
THE PLANKTON OF SOUTH VIET-NAM

-Fresh Water and Marine Plankton-

by

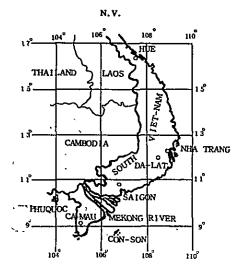
Dr. AKIHIKO SHIROTA

Colombo Plan Expert on Planktology:
Faculty of Science, Saigon University and
the Oceanographic Institute of Nhatrang
Viet-Nam
1966

Overseas Technical Cooperation Agency
Japan

JIGA LIBRARY 1042437[2]

٠.


THE PLANKTON OF SOUTH VIET-NAM

-Fresh Water and Marine Plankton-

bу

Dr. AKIHIKO SHIROTA

Colombo Plan Expert on Planktology:
Faculty of Science, Saigon University and
the Oceanographic Institute of Nhatrang
Viet-Nam
1966

Overseas Technical Cooperation Agency
Japan

PREFACE

1 + 3

At present when the world situation is making rapid progress and development, there is no good reason why the study of the oceans and lakes accounting for approximate 2/3 of the earth may be left behind the times. It should be said to be quite significant that the event of Internation Geophysical Year has recently been inaugurated and the unknown regions as well as the areas not fully surveyed heretofore are being exploited and revealed one by one.

The study of number of floating animals and floating plants living in water, that is, zoo-plankton and phyto-plankton has been prosecuted by many investigators, as a result of which it turned out that they also affect the human life directly or indirectly, and their importance is now being recognized increasingly.

At the request of Viet-Namese Government, the author proceeded to lead the planktology for the Viet-Namese students as the Expert of Japan under the Colombo Plan in Saigon University in 1963. The researches in plankton had just been instituted in this country and therefore the author was obliged to start with the most fundamental subject of what kinds of plankton are living there in what distribution pattern. A large number of literatures pertaining to plankton in the world are published, but those dealing with planktons in Southeast-Asia are not many in number. Further, the author keenly felt inconvenience in that no well-compiled reference materials concerning plankton were available in Viet-Nam.

The motive which actuated the author as a young and immature scholar to dare the survey of one country and undertake the publication of this book can be attributed, on one hand, to the author's great affection for Viet-Namese students and research workers silently continuing their studies under the present tragic situation in Viet-Nam as well as the author's great joy of co-operation in the same science. In the meantime, while working for Saigon University (1963-1965) and Nhatrang Oceanographic Institute (1965-1967), the author received a visit from a number of experts of UNESCO, FAO, USOM and COLOMBO including the research workers from abroad specializing in the same subject as well as the prominent persons of various universities. They gave the author many helpful advices as well as encouragement and desired the immediate publication and introduction of Viet-Namese plankton, which greatly moved the author.

Though this book is mostly based on the unaided surveys by the author himself and may not entirely be satisfactory, it would be

the greatest pleasure for him if it should serve as a guide for the young Viet-Namese students and be utilized also by the research workers in the Southern Asian countries, by making up its deficiency, and contribute towards the basic studies as well as the oceanic and lacustrine development and researches including those related to fisheries.

1

The author hereby expresses his heartiest thanks to the Director of Viet-Nam Fisheries Bureau, Dr. Ngo-Ba-Than; the directors of the respective local fisheries bureaus; Dr. Le-Van-Thoi, the former Dean of Faculty of Science, Saigon University; Dr. Hoang-Quoc-Truong, Professor of Zoological Laboratory, Science Department of Saigon University; the Professor of Botanical Laboratory, Dr. Pham-Hoang-Ho; the ex-Director of Nhatrang Oceanographic Institute Dr. Nguyen-Chung-Tu, the former Director Dr. Hoang-Ngoc-Can, the present Director Dr. Nguyen-Hai, the Assistant Director Mr. Tran-Ngoc-Loi, the Chemical Laboratory assistant Mr. Nguyen-Thuong-Dao for their kind assistance, as well as to all the staff of the University and Research Institute for their co-operation.

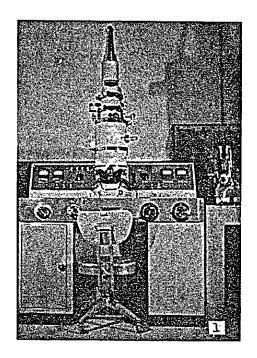
The author also extends his thanks to Dr. Chikayoshi Matsudaira, Professor of oceanography at Tohoku University Agricultural Department, for his kind offer of electron microscopic photographs and Dr. Teiji Kariya, Professor of fisheries and biology at Tohoku University Agricultural Department, for his encouragement. Finally, the author expresses his deepest thanks to Director General Mr. Shinichi Shibusawa, the former Chief of External Operation Division, Mr. Kohei Yoshida, the former Chief of Experts Assignment Section, Mr. Yasuichi Uehara, and also Mr. Michio Takeda, and present Chief of Experts Assignment Section, Mr. Moriya Miyamoto, respectively of Overseas Technical Co-operation Agency taking charge of the furnishing of experimental equipments as well as technical aid to Asia, Africa, Middle and Near East, Central and South America, etc. and at the same time interested in the publication of this book, and to the staff of O.T.C.A. for their kind offices.

At Nhatrang Oceanographic Institute, March 6, 1966

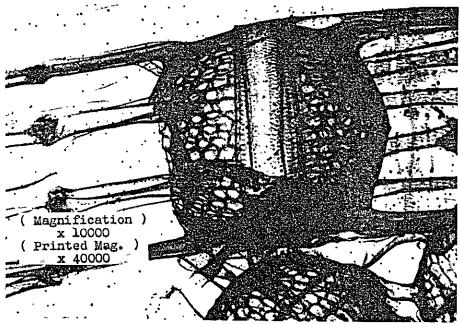
Akihiko Shirota

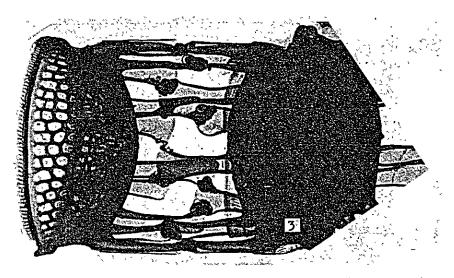
CONTENTS

Pre.	race	
Fro	ntis	piece
Int	rodu	etion
I.	The	history on planktology in Viet-Nam
	A.	Fresh water plankton
	B.	Marine plankton 5
	C.	Environmental survey
	D.	The culture of plankton
		1. Fresh water plankton
		2. Marine plankton
	E.	The relation between plankton and fishing-ground 12
II.	Rese	earching places and dates
III.	Clas	ssification of the fresh water and the marine plankton South Viet-Nam20
	A.	Fresh water plankton 20
	B.	Marine plankton
IV.	Dis	tribution of plankton in South Viet-Nam90
	Λ.	Fresh water plankton 90
		1. Phyto-plankton 90
		2. Zoo-plankton
	В.	Marine plankton
		1. Phyto-plankton 93
		2. Zoo-plankton94
	C.	The plankton of fish culture stations 108
v.	seas	ronment and plankton biomass in the dry and the rainy son in Nhatrang Bay and the open sea, Central Viet-
	A.	Researching stations and researching methods113
	В.	Results120
		1. The observations at the standing point 120
		2. The observations in Nhatrang Bay and in the open

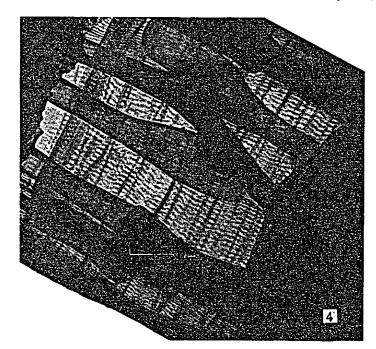

		(1)	Wind verocity129
		(2)	Atmospheric temperature and water temperature 130
		(3)	Dissolved oxygen
			Transparency
			Alkalinity
			Density and Chlorinity
			Plankton biomass
	c.	Summary a	nd Conclusion142
	D.	Appendix	Tables 146
VI.			currents and monsoon winds in the South
VII.			d Prospect for the future of planktology -Nam 158
	A.	Fresh wat	er plankton 158
	В.	Marine pl	ankton 159
	C.	Prospect	for the future 160
VIII.			planktology and the utilization of plank-
	A.		in the low latitude zone and their
		1. Fresh	water plankton 164
		2. Marin	e plankton 165
	В.		ntal conditions affecting plankton pro-
		1. Conce	ption of production and its measurement 170
		2. Physi	cal conditions173
		3. Chemi	cal conditions 175
		4. Biolo	gical conditions
	C.	Culture m	ethods of plankton182
	D.	Utilizati	ons of plankton207
	E.	Appendixe	s 213
			opment of Cladocrea, Moina affinis Birge
		and t	he adult 215

	2. Development of Phyllopoda, Artemia salina Linnaeus and the adult
	 Development of Mysidae <u>Mesopodopsis slabberi</u> P. J. van Bened and the adult
IX.	Plates of plankton226
х.	Photograph of researching places or stations in South Viet-Nam419
XI.	Bibliography453
XII.	Index to Species464

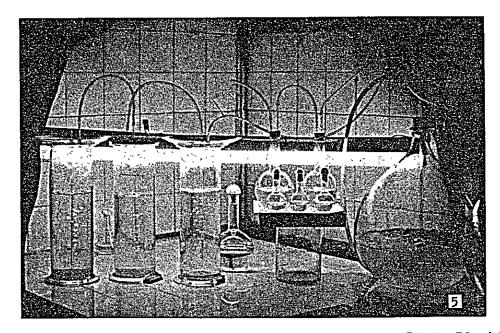

-

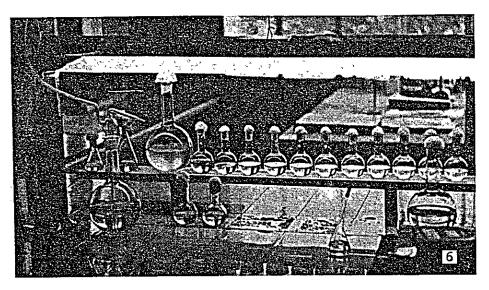

•

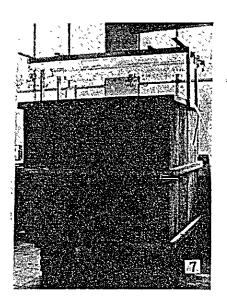
FRONTISPIECE



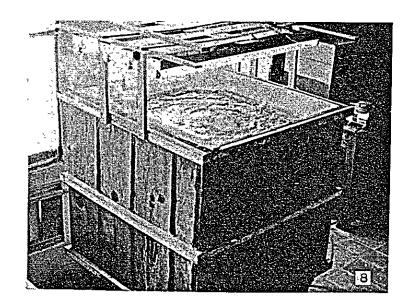
These pictures (2, 3, 4) show Skeletonema costatum (marine Diatom), they are taken by the Electron-microscope (made by Hitachi Co. in Japan ... 1) at the Laboratory of Oceanography, Department of Fisheries, Faculty of Agriculture, Tohoku University in Japan on June 2, 1960.

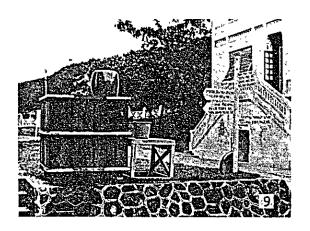



Picture 3. and 4. Skeletonema costatum (\times 40000)


Pictures 5. 6. Plankton cultures at the laboratory of Planktology, Oceanographic Institute of Nhatrang, south Viet-Nam; 1964.

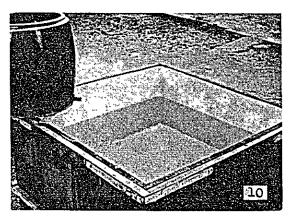
Picture 5. Artificial cultures of Marine Zoo and Phyto-Plankton.

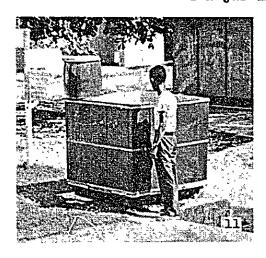

Picture 6. Artificial culture of the Marine Phyto-Plankton.

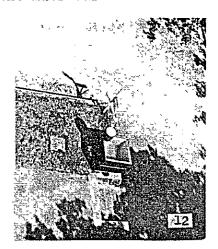


Mass culture (1 ton) of
- Plankton at the Oceanographic
- Institute of Nhatrang,
Viet-Nam; 1965.

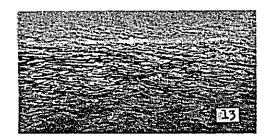
Picture 7. Outward appearance of the culture's box.

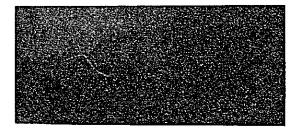

Picture 8. Mass culture of Diatom in the aerated condition.




Out-of-door mass culture; 1965.

Pictures 9. 11. 12. Setting place of Mass culture's box.


Picture 10. Filtration jar and the mass culture's box.


Current-rip occurs at the open sea of Nha-Trang (Pictures 13. 14. 15.).

The place is very important for fishery, because it is rich in plankton, as well as in small and younger fish as food for the big fish which have the economic value.

Pictures 14. 15. Current-rip. (Air view)

INTRODUCTION

South Viet-Nam is located on the east side of Indo-China Peninsula, adjoins North Viet-Nam in the north at N.L. 17°, borders on Cambodia as well as Laos in the west, facing South China Sea in the east, and has long shorelines in the south extending down to N.L. 8°30°. The year's temperature ranges from 26 to 30°C and under the influences of tropical monsoon, a year can be divided into dry and wet seasons subject to certain deviations according to the areas.

Though the major reports so far published on plankton in South Viet-Nam are enumerated in Chapter I, no reports are available on fresh water plankton except only a nominal part of <u>Protozoa</u> while in respect of marine plankton, the existing reports deal chiefly with the classification of plankton in specific areas and it may be said that up to the present no reports have been published pertaining to plankton over the entire area (coastal region) of Viet-Nam. As for the culture of plankton, no reports have been made before 1963.

The author has had opportunities to conduct the survey of plankton in principal inland water and coastal regions of Viet-Nam in and after 1963. However, in the case of inland survey, it was possible to visit only the limited areas and a thorough survey of seasonal variations of plankton in various areas could not be made. In the meantime, however, the author classified Viet-Namese fresh water and marine plankton according to the samples related to these regions and indexed approx. 1,700 kinds of plankton.

This book is chiefly based on the results of above-mentioned researches, but it also incorporates the following items. The contents of this book are as follows:

- 1. The principal studies made so far of plankton in Viet-Nam as well as the trends of planktology being currently pushed forward are introduced in Chapter I, to which some of the author's personal comments are added. By knowing the particulars of reports made by these pioneers, it would be possible to determine a policy concerning the types and methods of research and study to be made in future in that country.
- 2. About 1,700 types of fresh water plankton in lakes, marshes, ponds, culture ponds and streams in various areas of Viet-Nam as well as marine plankton in the coastal regions as indexed out by the author are described in Chapter III, while their distribution is shown in Chapter IV. The Chapter IV also

provides a paragraph related specifically to the plankton in hatcheries, in which plankton obtained from various fish ponds are compared and evaluated.

- 3. The itinerary of above survey and the brief memoranda pertaining to the survey sites are compiled in the form of tables in Chapter II.
- 4. As the study of plankton in Viet-Nam has so far been directed chiefly towards their classification, no reports were available concerning the relationship between plankton and their habitats. For the purpose of grasping the causes of increase or decrease of plankton depending on the environmental conditions, the author took an example of Nhatrang in Central Viet-Nam and made comparative analysis of the relations between plankton biomass and the environments in Nhatrang Bay and its open sea in dry and wet seasons. The result thereof is described in Chapter V.
- 5. For the purpose of information, part of the Report on Naga Expedition carried out in 1959-1961 to determine the characteristics of the current along Viet-Namese coasts and in the ocean, especially the South China Sea, and monsoon winds is extracted and described in Chapter VI.
- 6. In Chapter VII, the conclusion is drawn pertaining to South Viet-Namese fresh water and marine plankton on the basis of the results of above-mentioned survey conducted by the author and at the same time, the author's opinion is given as to the course to be taken in future application and development related to plankton in consideration of the geographical conditions in South Viet-Nam.
- 7. In Chapter VIII, the plankton in the southern region (low latitude zone) is observed from various angles and compared with the plankton in the northern region (high latitude zone) and their environments. The utilization of plankton is also briefly described and further, as to the culture of plankton, the world's major culture methods are outlined for both fresh water and marine plankton. I hope that these data will contribute to the future development of plankton physiology and culture.
- 8. The sketches of South Viet-Namese fresh water and marine plankton are shown in Chapter IX. These sketches were made by the author with an intention to make the beginners familiar with various types of plankton.

9. The pictures contained in Chapter X are those of stations and places taken by the author in course of survey of various areas. From what places had these plankton been collected can be clearly seen from the pictures, which indicate that in the case of survey of fresh water lakes, marshes and rivers, the characteristic color of water comes to the fore. Aerial photos are attached to the pictures related to the survey along the rivers in cities, etc., for better understanding of the conditions in the vicinity. These pictures are included in the hope that they may be of some benefit to those who are interested in the place of collection.

CHAPTER I: THE HISTORY OF PLANKTOLOGY IN VIET-NAM

The principal researches and studies of plankton which have been and are being conducted in Viet-Nam are introduced together with the author's comments as follows:

A. Fresh Water Plankton

The first study of fresh water plankton in Viet-Nam was initiated by M. Lefevre (1933). His report is concerned with phytoplankton collected from the pond in Saigon Botanical Garden. Hoang-Q-Truong (1960) examined the free living Protozoa in Saigon-Cholon area and classified them into 110 kinds. Though his report deals with a biological classification, the survey seems to have been made bearing in mind the study conducted in Viet-Nam by C. Boisson (1957a, 1957b) as to Protozoa parasitic on man and animal. A. Shirota (1963a) investigated into fresh water plankton at the fish culture stations in Cholon, Saigon, Thu-Duc, Dalat, Nhatrang and Hue as well as in the lakes, marshes and streams, and classified them into 175 types of phyto-plankton and 55 types of zooplankton. This report may be the first one on the fresh water plankton in Viet-Nam in that it 1) deals with both phyto-plankton and zoo-plankton, 2) employs quantitative representation (gram or number per 1 m) and 3) takes into account the relation between plankton and fish culture. Subsequently, A. Shirota and Hoang-Q-Truong (1965a in press) made a survey of fresh water plankton in the principal areas of Viet-Nam and obtained many new informations. Tran-thi-Hanh has been studying the seasonal variations of plankton at Thu-Duc fish culture station in and after 1964 while Nhuyen-Thoung-Dao also started in 1966 the survey of the distribution and seasonal variations of Rotifera in the lakes and marshes in Dalat.

B. Marine Plankton

In respect of marine plankton, M. Rose (1926) made the first survey of plankton in Nhatrang Bay of Central Viet-Nam. Thereafter, C. Dawydoff (1936) examined quite in detail the plankton in Nhatrang Bay. This report furnishes the most valuable data in the past. The said report was prepared during the five years from 1929 to 1935 while he stayed at Nhatrang Oceanographic Institute, and describes 500 odd types including the classification of samples and benthos in the Gulf of Thailand. In addition, salinity and water temperature, though not complete, are also contained therein. R. Serene (1937) published a list of marine invertebrata living along the coast of Viet-Nam.

Serene (1948) investigated during the period of 1938 to 1942

into plankton (except Diatoms and Protozoa) in Whatrang Bay. report indicates the plankton appearing throughout a year in Whatrang Bay in the number of individual per group and month, recording both day and night data. Specially interesting is that by providing the upper part of plankton net with electric lamps, plankton was collected 3 times, 30 minutes each, from 7 p.m. to 4:30 a.m. from the surface layer of 25 to 30 cm. As a result; Crustacea (Ostracoda, Copepoda, Cumacae, Schizopoda, Isopoda, Amphipoda, Zoea, Megalopa, Decapoda, Stomatopoda), Chaetognatha, Polychaeta, Nematoda and pisces larva were caught scores of times or depending upon the species, several thousand times as many as a daytime 30 minute catch. For instance, in the case of Copepoda, the data of 1938-1939 set forth a daytime catch of approx. 1,400-10,000 (3,000 individuals on an average) from morning (6:30 a.m.) till evening (5:30 p.m.) as against 3,000-80,000 (53,000 individuals on an average) from evening (7 p.m.) till early morning (4:30 a.m.). Such tendency of markedly increased catch of plankton at night as compared with daytime could be observed similarly each year. On the contrary, Coelenterata including Medusa and Siphonophora as well as Tunicata (Salpa, Appendiculata) rather showed a decreasing tendency.

Needless to say, the fact (that the greater number of individuals are found at night) may be interpreted in terms of the influence due to phototaxis of organism to a certain degree, but clarifying it with regard to such environmental aspects as the distribution in the respective layers of dissolved oxygen, water temperature, salinity or chlorinity, difference between the cases of employment and non-employment of the lamp, relations with fishery, and to other aspects not taken up by him, will be a significant problem to be solved in future. Also, the question of the use of the lamp is quite interesting in connection with the fishery of pisces strong in phototaxis, such as squid, and is considered to be applicable quite extensively. In Japan, T. Suzuki (1963) published a detailed report on his studies made of the relations between squid migration and plankton, etc. by means of the meteorological radar and fish finder during daytime and at night.

M. Hamon (1956) made a survey of Chaetognatha in Nhatrang Bay while M. Yamashita (1958) investigated during the period of 1957 to 1958 into plankton in Nhatrang Bay and reported that the monthly maximum was 36.6 cc/m³ in May, 1958 with the minimum of average 0.28 cc/m³ in February, 1958, and that the increase at the time when the maximum of plankton was reached was due to phyto-plankton (chiefly Diatoms and green-algae) instead of zoo-plankton. The "green-algae" as termed by Yamashita is considered to be Trichodesmium Thiebautie and T. erythracum falling under Cyanophyta according to the author's survey.

M. Rose (1955) classified plankton on the basis of data of Nhatrang Bay plankton collected by M.G.Ranson during the period December 1953 to January 1954. The region surveyed was the small water area in the western part of Nhatrang Bay encompassed by the Islands Hon Lon, Hon Mieu, Hon Tam, Hon Mot and the Oceanographic Research Institute. This report does not contain any novel information. In the meantime, the said survey region is a calm sea located behind the large island called "Hon Lon" and not affected by strong northeast wind even in the rainy season. (His report is related to rainy season).

Hoang-Q-Truong (1962) directed his attention to phyto-planktons, especially Diatoms, in Nhatrang Bay and classified them into 154 species. This report is the first one made in Viet-Namese language by a Viet-Namese in investigating into Viet-Namese marine plankton (zoo-plankton not included).

A. Shirota (1963 b) conducted researches in the plankton biomass and environmental conditions in Nhatrang Bay and open sea (all the prior researches had dealt with the Bay only and no open sea survey had been made) and made clear the characteristics of Nhatrang plankton as follows; that is to say, plankton biomass in the dry season is 2.7 times higher in the Bay (0.88 g/m³ on the average) than in the open sea (0.33 g/m³ on the average, about 15 km from the beach) whereas in the rainy season, it is lower in the Bay (0.65 g/m² on the average) than in the open sea (1.49 g/m³ on the average or 2.3 times that of Bay), a tendency entirely contrary to the case of dry season having been thus confirmed. He further drew the conclusion that the maximum planktor biomass in the open sea in the rainy season was higher than the maximum in Bay in the dry season and that the plankton fluctuations in dry and wet seasons were attributable to the influence of fresh water flowing from the two rivers into the Bay upon the sea water chlorinity.

He further points it out that discussing the Nhatrang plankton on the sole basis of the Bay data may lead to an erroneous conclusion and especially in case of taking into account fishery in Nhatrang (All the fishing boats are less than 1 ton and the area 10 to 20 km from the beach constitutes the principal fishing zone while the fishing operation is carried out quite seldom in the Bay in both dry and rainy seasons), the survey of open sea in comparison with the Bay data is indispensable.

In respect of an ocean survey and especially that of South China Sea, Naga reports (1961, 1963) incorporating the results of the recent Gulf of China and South China Sea Expedition (1959-1961) are available. This expedition was undertaken under the

auspices of the University of California and Scripps Institution of Oceanography of U.S.A., in which several Thai and Viet-Namese staff also participated. This survey was made, as mentioned in the "INTRODUCTION", for the purpose of the development of unexploited or not fully surveyed areas from the viewpoint of the exploitation of protein resources with consideration for overpopulation in Southeast Asia as well as for the purpose of development of fishery. In point of plankton data, the survey was mainly directed towards zoo-plankton or the secondary producers living on phyto-plankton or the basic producers and therefore the said report does not deal with phyto-plankton. Among the zoo-plankton, Copepoda, Euphausia, Petropoda, Chretogratha and Siphonophora presenting useful water mass indices in many oceanic areas and being also important feed for commercial fish were taken up in the report.

According to the said report, the zoo-plankton biomass in the South Viet-Nam area is, if compared in terms of the standing crop, equivalent to 1/3-1/5 of plankton in the Gulf of Thailand coastal waters while the plankton biomass in the South China Sea is said to be corresponding to the plankton volume as measured in the open tropical Pacific by King and Demond (1953). The report says that the plankton in the Viet-Nam coastal region often accounted for more than 100 cc/1,000 m³, whereas the mean value in the Total South China Sea Area ranged from 36 cc/1,000 m³ in December 1959 to 68 cc/1,000 m³ in September-October 1960.

Dividing the South China Sea facing South Viet-Nam into 4 parts on the basis of the said report, it could be said as follows:

- 1. Zoo-plankton in the coastal waters from Hue (N. Lat. 16°30') up to E. Long. 110° including Nhatrang and Phan-Rang amounts to 0.1 cc/m³.
- 2. 0.15 cc/m^3 in the waters within the range from Phan-Rang to the southern tip (east side) of Ca-Mau Peninsula and up to N. Lat. $5-6^\circ$.
- 3. Varying depending on the season in the coastal water from the southern tip (west side) of Ca-Mau Peninsula to Phu-Quoc, that is, 1.0-1.1 cc/m³ during the April-May period and 0.3-0.5 cc/m³ during the August-January period.
- 4. 0.05 cc/m^3 or less in the external water farther to the east of 1. (East of E. Long. 110^0).

According to the result of survey made by A. Shirota during the period of 1963 to 1965 in the Viet-Nam coastal waters (within

10-20 km from the beach), the plankton biomass including phytoand zoo-plankton recorded less than 1.0 g/m3 with the mean value of 0.3 g/m², while the maximum reached 2.0 g/m³ in Central Viet-Nam in the rainy season. In the meantime, Shirota examined the plankton in the coastal waters to the west (about 15 km from the beach) of Ca-Mau Peninsula at Phu-Quoc and Rach-Gia from the middle to the latter part of September, 1964 and obtained the values of 0.6-0.8 g/m^3 , though one cannot discuss the plankton in the waters west of Ca-Mau Peninsula regarding these two places as representing the entire area. The said period falls on the closing period of rainy season, but the above values are two to three times higher than the mean plankton biomass in the Viet-Nam coastal waters facing South China Sea. Accordingly, this tendency of higher plankton biomass in the waters west of Ca-Mau Peninsula as observed by Shirota coincides with the conclusion of Naga expedition. The difference in mass is considered to have been caused in that the places more than about 100 km from the beach were surveyed in the case of Naga expedition whereas Shirota surveyed the places only about 15 km from the beach. In the meantime, in respect of the survey at the same place, th higher plankton biomass in the rainy season than in the dry season is demonstrated by the result of Naga expedition covering the Ca-Mau Peninsula waters (higher biomass in the March-September period which falls on the rainy season).

C. Environmental Survey

As for the oceanic environmental survey, the reports by C. Dawydoff (1931-1933) and R. Serene (1935, 1949) are available and they drew the following conclusions concerning surface salinity and temperature in Nhatrang Bay of Central Viet-Nam. That is, they observed that in the Nhatrang Bay, the mean water temperature ranged between 28°C and 29°C in the April-October period (dry season) with the maximum of 31-31.4°C, while it ranged between 23°C and 24°C in January and February (rainy season) with the maximum of 21-22°C and salinity ranged between 33 and 35°/ $_{00}$ (the maximum is 36.66°/ $_{00}$ according to N. Hai), but it decreased down to 25-28°/ $_{00}$ in the rainy season. Further, N. Hai, etc. (1960) and H. N. Can (Not yet published) made a survey of Nhatrang Bay as to the entirely same factors as above and deduced the entirely same conclusions.

Mentioned above are the survey results obtained in respect of Nhatrang Bay, but as to the survey of the open sea and the South China Sea, the reports by Shirota (1963 b and the one not yet published) and Naga expedition (1959-1961) are the only ones available. Table 1 shows the results of survey by A. Shirota

(1963) of Whatrang Bay and its open sea, but no researches have so fan been conducted into nitrate, phosphate and silicate, etc.

		В	ay	Open sea beach 15-	
		Dry season	Rainy season	Dry season .	Rainy / season
Water Temperature	Surface	29.0 26.4	27.95 28.45	29.1 28.35	28:5
0xygen (cc/L)	Surface 15 m	4.33 4.40	4.35 4.22	4.38 4.43	4.33 4.22
	 	13.2 m	5.6 m	13.15 m	13:13 m
Alkalinity CO2 (mg/L)	Surface 15 m	-	50.05 34.0	+ 3	36.5 36.5
Chlorinity (°/oo)	Surface 15 m	20.09	14.81 19.87	20.35	19.13 19.96
Salinity (°/ ₀₀)	Surface 15 m	36.29 36.13	26.76 35.89	36.76 36.13	34.56 36.06

Table 1: The environment in the Dry and Rainy season in Nhatrang Bay and the open sea, Central Viet-Nam (by A. Shirota, 1963 b)

The result of oceanographic survey of the South China Sea is described in the aforementioned "Naga Expedition" reports.

D. The Culture of Plankton

It will not be too much to say that a study of culture has not been made at all in Viet-Nam. Pham-H-Ho of the Saigon University previously tried the culture of marine algae and ulva (though not being plankton). Also, he and a few colleagues initiated the culture of Spirogyra, Zygneme and Mougetial, etc. falling under fresh water Zygnemataceae. In respect of animal, Hoang-Q-Truong is now undertaking the culture of Protozoa.

As the study of culture is also the study of physiology and ecology and possible artificially to create an optimum environment for that species, so the study can develop to an applied research.

In the Planktology Laboratory of Nhatrang Oceanographic Institute, the following cultures are in progress:

1. Fresh Water Plankton

The author et al. carried out a pure culture of Scene-desmus dimorphs of Chlorophyta by means of Matsudaira medium.

Scenedesmus is one of the most popular species and has been studied by a number of specialists. In this country, however, it may be the first time that such systematic culture has been undertaken.

Scenedesmus dimorphus employed is the one purely separated by A. Shirota in the Saigon University. According to Le-thi-Ngoc-Anh and A. Shirota (unpublished), the number of individuals reached 2 x $10^6/\text{ml}$ on an average and 4577760 individuals/ml as the maximum during the culture. (These values were obtained in an experiment to change the volume of nitrogen in Matsudaira medium). In the case of aeration, the mean value reached 5 x 10^6 individuals/ml which is 2.5 times as high as the value in the case of still water experiment.

As for zoo-plankton, the culture of Moina affinis of Cladocera was undertaken (by A. Shirota and Tran-D-An. 1966 a, in press). In this experiment, a satisfactory result was obtained employing Scenedesmus dimorphus as feed and therefore mass culture was tried. Using 1-ton box and four 40W fluorescent lamps and under continuous day-and night illumination, Moina affinis was placed in a 1 ton water tank in which Scenedesmus had been caused to multiply beforehand, and the multiplication process was observed. As a result, the number of Moina reached a maximum of 8560 individuals/L in about 10 days. This value (8.6 individuals/ml) is a high one as the experimental value in mass culture. In the case of experiments on the culture of Daphnia of Cladocera in a glass container of less than one litre, the value of 12 individuals/ml is he maximum obtained as far as the author knows.

The culture of <u>Rotifera</u> (<u>Brachionus</u> and a few other species) is being carried on by Nguyen-Thuong-Dao at Dalat under the guidance of the author.

In the meantime, no applied experiments have so far been conducted on pisces larva in Viet-Nam.

2. Marine Plankton

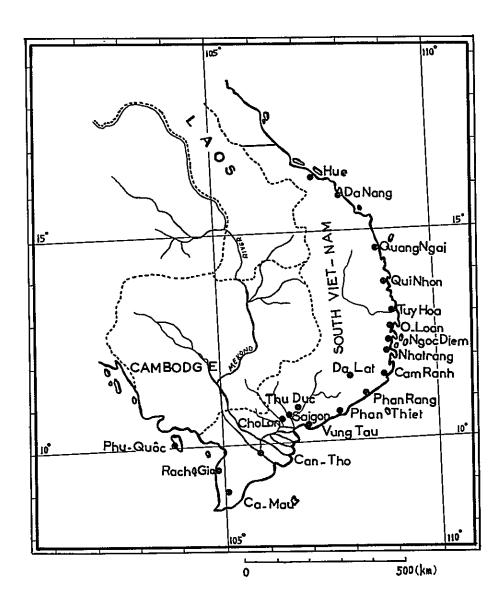
Similar to the case of fresh water plankton, the culture - 11 -

of marine plankton is still in a rudimentary stage. The author et al. are carrying out pure culture of Chaetoceros Lorenzianus and several species of Diatoms utilizing Miquel-Allen-Nelson culture medium. The culture of Diatoms has recently made a remarkable progress and also in respect of its culture medium, new ones have been invented and are being employed, that is, successful results have been achieved using EDTA (Ethylene-Diamine-Tetra-Acetic-Acid), TRIS (Tris-Hydroxy-methyl Aminomethane), Glycerophosphates, NTA (Nitro-Trio-Acetate) and Vitamin B12, etc., but the culture by means of such media has not yet been conducted in Viet-Nam.

On the other hand, the culture of naturally caught zooplankton is not yet undertaken, but in respect of Artemia salina (A. Shirota introduced dry eggs first in Viet-Nam in 1963), eggs could be obtained in about 5 to 6 days by feeding Artemia with cultured Chaetoceros and Coscinodiscus and through an aeration for about 10 days in still water (water temperature: 28°C), and could be bred repeatedly through tenodd generations. At the same time, many permanent eggs could be recovered successfully. (A. Shirota and Nguyen-T.-Dao; Not published yet). Further, the author and others are studying the life history and breeding of Mysis (Mesopodopsis slabberi) by means of such cultured Artemia.

