REPUBLIC OF VIETNAM

WATER SUPPLY PROJECT

IN .

SAIGON

PREFEASIBILITY STUDY

Nov. 1972

Prepared for

OVERSEAS TECHNICAL COOPERATION AGENCY GOVERNMENT OF JAPAN

by.

JAPANESE SURVEY TEAM FOR WATER SUPPLY PROJECT

国際協力事	業団
受入 '87.6.16 月日	123
在球 08649	61.8
No. 10	KE

Preface

The Government of Japan, in response to the request of the Government of the Republic of Vietnam, undertook to conduct a feasibility survey for the water supply project in the Saigon Metropolitan Area and entrusted the execution of the survey to the Overseas Technical Cooperation Agency (O.T.C.A.).

Being congnizant of the importance of water supply works for the improvement of the living environment of the people and the stabilization of livelihood in the area, the O. T. C. A. organized a survey team comprising seven members, headed by Dr. Iwao Tatsumi, Professor of Osaka Industrial University, for the purpose of electric prospecting for underground water in the northern part of Saigon and dispatched it to Veitnam for a period of 45 days from March 23 to May 6, 1972.

Thanks to the kind cooperation of the Government of Vietnam, the survey was carried out satisfactorily.

Upon completion of the survey for the water supply expansion project, the team came to the conclusion that water supply utilizing ground water source, as an urgent countermeasure, would be generally promising although its possible amount should be checked by the future survey. It is my firm belief that this report covers process of the analysis which leads to this conclusion and will be important materials for the Government of Vietnam.

On behalf of O.T.C.A., I would like to take this opportunity to express my deep gratitude to the authorities of various agencies of the Government of Vietnam concerned, for their wholehearted cooperation and support extended to the team in the execution of the survey.

H. Ictarto

Keiichi Tatsuke Director General

Overseas Technical Cooperation Agency

1. ORGANIZATION OF SURVEY TEAM

Chief:	Iwao Tatsumi	Doctor of Engineering,					
		Proffessor of Osaka Industrial University					
Member:	Hiroshi Shinohe	Consulting Engineer Registered,					
, i i i i i i i i i i i i i i i i i i i		Deputy Chief,					
-		Waterworks Department,					
-		Nihon Suido Consultants Co., Ltd.					
Member:	Katsuyoshi Tomono	Consulting Engineer Registered,					
		Waterworks Department,					
	·	Nihon Suido Consultants Co., Ltd.					
Member:	Yuji Fujii	Assistant Engineer,					
		- do -					
Member:	Masato Fujinami	Assistant Engineer,					
		- do -					
Member:	Takeshi Sakai	Assistant Engineer,					
• .		- do -					
Member:	Jiro Kuroda	Coordinator,					
		Development Survey Division,					
		OTCA					

, I

•

-

·

-

2. SAMMARY OF SURVEY

. ...

•

. .

.

,

¢

.

2-1 DAILY PROGRAM AND PERFORMANCE

	MARCH 23, 1972	Travel from Tokyo to Saigon
	MARCH 24	Meeting with officials of Embassy of Japan, Meeting with officials of Ministry of Public Works.
	MARCH 25	Discussion of schedule with officials of SMWO.
	MARCH 27	Visit to Hoa An Intake station and Thu Duc Plant.
	MARCH 28, 29	Field survey of Electrical prospecting area, Decision of prospecting points and Investigation of existing wells.
	MARCH 30	Discussion of preparation for works with SMWO.
	MARCH 31	Start of Electrical prospection.
	APRIL 6, 1972	Mr. Kuroda leaves for Tokyo.
	APRIL 14	Dr. Tatsumi leaves for Tokyo.
	· APRIL 22	Electrical prospection ends.
	APRIL 24-27	Make-up of data by Electrical prospection.
	APRIL 28	Meeting with officials of Ministry of Public Works.
÷	APRIL 30	Mr. Kuroda returns.
۶.	MAY 2, 3, 1972	Final meeting with officials of SMWO.
	MAY 4	Meeting with Embassy of Japan.
	MAY 6	Leave Saigon for Tokyo.
	•	

II

-

2-2 THE PERSONS CONCERNED IN SAIGON

People who gave various cooperation and support to the team and whom we negotiated and discussed with during the survey are as follows.

(1) Ministry of Public Works • • ş Minister of Public Works Mr. Buu Don Han 1 ... Vice-Minister of Public Works Mr. Bui Huu Tuan Director of National Water Mr. Vo Dinh Han Supply Agency Assistant Director of National Mr. Tran Phuoc Tho Water Supply Agency Chief of Urban Water supply Mr. Nguyen Van Sang Department (2) Saigon Metropolitan Water Office Mr. Nguyen Huu Tuan Director . . . Mr. Nguyen Kim Chi Assistant Director Assistant Director for Engineering Mr. Tran Van Thach Mr. To Dang Que Head of Saigon District Head of Gia Dinh District Mr. Tran Huu Lai Mr. Dong Si Khiem Head of Thu Duc Plant (3) Embassy of Japan . Mr. Fumihiko Togo Ambassador Counselor Mr. Shinichi Yanai Mr. Yasutaka Nishimura First Secretary Mr. Toru Iwanami Second Secretary Chief of Saigon Office, OTCA Mr. Akira Kasai Resident Officer, OTCA Mr. Akihiko Hashimoto

CONTENTS

		P	Page
۱ <u>.</u>	Preface	•	
;*	Introduction	۶. »»	
· •	Chapter 1	Outline of Saigon Metropolitan Area	1
	Chapter 2	History of Water Supply in Saigon	
	-	Metropolitan Area	6
	Chapter 3	Ground Water Investigation	12
	` +	eneral	12
	2. G	eneral Background	
	3. F	Free-Surface Ground Water	13
	4. Č	Confined Ground Water	14
	5. E	Iectrical Resistivity Surveying	31
	5-1	Ground surface condition in survey area	31
	5-2	Arrangement of measuring point and surveying depth	31
	5-3	Measuring apparatus and method	32
•	5-4	Classification of ρ-a curves	32
	5-5	Analysis and interpretation of ρ -a curves	34
	Chapter 4	Future of Saigon Water Supply	54

•

`~

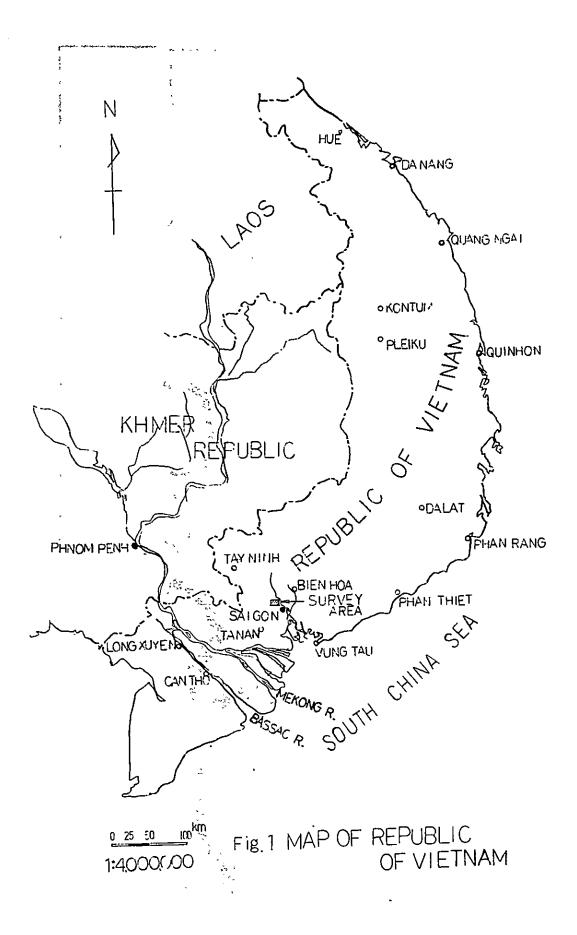
APPENDIX

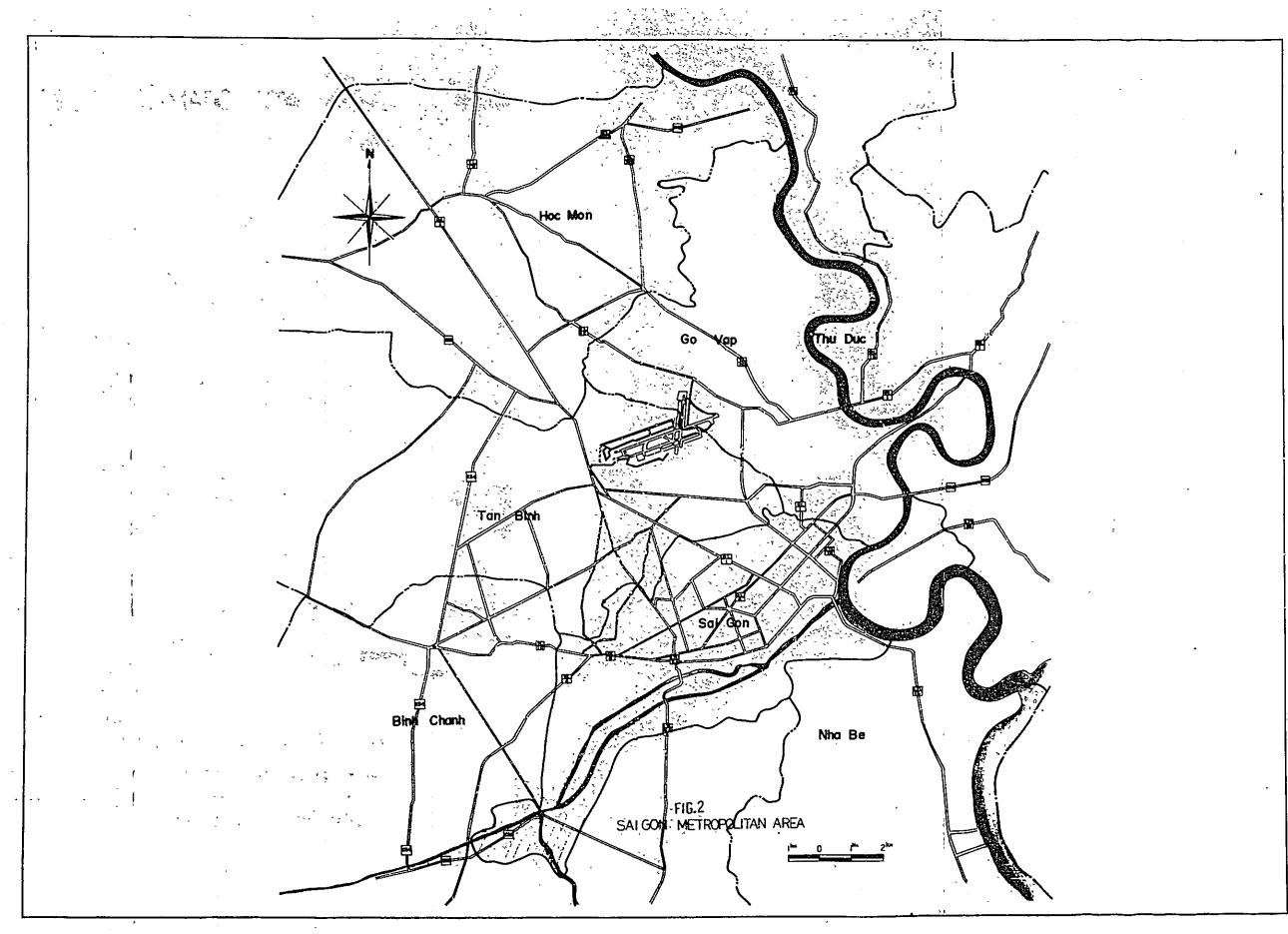
An official survey team organized by the Overseas Technical Cooperation Agency (OTCA), namely by the government of Japan, visited the Republic of Vietnam for the purpose of undertaking preliminary study for water supply in January 1971. Saigon was one of cities in which the team learned situation of water supply. Due to the time limitation, however, the study was confined to the brief understanding of water supply problems in those cities.

Under the above circumstances, another survey team was sent by OTCA in response to a request by the government of the Republic of Vietnam. The team conducted electrical prospection on ground water in Hoc Mon area in the north of Saigon. It aimed at obtaining data and findings on one of potential water sources with which a water supply system expansion project shall be planned. At the same time, the team also studied some of the present situation of water supply in the city.

The team was furnished with kind cooperation and assistance by officials of the Vietnamese authorities concerned, so that a fruitful result had been yielded. Nevertheless, to our great regret, the time allotted to the field survey was so short as 45 days (March 23 through May 6, 1972), the first half of necessary work has only been completed, and it is believed essential that the rest of the study such as test well drilling be quickly performed in succession with this survey.

Chapter 1 Outline of Saigon Metropolitan Area

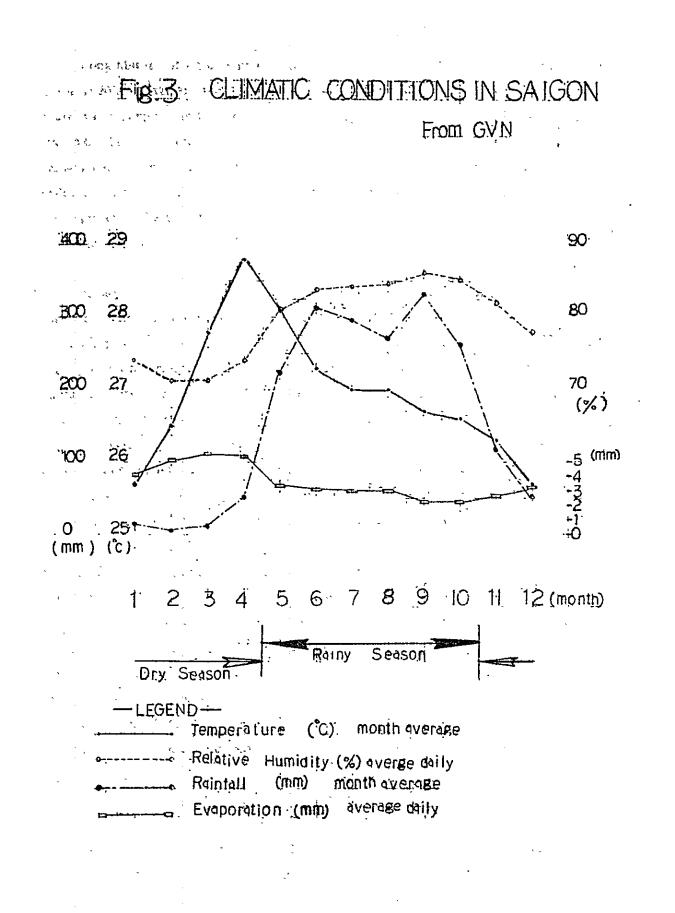

Saigon, the capital of the Republic of Vietnam, is located at lat. 11°N. where the temperature rises up to 30°C even in the so-called "cool season". Saigon has a decided variety of climatic conditions in the dry and rainy seasons. In the rainy season it rains almost every day while there are few rainfalls in the dry season. Late in the dry season (for one month prior to the beginning of the rainy season - generally in April)-the temperature shows nearly 40°C quite often. The climate in Saigon, however, is not so severe as that seen in desert areas in the Middle and Near East even in the aforementioned hottest season. In fact, this country is blessed with thick vegitation and plentiful fruits. Although this country is presently in the state of war, she produced a great deal of raw rubber and was one of the leading rice export countries thanks to bountiful rice crops there.


Saigon is a special city located in the Province of Gia Dinh. There are most of the governmental ministries and related organizations in this city. It is reported that her population which was approximately 450 thousand at the termination of World War II has increased to around 3 million. At the outset, city planning of Saigon was provably made, setting a target of her population at around 500 thousand, and various difficulties have been raised recently. For example, there are many citizens living in shacks due to the shortage of houses. Educational facilities are not exceptional. Double or triple class shifting system is forced to be adopted. Streets and roads are congested with people and vehicles particularly in the morning and evening because public transportation facilities are not available. Telecommunication circuits are in so much shortage that business activities might be suppresed to some extent. Needless to say, water supply facilities are far from satisfaction, and the assured supply of water can hardly be anticipated at present. Though there have been some city plans, it seems that expansion of the city and its population is too fast for the city plans to successively be implimented.

Nevertheless, Saigon is a city full of vitality and animation where every kind of consumable merchandise is on sale. This eloquently expounds the considerably high level of consumption of the citizen. After the long war and still under wartime circumstances, citizens look unexpectedly self-possessed. It is likely that executives of this country have very excellent administrative capacity. In reality, people with whom the team worked together showed high talents.

Notwithstanding the above, Saigon is one of areas which are devastated by the war. It is strongly desired that effective economic cooperation be furnished by the Government of Japan in order that people on every walk of this city may have a bright and hopeful future. Especially water supply is one of essential infrastructures for urban life, and thus it is our sincere hope that this undertaking shall be implemented in the shortest time.

.



-.4 -

· · ·

.

- 5 -

Chapter 2 History of Water Supply in Saigon Metropolitan Area

Long history of water supply here dates back to the end of the 19th century. It is in the 1920's, however, that the first shallow well collectors were made for a large scale water supply. In the 1930's when the population of Saigon increased to more than 300,000, the said equipment with a supply capacity of 30,000 CMD* came short for the subsequently increased demand. Thus a series of deep wells were newly drilled in order to increase supply capacity. However, it was impossible that this effort overtook the rapid increase in the population after World War II and resulted that a chronical shortage of water supply continued.

Another drawback to water supply was due to insufficient distribution pipes because they were laid only in the central parts of the Saigon and Cholon districts. A majority of such pipes were obsolete and rusty in inside causing a great deal of leakage. Accordingly, only a few people were favored with water supply, and the water supply was unavoidably ineffective. Despite this fact the quantity of water supply per day reached the level of 160,000 CMD in 1960. In years after 1960, it was not increased at all, but on the contrary it was on the decrease. Intake of ground water abnormally exceeding its proper yield caused lowering of a ground water level to a great extent and has resulted in decrease of pumping discharges in the whole area. At the same time, the quality of water was also extremely deteriorated. Thus, in many wells, pumpage of water was forced to be suspended one after another. In order to get out of these distressed circumstances, large scale extension work of water supply facilities intaking water from the Don Nai River was commenced with the loans furnished by the U.S.A. This project was to construct a large-scale water purification plant with facilities which were regarded as modernized at that time. Its design capacity of daily water supply was 450,000 CMD. Upon completion of the work in 1966, this new system replaced previous ground water intake systems. To be sure, water supply were greatly improved thanks to the completion of these facilities in respect of the quantity and quality of supplied water. But the system would not be considered as satisfactory for the following reasons.

(i) Water supply facilities constructed with the American loans as stated above were confined to those of intake works, raw water main, purification plant and transmission trunk mains. No improvement was added to defective and obsolete distribution networks during this period.

* cubic meter per day

created(ii): There had been more intense growth of demand than expected.

الله والمحاج الحاسي

÷.

(iii) The actual capacity of intake pumps was considerably below the design
capacity.

