セラード地帯における稲いもち病の発生生態と防除に関する試験

Epidemiology and control of rice blast disease (Pyricularia orysae Cav.) in Cerrados Region

小 林 尚 志 (北海道農業試験場病理昆虫部)

TAKASHI KOBAYASHI

(Hokkaido National Agricultural Experiment Station, Department of Plant Pathology and Entomology)

セラード地帯における稲いもち病の発生生態と防除に関する試験

Epidemiology and Control of Rice Blast Disease

(Pyricularia oryzae Cav.) in Cerrados Region.

小林尚志 (北海道農業試験場病理昆虫部) TAKASHI KOBAYASHI

(Hokkaido National Agricultural Experiment Station,

Department of Plant pathology and Entomology)

緒 莒

ブラジル国の中央部に広がるセラード(熱帯サバンナ)地帯の稲作は、降雨が集中する夏期に栽培される陸稲作であるが、栽培期間内にしばしば生ずる降雨分布の不均等による干害や、粗放な栽培管理、品種抵抗性の劣弱に基づくいもち病(Pyricularia oryzae Cav.)の発生によって、生産の不安定を免れない弱点を有することが指摘さている。このセラード地帯には、河川、湖沼の沿岸にバルゼア(varzea 低湿地)と呼ばれる地域が存在し、その面積はセラード地帯の中心であるゴヤス、マット グロッソ、ミナス ゼライス各州を合わせ約900 万ヘクタールといわれる。こゝでは、周年水分の制約から解放された栽培が可能とみられるが、従来から強酸性排水不良地とみなされ、耕作の対象としての配慮がなされていなかったようである。

近年, セラード地帯の利活用が図られるようになり, 無灌漑栽培が可能とみられるバルゼアの開発に関心が高まっている。特に, 排水施工の必要が少ない灰色低地土の場所では, 周年地下水位は1m内外に保たれ, 酸性土壌に耐える陸稲作には適すると思われる。

筆者はバルゼアにおける陸稲作の安定化の上で、病害面では最も重視すべき生産阻害要因とされているいもち病を取り上げ、その被害の実態を明らかにすることを試みた。1983/'84 , および1984/'85 両年の雨期に、圃場試験はセラード農業研究センター(CPAC)用地内のバルゼア灰色低地土に設けた無灌漑畑および小規模水田で、いもち病菌菌型に関する試験は同所内硝子室で行なわれた。

試験の遂行に当っては元CPAC所長 Dr. Elmar Wagner, 前副所長 Dr. Edson Lobat 両氏から、全般の試験運営について懇篤な助言、激勵をいたべき、前所長 Dr. Raimundo de Pontes Numes, 現所長 Dr. Guido Ranzaniの諸氏には終始御支援をいただいた。いもち病の研究については、国立中央稲・フェジョン豆研究センターの田中良高氏からは、研究上の諸種の助言と現地では貴重ないもち病菌菌型判別品種の分譲にあずかった。また、文献、資料の収集について国立中央野菜研究センター・堀野義彦氏、株式会社北興ドブラジル近磯和氏の諸氏の御助力を得た。

植物病理部門研究員 Dr. Luis Carlos B. Nasser, 同 Sr. Jose Ribamar N. dos Anjos両氏は試験の 円滑な実施上に多大の御助力をいたべいた。Sr. Sidney C. Cunha 始め、Sr. Valdivino P. Goncalves, Sr Julio M. Sardinha. Sra. Lindaura R. Araijoの各氏には圃場試験の設置、管理、室内試験における諸種の業務について、不自由な国語の障害を超えて終始誠実な協力を得て支障なく試験を進めることができたことを特記したい。日伯農業研究計画団長尾形 保博士および団員各位からは終始適切な御指導、御鞭達をいたべいた。また団長秘書 Srta. Nair S. Hayashida氏からは筆者の国語の不自由を捕い、研究遂行上の事務手続処理、連絡等に多大の援助をいただいた。本報告をまとめるに当り、上記の諸氏から賜った御好意に対し、こ、に厚く感謝の意を表する。

試験 | 新墾バルゼア畑陸稲のいもち病発生様相

本試験では、バルゼア地内の陸稲栽培適地とみられる灰色低地土における陸稲のいもち病発生様相を確め、続く防除手法の検討のための基礎資料を得ることを期待した。試験には施肥水準の異なる区およびその中に、防除区と無防除放任区を設け、被害の発生程度の変動を検討した。

1. 試験方法

供試陸稲品種:セラード地帯で通常に栽培の多い早生種のIAC 25およびIAC 164,中生種のIAC 47の3品種を供試した。

試験区の設定:圃場予定地を荒起し後、雑草等を取除き、酸度補正として苦土石灰 (calcario dolomitico) 10t/haを全面に散布、碎土整地を行った。補正後の酸度はpH.5.5となった。 1 処理区は 3 m×3 m (9 ㎡)とし、1 処理 3 区、総計54区を設置した。

播種:1983年12月15日に各区、駐長3m, 駐間 0.5mに作条し、1区1品種として播種量70粒/mを基準に乾籾を条播した。

施肥:セラード地帯の陸稲作にはN: P_2O_5 : K_2O それぞれ10:40:30kg/ha を基肥. 播種50日後に窒素20kg/ha 追肥が基準とされているが、本試験では化成肥料(成分比4-30-16)を用い、窒素分には硫酸アンモニウムにより窒素成分量のみを異にする区を設けたので下表の設計となった。施肥時期は播種時の降雨による作業の妨げもあり、播種34日後(出芽25日後)の1984年1月18日に全量基肥施用となった。

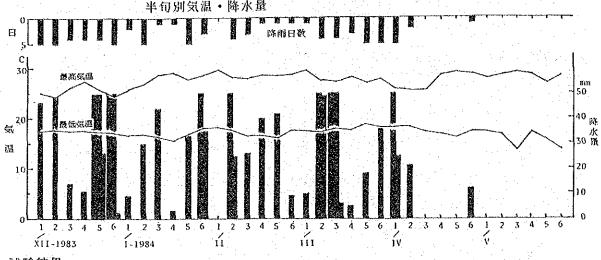
		施肥計		(1984年 1	月18日施用)
		N-P-K			-
区分	(記号)	(kg/ha)	施用量	(ha当り)	
無 窒 素	(0)	0 -45 - 24	過燐酸石灰((18%)	250kg
			塩化加里 ((60%)	40kg
窒素標準	(1)	30 - 45 - 24	硫酸アンモニ	ウム(20%)	120kg
			化成肥料(4	-30-16)	150kg
室素倍量	(2)	60 - 45 - 24	硫酸アンモニ	ウム (20%)	270 kg
			化成肥料(4	-30-16)	150kg

いもち病防除:次表の日程により防除区のみについて実施した。なおFenitrothion剤は虫害防止のため、各目に全区に散布した。

薬	剤	Мõ	H	Ė	12
~~	1.1.1	7702	711	171	4 4:

散布。月日日	使用薬剤・使用量(ha当り)		*
1984年2月2日	· Edifenphos (30%) 乳剤 1.2ℓ		. IAC 164,およ
2月9日	Fenitrothion (50%) 乳剤 1.2 @	UIAC	47 防除区葉に
2月15日	TURN 1, Z E	もち防	除
2月29日	Kasugamycin • Phthalide (1.2%•15%) 水和剂 1.5.	€ 1AC 25,	IAC 164. 防除
	Fenitrothion (50%) 乳剤 1.5ℓ	区穂い	もち防除IAC 47
		防除区	葉いもち防除
3月20日	Kasugamycin · Phthalide (1.2%·15%) 水和剤 1.5	ℓ IAC 47	防除区
	Fenitrothion (50%) 乳剤 1.5ℓ	穂いも	ち防除

注 1. 2月2日 葉いもち初発期, 2月29日 IAC 25, IAC 164穂ばらみ後期 3月20日 IAC 47穂ばらみ後期


2. 散布は背負式自動噴霧器 (12 ℓ 容) 使用

生育・発病調査:第1表の日程で実施した。

第1表 生育。発病調查日程

				201 1 4	, II.	. 肖 " 光料 祠 耳 口 往
項	目		調査月日	100	種	備考
生 育	調	查	1984年1月25日	全	区	各区任意の20株について草丈を調査
葉いも	ち調	查	2月10日,	全	X	A FE IS TO A COUNTY OF A LOUIS OF
3 4			2月28日			各区任意の50茎の上位 3 葉の病斑面積率を調査
穂いも	ち調	査	3月27日,	TAC	25,	各区任意の50茎につき首いもち、枝梗いもちによ
		÷	4月5日	IAC	164	る被害茎率を調査
	:	1	4月26日	1 A C	47	
収 穫	調	查	4 月27日	TAC	25,	各区任意の50穂を採取、風乾脱穀後、精籾重を調
				IAC	164	查
			5月14日	TAC	47	

注, 出穗期 1AC 25:1984年3月9日, 1AC 164:3月10日, IAC 47:3月27日。

2. 試験結果

a. 稲作期間の気象概況

第1図および付表1に1983年12月から、84年5月に至る今稲作期の半旬別気温および降水状況の推移を示した。全期間を通じて、最高気温は30.8C、最低気温17.1C、平均気温は22Cから23Cの間に推移したので、稲の生育、いもち病の発生に障害となるような異常気温の発現は見当らなかった。

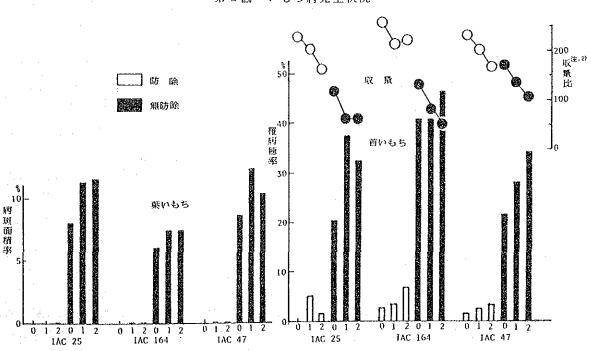
しかし、降水分布はかなり変動し、いもち病の発生、蔓延には影響がみられた。すなわち、1983年12月はほべ平均した降雨があり、特に下旬には 170㎜以上の降雨があったため、播種後の発芽、生育は順調とみられたが、逆に農作業に支障が多く、施肥作業が遅れる事態となった。1985年1月上、中旬は少雨で晴天が続いたが、下旬には降雨日が連続し、1月末には葉いもちの初発がみられた。第2表に1月25日現在の各品種の草丈を示したが、各区ともは、均一な生育を示している。この時点では施肥の影響は明らかではなかった。2月は降雨日数、降水量ともや、少なめであったが、上旬、中旬には連続した降雨があり、その後も数日ごとに雨天があったため葉いもちは進展し、3月上旬に早生種の1AC 25、1AC 164 の出穂期を迎えた。降雨は3月前半まで続き、穂いもちの発生に好条件を得た。中生種の1AC 47は3月下旬が出穂期となったが、出穂後約10日間は降水をみたもののその後晴天に転じ、乾期の様相を帯びるに至った。

弗 2 表	1984年1月25日	1にわりる3	E. 月 孙 /兀	
窒素水準い	IAC 25	IAC 164	1AC 47	
0	cm 49, 4	cm 53. 7	cm 41.9	
1	48.4	53. 9	45. 4	5 + 1
2	49.6	53, 0	42.8	

第2表 1984年1月25日における生育状況

注 1) 0:0kg/ha, 1/30kg/ha, 2:60kg/ha

2) 播種後41日, 施肥後7日


以上のように、今作期では1985年1月および2月にかけて小乾期とみられる時期があったが、 障害とはならなかったようである。しかし、乾期の到来が4月中旬にみられ、中生種の穂いも ちは早期に終息した。

b. いもち病の発生と被害

発病調査の結果は第3表にまとめ、一部を第2図に示した。

葉いもち:1984年2月2日に各区下葉に病斑が散見されたので、防除区については同日およびその後1週間ごとに計3回の薬剤散布を行った。第2回薬剤散布直後の2月10日における病斑面積率では薬剤防除区においてもなお病斑がみられるが、病斑型では防除区においてはbgあるいは小形の ybg型が主体であり、無防除区ではpg、大型の ybg型であって薬剤の効果を認めることができた。初発後約1箇月を経た2月28日には防除区においては殆んど病斑は認められなかったが、無防除区では病斑面積率で6%ないし12%と多発状態を示した。品種間ではIAC 164が他の2品種に比してや、発病が少なかった。窒素施用量との関係では無窒素区の発病がや、少いが、標準量および倍量区では殆んど差がみられなかった。

穂いもち: 穂いもちに対しては防除区における出穂時のみの1回散布であった。従って早生種の1AC 25, IAC 164 では出穂後の感染可能期間は比較的長くなったが、中生種の1AC 47では出穂後2週間以内に乾期様相となったので感染期間は早生種に比べ短かったと思われる。無防

第2図 いもち病発生状況

注1. N 施用量 0:0kg, 1:30kg, 2:60kg (ha 当り)

2. 無防除全区の平均を100 とした指数

3. 潤査月日: 葉いもち 1984年2月28日 確いもち IAC 25およびIAC 164 4月5日,1AC 47 4月26日

第3表 いもち病発病調査結果

rd 1010	いもち病	窒素施	はな	ち病斑 貴 率	首いも	ち罹病率	枝梗り 罹 カ	いもち 海	50穂当り	同左指数
品種 以	防 除	用水準	10/ II	28/ II	27/III	5 / IV	27/II	5 / IV	精籾重	
		0 1)	0.17		0 %	0 %	0. 0 0. 0	% 1, 0	g 185. 3	221
	防 除	1	0.24	0.00	0	5. 0	0.0	1.0	166.0	198
		2	0, 22	0.04	0	1, 6	0.0	1.1	137.3	163
IAC 25	5									
		0	0.21	8, 0	20,0	20.3	2, 6	3.1	96.3	115
	無防除	1	0.26	11, 3	20.0	37.5	3, 3	3. 6	51. 3	61
	5.	2	0.58	11.7	15.8	32, 5	3. 2	3. 5	51.3	61
		0	0.17	0	0	2. 5	0.0	1.1	213. 3	254
	防除	1	0.17	0.04	0	3, 3	0.0	1. 2	177. 3	211
		2	0.19	0.02	0	6. 7	0.0	1.3	186. 7	222
IAC 16	64					A Section 1				
		0	0.22	6.0	32. 5	40.8	3. 4	4.1	107. 7	128
	無防除	1	0.26	7.4	33. 3	40.8	3.3	4.4	67. 7	81
		2	0, 23	7.4	30.0	46.7	3.6	4, 8	41.7	50
		. 0	0.17	0.00	· 1	.72)		1.02)	190.7	227
	防除	1 .	0. 22	0. 01	2	2.5		1.1	169. 3	202
		2	0.17	0.02	3	. 3	i	1. 0	137.7	164
IAC 47	? ·								*	
		0	0.20	8.6	21	. 7		1.7	140.7	168
	無防除	1	0. 22	12. 4	28	3.3		2.0	111.3	133
		2	0. 23	10.4	34	. 2	•	2.0	88. 0	105
· · · · · · · · · · · · · · · · · · ·			無防除区	全区の平均		: .			84.0	100

注 1) 0:0kg/ha, 1:30kg/ha, 2:60kg/ha

2) IAC 47は4月26日調査

除区における首いもち、枝梗いもちの発生は早生種では無窒素区がやゝ少なかったものの、窒素施用区間での差は小さく、枝梗いもちの発生は多めとなった。IAC 47では窒素施用量の増加に従って発病も増加したのは後期感染が抑制されたことによると推察される。 穂いもちの防除は出穂時の1回散布であったが、防除区にみられた効果は極めて高く、それぞれの無防除に比して約10分の1の首いもち発病率に止った。窒素施用量との関係では、有意な差ではなかったが窒素施用量の増加に従い、首いもち、枝梗いもちとも増加する傾向がうかべわれた。

