C.1.4. Existing Water Supply Systems

Water Production Facilities (1)

a. Transition of Water Production

> Islamabad ___

There are three kind of water production facilities to water supply for Islamabad proper area, namely reservoir dam, head works and tube wells. The average daily water production and its capacity as of 1986 are 200,800 cmd (44.2 MGD) and 225,100 cmd (49.6 MGD) respectively, as shown in Table C-1-24.

Table C-1-24. Daily Water Production in 1986

.

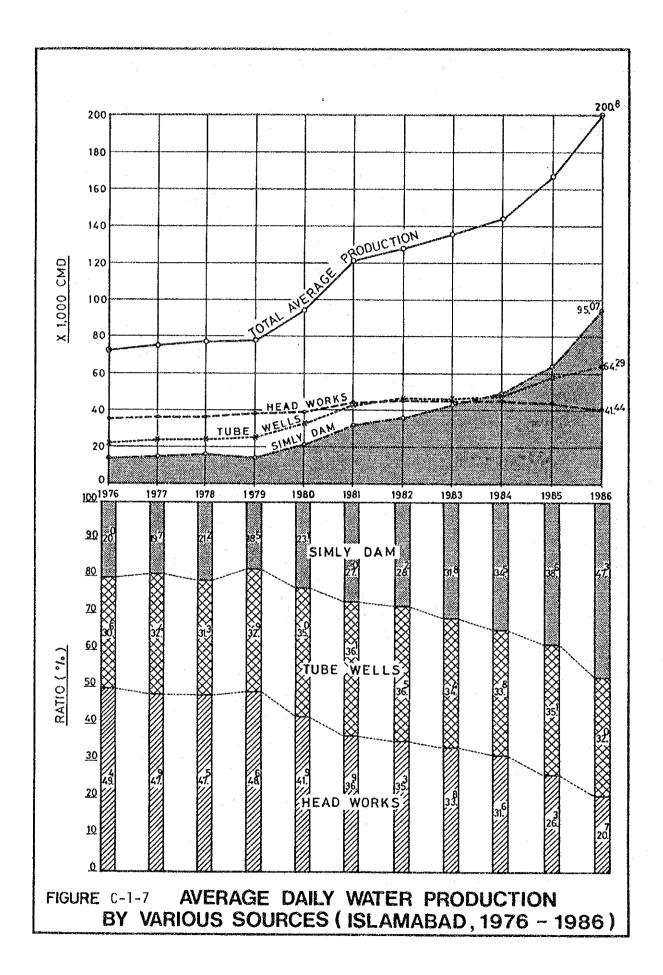
	(1	Unit: MLD (MGD))
Name of Source	Average Daily Production	Production Capacity
Simly-Filtration Plant	95.0 (20.9)	109.1 (24.0)
Kurang H.W.		11.3 (2.5) $\frac{1}{}$
Shahdara H.W.	3.3 (0.7)	11.3 (2.5)
Nurpur H.W.	3.2 (0.7)	3.2 (0.7)
Saidpur H.W.	3.6 (0.8)	3.6 (0.8)
Golf Course H.W. (New)	12.3 (2.7)	12.3 (2.7)
Golf Course H.W. (Old)	10.0 (2.2)	10.0 (2.2)
G-10 H.W.	9,1 (2.0)	11.3 (2.5)
Tuble Wells in National Park Area	34.0 (7.5)	34.0 (7.5)
Tube Wells in Sectoral Area	30.3 (6.7)	30.3 (6.7)
Total:	200.8 (44.2)	225.1 (49.6)

rari

Source: CDA

Note:

1/: Not in operation since 1983 for the preparation of the future expansion.


Head Works H.W.:

Water production in Islamabad Proper Area at present and in past eleven years is shown in Table C-1-25 and Figure C-1-7, respectively.

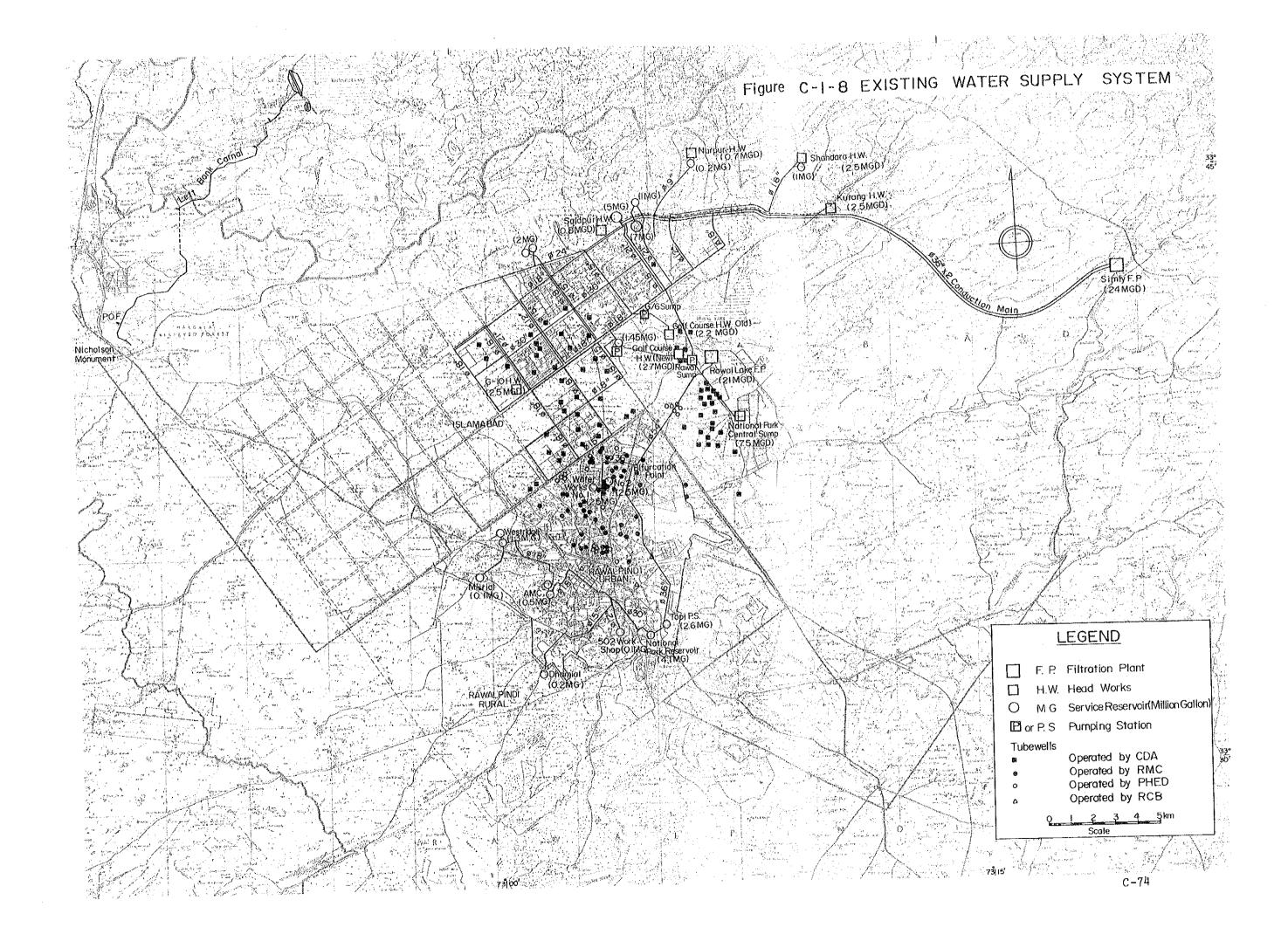

	Annu	ial Water Pro		m)	Average	
Year	Simly Dam	Tube Wells	Head Works	Total	Produc	Contracting of the local division of the loc
					(cmd)	(mgd)
1976	5,296,700	8,089,215	13,084,390	26,470,305	72,323	(15.91)
1977	5,447,715	8,958,950	13,253,695	27,660,360	75,781	(16.67)
1978	5,964,595	8,801,065	13,366,670	28,132,330	77,075	(16.95)
1979	5,270,720	9,400,755	13,872,950	28,544,425	78,204	(17.20)
1980	8,006,635	12,114,190	14,499,165	34,619,990	94,590	(20.81)
1981	11,991,980	16,032,380	16,391,830	44,416,190	121,688	(26.77)
1982	13,190,905	17,115,735	16,527,420	86,834,060	128,312	(28,23)
1983	15,775,760	17,072,965	16,788,135	49,636,860	135,991	(29.92)
1984	18,268,250	17,902,885	16,735,355	52,906,490	144,553	(31.80)
1985	23,634,520	21,500,155	16,087,890	61,222,565	167,733	(36.90)
1986	34,701,030	23,465,715	15,137,850	73,304,595	200,834	(44,18)

Table C-1-25.	Annual and Production	Average Daily Water in Islamabad
Table C-1-23.	Production	in Islamabad

Source: CDA

C~73

- Rawalpindi

There are two kind of water production facilities to water supply for Rawalpindi urban area, namely reservoir dam and tube wells.