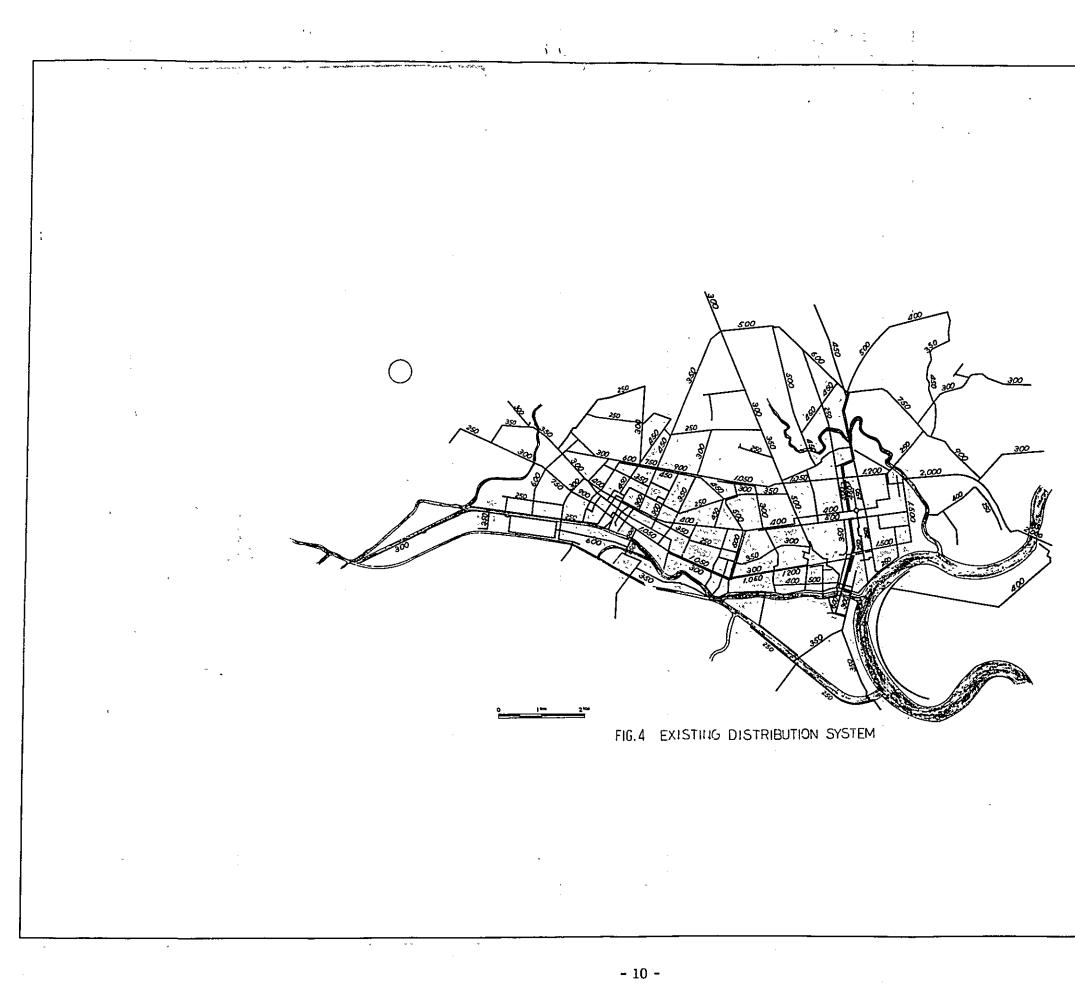
As, for (i) stated above, the Republic of Vietnam has been requesting the U.S.A. and Australia to grant pipes for distribution mains. The materials are still extremely insufficient as to their quantity to cope with increase in population and service area although the situation has gradually been improved by economic aids granted by these two countries. At present it seems doubtful that such assistance could further be anticipated also in years to come. (ii) and (iii) are correlated, and the water supply capacity of 450,000 CMD should have been equivalent to the water demand expected in 1980, but the recent intake has reached the order of 420,000 CMD. Even though intake pumps actually have the design capacity, the demand will surely catch up the capacity in only a couple of years. In fact the capacity of intake pums in approximately 400,000 CMD. Thus the situation will be further serious. (During our stay, the maximum daily intake was recorded at 420,000 CMD. It was obtained by means of operating stand-by units together with regular ones. Therefore, it is apparently believed that such a quantity of supply will hardly be maintained long.) It may be possible to recommence intake from the existing wells of which operation has been suspended up to the present. The problem is that such water contains a large quantity of iron and high acidity, which would not be intolerable for tap water. This water is very agressive against pipe material. Consequently, it would be doubtful that ground water in this area comes to be used again. However, sizable increase in supply should be ensured by any means and distribution pipes are to be arranged matching to increase in supply plus present supply. As to new water sources for expansion, such measures as extension of the Dong Nai River system, water resources development of the Saigon River and exploitation of ground water north of Saigon City could be implemented. Redevelopment of the Dong Nai River will take a great deal of time and money and will hardly be of help to fulfilment of the urgent requirements, even though this river must be inevitable for ultimate enpansion project.

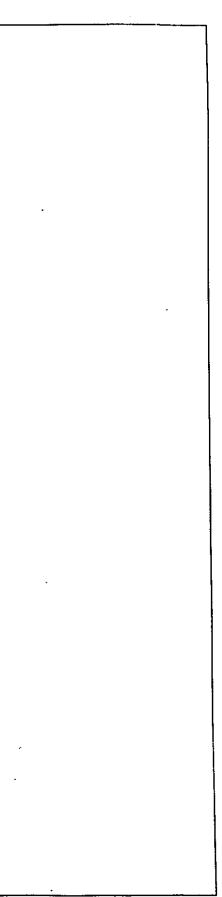
In materializing water resources development on the Saigon River, it is essential that hydrological studies be performed first. Some of necessary study is being undertaken by the Vietnamese authorities concerned. But some more time and further assistance by

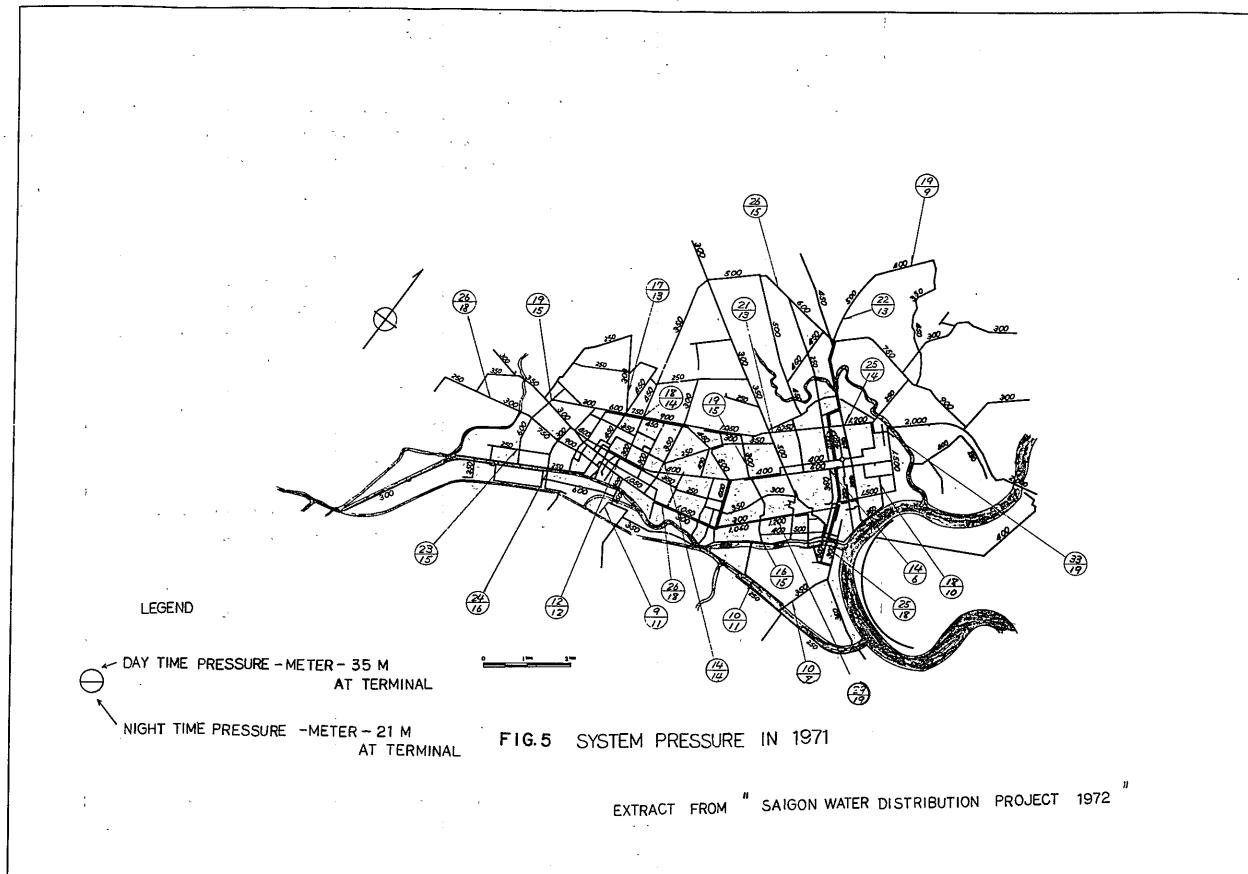
-7-

engineering experts would be required in order to obtain reliable data and findings for planning. In view of the above facts, a study on ground water may be the shortest way to solve the urgent problem because investigation will be performed in relatively short time, construction cost is to be rather cheap and construction will not require too much time. A vast alluvial plain stretches north of Saigon, and considerable amount of ground water could be acquired there. In order to know allowable pumping discharge'and water quality in such a vast area, it will be the best way to drill many test wells but such work will take a great deal of time and money. Then, a survey method named electrical prospection of ground water can be recommended. This method is useful for a field study of ground water in an extensive area in a short time. It has considerably good accuracy to infer the existance of ground water although it does not tell allowable intake quantity definitely. Accordignly, at a certain position in a area where ground water is prospected after the above survey, a well or wells will be drilled for pumping tests. Thus necessary data are collected and planning of a water supply system with ground water shall be initiated. There must be many important items to be learned such as geography, population, socio-economic background of city etc. together with water source when a water supply project is schemed. This time the survey team conducted some part of electrical ground water prospection and learned general aspects of water supply in Saigon. Hence, in succession to the study, test well borings and pumping tests are required in order to effectively make use of the former investigation and consequently to obtain data for feasibility study.

Stated above is about common ways of water supply expansion. However, it will take considerable time, say some two years, at shortest even for the ground water scheme to start supply since Saigon is a big city and requires great amount of supply in a new project. It is improvement of intake pumps mentioned above that the Saigon Metropolitan Water Office is planning first. Since this work is relatively simple, it can be completed before long bringing increase in discharge. By this measure, however, only 100, 000 CMD of increase is estimated at most. In consideration of present annual demand increase rate of 30,000 to 50,000 CMD, it would be matter of time for the supply system to come short.


Therefore, although there will never be any objection to this project, we should not lose time to initiate a bigger expansion program with ground water source so long as it is feasible. Very big quantity, however, could not be expected from the ground


- 8 -


water source since an excessive pumping may cause deterioration of water quality, unusual depression of ground water table and land subsidence.

Hence, development of reliable river water sources is urgently requested.

•

•

-

1. General

The main part of the investigation was a geophysical prospecting operation. In parallel with this work, field surveys including study on existing shallow and deep wells were carried out in order to understand the hydrogeological aspect of the subject area.

2. General Background

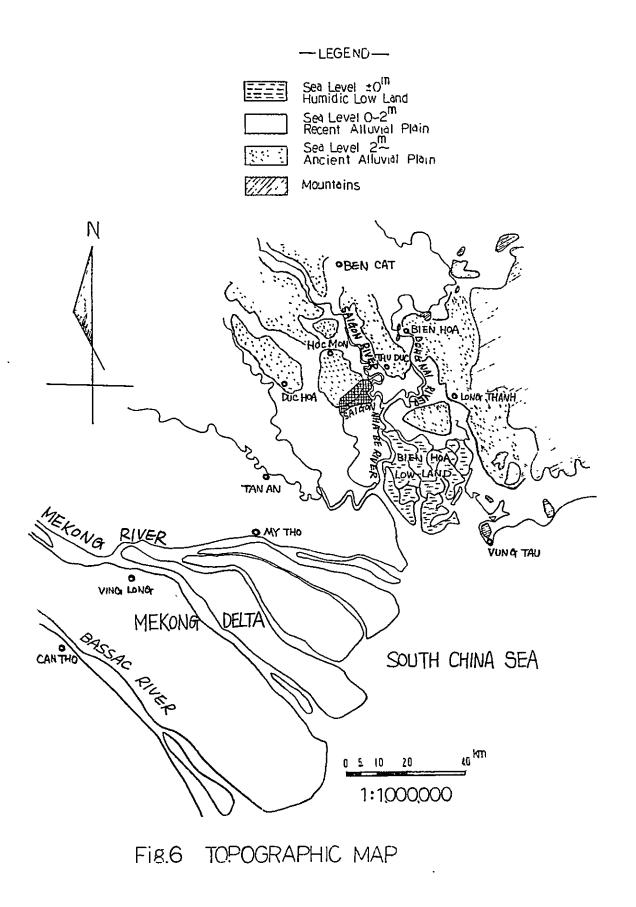
The survey was executed mainly in the Hoc Mon district adjacent to the north-west part of the Saigon City. Saigon City situated to the north-east of the Mekon Delta which occupies the major part of the southern plain in the Republic of Vietnam is on the delta formed by the Saigon river and other streams as shown in Figure 6. The bed of rivers meandering on the delta are composed of very fine materials such as silt or clay. In the rainy season these materials are easily transported and the river-bed is deeply eroded out. In most places, therefore, rivers are blessed with a great amount of water and suitable for navigation. The Saigon River, one of the main tributaries of the Nha Be River, is typical one of navigatable rivers and ocean-going-ships of approximately 10,000 tons sail up and down the river. This river is also referred to as a "tidal river'. The tide influences to the considerable upper part of the river and it affects ground water too. It is reported that the ground water in and around the Hoc Mon district where the new ground water resource is expected is not yet suffered from salt water intrusion. However, in the development of the ground water in the said district adequate consideration should be given to the problem of salt water contamination in view of the fact that the remarkable drawdown of the ground water level took place after the excessive pumping and as the result salt water intruded into the water bearing formation in the downtown of Saigon.

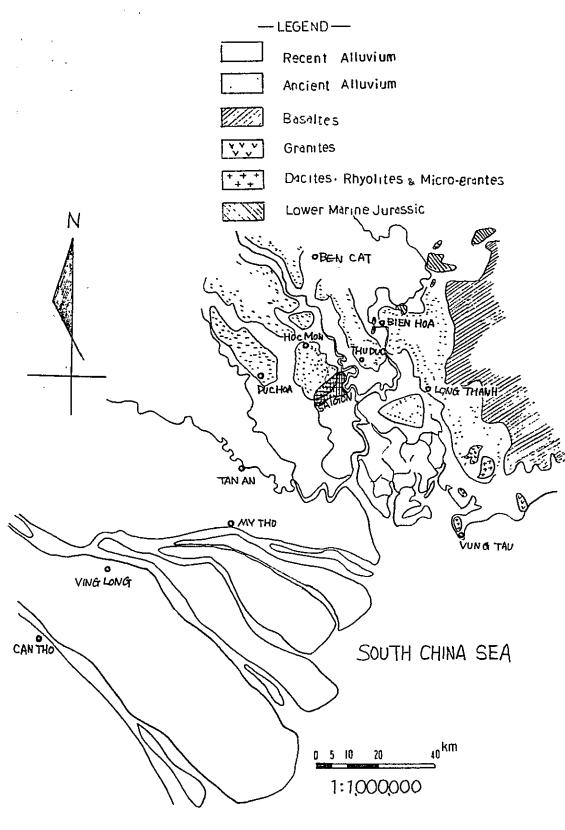
The investigation area forms a delta and its typical features in underground geology are composed of top soil and alluvium.

In the southern part of Saigon City, this alluvium is continuously found to the depth of approximately 200 to 250 meters. There is sedimentary rock of the Mesozoic to Paleozoic or metamorphic rock beneath the alluvium. These rocks are considered to be a bedrock and outcrops of such a bedrock still remain in a shape of monadnock in the district north-east of Saigon, as given in Figures 6 and 7. Diluvial and tertiary formations are not found there.

The alluvium can be divided into old and recent ones. The elevation of the latter is less than 2 meters in the recent flood plain. The former is higher at its elevation compared with the latter, and is 5 to 9 meters within the investigation area. As a rule, the old alluvium contains laterite and mainly consists of grave, while the recent one lacks of laterite and its main composition is clay and silt. The recent alluvium is not so clearly recognized as in the Mekong Delta, but its sedimentation seems to be still continued at present.

The investigation area is situated in lat. 11 N and belongs to the tropical monsoon climatic areas. It has two kinds of climatic differences, namely the dry season in winter and the rainly season in summer. The climatic condition is as given in Figure 3. The mean annual rainfall which is an important factor for recharge of ground water is recorded at 1952.5 mm. This value of rainfall is not always least as an amount of ground water recharge. The amount of 87% of the annual rainfall is concentrated in the rainy season (from May to October). This precipitation gives enormous effect upon the condition of ground water. The free-surface water aquifer in the survey area shows the difference of 2 meters in its water level between the rainy and dry season. Besides, it is probable that this rainfall causes variations in the degree of tidal effect.


3. Free-Surface Ground Water


Top soil in Hoc Mon district which is mostly pale grey is composed of very fine sand, silt and silty clay. Beneath the top soil there exists laterite layer which is produced by podsolization of soil. The nature of soil is acid. The level of the free-surface ground water is about 2 meters below the ground surface. Generally it is shallow to the west and deep to the south-east. However, it seems to be almost horizontal taking into consideration of the ground surface level. Many shallow wells are excavated in the Hoc Mon district, which serve for supplying drinking and irrigation water. They are open hole type in most cases. Only some domestic wells are equipped with concrete frames in their upper portion. There are two types of irrigation wells. The first one is a well with a diameter of about 600 mm and a depth of 5 to 6 meters; not deeper than the laterite layer. The second one has the same construction as the first one in its appearance, but it has a small open hole at the bottom, which penetrates the laterite layer and collects the ground water in the lower portion. This hole is made by driving down a bamboo-pole of 5 cm dia. and 50 cm long in common way. If the hole is clogged with sand or clay, the bamboo-pole is again used for opening through the hole and the well yield is rehabilitated. The structure of a domestic well is almost the same as the first type. In general, the water in the free-surface water aquifer shows a few iron contents and is not so inferior in its quality in the survey area. However, this water is under such circumstances that it is easily polluted and contaminated. Accordingly, it is not preferable to completely rely upon the free-surface water aquifer as permanent ground water resources.

4. Confined Ground Water

The water supply work in Saigon city completely relied upon ground water at its initial stage. At the outset Saigon's population was small and the existing large collector wells met a demand. However, the capacity of the system came short as the population grew. And many deep wells were constructed to cope with the increasing demand. Year by year total pumping rate in the district increased and the lowering of ground water level took place giving rise to the salt-water intrusion into the aquifer; as a matter of course it became impossible to use groung water for the purpose of municipal water supply. Thus the surface water from the Dong Nai River was utilized as a new source of the water supply since 1966 and pumping from deep wells was suspended, as indicated in Figure 8. Followings are underground formations in the investigation area, which are roughly generalized on the basis of the formation log data of the existing deep wells (see Figure 10 and 11) in Saigon City and the Hoc Mon district.

Formation-I	Top-soil	0 - 2 meters
Formation-II	Laterite & clay	2 - 10
Formation-III	Clayey sand	10 - 30
Formation-IV	Sandy clay	30 - 60
Formation-V	Gravel	60 - 80
Formation-VI	Clay	80 - ?
		_

FIE.7 GEOLOGIC MAP

Figure 9 shows the strainer portion of existing wells. As a rule, a strainer is set in the lowest part of an aquifer and its depth is roughly the same with each other. The existing wells in Saigon City are less than 50 meters in depth with strainers of approximately 10 meters long. Strainers are placed 11 meters in the depth of 20 to 40 meters. The yielding capacity of wells ranges from 2,000 to 5,000 m³/day. There is a well of 200 meters deep, but it is exceptional.

The ground water is taken from the formation-V (60 to 80 m) in the Hoc Mon district. This formation is expected to be a good aquifer. The ground water quality in the district is better than that in Saigon City as shown in Table 1 and 2.

According to the existing pumping records and well date, it is reasonable to believe that there is possibility of ground water development in the Hoc Mon district. On one hand, in view of the fact that existing wells in Saigon City became unfit for use owing to salt contamination, it is required that the ground water development should be carefully planned on the basis of sufficient and appropriate investigations concerning geologic and hydrologic characteristics of ground water reservoirs.

