.
 Scope: Survey for preparation of topographical maps. Coconut forest inventory.
 Period: September 30-November 8, 1977.
 Members of the team:

Supervisor	Masao Hanega	Vice Director of Forestry Planning Division, Forestry Agency.
Coordinator		Fiji Forest Aerial Survey Joint Venture (Japan Forest Technical Association).
Mapping	Takashi Yokokawa Yoshiaki Ohtoku	Same as above. (Kokusai Aerial Survey Co., Ltd.). Same as above.
		(Asia Air Survey Co., Ltd.).
Coconut Forest Inventory	Tadami Imai	Same as above. (Japan Forest Technical Association.)
	Masaaki Mizukami	Same as above.
	Yoshimasa Koike	Same as above.

ser bita ti

(1) = (2 + 1)

1997 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 -

物: 化合金环菌

4. Fujian agencies and personnel connected with the survey.

Department of Foreign Affairs: Under-Secretary P.E. Sotutu.

Forestry Agency: Conservator of Forests G.H.D. Williams.

> Deputy Conservator of Forests K.T. Yabaki.

Senior Assistant Conservator of Forests A. Oram.

Ministry of Agriculture: Under-Secretary W. Tompson.

> Assistant Director of Agriculture J.M. McPaul.

Agricultural Statistician R. Rothfierd.

Assistant Agricultural Statistician J. Kumar.

Ministry of Land and Minerals:

Director of Land and Survey General B. Dutt.

Assistant Director of Land and Survey G.P. Gautam.

Principal Surveyer A. Spower.

Institute of the Timber Utilization Research:

a Berna

Principal Utilization Officer A.S. Alston.

Senior Utilization Officer J. Richolson.

Taveuni Regional Office:

i na tra

.

Principal Officer P. Thompson. III. SURVEY AREA

1. Location

The survey area covers about 10,000 ha(hectars) of coconut forests and the surrounding areas in Taveuni Island. (See Fig. 1 and 2, and also the inside of the front cover.)

Fig. 1. Location map of Fuji

- 10 -

2. Outline of the survey area

Location and the second s

Taveuni Island is located about 200 km (kilometers) north-east of Suva, the capital of Fiji, and lies between 16° 41' and 17° 1' in latitude South and between 179° 54' East and 179° 14' West in longitude. The island is about 42 km long from north-east to south-west, forming a long elliptic shape with the average width of 12 km and a total area of 43,500 ha.

Topography

A mountain range of the 1,000 meter class runs in the center of the island with the average width of 12 km. Consequently the terrain is extremely steep and the level area is found only in the south-west and a part of the north-east section of the island. Most areas rise from the coast through short gentle slopes to the steep mountain area.

Geology and soil

Taveuni is a high volcanic ridge belonging to a linear series of volcanoes in the Pacific. It was formed mainly during the late Tertiary period, but some of the larger eruptions took place during the late Pleistocene when basaltic lavas covered most of the island and prevented the formation of fringing reefs. Even at present remains of craters are visible in many parts of the island.

Soils are mostly reddish loam derived from decomposed scoria, tuff and vegetable matter. They are very rich in nutrient and may be over 1 meter deep in lowland areas.

Climate

The prevailing winds are from the south-east. They bring heavy rainfall of up to 5,000 mm per annum to the peaks and south-eastern slopes while the northwestern areas receive less than half this amount. There is a great deal of cloud along the main ridge and upper slopes throughout the year. Temperatures range from 16° to 32°C and occasionally exceed this with annual means of 31° maximum and 18° minimum and monthly means ranging from 23° to 27°C. Humidity is high throughout the year; morning humidities average 80% while afternoon humidities average 70%. (relative humidity) as said by galaxy to an oppraction and it is in the feature

Land utilization

Land is divided up roughly as follows:-

1999年1月1日,我们是自己的Andread Andread Andread

a pangas i go nyawaka "aliw phi kan anang mangal na kan dan na dan na kana na kan

Native reserve	4,000	ha
Forest reserve	11,300	(Patrato a
Coconut plantations	7,900	(Estates- 6,100 ha)
Villages, bush and cultivation	20,300	
n an an Anna a Anna an Anna an	12 500	ha

el estes des la transferencia rotal proj 43,500 ha

Forest area

The forest covers the central and southeastern parts of the island. Since it has not been throughly mapped and typed, its details are not available. It seems, however, that the forest contains a large number of tropical rain forest species. The forest is divided into Native reserve and Forest reserve, and is distinguished from the estates and the unreserved land.

There is no timber production apart from small quantities for local use by landowners and villagers.

Industry

The island once produced cotton and, later, sugar; but the major crop now is copra produced from coconut plantations. The island is also a large producer of vegetables, especially Dalo which is shipped to other islands. Cattle and pigs are also bred in the forest.

- 12 -

Population

As of September, 1976, population is 7,700. While the number of Fijians of Indian stock is increasing in Fiji, native Fijians occupy a comparatively large proportion of the population of Taveuni.

The native Fujians, who practiced cannibalism until about 100 years ago, are naive and friendly people; and they are fairly diligent.

Taveuni seems to have a higher level of standard of living than other islands probably because of the production of copra.

Transportation, etc.

There are public roads along the coast in the northeast, northwest and southwestern parts of the island and bus services three times a day to connect the scattered villages in these areas. There are also work roads passable for motor vehicles transporting copra from coconut plantations in the southwest and northeastern parts.

Inter-island transportation is provided by boats. However, because of the coral reefs, there is only one harbor at Somosomo at the center of the island. There is an airstrip at Matei in the northeastern part, operating air service once a day for Suva.

Though there is no remarkable tourist attraction in Taveuni, but some visitors come in search of nature and primitivity. There is a resort hotel in Waiyevo, and a villa development has begun recently in Sogulu district.

and a state of the second state of the second

with the second protect count of the second protect count of the second protect count of the second protect of the second prote

the standing from the second states

IV. PRESENT SITUATION OF COCONUT FORESTS

1. Present situation of coconut forests and copra production in Fiji.

1-1. Area of coconut forests.

Present situation regarding coconut forests and copra production in Fiji according to the data collected can be summarized as follows:-

Tree	Ar	ea	Number of		
age	Hectare	Acre	trees	8	
Under 10	21,040	52,000	2,600,000	23.7	
10 - 22	2,020	5,000	250,000	2.3	
22 - 30	5,460	13,480	674,000	6,1	
30 - 42	8,590	21,220	1,061,000	9.7	
42 - 57	14,110	34,860	1,743,000	15.9	
57 - 72	16,810	41,540	2,077,000	18.9	
Over 72	20,860	41,540	2,577,000	23.5	
Total	88,890	219,640	10,982,000	-	

Table 1. Present situation of coconut forests

Source: Feasibility survey for forestry development in Fiji.

According to the table, those trees over 42 years occupy 51,780 ha (58.3% the total), and even those over 57 years occupy 37,670 ha (42.4%). The existence of these old forests reveals the situation referred to in I-2. The distribution by age class shows clearly that middle and young forests are very few and that the distribution is considerably unbalanced. Thus, it is clear that cutting

- 14 -

should not be carried out by simply starting with the old age class and that cutting and regeneration should be planned on the basis of sustained yield management. Table 2 gives the distribution of coconut forests by area.

S. 1930 S.

ator de

 $-\frac{1}{2} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2$

13-11

- 15 -

	Area	Hectare	Acre
	Tavcuni	7,861	19,410
	Qame a	1,418	3,500
NORTHERN DIVISION	Rabi,	1,0 8 1	2,670
	Natewa Bay	4,054	10,011
	Wainunug at an	3.547	8.7 6 8
	Bua	2,275	5,618
	Macuata	4,167	10,288
	Rest of Cakaudrove	9.492	23,437
	Total	3 3, 8 9 5	83.692
	Batiki	166	410
	Gau	705	1,740
LOMAIVITI GROUP	a Nairai an aite ann an Anna Anna Anna Anna Anna Anna A	2 5 7	635
	Koro	2,643	6,525
	Ovalau ,Moturiki ,Makogal ,Wakaya	960	2,370
n se	Total	4.731	1 1,6 8 0
	Cicia Tuvuca	912	2,252
1113) 1933年———————————————————————————————————	Kabara Komo	269	665
	Lakeba	1,324	3,270
LAU GROUP	Vanua Balavu, Yanuca Cikobia	1,827	4,510
	Matuku	478	1,1-8-0
	Madla	1,632	4,030
a far en la caración deservo. A	Oneata, Namuka, Moce	834	2,060
	Nayau	267	660
	Vanuavatu, Totoya	239	590
	Vatoa, Ono	634	1,565
	Ogea , Fulaga	454	1,120
	Mun ia , Katafaga , Mago , Naitauba , Kanacea	2,215	5,470
	Total	11,085	27,372
	Kabavu	3,252	8,030
	Rotuma	1.320	3,260
OTHER AREAS	Yasawas	2,7 2 2	6,720
1	Vatulele	4 3 5	1,074
	Tailevu	2	5
	Rewa	1	2
	Bega	719	1,775
	Total	8,448	20,859
FIJI TOTAL-by Divisions	Grand total	58,159	143,603

Table 2. Distribution of coconut forests by area

Source: Data for Tables 2, 3 and 4 supplied by the Fiji Timber Utilization Reserch Institute

.

Note: The total area of 58,189 ha given by Table 2 differs from 88,890 ha given by Table 1. This is because the figures given by Table 2 are only those of bearing forests. According to the Department of Agriculture, preregeneration forests account for 21% of the total and over-matured forests 45% and the rest are production forests of those younger than 60 years.

According to the table 2, coconut plantations are concentrated in the Northern Division, particularly in Cakaudnove (the southeastern part of Vanna Levu Island along Natewa Bay) and Taveuni. In terms of the proportion of the area of coconut forests in the total land area, Taveuni has the largest proportion, hence the reason for being the target area of the present survey.

1-2. Production of copra.

Tables 3 and 4 give the production of copra during the period from 1963 to 1976 and the distribution by area.

Table 3. Annual production of copra (unit: ton)

and the second second and the second seco

Year state where the second state of the secon	Production
1963	41244
1964	41209
1965 -	29883
1966	25356
1967 –	24864
	27734
1969 -	33449
994 1970 - 1970 - 1988 - 198	28260
1971 -	28550
1972 -	29160
ho and $ ho$	27060
1974	27278
1975 -	23496
1.976	26510

- 17 -

An example the state of the state

Table 4. Production of copra	by area	(unit: ton)
in a star of the second sec	1975	1976
Viti Levu and adjacent islands	964	1,594
Lomaiviti	2,550	2,676
Vanua Levu	8,916	8,867
Taveuni	5,833	6,852
The Laus Content of the second	4,385	4,831
Kadavu	291	379
Rotuma	466	1,256
Miscellaneous	91	55
	23,496	26,510

Production in recent years ranged from 25,000 to 27,000 tons. Though there are fluctuations in production, the figures show a slight decreasing trend, an indication of the decreasing production capacity of over-matured forests.

Areal distribution of production of copra corresponds roughly to the areal distribution of coconut forests. 1-3. Species of coconut

According to the <u>Plants of the Fiji Island</u> by J.W. Parpham (Government Printer, 1972), those species of coconut found in Fiji are as follows:-

Cocos nucifera Linn, Coconut; Niu; Niu Dina.

The coconut is the best known of all the palms. The products of the coconut have a wide variety of uses; one of Fiji's major exports is coconut oil which is produced by crushing the copra. It is estimated that coconuts for copra production occupy 170,000 acres.

The following names are applied to different types of coconut palms in Fiji:

18 -

TALL PALMS:

NIU VULA: Tall palms with green nuts.

NIU DAMU: Tall palms with orange nuts.

NIU DRAU: Tall palms bearing a large number of small nuts.

NIU NI TOGA: Tall palms with large nuts.

NIU NI MAGIMAGI: Tall palms with elongated nuts which have a large area of husk (mesocarp) which is used for making sennet (magimagi).

ROTUMAN: Tall palms with the reputation of bearing very large nuts. Usually not heavy bearers.

NIU YABIA: The "weeping" coconut. Tall palms with drooping pinnae; not common, usually bears few, small nuts.

DWARF PALMS:

NIU LEKA: The Fijian dwarf which usually bears green nuts; it grows to a height intermediate between the Malayan dwarf and the typical tall palm. MALAYAN DWARF: Introduced. The nuts are either orange or yellow.

NIU LEKA X MALAYAN DWARF (FIJI HYBRID): The hybrid is a result of Marechal's work in the late 1920's and is considered to be a good type of palm, usually bearing an above average number of orange or green coloured nuts.

The former group is normally called Fiji Tall and the latter Malayan Dwarf.

Fiji Tall are common species in Fiji. With regard to Malayan Dwarf species, the number has been increasing recently because they bear a large number of nuts, resulting in a large yield of copra per unit area, though they are not very tall. Their defects are that they decay after 40 to 50 years and that they are not strong against hurricanes.

2. Present situation of coconut forests in Taveuni

Present situation of coconut forests in Taveuni based on the results of the survey can be summarized as follows:-The total area of coconut forests is 10,876 ha, having the total volume of 754,047 m³. (cubic meters) Thus the volume per hectare is 69 m³/ha.

The forests are located mainly along the coast except the southeastern part of the island, particularly in the flat area of the southwest and also in the northeast.

Fig. 3 and Table 5 give the distribution area and the volume by age class.

These data show that those trees over 50 years account for 43.7% of the total and that regeneration is a pressing need. The distribution of area by age class is almost identical to that for Fiji as a whole (Table 1): very unbalanced distribution with very few production forests in the age class V.

Production of copra in Taveuni was 5,833 tons in 1975 and 6,852 tons in 1976, accounting roughly a quarter of the total production in Fiji.

Most of the existing species are Fiji Tall, and Malayan Dwarf, planted mainly as the lower story of the two-storied forest.

.

Age class	Area	Percentage	Area	Percentage
1	621.00 ha	5.7 %	16,311m ³	2.2 %
I	1, 0 2 7. 2 7	9. 5	3 8, 4 0 3	1 4 1 5 , 1
10- 	893.78	8. 2	51,932	6.9
IV	3 4 8 2 3	3. 2	20,729	2. 7
20 V	2 3 2 1 5	2. 1	1 2, 2 4 7	1. 6
VI 	2 3 2. 1 5	2. 1	1 7, 8 6 5	2.4
VI	4 4 6 8 9	4.1	3 0, 1 1 2	4. 0
VU	580.38	5. 3	34,858	4. 6
10 IX	95182	8.9	74,488	9. 9
X 50-	7 7 7 7 1	7. 2	46,886	6. 2
Xí	679.04	6. 2	4 2, 7 4 0	5.7
XII 60	580.38	5. 3	4 4, 6 7 7	5. 9
XIII	73708	6.8	5 3, 5 1 4	7. 1
XIV70	8 1 2.5 3	7.5	80,787	1 0. 7
XV	679.04	6. 2	59,241	7. 9
XVI 80	4 0 6 2 6	3. 7	36,030	4.8
XVII	290.19	2. 7	33,603	4. 5
XVII 90	17411	1.6	1 5, 9 5 6	. 2. 1
XIX	23215	2. 1	2 7, 5 2 1	3. 6
XX and over	1 7 4 1 2	1. 6	16,147	2. 1
and the second se	1 0, 8 7 6. 2 8		7 5 4, 0 4 7	

Table 5. Coconut forests in Taveuni

Note: The age classes have been estimated by the method described in VIII-1.

ne an a than the dark of the feature to the dark of the second second second second second second second second

÷.

 (α,β) . It is the structure of (β_{1},β_{2}) , the structure of β_{2} , the structure of \beta_{2} , the st

- .22 -

V. PHOTOGRAPHING OPERATION

的现在分词是一个

1. Planning

The present survey begins with aerial photographing. First, the following photographing plan based on the existing topographical map on a scale 1:50,000 was worked out.

网络教育学校 网络小麦属

Photographing specifications

	Camera:	Wide angle camera with a 15 cm
.		focal length lens.
	Height of the datum level:	617 m.
	Flight altitude:	3,670 m.
	Number of courses:	5 courses parallel to the length
		of the island.
	Overlap:	608.
	Sidelap:	30% → 20% → 20%
•	Films:	B/W panchromatic.

2. Photographing operation

Photographing operation was conducted from July 6 to August 24, 1977. The airstrip at Matei was used as the base for the operation, and photographing flights were made according to the weather condition. However, there was not even one day when the weather was clear over the whole island, and, consequently, photographing was carried out piecemeal, supplemented by additional flights.

Particularly the central ridge of the island was always covered with thick clouds, and it was not possible to obtain completely clear photographs in spite of repeated attempts.

However, photographing within the range of cloudiness specified in the Scope of Work was carried out, and clear photographs of the coconut plantation areas, the objective of the survey, were obtained.

- 23 -

Aircraft and other items used for the operation were as follows:-

Aircraft	Beechcraft Co.	Beech 95-C55		
	(Chartered from Fiji Air.)			
Camera	Wild Co. RC-8	(F. 152.02 mm).		
Films	Fuji Film Co. H	Juji Aerofilms SS.		

3. Processing and editing

Exposed films were developed and edited, and the following results were obtained.

Negative films	1	сору
Positive films	1	сору
Contact prints	2	copies
Original index map	1	сору
Copy of the above	2	copies

Table 6 gives the details of the edited aerial photographs, and Fig. 4 the index map. .

	Table 6.					
-						
	Cours	e No.	Photo no.	Copies	Date	
	cl	А	1~5	27	7/30	
	CT.	B	1 ∿ 22	24 1	7/24	
	C2	A	1 ∿ 22	32	7/29	
	Ç2	В	1 \cdot 10	J2	7/29	
in The sta	••• •••• •••	A	1~9		7/27	
	С3	B	1 ~ 13	34	7/30	
	ъ	C	1 ~ 12	а 1 — С.	7/29	
	•	А	1 ~ 12		7/29	
	C4	В	1~9	29	7/30	
		C	1 ∿ 8		7/29	
	C5		1 ~ 15	15	7/29	

24 -

Fig. 4. Index map of Taveuni

4. Preparation of an aerial photo mosaic

Weither Brown

to the end

First, contact prints were made from the developed films. They were then affixed on to a topographical map which had been prepared by enlarging in scale from 1/50,000 to 1/20,000. With regard to the central ridge which could not be photographed without clouds, existing aerial photographs taken by the British Government in 1965 (photo scale 1/20,000 and kept by the Fiji Government) were used. Though there was a lapse of 12 years with those photographs, since they cover only the virgin forest area near the peaks, they seem to serve the purpose of the present survey. Finally, the completed mosaic was panelled, and its reprints were made on CH paper. IV. PREPARATION OF A TOPOGRAPHICAL MAP

1. Field working

1-1. Pricking of control points for aerial triangulation.

Pricking of control points necessary for aerial triangulation was carried out at the existing triangulation points and subtriangulation points.

As Fig. 5 shows, datum points in Taveuni have already been surveyed and there are 15 triangulation points (including 3 subtriangulation points). Thus, aerial photographs enlarged four times were brought over to Taveuni for pricking of triangulation points. The triangulation points in this area are comparatively well kept, though many of them are under deep vegetation. Eventually the following points, excluding those at Uluigalac and Viubani, were pricked.

Triangulation points 11

Sub-triangulation points 2

The operation included skeches of a position map of control station so that aerial triangulation could be carried out satisfactorily.

- 27 -

Fig. 5. Control point network for Taveuni Island

1-2. Survey for mapping operation

Survey was carried out on the following points to supplement by mapping machine.

1) Establishment of those details unidentifiable on the mapping machine such details of the coast line, plantation boundaries, etc.

2) Confirmation of the locations of public bodies and main buildings and their names.

3) Survey of proper names such place names.

4) Additional survey of those incomplete areas due to cloudiness.

2. Aerial triangulation

2-1. Selection of pass points and their transfer.

Pass points necessary for mapping were selected, allocating 6 points to each aerial model, together with tiepoints as below.

Δ Control point
 (Triangulation point)
 × Pass point

te esta en tal Serie de la composition Serie de la composition de la compositio

• Tiepoint

Fig. 6.

an la ser Mar

- 29 -

Further, the positions of these pass points and of control points pricked in Taveuni were transfered on to positive films by using a point transfer device, P.U.G. by Wild Co.

2-2. Determination and calculation of coordinates

Coordinates on photographs were determined regarding the pass points and control points by using a stereocomparator by Carl Zeiss.

Based on these coordinates, ground coordinates of pass points were calculated for each course by the analytical aerial triangulation method. Then, adjustment for all the courses was carried out by block adjustment method with tiepoints as connections. However, since there were not enough elevation points, clear independent elevation points were selected from a topographical map of the scale 1/50,000 to provide information on elevations. The electronic computer used for calculation was FACOM230-450S.

The following results were obtained from the above operation (attached):-

Position map of control stations. 1 copy Results of aerial triangulation. 1 copy Positive films with pass points transferred (transferred on to the results obtained in V-3). 1 copy

3. Mapping of a topographical map

Mapping of a topographical map was carried out on the basis of pass points coordinates obtained by aerial triangulation described in the previous section and the results of the field survey. The mapping scale was 1/10,000 and the interval between contour lines was 10 m for main lines and 50 m for index contour lines. As for the mapping machine, the Planimat D2 by Carl Zeiss was used.

However, as for those area affected by clouds and the

30 -
virgin forest areas not connected with coconut plantations, the contour lines were drawn on the basis of the topographical map of the scale 1/50,000 (prepared by the British Government and kept by the Fiji Government).

Finally, an original map was prepared by tracing the mapped original on polyester paper, which was then copied to obtain a copied original map.

VII. COCONUT FOREST INVENTORY

1. Formation of survey method.

1-1. Items needed for the survey.

In order to prepare basic material for the policy for regenerating and utilizing the aging coconut forests, those items required for the present survey can be summarized as follows:-

1) Accurate estimation of the total volume of coconut timber in Taveuni.

2) Its distribution and detail.

3) Development of procedure of research for coconut forest inventory and preparation of a work manual.

4) Preparation of aerial photo volume table and standard interpretation cards as basic material.

In other words, the survey was to obtain the total volume of coconut timber in Taveuni, to show exactly where it exists by a distribution map and a detailed table, to establish the method of coconut forest inventory through these operations and prepare a work manual which can be used by Fiji Government independently in future.

1-2. Outline of the method

The method to be used for the above purposes can be divided into two parts: survey of the total volume and more detailed survey of sections.

For the estimation of the total volume given under 1-1-1, we decided to take a sampling method because of restrictions on the cost and the time.

The sampling method is to select at random samples from the target area for detailed examination. The results obtained are then used to induce the whole.

- 32 -

Since this method is based on statistical theories for induction, the estimates obtained possess statistical meanings.

However, the sampling method is basically to estimate the whole (total volume). Therefore, it does not provide the distribution and detail for the purpose given under 1-1-2). Accordingly, another method has to be devised.

Since it is difficult in terms of costs to carry out field survey on the entire area, the method based on interpretation of aerial photographs was devised.

Aerial photographs have the function to catch directly the actual situation, and these are, therefore, most suitable for obtaining the distribution. Further, by using a photo volume table (a volume table for aerial photographs) or by comparing them with standard interpretation cards, (cards for interpretation of aerial photographs), the volume in each section can also be obtained. Since both the aerial photo volume table and standard interpretation cards are not available at present, the survey has to begin with preparation of these material first. However, in view of the possible extension of the survey to the entire country in future, it is worthwhile to prepare these material.

Thus, it was concluded that the best procedure for the present survey would be the combination of the sampling method and the detailed survey based on interpretation of aerial photographs.

Further, since the total volume will be accumulated in detailed survey, it can be evaluated to see if it is within the confidence limit of the total volume obtained by sampling method.

Fig. 7 gives the flow chart for the survey based on the combination method.

Further, for the above operation it is necessary to obtain a volume table of coconut stem as the basis. Therefore, sectional measurement will be carried out for about

> giðis of Herbege Friver Johanne

- 33 -

100 sample trees. By analysing factors such as stem height a volume equation will be obtained to prepare a volume table.

By this method, data for each block of coconut forests (area, number of trees, tree height and volume), distribution map (1/10,000), location map (1/50,000) and a utilization plan can be obtained. For wider use, a coconut volume table, photo volume table, standard interpretation cards and a manual of coconut forest inventory were also obtained.

Fig. 7. Flow chart for survey of coconut forests

- 35 -

Notes: 1) Stratum unit.

Depends on age class (young, middle and old), structure of crown story (single, two-storied) and degree of utilization (in use, idle). 5 strata (4 strata in the case of sampling to exclude idle stratum).

2) Sample plot.

180 plots. Size: 0.2 ha (circle),

- Sample trees (a).... For preparation of volume table, numbering 100. Measurement of stem height and diameter every 2 m height taken by climbing.
- Sample trees (b) For preparation of photo volume table, numbering 180. Trees closest to the center of sample plot.
- 5) Factors for correlation analysis. Factors examined for photo volume table: for example tree height, crown diameter and tree age.
 - Standard interpretation cards.
 Cases: 20.

2. Planning and preparation

2-1. Planning

In order to carry out the survey satisfactorily, material relating to the survey was collected. The material collected included results obtained by the feasibility study team and the preliminary survey team and also various reports relating to coconut.

The survey was planned on the basis of these material and the situation in the target area.

- 36 -

2-2. Preparation

The following material was prepared to be used for the survey.

 Aerial photograph (1/100,000)....The negatives obtained under V-3 were used to produce enlarged prints (2 times).

2) Aerial photo mosaic....The negatives used for aerial photo mosaic under V-4 were used to produce 1/10,000 aerial photo mosaic.

3) Basic map (1/100,000)....The original map obtained under VI-3 was used to produce a copied original map to be used as the basic map.

4) 1/50,000 topographical map. The existing map was used.

3. Preliminary interpretation

First, the area of coconut forests was marked by interpreting aerial photographs. Further, plantation boundaries and boundaries in terms of planted year and forest type were marked.

Then, general data such as tree height and crown density were interpreted for every section. They were then arranged according to age class (young, middle and old), structure of the crown (single and two-storied) and the degree of utilization (utilized or idled) and marked temporarily with dermatograph pencil on the photograph.

4. Stratification

Stratification for sampling should be determined in such a way that variance within stratum would be small and variance between strata would be large depending on the type.

Various factors were examined to be considered for stratum unit, and age class (tree height considered), structure of crown story and the degree of utilization were found to be most suitable. Thus, stratification was carried out on the criteria given by Table 7. By using the temporary marks entered on the aerial photographs each section was examined in terms of stratification, and the boundaries based on stratification were then entered on the photographs.

Stratum unit	Code
Young forest in use	[YI]
Middle forest in use	[MI]
Old forest in use	[OI]
Two-storied forest in use	[DI]
Idle forest	[E]

Table 7.

These boundaries were then transferred on to the aerial photo mosaic. Polyester paper with square lines, each block representing an area 100 m x 100 m, was placed on the mosaic to trace the stratification boundaries. A running number was then given to each stratum to produce a stratification map.

An example of the aerial photo mosaic used for stratification and stratification map are given in Fig. 8.

Example of aerial mosaic for st <u>ntification</u> oto 1, T ck(witherstratification map represents 042 100 m one joining point represents .) (DI) े. भ**्र**े AĮ. po 0 **X**2

1

5. Sampling of sample plot and sample trees

5-1. Sampling of sample plot

Samples were selected by stratified random sampling. In the light of the work schedule and costs, the number of samples was to be 167, and allocation to each stratum was based on proportional allocation.

ni = $\frac{Ai}{A} \cdot n$ ni = $\frac{Ai}{A} \cdot n$ Ai: area of i-stratum. A: total area.

With regard to those belonging to E-stratum, since they are left idle, many of them are of extremely low density. Therefore, though they were dispersed over a wide area, they were not expected to influence the total volume, and it was decided not to include them as a target of sampling estimation. Allocation was, therefore, for the first four strata. However, since it might be necessary to have material concerning E-stratum for interpretation by block under the section 11, 13 samples were selected independently (thus the number of sample plots for timber cruise under 6-1 would be 180).

Allocation to each stratum was thus calculated as Table 8.

	Number of sample	Area (measured on photo mosaic)
[YI]	18	1,028 ha
[MI]	48	2,750
[OI]	90	5,181
[DI]	11	634
[E]	(13)	1,283
Total	1.80	10,876

Table 8.

These area volues were calculated from the aerial photo mosaic, and are not, therefore, real values on the field. However, they are expected to have enough accuracy to provide information for allocation to strata.

Selected samples were entered on the aerial photo mosaic with sample numbers. They were further transferred to aerial photographs for convenience in field work.

5-2. Selection of sample trees (b)

Sample trees (b) are those to be used for preparation of photo volume table. It requires more than 100 samples. Since it would not be objective enough to adopt observational sampling in this case, it was decided to use standing trees in those sample plots selected by random sampling under 5-1. In practice those which were closest to the center of the plot were used as a rule. Accordingly, the number of sample trees is the same as that of sample plots-180.

5-3. Selection of sample trees (a)

Sample trees (a) are those to be used for preparation of volume table. It also requires more than 100 samples. Basically they are of the same nature as that of sample trees (b), and it is desirable to have identical ones. However, since the field work for that purpose would be too extensive, it was decided to have the minimum number of about 100 which were selected from the sample trees (b).

6. Field working

6-1. Timber cruise of sample plot (survey for estimation of total volume).

Those photographs on which positions of samples were entered were taken to the survey area and the center of the sample plot was determined, and the circular plot of 0.2 ha (radial 25.23 m) was set up.

Then all the trees in the plot were measured for stem height (height from ground to first leaf) and central diameter (stem diameter at central height). Results of the measurement are contained in the Field survey note (Table 9 contains part of it).

Equipment used for the survey included Blume Leiss for stem height and the Relaskop for central diameter. Instructions for the use of Relaskop are given in Appendix IV.

· ·		Central di	ameter				Central dia	ameter	
	Stem height (m)	Measurement value with Relaskop	Correction value	Volume (m ³)		Stem height (m)	Measurement 'value with Relaskop	Correction value	Volume (m ³)
1					26				
2					27				
3.					28				
4	1				. 29				
.5	· · ·				30			······	
6			[31				
7					32				
8			<u>, , , , , , , , , , , , , , , , , , , </u>		33				
9					34				
10					35				
11					36				
12					37				
13		······································		· · ·	38		· · · · · · · · · · · · · · · · · · ·	· ·	
14		·····			39				
15		1			40		<u></u>		
16		······································	· ·		4)				·
17		· · · · · · · · · · · · · · · · · · ·			42		·		
18			· ·		43		······································		
19 -	†				44				
20					45				
21	1				46				
22				<u>_</u> ,	47				
23				· ·	48		· · · · · · · · · · · · · · · · · · ·		
24	[· · · · · · · · · · · · · · · · · · ·		49		* - ·····		
25		·			50		·		

Table 9. Field survey note

Number of tree per plot	Number of tree	Mean stem	Hean cer diameto		Voluse	Number of tree	Volume
	height	Keasurement Value	Correction . value	per plot	per ha.	per ha.	
Upper tree							
l <i>ower</i> tree	····	······································				· · · · · · · · · · · · · · · · · · ·	
Tutal			- ••		· · · · · · · · · · · · · · ·		

- 43 -

6-2. Survey for preparation of volume table

107 sample trees (a) were selected from sample trees (b) in the survey area to prepare volume table, taking into consideration the stratified distribution.