穂いもちによる被害を考察するための参考に、各区から50穂を無作意に採種し、それぞれの精籾重を測定したところ、防除区、無防除区いずれも無窒素区が最も精籾重が大きく、窒素施用量の増加に伴って減収する傾向がみられた。各品種ごとに無防除区に対する防除区における増収比をそれぞれの平均で比較すると IAC 25 では2.5、IAC 164では2.7、IAC 47 では1.5 となり、いずれの品種でも防除の効果は顕著であった。窒素施用量の増加に伴って減収がみられたことは、詳細な被害解析がなされなかったので考察が困難となったが、穂いもちによる直接の被害に加え、窒素施用区のIAC 25、IAC 164 の両品種では倒伏が殆んどの区でみられたこと、無防除区においては出穂後、褐色葉枯病の発生が甚しかったことも影響したと考えられ、今後の問題点として残された。

3. 小 括

本試験では灰色低地土質バルゼア畑での陸稲作におけるいもち病の発生相を追跡解析することを目的としたが、試験設計の不備もあり詳細な解析を加えるまでには至らなかったのは遺憾であった。しかし、得られた結果では、開畑初年度においては無窒素栽培においてもいもち病の被害は無視し得ず、防除の有効なことが認められた。多様なバルゼア地帯における1例の結果であるがバルゼア畑に稲を新植するに当り、施肥、特に窒素質肥料の施用に当っては潜在地力について考慮を拂う必要があろう。現在の陸稲主要品種であるIAC 25、IAC 47等をバルゼアに栽培する場合、本試験にみられたように、いもち病に対する抵抗力は期待できないので、今後、更に栽培法、防除手法の改善の努力とともに、新しい適合品種の開発も進める必要があろう。

試験 || バルゼア畑における陸稲のいもち病に対する薬剤防除回数と効果

試験 I. の結果, バルゼア畑では陸稲のいもち病の発生が甚しいことが明らかとなったので, 19 84年/ '85年の雨期作では前年と同一の圃場を用い薬剤による穂いもち防除時期について検討した。 1. 試験方法

一般耕種概要および病害発生調査方法については下表に一括した。

耕種概要および調査の方法

供 試 品 種 早生種: IAC 25, IAC 164, 中生種: IAC 47

播 種 1984年11月19日, 条間50cm, 株間15cm, 1株5粒点播。

面積·区制 1区5m×3m(15㎡),3反覆,1区1品種上処理。

施 肥 N-P₂O₅-K₂O; 28-210-110kg/ha, 全量化成肥料(4-30-16)による基肥

薬 剤 散 布 散布日程は別表による。各時背負式半自動噴霧器使用

薬剤の種類 葉いもち:Kasugamycin • Phthalide(1.2%・15%) 1.2ℓ/ha

と施用量 Fenitrothion (50%) 1.2ℓ/ha

穂いもち: Kasugamycin · Phthalide (1.2%・15%) 1.5 l/ha

Penitrothion (50%) 1.5ℓ/ha

発病調査 葉いもち:1985年1月24日、各区20株の各株最長茎上位2葉の病斑面積率を調査

穂いもち:1985年3月12日、(IAC 25、IAC 164)、4月1日 (IAC 47) 各区20株につ

いて罹病穂(首いもち、枝梗いもち)率を調査。

褐色葉枯病:1985年4月2日各区10株について各株3茎の止葉,次位葉の発病程度

を 0、 1、 2、 3 の 4 段階に区分し、それぞれ 0、 1、 2、 3 の指数

を乗じた加重平均により罹病度を下記により算出した。

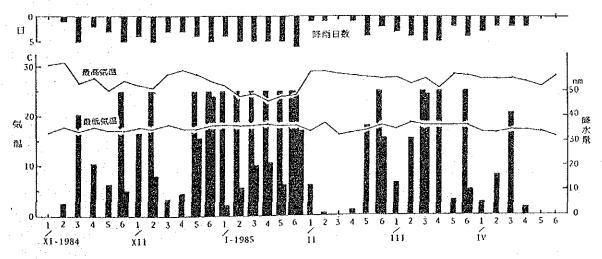
羅病度= $(0 \times n_0 + 1 \times n_1 + 2 \times n_2 + 3 \times n_3)$ /3N× 100

N;調査葉数 n。~。;それぞれの段階の罹病葉数

収 量 調 査 1985年 4 月10日に全区を刈取り、 4 月24日に精籾を計量した。

いもち病防除は次表の日程で行った。使用薬剤はいもち病菌の生育阻止効果(治療効果)に勝れたKasugamycin と進入阻止効果(予防効果)に勝れたPhthalide との混合剤および虫害防除としてFenitrothionとを混用した。穂いもち防除時期の検討を主眼としたので、葉いもちについては各区の発生程度を揃えるために、初発期およびその20日後の2回、全区に薬剤散布を行った。穂いもちに対しては、各品種の出穂時およびその10日後の2回を基準に、更に、後期散布区として出穂20日後の散布区を設定したが、作業の都合で実行日は多少前後した。

防除薬剤散布自程


薬剤散布月日 IAC2	5 • I A C 1 6 4	I A C 4 7	備考
月 日 1985·1·16	0	, O-	葉いもち初発時
2 • 5	0		葉いもち
2 • 1 2	0		- 悪いもち出穂時散布
2 • 22	0	. 0	IAC47 出穂始め散布
3 • 5	0	Ο.	IAC 25、 IAC 164は3回散布区の
3 • 1 5		, , O	

注. 出穗期 IAC25:2月10日, IAC164:2月11日, IAC47:2月25日

2. 試験結果

a. 稲作期間の気象概況

第3図および付表2に1984年11月から1985年4月までの半旬別気温および降水状況を示した。今期における気温の極値は最高32.4C,最低13.3Cを示したが、平均気温はほぼ22Cと前年の雨期とほべ同様で、特に稲の生育に影響を与えた状況はみられなかった。降水は12月中旬に一時少雨となったが1985年1月までは多湿条件が続き、1月中旬には葉いもちの初発がみられ、以後蔓延がみられたが、防除により多発生には至らなかった。2月に小乾期が襲来し、約25日間の無降雨の後、2月下旬に漸く降雨をみた。3月下旬から再び寡雨となり、今期は4月中旬から本格的な乾期に入った。早生種の出穂は小乾期に当り、穂いもちは少発となったが、中生種では3月の降雨時に当ったので多発生となり、いもち病の発生条件については前年とは逆の条件となった。

第3図 稲栽培期間(1984年11月~1985年4月)半旬別気温:降水量

b. いもち病の発生と被害

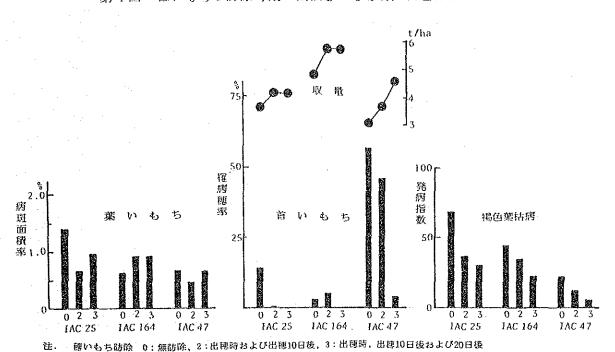
発病調査の結果は第4表および第4図に示した。

葉いもちは1月中旬から各区に発生し、湿潤条件下で急速に蔓延したが、防除剤の散布により激発を抑えつつ、出穂期を迎えた。葉いもちの発生程度は、IAC 25の一部でや、多めとなったが、概して病斑面積率で0.5 %ないし1%以下と各区は、平均した発病程度となり、穂いもち伝染源となった。

穏いもちの発病は早生種の1AC 25、1AC 164 の出穂期が小乾期(Veranico)に当り、感染の機会が多い登熟全期を好天乾燥状態に経過したため、小発生に止った。しかし、1AC 25の穂いもち無防除区は葉いもちがその他の区に比しや、多めであったことから穂いもちの発生もや、多かった。中生種 1AC 47 は小乾期終息後に出穂し、登熟期間前期に互つて湿潤気象下に過したため多発生となった。防除回数と穂いもち発病程度との関係は、早生種では穂いもち少発生のために防除区と無防除区との間の差も小さく、防除回数との関連も明らかになし得なかった。収量では無防除区がや、劣った結果であるが、首いもち発生率と必ずしも一致していないのは、観察において防除区では罹病による完全不稔穂が少なかったことが認められたが、これが一因であったと推察される。 1AC 47 における2回防除区では無防除区に比べ、や、発病抑制はみられるものの、無防除区に対し約80%の発生がみられ、3回防除区においては約7%に抑え得た。この理由については、出穂時のみの防除区に欠けるので明確になし得ないが、第2回防除まではその前後が多雨条件にあり、いもち病の蔓延盛期であって薬剤の抑止力を超えた発生で

枝梗いもち 1.5㎡当り 穂いもちい葉いもち 首いもち 同左指数23 平均1株 種 換算収量 罹病率 罹病率 精籾重 防除回数 病斑面積率 545 6 本 % 100 12.9 1,43 13.6 20.0 3.6 0 12.9 2 0,65 1.9 612 4, 1 112 IAC 25 0, 3 1.0 612 4.1 112 12.9 0.93 0 3 0 0.61 2,8 4, 1 718 4.8 100 12.8 IAC 164 2 0.88 4.06, 4 860 5.7 120 13. I 861 13.5 3 0.92 1,6 5.7 120 0 0.66 10.2 450 3.1 100 15.9 57.3 IAC 47 2 0, 43 46.07.4 560 3.7 124 16.0 3 0.65 4.3 2.6 764 170 14.9 5. 1

第4表 穂いもち防除回数と被害


注 1) 穂いもち防除回数 2:出穂時,出穂10日後の2回,3:出穂時,10日後,20日後

²⁾ 各品種の穂いもち無防除区の収量を 100とした指数

あったこと、雨水による散布薬剤の流亡とが考えられる。第3回防除時は散布後の降雨も少量で、これで薬剤の効果が示され、また、稲の感受性も登熟後期に至って低下したことと相俟った結果であると推察された。収量についても、穂いもちの発生程度と関連がみられた。

なお、この

園場で、薬剤散布回数の異なる区間で褐色葉枯病の発生程度に差がみられたので 調査したところ第5表の罹病度にみられるように、薬剤散布回数の増加に従って褐色葉枯病の 被害が減少した。

第4図 穂いもちの防除時期・回数といもち病、褐色葉枯病の発生

3 小 括

本試験では、バルゼア畑陸稲作での憩いもちの発生と被害ならびに穂いもちの防除時期について検討した。

今期の雨期作は小乾期を間にはさんだ形となり、いもち病の発生、蔓延の条件からみると葉い もちは多雨条件下で防除により発生を抑制したが多発傾向にあった。穂いもちは早生種の出穂、

来る衣 他にもの的味噌気と間と来ばれる権利を								
穂いもち	IAC 25	IAC 164	IAC 47					
防除回数	186 20							
0	67	45	24					
2	37	34	12					
3	31	23	6					

筆5表 穂いよち防除同数と褐色葉枯病の罹病度

注:罹病度の算出は試験方法参照

登熟期間が小乾期に当ったために小発生に止まったが、中生種は逆に多雨条件下で出穂期以降を

経過したため多発生様相となり、いずれも極端な試験条件となった。このために、防除薬剤散布の効果は早生種では回数、時期とも処理区間の差は明らかでなかった。中生種では連続した降雨条件下の防除剤散布であったために、漸く後期散布区のみに防除効果がみられた。単年度の試験で、しかも、詳密な調査が行なわれなかったので検討材料に欠けるところがあり、結論を得るには至らないが、小発生であった早生種においても収量比較結果から推察して少なくとも出穂期の防除は有効であろうと思われた。中生種の発病経過からは、穂いもちの感染期間はかなり長く、出穂後2週間以降においても被害を生ずる結果を得ており、出穂後降雨が続く場合には出穂後20日間くらいまでは防除を行なう必要があろう。防除適期についてはさらに試験例を重ねる必要がある。なお本試験では、葉いもちの発生を抑止しつつ行っているが、試験Iの例からみても、葉いもち防除が不完全であった場合には被害はさらに増大したと思われる。

褐色葉枯病の発生程度にみられた防除回数との関係については、従来の知識では本試験に用いられた両いもち防除剤は褐色葉枯病に対しては有効でないとされているので、説明が困難である。 褐色葉枯病に対しては有機燐系殺菌剤の中に有効な薬剤があることと、本試験では有機燐系殺虫 剤を併用していたことについて検討する余地があるかも知れない。

試験 川. バルゼア圃場試作水稲におけるいもち病の発生様相

バルゼアにおける陸稲作は、普通畑に比し水分供給の面から有利であることはいうまでもないが、更に、水田作になれば雨期中の小乾期(ベラニコ)の危険を避け、増収も期待できる。このことはブラジルの一般陸稲作の収量が 1.5 t/ha 前後であるのに、南部諸州水田地帯では3 t/ha 以上の高収量を示すことからも推察できる。試験Ⅲでは水田化した場合におけるいもち病の発生様相を知るために、1984年/ '85年の雨期作に場内灰色低地土バルゼアの一部に小規模の水田を造成し、水稲の試作を行ない、いもち病の発生状況を調査した。

1. 試験方法

耕種概要,いもち病発病調査法の概要については下表に一括した。雑草防除の面からは湛水直播または移植栽培が好ましいが、機材や労力の点から乾田直播型式となった。播種25日後に隣接した水路から灌漑水を導入し、以後は、常時湛水とし、晩生種の出穂がほば終了した4月1日に落水した。なお、土壌改良資材として苦土石灰7.5 t/ha とその倍量の15 t/ha を設け、いもち病の発生の影響の有無をも参考としようとした。作付時の土壌pHは両区とも5.1~5.2 で苦土石灰の施用量との差は認められなかった。

耕種概要および発病調査方法

項目	摘
品種	水稲25品種,陸稲(参考)7品種
而積•区制	1区 4m×20m (80㎡), 1区制
施肥	土壌改良資材として苦土石灰 (calcario dolomitico) 7.5 t/ha 区と15 t/ha(倍量)
	区を設けた。両区とも化成肥料 (4-30~16) を 1 t/ha 全量基肥として施用。
播種	1984年11月23日, 50cm×15cm, 1株5粒点播。
	播種25日後(12月18日)湛水。
発病調査	葉いもち:1985年1月3日、および1月24日。各品種10株につき最長茎上位展開葉
	3枚の病斑面積率を調査。
	穂いもち:1985年3月1日(早生種), 3月19日(中生種), 4月1日(晩生種),
	4月26日 (極晚生種)。
	1 品種20株につき茎数、罹病徳数を調査。

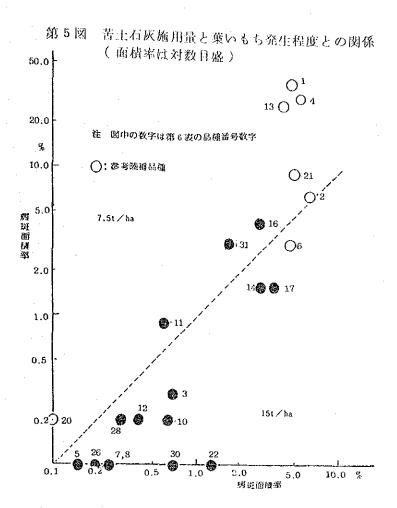
2. 試験結果

いもち病の発生状況は第6表に示した。また、いもち病の発生と苦土石灰の施用量との関係について第6表から葉いもち(1月24日調査)については第5図、くびいもちについては第6図を作成した。栽培期間中の気象経過は、試験Ⅱにおいて記述したとおりである。

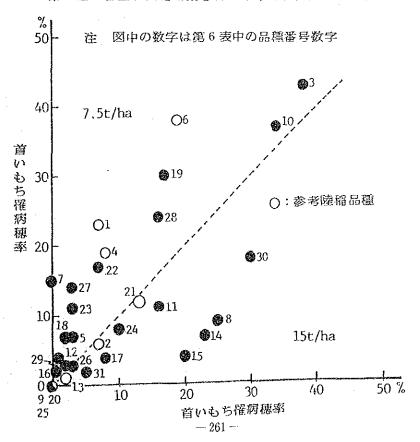
葉いもちは1985年1月初めに発生し、以後進展した。特に参考に加えた陸稲7品種のうちValley を除く6品種は多発生であった。水稲では BEA 301、BEA 304、Calasa、Bico Torto、Matão、