DC MON
H NI'STT
LLOW WE
1 SHAI
TABLE

Year Depth Diacharge Strainer pH Temper- ature Fe C Resistivity 1969-10 Te 150 6.5 - 545 63 73 10 6.25 - 0.5 8 7 1969-10 76 150 6.5 - 545 63 73 10 6.25 - 0.5 8 7 1969-11 34 150 6.5 - 24 ~34 10 6.25 - 0.5 8 7 10 10 7 7 7 1969-11 34 150 - - 24 ~34 10 6.25 - 0.15 8 7 7 1969-13 30 150 - - - 23 ~32 9 6.05 5 5 7 7 7 1969-2 7 10 6.45 10 6.45 0.05 6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Depth Dia- S.W.L. P.W.L. Discharge Strainer I_{1} m m m m m $3/d$ m m m m
Depth Discharge Strainer meter S.W.L. P.W.L. rate Depth Total m mm m m m^3/d $m\sim m$ m 76 150 6.5 - 545 63 73 10 76 150 6.5 - 24 34 10 34 150 - - 24 34 10 33 2000 - - 23 ~ 32 9 31 150 4.5 13.5 695 21 31 10 74 150 - - 2 23 ~ 32 9 5 39 150 2.5 8 458 28 ~ 37.5 9.5 5
Depth Dia- S.W.L. P.W.L. Discharge m m m m ¹ m mm m m ¹ 76 150 6.5 - 545 63 34 150 - - 24 24 33 200 - - 23 23 31 150 - - 24 23 33 200 - - 24 23 31 150 4.5 13.5 695 21 74 150 2.5 8 458 28 39 150 2.5 8 458 28 35.5 200 3 12 1,150 24 90.68 200 6 20 5,180 78 32.94 300 4.5 22 3,040 20.5
Depth Dia- S.W.L. P.W.L. m mm m m r6 150 6.5 - 34 150 - - 33 200 - - 33 200 - - 31 150 4.5 13.5 74 150 - - 39 150 2.5 8 39 150 2.5 8 39 150 3 12 39 150 4.5 13.5 39 150 6 20 31 35.5 200 6 20 31 35.0 6 11.5 33.3 200 6 20 33.2.94 300 6 22 32.94 300 2 2 - 32.95 450 2 - -
Depth Dia- S.W.L. P.W.L. m mm m m m mm m m 76 150 6.5 - 34 150 - - 33 200 - - 31 150 4.5 13.5 74 150 - - 39 150 - - 39 150 2.5 8 39 150 3 12 39 150 3 12 39 150 5.5 8 39 150 6 11.5 31 35.5 200 6 20 31 32.94 300 6 11.5 32.94 300 4.5 22 - 39 26 450 2 -
Depth Dia- m m m mm 76 150 34 150 33 200 31 150 74 150 74 150 39 150 39 150 39 150 39 150 39 150 39 150 39 150 31 30 35.5 200 90.68 200 32.94 300 32.94 300 32.95 450
Depth Depth m m m 76 76 76 34 33 33 33 33 33 33 33 33 33 33 33 33
Depth Depth 16 Depth 10 Depth 10 Depth 10 Depth 10 Depth 11 Depth 13 Depth 13 Depth 13 Depth 13 Depth 15 Depth 13 Depth 15 Depth
Year Year 1969-10 1969-11 1968-4 1968-4 1964-9 1964-9 1960-3 1960-3 1957-12 1933-3
Name Hoc-Mon hoc-Mon " " " " " " " " " " " " " " " " " " "
N 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0

T

DATA
WELL
DEEP
TABLE 2

vity	'	B					Ţ								
Resistivity		U - cm			Ì					1					
υ		ppm				,					-		_		
Ъе		ppm	0.53	5.30	6.30	15.40	63.00	0.50	0.54	0.27	1.04	0.36	13.60	30.00	18.40
Temper-	ature	ů	,	-											
Hd	_	1	4, 5	3, 9	4.7	4.4	4.6	4.8	4, 6	4.8	4.3	4.7	4.0	4.3	6.2
r	Total	Ħ	10.5	10	10	13 ′	13	13	13	12.5	11.5	10	12.5	13.5	22. 5
Strainer	Depth	m~m	₇ 31 ~41.5	33 ~43	30. 5~40. 5	28 ~41	29 ~42	26 ~39	25 ~38	24. 5~37	21 ~32.5	25 ~35	22 ~34.5	30. 5~43	178.5~201
Discharge	rate	m ³ /d	2, 710	2, 550	4,830	2,430	2, 700	5,480	4,580	6,120	6, 000	5,400	5,400	4, 320	6, 960
S.W.L. P.W.L.		H	23	1	15	22	21.5	19	21	22	8.5	6	.91	21.5	20.5
S.W.L.		B	7	10.4	8	4.5	8	7	8.5	5.5	3.5	5	10.5	9	7
Dia-	meter	u u u	300	300	300	300	300	300	300	300	300	300	300	300	300
Depth		8	45.7	45.1	42.70	43.95	44.16	41.20	39.96	37.00	36.45	37.26	38.00	47.37	204.57
Year	5		1955-9	1950	1953	1952	1958-3	1958-12	1958-9	1933-3	1951-11	1953-11	1956-3	1954-3	1950-9
Name			Ban-Co II	Bui-Chu	Nguyen Du	Ban Co I	Cong Hoa	Tran Quoc Toan 3 1958-12	Tran Quoc Toan 2	Tran Quoc Toan 1	Phu Tho II	Truong Dua I	Ly Thai To	Cay Go Nhi	Binh Tay
UN N			20	21	22	23	24	25	26	27	28	29	30	31	32

7

ŧ

-

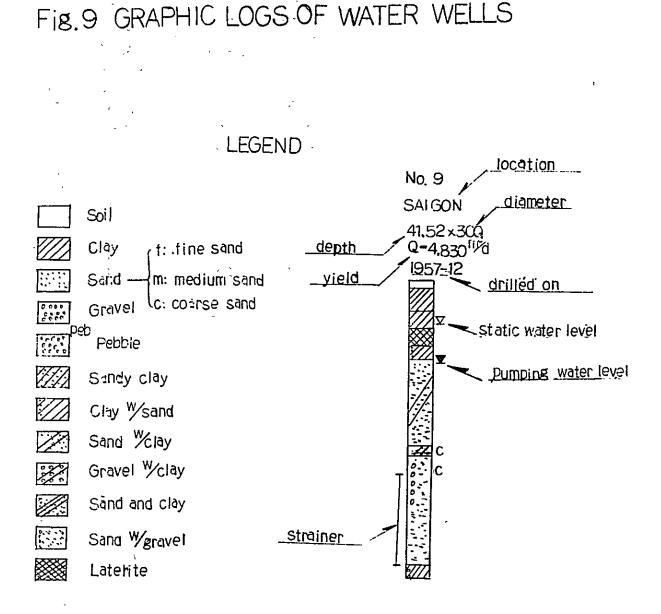
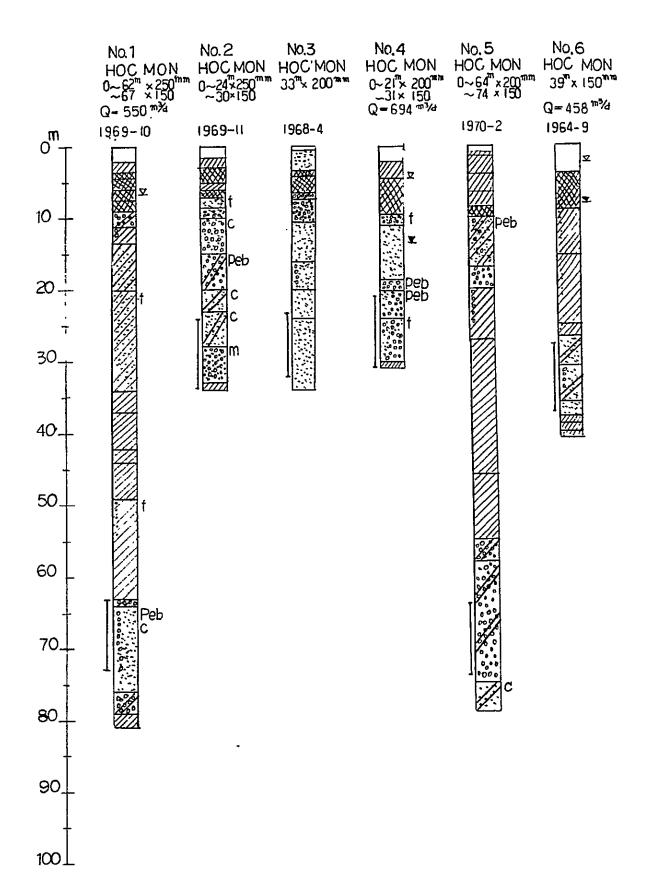
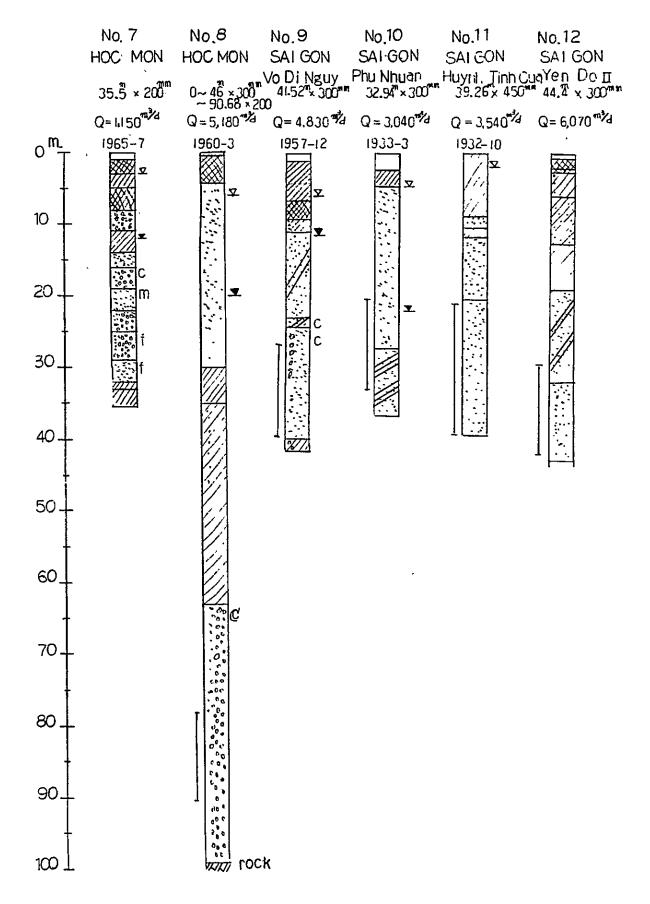
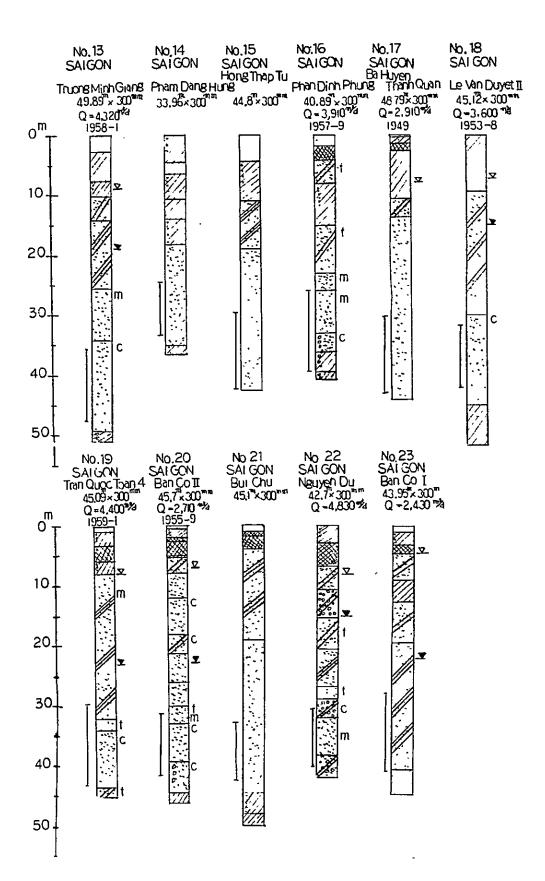
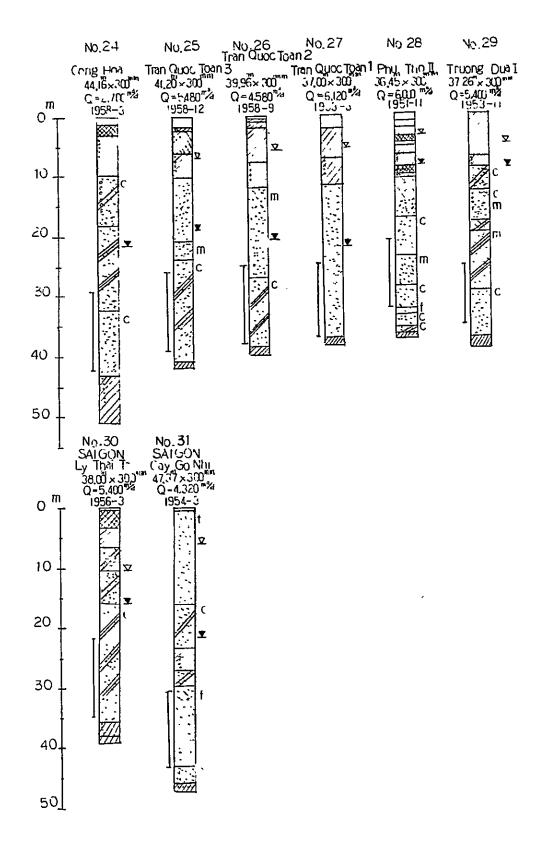

.

TABLE 3 DEEP WELL DATA

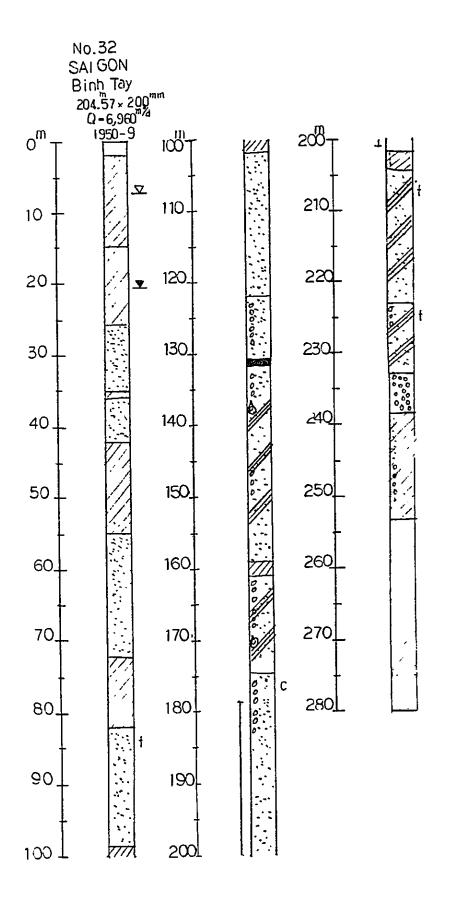


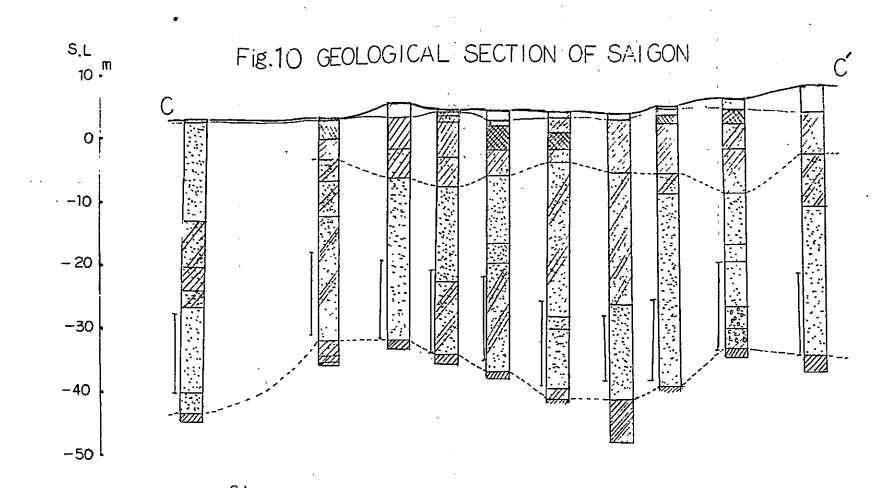

- 21 -


v



- 22 -





-

.

e

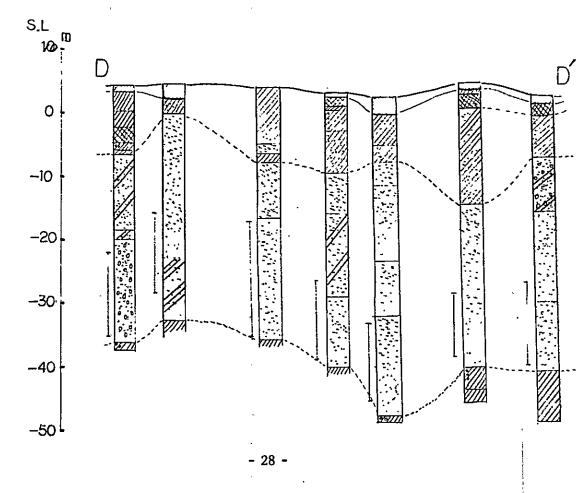
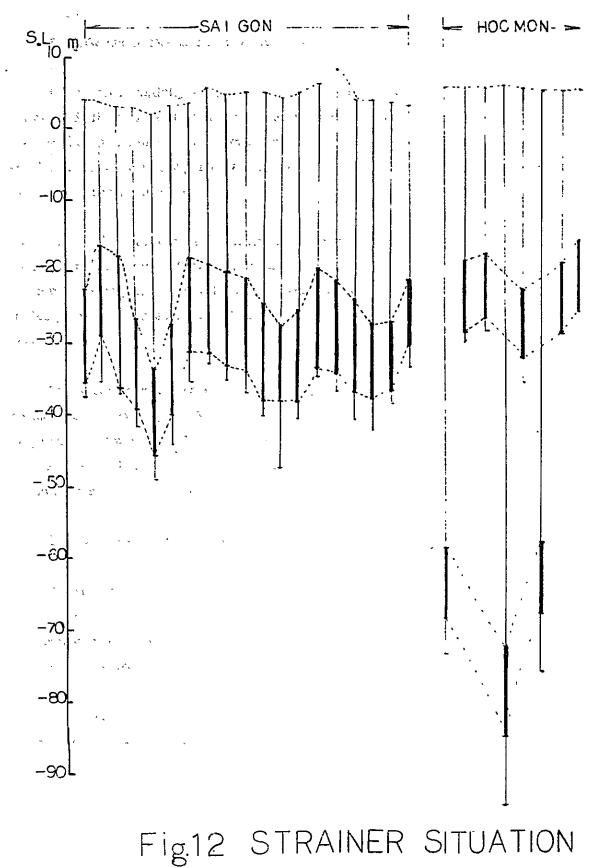



Fig.11 GEOLOGICAL SECTION OF HOCMON

- 29_.-

5. Electrical Resistivity Surveying

5-1 Ground surface condition in survey area

Electrical resistivity surveying was carried out in the area covering about 2 km² out of paddy field zones stretched south-eastwards from the town of Hoc Mon. Since Vietnam was in the dry season at that time, most paddy fields were dried-up and consolidated. And except for partially cultivated farm land most places were undesirable for the resistivity surveying.

. .

In view of measurement accuracy it is important to apply sufficient electrical current into the ground. However, it was impossible to obtain satisfactory results in some measuring points due to the specific condition of very high ground resistivity. In this point, every possible effort such as remeasurement was attempted to obtain accurate data.

The accuracy of the resistivity surveying greatly depends upon the topographic condition of a survey area. Since the ground surface in this area was very flat to a large extent, it was possible to space electrodes along a straight line almost in an ideal manner. Accordingly, it is assumed that any measuring errors contained in the results are almost due to the ground condition.