The average daily water production and its capacity as of 1986 are 178,300 cmd (39.2 MGD) and 192,200 cmd (42.2 MGD) respectively, as shown in Table C-1-26.

Table C-1-26. Daily Water Production in 1986 (Rawalpindi Urban)

(Unit: MLD (MGD))

Name of Source	Average Daily Production	Production Capacity
Rawal Lake Filtration Plant	81.7 (18.0)	95.6 (21.0)
Sohan Camp Tube Wells	11.3 (2.5)	11.3 (2.5)
PHED Tube Wells	17.8 (3.9)	17.8 (3.9)
RMC Tube Wells	47.1 (10.4)	47.1 (10.4)
CB Tube Wells	19.3 (4.2)	19.3 (4.2)
MES (Army) Tube Wells	1.1 (0.2)	1.1 (0.2)
Total:	178.3 (39.2)	192.2 (45.2)

Source: PHED, RMC AND MES

Water production in Rawalpindi urban area at present and in past eleven years is shown in Table C-1-27.

C--75

Table C-1-27 Annual and Average Daily Water Production for Rawalpindi Urban Area

.

•

lily	iion (mgd)	(22.45)	(23.91)	(23.91)	(25.38)	(28.96)	(28.70)	(29.32)	(33.41)	(36.54)	(37.43)	(39.22)
Average Daily	Production (cmd)	102,038	108,703	108,703	115,387	131,646	130,466	133,266	151,900	166,110	170,136	178,300
	Total	37,346,025	39,676,630	39,676,630	42,116,610	48,182,760	47,620,200	48,642,310	55,443,560	60,796,495	62,099,800	65,079,500
(cum)	T/W by CANTT	2,364,725	2,358,265	2,358,265	2,358,265	2,364,725	2,358,265	2,358,265	2,574,160	2,747,745	3,371,320	3,371,320
er Production	T/W by RMC	8,336,500	9,915,990	9,915,990	10,480,645	10,518,045	10,762,970	12,955,160	19,780,845	22,241,755	22,670,550	27,735,835
Water	T/W by PHED	3,330,600	4,151,875	4,151,875	4,151,875	4,163,250	4,151,875	4,151,875	4,151,875	4,163,250	4,151,875	4,151,875
	Rawal Dam	23,314,200	23,250,500	23,250,500	25,125,825	31,136,740	30,347,090	29,177,010	28,936,680	31,643,745	31,906,055	29,820,470
	Year	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986

b. Water Treatment Plant

- Islamabad

There are eight treatment plants including one filtration plant and seven head works out of which one plant is now suspending operation for further expansion of the facilities. The summary of the treatment plants of Islamabad is presented in Table C-1-28 indicating water sources, production capacities, year of construction, etc.

- Simly Filtration Plant

The Simly Filtration Plant, located near by the Simly dam, takes raw water directly from the reservoir through \$900 mm transmission mains (two lines). The production capacity of the plant is 24 MGD and the major facilities are distribution wells, flocculation and sedimentation basins, rapid sand filters. The details of the plant facilities is presented in Table C-1-29. Raw water quality shows higher values than normal in pH, total solids, hardness and alkalinity. Such high alkalinity of water is considered to be caused by the geological conditions as limestone strata of mountains extend behind the reservoir. According to CDA, turbidity of raw water ranges 50 to 200 units (JTU). Treated water quality obtained from CDA shows normal turbidity, odor, colour, etc., indicating that purification works are carried out smoothly and satisfactorily.

- Head Works

Head works take raw water from surface water or river-bed water of various streams originated from the Margala range except those at Golf Course Head Works for which raw water are taken from tube wells and Rawal Lake. A total production capacity of the head works at present is 10.1 MGD. Major facilities of the head works are sedimentation basins and slow sand filters.

- Rawalpindi

Rawal Leake Filtration Plant is only the treatment plant of Rawalpindi. The plant, located near by Rawal dam, takes water from the lake through open canal with the length of about 600 m. The production capacity of the plant is 21 MGD and the major facilities of the plant are similar to the Simly plant. The details of the facilities is also presented in Table C-1-29.

As for the current practice of chemical application, solid Alum and liquid chlorine or bleaching powder are used for coagulant purpose and for disinfection in every treatment plant in both cities.

The prices of solid Alum and liquid chlorine in the project area are Rs. 3,800 to 4,500 per metric ton and Rs.3,000 to 3,500 per 900 kg, respectively. Those chemicals are locally produced within Pakistan and are available from Karachi and Lahore.

Laboratory is provided in Simly and Rawal Lake filtration plants, in which raw water and treated water are analyzed and their data are registered. In addition, CDA has a laboratory at the sewerage plant in Sector I-9.

Treatment Plants in Islamabad/Rawalpindi	Treatment Operated Expansion Process By Programe	Sedimentation CDA 12 MGD by 2000 § rapid sand filtration	Sedimentation CDA 1.5 MGD by 2000 & slow sand filtration	Sedimentation CDA 0.5 MGD by 2000 & slow sand filtration	Sedimentation CDA 0.3 MGD by 2000 § slow sand filtration	Sedimentation CDA § slow sand filtration	Sedimentation CDA & slow sand filtration	Sedimentation CDA § slow sand filtration	Sedimentation CDA & Slow sand	TITTALIOU	Sedimentation PHED 7 MGD by 1990
ants in Islama	Year of Construction	1965 - 7	1966	1967	1963	1963		1966	0261		1962-14 mg/d
Treatment Pl	Production Capacity (MGD)	24.0	2.5 (Not in operation)	2.5	0.7	0.8	2.7	2.2	2.5		21
Existing Water	Water Source	Simly Reservoir	Riverbed Water	Surface water from stream	Riverbed water	Spring water	3 tube wells \$ Rawal Lake	8 tube wells § Surface water from stream	Surface water from stream	• .	Rawal Lake
Table C-1-28	Water Treatment Plant Islamabad	1. Simly Filtration Plant	 Kurang Head Works 	3. Shahdara Head Works	4. Nurpur Head Works	5. Saidpur Head Works	6. Golf Course Head Works (New)	7. Golf Course Head Works (Old)	8. G-10 Head Works	Rawalpindi	9. Rawal Lake Filtration Plant

C-79

.

ltem	Simly Filtration Plant	Rawal Lake Filtration Plant
Capacity	24 mgd (109,100 m ³ /d)	21 mgd (95,500 m ³ /d)
Flocculation time	20 min	12 min
Sedimentation time	3 hrs	1.5 hrs
Filtration rate	$120 \text{ m}^3/\text{m}^2/\text{d}$	$140 \text{ m}^3/\text{m}^2/\text{d}$
Coagulant used	Alum	Alum
Sterilizing agent	Chlorine	Chlorine
Backwash system	Compressed air + water	Compressed air + water
No. of clarifiers	4 (6 mgd each)	3 (7 mgd each)
No. of filter beds	12 units	12 units
Filter Bed area	$76 m^2$	69 m ²

•

(2) Intake, Conduction Main and Service Reservoir

a. Intake of Khanpur Reservoir

Intake facility of water to be diverted from Khanpur Reservoir has been constructed at under the right bank saddle embankment of the Dam. Design diversion capacity of the intake is approximately 15.6 cu.m/sec with conduit elevation of 580.11 m (RL 1,902 ft) at the inlet. Diameter of the conduit is about 2.0 m (6.5 ft) with RCC structures.

b. Left Bank Canal

The Left Bank Canal has been completed stretching over 19 km (11.8 miles) as the conduction main of Khanpur Project between the dam site and near Nicholson Monument. Water derived from the dam at the irrigation outlet structure flows through 80 m long Main Canal and 65 m long head regulator into the Left Bank Canal.

The Left Bank Canal was constructed by WAPDA during years from 1973 to 1978 to convey Khanpur water for water supply to both the cities of Islamabad and Rawalpindi, for industrial water supply to POF (Wah) and PIDC (Taxila) and for irrigation to agricultural land extending on the left bank of the Haro river. Irrigation water is diverted from the canal between the points 0.0 km and 8.8 km, and the canal section downword is allocated for municipal and industrial waters allowing water diversion for PIDC at the point of 15.6 km. Downstream portions of the canal are assigned only for water supply.

Design capacity of the canal varies from 12.5 to 7.9 cu.m/sec (440 to 278 cusec). Since the canal passes

undulating terrain of northwest foot of the Margala range of hills, many appurtenant structures such as tunnels, syphons and aqueducts are accompained, and the canal is lined with concrete block on its all faces for about 80 % of total length. The majority of canal portions is situated on the rock foundation with fine limestone and alternations of limestone and shale or marl. However, sedimentary loam has been found at the limited portions near the beginning point of the Left Bank Canal, outlet of the Mohra Muradu Tunnel and inlet of Margala Tunnel.