第6表 試作水田におけるいもち病発病状況

		葉いもち買頭面積率 ('85-1-13) ('85-1-24)			TOME THE STREET	新いもち 7.5t/hg ²⁾			A (7 (8 M) 15t/ha ¹⁾		
放 品			7.5t/ha	15t/ha	粉化	< <i>U</i>	技製	i 旅 標数	(0	故以	(185)
	1 50	3.20	36.7	4.71	0.4	23,4	10.6	9.9	6,6	5.1	月 日 2 05
1. IAC 25 ¹⁾	, 4.70	3.2	6.7	6.2	9.2	6.4	9.9	10.0	0.5	10.0	2 07
2. Dourado Pred		0.13	0.3	0.7	10.1	44.2		11.8	38.3	10.6	2 09
3. Blue Belle	0.11 9.5	2.3	30.0	5.4	10.5	19.0		11.1	7.8	9.3	2 09
4. IAC 164 ⁹	9,5	0.05	0	Ö		6.9		14.5	3.1	8.2	2 10
5. Le Bonnet	U	0.00		•	20.2		.577.7		544 E		
6. Batatais ⁰	4.1	0.4	3.1	4.5	11.1	38.4	28.1	11.0	19.0	15.2	2 10
7. BR/IRGA 410	0.07	0.04	0	0.25	15.1		4.5	16.8	0	3.6	2 15
8. BR/IRGA 409		0.24	. 0	0.2	13.3	9.4	1.1	16,2	25.2	12,3	2 18
9. Fornosa	0.01	0	0	0.05	14.1	0	0	14.9	0.0	0	2 20
LO. EEA 304	1.65	0.72	0.65	0.2	11,1	37.4	14.8	10.4	33.9	13.8	2 21
(O. 1321 OO1		4.54			100	100					
11. EEA 301	2,40	1,20	0.9	0.6	10.1	11.1	8.3	10.1	16.3		2 21
12. EEA 405	1.15	1.47	0.2	0.4	9.3	4.3		9.1	0.7	0	2 22
13, IAC 470	9.0	2.5	27.4	4.1	11.5	1.2	3,2	13.6	2.4	6.3	2 22
l4. Calasa	4.3	1.0	1.6	2.9	11.4	6.8	8.0	10.8	22,8	9.2	2 25
l5. Dawn	0	0	O	0	9,1	3.6	0.7	8.4	19.6	10.5	2 25
l6. Bico Torto	3.40	0.63	4.3	2.75	10.7	2,1	4.7	11.1	0.4	1.2	2:25
17. Matão	0.65		1.55	3.6	10.9	3.8	6.4	13.1	7.6	4.8	2 27
i8. La Belle	0	0	0.05	0	15.5	7.3	3.0	21.6	1.5	2.2	3 01
19. Bonnet	0.34	ŏ	0	0.05	11.7	30.0	13.8	8.5	17.4	19.1	3 01
20. Valley'	0.41	0.19	0.2	0.05	13.0	0	- 0 .	16.9	0	0	3 01
21. Agulha Doura	do ¹⁾ 8.5	3.2	9.5	4.9	16.5	12.3	6.7	15.7	12.8	18.5	3 03
22. CICA 4	0.	0	0	1.3	17.0	16.5	5.1	18.0	6.9	5.3	3 08
23. MG-1	0.05	ŏ	ŏ	0.05	17.8	11.3	1.2	20.2	3.2	3.2	3 09
24. IRGA 408	0.15	ŏ.	ŏ	0	14.2	7.7	5.3	18.7	9.6	6.9	3 09
25. IR 841	0	ŏ	ŏ	0.15	18.8	0	0.6	23,4	0 .	- 0	3 13
no TAG 000	0.04	0.05	0	0.2	19.5	3.4	1.1	21.4	3.2	0.7	3 13
26. IAC 899			0.05	0.05	17.4	14.2	$\hat{5.4}$	17.5		1.2	3 13
27. CICA 9 28. Starbonnet	0 .1	0	0.03	0.05	12.3	23.8	12.5	11.0	16.4	9.1	3 13
28. Startonnet 29. Bella Patna	0.15	0.1	0.25	0.23	15.4	3.2	4.8	19.7	2.3	0.6	3 15
30. De Abril	0.13	0.23	0.05	0.7	15.9	17.6	8.0	16.8	29.8	8.1	3 25
31. Skirivimanko	ot 0.52	0.33	3.1	1.7	18.6	1,9	6.9	17.6	5.1	14.2	3 25
32. CICA 8	0.52	0.04	. 0	0.05	19.5		_	24.6	-		>3 2


注. 1) 参考陸稲品種

Skirivimankot にめ立ったが、他の品種は概して小発生に止まった。


穂いもちは品種の早晩によって感染条件が異なるので品種間の比較は困難であるが、気象条件からみると、小乾期に出穂をみた品種、すなわち2月20日頃までに出穂した番号1~10前後の品種では必ずしも感染条件は好適でなかったにもかゝわらず、Blue Belle、 BEA 304、陸稲のBatatais 等は高い発病穂率を示した。穂いもち罹病穂率の低い品種としてはFormosa、 Bico Torto、IR 841が、陸稲ではIAC 47、Valley等があった。その他IAC 899、Bella Patna、Skirivimankotもやゝ罹病穂率が低かった。

苦土石灰施用量といもち病発生との関連は葉いもち(第5図)、くびいもち(第6図)にみるように必ずしも一定の傾向は握めなかった。第5図の葉いもちでは病斑面積率で1%以下の品種では倍量施用区に、10%以上の多発品種では7.5 t/ha 区に多いように見られるが、単年度成績で反覆もないので速断はできず、第6図のくびいもちの場合でも、品種による発病の差はあるが、

²⁾ 苦土石灰(calcario dolomítico)施用量

第6図 苦土石灰施用量と首いもち発生程度との関係

苦土石灰施用量との関係は一定せず、更に検討の余地がある。

3. 小 括

場内バルゼア圃場の一部に小規模の水田を造成し、水稲の栽培を試み、無防除条件下でいもち 病の発生について検討した。

葉いもちは参考に加えた陸稲および数品種の水稲で著しい発生をみたほかは、概して少発生に止まったが、品種間の差は認められた。 穂いもちは、特に早生種では気象条件からみて感染に不利な状況にあったが、早・晩品種とも高い罹病穂率を示した品種があった。 今後、水田環境と品種、耐病性との関係について解析を深める必要があろう。 供試全品種を通じて早中晩各品種の中にかなりの耐病性を示した品種がみられ、耐病性育種の材料として考慮に価いしよう。 苦土石灰 施用のいもち病発生に及ばす影響は本試験の結果からは判断できなかったが、本来珪酸資材に乏しい苦土石灰では当然かも知れない。 珪酸資材の利用について今後検討する必要があろう。

試験 IV. いもち病菌レースの判別

いもち病菌には品種に対する病原性を異にするレース (Races)が存在することはよく知られており、ブラジル国内におけるレース分布についても既に報告がある。本試験では1984年から1985年に場内試験圃場ならびに近傍の陸稲畑に発生したいもち病標本の一部について、日本におけるレース判別品種を用いて採集菌株の病原性の検定を試みた。

1 試験方法

接種源の調整:材料標本は品種比較試験圃場からは1品種から代表的な1病斑を、農家圃場からは1地点から1病斑を選び、1病斑から1単胞子分離系統を得た。予めPDA 培地上に培養した各単胞子分離系統を9 cm径ペトリ皿に用意したオートミール培地(粉末オートミール50g、砂糖10g、粉末寒天20g、水1ℓ)に移植し、26 C下で1週間培養後、菌そう表面を流水で洗滌し、常温、20 w螢光灯照明下で4日間放置し、同調分生胞子を得た。接種は噴霧法とし、接種胞子濃度は105 箇/㎡と基準に調整した。

判別品種の育苗:園立稲・フェジョン豆研究センター (CNPAF)田中良高氏の御好意により分譲を受けた判別品種12品種を1984年に場内ガラス室で増殖採種した種子を用いた。品種名および、それぞれの保有する推定抵抗性遺伝子型は第7表中に示した。1箱当り硫酸アンモニウム、過燐酸石灰、塩化加里各1gを含む畑土を15㎝×5㎝×10㎝の合成樹脂製育苗箱に満し、判別品種を1箱に2品種各10粒を2列に条播し、ガラス室で育苗、5葉展開時に接種試験に供した。

接種:判別品種12品種1組,即ち6育苗箱当り 100㎡の接種源胞子懸濁液を噴霧後,26C,相対湿度 100%に調節した定温器に24時間格納し、以後ガラス室で発病を待ち、接種後7ないし10日後に病原性の判定を行った。接種試験は同一の菌株につき2ないし3回反覆したが、一部の菌株については反覆のない場合もあった。

病原性の判別は次の基準によった。

病原性判別基準

病斑型記号	反応の表示	病班の性状
bまたは無病斑	R (抵抗性)	小視点または無病徴。
bg	M (中間型)	中心灰色,周囲褐色の小斑で,ほぐ1葉脈間に止まる大きさ。
ybg	S (罹病性)	1 葉脈間を越えて伸展し,中心灰色周囲褐色の大型病斑
pgまたはw	S(罹病性)	1 葉脈間を越え、中心灰色周囲緑灰色で後に多くはybg に移行
		する。極く初期には白斑を呈する場合もある

2. 試験結果

供試した28菌株は判別品種上における反応からおよそ第7表にみるように6群に大別された。 供試12品種の菌株に対する反応は次のとおりである。

新 2 号(推定抵抗性遺伝子型 Pi-k)、 愛知旭 (Pi-a) 、藤坂 5 号 (Pi-i) 、関東51号 (Pi-k) 、 K -1 (Pi-ta) 、 K -59 (Pi-t) 、の 6 品種は供試28菌株のすべてに罹病性反応を示した。

第7表 分離菌株の12判別品種上における反応

1 国品限	恶抗选 遺伝子型	a)	題 (b)	株 に 対 (c)	する反 (d)	応 (e)	(1)
新 2 号	$Pi-k^{S}$	S	S	s	\$	\$ -	. \$
愛知旭	Pi-a	s	S	S	· S ·	8	s
酰坂5号	Pi-i	s	S	\$	\$	S	S
閱京51号	Pi-k	s	· s	s	S	** • • S . ** • •	s
ツユアケ	$Pi-k^m$	М	S	s	R	S	S
フクニシキ	Pi-z	M	S	R	\$	R	R
K- 1	Pi-ta	s	s	S	S	s	S
Pi No. 4	Pi-tal	R	R	R	R	s	· s
とりで1号	$Pi-z^t$	R	R	R	R	R	R
BL-1	Pi-b	s	R	R	R	R	s
K-59	Pi-t	S	S	S	S	S	S
Zenith	Pi~z,a	R	\$	R	s	R	R
同一の反応を示	す菌株数	1	9	5	1	2	10

S: 罹病性反応 M: 中間型 R: 抵抗性反応

ツュアケ $(Pi-k^n)$ は1菌株に対して抵抗性、1菌株に中間型を示し、他の26菌には罹病性であった。

フクニシキ (Pi-Z) は17菌株に抵抗性、1菌株に中間型、他の10菌株に罹病性を示した。

Tenith (Pi-Z, Pi-a) はフクニシキと共通の抵抗性を保有するのでほぼフクニシキと同一の反応を示した。フクニシキ、Zenithとも外見はbg型病斑類似の病斑を多数形成する傾向があるが、判定に当っては病斑の経時変化過程を観察し、抵抗性、あるいは罹病性の判定を行った。

PiNo 4 (Pi-ta') は16菌株に抵抗性、12菌株に罹病性を示した。

とりで1号 (Pi-Z) は28菌株すべてに抵抗性を示した。

BL-1 (Pi-b) は17菌株に抵抗性、11菌株に罹病性を示した。

第8表は試験皿に用いた水稲品種の幼苗に対してそれぞれ病原性の異なる菌株を接種した結果である。供試5菌株に対する反応によって数群に品種を分別できそうであるが、1回の試験であるので速断はできない。本表でみる限り、Cica 9、BR/IRGA 410 のように供試した菌株すべてに対し抵抗反応を示した品種と、Bonnet、Calasaのようにすべて罹病性であった品種、その中間で菌株に対する反応がそれぞれ異なる品種群が得られた。

第8表 数種菌株に対する水稲品種幼苗の反応

			路 株		
品種	(b) 106	(b) 243	(c) 254	(f) 104	(f) 107
Cica 9	R	R	R	R	R
BR/IRGA 410	R	R	R	R (M)	R
Cica 8	R	R	R	S	R
IR 841	R	R	R	s	R
IAC 899	R	R	М	S	R
Cica 4	R	R	R	M-S	М
Dawn	R	R	S	S	R
Formosa	R	R	s	S	R
Bico Torto	R	Н	S	М	R.
Bella Patna	R	R	B	S	S
BR/IRGA 409	R	R	М	s	S
IRGA 408	R	М	R	s	S
MG-1	R	R	S	S	
Star Bonnet	R	М	S	S	R
EEA 301	R	S	S	s	R
EEA 304	R	S	S	\$	R
La Bonnet	R	S	R	S	(M)
Matao	R	S	\$	S	s
De Abril	R	S	\$	\$	S
La Belle	S	\$	S	\$	R
EEA 405	S	S	S	S	R
Blue Belle	S	S	\$	S	Ŗ.
Bonnet	\$	S	S	S	s
Calasa	S	\$	S	s	S

()内は第7表の葯株欄()相当

3. 小 括

本試験に供試した菌株は少数でしかも、採集地も場内あるいは近傍の地で限られたため、レースを確定するには不充分とみられ、今後、さらに採集範囲を広め、試験回数も反覆を重ねる必要がある。従ってこゝでは結果を記すに止めたい。本試験でみる限りでは採集菌株中には従来の日本型品種に存在する抵抗性(遺伝子型 Pi-k, -a, -i等)、中国稲に由来するPi-kを侵し得ない菌株が見当らなかったが、この点はCAPAFにおける田中の成績、パラナ農学研究所/熱帯農業研究センター共同研究の結果とは多少異なる点である。一方、とりで1号(Pi-Z)を侵す菌株が得られなかったことは前述の田中、その他の結果にもみられた。今後、この種の研究が進められ、ブラジルの稲品種に適応したレース判別体系が作成されることが望ましい。

総括

セラード地帯の稲作が、必ずしも恒久的な主幹作物として取扱われておらず、熟畑化するまでのいわばパイオニア作物的性格が強いとされているにもかかわらず、栽培面積では平年次で全ブラジルの約50%、収穫量では40%弱を占めている。従って、セラードにおける稲作の振興と安定は、ブラジルにおける米の需給の安定はもとより、セラード開発の上からも重要な課題の一つと考えられる。

セラード稲作がか、えている問題点としては、陸稲作が主体となっていることから、不安定な降水分布による干害の被害や、いもち病の発生による減収が指摘されているところである。この対策として試験研究機関においては、専ら耐旱性、耐病性の品種の育成・選抜に力が注がれている。しかし、品種の育成には年月を要し、しかも、商品性を考慮せねばならず、一夕にして成果をあげることは極めて困難であろう。他方、灌漑施設の整備や病害の薬剤による防除手段についても、一部高収量水準を得ている水田作では実現し得ても、現在の陸稲の収量水準では採算上無理があり、自然降雨と無防除が低収量を招くという悪循環に陥っているのが大かたの実態であろう。

セラード地帯における低湿地(バルゼア)の利用という考えは、干害からの回避という点で有望な技術であるが、低湿地では例え水田化しても用排水といった基盤整備のための投資が必要で、短時日のうちに生産畑化するのは困難である。そこで取りあえず、比較的容易に耕地化し易い周年地下水位が1m~2m前後で、乾期でも植物が利用可能な水分を供給し得る灰色低地土の地帯の利用が考えられた。幸いにCPAC場内に適当な灰色低地土の圃場が得られたので、1983年から1985年までの2回の雨期を利用し、陸稲を無灌漑で栽培し、いもち病を対象に2・3の試験を行った。試験期間内には各年とも陸稲期間中に小乾期を経験したが、人工灌漑の必要は認められず、バルゼアにおける稲作の有利性を認めることができた。