For preparing the volume table, stem volume, central diameter stem height, as the factor for estimation, are necessary in actual value. In order to obtain the actual volume of stem, the specimen tree should be felled, divided into roughly equal sections at the shortest possible intervals and measured at each section for diameter at bottom end and for diameter at top end. Then the volume can be obtained by Smalian's formula (see 7-1).

However, it was anticipated that cutting of some 100 sample trees would meet restrictions from the work schedule and also from compensation. Thus, it was decided to measure the standing tree by climbing at intervals of 2 m in height.

With regard to measuring by climbing, as Fig. 9 shows, the climber lowers one end of a 50 m tape to the ground and has it secured. He then takes the reading of stem height and measures the diameter at top end of stem (diameter tape to be used).

Then the end of the tape is secured at 0.3m above the ground level to exclude the stump section, and the climber measures the diameter at even numbers on the tape, (i.e., 24, 22...6, 4, 2m), while coming down from the top. Finally the diameter at 0.3m above the ground level and that at the ground level are to be measured.

With regard to the central diameter, it was obtained by taking the average of diameters at bottom and top ends of the section corresponding to the median of stem height.

For example, if the stem height is 15.0m, the median would be 15m/2=7.5m. Thus, if the diameter at 6m+0.3m is 28cm and that at 8m+0.3m is 26cm, the central diameter can be obtained as follows:-

eta en la contra tertako era era d

- 44 -

- (1) The tape is to be secured at the ground level. Stem height and the diameter at top end of stem are to
 - be measured.

(2) Then the tape is to be secured at 0.3m above the ground level, and the diameter is to be measured every 2m in height.

Fig. 9 Measurement of diameter, etc. by climbing

45 ~

(Table 10	gives an	example.)	ne se	er Store de co	a de la cara
Sample tree		Table		Specie	s: Fiji Tall
whole tree height : 23		ameter: 75m	Breast he diameter	ight : 32cm Tree a	age : 70
Section A No.	ccumulative height	Interval length	Diameter	Interval / volume	Accumulative volume
Under	19.5		19	0.0006	1.2153
leaf section	18.3	2.48 1:19 285 - 2.48 - 56 - 46 - 584	21	0.0375	1.2103
9	16.3	2.0	22	0.0727	1.1778
8	14.3	2.0	24	0.0833	1.1051
7	12.3	2.0	26	0.0983	1.0218
6	10.3	2.0	26	0.1062	0.9235
5	8.3	2.0	29	0.1191	0.8173
4	6.3	2.0	31	0.1416	0.6982
3	4.3	2.0	30	0.1462	0.5566
2	2.3	2.0	31	0.1462	0.4104
1	0.3	2.0	42	0.2140	0.2642
요즘 이 문제 같아요.	· U, J	O.3m	50cm	0.0502m ³	$0.0502m^2$

MEMO

6-3. Survey for preparation of photo volume table

As for sample trees (b), whole tree height (height from ground to top end of leaf), stem height, central diameter and crown diameter were measured. For measuring whole tree height and stem height Blume-Leiss was used and for central diameter and crown diameter Relaskop was used. However, actually only whole tree height and crown diameter were measured as others duplicated those obtained under timber cruise in the plot.

- 46 -

Further, though tree age was surveyed as the plot represented the block, it was difficult to obtain accurate figures as many of the trees were 70 to 80 years old due to the old history of plantations in Taveuni. Information was obtained verbally from the native workers, which was supplemented by information obtained from the plantation owners. Results of the survey are given as Table 11. Incidentally, the field survey revealed that the plot of 0.2ha in MI-stratum and also in E-stratum had no coconut trees. This was because the sample plot was selected at random from the stand in a stratum unit under Section 4. As a result, the number of samples to be used for analysis was 178.

47 --

5

'n.

71 z

1.3

Sample tree No.	No. in Stratum	Treo age	Ag Young M	e clas iddle	مراحبته وشاديت	Whole tree height (m)	Stem height (m)	Central diaméter (cm)	Crown dlamoter (cm)
1	(01) - 1	60			0	225	18	22	750
2	2	65			O	21.5	18	22	750
3	3	60			0	1 9.5	16	-24	600
4	4	50			0	21.5	18	24	750
5	5	60			O	17	1.3	24	780
6	6	60			0	27	23	24	600
7	1	60	1		0	19 (16	24	560
8	8	60	1		0	1.8	15	20	740
9	9	60	-	، <u>ت</u> لبيني ا	O	21	18	24	700
10	1.0	60			0	16	12	2.6	560
n l	11	60		asi atang sa	Ō	21	17	24	7.40
12	12	60		··	Õ	18	15	24	720
13	 1 3	60			ŏ	165	13	20	960
	14	60		1		1 9.5		24	800
en e	14	60	· []·	····	0	21	16 17		700
15	(1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	the second second second		÷		And a subset of the second		26	
16	16	65	 -		0	24	20 15	24	7 20
17	17	70			<u> O; </u>	19	15	22	620
18	18	15	0			15	10	28	900
19	19	10	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $			12.5	8	28	750
20	20	15				15	.10	-24	720
21	21	60	·		<u>O</u> :	23	18	24	700
22	22	70			<u> </u>	25	20	22	7.00
23	23	30~40	4	0		25	21	32	800
24	24	25		0		17	13	24	820
25	2 5	40	1	0		24	20	32	700
26	26	25		0.		1 9.5	15	32	800
27	27	50			O I	185	14	24	720
28	28	19	0			1 7.5	13	28	760
29	29	10	0			11	6	30	820
30	30	1,3	0			16	8	28	850
31	31	50	1		0	22	18	24	7.50
32	32	70			0	28	21	22	800
33	3.3	70			0	27	20	28	800
34	34	80	· -		0	23	20	24	550
35	35	80	·		Õ	19	16	20	540
36	36	80	け───け		Õ	24	21	26	6.60
37	37	70	4		Ŏ	23	19	22	580
38	37	5,0	╡┄╌╴┠		0	18	14	20	830
			╡╌╌╴┠		ŏ	21	17	24	750
39	39	50	┉┝────╊			195	16	26	820
40	4,0	60			0	22	18	26	680
41	41	50~60			0		20	24	660
12	42	50~60	• • • • • • • • • • • • • • • • • • • •		0	23		5 *** · · · · · · · · · · · · · · · · ·	660
13	43	50~60	·		0	21	18	24	
41	44	40~50	·	0	<u>_</u>	16	13	20	540
45	45	60~70	1		0	21	18	20	540
46	46	70	. 		0	22	-17	20	680
47	47	70	<u> </u>		0	23	- 18	22	750
48	18	60			0	18.5	14	20	700
	49	60	 		0	15	11	. 32	820
49	50	20	0		<u>ا – ا</u>	20	14	26	640

Table 11. Survey results for preparation of photo volume table

- 48 -

sample tree	No. in	Marina nove	A	go clas	\$\$	Whole tree	Stem	Central	Crown
No.	Stratum	Tree age	Young	MIDDIG	01d	height (m)	height (m)	diamoter (cm)	diamete (cm)
61	(OI)~51	70			0	24	20	26	600
52	52	70			Ō	2.8	23	30	620
53	53	50			0	17.5	14	22	440
54	54	65			0	18.5	15	24	600
55	5 5	70	1		Q	22	19	26	660
56	56	60~70			0	21	16	22	480
57	57	60~70	[0	23	18	22	640
58	5.8	4 5		0		185	14	18	800
59	59	50			0	20.5	15	26	780
60	6.0	25		0		14	9	24	820
61	61	60			0	21	17	24	600
62	62	60			0	22	19	24	560
63	63	60	1		0	15	11	24	640
64	64	70			0	23	19	24	620
65	65	70		,	0	17	14	22	560
66	66	50			0	17	14	26	680
67	67	40			.0	20	16	28	680
68	68	50			0	20	17	24	520
69	69	7.0			0	24.5	21	28	7.20
70	70	70			0	28	24	26	840
71	71	70	1		0	23	19	26	750
72	72	50	1		0	1 9.5	16	26	660
73	73	60			0	2 2.5	18	24	760
74	74	10	0		· · · · · · · · · · · · · · · · · · ·	10	5	24	750
75	75	60				18	15	22	720
76	76	60			0	18	15	26	720
77	77	45	1	0		20.5	1.6	26	650
78	78	70			0	23	20	26	720
79	79	50	÷		0	19	16	24	600
80	80	50			0	18	15	26	560
81	81	60	· [·		0	21	18	22	640
82	82	60			0	2 3.5	19	26	740
83	8.3	60			0	24	20	26	560
84	84	70			0	21.5	19	24	480
85	85	77	·		0	23	20	24	560
86	86	50		1	0	21	17	26	680
87	87	55~60	+	†**•••••	0	21	18	24	620
88	88	79			0	23	20	20	720
89	89	75			0	21	18	24	600
90	90	60			0	26	23	24	720
		and the second	- 			<u> </u>			· ·
		1. A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A		•					
		۰.							
		ta da anti- A georgia de la composición de la compo							
						÷ .			
			-						
		:	-			•			
				•				· · · · ·	

- 49 -

sample tree	No. in	Trop too	1	ge clas	8	Whole tree	Ster	Contral	Crown
No,	Stratum	Tree Age	Young	Middle	ota	height (m)	height (m)	diameter (cm)	diamete (cm)
<u>91 ·</u>	(MI)-1	70		· · · · · · · · · · · · · · · · · · ·	0	18	12	20	400
92	2	. 15	0			14	9	26	900
93	3	15	<u>0</u>			15	11	26	820
94	4	30~40		0		1 8.5	.16	24	760
95	5	:13	0			10	5	24	780
96	6	10	° O			11	6	34	860
97	7	70			0	23	20	28	700
98	8	70			0	2 35	20	26	82(
99	9	70			0	25	21	26	740
100	10	60		[0	23	19	22	720
101	11	60			0	21.5	17	26	820
102	12	50			0	21.5	17	26	760
103	13	60	1		0	19	15	22	780
104	14	6~7	0		<u>~</u>	12		32	84(
105	15	5	ŏ			11	4	22	720
106	16	30		0	<u>-</u>	17.5	14	·	
100	17	40	· · · · · · · · · · · · · · · · · · ·	0		11		20	75(
107	18	50~60	<u>.</u>		0	·		18	64
100	19	60~70	·		$\frac{0}{0}$	24	20	26	700
						22	- 19	24	720
110	20	60			0	20	17	22	640
111	21	70	l		0	20	17	20	520
112	22	50			0	18	15	22	56
113	23	50			0	19	16	22	620
114	24	60	ļ		0	2.0	16	24	68(
115	25	60			0	19	15	22	720
116	26	12	0			10	4	32	87
117	27	8~10	0			16	9	22	96
118	- 28	30		0		17	13	22	720
;119	29						-		
120	30	40		0		19	15	28	78
121	31	60			0	225	19	26	720
122	3 2	15	0			18	14	26	68
:123	33	60			O	22	19	24	52
124	34	10	°O °			12	7	24	840
125	35	25		0		17	14	24	760
126	36	5.5			0	17	15	24	46
127	37	50			0	23	19	28	76
128	38	50			0	1 8.5	15	24	72
129	39	50			0	19	15	24	750
130	40	40		0	· · · · ·	15,5	12	20	75
131	41	45		0		18.5	15	24	700
132	42	25	· · · · · ·	0		16	12	24	64(
133	43	50~60	· · · ·		10	18	15	24	560
134	44	40		0	·	20	15	22	68
135	45	60]	·	0	17	14	20	72(
135	46	40	· · · · · ·	0		15	11	22	60
137	40	30	·	ŏ		1 4.5	8	26	840
137	48	30~40	┣-┈──	0		15	10	24	720

Sample tree	No. in	Tree age		Nge clas	T	Whole trae height	Stem height	Central	Crown
No.	Stratum		· • • • • • • •	Middle	010	(m)	(m)	diamoter (cm)	diamet (cm)
139	(YI)-1	6~7	$\frac{1}{2}$			12	5	26	980
140	2	6			······································	12	5	22	880
141	3	10	0			1 3.5	9	30	800
142	<u>- 1 - 1 - 4</u>	15				12	7	24	96 (
143	5	60		····	<u>0</u>	2.7	21	24	720
144	6 7	7	: 0	*******	·	6.5	2	24	800
145		10				14	11	2.4	800
146	8	10	0			14	11	24	680
147 148	9	10	0			17	8	26	880
	10	7				7.5	- 3	24	800
149	11	4				12	5	32	880
150		7	<u> 0 </u>			5	1.5	22	560
151	13	1.9		<u>. 0</u>	· · · · · ·	9	4	24	800
152	14 15	<u>7</u> 5					5	26	880
153 154			0			8	2.5	28	760
	16	15		0		9	5	28	780
155 156	17 18	10				.11	6	28	750
157	······································	5~6	0			8	5	22	640
157	(DI) -1 2	60	<u>-</u>			24	21	18	600
		5	0			9.5	1.5	36	720
159 160	3	17	0			10	4	24	760
161	4	15		0		11	6.5	22	600
161	5	12	0			17	8	26	980
		50			0	21	17	26	720
163	7	12	0			10	5	20	800
164 165	8	50			0	20	18	20	560
165	9	28		0	•	11	5	22	720
167	10	35		0		15.5	11	20	780
	11	5	0			9.5	3	28	760
168 169	(E)- 9	40		0		20	17	22	680
109	12 13	50			<u> </u>	18	15	18	560
170	20	75					1.7		
171	20	50			$\frac{0}{0}$	20 20	17	20	5 10
172	22	40		0		20	16	26	780
174	31	15	0	\rightarrow		11	<u>19</u> 6	26 22	<u>640</u> 800
175	38	5	0			9		26	640
176	40	60	<u> </u>		0	16	13	18	640
177	40	52			ŏ	18	14	20	5 40
178	45	70		· · · · · · · · · · · · · · · · · · ·	ŏ	21	17	22	560
179	48	65			ŏ	24	19	22	800
180	50	45~50		0		21	18	26	560
l		(~~~.	ب المستجد					
an di sana An Alaman An Alaman	n an toran sing Tanàna Sana Tanàna Sana		· · · · · · · · · · · · · · · · · · ·	•					

6-4. Confirmation of plantation blocks

Plantations in Taveuni can be classified in three categories: 1) large-scale management (called estates locally and are often owned by foreigners); 2) Fijian management (around the villages); and 3) public plantations run by the government.

Information was collected verbally at the Agricultural Office in Taveuni regarding the plantation boundaries, which were entered on the photo mosaic. However, it was difficult to determine the plantation boundaries. Because these boundaries were not clear, and futher more, were not corresponded with owened boundaries. Since accurate plans were not available and information was based on personal recollections of the office staff, objectivity could not be established. However, as for afforestation after 1964, the area of afforestation in the plantation has been recorded on cards as it was financed by the Government.

Therefore, the plantation boundaries referred to in the present survey should be understood as those for the survey.

With regard to a disparate section due to the difference in tree height, the number of trees and density, it was treated as a forest type in preliminary interpretation of aerial photographs. It was then confirmed in the field survey and was entered on the photographs. Information on tree age obtained at the site was also considered.

6-5. Survey for establishment of utilization plan.

Survey was also conducted regarding skidding and transportation necessary for the establishment of utlization plan. Further, survey was conducted regarding the hauling network and harbor facilities for exportation, and new facilities were to be planned if necessary. According to the results of the survey, the target area (coconut forests) are comparatively flat or gentle sloping ground. Consequently, skidding can be carried out by tractor or even by truck equipped with a winch in some parts. As for hauling, there were already walking roads in the plantations and they seemed to be suitable for the purpose, and there was no necessity of planning new roads.

Since there is only one harbor at present, it was anticipated that it would not be able to cope intensively with large quantities of export such as amounting to the total volume available in the island. However, it was found out through calculation of sustained yield that exportation amount to 16,000-17,000m³ a year, so it would be able to cope. It was, however, found to be necessary to plan a new timber basin attached to the harbor.

7. Preparation of a volume table

7-1. Calculation of actual volume of a single tree belonging to sample trees (a).

Actual volume of a single sample tree was calculated by using the diameter values for every 2m in height obtained by climbing.

As for stereometry, Smalian's formula was used, and the results were accumulated to obtain the actual volume as below.

Fig. 10

- 53 -

Actual volume of a single tree = stump volume* + interval volume + volume of under leaf section,

Stump volume = $\frac{g_0 + g_1}{2} \times 0.3$

Interval volume = $\frac{g_1 + g_2}{2} \times 2.0 + \frac{g_2 + g_3}{2} \times 2.0 + \dots + \frac{g_{n-2} + g_{n-1}}{2} \times 2.0$ = $(\frac{g_1 + g_{n-1}}{2} + g_2 + g_3 + \dots + g_{n-2}) \times 2.0$

Volume of under leaf section = $\frac{g_{n-1} + g_n}{2} \times \ell$

Results obtained are contained in the appendix <u>Results</u> of measurement of sample trees under Interval volume and Accumulative volume. The table gives as single tree volume the volume including stump volume, but the volume to be used as dependent variables for volume estimation formula described in the next section does not include stump volume.

7-2. Calculation of volume estimation formula and preparation of volume table.

In order to obtain volume estimation formula, regression analysis was made, using actual volumes of sample trees calculated under 7-1 as dependent variables and using stem height and central diameter which were thought to be closely related to them as variables.

However, since analytical study of this kind has never been made, it is necessary to find a suitable formula for estimating volume of coconut. For that purpose, the following three formula were examined to select the basic formula in the light of the nature of coconut stem which is close to log.

1 $\mathbf{v} = \mathbf{a} \mathbf{D}^{\mathbf{b}} \cdot \mathbf{H}^{\mathbf{c}}$	V	: Volume
$2 V = a (DH)^{b}$	D	: Central diameter
3 V = a $(D^{2}H)^{b}$	H	: Stem height
	a t	.c:Parameter

- 54 -

Calculation was carried out by electronic computer (IBM 370/168). The results of regression analysis are given as Table 12.

Table 12.

Stand volume formula	Multipl correlation coefficient	Number of data
1 $V = 0.0003 \text{ D}^{1.6235237}$. H $^{0.967452}$	0.9806	107
2 = 0.0025 (DH) 0.9748259	0.9738	98
3 $V = 0.0001 (D^2H)^{0.9549867}$	0.9791	11

As another indicator of precision, standard deviation of residuals and the rate of standard error were obtained from the difference between the actual measurements and estimated values for each formula as Table 13.

	Mean residuals	Standard deviation of residuals	Rate of standard error	
 1	0.0074	0.0762	9.85 %	
 2	0,0087	0.0900	11.64 %	
3	0.0076	0.0781	10.10 %	

Table 13

*Number of data = 107

1.1

*Rate of standard error = $\frac{\text{Standard deviation of residual}}{\text{Mean of actual measurement}} \times 100$

(Total of actual measurements 82.7594 (Mean of actual measurements 0.77345)

As a result, the first formula with the highest multiple correlation coefficient and a low rate of standard error was found to be most suitable for volume estimation formula.

- 55 -

Thus, the volume estimation formula for coconut is:- $V = 0.0003 \cdot D^{1.6235237}$. H^{0.967452}

The volume table was prepared by the above formula, having central diameter and stem height as factors, presented as Table 14.

Though it was thought to be desirable to calculate separately for Fiji Tall and Malayan Dwarf, they were combined for calculation as there were few sample trees of Malayan Dwarf and there was not much difference in relation between stem volume and stem height.

V: Volume (m³)

D: Central diameter (cm)

H: Stem height (m)

Volume estimation fermula

.