It is investigated that the Canal has been designed employing design procedures prepared for irrigation purposes, consists of many deep-cut portions without protection works of side slopes allowing sediment inflows during heavy rains, and that operation and maintenance works are laborious.

c. Conduction Main to Islamabad

Major Conduction Mains Islamabad are briefly explained as follows:

- Simly Conduction Main

This is to convey treated water at the Simly Filtration Plant to the service reservoir located in Sectors F-5 and F-6 of Islamabad, and the major dimensions are as under;

Length	:	L = 28.0 km (92,000 ft)
Pipe	:	PRCC with steel core, 900 mm
		(36") Dia. 2 lines
Discharge	:	Q = 0.632 cu.m/sec (12.0 MGD)
		each line

Elevation :

Simly Clear Water Res.	HWL 629.4 m (2,065 ft)
(5 M.G.)	LWL 623.3 m (2,045 ft),
	HWL 627.9 m (2,060 ft)
	LWL 621.8 m (2,040 ft),
	HWL 626.4 m (2,055 ft)
$(e_{ij})_{ij} = (e_{ij})_{ij} = (e_{ij})_{ij$	LWL 620.3 m (2,035 ft)
Islamabad Service Res.	HWL 618.7 m (2,030 ft)
(7 M.G.)	LWL 612.6 m (2,010 ft)

Two conduction lines of 900 mm diameter (36") have already been completed and at present two lines are being operated, as the second phase of the scheme, to make fully yield of 24 MGD of Simly dam available.

- Conduction Line from National park Area

Waters produced from tube wells in the National Park Area are gathered in the Central Sump and then conveyed to the Rawal Sump by means of pumping up. Water is boosted at Rawal Sump and sent to the service reservoirs situated at F-5 and north of F-6.

Length	:	Central Sump to Rawal Sump,
		L = 3.7 km (12,000 ft)
		Rawal Sump to F-6 Service Reservoir,
		L = 7.9 km (26,000 ft)
Pipe	:	PRCC with steel core, Dia. 500 mm (21") x
		2 lines
Capacity	:	34,000 cmd (7.5 MGD)

- Other Conduction Lines

The majority of conduction mains are provided with PRCC pipes of diameters 450 mm to 225 mm (18" to 9"), with

exception of 18" mild steel pipe which forms a part of conduction line from the Golf Course Head Works and G-10 Head Works.

d. Conduction Main to Rawalpindi

Water, treated at the Rawal Filtration Plant and from tube wells in the National Park Area, is conveyed to RMC and CB through RC pipes of 1,350 mm (54") diameter. The conduction main branches off, before it reaches distribution block of RMC, in two directions for RMC and CB, and then water is conveyed through respective lines of 900 mm (36") RC pipes.

e. Service Reservoir

Service reservoirs are categorized into two types; namely elevated reservoir and ground reservoir. Elevated reservoirs are of small scale and those recently constructed are, mostly, of reinforced concrete, excluding some of old type which are made of brick masonry or steel. Although most of service reservoirs in Islamabad are of gravity flow type providing large capacities, those in Rawalpindi are of small capacity and considerable number of direct pumping distribution systems are found.

Scales and dimensions of major service reservoirs are as tabulated below;

	and the second		• 		· · · .	
Reservoir Site	Type	Capac	ity	Overflow	Elevation	Structure
<u>ֈֈ֎֎֎ֈ֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎</u>	and build and a second	(cum)	(MG)	(m)	(feet)	8-7-444 8-445-9-449-9-4-9-4-4-4-4-4-4-4-4-4-4-4-4
Islamabad						
Existing						
F5	Ground	31,800	. 7	618.7	2030	RC
F6	Ground	22,700	5	629.4	2065	RC
r0	oround	22,700	5	627.9	2060	RC
				626.4	2055	RC
Shahdara	Ground	4,500	1	666.0	2185	RC
Nurpur	Ground	900	0.2	634.0	2080	RC
North of F-5	Elevated	4,500	1	676,7	2220	RC
Saidpur	Ground	4,500	1	621.8	2040	RC
Faisal Mosque	Ground	9,100	2	614.2	2015	RC
G-10	Ground	9,100	2			RC
Golf Course (New		6,600	1.45	5 579.4	1901	RC
		-		· .		
Under Constructi	on	е. ¹		· ·		
E-10	Elevated	22,700	5	634.0	2080	RC
н	Ground	36,400	8	603.5	1980	RC
<u>Rawalpindi</u> (Exis	ting)		·		· · ·	
TT-A TT1 NT 1	1713	11 270	2.5	509.6	1672	RC
Water Works No.1 Water Works No.2		11,370 11,370	2.5	509.6	1672	RC
Topi P/S	Ground	11,820	2.5	496.8	1630	RC
National Park	Elevated	11,620	4.1	533.1	1749	RC
AMC Center	n	2,270	0.5	534.0	1752	RC
Westridge	11	5,900		566.0		RC
Misrial	11	450	0,1	300.00		RC
502 Work Shop	**	450	0.1			RC
Dhanial	11	900	0.2			RC
ann. An an Andre Male ann ann		,				-

Table C-1-30. Data of Reservoir Tanks

Source: CDA, PHED, MES Note: RC --- Reinforced Concrete, P/S --- Pumping Station

(3) Water Supply System

Figure C-1-8 show the relative positions and distribution systems of such water works facilities as filtration plant, head works, conduction main and distribution pipe line.

As outline of the existing water treatment plant in Islamabad/Rawalpindi is summarized in Table C-1-28. As shown, water

in Islamabad is supplied from the Simly Filtration plant, seven head works and tube wells to each sector where distribution pipes are provided completely. The other hand, the PHED is in charge of bulk water supply from Rawal Filtration Plant to Water Works No. 1 and No. 2 where located beside Saidpur Road. The RMC is responsible for operation and maintenance of water distribution systems from Water Works No. 1 and No. 2 to each sub-area where distribution pipes are provided in RMC area. From the bifurcation point the MES and RCB are responsible for operation and maintenance of water supply facilities to the cantonment areas under their jurisdiction.

The present water supply systems in the twin cities have inherent factors which tend to disturb the efforts toward achievement of technical success, institutional success and financial success, respectively. They are listed below;

- 1. Intermittent supply services of water
- 2. Low quality of product and faulty fixing technique
- 3. Prevalence of unmetered connections
- 4. Indifferent leave water running
- 5. Predominance of flat rate water tariff system

All the above factors interrelate with each other, creating a vicious circle situation.

C.1.5. Countermeasures on the Reduction of Wastage and Leakage Losses from Water Supply Systems

(1) General Concept

"Water is one of God given blessings like air and sunshine." and, therefore "It will be used and consumed for free." This is the belief rooted in Islamism and firmly held by the people of the country. It has a great deal to do with the existing state for leakages and wastages in the Project Area. However, it should be it called to our attention that air and sunshine exist virtually boundlessly, whereas water (especially urban water) is limited and produced.

Water sustains life like the other two; it is at the same time an economic good. Religion puts the light on one side and modern economics stresses the other side. Accommodation of the two sides is possible through tariff structures where the rate will be nominal up to a level of consumption enough to meet basic human need.

It is a stark fact that whenever you overlook or ignore a leaking or wasting of water you are throwing away money. And to improve and rectify such a situation not only meets the requirements of economics, but also follows the precepts of ethics and religion. (Refer to Table C-1-31)

(2) Modernization of Technical/Institutional Aspects

This is to reduce to the minimum the leakages from all sorts of pipelines due to technical/physical insufficiencies. It, first of all, involves the enhancement/standardization of quality and quantity in respect of maintenance force and equipment. It, at the same time, involves the enhancement/standardization of quality and quantity in respect of all kinds of related products as well as in respect of all aspects of fixing techniques.

(3) Modernization of Moral/Mental Aspects

Reduction of losses through modernization of technical/institutional aspects can never proceed in any way if the consumers have the mentality where they do not mind or care about the wastages by leaving taps open.

They must change their moral/mental attitudes toward water. It is an economic good like oil, wheat, cloth or anything; it accompanies huge cost to produce it and therefore they must pay for it. To motivate and promote the transformation of their attitudes a big campaign shall be launched on a long-term basis through mass communication media.

(4) Modernization of Financial Aspects

All the preceding measures are bound to fail, however, unless people concerned are forced and compelled toward the improvement of status quo.

We must create the circumstances where a trickling of water lost through leakages will entail a loss of revenue on the part of the authorities and also a dripping of water lost through wastages and leakages will demand an expenditure on the part of consumers.

That is to say, the exact quantity including wastages and leakages a user has consumed shall be automatically recorded by the metering system and he shall pay in accordance with it. Also, the authorities shall be managed on the self-financing basis with leakages jeopardizing their financial health.

The system rests on a fair measure of the modernization of technical, institutional and moral/mental aspects. In other words, it shall be introduced at an appropriate phase of that modernization. In order that the authorities may stand on their own feet they must gradually reorganize their tariff systems into those enabling them to make both ends meet.

Self-sufficiency on the part of authorities will facilitate and accelerate the introduction of perfect metering since they can financially assist consumers in fixing metering systems.

Immediately after the introduction of perfect metering, quantity tariff systems shall be completely established. The combined attainment of all day service, perfect metering and quantity tariff systems is the crux of the modernization of financial aspects. It also holds the key for the modernization of other aspects. After that things may evolve further toward a mature level of modern water supply service.