いもち病の発生は無防除条件で著しく、薬剤防除を省いての収穫を期待することは困難であった。 防除により少発生の場合でも20%、多発生の場合は70%以上の増収が得られ、栽培法によっては現 在の水田作と同等の収量を期待する可能性を得た。薬剤の施用方法については、試験例が少なく、 なお検討すべき事項が多く残されているが、従来、ブラジル国内の試験例と同様、穂いもち防除に ついては穂ばらみ期から出穂時に1回、その後穂揃期に1回の計2回を基準とみればよいが、登熟 期に降雨が続く場合、更に1回の後期散布を必要とした。

いもち病菌の病原性分化型(レース)についても簡単な検討を行った。得られた約20菌株の中では、インド品種TKM-1、あるいはC025に由来すると考えられるいもち病抵抗性遺伝子Pi-2'を侵し得る菌株は得られなかったが、将来、出現する可能性はあり、抵抗性品種育成の上からも、ブラジル国内において監視を続ける必要があろう。なお、水稲の一部実用品種に対し、数菌株による幼苗接種試験を試みたところ、品種により供試菌株の多くに抵抗反応を示すものがあり、現在の品種の中から抵抗性母本を得ることも可能かも知れない。また、早い機会にブラジル産稲による判別品種系列を作出することは、品種育成上からも益することが多いと考えられる。

更に、闡場試験にみられたように、いもち病の発生と気象要因、特にセラード地帯では常時いもち病発生には適温が保たれている場合、発生誘因として降雨、云いかえれば湿度の影響は極めて大きく、常に気象要因を考慮しつついもち病対策を考える必要がある。稲作安定にいもち病対策が不可欠であることから、品種、栽培法、気象、土地条件を組み入れた発生予察方法を早期に確立することが極めて望ましく、防除技術においても、経済効果を加味した、要防除水準(Economie one werll level)の設定等に必要な基礎となるいもち病の生態に関連した研究が一層重要となろう。

ブラジルにおける陸稲作の収量水準が低い要因として考えられるのは、自然条件では痩薄土壌と不安定な降水分布が第一にあげられようが、人為的条件として粗放的な栽培慣行や、消費地に遠い栽培地域では換金作物としての魅力に乏しく、従って生産費を出来るだけ低く抑えたいなどの点があろう。陸稲作をバルゼア対象に考える時、干害の不安を消去することにより、南部の水田栽培と同様の施肥栽培技術を導入して水稲並みの収量を確保する条件が得られるように考えられる。勿論、そのために今後、解決すべき諸点、例えば、適品種の探索、病害虫防除、施肥の効率化、総合的な生産費の低減と適正栽培規模の設定等技術的、経営的な諸課題と取組む必要があろう。更に総生産量の増加に伴ない、国内需給バランスを保ち、米価安定を画る上で、陸稲に代るセラード作物の開発導入も併せて対応策として考慮しなければならない。

摘要

本報告ではセラード地帯で今後開発の促進が期待されている低湿地 (バルゼア) での適作物と考えられる陸稲の栽培の関連して、病害面で重要視されているいもち病の生態、被害ならびにその防除について行なわれた試験の結果を述べた。

- 1. バルゼアに栽培された陸稲には開畑初年においては無肥料でもいもち病の発生は甚しく、薬剤 防除の効果が認められた。供試畑は灰色低地土であったが、潜在窒素の存在がうかがわれ、今後、 バルゼア開発に当って施肥計画に留意する必要がある。
- 2. 陸稲のいもち病で収量に直接影響の大きい穂いもちの防除には出穂前後と穂揃期の2回の薬剤 散布が有効であったが、登熟期に降水が多い場合は更に後期の散布が必要であった。
- 3. バルゼアに設けた試作水田に水稲を栽培し、いもち病の発生状況を観察した結果、品種間にかなりの発病差が認められた。また苦土石灰施用が、いもち病の発生に及ばす影響は明らかでなく、 今後は硅酸資材について検討する必要がうかべわれた。
- 4. いもち病菌の菌型(レース)を日本における判別品種を用いて検定した結果では、従来の日本型稲に存する抵抗性遺伝子型および、中国稲に由来する Pi-k 遺伝子はすべて侵す菌株であったが、インド品種に由来する Pi-2 を侵す菌株は得られなかった。
- 5. バルゼアで陸稲を栽培する場合には、干害のおそれは少ないが、いもち病については品種、栽培法の面から対策を確立する必要があるとともに、将来、バルゼアにおける稲作の安定化のためには、気象条件の解析を踏えた発生予測の研究が進められなければならない。

付表 1. 稲作期間における半旬別気象要因(1983年12月~1984年 5 月)

••					1		
年	月	半旬	最高 気温	最低 配灵	平均 気温	降水量	降水 日数
1983年 12	月	1 2 3 4 5 6	25.2 24.5 26.2 27.5 26.0 24.5	17.5 17.8 17.7 17.8 17.5 17.3	21.5 21.2 22.0 22.7 21.8 20.9	46.5 49.0 13.8 10.8 126.0 101.9	5 5 4 4 4 5
1984年 1	月	1 2 3 4 5 6	25.8 26.9 28.9 29.1 27.6 28.6	16,6 16.8 16.4 15.6 16.9 18.0	21,2 21.9 22.7 22.4 22.3 23.3	8.8 30.4 43.5 2.5 32.6 84.7	2 5 1 1 5 3
:2	月	1 2 3 4 5 6	29.9 28.4 27.0 28.8 28.6 28.9	18.2 17.9 16.7 16.8 16.3	24.1 23.2 21.9 22.8 22.5 23.3	0 74.8 26.2 40.1 42.0 8.6	0 4 3 1 1
3	月	1 2 3 4 5 6	29.8 27.7 27.1 28.3 27.1 28.0	17.5 17.4 17.9 17.6 18.8 18.3	23.6 22.6 22.5 23.0 23.0 23.2	9.8 98.6 105.6 4.8 28.4 36.4	1 4 3 5 5
4	月	1 2 3 4 5 6	26.0 25.6 25.7 28.9 29.4 29.0	18.2 18.2 17.3 16.7 16.1 17.4	22.1 21.9 21.5 22.8 22.8 23.2	75.1 21.1 0 0 0 11.5	5 2 0 0 0
5	月	1 2 3 4 5 6	28.0 28.7 29.4 28.6 27.0 28.5	17.4 16.7 13.9 17.3 15.7 13.8	22.7 22.7 21.7 23.0 21.4 21.2	0 0 0 0 0	0 0 0 0 0

付表 2. 福作期間における半句別気象要因(1984年11月~1985年 4月)

*							
年	月	半旬	最高 気温	最低 気温	平均 気温	降水量	隆水 日数
1984年	11 月	1. 2 3 4 5 6	30.2 30.9 26.6 27.8 25.2 27.2	C 16.6 17.8 17.0 17.8 17.2	C 23.4 24.4 21.8 22.8 21.2 22.2	0 5.0 40.5 21.0 13.3 60.6	日 0 1 5 2 3 5
	12 月	1 2 3 4 5 6	26.2 25.6 28.4 29.2 28.3 27.0	17.6 17.5 18.4 17.5 17.5 18.1		32.7 64.6 6.8 8.6 80.8 97.9	4 5 3 4 5
1985年	1月	1 2 3 4 5 6	26.3 24.0 24.5 23.1 24.0 24.4	18.4 18.1 18.3 18.5 18.4 18.2	22.4 21.1 21.3 20.8 21.2 21.3	54.4 60.9 69.6 71.4 61.7 134.3	4 5 5 5 6
	2月	1 2 3 4 5	28.9 29.0 28.5 28.2 27.7 27.7	17.0 18.7 16.2 16.6 17.1 18.2	23.0 23.9 22.3 22.4 22.4 23.0	12.3 0.6 0 1.7 35.6 80.5	1 1 0 1 4 2
	3 月	1 2 3 4 5 6	27.8 26.5 27.5 25.7 28.4 28.3	18.1	22.7 22.5 22.8 22.0 23.3 23.3	13.0 31.2 99.1 49.7 6.0 59.9	3 4 5 5 2 4
······································	4 月	1 2 3 4 5	27.5 27.5 27.5 27.0 26.2 28.1	16.9 16.7 17.3 17.2 16.8 15.9	22.1 22.1 22.4 22.1 21.5 22.0	5.1 15.8 40.5 2.9 0	3 2 2 2 0 0

猫文客绘

(稲作一般)

EMBRAPA/CPAC. (1976). Arroz. in Relatorio tecnico anual do Centro Pesquisa Agropecuaria dos Cerrados 1975-1976. 84-89.

大野芳和. (1980). ブラジルの陸稲. 陸稲その栽培から利用まで、国際農林業協会. 東京. 90-114.

Arlindo Bonifacio. (1981). Varzeas, uma nova alternativa agricola. Cerrado 36:27-31.

EMBRAPA/CPAC. (1981). Manejo de varzeas. in Relatorio tecnico anual do Centro de
Pesquisa Agropecuaria dos Cerrados 1980-1981. 83-86.

Brasil Aquino Pedroso. (1982). Arroz Irrigado. SAGRA. Port Alegre. pp. 175.

Joaquim Bartolomeu Rassini. (1982). A curtura des arroz (*Oryza sativa* L.) de sequeiro. Comunicado Tecnico, EMBRAPA/CPAC 3: 1-15.

EPAMIG. (1984). Arroz irrigado e de sequeiro. Informe Agropecuaria 114:1-72.

(いもち病一般)

Hirosada Abumiya. (1959). Phytopathological studies on the breeding of rice varieties resistant to rice blast. Bull. Tohoku Agr. Expt. Sta. 17:1-101. (in Japanese w/Eng. summary)

C.O.N. Cardoso e M. Kimati. (1980). Doenças do arros. in Manual de Fitopatologia vol. II. Editoria Agronomica Ceres LTDA., São Paulo. 75-86.

Anne Sitarama Prabhu. (1983). Bpidemiologia de brusone em arroz de sequeiro não favorecide. Fitopatologia Brasileira 8:520-521.

(品種抵抗性)

- J. Soave, L. E. Azzini, N. V. Banzatto & R. Rocha (1975): Comportamento de cultivares de arroz quanto a suscetibilidade a *Pyricularia oryzae* Cav. em quatro localidades do estado de São Paulo, em 1971/72., Summa Phytopathologica 1.87-91.
- J. Soave, L. E. Azzini, N. V. Banzatto, N. C. Schmidt & J. Aloisi Sibr. (1976). Reação comparativa dos principais cultivares paulistas de arroz (*Oryza sativa L.*) a *Pyricularia oryzae* Cav. em seis localidades do estado de São Paulo, nos anos agricolas de 1972/73 e 1973/74. Summa Phytopathologica 2:109-114.
- J. Soave & L. B. Azzini. (1977). Pesquisa sobre fontes de resistencia ao arroz (*Oryza sativa* L.) ao brusone (*Pyricularia oryzae* Cav.) na folha para as consições do estado de S. Paulo. Fitopatologia Brasileira 2:103-104.
- J. Soave, P. R. Furlani & L. B. Azzini. (1977). Relação entre o estado nutricional de arroz (*Oryza sativa* L.) e a suscetibilidade a *Pyricularia oryzae* Cav. agente causal

de brusone. Summa Phytopathologica 3:117-123.

J.C. Faria & A. S. Prabhu. (1977). Estimativa da intensidade de brusone nas folhas, no estagio de emborrachamento, bascado no numero inicial de lesoes sobre a folhagem, em arroz de sequeiro. Fitopatologia Brasileira 2:73-74.

A. S. Prabhu & J. C. Faria. (1977). Alguns relacionamentos quantititivos entre infecção das folhas e infecçã das paniculas com brusone e peso dos grãos, em arroz de sequeiro. Fitopatologia Brasileira 2:97.

Alceu Sallaberry Ribeiro. (1981). Resistencia do arroz sob nivel decrescente de inoculo de *Pyricularia oryzae* Cav. Fitopatologia Brasileira 6:322-332.

- J. Soave, L.E.Azzini, N. V. Banzatto e N. C. Schmidt. (1982). Resistencia de cultivares de arroz a brusone na folha: Influencia de locais e epocas de avaliação dos sintomas da doença no estado de São Paulo, ritopatologia Brasileira 7:516.
- A. S. Prabhu, & I. P. Bedendo. (1982). Cosiderações sobre avaliação de resistencis horizontal a brusone im arroz. Fitopatologia Brasileira 7:479.

Anne S. Prabhu, Ivan P. Bedendo, Josias C. Caria, Derly M. de Souza, Jaciro Soave, e Regina B. M. Amaral. (1982). Fonte de resistencia vertical a *Pyricularia oryzae* em arroz. Summa Phytopathologica 8:78-90.

J. Soave, L. B. Azzini, N. C. Schmidt & N. V. Banzatto. (1984). Reação dos principais cultivares e progenies de arroz a brusone no estado de São Paulo em 1974/75 e 1975/76. Fitopatologia Brasileira 9:059-065.

(病原性の分化)

Shohei Matsumoto, Takuji Kozaka & Masao Yamada. (1969). Pathogenic races of *Piricularia oryzae* Cav. in Asia and some other countries. Bull. Nat. Inst. Agric. Sci. Series C. 23:1-36.

Masao Yamada et al. (1976). Proposal of a new method for differentiating races of Pyricularia oryzae Cavara in Japan. Ann. Phytopath. Soc. Japan 42:216-219.

Toshifumi Yunoki. (1977). Studies on rice blast. IAPAR/TARC(mineographed) pp. 17.

Tadashi Morinaka & Seiji Igarashi. (1978). Studies on the races of *Pyricularia* oryzae and the varietal resistance in rice. IAPAR/TARC(mimeographed) pp. 18.

Ivan Paulo Bedendo, Alceu S. Ribeiro e Caio O. N. Cardoso (1979). Variabilidade do fungo *Pyricularia oryza*e Cav. agente da brusone no arroz. Summa Phytopathologica 5: 106-109.

Masataka Iwano & Seiji Igarashi. (1979). Studies on the races of rice blast fungus (*Pyricularia oryzae*) and the varietal resistances in rice. IAPAR/TARC (mimeographed) pp. 33.

Toshifumi Yunoki. (1980). A proposal for further studies on rice blast disease in IAPAR. IAPAR/TARC (mimeographed) pp. 5.

Toshifumi Yunoki & Seiji Igarashi. (1980). Studies on the race of rices blast fungus (*Pyricularia oryzae*) and the varietal resistance in rice. IAPAR/TARC (mimeographed) pp. 27.

Yoshitaka Tanaka. (1981). Basic study of breeding for resistance to rices blast (*Pyricularia oryzae*) isease in Brazil. CNPAF/IICA-Annual Report(Oct. 1980-Sep. 1981). (mimeographed). pp. 117.

Yoshitaka Tanaka. (1982). Comparação entre cultivares Japonesas de arroz quant a capacidade de diferenciação de racas de *Pyricularia oryzae* isolades no Brasil. Fitopatologia Brasileira 7: 474.

(薬剤防除)

A.C.D. de Toledo, T. lamamoto, M. N. Uyeno & D. A. Oliveira. (1976). Bpocas de aplicação de fungicidas para controle da "Brusone de arroz", summa Phytopathologica 2: 154-156.

C. A. M. Santana, F. M. Dall'acqua, J. C. de Faria & A. S. Prabhu. (1978). Analise da tendencia do uso de fungicida para o controle da brusone (*Pyricularia oryzae* Cav.) do arroz no Brasil. Fitopatologia Brasileira 3: 235-240.

A. S. Ribeiro (1978). Frequencias de aplicações de fungicidas no controle da brusonc (*Pyricularia oryzae* Cav.) em arroz irrigado. Fitopatologia Brasileira 3: 103.

A. S. Ribeiro. (1978). Testes preliminares de fungicidas no controle da brusone (*Pyricularia oryzae* Cav.) de arroz irrigado. Fitopatología Brasileira 3: 103-104.