5-2 Arrangement of measuring point and surveying depth

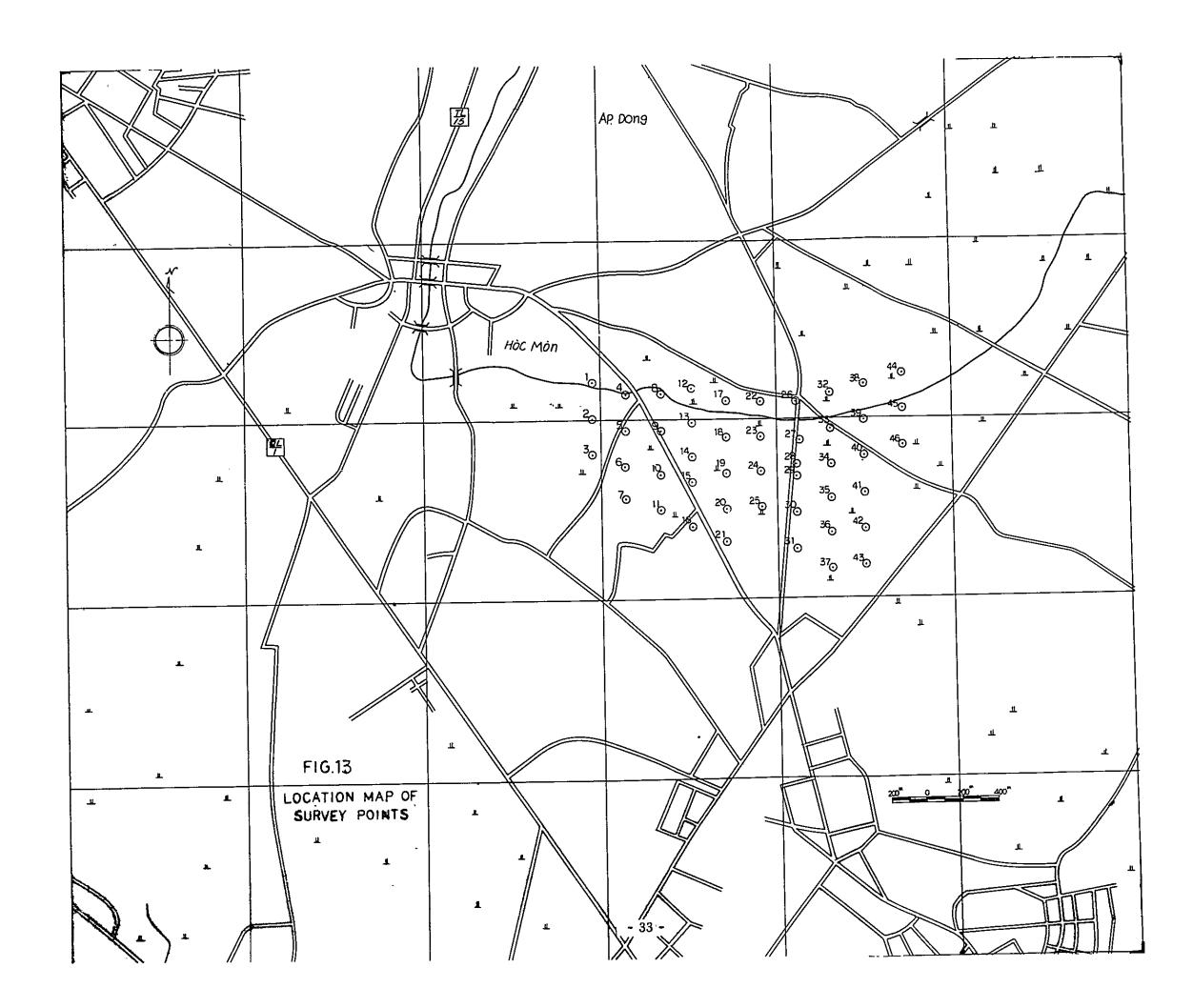
There were 9 measuring lines in total at every distance of 200 meters. Measuring points number 3 to 6 in the respective lines, and the distance between measuring points was approximately 200 meters. The location of measuring points and their number are as shown in Figure 13.

The resistivity surveying was carried out at 46 points in total. And the maximum measuring depth was 130 meters each.

5-3 Measuring apparatus and method

Measuring apparatus:	Model ES-G1 (Alternated direct current system,
	maximum load600V-3A)
Electric supply system:	Dry battery EM-1 (45V) \times 10 pieces
× _	

The arrangement of four electrodes (two current ones and two potential ones) adopted in the surveying is Wenner configuration. In this Wenner system, the electrodes are equally spaced along a straight line. Measurements of resistivity are made by using these four electrodes set in the ground. Current is applied to the ground through outer two current electrodes and the potential drop accross the inner two electrodes is noted.


The interval of four electrodes is enlarged so as to satisfy the above configuration and a series of resistance readings at different electrode spacings are taken at a single station or point. The electrodes were spaced to be every 1 meter from the depth of 1 to 20 meters, every 2 meters from that of 20 to 100 meters, and every 10 meters from that of 100 to 130 meters, respectively. The direction of the electrode arrangement was not made constant due to the surface conditions, but as a principle it was apointed to be east to west.

5-4 Classification of p-a curves

The depth-profile resistivity curves which are made by plotting apparent resistivity (ρ) against electrode spacing (a) are as shown in Figures 14 and 25. These curves, refered to as ρ -a curve, can be classified as follows according to their form.

- Type-A: The curves of Points No. 3 and No. 11 are typical ones. The apparent resistivity rises up from a depth of approximately 5 meters, reaching the peak of about 500 ohm-meters and goes down to approximately 200 ohm-meters as electrode spacing increases. This type can be found mainly at the south-western side of the investigation area.
- Type-B: This type could be represented mainly by Points No. 4 and No. 22. The apparent resistivity to a depth of 25 to 35 meters forms a gentle descending curve and rises up with the enlargement of electrode

- 32 -

spacing, ascending the peak of 200 to 400 ohm-meters at a depth of approximately 80 meters. Then it goes down again at a further depth. This type of curves is distributed mainly at the north-eastern side of the area.

Type-C: Points No. 26, No. 36, etc. are typical of this kind. It has descending, form within the upper 10 meters. Within a depth of 10 to 50 meters it becomes horizontal and goes down further as depth is increased. This seems to be an inter-appearance of Type-A and Type-B. The apparent resistivity in the horizontal part ranges from 200 to 400 ohm-meters. This type can be found mainly at the eastern side and partly at the western side of the area.

Type-D Both types are quite similar to each other in the point that they have & E: descending from to a depth of nearly 40 meters. Type-D follows further a descending curve while Type-E shows a value of about 200 ohm-meters at the depth 40 meters or so and then becomes horizontal. In the case of the latter, there is no remarkable change in value when and if the space of electrodes increases. The former is represented by Point No. 33 and the latter by No. 43, respectively. These types of a curve can be found at the south-eastern part of the area.

5-5 Analysis and interpretation of ρ -a curves

The results of ρ -a curve analysis are shown in Figure 26 and 28 in the form of a resistivity log.

Formations or rocks show different resistivity depending upon their physical and mineralogic characteristics due to component minerals, degree of crystalization, that of consolidation, etc. In paticular, when saturated with water, formations show resistivity in accordance with the quality of water contained. The apparent resistivity of pure water is extremely high while that of ground water is generally around less than 100 ohm-meters due to various dissolved ions. As a rule, apparent resistivity of water bearing formation is less than 1,000 ohm-meters while such high apparent resistivity as more than 1,000 ohm-meters is indicated by dried-up strata. The muddy formation which consists mainly of clay and/or silt is an aquiclude where movement of water by gravity force hardly takes place because the effective porosity is very small, and its apparent resistivity is relatively low; not higher than 100 ohm-meters in most cases. Accordingly, formations with apparent resistivity of 100 to 1,000 ohm-meters can be regarded as an aquifer composed mainly of sand and/or gravel.

On the basis of those principles and available data of the existing wells, as a result of the resistivity analysis, it is concluded that subsurface geology is presumably divided into five nearly horizontal formations to the depth of 130 m eters. Figures 29 and 30 show the resistivity cross section of the survey area. For convenience of explanation these five formations are referred to as Formation A, B-1, B-2, C and D from the ground surface in succession.

Formation A: The lower boundary of this formation ranges from 5 to 13 meters deep. Its average thickness is 10 meters or so. The upper most portion, about 1 meter thick, shows the high apparent resistivity of 1,000 to maximum 7,500 ohm-meters. The apparent resistivity of a stratum following to this high resistivity zone is 200 to 500 ohm-meters.

<u>Formation B-1:</u> This is bounded at the depth of 35 to 50 meters. Its average thickness is 32 meters or so. The apparent resistivity ranges between 100 and 1,000 ohm-meters. It is from 150 to 600 ohm-meters for the most part. The apparent resistivity of this formation can be classified into two groups; the high resistivity of 300 to 1,000 ohm-meters and relatively low one of 100 to 200 ohm-meters. It is supposed by reference to formation logs of existing wells in and around the investigation area that the high resistivity parts consist of sand and/or gravel and the relatively low resistivity ones are mainly composed of sand and/or silt.

Formation B-2: As far as the apparent resistivity is concerned, materials of Formation B-2 seem to be nearly similar to those of Formation B-1. In spite of this similarity, both formations can be distinguished as a result of the analysis. Especially at the points of No. 1, No. 6, No. 10, No. 13, and No. 18, Formation B-2 is distinguishable from Formation B-1 by the boundary formation of 5 meters or so thick which has the relatively low apparent resistivity of 50 to 140 ohmmeters. However, it is not clear that this low apparent resistivity formation is a key bed to distinguish Formation B-2 from Formation B-1 as a whole, because it does not make its appearance in the analysis of other points data.

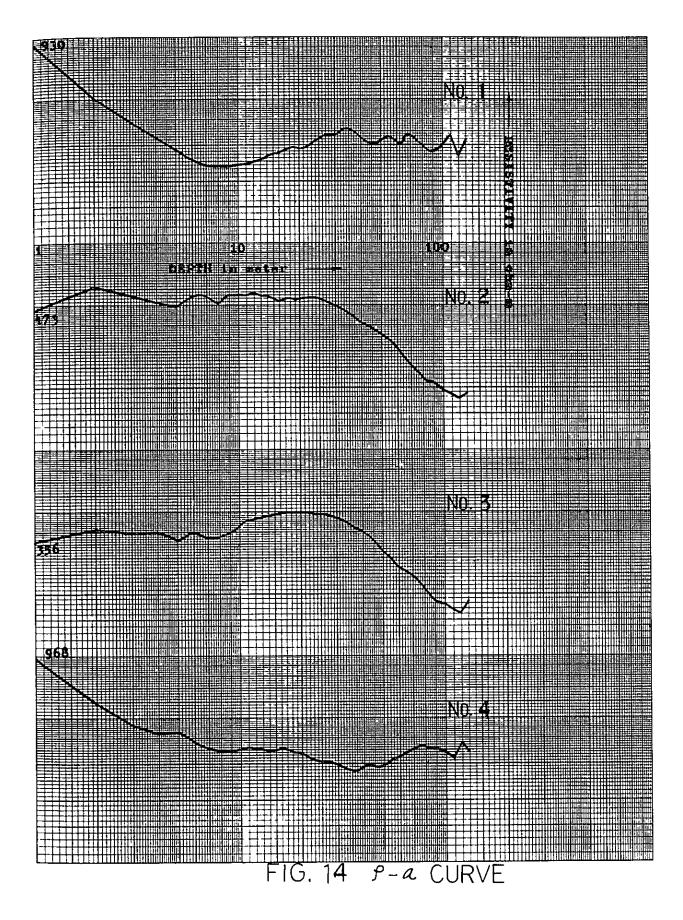
Formation B-2 shows the maximum apparent resistivity of 670 ohm-meters or so

and the minimum of about 100 ohm-meters.

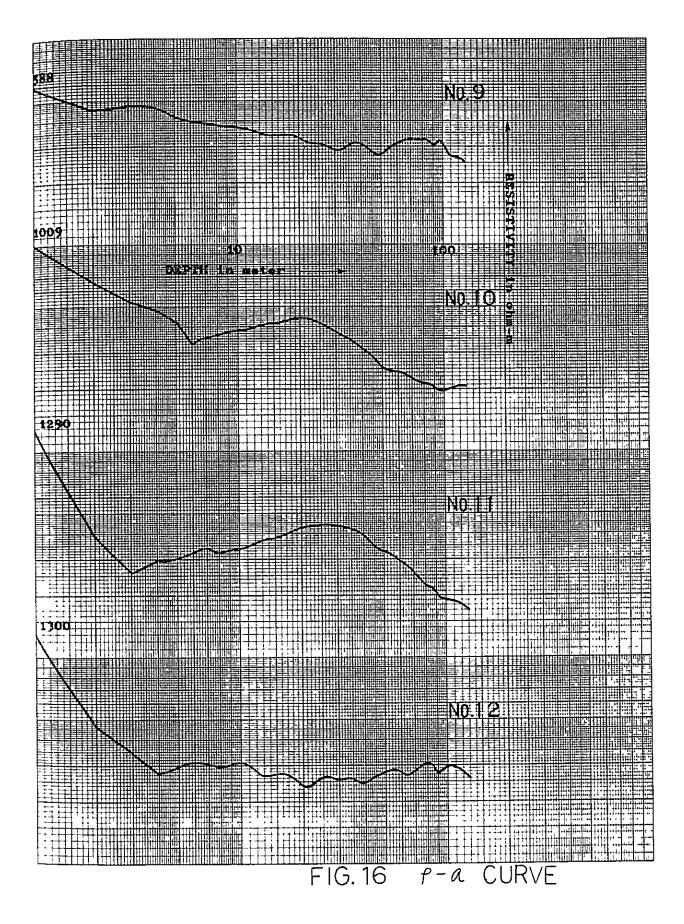
1.4

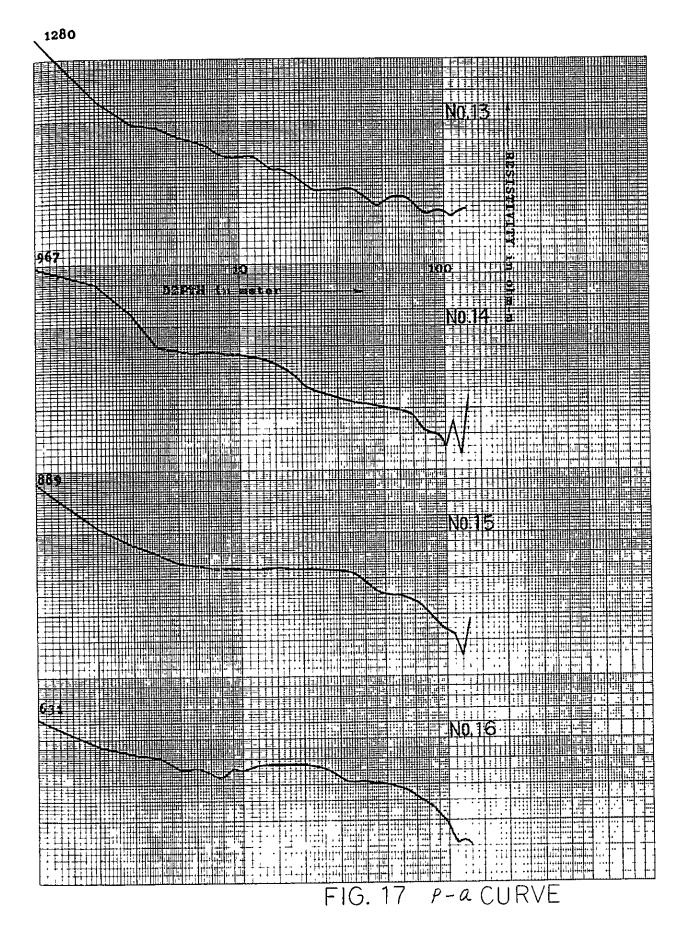
The analysis value of the apparent resistivity for the most part is 150 to 450

ohm-meters with its upper limit which is slightly lower than that of Formation B-1. The apparent resistivity of the order of 100 ohm-meters is distributed mainly at the southern half of the survey area.

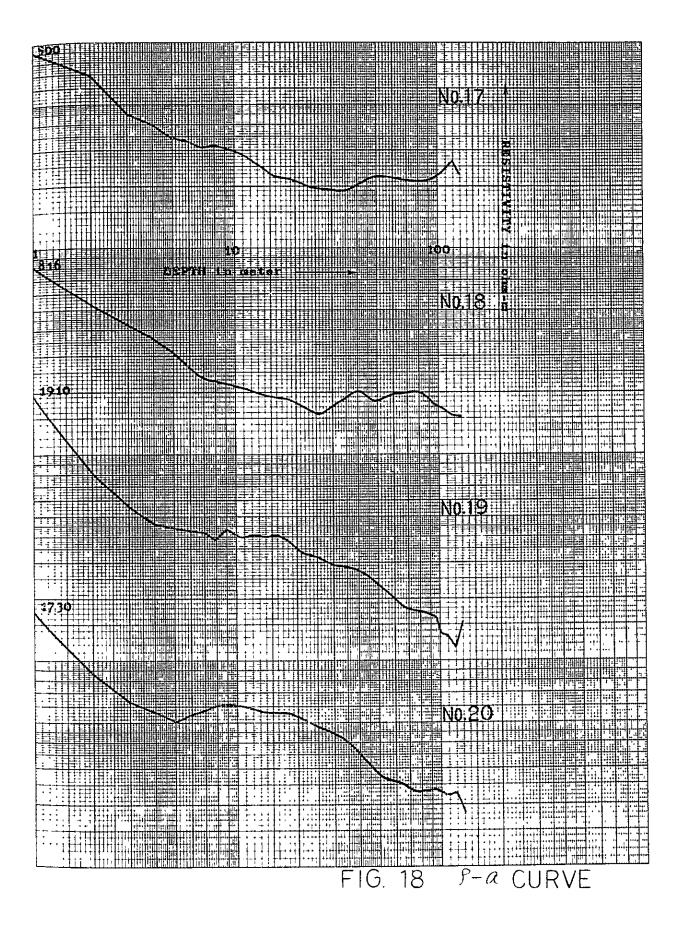

The lower boundary of this formation ranges from 60 to 80 meters and its average thickness is equal to that of Formation B-1 which is 32 meters or so.

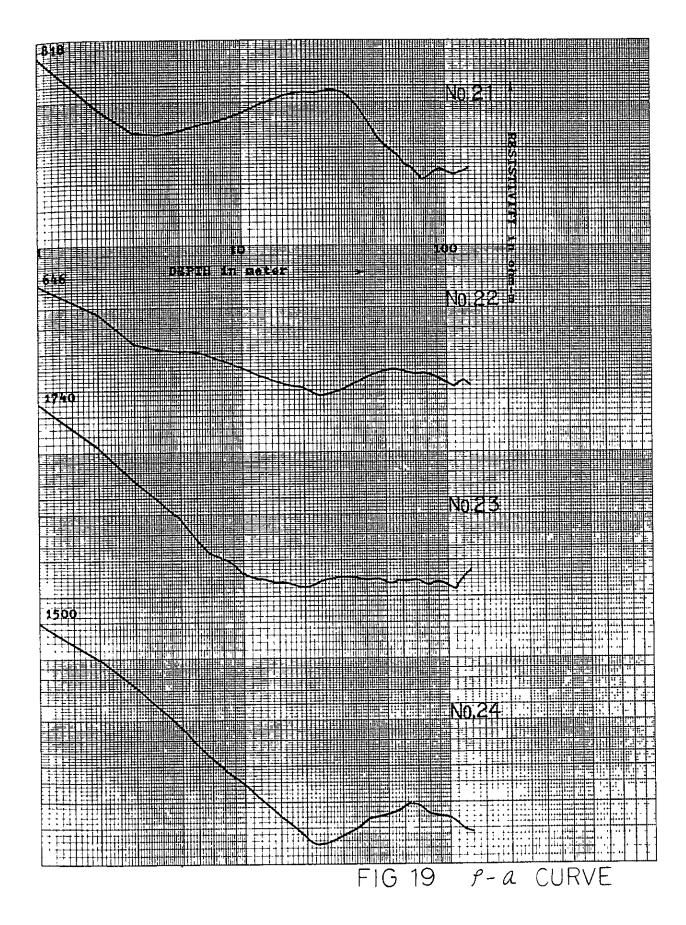
Formation C: The lower boundary of this formation is presumed to be 100 to 120 meters, but it is not made clarified in the analysis. The apparent resistivity is some 110 ohm-meters for the most part and partially 40 to 80 ohm-meters. According to such a low apparent resistivity, this formation seems to be aquiclude mainly composed of clay and/or silt. Its thickness is approximately 15 to over 20 meters.