E. The Relation Between Plankton & Fishing-Ground

It is often observed that when supersonic waves are emitted into the water, reflections from the positions other than the sea bottom or the school of fish are recorded and appear as if they represent the sea bottom or the school of fish. With the progress of study in various countries on the cause of such phenomenon, it has been found that such layer can be observed at every place in any sea of the world and inasmuch as it is the layer which scatters sound waves in the deep sea, it has been designated as "Deep sea Scattering Layer" or in short "DSL".


The cause of formation of DSL is being studied by many research workers and so far it has been confirmed that it consists of planktons and especially 1) it comprises zoo-plankton serving as feed for principal pisces and Mollusca (especially Decapoda = squid), 2) they can be observed abundantly in current rip and 3) the school of fish moves in accordance with the daily cycle of zoo-plankton movement (to rise at about sunset and fall at about sunrise), and so the move of fish school can be detected on the basis of such changes in DSL. Accordingly, it is confirmed that a place where DSL exists constitutes comparatively good fishing-ground in many

cases.

Such studies by means of fish finders are carried out mostly in the high latitude zones (due also to an abundant existence of planktons) and this kind of study seems to be conducted quite seldom in the southern areas. Such researches have already been carried out exhaustively in the East China Sea, but the survey of the South China Sea seems to have not yet been undertaken.

At the advice of Dr. Kinosuke Kimura, Professor of TOHOKU University, and with the cooperation and support of Dr. Hai, Director of Nhatrang Oceanographic Research Institute in Viet-Nam, the author started to tackle with this problem and is now continuing the researches.

CHAPTER II. RESEARCHING PLACES AND DATES

THE PLANKTON RESEARCH ON FRESH WATERS OF SOUTH VIET-NAM

Place	:	Sampling Station	:		Date			:	No	te
Hue	:	Fish culture station	:	July	23.	1963		:	28°C	pH= 5.8
	:	Perfumes river	:	Mar.		1964		:	24,7°C	pH= 5,2
Da-Nang	:	Buong river	:	Mar.	ll,	1964		:	25,9°C	Brackish
Quang-Ngai	;	Drir river	:	Mar.	13,	1964		;	24,1°C	Brackish
0-Loan Dam	:	Bay	:	Apr.	10,	1964		:	30,9°C	Brackish
Phu-Huu (Ngoc-Diem	;);	Pond	:	May	12,	1965		:	30°C	pH= 6.4
Nhatrang	:	Fish culture station	:	May		1963		:	29,0°C	Brackish
	:	17	:	Jun.		1964		:	29,5°C 29,1°C	pH= 8,0
	:	River (Cua Be Mhatrang)	:	Dec. Jun.		1964 1964		:	28,8°C	pH= 8,0 pH= 8,0
	:	Ponds	:	Nov.		1964		:	26 - 30°	Ç
Da-Lat	:	Cam-Ly river	:	Apr.	16,	1963		:	24,0°C 26,0°C	pH= 5.5
	:	Fish culture ponds	- (;·	Apr.	16,	1963		:	26,0°C	pH=6.0
	:			Aug.		1964		:	28,7°C 23,0°C	pH= 6,2
	:	Pond of Prenn		Apr.		1963		:	23,0°C 25,0°C	pH= 5.5
	:	Than-Tho lake Me-Linh lake		Apr. Apr.		1963 1963		:	24 070	pH= 5,5 pH= 5.5
	:	Van-Kiep lake	;	A A		1963		:	24 200	pH= 5.6
	:	Xuan-Huong lake		Apr.		1963		:	24,3°C	pH= 5.8
Song-Pha	;	Dam of Da-Nhim	:	Apr.	20 •	- 21,	1963	:	25,6°C	pH= 5.8
	:		:	Aug.	31,	1964		:	28,2°C	pH= 6,7
Phan-Thiet	:	River		May		1964		:	29,0°C	Brackish
	<u>:</u>		:	Jan.	28,	1965		:	26,0°C	Brackish
Bien-Hoa	:	Dong-Nai river		Feb.	•	1964		:	26,0°C	pH= 5,0
	:			Sep.		1964		:	28,4°C	pH= 5,2
Thu-Duc	:	Fish culture pond		Apr.		1963		:	28,0°C 28,2°C	pH= 5.0
	•			Dec. Jan.		1963 1964		:	28,20	pH= 5,0 pH= 5,2
	:			Aug.		1964		:	27,4°C 29,8°C	pH= 5,2
	:			Mar.		1965		:	29,0°C	pH= 5,5
Saigon	:	Saigon river	:	Mar.	22,	1963		:	25.8°C	pH=5,8-6,2
	:		_:	Aug.	3,	1963		:	28,0°C	рH= 6,2
Cholon	:	Fish culture pond		Mar.		1963		:	31,0°C	pH= 7.6
	:	Kieu-Long Muoi		Mar.		1963		:	29,5°C 28,6°C	pH= 7,4
	:	River, ponds	:	Feb.	7,	1964		:	28,6°C 28,3°C	pH= 5,8
Can-Tho	:	Mekong river	-:	Nov.	16,	1963		:	28,0°C	pH= 4.0 transparence
	:	Pond of Airport	:	Sep.	10,	1964		:	31,4°C	20cm pH= 5,8
Ca-Mau	:	Fish culture pond 1	:	Sep.	12,	1964		:	27 0°C	pH= 6.8
	:			Sep.		1964		:	27 87	pH= 7.2
	:	River		Sep.	12,	1964		:	28 400	pH= 4.5
	:	Lake	<u>:</u>	Sep.	13,	1964		:	27 , 7°C	pH= 6,4
Rach-Gia	:	Fish culture pond		Sep.		1964		:	29,5°C	pH= 6.0
	:	River and pond of field Lake WT. 29.5°C		Sep.	16,	1964		:	River is	brackish
Ohii Oire			:					:		2°C pH= 5,8
hu-Quoc	:	River	:	Sep.	18,	1964		:	28,4°C	Brackish

THE PLANKTON RESEARCH ON SEA WATERS OF SOUCH VIET-NAM

Place	:	Sampling Station	:		D	ate	:	Note
Thuan-An	:	15-20 Km from beach	:	Mar.	9,	1964	:	W.T. 22.5°C
Da-Nang	:	п	:	Mar.	11,	1964	:	25.2°C
Quang-Ngai	:	н	:	Mar.	13,	1964	:	24.4°C
Qui-Nhon	:	it .	:	Apr.	12,	1964	:	26.8°C
	:	(Bay)	:	-	·		:	28.1°C
Tuy-Hoa	:	n n	:	Apr.	9,	1964	:	28.1°C
0-Loan	:	Bay	:	Apr.	9,	1964	:	31.0°C
Phu-Huu	:	Brackish	:			19, 27, 1965	:	
	:	river	:	May	20,	1965	:	29-32°C; C1(°/00) 7.7-15.
	:		:	Jun.	10,	1965	:	29-32 6 ; 61(/00) 7.7-15.
	:		:	Aug.	18,	1965	:	
Ngoc-Diem	:	Bay	:	Apr. May		27, 1965 1965	:	28.4°C; C1(°/ ₀₀) 19.8 28.5-30°C
Nha-Trang	;	Bay and	;	Apr.	25.	1965	;	
•	:	Open Sea	:			21, 1963	:	
	:	_	:	Jun.	11,	1963	:	
	2		:	Oct.	1,	2, 1963	:	
	:		:	May		1964	:	
	ŧ		:			1964	:	
	:		‡			1964	:	
	:		:			1963	:	
	:		:			1963	:	
	:		:			1965 1965	:	
	:		:	Sep.		1965	:	
Con Bonh	_	Da	_		3.4	3067	_	29.0°C
Cam-Ranh	:	Bay	:	May		1963 1964	:	29.3°C
Phan-Ranh			_					29.2°C
rnan-nann	:		:	May	20,	1964	:	29.2 0
Phan-Thiet	:	15-20 Km	:	Mar.	30,	31, 1963	:	•
	:	from beach	:	Мау	21,	1964	:	29.2°C
Vung-Tau	:		:	Sep.	12.	1963	•	30.6°C
0	:		:			1964	:	29.2°C
Rach-Gia	:	p p	-	Sep.	16,	1964	;	30.4°C
THORI-GER								

CHAPTER III. CLASSIFICATION OF THE FRESH WATER AND
THE MARINE PLANKTON IN SOUTH VIET-NAM

24.54

* .

, ,

. . . .

~

FRESH WATER PLANKTON

Note:	D	Diameter
	Col. D	Diameter of a Colony
	F	Female
	M	Male
ì	9	Female
	8	Male
	H	Height
	L	Length
	W	Width
	Leg 5	5 th. Leg

PHYTO-PLANKTON

Phylum CYANOPHYTA Order CHROOCOCCALES Family CHROOCOCCACEAE Chroococcus giganteus West D.50μ
Order OSCILIATORIALES Suborder OSCILLATORINEAE Family OSCILLATORIACEAE
Arthrospira Jenneri (Kutz.) Stiz. W.5-7µ ······ 8 Lyngbya contorta Lemm. ····· 9
" Birgei G.M.Smith W.20-24µ ······10
Oscillatoria formosa Bory W.7-8µll
" limosa Ag. W.14-17µ ······12
" princeps Vaucher D.16-90µ13
Phormidium autumnale (AG.) Gomont W.7-10µ ······14
Phorphyrosiphon Notarisii (Menegh.) Kutz. W.25-30µ 15 Spirulina major Kutz. W.3-4µ ···········16
Spirulina major Kutz. W.3-4µ ····································
" princepus (W&G.S.West) G.S.West D.10-14µ 17 Symploca muscorum (Ag.) Gomont D.5-8µ ······18
Trichodesmium lacustre Klebahn W.7µ ·····19
Suborder NOSTOCHINEAE
Family NOSTOCACEAE Anabaena circinalis (Kutz.) Rab20
Anabaena circinalis (Kutz.) Rab20 " Levanderi Lemm. W.5µ21
Anabaenopsis Elenkinii Miller W.4-5µ ·····22
Aulosira implexa Bornet & Flahault W.8-10u23
Aphanizomenon flos-aquae (L.) Ralfs W.5u ······24
Nostoc Linckia (Roth.) Born. W.3-4u ·····25
" Sphaericum Vaucher
Nodularia spumigena Mert W.16-18μ ······27 " var. minor Fritsch W.6-8μ ·····28
Family SCYTONEMATACEAE
Plectonema Tomasiniana (Kutz.) Born W.17-20µ·····29

Phylum CHRYSOPHYTA Class BACILLARIACEAE (DIATOMS) Order I CENTRALES Suborder I DISCINEAE	
Family 1. MELOCIRACEAE	71
Melosira Agussizii	
" distans Kutzing D.4-20µ H.4-9µ	
" granulata Ralfs D.5-21μ H.5-18μ	
" var. angustissima Mull D.3-5μ L.30-50μ.	
" " fo. spiralis D.15-25μ H.4-8μ	
" var. muzzanensis	
" " valida	36
" islandica Ο. Mull D.7-27μ H.4-21μ	37
" italica Kutzing D.5-28 H.8-21	38
" malayensis	39
" varians Agardh D.8-35μ H.9-13μ	
3 71 77 71 77 71	
Family 2. COSCINODISCACEAE	
Cyclotella comta Kutzing D.15-50µ	41
" Kutzingiana Thawaites D.10-45μ	
" Meneghiniana Kutzing D.10-30μ	
Stephanodiscus Hantzschii Grunow D.8-20µ	44
	77
Suborder II SOLENTINEAE	
Family 3. RHIZOSOLENIACEAE	
Rhizosolenia eriensis H.L. Smith D.6-15u	
L.40-150µ	15
" longiseta Zacharias D.4-10μ L.70-250μ	45
rongroeva hacharras b,4-10p b,70-2)op	40
Suborder III BIDDULPHIINEAE	
Family 4. CHAETOCERACEAE	
Chaetoceros Muelleri Lemmermann W.5-30µ	40
onae roceros raterieri nemmermana w.o-oop	47
Family 5. BIDDULPHIACEAE	
Attheya Zachariasi J. Brunow W.12-40µ	48
Order II PENNALES	
Suborder I ARAPHIDINEAE	
Family 5. FRAGILARIACEAE	
Asterionella formosa Hassall L.40-130 w.1-2 w	49
gracillima (Hant.) Heiberg L.40-130μ	50
Fragilaria capucina Desm L.25-100µ	51
" construens Grunow L.7-25μ W.5-12μ	52
" crotonensis Kitton L.40-70μ	53
	54
	55
" " radians Hust W.2-4µ L.40-200µ	56
	,,

11	affinis (Kutz) L.60-15µ W.2-5µ	58
	L.33–150ր	60
11	tabulata Kutzing L.25-200µ	61
t1 13	" var. grandis Meresckowsky L.250µ	
**	ulna Ehrenberg L.50-350μ W.5-9μ	63
Family 7. TA	BELLARTACEAE	
Tabellari		64
11	" var. asterionelloides	65
11	" intermedia	
tt .	frocculosa Kutz. L.12-50µ W.5-16µ	67
Diatoma	elongatum Agardh L.40-120µ W.2-4µ	68
ŧ1	linearis Grun.	69
H	valgare Bory L.30-60μ W.10-13μ	70
11	" var. brevis Grun. L.20-30µ	71
	2000 Joh	1 -
	ONORAPHIDINEAE	
-	HNANTHACEAE	
Achnanthe		72
	lanceolata (Breb) Grun.	73
Cocconeis	1	74
"	placentula Ehr. L.11-70µ W10-40µ	75
	" var. klinoraphis Geitler	76
Suborder III Family 9. NA		
Navicula	cuspidata Kutz. L80-150µ	77
**	gracilis Ehr. L.36-60µ W.6-10µ	78
11		79
tt		80
11		81
11	" lanceolata Grun	82
11	" " latiuscula Meister	83
11	" rostrata Meyer	84
11	radiosa Kutz. L.40-120μ W.10-19μ	85
Ħ	rhynchocephala Kutz. L.35-60μ W.10-13μ	86
Amphipleu:	ra pellucida Kutz. L.80-140 W.7-9	87
${\tt Amphora}$	hendeyi n. sp. L.35-40µ	88
u	ovalis	89
Cymbella	cistula Grun. L.35-180µ W.15-36µ	90
11	lanceolata Van Heurck L.70-210µ W.24-34µ	91
11	naviculiformis Auerswald L.30-50µ	
	W.9-16µ	92
11	obtusiuscula Grun. L.25-35μ W.11-12μ	93

Cymbella " " Frustulia Gomphonema Gyrosigma	parva Cleve L.25-70μ W.8-12μ
Mastogloia Neidium "	danseii (Thwaites) W. Smith L.40-65µ. 100 affine (Ehr.) Pfitzer L. very variable100 "var. amphirhynchus (Ehr.) Cleve 100
Pinnularia " " Stauroneis	gibba Ehr. L.80-90µ
	HEMIACEAE
Epithemia " " " " " "	argus Kutz. L.30-130μ W.6-15μ 107 " var. alpestris Grun 108 turgida Kutz. L.60-100μ W.15-18μ 109 zebra Kutz. L.30-150μ W.7-14μ 110 " var. porcellus Grun 111 " " saxonica Grun. L. 15-70μ W.8-10μ 112
ī	gibba (Ehr.) 0.Muller L.150µ 113 ventricosa (Kutz.) 0.Muller L.80µ 114
•	SCHIACEAE amphioxys (Grun.) L.35-60µ 115
Nitzschia "" "" "" "" ""	acicularis W.Smith L.50-150µ
Family 12. SURI Cymatopleura	solea (Breb) W.Smith L.30-300µ
	W.10-40μ 126 s hibernicus Ehr. L.80-130μ 127 biseriata Brebisson L.80-350μ W.30-80μ 128
11 11	elegans Ehr. L.130µ W.40-90µ 129 ovalis Breb. L.40-80µ 130

Surirella "	robusta Ehr	. L.150-400 ndida L.75-	μ W.50-19	50μ	131
1)	striatula Tr	irp. [.]30	-140n	7-00μ	エフィ
11	tenera Greg	L.100-150	μ •••••	• • • • • • • • •	134
Class HETEROCONT		нусел)			
Order HETEROCOC					
Family 13. H					
Botrydiopsi	s arhiza Bo	orzi L.10-40	Ju		135
Leuvenia r	atans Gardne	er L.30-50μ	••••••		136
Order HETEROTRI	CHALES				
Family 14. T	'RIBONEMATACE!	Æ			
Tribonema	bombycinum ((AG) Derbes a	and Sol	D.15u	137
Bumilleria	sicula Borzi	L D.10-13μ	• • • • • • •	•••••	138

Phylum CHLOROPHYTA Class CHLOROPHYCEAE Order TETRASPORALES Family PALMELLACEAE Asterococcus limneticus Smith Col.D.100-130µ Palmella miniata var. aequalis Nag. D.18-25µ Sphaerocystis Schroeteri Chod. Col.D.30-55µ	140
Order CHLOROCOCCALES Family CHLOROCOCCACEAE Chlorococcum humicola (Nag.) Rab. Col.D.28-35µ	145
Chiorococcum numicola (Nag.) Rat. Col. B. 25-35μ Oophila Amblystomatis Lambert D.15-18μ Trebouxia Cladonie Smith D.8-13μ Desmatractum indutum (Geither) Pascher L.76-84μ.	143 144
Family MICRACTINIACEAE	7.40
Acanthosphaera Zachariasi Lemm. D.10μ Golenkinia paucispina W. & G.S.West D.15-20μ	147
Micractinium pusillum Fresenius Col.D.15-20μ	148
Family CHARACIACEAE Schroederia setigera Lemm	149
Family Coelastra cambricum Arch. L.28-35µ	150
Family DICTYOSPHAERIACEAE Dictyosphaerium pulchellum Wood L.70-100	151
Family HYDRODICTYACEAE	
Pediastrum biradiatum Meyen L.120µ Boryanun var. longicorne Raciborsky	
D.80-100µ " simplex var. duodenarium (Bailey) Rab.	153
" simplex var. duodenarium (Bailey) Rab. L.120µ	154
Family OOCYSTACEAE	
Ankistrodesmus falcatus (Corda.) Ralfs Col.D. 40-70µ	166
Chlorella variegatus Beijerinck D.5-10µ	156
Chodatella subsalsa Lenm. L.10-15µ	157
" quadriseta Lenm. D.10-15 μ Cerasterias irregulare G.M.Smith L.45-58 μ	158
Closteridium lunula Reinsch L.10-15µ	160
Closteriopsis longissima var. tropica W. & G. S.	_
West L.260-280µ Franceia tuberculata G.M.Smith D.17-22µ	161
" Droescheri (Lenn.) G.M.Smith D.10-14u.	163

Echinosphae	rella limnetica Smith L.50μ	164
Oocystis B	orgei Snow. L.30-40µ	165
" E	remosphaeria Smith L.40µ	166
Planktospha	eria gelatinosa G.M.Smith D.13-15µ	167
Pachycladon	umbrinus Smith L.80-100µ	168
Selenastrum	gracile Reinsch L.10-18µ	700
11	O	169
Treubaria		170
		171
retraeuron	lobatum Hansgirg var. Subtetrraedricum	
	Reinsch L.25-30μ	172
Family SCENED	ESMACEAE	
Crucigenia		3 C7 C7
11	tetrapedia (Kirchner) W. & G.S.West	173
		~~.
77	L.15µ	174
Tr.	quadrata Morren L.12µ	175
•	rectangularis (Nag.) Gay L.10µ	176
Scenedesmus		177
10	armatus G.M.Smith L.10-14 μ	178
	bijuga (Turp.) Lagerh L.12-15µ	179
11	denticulatus var. linearis Hansg	
	L.11-14μ	180
27	dimorphus (Turp.) Kutz. L.20-25μ	181
11	hystrix Lagerh L.13-15u	182
11	obliquus (Turp.) Kutz. L.15µ	183
11	quadricauda var. quadrispina Smith	
	L.12-14µ	184
	. ===	
Order ZYGNEMATAI		
Family ZYGNEM		
Mougeotia	scalaris Hass. D.27-30 μ	185
Ħ	viridis (Kutz.) Wittr. D.9μ	186
Mougeotiopsi	is calospora Palla D.14-16μ	187
Spirogyra	ahmedabadensis	188
11	azygospora	189
ł1	ionia	190
11	prolifica	-
11	protecta Wood D.30µ	
Zygnemopsis	americana Transeau D.9-10µ	193
	·	
Family MESOTAR		
Gonatozygon	aculeatum Hast. L.160-220µ	194
Family DESMIDI		
Arthrodesmus	apiculatus Joshua	195
l†	convergens Ehr.	196
11	curvatus Turner var. latus	197
11	arcuatus Joshua	1 <u>9</u> 8
	- 26 -	

Closterium	acerosum Ehr. fa. rectum fa.nov.	
02020022	L.680µ	
11	calosporum Wittr. L.90µ	200
11	cornu Ehr. var. javanicum Gutw.	
	L.220µ	201
11	dianae Ehr. var. minus (Wille) Schroder L.103µ	202
11	ehrenbergii Menegh L.420-428µ	202 203
11	gracile Breb. L.140-180µ	
11	moniliforme (Bory) Ehr. L.290-320µ.	
11	porrectum Nordst L.180-200µ	206
tr	" var. angustatum West & West	
	L.105µ	207
11	rectimarginatum sp. nov. L.202-212µ	208
n	setaceum Ehr. L.252µ	209
Cosmarium	exasperatum Joshua L.30µ	210
21	granatum Breb. var. rotundatum Krieg	
	L.24 – 25μ	211
tt .	indentatum Gronbl var. ellipticum	
	Scott & Gronb L.30µ	
11	nymannianum Grunow L.36µ	213
11 ^t	phaseolus Breb var. omphalum	03.4
**	Raciborski	214
"	pseudopyramidatum Lund var. oculatum	015
tı	Krieg sp. L.50-55µ vitiosum Scott & Gronbl var. oriental	215
	L.40-43µ	216
Desmidium	bengalicum Turner D.25µ	
II III	Aptogonum Breb var. tetragonum	
	West & West D.25µ	218
11	swartzii Agardh D.25-30µ	
Hyalotheca		220
ti	dissiliens (J.E.Smith) Breb W.25µ	221
Micrasterias	s ceratofera Josh. L.200-235µ	222
77	foliacea Bail L.82 w.87 w	
11	mahabuleshwarensis Hobs var. surculifera	
	Lagerheim	224
11	torreyi Bail. var. crameri (Bern.)	
0	Krieg L.370-400μ	225
Unychonema	laeve Nordst var. micracanthum Nordst .	226
Preurotaeni	um baculoides (Roy & Biss) Playf	
Sphaorozogni	L.543µ	227
DPIRGET OZOSIII	n nitens Arch. var. triangulare	000
11	Turn. fa. Javanicum Gutw. L.20-25µ	228
	granulatum Roy & Biss L.13-15µ	229
Stormestur	n planum (Woll) West & West	230
Staurastrum	acanthastrum West & West L.33µ W.75µ .	231

Staurastrum	anatinoides Scott & Presc var.	
	javanicum L.33μ W.50μ	232
11	corniculatum Lund var. variabile	-
	Nordst L.27-30μ	233
tt	connatum (Lund.) Roy & Biss	2))
		074
11	L.20-25µ	4 24
11	cuspidatum Breb L.22μ W.17μ	235
ur .	" var. divergens Nordst fa. minus	
	fa. nov. L.20-25μ	236
ti	dejectum Breb L.15-18µ	237
ti	gracile Ralfs var. elongatum Scott	
	& Presc L.29-32µ	238
11	indentatum West & West L.42-46µ	-,0
	W.11-12µ	220
11		
ti	megacanthum Lund. L.27µ	240
"	ACT : VGTTHICH CALLON ACT : 110A :	
	L.27-40µ W.66µ	241
11	orbiculare Ralfs var. depressum	
	Roy & Biss L.24-27µ	242
11	pseudopachyrhyncum Wolle L.31µ	
	W.29µ	243
11	punctulatum Breb L.30µ W.35µ	241
! 1	rhynchoceps Krieg. var. curvatum var.	-44
		245
11	nov. L.45–50μ	247
11	smithii Teiling L.12µ W.60µ	240
"	tohopekaligense Wolle fa. minus	
	Scott & Presc L.22-30 W.18-21 .	247
12	trissacanthum var. dissacanthum	
	L.25µ	248
11	wildemanii Gutw. L.50-60μ W.47-63μ.	
tt	" var. unispiniferum Scott & Presc.	
11	woltereckii Behre L.25µ W.33µ	251
11	zonatum Borges. var. ceylanicum	
		050
V1112	West & West L.40-45μ	272
Xanthidium	burkillii West & West L.45µ	253
11	spinosum (Josh.) West & West	
	L.50-55μ	
19	sansibarense Hier. fo. asymmetricum.	255
	-	
Order ULOTRICHAL	ES	
Suborder ULOTRIC		
Family MICROSP		
•		256
Microspora	witteana witter. D.II-IDh	490
D11 BD08000		
Family PROTOCO		
Protococcus	viridis Agardh D.14-16μ	257

Family TRENTEPOHLIACEAE Trentepohlia aurea var. polycarpa Hariot D.7-8µ 258
Family ULOTRICHACEAE Ulothrix zonata (Weber & Mohr) Kutz. D.17-20µ 259
Suborder SPHAEROPLEINEAE Family SPHAEROPLEACEAE Sphaeroplea annulina (Roth) Agradh D.17-19u 260
Order ULVALES Family SCHIZOMERIDACEAE Schizomeris Leibleinii Kutz. D.25-32µ 261
Order CLADOPHORALES Family CLADOPHORACEAE Basicladia Chelonum (Collins) Hoffmann & Tilden 262 Rhizoclonium hieroglyphicum (Ag.) Kutz. D.35µ 263
Order OEDOGONIALES Family OEDOGONIACEAE Oedogonium crassum (Hass.) Wittr. D.47-50µ 264 " crispum (Hass.) Wittr. D.15-17µ 265 Bulbochaete gigantea Pringsh 266
Order SCHIZOGONIALES Family SCHIZOGONIACEAE Schizogonium murale Kutz. D.19-20µ

nylum PROTOZOA Class MASTIGOPHORA Subclass PHYTOMASTIGOPHORA (PHYTOFLAGELLATA) Order CHRYSOMONADALES Family MALLOMONADACEAE	
Mallomonas caudata var. macrolepis Conrad L.50-75μ. " producta Iwanoff L.34-36μ	
Family OCHROMONADACEAE Dinobryon divergens Imhof L.30-35µ	271 272 273
Order CHRYSOCAPSALES Family CHRYSOCAPSACEAE Chrysocapsa planktonica (W. & G.S. West) Pascher Col.D.30µ	275
Order RHIZOCHLORIDALES Family STIPITOCOCCACEAE Stipitococcus urceolatus W. & G.S. West L.10-17µ	276
Order RHIZOCHRYSIDALES Family RHIZOCHRYSIDACEAE Chrysamoeba radians Klebs W.23-25μ	2 7 7
Class CHLOROPHYCEAE Order CHLOROCHYTRIDIALES Family CHLOROCHYTRIDIACEAE Pedinomonas minor Korshikov L.2-7µ	278
Order POLYBLEPHARIDALES Family POLYBLEPHARIDACEAE Dunaliella salina Teodor L.20µ	280 281
Order VOLVOCALES Family CHLAMYDOMONADACEAE Chlamydomonas completa	284 285 286

Chlamydomonas praecox	. 289
Chlorogonium elongatum Dang. L.50-55µ Polytoma uvella Ehr. L.18-20µ	290 291
Family HAEMATOCOCCACEAE Haematococcus lacustris (Girod.) Rostaf L.36-40µ	292
Family PHACOTACEAE Pedinopera granulosa (Playf.) Pascher L.38-40µ	. 293
Family SPONDYLOMORACEAE Pascheriella tetras Korshikov L.18-25µ	294
Family VOLVOCACEAE Eudorina elegans Ehr. D.180-200µ (Colony) " unicocca G.M.Smith D.40-45µ (Colony). Gonium formosum Pascher " pectorale Muell. D.35-40µ (Colony). Pandorina morum Bory " minodi Pleodorina californica Shaw. D.240-260µ (Colony) Volvox aureus Ehr. D.250-300µ	296 297 298 299 300
Order DINOPHYCEAE (DINOFLAGELLATA) Suborder GYMNODINIALES Family GYMNODINIACEAE Gymnodinium neglectum (Schilling) Lindem L.30µ. "aeruginosum Stein L.39µ Gyrodinium pusillum (Schill.) Kofoid & Swezy L.24µ Massartia Musei (Danysz.) Schiller L.24-30µ "vorticella (Stein) Schiller L.28-35µ	304 305 306
Suborder DINOCOCCALES Family PHYTODINIACEAE Hypnodinium sphaericum Klebs L.50µ	308
Suborder PERIDINIALES Family CERATIACEAE Ceratium hirundinella (0.F.M.) Schrank L.200-250µ	309
Family GLENODINIACEAE Bernardinium bernardinense Chodat L.17-18µ	310

Glenodinium	berolinense (Lemm.) Lindem	
	L.28-34µ	311
11	kulczynskii (Woloszynska) Schiller	
	L.20-30µ	312
11	penardiforme (Lindemann) Schi. L.20µ	313
'' !)	quadridens (Stein) Schi. L.37-40μ	314
	uliginosum Schilling L.25µ	315
Hemidinium	nasutum Stein L.25-30µ	316 316
apnaerodiniw	m cinctum Ehr. L.40-46µ)1 <i>1</i>
Family GONYAUL	ACACEAE	
Gonyaulax		318
เข้	palustre Lemm. L.35-37µ	
Family PERIDIN		
	aciculiferum	-
11 15	africanum	
"	gatunense Nygaard L.46-48µ	
" "	palatinum Lauterborn L.48-52μ	
"	spiniferum	
11	striolatum	
	umbonatum Stern H.2G-Joμ	720
Order CRYPTOPHY	CEAE	
Suborder MONOMAS	PIGACEAE	
Family MONOMAS	TIGACEAE	
Monomastix	opisthostigma Scherffel L.21µ	327
	037171.777	
Suborder CRYPTOM		
Family CRYPTOC		~^^
Cryptochrysi	s commutata Pascher L.20-25µ	<u> </u>
Family CRYPTOM	ONADACEAE	
	erosa Ehr. L.40µ	329
Chilomonas	Paramaecium Ehr. L.40-45µ	330
Order EUGLENALE:	2	
Family ASTASIA		
Astasia	Dangeardii Lemm. L.30-35μ	331
7 11 migray	an. n	
Family EUGLENA		
Euglena	acus Ehr. L.52-175 p. D.8-18 p	332
11	" var. rigida Hubner L.109-126µ	
	D.7-9µ	533
n	acutissima Lemmerman L.120-150µ	·
•	D.9-11µ	554
11	" var. longa n. var. L.220-350µ	-
	D.10-135μ	ううつ

Euglena	anabaena var. minor	
H H	caudata Hubner L.90-120µ D.27-50µ deses Ehr. L.86-170µ D.11-21µ	
11	" var. tenuis Lemm. L.95-140µ	220
	D.8-114	330
11	ehrenbergii Klebs L.190-400µ	223
"	D.13-30µ	340
**	geniculata	
It	gracilis Klebs L.35-55µ D.8-22µ	
11	granulata Klebs L.60-95µ D.18-27µ	
11	hyalina	
11	intermedia Klebs L.85-130µ D.8-12µ .	
n	klebsii Mainx L.45-85µ D.5-8µ	
11	minima	
u	oblonga Schmitz. L.52-70µ D.25-40µ .	
n	oxyuris Schmarda L.140-450µ	- 1-
	D.19-38μ	349
11	pisciformis Klebs L.21-34 pD.5-8 u	
Ħ	polymorpha Dangeard L.57-92µ	
	D.15-25µ	351
11	proxima Dang. L.55-75µ D.19-30µ	352
11	pseudospiroides Swirenko L.95-150µ	
	D.15-22µ	353
11	pseudoviridis	354
11	rostrifera n. sp. L.90-140µ	
	D.18-48µ	
11	rubra Hardy L.76-167μ D.25-36μ	356
lt .	sociabilis Dangeard L.65-112µ	
**	D.16-30µ	
**	spirogyra Ehr. L.80-126µ D.10-35µ	358
	" var. abrupte-acuminata Lemm.	750
er e	L.130-145µ D.15-17µ spiroides Lemm. L.75-164µ D.12-16u .	
n	spiroides Lemm. L.75-164 D.12-16 L. splendens Dang. L.74-110 D.21-27 L.74-	
u	spirogyra var. marchica	
II	terricola Dang. L.68-93µ D.8-17	
n	tripteris Dujardin L.90-120µ	
11	velata Klebs L.80-115µ D.25-35µ	365
Cryptoglena	pigra Ehr. L.15-18µ D.10µ	366
Lepocinclis		367
Ħ		368
Phacus		369
tr	" var. iowensis no. var. L.28-33µ	, ,
	D.17-20u	370
II .	alata Klebs L.28-40µ W.21-28µ	371
11	longicauda (Ehr.) Duj. L.120-170µ	•
11	W 45.70m	372
** " ,	predronectes (O.F.M.) Duj. L.40-100µ	
	- 33 - Y.29-70µ	373

Phacus	quinquemarginatus Jahn & Shawhan
n	L.35-52µ W.25-40µ 374
	lismorensis
11	rostafinskii Drezepolski L.70μ W.40μ 376
H	torta Lemm. L.80-1001 W.40-441 377
Trachelomone	as armata Stein L.30u
II.	hispida (Perty) Stein L.45µ 379
11	lagenella Stein L.25µ 380
Ħ	volvocina Ehr. L.20-25μ 381
Family PERANEM	
Anisonema (ovale Klebs L.10-13µ 382
Petalomonas	abscissa (Duj.) Stein D.10-13µ 383
Peranema to	richophorum (Ehr.) Stein L.48-50µ 384
Umacalua es	
or ceorns cl	clostomus (Stein) Mereschkowsky
	L.30-36u 385