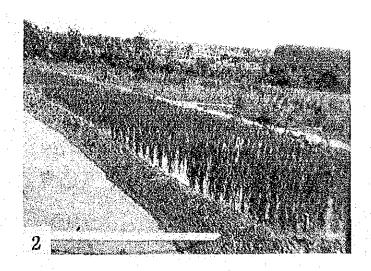
Francisco Brignani Neto, Pedro R. Machado & Domingos A. Oliveira. (1978). Estudo de novos fungicidas no controle da "brusone" do arroz (*Pyricularia oryzae*).

A. S. Prabhu & J. C. Faria. (1978). Efeito do numero e epocas de pulverizações de fungicida sobre a brusone (*Pyricularia oryzae* Cav.) do arroz de sequeiro. Fitopatologia Brasileira 3: 102.

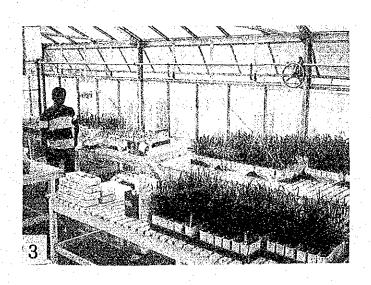
J.C. Faria, A. S. Prabhu, F. J. P. Zimmermann. (1978). Incidencia de brusone e produtividade de arroz em relação a fertilização nitrogenada e a pulverização com fungicida.
Pitopatologia Brasileirea 3: 85-86.

F. brignani Neto. P. R. Machado & D. A. Oliveira. (1979). Controle químico da brusone de arroz. Pitopatologia Brasileira 4:94-95.

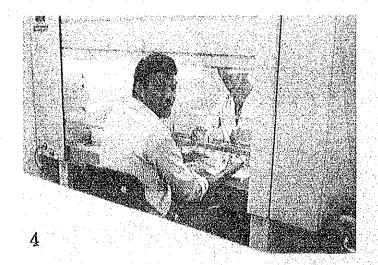
Maria Aparecida S. Tanaka & Augusto F. Souza. (1981). Misturas de fungicidas para o controle da brusone do arroz de sequeiro. Fitopatología Brasileira 6: 245-249. Cooperativa Agricola de Cotia, Cooperativa Central. (?). Manual de controle de


doencas e pragas. pp. 241. -272

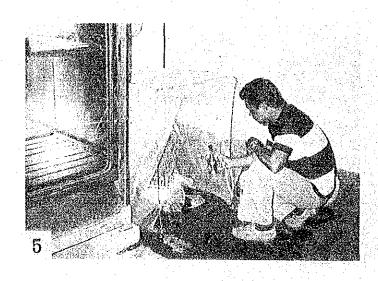
写 真 説 明 PHOTOGRAPHS


バルゼア畑における陸稲いもち病防除 試験状況。

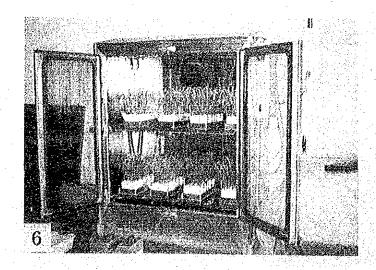
Spraying of fungicide at varzeas field


試作水田

Paddy fields


パッドアンドファン方式により室内気 温調節を行っているいもち病菌レース 検定硝子室

Identification of races of rice blast fungus at greenhouse installed with Pad and Fan system air conditioner.


クリーンベンチによる病原菌移植作業。

Transplanting of fungus isolates in Clean Bench.

稲幼苗に対するいもち病菌の噴霧接種 作業。

Spray inoculation of rice blast fungus.

接種箱の使用状況。

Inoculated rice seedling in incubator.

付 陸稲品種耐病性評価連絡試験

本試験は国立稲・フェジョン研究センター (CNPAF)における稲研究プロジェクト (PNP-Arroz)の一環として, CNPAF が企画し、全国の陸稲栽培地帯にある研究機関13箇所において同一設計の下に実施された。試験目的は、

- 1. 陸稲の生育各期に発生する病害の消長調査,
- 2. 発生病害の被害評価,
- 3. 環境条件と病害発生との関連解明,
- 4. 稲品種・系統の各種病害に対する抵抗性特性評価。
- 5. 病害発生の地域的特性の検討 等となっている。

CPACにおいては1983・84年、1984 ・85年の2期について筆者が担当して試験を実施した。なお本試験の成績のとりまとめ、発表は CNPAPにおいて行なわれることが申合せになっているので、こっではCPACにおける調査結果を示すに止めたい。

1. 試験方法

	1983/'84年	1984/185年
品種	早生種および中生種陸稲	1各50品種系統。
種	1983年12月15日	1984年11月20日
様式	1 品種 1 列。反覆なし。	眭長5 m, 眭間50cm, 条播
肥	尿素30kg/ha.	苦土石灰 3 t/ha
	過燐酸石灰 300kg/ha	化成肥料 (4-30-16)160kg/ha
		過燐酸石灰 300kg/ha 。
性	暗赤色ラトソル	灰色低地土 (バルゼア)
	種 様式 肥	品種 早生種および中生種陸和 種 1983年12月15日 様式 1品種1列。反覆なし。 肥 尿素30kg/ha. 過燐酸石灰 300kg/ha

2. 発病調查基準

葉 い も ち : 病斑面積率。但し、1983/84年中生種については1葉当り病斑数を示す。

首いもち : 罹病穂率

枝梗いもち : 罹病指数による加重平均

0=5%以下の籾被害

 $1 = 6 \sim 25 \%$

 $2 = 26 \sim 50 \%$

 $3 = 51 \sim 75 \%$

 $4 = 76 \sim 100\%$

<u>Σn·i×100</u> = 被害度

4 N

n = 各階級の穂数 N = 調査穂数

褐色葉枯病 : 被害指数の単純平均 (1983/'84)

被害指数の加重平均 (1984/'85)

被害指数 0 = 病斑面積率 0%

 $1 = 1 \sim 5\%$

 $2 = 5 \sim 25\%$

3 = 25%以上

被害度 = $\frac{\sum n \cdot i \times 100}{3 \text{ N}}$

変 色 枫 : 被害粒率

条 葉 枯 病 : 病班数による被害違観調査

0 = 無病班

1=1葉当たり1~20箇

2=1葉当たり21~40箇

3 = 1 葉当たり40箇以上

ごま葉枯病 : 被害指数の加重平均

0 - 無病班

1=1葉当たり1~20箇

2 = 1 葉当たり21~40箇

3 = 1 葉当たり40箇以上

被害度 = $\frac{\sum \mathbf{n} \cdot \mathbf{i} \times 100}{3 \text{ N}}$

試験は各品種/系統50茎を基準とし、葉身の病害では止葉以下3葉を対象とした。

3. 試験結果

第9表および第10表に示した。なお、首いもちについて両年の比較を第7図に示した。年次による発病率の差は、本文第1図および第3図の気象図に示されるように、1984年には中生種の出 穂期、1985年には早生種の出穂期がそれぞれ乾燥期に当ったためと考えられる。

第 9 表 プラジル産陸稲品種における稲主要病害の発生状況 (早生種)

No.	8 0		以 特 次	葉い もち	育い もち	技硬 いもち	褐色紫 枯腐	変色 初	条 聚 枯腐	ごま 葉枯腐	吊館日
01	Dourado Pr	recoce (S-B)		0.27 1.25	24 18.7	17 8	1 10	5 [%] 0	- 1	30	3.13 2.07
02	Agulha Doi	ırado (R-B)		0.62 3.6\$	20 0.8	27 5	0 8	22 5	- 1	33	4.10 3.18
03	M-39 (R-LS	5)		0.05 0.03	16 9.2	26 7	2 16	5 3	_ 1	- 0	3.20 2.12
04 04	Trés Meses 'Agulha (S	s Branco (S-1 -LS)	LS)	0.03 1.05	<u>-</u>		- 15	<u></u>	- 2	- 27	¹ 5.10
05	79-233 (R	-CLS)		0.05 0.35	28 15.3	25 7	2 17	7 0	1	33	3.15 2.10
06	L-43 (S-CI	LS)		0.11 0.28	46 13.6	22 6	2 23	16 9	_ 1	30	3.13 2.05
07	CNA 092-BN P2 (R-			0.51 0.89	42 14.0	28 8	2 22	9 0	1	33	3.13 2.07
.08	L-80-63(S	-GDC)		0.04 0.11	26 14.0	14 7	2 22	9 0	- 1	1	3.13 2.02
09	Valley (R	-RB)		0.03 0.12	18 10.2	2 7	0 5	27 4	 1	1 <u>.</u> 22	3.27 3.11
10	Batatais	(R-RB)		0.09 0.25	28 10.5	40 4	2 9	4 0	2	- 30	3.19 2.12
11	Pratão Pro	ecoce		0.33 2.3	9.1	4	2 2	4 0	- 1	- 24	3.13 2.07
12	IAC 164			0.18 0.4	42 0	48 9	1 13	6 3	1	11	3.15 2.12
13	Precoce B	ranco		0.30 0.2	30 22.8	19 11	2 11	4 3	- 3	40	3.13 2.02
14	Barbalho			0.83	46 19.0	39 11	2 18	4 3	- -	13	3.13 2.12
15	Mimoso			0.40 4.3	36 2.8	14 3	2 24	54 43	1	33	3.31 3.05
16	Caqui			0.35 4.5	3.4 0	4 2	0 9	38 40	- 3	62	4.03 3.05
17	Agulha Br	anca		0.23 5.1	34 6.9	0 4	0 20	68 43	1	33	3.27 3.03
18	Cateto Ce	da		0.43	0 5.1	0 8	1 44	1 3	- 1	16	3.22 2.18
19	Casado			0.38 10.1	30 0	3 0	0 24	68 43	2	33	4.01 3.15
20	Prato Lig	eiro		0.1	56 10.0	8 20	0 24	18 0	- 1	16	3.24 3.12

第 9 表(続き)

	始 3 300 (MUC)									
No.	a u	村村 以母	がい もち	ยห 65	技収 いもち	超色域 枯树	机	प्रका Mai	こま 発情群	田鶴目
21	Venezão	'83 '84	0.05 [%] 5.0	26 % 0	26 0	1 2	50 [%] 38	-	30	4.01 3.11
22 (Cajueiro Liso		0.45 2.7	50 1.4	15 3	0 2	60 3	1.	13	3,28 3,08
23	Princesa		0.05 0.2	8 8.0	2 6	0 11	46 10	1	11	4.25 3.05
24 1	Trés Messes		0.03 0.5	50 6.8	78 11	0 18	11 0		30	3.13 2.10
25 (Cateto Precoce		0.03 o.3	16 15.8	43	0 13	10 8	1	0	3.15 2.12
26 \	Venez Roxo		0.2 5.2	30 12.9	3 4	0 20	45 40	- 1	36	3.28 3.01
27 1	Meia Agulha		0.05 0.2	0	0.5	0 16	13 0	1	_ 22	4.20 3.11
28 A	Arroz Zebu		0.08 1.5	25.0	9	0 16	49	- 1	7	4.20 3.18
29 Į	Douradinho		0.25 4.4	1	0	0 7	13 3	. -	9	4.20 3.11
30 S	Salm Pikiti		0.08 0.8	80 75.3	49 19	1 2	6 0	3	- 27	3.25 2.12
31 1	AC 165		0.23	48 9.4	25 3	1 4	6	ī	13	3.13 2.10
32 I	. \$2		0.3	72 23.3	11 4	1 20	5 0	1	36	3.10 2.07
33 (Guira Amarelo		0.05 0.8	48 18.2	71 10	1 13	4 0		33	3.13 2.12
34 I	imeira		0.15 0.5	24 11.9	2 2	0	33 0	- 1	7	3.28 3.05
35 I	. 365		0.73 5.7	48 20.4	1 19	0 13	17 30	ī	- 36	3.22 3.01
36 I	RAT 112		0.03	28 10.1	38 14	1 42	5 0	1	20	3.13 2.07
37 I	. 50		0.03 0.15	46 5.4	39 4	0 4	6 8		36	3.12 2.07
38 (CNA 095-BM30-BM9-10		0.03 0.3	26 3.2	17	1 29	4 3	1	24	3.13 2.12
	CNA 762260	"	0.05 0.6	42 18.2		0 33	10 0	1	7	3.13 2.07
	IAC 25		0.28 1.9	24 17.9		0 13	5 0	- 1	20	3.13 2.07

第 9 表 (続き)

No.	a o	似划 次學	類い もち	竹い もち	技化 いもち	19位型 枯羽	双色 初	炎類 拮別	ごま 発拮例	RME
41	CNA 762324	83	0.08	*		_	_ %			3,24 ^E
		' 84	0.6	13.0	15	38	0	-	29	3.05
42	CNA 092-BM11-BM19-P2		0.08	-	_	_				7 27
			3.2	27,5	6	20	0	_	29	3.23 2.07
43	Chatinho Branco		0.18	_	_	_	_	_		4.10
			9.2	0	0	18	7	1	47	3.11
44	Tongil		0.13	~	**	-	_		_	4.10
			2.5	0	0	7	33	_	51	3.11
45	Tiririca		0	~	-	_	~	_		4.08
			0.15	5	8	7	40	1	29	3.18
46	CTG 1516		0	36	3	0	5	-	_	3.27
	·		0.1	12.5	7	7	0	3	29	2.12
47	Arroz de Bico Preto		0.10	0	0	0	10	_	_	3,27
			8.0	0	0.6	0	0	-	11	3.05
48	Branco Trés Messes		0.18	30	1	0	19	_	_	3.28
			1.5	1.6	1	2	15	-	20	3.05
49	IAC 21		0.18	46	3	0	37	_	. <u>-</u>	3.25
			2.7	1.6	0.5	11	28	1	30	3.05
50	90 Dias (CA780016)		0	0	0	0	10	_	_	4.05
			0.9	1.5	4	16	0	1	9	3.03

注 1. R(S)-B : こま葉枯病抵抗 (罹病) 性 基準品種

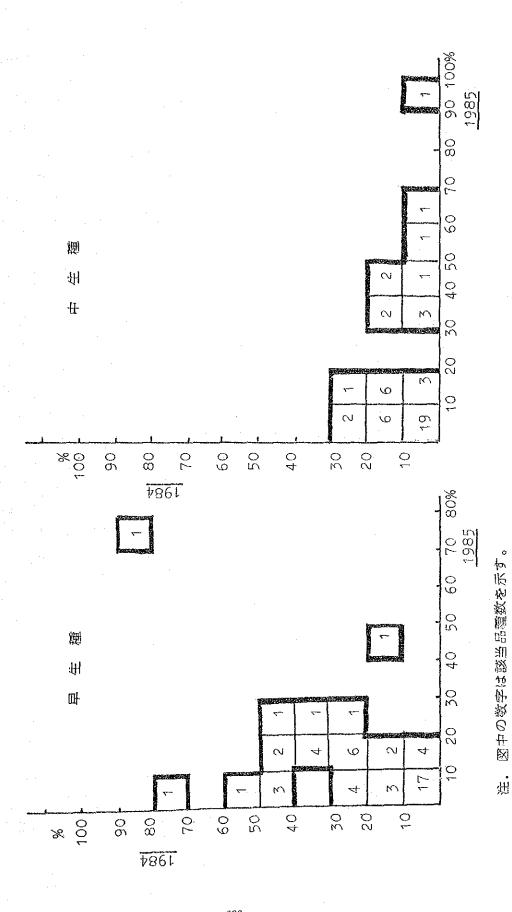
R(S)-LS : 掲色業枯病抵抗 (罹病) 性基準品電 R(S)-CLS : 条葉枯病抵抗 (罹病) 性基準品電 R(S)-GDC : 籾変色抵抗 (罹病) 性基準品種