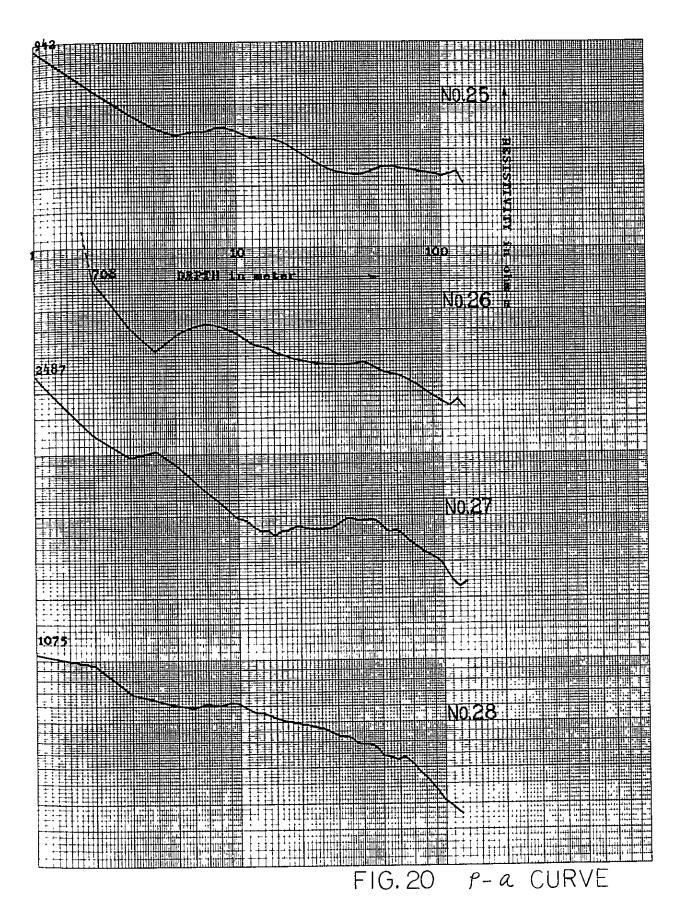

Formation D: This is the high apparent resistivity formation lying beneath Formation C. As a result of the analysis, the apparent resistivity of 200 to 500 ohm-meters can be obtained at the point No. 1 and other 9 points. The thickness and continuity of the formation is not clear.

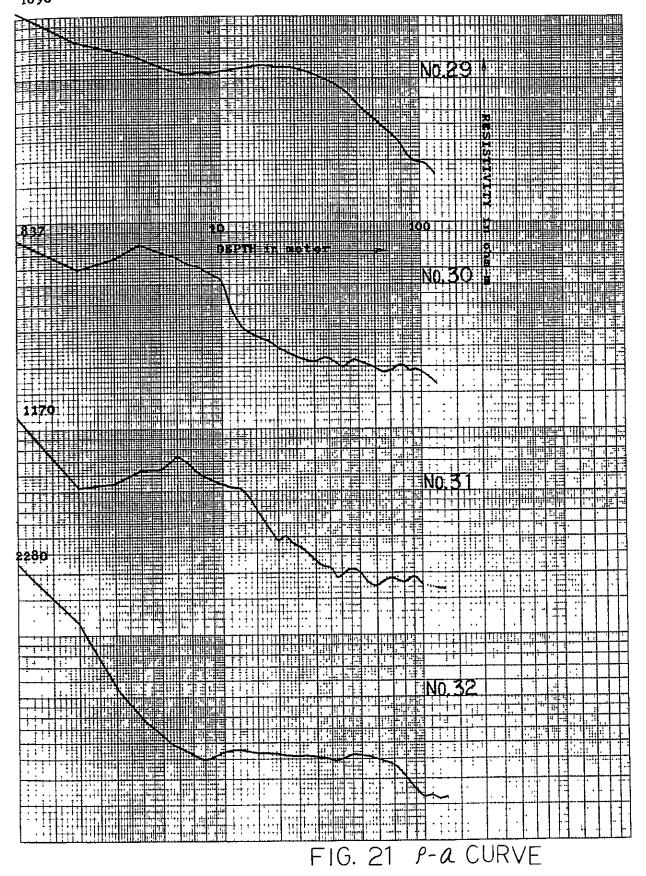

As mentioned beforehand, subsurface geology in the survey area can be presumably divided into five formations to the depth of 130 meters which are almost horizontal. Taking their formation and apparent resistivity into account, however, the upper section bounded by Formation C is regarded as a single water bearing formation. All of the existing deep wells constructed in and around the district are taking ground water from Formation B-1 and B-2. Since there is no available data concerning Formation D, it is unknown for the present whether Formation D is an aquifer or not.

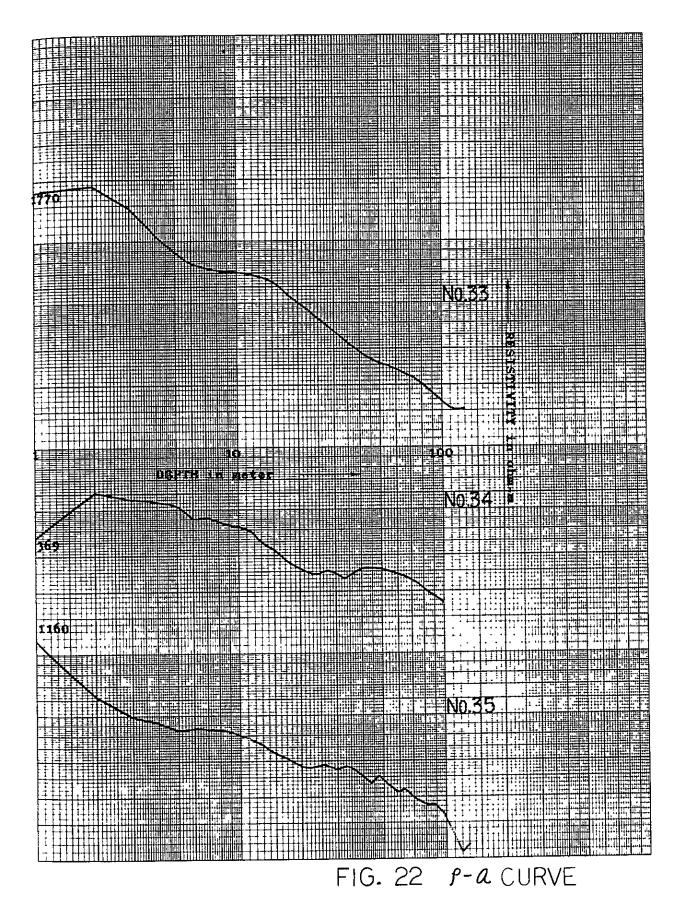
It is required to make overall judgment on the hydrogeological properties of Formation B-1 and B-2 and Formation D such as thickness of a water bearing section, their yielding capacity, and so forth. To this end, a series of further investigations covering extensive area and including test borings, pumping tests, etc., should be carried out for the next program.

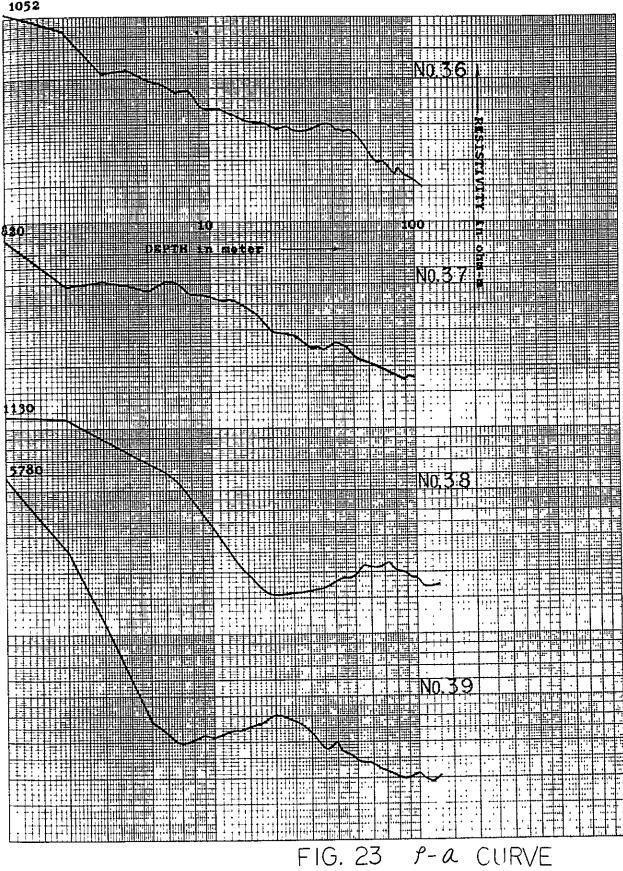


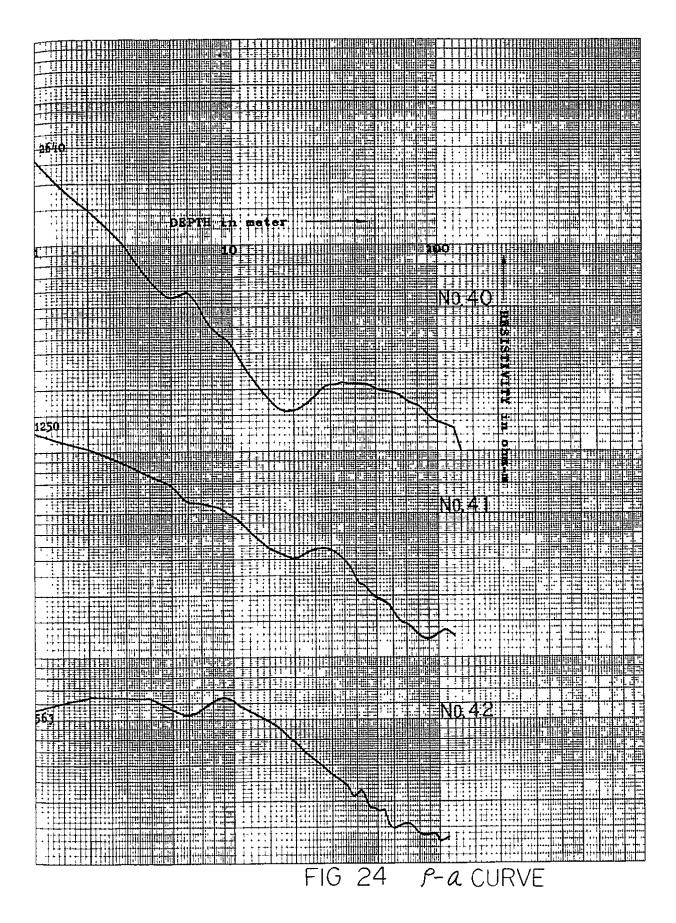

		No. 5
-954		
		No 7
795		
793		
		No.8
	$\Box C 15 P - 0 C$	CURVE
	FIG. 15 P-a (

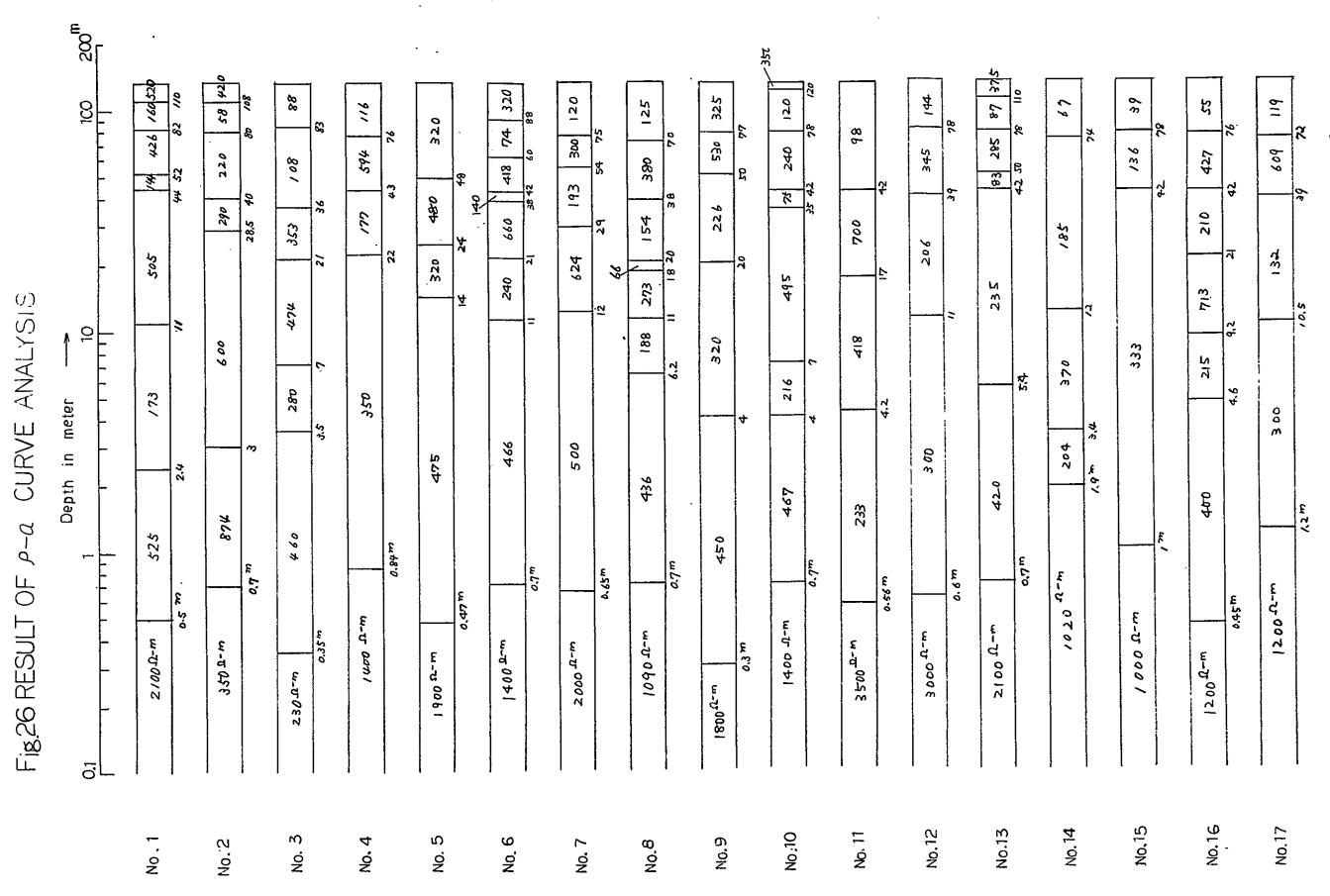



- 40 -

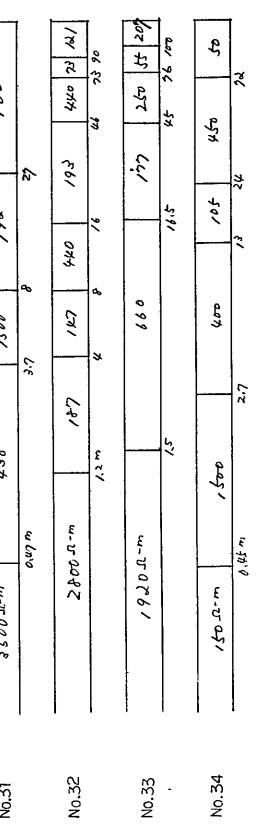





1090

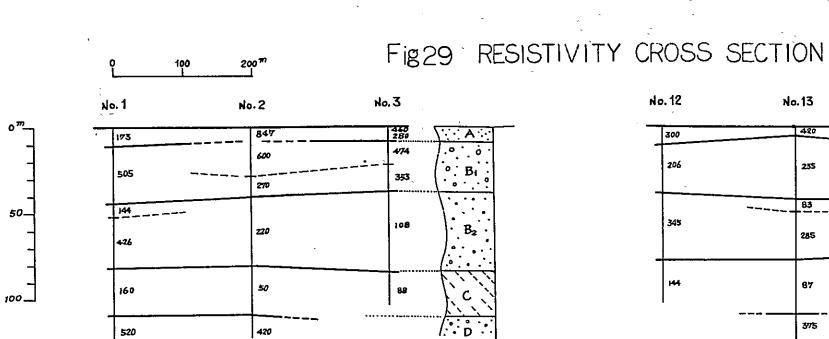

_	
40	52
1.0	_J ==

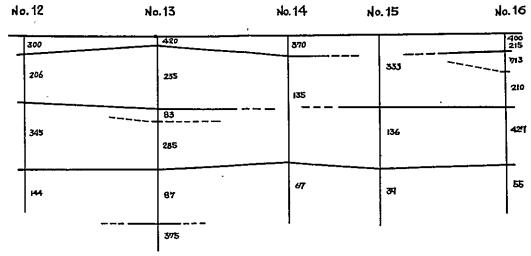
104	0
-----	---


			N X
			97 - VI
Y THE REPORT OF THE REPORT			
	X		
831			
		No.	46 8
		/	
DEPTE II			
	FIG 25	P-a (CURVE

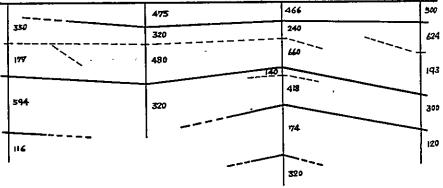
- 49

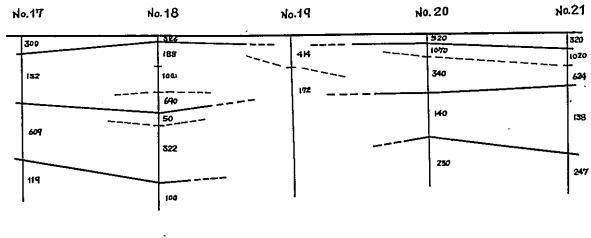
	200 ¹		,											`			-	-												
	8	-	001 KLE	00			مخر	<i>a</i> 9	675	20	135 210	20 98	163 400	501 69	611 0	~~	.061 0	77	11 23	28	581 078	80	147 54	80	143 125	28	144		60	
	-		690 50		122		071	34 6	138	0	673	35	338 245	Ŀe	400 330	88	390	ورب		47	615 3	es 1	~	84	842	49	238		11	
S			<i>Q</i> / <i>Q</i>			8/	07E	/3	יסים מיזת	19 30	150			64	24	7¢ 7¢	7171	61	062 201	561	456	31	613		orl	26	147	δ.	194	42
CURVE ANALYSIS			188				0201	۰Ł		6	305	¢0	012		701	5,2 10			800	\$ 9.6	- 235	516 II		6	345	2.9	1740 277	6 II	1500	90
CURVE	Depth in meter			2:3	カノカ		६२ ०		320		60	2.6	133	2.7	433		357		262		830		よおく		2	4		3.2		3.7
D-d	Dep		948		•	0.811	\$	0.8 m		0.7 m		ut'		424		۲2m		Ø,8 M		0.98m		£		0,7 m	649		5-20		438	
Fig.27 RESULT OF	0.1		4-5086		2900 A-m		2600 J-m		m-v Q8 r/	0	<u>-v</u> ord		- V 200 Z		w-v-4601		4.0 20 71		2100 2-10		w-8 lshh	a 49.0	ш-ъ aa-se	0	-w-w0761	4.50	m-25 LIS/	0.54	m-r cas.e	4 600
	~		No. 18		NO. 19		No. 20		No. 21		NO. 22		No. 23		N0 24		No.25		N0.26		N0.27		No, 28		No.29		N0.30		No.31	