ZOO-PLANKTON

Phylum Pl Subphylum Class I Subclas Order	n PLASMODR MASTIGOPHOR	TGOPHORA (ZOOFLAGELLATA) NADINA ron ocellatum L.15-25µ	387 388 389 390 391
Subclas	SARCODINA ss RHIZOPO	DA _	,,,
Order	AMOEBIN Amoeba	guttula Dujardin L.35µ	
	"	polypoidia	394
	Astramoeba		
	Chaos	diffluens Muller L.300-600µ palustris Greeff L.1500-3000µ	207
	Pelomyxa	villosa Leidy L.500µ	
	Rugires	bilzi Schaeffer L.300µ	
	merhen	bildi benderier h., yook	,,,
Order	TESTACE	Α	
	Arcella	polypora Penard D.80-150μ	400
	11	discoides Ehr. D.90-146µ	
	11	megastoma Penard D.190-365µ	402
	11	vulgaris Ehr. D.100-152µ	
	Assulina	muscorum Greeff L.28-50µ	
	12	seminulum Ehr. L.60-90µ	
	Centropyxi	s aculeata (Ehr.) Stein D.120-150u.	406
	11	constricta (Ehr.) Penard	
		L.120-150µ	407
	11	ecornis (Ehr.) Leidy D.200-275µ	408
		rys minor Belar L.16-20µ	409
	Difflugia		410
	11	acuminata Ehr. L.100-300μ	411
	11	corona Wallich L.180-230µ	412
	11	lebes Penard L.400µ	413
		oblonga Ehr. L.100-300µ	414
	Euglypha	cristata Leidy L.33-84µ	415
	1)	laevis Ehr. L.22-55µ	416
	11 t1	tuberculata Dujardin L.45-100µ	417
	••	mucronata Leidy L.108-140µ	418

Heleopera rosea Penard L.90-135μ	420 421 422 423 424 425 426
Subclass ACTINOPODA Order ACTINOPHRYDIA	
Actinophrys sol Ehr. D.40-50μ Acanthocystis chaetophora Schrank D.35-60μ Actinosphaerium eichhornii Ehr. D.200-300μ " var. majus Penard D.500-780μ	429 430
Subphylum CILIOPHORA Class CILIATA Subclass EUCILIATA Order HOLOTRICHA Suborder GYMNOSTOMATA Family HOLOPHRYIDAE	
Enchelys simplex (Kahl) L.85µ Enchelyodon elegans Kahl L.180µ Holophrya simplex Schewiakoff L.60µ Lacrymaria olor 0.F.Muller L.120µ Microregma audubcni (Smith) L.50µ Paradileptus robustus Wenrich L.150µ Platyophrya vorax Kahl L.60µ Plagiocampa mutabilis Schewiakoff L.40µ Placus luciae (Kahl) L.50µ Prorodon discolor Ehr. L.120µ " teres Ehr. L.200µ Pseudoprorodon ellipiticus Kahl L.120µ Spasmostoma viride Kahl L.60µ Trachelophyllum apiculatum (Perty) L.516µ	433 434 435 436 437 438 439 440 441 442 443 444 445
Urotricha farcta Caparede & Lachmann L.22μ Ileonema ciliata (Roux) L.75μ	
Family ACTINOBOLINIDAE Actinobolina radians (Stein) L.125µ	448
Family AMPHILEPTIDAE Amphileptus claparedei Stein L.250µ Acineria incurvata Dujardin L.120µ Loxophyllum helus (Stokes) L.220µ	450

Family CHLAYDODONTIDAE Chilodonella uncinata (Ehr.) L.42µ	45 2
Family COLEPIDAE Coleps elongatus Ehr. L.50µ hirtus (0.F.Muller) L.60µ	453 454
Family DIDINIIDAE Didinium balbianii (Fabre-Domergue) L.80µ	455
Family DYSTERIIDAE Trochilioides recta (Kahl) L.40µ	456
Family LOXODIDAE Loxodes magnus Stokes L.500p	457
Family NASSULIDAE Chilodontopsis depressa (Perty) L.74µ Cyclogramma trichocystis (Stokes) L.60µ Nassula ornata Ehr. L.125µ Orthodon hamatus Gruber L.180µ	459 460
Family SPATHIDIIDAE Homalozoon vermiculare (Stokes) L.450μ Spathidium spathula (0.F.Muller) L.120μ Spathidioides sulcatum Brodsky L.75μ	462 463 464
Family TRACHELIIDAE Branchioecetes gammari (Penard) L.125µ, Dileptus anser (O.F.Muller) L.155µ, Lionotus fasciola (Ehr.) L.140µ, Paradileptus robustus Wenrich L.350µ	466 467
Suborder TRICHOSTOMINA Family COLPODIDAE Colpoda cucullus O.F.Muller L.86µ Bresslaua vorax Kahl L.90µ Bryophrya bavariensis Kahl L.100µ Tillina magna Gruber L.135µ	471
Family CONCHOPHTHIRIDAE Conchophthirus anodontae (Ehr.) L.135µ	473
Family PARAMECIDAE Paramecium aurelia Ehr. L.165µ caudatum Ehr. L.210µ multilicronucleatum Powers &	475
Mitchell L.275µ	476

Paramecium trichium Stokes L.90µ	47'
Physalophrya spumosa (Penard) L.240µ	478
Family PLAGIOPYLTDAE	
Plagiopyla nasuta Stein L.125µ	479
Family TRICHOPELMIDAE	
Pseudomicrothorax agilis Mermod L.54µ	480
Suborder HYMENOSTOMINA	
Family FRONTONIIDAE	
Colpidium colpoda (Ehr.) L.100µ	481
Dichilum platessoides Faure-Fremiet 1, 135,	483
Frontoniella complanata Wetzel L.110u	487
Gradoma Scintilians Ehr. L.50u	484
Leucophrys patula Ebr. I. 180u	400
Leucophrydium putrinum Roux I. 130u	106
recranymenta pyriiormis (Enr.) [.50n	487
Uronemopsis kenti (Kahl) L.80μ	488
Family PLEURONEMATIDAE	
Ctedoctema acanthocrypta Stokes L.25µ	489
UVC11d1Um glaucoma O.F.Mullar I. 28u	400
nistiopalantium natans (Claparede & Lachmann)	491
Pleuronema coronatum Kent. L.55μ	492
Order SPIROTRICHIDA	
Suborder HETEROTRICHINA	
Family BURSARIIDAE	
Bursaria truncatella O.F.Muller L.775u	493
Bursaridium schewakoffi Lauterborn L.250u	494
Thylacidium truncatum Schewiakoff L.80µ	495
	1,7,7
Family METOPIDAE	
Bryometopus sphagni (Penard) L.80μ	496
Metopus es (0.F.Mull.) L.135μ	497
Family REICHENOWELLIDAE	
Balantidioides bivacuolata Kahl L.100µ	498
Family SPIROSTOMIDAE	
Blepharisma lateritum (Ehr.) L.180µ	400
Phacodinium metchnikoffi (Certes) L.100µ	サブブ
Pseudoblepharisma crassum Kahl L.200µ	500
Spirostomum minus Roux L.900-2000µ	POT
teres Claparede & Lachmann I. 500u	502 503

Family STENTORIDAE Climacostomum virens (Ehr.) L.280µ Stentor ignaeus Ehr. L.500µ roesali Ehr. L.540µ	つじつ
Family HALTERUDAE Halteria grandinella (O.F.Muller) L.27µ	
Family TINTINNIDAE Tintinnidium fluviatile Stein L.180µ Tintinnopsis cylindrata Kofoid & Campbell L.45µ	
Suborder HYPOTRICHINA	
Family ASPIDISCIDAE Aspidisca costata (Dujardin) L.32µ	510
Aspidisca costata (bujardin) 1.524	,
Family EUPLOTIDAE	
Euplotes eurystomus Wreniowski L.118-124µ	511
" patella (O.F.Muller) L.20µ	512
Family EPALCIDAE	
Discomorpha pectinata Levander L.75µ	513
Pelodinium reniforme Lauterborn L.45µ	514
101001111111111111111111111111111111111	
Family OXYTRICHIDAE	
Amphisiella oblonga Schewiakoff L.160µ	515
Balladyna elongata Roux L.30-36μ	516
Amphisiella oblonga Schewiakoff L.160µ Balladyna elongata Roux L.30-36µ Histrio histrio (0.F.Muller) L.160µ	517
Holosticha vernalis Stokes L.1804	STO
Hypotrichidium conicum Ilowaisky L.120µ	
Kahlia acrobates Horvath L.150µ	520
Kerona polyporum Ehr. L.165µ	
Onychodromopsis flexilis Stokes L.100µ	
Opisthotricha procera Kahl L.110µ	523
Oxytricha fallax Stein L.150µ	524
Paraholosticha herbicola Kahl L.170µ	
Pleurotricha grandis Stein L.260µ	526
Steinia candens Kahl L.175µ	
Strongylidium crassum Sterki L.145µ	
Stylonychia mytilus Ehr. L.150µ	529
Trichotaxis fossicola Kahl L.160u	220
Tachysona pellionella (0.F.Muller) L. 100μ	227
Uroleptus piscis (O.F.Muller) L.200µ	222
Urostyla grandis Ehr. L,350µ	222
" trichogaster Stokes L.200u	つ 24

Order PERITRICHA	
Suborder MOBILIA	
Family URCEOLARIIDAE	
Cyclochaeta spongillae Jackson L.60μ	535
Opisthonecta henneguyi Faure-Fremiet L.160µ	536
Trichodina sp	537
Suborder SESSILIA	
Family ASTYLOZOONIDAE	
Astylozoon faurei Kahl L.40μ	538
Family EPISTYLIDAE	
Campanella umbellaria Linnaeus L.18-µ	
Rhabdostyla pyriformis (Perty) L.30µ	540
Econd 1 ADUDVDID \ E	
Family OPHRYDIDAE Ophrydium eichhorni Ehr. L.260µ	E43
ophrytrum exchitority Enr. 11.200h	741
Family VAGINICOLIDAE	
Cothurnia imberbis Ehr. L.77µ	542
Vaginicola ingenita (0.F.Muller) L.55µ	543
, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
Family VORTICELLIDAE	
Vorticella campanula Ehr. L.100µ	544
Class SUCTORIA	
Order TENTACULIFERIDA	
Family PODOPHRYIDAE,	
Podophrya fixa (O.F.Muller) L.42µ	
Sphaerophrya magna Maupas L.38µ	546

Phylum ARTHROPODA Subphylum MANDIBULATA Class CRUSTACEA Subclass ENTOMOSTRACA Order PHYLLOPODA Suborder CLADOCERA Tribe CTENOPODA Family SIDIDAE Sida crystallina (0.F.Muller) F.3-4mm M.1.5-2.0mm Latona setifera (0.F.Muller) F.2-3mm M.1.5mm Diaphanosoma brachyurum (Lieven) F.0.8-0.9mm	548
M.U.4mm Pseudosida bidentata Herrick F.1.8-2.0 mm	
M.C.9mm	550
Tribe ANOMOPODA Family BOSMINIDAE Bosminopsis deitersi Richard F.0.35mm M.0.25mm Bosmina longirostris (0.F.Mull.) L.0.46-0.6m " "var. cornuta L.0.5-0.7mm " "var. brevicornis L.0.4-0.5mm " coregoni Baird L.0.45mm Grimaldina brazzai Richard F.0.9mm M.0.5mm . Ophryoxus gracilis Sars F.2.0mm M.0.9-1.0mm	m. 552 553 554 555 556
Family CHYDORIDAE Alona affinis Leydig F.1.0mm M.0.7mm "costata Sars F.0.5mm M.0.4mm "karau King F.0.45mm "monacantha Stars F.0.35-0.4mm "rectangula Sars F.0.35-0.4mm Alonella dadayi Birge F.0.25-0.3mm M.0.2mm "dentifera Sars F.0.4mm M.0.35mm "diaphana (King) F.0.5mm M.0.4mm "globulosa Daday F.0.3-0.4mm "globulosa Daday F.0.3-0.4mm Camptocercus rectirostris Schodler F.1.0mm Chydorus barroisi (Richard) F.0.4mm "gibbus Lilljeborg F.0.5mm "sphaericus (0.F.Mull.) F.0.3-0.5mm M.0.2mm M.0.2mm Dadaya macrops (Daday) F.0.3mm "	559 560 561 562 563 564 565 566 568 569
Euryalona occidentalis Sars F.1.0mm M.0.7mm	
Kurzia latissima (Kurz) F.O.6mm M.O.4mm	
Leydigia acanthocercoides (Fischer) F.1.0-1.5mm M.0.7mm	574

Oxyurella lon	gicaudis (Birge) F.O.5-0.6mm	575
Pleuroxus den	ticulatus Birge F.O.5-0.6mm	
	N.O.36mm	576
" ham	ulatus Birge F.O.6mm	577
" str	iatus Schodler F.O.8mm M.O.6mm	578
Family DAPHNIDAE	}	
Daphnia ros	ea Richard L.F.1.2-2.0mm M.O.8mm.	579
ū cat	awba Coker L.1.0-1.5mm	580
" lon	gispina O.F.Muller F.O.8-1.2mm	581
	ex Richard F.3.0-4.0mm	
1	M.1.0-1.5mm	582
Ceriodaphnia r	rigaudi Richard F.O.4-O.5mm M.O.4mm.	583
	reticulata (Jurine) F.O.6-1.4mm	
	M.O.4-O.8mm	584
" n	negalops Sars F.1.0-1.5 mm	
	M.O.6-O.8mm	585
ıı j	acustris Birge F.O.8-0.9mm	586
ıı o	quadrangula (O.F.Muller) F.1.0mm	
·	M.O.6mm	587
Moina brachia	,	588
" macroed		589
	ostris Leydig F.1.0-1.6mm	
200022	M.O.8-1.0mm	590
Moinodaphnia	macleayii Herrick F.1.0mm	591
	kingi Sars F.O.8-1.0mm	
Doc Prior Document	M.O.5mm	592
Simocenhalus	vetulus Schodler F.2.0-3.0mm	
Dimo O O Prima W	M. 1.0mm	593
Family MACROTHR	ICIDAE	
Macrothrix ro	osea (Jurine) F.O.66mm M.O.4mm	594
" 12	aticornis (Jurine) F.O.5-0.7mm	
_`	M.O.3-O.4mm	595
Tribe ONYCHOPO	DA	
Family POLYPHEM		
Polyphenus n	ediculus (Linne) F.1.5mm M.O.8mm	596
2023 F.10-111 P	, ,	
Order COPEPODA		
Suborder CALANOID	A	
Family CENTROPA		
Osphranticum		
,	F.1.7-2.5mm M.1.4-2.3mn	597
Oins and ones	sinensis Popper var. tenellus	'
Sinocalanus	Kikuchi Lala6-1.7mm	598

MIDAE	
Lamba nogificus (MITCKRUTU)	EOO
F 7 3-1 5mm M. I.	299
connexus Light F.O.9-1.5mm	600
M. U. Yara yuuu aaaaaaaaa	000
kenai M.S.Wilson F.2.0-3.0mm	വ
M.1.8-2.5mm	COT
mississippiensis Marsn F.1.241.)ma	602
M. L. LIIII	602
pygmaeus Pearse F.I.U-I.IIII M.I.OIIII.	ران
siciloides billjeborg F.I.V-I.Jam	604
M.I.O-I.IIIII	605
reighardi Marsh F.1.1-1.2mm M.1.0mm.	606
japonicus (Burckhardt) h.r.o-r. 4mm.	000
us chaifanjoni (Alchard)	607
ы.т. (-2.0mm г (р1) ы 1 8-2 0mm	00,
Sarsi (Rylov) F.1.0-2.0mm	608
M.T. 1-1.0mm	
T) A TS	
offinia Panne F 1.45mm M.1.3mm	609
SILINIS Tobbe rereason menos	
magnus Marsh L.1.85-2.55mm	610
higusnidatus-thomasi S.A.Forbes	
F.O.9-1.2mm M.O.8mm	611
strnnus Fischer F.1.5-3.0mm M.1.6mm.	612
varicans-rubellus Lilljeborg	
F.O.5-1.0mm M.O.5mm	613
vernalis Fischer F.1.0-1.8mm	
M.O.8-1.5mm	614
vicinus Uljanin F.1.7-1.9mm	
	615
agilis (Koch.) F.O.8-1.5mm	
M.O.7-0.8mm,	616
macrurus (Sars) F.1.1-1.4mm	
	617
parasinus (Fish.) F.O.8-0.9mm	
M.O.7mm	618
prionophorus Kiefer F.U.7-U.95mm	
	619
	.
	620
s Leuckarti (Claus) L.1.35mm	622
	M.1.9-2.0mn agilis (Koch.) F.0.8-1.5mm M.0.7-0.8mm macrurus (Sars) F.1.1-1.4mm M.2.0-2.5mm' parasinus (Fish.) F.0.8-0.9mm M.0.7mm prionophorus Kiefer F.0.7-0.95mm M.0.8mm serrulatus (S.Fish.) F.1.3mm M.0.9mm M.0.9mm M.0.9mm M.0.9mm M.0.9mm M.0.9mm M.0.9mm M.0.9mm M.0.9mm M.0.9mm

Mesocyclops oithonoides (G.O.Sars) F.O.8-O.9mm M.O.6-O.7mm Tropocyclops prasinus (Fischer) F.O.5-O.9mm	623	
M.O.55-O.6mm	624	
Family CANTHOCAMPTIDAE Canthocamptus staphylinus Jurine F.O.6-0.9mm M.O.6-O.8mm	625	f ye
Family ERGASILIDAE Limponcaea genuina Kokubo F.O.8mm M.O.75mm	626	

Order BDELLOID Family PHILOD Rotaria ci Embata con	OTATORIA) GA	628 629
Order MONOGONOI Suborder PLOIMA Family ASPLANO Asplanchna Asplanchnop		631 632
Family BRACHIO Brachionus "" "" "" Colurella Dipleuchlan Diplois da Epiphanes "" Euchlanis Kellicottia "" Keratella "" Lepadella "" Notholca Platyias ""	bakeri (Laut;) L.160-250µ bidentata L.250-45µ calyciflorus L.300µ falcatus Zacharias L.150-300µ havanaensis plicatilis Pallas L.350µ pala Ehrenberg L.250-400µ quadridentatus Hermann adriatica Bory L.80-100µ is propatula Beauchamp viesiae Gosse L.300-370µ brachionus Ehr. L.350-500µ clavulata Ehr. L.5µ senta (Hydatina) Ehr. L.500-420µ. dilatata Ehr. L.500µ	634 635 637 639 640 642 643 645 649 651 653

Family LECANIDAE	
Lecane elasma L.90-120µ	
" luna Nitzsch. L.100-150µ	663
Monostyla bulla Ehr. L.110-140μ	664
" lunaris L.120-150µ	665
" quadridentata L.120-160μ	666
Family PROALIDAE	
Proales decipiens Gosse L.200-400µ	667
Family DICRANOPHORIDAE	
Albertia typhylina Duj. L.150µ	
Dicranophorus forcipatus Nitzsch L.250-300μ	669
Encentrum felis Ehr. L.110-130μ	670
Family GASTROPIDAE	_
Ascomorpha ecaudis Perty L.200μ	671
Gastropus stylifer Imhof. L.150-170μ	672
Family MICROCODONIDAE	
Microcodon clavus Ehr. L.180-240μ	673
Family NOTOMMATIDAE	
Cephalodella megalocephala St. Vincent L.250u.	674
" auriculata St. Vincent L.150µ	675
Resticula melandocus Harring & Myers L.400µ	676
" auriculata St. Vincent L.150μ Resticula melandocus Harring & Myers L.400μ Scaridium longicaudum Ehr. L.452μ	677
Family SYNCHAETIDAE	
Ploesoma triacanthum Herrick L.130-160µ	
" truncatum Herr. L.220-250μ	679
" lenticulare L.200μ	680
Polyarthra euryptera L.200µ	681
" vulgaris Ehr. L.110-130μ	682
" sp	683
Family TETRASIPHONIDAE	.
Tetrasiphon hydrocora Ehr. L.850-1000μ	684
Family TRICHOCERCIDAE	6 6 7 8
Ascomorphella volvocicola Wiszniewski L.120µ	685
Elosa woralli Lord L.90-100µ	686
Trichocerca cylindrica Lamarck L.280-300	687
" longiseta L.320-340μ	688
n . * * * * * . T - T /// (1)	n HU

Order FLOSCULARIACEAE	
Family CONOCHILIDAE	
Conschilus unicornis Hlava L.400-600µ	690
	•
· Fourily HEXARTHRIDAE	
"Pedalia mira Hudson L.300-400µ	691
	_
Family TESTUDINELLIDAE	
Filinia brachiata L.100-125µ	692
" longiseta St. Vincent L.140-165p	
" opoliensis L.190-250µ	694
" terminalis Plate L.70µ	
Pompholyx sulcata Gosse L.120µ	
Voronkowia mirabilis Fadeew L.200µ	וכס
Order COLLOTHECACEAE	
*	
Family COLLOTHECIDAE	
Collotheca gracilipes Harring L.80-95µ	698

Phyto-Plankton (Fresh water)

Phylum	}	Става		Subclass	••	Order	••	Suborder	••	Family	••	Number o
Cyanophyta	}	1	• ["	Chroceccales :	-		•	Chroccoccaceae		7
					••	Oscillatoriales	**	Oscillatorineae	••	Oscillatoriaceae	••	12
						•	••	Nostochineae	••	Nostocaceae	••	9
	Ì		1		; I	i i		 	•-	Scytonemataceae	••	р Н
Chrysophyta	٠,	Bacillariaceae	٠. ["	Centrales	•]	Discineae		Melociraceae		티
•									••	Coscinodiscaceae		4
							••	Soleniineae	••	Rhizosoleniaceae	••	N) ·
							••	Biddulphiineae	••	Chaetoceraceae	••	ы
									••	Biddulphiaceae	••	ם
					••	Pennales	••	Araphidineae	••	Frafilariaceae	••	15
									••	Tabellariaceae	••	00
							••	Monoraphidinese	**	Achnanthaceae		J1
							••	Biraphidineae	••	Naviculaceae	••	30
									••	Epithamiaceae	٠.	8
									••	Nitzschiaceae	••	벋
	,								••	Surirellaceae	••	9
		Heterocontae	••		••	Heterococcales	••		••	Pleurochloridaceae		2
					••	Heterotrichales	••	i	**	Tribonemataceae		2
Chlorophyta :		Chlorophycese	-4		••	Tetrasporales	••	,	••	Palmellaceae	••	ر ان
					••	Chlorococcales	••		•••	Chlorococcaceae	•••	4 4-
										Charactareae	• •	٠,
									••	Coelastraceae		,
									••	Dictyosphaeriaceae	••	1
									40	Hydrodictyaceae	••	· vi
										Cochadagenoon		3 15
					••	Zvomematales	•			Zvenemetacese	٠.	ء د
						Č			••	Мевотаепівсеве	••	ъ,
									••	Desmidiaceae	••	19
					**	Ulotrichales	••	Ulotrichinese	٠.	Microsporaceae	••	_
									••	Protococcaceae	••	1
									••	Trenteponliacese	••	ייל
								•	**	Ulotrichaceae	••	٠,
							••	Sphaeropleineae	••	Sphaeropleaceae	40	1
					**	Ulvales	••		••	Schizomeridaceae		-ر
					••	Cladophorales	••		**	Cladophoraceae	••	N
					••	Oedogoniales	••		••	Oedogoniaceae	••	u
					••	Schizogonialea	••		••	Schi zogoniacese	••	_

Zoo-Plankton (Fresh water)

Phylus	t Class	:	Subclass	1	Order	t	Subarder	Panily		humber o Species
rotosos	t Kantigophore	1	Phytonasticophora	ı	Chrysomonadeles	•		Rallonomadacese	1	2
		1	(Phytoflagellata)	:	Chrysocapsales			Ochronomadacese		5
				;	Rhisochloridales	i		Stipitococcaces	ı	1
				ī	Rhi sochrysidales	1		Rhizochrysidacese	1	1
	: Chlorophycese	1		1	Chlorochytridials:			Chlorochytridiacese	*	1
				1	Polybleptaridales	:		: Polyblepharidaceae	:	9
				1	Yolvocales	,		: Chlamydomonadaceae : Kaenatonoccaceae	1	,
								Phacotaceau	:	1
								Spondylomoraceae	ì	i
								Tolvocacese	÷	1 8
					Dinophyceas		Gymnodiniales	Cymnodiniacese	i	5
				•	2210012000	i	Dinococcales	Phytodiniaceas		ì
						i	Peridiniales	: Ceratiacese		1
								: Clenodiniaceae		8
								: Conyaulscacese	ŧ	2 7
								Paridiniacese	ı	7
				1	Cryptophyceae	:	Monomestigales	: Konomatigaceae	•	1
						•	Cryptomonadales	Cryptochrysldscome	,	1 5 1
								: Cryptomonadaceae : Astaniaceae	1	- (
				1	Euglenales	1		: Erilenydese	:	50
								Perantenacese	:	~
			7		Protomonadina	1		. retminations	÷	4 7
		ı	Zoomastigophora (Zooflagellata)	ī	Atomorantin	•			•	
	r Sarpodina		Khisopoda	:	Amoshina			1		7
	- ALL VALLEY	•	·	:	Teatacens	÷		•	ŕ	28
		1	Actinopoda	i	Actinophrydia	i		1		4
	: Ciliata	i	Deciliata	٠	Holotricha	Ť	Cymnostomata	Holophryidae	2	16
		-					•	: Actinobolinidae		1
								Imphileptidae	•	1 5 1 2
								Chlamytodontidae		1
								Colepidae	ı	Z
								Didinildae	•	
								: Dysterlidse : Loxodidse	:	
								: Loxodidae : Massulidae	:	- 1
								: Spathidiidae	:	- ;
								Tracheliidae	÷	í
							Trichostomina	Colpodidae	i.	Ä
						•		Conchopththiridae	i	i
								t Paramecidue	ŧ	5
								: Flaglopylidae		1
								: Trichopeinidae	ŧ	11434415118452155122
							Hymenostomina	: Frontoniidae	ŧ	8
								: Pleuronematidae	7	4
				:	Spirotrichide .	1	Heterotrichina	Bursariidae	1	3
								: Metopidae	ŧ	2
								ReichRowellidae	3	1
								: Spirostomidae : Stentoridae	•	?
								Stentoridae : Aspidiscidae		•
						•		Euplotidae	•	
								: Epsicides	:	2
								Crytrichidae	:	20
					Paritricha			Urceolariidae	:	- 3
				•	*****			Stylozoonidae	i	3
						•		Epistylidae	i	Ž
								Ophrydiidae	i	1
								: Vaginicolidae	i	2
								t Vorticellidae	:	1
	1 Suctoria			t	Tentaculiferida	t		Podophryidae	1	2
thropoda	: Crustaces	1	Entonostraca	•	Phyllopoda	1	Cladocera	Sididae	-	
		-		•	·	•		Bosminidae	i	7
								Chydorides	i	23
								Dephnidse	ì	15
								: Macrothricidse	1	7 21 15 2
								: Polyphemidae		1
				1	Copepoda	ż		: Centropegidae	ŧ	
								: Disptomidae	1	10
								Temoridae	1	1
						:		: Cyclopidae	*	15
								Canthocamptidae	•	1
>	Ab-es B-415	-			24.22.42				<u>.</u>	
Cuermin.	thes: Rotifera	1		ī	Bdelloiden	ŧ		Philodinidae	1	4
				2	Nonogonon ta	1		: Asplanchmidae	3	2
								Brachionidae	3	23
								Lecanidae	1	5
								Promidae	1	29 5 1 3 2
								Dicrenophoridae	*	3
								Castropidae	ŧ	2
								Microcodonidae		1
								Notomatidae	3	4
								Synchaetidae	ŧ	6
								Tetrasiphonidae		1
				,	Flosquiariaceas	t		Trichocercidue	:	5
				•		•		Conochilidae	•	1
								: Testudinellidee	1	1 6
				,	Collothecaceae	1				
								Collothecidae	1	1

MARINE PLANKTON

В.

PHYTO-PLANKTON

Phylum CYANOPHYTA Class CYANOPHYCEAE Order HORMOGONEAE Family OSCILIATO Trichodesmium "Thieba	RIACEAE erytheraeum Ehr. L100μ 1 auti Gom. W.5-16 L.(Col.)-6000μ 2
Phylum CHRYSOPHYTA Class BACILIARIACEAE Order CENTRALES Suborder DISCINEAE Family MELOSIRACE	(DIATOMS) EAE
	rgensii Agardh D.10-38µ 3
u num	muloides Agar. D.10-40µ 4
Hyalodiscus s	telliger Bailey D.30-85µ 5
Family COSCINODI	
Actinophychus	
Actinocyclus	
Asterolampra	
	marylandica Ehr. D.50-150µ 9
Asteromphalus	
	flabellatus Greville D.40-60µ 11
Coscinodiscus	hepaticus Ralfs D.42-175 μ 12 asteronphalus Ehr. D.80-400 μ 13
CORCINOTISCUS	curvatulus Grunow D.40-100µ 14
11	excentricus Ehr. D.20-100µ 15
11	gigas Ehr. D.150~300µ
11	" var. praetexta Hustedt
	D.300-600μ 17
ŧŧ	Janischii A.Schmidt D.115-250µ 18
tt.	lineatus Ehr. D.30-150µ 19
11	marginatus Ehr. D.200-375µ 20
tt	nitidus Gregory D.25-100µ 21
ti	nobilis Grunow D.325-490µ 22
n	nodulifer Schmidt D.20-100p 23
tt	oculus-iridis Ehr. D.100-300u 24
11	perforatus Ehr. D.90-200µ 25
11	radiatus Ehr. D.30-180µ 26
11	Rothii Grunow D.40-175 μ 27
11	stellaris Roper D.60-175μ 28
n	subtilis=fasciculata Ehr.
	D.48-90μ 29
Cvclotella	striata (Kutz.) Grunow D.10-50u 30

Cyclotella	striata var. ambigua Grunow D.20-30µ	3 1
Ethmodiscus	Gazellae Janisch D.2000µ	
	H.3000μ tropica Schutt D.120-250μ	33
Hemidiscus Planktoniella	cuneiformis Wallich D.40-110µ sol Schutt D.10-60µ	34 35
Family CORETHRO	VACEAE	
Corethron	hystrix=(criophilum) Castracane D.20-33µ L.30-50µ	36
11	pelagicum Brun D.90-150μ L.100μ.	
Family LEPTOCYL		
Dactyliosolen	antarcticus Castracane D.15-75µ mediterraneus Peragallo D.10-35µ	
Leptocylindrus	s danicus Cleve D.6-12µ	
Guinardia	L.80-130µ Blavyana Peragallo D.40680	
H GUTHET GTS:	flaccida (Castr.) Perag.	44
	D.25-90µ L.80-150µ	42
Family SKELETON	EMACEAE	
	costatum (Grev.) D.18-35µ	
Ctanhananeri a	L10000μ nipponica Gran & Yendo D.27-40μ	
n prebusito by x r s	palmeriana (Gran) Grunow	44
	D.35-150µ	45
I)	turris (Greville) D.10-75µ	46
Family THALASSIC		
		47
Lauderia		48
Schrodelia "	delicatula Peragallo D.18-30μ	49
	schroderi (Bergon) D.13-40μ condensata Cleve D.17-30μ	50
# # # # # # # # # # # # # # # # # # #		51 52
		<i></i>
Suborder SOLENIIN		
Family RHIZOSOLI		
Rhizosolenia	acuminata Gran. D,35-225µ	E~
n	L.1000µ alata Brightwell D.7-15µ L.700µ .	53 54
1t	" fo. curvirostris Gran	55 55
tt .	" " gracillima Grunow D.5-7µ	-
	L.700µ	56
11 11	" " indica Ostenfeld D.20-50u	57 58
	" " inermis (Castr.)	20

Rhizosolenia	arafurenris Castracane D.1204	59
11	Bergonii H.Peragallo	
	D.100μ L.500μ	60
ŧ	calcar-avis M.Schultze	
	D.80-100μ	61
tı	castracanei H.Perag. D.150-200µ	
	L.600-1000µ	62
ŧ ₁	clevei Ostenfeld D.36-85µ	
	L.275-405µ	63
11	cylindrus Cleve D.12-50µ L.300µ .	64
n .	delicatula Cleve D.10-20µ	
	L.30-100µ	65
11	hebetata fo. semispina Gran	
	D.5-15μ L.300-750μ	66
11	imbricata Brightwell D.100µ	
	L.500µ	67
II.	" var. Schrubsolei ^C leve	
	D.10-30µ L.200-500µ	68
11	robusta Norman D.50-400μ	
	L.500-1000µ	
11	setigera Brightwell D.6-25µ	70
ff	Stolterfothii H.Perag.	
	D.15-45μ L.250μ	71
ıı	stvliformis Brightwell D.100µ	
	L.15 0 μ	72
11	" var. latissima Bright.	
	D.60-150μ	73
Suborder BIDDULPHI		
Family BACTERIAS		
Bacteriastrum	· · · · · · · · · · · · · · · · · · ·	
	L.15-35µ	
13	delicatulum Cleve D.10μ	75
t t	elegans Pavillard D.15-28µ	76
11		
11 .	hyalinum Lauder D.13-56µ	78
t†	" var. princeps (Castracane)	
	Ikari D.15-60μ	79
ti	mediterrananeum Pavillard	
	D.28-32µ L.28-30µ	
u	varians Lauder D.10-30μ L.15-35μ.	81
Family CHAETOCER		~ ~
	ffinis Lauder W.9-30µ	
	revis Schutt W.10-40µ	
	oarctatus Lauder W.30-45µ	
	ompressus Lauder W.10-24µ	