R(S)-RB : いもち病抵抗 (罹病) 性 基準品種

- :調査なし

注 3. 表中各病害の発生程度評価数値の算出法は2.発病調査基準を参照。

No.		B 01	找 學 文	がい	削い もち	特領 いもち	熔砂湖 原砂湖	報告	作型 指的	ごま 雑括別	用部目
01	IAC	73-136(S-GDC)	83 784	0-3 7 0.62%	10 % 30,2	2 11	1 22	21 [%] 11	2	31	4 ^月 04 ^日 3.05
02	CNA	108-B-28-11-2B(R-GDC)		0-1 0	4 21.5	% 4 4	1 19	27 3	1	13	4.03 3.01
03	IAC	76-49(S-CLS)		1-3 0,66	4 18.1	2 9	1 35	25 5	2	38	4.05 3.05
04	CNA	108-B-42-10-2B(R-CLS)		0-1 0.01	2 3.0	2 5	1 20	14 8	1	11	4.05 3.05
05	IAC	120(R-LS)		0~2 1.33	12 5.2	3 1	2 22	7 13	1	27	4.06 3.04
06	CNA	104-B-34-a(S-LS)		0-1 0.15	16 18.5	2 30	0 35	16 8	1	29	3.30 2.23
07	Lamt	pari(R-B)		0-1 1.2	2 1.1	2 3	1 30	19 16	: 1	16	4.25 3.15
80	BR 5	1-46-5(S-B)		2-3 0.09	12 9.2	1 22	0 10	9 24	1	20	4.23 3.10
09	Trés	Marias(R-RB)		0-1 0	2	2	0 18	18	~ 1	4	4.23
10	Mont	anha Liso(S-RB)		0-2 0.47	14 36.7	3 9	0 30	23 8	2	18	4.02 2,27
11	IAC	47	-	0	8 50.9	1 35	0 44	13	1	42	4.05 2.26
12	Атаг	elo Bico Ganga		1-2	2	3	0 24	20 20	- 1	44	4.19 3.11
13	Fern	andes		1-2 1.0	2 35.6	6 30	0 40	24 5	ī	42	4.02 3.01
14	Guap	ão		0-1 0.3	2 2.0	0 4	0 38	5 8	1	38	4.25 3.18
15	Ipea	go 562		2-3 0.08	2 4.0	0	0 33	. 19 8	2	22	4.05 3.05
16	Camp	vineiro		2-3 3.9	18 20.0	10 27	0 67	20 5	. <u>-</u>	29	4.02 3.01
17	Coqu	inta	. :	0-1 10.4	2 22.7	2 51	0 47	8 8	-	40	4,22 3.03
18	Perc	ola		0-1 1.8	6 16.7	2	0 47	25 8	2	40	4.05 3.01
19	Arro	oz de Guerra		0 0.2	0 3.3	1 2	0 42	18 13	1	0	4.18
20	Mara	inhão Branco		0 0.48	0	-0	0 27	13 15	1	22	4.02 3.18


第10 表(続き)

No.	a m	战战 华次	類い もち	育い もち	枝原 いもち	相色媒 枯腐	変色 初	条類 枯朗	ごま 薬枯病	出籍目
21	Coqueiro Amarelo	'83 '84	0 7 0 04 [%]	λ [%] 0	0	0 27	8 [%] 15	ĭ	22	4.25 3.14
22	Oitentão		1-2	18	2	1	6			3.26
			1.4	20.0	10	36	15	1	29	2.20
23	Carioca		0-1	3	2	0	9	-		4.10
			0.13	0	1	24	10	1	20	3.11
2,4	Santa America		3-4	16	1	2	2 6	~		4.05
			3.0	40.5	35	71	10	1	0	3.01
25	Jaguarema		0-1 0.3	2 0	0 2	1 29	9	-	 70	4.20
						29	15	1	38	3.11
26	Mirim Talo Roxo		0-1 2.9	0 1.5	0 7	0 51	10 10	2	33	4.25 3.10
	D							2	- 55	
27	Douradinho (ES)		0 0,9	12 5.0	1 11	1 27	11 3	-	16	4.25 3.11
28	Guatambu		0	2	0					
20	duacamou		0	0	1	0 36	14 15	1	24	4.19 3.11
29 -	Casca Branca		0	24	1	2	10	-	_	3.25
			0.7	0	31	49	8	1	33	2.20
30	IAC 5564		1-2	4	1	0	25	_		4.05
			0.3	38.2	25	38	3	2	27	3.01
31	Maranhão Vermelho		1-2	8	0.5		11	-		4,20
			3.3	5.9	4	40	3	1	33	3.11
32	Cateto (PR)		0	10	4	0	17 3	2	0	4.18
			0.13	0	0	33	3	2	U	3.05
33	Jaragua		0 1.1	4 0	0.5 1	2 31	16 18	- 1	- 33	4.22 3.13
								*	00	
34	IRAT 136		0 0.05	4 2.5	2 0	0 16	15 13	2	24	4.10 3.05
							14			4.01
35 3.: •	CNA 104-2-43-2		0 0.28	22 19.4	4 32	0 13	0	1	0	2.23
			0-1	2	3	1	14	_	_	4.20
36	Amarelão		0.3	10	0	27	0	1	0	3.18
77	IRAT 13		0	4	4	0	5	-	_	4.22
	TIME IN		0	2.5	18	27	23	-	-	3.03
38	CNA 104-4-1-1		0	6	5	1	10	-	-	4.01
- ~	The second of th		1.1	93.8	67	69	8	-	0	2.20
39	Iguape Redondo (MP)		0-1	6	0.5		8	-	*	4.22
			0.13	0	0	22	5	1	22	3.11
10	IRAT 104		0	4	2	0	- 0	- 1	22	4.22
			0	31.6	15	18	8	1	22	3.12

第 10 表 (続き)

Na	e d	拉拉 华代	乗 い もち	育い もち	技 駅 いもち	18色製 枯材	贬色 初	条類 枯期	ごま 競技府	Rate
41	IAC 1246	′83 ′84	0 7 1 %	16 % 43.1	4 17	1 47	26 [%] 25	2	22	4.05 3.01
42	Vermelho Miudo		3-4 2.6	46 0	1	0 49	69 25	- 1	33	4.02 3.11
43	Silvanot (MG)		2-3 0.3	4 8.0	0.5	0 31	18 3	3	33	4.05 3.01
44	Bacaba Tardio		1-2	18 10.1	0 9	1 27	12 5	1	0	4.25 3.15
45	Chatão		2-3 0.1	18 3.3	0.5 6	1 31	12 3	1	0.2	4.03 3.01
46	Nenem		0-1 0.13	28 6.0	0 1.4	2 27	10 3	2	22	4.18 3.08
47	Corte		0-1 0.15	12 13.1	0 27	1 44	10	- 1	0	4.02 2.25
48	Chapadeiro		0-1 0.28	10 10.0	6 11	0 38	6 3	1	18	4.02 3.01
49	Arcos Brancos		1-2 1.7	18 6.0	2 3.5	0 27	28 10	1	33	4.20 3.11
50	Morro de Garça		0-1 0.6	6 33.3	1 12	2 40	. 4	- 2	27	4.05 3.08

注. 第9表の注を参照

網7図

SUMMARY

Rice is one of the most important crops as national food source in Brazil, and of cause, the intensification of its development is one of the major targets for the agricultural activity in this country. It is said, the Cerrados region covers about fifty million hectares of areas suitable for crop production and it carries about forty per cent of the rice production of Brazil.

Under the present situation, there are several problems to be solved on rice production in Cerrados. Because of most of rice in Cerrados region are grown under rainfed upland conditions, the yearly production often fluctuate by reason of occurrence of unfavourable climate condition and prevalence of diseases and pests especially rice blast.

In Cerrados region, there are vast area of lowland (Varzeas) estimated about five million hectares, where sufficient ground water could be avairable through the year for rice cultivation. The agricultural development of varzeas region would be expectable way to solve the water problems. On the other hand, the diseases and pest are avoidable factors by appropriate biological and chemical countermeasurs, such as using of resistant varieties, proper fertilization, improvement of tillage and water management system, and, furthermore, effective combination of these methods with occations.

In this report, author described the results of trials carried for two rainy seasons from 1983 until 1985 at the Centro de Pesquisa Agropecuaria dos Cerrados (CPAC) on the incidence of rice blast disease and its control. The author expects this report would be a primary step for improvement of rice culture on varzeas and would contribute to develop the food supply in Cerrados.

I. Epidemiology of rice blast disease (*Pyricularia orysae* cav.) under unirrigated and irrigated conditions.

In this experiment, the author intended to accumulate the basic informations of disease prevalence and control method of rice blast disease of upland and paddy rice grown on gley lowland soil (varzeas).

Experiment 1. Incidence of rice blast disease of upland rice grown on newly reclaimed varzeas field in relation to different levels of nitrogen application.

The experiment were carried in rainy season of 1983/1984. Two early varieties (IAC 25 and IAC 164) and a medium variety (IAC 47) were used. The field was divided into two parts, one was diminished the rice blast infection by chemical control and the other was let alone. The each part was consisted with three different nitrogen levels, nitrogen difficient (N: 0 kg/ha), standard (N:30 kg/ha), and excess (60 kg/ha) respectively. As fungicide, 1.2 liter/hectare of mixture of kasugamicine (1.2%) and phthalide (15%) were used.

The results of survey on incidence of rice blast in each treatment were showed in Table 3 and Figure 2.

Rice seeds were sown on middle of December and first symptoms of leaf blast appeard on early of February. The leaf blast rapidly progressed and reached around 5 to 10 per cent of lesion area of leaf on no fungicide applied plots. The prevalence of leaf blast seemed relatively less on the nitrogen difficient plots compared with the other nitrogen applied ones, but no significant difference was recognized. The same tendency was also recognized on the incidence of neck blast. This suggested that the virgin soil of varzeas kept high potential of latent nitrogen sources. The neck blast appeared at the middle of March on early varieties and eary of April on medium variety. The rate of infected panicles reached around 20% to 50%.

The effects of disease control by chemical application was clearly recognized. Occurrence of leaf blast hardly recognized on the fungicide applied plots, and similarly, neck blast diminished below one tenth compared with non applied plots. Grain yield also paralelled with the incidence of neck blast. The average yield of grain per fifty panicles of three varieties were 84.0 grams for non treated plots, contrally, 173.7 grams for treated ones.

In this experiment, author intended to get some informations about that how blast disease prevalent in those Cerrados region specially on varzeas fields and how respond the Brazilian rice varieties to rice blast. The results showed that under natural condition, rice blast prevalent easily on susceptible varieties at the varzeas field. And also, it is important that newly reclaimed varzeas field has much latent nitrogen

sources and rice cultivation on varzeas has always chance of encounter to severe damage by rice blast. Importance of chemical control and/or cultural countermeasure for control of rice blast should be worth due considerations.

Experiment 2. Effect of frequency of fungicide application for control of neck blast on the rice grown in varzeas.

The experiment were carried in rainy season of 1984/1985. This test aimed to get informations about timing and frequency of fungicide application for control of neck blast, which brings the most drastic damage by rice blast.

Three upland varieties which were same as the varieties used experiment 1, were sown on middle of November, 1984. As fungicide, mixture of kasugamicine and phthalide same as used experiment 1 were used. Schedule of fungicide application were selected as follows:

1) no fungicide for neck blast (leave alone), 2) heading time and seven days after heading (two times), and 3) heading, and seven days after and fourteen days after heading (three times).

The outbreak of neck blast were observed on late of February for early varieties and on early of March for medium variety. Damage of necek blast of each treatment plot were observed on middle of March for early varieties and on early of April for medium variety. The results of survey were showed on Table 4 and Figure 4.

The incidence of neck blast on each fungicidal treatment of 1), 2) and 3) were 13.6, 0.3 and 0 per cent on IAC 25, 2.8, 4.3 and 0 per cent on IAC 164, and 57.3 46.0 and 4.3 per cent on IAC 47 respectively. Culculated grain yields (tons per hectare) were 3.6, 3.6 and 4.1 t/ha for IAC 25, 4.8, 4.8, and 5.7t/ha for IAC 164 and 3.1, 3.7 and 5.1t/ha for IAC 47 respectively.

The results of the experiment suggested that two times of chemical application at the heading time and relatively early period of ripening stage were sufficient for most of varieties. In this experiment, it should be noted that at this cropping season, heading time of early variety was hit by temporary irregular dry period (Veranico), and contrarly, ripening stage of medium variety accorded with much precipitations, and more damage was happened. Generally speaking, two times of chemical applications seem to be sufficient, but in case of unfavourable climate

condition, such as prolonged rain weather period, further application should be recomended.

On this field, much incidence of leaf scald disease (Rhinchosporium orysae) were observed. The severity of the disease decreased according to increase of the times of chemical application (Figure 4 and Table 5), but reasonable explanation of the effect of chemicals were remained.

Experiment 3. Incidence of rice blast disease on paddy field.

In rainy season of 1984/1985, two small scale paddy fields, 4m x 20m, were prepared at varzeas in CPAC site. As inorganic soil amendment, 7.5 tons and 15 tons per hectare of calcium dolomite (calcario dolomitico) were given to respective field. Another fertilizers were given to both fields as 1 ton per hectare of compound fertilizer. In late of November 1984, 25 paddy varieties and 5 upland varieties were sown under unirrigate condition, and 25 days after sowing, irrigation water was introduced.

The incidence of neck blast on varieties varied from 0% to 50%. It was difficult to fined out the definit tendency between incidence of neck blast and applied amount of calcium dolomite and also definit tendency between rice blast and heading time of each variety (Table 6 and Figure 5 and 6).

Generally, application of silicate compound or field with much natural silicate sources might be effective for reducing of rice blast incidence. It would suggested that another trial for utilization of silicate source such as by-products of blast furnece industry (calcium silicate etc.).

II. Identification of pathoginic races of rice blast fungus (Pyricularia oryzea Cav.)

The facts that the existence of pathogenic differenciation of rice blast fungus to rice varieties were well known in many rice cultivation countries. Several studies concerned with analysis of races were also reported in Brazil. The informations of races prevalent in areas concerned will basically contribute to breeding of resistant varieties to the disease and, also, it will be useful to secure of stable rice production.

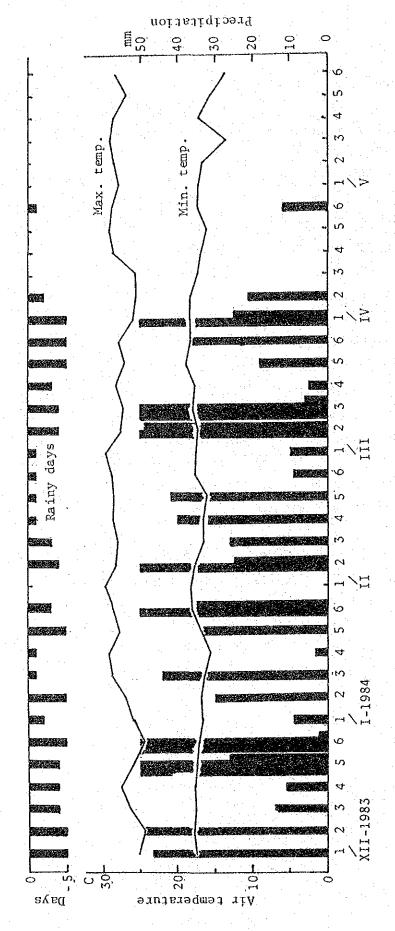
In this report, the author tried to analyse the races of rice blast fungus isolates collected from rice fields around of CPAC. Twenty eight monoconidial isolates collected in 1984 and 1985 were used for identification. Twelve Japanese differencial varieties used in this trial were received by courtesy of Dr. Y. Tanaka, CNPAF/IICA. The inoculum was prepared from conidia produced on oat-agar media and inoculation were carried by sprying of spore suspension to rice seedlings of fith leaf stage.

The result of identification was given in Table 7. Six varieties of twelve Japanese differencials were susceptible to all isolates and a variety (Toride 1) is resistant to all isolates. Other five varieties showed different reaction according to isolates used and six of different reaction types were given.

Of twenty eight isolates, eighteen isolates didn't show their pathogenicity to major resistant gene Pi-Z (Fukunishiki and Zenith) and $Pi-z^t$ (Toride 1), and fifteen isolates were not pathogenic to $Pi-ta^2$ (Pi No.1), $Pi-z^t$ and P-b (BL 1). The result suggests that the introduction of resistant gene of $Pi-z^t$ seems expectable, but it must be noted that vertical resistance, major gene controlled resistance, often induce 'break down' of their resistance by appearance of new pathogenic race(s). Utilization of horizontal resistance should be considered in parallel with vertical resistance.