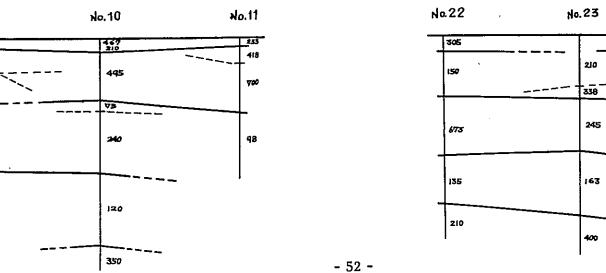

- 50 -

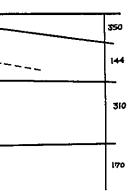


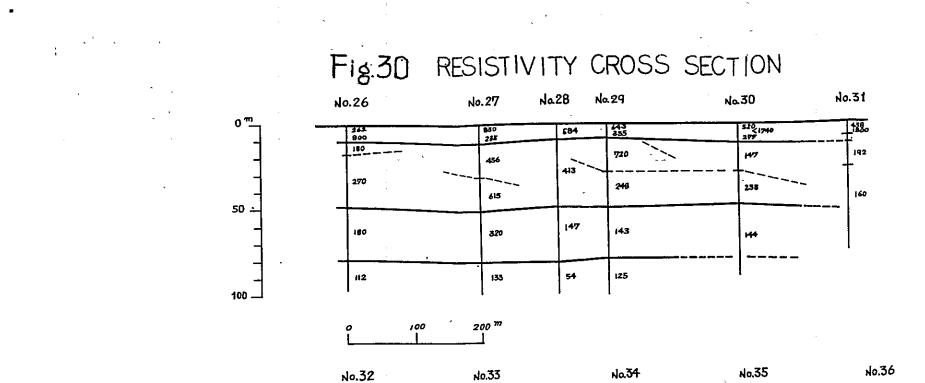
٠

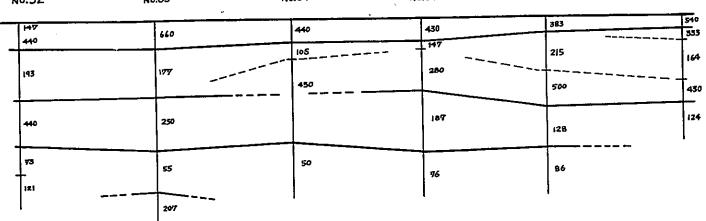

Fig28 RESULT OF Page 10 Depth in merer 10 01 11 11 11 11 21/60 A.m 130 130 100 100 11/50 A.m 315 147 320 100 11/50 A.m 315 147 320 147 11/50 A.m 315 147 100 100 11/50 A.m 315 147 100 100 11/50 A.m 315 147 107 100 11/50 A.m 315 147 107 107 108 11/50 A.m 315 147 107 108 160 11/50 A.m 350 121 107 108 161 11/50 A.m 350 121 107 108 101 11/50 A.m 350 121 107 108 101 11/50 A.m 107 320 101 107 109 11/50 A.m 107 108 111 110 100 11/50 A.m 107 108 111 111 111 11/50 A.m 11 111 111 111 111 11/50 A.m 11 111 111 111		ZOOM	1	}	[]	J	7 520	 1	 1	[]				F 1
Fig28 RESULT OF P-a CURVE ANALYSIS 01 10 2/60.5-n 0 2/60.5-n 10 1/50.6-n 10 1/50.6-n 3/6 1/50.6 1/9 1/50.6 1/9 1/50.7 1/10		00	187	1/2/ 2/2/ 2/2/	15	. 8 f. f.		147	02		304			108
Fig28 RESULT OF <i>P</i> -a CURVE ANALYSI. 01 Depth in meser 10 21/6 a-m 0.1 430 10 21/6 a-m 0.1 333 1 1/5 a-m 0.1 2.0 3.1 1/5 a-m 0.1 2.0 2.1 2.1 1/5 a-m 0.1 2.0 2.1 2.1 1/5 a 0.1 2.0 2.1 2.1 2.1 1/5 a 1/3 2.1 2.1 2.1 2.1 2.1 1/5 a 1/3 2.1 2.1 2.1 2.1 2.1 2.1 1/5 a 1/3 2.1 2.1 2.1 2.1 2.1 2.1 1/5 a 1/3 2.1 2.1 2.1 2.1 2.1 2.1 2.1 1/5 a 1/3 2.1 2.1 2.1 2.1	(0)	_	147		191) !		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	165				360
Fig28 RESULT OF P-a 01	NALYSI S			~	74	69	3			8 8 8	4			
Fig28 RESULT OF P-a 01	CURVE A	oth in meter	430			1	247	1						÷.
Fig28 RESUL	p-d			л- <i>т</i>	54 m			ш-Г			634		i i	ere 6
	g28 RESULT		21502-0	//	-roff/		v 207L	210						
	L.	19	No.35	No. 36	No. 37	No. 38	No39	No, 40	No.41	No.42	N0.43	No.44	No.45	

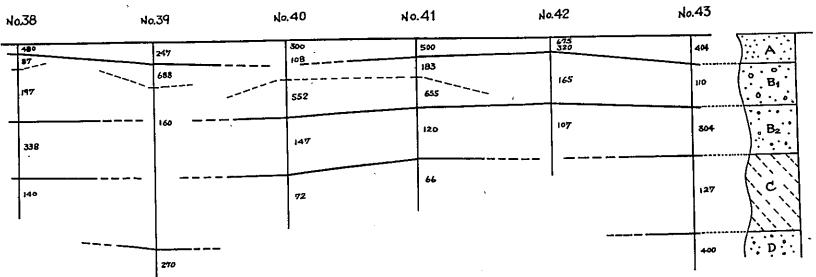

- 51 -




No.24




Na. 8 N0.9


188 273

No. 25

- 53 -

No.37

Chapter 4 Future of Saigon Water Supply

As discussed earlier, the city of Saigon is growing very rapidly and its water demand is increasing accordingly. Imminency is aquisition of new water source or sources for a water supply expansion project since grave water shortage is easily predictable in near future unless effective measures are urgently produced. Development of largely three water sources will be envisaged for a water supply expansion project or projects as follows:

- 1) Ground water development in the Hoc Mon district and the district beyond the Saigon river
 - 2) Saigon river

r

3) Redevelopment of Dong Nai river

Generally speaking, ground water will not be suitable for a very big water supply because great number of wells are required and big amount of discharge may tend to cause troubles such as unretrievable drawdown of ground water level and deterioration of water quality although any assertion could not be made before completion of the survey that is currently under way.

One can find advantages of intaking water from the Saigon river such that hydaulic inefficiency in the existing distribution system will beneficially be improved mainly by a topographic reason.

The Dong Nai river has been feeding raw water to the Thu Duc purification plant. There will be two alternatives for redevelopment of the river. One is to make a new intake station and to convey water to a new water purification plant and the other is to expand the existing facilities of the Thu Duc plant.

Both of the two rivers, however, would not be considered fully reliable for the new water source until hydrological data endorse capability of the rivers on quantity and quality of the streams. The Hydrotechnic Corporation, the consultants who designed the Thu Duc plant, once suggested in her report that the intake point of the Thu Duc water supply system might have been moved far upstream the current position because of tidal salinity contamination of the stream when intake quantity was largely increased. In the same manner, the Saigon river is cautioned for its salinity intrusion by tidal dffect in dry seasons. All such apprehensions are derived from small discharges of the river in dry seasons. "The Hydrologic Yearbook of South Vietnam" indicates that the smallest flows were less than 95 cum per second in the month of December 1969 at the point a little upstream Bienhoa: No data on flows of the Saigon river are contained in the book. However, in consideration of smaller watershed of the Saigon river than the Dong Nai river, the dry season flow of the former seems to be fairly small -- say, 13 cum per second or so. The sole available data on the Saigon river which were collected by the navigation office shows that a dry season flow was about 80 cum per second in average in 23rd March 1972. Considerable reduction must be made for this figure since it is learned in the above-mentioned hydrologic yearbook that the discharges of rivers in this area are largely fluctuating every day even in dry seasons.

More information should be required for planning of a water supply project for Saigon since economically feasible intake quantity would not be so small one--maybe 300, 000 cum per day or so---and as a matter of cource a large river flow is necessary for a big quantity of intake. No information is currently available which will assure even a smallest practical intake from the Saigon river and the situation looks same about the Dong Nai river, for a big intake. However, more information can naturally be supplied by SMWO since a big modern water supply plant was relatively recently constructed by intaking water from the Dong Nai river.

No-one will denies bigger advantage of intaking water from rivers for their reliablity and perpetuity than that of ground water. But, now, people of Saigon may be too impatient to wait such long as five, six years for water source survey, planning, design and construction of new facilities. Hence, there will be considerable possibility for ground water to survive this discussion so long as its feasibility is established, because too long time will not be required for survey, design and construction of a ground supply project. Thus the current ground water survey by the Japanese survey team will be of great value.

As for river water sources, there will be other interesting ideas such as submerged dam for blocking of salinity intrusion downstream the proposed intake point at the Saigon river and diverting water from the Dong Nai river to the Saigon river somewhere upstream the proposed intake point in order to increase flow of the Saigon river. But these ideas seem not to be realized in near future. Anyhow, early implementation of river surveys are strongly desired.

After getting a certain water source, a master plan will be made in which long long range water resources development, the mode of intake, efficient application of water treatment processes, the most economical way of transmission and effective improvement and expansion of the distribution system will be described together with other important matters.

.

•	Le		•		
		× 2	APPENDIX		

с . . Г

· .

.

CONTENTS

1. CLIMATE

TEMPERATURE, PRECIPITATION AND HUMIDITY

2. WATER DEMAND

POPULATION, DENSITY, QUANTITY OF WATER SUPPLIED AND CONSUMPTION

- 3. EXISTING FACILITIES PLANT AND PIPELINES
- 4. FLOW RATE AND WATER LEVEL OF SAIGON RIVER
- 5. WATER QUALITY OF SAIGON RIVER
- 6. HYDROGEOLOGY OF SAIGON AREA

1. Climate

The climatic condition in Saigon Metropolitan Area is of tropical monsoon type and has characteristics of high temperature and humidity. In summer, the direction of winds is southwest and in winter southeast.

The climate of the so-called, "tropical monsoon type" can be found not only in Saigon Metropolitan Area but also in other districts. These places are affected by typhoons during the period from May through October when 85% of annual rainfall is recorded. Monsoon in winter is blown from January to March and in this period the temperature is high with considerably high humidity and becomes lower compared with that in summer. There are few rains and the rainfall is almost negligible in this season.

1.1 Temperature

			Minimum (absolute)		Average
Jan.	3 6.4	3 1.6	1 3.8	2 1.0	257
Feb.	3 8.7	3 2.9	1 6.0	2 1.9	2 6.5
Mar.	3 9.4	3 4.0	1 7.4	235	278
Apr.	4 0.0	3 4.6	2 0.0	2 4.9	2 8.8
May.	3 9.0	3 3.4	3 1.1	2 4.7	281
Jun.	3 7.5	3 2.1	3 0.4	2 4. 1	273
July.	3 4.6	3 1.4	1 9.4	2 3.9	270
Aug.	3 4.9	3 1.5	200	2 4. 0	270
Sep.	3 5.3	3 1. 1	208	238	2 6.7
Oct.	3 4.6	310	1 9.8	236	2 6.6
Nov.	3 5.0	3 0.9	1 7.0	2 2.8	2 6.3
Dec.	36.3	3 0.7	139	2 1.6	2 5.7
	4 0.0		1 3.8		2 7.0

Temperature (C) 1929 - 44, 1947 - 68

					<u> </u>	_						T		1			T		
Total	2160	1775	2720	1975	2290	1690	1680	1685	1605	1730	2090	2530	1660	1900	1900	2135	2165	1995	1870
Dec.	30	150	120	170	50	30	70	110	40	120	50	25	30	60	120	15	25	15	20
Nov.	80	130	170	50	50	40	50	40	170	20	60	280	30	140	55	245	85	170	110
Oct.	260	255	345	70	500	230	200	200	80	370	410	600	160	320	220	450	260	225	330
Sep.	410	250	340	290.	280	300	350	250	240	250	460	440	450	410	240	465	470	365	250
Aug.	340	270	500	170	310	180	320	280	200	130	310	310	200	190	340	135	290	315	170
Jul.	230	220	390	590	280	220	380	300	360	110	300	280	250	100	320	310	380	290	275
Jun.	300	240	420	260	420	280	210	210	320	460	280	220	330	470	360	220	290	205	520
May	280	250	300	190	250	210	60	260	150	230	170	250	160	170	210	220	80	360	06
Apr.	190	2 2	10	25	110	180	0	5	5	20	5	5	30	20	10	20	140	30	40
Mar.	0	5	15	20	30	0	0	0	5	10	35	cu	ۍ ا	10	ъ	45	130	3	15
Feb.	0	10	10	10	0	2	0	10	10	5	5	5	5	ى م	10	0	0	0	0
Jan.	40mm	0	40	30	10	15	40	20	25	5	ũ	110	10	5 2	10	10	15	15	0
	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923	1924
							_1	_1	_ 1										-

٦

.

Total	2385	2180	1815	2090	2170	1890	1840	2095	1805	1850	1690	1555	1955	2320	2155	1685	1700	2453. 5
Dec.	15	65	ى م	20	45	70	25	30	60	25	30	50	20	25	5	40	60	15.1
Nov.	150	270	145	2	150	180	80	180	110	80	105	60	150	125	205	40	170	130.0
Oct.	300	340	175	285	200	190	415	280	290	115	185	255	150	360	120	175	300	364.8
Sep.	295	290	340	505	325	205.	335	280	295	375	370	255	275	395	350	295	330	682.5
Aug.	300	390	230	340	465	210	160	225	300	220	120	230	370	240	330	255	325	263.3
Jul.	565	385	320	260	350	320	340	310	245	215	340	330	420	430	235	230	220	280
Jun.	415	325	350	390	325	250	180	420	405	275	280	255	335	405	325	415	150	260
May	170	115	220	215	230	375	270	335	50	385	205	20	165	310	460	220	120	205
Apr.	105	0	25	65	50	80	5	20	20	140	50	25	30	15	105	15	15	145
Mar.	60	0	Ş	5	0	0	0	10	0	15	0	10	0	0	15	0	0 I	10
Feb.	0	0	0	0	5	5	0	2 C	0	2 2	0	0	10	10	0	0	22	ى ع
Jan.	10	0	0	0	25	5	30	0	30	0	2	15	30	ß	2	0	0	60
	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941	1942

Unknown from 1943 to 1949

	<u> </u>			<u> </u>			<u> </u>	r	<u> </u>	<u> </u>	— · · ·			<u> </u>			T	
Total	2033.9	2479.9	2136.8	2234. 2	2428.3	1863.1	1760.8	1715.3	1674.4	1989.2	1822.3	1815.6	1761.3	2420.1	1591.1	1640.6	2281.3	
Dec.	33. 2	13.8	58.6	132.9	6, 1	25.6	83. 0	54.1	17.4	18.0	32.3	40.2	28. 5	26.7	26.8	52.0	96. 7	
Nov.	89. 2	255.2	105.5	245.2	54.4	237.9	90.2	36.8	13.3	138.8	74.2	82.4	42.4	44.4	197.4	154.7	204.2	
Oct.	212.0	351.4	374.5	214.8	262.1	364.6	204.8	256.9	362.1	318.4	189.5	184.5	204.6	232.6	194.3	137.0	308.7	
Sep.	487.4	409.9	204.4	384.7	451.7	232. 3	451.7	566.2	276.1	200.0	241.7	439.3	256.0	470.0	156.1	335. 3	331. 2	
Aug.	224.7	293.0	276.6	217.6	504.7	225.6	241.1	172.5	283.6	501.3	236.9	292.6	246.5	315.7	309.9	330. 3	209.9	150.4
Jul.	284.1	288.4	229.8	216.8	387.7	188.3	296.0	230.5	286.4	338.6	182.3	289.7	372.2	534.4	298.5	221.9	251.3	351.7
Jun.	304.0	454.5	506.2	269.7	297.0	345.2	101.2	293.3	246.9	209.2	478.4	241.4	257.5	449.1	271.0	214.1	269.4	140.8
May	248.8	311.7	344.5	420.0	277.6	207.9	198.0	47.6	159.2	145.0	290.4	172.8	260.3	320.1	137.1	167.4	510.2	244.3
Apr.	65.0	77.6	31.8	104.6	121.4	35.0	94.8	18.9	16.2	119.5	70.7	58.1	36.8	nil	-op-	27.9	47.6	4.7
Mar.	4.3	3.5	4.4	11.7	38.9	0	lin	37.7	7.6	0. 4	lig	6.6	28.8	1.6	lin	-op-	s 32.7	lin
Feb.	42.7	18.5	0.2	11.7	0	0. 2	nil	nil	5.6	nil	14.4		lin	-op-	-do -	-op-	Traces	nil
Jan.	38. 5	2.4		4.5	26.7	0.5	lin	1.0	nil	- op-	11.5		27.7	25.5	nil	- qo-	19.4	27.7
	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967

Average 1939.8mm/Year

106,696.7mm/55 Years

1.3 Humidity

Humidity in Saigon Metropolitan Area is considerably high throughout the year and is 77% on an average. The lowest humidity in the past has been recorded at 20% (March 1969).

,

	Relative humidity (average daily)
Jan.	7 4. 0 ^(%)
Feb.	7 1.2
Mar.	7 1. 2
Apr.	7 4. 0
May.	8 1. 1
Jun.	8 3, 9
Jul.	8 4.4
Aug.	8 4.7
Sep.	8 6.3
Oct.	8 5.4
Nov.	8 2.0
Dec.	7 8.0
ANNUAL AVERAGE	7 9.9

NOTE (From recods in '23 through '25, '27, '29 and '44 as well as '47 to '68)

2. WATER DEMAND

•	-	1964 Population Density	1968 Population Density	1970 Population Density
Saigon	Density 1,238,207p 178 ^p /ha	1, 332, 854 p 191 ^p ,⁄ha	1,752,283 p 252 P/ha	2,075,000 p 300 ^p /ha
district 1		80,904 190	97,365 229	115,500 275
2		137,264 394	156,614 449	185,700 531
3		191,400 393	273,620 562	322,200 658
4		136,837 329	172,701 416	204,600 499
5		196,867 456	235,316 545	278,700 648
6		128,395 173	183,977 248	218,200 303
7		32,236 28	43,246 38	51,200 43
8		108,378 137	177,564 225	210,600 263
9		9,020 8	19,297 18	22,800 21
10		183,814 298	211,934 344	251,400 426
11		136,659 280	180,649 370	214,100 446
Gia Dinh	500,000 30		791,002 48	1,000,000 60

2.1 Population and Density of Saigon Metropolitan Area

THESE DATA WERE OBTAINED FROM THE BOOKS BELOW.

- "SAIGON SEWERAGE FFASIBILITY STUDY"
- "DIALECTICS OF URBAN PROPOSALS FOR THE SAIGON METROPOLITAN AREA"

2.2 Population of Saigon Metropolitan Area

FROM MINISTRY OF INTERIOR

AND NATIONAL INSTITUTE OF

STATISTICS

		1 9 6 8 Population Density persons/hectare	Saturated Density persons/hectare
District	1	229	199
IT	2	449	430
D	3	562	693
н	4	416	435
11	5	545	660
11	6	248	281
Ħ	7	38	42
н	8	225	307
11	9	18	60
н	10	344	1,158
u	11	370	529
Saigon I	Prefecture	252	370

(Gia Dinh)

Quan Go Vap	82	392
Quan Tan Binh	69	458
Quan Binh Chanh	5	91
Quan Nha Be	11	161
Quan Hoc Mon	14	300
	10	914
Gia Dinh	48	314
(Total)	108	330

(Saigon)

Type of Housing	Descrip- tion	Total Number	No. of Housing Unit (%)	No. of Families (%)	No. of People	No. of People Per Housing Unit	No. of People	No. of Families Per Housing Unit
Multi- Story Villa	Houses Family People	840 840 7,020		0.33	0.40	8.36	8,36	1.0
One-Story Villa		1,080 1,080 9,180		0.43	0,53	8.50	8,50	1.0
Apartment Building		480 , 480 2,280		0.19	0.13	4.75	4.75	1.0
Multi-Story House adjoining		38,700 43.500 312,060		17.12	17.97	8.06	7.17	1.12
One Story House adjoining		117,780 129,180 897,780	l	51.00	51.69	7.62	6,95	1.1
Single Family Housing separate		45,120 48,300 323,520)	19.07	18.63	7,17	6.70	1.07
Thatch House		21,120 22,140 138,720	•	8.74	7.99	6.57	6.27	1.05
Boat House		3,060 3,060 16,380)	1.21	0.34	5.35	5,35	1.00
Other Category		4,500 4,740 29,940)	1.87	1.72	6.65	6.32	1.06
Total	Houses Family People	232,680 253,320 1,736,880)	100	100	7.47	6.86	1.09

x

2.3 Housing Units Families and Population in Saigon by Type of House

Extract from Table LXIV, 1967 Demographic Study by National Institute of Statistics

.