Chaetoceros " " " " " " " " " " "	costatus Pavillard W.23-27µ 86 curvisetus Cleve W.10-30µ 87 dadayi Pavillard W.10-28µ 88 denticulatum Lauder W.24-30µ 89 decipiens Cleve W.10-80µ 90 didymus Ehr. W.12-34µ 91 " var. anglica W.10-40µ 92 " var. protuberans Gran & Yendo. 93
u	distans Cleve W.10-50µ 94
11	diversus Cleve W.8-12µ 95
n	hispidum Brightwell W.30-40μ 96
2)	indicum Karsten W.20-30µ 97
**	laciniosus Schutt W.10-42µ 98
11 1e	" var. peragicus Cleve W.5-8µ 99
**	Lauderi Ralfs W.18-24µ100 leavis Leuduger-Fortmorel
**	W.5-12µ101
11	Lorenzianus Grunow D.10-40 μ 102
n	messanensis Castracane W.12-40µ103
11	paradoxum Cleve W.20-45µ104
11	pendulus Karsten W.9-18µ105
n	peruvianus Bright. W.10-30µ106
11	" fo. gracilis (Schurod) Hust.
	W.10-15µ107
"	pseudocurvisetus Mangin W.15-50µ.108
11	seiracanthus Gran W.12-24µ109
11	setoensis Ikari W.30µ110
"	siamense Ostenfeld W.25-60µ111
11 11	tetrastichon Cleve W.10µ112
15 11	Van-Heurckii Gran W.12-36µ113
**	Weissflogii Schutt W.36-70μ,114
Family BIDDULPH	TACEAE
	malleus Van Heurck W.80-110p115
Biddulphia	aurita var. obtusa Hustedt
•	W.40-60µ116
11	dubia (Bright.) Cleve L.42-65µ
	W30-45µ117
11	longicruris Greville L.45-55µ118
n	mobilensis Bailey L.45-80µ119
11	pulchella Gray L.20-150μ W30-45μ120
2)	reticulata Roper W.59u121
17	regia Ostenfeld W.90-310µ122
11	sinensis Greville W.90-250µ123
21	Thuomeyi Bailey L.40-70µ124
Cerataulina	Bergonii Peragallo D.18-50μ125

Cerataulina compacta Ostenfeld	126
Dithylium Brightwellii Grunow D.25-100µ	
L.80µ	127
" sol Grunow D.40-225µ	128
Hemiaulus Hauckii Grunow L.8-754	129
" indicus Karsten	
" membranacus Cleve W.67-97µ	
" sinensis Greville L.12-90µ	
Isthmia nervosa Kutz. L.170-240µ W.240µ	
Lithodesmium undulatum Ehr. L.40-90u	134
Triceratium arcticum var. D.80-150 p	135
" favus Ehr. L.40-350µ	136
" alternaus Van Heurck L.27-34µ	
W.32-39μ	137
" reticulum Ehr. L.25-80µ	
" revale A.Schmidt L.140-180µ	
colored theory and Took this th	
Family EUCAMPIACEAE	
Climacodium biconcavum Cleve L.60µ	
W.35-65µ	140
" Frauenfeldianum Grunow	440
L.10-30µ W.75-225µ	7/1
Eucampia cornuta Grunow L.100-160µ	-
V.30-40µ	1/2
" zoodiacus Ehr. L.10~60µ	
200013Cus mit. n.10~00t	
Streptotheca indica Karsten W.200µ " thamesis Shrubsole L.60-120µ	ተ ረ ተ
rudmests authosofe n.oo-foot	140
Order PENNALES	
Suborder ARAPHIDINEAE	
Family FRAGILARIACEAE	
	340
Asterionella japonica Cleve L.50-100µ	
no ca ca Granow 11.50-10.50	147
Fragilaria interrmedia Grunow L.15-60µ	
W.2.5-5µ	148
oceanica io. Cypica Cieve	
L.8-60µ W.3-8µ	149
Pseudoeunotia doliolus Grun. L.40-60µ	
W.6-8µ	150
Synedra fulgens W.Smith L.170-450µ	151
" var. mediterranea Grun. L.170-	
440µ	
" Gaillonii Ehr. L.110-270µ	153
Thalassionema nitzschioides Gru. L.10-110µ	
W.2-3µ	
Thalassiothrix delicatula Cupp. L.1500-1700μ	155
" Frauenfeldii Gru. L.8-200µ	
w.2-4µ	156

Thalassiothrix	mediterranea var. pacifica Cupp. L.580-750µ	157
Family TABELLARIA	ACEAE	
Climacosphenia	moniligera Ehr. L.300-600µ	
	W. 25-35u	158
Gramma to phora	angulosa Ehr. L.14-35µ	159
11	marina Kutzing L.18-100µ	:
	W.8-15µ	160
11	serpentina Ehr. L.25-150µ	
	W.12-18µ	161
Licmophora	abbreviata Agardh L.20-110µ	*
.	W.4-8µ	162
U	flabellata (Garm) Agardh	•
	L.100µ	163
Plagiogramma	vanheurckii Grunow L.20-35μ	164
Rhabdonema	adriaticum Kutz. L.25-150µ	
	W.7-10µ	165
Striatella	1	,
4 3-34 34	W.8-20µ	166
Suborder MONORAPHII	DINEAE	
Family ACNANTHACE		
Achnanthes 1		
	₩.20-25μ	167
n j	longipes Agar, L.70-120µ	
	Frevillei Gru. L.44µ W.13µ	
	scutellum Ehr. L.20-60u	~-,
	W.12-40µ	170
	"" 12 40 h	270
Suborder BIRAPHIDIN	VEAE	
Family NAVICULACE		
	alata Kutz. L.60-160µ	
	W.30-60µ	171
11	gigantea Grun. var. sulcata (OMe)	
	nyalina Kutz. L.90-130µ	±1€
	W.25~34u	173
n -	lineata Greg. L.57µ W.13µ	
	lineolata Ehr. L.30-60µ	114
•	W.13-28µ	175
11	quadrata Breb. var. L.67µ W.42µ	175
		176
		177
αΩ στο απεριμέριου ε		170
11	W.15-20µbalticum Rabh. L.150u	178
4-		179
		180
•	strigile (W.Smith) L.25U-360µ	101
	W.27-35μ	181
	- Ju -	

Man coerora	minuta Grev. L.18-20μ	
_	W.8-10µ	182
Navicula	cancellata Donk L.52u	183
lt .	elegans W.Smith L.60-115µ	
	W.20-30µ	184
11	lyra Ehr. L.60-150µ	
Pleurosigma	affine Grun. L.120-150µ	
_	W.17-33µ	186
Tř	angulatum W.Smith L.150-360µ	
	W.36-50μ	187
tt	compactum Grev. L.281u W.62u	188
Ħ	elongatum W.Smith L.130-380µ	
	V.20-30µ	189
21	fasciola W.Smith L.90-107µ	190
†1	intermedium W.Smith L.230µ W.12µ.	
tr	naviculaceum Breb. L.79µ W.16µ	
11	nicobaricum Grun. L.130µ	
řt.	Normanii Ralfs L.127µ W.24µ	
11	pelagicum Perag. L.194 W.24 u	195
H	rectum Donkin L.142 W.12	
11	rigidum var. incurvata Brun.	-,-
	L.200µ W.30µ	197
1)	salinarum Grun. L.90-130µ	~,
	W.13-17µ	198
Trachyneis	, , ,	
ግንሶስሽን በለክፁን ፍ	l lenidontera l'leve i bh-luca	7(3)
Tropidoneis	lepidoptera Cleve L.65-100µ	200
_		200
Family NITZSC	HIACEAE	200
_	PHIACEAE closterium W.Smith L.32-260µ	
Family NITZSC	HIACEAE closterium W.Smith L.32-260µ W.2-6µ	201
Family NITZSC Nitzschia	HIACEAE closterium W.Smith L.32-260 W.2-6 hungarica Grun. L.80-120	201
Family NITZSC Nitzschia	HIACEAE closterium W.Smith L.32-260µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ	201 202
Family NITZSC Nitzschia	PHIACEAE closterium W.Smith L.32-260µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ	201 202 203
Family NITZSC Nitzschia "	CHIACEAE closterium W.Smith L.32-260 W.2-6 hungarica Grun. L.80-120 lanceolata W.Smith L.100-200 W.17 longissima Gran. L.250-300	201 202 203
Family NITZSO Nitzschia ""	CHIACEAE closterium W.Smith L.32-260µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima Gran. L.250-300µ " var. reversa W.Smith	201 202 203 204
Family NITZSO Nitzschia ""	CHIACEAE closterium W.Smith L.32-260µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima Gran. L.250-300µ " var. reversa W.Smith L.115-220µ	201 202 203 204
Family NITZSC Nitzschia ""	CHIACEAE closterium W.Smith L.32-260µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima Gran. L.250-300µ " var. reversa W.Smith L.115-220µ paradoxa Gmelin L.60-150µ	201 202 203 204 205
Family NITZSC Nitzschia ""	CHIACEAE closterium W.Smith L.32-260µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima Gran. L.250-300µ "var. reversa W.Smith L.115-220µ paradoxa Gmelin L.60-150µ W.4-8µ	201 202 203 204 205 206
Family NIT2SC Nitzschia ""	closterium W.Smith L.32-260µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima Gran. L.250-300µ " var. reversa W.Smith L.115-220µ paradoxa Gmelin L.60-150µ W.4-8µ pacifica Cupp L.80-140µ	201 202 203 204 205 206 207
Family NIT2SC Nitzschia "" "" "" ""	CHIACEAE closterium W.Smith L.32-260µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima Gran. L.250-300µ " var. reversa W.Smith L.115-220µ paradoxa Gmelin L.60-150µ W.4-8µ pacifica Cupp L.80-140µ plana W.Smith L.70µ	201 202 203 204 205 206 207
Family NIT2SC Nitzschia "" "" ""	CHIACEAE closterium W.Smith L.32-260µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima Gran. L.250-300µ " var. reversa W.Smith L.115-220µ paradoxa Gmelin L.60-150µ W.4-8µ pacifica Cupp L.80-140µ plana W.Smith L.70µ pungens var. atlantica Cleve	201 202 203 204 205 206 207 208
Family NIT2SC Nitzschia "" "" "" ""	closterium W.Smith L.32-260µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima Gran. L.250-300µ " var. reversa W.Smith L.115-220µ paradoxa Gmelin L.60-150µ W.4-8µ pacifica Cupp L.80-140µ plana W.Smith L.70µ pungens var. atlantica Cleve L.137µ	201 202 203 204 205 206 207 208 209
Family NIT2SC Nitzschia "" "" "" "" "" ""	closterium W.Smith L.32-260µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima G.an. L.250-300µ " var. reversa W.Smith L.115-220µ paradoxa Gmelin L.60-150µ W.4-8µ pacifica Cupp L.80-140µ plana W.Smith L.70µ pungens var. atlantica Cleve L.137µ seriata Cleve L.90-100µ W.6µ	201 202 203 204 205 206 207 208 209 210
Family NITZSC Nitzschia "" "" "" "" "" "" ""	closterium W.Smith L.32-260µ W.2-6µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima Gran. L.250-300µ " var. reversa W.Smith L.115-220µ paradoxa Gmelin L.60-150µ W.4-8µ pacifica Cupp L.80-140µ plana W.Smith L.70µ pungens var. atlantica Cleve L.137µ seriata Cleve L.90-100µ W.6µ sigma W.Smith L.50-100µ W.4-15µ.	201 202 203 204 205 206 207 208 209 210 211
Family NITZSO Nitzschia "" "" "" "" "" "" "" "" "" "" "" ""	closterium W.Smith L.32-260µ W.2-6µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima Gran. L.250-300µ "var. reversa W.Smith L.115-220µ paradoxa Gmelin L.60-150µ W.4-8µ pacifica Cupp L.80-140µ plana W.Smith L.70µ pungens var. atlantica Cleve L.137µ seriata Cleve L.90-100µ W.6µ sigma W.Smith L.50-100µ W.4-15µ. "var. intercedens Grun. L.300µ.	201 202 203 204 205 206 207 208 209 210 211
Family NITZSO Nitzschia "" "" "" "" "" "" "" "" ""	closterium W.Smith L.32-260µ W.2-6µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima Gran. L.250-300µ "var. reversa W.Smith L.115-220µ paradoxa Gmelin L.60-150µ W.4-8µ pacifica Cupp L.80-140µ plana W.Smith L.70µ pungens var. atlantica Cleve L.137µ seriata Cleve L.90-100µ W.6µ sigma W.Smith L.50-100µ W.4-15µ. "var. intercedens Grun. L.300µ. spectabilis Ralfs L.150-450µ	201 202 203 204 205 206 207 208 209 210 211 212
Family NITZSO Nitzschia "" "" "" "" "" "" "" "" "" "" "" ""	closterium W.Smith L.32-260µ W.2-6µ W.2-6µ hungarica Grun. L.80-120µ lanceolata W.Smith L.100-200µ W.17µ longissima Gran. L.250-300µ "var. reversa W.Smith L.115-220µ paradoxa Gmelin L.60-150µ W.4-8µ pacifica Cupp L.80-140µ plana W.Smith L.70µ pungens var. atlantica Cleve L.137µ seriata Cleve L.90-100µ W.6µ sigma W.Smith L.50-100µ W.4-15µ. "var. intercedens Grun. L.300µ.	201 202 203 204 205 206 207 208 209 210 211 212 213

Family SURIRELLACEAE Campylodiscus biangulatus Hantsch L.60-80µ ... 215 daemelianus Grun. L.80-100µ ... 216 echeneis Ehr. L.80-100µ ... 217 ornatus Grev. L.85µ ... 218 undulatus Grev. D.100-140µ ... 219 Surirella fatuosa Kutzing L.65µ ... 220 javanica A.Schmidt L.60-80µ ... 221 norvegica Elu. L.267µ W.55µ ... 222

ZOO-PLANKTON

Phylum PROTOZOA Class MASTIGOPHORA Order CHRYSOMO Family DICTYO Dictyocha " " Distephanus	ONADINA OCHACEAE fibula Ehr. L.10-45µ
Order DINOFLA	
Family PHYTO:	DINIDAE
Pyrocystis	elegans 227
11	fusiformis Murray L.100-150μ 228
**	hamulus var. inacqualis Schroder 229
II	noctiluca Murray D.1.7μ 230
Family PRORO Prorocentr	CENTRIDAE um micans Ehrenberg L.1.5-2.0μ 231
Family PERID	INIIDAE
Amphisolen	ia bidentata Schroder L.70-80µ 232
Īŧ	thrinax Schutt L.900-1000µ 233
Amphidoma	steini Schill 234
Ceratium	axiale Kofoid L.570-610µ 235
ti	arietinum Cleve
tt	breve Schroder 237
tt.	belone Cleve L.58-70µ 238
11	candelabrum (Ehr.) Stein 239
1t	" var. dilatatum (Gourr.)
	Jorgensen L.190-200μ 240
tt	" fo. commune Bohm 241
11	" fo. curvatulum Schiller 242
11	carriense Gourret 243
t1	deflexum (Kofoid) Jorgensen
	L.420-450μ 244
TI .	declinatum Karsten 245
ŧı	extensum (Gourr.) Cleve
	L.950-1200µ 246
tt .	falcatum (Kof.) Jorg 247
u	furca (Ehr.) var. berghia Jorg.
	L.170-200µ 248
21	" var. eugramma Jorg 249
tt	fusus (Ehr.) var. seta Tschirn 250
"	gibberum Gourret 25
	- 59 -

Ceratium	gibberum fo. Sinistrum Gourret	
0612.01000	L.150µ	252
11	gravidum Courret	253
11	inflexum (Gourret) Kofoid	
	L.800-1000µ	254
11	intermedium (Jorg.) Jorg.	055
	L.500-650μ	255
It	karsteni Schiller	250
11	longirostrum (Gourret) Jorg	257
11	longipes Gran. L.51-57µ	250
t†	macroceros (Ehr.) Cleve L.350-400µ	209
11	massiliense (Gourret) Jorg. L.600-650µ	260
	" var. protuberans L.370-500µ	261
11	war, protuperans 1,70-900p	262
	molle Kofoid L.360-385µ	202
11	pentagonum (Gour.) var. robusta	263
	Jorg	20)
19	pennatum Kofoid var. scapiforme L.600-800µ	264
11	pulchellum Schroder L.380-450µ	265
11	pulchelium Schroder 1.300-4304	266
11	setaceum Jorg	200
	strictum (Okamura & Nishikawa)	267
11	Kofoid L.900-950μ sumatranum (Kars.) Jorg.	201
11	W.500-550μ	268
11	" var. recurvum L.2500µ	260
 11	tenue (Ostf.; Schm.) Jorg.	205
	L.500-650µ	270
11	" var. buceros (Zacharias) Jorg.	210
	var. buceros (Zacharias) Jorg.	271
11	L.580-660µteres Schiller	272
11	trichoceros (Ehr.) Kofoid	212
.,		277
11	L.630-680μ tripos (0.F.Muller) Nitsch.	21)
		274
11	L.300-350μ vultur Cleve L.490-510μ	275
	s horrida Stein D.85-92µ	
u cera tocory:	gourreti Paulsen L.85-95µ	277
Cladomeria	brachiolatum (Stein) Pavillard	211
CIAGOPAXIS	· · ·	279
Dinanhuaia	L.43µ	278
DINOPHASTS	homunculus Stein L.90-100µ	279
11	ω 19 30μ 1111111111	
11	ovum Schutt L.44-62µ	281
11	sphaerica Stein L.44-47µ	282
	tripos Gourret L.95-105µ	283
Diplopsalia	0	284
	" fo. asymmetrica (Mangin)	200
	L.29-75µ	285

	7 3 Ob-4m T 40 6En D 40n	286
Goniaulax	polyedra Stein L.40-65μ D.48μ	287 287
11	DOT 15 12 12 12 12 12 12 12 12 12 12 12 12 12	201
Goniodoma	polyedricum (Pouchet) Stein	
		288
11		289
Gymnodiniu	m maguelonnense Biecheler	290
11	gracile Berg. L.90-130u	291
Carrodinium	glaucum labour L.40-56µ	292
Wotorodini	um mediterraneum Pav. L.65µ	293
He cerocritic	odinium setiferum Lohmann	
FITCI ACAH MI	L.40-45μ	294
0.1.11		295
Urinthocer	OND MEDITERED IN IT I	296
#		297
Oxytoxum		
11		298
11	tesselatum (Stein) Rampi	
	#### ### #############################	299
Parahistio		300
Pachydiniu	m mediterraneum Rampi	301
Peridinium	Brochi Kofoid; Sw	302
11	breve Paulsen L.30-75µ	303
11	conicum (Gran) Ostenfeld & Schmidt	304
11	depressum Bailey D.75-85µ	305
11	diabolus Cleve L.85-180µ	306
11	divergens Ehr. L.80-84µ	307
*11	Granii Ostenf. fo. mite Pavillard .	308
11	leonis Pavillard L.65-95µ	309
	lenticula (Bergh.) f. asymmetrica	,,,
!]	(Mangin) L.30-75µ	310
	(Mangin) L. 30-194	710
It	oceanicum Vanhoffen var. oblongum	311
	Auriv.	
11	paulseni Pavillard L.45-50μ	312
11	pellucidum Lebour L.36-70µ	313
11	pentagonum Gran D.115-120µ	314
18	steini Jorg. L.39-88µ	315
Phrophacus	s horologicum Stein D.155-1654	316
Phalacroma	a circumsutum Karsten L.75-80µ	317
11	doryphomym Stein L.54-86u	318
11	parvulum (Schutt) L.50µ	319
u	porodictyum Stein L.32-48µ	320
		321
Podolampa	/	322
Protocera		323
Ptychodis		324
Heterodin		325
Spiraulax		
Triposole		
11	truncata Kof. L.109-1454	
Podol amna	s palmipes Stein L.654	328

Class SARCODINA Order FORAMINIFERA Family GLOBIGERINIDAE	
Globigerina bulloides d'Orb. D.300-800µ Globigerinoides conglobata Brady D.750µ Globigerinella aequilateralis Brady D.840µ.	331
D.840µ Orbulina universa (d'Orb) D.840µ	332 333
Family CYMBALOPORIDAE Tretomphalus bulloides (d'Orb) D.560µ	334
Order RADIOLARIA Family ACANTHOCHIASMIDAE Acanthochiasma rubescens Krohn D.600µ L.Sp.1300-1500µ	335
Family ACANTHOPLEGMIDAE Acanthocolla cruciata Haeck. D.Sp.700 D.60μ Amoebophrya acanthometrae Koeppen D.50μ Acanthoplegma krohni (Haeck) D.Sp.300-380μ.	337
Family ACANTHOMETRIDAE Acanthometron pellucidum Mull. D.Sp.240µ Amphilonche elongata Mull. L.600µ belonoides Hkl. L.400-1000µ Anchylometra (Acanthometra) pellucida Mull. L.240µ	340 341
Dromosphaera polygonalis Haeckel D.410-450μ L.Sp.1500-2000μ	
Family AMPHILITHIDAE Amphibelone hydrotomica Haeck. D.250-300µ Amphilithium clavarium Haeck. L.200µ	344 345
Family AULACANTHIDAE Aulacantha scolymantha Haeck. L.100-250µ	346
Family AULOSPHAERIDAE Aulosphaera trigonopa Haecker D.2200µ	347
Family CYRTOIDAE Cyrtoc lpis urceolus Haeck. D.60p	348
Acanthocorys umbellifera Haecker Dictyophimus tripus Haeck	349 350
- 62 -	

Dictyocephalus mediterraneus Haeck. L.80-130p
Lychnocanium sp. L.170-200µ
Family COELODENDRIDAE Coelodendrum gracillimum Haeck. D.1000-1200µ
Family SAGOSPHAERIDAE Sagena tenaria Haeckel D.1500-2500µ 355
Family DISCOIDAE Heliocladus (Heliodiscus) asteriscus D.150µ. 356
Family DORATASPIDAE Lychnaspis undulata Haeck. L.260-360µ 357 Stauraspis stauracantha Haeck. D.200µ 358
Family GIGARTACONIDAE Amphiacon denticulatus Haeck. L.160-240μ 359 Gigartacon mulleri Haeck. D.sp.90-120μ 360
Family MEDUSETTIDAE Gazeletta hexanema Haeck. L.30-40 W.60-70 361 Medusetta armata Borgert. L.45-55
Family PHYLLOSTAURIDAE Acanthonia crux Cleve L.170-200µ
Family PLECTOIDAE Plectacantha sp. Popfsky D.800-1000 365
Family SPYROIDAE Pylospyris trinacria Haeckel
Family SPHAEROIDAE Acanthosphaera acufera Haeck. D.80µ
Family SPHAEROZOIDAE Sphaerozoum geminatum Haeck. D.250-280µ 373 Collozoum inerne Muller D.90-100µ 374

Family STAURACONIDAE	
Stauracon pallidus Clapar D.Sp.100-160µ	375
D 0444240011	
Family ASTROLITHIDAE	776
Heliolithium aureum Schew. D.Sp.1904	210
at thion.	
Class CILIPHORA Subclass CILIATA	
Order PERITRICHES	
Family VORTICELLIDAE	
Sticholonche zancles Hertw. D.180-500µ	377
Zoothamnium pelagicum G.Du Plessis	378
Order HOLOTRICHA (OLIGOTRICHA)	
Suborder TINTINNOINEA	
Family CODONELLIDAE	7770
Codonella aspera (Fol.) Lon. L.85µ	279
mamphorella Bied. L.90µ	381
Tintinnopsis lobiancoi Daday L.180-300µ	201
aperta Brandt L.45-50µ	382
angulata Daday L.50-110µ	201
beroidea (Stein) L.45µ butschlii Daday L.130µ	20E
butschlii Daday L.130μ	200
" cylindrica Daday L.250µ	700
mortenseni Schmidt L.50-80μ nordguisti Brandt L.115-130μ	388 388
nordguisti Brandt L.119-1904	380
nucula Fol. L.70μ radix (Imhof) L.200-300μ	390
subacuta Jorg. L.45µ D.25µ	391
Subacuta soig. 11.47% 20.27%	,,,_
Family CODONELLOPSIDAE	
Codonellopsis morchella (Cleve) L.90µ	392
manericana Kofoid L.80-90μ	393
" orthoceras Haeck. L.200-300μ	
" ostenfeldi (Schmidt) L.100-120μ.	395
" parva Kofoid; Campbell	
L.150-350μ	396
Stenosenella nivalis (Meunier) L.35-70µ	
" ventricosa (CL.;L.) L.80μ	398
Family COXLIELLIDAE	
Helicostomella subulata (Ehr.) Jorg.	
L.120-190µ	399
" edentata Faure-Fr. L.145-170µ.	
Coxliella faciata (Kof.) L.250-500u	

Family CYTTAROCY	LIDAE (1) T 200 800	4O2
Cyttarocylis	cassis (Heack) L.180-200µ	40Z
11	plagiostoma Dad. L.140µ	405
Family DICTYOCYS	STIDAE	
Dictrocysta 1	epida Ehr. L.65-75 μ	404
Dig O G D Su =	rulleri Brandt. L.54-62µ	405
	14220-1	
Family EPIPLOCYI	TDAR	
		406
EDIDIOGATIS I		407
U	olanda (Daday) L.120-1354 undella (Ost. & Sch.) L.1104 " var. constricta Kofoid &	,
It		408
_	Campbett Harbe Tolk and	400
Family PETALOTR	ICHIDAE ()	400
Petalotricha	ampulla (Fol) L.100µ	403
Family PTYCHOCY	LIDAE	
Farella edi	riatrica (Imh.) L.120-1454	410
u cai	mpanula (Sch.) Jorg. L.155µ	412
ıı eh:	renbergi (C. & L.) L.300-400μ	413
n fi	stulicanda Jorg. L.1554	414
11 mp:	rbuzowskii (Dad:) L.250-450u	415
Democracy 27	stulicauda Jorg. L.1554	416
Poroecus ap	TONTH MED (OTTO 10) TO THE TOTAL MEDICAL PROPERTY.	
Family TINTINNI	חדת	
ramity Tinting	neapolitanum Dad. L.117µ	417
Tintinnialum	neapoiltanam bade bear p	•
DILLEDONIE	T T TO A D	
Family RHARDONE	lla simplex (Cleve) L.50-60 μ	418
Protorhabdone	TIE SIMPLEX (CIEVE) H. JOHOUP	419
Rhadbonella	amor (Cleve) L.88-105µ	420
I†	elegans Jorg. L.110-125µ	420
11	spiralis (Fol.) L.270-355µ	421
11	striata (Biedermann) Brandt	400
	L.200-250μ	422
Rhabdonellops	sis apophysata (Cleve) L.300-350p	423
ıı mi	inima Kofoid & Campbell L.175-230	i 424
Family TINTINN	[DAE	
Amphorellopsi	is tetragona (Jorg.) 1.1204	425
Dadayiella	consmedes (Entz SR.) L.85-105µ	, 426
nadalierra	pachytoecus (Jorg.) L.100-105µ	427
	elegans Jorg. L.150-1904	, 428
Eutintinnus	<u> </u>	-
11		
ti		
11	lusus-undae Entz Sr. L.210-230µ	
11	stramentus Kofoid & Campbell L.200-300 µ	. 432
	T1.500->00H	

Ormosella trachelium (Jorg.) L.100\(\text{\mu}\)	434 435 436 437 438
Family UNDELLIDAE Proplectella angustior Jorg. L.57-65µ acuta Jorg. L.60-70µ biorbiculata L.70-80µ Undella attenuata Jorg. L.175µ hemispherica Laackmann L.60-65µ	441
Family XYSTONELLIDAE Xystonella longicauda (Brandt) L.250-280µ lohmanni (Brandt) L.330-510µ. treforti (Daday) L.360-470µ. Xystonellopsis heros (Cleve) L.550-590µ scyphium Jorg. L.125-150µ	446 447 448
Phylum PORIFERA Class TETRAXONIDA Order ASTROMONAXONELLIDA Family CLIONADAE Alectona millari Carter & Topsent	450
Class CALCAREA Order HOMOCOELA (ASCONOSA) Family LEUCOSOLENIDAE	
Leucosolenia blanca Miklucho Maclay L.150-180µ " complicata (Montagu) L.150-170	451 Ομ. 452
falcata (Haeckel) L.(sp.L.) 150-180µ	453
" reticulum (0.Schmidt) L.(sp.L.) 80-100μ	454

Phylum COE	LENTERATA		
	CONIDARIA	YO'Y	
Class	HYDROZOA	-44°T	
Order			
Subor		SAE	
	Bougainvillea	bitentaculata Uchida …	
	_	H.2mm D.1.7mm	455
	ti	ramosa (Van Beneden)	
		H.2.5-4mm	456
	Bythotiara	murrayi Gunth. H.20mm	457
	Cladonema	radiatum (Dujardin) H.4mm	458
		nutans Sars H.5mm D.3mm	459
	Corymorpha	ophiogaster Haeckel H.5mm	
	Dipurena	Opintogaster naecker n. Jimi	460
		D. Time	-700
	Ectopleura	dumortieri (Van Beneden)	467
		H.3mm D2.5mm	461
	Euphysa	aurata Forbes H.6mm D.4.5mm	402
	Leuckartiara	nobilis Hartlaub H.20-27mm	463
	Oceania	coccinea Davis H.4-5mm D.4mm	464
	Podocoryne	areolata Alder D.2-3.8mm	465
	11	carnea Sars fo. exigua	
		Haeckel H.3.5mm	466
	Sarsia	prolifera Forbes H.2-3mm D.2mm.	467
	Tiaranna	rotunda (Q. & G.) D.22mm	468
	Zanclea	sessilis (Gosse) H.1.5nm D.18nm	469
	Yaucrea	SESSITIO (GOSSA)	
Subo	rder LEPTOMEDU	ISAE	
bubo	Aequorea	pensilis (Heackel) D.25mm	470
	Acquored nolife	ormis (Mac Crady)	471
	Olytta north	la (Peron & Lesueur) D.20-30mm	472
	Firene viridu	rrata (Haeckel) D.16mm	473
	Euchellota Ci	taculata (Q. & G.) H.8-10mm	
	Eutima bitent	D.10-12mm	171
		U.iU→12HH,	175
	Helgicirra so	chulzei Hartlaub D.25-30mm	417
	Laodicea undu	llata (Forbes & Goodsire) D.20mm	470
	Obelia genicu	ulata Allman D.6mm	4//
	u sp.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	478
	Octocanna fur	neraria (Q. & G.) D.30-50mm	479
	Octorchis gea	genbauri Haeckel D.20mm	400
	Tima lucullar	na (Delle Chiaje) D.60mm	481
		•	
Orde	r TRACHYLINA		
	order TRACHOME		
Subc	Men care pem	istoma Peron & Lesueur	
	Aguraura nem	H.4-6mm D.3-4mm	482
	a	inosa (Kolliker) H.8mm D.17mm	48
	Cunina rubig	a Gegenbaur H.6-8mm D.12-57mm	484
	" vitre	g Gegenbaur n.o-omi v.te-yimm	180
	Geryonia pro	boscidalis (Forskal) D.35-80mm	. 40.
		- 67 -	

Liriope rosanea Eschscholtz D.15-30m	nardt)	486
н 10-15mm D.16-30mm		487
Rhopalonema funerarium Vanhoffen D.	7_10mm	488
woletum Cegenhaur D.8-1:	<u> </u>	489
Solmaris solmaris (Gegenbaur) D.2	25-35mm	490
Solmaris Solmaris (Gegenbaur) H.	, 6 /mm	401
D.25-30mm		491
Solmundella bitentaculata (Q. & G.)	var;	402
mediterranea Muller	D.20mm	492
Suborder LIMNOMEDUSAE		407
Gonionemus vertens Agassiz H.18mm	D.T.bum	492
Odessia moeotica (Ostr.) D.4-6mm		494
Olindias phosphorica (Delle Chiaje)	D.bmm	490
Order SIPHONOPHORA		
Suborder CALYCOPHORAE		
Abylopsis tetragona (0tto.) L.10-30	mm	496
" eschscholtzi (Q. & G.)	• • • • • • • • •	497
Bassia bassensis (Q. & G.)	• • • • • • • • •	498
Chelophyes appendiculata Eschscholtz		499
Diphyes appendiculata Eschs. L.4-	IOmm	500 501
bojani (Chun.) L.15-20mm		502
dispar Chamisso & Eysenhar	,G	
Eudoxoides spiralis	••••••	
Euneagonum hyalinum (Q. & G.)	· · · · · · · · · · · · · · · · · · ·	
Hippopodius hippopus Forskal L.50-7	Omei	
Lensia conoidea Kef. & Ehler		
fowleri Bigelow		_
multicristata Moser		
subtilis (Chun.)		
subtiloides Lens. & Van Ri		
Muggiaea atlantica Cunn. L.3-5mm.		
" Kochi (Will)		
Lilyopsis rosea Chun		
" plicata Quoy & Gaimard Sulculeoria biloba (Sars)		
		, 510
duant fact and a duant fact.	tata	E17
Q. & G	• • • • • • • • • •	. 27 <i>1</i>
" turgida Gegenbaur	• • • • • • • • • •	· Drc
Suborder PHYSOPHORAE		
Agalma elegans Sars		
okeni Eschscholtz		
Forskalia contorta Milne Edwards		. 523

Halistemma rubra Vogt
Suborder CYSTONECTAE Physalia physalis (Linne)
Suborder DISCONECTAE Porpita umbela O.F.Mull. D.40mm
Class SCYPHOMEDUSAE Order CUBOMEDUSAE Charybdea marsupialis Per. & Les
Order SEMAEOSTOMAE Aurellia aurita Lamarck D.300-500mm H.100-125mm
Order RHIZOSTOMAE Mastigias papua Rhopilema esculenta Kishinouye D,500mm 538
Subphylum CTENOPHORA Order CYDIPPIDEA Euchlora rubra Chun. H.5-10mm
Order LOBATEA Bolinopsis mikado Moser L.25mm
Order CESTIDEA Bolina hydatina Chun. H.25-40mm 547 Cestus (Cestum) amphitrites Mertens L.80-100mm 548
- 69

Order BEROIDEA Beroe cucumis Fabricius L.150mm
Phylum PLATHELMINTHES Class TURBELLARIA Order POLYCLADA Planocera pellucida Lang. (Muller's larva) 552
Phylum NEMERTINI 553 Cerebratulus natans Pun. (Pilidium larva) 553
Phylum TROCHELMINTHES Class ROTIFERA (ROTATORIA) Order MONOGONONTA Suborder PLOIMA Family SYNCHAETIDAE Synchaeta oblonga Ehrenberg
Phylum ANNELIDA Class POLYCHAETA Suborder NEREIDIFORMIAE Family PHYLLODOCIDAE Lopadorhynchus appendiculatus

Lopadorhynchus uncinatus
Family TYPHLOSCOLECIDAE Sagitella kovalevskyi N.Wagner 566 Typhloscolex mulleri Busch L.4.5mm 567
Family ALCIOPIDAE Alciopa cantraini Delle Chiaje L.100mm W.1.8mm
formosa
Family TOMOPTERIDAE Tomopteris levipes
Larval stage of POLYCHAETA Autolytus prolifer
Eulalia viridis
Polydora ciliata
Polynoinien (larva)