Seedlings of twenty four paddy varieties were inoculated with five isolates differ their pathogenicity each other to differentials. The results were in Table 8. As their reaction to isolates, they were grouped into seven types. Two varieties, Cica 9 and BR/IRGA 410, were resistant to five isolates and two varieties, Bonnet and Calasa were susceptible to all five isolates, those varieties may be useful as standard varieties for resistant and susceptible varieties.

Appendix


The results of the cooperated work with Centro Nacional de Pesquisa Arroz e Feijão, the joint survey activity for evaluation of varietal response to important rice diseases.

This joint work intended to clarify the varietal differences of rice varieties to rice blast and other important diseases. The work was designed by CNPAF under the title of 'Ensaio Cooperativo de Avalicação das Doenças de Arroz de Sequeiro'.

The responces on one hundred early and medium maturity varieties to rice blast, leaf blight, cercospora leaf spot, leaf scald and grain discoloration were estimated under upland condition in both rainy seasons of 1983/1984 and 1984/1985. The results of the survey done at CPAC were given in Table 9 and 10.

Six of early and twenty two medium varieties were tolerant to neck blast for two years reprications. For leaf blight, twenty two varieties were tolerant and four ones were very susceptible, thirty six were tolerant and twelve varieties were susceptible to leaf scald, and twenty three varieties showed fairly symptoms of grain discoloration. Some of the local varieties showed sever infection by cercospora leaf spot disease.

The data of the experiments were sent of CNPAF and they would be analyzed with the results from other jointed stations.

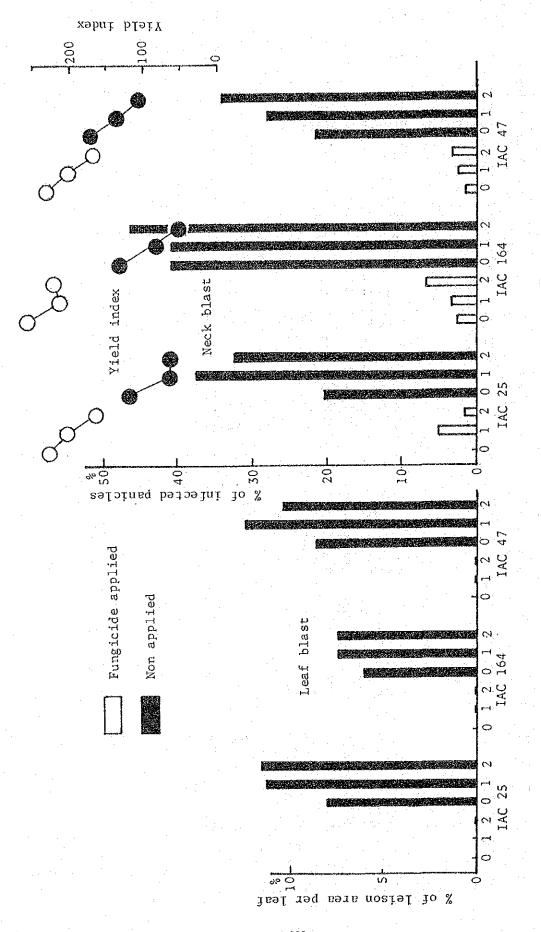
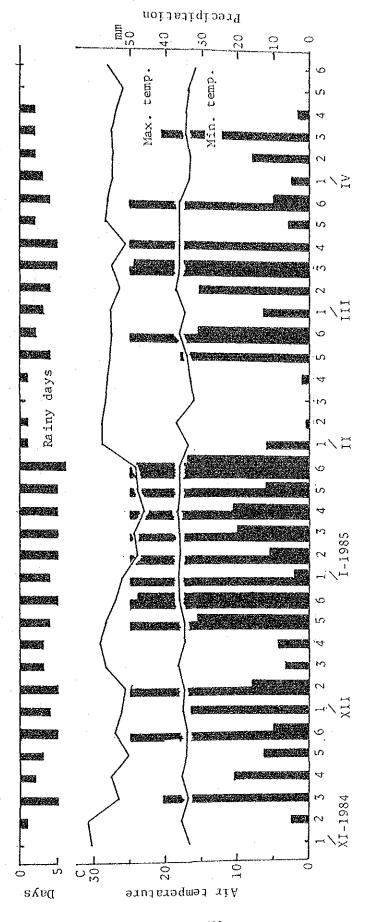

Meteorological conditions (pentad) of rice growing season of 1983/1984

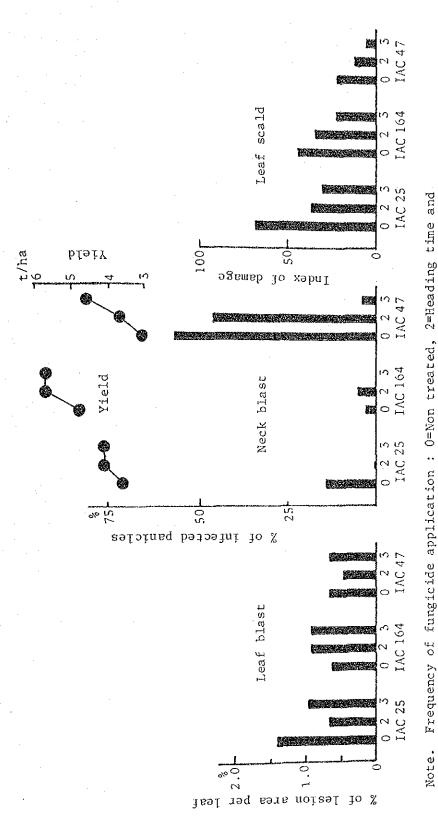
Table 3. Effects of nitrogen application level on incidence of rice blast


77	Fungicide	Nitrogen	Leaf	blast	Neck bl.	ast	Panicle blas	branch st	Grain weight	V. 61 ሚመርመ
>' n + 1 o >	application	level	10/11	28/II	27/111	5/17	27/III	5/IV	50 panicles)
			%	%	%	%	%	8	60	
-		01)	17	•	0	0	•	•	85.	221
	Treated	гч	0.24	0.00	0	5.0	0.0	1.0	166.0	198
			7	0.04	0	•		•	37.	163
IAC 25	-				•					-
		0	.2	٥		0			9	115
	Non treated	r∹	0.26	11.3	20.0	37.5	3,3	3.6	51.3	19
		2	ιĊ	•	•	2.	•	•	r-d	. 61
		0	ι.	0	0			٠.	13.	(V)
	Treated	r-d	0.17	0.04	0	ω. 	0.0	1.2	177.3	211
		2	ri	0.02	0	•		•	86.	CV
IAC 164		0	2	•	7	0	•	•	1	128
	Non treated	H	0.26	7.4	33.3	40.8	3.3	4.4	67	81
		.64	. 2	•	0	9	•	•		50
A Commence of the Commence of		0	7			72).		2)	90.	(1
	Treated	r-i	0.22	0.01	2.	5	□. H		169.3	202
		7	r~:					_	37	9
IAC 47										
		0	7	•	* 4	7	٠		$\dot{\circ}$	S
	Non treated	- -!	0.22	12.4	28.	m	2.0		111.3	133.
		2	N	Ċ	4	7			ó	\circ
	-in-rivinense des d'ives desseud-s'estretiesent (rife-diffiched diffiched	Aver	erage of	non tre	treated pl	plots	-		84.0	100
	. Consideration of measurement breaken statement of the methods				and with the formal by the state of the stat					

Note 1) 0: 0 kg/ha, 1: 30 kg/ha, 2: 60 kg/ha

2) Observed on 26/1V.

Effects of nitrogen application level on incidence of rice blast


Meteorological conditions (pentad) of rice growing season of 1984/1985

Effect of timing and frequency of fungicide application on incidence of rice blast Table 4.

Variety	Frequency of fungicide application	Leaf blast	Neck blast	Panicle branch blast	Grain yield per 1.5 m ²	Estimated yield per ha	Index of yield	Remarks No. of panicles per hill
	0	1.43%	13.6%	20.0%	5458	3.6 [£]	100	12.9
IAC 25	2	0.65	0.3	۲.9	612	7 · 5	112	12.9
	m	0.93	0	0,1	612	7.7	112	12.9
٠				***				-
	0	0.61	2.8	4.1	718	4.8	100	12.8
IAC 164		0.88	4.0	7.9	860	5.7	120	13.1
	m	0.92	0	9 . F	861	5.7	120	13.5
:	0	0.66	57.3	10.2	450	ი ი	100	15.9
IAC 47	7	0.43	70.97	7.4	560	3.7	124	16.0
	1 (m) 1 m) 1 (1) 2 (1)	0.65	4.3	2.6	764	7.2 T.2	170	14.9

Frequency of fungicide application : 0=Non treated, 2=Heading time and 10 days after heading, 3-Heading and 10 days and 20 days after heading. Note 1)

Indiex of yield : Average yield of non fungicide applied plots of each variety were set as 100. 5

10 days after heading, 3-Heading and 10 days and 20 days after heading.

Fig. 4 Effects of timing and frequency of fungicide application on incidence of rice blast

Table 5. Effects of frequency of fungicide application on incidence of leaf scald

Frequency		Index of damage	
of fungicide application	IAC 25	IAC 164	TAC 47
0	67	45	24
2	37	34	12
3	31	23	6

Note. Disease index = $(0xn_0 + 1xn_1 + 2xn_2 + 3xn_3)x100/3xN$

N = number of leaves investigated.

 $n_0 \dots n_3$ = number of leaves according to inspection scale.

Infection scale = 0; healthy ...

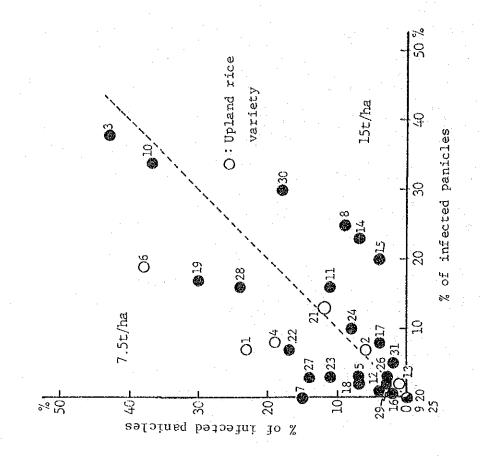

3; $\geq 1/3$ of leaf area infected.

Table 6. Incidence of rice blast on paddy fields

		% of	lesion a	rea of	l ea f		% (of infec	ted panie.	les		
						7	5t/ha	2)	1	5t/ha ¹)	Date o
	Variety	(*85- 7.5t/ha		('85-: 7.5t/ha	,	No. of panieles per hill	Neck	Blast of panicle branch	No. of panicles per hill	Neck blast	Blast of panicle branch	headin
	1)		%	%	%	pes	 %	%	pcs	%	%	
ı.	IAC 25 ¹⁾	4.70	3.20	36.7	4.7	9.4	23.4	10.6	9.9	6.6	5.1	2 05
2.	Dourado Precoce	3.8	3.2	6.7	6.2	9.2	6.4	9.9	10.0	6.5	10.0	2 07
	Blue Belle	0.11	0.13	0.3	0.7	10.1	44.2	0.6	11.8	38.3	10.6	2 09
4.	IAC 164 ¹)	0.5	2.3	30.0	5.4	10.5	19.0	38.9	11.1	7.8	9.3	2 09
	Le Bonnet	0	0.05	0	0	10.1						
	1	v			U	10.1	6.9	19.8	14.5	3.1	8.2	2 1.0
6.	Batatais ¹	4.1	0.4	3.1	4.5	11.1	38.4	28.1	11.0	19.0	15.2	2 10
7.	BR/IRCA 410	0.07	0.04	0	0.25	15.1	15.1	4.5	16.8	0	3.6	2 15
8.	BR/IRGA 409	0.01	0.24	0	0.2	13.3	9.4	1.1	16.2	25.2	12.3	2 18
	Formosa	0	0	0	0.05	14.1	o ·	0	14.9	0	0	2 20
	EEA 304	1.65	0.72	0.65	0.2	11.1					13.8	2 21
ŁU ę	BBN JOH	210.7	0.72	0.09	0.2	71.7	37.4	14.8	10.4	33.9	13.0	2 21
11.	EEA 301	2.40	1.20	0.9	0.6	10.1	11.1	8.3	10.1	16.3	10.9	2 21
12.	EEA 405	1.15	1.47	0.2	0.4	9.3	4.3	11.1	9.1	0.7	0	2 22
	IAC 471)	9.0	2.5	27.4	4.1	11.5	1,2	3.2	13.6	2.4	6.3	2 22
	Calasa	4.3	1.0	1.6	2.9	11.4	6.8	8.0	10.8	22.8	9.2	2 25
	Dawn	0	0	0	0	9.1	3.6	0.7	8.4	19.6	10.5	2 25
	Bico Torto	3.40	0 63	4.3	2 75	10.7	2.1	4.7	11 1	0.4	1.2	2 25
	the state of the s		0.63		2.75	10.7			11.1			2 27
	Matão	0.65	0.25	1.55	3.6	10.9	3.8	6.4	13.1	7.6	4.8	
	La Belle	0	0	0.05	0	15.5	7.3	3.0	21.6	1.5	2.2	3 03
	Bonnet	0.34	0	0	0.05	11.7	30.0	13.8	8.5	17.4	19.1	3 01
20.	Valley ¹⁾	0.41	0.19	0.2	0.05	13.0	0	0	16.9	0	0	3 01
21.	Agulha Dourado ¹⁾	8.5	3.2	9.5	4.9	16.5	12.3	6.7	15.7	12.8	18.5	3 03
2.	CICA 4	0	0	0	1.3	17.0	16.5	5.1	18.0	6.9	5.3	3 08
	MG-1	0.05	0	0	0.05	17.8	11.3	1.2	20.2	3.2	3.2	3 09
	IRGA 408	0.15	0	0	0	14.2	7.7	5.3	18.7	9.6	6.9	3 0
	IR 841	0	0	0	0.15	18.8	0	0.6	23.4	0	0	3 1
	TAG 000	0.04	0.05	0	0.2	19.5	3.4	1.1	21.4	3.2	0.7	3 1.
	IAC 899	0.04	0.05				14.2	5.4	17.5	2.9	1.2	3 1
	CICA 9	0	0	0.05	0.05	17.4				16.4	9.1	3 1
	Starbonnet	0.1	0	0.15	0.25	12.3	23.8	12.5	11.0			
-	Bella Patna	0.15	0.1	0.05	0	15.4	3.2	4.8	19.7	2.3	0.6	3 1
30.	De Abril	0.1	0.23	0.05	0.7	15.9	17.6	8.0	16.8	29.8	8.1	3 2
31.	Skirivimankot	0.52	0.33	3.1	1.7	18.6	1.9	6.9	17.6	5.1	14.2	3 2
	CICA 8	0	0.04	0	0.05	19.5	_	-	24.6	-	_	>3 25

Note: 1) Upland varieties

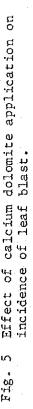
2) Amount of calcium dolomite

13 O O 1

8

20.0

а Ö


O : Upland rice variety

Ő

7.5t/ha

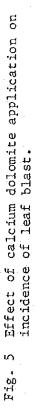
lesion area per leaf

14 6 17

10,0

5.0

0.5


15t/ha

0.2020

% of lesion area per leaf

Effect of calcium dolomite application on incidence of neck blast

Fig. 6

0.5

10 %

Table 7. Reaction of Japanese differencials to isolates

Differential	Resistant	*		React	tion		
variety	gene	(a)	(b)	(c)	(d)	(e)	(f)
Sin 2	$Pi-k^S$	S	S	S	s	S	S
Aichi Asahi	Pi-a	S	$\mathbf{s}^{'}$	S	s	S	S
Fujisaka 5	Pi- i	S	S	S	S	S	S
Kanto 51	Pi-k	S	S	S	S	S	S
Tsuyuake	$Pi-k^m$	M	S	S	R	S	S
Fukunishiki	Pi-z	M	s	R	S	R	R
K-1	Pi- ta	S	S	S	S	S	S
Pi No.4	Pi - ta^2	R	R	R	R	S	S
Toride 1	Pi- zt	R	R	R	R	R	R
BL-1	Pi-b	S	R	R	R	R	. \$
к-59	Pi-t	s ·	S	S	S	S	S
Zenith	Pi-z,a	R	S	R	S	R	R
Number of iso showed same r		1	9	5	1.	2	10

S: Susceptible, M: Intermediate, R: Resistant

Table 8. Reaction on paddy rice varieties to several isolates.