 $V = 0.0003 \times D^{1.6235237} \times H^{0.967452}$

1 0.0170 0.0280 0.0287 0.0384 0.0453 0.0652 0.0555 0.0691 0.0935 0.0039 0.1093 0.1093 0.1093 0.1093 0.1093 0.1093 0.1093 0.1093 0.1093 0.1093 0.1105 0.1105 0.1105 0.1105 0.1105 0.1101 0.1103 0.1272 0.1104 0.1273 0.1272 0.1241 0.2213 0.1213 0.1114 0.1130 0.1212 0.1101 0.1114 0.1213 0.1114 0.1130 0.1222 0.1145 0.1123 0.1131 0.1137 0.1272 0.1281 0.2286 0.3386 0.2387 0.2386 0.2386 0.2387 0.2386 0.3180 0.3550 0.3186 0.3550 0.3386 0.3386 0.3380 0.3590 0.4447 0.4476 0.4716 0.4726 0.4727 0.772 0.4237 0.4624 0.4717 0.4728 0.4728 0.4728 0.4728 0.4728 0.4728 0.4728 0.4728 0.4728 0.4728 0.4728	ព្រះ	4014 III											. ·			
1 0.0170 0.0220 0.0242 0.0242 0.0243 0.0242 0.0243 0.0244 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243 0.0244 <th0.0243< th=""> <th0.0243< th=""></th0.0243<></th0.0243<>	X	12	14	16	18	20	22	- 24	26	28	30	32	34	36	30	40
1 1		0.0170	0.0218	0.0270	0.0327	0.0368	0.0453	0.0522	0.0595	0,0671	0.0750	0.0833	0.0919	0.1009	0.1101	0.1197
1 1	2	0.0311	0.0426	0.0529	0.0640	0.0760	0.0887	0,1021	0,3163	0.1312	0.1467	0.1629	0.1798	0.1975	0.2154	0.2341
5 0.000 0.1035 0.1283 0.1355 0.1284 0.1355 0.1282 0.1353 0.1282 0.1353 0.1285 0.6282 0.6282 0.6682 0.7794 0.6445 0.1215 1.11 1 0.1126 0.2236 0.2236 0.4646 0.5518 0.6622 0.7425 0.6962 0.7714 0.4425 0.4214 1.2206 1.221 1.11 1.1165 1.1291 1.2264 1.1216 1.2216 1.221 1.2261 1.2117 1.423 1 0.4262	3	0.0491	0.0630	0.0783	0.0948	0.1125	0.1313	0,1512	0.1722	0,1942	0.2172	0,2412	0.2661	0,2920	0.5188	0.3465
6 0.999 0.1232 0.1553 0.1255 0.2357 0.2357 0.3357 0.3397 0.4447 0.4716 0.5200 0.5710 0.66234 0.673 7 0.1114 0.1430 0.1177 0.2353 0.2390 0.5355 0.5300 0.6400 0.4920 0.5415 0.6014 0.6623 0.7704 0.64354 0.6234 0.6623 0.7714 0.64354 0.6234 0.6623 0.7714 0.64354 0.6234 0.6521 0.6524 0.6625 0.7714 0.6435 0.6234 0.1233 0.3357 0.4646 0.5518 0.66247 0.6926 0.7715 0.7834 0.6213 0.7714 0.6523 0.7764 0.6927 0.7714 0.6133 0.6227 0.7714 <t< td=""><td>4</td><td>0.0648</td><td>0.0832</td><td>0.1034</td><td>0.1252</td><td>0.1485</td><td>0.1734</td><td>0.1997</td><td>0.2274</td><td>0.2565</td><td>0.2869</td><td>0.3186</td><td>0.3515</td><td>0.5857</td><td>0.4211</td><td>0.4577</td></t<>	4	0.0648	0.0832	0.1034	0.1252	0.1485	0.1734	0.1997	0.2274	0.2565	0.2869	0.3186	0.3515	0.5857	0.4211	0.4577
7 0.1112 0.1430 0.1177 0.2151 0.2553 0.2360 0.4420 0.4590 0.4547 0.6041 0.6428 0.6237 0.774 8 0.1267 0.1628 0.5022 0.2246 0.2304 0.3339 0.5955 0.4447 0.5955 0.5560 0.6230 0.6674 0.7742 0.6423 0.6234 0.6235 0.5672 0.5772 0.5672 0.5672 0.5771 0.6253 0.5672 0.5771 0.6253 0.5672 0.5771 0.6353 0.5955 0.6292 0.7731 0.8550 0.5950 0.5611 0.6293 0.5673 0.6473 0.6972 0.7731 0.8550 0.9350 1.0264 1.126 1.226 12 0.1676 0.2410 0.2393 0.3562 0.6710 0.7642 0.6930 0.7635 0.9954 1.0955 1.0264 1.1371 1.435 14 0.2779 0.3714 0.4490 0.5376 0.6850 0.7637 0.6970 1.0791 1.079 <	5	0.0804	0.1033	0.1283	0.1553	0.1843	0.2152	0,2478	0,2822	0,3183	0.3560	0.3954	0.4362	0.4787	0.5226	0.5680
6 0.1267 0.1628 0.5022 0.2440 0.2304 0.5339 0.5955 0.4447 0.5515 0.5510 0.6230 0.6874 0.7942 0.6824 0.6824 0.6824 0.6824 0.6824 0.6922 0.7764 0.9425 0.9228 1.00 10 0.1573 0.2200 0.2259 0.3031 0.3952 0.4614 0.5514 0.6625 0.6764 0.6477 0.9554 1.0264 1.116 1.1206 1.221 11 0.1173 0.2215 0.2733 0.3331 0.3952 0.4614 0.5514 0.6625 0.7634 0.6477 0.9554 1.0264 1.1206 1.221 12 0.1676 0.4210 0.2293 0.5624 0.7513 0.6503 0.7425 0.6305 0.9222 1.0176 1.1165 1.2296 1.3171 1.43 14 0.2179 0.3474 0.4206 0.4991 0.5626 0.7174 0.4616 0.5921 1.0793 1.0455 1.4740 1.511 </td <td>6</td> <td>0.0959</td> <td>0.1232</td> <td>0.1531</td> <td>0.1853</td> <td>0.2199</td> <td>0.2567</td> <td>0.2956</td> <td>0.3367</td> <td>0.3797</td> <td>0.4247</td> <td>0.4716</td> <td>0.5204</td> <td>0.5710</td> <td>0.6234</td> <td>0.6775</td>	6	0.0959	0.1232	0.1531	0.1853	0.2199	0.2567	0.2956	0.3367	0.3797	0.4247	0.4716	0.5204	0.5710	0.6234	0.6775
9 0.1440 0.1824 0.2265 0.2749 0.3255 0.3800 0.4476 0.4494 0.5521 0.6227 0.6592 0.7704 0.8455 0.5928 1.00 10 0.1573 0.2020 0.2500 0.333 0.5504 0.4206 0.4464 0.5518 0.6224 0.6592 0.7714 0.8550 0.9304 1.1206 1.11 11 0.1125 0.2215 0.2753 0.3331 0.5392 0.4614 0.5314 0.6651 0.6622 0.7714 0.8455 0.9222 1.0176 1.1165 1.2206 1.221 12 0.1876 0.2210 0.2993 0.3624 0.4300 0.5912 0.6247 0.8973 0.9954 1.0264 1.317 1.43 14 0.2207 0.2640 0.3214 0.4491 0.5530 0.6429 0.7174 0.8619 0.9640 1.0705 1.3241 1.4740 1.5127 1.44 14 0.2276 0.5193 0.4426 0.5679	7	0.1114	0.1430	0.1777	0.2151	0.2553	0.2980	0.3432	0.3908	0.4408	0,4930	0.5475	0.6041	0.6628	0.7237	0.7865
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	0.1267	0.1628	0.2022	0.2448	0.2904	0.3391	0.3905	0.4447	0.5015	0.5610	0.6230	0.6974	0.7542	0.8234	0.8950
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	0.1420	0.1824	0.2266	0.2743	0.3255	0,3800	0.4376	0.4994	0.5621	0.6287	0.6992	0.7704	0.8455	0.9228	1.0050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.1573	0.2020	0.2509	0.3038	0.3604	0.4208	0.4846	0.5518	0,6224	0.6962	0.7731	0.8530	0.9360	1.0219	1.1105
1.1 0.2027 0.2604 0.3234 0.3915 0.4646 0.5423 0.6246 0.7113 0.8022 0.6975 0.9964 1.0995 1.2064 1.3171 1.43 14 0.2170 0.3774 0.4206 0.4991 0.5826 0.6710 0.7642 0.6619 0.9564 1.0995 1.2064 1.3171 1.43 15 0.2228 0.2990 0.3714 0.4497 0.5336 0.6229 0.7174 0.9169 0.9214 1.0306 1.1444 1.2628 1.3856 1.5127 1.64 16 0.2478 0.5155 0.4466 0.5679 0.6622 0.7030 0.6979 0.9221 1.0400 1.1632 1.2917 1.4253 1.5619 1.7074 1.991 17 0.2828 0.3375 0.4432 0.5354 0.6355 0.7430 0.8557 0.9745 1.0911 1.2291 1.4251 1.5012 1.707 18 0.4717 0.5567 0.4404 0.5227 0.7389	11	0.1725	0.2215	0.2751	0.3331	0.3952	0.4614	0.5314	0.6051	0.6825	0.7634	0.8477	0.9354	1.0264	1.1206	1.2179
14 0.2170 0.3474 0.4205 0.4991 0.5826 0.6710 0.7642 0.9619 0.9640 1.0705 1.1812 1.2961 1.4150 1.557 15 0.2328 0.2990 0.3714 0.4497 0.5336 0.6229 0.7174 0.4665 0.9214 1.0306 1.1444 1.2628 1.3856 1.5187 1.444 16 0.2476 0.5135 0.4786 0.5679 0.6629 0.7174 0.4665 0.9907 1.0970 1.2281 1.3441 1.4768 1.6011 1.77 17 0.4628 0.3375 0.4431 0.5507 0.6602 0.7030 0.8597 0.9745 1.0001 1.1522 1.4251 1.5639 1.7074 1.85 18 0.2717 0.5567 0.4431 0.5564 0.6552 0.6707 0.7229 0.9017 1.0268 1.1511 1.2791 1.4365 1.5973 1.7416 1.9914 2.04 20 0.5075 0.53550 0.4662	12	0.1876	0.2410	0.2993	0.3624	0.4300	0.5019	0,5718	0.6503	0.7425	0.8305	0.9222	1.0176	1.1165	1.2190	1.3248
15 0.2328 0.2990 0.3714 0.4497 0.5336 0.6229 0.7174 0.0169 0.9214 1.0306 1.1444 1.2628 1.3856 1.5127 1.64 16 0.2470 0.3103 0.3953 0.4766 0.5679 0.6620 0.7636 0.8695 0.9007 1.0306 1.1444 1.2628 1.3856 1.5127 1.64 16 0.2470 0.3103 0.3957 0.4490 0.5076 0.6622 0.7030 0.8697 0.9021 1.0400 1.1632 1.2121 1.3411 1.4748 1.6101 1.775 17 0.2626 0.5375 0.4431 0.5364 0.6565 0.7430 0.8557 0.9745 1.0911 1.22917 1.4253 1.5631 1.9014 1.6914 1.2017 1.4385 1.5975 1.7416 1.9044 2.067 10 0.2375 0.4531 0.5145 0.7526 0.6627 0.9934 1.3121 1.2170 1.3613 <th1.5117< th=""> <th1.6600< th=""> <th1.6502<< td=""><td>13</td><td>0.2027</td><td>0.2604</td><td>0.3234</td><td>0.3915</td><td>0.4646</td><td>0,5423</td><td>0.6246</td><td>0.7113</td><td>0.8022</td><td>0.8973</td><td>0.9964</td><td>1.0995</td><td>1.2064</td><td>1.3171</td><td>1.4315</td></th1.6502<<></th1.6600<></th1.5117<>	13	0.2027	0.2604	0.3234	0.3915	0.4646	0,5423	0.6246	0.7113	0.8022	0.8973	0.9964	1.0995	1.2064	1.3171	1.4315
16 0.2478 0.3163 0.5953 0.4766 0.5679 0.6630 0.7636 0.6997 1.0970 1.2181 1.3441 1.4740 1.6101 1.773 17 0.2628 0.3375 0.4192 0.5076 0.6022 0.7030 0.8097 0.9221 1.0400 1.1632 1.2191 1.4223 1.5563 1.7074 1.895 18 0.2717 0.5567 0.4431 0.5364 0.6355 0.7430 0.8557 0.9745 1.0911 1.2294 1.3652 1.5064 1.6528 1.8045 2.987 19 0.2926 0.3375 0.4668 0.5652 0.6707 0.7829 0.9017 1.0268 1.1561 1.2294 1.3613 1.5773 1.7416 1.99014 2.087 2.9775 0.9745 1.0911 1.2254 1.4385 1.5973 1.7416 1.99014 2.087 20 0.3575 0.4496 0.5794 0.6227 0.9476 1.0791 1.2751 1.4571 1.5847 $1.$	14	0.2178	0,2797	0.3474	0.4206	0.4991	0.5826	0.6710	0,7642	0.8619	0.9640	1.0705	1.1812	1.2961	1.4150	1,5379
17 0.2628 0.3375 0.4192 0.5076 0.6022 0.7030 0.8097 0.9221 1.0400 1.1632 1.2917 1.4253 1.5639 1.7074 1.85 18 0.2177 0.5567 0.4431 0.5364 0.6365 0.7430 0.8557 0.9745 1.0911 1.2294 1.3652 1.5064 1.6528 1.8045 1.991 19 0.2926 0.3759 0.4668 0.5652 0.6707 0.7829 0.9017 1.0268 1.1511 1.2294 1.4365 1.5973 1.7416 1.99014 2.07 20 0.3075 0.4956 0.4906 0.5940 0.7040 0.8227 0.99476 1.0791 1.2170 1.3613 1.5117 1.6660 1.8528 1.9901 2.17 21 0.3224 0.4141 0.5143 0.6527 0.7389 0.9022 1.0391 1.1321 1.2759 1.4271 1.5847 1.7486 1.9107 2.0970 2.1911 2.38 23	25	0.2328	0.2990	0.3714	0.4497	0.5336	0.6229	0.7174	0.8169	0.9214	1.0306	1.1444	1.2628	1.3856	1.5127	3.6441
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	0,2478	0.3183	0.5955	0.4786	0.5679	0.6630	0.7656	0.8595	0.9807	1.0970	1.2181	1.3441	1.4748	2.6101	1.7500
19 0.2926 0.3759 0.4668 0.5652 0.6707 0.7829 0.9017 1.0268 1.1501 1.2954 1.4385 1.5073 1.7416 1.9014 2.06666 20 0.3075 0.5950 0.4906 0.5940 0.7048 0.8227 0.9476 1.0791 1.2170 1.3613 1.5117 1.6660 1.8502 1.9981 2.170 21 0.3224 0.4141 0.5145 0.6227 0.7389 0.6825 0.9934 1.1312 1.2759 1.4271 1.5847 1.7486 1.9107 2.0947 22 0.3372 0.4331 0.5380 0.6514 0.7729 0.9022 1.0391 1.1835 1.5346 1.4928 1.6577 1.8291 2.0070 2.1911 2.382 23 0.3520 0.4522 0.5616 0.6800 0.8068 0.9419 1.0848 1.2353 1.5922 1.6597 1.8291 2.0070 2.1911 2.382 24 0.3666 0.4712 0.5952 0.7086 0.8070 0.9814 1.1304 1.2872 1.4518 1.6239 1.8033 1.9898 2.1932 2.3952 25 0.3616 0.4901 0.6088 0.7371 0.9746 1.0201 1.1759 1.3391 1.5103 1.6893 1.6759 2.0699 2.2712 2.4796 2.857 26 0.5954 0.6599 0.7941 0.9222 1.0999 1.2658 1.4426 1.6270 1.9984 <td>27</td> <td>0.2628</td> <td>0.3375</td> <td>0.4192</td> <td>0.5076</td> <td>0.6022</td> <td>0.7030</td> <td>0.8097</td> <td>0.9221</td> <td>1.0400</td> <td>1.1632</td> <td>1.2917</td> <td>1.4253</td> <td>1.5639</td> <td>1.7074</td> <td>1.8557</td>	27	0.2628	0.3375	0.4192	0.5076	0.6022	0.7030	0.8097	0.9221	1.0400	1.1632	1.2917	1.4253	1.5639	1.7074	1.8557
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	0.2711	0.3567	0.4431	0.5364	0.6365	0.7430	0.8557	0.9745	1.0911	1.2294	1.3652	1.5064	1.6528	1.8045	1.9612
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	0.2926	0.3759	0.4668	0.5652	0.6707	0.7829	0.9017	1,0268	1.1581	1,2954	1.4385	1.5075	1.7416	1.9014	2.0665
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	0.3075	0.3950	0.4906	0.5940	0.7048	0.8227	0.9476	1.0791	1.2170	1.3613	1.5117	1.6680	1.8302	1.9981	2.1716
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	0.3224	0.4141	0.5145	0.6227	0.7389	0.8625	0.9934	1,1312	1.2759	1.4271	1.5847	1.7486	1.9107	2.0947	2.2766
23 0.5926 0.4712 0.5852 0.7086 0.6407 0.9814 1.1304 1.2872 1.4518 1.6239 1.8033 1.9898 2.1832 2.3856 2.552 25 0.5916 0.4712 0.5852 0.7086 0.8407 0.9814 1.1304 1.2872 1.4518 1.6239 1.8033 1.9898 2.1832 2.3856 2.552 25 0.5916 0.4901 0.6088 0.7371 0.8746 1.00210 1.1759 1.3591 1.5103 1.6893 1.8759 2.0699 2.2712 2.4796 2.652 26 0.5954 0.5991 0.6523 0.7656 0.9084 1.0605 1.2214 1.3909 1.5607 1.7546 1.9484 2.1500 2.3590 2.5755 2.75 27 0.4111 0.5280 0.6559 0.7941 0.9422 1.0999 1.2668 1.4426 1.6270 1.8199 2.0209 2.2299 2.4468 2.6718 2.9029 28 0.4238 0.5469 0.6794 0.8225 0.9760 3.1393 1.3121 1.4942 1.6855 1.8850 2.0933 2.3096 2.5544 2.7669 3.002 29 0.4406 0.5658 0.7028 0.8509 1.0097 1.1766 1.3575 1.5458 1.7435 1.9501 2.1655 2.3095 2.6219 2.6223 3.1323 30 0.4659 0.6035 0.7028 0.8799 1.0433 <	22	0.3372	0.4331	0.5380	0.6514	0.7729	0.9022	1.0391	1,1855	1.3346	1.4928	1.6577	1.8291	2.0070	2.1911	2.3814
25 0.505 0.4122 0.7071 0.8746 1.0210 1.1759 1.3391 1.5103 1.6893 1.8759 2.0699 2.2712 2.4796 2.659 26 0.5964 0.5091 0.6523 0.7656 0.9094 1.0605 1.2214 1.3909 1.5607 1.7546 1.9484 2.1500 2.3590 2.5755 2.79 27 0.4111 0.5280 0.6559 0.7941 0.9422 1.0999 1.2658 1.4426 1.6270 1.8199 2.0209 2.2299 2.4468 2.6718 2.902 28 0.4238 0.5469 0.6579 0.7941 0.9422 1.0999 1.2658 1.4426 1.6270 1.8199 2.0209 2.2299 2.4468 2.6718 2.902 28 0.4238 0.5469 0.66794 0.8225 0.9760 1.1393 1.3121 1.4942 1.6855 1.8850 2.0935 2.3096 2.5344 2.7669 3.002 29 0.4405 0.5558 0.7028 0.6509 1.0097 1.1766 1.3575 1.5458 1.7435	23	0.3520	0.4522	0.5616	0,6800	0,6068	0.9419	1.0848	1,2353	1.3932	1.5584	1.7305	1.9095	2.0952	2.2874	2.4816
23 0.4950 0.4950 0.4951 0.4951 0.4951 0.4951 0.4951 0.4951 0.4951 0.4951 0.4951 0.4952 0.7956 0.9084 1.0605 1.2214 1.3909 1.5687 1.7546 1.9484 2.1500 2.3590 2.5755 2.75 27 0.4111 0.5280 0.6559 0.7941 0.9422 1.0999 1.2658 1.4426 1.6270 1.8199 2.0209 2.2299 2.4468 2.6718 2.90 28 0.4238 0.5469 0.6794 0.8225 0.9760 1.1393 1.3121 1.4942 1.6855 1.8850 2.0933 2.3096 2.5344 2.7669 3.00 29 0.4406 0.5658 0.7028 0.8509 1.0097 1.1786 1.3375 1.5458 1.7435 1.9501 2.1635 2.3095 2.6219 2.6624 3.13 30 0.44592 0.5847 0.7262 0.8793 1.0237 1.5974 1.8016 2.0151 2.2370	24	0.3668	0.4712	0.5852	0,7086	0.8407	0.9814	1.1304	1.2872	1.4518	1.6239	1.8033	1.9898	2.1832	2.3856	2.5905
27 0.4111 0.5280 0.6559 0.7941 0.9422 1.0999 1.2658 1.4426 1.6270 1.8199 2.0209 2.2299 2.4468 2.6718 2.90 28 0.4238 0.5469 0.66794 0.8225 0.9760 1.1393 1.3121 1.4942 1.6855 1.8850 2.0935 2.3096 2.5344 2.7669 3.00 29 0.4405 0.5558 0.7028 0.6509 1.0097 1.1766 1.3575 1.5456 1.7435 1.9501 2.1655 2.3095 2.6219 2.6624 3.11 30 0.4552 0.5847 0.7262 0.0793 1.0433 1.2179 1.4027 1.5974 1.8016 2.0151 2.2370 2.4692 2.7093 2.9579 3.22 31 0.4699 0.6035 0.7497 0.9076 1.0769 1.2572 1.4479 1.6489 1.8597 2.0806 2.3099 2.5488 2.7966 3.0532 3.33 31 0.4699 0.6035 0.7497 0.9076 1.0769 1.2572 1.4479 1.6489	25	0. 5816	0,4901	0.6088	0.7371	0.8746	1.0210	1.1759	1,3391	1.5103	1.6893	1.8759	2.0699	2.2712	2.4796	2.6949
24 0.4411 0.5260 0.0555 0.7941 0.5372 1.0555 1.1000 1.0000 1.0000 1.1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0100 1.0000 1.0000 1.0100 1.00000 1.00000 1.0000 <td>25</td> <td>0.3964</td> <td>0.5091</td> <td>0.6323</td> <td>0.7656</td> <td>0.9084</td> <td>1.0605</td> <td>1.2214</td> <td>1.3909</td> <td>1.5687</td> <td>1.7546</td> <td>1.9484</td> <td>2.1500</td> <td>2.3590</td> <td>2.5755</td> <td>2.7991</td>	25	0.3964	0.5091	0.6323	0.7656	0.9084	1.0605	1.2214	1.3909	1.5687	1.7546	1.9484	2.1500	2.3590	2.5755	2.7991
28 0.4425 0.2483 0.1074 0.017 0.1074 0.017 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1076 1.3775 1.5458 1.7435 1.9501 2.1655 2.3095 2.6219 2.6624 3.11 30 0.4552 0.5847 0.7262 0.8795 1.0433 1.2179 1.4027 1.5974 1.8016 2.0151 2.2378 2.4692 2.7093 2.9579 3.22 31 0.4699 0.6035 0.7497 0.9076 1.0769 1.2572 1.4479 1.6489 1.8597 2.0806 2.5099 2.5488 2.7966 3.0532 3.485 31 0.4699 0.6035 0.7497 0.9076 1.0769 1.2572 1.4479 1.6489 1.8597 2.0806 2.5099 2.5488 2.7966 3.0532 3.485	27	0,4111	0.5280	0.6559	0,7941	0.9422	1.0999	1,2658	1.4426	1.6270	1.8199	2.0209				2,9032
29 0.4409 0.5558 0.4028 0.6039 1.0039 1.100 1.979 1.100 1.100 1.101 1.22378 2.4692 2.7093 2.9579 3.21 30 0.4552 0.5847 0.7262 0.8793 1.0433 1.2179 1.4027 1.5974 1.8016 2.0151 2.2378 2.4692 2.7093 2.9579 3.21 31 0.4699 0.6035 0.7497 0.9076 1.0769 1.2572 1.4479 1.6489 1.8597 2.0805 2.5099 2.5488 2.7966 3.0532 3.33 31 0.4699 0.6035 0.7497 0.9076 1.0769 1.2572 1.4479 1.6489 1.8597 2.0805 2.5099 2.5488 2.7966 3.0532 3.33 31 0.4699 0.6035 0.7497 0.9076 1.0769 1.2572 1.4479 1.6489 1.8597 2.0805 2.5883 2.6839 3.483 3.4485 3.4485 3.4485 3.4485 3.4485	58	0.4258	0.5469	0.6794	0.8225	0.9760	1.1393	1, 3121	1,4942	1.6853	1.8850	2.0933				3.0072
31 0.4699 0.6035 0.7497 0.9076 1.0769 1.2572 1.4479 1.6489 1.8597 2.0806 2.5099 2.5488 2.7966 3.0532 3.33 31 0.4699 0.6035 0.7497 0.9076 1.0769 1.2572 1.4479 1.6489 1.8597 2.0806 2.3099 2.5488 2.7966 3.0532 3.33	59	0,4406	0.5658	0.7028	0.6509	1.0097	1.1766	1.3575	1.5458	1.7435		2.1655				3.1110
31 0.4699 0.6035 0.7497 0.9010 1.0109 4.23/2 1.0417 1.0009 2.3819 2.6283 2.6839 3.1483 3.4	30	0,4552	0.5847	0.7262	0,0795	1.0433	1.2179	1,4027	1.5974	1.8016	2.0151					
32 0.4846 0.6226 0.7730 0.9359 1.1105 1.2964 1.4931 1.7003 1.9177 2.1450 2.3819 2.6283 2.6839 3.1485 3.4	31	0.4699	0.6035	0.7497	0.9076	1.0769	1.2572	1.4479	1.6469	1.8597	2.0805	2.3099				3.3184
	32 -	0.4846	0.6224	0.7730	0.9359	1.1105	1.2964	1,4931	1.7003	1.9177	2,1450	2.3819		h		3.421.9
33 0.4992 0.6412 0.7964 0.9642 1.1441 1.3556 1.5502 1.7517 1.9510 2.000	33	0,4992	0.6412	0.7964	0,9642	1.1441	1.3356	1.5382	1.7517	1.9756	2.2098		L			3.5235
34 0.5138 0.6600 0.8197 0.9925 1.1776 1.3747 1.5883 1.6030 2.0335 2.2745 2.5258 2.7971 3.0581 3.3385 3.60	34	0.5138	0.6600	0.8197	0.9925	1.1776	2.3747	1,5883	1.6030	2.0335	2.2745	2,5258	2.1071	3.0581	3.3385	3.6286

8. Arrangement of the results of survey on sample plot

8-1. Examination of remote measurements of stem height, etc.

0000

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)^{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^{2} \left(\frac{1}{2} + \frac$

In the survey of sample plot under 6-1, stem height and central diameter of those trees in the plot were measured remotely with Blume-Leiss and Relaskop respectively. Therefore, there was some doubt as to the use of the values as they were for the volume table. Hence it was decided to examine them.

As for material, sample trees (a) for preparation of volume table were measured for stem height and central diameter, and they were also measured remotely as part of the timber cruise in the sample plot for sampling. It was decided, therefore, to use these figures.

Table 15 is a result of combining actual measurements and remote measurement values for each sample tree taken from the appendix <u>Results of the survey on sample trees</u> and Table 9.

Table 15-1. Actual measurements and remote measurements (with Blume-Leiss) of stem height of sample trees (a)

Sample tree		Sten h	eight	9 a.s	plé tres	Sten I	ielght	ў З Эм	plé tree	Sten height		
15	No. in Stratum	Actival Grasuscashi	Proole gessuremit	Ka	No. in Stratum	ACTUS] DESSUREMENT	Remote Messurement	Na	sio. In Stratum	Actual Resourceent	fe not a measure cant	
1	0-34	21.0	2 0.0	37	0-61	17.2	170	73	¥-11	4.5	5.0	
2	0-38	142	14.0	38	E38	3.4	4.0	74	0-89	18.9	1 8.0	
3	0-37	2 0.0	1 9.0	39	D 3	3.0	4.0	75	M 47	6.9	8.0	
4	D- 4	5.8	6.5	40	Y 2	4.4	5.0	76	O-88	2 0.0	2 0.0	
5	0-36	212	21.0	41	S 1	1 2,0	120	77	Y16	5.4	5.0	
6	0-8	1 5.5	1 5.0	42	S- 2	1 9.9	1 9.0	78	O-85	188	20.0	
7	0-12	15.3	15.0	43	D- 5	7.0	8.0	79	M 48	1 0.0	1 0.0	
8	0-14	153	1 6.0	44	S- 3	1 35	14.0	80	0-10	1 2.7	1 2.0	
9	0-15	177	17.0	45	O50	1 2.5	1 4.0	81	M-15	3.9	4,0	
10	0-11	1 6.7	17.0	46	0-51	21.6	2 0.0	82	Y- 6	2.2	2.0	
11	0- 6	22.6	2 3 0	47	M-26	5.6	4.0	83	E-31	5.8	6.0	
12	0-7	1 5.4	16.0	48	M-25	1 8.3	1 5.0	84	058	15.3	14.0	
13	0-9	173	18.0	49	E-20	183	17.0	85	M 30	15,5	15.0	
14	Y- 4	6.3	7.0	50	0-52	21.3	2 3.0	86	0-59	1 5.0	150	
15	M- 9	20,0	2 1.0	51	E ~ 21	15.3	1 6.0	87	M31	2 0.3	19.0	
16	M- 8	19.3	2 0.0	52	D-80	20.3	180	88	M-32	14.6	14.0	
17	0-35	16.5	16.0	53	" (2)	4.5	4.0	89	M 39	16.0	15.0	
18	M- 7	19.9	2 0.0	54	O56	16.3	16.0	90	Y-10	3.0	3.0	
19	D- 2	15	1,5	55	M 270	8.3	9.0	91	M- 40①	1.1.4	1 2,0	
20	M-33	20	2,0	56	" ③	1 8.3	17.0	92	" 3	4.0	40	
21	Y-12	1.6	1.5	57	D-70	5.8	5.0	93	M41	143	15.0	
22	Y-15	2.3	2,5	58	"③	15.3	1 6.0	94	0-72	15.9	160	
23	0-76	144	1 5.0	59	M-28	13.3	1 3.0	95	M 38	147	15.0	
24	M-18	20.0	2 0.0	60	057	17.3	18.0	96	D10	11.3	110	
25	M-17	9.2	9.0	61	E-45	1 6.0	17.0	97	0-74	5.6	5.0	
26	0-45	210	1 8.0	62	E44	1 3.3	1 4.0	98	0-73	16.6	18.0	
27	E-12	166	1 5.0	63	E-40	1 3.3	1 3.0	99	0-84	19.0	19.0	
28	M-22	164	15.0	64	O-63	11.3	1 1.0		083	20.6	20.0	
29	M-23	157	1 6.0	65	0-64	19.3	1 9.0	101	• • • • • • • • • • • • • • • • • • •	19.5	19.0	
30	0-53	158	1 4.0	66	Y- 9	7.4	8.0	102	···· ····	171	17.0	
31	D 6	180	17.0	67	O-65	15.3	1 4.0		0-69	21.0	210	
32	E-22	180	19.0	68	D-90	18.3	17.0	104	•••••••	236	24.0	
33	0-54	1 6.0	15.0	69	" 3	5.4	5.0	105	·	1.6.3	16.0	
34	0-55	1 9.5	19.0	70	M 44	14.4	15.0	106	· · · · · · · · · · · · · · · · · · ·	19.5	19.0	
35	Y- 7	115	11.0	71	Y-13	4.0	4.0	107	077	16.6	1.6.0	
36	Y 8	10.8	11.0	72	E-48	17.6	19.0	ļ	<u> </u>	L		

* Under No. within Stratum, O, M, Y, D, E are abbreviations of [OI]; [MI]; [YI]; [DI] • and [E] respectively.

* Under No. within Stratum, S 1-3 are data collected outside the sample plot.

Table 15-2. Actual measurements and remote measurements (with Relaskop) of central diameter of sample trees (a)

		<u></u>						<u></u>			
Sample	trec	Central	diazəter	Sang	le tree	Central	diageter	Şðæ	plo tree	Central	dismeter
16	No, in ; Stratum	Actual;; activiterni	Armote Bussurezent	Ko	Ro. in Stratum	ACLUS). REBOVICEAL	Pengle Reseurement	K	NG, in Stratum	Actual messurement	CAROLA RESPUENDENL
1680 المر	0-34	28.0	2 4.0	37	0-61	2 4.0	2 4.0	73	Y-11	3 2.5	32.0
2	0 38	2 4.0	2 0.0	38	E 38	280	26.0	74	Q89	2 8.5	24.0
3	0 37	25.0	2 2.0	39	D 3	2 9.0	2 4.0	75	M- 47	. 24.0	2 6.0
4	D⊓ 4	25.0	2 2.0	40	Y 2	2 3,5	2 2.0	76	0-88	265	2 0.0
5	0 36	28.0	26.0	-41	S 1	2 3.5	20.0	17	Y~16	280	28.0
		26.0	2 0.0	42	S 2	27.0	2 0,0	78	085	2 5 5	2 4.0
		1911 - E. E.	• * ***	1.1			1.1.1		M-48	27.0	24.0
			•	!			• · · · • · · · ·			+ .	2 2.0
신영문법	신가의 물리		1.19.19.6	1						•	2 2.0
										•	24.0
Lot L		hen de	1				1		н. н	• .	220
1.1.2	(11234	2 22 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		la e station	1			••••	·····
12					• • • • • • • • • • • • •			·- ···			18.0
						- 1 - F					28.0
14	Y 4	12112		1.5.4	h a sa b	a ta ja ^{ja} na	••	·			26.0
15	M- 9	2 9.0	2 6.0	51	E-21	2 5 5	2 6.0		••••	••••	26.0
16	M- 8	280	2 6.0	52	D - 8(i).	25.0	2 0.0	88	M 32		26.0
17	O-35	2 5.0	2 0.0	53	// (2)	215	2 2.0	89	M 39	2 6.0	2.4.0
18	M 7	3 1.0	2 8.0	54	O-56	27.0	2 2.0	90	Y-10	2 4.0	2 4.0
19	D 2	39.0	3 4.0	5,5	M-2700	3 0.5	2 2.0	91	M 40(21.0	2 0.0
20	M-33	4 0.0	3 0.0	56	" ②	2 4.5	2 0.0	92	" (2 2.0	2 2.0
21	Y-12	2 4.0	2 2.0	57	D- 70)	2 4.0	2 0.0	93	M41	2 6.0	240
22	Y-15	30.0	2 8.0	58	<i>"</i> (2)	2 9.0	2 4.0	94	0-72	28.0	26.0
23	0-76	27.0	2 6.0	59	M28	265	2 2.0	95	M-38	2 40	2 4.0
24	M-18	30.0	2 6.0	60	0-57	2 3.0	2 2.0	96	D - 10	210	20.0
25	M-17	20.0	18.0	61	E-45	2 1.5	220	97	0-74	24.0	2 4.0
26	M-45	26.0	20.0	62	E-44	2 3.0	2 0.0	98	O73	29.0	2 4.0
- 1-		2 5.0	180	63	E-40	2 4.0	1 8.0	99	0-84	27.0	2 4.0
	1. A.	and the second	22.0	64	0-63	31.0	24.0	100	O-83	25.0	2 6.0
				65	0-64	27.5	2 4.0	101	0-82	26.0	260
1	دي المشكونية ال		الحامات فالمعالم بالم	فسنديه سنعهده			• •····· • ···· • ···	102	0-86	26.0	26.0
-	- · · · · ·			•	1	1	• • •		1	• • • • • • • • • •	280
¹	ing sin kana	}	1	. 			. • 1		1	28.0	2 6.0
والأخاخ وجعا	- 13 K. S. 42	1			la ta se	•	•	10.00	• 51 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2 9.0	28.0
	2.2.2	1	1	4			4	1	-	4	26.0
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				1 · · · · · · · · · · · · · · · · · · ·	1.1	14 J. A. A. A. A.	1.5	•		26.0
		1	•		•	· · · · · · · · · · · · · · · · · · ·	• .	:		 ł	
36	Y 8	27.0	24.0	12	r. 48	28.0	6 6.0	J			
$\{ \hat{f}_{A} \}^{\mu} \in$		Sec.	an an t	1			· · · ·				
									÷		
÷				· · ·							
	1 Hr		i.			60 -				÷	
		*					÷				
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	3^{M_0} Stratum 1 $O - 34$ 2 O 3 O 4 $D - 4$ 5 O 6 O 7 O 8 O 9 O 10 O 11 O 12 O 7 O 13 O 9 14 Y- 4 15 M 9 16^{-12} M 7 9 D 16 M M 7 9 D 16 M M 7 20 M M 13 21 Y	Mo. Mo. Stratus Stratus 1 $Q - 34$ 28.0 2 $Q - 38$ 24.0 3 $Q - 37$ 25.0 4 Dr 4 25.0 5 $Q - 36$ 28.0 6 $Q - 8$ 26.0 7 $Q - 12$ 26.0 8 $Q - 14$ 26.0 9 $Q - 15$ 27.0 10 $Q - 11$ 28.0 11 $Q - 6$ 24.0 12 $Q - 7$ 25.0 13 $Q - 9$ 27.0 14 $Y - 4$ 27.0 15 $M - 9$ 29.0 16 $M - 8$ 28.0 17 $Q - 35$ 25.0 18 $M - 7$ 31.0 19 $D - 2$ 39.0 20 $M - 33$ 49.0 21 $Y - 12$ 24.0 22 $Y - 15$ 30.0 23 <	Mo. Antenname Antenname Antenname 1 $O - 34$ 28.0 24.0 2 $O 38$ 24.0 20.0 3 $O 37$ 25.0 22.0 4 Drr 4 25.0 22.0 5 $O - 36$ 28.0 26.0 6 $O - 8$ 26.0 24.0 7 $O - 12$ 26.0 24.0 9 $O - 15$ 27.0 26.0 10 $O - 11$ 28.0 24.0 11 $O - 6$ 24.0 24.0 12 $O - 7$ 25.0 24.0 13 $O - 9$ 27.0 24.0 14 $Y - 4$ 27.0 24.0 15 $M - 9$ 29.0 26.0 16 $M - 8$ 28.0 26.0 17 $O - 35$ 25.0 20.0 18 $M - 7$ 31.0 28.0	M_{0} , M_{0} , M_{1} Attent. M_{1} M_{2} 2 0 38 24.0 20.0 38 3 0 37 25.0 22.0 39 4 Dr. 4 25.0 22.0 39 4 Dr. 4 25.0 22.0 40 5 O 36 28.0 26.0 41 6 O. 8 26.0 24.0 43 8 O. 14 26.0 24.0 44 9 O. 15 27.0 26.0 45 10 O. 11 28.0 24.0 46 11 O-6 24.0 24.0 47 12 O. 7 25.0 24.0 49 14 Y-4 27.0 24.0 50 15 M-9 29.0 26.0 52 17 O-35 25.0 20.0 53 18 M-7 31.0 28.0 58 <td>Mo. hn Structus Attents, attents, 1 Attents, Structus Attents, attents, 1 Mo. in Structus 1 $O - 34$ 280 24.0 37 $O - 61$ 2 O 38 24.0 20.0 38 E - 38 3 O 37 25.0 22.0 40 Y. 5 $O - 36$ 280 26.0 41 S.<1</td> 6 $O - 8$ 26.0 24.0 43 D.5 8 $O - 14$ 260 24.0 44 S.<3	Mo. hn Structus Attents, attents, 1 Attents, Structus Attents, attents, 1 Mo. in Structus 1 $O - 34$ 280 24.0 37 $O - 61$ 2 O 38 24.0 20.0 38 E - 38 3 O 37 25.0 22.0 40 Y. 5 $O - 36$ 280 26.0 41 S.<1	Ho, In Stratum Attent, Stratum Attent, Stratum Attent, Stratum Attent, Stratum Attent, Stratum Attent, Stratum Attent, Stratum 1 $O \cdot 34$ 28.0 24.0 37 $O - 61$ 24.0 2 $O \cdot 38$ 24.0 20.0 38 E \cdot 38 28.0 3 $O \cdot 37$ 25.0 22.0 49 Y·2 235 5 $O \cdot 36$ 28.0 26.0 41 S·1 235 6 $O \cdot 8$ 26.0 24.0 43 D 5 325 8 $O \cdot 14$ 26.0 24.0 44 S·3 225 9 $O \cdot 15$ 27.0 26.0 45 $O - 50$ 29.5 10 $O \cdot 11$ 28.0 24.0 44 S·3 22.5 9 $O \cdot 52$ 29.0 24.0 44 Ho 24.5 11 $O - 53$ 25.0 20.0 53 "(2) 21.5 13	MoMoMaterial StratulMaterial Material <t< td=""><td>Model Matrix Model Note in the initial stream initial Model Model</td><td>46 50: th bitterin 41 50: th bitterin 41 51: th bitterin attent cite attent bitterin attent cite attent bitterin attent cite attent bitterin attent cite attent bitterin attent cite attent bitterin attent cite attent bitterin attent cite attent cite attent cite attent cite attent cite attent cite 3 0 37 25.0 22.0 39 D 3 25.0 24.0 75 M 47 4 DT 4 25.0 22.0 49 Y \cdot 2 23.5 20.0 78 O \cdot 88 5 0 36 28.0 26.0 41 S \cdot 1 23.5 26.0 78 M \cdot 48 8 O 14 26.0 24.0 44 S \cdot 32.5 26.0 82 Y $-$ 6 10 O 11 28.0 26.0 51 P \cdot 21 25.5 26.0 83 B $-$ 31 10</br></br></br></br></br></br></br></br></br></br></br></br></br></td><td>i_{1} i_{1} i_{2} <</td></t<>	Model Matrix Model Note in the initial stream initial Model Model	46 50: th bitterin 41 50: th bitterin 41 51: th bitterin attent cite attent bitterin attent cite attent bitterin attent cite attent 	i_{1} i_{1} i_{2} <

On the basis of actual values and measured values, the result of correlation analysis and regression formula can be obtained by means of regression analysis as below. Examination of stem height:

Mean of measured value $\bar{x} = 1459 / 107 = 13.64$ Mean of actual values y = 1474.4 / 107 = 13.78Sum of the square deviation of measured values \dots $S^2 x = 3595.79$ Sum of the square deviation of actual values..... S² y = 376259 Sum of products deviation of measured and actual values Sxy = 363680 Sum of products deviation of measured and actual values \dots b = 1.0114Regression constant a = -0.0155Regression formula y = -0.0155 + 10114 x Correlation coefficient e = 0.98873 Sum of the measured value \ldots $\Sigma_X = 1459$ A BERNELL BERNELL CONTRACTORS Sum of the squared measured value $\Sigma x^2 = 23,490$ Sum of the actual value $\ldots \ldots \Sigma y = 14744$ Sum of the squared actual value $\Sigma y^2 = 24079.0$ Sum of products of measured and actual values $\dots \dots \Sigma x y = 23741$ Number of sample : 107 Examination of central diameter Mean of measured values $\dots \overline{x} = 2554 / 107 = 2387$ en earl a fhairn e rastaile e r Mean of actual values ÿ = 28305/107 = 2645 Sum of the square deviation of measured values $S^2 x = 970.17$ Sum of the square deviation of actual values $\dots S^2 y = 107327$

Sum of products deviation Regression coefficient \dots b = 0.7384Regression formula $y = 8.8 \pm 0.7384 x$ Correlation coefficient e == 0.7020 z Where

Sum of the measured value	Σx	== 2554
Sum of the squared measured value	$\Sigma \mathbf{x}^2$	== 61932
Sum of the actual value	Σу	28305
Sum of the squared actual value	Σy²	7594.25
Sum of products of measured and actual values	Σxy	y = 68278

Number of sample ; 107

According to the above results, measured values of stem height had a high correlation coefficient of 0.98873, and the regression formula was close to actual value=measured value. Thus it was found out that remote measurements could be used without any problem if they were used in meters unit. On the other hand, as for central diameter, the measurements showed a low correlation coefficient of 0.70202 compared with that in the case of stem height. Further, the regression constant was high with 8.8. Thus it was found necessary to make adjustments.