Pseudonerei Sabellaria Unice anhr Sipunculus	alveolata	598
Phylum CHAETOGNATHA		
Class SAGITTOIDEA		
Family SAGITT		600
Sagitta "	bipunctata Quoy. & Gaimard.	
		602
17	crassa Tokioka L.10.5-22mm	002
**	" fo. naikaiensis Tokioka L.6-10mm	603
11	I 7 20mm	604
n	T 5 7	605
n	delicata Tokioka L.5-/mhelegans Verrill L.21-31mn	606
	enflata Grassi L.6-30mm	607
	feroz Doncaster L.8-13mm	608
	friderici L.11-15mm	609
11	hexaptera Orb. L.20-60mm	610
17	hispida Conant L.11mm	611
11	inflata	612
1t	lyra gazellae	613
tt	" typica Krohn L.15-40mm	614
11	maxima Chun. L.90mm	615
**	nacrocephale Fowler L.7-20mm	616
u	minima Grassi L.4-9mm	617
n	neglecta Aida L.6-10mm	
H .	planktonis Steinhaus L.9-40mm	619
11	pseudoserratodentata Tokioka	
	L.6.5-9mm	620
11	pulchra Doncaster L.6-17mm	621
tt	regularis Aida L.6-10mm	_
tt	robusta Doncaster L.6-20mm	
11	serratodentata Krohn L.5-15mm	
**	setosa L.20mm	625
1t	tumida Tokioka L.4-5mm	626
18	zetesios L.40mm	627
Pterosagit	ta draco Krohn L.5-9mm	
Spadella	cephaloptera (Busch) L.2-4mm	
Krohnitta	pacifica Aida L.6-15mm	630

Phylum MOLLUSCA Class GASTROPODA Subclass PROSOBRANCHIA Order MESOGASTROPODA Tribe HETEROPODA Family ATLANTIDAE Atlanta fusca Souleyet L.3-10mm
Family CARINARIA Cardiopoda placenta
Family PTEROTRACHEIDAE Firoloida desmaresti Lesueur
Tribe PTENOGLOSSA Family JANTHINIDAE Janthina globosa Swainson H.30mm W.10mm 643 janthina Linne H.20mm W.25mm 644
Tribe NUDIBRANCHIATA Family AEOLIDIDAE Glaucus lineatus Reinhaldt L.15-20mm 645
Family PHYLLIRRHOIDAE Phyllirrhoe bucephalum Per. & Les. L.20-30mm
Subclass OPISTHOBRANCHIA Order PTEROPODA Suborder THECOSOMATA Family LIMACINIDAE Limacina trochiformis d'Orb. L.1.5mm
Family CAVOLINIDAE Cavolinia gibbosa gibbosa Rang

	(653
Cavolinia	tridentata (Forskal) L.8-9mm	U)
()	noicula Rang L.33mm	655
Creseis "	virgula conica Eschscholtz	
II	virgula Rang L.6.0-10.0mm pyramidata Tesch	657
Clio Cuvierina	la columnella (Kang)	
CHAIGLIUS	T 17 Own	659 660
Diacria	datidenteta (Lesueur) L.C. Jum	000
11	trispinosa trispinosa (Les.) cuspidata Bon. L.16mm	
Euclio	(Pfoffor) h./-1400	00)
11	myramidata Tesch. L.21mm	004
Hyalocylis	-iminin Pono	007
Styliola	subula Quoy. & Gaimard L.5.7mm	000
Family PERAC	TIDAE	
Peraclis	bispinosa Pelseneer L.LIIII	667
**	moluccensis Tesch L.3mm reticulata (d'Orbigny) L.5mm	000
11	reticulata (d.orbighy) 1.544	
Family CYMBU Cymbulia Desmopteru	DLIIDAE peroni Blainville s papilis Chun. L.O.9-1.0mm	670 671
Suborder GYMNO	DSOMATA	
Family PNEUN	MODERMATIDAE na mediterranea	672
Pheumodern	med med serverses voverses	
Family THLII Thliptodo	PTODONTIDAE n Gegenbauri	. 673
Larva of MOL	LHSCA	
Oveter le	rva (Veliger larva)	. 674
Nodilitto	rina granularis (egg)	675
Nerita a	lbicilla (Veliger larva) LAMELLIBRANCHEA (Veliger and Post	. 610
Larva oi	larva)	. 677
Phylum MOLLUSCOIDE	!A	
Bugula n	eritina Linnaeus (Cyphonautes larva)	. 678
Lingula Phoronis	lingula (Lingula larva) australis (Actinotrocha larva)	. 679 . 680
PHOTOHIS	- 74 -	
	- 14 -	

As As Op Op Op Ho Sy Ec	terina pe " hioglypha hiothrix hyarachnell lothuria " mapta di chinocardiu	albida (0 fragilis la gorgoni leucospilo tubulosa igitata (A cordatu urpurens (trotus liv gratilla	(Bipinnar (Brachiol phiopluter (Ophiopluta a (Ophiopluta ta (Auricular (Auricularia m (Echino Echinoplutation)	ria larva) ria larva) ria larva) ris larva) rius larva) ria larva) ria larva) ria larva) ria larva) rius larva)	682 683 684 685 686 687 688 689 690 691
Class CRUS Order Suborde Fami E	ly FOLYHEM vadne s n t enilia s odon 1	RA IIDAE spinifera tergestina schmackeri	Richard G.O.Sars les Leucka	L.O.8-1.3mm	. 697 . 698 m 699
C		PRIDAE marine daphnoides imbricata obtusata noctiluca mediterra	M.3. (Brady) M.2. Sars F.2 Kajiyama	F.5.9 2-3.3mm F.2.8-4.8mm 6-3.0mm 0mm Ml.4mm	. 705

Order COPEPODA	
Suborder CALANOIDA (GYMNOPLEA)	
Ford in FUCALANTDAE	
Fucalanus attenuatus (Dana) F.4.2-5.0mm	
M.3.U-3.5mm	707
" crassus Giesbrecht F.2.9-4.0mm	
M.2.7-3.5mm	708
elongatus (Dana) F.4.4-8.3mm	
M.3.6-5.0mm	709
Mecynocera clausii Thompson F.O.8-1.2mm	710
Rhincalanus nasutus Giesbrecht F.3.8-5.4mm	
M.3.5-5.Omm	711
cornutus Dana F.3.6mm M.2.7mm	712
Family CALANIDAE	
Calanus brevicornis Lubbock F.2.3-2.9mm	
M.2.3-2.4mm	713
darwinii Lubbock F.2.0mm M.1.8mm .	
helgolandicus Claus F.3.0mm	
M.2.8mm	715
minor (Claus) F.1.6-2.0mm	
M.1.5-1.8mm	716
tenuicornis (Dana) F.1.3-2.5mm	,
M.1.9-2.0	717
" vulgars Dana F.2.6mm M.2.4mm	
Neocalanus gracilis (Dana) F.3.0-3.9mm	120
M.2.5-2.5mn	710
" robustior Giesb. F.3.2mm M.2.8mm,	
" IOUNSCION GIGSD. P. J. ZIMI M. Z. OMM.	120
m DADAGAI ANTDAR	
Family PARACALANIDAE	721
Calocalanus pavo (Dana) F.O.9-1.2mm M.1.1mm	127
promotosos ornos r.o., y-r.rmi,	122
Stylliemis Gress. F.O.O-O. Simi	707
M.O.6mm	
poners retrest referred to	
Paracalanus aculeatus Giesb. F.O.8-1.2mm	725
" nanus G.O.Sars F.O.6mm	
parvus Claus F.O.8-1.0mm M.1.0mm.	727
Family PSFUDOCALANIDAE	
Clausocalanus arcuicornis Dana F.1.2-1.3mm	
M.1.1~1.2mm	
" pergens Farran F.O.9-1.1mm	729
Ctenocalanus vanus Giesb. F.O.9-1.2mm	
M.1.2-1,3mm	730
Drepanopus bungei G.O.Sars F.1.3mm	731

Family AETIDEID	AE
Aetieus ar	natus Boeck F.1.8-2.0mm
	M.1.4-1.5mm 732
Aetideopsis	multiserrata (Wolfenden)
	F.2.7-2.8mm
Chiridiella	macrodactyla G.O.Sars F.2.7mm 734
Chirundina	streetsii Giesb. F.4.1-5.3mm M.3.8-4.4mm 735
ahd mi diana	gracilis Farran F.2.4-2.8mm 736
Chiridius Euaetideus	giesbrecht (Cleve) F.1.5-2.2mm. 737
Euchirella	rostrata (Claus) F.3.0-3.1mm
Duonii orra	M.2.5-3.0mm 738
11	brevis (- amoena) G.O.Sars
	F.3.5-4.0mm 739
11	curticauda Giesb. F.3.5-4.4mm
	M.4.3mm
11	maxima Wolfenden F.6.8-7.4mm M.5.6-7.0mm
	M.5.6-7.0mm
11	M.4.0-5.5mm
11	pulchra (Lubbock) F.3.0-4.4mm
	N.3.7mm 743
Gaetanus	kruppii Giesb. F.3.6-5.7mm
dag parrag	M.3.7-5.6mm
11	miles Giesb. F.3.5-3.9mm 745
11	minor Farran F.1.8-2.4mm 746
tt	pileatus Farran F.5.6-6.2mm 747
Pseudochirell	a cryptospina (G.O.Sars)
	F.4.7-4.9mm M.5.3mm 748 notacantha (G.0.Sars)
tt	F.4.7-4.9mm M.5.3mm 749
11	obtusa (G.O.Sars) F.5.3-5.8mm
	M.4.8mm
11	pustulifera (G.O.Sars)
	F.7.3-7.4mm /51
tt	scopularis G.O.Sars F.3.0-4.0
	mm 752
Undeuchaeta	major Giesb. F.4.5-5.5mm
**	M.6.0-6,6mm 753 plumosa (Lubbock) F.3.0-4.2mm
11	M.3.2mm
	114 / 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Family SPINOCA	LANIDAE
Monacilla t	enera G.O.Sars F.1.8_2.3mm 755
u t	ypica G.O.Sars F.2.0-2.4mm
	M.1.6-2.3mm
Spinocalanus	caudatus G.U.Sars F.I.JEM 17

Spinocalanu	s spinosus	Farran F.1.8-2.4mm 7	58
Family MEGACA Bathycalanu	LANIDAE s princeps	(Brady) F.10.0-12.0mm M.11.0mm 7	59
11	richardi		
Megacalanus	princeps	Wolfenden F.8.8-11.5mm M.7.9-10.5mm	
Family HETERO Heterorhabd	us Clausi	Giesb. F.2.4mm M.2.2-2.4mm	62
"	Vipera	M.2.6-2.7mm	64
Family ACARTI	IDAE clausi Gie	sbr. F.O.9-1.2mm	
		M.1.0-1.2mm 7 sbr. F.1.1-1.2mm	
11	discaudata	M.O.7-O.8mm 7 Giesbr. F.1.0-1.2mm	
n	negligens	M.1.O-1.lmn 7 Dana F.1.O-1.3mm	
11	tonsa Dana	M.O.8-1.0mm 7 F.1.3-1.5mm M.1.0-1.1mm 7	
Family METRII		is Lubbock F.2.8-4.0mm	2
11		M.2.8-3.5mm	770
11	_	M.1.5-2.2mm	771
ti		M.3.0-4.0mm	772
		M.4,0-4.7mm	773
Family EUCHAI		estandrea F.2.3-3.9mm	
		M.3.0-3.2mm	774
11	acuta Gies	sbr. F.4.16-4.3mm M.3.5-4.8mm	775
11		abr. F.2.9-3.0mm	776

Euchaeta	spinosa Giesbr. F.6.4mm
	M.6.3mn
"	pubera G.O.Sars F.4.Omm 778
Family PHAENN	TDAE
Cornucalanu	s simplex Wolfenden F.6.3mm 779
Heteremalla	dubia T.Scott F.3.7mm M.3.5mn 780
	TOWNTOWTH A FI
Family SCOLEC	us magnus T.Scott F.4.5-5.0mm
Scabuocaran	M.4.5mn 781
Scolecithri	x dane (Lubbock) F.2.2mm
5002002 0	M.2.0-2.2mm
Family CENTRO	PAGIDAE
Centropages	aucklandicus Kramer F.1.5-1.7mm M.1.5mm 783
tı	Kroyeri Giesbr. F.1.3-1.4mm
	M.1.2mm
11	orsinii Giesbr. F.1.2-1.0mm
	M.1.2-1.4mn 785
87	violaceus (Claus) F.1.8-1.9mm M.1.5-1.8mm 786
	M-T-0-T-0HHH
Family TEMORI	DAE
Temora	discaudata Giesbr. F.1.9-2.0mm 787
11	stylifera Dana F.1.5-1.9mm
	и.1.4-1.5шт
11	turbinata Dana F.1.4-1.7mm 789
11	longicornis O.Fr. Miller F.1.0-1.5mm M.1.0-1.4mm 790
	F.1.0-1.50mm 11,110 1.51mm 44444 15
Family CANDAG	CIIDAE
Candacia	armata Boeck F.2.0-2.7mm
	M.1.7-2.7mm 791
17	aethiopica (Dana) F.2.1-2.8mm
	M.2.0-2.3mm
н	M.2.4mm
17	bispinosa Claus F.1.9-2.0mm
	M.1.8-2.0mm 794
11	longimana (Claus) F.3.6-3.9mm
	M3.1-3.5mm 795
17	pachydactyla Dana F.2.3-2.8mm 796
11	simplex Giesbr. F.1.9-2.1mm
	11.1.0 1.0.1
11	varicans Giesbr. F.2.3mn M.2.1mn 190

Family LUCICU	JTIIDAE	
Lucicutia	atlantica Wolfenden F.3.5mm	500
	M.3.4mm	799
Ħ	flavicornis (Claus) F.1.4-1.8mm	900
	M.1.3-1.7mm	800
11	longiserrata Giesbr. F.2.3-2.2mm	OOT
11	ovalis Giesbr. F.1.3-1.4mm	₽ ∩2
	M.1.2-1.3mm	002
11	tenuicauda G.O.Sars F.5.2mm M.5.0mm	803
	M. 5. Omm	ر٥٥
	TT TD A E	
Family AUGAP	anceps Farran F.3.6-3.8mm	804
Augaptiius	anceps Farran F.J. 0-J. 0mm	805
Euaugaptiit	bullifer Giesbr. F.4.9mm	806
11	facilis Farran F.5.4-5.9mm	807
11	filiger Claus F.4.9-6.8mm	, 00
"	M.4.1-6.5mm	808
?1	gibbus Wolfenden F.2.8-3.4mm	-
,,	M.2.7-3.2mm	809
11	elongatus G.O.Sars F.6.7mm	
,,	M.6.5mm	810
11	nodifrons G.O.Sars F.5.4mm	
	M.5.2mm	811
77	oblongus G.O.Sars F.7.4mm M.7.2mm	812
11	palumboi Giesbr. F.2.3mm	813
11	squamatus Giesbr. F.6.3-6.8mm	814
n	truncatus G.O.Sars F.7.6mm	815
Halontilus	acutifrons Giesbr. F.2.6-3.2mm	816
11	angusticeps G.O.Sars F.3.5mm	817
11	longicornis (Claus) F.2.1-2.5mm	
	M.2.0mm	818
H	mucronatus (Claus) F.3.6mm	
	M.2.1-2.3mm	819
11	tenuis Farran F.4.4mm M.4.2mm	
Heteroptil	us acutilobus G.O.Sars F.4.1mm	
-	M.4.0mm	821
H	attenuatus G.O.Sars F.5.7mm	822
Family PONTE	LLIDAE	
Anomalocer	a patersoni Templeton F.3.2-4.1mm	
	M.3.0-4.0mm	823
Labidocera	acuta Dana F.3.0-3.4mm	
	M.2.8-3.4mm	824
11	acutifrons Dana F.3.7-3.9mm	
	M,3,8-3.9mm	825
11	detminante Dana P 2 1 2 9mm	226

Labidocera	Kroyeri Brady F.2.4-2.5mm
Danidoceia	M.2.0mm 827
ti	pavo Giesbr. F.2.1mm 828
er `	wollastoni Lubbock F.2.2-2.3mm 829
Pontellina	plumata (Dana) F.1.7-1.8mm
LOUGETTING	M.1.5-1.6mm 830
Pontella	chiercheae Giesbr. F.3.3mm M.3.0mm 831
1011102220	Lo Biancoi Canu. F.4.0-4.2mm
	M.3.3-3.8mm 832
Dontallangi	s regalis Dana F.4.0-4.4mm
LOUGETTOPPT	M.3.4-3.5mm 833
Suborder PODOPLEA	(CYCLOPOTDA)
Family MORMON	TI.I.TDAR
Mammanilla	phasma Giesbr. F.1.6-1.7mm 834
MOLMONITIE	phabita diobile in the control of th
Family OITHON	TDAR
Oithona	nana Giesbr. F.O.5-0.7mm
OI mona	M.O.5-0.6mm 835
11	plumifera Baird F.1.0-1.5mm
	M.O.8-1.0mm 836
19	robusta Biesbr. F.1.6-1.7mm
	M.1.2mm 837
11	setigera Dana F.1.2-1.9mm 838
	00.0780770
Family ECTING	DSOMTDAE
Microsetel	la norvegica Boeck F.O.4-O.5mm
TITCI ODE VOI	M.O.3-0.4mm 839
11	rosea Dana F.O.6-0.9mm 840
Family MACRO	SETELLIDAE
Macrosetel	la gracilis (Dana) F.1.4-1.5mm
	M.1.1-1.3mm 84±
Miracia	efferata Dana F.1.5-2.0mm 842
• • • • • • • • • • • • • • • • • • •	
Family TACHY	DIIDAE
Eyterpe	acutifrons Dana F.O.5-O.8mm
23 00-1-	M.O.5-0.6mm 843
Family CLYTE	MNESTRIDAE
Clytempest	ra scutellata Dana F.1.0-1.2mm
0±1 04:m100 :	M.1.U-1.)mm 044
17	rostrata Brady F.O.6-1.0mm
	M.O.8-0.9mm 845
Laophonte	brevirostris Claus F.O.7mm 846
THOPINGITOO	

Family ONCAE	IDAE
Lubbockia	minute G.O. Sars F. L. 2mm Off
tt	annillimana Claus F.L.J Chim
	M.1.8-2.lmm 848
Oncaea	media Giesbr. F.O.6-O.8mm
	M.O.6-O.7mm 849
n	mediterranea Claus F.1.0-1.3mm
	M.O.7-1.1mm 850
23	minuta Giesbr. F.O.5-O.6mm 851
11	venusta Philippi F.1.1-1.3mm
	M.O.7-1.0mm 852
Family CORYC	AEIDAE
	brehmi Steuer F.1.0-1.1mm M.0.8mm 853
1)	Clausi F.Dahl F.1.6-1.7mm M.1.3-1.5mm 854
	M.1.)-1.)mm
19	flaccus Giesbr. F.1.7-1.9mm M.1.4-1.7mm 855
	M.I.4-I.7mm
11	giesbrechti F.Dahl F.O.5-1.0mm M.O.7-0.9mm 856
	M.O. (-O. 754411 Dans II 2 8.3 Cmm
11	lautus Dana F.2.8-3.0mm M.2.1-2.5mm 857
	latus Dana F.O.8-1.2mm
11	M.O.7-O.9mm 858
11	limbatus Brady F.1.4-1.5mm M.1.2mm. 859
1t	ovalis Claus F.O.8-1.0mm
"	M.O.7-0.9mm 860
It	speciosus Dana F.1.9-2.2
.,	M.1.7-1.9mm 861
H	typicus Kroyer F.1.6-1.7mm
••	M.1.2-1.6mm 862
Comments	carinata Giesbr. F.O.8-0.9mm
COLAGETIA	M.O.8-0.9mm 863
	nioso of jam.
Family SAPH	FRINTDAR
Sannhiring	a angusta Dana F.2.5-5.5mm
pappiiri	M.4.0-7.0mm 864
11	bicuspidata Giesbr. F.2.3-3.0mm
	M.2.6-3.4mm 865
11	gastrica Giesbr. F.2.3-2.7mm
	M.2.2-2.7mm 866
11	gemma Dana F.2.1-3.7mm M.2.3-4.5mm 867
tt.	intestinata Giesbr. F.1.6-2.8mm
	M.1.6-2.9mm 868
11	iris Dana F.5.2-7.4mm M.5.9-7.5mm 869
H	lactens Giesbr. F.1.4-1.6mm
	M.L.5-1.7nm 870

Sapphirina	metallina Dana F.1.7-2.5mm	
	M.1.6-2.6mm	871
11	maculosa Giesbr. F.1.8-2.2nm	040
	M.2.7mm	872
11	nigromaculata Claus F.1.5-2.8mm M.1.7-3.0mm	873
n	opalina Dana F.2.1-4.2mm	
	M.2.4-4.4mm	874
H	sali Farran F.2.3-3.1mm M.2.0-2.8mm	875
11	scarlata Giesbr. F.3.3-4.7mm	
	M.3.4-4.9mm	875 977
11 G 13:	opalina var. Darwini Haeckel mediterranea Claus F.3.2-4.4mm	011
Copilia	mediterranea Claus F.3.2-4.4mm M.4.5-6.1mm	878
11	mirabilis Dana F.2.2-4.1mm	- • -
	M.3.2-6.1mm	879
11	quadrata Dana F.2.2-4.4mm	
	M.3.5-5.7mm	880
tt	vitrea Haeckel F.3.2-5.4mm	001
	M.5.5-9.0mm	OOT
Parasitic CO	MADATA	
Parasitic CO		000
Ascomyzon	parvum	882
Order CIRRIPE	DIA	
Balanus	amphitrite (Nauplius larva)	883
Lt .	balanoides (Nauplius larva)	884
ti	sp. (Cypris larva)	885
11	sp. (Metanauplius larva)	887
- 11	tintinnabulum (Nauplius larva) anatifera (Nauplius larva)	888
Lepas	s larva (Nauplius larva)	889
Lepadidae Sacculina		890
DECCULTIF	Sp. (Marphine Later)	
Subclass MALACOS	STRACA	
Order AMPHIP	DDA , , ,	
Family ANCH	YLOMERIDAE (PHROSINIDAE)	007
	ra Blossevillei Milne Edwards	. 891 . 892
Euprimno	macropus	
Phrosina	semilunata	, 097
Family HYPE	RIIDAE	504
Hyperia	latissima Bovallius	
11	sibaginis Stebbing L.3.0-4.0mm	
11	schizogeneios Stebbing	
Hyperioid Hyperoche	es longipes Chevreuxkroyeri	. 897 . 898
J P 5110	•	

Euthemisto bispinosa Parathemisto oblivia Phronimopsis spinifera Claus	
Family LYCAEIDAE Brachyscelus crusculum Lycaea pulex Pseudolycaea pachypoda	フレン
Family OXYCEPHALIDAE Glossocephalus Milne-Edwardsi Oxycephalus porcellus Claus Phtisica marina Pseudolirius Kroyeri Rhabdosoma sp. Streetsia Challengeri	907 908 909
Family PHRONIMIDAE Phronima sedentaria " pacifica Streets L.10.0mm Phronimella elongata Claus	912
Family PLATYSCELIDAE Lycaeopsis themistoides Platyscelus ovoides	915
Family SCELIDAE Parascelus typhoides	917
Family VIBILIIDAE Vibilia viatrix Stebbing L.8.0-9.0mm	918
Order EUPHAUSIACEA Family EUPHAUSIDAE Euphausia gracilis Dana L.9.0-10.0mm " pellucida Dana L.10.0-11.0mm Stylocheiron carinatum G.0.Sars L.10.0-11.0mm. Meganyctiphanes norvegica (Furcilia larva) Moganyctiphanes norvegica (Metanauplius larva) " (Calyptopis larva)	920 921 922 923
Order MYSIDACEA Mysidae's larva Mesopodopsis slabberi P.J.Bened L.8.0-9.0mm Neomysis longicornis	. 926

Order DECAPODA Suborder MACRURA (REPTANTIA) Lucifer acestra " raynaudii Bate L.7.0-12.0mm	930 931 932 933
Suborder ANOMURA Paguridea's larva (Glaucothoe larva)	935
Suborder BRACHYURA Eriphia spinifrons (Zoea larva) Inachus sp. (Zoea larva) Maia sp. (Zoea larva) Macropodia sp. (Zoea larva) Porcellana longicornis (Metazoea larva) Portunus sp. (Zoea larva)	937 938 939 940
Order STOMATOPODA Squilla's larva L.10.0mm (Alima larva) " L.9.0-10.0mm (Alima larva) Stomatopoda's larva (Erichthus larva)	942
Phylum PROCHORDATA Subphylum UROCHORDA (TUNICATA) Class APPENDICULARIA (COPELATA) Family KOWALEVSKIDAE Kowalevskaia tenuis Fol. Trunk L.O.5-1.Onm	945
Family APPENDICULARIDAE Appendicularia sicula Fol. T.L.0.5mn Fritillaria pellucida Busch. T.L.1.0-2.0mm borealis acuta Lohm. T.L.1.3mm. " truncata Lohm. T.L.0.9mm	947
formica Fol. T.L.1.5mm fraudax Lohm haplostoma Fol. T.L.1.0mm megachile Fol. T.L.0.9-1.0mm tenella Lohmann T.L.1.2mm venusta Lohm. T.L.1.1mm	950 951 952 953 954 955
Oikopleura albicans Leuck. T.D.5.0mm	

Oikopleura	cophocerca Gegenbaur T.L.1.4mm	957
1)	dioica Fol. T.L.1.3mm	958
11	fusiformis Fol. T.L.1.5mm	959
tt	labradoriensis Lohm. T.L.2.4mm	960
11	longicauda Vogt. T.L.1.2mm	961
n	parva Lohmann T.L.O.8mm	962
17	rufescens Fol. T.L. 1.5mm	963
Stegosoma	magnum Lohmann T.L.1.5-3.5mm	964
Ciona	intestinalis (Appendicularia larva)	965
Class THALIACEA		
Subclass MYOSOM	ATA	
Order SALPID		
Family SALPI		
	affinis Chamisso	966
Ħ	bakeri Ritter L.3.0-5.0	967
ti	pinnata Forskal	968
Ħ	virgula Vogt	
Iasis	zonaria Pallas Pallas L.3.0-6.0mm.	970
Ihlea	punctata Forskal	971
Pegea	confoederata (Forskal)	972
11		973
Salpa	fusiformis Cuvier L.3.0-6.5mm	
ff	maxima Forskal L.5.0-15.0mm	975
Thalia	democratica (Forskal) L.15-25.0mm	
Thetys	vagina (Tilesius) L.19.0	977
Order DOLIOL		
Family DOLIO		
Doliolum	denticulatum Q. & G. L.9.0mm	
Ħ	gegenbauri Uljanin L.9.0mm	979
11	"var. tritonis Herdman L.17.0mm.	980
11	mulleri var. krohni Borgert L.7.0mm	
n	nationalis Borgert L.3.0mm	982
Subclass PYROSO	ATA	
Order PYROSO	MATIDA	
Family PYROS	OMATIDAE	
Pyrosoma	atlanticum Peron	983
Larva of PROC	HORDATA	
eo foore lest	sus misakiensia (Tomomia Jomea)	024

- 86 -

Phyto-Plankton (Marine)

	l				١		1	:	١			Number of
Phylum	••	Class	••	Subclass :	••	Order	••	Suborder		Family		Species
Cyanophy ta	•		- 1			Ногшодопеве			••	Oscillatoriaceae		2
Cvanophyta	•	Bacillariaceae		Discineae		·			••	Melosiraceae	••	Ų
Conformation Co.		(Diatoma)							••	Coscinadiscaceae		30
		(220,000)							••	Corethronaceae	••	N
									••	Leptocylindracese		S,
									••	Skeletonemaceae	••	4
									••	Thalassiosiraceae	••	6
								Soleniineae	••	Rhizosoleniaceae		21
								: Biddulphiineae	••	Bacteriastraceae	••	œ
								ı	••	Chaetoceraceae	••	33
									••	Biddulphiaceae		25
									••	Eucampiaceae	••	6
					••	Pennales		: Araphidineae	••	Fragilariaceae	••	12
								•	••	Tabellariaceae		9
								: Monoraphidineae	••	Acnanthaceae		4
								: Biraphidineae	••	Naviculaceae	••	30
								,	••	Nitzschiaceae	••	14
									**	Surirellacese		æ

Total species of the marine phyto-plankton 222

	Species	*******			222225	#F #	~~~~	-	+			6 77	0 H+0	egnoan ,	1=	10 F-10	のとよびよどとえまからよるのかびはなるないようないがらいかいとなるのとなるとなっています。
	: Pacity	Dictochacese Processings Particulates Particulation Date of the processing of the pr	Antennthides Antennthides Controlled Controlled Controlled Controlled Controlled Controlled Controlled Forticelled Forticelled Forticellide Fort	r Clionedae r Leucoscienidae					r Synchaetidae i Diermophoridae Sinastharinidae	Phyllodocides	1 Topopteridae 1 Typklescelecidae 1 Typklescelecidae 1 Sagittidae	Atlantidae Carinaria Plerotracheldae	Janthinidae Leolididae Fryligerbaidae	Cavolinidae Cavolinidae Cymbullidae Frommodaraatidae Thifftodontidae		Polyhanidae Enlogypridae Eucelanidae	Chimides Frenchaldes Frenchald
l	- Duborder	n= w w	i thattancines		Anthomedumen Expressional Limnosedume Limnosedume Calynosphorme Thysophorme Opstonedime				r Photes	1 Fereidifornias	(farred stage of POLYCEA	ods	lossa mohista	; Cymnosomata		Cladocara Calanoida	Podoples Podoples Nacrute Macrute Mac
Zoo-Flankton (Marine)	1 Order	t Chrysomenidina i Dinoflagellata i Pormainifera i Radiolaria	I.a.	: Astromosaxomellida : Eomocoala	Hydromeduses Trestyllus Liphonophore	1 Cubeschusse 1 Sensestosse 1 Ehinostosse	Continue Continue Peritan	Polymlada	r Nonogomenta			s Masognatropoda (Tr. Hat	Mitty Mitty Mitty Mitty	(tr		Pryllapoda Ostraoda r Capspoda	(Part Carryoula Part Par
	1 Substant		, Cilian			_	_	-		_	-	1 Promobranohia	4				- Malacontran
	r Class	s Mastigophora	; dillepora	: Tetrazonida : Calcares	1 Rydrosou phylus) ideria	s Seyphomedubes	(Subply Las) Ctanophora	1 Turbellaria	1 Bottfera	r Polyohaeta	- Sectionidae	1 Gastropoda				- Crustaes	
	Phylon	Protosos		Portfore	Contenters 1 Extro Cobpytum) Conferte	,	(re)	Flathalainthes : Resertini e	Trochalminthes	Anelide	Chretograthe	Hollusch			Vortnodermeta	Arthropode	

TRANSPORTER

The transfer continue to the to the term of the terms of

CHAPTER IV. DISTRIBUTION OF PLANKTON IN SOUTH VIET-NAM

Markey British the Land Control

The state of the s

me 312 = 45

. . .

A. FRESH WATER PLANKTON

The fresh water plankton in Viet-Nam can be divided into the following four kinds according to the places they live in.

- 1. Eulimno-plankton this kind lives in the lakes, which is also used for the fresh water fish culture, at Da-Lat, Rach-Gia, and Ca-Mau.
- 2. Potamo-plankton this lives in such large rivers as the Saigon and the Mekong, and be used for fish and fishery indirectly.
- 3. Helo-plankton this lives in small ponds and pools.
- 4. The plankton which grows in a cultivating farm artificially controlled at Thu-Duc, Da-Lat, Cholon, and Hue.

Even when the same kind of plankton lives in several places, its use differs according to the place where it lives. Except the kind of 3. these plankton have the value as plankton.

Fresh water plankton differs from marine plankton. In the case of fresh water plankton, quite different types of plankton are sometimes found even in places which are very near to each other. This is apparent from the distribution of plankton in each lake at Da-Lat. This is characteristic of fresh water plankton, which are largely influenced by the circumstances of the place they live in, especially by the quality of the water.

Here are some important fresh water plankton from the ones we have recognized in South Viet-Nam.

1. PHYTO-PLANKTON

The important types which are found in South Viet-Nam are the following three phylums: (1) Chrysophyta (2) Chlorophyta (3) Cyanophyta.

(1) Chrysophyta

The diatoms such as <u>Fragilariaceae</u>, <u>Coscinodiascaceae</u>, <u>Melosiraceae</u>, <u>Rhizosoleniaceae</u>, <u>Tabelariaceae</u>, <u>Achnanthaceae</u>, <u>Surirellaceae</u>, <u>Naviculaceae</u>, and <u>Nitzschiaceae</u> are found quite commonly in all areas. Among them, <u>Fragilaria</u>, <u>Melosira glanulata</u>, <u>Navicula lanceolata</u>, <u>Nitzshia paradoxa</u> (<u>Bacillaria paradoxa</u>),

N.nyassensis were sometimes found in great quantity.

(2) Chlorophyta

Selenastrum gracile, S.Bibraianum, Staurastrum tohopekaligense, S.wolterechii, Crucigenia fenestrata, Franceia tuberculata Arthrodesmus apiculatus, A.cuvatus are the sorts which are commonly found.

Ankistrodesmus falcatus, Staurastrum smithii, Spirogyra prolifica, Pandorina minodi, Mougestia, Dictosphaerium pulchellum Scenedesmus armatus, and S.dimorphus, S.Bijiga, are found in great quantity at certain places in a certain season.

(3) Cyanophyta

Spirulina princeps is found everywhere, and Anabaena circinalis, Anabaenopsis Elenkinii and Oscillatoria limosa are the kinds which are found so abundantly at every fish farm as to make the water look dark green.

2. ZOO-PLANKTON

Among the zoo-plankton which are important are (1) Protozoa, especially Euglenoidea, Dinoflagellata (2) Rotifera (3) Crustace etc.

(1) Protozoa

Protozoa as fresh water plankton is not so abundant, but some kinds, such as Euglenoidea, Dinoflagellata, Infusoria etc. are important from the quantitative point of view.

Euglena deses, Cryptoglena pigra, Peridinium striolatum etc. which belong to Phyto-mastigophora are found in huge quantity at places. Besides, of the 161 kinds which were found in Viet-Nam, at least one kind is always to be found. Dinobryon, Glenodinium, Chlamydomonas, Peridinium, Euglena, Phacus etc. are scarce in quantity but rich in variety.