			Isolates		
Variety	(b) 106	(b) 243	(c) 254	(f) 104	(f) 107
Cica 9	R	R	R	R	R
BR/IRGA 410	R	R	R	R(M)	R
Cica 8		R	R	S	R
IR 841	R	R	R	S	. R
IAC 899	R	R	R	S	R
Cica 4	R	R	R	M-S	M
Dawn	R	$\mathbf{R}_{>}$	S	S	R
Formosa	R	R	S	S	R
Bico Torto	R	М	S	M	R
Bella Patna	R	R	R	S	S
BR/IRGA 409	R	R	M	S	. S
IRGA 408	R	M	R	S	S
MG-1	R	R	S	<u>S</u>	S_
Star Bonnet	R	M	S _.	S	R
EEA 301	R	S	S	S	R
EEA 304	$^{\circ}$ R	S	_ S	S	R_
La Bonnet	R	S	R	S	(M)
Matao	R	S	S	S ,	. \$
De Abril	R	S	S	S	<u>_s</u>
La Belle		S	S	S	R
EEA 405	S	, S	S	S	R
Blue Belle	s s	S	S	s =	_ R
Bonnet	s	S	S	S	S
Calasa	s	S	S	S	S

Table 9. Incidence of important rice diseases on Brazilian rice varieties (early var. CPAC)

No.	Variety Y	ear	leaf blast	Neck blast	Blast of panicle branch	lesf scald	Grain discolo- ration	Cercospora leaf spot		Heading time
01 (Dourado Precoce (S-B) '8		0.27 ⁴ 1.25	24 18.7		1 10	- S * 0	- 1	30	3.13 2.07
02 /	Agulha Dourado (R-B)		0.62 3.65	20 0.8	27 S	0 8	22 S	î	_ 33	4.10 3.18
03 1	M-39 (R-LS)		0.05 0.03	16 9.2	26 7	2 16	5 3	1	0	3.20 2.12
	Trés Meses Branco (5-L9 Agulha (S-LS)		0.03 1.05	-)-)-	15	-	2	27	5.10
05	79-233 (R-CLS)		0.05 0.35	28 15.3	25 7	2 17	7 0	1	33	3.15 2.10
06	L-43 (S-CLS)		0.11 0.28	46 13.6	22 6	2 23	16 9	1	30	3.13 2.05
07 (CNA 092-BM11-BM19- P2 (R-GDC)		0.51 0.89	42 14.0	28 8	22	9 0	ì	33	3.13 2.07
08	L-80-63 (S-GDC)		0.04 0.11	26 14.0	14 7	2 22	9 0	1	1	3.13 2.02
09	Valley (R-RB)		0.03 0.12	18 10.2	2 7	0 S	27 4	1	22	3.27 3.11
10	Batatais (R-RB)		0.09 0.25	28 10.5	40 4	2 9	4 0	2	30	3.15 2.12
11	Pratão Precoce		0.33 2.3	- 9.1	- 4	2 2	· 4 0	1	24	3.13
12	IAC 164		0.18 0.4	42 0	48 9	1 13	6 3	ī	11	3.15 2.12
13 1	Precoce Branco		0.30 0.2	30 22.8	19 11	2 11	4 3	3	40	3.13 2.02
14	Barbalho		0.83 0.2	46 19.0		2 18	4 3	-	13	3.13 2.12
15 (Mimoso		0.40 4.3			2 24	54 43	ī	- 33	3.31 3.05
16 (Caqui		0.35 4.5	3.4 0	4 2	0 9	38 40	3	62	4.03 3.05
17	Agulha Branca		0.23 5.1	34 6.9		0 20	68 43	ĩ	- 33	3.27 3.03
18	Cateto Ceda		0.43 0	0 5.1		44	1 3	ī 1	16	3.22 2.18
19 (Casado	1	0.38	30 0	3 0	0 24	68 43	2	33	4.01 3.15
20	Prato Ligeiro		0.1	10.0	8 20 01 —	0 24	18	1		3,24 3,12

	i e	· .						
	Table	9 (0	Conti	nued)				
No. Variety	Year	Leaf blast	Neck blast	Blast of panicle branch	Leaf scald	Grain discolo- ration	Cercospors Leaf - leaf spot bligh	Heading ht time
21 Nenezão	'83 '84	0.05 [%] 5.0	26 * 0	26 0	1 2	50 [%] 38	_ 30	4.01 3.11
22 Cajueiro Liso		0.45 2.7	50 1.4	15 3	0 2	60 3	1 13	3.28 3.08
23 Princesa		0.05 0.2	8 8 0	2 6	0 11	46 10	i 11	4.25 3.05
24 Trés Messes		0.03	50 6.8	78 11	0 18	11 0	_ 30	3.13 2.10
25 Cateto Precoce		0.03 o.3	16 15.8	43	0 13	10 8	ī - 0	3.15 2.12
26 Venez Roxo		0.2 5.2	30 12.9	3 4	0 20	45 40	1 36	3.28 3.01
27 Meia Agulha		0.05 0.2	0 0	0.5	0 16	13 0	1 22	4.20 3.11
28 Arroz Zebu		0.08 1.5	25.0	- 9	0 16	49 -	1 7	4.20 3.18
29 Douradinho	:	0.25 4.4	1	1	0 7	13 3	 - 9	4.20
30 Salm Pikiti		0.08 0.8	80 75.3	49 19	1 2	6 0	3 27	3.25 2.12
31 IAČ 165		0.23 0.4	48 9.4	25 3	1 4	6 0	1 13	3.13 2.10
32 L 52	-	0.3 0.4			1 20	5 0	- 1 36	3.10 2.07
33 Guira Amarelo		0.05 0.8		71 10	13	4 0	33	3.13 2.12
34 Limeira		0.15 0.5		2 2		33 0	ī 7	3.28 3.05
35 L 365		0.73 5.7	48 20.4	1 19	0 13	17 30	1 36	3.22 3.01
36 IRAT 112		0.03	28 10.1	38 14	1 42	5 0	1 20	3.13 2.07
37 L 50		0.03 0.15			0 4	6 8	1 36	
38 CNA 095-BM30-BM9-10		0.03	26 3.2		1 29	4 3	1 24	3.13 2.12
39 CNA 762260		0.05 0.6		32 17 -	0 33	10	ī 7	3.13 2.07
40 IAC 25		0.28 1.9	24 17.9 -30	41 26 2 —	0 13	5 0	1 20	3.13 2.07

Table 9 (Continued)

No. Variety	Year	Leaf blast	Neck blast	Blast of panicle branch	Leaf scald	Grain discolo- ration	Cercospora leaf spot	Leaf blight	Heading time
41 CNA 762324	183	0.08	- *	_	4	×		-	3,24
	' 84	0.6	13.0	15	38	0	~	29	3.05
42 CNA 092-BM11-BM19-P2		0.08		_	•	_	-	_	3.23
· ·		3.2	27.5	6	20	0	-	29	2.07
43 Chatinho Branco		0.18	-	-			_	:	4.10
		9.2	0	0	18	7	1	47	3.11
44 Tongil		0.13		-	· _	40	•	_	4.10
		2.5	0	0	7	33	· 	51	3.11
45 Tiririca		0		_	_	•		_	4.08
		0.15	S	8	7	40	1	29	3.18
46 CTG 1516		0	36	3	0	5	-		3,27
		0.1	12.5	7	7	0	3	29	2.12
47 Arroz de Bico Preto		0.10	0	0	0	10	•	_	3.27
		0.8	0	0.6	0	0	-	11	3.05
48 Branco Trés Messes		0.18	30	1	0	19	-	-	3.28
		1.5	1.6	1	2	15	-	20	3.05
49 IAC 21		0.18	46	3	0	37	-	-	3.25
		2.7	1.6	0.5	11	28	1	30	3.05
50 90 Dias (CA780016)		0	0	0	0	10	.=	-	4.05
		0.9	1.5	4	16	0	1	9	3.03

Note.	R(S)-B :	Standard variety	for resistant	(susceptible)	to leaf bligh	ıt
	R(S)-LS:		- do -		to leaf scald	l
	R(S)-CLS:		~ do ~		to Cercospora leaf spot	
	R(S)-GDC:		- do -		to grain discoloration	l
	R(S)-RB:		- do -		to rice blast	;

: Not observed

Disease index
Leaf blast; Per cent of lesion area per leaf.
Neck blast; Per cent of infected panicles per hill.
Grain discoloration; Per cent of diseased grain per panicle.
Blast of panicle branch; Degree of damage (O(healthy) - 100)
Cercospora leaf spot;
Leaf blight;
Leaf scald;

Table. 10 Incidence of important rice diseases on Brazilian rice varieties (medium var. CPAC)

-	(meatum var. Ci				32 - 12 Tarrey						
No .	Variety	Year	Leaf () blast	Neck blast	Blast of panicle branch	Leat scald	Grain discole- ration	Cercospora leaf spot	leaf blight	Reading time	
01	IAC 73-136(S-GDC)	*83 *84	0-3 0.62%	10 % 30.2	2 11	1 22	21% 11	2	31	4.04 3.05	
02	CNA 108-B-28-11-2B(R-GDC)	-	0 - 1 0	4 21.5	4 4	1 19	27 3	i	13	4.03	
03	IAC 76-49(S-CLS)		1-3 0.66	4. 18.1	2 9	1 35	25 5	2	38	4.05 3.05	
04	CNA 108-B-42-10-2B(R-CLS)		0-1 0.01	2 310	2 5	1 20	14 8	ĩ	11	4.05 3.05	
05	IAC 120(R-LS)		0-2 1.33	12 5.2	3 1	2 22	. 7 13	- 1	27	4.06 3.04	
06	CNA 104-B-34-a(S-LS)		0-1 0.15	16 18.5	2 30	0 35	16	ĩ	29	3.30 2.23	
07	Lambari(R-B)		0-1 1.2	2 1.1	2 3	1 30	19 16	- 1	16	4.25 3.15	
08	BR 51-46-5(S-B)		2-3 0.09	12 9.2	22	0 10	9 24	1	20	3.10	
09	Trés Marias(R-RB)		0 - 1 0	2	2	0 18	18	1	4	4.23	
10	Montanha Liso(S-RB)		0-2 0.47	14 36.7	3 9	0 30	23 8	- 2	18	4.02	
11	IAC 47		0 0.4	8 50.9	1 35	0 44	13 0	. 1	42	4.05 2.26	
12	Amarelo Bico Ganga		1-2 0.3	2	- 3	0 24	20 20	<u>-</u> 1	- 44	4.19 3.11	
13	Fernandes		1-2 1.0	2 35.6	6 30	0 40	24 5	1	42	4.02 3.01	
14	Guapão		0-1 0.3	2 2.0	0	0 38	5 8	<u>.</u>	38	4.25 3.18	
15	Ipeago 562		2-3 0.08	2 4.0	1 0	0 33	19 8	2	- 22	4.05 3.05	
16	Campineiro		2-3 3.9	18 20.0	10 27	0 67	20 S	<u>.</u> .	29	4.02	
17	Coquinta	:	0-1 10.4	2 22.7	2 \$1	0 47	8 8	<u>-</u>	40	4.22	
18	Perola		0-1 1-8	6 16.7	2 8	0 47	25 8	2	40	4.0S 3.01	
19	Arroz de Guerra		0	0 3.3	1 2	0 42	18 13	1	- 0	4.18 3.08	
20	Maranhão Branco		0 0.48	0	- 0	0 27	13 15	1	22	4.02 3.18	

Table 10 (Continued)

No.	Variety	Year	Leaf blast	Reck blast	Blast of panicle branch	Leaf scald	Grain discolo- ration	Cercospora - leaf spot	Leaf blight	Heading time
21	Coqueiro Amarelo	'83 '84	0 0.04 [%]	1 % 0	0	0 27	8 [%] 15		22	4.25 3.14
22	Oitentão		1-2 1.4	18 20.0	2 10	1 36	-6 15	<u>.</u>	29	3.26 2.20
23	Carioca		0-1 0.13	3 0	2 1	0 24	9 10	<u>.</u>	20	4,10 3,11
24	Santa America		3-4 3.0	16 40.5	1 35	2 71	26 10	- 1	- 0	4.05 3.01
25	Jaguarema		0-1 0.3	2 0	0 2	1 29	9 15	ī	38	4.20
26	Mirim Talo Roxo		0-1 2.9	0 1.5	0 7	0 51	10 10	- 2	- 33	4.25 3.10
27	Douradinho (ES)		0 0.9	12 5.0	1 11	1 27	11 3		16 .	4.25 3.11
28	Guatambu		0	2 0	0 1	0 36	14 15	- 1	- 24	4.19 3.11
29	Casca Branca		0 0.7	24 0	1 31	2 49	10 8	1	33	3.25 2.20
30	IAC 5564		1-2 0.3	4 38.2	1 25	0 38	25 3	2	27	4.05 3.01
31	Maranhão Vermelho		1-2	8 5.9	0.5	2 40	11	<u>-</u> 1	33	4.20 3.11
32	Cateto (PR)		0 0.13	10 0	4	0 33	17 3	2	0	4.18 3.05
33	Jaragua		0 1.1	4 0	0.5 1	2 31	16 18	- 1	33	4.22 3.13
34	IRAT 136		0 0.05	4 2.5	2 0	0 16	15 13	2	- 24	4.10 3.05
35	CNA 104-2-43-2		0 0.28	22 19.4		0 13	14 0	1	0	4.01 2.23
36	Amarelão		0-1 0.3	2 10	3 0	1 27	14 0	- 1	- 0	4.20 3.18
37	IRAT 13		0	4 2.5	4 18	0 27	5 23		-	4.22 3.03
38		4.	0 1.1	6 93.8		1 69	10 8	-	0	4.01 2.20
39	Iguape Redondo (MP)		0-1 0.13	6 0	0.5 0	0 22	8 5	- 1	22	4.22 3.11
40	IRAT 104		0	4 31.6		0 18	- 8	- 1	22	4.22 3.12

Table 10 (Continued)

					·					
No.	Variety	Year	Leaf blast	Reck blast		Leaf scald	Grain discolo- ration	Cercospora leaf spot	Leaf blight	Heading time
41	IAC 1246	'83 "84	0 1 %	16 % 43.1		1 47	26 [%] 25	2	22	4.05 3.01
42	Vermelho Miudo		3-4 2.6	46 0	1 0.7	0 49	69 25	<u>.</u>	- 33	4.02
43	Silvanot (MG)		2-3 0.3	4 8.0	0.5	0 31	18 3	3	33	4.05 3.01
44	Bacaba Tardio		1-2	18 10.1	0	1 27	12 5	ī	0	4.25 3.15
45	Chatão		2-3 0.1	18 3.3		1 31	12 3	- 1	0.2	4.03 3.01
46	Nenem		0-1 0.13	28 6.0	0	2 27	10	2	22	4.18
47	Corte		0-1 0.15	12 13.1	0 27	1 44	10	·	0	4.02 2.25
48	Chapadeiro		0-1 0.28	10 10.0	6 11	0 38	6 3	1	18	4.02
49	Arcos Brancos		1-2 1.7	18 6.0	2 3.5	.0 27	28 10	ī	33	4.20 3.11
50	Morro de Garça		0-1 0.6	6 33.3	1 12	2 40	4 8	2	27	4.05 3.08

Note: Refer the foot note of Table 9.

^{1) &#}x27;83; number of lesions per leaf.

^{&#}x27;84; percentage of lesion area per leaf.