In order to bring measured values nearer to actual values, it is necessary to adjust as below.

8.8 + 0.7384 × (measured values with Relaskop).

For that purpose, it was decided to adjust the measured values of central diameter taken with Relaskop in timber cruise based on Table 16.

Central d	lameter	. Central diameter						
Measured value	Adjusted value	Measured value	Adjusted value					
10 cm	16.2 cm	30 cm	31.0 cm					
12	17.7	32	32.4					
14	19.1	34	33.9					
16	20.6	36	35.4					
18	22.1	38	36.9					
20	23.6	40	38.3					
22	25.0	42	39.8					
24	26.5	44	41.3					
26	28.0	46	42.8					
28	29.5	48	44.2					

Table 16.

8-2. Accumulation of number and volume by each plot

By using the stand volume table prepared under 8-1 (Table 17), stand volume of all the trees in the plot was obtained and written under Volume of the <u>Field survey note</u>. And volumes of single trees were accumulated for each plot, thus the number and volume were arranged by each plot. The results are given as Appendix I: <u>Table of field survey</u> results.

In this case, the volume table prepared under 7-2 is not suitable for the following operations as it was prepared using the measurement of central diameter taken for every 2 cm. Therefore, another volume table using adjusted values of central diameter which respond to measured values for every 2 cm with Relaskop was prepared as Table 17.

- 63 -

Table 17. Volume table of coconut tree (for measured values with Relaskop)

 $v : volumes (m^3)$

D1: Measured central daimeter

with Relaskop

- D2: Modified central diameter
- H : Stem height (m)

Volumes estimation formula V = $0.0003 \times D^{1.6235237} \times H^{0.967452}$

						1.1		1							
(an)		(14)	(16)	(18)	(20)	(22)	(24)	(26)	(28)	(30)	(32)	(34)	(36)	(38)	(40)
810/2	17.7	19.1	20,6	22.1	23.6	25.0	26.5	28.0	29.5	31.0	32.4	33.9	35.1	36.9	39.3
0.5	0.0163	0.0184	0.0208	0.0234	0.0260	0.0285	0.0314	0.0343	0.0373	0.0405	0.0435	0.0468	0.0502	0.0537	0.057
1	0.0319	0.0361	0.0408	0.0457	0.0580	0.0558	0.0613	0.0671	0.0730	0.0791	0.0850	0.0915	0,0982	0,1050	0.111
1.5	0.0472	0.0534	0.0603	0.0676	0.0752	0.0826	0.0908	0.0993	0,1081	0.1171	0.1259	0.1355	0.1453	0,1554	0.165
2	0.0623	0.0750	0.0797	0.0893	0.0994	0,1091	0,1200	0.1312	0.1428	0.1547	0.1662	0.1789	0.1920	0.2053	0,218
2.5	0.0773	0.0875	0,0980	0.1109	0.1233	0.1354	6.1489	0,1628	0,1772	0.1920	0.2063	0.2220	0.2382	0.2548	0,270
3	0.0922	0.1044	0.1160	0.1322	0.1471	0,1615	0.1776	0.1942	0.2114	0.2291	0,2461	0.2649	0.2842	0.3040	0,322
3.5	0.1071	0,1211	0,1370	0.1535	0.1708	0.1875	0.2061	0.2254	0.2453	0,2659	0.2857	0.3075	0.3299	0.3528	0.374
4	0,1216	0.1378	0.1558	0.1747	0,1943	0.2134	0.2346	0.2565	0.2792	0.3026	0.3251	0.3499	0.3755	0,4015	0,426
4.5	0.1365	0.1545	0.1746	0.1958	0.2178	0.2391	0.2629	0.2875	0.3129	0.3391	0.3643	0.3921	0.4206	0.4500	0.478
5	0.1512	0.1711	0.1934	0.2168	0.2412	012648	0.2911	0.3183	0.3464	0.3755	0,4034	0.4342	0.4658	0.4982	0.529
6	0,1803	0.2040	0.2307	0.2586	0.2877	0.3159	0.3472	0.3797	0.4133	0.4479	0,4812	0.5179	0.5556	0.5944	0.631
7	0.2093	0.2369	.0.2678	0,3002	0.3339	0.3667	0.4031	0.4408	0.4797	0.5220	0.5586	0.6012	0.6450	0.6899	0.732
8	0.2382	0,2695	0.3047	0.3416	0.3800	0.4173	0.4587	0.5015	0.5459	0.5917	0.6357	0.6841	0.7339	0.7851	0.834
9	0.2669	0.3012	0.3415	0.3828	0.4259	0.4676	0.5140	0.5621	0.6118	0.6631	0.7124	0.7667	0.8225	0.8799	0.934
10	0.2956	0.3345	0.3782	0.4239	0.4716	0.5178	0.5692	0.6224	0.6774	0.7342	0,7888	0.8490	0.9108	0.9743	1.035
11	0.3241	0.3668	0.4147	0.4648	0.5171	0.5678	0.6242	0.6825	0,7492	0.8052	0.8650	0.9310	0.9988	1.0684	1.135
12	0.3526	0.3990	0.4511	0.5056	0.5625	0.6177	0.6790	0.7425	0,8081	0.8759	0.9410	1.0127	1.0865	1.1622	1,234
13	0.3810	0.4311	0.4874	0.5463	0.6078	0,6674	0.73)6	0.0022	0.8732	0.9464	1.0167	1.0943	1.1740	1.2558	1.334
14	0.4093	0.4632	0.5236	0.5869	0.6530	0.7170	0.7882	0.8619	0.9381	1.0167	1.0923	1.1756	1.2612	1.3491	1.433
15	0.4376	0.4951	0.5598	0.6275	0.6981	0.7665	0.8426	0.9214	1.0028	1.0869	1.1677	1.2567	1,3485	1.4422	1.552
16	0.4658	0.5270	0.5959	0,6679	0.7430	0.8159	0.8969	ö.9807	1.0674	1.1569	1.2430	1.3377	1.4351	1.5352	1.63
17	0.4939	0.5589	0.6319	0.7082	0.7679	0,8652	0.9510	1.0400	1.1319	1.2268	1.3180	1.4185	1.5218	1.6279	1.729
18 3	0.5220	0.5905	0.6678	0.7485	0.8327	0.9144	1.0051	1.0991	1:1963	1.2966	1.3930	1.4992	1,6084	1.7204	1.027
19	0,5500	0.6224	0.7036	0.7887	0.8774	0.9635	1.0591	1.1581	1.2605	1.3662	1.4676	1.5797	1,6947	1.8128	1.925
20	0.5780	0.6540	0.7394	0.8288	0.9721	1,0125	1.1130	1.2170	1,3246	1.4357	1.5424	1.6600	1.7809	1.9051	2.023
21	0,6059	0.6050	0.7752	0.8609	0.9666	1.0614	1.1668	1.2759	1, 3887	1.5051	1.6170	1.7403	1.8676	1.9971	2,121
22	0.6338	0.7172	0.8109	0.9089	1.0111	1.1103	1.2205	1.3346	1,4526	1.5774	1.6914	1.8204	1.9530	2.0891	2.219
23	0.6617	0.7487	0.8465	0.9488	1.0556	1.1591	1.2741	1.3932	1,5164	1.6436	1.7658	1,9004	2.0388	2.1809	2,316
24	0.6895	0.7802	0.8821	0.9887	1.0999	1.2078	1.3276	1,4518	1.5802	1.7127	1,8400	1,9803	2.1245	2.2726	2.414
25	0.7173	0.8116	0.9176	1,0285	1.1442	1.2565	1.3011	1.5103	1.6438	1.7816	1.9141	2,0600	2,2101	2.3641	2.51
26	0.7450	0.8430	0.9531	1.0683	1.1685	1.3051	1.4345	1.5687	1.7074	1.8506	1,9881	2.1397	2.2955	2.4555	2.600
27	0.1727	0.8743	0.9885	1,1080	1.2327	1.3536	1.4879	1.6270	1.7709	1.9194	2.0621	2.2193	2.3809	2.5468	2.70
<u> </u>	0.8004	0.9057	1.0239	1.1477	1.2768	1.4021	1.5412	1.6853	1.8343	1.9881	2.1359	2.2988	2.4662	2.6380	2,80
28			//	1	1				1.8976	2.0568	2.2097	2.3781	2.5513	2,7291	2,899

and the state of the

Thus, there are two kinds of volume table which are to be used in the following manner.

Table 14 Volume table of coconut tree (A).

This is the original stand volume table. This can be used in a timber cruise when central diameter can be measured directly.

Table 17 Volume table of coconut tree (B).

The stand volume table to be used exclusively for the present survey. In general measured values of central diameter by Relaskop tend to be biased from actual values.

> Therefore, in future timber cruises it will be necessary to obtain regression formula for adjustment from source trees numbering several tens and volume table (B) for operation can be prepared, as it was done for the present survey.

9. Preparation of photo volume table

9-1. Analysis of correlation between factor and volume

A photo volume table is a volume table using to estimate volume of a single tree or a stand with measurable factors on aerial photographs. For preparation of a hoto volume table, various factors should be examined first to find out if they are suitable as such. Thus, whole tree height, crown diameter and tree age were selected as possible factors, correlation between stand volume and each factors was obtained for sample trees (b) as Figs. 11-13.

They show that whole tree height has the highest correlation and is most suitable as the factor. With regard to stand age, the correlation can be described as tolerable for the fact that the information was obtained verbally. However, the correlation was practically nil with crown diameter which was clearly unsuitable as the factor for photo volume table.

The number of trees can also be considered as the factor for photo volume table for stand. The planting of coconut in plantations is uniform with the planting space of about 10m. Thus, as they form thin stand, they are easy to be identified from photographs. Further, each count between on the ground and on the photograph was completely coincided except for extremely young stand of Malayan Dwarf. Therefore, correlation analysis was deemed unnecessary for the number of trees.

- 66 -
1500 $m \geq 80$ 1.000 「小月七頃 TARA 0500

5 6 7 10 m) 8 9 0 4 Crown diameter Fig. 12. Correlation between volume and crown diameter

Volume (m³) 1500

۰, 1.000

0500

80 (years) 70 0.5 and -10.5 and -20.5 and -30.5 and -40.5 and -50.560 Stand age

Correlation between volume and stand age Fig. 13.

9-2. Calculation of volume estimation formula and preparation of photo volume table

Judging from the analysis of correlation between volume and each factor in the previous section 9-1, it was decided to use whole tree height as the factor for photo volume table and to combine it with the number of trees if total volume in an area was required.

As for stand age, there was some degree of correlation, and it would be better to use it as the factor to increase precision in volume estimation formula. However, as there was some doubt as to whether accurate information would be obtainable on a given stand, it was decided to exclude it.

On the basis of the above examination, sample trees (b) were measured on photographs for whole tree height. The measurement was based on the formula below by measuring parallax difference with parallax bar.

 $H = \frac{FA - LH}{b + \Delta P} \times \Delta P$

FA : Flight altitude

LH : Height above sea level at a sample tree

b ; Photo base length

AP : Parallax difference

Volume was obtained on the basis of the stand volume table prepared as Table 17 by using actual stem height and central diameter.

Then regression analysis was made with interpreted height as H and volume as v to induce the following volume estimation formula.

 $v = 0.0000586H^2 + 0.0640992H - 0.3181620$

Multiple correlation coefficient $\rho = 0.8601$

The result was multiplied by the number of trees to

- 68 -

prepare volume table for stand.

Thus, volume estimation formula for stand will be: V = N (-0.0000586H² + 0.0640992H - 0.3181620)

The volume table is given as the appendix photo volume table, and is given as Table 18.

/ha)		8	4	3	16.3	244	325	00	\$85	56.7	54.7	127	83	8	88	1045	1125	120.4	128.3	1361	3	SI9	597	519	52	
័ឌ		124	10	3	33	23	315	333	6	675	62.6	204	182	63	936	98.0 101.3 1045	1086	1:65 120.4	124.3 128.3	131.9 1361	135.0 139.5 144.0	61SI 1771	1547 159.7	162.5 167.5	1659 1753	1724 1831
TIND)		8	10	2		82	30.5	88	45.6	8	60.6	88	75.64	83	906	8 80	105.4	112.8	1202	127.6	135.0	12.	1.9.7	LT721	1644	12
		126	5	52	3	8	ŝ	888	3	S13	888	88	R	8	825	5	6101	1691	1162	S.	1305	3751	2791	151.5	1589	198
		TE	5	5	3	21.4	×	35	25	7 96	885	ŝ	70.6	312	845	315	8		1122	1.911		~~~~				f
1		38	13	3	138	88	Ř	32	41.0	178	-54.6	513	13	248	\$15	3	ଚ୍ଚ	1016 1053	108.2	6711	1215 1260	6221 1321	1348 139.7	141.4 146.5	147.9 153.4	154.5 1602
		50	3	67	13.3	ୁ ସ	ŝ	ŝ	395	46.0	52.5	59.0	665	72.0	285	5	91.4	378	104.2	110.6	112.0	1234	129.8	1921	1425	1623
		ŝ	1.0	79	821	191	X.	31.7	38.0	443	505	56.8	830	692	75.5	8:1	879	94.0	100.2	106.4	1125	1186	124.3	130.9	137.0	12
	NO	8	10	62	នា	183	24.4	304	36.5	335	48.5	StS	60.5	538	224	78.4	84.3	90.3	96.2	102.1	108.0	1139	3611	125.6	1315	8:22:1
	TAT	26	10	5.9	112	17.5	23.4	292	349	1:0≯	46.5	3	58.0	627	29. K	75.1	80.8	86.5	323	619	103.5	109.2	114.8	120.4	126.0	131.5
	RPE	88	10	23	11	16.8	ន	622	ž	389	445	200	565	609	56.4	612	77.3	828	88.2	53.6	6.66	104.4	109.8	1152	120.5	1259
	NTE	54	61	š	ä	160	23	38	612	373	45	127	575	582	ž	68.6	73.8	0'62	84.2	89.3	945	582	104.8	560I	115.1	1202
	PHOTO-INTERPETATION	8	1.0	13	3	153	R	x	84	8	Ş	\$3	50.4	55.4	8	83	70.3	75.2	802	85.1	60.0	676	39.8	104.7	109.6	114.5
	PHON	Q	01	67	6	21	193	241	582	33.6	8	133	619	52.6	573	521	-66.8	71.5	762	808	\$55	\$0.2	8%S	565.	1.401	283
	BY	T.	10	46	8	137	183	328	23	319	36.4	603	45.4	49.9	54.3	583	63.3	- 67.7	121	76.6	81.0	8	88	942	386	80
	1 1 2 1	68	0.1	4.4	2	130	173	21.6	25.8	30.1	34.4	336	42.8	1.72	SL3	555	59.7	629	68.1	72.3	765	80.7	848	89.0	93.1	519
	SUR	9	T*0	7	3	ส	163	20.3	253	28.3	323	36.3	10.3	44.3	(83	523	562	60.2	64.1	68.1	22	259	662	838	87.7	916
	AHA (MEASURED	-09	01	6 2	2.2	115	352	19.0	228	26.6	30.3	3.1	37.8	415	45.3	49.0	527	56.4	60.1	63.5	675	212	24.9	785	822	8
	ARA (36		35	1.7	10.7	3	178	213	24.8	283	318	83	338	42.3	45.7	492	52.7	132	59.6	630	88.4	663	733	76.7	ŝ
	TREES,	52		3	3	56	3	16.5	19.8	23.0	26.3	295	328	360	39.2	425	45.7	489	52.1	553	585	2719	649	68.1	712	2
	1	48		3.1	3	3	22	15.2	18.2	212	24.3	27.3	30.2	322	36.2	30.2	22	45.1	48.1	51.1	540	22:0	995 95	62.8	858	68.7
	NUMBER OF	₩.		2.8	33	22	12	13.9	16.7	195	272	25.0	27.7	305	332	598	387	414	44.1	46.8	49.5	522	513	57.6	80.3	3
	ABE F	- 40		56	3	76	10.2	127	152	173	202	8	83	272	30.2	83	3.8	37.6	1.02	42.5	45.0	5.2	66	52.4	54.6	2.23
	5N	3		ູຊ	3	3		114	13.7	15.9	182	20.4	22	249	272	29.4	316	525	36.1	38.3	40.5	42.7	46	1.71	\$.05 8	815
		8		5	13	6.1	60 60	101	122	142	16.2	18.2	202	222	24.1	26.1	182	301	32.1	31.0	38.0	33.0	58	619	43.8	1 1 1 1 1 1 1
		8		ŝ	8	53	17	63	10.6	12.4	74.1	15.9	17.6	19.4	21.1	229	246	26.3	28.1	29.8	315	332	516	35.5	884	3
		24		31		3	5	35	91	10.6	121	136	15.1	16.6	181	19.6	112	226	24.0	225	22.0	285	682	33.4	522	25
		8		5.1	26	89 87	5.2	63	92	68	101	11.6	12.6	138	15.1	36.3	17.5	18.5	20.0	213	225	237	25.0	26.2	YUZ (283
		16		3	2	3	<u> </u>	51	61	- 1-1	81	1.6	10.1	111	121	151	141	1 25.0	16.0	27.0	18.0	0.61	88	502	219	82
		Ľ		0.8	51	53	30	3.8	9.V	53	5	62	7.6	3	1.2	9.9	10.5	113	120	128	135	14.2	051 0	157	1364	272
		8		SS	3	5	20	25	30	35	40	3	5.0	55	60	5 6.S	0.2	\$ 7.5	08 0	85	0.6	2.6	0 10.0	2 10.5	5 11.0	7 11.6
		4		83	ŝ	0.8	10	13	1.5	1.8	20	23	ង	28	3.0	33	35	35	4.0	4.3	- \$\$	2	5.0	52	55	5.7
	z	2	S	9	-	ø	\$	30	11	51	13 :	7	2	92	X	8	2	8	R	8	8	370 370	8	8	1 51 3153	8
	V	H	مىسوما						(N(NTA	·		LNI - 10		Hd 	<u>л</u> ц	4986	13 73	, ¥1	411	- 313	л Б.	OHM	144.5		

- 70 -

		مبتدام			1		17	1.1	0	10	10	00	100	1	·		rin in	·····					
		52	3	165	327	489	6.50	81.1	525	1133	1293	1 45.	588 1 613	1773	1932	2091	2249	2407					
		252	02	162	322	483	640	562	957	1115	1273	143.1	1588	1745 1773	1902 1932	058	214	37.0					
		248	8	9	31.7	47.3	830	786	942	1008	1253	14.08	1563		123	2025	5211	332 2					
		244	8	157	12	4 6.6	620	173	525	1080	1233	1385	1538	1690	178	9 93	2 44	2952					
		240	62	154	30.6	458	610	761	912	530	213	363	512	662	SLI	960	501	2572					
		236	8	152	301	4 8	299	748	89.6	045	1192/1213/1233/1253 1273	340	1487 1512 1538 1563	634	78.1	9271	0732	2192					
		232	23	3	296	3	583	735	381	027		31.7	462	606	751 1	8951	0382	21 82 22 19 22 57 22 95 23 32 23 70					
		228	8	3	291	435	579	723	8.66	1009 1027 1045 1042 1080 1098	1521	29.4	43.7 1	1579 1606 1634 1662 1690 1713	7201	862 1	003 2	144 2	1.1		s.,		
	(NO	224	3	144	286	4 28	269	110	851	166	1132 1152 1172	272	12	551	1059	8291	968 2	1062		, ·			
	INTERPETATION	220	8	1 (2	281	420	559	697	836	526	11113	2491	13361361 138614121437 1462	1468 1496 1523 2	1570 1600 1630 1660 1690 1720 1751 1781 1811 1841 1841	7971	9331	0692					· :
	PET	216 2	5	139	27.6	412	549	685	820	9 56	1061	2261	362 1	49.61	630 1	7641	89.8	0312					
	TER	212 2	8	136	571	405	538	672	805	938	107.11	2041	3361	46.8 1	5001	73.1 1	8631	9942	ļ				
	Ł	208	83	134	266	2.68	528	659	064	921	IISOI	181	32.1	14401	57.0 I	1 669	827 1	9261					
	HOTOH	204 2	3	131	260	389	518	647	775	903	10311	1531	2851	14131	1623	56.61	7921	1816					
	BY P	200	સ	129	255	382	508	634	760	885	10101	351	26.0 1	3851	1 605	5331	1571	281 2					
	· 1	196 2	শ্ব	126	250	37.4	4 98	621	74.4	86.7	0.901	022 1045 1067 1090 1113 1135 1158 1181 204 1226 1249 1272 1294 1317 1340 1363 1385 1408 1431 1453	11 85 1 210 1 235 1 260 1 285 1 31.1	1274 1302 1329 1357 1385	358 1388 1419 1449 1479 1509 1539	1470 1503 1535 1568 1601 1633 1566 1699 1731 1764 1797 1829 1862 1895 1927 1960 1993 2025 2058	16871722175717921827186318631898193319682003203203320732109214422792214	692 17 30 17 68 1806 1843 1881 1918 1956 1994 2031 2069 21 06 21 44	ļ				
	(MEASURED	192	3	124	245	366	488	609	129	850	970	1060	51011	3291	1675	56.81	68.7 1.	80611		•			
	MEAS	188	80	121	240	359	47.7	59.6	714	832	950	06.7 1	851	302 1	1611	5351	5521	768 1					
	AHA CI	184	8	118	235	351	467	583	669	81.4	930	15.50	16311	27.4 1	35.8 1	5031	1617 1652	1 98					
	EESA	180	8	116	5 30	344	452	571	684	1.67	806	12	1 34 1	246 1	358 1	8	581 1	1 26 9				•	
	TRE	176	8	11	325	336	447	558	699	624	889	1 666	1 60 1	12191	13281	43.7 1	5461	6551					
	OF	172	2	म न	220	32.8	437	545	653	76.1	598	526	1 9801	1 161	129.84	P+4	5111	16171					
	3ER	168 3	10	1.08	214	321	427	533	63.8	744	849	954	10291	3		1372 1405	147.61	580 1					
	NUMBER	164 . 1	3	1 05 1	2 602	31.3 3	417 4	520 5	623 6	726 7	8 228	931 9	3310	3611	1207 1235 1268	133913		5421					
	61	160 I	ฮ	103	20.4 2	305 3	105 4	507 5	60.8 6	7 0.8 7	808 8	S 0.8 9	10081033	1108/11	20712	30713	140.61441	5051					
		156	3	1 00	5 66 t	29.8	39.6	\$ 64	593	6 90	788	\$ 86	983 10	10801	11221	1241 1274 1307	1371 1	21					
		152 1	5	86	194	29.0	386	482	577	673	76.8	86.3	958	05211	11471	112	5	429 14					
ľ		148 I	5	95	ฐ	283	37.6 3	3	23	55	748	840	933 9	1025 1(5	1 502	130013	1392 1	ļ				
		144 I	10	33	84 1	275 2	66 3	56 4	47 5	37 6	7 2.8 7	19	9 0.7 9	53	1087 11	1176 1209	265 13	1354 13	ł				
		÷	10	0.6	1.61	267 2	5.6 3	4 44 4	532 5	620 6	7 0.7 7	8 36	82 9	6 69	1056 10	9	n g	3					
		6 140) [TO	87	-4		5		l	1	·	72 7	5.7 8	942 9	026 10	11 11	95 12	27913					
		136			69 174	2 260	5 345	8 431	0.1 51.7	84 602	6.7 6.8.7	<u>۲۰</u>	3.2 85	1.4 94	9.6 102	078 11	60 11	24.1 2.2	ļ				
		132	5 0.1	6 85	7 16	8 252	9, 335	0 418	S	5	v	14 749	8	16 91	17 99	18,107	11 61	20 124	Į				
	z	H (m)				aari N		2 LOH	н а ла	1 03	ន 20៥	L)TH: 13	I		- مه . ا		I	ļ				
*			••••	******								~~~~		~~~~~									

.

.

(I-2)

- 71 -

10. Preparation of standard interpretation cards

10-1. Arrangement of data

Those data from sample plots obtained in the field survey were arranged, and 20 plots suitable for interpretation were selected. In the light of forest type mark and the difference in forest condition within the forests type, the selection was made as follows:-

[YI]	4 cases
(MI]	4 cases
[OI]	7 cases
[DI]	3 cases
	2 cases

10-2. Preparation of cards

Standard interpretation cards to record necessary data obtained from sample plots were prepared. Portion of aerial photographs (1/10,000) in stereo-pair and a ground photograph were affixed on the card for visual effects, and the results of the field survey were also supplied so that the card could supply material for interpreting coconut stand. (Fig. 14.)

72 -

11. Preparation of a block map

11-1. Preparation of the original block map

Those plantation boundaries and forest type block boundaries set up roughly in preliminary interpretation under section 3 and adjusted or confirmed in the field working were transferred to the basic map of the scale 1/10,000 prepared under section 2 to prepare an original block map.

Then a running number was given to the plantations, starting with Saliavu in the southwest, through Somosomo, and round the island to Lavena in view of the distribution.

Forest type blocks in the plantations were also given a running number, though left-over areas (hardwood forest, housing sites and roads) were excluded.

These numbers, together with the established plantation and block boundaries, are entered on the aerial photographs. (Photograph 2.)

11-2. Measurement of areas

The areas of plantations and of forest type blocks were measured on the original block map. For measurement, Dot plate (1 dot for 0.25ha) were used to count the number of dots for each block. Measurement was repeated three times to get the average which was multiplied by 0.25ha for the area.

The area of coconut stand in each plantation is given by Table 19. However, left-over areas in plantations are excluded, and the total areas of plantations are given in the right-hand column.

74

Plantation No.	Name of plantation	Number of blocks	Stand area (hø)	Plantation area (including left- over areas: ha)
1	SALIALEVU	23	1199.95	1271.95
2	NAVAKAWAU (Pi)	11	160.17	. 236.17
3	VUNA(Fi)	41	6 5 9.6 4	7 0 9. 3 9
4	VUNA	55	2 08 7.97	2520.47
5	URA	18	649.87	909.12
6	LIKUVAUSOMO	4	45.09	304.34
7	NAQILAI	2	74.01	77.76
8	QATHAVULA	15	260.68	283.18
9	SOGULU	21	346.20	364.70
10	WALA	4	60, 59	60.59
11	MALAWAI (Mal)	7	140.67	144.67
12	TUTU	6	122.12	1 32.62
13	WAIRIKI	9	1 39.66	185,41
14	TAVUKI (Fi)	4	29.77	37.52
15	NAIYALAYALA	10	95.74	105.74
16	WAIYEVO	3	36,59	81.59
17	WAITAVALA	6	108.02	111.02
18	NALELE	4	43, 44	4 3. 4 4
19	LOVONIVONU (Fi)	17	179.04	328.04
20	DELAIWENI (^{%1} / _{%2})	15	194.50	3 37.00
21	SOMOSOMO (Fi)	8	2 4 2. 0 3	282.78
22	NAMBAU	3	36.09	36.09

Table 19. Planation areas

Note: (Fi) stands for Fijian village name.

•

1			· · ·	
plantation No.	NAme of plantation	Number of blocks	stand area (ha) (ha) (ha)	Plantation area (including left- over areas: ha)
23	VATUULO	8	1 6 4. 36	201.61
24	NIUSAWA	4	39. 31	46.31
25	WELAGI (FI)	15	264.32	295.82
26	NĠILA	16	381.16	394.16
27	NAMBEKA	5	6 2. 2 1	62.21
28	MUA	30	528.44	5 47. 6 9
29	VACALA	3	41.75	44,00
30	MATBI	17	1 36. 47	189.97
31	NASELESELE	16	224.49	242.99
32	NASELESELE (FI)	8	133.42	143.67
33	NAGASAU	6	208.36	210.86
34	NAWIWI (Fi)	9	96.75	166.50
35	NACOGAI	11	269.12	27 5. 1 2
36	NGGELENI (Fi)	38	257.31	320.31
37	VACOA (FI)	18	1 3 6. 2 1	177.46
38	VUNIVASA	21	417.35	528.35
39	WAIGD.	12	51.82	68.57
40	VITALA	18	107.30	149.80
41	WAITAMBU	10	29.99	43.24
4 2	VINDAWA (Fi)	9	53.60	59.60
43	MBOUMA (Fi)	15	128.76	177.01
4 4 ⁸	LAVENA GD	47	231.94	2 46. 9 4
·	Total	622	10876.28	13155.78

• ..

12. Interpretation by block

12-1. Analysis of data

Before the interpretation of photographs it is necessary to examine correlation between tree height and stand age.

From the data on sample trees (b), given as Table 10, for preparation of photo volume table, correlation between whole tree height of single trees and stand age can be obtained as Fig. 15. The mean whole height curve can be shown as a logarithmic curve starting at 6m. It shows that the height is about 22m at 70 years.

Since the data include measurements of stem height, correlation between crown height (residual between whole tree height and stem height) and stand age can also be obtained (Fig. 16). The mean curve shows the height of 6 to 5m with young growth, which decreases as the age progresses, showing 4m at 30 years and maintaining 3.5m after 50 years. The fact that the crown of coconut is entirely made up of leaves explains the crown height of young trees with abundant leaves and strength. However, as the tree ages the amount of leaves decreases and they also bend down, thus affecting the crown height.

Further, from the results of the field working of a sampling plot, correlation between the average stem height and stand age can be obtained as Fig. 17. The mean stem height curve is a logarithmic curve starting at 0 meter.

Since Fig. 15 concerns single trees and Fig. 17 is based on the average of trees in sample plot, direct comparison is difficult. However, Fig. 17 was adjusted in scale to Fig. 15 to obtain Fig. 18, to which the crown height of Fig. 16 was added, as shown as the broken line. When the curve including crown height is placed on the mean whole height curve of Fig. 15, they are found to be almost identical except for the section around 40-50 years where the latter is lower than the former by around 1m. a in the second states and the second states of the second states of the second states of the second states of

This is perhaps to be expected since sample trees (b) have been selected at random from those closest to the center of the plot. However, it serves to examine the reliability of the data being used.

Since two kinds of mean height curve were obtained, it was decided to use Fig. 15 for estimating stand age from whole tree height and Fig. 17 from stem height.