Trichodina pediculus, Holophrya simplex, Spasmostoma viride, Pleuronema coronatum etc. which belong to Zoo-mastigophora are sometimes found in large quantity.

(2) Rotifera

Rotifera (Rotatoria) is widely distributed everywhere in

Viet-Nam, and is important as natural living food for small fresh water fish. Rotifera usually grows in small ponds and is sometimes found growing in large mass. For instance, Brachionus bakeri and B.urceolaris were discovered in the pond in the Airport of Can-Tho, and they proved to be excellent.

Rotifera multiplies rapidly in its season. It appears in abundance at a time, and vanishes suddenly. It changes its form according to the environments. Brachionus urceolaris (Can-Tho), Keratella aculeata (Ca-Mau) etc. are found in large quantity. Keratella valga, Filinia longiseta, Monostyla quadridentata, Lepadella patella etc. are also found very commonly.

(3) Crustacea

Most of the fresh water crustacea is Phyllopoda, especially Cladocera. Copepoda is comparatively scarce. This is quite the opposite to the case of marine crustacea, where Copepoda is by far the greater in quantity.

(a) Copepoda

In Viet-Nam, Cyclopidae and Diaptomidae make the most part of Copepoda, and are found commonly everywhere.

Cyclops strenuus, C.bicolor, Pseudodiaptomus marinus etc. are widely distributed. Cyclops vicinus (Da-Nhim), C.vernalis (Da-Nhim), Mesocyclops lenkarti (Xuan-Huong lake, Dalat),
Diaptomus reighardi (Da-Nhim), Eodiaptomus japonicus (Da-Nhim),
Sinodiaptomus Sarsi (Xuan-Huong lake, Da-Lat) etc. are the sorts which are found abundantly. Osphranticum labronectum, Diaptomus kenai are found in various places, though not in large quantity.

The identification of Copepoda is determined by the forms of the first antenna and the fifth legs, but even within the same kind some differences are seen in its forms according to the environments.

(b) Cladocera

The importance of Cladocera in fresh water is greater than that of Copepoda. In ordinary circumstances, most of its kinds increase by parthenogenesis among fenales. Because of its ovoviviparity it multiplies rapidly, which makes it important in point of productivity. What is more, its ability to swim is inferior to that of Copepoda, which makes it easier for Pisces at level stage to feed on it.

In South Viet-Nam also, as many as 50 kinds were found of Cladocera, while of Copepoda only 30 were recognized. It is found in large quantity in such alpine lakes as those at Dalat (1300 m above sea level), but more varieties and larger quantity of it can be found in lakes and ponds on lowlands.

Also commonly found are: Daphnia rosea, Moina macrocopa,
Pseudosida bidentata, Oxyurella longicauda, Alona, Bosmina etc.
Chydorus sphaericus, Moina brachiata, M.macrocopa, Sida crystallina
etc. are sometimes found in great mass.

The classification of Cladocera is difficult like that of Copepoda and as even the same kind differs in its form according to the living environments, much care must be taken not to make mistakes (which is especially conspicuous with Daphnia and Bosmina)

B. MARINE PLANKTON

The marine plankton is more complicated than the fresh water plankton from the taxonomical and morphological points of view. For in the sea, there are numerous kinds of creatures, which are not to be found in fresh water, at their different stages: larval stage, metamorphosical stage, heterogenesical stage. These live in the sea in large quantity together with their adults.

Of the marine plankton, 1. Diatoms and 2. Copepoda are the important kinds and are found in plenty. Along the coasts of Viet-Nam, the following kinds are also easily found and are considered valuable as food for pisces and crustaceans:

- 3. Dinoflagellata 4. Chaetognatha 5. Appendicularidae
- 6. Siphonophora 7. Radiolaria 8. Cilliophora

These will be explained in the following.

PHYTO-PLANKTON

(1) Cyanophyta

Of this type, <u>Trichodesmium Thiebautie</u> and <u>T.erytheraeum</u> are found in abundance along the coasts of Central Viet-Nam, including Nhatrang, regardless of the seasons. In Nhatrang there are times when these two kinds alone amount to as much as 0.5 g/m^3 to 0.7 g/m^3 .

(2) Diatoms

This is considered to be the most important of the whole marine phytoplankton. About 200 kinds of this were discovered along the coasts of Viet-Nan.

Chaetoceraceae and Bacteriastraceae are the most usual kinds. The following are found quite commonly at any time along all the coasts of Viet-Nam:

21 .

Rhizosoleniaceae, Coscinodiscaceae, Thalassiothrix, Thalassionema, Eucampia, Asterionella, Nitzshiaceae, Biddulphiaceae.

2. ZOO-PLANKTON

(1) Dinoflagellata

This includes the most important kinds of Protozoa. Especially Ceratium can be seen most plentifully along the area from Phan-Thiet to Nhatrang. 41 kinds of it was found in the whole area. Also to be found all over the area are: Peridinium, Gymnodinium, Glenodinium, Gonyaulax, Dinophysis (abundant in Whatrang and Cam-Ranh), and Ornithocercus.

(2) Radiolaria

Though not abundant, this plankton has a large variety.

41 species of it have already been discovered, and its distribution covers the whole area. Of these species the most commonly found are: Amphibelone hydrotomica, Acanthocolla cruciata, Amphiacon denticulatus, Amphilonche elongata and Cyrtoidae (Theoconus zancleus, Dictyophimus tripus, Acanthocorys umbellifera).

(3) Ciliophora

Of this class, too, numerous species (72) have been found. Its distribution covers the whole area, but its quantity is small. The most commonly seen are: Tintinnopsis butschlii, Codonellopsis morchella, C.mortensenii, C.ostenfeldi, Stenosemella nivalis, Favella markuzowskii, Epiplocylis blanda, Xystonellidae, Eutintinnus fraknoi, E.latus, E.lusus-undae, E.elegans etc.

(4) Coelenterata

Among the already discovered species, Hydromedusae, Trachylina, Siphonophora, Scyphomedusae etc. are the important ones. Of these, Siphonophora is most abundantly found, and is distributed almost all over the area. Leptomedusae (Octorchis gegenbauri, Eirene viridula etc.) and Liriope tetraphylla etc. sometimes choke the cock of a plankton-net.

(5) Chaetognatha

This phylum is the largest of net-plankton that can be seen with naked eyes, sometimes reaching 50 mm. It is found over the whole area, though its quantity is more or less different at each place. The greater part of it is <u>Sagitta</u>, and 31 species of it have been identified along the coasts of Viet-Nam.

Chaetognatha is valuable not only as the food for fish, but also as an index to the study of the sea currents, being related to the sea temperature and the salt.

(6) Prochordata

This phylum is also distributed all over Viet-Nam and is especially abundant in the middle and the south of South Viet-Nam. It includes Oikopleura, Fritillaria, Doliolidae, Salpidae, and is important as the food for fish.

(7) Copepoda

This is the most important animal plankton of all the marine plankton. 176 species of this have been found along the coasts of Viet-Nam.

(a) Calanidae

This includ s 9 species, among which are <u>Calanus</u>, <u>Canthocalanus</u>, <u>Neocalanus</u> etc. All of these are commonly to be found.

(b) Eucalanidae

This is a somewhat large kind. It includes Rhincalanus and Eucalanus, and can be seen very commonly everywhere.

(c) Paracalanidae

This includes Calocalanus and Paracalanus. It is

small and can be found in all areas, though not in large quantity.

(d) Pseudocalanidae

This has a characteristic that its female lacks the fifth legs, which makes it easy to distinguish it from another family by looking at its side. It is found throughout the country not in large quantity.

(e) Aetideidae

This is rather a large species. Though small in quantity, it is rich in kinds, and commonly to be seen.

(f) Acartiidae

A small coastal zoo-plankton to be found quite commonly.

(g) Metridae

Though originally a deep-sea plankton, this is commonly found along the coastal areas as well.

(h) Euchaetidae

Large size and a pointed head are the characteristics of this kind. Rarely to be found.

(i) Phaemnidae

Of its species, Cornucalanus is commonly found.

(j) Centropagidae

Though not found in large quantity this can be commonly found throughout the country.

(k) Temoridae

Also commonly seen throughout the country.

(1) Candaciidae

The characteristic of this is that the front part of its head is more of less square-shaped. To be found very

commonly along the coasts.

(m) Lucicutiidae

Of this family, Lucicutia longiserrata, L.lucida, L.atlantica are commonly found.

(n) Augaptilidae

19 species of this have been discovered. They can commonly be seen along the coastal areas.

(o) Pontellidae

ll species of this have been discovered so far, among which is <u>Pontella Lo Biancoi</u>, a beautiful, blue-colored one. They are commonly found along the coasts of Viet-Nam, though not in quantities.

(p) Oithonidae

An important species of a small size commonly found in the coastal areas and in the open sea.

(q) Ectinosomidae

A species of a small size, of which <u>Microsetella</u> norvegica and <u>M.rosea</u> can be most commonly found, sometimes in quantities, along the coasts of Viet-Nam.

(r) Macrosetellidae

Like Ectinosomidae this can be found very commonly, though not in abundance.

(s) <u>Oncaeidae</u>

Oncaea and Lubbockia of this family are commonly found in the open sea and along the coasts as well.

(t) Corycaeidae

This can be seen most commonly along all the coasts of Viet-Nam. Il species have been found so far.

(u) Sapphirinidae

The body of this plankton is flat. With the male it

is flat and in the shape of a leaf, and it emits fluorescence. It is quite common along the coasts of South Viet-Nam. 18 species including Sapphirina and Copilia have already been discovered.

(8) Decapoda

Lucifer raynaudii and L.acestra of this group can be always found in abundance, especially in Nhatrang and in the Central Viet-Nam.

(9) Mollusca

Of this phylum, the most often found are those which belong to Cavolinidae, such as Creseis aciculata, C.virgula conica, C.virgula virgula, Styliola subula, Euclis etc. Atlantidae and Limacinidae are also found throughout the whole area.

Table 2

Distribution of Fresh Water Plankton in South Viet-Nam

Note:	(Regions)	(Researching Places)
	A region	Rach-Gia, Phu-Quoc, Ca-Mau, Can-Tho.
	B region	Cholon, Saigon, Thu-Duc, Bien-Hoa, Phan-Thiet.
	C region	Da-Lat, Da-Nhim (Song-Pha).
	D region	Nha-Trang, Phu-Huu.
	E region	Hue, Da-Nang, Quang-Ngai.
	ccc	Abundant (45%)
	CC	Frequent (30%)
	C	Common (15%)
	R	Rare (8%)
	RR	Very rare (2%)

Family or Genus	A	В	C	D	E
CYANOPHYTA					1
Chroococcaceae Oscillatoriaceae Nostocaceae Plectonema	C C C C	C C C	C C C R	C C	c c
CHRYSOPHYTA					
Melosiraceae Coscinodiscaceae Rhizosoleniaceae Chaetoceros Attheya Fragilariaceae Tabellariaceae Achnanthaceae Naviculaceae Epithemiaceae Nitzschiaceae Surirellaceae	R C C C R	R R R R R C R C R C	C C R R R R C C C C R R	C C C C R R C R R	C C R R R C C C
Pleurochloridaceae Tribonemataceae CHLOROPHYTA Palmellaceae				C	C
Palmellaceae Chlorococcaceae Micractiniaceae Schroederia Coelastram	C	CCC	R R C C R	R C	C
Dictyospherium Hydrodictyaceae Oocystaceae Scenedesmaceae Zygnemataceae	R C C	R C C R	R C C C C	C R R C	C R C
Gonatozygon Desmidiaceae Microspora Protococcus Trentepohlia	c c	C	R	c	С
Ulothrix Sphaeroplea Schizomeris Cladophoraceae Oedogoniaceae Schizogonium	C		R R C R R	C R	

Family or Genus	A	В	C	D	E
PROTOZOA				1	
(Phyto-Mastigophora)					
	1	С	R		
Mallomonadaceae			CC	1	C 🎇
Ochromonadaceae		R	RR	RR	
Chrysocapsa Chrysamoeba		C	R	C	
Stipitococcus	Į.	C	C	}	
Polyblepharidaceae	C	C	C	C	
Chlamydomonadaceae	C	CC	CC	C	C I
Haematococcus			R		
Pedinopera		C		<u> </u>	3
Pascheriella	C	C	C	C	C
Volvocaceae	C	C	C	C	C
.Gymnodiniaceae			C		
Hypnodinium		C	R	R	
Ceratium			RR		_ [
Prorocentraceae	C	C	C	C	C
Gonyaulacaceae			C	C	
Peridiniaceae		C	C	C	
Monomastix	C	C		C	
Cryptochrysis		C			
Cryptomonadaceae		c		C	i
Astasia	C	C	C	C	cc
Euglenaceae	cc	C	CC	C	
Peranemaceae	R				
(Zoo-Mastigophora)					
Zooflagellata	C	C	C	C	C
Rhizopoda	C	CC	R	C	C
Actinopoda	C	C	C	C	C
Ciliophora	cc	cc	C	C	C
TROCHELMINTHES					
Rotifera	ccc	C C	C	C	С
ARTHROPODA					
	c	c	c	C	c
Cyclopidae Calanoida	C	Č	c c		R
=	ď	Č	C		R
Diaptomidae					ì
Daphnidae	C				C
Sididae	C	C			C
Bosminidae	C			1	C
Chydoridae	l cc	C			
Macrothricidae	, c	C	C	C	

Table 3

Distribution of Marine Plankton in South Viet-Nam

Note: (Regions)

A region Rach-Gia, Phu-Quoc, Westcoast of Ca-Mau

B region East coast of Ca-Mau, Vung-Tau, Phan-Thiet.

C region Cam-Ranh, Nha-Trang, Phu-Huu, Tuy-Hoa, Qui-Nhon.

D region Thuan-An (Hue), Da-Nang, Quang-Ngai.

9

Family	Α	В	C	D
СУАМОРНУТА			,	1 (-1)
Oscillatoriaceae	R	СС	ccc,	C
CHRYSOPHYTA			,	111
Melosiraceae Coscinodiscaceae Corethronaceae Leptocylindraceae Skeletonemaceae Thalassiosiraceae Rhizosoleniaceae Bacteriastraceae Chaetoceraceae Biddulphiaceae Eucampiaceae Fragilariaceae Tabellariaceae Acnanthaceae Naviculaceae Nitzschiaceae Surirellaceae	C C R R C C C C C C C C C C C C C C C C	R C R R C C C C C C C C C C C C C C C C	ROROCOCCCCCCC	R C R R C C C C C C C C C C C
PROTOZOA	V			
Dictyochaceae Peridiniidae Globigerinidae Cymbaloporidae Acanthochiasmidae Acanthoplegmidae Acanthometridae Amphilithidae Aulacanthidae Aulosphaeridae Cyrtoidae Coelodendridae Discoidae	R R C C C R R R R R R R R	R R C C R R C R R	R C C C R C C R R R R C R R R C R R C C C R C	R R C C R R R C
Gigartaconidae Medusettidae Phyllostauridae Plectoidae Spyroidae	R R R	R R R R R	R R R R R	RR
Sphaeroidae Sphaerozoidae Stauraconidae	R	R R R R	R R R R R	R

1				
Family	A	В	C	D
Astrolithidae	RR	RR	RR	
Vorticellidae	C	C	C	C
Codonellidae	C	C	C	C
Codonelliopsidae	C	<u> </u>	C	C
Coxliellidae	R	R	R	R
Cyttarocylidae	R	R	C	
Dictyocystidae	_	R	R	
Epiplocylidae	C	C	C	C
Petalotrichidae	R	R	R C	R C
Ptychocylidae	C	C	R	R
Tintinnididae	R R	R	C	R
Rhabdonellidae	C C	C	Č	C
Tintinnidae	R		R	
Undellidae	C C	c	C	c
xystonellidae	C		"	
PORIFERA				
Clionadae			RR	
Leucosolenidae	R	R	C	R
COELENTERATA				
Hydromedusae	c	C	l c	C
Trachylina	С	l c	c	С
Siphonophora	cc	cc	CC	C
Scyphomedusae	l c	R	C	R
Ctenophora	C	C	C	C
PLATHEIMINTHES .	ļ			<u>.</u>
Planocera (Larvae)		R	R	
NEMERTINI				
Cerebratulus (Larvae)			RR	
TROCHELMINTHES				
Synchaetidae	RR	RR	RR	RR
Dicranophoridae	R	C	C	
Sinantherinidae	RR		RR	
ANNELIDA		1		
Phyllodocidae			RR	
Typhloscolecidae	1	RR	RR	İ
Alciopidae	RR		RR	1
Tomopteridae	R	R	n R	R

Family	A	В	С	D
Polychaeta Larvae	C	С	C	С
CHAETOGNATHA	Ī			
Sagittidae	C	C	С	С
MOLLUSCA		ļ		
Heteropoda Ptenoglossa Nudibranchiata Limacinidae Cavolinidae Peraclidae Cymbuliidae Pneumodermatidae Thliptodontidae Mollusca Larvae	C RR RR C O R R	RR RC RR RR RR	RRRCCRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	RRR CCRR
	n	K K		
MOLLUSCOIDEA Larvae	RR	RR	RR	R R
ECHINODERMATA				
Bipinnaria Larvae Ophiopluteus Larvae Auricularia Larvae Echinopluteus Larvae	R R R R R	R C R R C	R C R R C	R R R R R
ARTHROPODA				
Polyhemidae Halocypridae Eucalanidae Calanidae Paracalanidae Pseudocalanidae Aetideidae Spinocalanidae Megacalanidae Heterorhabdidae Acartiidae Metridiidae Euchaetidae Phaemnidae Scolecithriciidae Centropagidae	C R C C C C R R C C C R	C R C C C C C R C C C R C C C R	C R C C C C R R C C C R C C R	C R C C C C C R R C C R

Family	A	В	С	D
Temoridae Candaciidae Lucicutiidae Augaptilidae Pontellidae Mormonillidae Oithonidae Ectinosomidae Macrosetellidae Tachydiidae Clytemnestridae Oncaeidae Corycaeidae Sapphirinidae Cirripedia (Larvae) Amphipoda Euphausiacea Mysidacea	R R C C C R R R C C C R R R C	R R C C R R C C R R R R R	R R C C C C C C R R C C C R R R R R R R	R R C C C C R C C C R R C C R R R R R R
Decapoda (Larvae) Stomatopoda (Larvae) PROCHORDATA	С	С	C R R	C
Kowalevskidae Appendicularidae Salpidae Doliolidae Pyrosomatidae Prochordata Larvae	R C C C R	R C C C R	R C C R R	R C C R R

	CAN-LT	Pond of PRENE	THAN-THO LAKe	KE-LIKH Lake	VAN-EIEP Lake	RUAN-RIJONG Lake	Da-MHI
CTABOPETA Cacillatoria princepa Spirulina Princepa	205				50		
CHRYSOPHYTA (Diatoms) Arhmenthes comrutate		54B	,				
imphore ovelis Becillaris peredore		167 4759	1	164		ľ	ì
var. tumidula Cymballa maviculiformis	1	63	528		}		l
DATTA	1		1536	!			ĺ
Dietosa vulgare Fragilaria capucina	ĺ	204	741	25		ļ	ĺ
construens pinnata	ļ	83		11		ļ	!
subsalina utermobli	ĺ	1000	468	"	73		<u> </u>
Aitezcora	1	177		}		ł	! !
Sp. Kelozira Agusaisii	75	÷	271				1
gianulata Navicula Placentula		ĺ	334	109			[
var. lanceolata)		J 72			Į	
radiosa rhynchocephala]	432 334	207			ļ	İ
rostrata Nitsachia Fonticola	1	ł ·	718 346			ł	ł
hyassensis	1	67	1062			Į.	ļ
serieta Rhisosolenia longiseta	1	1	540 65			[{
Rhopelodia gibba Surirella eplendida	}	84 84]			1	1
Synedra fasciculata Utermohli	1		50 48			1 .	ĺ
Tribonema angustissisum	1	}	40	9		i	Į.
CHLOROFHYTA	 						
Acanthosphaere Zechariesi Ankistrodesmus Talostus	1		486		35	ĺ	ĺ
Chodatella subsalsa Cosmarium indentatum	}]	33	8		1]
nymannianum	1		173				j
phaseolus Echinosphaerella limmetica	1	1	16	·		}]
Mougeotia viridia Nougeotiopsia calospora	474		1102	28	177	i	
Oedogonium crispum Pechycladon nabrinus		1	5 1394	' I		ĺ	ĺ
Pandorina minodi	1	}	*2274		,	}	26887
Pediastrum birediatum Pleurodiscus purpureus	327			13		1	
Rhisoclonium hisroglyphium Schinogonium murale			802	103		ł	{
Sphaerocystis achrosteri	1				317	1	
Sphaeropies annulina Spitogyra asygospora	613	1 1				ĺ	272
ionia prolifica	1	4215	7515	ļ ,	115]]
pseudocylindrics	Ì	1358	· ·		i		
Staurastrum indentatum amithii	}	1	2680 9352	' 1		1	
Treuberia crassispina Zygnema insigne			i		13 307	i	1
ROTOZOA (Phyto-Mastigophore)	1	 				·	f
Chlamydomonas chrysomonadis completa	1	;]	902 534	. }	l	}]
Dinobryon divergens		1 1		1			324
Englena acus Hemidinium masutum	1	1 1		17	154 192	ł	i
Peridinium atriolatum		[192		1
(Zoo-Mastigophora) Bryometopus sphagni		[[130				[
Physomonas vestita	1	1 1	47	_	_]	}
Vorticella campamila	 	 		- 4	7		
Filinia longiaeta	}	1 1	ļ	12		1	ł
Notholes scuminata Platyis quadricornis	1		1	6			1418
Polyarthya vulgaris	 	<u> </u>		10		Ĺ _	[
RTHROPODA (Copepode) Cyclops stremus	33	} }	ļ			1	}
vernelis	"					i	12308
vicinus Dieptomus kenai	1	1 1	2512	1		1	9369
reighardi Eodiaptomus japonicus	17						45558 2668
Negacalanus princeps Nesocyclops Leuckarti	[1 [ĺ	1	12	1274	ĺ
Sinodiaptomus Sarsi	}) J	J	1015	5 8	3206 4168]
(Cladocera)	885]					1
Alona monocantha Ceriodaphnia magopa	i	1	ł	}		1	1470
rigaudi	15		3]			3858
Chydorus spinsericus	,	. 1	ı	i		1122	ſ
Chydorus sphaericus Daphnia rosaa	1	i 1				7485	
Chydria spaciate Daphnia rosea Noina brachiata macrocopa Cryurella longicaudia]]	j	50		7485 8608 60	}

Table 4 The plankton in each lake of Dalat

(C) THE PLANKTON OF FISH CULTURE STATIONS

The Table 6 shows the result of my survey of the plankton in several fish culture stations in Viet-Nam. This is a mere survey of plankton and does not deal with its relationship with the productivity of fish, but in comparison with the ponds and lakes in general in Viet-Nam may at least be able to draw from this the following conclusions.

- 1. The rate of production of plankton (numbers/m³) is 5 to 15 times higher than that of the lakes and ponds in general. The author thinks this is because of the fact that the remnants of the food for fish (rice or rice bran) and the excrements of fish are decomposed into such catabolic matters as ammonia and nitrate, which in turn are fed by the plankton.
- 2. The PH is as low as 5.5 except at Cholon (PH 7.6) and Nhatrang (Brackish). This is the average PH of the lakes and ponds in general.
- 3. The following table (Table 5) shows the representative plankton groups developing in each of the fish culture stations.

Fish Culture Stations	Cyanophyta	Cyanophyta Chrysophyta Chlorophyta	Chlorophyta	Protozoa (phyto-mastigophora)	Copepoda	No Culture fish	Notes	W.T.(°C)
Cholon (Kieu Cong Muoi)				0		Canbogian Carp.	7.6	31.0
Thu-Duc	0		•			Carp. Tilapia	5.0	28.0
Dalat (larval stage)			0		0	Carp.	6.0	26.0
Dalat (younger stage)			0	0		Carp.	5.5	25.8
Hue		0				Carp.	1	ı
Nhatrang (Brackish)		0				Tilapia Chanos chams	8.0	28.0

Table 5. The representative plankton groups which have developed in ponds of each fish culture station,

It is clear from Table 5 and 6 that the formation of the plankton in one culture station is different from that in another. Generally speaking, each kind of the marine animals lives on its own food suitable for itself. The natural living food varies in its kind according to the species of the animals and the palces they live in, and the quantity of the food has influence on the production of the marine creatures. It is natural, therefore, that where there is much food there is a rapid growth and a great production of useful animals.

On the other hand, fish culture stations should be put under a good management, that is, we must try to provide the fish with such food and environments as are necessary and proper for their growth.

For example, in the case of <u>Tilapia mossambica</u> and <u>Chanos</u> chanos (generally called "milk fish") which are commonly cultivated in Viet-Nam, the phyto-plankton is given for food at their larval and younger stages.

(According to W.H. Schwester, 1952, 50% to 70% of the contents of Tilapia intestine is phyto-plankton, and 11% to 17% is zoo-plankton.) It is, therefore, necessary to take positive measures to increase phyto-plankton for these herbivorous fish.

In multiplying ordinary fish such as carp, it is necessary not only to provide them with suitable living environments (that is, to make dissolved oxygen, PH, and water conditions suitable for them) but also to pay full attention to such matters as the manufacturing and compounding of food based upon nutritive chemistry, the making of a food which is quick of digestion and absorption, the frequency of feeding in one day, growth rate, and an economical quantity of food to be given to fish.

		CHOLON (n/m³)	THU-DUC	DALAT (Hatched stage)		HUE	NHATRANG (Brackish
	Anabasnopsis Elenkinii	(n/m ³)	(n/m ³) 29734	(n/±3)	(n/m ³)	(n/a ³)	(n/m ³)
- Deta	Anabaena circinalis Chroccocus giganteus		43,54	6827			
	Coelosphaerium Kuetzingianum	1		1		t.	2472 359
	Oscillatoria limosa Spirulina princeps		11393			1	
	Symploca muscorum		13604 807	,		•	
E-2010A-1	Achnanthes sp.		<u> </u>				10528
	imphora ovalis Botrydiopels arrhisa	1		1670			792
	Chaetoceros muelleri	1			i	1	457
	Cyclotella Entsing Diatoma linearis			200		!	810
•	Distonella balfourians	;		i		1	259
	Epithenia sp. Fragilaria capitata			89			382
	construens lanceolata	!		-			1074
	subsalina	1	i	ì	367	1	237
	Frustulia rhomboides Cyrosigma kutsingii	1	[3560
1	Hantzachia amphioxys	İ		187		į	698
	Melosira gramulata var. valida			2899	662850	22752	
	isolandica	!		97		678	
	malayensis varians	i	İ	13		78	
	Meridion circulars	1				24	
	Navicula lanceolata placentula		-		334		6122 2538
	Nitsachia acicularis actinastroides		İ	ļ		1	5078
1	closterium	1	123	i		108	
	kutsingiana nyassensia	ŀ					481
	philippinarum	i	ŀ	748 94			
1	subrostrata Phaeoglosa micosa	ì	ĺ	73	36	1	
	Pinnularia sp.	1	Ì	94	"	1	
	Rhbdonema adrimticum Rhopalodia gibba	1	}	Ì	58	ļ	4696
1	Surirella robusta	ļ	1		_ ~		15137
	Synedra affinis acus	1	1	1	526	}	2589
	cunningtoni		1		238		ĺ
;	fanciculata lanceolata		į	284	364 351		
ELOROPHYTA	Ankistrodesmus falcatus			8143	51300	†	
i	Arthrodesmus apiculatus arcuatus		1		35800 6276	i	
İ	curvatus	ļ	1		29530	;	
	Closterium moniliforme setaceum		1		2214		5068
	Closteriopsis longissima	!	1	434			-
	Coelastrum cambricum Cosmarium exasperatum		1	531	367	1	
1	rhaneolus			334			
	Crucigenia fenestrata		1	6359	501 11072	1	
	quadrata Desmidium bengalicum	ı		374		18	1
,	Dictosphaerium pulchellum	k.	l .		95958		
ł	Echinosphaerell limnetica Pranceia tuberculata	1	20	11414		•	
	Geminella interrupta		13				
	Hyalotheca sp. Micrasterias mahabuleshwarensis			18		12	
į	Microspora emocna	į				-	776
	Mougeotia sp. Pachycladon umbrinum			67	122531		
	Palmella minista	ļ			7381	120	
	Pediastrum biradiatum Pleurodiscus purpureus			237	351	438	
	Protococcus viridis Scenedasmus armatus	1		468	19192		172
į	dimorphus	ŀ	Į.	3367	17715	1	
	Schroederia setigera Selenastrum Bibraianum	1			3322 11810		117
	7414UNG FLINE DJ CLESSING		1	9352	14010	1	
	gracile		1	654 296	l	1	Į.
	Spirogyra ahmedabadansis	l	i				
	Spirogyra ahmedabadensis prolifica protecta			250	110		i
	Spirogyra ahmedabadensis prolifica protecta Staurastrum acanthastrum				110 175	120	
	Spirogym ahedabadensis prolifica protecta Staurastrum scanthastrum anatinoides corniculatum			2993 50	175 2214	120	
	Spirogyra ahmedabadensis prolifica protecta Staurastrum acanthastrum anatinoides			2993	175	120	ļ

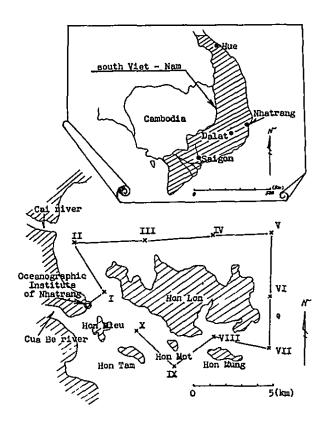
	negocanthum gracile orbiculare pseudopachyrhynchum punctulatum Tetraedron lobatum Volvoz aureus Vestella botryoides Zanthidium brukillii sexmanilatum		250	281 629 85 94 140 208	1476	190	2707 2580
PROTOZOA (Phyto-Mastigophora	Ceratium hirundinella var. silesiacum	j			5		481 3039
. ,	Chlamydomonas inhabilis kvildensis praecox Rodhei Chrysocapsa planotonica	1			2405 680	3840	247
	Cryptoglena pigra Dinobryon divergens	9690		247 1964		132	
	sertularia Euglena clara deses geniculata	2170	64		369		
	halita hasining pseudoviridis valata		80 227 82				11.
	Glenodinium steinii uliginosum				2670		59
	Hypnodimum sphaerium Feridinium sciculiferum	500			20 651		24
	africanum spiniferum striolatum			164	19561		35
	Phacus longicauda Protochrysis phaeophycearum	17700			300		
(Zoo-Mastigophora)	Acanthocystis chastophora Actinophrys sol Ctedoctama acanthocrypta Cyclidium glaucoma Didinium sp.	72 651	583 100		334	ı	
	Emplotes patella Gastronauta membranacea Glaucoma scintillans	585 150 250				12306	10
	Holophrya simplex Pleuronema coronatum Spasmostoma viride Steinia candeus		838			11184	49
	Trichodina sp. Brachionus urceolaris	- 	-	189846	····	. 96	18
TROCHELMINTHES	Columella obtusa Dipleuchlanis propatula Keratella cochlearis					30 60	
	Lepadella patella Ronostyla quadridentata	52		84 78	304	24	<u>. </u>
CRUSTACEA	Acartia Clausi Calanus sp. Cyclops bicolor					1	1 1
	cyclops cicolor stremus vernalis Diaptomus reighardi	84		111	174		
	Endiaptomus Felguardi Eodiaptomus japonicus Hesocyclops lenckarti Osphranticum labronectum		65	33271	65	1	,
	Pseudodisptomus marinus Sida orystallina			149	375		L

Table 6 The plankton species was taken from the pends of each Fish culture station in Viet-Nam. (unit the number of Individuals per Cubic meter (n/m^3))

and the second second

MARK MED STEAD OF A

CHAPTER V ENVIRONMENT AND PLANKTON BIOMASS IN THE
DRY AND THE RAINY SEASON IN NHATRANG BAY
AND THE OPEN SEA, CENTRAL VIET-NAM


Ç.,

* * *

A. RESEARCHING STATIONS AND RESEARCHING METHODS

1. RESEARCHING STATIONS

Ten researching stations were established (Fig. 1) in Nhatrang Bay and the open sea (about 14 km. from the beach) around Hon Lon (Lon Island).

2. RESEARCHING INSTRUMENTS

- (1) Mercury thermometer (35°C)
- (2) Kitahara water collecting equipment.
- (3) Hydrometer.

- (4) Medicines are used to the fixation of dissolved oxygen. (MnCl₂ and KI + KOH solutions)
- (5) Oxygen bottles (about 100 cc Volume).
- (6) Secchi plate for the measurement of transparency.
- (7) Plankton nets.
 - (a) Phyto-plankton net (Mullergaze No. 5)

 for the horizonta ---- Diameter 30 cm.
 for the vertical ----- " 25 cm.
 - (b) Zoo-plankton net (Mullergaze No. 25)

 for the horizontal ---- Diameter 30 cm.
- (8) Solution for the fixation of plankton

 Formarin ----- 4 6 % neutral
- (9) Ropes. 100 m., 20 m., 10 m., ---- Diameter 6 mm.
- (10) Pouches and bottles for the collected samples.
 - (a) Pouch: Nylon or Vinyl ---- Size 20 x 30 cm (mainly, it was used to the water samples)
 - (b) Bottles: Plastic bottle; D. (5.5; 3.5; 2.7 cm)
 H. (11, 8, 7 cm)

3. ITEMS OF THE RESEARCH

- (1) Observation at the same station on one day.
 - (a) Station ---- St. I
 - (b) Date and Time

Dry season --- May 20 - 21, 1963 Rainy season --- Oct. 1 - 2, 1963

from sunrise to after sunset --- 5:30 a.m. to 8:30 p.m.