44

2.4 QUANTITY OF WATER SUPPLIED

BY S. M. W. O.

	SUPPLIED WATER			CONCUMP
	WELL	SURFACE		CONSUMP- TION
YEAR	WATER	WATER	TOTAL	
	m ³ /year	m ³ /year	m ³ /year	m ³ /year
1950	35,964,000	0	35,964,000	
51	38,374,000	0	38,374,000	
52	43,705,217	0	43,705,217	
53	52,585,060	0	52,585,060	
54	58,005,456	0	58,005,456	
55	55,633,660	0	55,633,660	
56	56,997,075	0	56,997,075	
57	55,823,504	0	55,823,504	
58	56,861,873	0	56,861,873	
59	58,434,837	0	58,434,837	
1960	60,984,449	0	60,984,449	
61	58,695,685	0	58,695,685	
62	58,083,161	0	58,083,161	
63	58,135,955	0	58,135,955	
64	54,576,315	0	54,576,315	
65	55,491,064	0	55,491,064	
66	52,304,755	?	?	
67	9,865,613	63,130,442	72,996,055	59,251,236
68	1,075,692	80,807,581	81,883,273	63,769,595
69	6,329,095	99,160,162	105,489,257	73,316,767
70 *	150,376	105,111,710	105,262,085	70,835,030

* FOR 10 MONTHS

2.5 CONSUMPTION ESTIMATE

	ITEM	QUANTITY (m ³ /d) JANUARY 11-31, 1970
а.	TOTAL WATER PRODUCTION TO SAIGON-GIA DINH	345,000
b.	UNCOUNTABLE (15% of a)	51,750
c.	PUBLIC WATER (12% of a)	41,400
d.	TOTAL UNCOUNTABLE AND PUBLIC WATER (b + c)	93,150
e.	WATER CONSUMED BY CONNECTED POPULATION (a - d)	251,850
f.	WATER CONSUMPTION (e \div 1,730,000)	0.145
		= 145 l/capita/day

2.6 STUDY AREA POPULATION SERVED BY CITY WATER

	POPULATION *					
AREA	IN SERVICE AREA *	TRANSIENT	TOTAL	USE FACTOR	TOTAL SERVED	
SAIGON	1,720,000	60,500	1,780,000	80 %	1,420,000	
GIA-DINH	560,000	60,000	620,000	50 %	310, 000	
TOTAL					1,730,000	

* JUNE 30, 1968 POPULATION USED. NEAREST 10,000 ONLY

EXTRACTS FROM "SAIGON SEWERAGE FEASIBILITY STUDY"

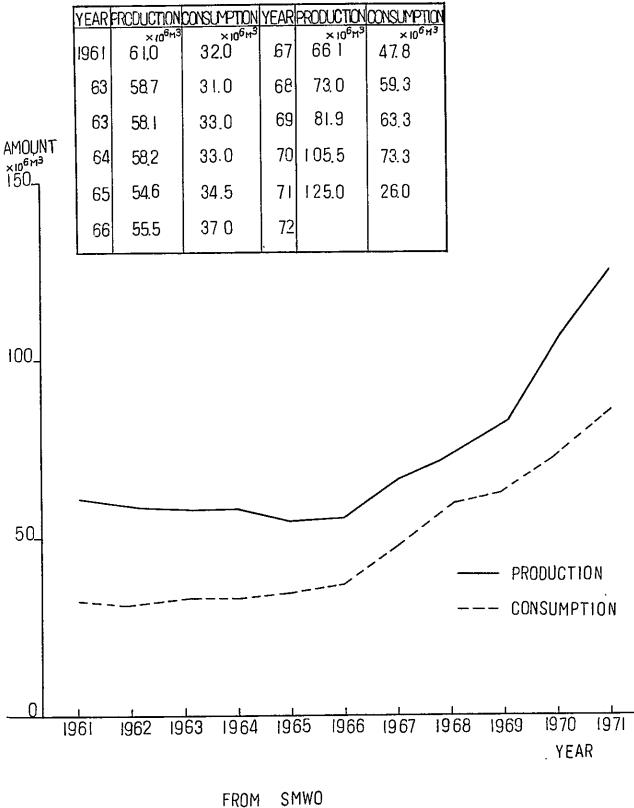
2.7 WATER CONSUMPTION IN EACH DISTRICT

YEAR DISTRICT	1969	1970
SAIGON	62, 446, 000 m ³	69,193,000 m ³
GIA-DINH	7,596,000	11,921,000
OUTSIDE	2, 808, 000	4,659,000
TOTAL	72,850,000	85,143,000

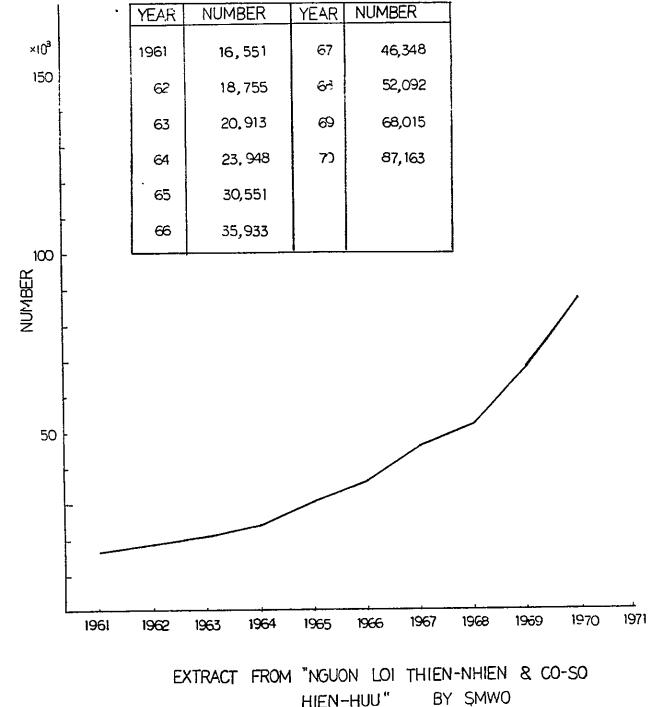
NOTE: OUTSIDE MEANS A PART OF BIEN-HOA.

2.8 UNACCOUNTED-FOR WATER RATIO

YEAR	THU DUC WATER PRODUCTION TO DISTRIBUTION SYSTEM MILLION CU m	METERED WATER USE MILLION CU m	UNACCOUNTED-FOR WATER PRODUCTION PERCENT
1966	61.4	37.1	40
1967	72.8	51.0	30
1968	85.0	58.0	32
1969	105.9	72.9	31
1970	126.7	85.1*	33


(*) INCLUDES SERVICE TO BIEN HOA INDUSTRIAL COMPLEX

* INCLUDES BILLED ALLOWANCE FOR USE OF GROUNDWATER BY A LARGE INDUSTRIAL CUSTOMER


.

EXTRACT FROM "SAIGON WATER DISTRIBUTION PROJECT" 1972

PRODUCTION AND CONSUMPTION (METERED)

FIG. NUMBER OF WATER METERS

HIEN-HUU"

3. Existing Facilities

•

3.1 Outline of Thu Duc Water Purification Plant

Intake Pumping Station

Location	Located approximately 25 km
	north-east from the downtown of Saigon
	Intake from the Dong Nai River
Intake pump	6 units
Capacity	450,000 m ³ /day

.

Raw Water Transmission Main

ø 72''	PS-Concrete Pipes	11 km
Capacity	505, 000 m ³ /day	

Water Purification Plant

Capacity	480,000 m ³ /day
Rectangular Sedimenta- tion basins	5
Rapid Sand Filters	
(Filtration Rate of 150 m/day)	20
Water Purification Plant	$2 \times 40,000 \text{ m}^3 = 80,000 \text{ m}^3$
	$2 \times 95,000 \text{ m}^3 = 190,000 \text{ m}^3$
	Total 270,000 m ³
Transmission and Distribu-	Of 5 units, 2 units are of speed control
tion Pumps	type
Capacity	680,000 m ³ /day

Distribution System

Trunk Main

ø 76" PS Concrete Pipe 12 km

Distribution Tower	Major distribution towers with a total
	capacity of 49,000 m^3 are located at 8 points
Distribution Main	cf. FIG. 4 and FIG. 5

3.2 Outline of Waterworks in Saigon

Metropolitan Area

•

YEAR	MAIN LINE	SERVICE CONNECTIONS	TOTAL DISTRIBUTION SYSTEM
1961	285,466m	1 3 0,0 0 0 m	4 1 5, 4 6 6 m
1962	292,285	145,546	4 3 7,8 3 1
1963	306,764	1 6 2,0 6 3	4 6 8,8 2 7
1964	348,043	176,056	524,099
1965	376,911	193,578	570,489
1966	403,308	2 1 3,0 7 3	6 1 6, 3 8 1
1967	480,643	239,200	7 1 9,8 4 3
1968	574,815	275,588	8 5 0,4 0 3
1969	632,702	296,829	929.531
1970	7 2 7, 2 4 1	352,533	1,079,774
1971	838,322	4 3 1, 2 2 6	1,269,548
1972	898,879	5 1 4,3 1 5	1,4 1 3,1 9 4

TABLE LENGTH OF OLD PIPLE LINES

PERIOD	F	ERIOD OF CC	INSTRUCTION	
Die	BEFORE	1920 ~	1920 ~	1930 ~
DISTRICT	1920	1940	1929	1939
DIAMETER	SAIGON	CHOLON	SAIGON	SAIGON
mm	m			
ø 80	12,806	6,565	8,820	570
ø 100	11,360	19,781	4,760	1,230
ø 150	1,350	8,850	3,410	4,850
ø 200		5,510	2,120	710
ø 250	8,800	3,260	8,770	4,140
ø 300	750	3,600	4,170	4,450
ø 350	450	1,920		3,310
¢ 400	100	1,030		
¢ 450				
¢ 500				
¢ 600	170	290		
TOTAL	35,786 m	50,841 m	32,050 m	19,260 m

TABLEEXISTING PIPES IN CITY OF SAIGONSUMMARY OF PIPE CONDITION TESTS

		00		
Size (mm)	Age	Sector	Location (NAMES OF STREET)	"C" value
450	1907	Saigon	Pasteur, Hien Vuong + Chien Si	64 ~ 68
250	1938	Saigon	L. V. Duet, P. H. Thai, Bui THi Xuan + Trau Hung Dao	73
300	1931	Saigon	Vo Di Nguy at Ben Nghe river crossing	73
450	1957	Cholon	Nguyen Van Thoai, Tran Quoc Toan + Cu Xa so 3	68
400	1925	Saigon	Tran Quy Cap, Chien Sie + Le Vau Duet	52 ~ [`] 56
500	1925	Saigon	Pasteur, Hien Vuong + Chien Si	71
250	1957	Cholon	Nguyen Bieu, Nguen Trai, Cong Hoa, Trau Hung Dao + Hong thap Ju	36
500	1959	Cholon	Cong Hoa, Ly Thai To, Phan Thanh Gian + Tran Hung Dao	101
450	1910	Cholon	Phu Tho Race Track	70 ~ 71
300	1965	Cholon	Le Dai Hanh north of Binh Thoi	78
400	1925	Cholon	Hung Vuong, Trieu Da + Nguyen Tri Phuong	5
400	1965	Gia Dinl	n Hung Vuong south of Bien Hoa Highway	81
300	1928	Saigon	Ben Van Don at Cau Chong River crossing	56
300	1960	Cholon	Nguyen Bieu, Tran Hung Dao + Ham Tu	?
350	1935	Saigon	Vo Tanh, Nguyen Cu Trinh + Cong Hoa	53
350	1935	Saigon	L. V. Duet, Hoa Hung + Yen Do	74
150	1924	Cholon	Le Quang Liem at Ben Nghe River crossing	65
250	1958	Cholon	Thanh Thai, Tran Binh Trong + Cong Hoa	?
200	1962	Cholon	Nguyen Hoang, Petrus Ky + Cong Hoa	68
150	1928	Saigon	Truong Minh Gian at Thi Nghe River crossing	6 8 .

Size (mm)	Age	Sector	Location	"C" value
250	1956	Gia Dinh	Phan Thanh Gian east of Vo Di Nguy	89
300	1969	Gia Dinh	Nguyen Van Hoc at Bang Ky Bridge	125
200	1956	Cholon	Binh Thoi Foot Bridge near Nguyen Chi Nghia	86
350	1924	Cholon	Luc Tinh at Phu Lam Bridge	65
350	1935	Saigon	Vo Tanh, Nguyen Cu Trinh + Cong Hoa	53
350	1935	Saigon	Le Van Duyet, Hoa Hung + Yen Do	74
150	1924	Cholon	Le Quang Liem at Ben Nghe River crossing	65
1050	1965	Saigon	Tran Quoc Toan	128
200	1962	Cholon	Nguyen Hoang, Petrus Ky + Cong Hoa	68
150	1928	Saigon	Truong Minh Giang at Thi Nghe River crossing	68
250	1956	Cholon	Minh Plung at Cay Go Bridge	45
400	1965	Gia Dinh	Phan Thanh Gian east of Vo Di Nguy	89
300	1969	Gia Dinh	Nguyen Van Hoc at Bang Ky Bridge	125
200	1956	Cholon	Binh Thoi Foot Bridge near Nguyen Chi Nghia	86
350	1924	Cholon	Luc Tinh at Phu Lam Bridge	65
750	1965	Cholon	Tran Quoc Toan at Phu Tho	130

4. Discharge and Water Level of Saigon River

As regards discharge, it has been impossible to obtain precise and reliable data which will satisfy the requirements of the project. Discharge may be estimated by means of discharge diagrams and data collected during the period from March 21 through 23, 1972.

Severe tidal effect must influence the accuracy of flow measurement since the end of March is still in the dry season in this area and Binh Duong is situated within the tidal area.

No discharge measurement methods are made clarified in these data. In other words, mean discharge in the section is not made known.

Even the Saigon River is regarded as one of the tidal areas. As it is feared that density currents composed of fresh water and salty water is produced, some difficulties are encountered in making the measurement of current velocity.

Mean discharge from PM 1, March 22 to PM 2, March 23 is 80.9 m³/sec. Total discharge from 12:45 hours of March 22 to 13:45 hours of March 23 is 7281,000 m³.

Water Level at Binh Duong for 7 years from '66 to '72 is as follows;

high-water level	1.23 m
low-water level	- 2.15 m

Under the condition that mean sea level at Mui Nai is to be 0.0 m

Refer to the data for details

8-10 m³/sec is listed as max. discharge in the dry season in a report entitled "Report on Water Supply for the Saigon-Cholon Area" which was issued in 1960. As far as concrete examples of upward flow are concerned, a series of surveys which were conducted for 51 hours from eight o'clock in the morning of April 14, 1970 indicated that upward flow was 25 m³/sec. according to SMWO. ONG NOTES UNIT: METER 0.0 m IS MEAN SEA LEVEL AT NUI NAI SAIGON RIVER WATER LEVEL AT BINH DUONG

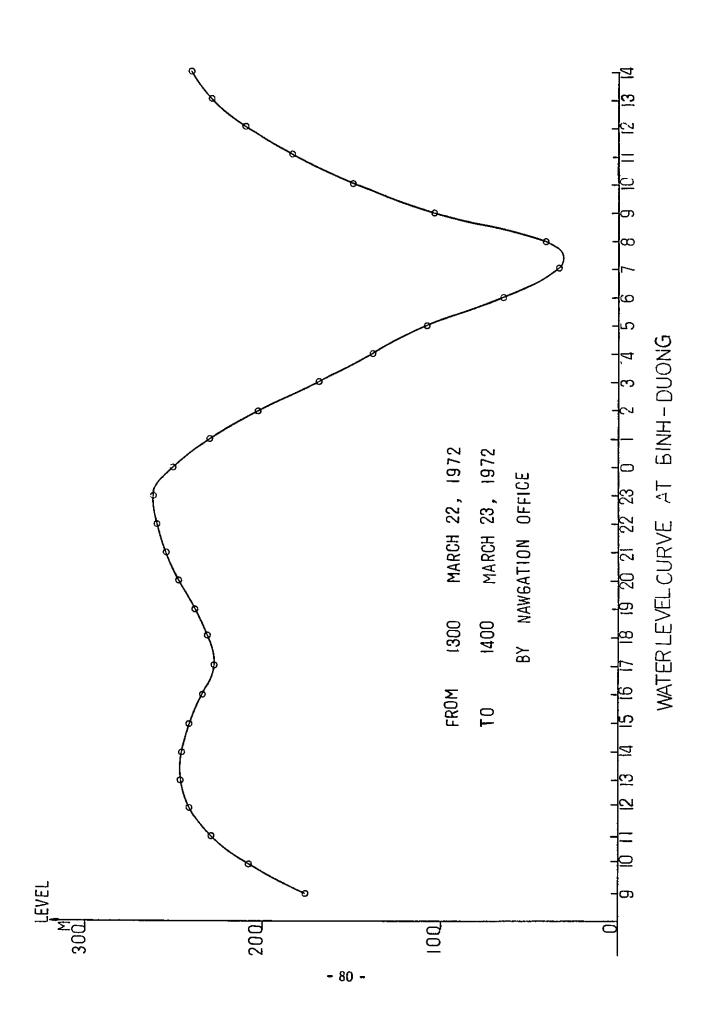
TABLE

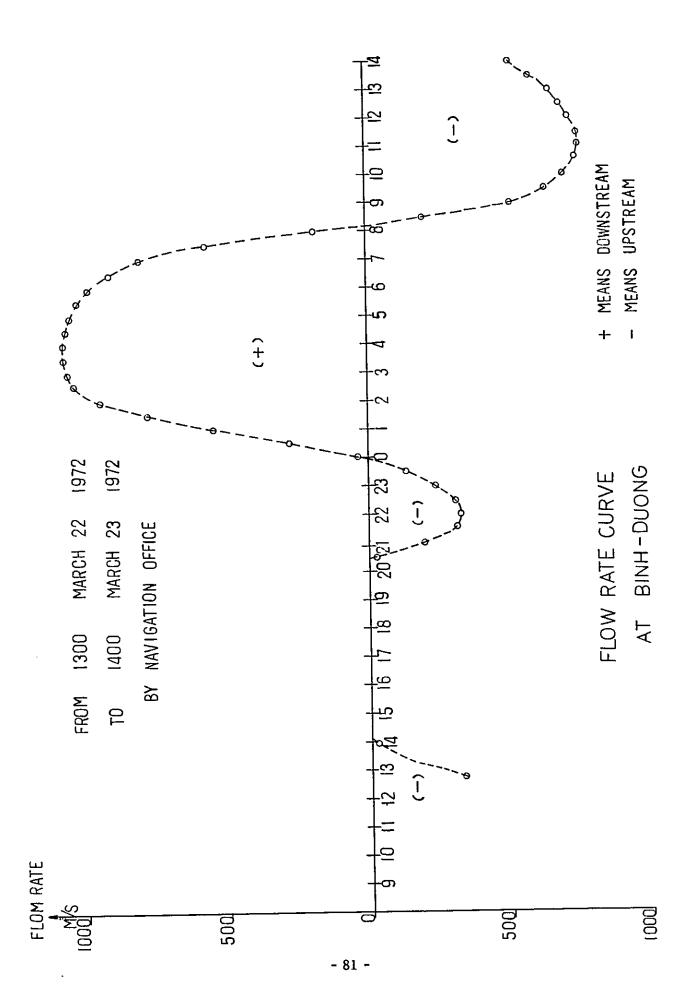
Year	1966	56	15	1967	19	1968	1969	69	1970	0	1971	1	1972	2
Month	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
1	L	1	1.22	-1.54	1.17	-1, 35	1.17	-1.71	1.22	-0.94	1.18	-1.13	1, 11	-1.93
2		1	1.17	-1.66	1.07	-1.29	1.13	-1.68	1.21	-1.01	1.10	-1.36	1.02	-1.72
က	I	1	1.15	-1.82	1.01	-1.79	1.10	-1.70	1	1	1.14	-1.68		
4	1.13	-1.93	1.08	-1.82	1.08	-1.60	1.15	-1.69	1	ı	1.04	-1.77		
ъ	1.06	-1.84	0.96	-1.82	1.02	-1.89	1.05	-1.71	I	I	1.04	-1,77		
9	1.03	-2.03	0.94	-1.78	0,96	-1.86	1.02	-1.84	1	ı	0.90	-2.02		
7	1.04	-2.10	1.12	-1.88	0,90	-2,03	1.02	-1.82	1.05	-1.93	0.92	-2.09		
æ	1.12	-1.97	1.07	-2,15	1.01	-2, 06	0.95	-1.94	0.88	-1.80	1.01	-2.03		
6	1.23	-1.92	1.10	-1.95	1.15	-0.70	1	ı	1.07	-1.68	1.12	-1.77		
10	1.23	-1.40	1.17	-1.35	1.20	-1.06	1.14	-1.51	1.16	-1.00	1.19	-1.40		
11	1.21	-1.19	1.13	-1.19	1.06	-1.69	1.18	-1.10	1.15	-1.13	1.16	-1.39		
12	1.19	-1.50	1.17	-1.40	1.15	-1.45	1.18	-1.02	1,21	-1.26	1.19	-1.18		
Max.	1.23		1.22		1.20		1.18		1.22		1.19	:		
Min.		-2.10		-2,15		-2.06		-1.94		-1.93		-2.09		

TABLE WATER LEVEL AND FLOW RATE

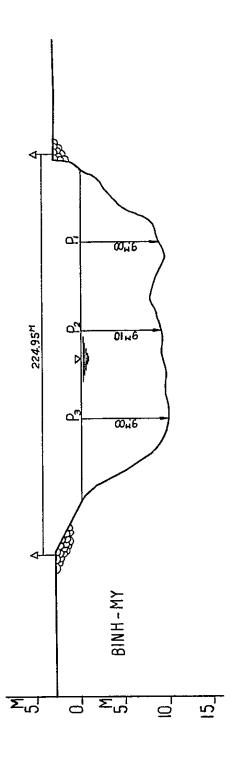
.