- 79 -

Fig. 15. Correlation between stand age and whole tree height and the mean whole height curve

- 81 -

12-2. Interpretation of photographs

化硫酸氢酸 医胆管管

Those plantations and plantation blocks based on forest type confirmed under section 11 were surveyed by means of photographic interpretation and field working for the following data.

Forest type code: Classified as follows based on the age given below.

	YI (in	use	at present. 0-25 years)	
	MI (•	19 (1996) - 26-50 years)	į.
•	OI (Over 51 years)	
	DI (any as a two-storied forest)	I
	E (id	le fo	orest)	

With regard to YI, MI, OI, those blocks which could not be surveyed were estimated by applying the average height (whole tree height) interpreted to mean whole height curve shown in Fig. 15 or by using the number of trees and the site as criterion for judgement.

Area: Those block areas measured under section 11-2 were transferred.

Species: Based on interpretation of photographs. Fiji Tall and Malayan Dwarf can be distinguished from each other by the difference in color on photograph.

Mixture rate:

Based on interpretation of photographs. Mixture rate of volume was recorded for combination of Fiji Tall and Malayan Dwarf, and two-storied forest of Fiji Tall.

Stand age:

Based on information supplied verbally at the site. Those blocks which were either unsurveyed or uncertain were left blank.

Age class:

Based on stand age, five years were counted as one class.

Average height

(whole tree height): A few typical plots (for 0.25ha) for interpretation were set up within a block on the photographs with the use of the plot-setting plate. Parallax differences of several trees in the plot were measured with parallax bar, which were then converted into tree heights. The method of conversion is the same as the estimation of height for photo volume table. And measured tree heights were taken to supply the average values.

Number of trees per ha: The number of trees in the plot setted up above was counted and converted into the number per ha.

Volume per ha: Calculated by applying the measured heights and the number of trees to the photo volume table prepared under the section 9-2.

Results of the interpretation are given as Appendix <u>Coconut forest inventory note</u> which gives plantation areas, number of trees and volumes, and Table 20 is a part of it. Table 20. Forest inventory note (part)

.

		total volume						3 	544) 	9		. 4							
-1994 - L		total volume	2 235 #	768	L 456	49	724	26	2, 395	5, 365	2, 545	621	573,	1, 561	85	87	129		18,669
	- * 78-	volume per HA	68.6	6 96 6	52.3	32.8	54.3	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	87.9	88.2	63.9	49.0	58.8	51 4	39.2	38.7	38.7		
		trues per HA	1997 1998 1997 1997	140	64	52	72	48 44	100	88	68	60	72	104	48	44	44		21151
	Condition	mera whole height	10	16	18	15	17	18 12	6 T	21	20	8 T	18	61	18	19	6T		
	Forest C	tree age class	×							λiχ				ХII					
		tree 280	50							70			:-	60				.1	
		mixture rate	100	. az	14	D	a . 1	67 33	DOT -	•	•	: b e		la I	ø	*	84		L
		local name	Fiji Tall	24	8	8	•	Fiji Tall Malayan	Fiji Tall	2	.	•	•	*	*	8	э л -		
		total area								 	1	-	 			:			283.18
	Area (HA)	left-over ærea			iste Bit											1	:		22 50
4		forest area	32.58	7. 93	27.83	1. 50	13.33	2 33	27. 25	60. 83	39.83	12 68	9.75	17.08	2 18	2 25	3 3 3 3		 260.68
		Forest-type	10	IW	ш	*	IW	DI	IW	10		£ì	01	P.	щ	10			
лане		Block A		8	N	4	ŵ	y	7	00	6	10	11	12	13	14	15		
r lantation		Plantation M	\$																

12-3. Calculation of total volume by accumulation

The numbers and volumes of forest types calculated under the section 12-2 were added up for each plantation and then for the entire area to obtain the total number of trees and the total volume. The results obtained were 996.768 trees and 754,047m³ in volume. Table 21 gives the number and volume for each plantation.

Plantation No.	Name of plantation	Number	Volume (m ³)
1.	SALIALEVU	62,745	59,611
2	NAVAKAWAU(Fi)	10,275	7,373
3	VUNA (Fi)	54,160	34,662
4	VUNA	195,474	163,183
5	URA	49,252	44,116
6	LIKUVAUSOMO	4,123	3,835
7	NAQILAI	8,173	7,624
8	QATHAVULA	21,151	18,669
9	SOGULU	24,094	19,612
10	WALA	5,135	5,039
11	MALAWAI (No.1)	15,935	15,813
1.2	TUTU	8,176	5,342
13	WAIRIKI	10,644	8,971
14	TAVUKI (Fi)	3,047	2,385
15	NAIYALAYALA	10,102	8,802
16	WAIYEVO	3,566	3,426
17	WAITAVALA	14,022	6,380
18	NALELE	3,817	2,536

Table 21. Number and volume by plantation

- 85 -

Plan	tation	Name of		· · · · · · · · · · · · · · · · · · ·
	No.	plantation	Number	Volume (m ³
j state de position de la constante de la const La constante de la constante de	19	LOVONIVONU (Fi)	13,741	8,693
	20	DELAIWENI (No.1)	17,807	16,441
	21	SOMOSOMO (F1)	20,178	9,426
	22	NAMBAU	4,858	2,413
	23	VATUULO	9,853	8,771
	24	NIUSAWA	3,557	2,263
a la al. Utorian	25	WELAGI (Fi)	23,408	8,502
, and an	26	NGILA	36,282	23,969
18 m	27	NAMBEKA	6,984	5,569
$\gamma = i\frac{2}{2}e_{i}r^{2}$	28	MUA	56,736	39,636
	29	VACALA	4,548	2,773
	30	MATEI	16,320	11,899
1. A. A.	31	NASELESELE	32,174	26,400
	32	NASELESELE (Fi)	16,773	12,612
	33	NAGASAU	26,050	25,328
	34	NAWIWI (Fi)	12,089	8,999
	35	NACOGAI	27,074	25,691
	36	NGGELENI (Fi)	27,215	12,357
	37	VACOA (Fi)	15,630	9,623
e generation Anti-	38	VUNIVASA	48,731	35,813
	39	WAI (Fi)	6,426	2,136
۰ ۲۰۰۰ - ۲۰۰۰ ۲	40	VITALA	15,447	10,257
a de serv	41	WAITAMBU	3,013	1,496
	42	VINDAWA (Fi)	5,851	4,101
	43	MBOUMA (Fi)	13,722	6,325
	44	LAVENA (Fi)	28,410	15,175
		Fotal	996,768	754,047

13. Calculation of the total volume by sampling

By using number of trees and volume per ha obtained fro a plot under the section 8-2, totalling by samplin method was carried out. The method of calculation was the stratified random sampli g method given below.

[Codes]

ω

- X : Target of the survey (volume or number of trees)
- x : X in a sample
- A : Area (number of population block N x sample area)
 - Proportion of stratum area (proportion stratum number of population block)
- n : Number of samples
- X : Mean value of the target
- S_{x}^{2} : Variance of samples
- $S_{\tilde{r}}^{2}$: Variance of mean value
- $S_{\frac{n}{p}}$: Standard deviation of mean value
- R : Confidence limit of estimate
- : Error rate of estimate
 - i : ith stratum
 - i : jth sample

[Formula]

Stratum area

Proportion of stratum area Mean value of x in samples

Variance in samples

 $\omega_{i} = \frac{A_{i}}{\Sigma A_{i}}$ $\overline{X}_{i} = \frac{1}{n_{i}} \Sigma x_{ij}$ $\overline{X} = \overline{x} = \frac{\Sigma}{i} \omega_{i} \cdot \overline{x}_{i}$ $S^{2}_{xi} = \frac{1}{n_{i-1}} \left\{ \sum_{j} z_{ij} - \frac{(\Sigma x_{ij})^{2}}{n_{i}} \right\}$

- 87 -

Variance of mean value	$S_{ii}^{2} = \frac{S^{2}xi}{ni}$
	$S_{\vec{x}}^2 = \frac{S}{i} \omega_i^2 \cdot \frac{S^2 x i}{n_i}$
Standard deviation of mean value	$S_{\bar{x}_i} = \sqrt{S_{\bar{x}_i}^2}$
	$S_{\bar{x}} = \sqrt{S_{\bar{x}}^2}$
Confidence limit of mean value	$R_i = t_i \cdot S_{\tilde{x}_i}$
	$\mathbf{R} = \mathbf{t} \cdot \mathbf{S}_{\mathbf{x}}$
Error rate of estimate	$\epsilon_i = \frac{R_i}{\bar{x}_i} \times 100$
	$\varepsilon = \frac{R}{\tilde{x}_i} \times 100$
Estimated total	$\mathbf{X}_{i} = \mathbf{A}_{i}^{\mathbf{x}_{i}} (\mathbf{x}_{i} \pm \mathbf{t} \cdot \mathbf{S}_{\mathbf{x}_{i}})$
· 같이 좋아? 이상 것 않는 것 이 같은 것 같은 것 이 가지? 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 있는 것 같이 있다.	$X = A \cdot (\overline{z} \pm t \cdot S_{\overline{z}})$

 $\mathbf{S}_{ar{x}_{i}}$)

)

Results of calculation are given as Table 22/1-2

Table 22-1. Results of calculation (volume)

.

(YI) (MI) (OI) (DI) 1028 2750 5181 634 01072 02867 05400 00661 01072 02867 05400 00661 01072 02867 05400 00661 0115 02822 02916 00641 1385 48 90 11 1385 5230 9160 1027 145073 5230 9160 1927 14507353 20425089 23507366 76518182 14507353 20425089 23507366 76518182 14507353 20425089 23507366 76518182 14507353 20425089 23507366 76518182 14507353 20425089 23507366 76518182 14507353 20425089 23507366 76518182 14507353 20425089 23507366 76518182 14507353 20425089 23507366 76518182 14507353 20425089 23507366 76518182 14507353 20425089 23507366 76518182 190 11210 (1=201) 71002 190 120 98 305 1 2 235
0115 11785 11785 11785 11785 11785 11785 11785 11785 11785 11785 11887 1353 204 4 4 2579 2579 2579 2579 2579 2579 2579 2579

- 90 -

.

According to the results above, the error rate of estimate was 8.2% with volume and 7.5% with number. They show that estimates were made with desirable precision for the small number of samples.

The number of samples corresponding to the estimated precision in future sampling survey which can be conducted by a similar method in a different area can be calculated as below. It shows that 450 samples will be required to attain precision of 5% and 120 samples for 10%.

 $CV = \frac{\varepsilon}{1} \cdot \sqrt{n} = \frac{8.2}{1.96} \times 167 = 54.06$

h Editoria de

 $n = (\underbrace{1 \cdot CV}_{\ell})^{2} \begin{cases} (=(\underbrace{196 \times 5406}{5})^{2} = 449 \div 450 \cdots \underset{\text{of 5\%}}{\text{In the case}} \\ (=(\underbrace{1.96 \times 5406}{10})^{2} = 112 \div 120 \cdots \underset{\text{of 10\%}}{\text{In the case}} \end{cases}$

Further, the overall average of volume per ha was $78.7m^3$ /ha and that of number per ha was 109.6/ha.

14. Evaluation of the accumulative total volume

According to the results of sampling, the total volume of coconut timber and the total number were, with the confidence rate of 95%, 693,063 to 816,266m³ and 972,442 to 1,130,343 trees respectively.

It should be recalled here that the accumulative total volume and number obtained by photographic interpretation and the use of photo volume table were $754,047m^3$ and 996,768respectively. However, these values include the stand type E (idle forest) which was not included by the sampling survey. Therefore, if $10,720m^3$ and 17,959 trees of the E type are deducted from the total volume and number given above, the total volume of $743,327m^3$ and the total number of 978,809 are obtained. Comparison of the two sets of values show clearly that the accumulative values are within the confidence limit of the values by sampling totalling and that those values estimated for each block were accurate. The fact that the total number is at the very limit of confidence is probably due to the fact that in photographic interpretation only the upper story can be interpreted (possible in a clear case such as two-storied forest). Therefore, if the number of trees per ha (Appendix I) which provides the data on numbers in a sampling survey can exclude the number in the lower story, the total number will then be well within the confidence limit.

15. Preparation of distribution and location maps of coconut forests

15-1. Preparation of distribution map

The average height, number of trees and volume interpreted for each block under the section 12 were entered on the original block map in the following style.

Example of entry

Number Volume 0I, 22 (100) 4967 46.68 Area Average height Forest type

Then the original map was traced and arranged on the polyester paper to obtain the <u>Coconut forest distribution</u> map (appendix). Fig. 19 shows a part of it.

Fig. 19. Coconut forest distribution map (part)

- 93 -

15-2. Preparation of location map

In order to show clearly the distribution of coconut plantations, a coconut forest location map was prepared. For preparing the map, the original block maps were reduced in scale from 1/10,000 to 1/50,000 and were combined as one sheet. Then the necessary information based on forest type codes was entered in the style of the explanatory notes on Fig. 20.

Fig. 21 is a part of the <u>Coconut forest location map</u> (appendix).

Fig. 21. Coconut forest location map (part)

VIII, UTILIZATION PLAN OF COCONUT FORESTS

1. Preparation of a table of actual volume and area by age class.

In order to establish utilization plan (cuting plan) of coconut forests, it is necessary to find out about the distribution by age class in addition to the total resources (area and volume). However, the volume of each block measured in VII-11-1 cannot be used for prepare a table of volume and area by each age class because in many cases stand age was not available. Thus, the table was prepared by the method given below.

Since the sample plots used in the sampling survey were selected by random sampling and proportionally allocated by stratum, presumably they reflect the general trend in the target area. Accordingly, if the number and volume by age class are obtained for the sample population, and if the distribution of age classes is used to allot the total area and volume, the table of volume and area of each age class reflecting the actual situation fairly accurately can be obtained. Thus, based on the appendix <u>Results of the field survey on the sample plot</u>, the numbers and volumes regarding the sample population were totalled, and the results were 187.4 in number and 2,764,5053m³ in volume which are given in the left-hand column of Table 23 below.

化橡胶塑成 网络美国新花 化拉丁酸盐 化异磷酸盐

. Tabla (1994) - NACH (1997) - A

- 96 -

belo.	· Agé class	Number of samples	Total volume of sample plot	Area alloted	Volume alloted
lightada (Giordana	I	10.7	59. 8111	621, 00	16, 311
	π	17. 7	140, 7915	1, 027. 27	38, 403
	мал <mark>П</mark>	15. 4	190. 3922	893.78	51, 932
		6. 0	76. 0218	348. 23	20, 729
	V.	4. 0	44.9258	232.15	12, 247
	VI	4.0	65. 5385	232.15	17, 865
	¥1	7. 7	110. 4487	446. 89	30, 112
ji Areas areas	Ya	10.0	127. 7968	580. 38	34, 858
	IX	16.4	273. 1036	951.82	74, 488
고 영화 가지 - 2011년 1월 1981년 1월 19 - 2011년 1월 1981년 1월 1	X	13.4	171. 8537	777.71	46, 886
Mar Balley	XI	11. 7	. 156. 6713	679.04	42, 740
	× XII	10. 0	163. 7892	5 80. 38	44,677
	et de xm de la	12, 7	196. 1559	737.08	53, 514
ne but	XIV	14.0	296. 2387	812.53	80, 787
(2.137), 234) (2.137), 234)	XV ,	11. 7	217, 1565	679. 04	59, 241
an a	XVI	7.0	132.0581	406. 26	36, 030
an eannaí S éise ann	XVI	5.0	123. 1739	290. 19	33, 603
	XVI	3.0	58. 5146	174.11	15, 956
	XIV	4. 0	100, 8745	232.15	27, 521
	XXRE	3. 0	59. 1888	174. 12	16, 147
reaction and		187. 4	2, 764. 5053	· (10, 876, 28)	(754, 047)

Table 23. Number and volume of the sample plot by age class; distribution of area and volume by age class

With regard to the samples of E-stratum, since only Note: 20.55 34 this stratum had a different sampling process (conversely the weight given to the sample's area), they are adjusted by that ratio (weight for E-stratum 98.72 and for other strata 57.44=1.72). This is the reason why the numbers are not integral numbers.

- 97 -

Accordingly, the total area of 10,876.28ha and the toal volume of 754.047m³ can be alloted according to the ratio of each age class as shown in the right column of the table.

It should be mentioned, however, these age classes of samples were not obtained directly from the stand age given by the survey results but from the mean stem height curve (VII-12-1: Fig. 17) with the average stem height of plot as an index.

This was due to the fact that since the survey on stand age was based on verbal information, the age was roughly given in 10s or more and was seldom in 5s, causing extreme unbalance on the table which required the structural ratio at a five-year interval.

Further, though the mean whole height was obtained for the entire block and the mean whole height curve (Fig. 15) showing the relationship with stand age, samples were used on purpose, because the mean whole height was interpreted in meters, with the application of the mean whole height curve 1m corresponded to an interval of 15-20 years and the necessary information for every five years was not obtainable.

(The average stem height obtained as a result of the sample survey was the average of actual values, it was obtained in the unit of effective figure 0.1m.)

The table of actual volume and area by each age class obtained is Table 24.

		4 4 1 4						-		- 1					-										
			era Arte													1		-	•					11	
		Remarks																		-				· · · ·	
		Rem	i - Eteine																						
sa battar Kara Ka Katu		n Agurd Maga Ar Galais						1.0				1. 1. 1.													
in an an			en al. E Ant						(• 4												14.1		
galar galar		o des Mateix		1997 - 1997 1997 - 1997		: 				i i															-
	tut	Volume per ha	©Ø			26.3	37.4	58.1	20 2 20	52.8	77.0	67. 4	60. I	78.3	60.3	62.9	77. 0	726	4 66	87. 2	88.7	115.8	9 T 6	5 811	92.7
0	Species: coconu	Volume	From forest inventory mote			16, 311	38, 403	51, 932	20, 729	12, 247	17, 865	30, 112	34, 858	74, 488	46,886	42, 740	44, 677	53.514	80, 787	59, 241	36, 030	33, 603	15, 956 .	27, 521	16, 147
Θ	NG2	Area	From fo		·	621	1,027	\$68	348	232	232	447	580	952	778	619	581	737	813	619	406	290	174	232	174
)					 2 	8	 3 	ć	3	 \$	 7		 8 	8	8	. (₽ 2 1	1	 8 	8	 	
	•						Ħ	Ħ	A	Δ.	4	ß	×	X	x	न्न	灵	艮	AX.	xv	WX	EX.	EX.	Ŕ	TAX

Table 24. Table of volume and area by each age class

99 -----

•

2. Preparation of a growth prediction table

In order to calculate sustained yield it is necessary to use a prediction table which predicts how stand volume will increase. However, such material was not available not only in the survey area but also in Fiji as a whole. Therefore, it was decided to prepare a stand growth prediction table which can be called a yield table of actual stand based on the table of actual volume and area of each age class of Table 24.

First, from Table 24 the relationship between each age class and mean volume per ha can be obtained as Fig. 22 which shows that they follow a certain trend. When the uneven age class values were adjusted, the yield curve shown on Fig. 22 was obtained.

The value of volume at a five-year interval obtained from the curve is shown in the left-hand column of Table 25. These values can be used to calculate the growth of each age class which can supply the annual growth and the cut volume at the rotation period, thus providing the growth prediction table.

- 100 -

Table 25. Yield prediction table and calculating table ਮ 0 ਜ

ジージンージン	
	÷.,
ļ.	.Ļ)
	C
[10
	. Ľ
ć	
ľ	
	coefficien
	3H
	44
1	Ψ
	Ö
	υ
Ł	
	୍ୟ
	0
	• – +
	زد
	Ó
	٠ð
	ŭ
4	5.
4	correction
	ы
	~
	٤,
	ы

	Xield	prediction table			Converted	Yield	prediction table	ble				Calculating table for correction coefficient	S. table for coefficient	ਮ ਜੋ	
Model Apple Constrained Advanced Lass Apple Constrained Advanced	Θ			0	9	•	9		0		SQ.				
(Tercons ytald curve) (25 - 10) (26 - 10) (27 - 10) <th>Volue</th> <th></th> <th>Age</th> <th>Volume</th> <th>Annual</th> <th></th> <th>Curt wolume at rotation period</th> <th></th> <th></th> <th>والمتفادية أسال</th> <th>I SBBIO B</th> <th>Correction</th> <th>41.411 有些"有益" 设有"有"</th> <th>Renaries</th> <th></th>	Volue		Age	Volume	Annual		Curt wolume at rotation period			والمتفادية أسال	I SBBIO B	Correction	41.411 有些"有益" 设有"有"	Renaries	
I 1/2 0 3.8 9.5 21.5 1 26.3 III 31.0 2.3 5.8 36.8 1 26.3 III 31.0 2.3 5.8 36.8 1 37.4 III 42.5 1.0 2.3 5.8 36.8 1 37.4 III 50.0 1.1 2.8 36.8 7 1 26.3 V 57.0 1.1 2.8 56.9 56.0 1 37.4 V 57.0 1.1 2.8 56.8 70.0 1 57.0 V 57.0 1.1 2.8 56.9 70.0 1 77.0 V 77.0 2.8 70.0 2.8 74.8 1 1 77.0 V 77.0 2.8 74.8 1 1 1 77.0 V 7.8 1.0 2.8 74.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td></td><td>(From yield curve)</td><td></td><td>(11+()+1) 2</td><td>21+1-2×</td><td>5.5</td><td>•</td><td></td><td></td><td>r 🖓</td><td>i£e ∖{c</td><td>910</td><td></td><td></td><td></td></td<>		(From yield curve)		(11+()+1) 2	21+1-2×	5.5	•			r 🖓	i£e ∖{c	910			
I 12.0 3.8 9.5 21.5 1.1 27.4 III 31.0 2.3 5.8 36.8 III 37.4 III 4.0 46.5 III 37.4 II 37.4 IV 56.5 1.1 2.8 5.8 36.8 III 37.4 V 57.0 1.1 2.8 5.8 5.8 5.8 7.1 V 58.1 V 55.0 1.1 2.8 5.8 5.8 5.8 7.1 7.0 W 57.5 1.1 2.8 5.8 5.8 7.0 7.1 7.0 W 67.5 1.0 2.5 7.0 7.8 7.0 7.0 W 72.5 1.0 2.5 7.0 7.8 7.0 7.0 W 72.5 1.0 2.5 7.0 7.8 7.0 7.0 W 72.5 0.9 0.7 1.8 7.0 7.0 7.0 W 7.7 6.5 7.8 7.0 7.0 7.0										شې د او	1.04				
II 21.0 2.3 5.8 35.8 36.8 11 37.4 III (125 L6 4.0 46.5 III 37.4 IV 50.5 L1 2.3 5.3.8 III 35.5 V 57.0 L1 2.5 5.9.8 V 55.6 IV 62.5 L1 2.5 5.0.9 2.3 74.8 V 55.8 IV 77.0 0.8 2.0 74.8 W 66.1 7.4 IV 77.0 0.8 2.0 74.8 W 67.4 IV 77.0 0.8 2.0 74.8 W 77.0 IV 86.5 0.6 1.5 90.0 X 60.3 IV XW 94.5 0.5 0.6 XV <				12.0		ø				ا م ارد ا	N .	219			
III 425 L6 40 465 III 53.8 IV 50.5 L1 2.8 53.8 V 59.5 V 57.0 L1 2.8 53.8 V 59.5 W 65.0 L1 2.8 53.8 V 59.5 W 65.5 L0 2.5 56.0 V 59.5 W 77.0 0.8 2.0 73.0 N 77.0 W 77.0 0.8 2.0 73.0 N 77.0 W 77.0 0.8 2.0 73.0 N 77.0 W 85.0 0.7 1.8 86.8 N 77.0 M 85.0 0.7 1.8 86.8 N 77.0 M 85.0 0.7 1.8 86.8 N 77.0 M 85.5 0.6 1.5 93.0 N 77.0 M 85.5 0.6 1.5 93.0 N 77.0 M 86.5 0.6 1.5 93.0 N 77.0 M 86.5 0.6 1.5 93.0 N 77.0 M 10.10 0.4	# 0 •		F	31.0					1.1	H	37.4	121			
IV 50.5 L.3 3.3 53.8 VI 77.0 V 57.0 L.1 Z.5 55.6 VI 77.0 W 67.5 L.0 Z.5 70.0 L Z.5 55.6 W 77.0 L Z.5 55.0 70.0 VI 77.0 W 77.5 L Z.5 70.0 Z.5 70.0 VI 77.0 W 77.7 L L Z.5 70.0 Z.5 70.0 VI 52.6 W 77.0 L S.0 Z.0 S.0 S.0 YI 77.0 W S5.0 0.6 L.5 90.0 XI 77.0 XI W S5.5 0.6 L.5 93.0 XI 77.0 W S5.5 0.6 L.5 93.0 XI 77.0 W S5.5 0.6 L.5 93.0 XI 77.0 W 91.5 0.6 L.5 93.0 XI 77.0 W			Ħ	42.5					199 199 19 19	E	58.1	137			
V 57.0 L1 Z8 59.8 V1 77.0 WI 67.5 L0 Z5 65.0 V1 77.0 V1 77.0 WI 67.5 L0 Z5 65.0 23 74.8 W1 77.0 WI 72.5 0.9 Z3 74.8 70.0 W1 77.1 WI 77.6 0.8 Z.0 23 74.8 70.0 W1 77.0 WI 77.0 0.8 Z.0 0.9 Z3 74.8 86.8 73.0 WI 77.0 0.8 Z.0 1.1 2.8 90.0 73.0 74.5 WI 55.0 0.6 L5 90.0 73.0 77.0 WI 91.5 0.6 L5 93.0 74 87.7 WI 75.0 35.8 70.0 37.0 37.0 WI 91.5 0.6 L5 93.0 77.0 WI 91.6 0.4 1.0 100.0 37.1 87.7 WI <td>* u</td> <td></td> <td>N</td> <td>50.5</td> <td>Į .</td> <td></td> <td>53.8</td> <td></td> <td></td> <td>A</td> <td>59.5</td> <td>118</td> <td></td> <td></td> <td></td>	* u		N	50.5	Į .		53.8			A	59.5	118			
WI 62.5 1.0 2.5 65.0 1.0 2.5 70.0 WI 77.0 W 77.5 0.9 2.3 74.8 WI 77.0 K 77.0 0.8 2.0 73.0 MI 77.0 K 77.0 0.8 2.0 73.0 MI 77.0 K 81.0 0.8 2.0 73.0 MI 76.0 X 81.0 0.8 2.0 83.0 74.8 MI 77.0 X 81.0 0.8 2.0 83.0 73.0 MI 77.0 XI 85.0 0.6 1.5 90.0 MI 77.0 MI 77.0 XI 85.5 0.6 1.5 90.0 MI 77.0 MI 77.0 XII 91.5 0.6 1.5 90.0 MI 77.0 MI 77.0 XII 91.5 0.6 1.3 95.8 XII 77.0 XII 91.0 0.4 1.0 100.0 10.0 XII </td <td></td> <td></td> <td>Δ</td> <td>57.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>93</td> <td></td> <td></td> <td></td>			Δ	57.0								93			
The bit of the state The bit of the state The bit of the state			Ы. N	62.5						ħ	0.77				
T2.5 0.9 2.3 74.8 WI 60.1 X 81.0 0.8 2.0 53.0 X 60.3 1 X 81.0 0.8 2.0 53.0 53.0 X 60.3 1 X 85.0 0.7 1.8 86.8 X 60.3 1 7 60.3 1 7 60.3 1 7 60.3 1 7 60.3 1 7 60.3 1 7 60.3 1 7 60.3 1 7 7 60.3 1 7 6 7 1 1 7 6 1 7 6 1 1 1 7 6 1 <td></td> <td></td> <td>E</td> <td>67.5</td> <td></td> <td></td> <td></td> <td>- -</td> <td></td> <td>P</td> <td></td> <td>100</td> <td></td> <td></td> <td></td>			E	67.5				- -		P		100			
IX 77.0 0.8 2.0 79.0 78.3 1 X 81.0 0.8 2.0 83.0 X 60.3 XI 85.0 0.7 1.8 86.8 X 60.3 XII 85.0 0.7 1.8 86.8 X 62.9 XII 91.5 0.6 1.5 90.0 XII 72.6 XIV 94.5 0.5 1.3 95.8 XV 99.4 1 XV 97.0 0.4 1.0 98.0 XV 88.7 XV 97.0 0.4 1.0 98.0 XV 88.7 XV 99.0 0.4 1.0 100.0 XV 88.7 XVI 99.0 0.4 1.0 102.0 XV 88.7 XVI 99.0 0.4 1.0 102.0 XVI 88.7 XVI 103.0 0.4 1.0 102.0 XVI 88.7 XVI 103.0 0.4 1.0 102.0 XVI 88.7 XVI 103.0 0.4 1.0 102.0 XVI 88.7 XVI 104.5 0.2 0.5 105.0 XVI 9	2 4		M	72.5	o	23	74.8			F	60.1	83			
X 81.0 0.8 2.0 83.0 X 60.3 X 85.0 0.7 1.8 86.8 X X 60.3 X 85.5 0.6 1.5 90.0 X Y 60.3 X 91.5 0.6 1.5 93.0 X Y 94.5 0.5 1.3 95.8 X 87.2 X 94.5 0.5 1.3 95.8 X 88.7 X X 94.6 0.4 1.0 98.0 X 88.7 X 99.0 0.4 1.0 100.0 34.8 115.8 1 X 99.0 0.4 1.0 100.0 35.8 X 88.7 X 99.0 0.4 1.0 100.0 35.8 X 88.7 X 91.6 0.3 0.8 103.2 X 88.7 X X 91.6 0.3 0.8 103.8 X 115.8 1 X 101.0 0.3 0.2 0.5			8 	77. 0		20				ĸ		102			
XII 85.0 0.7 1.8 86.8 XII 77.0 XIII 91.5 0.6 1.5 93.0 XIII 77.0 XIII 91.5 0.6 1.5 93.0 XIII 72.6 XIII 94.5 0.5 1.3 95.8 XIII 72.6 XV 97.0 0.4 1.0 93.0 XV 87.2 XV 97.0 0.4 1.0 100.0 XV 87.2 XV 91.0 0.4 1.0 100.0 XV 87.2 XV 91.0 0.4 1.0 100.0 XV 87.2 XV 91.0 0.4 1.0 102.0 0.3 0.8 103.6 XV 101.0 0.4 1.0 102.0 0.3 0.8 103.8 XX 103.0 0.3 0.3 0.8 103.8 XV XX 105.5 0.2 0.5 105.0 XV 118.5			×	81.0		2.0				×	60.3	74			
XIII 91.5 0.6 1.5 90.0 XIII 77.0 XIV 94.5 0.6 1.5 93.0 XIII 72.6 XIV 94.5 0.5 1.3 95.8 XIV 99.4 1 XIV 94.5 0.5 1.3 95.8 XIV 99.4 1 XIV 94.5 0.5 1.3 95.8 XIV 99.4 1 XIV 99.0 0.4 1.0 100.0 XIV 88.7 1 XIV 99.0 0.4 1.0 100.0 XIV 88.7 1 XIV 101.0 0.4 1.0 100.0 XIV 88.7 1 XIV 102.0 0.4 1.0 100.0 XIV 88.7 1 XIV 103.0 0.4 1.0 100.0 XIV 88.7 1 XIV 103.0 0.3 0.8 103.8 XIV 135.8 1 XIV 103.0 0.2 0.2 0.5 0.5 0.5 105.0 XIV 118.5 1 XIV 105.5 0.2 0.5 105.0 XIV 118.7 118.7			R	85. 0						R		74			
XIII 91.5 0.6 1.5 93.0 XII 72.6 XIV 94.5 0.5 1.3 95.8 XV 99.4 1 XV 97.0 0.4 1.0 98.0 XV 87.2 87.2 XV 97.0 0.4 1.0 98.0 XV 87.2 87.2 XV 97.0 0.4 1.0 100.0 0.4 1.0 98.0 XV 87.2 XVI 99.0 0.4 1.0 100.0 0.4 1.0 102.0 XVI 88.7 XVI 191.0 0.4 1.0 102.0 0.4 1.0 105.0 XVI 115.8 1 XVI 103.0 0.3 0.8 103.8 XVI 115.8 1 1 XVI 103.0 0.3 0.8 105.0 XVI 115.6 1			R				0.06			2	0.77	. 13			
XIV 94.5 0.5 1.3 95.8 XIV 99.4 1 XV 97.0 0.4 1.0 98.0 XV 87.2 XV 99.0 0.4 1.0 100.0 88.7 87.2 XM 101.0 0.4 1.0 100.0 XN 88.7 XM 101.0 0.4 1.0 102.0 XN 115.8 XM 103.0 0.3 0.8 103.8 XN 91.6 XX 104.5 0.2 0.5 105.0 XY 91.6 XX 105.5 0.2 0.5 105.0 XY 92.7	л °с		XII							Ę		62			
XV 97.0 0.4 1.0 98.0 XV 87.2 XM 99.0 0.4 1.0 100.0 XN 88.7 XM 101.0 0.4 1.0 102.0 XN 88.7 XM 101.0 0.4 1.0 102.0 XN 115.8 1 XM 103.0 0.3 0.8 102.0 XN 115.8 1 XX 104.5 0.2 0.5 105.0 XV 118.5 1 XX 105.5 0.2 0.5 106.0 XX 92.7 1			XX	94.5						N.X.		105			
XVI 99.0 0.4 1.0 100.0 XVI 88.7 XVI 101.0 0.4 1.0 102.0 XVI 88.7 XVI 101.0 0.4 1.0 102.0 XVI 115.8 1 XVI 103.0 0.3 0.8 103.8 XVI 91.6 XXX 104.5 0.2 0.5 105.0 XX 91.6 XXX 105.5 0.2 0.5 106.0 XX 92.7	, 		AX I	97.0			0.86			X	87.2	8			
XW 101.0 0.4 1.0 102.0 XW 115.8 XM 103.0 0.3 0.8 103.8 XM 91.6 XX 104.5 0.2 0.5 105.0 XM 113.8 XX 104.5 0.2 0.5 105.0 XX 91.6 XX 105.5 0.2 0.5 106.0 XX 92.7	<u>چ</u>	2	IXX	99.0			100.0			IXX	5 88	90	i Egi		
XM 103.0 0.3 0.8 103.8 XM 91.6 1 XXX 104.5 0.2 0.5 105.0 XX 118.5 1 XXX 105.5 0.2 0.5 106.0 XX 92.7 1	ă Î		MX	101.0			102.0			X		115			
XIX 104.5 0.2 0.5 105.0 XIV 118.5 1 XX 105.5 0.2 0.5 106.0 XX 92.7	≝ ? 		N.	103.0			103.8			XX		63			
XX 105.5 0.2 0.5 106.0 XX 92.7			Ř	104.5			105.0			XIX		113			
	5 } 		X	105.5			106.0			X		89			

3. Preparation of a succession table

In the case of the coconut stand left to grow, plant succession of growth and cut volume at the rotation period can be predicted by preparing a succession table.