<pre>incrity line- + Joints 6 line- + Joints 6 line- + Joints 6 Tank + Leakage erflow</pre>	Low Quality of Product Faulty Fixing Technique	Status of Metering Nos. of Nos. of Nos. of Ratio Nos. of Nos. of Nos. of Ratio Nos. of Nos. of Ratio Islamabad 22,103 3,990 18 Islamabad 22,103 3,990 18 RWC 41,750 837 2 RWC 41,750 837 2 RWC 41,750 837 2 CANTT 9,5346 1,538 40 MES 5,443 5,267 55 Sub-Total 54,430 5,442 10 Total 76,555 9,452 12 Status of Finance Unit Revenue Ration of Mater 66 Mater 67 Mater Islamabad Rs.1.644m ³ Rs.0.23/m ³ 14 14
 Mater Runnin (Carelessness) 4- (Carelessness) 4- (Carelessness) 4- (MORAL/MENTAL MEASURES) "Water is a precious, "Water is a precious, urce. Launch a big "c campaign to boost moric through mass communic 	Low Quality of Product Faulty Fixing Technique	Nos. of Nos. of Ra 22,103 3,990 (() 21,750 3,990 () 41,750 837 () 9,354 1,538 () 5,246 1,538 () 5,246 1,538 () 5,346 1,538 () 5,442 () () 5,445 () () 5,445 () () 5,445 () () 5,445 () () 5,445 () () 76,555 () () 76,555 () () 76,555 () () 76,47 () () 8:.0.23/m ³ () () 8:.1.64/m ³ 8:.0.23/m ³ ()
MORAL/MENTAL MEASURES "Water is a precious, urce. Launch a big "c campaign to boost more through mass communic	Low Quality of Product Faulty Fixing Technique	22,103 3,990 41,750 837 9,334 5,267 5,346 1,538 54,430 5,442 76,533 9,452 76,533 9,452 76,533 9,452 76,533 9,452 Tinance Unit Cost Unit Revenue of Water Rs.1.64/m ³ Rs.0.23/m ³
 Leave Water Runnin (Carelessness) + (Carelessness) + (Carelessness) + (The start Running) + (The start Running) + (The start Running) + (Through mass communic) 	Low Quality of Product Faulty Fixing Technique	41,750 837 9,334 5,267 3,346 1,538 54,430 5,442 76,533 9,432 76,533 9,435 76,533 9,435 76,533 9,432 76,533 9,432 76,533 9,432 76,533 9,432 76,533 9,432 76,533 9,432 76,533 9,435 76,533 9,455 76,533 9,455 76,533 9,455 76,533 9,455 76,533 9,455 76,533 9,455 76,533 9,455 76,533 9,555 76,555 10,555 1
 Leave Water Runnin (Carelessness) (Carelessness) (Carel	Low Quality of Product Faulty Fixing Technique	9,334 5,267 5,346 1,538 54,430 5,442 76,533 9,452 76,553 9,452 Unit Cost Unit Revenue of Water of Water Rs.1.64/m ³ Rs.0.23/m ³
 Leave Water Runnin (Carelessness) 4- (Carelessness) 4- (Tarelessness) 4- (Carelessness) 4	Low Quality of Product Faulty Fixing Technique	5,346 1,538 54,430 5,442 76,553 9,452 Finance Unit Cost Unit Revenue of Water of Water Rs.1.64/m ³ Rs.0.23/m ³
 Meave Mater Runnin (Carelessness) (Carelessness) (Carelessnessnessnessnessnessnessnessnessnes	Low Quality of Product Faulty Fixing Technique	54,430 5,442 76,553 9,452 Finance Unit Cost Unit Revenue of Water of Water Rs.1.64/m ³ Rs.0.23/m ³
(Carelessness) + (Carelessness) + (Carelessness) + (Carelessness) + (Mater is a precious, urce. Launch a big " campaign to boost mori through mass communic	Faulty Fixing Technique	Finance Unit Cost Unit Revenue of Water of Mater Rs.1.64/m ³ Rs.0.23/m ³
MORAL/MENTAL MEASURES "Water is a precious, urce. Launch a big " campaign to boost mori through mass communic		Unit Cost Unit Revenue of Water of Water Rs.1.64/m ³ Rs.0.23/m ³
		Rs.1.64/m ³ Rs.0.25/m ³
MORAL/MENTAL MEASURES "Water is a precious, urce. Launch a big "C campaign to boost more through mass communic		
MORAL/MENTAL MEASURES "Water is a precious, urce. Launch a big " campaign to boost mort through mass communic		Rawalpindi pwr pe nen/m ³ n 10/m ³ 38
MORAL/MENTAL MEASURES "Water is a precious, urce. Launch a big " campaign to boost mort through mass communic		s for financial laxity
MORAL/MENTAL MEASURES "Water is a precious, urce. Launch a big " campaign to boost more through mass communic		1. Flat Rates
MORAL/MENTAL MEASURES "Water is a precious, urce. Launch a big " campaign to boost mori through mass communic		2. Too Low Rates
MORAL/MENTAL MEASURES "Water is a precious, urce. Launch a big " campaign to boost mort through mass communic		3. Inperfect Billing & Collection
"Water is a precious, urce. Launch a big " campaign to boost mor through mass communic		
		40
	Water" INTRODUCTION OF LICENSE SYSTEM FOR	Rates Tariffs Recovering All Costs
	alluaru media	TOWARD PERFECT METERING
Actions in Urgency. (Establishment of Training Center)		Toward All Day Service
		(Self-Financing)
TOWARD PERFECT NETERING		
Toward All Day Service		Perfect Metering)
		(SIIIIS)
	• ••• ••• •••	

C.2. Irrigation Water

C.2.1. Land Use and Solls

(1) Haro River Lef Bank Command Area

(a) Present Land Use

Present land use is prepared based on the topographical maps with scale 1 to 50,000 published by Survey of Pakistan and detail field investigations. Present land use can be classified into the following forms.

Uncultivable

3,000 ha (Including Wah,
Texila Cantonment)
8,000 ha (Including gullied
erosion)
2,700 ha
7,800 ha
1,500 ha

(b) Soil and Land Capability

The soils are alluvial in the north eastern area and medium texured with a fair propotion of silty clay in the south western area.

Soil and land classification is shown in Table C-2-1, Figure C-2-1 and C-2-2 prepared by referring "Reconnaisance soil survey by Soil Survey of Pakistan in 1967 (Rawalpindi), 1970 (Attock).

	Soil Associations	<u>Area (ha)</u>	Percent (%)
1.	Bahter Association	9,260	29.4
2.	Chakwal Association	770	2.5
3.	Guliana Association	740	2.3
4.	Misa Association	3,620	11.5
5.	Rajar Complex	4,840	15.5
6.	Shahdra Association	110	0.3
7.	Qutbal Complex	160	0.5
8.	Qutbal Guloied Land complex	5,360	19.0
9.	Qullied Land	3,080	9.7
10.	Rough Mountainous and Study	Land 1,410	4.5
11.	Urban Land	2,150	6.8
•	Total	31,500	100.0

Soil associations comprising the area are as follows

. . .

Bahtar association, Missa association, Rajar Complex and Qutbal complex occupies 74% of the whole area, most of the cultivated area. Those four associations are the main soils which describe characteristic of the area.

(2) Soan River Right Bank Suburban Area

(a) Present Land Use

Present land use is prepared based on the topographical maps with scale 1 to 50,000 published by Survey of Pakistan and detail field investigations.

Present land use can be classified into the following forms;

·***	Uncultivable		
	° Residental area	100	ha
	° River, road (including gullied erosion)	590	ha
	° Forest and stoney hills	1,160	ha
	Cultivable		
	° Cultivated Area	1,150	ha
	(Including current fallow)		
6 -1	Total Area	3,000	ĥa

(b) Soil and Land Capability

Soil and land classification is shown in Table C-2-2 Figure C-2-3 and C-2-4 prepared by referring "reconnaissance Soil Survey by Soil Survey of Pakistan in 1967 (Rawalpindi).

Soil associations comprising the area are as follows;

			1 A A A A A A A A A A A A A A A A A A A
	Soil Associations	Area (ha)	Percent (%)
· :		part of the	
1.	Argan Complex	810	27.0
2.	Shadara Association	60	2.0
3.	Missa Association	160	5.3
4.	Rough Broken and Stony Land	1,970	65.7
	Total:	3,000	100.0

C.2.2. Selection of Crops and its Cropping Pattern

- (1) Crops and Cropping Pattern
 - (a) Proposed Crops
 - On the basis of present cropping pattern and intensity described in Figure F-2-1, suitable cropping pattern can be established in due consideration of the following view points.

(1) Former's demand

According to the finding of socio economic survey (refer to Table C-2-3), most of the farmers desire to grow cash crops like sugarcane and oilseeds, vegetables and orchards. (Refer to Table C-2-8)

(ii) National Policy for Agriculture

According to the sixth five year plan by the government of Pakistan (refer to Table C-2-4, 5), great emphases are placed on oilseed and vegetables.

(iii) Barani Development Plan

According to the report titled "Barani Forming Systems of the Punjab prepared by National Agricultural Research Centre (NARC), it is recommended that more high value crops such as vegetables should be introduced in order to increase productivity.

(iv) Soil

According to "Crop Suitability for Irrigation" in the Reconnaissance soil survey refer to Table C-2-6), most of the crops except rice are well or moderately suited to the prevailing soil associations.