- (c) Measurement: Temperature, Dissolved oxygen,
 Density, Alkalinity, Chlorinity and
 Salinity, Transparency, and Horizontal
 and Vertical distribution of plankton
 to each depths.
- (2) Observations in Nhatrang Bay and in the open sea.
 - (a) Station ---- Sts. I X
 - (b) Date ----- Dry season May 21, 1963 Rainy season Oct. 2, 1963
 - (c) Measurement: Temperature, Dissolved oxygen,
 Density, Alkalinity, Chlorinity and
 Salinity, Transparency, Quantity of
 plankton (phyto- and zoo-plankdon)
 at each station.
- 4. PREPARATION OF CHEMICALS AND THE METHOD OF ANALYSIS OF THE SAMPLES
 - (1) Determination of specific gravity the water was taken to the laboratory, as it is difficult to get a correct determination of the ship because of the rolling and pitching. Density of the sea water is determined by the Akanuma's specific gravity meter. As it varies with the temperature, the density determined in any temperature is converted into that of 15°C ((15) and is compared. This conversion is made according to Makalof's list (Appendix Table I).

Here is the formula used in the conversion of the gravity by the Table .

$$d_{15} = (g - g') m + 1.0260$$

g is the standing density; g' is the density of the standard sea water at t $^{\rm O}{\rm C}$ obtained from this Table; m is a multiplier obtained from the Table; and 1.0260 is constant.

- (2) Determination of dissolved oxygen -- Winker's method.
- (3) Method of getting Cl $(\circ/_{OO})$, S $(\circ/_{OO})$ from the Density the relations among the Density, Cl and S can be known from Knudsen's table (Appendix, Table II). The values of Chlorinity and Salinity in this report are obtained from

this Table. Although the determination of Chlorine by means of the AgNO3 solution is no doubt accurate, it is not used here. The relation between Chlorinity and Salinity is given by Knudsen in the following formula.

$$S = 0.030 + 1.8050 C1$$

S is Salinity; Cl is Chlorinity.

(4) Determination of Alkalinity -- The fixed quantity of carbonic acid and carbonate in the sea water, called "the determination of Alkalinity" was formerly indicated with the milligram of CO₂ or CC but is now indicated with the mg/atom/L or milli-eqiv/L of HCL which is necessary for the neutralization of carbonate. The following is the method of determination. The carbonate of Ca is determined by the following method, as it does not show the color reaction.

Add HCl to the water containg $CaCO_3$, and HCl neutralized by $CaCO_3$ diminishes in quantity.

$$CaCO_3 + 2HC1 = CaCl_2 + H_2O + CO_2$$

Measure this decrease of HCl by means of Iodine method. This is called the determination of E. Ruppin, and is chiefly used for the determination of the sea water.

First, add a certain amount of HCl to a certain amount of the water, and after removing CO₂ by boiling it, potassium iodide and potassium acid iodide are to be added. Then I, equivalent to the amount of HCl remaining in the water, will be separated throught the following reaction, and it is to be titrated.

$$KIO_3 + 5KI + 6HC1 = 6KC1 + 3H_2O = 3I$$

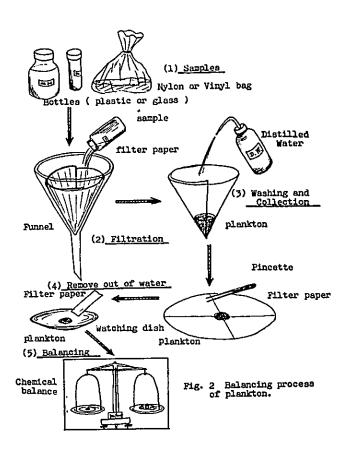
- (a) Reagent
 - (i) N/20 HCl
 - (ii) N/20 KIO₃ Dissolve 1.784 g. of KIO₃ into distilled water, making it 1 liter.
 - (iii) Dissolve 10 gr. of pure KI into distilled water, making it 100 CC, and store it in the dark.

- (iv) N/10 Na2S2O3
 - (v) 1 % starch solution

(b) Operation

Take 100 CC of the sea water into a hard flask, and 1.5 CC of N/20 HCl to this, and after removing CO₂ with a few minutes boiling, cool it until it becomes of the same temperature as that in the room. Then, add 7.5 CC of N/20 KIO₃ and 5 CC of 10% KI, sealing it up and keeping it in the dark place for more than ten minutes, and I will be separated. Use starch solution for the indicator, and titrate it with N/10 Na₂S₂O₃.

(c) Calculation


If X CC of N/10 Na₂S₂O₃ was necessary,

 CO_2 par 1 L. = X x 2.2 mg x 10

(5) Determination of plankton

(a) Balance of plankton

Samples fixed by formalin (about 4 - 5% neutral farmalin) are collected and balanced through the following process (Fig. 2).

In filtering the samples fixed by formalin, the plankton left on filter paper should be from time to time washed down with distilled water so as to make it gathered at the bottom. It must be done immediately after filtering the water, for after it gets dry, plankton will be stuck to filter paper and won't come off. Twenty or thirty minutes later, open filter paper and, picking up the gathered plankton very carefully and quietly, remove it onto the watch dish. Then by press a piece of filter paper to the gathered plankton, remove water out of it, and weigh it with the micro-balance. (Weigh it together with the plate, and later deduct the weight of the plate.)

(b) The method of determination of the individual number.

As for plankton, even among the same species, the size varies with the growth and the degree of reproduction, (sometimes it is influenced by the environment of water), so it is almost impossible to convert its number into quantity. It must be remembered that, if it done, there will be an error to a great extent.

(c) Measurement of the volume of plankton

Put the collected plankton into the mes-cylinder, and the amount of plankton precipitated after certain hours will be the whole volume. What we have to have in mind this method is that the error in the volume will be procuced by the specific gravity of the sea water, by the difference in sedimentation verocity among the different species of zoo- and phyto-plankton, and also by the varieties of aperture during the precipitation caused by the different sizes of the species. Measurement must be done, therefore, taking these things into consideration.

Another method is to precipitate plankton by centrifugal separation and measure its volume. It is convenient, in this method, to convert the centrifugal, the volume, and the wet-weight beforehand.

(d) Determination of organic nitrogen in plankton.

This is the most accurate method to measure the quantity of plankton, and is generally used in Japan.

- (i) Filter the samples fixed by formalin, and then remove formalin.
- (ii) Wash plankton several times with distilled water.
- (iii) Reverse the filter paper, and pour plankton gently into the Kjeldahl's decomposition bottle with distilled water.
- (iv) Add concentrated sulfuric acid three to ten times as much as the amount of the sample (sometimes use catalyser) and boil it from ten to twenty hours.
 - (v) Taking a certain amount of this liquid,

make it gasified ammonia by Kjeldahl's distilling method, and put it into the precise normal solution of HCl. Titrate it with N/100 Na₂S₂O₃, using starch solution as the indicator. The above is a rough summary of the operation, and the details will be obtained in the chemical books.

The author himself has determined the quantity by the balancing method (a).

B. RESULTS

Comparison between the dry season (May 20, 21, 1963) and the rainy season (October 1, 2, 1963) was the chief object of this survey.

- 1. THE OBSERVATIONS AT THE STANDING POINT. (AT ST. I)
 - (1) Atmospheric temperature and water temperature.

The results are shown in the Table 7, Table 8, and Fig. 3. In the dry season atmospheric temperature in the daytime is usually over 30°C, which occurs less often in the rainy season.

	ក្	l'ime	5:30	a.m. 8:00	11:00	14:00	p.m. 18:00	20:30	Mean Tem.
	A.	.T. (°C)	26.4	28.5	30.8	31.4	29.8	28.9	29,3
season 21, 1963		Depth (m) O	28.4	28.9	29.6	29.5	28.9	29.0	29.1
1 .	W.T.	5		28.9		29.0	29.1	29.1	29.0
Dry May		10	·		26.8		26.3	26.9	26.6 25.0
		15	24.9	25.0	24.8	25.1	24.9	25.3	25.0

	Time			a.m. 8:00	11:00	14:00	p.m. 18:00	20:30	Mean Tem.
	A.	A.T. (°C)		28.9	29.6	29.5	28.9	29.0	29.1
	W.T.	Depth (m)	28.4	28.4	29.0	29.2	28.3	28.5	28.6
İ		5	29.0	29.1	29.1	29.2	29.1	29.1	29.1
		10	28.8	28.9	29.0	29.0	28.8	28.9	28.9
		15	28.8	28.4	28.0	28.0	28.1	28.6	28.3

Table 7. Atmospheric temperature (A.T.) and Water temperature (W.T.).

	(0,)		W.T.	Devia-		
	Л.Т. (^O C)	O m.	5 m.	10 m.	15 m.	Devia- tion (°C)
Dry season	29.3	29.1	29.0	26.6	25.0	± 4.1
Rainy season	27.4	28.6	29.1	28.9	28.3	± 0.8

Table 8. Average A.T and average W. T.

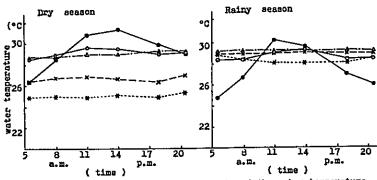


Fig. 3 The relation between the depth and the water temperature at St. I.

The average temperature of the dry and the rainy seasons was respectively 29.3°C and 27.4°C, and the difference between them was about 2°C.

In both the dry and the rainy seasons, the water temperature is found to have a tendency of falling according as the water gets deeper. But, compared with the rainy season, this tendency is more remarkable in the dry season. The difference of temperature by about 4°C was recognized between the surface and the 15 m. layer. As the water mass between the surface and the 5 m. layer shows nearly the same degree with the average atmospheric temperatures, it is considered that the water temperatures suddenly falls under 5 meters. In the rainy season, however, the water temperature from the surface to the 15 m. layer was higher than the average atmospheric temperature, and the average difference of water temperature was very small -- 0.8°C.

The water temperature in the early morning is higher than the atmospheric temperature. This shows the keeping-warm quality of the sea water.

The fact that the difference in the water temperature between the surface and the 15 n. layer varies with the seasonal change, i.e. 4.1°C in the dry season, and 6.8°C in the rainy season, has a great influence upon the vertical distribution of plankton, which will be mentioned in the later chapter.

It means that the circulation between the surface and the underlying water is not easily done in the dry season, and that, accordingly, the distribution of plankton varies in quality and quantity with the different depths of the water. In the rainy season, on the contrary, the circulation is easily done, and so it is supposed that the plankton is almost equally distributed throughout. The temperature of the surface water was found to fall in some degree at sunrise and after sunset. This shows that the surface water is likely to influenced by the atmospheric temperature.

As for the change from the dry to the rainy season in the average difference of water temperature, it will be explained that the temperature which has been falling during the rainy season of the preceding year, rises on and near the surface in summer (i.e. the dry season) because of the strong sunshine, while in the rainy season the sunshine is weak, and the surface water and the underlying water become easily mixed because of the wind and the rain.

(2) Dissolved oxygen.

The amount of dissolved oxygen obtained at the different hours at each depth at the same standing point, and also the average amount of oxygen at each depth, are shown in the Table 9.

Depth	O m.		5 m.		10 m.		15 n.	
Tine	D.S.	R.S.	D.S.	R.S.	D.S.	R.S.	D.S.	R.S.
5:30	4.39	4.49	4.37	4.34	4.53	4.28	-	-
8:00	_	4.42	_	4.28	-	4.35	-	4.28
11:00	4.49	4.35	4.60	4.49	4.72	4.21	4.69	4.28
14:00	4.37	_	4.23	4.42	4.57	4.35	4.48	4.21
18:00	4.47	4.35	_	4.40	4.70	4.35	4.57	4.42
20:30	4.36	4.56	4.61	4.28	4.61	-	4.61	4.35
Mean Oxygen (cc/L)	4.42	4.44	4.47	4.37	4.63	4.31	4.59	4.31

Table 9. Dissolved oxygen at each depth at the same station (St. I)

JIT was known from this Table that the amount of dissolved oxygen at the same depth on the same day changed in some degree as the time goes on.

ζ,

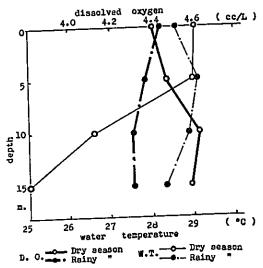


Fig. 4 The relation among the Dissolved Oxygen, Water Temperature and Water Depth at the same station (St. I).

In the Figure 4. are shown the average amount of dissolved oxygen at a certain depth on a certain day, and also its comparison with that of different depths and with the average water temperature.

This figure shows that the average amount of dissolved oxygen at each depth is greater in the dry season than in the rainy season. That is, in the rainy season, the amount of oxygen decreases as the water becomes deeper, and reaches the constant value (4.3 cc/L) at the depth of 10 - 15 meters, while, in the dry season, it conversly shows the tendency of increasing, and gets the constant value 4.5 cc/L also at the depth of 10 - 15 meters.

In both season, however, the amount of oxygen of the surface water is about the same, and the fact is common to both that at the 10 - 15 m. layer, there is not a sudden change in the amount but the value is almost constant.

In order to explain the difference of the two seasons, water temperature may be considered as one of the factors. In the dry season a sudden fall of water temperature under 5 meters was observed. This may mean that at the lower depth than 5 meters, the amount of dissolved oxygen increases, for it is known that the lower is the temperature, the greater is the amount of the oxygen in the water. This was proved by observation.

In the rainy season, having no sudden changes of water temperature and the water being mixed, not much difference was observed between each layer, but the amount of dissolved oxygen was seen to decrease gradually, from the surface to the 10 m. layer. This may be because the water of this season is muddy (whose transparency is small, probably owing to the influence of the rivers), and may have some relation to the consumption of oxygen by microbes and organisms, which are the cause of the mudiness of the water.

(3) Transparency

The transparency at the Station I. inside Nhatrang Bay was 13.5 - 14.0 Meter in the dry season, while in the rainy season it was 5.5 - 8.0 m., which was much lower than the other. The particles of mud carried by the rivers are considered to be the cause of this phenomenon. In Nhatrang Bay, the influence of mud carried by the rivers was observed one or two days after the rainfall, and the gradual change of the sea water from deep blue to muddy yellow was seen with the naked eye. Recovery of transparency generally takes 5 - 7 days, but in the rainy season, owing to the constant rain at the upper streams, recovery is either very slow or does not take place at all.

(4) Alkalinity

The average alkalinity in the dry and the rainy seasons at the Station I. was 35 and 50 mg/L respectively (as to the surface water). The values of alkalinity of the surface and of the 15 m. layer water are almost the same in the dry season, but in the rainy season, alkalinity of the surface water and that under the 5 m. layer differ in value. This is because on the surface is the sea water with the lighter (specific gravity) density (influenced by the rivers), and these two masses can be distinguished. The Table 10. shows alkalinity of the surface and at the 15 m. layer, and the Figure 5, the change of alkalinity within a day during the

rainy season.

(unit mg/L)

Alkalinity

Table 10. Alkalinity of the surface and at the 15 m. layer

From this Figure may be known the difference in the quality between the water mass of the surface and that under the 5 m. layer.

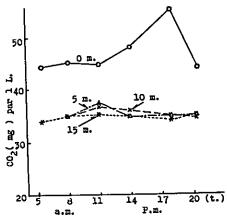


Fig. 5 The change of alkalinity within a day during the rainy season.

(5) Density

The Table 11. shows the density of the surface water and the 15 m. layer water, in both the dry and the rainy seasons. The density of the sea water ($_{15}$) usually lies between 1.0000 and 1.0310. It is known from this Table that the densities of the surface and of the 15 m. layer are nearly

the same in the dry season, but that in the other season the difference is very great.

	Surface Water ((1_{15})	15m. layer Water ((15)
Dry season	1.0250 - 1.0274	1.0265 - 1.0275
Rainy season	1.0180 - 1.0190	1.0265 - 1.0270

Table 11. Density at the same station.

As in the case of alkalinity, this is undoubtedly by the influence of the rivers in the rainy season - i.e., inflow of the fresh water, and it is proved that in the rainy season there lie two water masses of the different qualities, on and under the surface.

(6) The yield of plankton

When an investigation was made as to the amount of plankton living in Nhatrang Bay, in the water with the above qualities, the results obtained were as shown in the Figure 6. It shows the vertical and the horizontal plankton biomass at each hour in both seasons by g/m^3 , which was obtained through the night and day observations at a standing point (St. I).

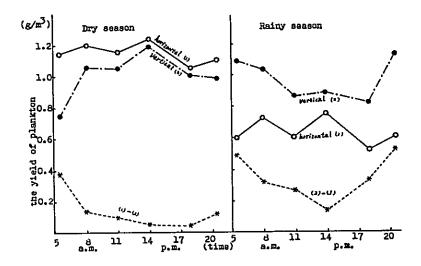


Fig. 6 The plankton biomass at the same station (St. I) on one day.

Comparing these two seasons, it is seen that the vertical and the horizontal plankton biomass is greater in the dry season, and that the difference between the two (i.e. the vertical biomass and the horizontal biomass) is also smaller then. For in the dry season the average horizontal plankton biomass was 1.15 g/m³ and the vertical biomass 1.01 g/m³, the difference being only 0.14 g/m³, while in the rainy season the average horizontal biomass, 0.97 g/m³, the vertical biomass 0.63 g/m³, and so the difference was 0.34 g/m³. In this case, contrary to the dry season, the vertical biomass was greater than the horizontal one. Thinking about this difference, it is sonsidered that in the rainy season the fresh water of the small (light) density covers the surface, (because there alkalinity is found to be greater and the density, smaller), which makes the water unsuitable for the existence of plankton, and consequently brings about the poor yield.

Through the observation of the change in the plankton biomass collected at certain time, a big difference was recognized in both seasons between the vertical and the horizontal yield before sunrise and after sunset (Fig. 6). The vertical distribution rate of plankton in the surface water and the under layer water is designated in the Table 12. in percentage.

	James (m)	E+70	8:00	(Time	•	70.00	00.70	nean
l	layer (n)	5:30	- 	11:00	14:00	18:00	20:30	%
D.S.	0-1	60	53	52	51	51	53	55
R.S.	0 - 1	35	41	41	46	38	35	39
D.S.	1 10	40	47	48	49	49	47	45
R.S.	1 - 10	65	59	59	54	62	65	61

Table 12. The vertical distribution rate of plankton at the same station on one day. (D.S.--Dry season; R.S.--Rainy season)

The average rate of the horizontal distribution in the surface water (0 - 1 m.) was 55 % in the dry season, and 39 % in the rainy season. The reason why it is lower in the latter is that the environment is not fit for plankton because of the inflow of the fresh water. In both seasons, however, the amount of plankton inhabiting the surface water between 0 - 1 m. was found through this table to be much greater than that inhabiting the lower part.

2. THE OBSERVATIONS IN NHATRANG BAY AND IN THE OPEN SEA

Here is the results of the survey in the dry season (May 20) and in the rainy season (Oct. 1), at the ten stations. Hon Lon (Lon Island) is the principal one, in Nhatrang Bay and the open sea.

(1) Wind verocity

Dry season ---- south or south-west wind. Rainy season ---- north or north-east wind.

(2) Atmospheric temperature and water temperature. The results are shown in the Fig. 7.

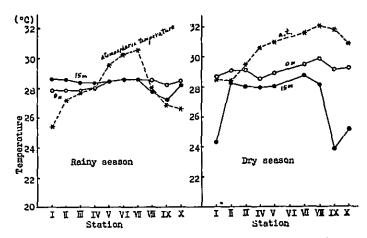


Fig. 7 Atmospheric temperature and Water temperature at each Station.

The average atmospheric temperature was 30.4 °C in the dry season, and 27.9 °C in the rainy season, the difference being 2 °C which is nearly the same with the difference of temperature observed at the standing point, mentioned earlier.

The average water temperature of the surface was 29.1 $^{\circ}$ C in the dry season, and 28.2 $^{\circ}$ C in the rainy season. At the 15 m. layer it was 27.0 $^{\circ}$ C, and 28.25 $^{\circ}$ C respectively.

The temperature of the surface water is higher in the dry season than that in the rainy season, while with the 15 m. layer it is conversly higher in the rainy season. This may be explained that, in the rainy season as the comparative temperature of the water is high, the temperature of the surface water gradually falls under the influence of the atmospheric temperature, while that of the under layer rises, influenced by the high temperature of the surface water.

(3) Dissolved oxygen

The amount of dissolved oxygen obtained through the survey at each station is shown in the Figure 8.

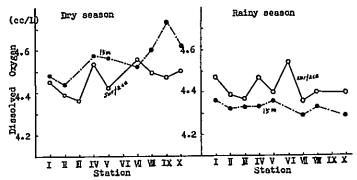
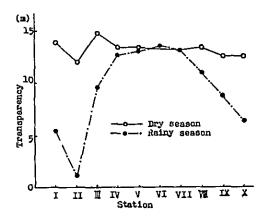


Fig.8 Dissolved oxygen at each station.

In the dry season, the average amount of oxygen was 4.46 cc/L with the surface water, and 4.56 cc/L with the 15 m. layer. In the rainy season, it was respectively 4.42 cc/L and 4.33 cc/L.


There is a great variety in the amount of dissolved oxygen with the surface water, the cause of which seems to be the waves on the surface. (The sample was taken with Kitahara's apparatus at 0.3 n. level from the surface.)

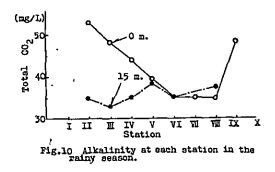
From this may be concluded that there is little difference in the amount of dissolved oxygen in the surface water, between the dry and the rainy seasons, though, with the 15 m. layer, the difference does exist, its amount of oxygen surpassing that of the surface water in the dry season and vice versa in the rainy scason. This is an interesting fact in the light of the above-mentioned water temperatures. (As stated before, it is a general rule

that the lover is the water temperature, the greater is the amount of dissolved oxygen.)

(4) Transparency

The Figure 9. shows the transparency in Nhatrang Bay and in the open sea both in the dry and the rainy seasons. It was known from this Figure that the transparency of both seasons greatly differs one another.

Transparency in the dry season was from 12 m. to 14.7 m. The station II showed the lowest value of all in this season, probably because it was near the estuary and so had the influence of the turbidity of the river. Meanwhile, in the rainy season, transparency differed at each station, and here again the St. II showed 1.2 m., which was the lowest throughout both seasons, probably influenced by the rivers again. St. I, II, III and VIII, IX, X had the lower transparency than that in the dry season, but St. IV, V, VI, VII showed 13 m., which is nearly the same with the dry season.


It is concluded from this that at the St. IV, V, VI, VII in the open sea transparency is almost constant throughout the two seasons. But at every station inside the Bay is found the strong influence of the rivers, and this influence is seen to decrease as we get nearer to the open sea, accompanying the growth in transparency.

(5) Alkalinity

Through the measurement of alkalinity can be obtained the amount of carbonic acid in the sea water, which of course

has much relation to photo-synthesis, i.e. the growth of phytoplankton.

Alkalinity of the surface water and of the 15 meter layer in the dry season was from 30 to 37 mg/L, the under layer having the tendency of being greater. In the rainy season, as shown in the Figure 10, the difference in the value of alkalinity between the surface and the 15 m. layer is apparent. Alkalinity of the 15 m. layer water had nearly the constant value of average 35 mg/L, while with the surface water, excluding the St. VI, VII, VIII in the open sea where the value is comparatively stable (about 35 mg/L), high alkalinity was found at every station. Especially at the St. II near the estuary, the highest value of 53 mg/L was obtained. This is reverse to the case of transparency, but the cause may be the same — the influence of the turbidity of the rivers.

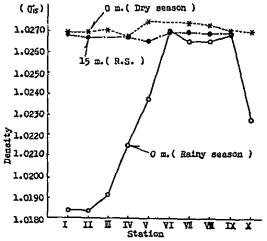
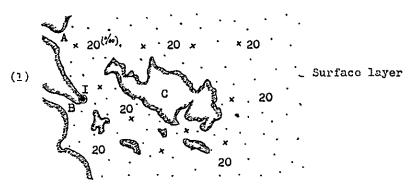
(6) Density and Chlorinity

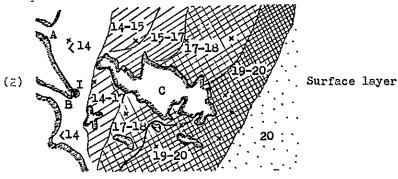
The difference between the surface water and the under layer water, which was mentioned before in relation to the influence of the rivers, was also confirmed through the measurement of the density of the sea water. As is shown in the Figure II, there exists between them an apparent difference in quality. Besides, different water masses were found in the dry and the rainy seasons.

In the dry season, Density ((15)) of the surface water was 1.0267 - 1.0274, while in the rainy season the nearer to the estuary was the station in the Bay, the lower was the value of density, and at the St. II which was the nearest to the river; it was 1.0183. The value grows higher as the

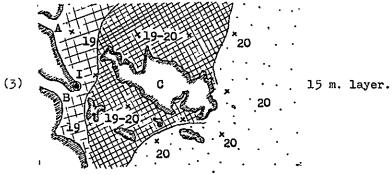
station gets nearer to the open sea where (Sts. VI, VII, VIII, IX) it had a constant value of about 1.0265. As to the 15 m. layer water, 6.15 was 1.026 - 1.0269 throughout all researching areas, so the water mass was found to have nearly a constant value, without any influence, it seems, from the rivers or the fresh water.

The values of Chlorinity and Salinity calculated from delights shown in the Table 13. and the Figure 12, are as in the case of density, high in the open sea, and in the Bay was found a strong influence of the rivers. It has been proved from these results that there exist apparently different water masses in the dry season and in the rainy season, and that in the rainy season the surface water and the underlying water (15 m. layer) differ in quality.


Fig.11 Density at each station.

Station	Season	Depth (m)	Density (15)	Chlorinity (°/00)	Salinity (º/oo)
I	D.S.	0 15	1.0270 1.0275	20.08 20.08	36.27 36.27
	R.S.	0 15	1.0185	14.00 19.90	25.30 35.95
	D.S.	0	1.0269	20.08	36.27
II	R.S.	0 15	1.01835 1.0267	13.86 19.86	25.04 35.88
	D.S.	0	1.0270	20.11	36.33
	R.S.	0 15	1.0191	14.40	26.02
	D.S.	0	1.0267	19.86	35.88
IV	R.S.	0 15	1.0215 1.0267	16.13 19.86	29.14 35.88
	D.S.	0	1.0274	20,39	36.83
V	R.S.	0 15	1.0237 1.0265	17.73 19.74	32.03 35.66
	D.S.	0	_	-	-
VI	R.S.	0 15	1.0268 1.02695	19.96 20.07	36.06 36.26
	D.S.	0	1.0273	20.32	36.71
VII	R.S.	0 15	1.02645 1.0269	19.70 20.08	35.59 36.27
	D.S.	0	1.0272	20.25	36.58
VIII	R.S.	0 15	1.02645 1.0268	19.70 19.96	35.59 36.06
	D.S.	0	1.0269	20.08	36.27
IX	R.S.	0 15	1.0267 1.0268	19.86 19.96	35.88 36.06
	D.S.	0	1.0269	20.08	36.27
X	R.S.	0 15	1.0227	17.00 -	30.72 -


Table 13. Density, Chlorinity and Salinity at each station

Chlorinity ($\%_2$) in the dry season, in Mhatrang Bay and the open see.

Chloranity (%.) in the rainy season, in Nhatrang say and the open sea.

Chlorinity (%) in the rainy sesson, in Nhatrang Bay and the open sea.

Fig 12. The variation of calorinity in the dry season and the rainy season, in Whatrang Bay and the open sea,

(A -- Cai River; B -- Cua Be River; I C -- Lon Island I -- Oceanographic Institute of Whatrang x -- Researching Station)

(7) Plankton biomass

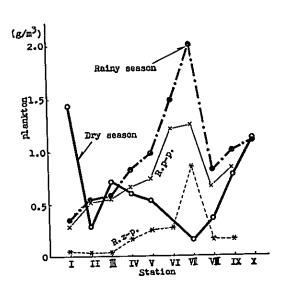


Fig. 13 The quantity of plankton in the dry and rainy season at each station.

R.p-p. shows Phyto-plankton of the rainy season.
R.z-p. shows Zoo-plankton of the rainy season.

										37
Station	I	II	III	IV	V	VI ————	VII	VIII	IX	
Dry season	1.42	0.28	0.7	0.59	0.52	0.32	0.15	0.37	0.77	1.12
Rainy season	0.35	0.55	0.59	0.82	0.98	1.48	2.01	0.82	1.0	1.10

Table 14. Total plankton biomass in the dry and rainy season at each station in the Nhatrang (Bay and the open sea). (Unit shows g/m^3)

Figure 13 and Table 14 shows plankton biomass in the dry and rainy season at each station by the wet weight (g/m^3)

The plankton biomass in the dry season ranged between 0.15 and 1.42 g/m³, higher in the Bay (St. I, II, III, X) and decreasing towards the open sea (St. V, VI, VII). The maximum in the dry season was 1.42 g/m³ at St. I and the minimum, 0.15 g/m³ at St. VII. On the other hand, in the rainy season, the plankton biomass was within a range of 0.35 to 2.01 g/m³, higher in the open sea (St. V, VI, VII) and decreasing towards the Bay. The maximum in that season amounted to 2.01 g/m³ at St. VII as against the minimum of 0.35 g/m³ at St. I.

Further, it turned out that the mean plankton biomass total mean plankton biomass up to 15 km from the beach) in the dry and rainy seasons was $0.56~g/m^3$ in the case of dry season as against $0.97~g/m^3$ in the rainy season or 1.8 times as high as the value in the dry season.

As above, it became apparent that plankton biomass in Nhatrang Bay and open sea presented the relations completely reversed in the dry and rainy seasons. To bring to light the cause of such relations, the environmental factors at the respective survey stations as mentioned above were taken up and the data averaged per Bay (St. I, II, III, X) and open sea (St. V, VI, VII) were compared with plankton biomass, the result of which is shown in the Table 15.

			ay III, X		n sea I, VII
Season		Dry	Rainy	Dry	Rainy
Plankton bioma	SS		0.65g/m ³	0.33g/m ³	1.49g/m ³
Water Temperature	Surface	29.0	27.95	29.1	28 . 5
(oc)	15 m		28.45	28.35	
0xygen .	Surface	4.40	4.35	4.38	4.33
(cc/L)	15 m	13.2 m	5.6 m	13.15 m	13.13 m
Transparency Alkalinity	Surface	-	50.05	-	36.5
CO ₂ (mg/L)	15 m		34.G	_	36.5
Chlorinity	Surface	20.09	14.81	20.35	19.13
(°/ ₀₀)	15 m	20.0	19.87	20.0	19.96
Salinity	Surface	36.29	26.76	36.76	34.56
(0/00)	15 m	36.13	35.89	36.13	36.06

The 15. Average plankton biomass and the environmental conditions in the dry and the rainy seasons in Nhatrang Bay and the open sea.

- 138 -

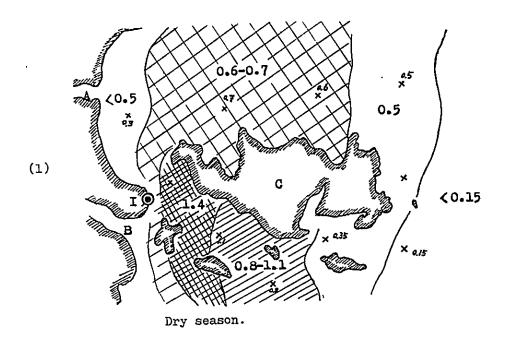
In the above Table, the mean measured values in the 15 cm layer were added for information only and the mean values for the surface layer only come into question in this case.

In the dry season, the mean plankton biomass in the Bay is 0.88 g/m³ or about 2.7 times as high as the case of open sea (0.33 g/m³). If the environmental conditions are examined to account for the cause of the above mentioned water temperature, dissolved oxygen and transparency represent similar values for both Bay and open sea while chlorinity (as well as salinity) is higher in the open sea, but these cannot be considered as the major factors affecting plankton biomass and it is assumed that the increase of Bay plankton in the dry season may be due to the quantity of organic matter which was not measured in that case, but might be increasing towards the beach.

On the other hand, the mean plankton biomass in the rainy season is $0.65~\text{g/m}^3$ in the Bay as against 1.49 g/m³ in the open sea, that is, the biomass is about 2.3 times higher in the open sea as compared with the case of Bay. The environmental conditions in that case were as follows:

(a) The water temperature in the Bay is 0.5°C lower on an average as compared with that of open sea. (b) In respect of oxygen, it may be said that little difference exists between the Bay and the open sea in the surface layer. (c) Transparency in the Bay is 5.6 m or more than 1/2 lover than in normal cases. (d) Alkalinity in the Bay is 50.05 which is pretty high as compared with the open sea (36.5) and indicative of the existence of large volume of organic matter in course of decomposition. (e) Chlorinity is ordinarily about 20 $^{\circ}/_{00}$ (Salinity: 35 - 36 $^{\circ}/_{00}$), but the mean value in the Bay is 14.81 $^{\circ}/_{00}$ (Salinity: 26.76 $^{\circ}/_{00}$) which represents a considerable decrease. It became apparent from the above that in the rainy seasons, the environmental conditions in the surface layer of the Bay are different from those of the sea water at normal times. This is definitely due to the influences by the two rivers (Cai and Cua-Be Rivers) flowing into Nhatrang Bay. On the other hand, chlorinity in the open sea is about 0.9 $^{\rm o}/_{\rm oo}$ lower as compared with ordinary times, which, however, may be considered to be approximately equivalent to the environmental condition in the dry season.

Such being the case, in the rainy season, plankton decreased in the Bay whose environmental conditions were inappropriate for plankton to live in, but multiplied in the open sea whose environmental conditions were similar to those of the Bay in the dry season. That is to say, it can be considered that the plankton production in the Bay moved towards the open sea.


As to why the mean plankton biomass in the open sea in the rainy season surpasses that of the Bay in the dry season, a conclusion may be drawn that the influences of the river are controlling also in that case.

Total average I	olankton biomass n to 15 km)	Ratio of plankton biomass
Dry season 0.56 g/m ³	Rainy season 0.97 g/m ³	Rainy season/Dry season
Maximum of the biomass in I		Ratio of plankton biomass
Bay	Open sea	Rainy season/Dry season
(Dry season) 0.88 g/m ³	(Rainy season) 1.49 g/m ³	1.7

Table 16 Ratio of plankton biomass between the dry and the rainy seasons in Nhatrang bay and the open sea.

As indicated in Table 16, the ratio of mean plankton biomass between the dry and the rainy seasons in Nhatrang is 1.8 with the rainy season representing a higher value. As described above, the ratio between the maximum plankton biomass observed in the Bay and that in the open sea is higher in the rainy season or 1.7, which is near the former ratio of 1.8. From this, it is assumed that dissolved organic matter transported by the river water in the rainy season brought about a result in favor of the multiplication of plankton.