With regard to the growth prediction table prepared under the section 2, actual volumes of age classes are uneven. Therefore, if they are adjusted accordingly and multiplied by final volume of growth per year, the growth and the cut volume at the rotation period can be obtained. If this calculation is repeated for each rotation period such as 5 years later or 10 years later, the succession table can be obtained.

- 102 -
Table 26. Succession table

Make first of the fir		Yield	predict	Ton							Suc	Succession	table	100 N 100 N									1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	1
Φ Φ		table	for age	class.	1st	1 C - 1	r. perio		2:00	working	perio		346	werking	1 A . A .	*	ţ,		· • • •		2CP	WORKID	s perto	w
Minimum Minimum <t< th=""><th></th><th>Θ</th><th>0</th><th>۲</th><th>O</th><th></th><th></th><th></th><th>0</th><th></th><th></th><th></th><th>1 −</th><th></th><th> </th><th></th><th></th><th></th><th></th><th></th><th></th><th>-<u></u></th><th></th><th></th></t<>		Θ	0	۲	O				0				1 −									- <u></u>		
Transient and and a state in the	ge class			at rotation	itos eresidutation		1	ROLADION JE	AV petoxe			er rofertou				nottation ta				at rotation			цэкоэр	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Predic	CONTRACT CONTRACT	Bish?	0110	Θ. ×		©×©	pep oys	iQ X) X	IX.	18-	14-	eft)		S)	5	11.)	 	+ Q.	8		
				r	603 3)	<u> </u>	 	; ; ;	÷		 - 					† 	1		† •••••					
1 110 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	Ĩ			5 av	219			1.74	100			1.1	100	2		1 A A A A A A A A A A A A A A A A A A A	100		1 A		100	2		27
4.25 1.6 6.65 1.37 5.14 1.9 5.35 1.13 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 5.36 1.17 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.37 1.21 7.31 1.21 7.31 1.21 7.31 1.21 7.31 1.21 7.31 1.21 7.31 1.21 7					121				219	~	1	1 1	100		1.1	6	100	1 - 1	1 I		100			36.
0 51.0 1.1 5.3.6 1.5 5.3.5 1.15 5.3.6 1.5 5.3.1 1.0 5.5.6 1.3 7.2.4 1.31 1.0.6 2.8 1.37 7.6.5 1.23 7.2.4 1.31 7.6.5 1.23 7.2.4 1.31 7.6.6 1.23 7.2.4 1.31 7.6.6 1.23 7.2.4 1.31 7.6.6 1.23 7.2.4 1.315 7.6.6 1.23 7.2.4 1.315 7.6.6 1.23 7.2.4 1.315 7.6.6 1.23 7.6.6 1.23 7.6.6 1.23 7.6.6 1.23 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6.6 1.2 7.6 1.2 7.6.7 1.6 1.6 1.1 </td <td> </td> <td></td> <td></td> <td></td> <td>1 37</td> <td>ſ</td> <td></td> <td></td> <td>121</td> <td></td> <td>1.</td> <td></td> <td>219</td> <td>0</td> <td>in</td> <td>5</td> <td>100</td> <td>4 .</td> <td>· · .</td> <td></td> <td>100</td> <td>1.1.1.1</td> <td></td> <td>46</td>	 				1 37	ſ			121		1.		219	0	in	5	100	4 .	· · .		100	1.1.1.1		46
				Ł	118		D 1		137	ත්	1 · .	65	121			ശ	6	18	E .	5	100		ε.	53.8
					93					1.	· .		137	00	ł.		121		F 4	1	6	4		131
					123				93		i .		118	65	1	ø	137	ിന്	1	5	121	ۍ.		78
			a 1		100				123	1.03			. 93	6	1 · ·	പ് പ	1	6	F	1	137	~	- 1 - E	95.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		~			ŝ				100			· • ·	123	ത			63	نه ا	1	5	i 444 -	8	1 .	88
					102				83				100				123				93	1	Ι.	73.5
85.0 0.7 86.8 74 62.5 0.4 66.6 74 65.5 0.4 66.6 100 85.0 0.7 70.0 65.7 0.4 66.6 102 90.3 0.6 91.8 33 73.5 0.5 74 60 84.5 0.6 93.0 93 77.0 0.5 73.5 0.4 65.5 0.4 65.5 0.4 65.6 10.2 90.3 0.6 91.8 33 73.5 0.5 74 70 94.5 0.5 93.8 10.6 74 65.7 0.4 83.3 74 68.8 10.7 94.5 74 74 74 74 75 74 66.9 0.4 70.3 73 76 94 70 74 74 76 74 76 74 74 76 74 76 74 76 74 76 74 71.8 73 76 76 74 77 <					74	ത്			102	1 .	L .		8			00	100	1.	<u>ا</u>	1.5		6 I		102.1
60 88.5 0.6 74 65.5 0.4 66.6 74 65.5 0.4 66.6 74 65.5 0.4 66.6 74 65.5 0.4 66.6 74 65.5 0.4 66.6 74 65.5 0.4 66.6 74 65.7 0.4 68.8 74 67.7 0.4 68.8 10.2 93.3 0.6 94.4 70.9 74 66.9 0.4 70.9 74 64.9 0.4 70.9 74 64.9 0.4 70.3 73.5 87 73.6 0.5 80.9 74 67.7 0.4 68.8 70.0 74.7 70.9 74 70.3 74 67.3 74 69.9 0.4 70.9 74 70.3 74 69.9 0.4 70.3 73.3 74 69.9 0.4 70.3 73.3 74 69.9 0.4 70.3 73.3 74 69.9 0.4 70.3 73.3 74 <th< td=""><td>,</td><td></td><td></td><td></td><td>74</td><td></td><td></td><td></td><td>74</td><td></td><td></td><td></td><td>102</td><td></td><td></td><td></td><td>83</td><td></td><td></td><td></td><td>100</td><td></td><td>E 1.</td><td>86. 8</td></th<>	,				74				74				102				83				100		E 1.	86. 8
			Ö		87				74	5	Ι.		74	6			102		1 .	-1	83			74.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Ó		19				87	ெ							74	N 1	$l \ge 1$		102	(676
97.0 0.4 98.0 87.3 0.4 98.0 67.1 0.4 98.0 0.4 101 0.4 106.0 73 77.4 87 84.4 0.3 85.3 74 71.8 0.3 87.3 89.0 0.4 100.0 90 89.1 0.4 90.6 105 105.0 79 78.2 0.3 73.4 74.7 73.5 73.5 74.7 73.5 74.7 73.5 <t< td=""><td></td><td>94</td><td>Ö</td><td>ιÓ.</td><td>1.05</td><td></td><td></td><td></td><td>64</td><td>-</td><td></td><td>L .</td><td>87</td><td>· · ·</td><td></td><td></td><td>74</td><td>21</td><td></td><td></td><td>74 -</td><td> 1</td><td></td><td>70.9</td></t<>		94	Ö	ιÓ.	1.05				64	-		L .	87	· · ·			74	21			74 -	1		70.9
39.0 0.4 100.0 90 89.1 0.4 90.0 105 104.0 79.0 87 86.1 0.3 87.0 3		97.	ð		06				105	-i		8	79	6		~	87	4			74			72.5
101.0 0.4 102.0 115 116.2 0.5 117.3 90 90.9 90.9 0.4 91.8 105 107.1 79 79.8 0.3 30.9 0 103.0 0.3 103.8 91.7 0.3 92.4 115 118.5 0.3 119.4 90 92.7 0.3 93.4 105 10.3 93.4 105 103.2 93.4 105 103.2 93.4 105 103.2 93.4 105 103.2 103.2 103.2 103.2 0.3 119.1 119.4 90 92.7 0.3 93.4 105 103.2 105.2 0.2 105.2 0.2 105.2			o	8	8		ſ		6	6			105	3	4	S	- 19	d		்	81			87.0
90 103 0 3 103 6 3 1 4 90 92 7 0.3 93 4 105 7 0.3 93 4 105 7 0.3 93 4 105 7 0.3 93 4 105 103 93 4 105 103 93 94 1 02 93 4 33 4 33 4 105 33 4 105 33 4 105 103 104 90 94 1 0.2 94 1 0.2 94 1 0.2 94 1 0.2 94 1 0.2 94 1 0.2 95 0 94 1 0.2 95 0 94 1 0.2 95 0 94 1 0.2 95 0 24 1 22 1 1 1 2 2 2 1 2 <th< td=""><td>ľ</td><td></td><td>6</td><td></td><td>115</td><td></td><td></td><td></td><td>06</td><td></td><td>· ·</td><td></td><td>96</td><td></td><td></td><td></td><td><u> </u></td><td>8</td><td>*</td><td>20</td><td>29</td><td>6</td><td>•</td><td>80.6</td></th<>	ľ		6		115				06		· ·		96				<u> </u>	8	*	20	29	6	•	80.6
N 104 5 0.2 105 5 0.2 118.1 0.2 119.3 89 93.0 0.2 94.0 115 121.4 90 94.1 0.2 93.0 0.2 95.0 90 94.1 0.2 95.0 90 94.1 0.2 95.0 90 94.1 0.2 95.0 90 95.0 0.2 95.0 95.0 0.2 95.0 95.0 0.2 95.0 <t< td=""><td></td><td>103</td><td>¢</td><td></td><td>88</td><td></td><td></td><td></td><td>115</td><td>2</td><td>ŝ</td><td>2</td><td>6</td><td></td><td></td><td>~</td><td>66</td><td>0</td><td>2 :</td><td>105</td><td>8</td><td>1 · · ·</td><td>1 .</td><td>169. 0</td></t<>		103	¢		88				115	2	ŝ	2	6			~	66	0	2 :	105	8	1 · · ·	1 .	169. 0
XX 105.5 0.2 106.0 88 92.8 0.2 93.3 119.2 0.2 119.8 89 93.9 0.2 94.3 115 121.3 0.2 121.9 90 95.0 0.2 95.	ł	104	0		113				89	3		4	115	ส่	~	Ι.	96	1			90		1 .	95. 0
	OVER XX		0		88				113	ത്	N	പ	88	05	1		5	1 .	N	ا أنه ا	96			95.4
														. н. Г		14 14 14	-							
				·													÷			•	•		•	
																					•			

- 103 -

	V1414	Tred of the		:		:		•		Sk	Succession	alder					1						
	table f	for age	class	6th	h working	ng period	8	745	working	r period		8th	working	period		961	working	g period	69	101 LOL	XUN X	ing period	X
	0	•	0	•	 			.)			 		-										
Age class	BLOCK Growing	growth Annual	bertog er rofetion Chr Normue	Correction Sourcestion	acock Sulvoje	Growey	Cut volume st rotation period	веоси Скоятий	\$2078 бермета	еконгу	cut volume beriod	Correction coefficient	хооля бизкола	скомер	bertog ef tofetjou che nojame	Correction Junio13111603	агоск Сконтид	GXONEY	berroq ef rofertou Car vojame	Correction Correction	атоотя Схонтид	Схомсу	period at rotation Cut volume
	Pros co	Them converted y needed to have a set of the	yield		Same as	. left.)		Ű	(Same as	left.)			Same as	left.)) ((Same as	Left.)			Same as	Left.	
											 							• • • • •				-	
	12.0	ର ଜ	21.5	100	12 0	80 10 10	21.5	100	12 0	છ જ	21.5	100	12 0	00 07	21.5	100	12 0	3.8	21.5	100	12.0	3 8 8	21.5
и ц	31.0	8	36.8	100	31.0	ନ ବ	36.8	100	.31 O	53	36.8	100	31.0	8 13	36.8	100	31.0	2.3	36.8	100	31.0	2 3	36.8
 27 	42.5	9 1	46.5	8	42.5	9 i	46. 5 4	100	42.5	101	46.5	100	42.5	1 6	46.5	100	42.5	1.6	46. S	100	42.5	4	46.5
N	50.5	1.3	53.8	100	50.5	5 1 3	53.8	100	50.5	1.3	53.8	10	50.5	1.3	53.5	100	50.5	1.3	53.8	100	50.5	1.3	53.8
- 30 - 20	57.0		59.8	100	57.0	1	59.8	81	57.0		59.8	100	57.0	יי 1	59.8	100	57.0	1	59.8	100	57. 0	7 7	59.8
N.	62 5	0	65. 0	612	136.9	6	142.4	100	62.5	10	65.0	100	62.5	10	65.0	100	62.5	0	65.0	301	62.5	1.0	65.0
, 8 ₽	67.5	0 	70.0	121	81.7	1.2	L. 78	219	147.8	8	153.3	100	67.5	1.0	70.0	100	67.5	207	70.0	100	67.5	10	70. 0
VE .	72.5	6 0	74.8	137	99.3	~~ ~~~	102.5	121	87.7	1.1	90.5	219	158.8	0 N	63.8	8	72. 5	60	74. 8	100	72.5	6 0	74.8
ਤੂਂ ਖ਼	77.0	0	0 62	811	6 06	6.0	93.2	137	105.5	11	108.2	121	93.2	1.0	95.6	219	168.6	بر بر	173.0	100	0 22	0.8	79. 0
	81.0	0 0	83.0	63	75. 3	0.7	77.2	118	95.6	6 0	97.9	137	111.0		113.7	121	98. 0	0 11	100.4	219	177. 4	80 1-1	181 8
ອີ - ເຊ	85.0	0.7	80 80 80	123	104.6	0	106.8	<u>9</u> 3	79. 1	0. 7	80.7	118	100.3	8	102.4	137	116.5	0 7	118.9	121	102.9	0. \$	105.0
Ŗ	88.5	0	90.0	100	88.5	0.6	90.0	123	108.9	0. 7	110.7	93	82. 3	0.6	183.7	118	104.4	0.7	106. 2	137	121.2	0.8	123.3
XII 60	91.5	9	93. O	83	75.9	0.5	77.2	100	91.5	0.6	93.0	123	112.5	0.7	114.4	63	85. 1	0.6	86.5	118	108.0	0.7	109.7
NX	94.5	0	95.8	102	96. 4	0.5	2.76	8	78.4	0.4	79.5	18	94.5	0.5	95.8	123	116.2	0.6	117 8	8	87.9	0.5	89. 1
	0.76	0.4	98.0	74	71.8	0 3 8	72.5	102		0.4	100.0	83	80.5	0.3	81.3	100	97. 0	0.4	98.0	123	119.3	0.5	120.5
	0.66	0.4	100.0	74	73.3	0	74.0	74	73.3	0.3	74.0	102	101.0	0.4	102.0	83	82.2	0 3	83.0	18	0 8	¢.	100.0
S INX	101.0	0.4	102.0	87	87.9	0 3	88.7	42	74.7	0. 3	75.5	74	74.7	0.3	75. 5	102	103.0	0.4	104.0	8	83.8	0.3	84.7
EAX	103.0	0.3	103.8	8 79	81.	4 0.2	82.0	87	89.6	8 0	90.3	74	76.2	0.2	76.8	- 74	76. 2	0.2	76.8	102	105.1	0.3	105.9
8 N	104	5 0.2	105.6	6 105	109.	7 0.2	110.9	19	82.6	0.2	83.4	87	90.9	0.2	91.9	74	77. 3	0.1	78.1	- 74	77. 3	0.1	1.87
		•											-										

- ,104 -

-

•

	78		pertod at rotation cut volume			21.5	36.8	46.5	53.8	59.8	65.0	70.0	74.8	79.0	\$3.0	86.8	90.0	93.0	95.8	214.6	0 121	139.7	122.5	98.2	130.4
0	g period	ere ere	Grower	left.)		8.5	6.3	9 - -	1-3	т. Т.	0-7	0.1.	0.9	0.8	0.8	0.7	0.6	9 Q	0.5	6.0		0.5	0.4	5 5	0.2
	vroking	0	grock Growing	State as		12.0	31.0	42.5	50.5	57.0	62.5	67.5	72.5	27.0	81.0	85. Ú	8S.5	91.5	94.5	212.4	119.8	138.4	121.5	5.79	129.8
	13th		COLLECTION COLLECTION		•••••••	100	700	100	100	100	100	100	100	100	100	100	200	100	200	219	121	137	118	53	123
-	X		ρετίού Δε κοταστίου Δε κοτακείου			21.5	36.8	46.5	53.8	59.8	65.0	70.0	74.8	19.0	\$3.0	86.8	0'06	93.0	209.8	115.6	137.0	120.4	96.5	129.9	106.0
	borred .		Сконсјі	left.)		38	2.3	1.6	1.3	1 2	1.0	0	6.0	0.8	0.6	0.7	0.6	0.6	1.1	0.5	0.5	0.5	ю 0 3	0.2	0.2
	h working		erock Gromtag	2		12.0	31.0	42.5	50.5	S7.0	62.5	67.5	72.5	27.0	81.0	85.0	\$8.5	5 .16	207.0	117.8	135.6	119.2	95.8	.128.5	105.5
	14th	1999 1997 1997	Correction forsection	(Same		100	100	100	1.00	100	100	100	87	100	100	100	1001	202	219	121	137	118	93	123	100
	78		period beriod Cut volume			21.5	36.8	46 S	53.8	59.8	65.0	70.0	74.8	0.62	83.0	86.8	0.06	203.7	115.9	134.3	118.0	6. 1 6	127.7	105.6	38.0
	ng period		Growcy.	left.)		3.8	3.3	97	1.3	E.	1-0	0 7	6.0	0.8	0.8	0.7	0.6	() 1	0.6	0.5	0.5	0. 4	0.4	0.2	0.2
1	h working		хооде биткохо	(Same as		12.0	31.0	42.5	50.5	57.0	62.5	67.5	72.5	77.0	81.0	85.0	88.5	200.4	114.3	,132.9	116.8	93.9	126.7	104.5	87.6
n table	13th		contection Correction			100	100	700	100	87	100	0 100	8 100	001	100	8 100	100	5 219	2 121	6 137	0 118	5 93	8 123	100	1 33
Succession	8		pertod at votation Cut votume	I I I I I I I I I I I I I I I I I I I		21.5	.36.8	46.5	53.8	59.8	65.0	70.	74.8	79. (83.(86.	197.	112	131	115.	93	125.	103	87.	108
S	ing period		groney	⊗ × ⊙		80 61	23	9 +1	13	II.	5 1.0	5. 1.0		0.8	0.8	0 0.7	8 1.3	7 0.7	5 0.7	5 0.5	1 0.4	202	0 0.3	7 0.2	6 0.2
	th working		stock Grontng	0 ÌO		12.0	31.0	42.5	50.5	57.0	62.5		72	77.	5	85	193.	110	128	114	92	124	103	86	201
	1	ò	by one column) on coefficient	1100	1202 1 1	Ľ.	8 100	5 100	8 100	8 100	0 100	1		_	0 100	1 100	9 219	4 121	0 137	1 118	93	0 123	2 100	7 83	4 102
-	period		bertog of rofertou Cut volume) X Q	- 1	21.5	36.	46.	53	59.	65	70.	74	64	83		-1	8 127.	6 113	4 91.	5 123	4 102	2 86	2 107.	1 78
•	working per		Growen	× © O		01 3.8	0 23	5 16	5 1.3	F	İ	<u> </u>		0	0	2	0	4	0 v	0	0	0 0	5 02	6	0
•	11th WOR		Growing Growing Conting	×	001 I 00	12	31	5	50.	57.	62			- -				137 125.	118 111	93 90.		100 101.	-1-	-+	74 78
		0	nerrod represent on coertrotent perrod	1306	0770 <u>-</u>	5 100	8 100	5 100	~		.: 	0	00	0		0	0	0		6	-	0	0	9	10
ction	age class	0	OUL VOLUME	tred yisld		12	36.	46.	23 23			-+				-	-+	-+			- <u> </u>	1.			N
Å	8	0	άκοκεμ γυυπετ			61	.	1.6	-					0			0		0	0	0	0		- 10	10
Yield	table	Θ	BEOCK GROWING	MICH.		0 건 전	31.0	42.5										6	76		66	101	0	104	105
			Age class	•••	·			 		 & 		8		- - - - - - - 		- - - - - - - - - - - - - - - - - - 	2 5		XIX	- 02 X	XVI	Xu 80	EV.	06	over XX
L			5 2				<u>ا</u>	E	1 2		5			: 2		15		<u> </u>	<u> </u>	_[~	<u> </u>	Т	1	<u> </u>	<u> </u>

.

4. Establishment of standard rotation period and calculation of cutting area and cut volume

The standard rotation period is normally decided by the stand age with the largest mean growth. However, the mean growth calculated from Table 26 revealed that it attains the maximum in the fifth year. It is clear that the growth as volume is rapid; but it does not possess the utility as timber yet if cutting is done, as the formation of tissue is incomplete at the stand age. Since the problem was raised with the lower yield of nuts, it is more appropriate to use the period when the yield of nuts passes its maximum point as the standard rotation period. Thus, it was decided to use 50 years as the standard rotation period on the basis described in III-1.

Accordingly, the cutting area per one working period is:-Total area ÷ (stand age at X or XI age class) × 5 years Thus,

10,876 ha \div 47.5 (middle stand age at X working period) 5 years = 1,145 ha

10,876 ha \div 52.5 (middle stand age at XI working period) × 5 years = 1,036 ha

will, therefore, be between 1,000 and 1,150ha.

Cut volume is:-

cutting area \times (total of annual growth to cutting period \times 5 years)

and 1,145ha x 14.6m³/ha (total of annual growth to X age class) \times 5 years) = 83,585

1,036 x 15.3m³/ha (total of annual growth to XI age class) x 5 years) = 79,254

thus, it will be between 79,000 and $84,000m^3$ per working period.

5. Calculation of sustained yield

Calculation of sustained yield was made from the above data. Firstly, in terms of plant succession, cutting area can vary between 1,000 and 1,150ha per working period and volume at rotation period between 79,000 and 84,000m³. As Table 24 shows, however, there is considerable deviation regarding the area per each age class, it is impossible for both of them to be compatible to each other.

Therefore, horisontal sustained yield of cut volume was to be the first principle, and calculation was carried out on the understanding that fluctuations to some extent in cutting area should be allowed (since it would presumably take two to three cycles to correct deviation regarding the area).

Further, planting is to be carried out on the premise that only the portion felled will be replenished in the following year, and expansion of area by expansive afforestation has not been considered.

Results of calculation based on sustained yield calculation formula are given as Table 27. Further, the total area and total volume at the head of each working period, cutting area and cut volume at each working period can be obtained from Table 27 and are given as Table 28, and Fig.23 shows succession of area and volume by each age class at working period 1st, 5th, 10th and 15th. Table 27. Calculation table of sustained yield

	table by age class	233	Service and Service Se	1.55	PULKIDA	Deriod			******	242	200-1-0-0	Section -	11111111111			Treed		Dorroo	and the first		
c <u>1</u> 203							-	~				0 T 1 B 2 T		-							
	۲	3	•	Ø		-	۲	انعسني	Ġ)	O			۵,							 	
	97	1 00	10)	[###]			Cuting						Cutting					- 4	Cutting		
80038 6044079	CUE VOLUI Grower Arnual	ac sosatiod period period	eltar bette neloliteop no	Aren di teusos so o ese roce i	атоск Сконтий	Чамохо	V169	emuloy .	by one colus		BEOCK CRONTUG	gronfy	yzau	VoTune -	Correctio	Area	stock Growfug	QI Q	Area A	Solution -	
From co	From converted vield prediction table		หย่อว ต	- -(?) 0 0039	Nex Coxes	L OXO	Ter.	exoxe	45	10. 90	TEITE		HI2J	8		i i i	(same as	left)		T	
			IN A I	pue Eo34				 				- - ≁				 -					
O (Carried over from the last		 								154)						161					
I 12.0	3.5	1.1	219	621	16, 320	5,168	 		100	614	7,368	2,333			100	8	9 600 8	3.060			
31.	23	00	121		38,523	2,858			219-	L	42,160	3,128	- <u>.</u>		100	614 2	19.034	1 42			-
11 42.5	16	46. 5	137	758	50.053	1.960	 	 .	121	1,027	52.813	1.988	 		219			2,176	 		
50	2.3	53.8	118		20,737	25		} 	137	· · · · ·	61.851	1.552			121	1.027 6	62.755 1	1.615.			
57.	1.1	59.8	- 66	232	12.298	237		 	118	38	23,406	452			137	894 6	69.812 1	1.367			
	07	65. 0	123		17,835	88			93	e	13,485	216		-	118	1	2,665	41			
WE 67.5	1.0	70.0	100	447	30,173	40	ſ	}	123	222	19.262	382	 	╞	93		14.564	226		 	
	6.0	74.8	83		34.902	3		<u>∤</u> 	8		32,406	402			123	8		53			
22	0.8	79.0	102	962	74,770	111		}	83		37.068	382	 	-	100		34,419	333		 	
X 81.0	0.8	\$3.0	74	218	46, 633	461			102	· · · · · ·	78,654	111			83			385			
XI 85.0	~ 0.7	86. S	- 74	619	42,709	352		 	74		48.936	403			102		82,538	680			
38 38	0.6	0.06	87	_	44, 734	33			74	. · · ·	44.468	10e		<u>}</u>	74	778 50	50,951	345			
	0.6	93.0	62)	53, 274	349			87	i	46.251	303			74	579 45		301			
XV 94 5	0.5	95. 8	105	813	80.67C	75	63	6, 337	29	137	55,023	Ŕ	87	6,584	87	183		32	·	918	
0.7ę VX	4	98.0	90	619	59.277	244	62	6, 968	105		76.338	315		17.493	62	· · · ·	49.320		150 11.613	613	
	• 0.4		90	1 C	36,175	146		5,040	06		53,460			8	105				L	130	
	0.4		115		33,684	133	•	10.557	06	_	31.815				06		45, 450		220 20.196	8	
XVI 103.0	03	103 8	68	174	15.951	46	74	6, 836	115	200	23,690	69	200 2	23, 874	06	200 18	18.540	35	200 1 18.4	584	
XIV 104.5	02	105.6	113		27,396	ช		Z7, 684	89	100	9.301		~~~~		15			: 			
OVER XX M.E. 105. 5	0 2	106.0	88	174	16,154	ឆ	174	16.231	-113	i i		.1			89	1	1	1	,		
		.	<u>.</u>						•					~			1				
Toal -				10, 876	754,268	15,243	768	79,653		10.876 7	757, 805 3	13.600	807 8	611.08	01	, 876 754, 653		15,479	S71 80.	195	
area Carried OWER		†													2 % 2 %					. 	
ting area of (b.			0						154	: 		- 1			161					 	
1 ŵ	0=0/5		768					 	807						871						
Plenting area of ()	Ġ	(@-@)	154						<u>191</u>						174						
			614	614+0-614	4				646+1	5+154-800	800				697+16	61-858					