In due considerations of the above, suitable crops to be introduced are shown in below.

Rabi	<u>Kharif</u>	Parennial
Wheat	Maiz	Orchard
0ilseeds	Soybean	Sugarcane
Fodders	Fodders	
Vegtetables/Fruits	Vegetables/Fruits	

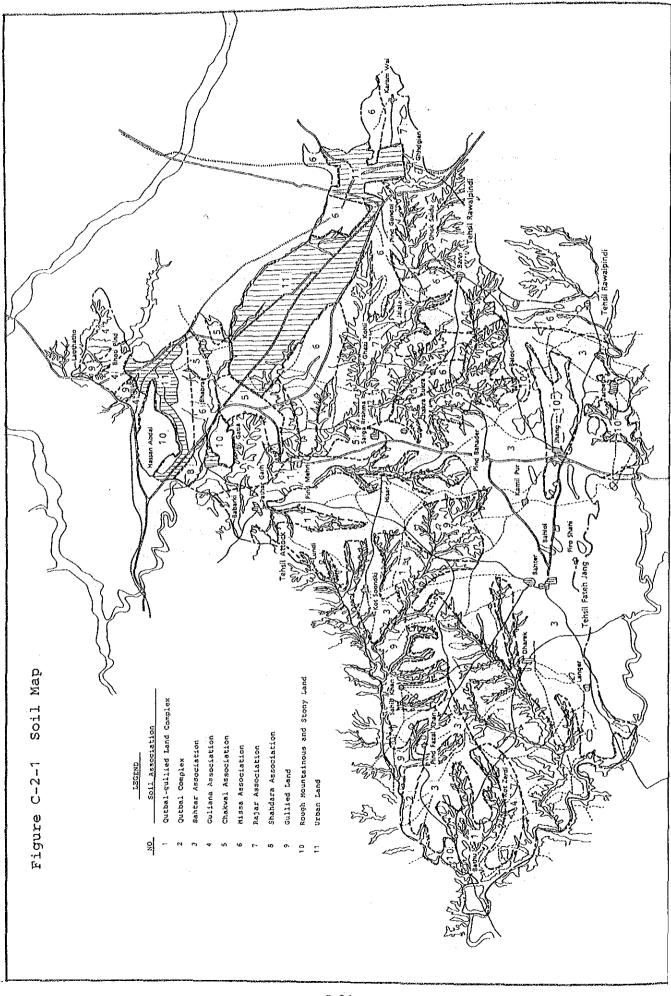
(b) Cropping Intensity

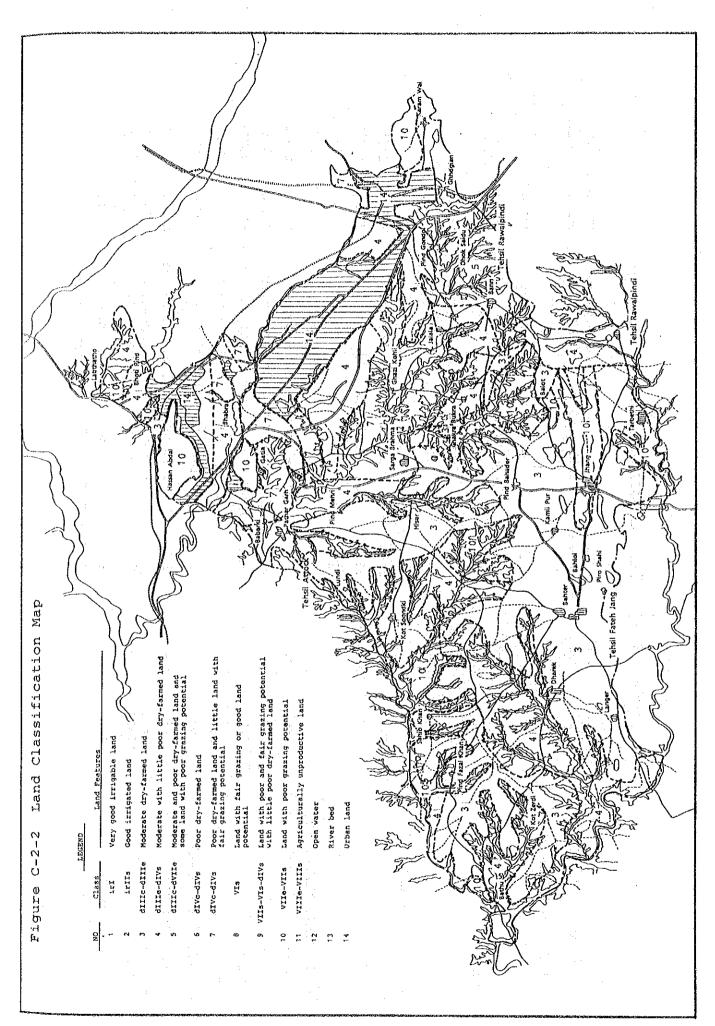
It may be beneficial that cropping intensity is as high as possible. But the intensity is limited by availability of water source.

Intensity achieved under irrigation (Refer to Table C-2-7).

 Rawlapindi district
 111 - 157 %

 Attock district
 109 - 171 %


Intensity applied by Irrigation Department of the Punjab.


Small Dams Organization 130 - 150 %

Therefore, cropping intensity to be adopted will be 130 % to 140 %. Highter intensity will be applied according to availability of water source calculated by water balance simulation.

that is,

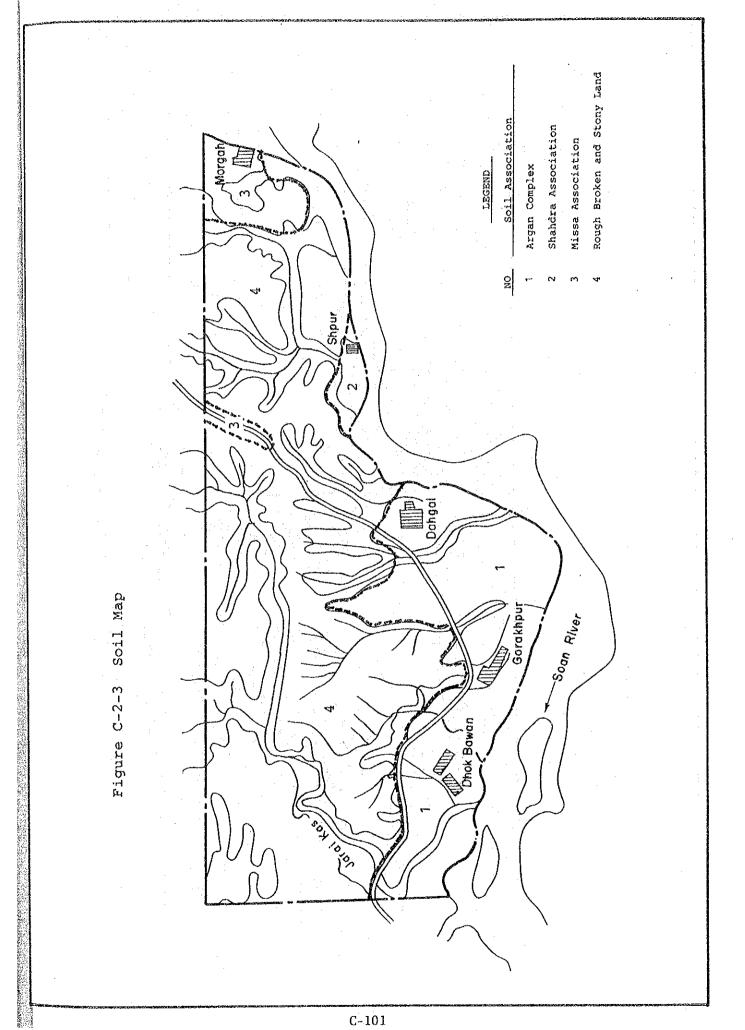
Kharif	• • • • • • • • • • • • •	60 - 65 %	