FROM 1300 MARCH 22 TO 1400 MARCH 23, 1972


DATE	TIME	WATER LEVEL cm	FLOW RATE m ³ /sec	DATE	TIME	WATER LEVEL cm	FLOW RATE m ³ /sec
MARCH			<u>+</u>	MARCH	<u> </u>		
22	1300	123	-175	23	200	0.04	
	30	246	-160		30	204	+ 940
	1400	244	- 30	1	300	187	+1020
	30	242	0	[300	170	+1060
	1500	238	0		400	154	+1070
	30	234	0		30	139	+1070
	1600	231	Ŏ		500	126	+1060
	30	229	ŏ		300	108	+1050
	1700	229	0 0		600	80 60	+1020
	30	229	0	j	30	1 1	+ 980
	1800	231	Õ		700	45	+ 910
	30	234	Ō		30	34	+ 800
	1900	238	ō		800	32	+ 580
	30	243	õ		30	47	+ 200
	2000	248	õ		900	77	+ 220
	30	253	- 30		30	105	- 530
	2100	256	-210		1000	129	- 660
	30	259	-310	-	30	151	- 710
	2200	261	-350		1100	169	- 750
	30	263	-320	1	30	185	- 770
	2300	263	-250		1200	200.	- 770
MARCH	30	259	-130		1	212	- 750
23	0000	252	+ 30	ĺ	30 1300	223	- 710
	30	243	+280			230	- 660
	100	231	+540		30	238	- 590
	30	218	+780		1400	242	- 520


+ MEANS DOWNSTREAM

- MEANS UPSTREAM


MEAN WATER LE	VEL 1.9246 m
MEAN FLOW	+ 80.90 ${ m m}^3/{ m sec}$
MEASURED	AT BINH-DU'O'NG

REPORTED BY NAVIGATION OFFICE

Intake from the Saigon River involves the risk of an admixture of salinity. It is essential that further detailed data be obtained for the purpose of taking in good-qualitied raw water from the said river.

Under the present circumstances, there are scarcely reliable data and findings which will satisfy the requirements of investigations in order to judge whether or not it will be possible to sufficiently take such water in from the river.

5. Water Quality of Saigon River

Augu	st 8, '71 to January 22, 1972
Colo	r (Min.) 20 - (Max.) 120 unit
5	The value is high in some part of rainy season (August and September) and low
i	n the dry season.

_. ,

Turbidity:	(Min.) 6 - (Max.) 35 ppm
Cloride:	Salinity concentration is always bigger at the time
	of high tide due to upstream salinity enchroachment
	than that at the time of low tide.
	(Min.)1.7- 6.6 ppm

(Min.)1.7- 6.6 ppm Max. = 24.0 ppm

* It is assumed that there will be many variations in the salinity concentration mentioned above depending upon measurement places and measurement water level. Consequently, it is very doubtful to employ such values as reference data.

August 8 through August 26, 1	971
Alkalinity	(Min.) 8 - (Max.) 15 ppm
Solidity	(Min.) 8 - (Max.) 12 ppm
Iron Content	0.1 ppm
РН	6.2 - 7.1

Refer to Table for details

Data are also reticent in connection with "salinity". According to SMWO, salinity was detected at Thu Dau Mot, 23 km north of Saigon.

October 1959 to June 1960	500 mg/	• • • • • • • • • •	Nacl
April to May 1960	750 mg/	••••	Nacl

These values were obtained as a result of measurements conducted by the Ministry of Public Works.

(The figures listed below are also made available by the aforementioned organization.)

Following is water quality in the Saigon River on July 27, 1971. (Sampling was performed in the place close to Phu Cuong Bridge.)

РН	6.6
Alkalinity (total)	12.0 ppm as CaCO3
Hardness (total)	8.0 ppm as CaCO3
Chloride	3.5 ppm
Turbidity	22.0 PPM SiO ₂
Iron	0.1 ppm
Dissolved oxygen	6.8 ppm
Color	100 ppm
Oxygen consumed	2. 24 ppm
PH Stable	9.1
Alkalinity *	30.0 ppm

* AFTER DOSAGE OF LIME

TABLE	WATER ANALYSIS OF SAIGON RIVER I
	, t

			CONDUC- ALKALINITY								HA	RDNES	s	<u> </u>			
YEAR	MONTH	DAY	TIDE	TIVITY	Р	TOTAL	cr	s04-	co_{3}^{2-}	нсо,	TOTAL	Ca ³⁺	Mg ²⁺	Fe	TURBID ITY	- pH	NOTES
				×10 ⁻⁶ U/em	ppm	ppm	ppm	ppm	ppm	pptn	ppm	ppm	ppm	ppm	SiO2ppm		
71	FEB	22	L	20	0	8	6	8	0	8	6	4	2	[]	50	6.2	1
			нѕ	20	0	6	6	8	0	6	6	4	2		54	6.25	[
			нв	20	0	8	6	8			6	4	2		70	6.05	ĺ
		23	L	20	0	6	7	7	0	6	6	4	2		58	6.42	
			нѕ	20	0	4	6	9	0	4	8	4	4		72	6.15	1
			нв	20	0	4	5	8	0	4	8	4	4		77	6.2	1
i		24	L	20	0	6	6	6	o	6	6	4	2		72	6, 13	1
			нѕ	20	0	4	6	9	0	4	6	4	2		65	6.3	
			нв	20	0	4	6	9	0	4	6	4	2		70	6.35	
		25	L	20	D	6	7	8	0	6	6	4	2		60	6 ₊ 25	1
			нз	19	0	8	6	8	0	8	4	2	2		44	6.35	
			ΗB	19	0	6	7	10	0	6	4	2	2		66	6.2	
		27	L	21	0	4	8	7.5	0	4	6	2	4		50	6.12	l
			нş	21	0	6	8	12	0	8	5	2	3		6 0	6.18	1
			нв	20	0	4	8	8	o	4	6	2	4		50	6.22	1
		28	L	20	0	6	4	11	0	6	6	2	4		70	5.98	
			нз	21	0	6	9	11	0	6	7	2	5		50	6	1
			НB	20	0	4	8	8	0	4	6	4	2		70		1
	MAR.	1	L	21	0	5	8	9	o	5	6	4	2		60	6.08	
			нз	20	0	4	6	9	0	4	8	4	4		55	6.05	l
			нв	20	0	6	6	11	0	6	6	2	4		65	6.18	
		2	нз	19	0	6	5	8	0	6	8	4	4		50	6,08	
			нв	19	0	8	7	8	0	8	6	3	3		55	6,1	
			L	18	0	6	5	6	0	6	5	3	2		43	6,3	1
		•	нs	18	0	6	5	4	0	6	5	3	2		-	6,24	ĺ
			нв	18	0	5	5	7	0	5	5	2	3			6, 21	
			L	17	0	5	5	7	0	5	5	3	2			6,22	
			нs	22	0	5	6	8	0	5	6	3	3			6.2	Í
]			нв	22	0	5	5	9	o	5	6	3	3			6,22	
			L	18	ō	5	5	4	0	5	5	3	2	0,65		6.25	
			нs	21	ō	4	5	7.5	o	4	5	2	3	0.77		6.18	
			яв	21	0	4	6	9	ō	4	5	3	2	0, 96		6, 1	
			L	1						_						6.00	
				20	0	5	5	7	0	5	7	3	4	0.76			
			нs		0		5	8	0	5	5	2	3	0.71		6,18	ĺ
			нв	20	•	4	5	4	0	4	7	3	4	0,72	78	6,16	1

.

				CONDUC-	ALKA	LINTY		2-	2-		HARI	DNESS 2+1	- 2+		TURBID-		
YEAR	MONTH	DAY	TIDE	TIVITY	Р	TOTAL	C I	so42-	co32-	нсо3	TOTAL	Ca	Mg ²⁺	Fe		pH	NOTES
				×10 ⁺⁶ ೮/cm	ppm	ppm	ppnı	ppm	ppm		ppm	ppm	ppm	Fbm	SiO ₂ ppm		
71	MAR.	9	L	22	0	5	7	4	0	5	6	4	2		61	6,27	
			нs	22	0	4	6	7	0	4	6	4	2		70	6.13	
			нв	22	0	5	6	6	C	5	6	3	3		72	6.13	
		10	L	20	0	5	G	3	0	5	6	3	3		43	6.25	
	1		нs	22	0	5	7	4	0	5	6	4	2		48	6.03	
			нв	20	0	4	10	8	o	4	6	3	3	0.78	48	6,2	
		11	L	20	0	4	7	7	0	4	6	4	2	0, 82	70	6.23	•
		i	нѕ	22	0	4	8	5	0	4	6	3	3	0.78	50	6.2	
			нв	24	0	4	8	6	0	4	6	3	3	0.77	70	6,18	
		12	нs	22	0	4	6	6	0	4	6	4	2	0. 97	78	6,21	
			нв	22	0	3	6	7	0	3	6	3	3	0,89	78	6.28	
		14	L	20	0	6	7	8	0	6	8	2	6		37	61	
			нs	40	0	4	11	6	0	4	8	4	4		29	5 93	
			нв	40	0	4	4	8	0	4	6	2	4		31	5.85	
1		15	L	30	0	4	8	9	0	4	6	2	4		78	5 95	
i i			- H S	30	0	4	8	7	0	4	6	2	4		30	6.00	
			нв	30		4	8	4	0	4	6	3	3	0.75	52	6.4	
		16	L	22		6	7	5	0	6	6	2	4	0,68	46	6, 38	
			нѕ	22		4	7	6	0	4	6	2	4	0.65	5 45	6.22	
		1		22	0	4	8	5	0	4	6	3	3	0,66		6.33	
			нв		0	6	8	4	0	6	6	4	2	0.63		6, 33	
1		17	L	30	1 °						7	2	5	0,6		6, 52	
	1		нѕ	20	l °	4	6	5	0	4		3	4	0.6		6 3	
			нв	23	<u> °</u>	4	7	5	0	4	7	<u> </u>	1	0.0			
N	MAXIMUM 40 0 B					11	12	0	8	8	4	5	<u> </u>	93	6.5	<u> </u>	
N	MINIMUM 17 0 3				4	3	0	3	4	2	2		29	5,85	ļ		
A	AVERAGE 21.8					5.0	0,5	7.2	0	4.9	6.1	3,1	3.0		59,6	6, 1	<u> </u>

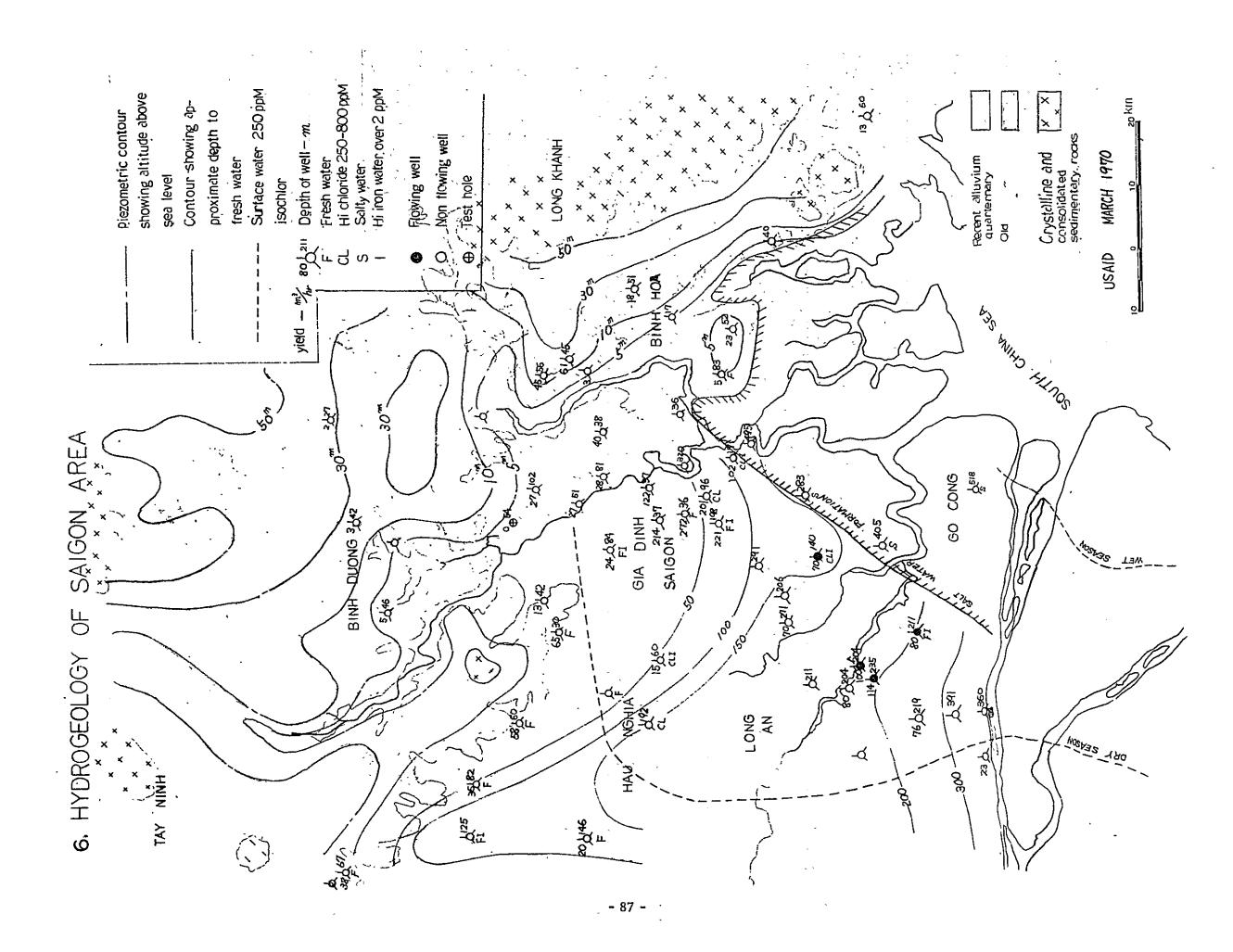
TABLE WATER ANALYSIS OF SAIGON RIVER II

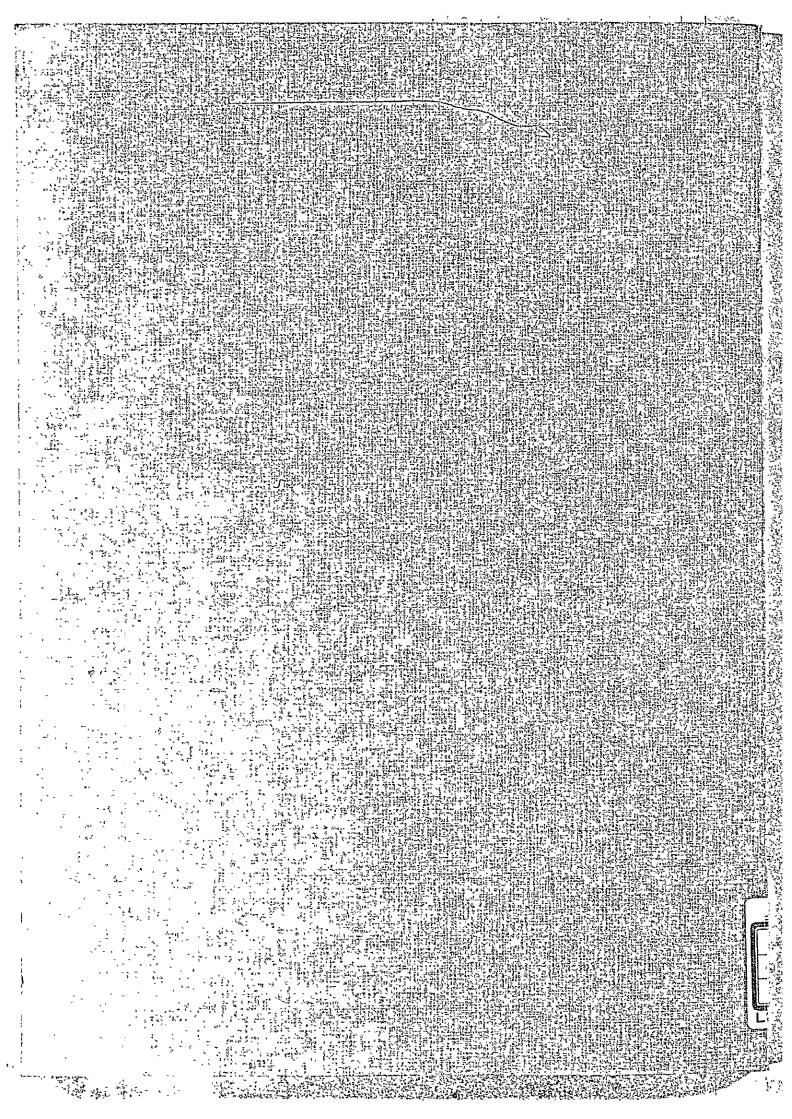
EXPLANATIONS

FROM FEBRUARY 22, 1972 TO MARCH 17, 1972

BY S. M. W. O

-


L . LOW TIDE


H : HIGH TIDE

 S
 :
 SAMPLE TAKEN AT SURFACE

 B
 .
 SAMPLE TAKEN AT BOTTOM

 P
 .
 PHENOLPHTHALEIN ALKALINITY