- 108 -

			Bomerte																														
			6ui	onujoy																10.01		12 SOS	0.00	8 200			1	213 22					
	5		Cutting	A Yea				:										T			3	ŝķ	1	ξĘ.	3	1	1	-	201				
	7 period			growen	left.			8	5	2	8	675		243		<u>a</u> ji !		1000	ŝ	<u>8</u> 1	X 8	9 8	Ĭ	318	5 - 	ï		64.9 M	010'11				
	working		-	acock Growing	(Same as	-		11,652	28,336	38.48	\$0 ⁴ 0	34.998	866.18	83,880	85,797	31.619	21/612	007.07	20,000		8	8 8		2 5	3		I.	0000	0.70			1020	i.
	₩ 9			yreg	<u> </u>					88							ŝ	23		8			-	3		1	1	Ę	10, 876 1 ***			200 824+196-1020	
				Correction Coafficien				100	10	100	100	100	219	121	137	118	63	123	8	3	102	4	4 /	2	62	105	96			196	10.50	\$28	
	; 			emutov	() () () () () () () () () () () () () (-	5, 881	8,507	0.878		67. W	2 5 1	1	1	1	3	-+	+		
yield	r 3		Cutting	¥xev	Trial ©	i								 						j	ŕή	150		8	-†		1		982				
sustained yield	period	7	: 	ctoncy			•••••	3.481	1.973	1.28	798	1.496	1.243	8	80	21	8	313	କ୍ଷ	8	8	178	2	<u>s</u>	- - 		1		14, 173	ļ	ĺ	ľ	
ä	working			қ әда		·			26,598			. [- 1	1	1	16, 614	3,114	36 26	88	8.850	50.350	43,068	220	31,916	6,223		1					-	
table i	Sth 1			GEONTUD	() () ()		1881		रू 888		614 3					232	232	447 3	8	800		8	ŝ.		3				0.876 745,800			196 786+185-971	
Calculation		9	(*	VLGS på ove cojne orv pelotej	POPIT	 ii:	-	100	100	00	00	219	21 1	137	18	93	8	8	83	102	74	74	87	79	105	06	90		2	185	982	196 786+1	2
Cale	 	© 	ງແອ	107JJ000 W	0130	20x		• • •									•				5,600	17, 905	1006-2	21,420	i	1	T	_	82.975	_			
			Cutting	90m LOV	rial (EXCMS	<u>:</u> , ,	 									-1				58-3				1	280 26				927 8			1	
	períođ	۲	.Ű	¥9.1¥	X TEI			3,260	1.840	982	1.768	1.367	1.225	411	194 1	228	355	337	583		251		_1	- 1	26 26 26	1	 1		13,707 9.				
	vorking p	: 		Схомбр Фроск	T CACK CACK				1					27,718			36,207	40.919	85.937	52,678	47,482	43,039	39.105	37.118	25,956								
•	4th wo		(898	OK 9809 998 0 CKONFUG OK 918 0 CKONFUG		pre	174	858 I0.296	800 24,800	614 26,095	621 68.679			348 27,					962 85.	. ,	679 47,		8) 89		8		1		10. 876 751.026			7 4 2 4 7 4 4 0 1 6	
		3		Area Area	1122			Ĺ	 		:	1.			.	123		83	102	74	74	87	79 :	05	90	90	115		10	174	927	185	1-78-1
	 	. 🕑		boliteq tollie t	10130	9770; 		5 100	8 100	5 100	8 . 219	59.8 121	0 137	0	8	0	0	8	0	0	8	0	0	0		\$	õ						
ction	e class	0		eute volum Cute volum	ed ye			21	36.	5 46.	3 53.			0 70		8 79.		7 86.	6 90.		0.5 95.			0.4 102	3 103	0.2 105.	2 I06.					∕5 ∕ 5	() + () + () + ()
i predi	table by age class	• 🛞		ໂຣຍຖຸກສູ ປັງພວງຊ	From converted yiel	 	5 8	64	0 23	5 1.6	5 1.3		5 1.0	5 1.0	5 0.9	0 0.8	0 0.5	0 0.7	5 0.6	1				1	i			<u>.</u>		.9	G	1 (0) (
Yield	teble	Θ.		stock Growing	(From pred		on the last	12	31.(42	50. 50	57.0	62	67.	72.5	77.0	81.	85.	88. 88.	91.	94.	9.7.0	66	5	103	104	105.		 	over e period	X	Period	8
			Age class			. :	O VEAL OF CONT From		1	E	2	Δ	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E.	ы	×	R	ø	1 1 1 1	Ň	22	ŝ	۶. N	支援	XX	over XX		Total	THA CATTING	Cutting area of the period	CUCLING AITH CANTING OVER US THE BEAT PORIOG	TONENE DETA

109 -

			Remarks																											
		.)	Outting	emulov.			- - -										5.725	77.89Z	95 7 7	000 V	0.800	16.600	20.808	1		Ī		SC. 536		
			Cutt	A708				- -			:						57	6		8 5	3 9	8	200	1	5	1		8		Ĩ
	period			азмохо	left)			18.0	2.346	1.62	1,262	1,008	858	8	553	1.088	\$	815	3	8 8		3	88	1	1	,		15.267		
	working pe			Growin Growin	((same as			10,560	31.620	\$3.850	49.03	52,212	868 53,625	800 54,000	44,515	621 104, 719	. 027 100.656	8	24.019	8 2		16 436	20,604	1		 ; 		10.676 755, 932		
	9th wor			Å rea	5		169	8	8		371	916	888	8	614	621	1.027	8				200	500		 	1				
				Correct	 			100	100	100	100	100	200	100	100	219	121	137	118	8	123	3 8	302	32	34	87			1.69	837
1			- Su	oom Lov	8			-		~~~							5,003	12.086	6.863	000.0	030.01	00100		1	1	1		83, 314		
sustained yield	q	©,	Cutting	89XA	Trial												2	118	8	22	2				Î			846		
ustaine	g period	~~~		l	000		 	3, 576	2,346	1, 554	1, 191	944	8	614	1.22	76 6	8	2	8			201		- -				15,578		
9	sth working	 		а соск битмохо	8	 		12,240	31,620	41,268	46.258	48,906	50.000	41,445	98,599	95.686	99, 207	36.90	19,095	26,110		21.25	1		1	1		876 749.952		
on table	8th	<u>،</u>		ura cornest isanjos evo papitsi ykgg	(1) (1)	 3) 	203	1,020	1, 020	971	916	858	800	614	621	1, 027	8	8	ន្ត	ន្ត	3	3			1	1		10.876		
Calculation		©,		by one column of the column of coeffic	Яrs .)		100	100	100	100	100	100	100	219	121	137	118	93	123	100	53	3	2	83	.62			203	846
3	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		50	9mutoV																8	1, 351	166.72	1 200		,+ 	ŧ	+ 	83,729		
			្ស	¥109	Trial (-	6		3 5		3 	Ī	1		1.017		
	period			еконгр	8000			3, 876	2,233	1,466	1, 115	88	694	360	1.118	86	329	151	171	88	8	727	077	 8 1	1	ŧ	-	15,186		
	vorking			, доодв бизмозо	0000		-	12, 240	30, 101	38,930	13 329	45 600	38, 375	91.799	360'06	34,308	33, 262	18 340	25,25¢	40.901	31,374	68,269	29.040		1	1	-	876 746.428	Í.	
	7th	3		1 940 409 0	91491 91491	i pus Kozaj	88	10201	Ъ		858		614		L	894		222	_		ş	89	3		1	1		10, 876	1	
			tot	vercedicable ton coefficie	10710	944) -		100	100	100	100	18	100	219	121	137	118	93	123	100	8	102			502	105	324	• •	206	1017
-	155		uo	at rotatic period de rotatic				21.5		46.5	53.8	59.8	65.0	70.0	74.8	79.0	83.0	86.8	90.0	93. G	95.8			102.0						
prediction	age cl	6		CAP ANTAN ARORFH	erted)			38	23	1.6	13		0 11	1.0	0.9	0.8	0.8	0.7	0.6	0.6	0.5			4 0 0		4 6 6	3			
Yield pre	table by age class	Θ		Xooda Xsooda	From converted yield prediction table		E TASE	12.0	31.0	42.5	50.5	57.0	62.5	67.5	72.5	27.0	81. 0	85. 0	58.5	91.5	94.5	97.0	0 66	101. 0	2 2 2	104.0			3	1
5X	<u>រ</u>		Age class	6074029	<u> 2</u> 8		A (Cartied over from the			Ħ	N		M	M	M.	×	× ×	R	X	NII I	MX	X	IX			23	OVEL AN	TOEAL	C AVER CATTLAD OVER	Cuctang area of

- 110 -

.

			Remarks																								-				-
			5 uni	onutov										-		2 725	220	8 90 X	. (5, 782	1	1	 	1	1	83.878				
			·Cutting	â97Â			:											XX	3	3 8	80	,		1	I	1	640				
	period		an a	d3wor0	left)			2.649	1.683	28	1.44		1,020	5	\$	84	3	3	750	137	8	1	1	1	1	1	13,816				
	peixov			ягося Сконтиб	Sathe as			38.0	22,816	8	440	55.140	020 63, 750	971 66, 543	8,410	525 55 55 55 54 55 55 55 55 55 55 55 55 55 55 55 55 55	8 8	000 10 000	107 V2	21 88 86 86 86 86 86 86 86 86 86 86 86 86 8	5.72	1	1	1	1	1	749, 553				SSI
	12th	••••••••••••••••••••••••••••••••••••••		yreg	-~:		8	128 8	136	8		8	88	це Г	1916	88	3	8	30		8	1	1	1	I		10.876 749.553				512+189=651
			่วน น	Correctio Correction				100	100	100	100	8	8	100	100	1	ł	1		- i	1	8	123	200	83	102		139	640	128	512
yield			54	or top													701.1	10.655		· ·	4.557		1	1	1	1	83,687				
	ođ	Ò	cutting	ÂY6&	Trial												-	55	0.7	063	305		1	1	1	1 1	88]			
[sustained	ng period		·	Growth	0000				- e I.			1,122		1		-	1	2	j	Ì	6		1	1	1	1	14,363				
table of	norking		، ساب م ا ا	yoose Moose	0,00			8,832	26,009	34 48	51.510	58, 140	80,088	61.830	62,205	61.68	\$ 7 7 7 7 7 7 7	107,967		56.410		ţ		-	Ι	-	754.364				697
	111	Ì		ove corme) (stroeg på VLGG	() () () ()		142	736	8	83	88 17	1.080	ដ្ដ	916	88	8	614	589	006 006	450	3 9			1	1	1	10 876			-	55+142-697
Calculation		ò	· '	by one column on coefficie	us	1.		100	100	8	100	100	100	100	100	10		. 1				2 27		83	201	74		142	694	139	555
			2 Ling	Sem Lov	8												í			1		000 01		<u> </u>			83.791				
	50	9 9	Cutti	şezî	Trial												*				8 9			1	ł	1	12				
	ng period			QX0MFJ	8			3,188	2.024	÷	·	1,068	۰.	838	[491		828				9		1)		14 002		4		
	10th working			агоск битмото	8			10,068	i 1	1				57, 915		47,278	621 110.159	99, 765		16,916				1	1		745 679				736
	104	0	(*** 990)(*	Akea Akea Akea	etdes o sere	рие вола)	167	88	880	1.020	1,020	971	916	858	800	614	621	976	750	150	8	307		╞			10 075	ž			569+167-736
:		Θ		on coefficier of coefficier	(UO) R	(22)		100					100			ļ				7	6				5 74			167	101		
	age class	0		period de rocatio	ylaid Le				36.8			59.8	65. 0	70. 0	14. S	79.0	83.0	86.8	90.0	93.0	95.8	9 0 9 0 1 0	102.0	103.8	105.6	98					() -
man the ton	à	0		ТеџплА Измозр	33			38	2	1.6	1.3	1.1	1.0							Ö	5 0 0 0		5 C	1	5 0.2	- 		-			() + () - () - () - ()
Viala	table	Θ		pniword Stock	From conver prediction		up period	12.0	31. 0	42.5	50.5	57. 0	62.5	67.5	72.5	77.0	81.0	\$5.0	88.	91.	94.		0 101	103	101	105		her . 6	9 2 10 L 10	8	
	•	. 4. 0	Ade class		-		(CASTING OVER FROM THE LARE) YEAR OF THE PERSON	I	Ŧ	E	N	· ·	2	M	围	ы К	×	8	R	Ę	R R	XV NV	INV.		NA NA	over XX		TOTAL Ve Catried ov	previouse area of	area cartie	Prever to the maxy period

- 111 -

	t períod		Cutting Remarks	Growth Stea Outune	left))			2.250	1.45%	1.022	300	839	1388	918	816	4	536	446								12.362			•	
	15th working			веяћ Сгочіпд Хоозе			116	7.204	19.654	27.668	70E 11 0E0	- I		1 1		971 78.551		- t .		A2714 MS	1					1.876 717.255 12				
				CONTECTION	9			100	100	100	3 4	807	700	100					_	010 20		- 137	- 318 -		- 123	502				
sd yield	g	©,	Cutting	yoş muə Acş muə	Trial OXO						-					4		4	70 6.510	-4	-ł					581 83.5	-			
f sustained	working period			ų24029	<u>ÓŚĊOÓŚĆ</u>				ì.	ŕ	8 8 8 8	<u> </u>		[]	67 777	1	- (1	362		ŀ	1				94 12, 842				
on table of	14th WOR	ø,		Stock CXOMTUG (STIGG PA (STIGG PA	i S O O	ē)	127		· ·	. 1	830 17 27		1.020 68.850		971 74.767				570 52,155 mc 10, co4	\$			8 		1 	10.876 730.594				465+127-592
Calculation		ò	÷	tolileo n m before wite energy BBTA	01109 01109			100	100	100	00 F	100	200	100		í		1	100	1.	J		~-{	{^	100		127	581	116	1465+1
			Outting	eran I of	a1 (0×0×0)											→┫	_		55 31,569		d.		╵ ┥ ┥		1	3 83 473	4			
	period	@ 	<u>б</u>	угоя	CNOXO Tria	 		2.474	1.603	1, 178	120-1	1,020	1.000	874	733			1	512 15	100						13. 294 633				
	h working period	!		битколб Битколб	0000				21.607	31, 280	150 150	63.750	8.850	70, 396	70, 532	69,495	64, 175	52.215	78, 150	12 200			1		1	10.876 741.248				.634
	13th	9	earn (Area coefficte Area of actual vo of and age ci	0 0000 0 0000	R022)	128			98. 2.80	Ser 1	1.020	+								+	 	,		1	10.876	128	33	127	506+128#634
•		•	303	pertod pertedicable	193 80 71308	1 î î				5 100	4	1	0 100	 	0 100				219		0 118	j	<u> </u>		.0 83			9		<u>e)</u>
prediction	ge class	0		dr rocation	ted yiel	· ·		-		{	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-		$\left - \right $	-{	83.0	-		0.6 93.0	- -		-	0.3 103.8		0.2 106.0		-		S	10
Yield pred	ble by a	© 0		Annual	From converted yield prediction table		Lan5 Frod		-		2010 F	-	!					-	4		<u> </u>	 			105.5 0.			5 8	() () () () () () () () () () () () () (+616
,	μ 		Age class	битиото	122		O (Carried over from the last		a									+			NX.			NX.			Cut area carried over	Cutting area of the parties (Cutting area carried o	Plancing area of

Table 28.

Total area and total volume at the head of each working period cutting area and cut volume at each working period

.

		Total area at the head of each working period	Total volume at the head of each working period	Cutting area	Cut volume
working	period	10, 876	754,268	768	79, 653
2	•	10, 876	757,805	807	80, 119
3		10, 876	754,653	871	80, 561
4		10, 876	751,026	927	82,975
5		10, 876	746,800	982	83, 189
6		10, 876	745,293	1, 030	83, 515
7		10, 876	746,428	1, 017	83,729
8		10, 876	749,962	846	83, 314
9		10, 876	753, 932	837	83, 538
10		10, 876	755,672	711	83, 791
11		10, 876	754,364	694	83, 627
12		10, 876	749,553	640	83, 878
13		10,876	741,248	633	83,473
14		10,876	730,594	581	83, 502
15		10,876	717, 256		 .

- 113 -

- 114 -

- 115 -

6. Cutting plan

By the calculation of sustained yield described in the previous working period, the total cut volume and cutting area by age class were obtained.

Since the target area consists of private plantations, further placing is not possible. However, if the Fiji Government gives an advice, as administrative guidance, on felling to the amount calculated above, and if it is accompanied by regeneration, permanent and stable supply of coconut timber can be possible. Further, after a lapse of two to three cycles (1 cycle is 50 years), coconut stand structure of balanced per age class area and volume can be obtained.

7. Transport plan, etc.

According to the calculation table of sustained yield given on Table 27; cut volume will be on average about $82,000m^3$ per working period, amounting to about $16,400m^3$ per annum, or about 17,600 tons in weight (as green density is $1,071kg/m^3$).

This is 88 tons a day (200 working days a year), and can be transported by 18 trucks (capacity 5-ton). Therefore, there is no necessity of constructing solid roads or reinforcing the existing ones.

Further, as described in the results of the field survey, since there are work roads to transport coconuts, apart from public roads, running in the plantations, it is not necessary to construct new roads.

As for exportation, the existing harbor facilities at Somosomo can be used, with a vessel (capacity 500-ton) calling every 6 days. Accordingly, it is not necessary to improve the present facilities. However, as there are no facilities at present for storing timber collected at the harbor, it will be necessary to construct a timber basin of a small scale.

Collection in the stand can be carried out with tractor or truck equipped with a winch.

- 116 -

IX: Preparation of a Manual of Coconut Forest Inventory

1. Evaluation of inventory procedure

Through the procedure described above, coconut timber resources were confirmed and the utilization plan (cutting plan) was formed. This work process was almost as it was planned at the outset in VII-1, and there was no major alteration. This satisfactory outcome was probably because the Preliminary survey team had grasped the situation by collecting material and information thoroughly and by carrying out field survey to some extent.

With regard to the preparation of a manual of coconut forest inventory, in view of the successful outcome of the present survey, the procedure will be simply to repeat that of the present survey. In the case of carrying out inventory of coconut stand in a given target area, it can be done as the present survey following the flow chart of Fig. 7.

However, with regard to the items below, it will be desirable to prepare them anew, though those prepared under the present survey can be used as substitutes if it presents problems in view of costs and staff.

(1) Preparation of volume table and the necessary field survey of sample trees (a).

(2) Preparation of photo volume table and the necessary field survey of sample trees (b).

3 Preparation of standard interpretation cards.

If the target area is far from Tayeuni Island, or if the form of coconut stand is unusual, it seems necessary to select sample trees to find out if the data obtained under the present survey are valid for the area.

2. Manual of coconut forest inventory

By sorting out the data and the various survey methods

- 117 ~

described above, a <u>Manual of coconut forest inventroy</u> was obtained, which is given as Appendix II. As the procedure is a repetition of the present survey itself, as mentioned above, detailed are excluded from the manual. For details and examples, the results of the present survey given in VII and VIII can be consulted. Further, sections on photographing and mapping operation are omitted from the manual as they are regarded as completed.

and the state of t

Alter and the second second second

化高强化 医外周 网络小鼠科小鼠科小鼠科

[14] M. Bell, Maximum P. Schwart, and S. Markell, and M. Schwart, and S. Schwart, and Schw Schwart, and
a de la companya de A servicio de la companya de la comp

- 118 -

X. LIST OF THE PRODUCTS

Those material resulted from the present survey can be listed as below.

[Photographs] Aerial photographing films (negative films) 1 copy 2) Positive films (with pass points transferred) 1 copy Contact prints 2 copies 3) 4) Original index map 1 copy Aerial photo mosaic 1 copy 5) [Topographical map] 1) Position map of control stations 1 Copy Results of aerial triangulation 1 copy 2) Topographical original map 1 copy 3) copied original map 1 copy 4) (It was used as material for Coconut forest distribution) [Coconut forest inventroy] 1) Coconut forest distribution map 1 set (1/10,000)Coconut forest location map 2) 1 set (1/50,000)3) Photo volume table (with explanatory notes in English) 3 copies 1 set Standard interpretation cards 4) 2 copies Coconut forest inventory note 5) (Table of area, number of trees and volume of each plantation) 1 copy Field survey note 6) Results of measurement of sample trees 1 copy 7) Report of the survey 8)

Appendix

I. Table of Field Survey Result (results of the survey for estimation of the total volume).

II. Manual of Coconut Forest Inventory.

III. Scope of Work.

IV. Instructions for the use of Relaskop

Appendix I

Table of Field Survey Result (results of the survey for estimation of the total volume)

							 	÷.				. *		
							a Line				· .			
		1	Ag	9 ČÌ	489	Forest co				l		r		·····
Sample	No.	Stand		1		Mean	r	10	t volume	Volur	e per ha	Topoc	raphy	
voint No.	within Stratum	age (years)	Sunox	Middle	01e	stem height (m)	Nean central diameter (cm)	Number	Volume (m ³)	Number	Volume (m ³)	A21- muth	Slope (*)	Remark
L	[01]- 1	60		†	0	16.4	25.7	14	12.2356	70	61.1780	NII	NÉL	
2 ;	2	65			0	16.7	25.8	11	9,8892	55	49.0460	S	10	
3	3	60			0	16.3	26.5	12	11.0739	60	55.3695	ที่มี	NII	•.
4	4	50			0	18.1	26.4	17	17,2253	85	86,1265	NIL	Ni1	
5	5	60			0	13.6	26.9	14	11.0300	70	55.1500	SW	13	
6	6	60			0	21.2	25,0	6	6.4847	30	32.4235	Nil	Ni 1	
7	7	60			0	High 16.2	High 26.5	High 10	High 9,0916	High	High As Asoo	N11	NÍI	
			2 9 - 2			Low 12.5	Low 23.6	LOW 2	Low 1.1703	LOW	45.4580	ł .		
	8	60.			0	14.1	25.1	9	6.5234	10 45	5.8515 32,617			• /
	9	60			0	17.6	25.9	14	13,3635	70	\$6,818	N11 N11	N11 N11	
10	10	60			0	13.0	25.4	4	2,7357	20	13.6785	N11	NII NII	
11	11	60	<u>نيت</u>		0	High	lligh	High	High	figh	figh	SM	7	<u></u>
						16.3 Low	25.7 Low	12 Low	10.5155 Low	60 1.01/	52.5775 Low			
	<u> de la constanta</u>					12.0	23.6	1	0,5625	S	2.8125	ļ		
12.	12	60			•	14.9	23.6	15	12,4175	60	62.0875	N11	NÍ1	
13	13	60			0	15.1	25.4	14	11,1775	70	55,8875	N11	N11	
14	14	60			ە: بىلىپ	17.6	26.1	14	13.5108	70	67.554	<u>सम्</u> र	118	
15	15	60			0	High 17,6	High 27,2	High 13	High 13,4273	High 65	67.1365	Nil	Nil	
					1	LOW 13,0	Low 27,3	Low 2	Low 1.5358	Low 10	7.6790			
16	16	65	مينين ا		0	17.6	26,2	17	16.4777	85	82.3885	NII	NII .	
17	17	- 70			0	16.0	25.9	12	10.4619	60	52.3095	N11	NÍ)	
-18	18	15	0			9,6	28,5	18	11,1002	90	55,5010	NI1	NII	
19	19	10	0			7,2	28.6	25	12.0957	125	60.4785	NI1	NIL	
20	20	15	Ö			8.8	26.3	21	10.5387	105	52.6935	N11	NIL	
21	21'	60			0	High 17.7	High 25.0	High 7	High 6.3166	High 35	11 lgh 31 - 5830	SW	13	
						LOW 5.0	Lo2 26.5	Lo2 1	Low 0.2911	Low 5	Low 1.4555			
22	22	70		لذا	.0	13.3	24,8	29	19,4031	145	97.0155	NII	Nil	
23	23	30-40	 21 %	0		17.3	27.6	59	61.496	295	307.48	W	10	
23		25		0		High	Bigh	High	High	Nigh	High	N11	NIL	
	1997 - 19					16.6	28,2 LOW	22 1.0W	22,8918 Low	110 Low	114.4590 Low			
				.:		7.0	25.0	1	0.3667	5	1.8335	ļ		
25	25	40		0		15.3	28.4	15	14,7145	75	73.5725	SW :	8	
26	26	25		Q		14,8	29.6	18	17.9078	90	89.5390	<u> </u>	9	-
27	27	50			0	14.0	27.5	26	21.7955	130	108.9775	W	7	
28	28	19	•			12.9	29.1	17	14.5365	85	72.6825	Nil	N11	
29	29	(⁶⁰)	0			High 19.1	∦igh 22,3	High 16	High 12.9293	High 80	High 64.6465	Nil	NIL	
						LOW 6.7	Low 26.5	Low 18	Low 7,1607	Low 90	Low 35.8035	1 .		

- 122 -

		l	r					L		·		r		·
Samplo	NO.	Stand	Age	618 1	185 1'	Forest of	ndition	ol 4	t Volume	Vol	me per ha	Topog	iraphý	
point No.	within stratum	ago (yearb)	penox	Widdle	old	Mean Atem height (m)	Mean central diamoter (cm)		Volume (m ³)	Nurber	Volume (m ³)		Slope	Remarks
30	30	(⁶⁰ (12)			o	ltigh 18.8 Low 7.1	High 22.0 Low 29.0	Bigh 13 Low 17	High 11.7782 Low	Nigh 65. Low	High 58.8910 Low	III	N11	
31	31	50			0	fligh 15,1 Low	High 23.4 Low	High 17 Low	14.1605	lligh 85	40.3655 High 70.8025	NEL	NLL	
				-		9.0	22.0	1	Low 0,4676	Low 5	Low 2,3380	<u> </u>		
32	32	70			0	21,0	25.0	21	22.347	105	111.7350	NIL	N \$ 1	
33	33	70		1.2 1 - 	0	18.5	25.4	17	16,4560	85	82,2800	111	N11	
34	{ÓI }-34	80			0	22.2	25.5	26	30, 3571	130	151.7855	Nil	118	
35	35	80			0	High 15.8 Low 13.0	High 24.5 Low 22.1	High 13 Low 2	High 10.1527 Low 1.0927	LOW.	Hihg 50.7635 Low 5.4630	N11	NIL .	
36	36	80			0	18.5	27.3	. 4	4,3562	20	21.7810	N11	Nil	
37	37	80			0	High 19.9 Low	High 26.5 Low	Hìgh 14 Low	High 15,3950 Low	High 70 I.ow	High 76.9750 Low	N11	NIL	
	ر. ب ور در در در				ļ	13.5	25.0	2	1.5940	10	7.9520		ļ	ļ
38	38	70			<u> </u>	16.8	26.2	35	32,3181	175	161.5905	811	Nil	
	39	50				18.3	26.5	13	13.302	65	66,5100	NIL	N11	.[
40	40	60		· .	0	18.2	27.9	17	19,0087	[95.0435	N11	N11	
41	41	50~60			0	High 17.8 Low	High 27.3 Low	High 24 Low	High 25.0736 Low	LOW	High 125.368 Low	N13	N11	
					-	12.3	25.0	6	3.8268		18.134		7	
42	42	50-50			0	15.6	25.8 26.3	16	13.4034	80 65	67.0170 61.3910	SW SW	. 5	
43	43	50~60 40~50		0	-	17.1 High 13.4	High 24.4	Bigh 11	High 7.2524	819b	High 36.2620	91 17	10	
-			• •			Low 7,8	LOW	Low 3	Low 0.9834	LOW	Low 4.9170	• .].
45	45	60~70			0	High 17.7 Low	High 25.0 Low	High 16 Low	High 14.4170 Low	High 80 Low	High 72.0850 Low	NW	7	<u> </u>
	<u>}</u>					11.9	23.6	4	2,1937		10,9685		 	ļ
46	46	70			•	19.0	25.2	: 17	16.7152		83.5760	~~ <u>~</u> ~ ~~	13	
47	47	. 70			<u>.</u> ?	17.9	25.6	18	17.0140		85.0700	}	.13	┟
48	48	60			•	14.2	24.8	25	18.1534		90.7670		13	
49	49	60			•	13.6	27.4	15	• 12.0445		60.2225		10 12	<u> </u>
50	50	20	0			12.6	28.5	9	7,1675		35.8375 86.3040		8	
51	51	70			0	17.6	29.7	16	17,2608		110.2615		7	·}
52	52	70		-	0	18.6	28.2	19	22,0523 5.303	95	26.5150		12	<u> </u>
53	53	50			0	13,5	24,3	8 Wigh	5.303 High	High	High		8	<u> </u>
54	54	65			Ö	High 16.2 Low	High 26.1 1.0w	High 16 Low 6	14.3177 Low		71.5865 Low 13.5710			

•

j.	10 mars 1 m		0.6-11-1	he	(G O	a85	Porest o	ondition	Plot	t volume	Volu	me per ha	Topo	graphy	<u> </u>
	l Samp)o point No.	No. within stratum	Stand age (years)	bunok -	Middle	510	Mean stem hoight (m)	Mean contral diamoter (cm)	Number	Volume (m ³)	Number	Volume (m ³)		Slope	Remar
	56	[OI]-56	60 - 70			0	Nigh 16.0 Low	High 25.8 Low	High 10 Low	High 8.5446 Low	High 50 Low	High 42.7230 Low	N	17	
11			· · · · ·	<u> </u>			4.0	28.0	4	1.0268		5.134			
	57	57	(^{60,70})				High 17.2 Low 3.5	LOW	High 6 Low 2	High 5,4927 Low 0,3980	LON .	High 27.4635 Low	N	5	1
	58	58	45	-`	0		15.7		25	19.1793	h	95,8965	1944	9	
÷.	59	59	sò			ò	15.6	26.4	13	11.3409		56.7045	W	10	
	60	60	(⁵⁰)		0	0	High 15.4 Low	lligh 25.6 Low	High 5 Low	High 4.0875 Low	High 25 Low	High 20.4375 Low	N	8]
	11. 			. 		: : :	9.2		22	11.0232		55.1160	 		
	61	61	60			0	High 17.0 Low 12.7	High 27.0 Low 27.0	High 12 Low 3	High 11.1326 Low 2.2148	LOW.	High 55.6640 Low 11.0740	NW	9	
	62	62	60			 0	18.3	25.7	22	21.4415	110	10.72075	NW	5	
	63	63	60	- <u></u>		ò	9.6	26.7	- 14	7.7507	70	38.7535	 	7	
	64	64	70	l (ó	16.6	26.6	27	25.3053	135	126.5265	NW	5	
	65	65	70			0	High 14.7 Low	High 24.5 Low	High 3 Low	lligh 2,1859 Low	High 15 Low	High 10.9295 Low	Nil	Nil	
3 				 			2.0	32.0	2	0.3397		1.6985		· · ·	
	66	66	50			0	14.7	26.6	22	18.3036		91.5180	E	7	
	67	67	40		0		13.6	27.3	22	17.9769	110	89.8845 89.3445	N11 N11	Ni1 N11	
	6B 69	68 69	50 70	<u>.</u>		0 0	15.0	25.9 26.5	22 22	17.8689	110 110	107.2755	E	. 5	
	70	70	70			0	19,8	26.8	27	30.4277		152.1385	Е Е	6	
	$\frac{n}{n}$	71	70			0	18.1		- 28	29.0047		145.0235		5	
	72	12	50	 ::		ò	16.1	26.9	20	18.6002	100	93.0010	NE	12	
	73	73	70			ø	19.8	27.5	24	27.8306	120	139,1530	NB	12	
1	74	74	10	0	:	· · · · ·	4.5	27.7	41	11.1451	205	55,7255	NIL	N11	
	75	75	(⁶⁰)	0		0 0	LOW		High 30 Low	23.1792 Low	Low	High 115.8960 Low	Nil	Nil	
1		·						29.4	14 High	5.0552 High	/U High	25.2760 High		NII	
	76	76	60			¢.	12,7 Low	High 26.9 Low 27.5	29 Low 3	21.0570	145 Low	105.2850 Low 7.0050			
ł	77	77	45	(0		High 17.5 Low	High 25.9 Low	High 21 Low	19.8395	High 105 Low	High 99,1975 Low	Nil	NII	
•				-		:	2.4	31.0	5	0.9304		4,6520			.
- - - -	78	78	70	r.	2	0	High 18.4 Low 12.0	LOW	lligh 19 Low 2	19.6676	row	High 98.3380 Low 5.9010	NiL	Niß	
•	- 79	79	50			0	12.0	26.3	14	10.5234		52,6170	114	Ni]	
		·		<i>-</i>	: ;	لگا ز			/	l	(L.,	J	L	
			· .				·								
								- 1	24 -						