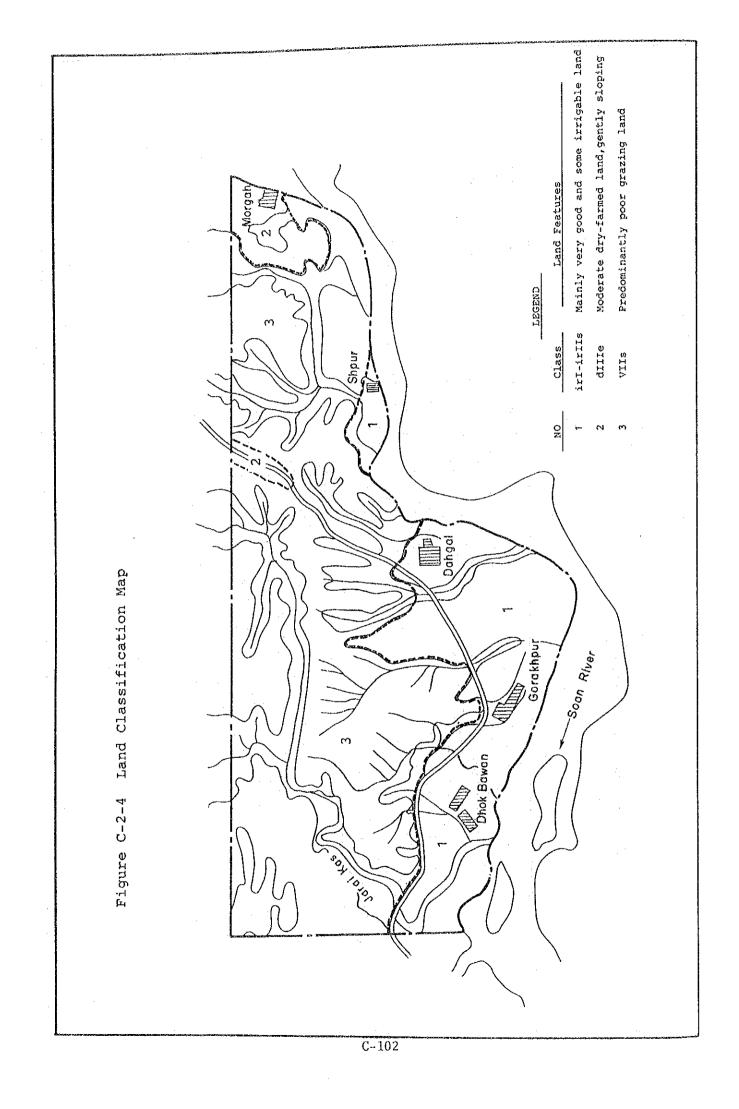
	Slop	Soil	Soil		Limitation/	Land capability	bility
Soil Association/series	(%)	Depth	Texture	Structure	Hazard	W.O 1/	W 2/
1. Bahtar Association					កា		
• Bahtar	- 1 -	moderate	SICL	Weak	M.S.Clayey	dIIIc	ı
• Qutbal	4-8	Deep	SicL	Massive	-00-	dIIIe	1
· Domel	2	Shallow	Sic	Weak	M.S	dIIIc	
• Guliana	ଧ - 0	Shallow	SiL	Moderate	M.S.Clayey	dIIIc	i
	-						•
2. Chakwal Association	· ·			•			
• Chakwal	level	8	SICL	calcareous	Drought	dIVS	irIIs
• Guiliana	0-2	Shallow	Sicl	non-calcareous	-qo -	dIIIc	SIIJ
		•		· · · · · · · · · · · · · · · · · · ·			
3. Guiliana Association	·						
• Gulana	level	Shallow	SICL	no-calcareous	Drought	dIIIc	irIIs
· Chakwal subhumid	<u>.</u> <u>-</u>		Sicl	calcareous	Drought, erosion	dIIIc	irI
. Missa	<u>1</u>	I	Sil	-op-	1 7 1	dIIIe	irIIe
4. Missa Association	· . :						
· Missa sloping	m -	1	SiL	calcareous	Drought, erosion	dIIIe	irille
• Rajar	Steep	l i	SiL	- qo - qo -	Minor Drought,erosion	dIIIe	41 N.A.
• Misa gently sloping	1-3	•	SiL	do	-op-	dIIIe	irIle
· Gullied land	steep	ŧ	8	i	Steep Slopes	IIA	N.A.

Table C-2-1(1) Soils and Land Capability

Soils and Land Capability	
Table C-2-1(2)	

Soil Association/series	Slop (%)	Soil <u>Depth</u>	Soil <u>Texture</u>	Structure	Limitation/ Hazard	Land capability W.O 1/ W 2/	bility ¥ 2/
5. Rajar Complex		·					
• Rajar	Steep	1	SiL	calcareous I	Drought, slope erosion	VIIe	N.A.
· Gullied land	-do-	•	SiL	No	Steep erosion	dIVe	N.A.
· Missa gently sloping	<u>m</u>	- 3 -	SiL	-do-	Drought,slope erosion	dIIIs	irlle
6. Shahdara Association					·	·	
· Shahdara	0-2	Shallow	SiL,L	: 1	Drought	dIIIc	ΪrΙ
• Khair	0-2	1	SL	1	-do=	dIIIc	irIIs
· River Wash	8 .	. 8	ı	ŧ	unproductive	TITA	Ñ.A.
7. Qutbal Complex	•••	. · · ·			ę		
· Qutbal	н Г-Л	Moderate	SicL	Massive	Stope M.S,erosion	dIIIe	I
• Basal	2-3	Shallow	SiL		M.S.	dIVC	1
• Gullied land	Steep	1	. B	ŧ	Water Steep erosion, slope	VIIe	N.A.
	- ' •					:	
8. Qutbal Gullied Land Complex							
• Qutbal	4-8	Moderate	SicL	Massive	M.S.Water erosion	dIIIe	I
· Gullied land	Steep	1		ł	Water erosion	VIIe	N.A.
· Basal	2-3	1	SiC		M.S, clayey	SVID	I
• Rajar	tt−8	I	SiL	Massive	M.S,Water erosion	dIIIe	I


Soils and Land Capability Table C-2-1(3)


<u>Soil Association/series</u>	Slop (%)	Soil Depth	Soil Texture	Structure	Limitation/ Hazard	Land capability W.O 1/ W 2/	ability W 2/
9. <u>Gullied land</u>							
· Gullied land	Steep	1	ī	l	Steep Slopes	AIIV	N.A.
• Chamba	2-3	1	Stony	·ſ	Stones, erosion	dIVs	N.A.
· Misa Sloping	2-3	3	SiL	calcareous	erosion	dIIIe	irIIIe
· Mehsehra	2-3	I	SicL	non-calcareous	-do-	dIIIe	irIIIc
· Unidentified Soils	1	1	t	ł	1 op-		I
			·				

10. Rough Mountainous and Stony land

11. Urban Land

Note; <u>1</u>/ Not Irrigated <u>2</u>/ Irrigated <u>3</u>/ Moisture Shortage <u>4</u>/ Not Applicable Source; IR-2

	bility W 2/		irl	irl	irits		т. Т	irlis	N.A. 31		irIVe	N.A.	irlle		
	Land capability W.O 1/ W 2/		dIIIc	dIIIc	dIIIc		dIIIc	dIIIc	dIIIe		dIIIe	dIIIe	dIIIe	· · .	
	Limitation/ Hazard		Drought	-do-	- qo-		Drought	-do-	Unproductive	متدلك	Drought, erosion	Minor Drought,erosion	- 00		
Soils and Land Capability	Structure		I	ł	I	·	1	1	1		Calcareous	-do-	-op-		
Soils and L	Soil Texture		L,SiL	L,SiL	SL		SiL,L	SL	۰۲,	 	SIL	SiL	SiL		
Table C-2-2	Soil Depth	·	1	1	ł		Shallow	•	° I			1	ł		
ř	Slop (%)		1	ł	ł	·	0-2	0-2	ı	. 4	n 1 1	Steep	1-3	미	gated ed .icable
	Soil Association/series	1. Argan Complex	• Argan	· Jhahdara	• Khair	2. <u>Missa Association</u>	· Shahdara	· Khair	• Riverwash	3. <u>Missa Association</u>	• Missa Sloping	• Rajar	• Missa gently sloping	4. Rough broken and stony Land	Source ; IR-2 Note ; 1/ Not Irrigated 2/ Irrigated 3/ Not Applicable

Table C-2-3. Major Crops to be Sown

	Tehsil	No. of Famers Interview	Wheat	Coarse_/ Grain	Cash 2 Crops	/ Vegetable/Orchard
D***	Attack	141	7	9	62	63
	Feteh Jang	231	21	6	93	111
-	Rawalpindi (Taxila)	238	14	6	75	143.
	Rawalpindi	50	2	-	31	17
		Made 1 Mod	no Mil	1et		

Major crops to be sown

Note; $\frac{1}{2}$ Mainly Maize, Millet $\frac{2}{2}$ Mainly Sugarcan, Oilseed

Table C-2-4. Change of Cropping Pattern During Sixth Plan

2	Percentage Share in <u>Cropped Area (%)</u> Benchmarks 1987-88		Additional Area (xl,000 ha)	Percentage of additional Area (%)	
Crops	Benchmarks	1907-00	(AI,000 ha)	III CD (107	
- Grains ° Wheat	55.79 36.25	54.69 35.13	498 240	38.0 18.3	
° Rice ° Other Grains	9.95 9.59	10.02 9.52	146 112	11.1 8.6	
- Cotton	11,51	10.78	Broat/s	30.0	
 Oil seeds excluding Cotton Seed 	2.85	4.56	ʻ 393	30.0	
- Pulses	7.38	7.33	86	6.6	
- Vegetables, Spices and Fruits	2,68	3.69	248	18.9	
- Sugarcane	4.29	4.02	-		
- Other including Fodder	15,50	14.95	85	6.5	
Total	100.00	100.00	1,310	100.00	
Comment TD 1					