Finally, the distribution of plankton biomass in Nhatrang (including the Bay and the open sea) is summarized in Fig. 14.

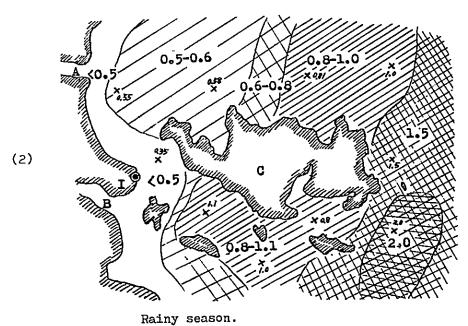


Fig. 14 The distribution of plankton in Nhatrang Bay and the open sea, in the dry and the rainy season.

A-- Cai River; B -- Cua Be River; C-- Hon Lon;

!!umber shows the quantity of plankton (g/m 3).

In the meantime, the result of measurement of plankton biomass per zoo-plankton and phyto-plankton is as indicated in dotted lines in Fig. 13, which is listed in terms of percentage in the following Table 17 which indicates that phyto-plankton is larger in quantity than zoo-plankton in both the Bay and the open sea, with zoo-plankton showing a tendency of slight increase in the open sea than in the Bay.

	Station	I	II	III	IV	V	VI
Phyto- plankton	g/m ³	0.29 85	0.52 94.5	0.55 95	0.66 80	0.74 76	1.21 82
Z00-	g/m ³	0.05	0.03	0.03	0.16	0,24	0.27
plankton	%	15	5.5	5	20	24	18

	Station	VII	VIII	IX	Х
Phyto- plankton	g/m ³	1.25 59	0.66 80	0.84 84	-
Z00-	g/m ³	0.85	0.16	0.16	-
plankton	%	41	20	16	-

Table 17 Ratio between zoo- and phyto-plankton at the respective survey stations (Rainy season)

C. SUMMARY AND CONCLUSION

As a result of survey made in the dry season (May) and the rainy season (October) of 1963 in Nhatrang (Central Viet-Nam) Bay and the open sea as well as the environmental conditions at the standing points, the author obtained the following conclusions:

1. The observations at the standing point in the Mhatrang Bay

The following conclusion could be drawn from the fixed-point/fixed-time observation from 5:30 a.m. to 8:30 p.m. of the same day:

As a result of survey made by taking an example of St. I in the Nhatrang Bay, it was found that both water quality and plankton biomass were changing constantly.

As for the quantity of plankton, the horizontal biomass, in the dry season, was 1.15 g/m³ and the vertical biomass 10 g/m³, the difference being very small, while in the rainy season, the horizontal biomass being 0.97 g/m3 and the vertical biomass 0.63 g/m², the difference was great compared with that of the dry season. Investigations into the cause were made through the analysis of the water, and the difference was found in the rainy season between the density of the surface water and that of the underlayer water. (In the dry season the density of both was nearly the same, and the density of the 15 m. layer water in the rainy season was about the same with that in the dry season.) The density of the surface water in the dry season was 1.0260-1.0274, while in the rainy season it showed very low values, 1.0180-1.0190. This means that there exists over the surface the fresh water flowing in from the rivers, and the difference of the quality of the surface water and the 15 m. layer water is considered to have influenced the growth of plankton, bringing about the difference in the yield.

- 2. The observations in Whatrang Bay and in the open sea
 - (1) The mean surface water temperature in the Bay reached 29.0°C in the dry season and 27.95°C in the rainy season as against 26.4°C in the dry season and 28.45°C in the rainy season in the case of 15 cm layer. On the other hand, the mean surface water temperature in the open sea was 29.1°C in the dry season and 28.5°C in the rainy season as against 28.35°C in the dry season and 28.5°C in the rainy season in the 15 m layer.

Thus, it was found that the difference in water temperature between the surface and the 15 m layer was larger in the dry season than in the rainy season.

- (2) In respect of the mean dissolved oxygen in the surface layer, similar values were recorded for both the Bay and the open sea (4.33 and 4.35 cc/L respectively), except that in the open sea in the dry season (4.38 cc/L). The corresponding values in the 15 m layer were 4.40 and 4.43 cc/L for the Bay and the open sea respectively in the dry season as against 4.22 and 4.22 cc/L in the rainy season.
- (3) Transparency measured in the dry season was some 13.2

m in both the Bay and the open sea whereas it varied remarkably in the rainy season, that is, 5.6 m on the average in the Bay.

In the rainy season, especially soon after rainfall, transparency decreased in certain cases down to 1 n or less at St. II located near the river mouth in the Bay while in the case of open sea, even the transparency of 8 m was recorded at St. VII (observed in December).

- (4) Alkalinity showed a result completely contrary to the case of transparency. That is, the alkalinity in the surface water showed a tendency of decrease from the Bay (50,05 on the average) towards the open sea (36.5 on the average). However, in the 15 m layer, little differences were observed between the Bay and the open sea.
- (5) The density in the Bay and open sea in the dry season was approximately constant in both the surface and 15 m layers, that is, 15 = 1.0270. The sea water density in the rainy season was same in both the Bay (mean chlorinity: $20.0^{\circ}/00$) and the open sea (mean chlorinity: $20.0^{\circ}/00$). However, in the rainy season, the density in the surface water presented prominent variances similar to the case of transparency, that is, the minimum value of 15 = 1.0183 (C1: $13.86^{\circ}/00$, S: $25.04^{\circ}/00$) was recorded especially near the mouth of river, and he tendency of increase in density towards the open sea, gradually approaching the normal condition in the dry season or 15 = 1.0270, was observed. In the meantime, the mean chlorinity in the surface layer of the Bay in the rainy season was $14.81^{\circ}/00$, being quite different from that in the 15 m layer ($20.0^{\circ}/00$)
- (6) The mean plankton biomass in Mhatrang is as follows:

Bay: 0.88 g/m^3 in the dry season and 0.65 g/m^3 in the rainy season.

Open sea: 0.33 g/m^3 in the dry season and 1.49 g/m^3 in the rainy season.

The mean plankton biomass in the Bay decreased gradually towards the open sea in the dry season, showing a value about 2,7 times as high as that in the open sea. As for the cause, it is considered that small quantities of filth from river, fish market and houses, etc. constantly flew

into the part of the Bay near the beach and exercised influences upon plankton.

On the contrary, in the rainy season, the plankton biomass in the open sea was about 2.3 times higher than in the Bay. This is considered to have been caused by the environmental conditions, especially chlorinity and alkalinity in the Bay which varied remarkably as compared with the normal conditions and as a result, plankton multiplied in the open sea presenting the similar (ordinary) environmental conditions as in the Bay in the dry season. That is to say, the plankton production in the Bay decreased with the worsening of environment while it increased in the satisfactory ordinary environment in the off-shore open sea.

In the meantime, within the range from the beach to the open sea (15 m), the mean plankton biomass in the dry and the rainy seasons was 0.56 g/m^3 and 0.97 g/m^3 respectively, that is, 1.8 times higher in the rainy season, while the maximum plankton biomass observed in the Bay and open sea was 0.88 g/m^3 (dry season) and 1.49 g/m^3 (rainy season), that is, 1.7 times higher in the rainy season, from which it can be concluded that the total plankton biomass increases in the rainy season as against the dry season. The cause of such increase is considered to be the dissolved organic matter conveyed by the rivers.

Based on the above conclusions, it can be said that the measurement of organic natter (nitrate, nitrite and ammonia) and phosphate, etc. will have to be made in future for further detailed exmination.

D. APPENDEX TABLES

30	29	28	27	8	Si Si	24	23	22	21	8	19	18	17	16	15°C		
21.80	22.13	22.46	22.78	23.09	23.38	23.67	23.96	24,25	24,52	24.78	25.04	25.30	25.54	25.77	26.00	00	
21.77	22.10	22.43	22.75	23.06	23.35	23.64	23.93	24.22	24.49	24.75	25.01	25.27	25.52	25.75	25.98	10	
21.72	22.06	22.39	22.72	23.03	23.32	23.61	23.90	24.19	24.47	24.73	24.99	25.25	25.49	25.72	25.95	20	
21.70	22.03	22.36	22,68	23.00	23,29	23.58	23.87	24.16	24.44	24.70	24.96	25.22	25.47	25.70	25.93	ઝ	
21.67	22.00	22.33	.22,65	22,95	23,26	23.55	23.84	24.13	24.41	24.68	24.94	25.20	25.45	25,68	25,91	40	
21.63	21.96	22.29	22.62	22,93	23.23	23.53	23.82	24.10	24.39	24.65	24.91	25.17	25.42	25.65	25.88	50	
21,60	C6.T2	22.20	66.22	22.90	23.20	23.50	23.79	24.08	24.36	24.62	24.88	25.14	25.40	25.00	25,86	60	
16.12	27.40	3.6	20.22	22.01	71.62	23.47	23.76	24.05	24.33	24.60	24.80	25.12	25.00	20.01	25.84	70	
1,000	9 1	31 87	30 50	22.04	22.14	22.45	27.72	24.02	24.30	24.57	24.00	20,03	20.00	30.00	25.82 5. 5 0	80	
150	21 50	27 84	91.00	о г п п	22 81	3 1 7	22.20	22.02	24.28	24.04	n (2 6	3 6	2 2 2	25.79	90	
1	1.031	1.029	1.027	1.026	7.024	1.000	1,010	1 018	1 015	7,02,	1 011	1.009	1.007	1 295	1,003	ਤ 	

21.72 21.70 21.67 21.63 21.60 21.57 21.54 21.50 1.0

Appendix Table I. The conversion table of marine density. (by Makalof)

C1(°/ ₀₀)	s(°/°°)	0,5	c1(°/ ₀₀)	s(º/oo)	dis	C1(°/00)	s(º/oo)	J,₅ 26,86
14.0	25.30	18.55	17.0	30.72	22.70	20.0	36.13	26.86
14.1	25.48	18.69	17.1	30.90	22.84	20.1	36.31	26.99
14.2	25.66	18.82	17.2	31.08	22.98	20.2	36.49	27.14
14.3	25.84	18.96	17.3	31.26	23.11	20.3	36.67	27.27
14.4	26.02	19.10	17.4	31.44	23.25	20.4	36.85	27.42
14.5	26.20	19.24	17.5	31.62	23.39	20.5	37.03	27.56
14.6	26.38	19.37	17.6	31.80	23.53	20.6	37.21	27.69
14.7	26.56	19.52	17.7	31.98	23,66	20.7	37.39	27.83
14.8	26.74	19.65	17.8	32.16	23.81	20.8	37.57	27.97
14.9	26.92	19.80	17.9	32.34	23.94	20.9	37.75	28.11
15.0	27.11	19.93	18.0	32.52	24.09	21.0	37.94	28,25
15.1	27.29	20.07	18.1	32.70	24.22	21.1	38.12	28.39
15.2	27.47	20.21	18.2	32.88	24.36	21.2	38.30	28.53
15.3	27.65	20.35	18.3	33.06	24.40	21.3	38.48	28.67
15.4	27.83	20.48	18.4	33.24	24.64	21.4	38.66	28.81
15.5	28.01	20.62	18.5	33.42	24.78	21.5	38.84	28.94
15.6	28.19	20.76	18.6	33.60	24.92	21.6	39.02	29.09
15.7	28.37	20.90	18.7	33.78	25.06	21.7	39.20	29.22
15.8	28.55	21.03	18.8	33.96	25.19	21.8	39.38	29.36
15.9	28.73	21.18	18.9	34.14	25.34	21.9	39.56	29.51
16.0	28.91	21,31	19.0	34.32	25.47	22.0	39.74	29.64
16.1	29.09	21.45	19.1	34.51	25.61	22.1	39.92	29.79
16.2	29.27	21.60	19.2	34.69	25.74	22.2	40.10	29.92
16.3	29.45	21.73	19.3	34.87	25.89	22.3	40.28	30.06
16.4	29.63	21.87	19.4	35.05	26.03	22.4	40.46	30.21
16.5	29.81	22.01	19.5	35.23	26.17	22.5	40.64	30.34
16.6	29.99	22.15	19.6	35.41	26.31	22.6	40.82	30.48
16.7	30.17	22,28	19.7	35.59	26.45	22.7	41.00	30.62
16.8	30.35	22.42	19.8	35.77	26.58	22,8	41.14	30.77
16.9	30.53	22.56	19.9	35.95	26.72	22.9	41.36	30.91

Appendix Table II. Knudsen's Table

CHAPTER VI. VARIATION OF CURRENTS AND MONSOON WINDS

IN THE SOUTH CHINA SEA

•

• • - ` -

. •

. ~*

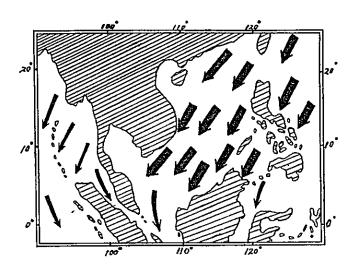


Figure 15 Northeast Monsoon Wind (October - March) (by the Naga report)

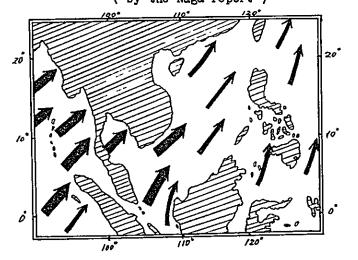


Figure 16 Southwest Monsoon Wind
(May - September)
(by the Naga report)

It seems to be very important to know the characters of the China Sea, which faces Viet-Nam; especially its currents, winds, salinity and the mutual relationships among them.

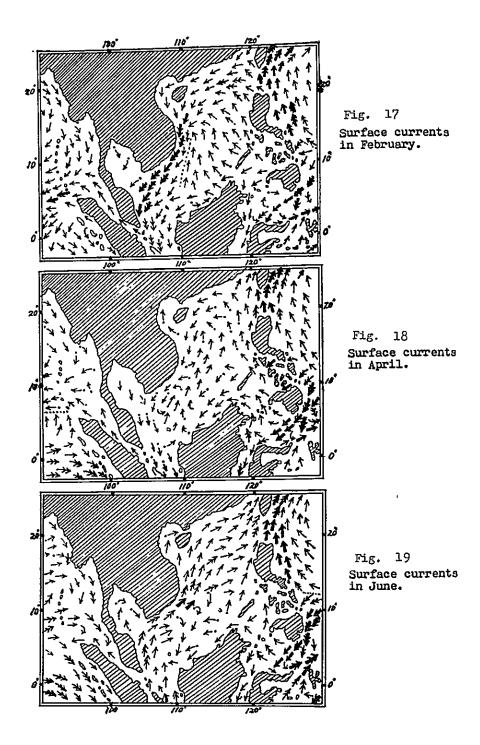
Therefore, in this chapter the results of Naga Expedition (1959 - 1961) is quoted as reference.

The character of the winds indirectly influences the life in the sea. Southeast Asia is dominated by two seasonal wind patterns; the northeast (Figure 15) and the southwest monsoon (Figure 16).

In summer the land mass, especially the area north of the Arabian Sea, is more heated than the sea and becomes a large, low-pressure area. This condition creates southwest monsoon winds, which generally blow from over the water toward the land or from the southwest. The stress of these monsoon winds on the water establishes the horizontal and vertical currents of the Southeast Asian marine environment.

In winter the land, especially the Plateau of Tibet in South China, becomes colder than the sea, and the wind direction is reversed as the air blows from the northeast toward the tropical seas. Since the winds are reversed, their effect on water circulation is nearly reversed. The west coasts of land masses then become upwelling centers and areas of nutrient enrichment.

The charts of the transports are constructed for every second month and are presented together with the charts of the surface currents, (Figures 17-22). The numerical values of the transports in the different current branches are given in the following Table 18 and Table 19.


Current	Feb.	Apr.	June	Aug.	Oct.	Dec.
South Asian Waters						
Luzon Strait, west- wards positive	+2.5	0	-3.0	-2.5	+0.5	+3.0
Macassar Strait, southwards	1.5	1.0	1.0	1.5	1.0	0.5
China Sea, off Viet- Nam southwards posi- tive	+5.0	+1.5	- 3.5	- 3.0	+2.0	+5.0

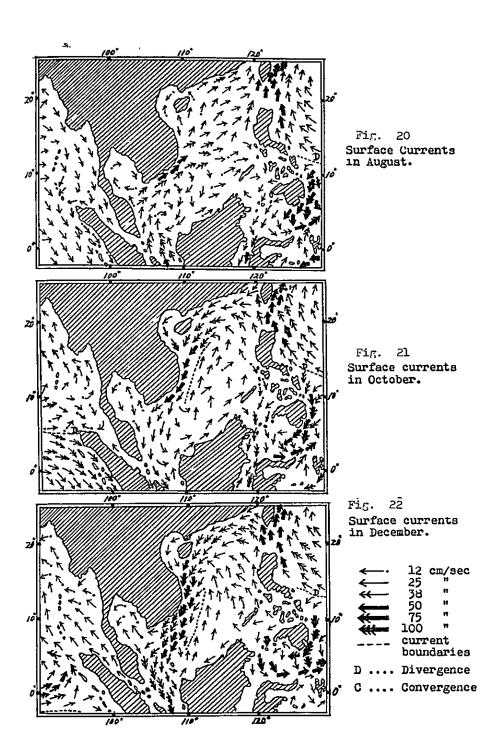

Current	Feb.	Apr.	June	Aug.	Oct.	Dec.
Java Sea, east- wards positive	+4.5	+0.5	-3.0	-3,0	+0.5	+4.0
Flores Sea, east- wards positive	+6.0	+2.0	-2.5	-2.0	+1.0	+4.5
Banda Sea, upwell- ing positive sink- ing negative	-2.0	-0.5	+2.0	+1.5	-0.5	-1.0
Timor Current, westwards	1.0	1.5	1.0	1.5	1.5	1.5
Halmahera Sea, southwards positive	-2.0	+1.0	+3.0	+3. 5	+2.0	-1.5

Table 18 Transports (millions m³/sec) of different currents in the Southeast Asian Waters. (by the report of Naga Expedition)

Current Feb.	Apr.	June	Aug.	Oct.	Dec.
Pacific Ocean North Equatorial					•
Current 41	32	41	39	37	37
Mindanao Current 12	8	9	10	9	12
Formosa Current 24.5	37.5	35	30.5	27	21.5
Indian Ocean Source of the South Equatorial Current 16	12	8	10	14	14
South Equatorial Current (southwest of the Sunda Strait resultant flow from the Indonesian 20.5	19.5	16.0	16.5	16.0	17.0

Table 19. Transports (millions m³/sec) of different currents in the Southeast Asian Waters. (by the Naga report)

Three almost separate circulations are distinguished. The first is the circulation in the Pacific Ocean, which affects the eastern parts of the region, but enters the Eastern Archipelago only in the range of the Celebes Sea. The second is the circulation of the Indian Ocean, where only the South Equatorial Current is included but which has no influence on the Southeast Asian Waters. The third is the circulation within the Southeast Asian Archipelago, which is determined by the monsoons. This monsoon circulation, as it might be called, is connected with the circulation in the Pacific Ocean to a small extent and linked with that of the Indian Ocean only by the Timor Current.

The monsoon circulation develops chiefly along the China Sea - Flores Sea - Banda Sea line, because these regions lie with their axis almost in the direction of the winds during both monsoons.

During the full development of the north monsoon the transport of the Monsoon Current through the Java Sea is about 4 million m³/sec. In the China Sea the transport of the strong current branch off the coast of Viet-Nam is larger, because the transport of the eddy in the central parts of the China Sea has been added. The water masses of the Monsoon Current come during the north monsoon out of the North Equatorial Current and enter the China Sea chiefly through the Luzon Strait, smaller parts enter through the Philippines and the Sulu Sea. A relatively small transport of water occurs also through the Formosa Strait.

During the change from the north to the south monsoon in April, the whole circulation within the Southeast Asian Waters is only weakly developed, (Figure 18). In the China Sea two big eddies are found with a transport of 1 to 2 million m³/sec each. The current still flowing eastwards in the Java Sea transports only 0.5 million m³/sec, joins the water coming out of the Macassar Strait and forms along the north coast of the Lesser Sunda Islands a rather strong current of 2 million m³/sec. From the Pacific Ocean a weak transport occurs through the Philippines and the Sulu Sea into the China Sea.

During the south monsoon the conditions are nearly inverse to those during the north monsoon, but the average transports of the Monsoon Current are smaller. In the southern China Sea a small eddy exists, but its transport is weak.

In October the change from the south to the north monsoon takes place over most of the region, and over the northern China Sea the north monsoon has already strated with considerable strength. The Monsoon Current along the coast of Viet-Nam is

already developed and transport 2 million m³/sec southwards, but the larger part of this water turns northwards before entering the southern China Sea and is transported back along the coast of Borneo.

In December (Fig. 22) and February (Fig. 17) at the full development of the north monsoon a strong southward transport takes place in the whole China Sea, but not all its water can flow into the Java Sea. Consequently a pilling up of water occurs in the South China Sea and causes the development of counter-currents in the central and eastern parts. The deflection of the current to the right and the pilling up of water along the Asian coast with the highest sea level in the Gulf of Thailand are clearly seen. In the South China Sea at the equator where no slope exists, the currents are pure wind drifts.

Summarizing, the transport chart for October shows the formation of the Monsoon Current in the north monsoon season and the chart for April, the decay of this current. The Monsoon Current of the south monsoon season is formed in May and decays by the end of September. (Figure 15 -22).

The variation of Salinity in the China Sea.

The China Sea as the largest in these waters has a more oceanic character than the other seas. This is indicated by the relatively small annual variations of salinity in its northern and southern parts. The northern part receives water of high salinity from the Pacific Ocean during the northeast These waters spread from the south of Formosa to monsoon. the west and later along the coast of Viet-Nam to the south, The salinity gradually decrease in the direction of the flow, which gives the typical picture of a tongue-like spreading. The relatively dry air masses of the strong northeast monsoon also cause a considerable evaporation, which exceeds the rainfall from October to March, so this period has a surplus of evaporation of 620 mm. This would be sufficient to increase the salinity of a 70 m thick homogeneous layer by 0.3 $^{\circ}/_{\circ \circ}$. But the observed increase during this season is 0.7 0/00, which shows that influx of water of high salinity also contributes to the increase of salinity. With the beginning of the southeast monsoon and the rainy season in May, the waters of high salinity are pressed back to the north, and their salinity is also decreased by the rain. The excess of the rainfall during this season is about 820 mm, which corresponds

to a decrease of almost 0.7 $^{\circ}$ / $_{\circ\circ}$ in salinity in a homogeneous layer of 40 m during this season. Off the south coast of China and along the coast of Viet-Nam the annual variation is larger, due to the river discharge and to the increase of rainfall towards the land.

In the central parts of the China Sea the annual variation of salinity is higher than in the regions north and south of it. Rainfall and evaporation can no longer be regarded as the dominant factors, especially as evaporation decreases rapidly towards the south while rainfall increases, so currents produce the variation of the salinity. The central parts of the China Sea are alternately filled with waters of higher and lower salinity. the northeast monsoon, water of high salinity is transported along the coast of Viet-Nam to the south. In the central parts there is a counter-current flowing in the opposite direction and carrying less saline water to the northeast. This effect can clearly be seen in the chart of February (Figure 23). During the southwest monsoon the situation is reversed, that is water of about 32.5 0/00 is transported along the coast of Viet-Nam to the north, and in the central parts a counter-current carries water of above 33.2 o/oo to the southwest (Figure 24). Because on the average the rainfall exceeds the evaporation in this region, the salinity of the passing water is continuously decreased, though only by a small amount. The relatively big annual variation of about 1.1 0/00 is caused by currents carrying water of different salinities during the two monsoons.

Off the mouth of the Mekong the annual variation increases to more than 2 °/00, whereas in the Gulf of Thailand it amounts to about 1.3 °/00, although this value is still uncertain because of the small number of observations. The salinity in the Gulf of Thailand varies between 30.5 °/00 in January and 32.0 °/00 in September. This means that the maximum occurs at the end of the rainy season, after which a decrease of the salinity is observed. But the maximal discharge of the rivers normally occurs at the end of the rainy season, which may explain this variation. On the other hand the waters of low salinity, formed off the mouth of the Mekong, are pressed by the winds into the Gulf from October to January and cause a low salinity.

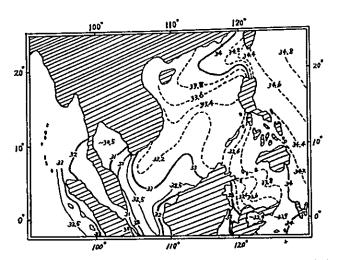


Figure 23. Average surface salinity (%) in February, drawn from observations in the years 1950-1955.

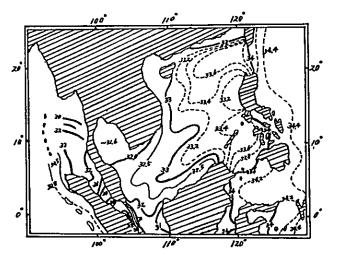


Figure 24. Average surface salinity (%) in August, drawn from observations in the years 1950-1955.

```
in a real termination of
the state of the state of the
 1:15
 Mary Carlot Street
一大 电 数据 表现代
CHAPTER VII: CONCLUSIONS AND PROSPECT FOR THE FUTURE
         OF PLANKTOLOGY IN SOUTH VIET-NAM
 3. 3. . * 31
 6 - 34 F.
50 BY 137 - 146
 No 7 1
and the following
S 1 1
 mai, r. .
```

It may be concluded that in South Viet-Nam, fresh water plankton and marine plankton are abundant in species, but not in quantity.

A FRESH WATER PLANKTON

From the results of the survey made by the author in and after 1963, a conclusion can be drawn that the mean plankton biomass in general lakes and marshes in South Viet-Nam is below $1.0~\mathrm{g/m^3}$ with $0.3~\mathrm{g/m^3}$ as the average.

Recorded as the greater plankton biomass were 14.3 g/m³ (mostly Cladocera and Copepoda) in the case of Da-Nhim Dam in Dalat, over 40 g/m³ (mostly Euglena) in a small reservoir at Cholon and 28.5 g/m³ (mostly Cyanophyta) at Ca-Mau, the average being 8.0 g/m³. The places at which such higher rates of biomass were observed are dams, small reserviors containing accumulated dusts or artificial swamps made by damming up a stream and and fall under the category of "special environment". In respect of PH, it was 6.5 (water temperature: 25.6°C) in the dam at Dalat, 7.9 (water temperature: 32.0°C) in the reservoir at Cholon and 7.2 (water temperature: 27.8°C) in the artificial marsh at Ca-Mau, all of which are pretty higher than the average PH of 5.8 for the entire Viet-Nam, and even by merely judging from the above mentioned PH values, it is apparent that phyto-plankton exists in great mass at these points (except the dam at Dalat) and photosynthesis is being carried on actively.

Though lakes and marshes having a low PH value of 4.0 can be found on rare occasions in South Viet-Nam, the mean PH 5.8 of lakes and marshes for the entire area is a lower value compared with the mean PH 6.8-9.0 in the case of other ordinary lakes and marshes. Generally, the range of PH suitable for plankton is 7.0 to 8.0. From such low PH, it can be judged that plankton biomass in Viet-Nam is smaller. It is therefore assumed that such low PH is adversely affecting the multiplication of plankton in the lakes and marshes, entailing the decrease of fresh water plankton biomass in Viet-Nam.

The cause of low PH in the fresh water lakes and marshes are not clear, but such acidic water is considered to be originating from organic corrosive acid or inorganic strong acid. However, even in the lakes and marshes having such low PH adversely affecting the multiplication of life, it is possible to promote normal multiplication of life by addition of lime, etc. to make neutral the water of such lakes and marshes.

Though the author did not apply neutralization test to all the waters having low PH, he tried the addition of line, NaHCO₃ Na₂S₂O₃, etc. to a few lakes and marshes and ascertained that the normal multiplication of phyto-planktons (Scenedesmus) and zoo-planktons (Euglena of phyto-mastigophora and Moina as well as Daphina of Cladocera) could be achieved thereby. Needless to say, there may exist certain waters which do harm to life even after neutralization treatment, but in cases where it is desired to progressively multiply plankton as feed for larvae of fishes in a fish pond or to breed fish utilizing a lake or marsh, the PH of water will be one of the important problems to be considered.

B. MARINE PLANKTON

According to the survey (1963-1965) by Λ . Shirota, the plankton biomass in the South Viet-Namese coastal water (15 to 20 km from beach) is $1.0~\rm g/m^3$ or below, with $2.0~\rm g/m^3$ as the maximum and $0.3~\rm g/m^3$ or less as the average. On the other hand, it was found that the plankton biomass (in September) or the west side of Ca-Mau Peninsula, that is, in the Gulf of Thailand including Rach-Gia and Phu-Quoc was $0.6-0.8~\rm g/m^3$, a value 2 to 3 times higher than that in the South China Sea coastal water.

In the meantime, according to Naga Expedition (1959-1961), the plankton biomass in the South China Sea more than 100 km off-shore from the beach is 0.1 cc/m³ in the case of zoo-plankton in the coastal waters ranging from the Hue (N. Lat. 16930') to about E. Long. 110° including Nhatrang-Phan-Rang, 0.05 cc/m³ in the further off-shore water and 0.15 cc/m³ in the water within the range from Phan-Rang to the southern tip of Ca-Mau Peninsula which falls on N. Lat. 5-6° whereas the plankton biomass in the coastal waters ranging from the southern tip of Ca-Mau Peninsula to Phu-Quoc varies with the seasons, that is, 1.0-1.1 cc/m³ in the rainy season (April, May) and 0.3-0.5 cc/m³ in the dry season (August to Januaru).

Combining both results, it was found that the plankton biomass in the coastal water west of Ca-Mau Peninsula is 2 to 5 times higher as compared with that on the east side, that is, in the range from Hue facing South China Sea to the southern tip of Ca-Mau Peninsula, thus possessing a higher productivity.

The cause is considered to be lying in the topography of Ca-Mau Peninsula which is different from other areas. That is, as is clear from the picture included in Chapter X, it is con sidered that nutrient salts conveyed by numerous canals or rivers

running lengthwise and crosswise through the Peninsula exerted influences upon the multiplication of plankton in the coastal waters. The tendency was more conspicuous in the rainy seasons.

Though the climate 1: South Viet-Nam is characteristic in it that the dry and the rainy seasons are controlled by monsoon, the quantity of plankton is also influenced thereby. Taking Nhatrang Bay and its open sea as the examples A. Shirota (1963b) looked into the changes in plankton biomass as well as the environmental conditions at the standing points in the dry and the rainy seasons and confirmed that (1) the plankton biomass in larger in the Bay in the dry season than in the open sea, (2) in the case of the rainy season it is larger in the open sea than in the Bay and (3) the total plankton biomass including both the Bay and open sea is larger in a rainy season as compared with the case of a dry season.

Though the species of plankton are similar to those in the temperate zone, Trichodesmium of Cyanophyta are found in the entire area, which often accounts for more than 80% of the total sample and is considered to be one of the characteristics of the southern zone. Further, Salpa, Doliolum, Oikopleura and Sagitta are the species able to be found most commonly while luminescent Sapphirina and Corycaeus too are discovered commonly over the entire area.

C. PROSPECT FOR THE FUTURE

It is generally said that the plankton biomass in the southern zone, that is, low latitude zone is approx. 1/5-1/10 as compared with the high altitude zone. This also applies to South Viet-Nam. If the volume of resources of fresh water and marine pisces, crustacea, mollusca, etc. is estimated on the basis of the abovementioned plankton biomass, it may be given as a conclusion that the volume is quite small.

At present, some 1 ton fishing boats account for the greater part of the total fishing boats in South Viet-Nam and the fish catch amounts to 500,000-600,000 tons a year. If, however, the fishing industry makes progress and a modern catching method comes to be adopted, inland water and marine resources will be exhausted quite quickly. And yet, the recovery capacity of fishery resources after haul is considered to be quite small judging from the small standing crop of plankton. Accordingly, the future of South Viet-Namese inshore fishery is not very bright.

If, however, one reviews here again the following geographical

environments of South Viet-Nam, that is,

- 1. Climate and natural features are subject to monsoon and can be divided clearly into the dry and the rainy seasons;
- 2. The temperature difference as well as water temperature difference is small throughout the year and the temperature is high;
- 3. The water temperature of 25-28°C affords an environment suitable for the growth of many aquatic animals; and
- 4. No typhoon nor natural calamity and little gale, it may be said that the above conditions are quite favorable in connection with the utilization of ocean, lake and marsh and especially with the fishing industry in it that the temperature is not so low as in a high latitute zone and the possibility of calamities due to typhoon as in the case of Japan does not exist in South Viet-Nam.

In short, the question is how to utilize these favorable conditions and the author thinks that the key to the solution of this question is breeding under positive artificial management. Of course the organism coming into question in this case should be (1) the species suited to the taste of people, (2) costly and (3) well manageable and further, in the sense of acquisition of foreign currencies, (4) the ones exportable.

For instance, in South Viet-Nam, the crustacea can be said to be the most promising species meeting the above requirements. The crustacea is one of the species most difficult to be cultured in the world. The difficulty consists, needless to say, it the environmental conditions in course of growth and especially in the feed to be furnished at the larval stage, and the survival rate of larvae of crustacea is determined depending on the quanti of plankton serving as their feed. It is said that naturally more than 95% of hatched larvae die. In the area abundant in plankto in South Viet-Nam, that is, on the west coast of Ca-Mau Peninsula not only pisces, but also considerable quantities of crustaces at caught and they were exported to the adjoining countries, U.S.A., etc. in former times while at present too, some crustacea are being exported. The fact that even a natural catch leaves a margin for export tells that if artificial culture were undertaken, the production scores of times higher could be expected.

Accordingly, the possibility of culture of plankton, especially Diatoms, Phyllopoda and Copepoda to serve as feed for

to the

2.35

the larvae can be said to be one of the keys to the success of crustacea culture. In this sense, the culture of plankton in large quantities has a great significance and in connection therewith, economical and low-priced feed will become the problem for future. For that purpose, the study of the physiology and primary production of plankton itself must be pushed forward actively.

If it were possible, in this way, to know the physiology of the organisms in question, utilize the favorable environmental conditions in Viet-Nam and progressively manage and breed such organisms, the future of the marine product industry of Viet-Nam would be quite bright and at the same time, the development of oceanographic and limnetic studies could be expected.