				·	· .				÷	•					·
Camala	l Ma	Ctord.	Ag	10 C	lass	Forest o	condition	Piot	volume	Vol	ma per ha	Topog	raphy		
Sample point No.	No. Within Stratum	Stand age (years)	Билод	Middle	014	Mean stem height (m)	Kean central diametor (cm)	Number	Volume (m ³)	Number	Volume (m ³)		\$10pe (°)	Remarks	•
80`	80	50			0.	14.3	27.0	23	19,1893	115	95.9465	\$8 ⁻	12		
81	81	60			0	High 16.8 Low 7.4	High 24,8 Low 24.0	High 28 Low 7	High 22.9220 Low 2.5490	Low	High 114.6100 Low 12.7450	N11	NIL		
82	62	60			0	17,6	26.3	29	28.2709	145	141.3545	Nil	Nil		
83	83	60			0	High 18,0 Low 10,0	High 26.6 Low 28.0	High 22 Low 2	High 22.3814 Low 1.2446	Low	High 111.9070 Low 6,2230	NIL	NIT		
84	84	. 70			0	19.6	27.2	18	20.6149		203.0745	LIN I	NII		
85	85	. 77			0	19.5	. 27.0	_n	12.3002	55	61.5010	NIL	Nil		
86	86	50			0	14.4	26.5	26	21.3588	1 30	106.7940	Nil	Nil		
87	87	55-60			0	High 18.7 Low 10.3	High 26.4 Lo 25.0	High 33 Low 3	High 34.4156 Low 1.6448	Low	High 172.0780 Low 8.2240	Nil	Nil		
88	88	(⁷⁹ (20)	0		0	Nigh 18.0 Low 7.0	High 25.6 Low 25.8	High 28 Low 4	High 25.5941 Low 1.5178	Low	High 127.9705 Low 7.5890	NIL	NIL		
89	89	(²⁵ ₂₀)	0		0	High 17.6 Low	High 25.0 Low	High 14 Low	12.6122 Low	Low	High 63.0610 Low	21 21	נזא		
90	90	(⁶⁰ 5)	0		0	7.2 High 18.9 Low 8.2	26.2 High 26.2 Low 28.3	25 High 40 Low 5	10.1642 High 41.6675 Low 3.0708	High 200 Low	50.8210 High 208.3375 Еон 15.3540	Ni1	NII		İ
91	(MX)- 1	(⁷⁰)	0		0	High 17.1 Low 5.0	High 25.7 Low 20.1	Bigh 15 Low 3	14.1615 Low	High 75 Low 15	High 70.8075 Low 2.8795	SE	Nil	·	
92	2	15	0			8.9	27.8	22	12,0615	110	60.3075	NIL	Nil		
93	3	15	0			11.1	27.4	21	14.0576		70.288	SE	11		
94	4	30~40		0		High 14.3 Low 5.4	H1gh 25.4 Low 26.5	High 19 Low 5	13,6926	LOW	High 58.4630 Low 7.7230	B .	7		
95	5	13	0	_		High 11.3 Low 5.7	High 25.0 Low 27.8	High 3 Low 19	1,7532	1.0W	High 8.7660 Low 22.8598	N11	ti11		
96	6	10	0			6,2	30.9	25	11.6062	125	58,0310	SW	13		
97	7	70			0	High 19.0 Low 14.8	High 28.0 Low 24.2	Righ 15 Low 5	17.8412	LOW	Nigh 89.2060 Low 18.0070	W	6		
98	8	70			0	High 18.7 Low 15.0	High 27.2 Low 25.0	lligh 15 Low 3	16,5659	LOW	H1gh 82.8295 Low 11.5360	N11	₩11		
- 99	9	70			ó	High	High	High	High	High	High	NII	Nil		ł

•

	J 	}	بر ا			Preside		J		r	·			
Sample point	No. Within	Stand age		3 Cl	α 5 5 1	·	condition	Plot	: Volumo	Volum	o per ha	Lobad	raphy	
No.	Stratum	(years)	Sanox	Madle	014	Mean stem (height (m)	Mean central diamater (cm)	Number	Volume (m ³)	Number	Volume (m ³)		\$1ope (°)	Remarks
100	[HI]-10	60			0	18,3	26.8	19	19.985	95	99.9475	Nil	Nil	
101	11	60		1.1	0	16.9	27.9	14	14.6191	70	73.0995	Nil	Nil	
102	12	50			0	16.7	27,6	19	19.2493	85	96.2465	Nil	N11	
103	13	60			0	High 16.3 Low	High 27.5 Low	High 20 Low	lligh 19.4456		High 97.2280	N 31	Nil	
						9	25.0	1	Low 0,4676	Lów 5	Low 2.3880		ł	
104	14	6-7	0			5:3	32.7	19	8.1887	95	40.9435	NÍL	NII	
105	15	5	0	:		High 4.9 Low	High 25,7	High 7	High 1.9015		Kigh 9,5075	E	9	
			1	[1.0	Low 28.8	Low 2	Low 0.1401	Law 10	Low 0.7005		[ĺ
106	16	30	[0	-	12.6	24.1	18	11,1115	90	55.5575	Nil	Nil	had
107	17	40		0		8,3	22.4	12	4,3701	60	21.8505	W	5	
108	18	50-60			•	High 19.6 Low	High 27.1 Low	High 19 Low	High 21.5244 Low	iligh 95 Low	High 107.6220 Low	พ	6	
				 		13.2		5	4.0751		20.3755			
109	19	60.70			0	18.5	26.5	13	13,4123	65	67.0615	NW	8	
110	20	60			0	17.3	25.0	16	14.0139	80	70.0695	NW	15	
111	21	70			io	16.5	25.8	17	15.0307	85	75.1535	NW	6	
112	22	50			0	High 16,9		High 21	High 16.7528 Low	High 105 Low	High 83.7640 Low	พพ	18	
· ·						15'8 Fom	Low 22.9	Low 4	2.2675		11,3375		}	
113	23	50			0	15.5	24.3	17	12.8621	85	64,3105	NW	13	
114	24	(⁶⁰ ₁₀)	0		0	High 15.8 Low	High 25,0 Low	High 21 Low	Hlgh 16.9317 Low	High 105 Low	lligh 84,6585 Low	સામ	11	
10 10 10					н 24	6,8		15	6,6416		33.080			
115	25	60			٥	17.4	25.9	22	20,6159	110	103.0795	И	8	
116	26	12	0			3.7	31.1	- 11	3,1236	55	15.6180	NW	17	
117	27	(⁶⁰) (8.10)			°O N	High 17.5 Low	High 25.0 Low	High' 13 Low	10.2281 Low	1.04	High 51,1405 Low		- 15	
		¶ 		 		8.0		26	11.5959	[]	57.9795		. <u></u>	
118	28	30		0		High 11.9 Low	LOW	iligh 35 Low	High 22.0657 Low	Low	High 110.3285 Low 1.5915	N11	811	ļ
119	29			0		5.0	28.0	1 0	0.3183	0	0	พพ	17	Unstocked land
	<u>^</u>	40		0		13.4	· 25.2	25	17,4841	125	87,4205	พห	6	
120	30 31	40 60		<u>.</u>	0	13.4 high 19.0		High I7	High 19.6079	High 85	High 98.0395	ы	12	· .
						Low 4.3	Low	Low 3	Low 0.7211		Low 3,6055			
122	32	15	0			11.0	27.5	27	17.7848		88.9240	·	11	
123	33	(⁶⁰ ₇)	0		0	ffigh	#igh	Righ	High 13.5080	нigh 85	Bigh 67.5400	- 64	9	1

			Ag	0. <i>0</i> 1.	a 89 1	Forest a	maition	Plo	volumo	Volu	me per ha	Topog	raphy	
Sample point No.	NQ. within stratum	Stand age (years)	Strict	Nidale	old	Mean stem height (m)	Mean central diameter (cm)	Number	Volume (m)	Number	Volume (m.)		Slope (°)	Remarks
124	34	10	6	2		6.2	26.3	9	3.2487	45	16.2435	NW	9	
125	35	25		0		High 14.0 Low 7.6	LOW	High 25 Low 5	High 20.0110 Low 21.285	Nigh 125 Low 25	High 100.0550 Low 10.6425	ษ	9	
126	36	55	<u> </u>		0	12.5	26,3	22	15.2145	110	76.0725	NIL	811	
127	. 37	50			0	17.3	27.2	23	23.3773	115	116.8865	E	6	
128	38	50			0	13.7	24.6	10	6,8921	50	34,4605	SW	19	
129	39	50	·		0	14.4	25.0	26	19,3809	130	96.9045	Nil	NIL	
130	40	(⁴⁰ 5)	0	0		High 14.8 Low 2.5	High 23.3 Low 27.9	High 26 Low 23	High 17,7446 Low 3,4572	LOW	High 88.7230 Low 17.2860	ſ	6	
131	41	45		0		High 15.7 Low 4.5	LOW	High 23 Low 8	High 19.3300 Low 1.9312	1.09	High 96.6500 Low 9.6560	SE	19	
132	42	25		0		High 11.7 Low 7	High 26.7 Low 26.2	High 10 Low 4	High 6.6883 Low 1.5645	LOW	High 33.4415 Low 7.8225	SE	14	
133	[MI]-10	50-60			0	14.7	26.2	.21	17.0824	105	85.4120	SB	10	
134	44	40	[0		14.4	25.6	21	16,4077	105	82.0383	N11	Nil	f
135	45	60			:0	12.9	24.4	21	14,0733	105	70.3665	SW	13	
136	46	(⁴⁰)	0	0		High 11.2 Low	High 25.7 Low	High 30 Low	High 18,1080 Low	High 150 Low	Bigh 90.5400 Low	Nil	NII	
1. 			 	. 		2.7	29.0	9	1.6137		8.0685	} 		ļ
137	47	30	Ĺ	••		6.8	26,4	21	8,1487		40.7435		N11	
138	18	30-40		•		7.8	26.9	17	7,8105		39.0525		10	
139	(¥I]- 1	6.7				High 16.0 Low 4.9	Low		High 0,6679 Low 5,6557	LOW	Hlgh 3.3395 Low 28.2785	1 .	7	
140	2	. 6	0			High 2.8 Low	High 28,6 Low -	High 12 Low 6	High 2.1334 Lon 0	High 60 Low 30	High 10.667 I.ow 0	NII	911	 •
141	3	10	0			6.5	28.1	22	9.4239	110	47.1195	NII	N12	
142	4	15	0		 	6.7	27.2	30	12.1259	150	60,6295	Nil	118	ļ
143	5	60			0	18,9	25.6	20	19,9488	100	99.744	. NW	12	ļ
144	6	7	0			2.3	29.7	25	4.0637		20, 3185	} -	1	
145	6	10	.•			High 9,9 Low	кідh 27.6 Low 26.6	Nigh 17 Low 2	NLgh 10.2839 Low 0.6803	Low	High 51.4195 Low 3.4015] .	15	
	8		0			6.0 10.6	26.0	23	13.9744		69,872	 ₩	13	· <u> </u> •
146	9	10	0	·		6,8	27.9	30	12.7219		63.6095	}	7	1
147	10	7	0		l_ 	40	27.7	22	5,4331	}	27.1655	Nil	Nil	1
	Ļ	L	i	المستم		l	l	ا ـــــ		k	J	L		- H

			уd	e c1	ass	Porest o	condition	19	t volume	, Volu	une per ha	Торо	graphy	-
Sample point Ro.	No. within stratum	Stand Age (year)	Sunoi	Middle	olé	Mean stem height (10)	Nean Central diameter (cm)	Number	Volumo (m)	Number	Volume (m.)	Azi-	<u></u>	Remarks
149	11	(¹² _4)	0	:		High 9.3 Low 3.8	LOW	High 3 Low 23	High 1,6399 Low. 5,9781	Low	High 8.1995 Low		10	
150	12	7	•			High 1.1	High 28.6	High 13	High 0.9872	High 65	29.8905 High 4.9360	E	7	
151		19		 	¶ 	Low -	Low -	Low 10	Low 0	Low 50	Low 0		·	
152	13		0			3.9	28.6	21	5.3426 6.4554	105	26.713	R11 SB	N11 21	
153	15	5	0			1.8	30.1	12	1.4949	60	7.4755		10	
154	.16	15	0			4.5	28.6	8	2.3717	40	11.8585	SE	22	
155	17	10	0			5.5	28,0	2	0.7597	10	3, 7985	E	12	
156	18	5-6				High 4.4 Low -	High 25.9 Low -	High 27 Low 1	High 6.5325 Low 0	High 135 Low 5	High 32.6625 Low O	SE	24	
157	(DI]- 1	(⁶⁰)	0		0	Bigh 19.7 Low 7.8	811gh 22.0 Low 26.2	High 10 Low 26	High 8.1161 Low 11.3009	Low	Bigh 40.5805 Low 56.5045		Nil	·
159	2	5	0			High 18.1 Low 1.3	High 27.3 Low 37.2	lligh 11 Low 19	High 11.6944 Low 2.5783	Nigh 55 Low	High 58.4720 Low 12.0915	Nil	Nil	
159	3	6	0		:	High 16.3 Low 2,4	High 23.8 Low 31.6	High 7 Low 29	High 5.3720 Low 5.5608	High 35 Low	lligh 26.8600 Low 27.8040	811	Nil.	
160	4	15	0			High 17.1 Low 6,7	lligh 27,2 Low	High 17 Low 31	16.9824	Low	Nigh 84.9120 Low 54.4925		Nil	
161	5	(⁷⁰)	0		0	High 20.8 Low	High	High 5 Low 19	High 5,2555	High 25 Low	High 26,2775 Low 38,0830	W	5	
162	.6	50			0	iligh	High 26.5 Low	High 17 Low 5		Nigh 85 Low	liigh 79.6890 Low 19.6730	N	6	
163	7	{ ^{60~70} 12	0		0	High	High 25,6	High 10 Low 64	#igh 8.8624	High 50 Low	High 44,3120 Low 81.0380	NW	7	
164	8	(⁵⁰)	0			Low	H1gh 23.9 Low 24.7	High 20 Low 41	15.6863	LOW	High 78,4315 Low 39,9050	1	6	
165	<u> </u>	(⁷⁰) (28)		0	0	16.4 Low	Biqh 20.3 Low 21.8	High 14 Low 27	High 10.8453 Low 6.0926	70 Low	High 54.2265 Eow (30,4630		9	
166	(DI)-10	35		0		Nigh 16.0 Low	High	High 4 Low	Nigh 3,2893 Low		High 16,4465 Low	N	5	

Sample	NO.	Stand	Ag	ie cl	ass	Forest c	ondition	Plo	t volume	Volu	me per ha	Торо	graphy	
point No.	within stratum	age (year)	Young	Middle	ore	Mean stom height (m)	Mean contral diamoter (cm)	Nümber	Volume (m)	Number	Volume (m)	Azi- muth	Slope { °}	Romarks
. 167	11	5	0			32	28.8	14	2. 178	70	14,0890	в	22	
168	(в)-9	40 - 50		0		Nigh 16.5 Low	High 25.0 Low	High 2 Low	High 1.6784 Low	ltigh 10 Low	High 8,3920 Low	Nil	Nil	
	·					7.0	22.7	5	1.5811		7.9055			
169).2	50 (over)			0	15.0	22.6	18	11.8087	90	59.0435	NW	11	
170	13	-				-	-	0	0	0	0	NW	7	Unstocke land
171	20	75			0	17	23.6	1	0.7879	5	3.9395	н	8	
172	21	- 50			0	11.7	25.9	22	14.4523	. 110	72.2615	NW	10	
173	22	40		0		High 16.0 Low 8.3	High 25.9 Low 24.6	High 5 Low . 4	High 4.3706 Low 1.6904	LOW	Hiah 21.8530 Low 8,4520	ทพ	8	
174	31	15	0		· · · · · ·	6.9	25.0	19	6.9443	· · · · · · · ·	34.7215	W	10	
175	38	5	0			High 5 Low 2,3	High 27.7 Low 30.0	High 5 Low 3	High 1.5186 Low 0.4906	Low	High 7.5930 Low 2.4530	NW	9	
176	40	60			•	High 13.9 Low 1.1	High 23.3 Low 30.2	Kigh 19 Low 14	High 12.3052 Low 1.0721	High 95 Low 70	Hiah 61,5260 Low 5,3605	SW	16	
177.	44	52			ò	13.7	24.5	23	15.5668	115	77,834	NE	13	
1.78	45	(⁷⁰)			•	High 17 Low 1	High 25.8 Low 32.2	High 2 Low 10	High 1.3618 Low 1.8126	LOW	Kigh 6.8090 Low 9.0810	NW	10	
179	. 48	65	 		0	18.2	24.7	5	3.5844	25	17.922	811	Nil	
180	50	45~50		•		High 15 Low S	High 28.0 Low 28.0	High 2 Low 1	High 1.8416 Low 0.3183	LOW	High 9,2080 Low 1,5915	NIL	NIL	

.

.

.

•

L-_____

.

and the state of the second second second Appendix II

Manual of Coconut Forest Inventory

MANUAL OF COCONUT FOREST INVENTORY

1. Planning and preparation

요즘 형태 가슴에서 가는 것이 같아요. 이 것

In order to carry out inventory satisfactorily, operational plan should be formed after collecting relevant material and grasping the general situation of the target area.

The following material necessary for the inventory should be prepared:

1) Aerial photographs (1/10,000).

2) Aerial photo mosaic (approx. 1/10,000).

3) Basic map (1/10,000).

4) 1/50,000 topographical map.

2. Preliminary interpretation

By interpreting aerial photographs, coconut stand is to be marked out first, and plantation boundaries and also those by planted year and forest type are to be marked out.

Then, general data such as tree height and crown density are to be interpreted for every section. They are to be arranged according to age class (young, middle and old), structure of the crown (single and two-storied) and the degree of utilization (utilized or idled), and marked temporarily with dermatograph pencil.

3. Stratification

Stratification is to be based on the following units.

Stratification unit	Code
Young forest in use	[YI]
Middle forest in use	[MI]
Old forest in use	[OI]
Two-storied forest in use	[DI]
Idle forest	[E]

As for operation, by using the temporary marks entered on the aerial photographs, each section is to be arranged according to stratum unit, and the boundaries based on stratification are to be entered on the photographs.

These boundaries are then transferred on to the aerial mosaic (approx. 1/10,000). Polyester paper with each block representing an area of 100m x 100m is then placed on it to trace the stratification boundaries. A running number is then given to those joining points within a stratum to obtain a stratification map.

Since one point represents an area of approximately 1 ha, the last number in each stratum can be used as the area of each stratum value.

4. Sampling of sample plot

 $\mathbf{ni} = \frac{\mathbf{Ai}}{\mathbf{A}} \cdot \mathbf{N}$

Based on the stratification map prepared under the previous section, sampling of sample plot is to be carried out by stratified random sampling.

The number of samples is to be decided from the view points of precision estimate and costs; for estimate precision of 5% 450 samples will be necessary and 120 samples for 10%.

Allocation to each stratum is to based on proportional allocation.

ni	:	Number of samples in i-stratum
n	t	Total of samples (167) .
Ai	:	Area of i-stratum
A	:	Total area

As for allocation, E-stratum is to be excluded from sampling survey, and allocation is to be for the first four strata. However, since it will be necessary to have material concerning E-stratum for interpretation by block under the section 12, a few samples are to be selected independently. Selected samples are to be entered on the aerial photo mosaic with sample numbers. They are further to be transferred to aerial photographs for convenience in field work.

5. Field working

Those photographs on which positions of samples are entered are to be taken to the survey area to determine the center of the sample plot and to set up a circular plot of 0.2 ha (radial 25.23m).

Then all the trees within the plot are measured for stem height and central diameter. As for equipment for measurement, Blume-Leiss is suitable for stem height, and Relaskop for central diameter.

Results of the measurement are to be entered in the Field survey note.

For the purpose of preparing a photo volume table, survey is to be carried out on those sample trees closest to the center of plot. Item for measurement is whole tree height.

Further, measurement is to be made for the purpose of preparing volume table. Items for measurement are stem height, central diameter and diameter for every 2m height, and measuring is to be done by climbing. The results are to be arranged as the Results of measurement of sample trees.

Other operations to be conducted in the target area include confirmation of the plantation block and blocks by forest type, survey on the stand age and survey for the establishment of a utilization plan (method of skidding, transportaiton, houling network and harbor facilities).

6. Preparation of volume table

Same and States

By using the diameter values measured for every two meters by climbing in the field working, actual volume of a single sample tree is to be calculated.

- 133 -

As for stereometry, Smalian's formula is to be used, and the results are to be accumulated to obtain actual volume of a single tree.

Actual volume of a single tree = stump volume + interval volume + volume of under leaf section

Stump volume = $\frac{g_1 + g_1}{2} \times 0.3$

Interval = $\frac{g_1 + g_2}{2} \times 2.0 + \frac{g_2 + g_3}{2} \times 2.0 + \dots + \frac{g_{n-2} + g_{n-1}}{2} \times 2.0$

$$(\frac{g_1+g_{n-1}}{2}) + g_2 + g_3 + \dots + g_{n-2} \times 2.0$$

Volume of under = $\frac{g_{n-1}+g_n}{2} \times \ell$ leaf section

Using the stem volume of each sample tree as dependent variable and stem height and central diameter as independent variables, regression analysis is to be conducted to obtaine a volume estimation formula.

> $V = a \cdot p^b \cdot H^c$ V: volume of a single tree D: central diameter H: stem height a,b,c: parameter

From the results of regression analysis the Volume estimation formula is obtained, which can be used to prepare volume table having central diameter and stem height as factors.

7. Arrangement of the results of survey on sample plot

With the prepared volume table the stand volume within a sample plot is to be obtained. This is to be accumulated, and the number and volume should be arranged for each sample.

Prior to that, regression analysis is to be made, by using the surveyed actual central diameter and the remotely measured central diameter with Relaskop to calculate correction coefficient. If there is deviation between them, a volume table (for measured values with Relaskop) having corrected values as factor is to be prepared. Results of the survey are to be arranged as the <u>Table</u> of field survey results.

8. Preparation of photo volume table

Volume of single trees is to be calculated from the results of the field survey. At the same time, whole tree height is to be measured from photographs. Measurement is to be made by measuring parallax difference with parallax bar and calculation is to be made by the formular below.

FA:	Flight altitude
LH:	Height above sea level at a sample tree
b:	Photo base length
ΔP:	Parallax difference

Then, regression analysis is to be made with interpreted height as H and volume as v to induce the following volume estimation formula.

 $d_{1} = d_{1} + bH + c$

 $\mathbf{H} = \frac{\mathbf{F}\mathbf{A} - \mathbf{L}\mathbf{H}}{\mathbf{b} + \Delta \mathbf{P}} \times \Delta \mathbf{P}$

The result is to be multiplied by the number of trees N to prepare a photo volume table for stand. Thus, volume estimetion formula will be:

 $V = N \cdot y = N(aH^2 + aH + c)$

9. Preparation of standard interpretation cards

By arranging the data on sample plots obtained in the field working, 20 suitable sample plots for interpretation are to be selected, taking into consideration forest types and the difference in forest condition.

The standard interpretation card base is to be designed with a portion of aerial photographs (1/10,000) is stereopair and a ground photograph for visual effects. Results of the field survey are also to be supplied on the card which is to provide material for interpreting coconut stand.

10. Preparation of a block map

Those plantation boundaries and forest type block bounda-

- 135 -

ries set up roughly in preliminary interpretation and adjusted or confirmed in the field working are transferred to the basic map of the scale 1/10,000 to prepare an original block map.

Then a running number is given to each plantion. Forest type blocks in the plantation are also given a running number, though left-over areas (hardwood forest, housing sites and roads) are to be excluded.

These numbers, together with the established plantation and block boundaries, are also entered on the aerial photographs.

Areas of plantations and of forest type blocks are then measured on the original block map. For measurement dot plate (1 dot for 0.25 ha) are to be used to count the number of dots for each block. Measurement is repeated three times to get the average which is multiplied by 0.25 ha to obtain the area of the block. The areas are to be recorded in the <u>Forest</u> inventory note.

11. Analysis of data on height

After preparing a chart of correlation between whole tree height and stand age measured in the field working of the section 5, the mean whole height curve is obtained by taking average of the whole tree height of each stand age. Same operation is to be conducted for the relationship between the average stem height and stand age to obtain the mean stem height curve.

12. Interpretation by block

Those plantations and forest type blocks (plantation blocks) confirmed under the section 10 are to be surveyed by means of photographic interpretation and field working for the following data.

Forest type code: Classified as follows based on the standage given below

- 136 -

ΥI	(in use at present.	0-25 years)
MI	↓ The second se second second se	26-50 years)
	la n Na ana ana amin'ny faritr'ora dia Galagona. Ina amin'ny faritr'ora dia Galagona dia Galagona dia Galagona dia G	Over 51 years)
DI	(· · · · · · · · · · · · · · · · · · ·	Two-storied forest)
Е	(idle forest)	

With regard to YI, MI and OI, those blocks which cannot be surveyed in the field working are to be estimated by applying the mean height interpreted to the mean whole height curve obtained under the section 11 or by using the number of trees and the site as criterion for judgement.

Area: Those block areas measured under the section 10 are to be transferred.

Species: Based on interpretation of photographs. Mixture rate: Based on interpretation of photographs.

Mixture rate is to be recorded when different species or crown compositions (two-storied forest) are noted.

Stand age: Based on information supplied verbally at

the site. Those blocks which are either unsurveyed or uncertain are to be left blank.

Age class: Based on stand age, five years are to be counted as one class.

Average height (whole tree height): A few typical plots

(for 0.25 ha) for interpretation are to be set up with in a block on the photographs with the use of the plot-setting plate. Parallax differences of several trees in the plot are to be measured with parallax bar, which are then converted into tree heights. The method of conversion is the same as the estimation of height for photo volume table. And measured tree heights are to be taken to supply the average values.

Number of trees per ha: The number of trees in the plots setup above is counted and converted into the number per ha.

Volume per ha: Calculated by applying the measured height and the number of trees to the photo volume table prepared under the section 8.

Result of the interpretation are to be arranged as Coconut forest inventry note which gives plantation areas, number of trees and volumes.

13. Calculation of total volume by accumulation

The numbers and volumes of forest types calculated under the section 12 are to be added up for each plantation and then for the entire area to obtain the total number of trees and the total volume.

14. Calculation of total volume by sampling

By using number of trees and volume per ha obtained from a plot, sampling totalling is to be carried out. The method of calculation is the stratified random sampling method given below.

Stratum area Ai

Proportion of stratum area Mean value of X in samples

Variance of mean value

" Standard deviation of mean value $S_{xi}^{2} = \frac{1}{n_{i}-1} \left\{ \sum x_{ij} - \frac{\left(\sum x_{ij}\right)^{2}}{n_{i}} \right\}$ $S_{\overline{x}}^{2} = \frac{S^{2}x_{i}}{n_{i}}$ $S_{\overline{x}}^{2} = \sum \omega_{i}^{2} \frac{S^{2}x_{i}}{n_{i}}$ $S_{\overline{x}i} = \sqrt{S_{\overline{x}i}^{2}}$

 $S_{\overline{x}} = \sqrt{S_{\overline{x}}^2}$

 $\omega_i = \frac{Ai}{\sum A_i}$

 $\overline{x_i} = \frac{1}{n_i} \sum x_{ij}$

 $\overline{\mathbf{X}} = \overline{\mathbf{x}} = \Sigma \ \mathbf{\omega}_i \cdot \overline{\mathbf{x}}_i$

Confidence limit of mean value

12

 $\mathbf{R}_i = \mathbf{t}_i \cdot \mathbf{S}_{\overline{x}_i}$

 $\mathbf{R} = \mathbf{i} \cdot \mathbf{S}_{\overline{x}}$

- 138 -

Error rate of estimate

Estimated total

[18] 2016 [18] 2016 **(**18) 2016 [18]

 $\varepsilon_{i} = \frac{R_{i}}{\overline{x}_{i}} \times 100$ $\varepsilon = \frac{R}{\overline{x}} \times 100$ $X = A_{i} \cdot (\overline{x}_{i} \pm t \cdot S_{\overline{x}_{i}})$ $X = A \cdot (\overline{x} \pm t \cdot S_{\overline{x}})$

15. Evaluat on of the accumulative total volume

The accumulative total number and volume obtained under the section 13 and those statistically obtained by sampling totalling are to be compared to see if the former is within the confidence limit of the latter.

If the accumulative value is outside the confidence limit, the difference should be corrected by allocating it each block.

In this case it should be remembered that the value by sampling dose not cover the stand belonging to E-stratum, whereas the accumulative value contains it.

16. Preparation of location and distribution maps

The average height, number of trees and volume obtained under the section 12 are to be entered on the original block map prepared under the section 10.

Then the original map traced and arranged on the polyester paper to prepare the coconut forest distribution map.

Further, the original maps are to be reduced in scale from 1/10,000 to 1/50,000 and combined as one sheet. This is then traced and arranged to obtain the coconut forest location map.

17. Formation of the coconut forest utilization plan

A coconut forest cutting plan is to be formed to carry out cutting effectively while sustaining the stand.

For that purpous, calculation of sustained yield is to be made on the basis of the survey of sample plots, results of interpretation by block, the accumulative value by block and the coconut distribution map, so that appropriate afforestation, skidding and transportation can be planned.

۰.

Appendix III

Scope of Work

Appendix IV Instructions for the use of Relaskop

- 24

Belt 1: to measure the angle θ when tilted.

Belt 2: to measure the height corresponding to a specific

horizontal distance (10m, 12m, etc.). (Value of distance \times tan 0 given.)

Belt 3: wide belts (W_B) and narrow belt (N_B) having the width of 1/50 and 1/200 of the distance. It has cos 0-adjustment responding to the tilt to maintain the relationships W_B = distance × 1/50 and N_B = distance × 1/200.

Measurement of height:

140

If Relaskop is tilted so that the position to be collimated is at the center of the screen, the graduation plate moves to give the value on the belt (code over (10)). Using the belt responding to the distance ((10) for the distance of l0m, (18) for l8m), the value shown at the center of the screen will be the height.

Note: If the horizontal distance is over 20m, the belt showing the half of the distance is to be used and the reading is to be doubled.

- 144 -

Diameter at middle height:

At a horizontal distance of 8m, collimation is to be made at the middle height. Then the wide belt W_B and the narrow belt N_B will be shown in the screen. Count the number of wide belt n_W and the number of narrow belt n_N to use the formula: $D_{Cm} = (4 \times n_W + n_N) \times 4$.

Example $n_N = 2$ $n_N = 1.5 \Rightarrow D = (4 \times 2 + 1.5) \times 4 = 38 \text{ cm}$ Demonstration $1W_B = 1/50:L$ $1W_B = 800/50 = 16 \text{ cm}$ $L = 8m = 800 \text{ cm} \Rightarrow$ $1N_B = 1/4 \cdot W = 4 \text{ cm}$

 $D_{cm} = 16cm \cdot n + 4cm \cdot n = (4 \cdot n_W + n_N) \times 4cm$

Measurement of crown diameter:

At a distance of 40m, collimation is to be made at the crown. Then follow the same procedure as above to obtain the crown diameter.

 $CDm = (4 \times n_W + n_N) \times 0.2$

- 145 -

Taveuni Island, Fiji