Source; IR-1

		· .	· · ·		
	Computed	Estimato		Percentage Increase Over Benchmarks	
Cuese	Benchmarks	1982-83	1987-88	Over Bene	Annual
Crops	Mil			<u>overair</u> %	
	Less the sector of the sector	110n conne	15 mar na 100 mar 100	K	
- Grains	16.72	(17.39)	21.80	30	5.5
° Wheat	11.80	(12.34)	15.50	31	5.6
° Rice	3.31	(3.44)		27	4.9
° Maize	0.97	(1.01)		43	7.3
° Others	0.64	(0.60)	0.72	12	2.4
- Cash Crops	35.89	(33,42)	42.07	17	3.2
° Cotton (Lint)	0.82	(0.82)	1.03	26	4.7
° Sugarcane	35.00	(32.53)	40.94	17	3.2
° Tobacco	0.07	(0.07)	0.10	47	8.0
- 0il seeds	2.00	(2.08)	2.86	42	7.3
° Cotton Seed	1.64	(1.64)	2.00	26	4.7
° Traditional	0.33	(0.42)	0.44	42	5.6
° Non-traditional	0.03	(0.02)	0.35	1,029	64.4
	0.70	(0 71)	0 70	15	0.0
- Pulses	0.70	(0.71)	0.79	15 18	2.8
Gram	0.50	(0.50)	0.58		3.3
° Others	0.20	(0.21)	0.21	7	1.4
- Vegetables and Spices	2.61	(2.73)	5.11	96	14.4
° Onion	0.45	(0.48)	0.80	77	12.1
° Potatoes	0.46	(0.52)	0.85	85	13.1
° Others	1.70	(1.73)	3.46	104	15.3
- Fruits	2.20	(2.68)	3.59	63	10.2

Table C-2-5. Crop Production Targets

Souce; IR-1

.

Table C-2-6. Crop Suitability for Irritation

		107007			() + + +) 1 1	5 E 4 4 5 4					
Soil Association/Series	Wheat	Gram	Barley	<u>Vegitable</u>	Maize	Millests	Rice	Groundnut	Sugar Cane	Improved Pasture	
1. Haro River Left Bank											
° Chakwal `	Fri	ო	I	64	rt	स्त्र स	had.	ო	yasə l	1	
° Guliana	r -4	ς	1	5	М	₽×4	r4	ε	r1	pr-4	
° Khair (Subhumid)	5	, 1	8	-4	2	7	'n	***	ო	+4	
° Missa gently sloping	7	2	1	2	5	2	ς,	2	7	гч	
° Shahdara (Subumid)		P	i	-4	r-1 .	2	ო	P1	r1	r-1 ;	
2. Soan River Right Bank											
° Argan	г - Т	m	ı	 1	Ħ	4	ε	- #**4 -	e1	હત્વ	
° Missa gently sloping	, 7	2	ļ	2	7	2	ო	7	7	1	
 Shahdara (Subhumid) 	r5		1	ल्ल	1	2	ო	r~4	*~~1	r-d '	
Source:	IR-2		·						·		
Note:	н м	A A	Well suited, Poorly suited	ed, 2 ited, 4	Mc	Moderately suited Not suited	suited	·.			

100 C 100 C

.

Table C-2-7. Cropping Intensity on Irrigated and Unirrigated Farms

Area: Acres

										•										•		•	
nsity of Farms																			•	, .			·
verage Inte Unirrigated		021	2 (7 2 (7 4 (7)	1 V 1 M	2011			111	106	105	86.	122		126	117	109	104	104	103	102	IOI	102	103
Average Intensity Unirrigated Farm			•							÷								:	2				
120																							
Average Intensity of Farms with Irrigated Area Under 51% 51% to 75% 76% to 99% Over 100		157	1 4 4 4		0 0 0 7 7		ד / א ד י ד	147	156	135	168	157		196	187	175	167	165	125	141	132	101	171
Irriga 99%	•	:														·						·	
vith I % to 9			001	274		107	1	168	158	103	182	149		100	- I70	167	124	172	179	. 1	103	135	163
arms w 76%																							
Y of F. to 75%		X	o u o a	2 2	tc	2	<u> </u>	9	5	I	12	5	• •	50	6	1	2	ين د	ນ	ъ		14	<u>ញ</u>
ensity 51% t		108	1	101	1 4 4 1 4 0 1 4 0	771 717	-1-1	126	ι Ω			135		40 7	159	5	14)	125	125	105	121	б	<u>133</u>
e Int 51%	. ·																			. · ·		-	
Averag		157	141	- 0 	110	0 T T	50	112	112	112	70	111		143	130	121	113	110	106	100	103	108	109
•••		ά			4 6	- o	^ •	თ	2	с С	æ	2		6	ຕ	ص	0	<u>б</u>	0	00	ŝ	9	
All Farms		16 68	2 C S C S C S C S C S C S C S C S C S C	100 10	07.01	17, 66 17, 66	00°/T	10,16	3,752	983	78	131,972		5,309	13,063	14,739	15,450	20,99	20,670	8,408	2,413	296	101,347
Ϋ́,	l	ç							0	e			,	0	0	0	ŝ	Б	ŝ	0			
		-	10		י ר י ר	• • •	1 1	25.5	50.0	150.0				1.0	2.0	5.0	7.5	12.	25.5	50.0	150.0		
Farm		under	under .	1000		1201	Tabun	under	under	under	above			under	under	under	under	under	under	under	under	above	
ze of			C *	i t	, t) (2 4	c L	с Ц	t0	t t	to	Total		9	ţ	ц С	0	3	to	to	to to	to	Total
.ct/S1	۹ ۲	rourdreasy		- C	1 C	יי קר		12 . 5	25.0	50.0	150.0	L L	Attock		1.0	2.5	5.0	7.5	12.5	25.0	50.0	150.0	To
District/Size of	F	Mey I	0	0	0	0	C	2	0	0	0		- Att		o	¢	0	•	0	0	0	o	
													-										

,

Source: IR-3

C--107

Table C-2-8. (1) Land Use Plan by Socio-Economic Survey

·

			ب م	1	2			e S			4		Ω.		ļ	Q.	1	7	
		No. of	Future Dev		Inconvenient Social	nient al	Made of	ь С		Ϋġ.	Major Grops to	0	Extented of Income Per	d of Per	ВX О́F	Extent of Water	ы	Protection of Gully	cion Ly
Sr.No.	Tehail	farmers interview	of Area A B	B B B	Aspects	BB	A A	Irrigation A B C		1	be Sown B C		ACre	a m	P CD	Charges	0	Erosion A B	g
• •	Attock	141	32	109	19	80	69	11	61	7	9 62	2 63	52	60 80	Q	1	128	23 23	80
ъ.	Fateh Jang	231	თ	222	37	194	117	3 I	111 2	21	.9	93 111	33	198	16	17 1	198	19	170
ຕໍ	Rawalpindi (Taxila)	238	7	231	25	213	107	13 1	118	14	6 7	75 145	47	161	21	13 2	204	29	209
4.	Rawalpindi (II)	50	1	50	Q	44	23	ო	24	5	ო 1	31 17	11	39	r-1	с	46	17	33
, ,	Total	660	48	612	129	531	316	30	314	<u>44</u>	21 261	1 334	143	517	44	40	576	160	500
Codes:																			
Ч. В.	Barani Area Irrigated Area	*†	B.A.	Wheat Coarse	Wheat Coarse Grain				-	μη. γ		1.00 to 4.9% 5% and above	. 4.9% above	:		. ·			
2. A.		tem.	บ่อ	Cash C Vegeta	Cash Crops Vegetable & Orcharde	rchar	de					As fixe	fixed by Government	Gover	nmen ,	ب			
Q			Α.	Rs.2000	0 to Rs	to Rs.2999	рег	acre		ચ;µ= •	4 69 2 4	SOLL CONSERVATION FRACTICES Afforestation	onserv station	arion a	71 11 12	0470	ŝ		
* # บ้ *	Canal Mini Dam Tubewell			Rs.300	0 to Re	. 3999	per	acre											·
												·							

Table C-2-8. (2) Land Use Plan by Socio-Economic Survey

12	Type of Occuposion A B	ω.	17	co	ł	28			
	Type of A	138	214	230	50	632		farmer farmer	
Cottage	C	10	188	41	<u>б</u>	248		tine tine	·
ll Lal Job/	Industry	16	i	33	1	124	·	A. Fuil B. Part	: *
<u>11</u> Additional Job/Cottage	I V	40	43	164	21	288		12. A E	
10 Kind of Idvestock	C	35	63	80	19	205	1 . 1 .	t s t	н 1
10 Df Idv	to be fed B	14	17	27	Ĩ	58		Buffaloes Cows/Bullocks Sheep & Goats	Poultry Bee Keeping Sericulture
Kind (A	92	151	123	31	397		Buffaloes Cows/Bull Sheep & G	Poultry Bee Kee Sericul
of	Waste	21	121	134	22	298	·	10. A. C.	1.
9 Utilization of	tivable Waste B C	I	9	15	7	28		1	
Ucil	Un-cul	120	104	89	21	334		tion	arden
on of	Cultivable Waste A B C	I	I	ł	. 1	I .	·	Farm Land Afforestation Pastures	Park or Garden Grazing Farm Land
8 Utilazation of	vable B	88	164	209	34	395		C P P P P P P P P P P P P P P P P P P P	A. P. P. P. A. C. F. A.
Util	Culti	53	67	29	16	165		¢ Ω Ω	- - - - - - - - - - - - - - - - - - -

۰

C-109

.

		·		Table (C-2-9.	Referen	Reference Crop Evapotranspiration	Evapot	ranspir	ation				
		JAN	FEB	MAR	APR	MAY	NUL	TUL	AUG	SEP	OCT	NOV	DEC	<u>Annua1</u>
Tnean (c)		10.0	12.3	17.2	22.7	27.7	31.6	29,9	28.8	27.3	22.6	16.5	11.6	
RM mean (%)		70.7	68.8	64.1	53.6	41.0	41.3	66.1	74.7	68.7	63.0	66.5	70.8	
Wind Speed (m/s)	(s)	•	1.5	1.8	1.8	1.8	1 • 8	1.6	1.2	1.0	0.9	0.8	6.0	
Sunshine Hourse (h)	ie (h)	6.4	6.8	6.8	8,5	10.1	10.2	14.2	8.5	8.6	0.6	8.1	6.5	
Blanny Criddle	uny Idle	1.6	5.3	3°2	4.8	7.5	8.3	6.5	ιΩ • Υ	5.2	် ကို	2.5	I.7	
ETo (mm/day) <u>Radi</u>	Radiation	2.0	2.9	4 0	5.9	7.4	8.2	6.4	6.0	5.8	4.8	ب د	2.0	
Penman	nan	1.8	2.5	3.7	5.5	7.4	8.4	6.7	5.7	5.0	3.8	2.4	1.6	
Penman (<u>mm/mm</u>	Perman (mm/mmth)	56	20	115	165	229	252	208	177	150	118	72	50	1662
Pan	Pan Evap	61.0	82.6	152.4	208.8	309.1	347.4	268.8	208.8	171.2	139.7	85.9	58 9	2,093.7
Pan X	Pan Evap x 0.8	64	66	122	167	247	278	215	167	137	112	69	47	1,676

C-110

C.2.3. Computation of Unit Irrigation Water Requirement

.

(1) Reference Crop Evapotranspiration

(2) Crop Coefficient

Table C-2-10. (1) Crop Coefficient (Kc) (Rabi Season)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Crop Growing Stage (%) 10	1	20	05	40	2	00	70		96	100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.60 0	0	0.94	1.25	1.40	1.46	1.40	1.25	1.00	0.80	0.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.43 0.	-	54	0.66	0.83	0.90	0.97	1.03	0.97	0.49	0.08
0.83 0.90 0.97 1.03 0.97 0.49 - - - - - - - 0.61 0.75 0.87 0.90 0.89 0.71 - - - - - - - 0.61 0.75 0.87 0.90 0.89 0.71 - - - - - - - - 0.61 0.75 0.87 0.90 0.89 0.71 1.05 1.14 1.18 1.20 1.18 1.18 1.05 1.14 1.18 1.20 1.18 0.75 0.70 0.92 0.92 0.62 0.25 - 0.71 0.105 1.05 0.98 0.75 0.73 0.96 1.08 1.10 1.03 0.92 0.73 0.92 0.93 0.92 0.62 0.25 0.78 0.92 0.93 0.92 0.62 0.25 0.78 0.92 0.95 0.95 <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.38		1.	F.	1.	I	T.	1.05	1	I	0.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.43 0.5	ц С	4	0.66	0.83	0.90	0.97	1.03	0.97	0.49	0.25
0.61 0.75 0.87 0.90 0.89 0.71 - - - - - - - 0.61 0.75 0.87 0.90 0.89 0.71 0.61 0.75 0.87 0.90 0.89 0.71 1.05 1.14 1.18 1.20 1.18 1.18 0.70 0.92 0.98 0.92 0.62 0.75 0.70 0.92 0.98 0.92 0.62 0.25 - - 1.00 1.05 - - - 0.71 0.82 0.99 1.05 0.92 0.75 0.73 0.96 1.08 1.10 1.03 0.92 0.73 0.92 0.93 0.92 0.75 0.25 0.78 0.92 0.93 0.92 0.62 0.25 0.78 0.92 0.92 0.95 0.85 0.85		t.		ł	I	ŧ.	1.	I .,	I	ł	l	- 1 11
- -	- $ 0.61$ 0.75 0.87 0.90 0.89 0.71 1.05 1.14 1.18 1.20 1.20 1.18 0.70 0.92 0.98 0.92 0.62 0.25 $ 1.00$ 1.05 $ 1.00$ 1.05 0.98 0.75 0.70 0.82 0.99 1.05 0.75 0.75 0.73 0.96 1.08 1.10 1.03 0.92 0.78 0.92 0.98 0.92 0.62 0.25 0.78 0.92 0.93 0.92 0.62 0.25 0.78 0.92 0.92 0.92 0.62 0.25 0.78 0.92 1.10 1.05 0.95 0.85	0.38 0.4	0.4		0.52	0.61	0.75	0.87	0.90	0.89	0.71	0.35
0.61 0.75 0.87 0.90 0.89 0.71 1.05 1.14 1.18 1.20 1.20 1.18 0.70 0.92 0.98 0.92 0.62 0.25 - - 1.00 1.05 - - 0.70 0.82 0.99 0.92 0.62 0.25 0.70 0.82 0.99 1.05 - - 0.71 0.82 0.99 1.05 0.98 0.75 0.73 0.96 1.08 1.10 1.03 0.92 0.78 0.92 0.92 0.62 0.25 0.78 0.92 0.92 0.62 0.25 0.78 0.92 0.92 0.65 0.25 0.78 0.92 0.95 0.685 0.85	0.61 0.75 0.87 0.90 0.89 0.71 1.05 1.14 1.18 1.20 1.18 1.20 1.18 0.70 0.92 0.98 0.92 0.62 0.25 - - 1.00 1.05 - - 0.70 0.82 0.99 0.92 0.62 0.25 0.71 0.82 0.99 1.05 - - - 0.73 0.96 1.08 1.10 1.03 0.92 0.75 0.73 0.92 0.93 0.92 0.62 0.75 0.78 0.92 0.93 0.92 0.62 0.25 0.78 0.92 0.93 0.92 0.62 0.25 0.78 0.92 1.00 1.05 0.65 0.25	₽ 			ŀ.	1 1 1 1	I	1.	1	ł	t	I,
1.05 1.14 1.18 1.20 1.20 1.18 0.70 0.92 0.98 0.92 0.62 0.25 - - 1.00 1.05 - - - 0.70 0.82 0.99 0.92 0.62 0.25 0.70 0.82 0.99 1.05 - - 0.71 0.82 0.99 1.05 0.98 0.75 0.73 0.96 1.08 1.10 1.03 0.92 0.78 0.92 0.93 0.92 0.62 0.25 0.78 0.92 0.92 0.92 0.62 0.25 0.78 0.92 1.00 1.05 0.65 0.25	1.05 1.14 1.18 1.20 1.20 1.18 0.70 0.92 0.98 0.92 0.62 0.25 $ 1.00$ 1.05 $ 0.70$ 0.82 0.99 1.05 0.98 0.75 0.73 0.96 1.08 1.10 1.03 0.92 0.78 0.92 0.98 0.92 0.62 0.25 0.78 0.92 0.98 0.92 0.62 0.25 0.78 0.92 1.00 1.05 0.65 0.25 0.78 0.92 1.00 1.05 0.95 0.85	0.38 0.44). 4 <i>1</i>	-	0.52	0.61	0.75	0.87	0.90	0.89	0.71	0.35
0.70 0.92 0.98 0.92 0.62 0.25 - - 1.00 1.05 - - - 0.70 0.82 0.99 1.05 - - - 0.71 0.82 0.99 1.05 0.98 0.75 0.73 0.96 1.08 1.10 1.03 0.92 0.78 0.92 0.93 0.92 0.62 0.25 - - - 1.05 - - - 0.78 0.92 0.92 0.92 0.62 0.25 0.78 0.92 0.92 0.92 0.65 0.25	0.70 0.92 0.98 0.92 0.62 0.25 - - 1.00 1.05 - - 0.70 0.82 0.99 1.05 0.98 0.75 0.73 0.96 1.08 1.10 1.03 0.92 0.73 0.96 1.08 1.10 1.03 0.92 0.78 0.92 0.93 0.92 0.62 0.25 0.78 0.92 0.92 0.62 0.25 0.25 0.78 0.92 1.05 0.95 0.85 0.78 0.92 1.05 0.95 0.85	0.36 0.60	3.60		0.87	1.05	1.14	1.18	1.20	1.20	1.18	1.10
1.00 1.05	$\begin{array}{rrrrr} - & - & 1.00 & 1.05 & - & - \\ 0.70 & 0.82 & 0.99 & 1.05 & 0.98 & 0.75 \\ 0.73 & 0.96 & 1.08 & 1.10 & 1.03 & 0.92 \\ 0.78 & 0.92 & 0.98 & 0.92 & 0.62 & 0.25 \\ - & - & - & - & 1.05 & 0.95 & 0.85 \\ 0.78 & 0.92 & 1.00 & 1.05 & 0.95 & 0.85 \\ \end{array}$	0.40 0.48	3 ,48	-	0.57	0.70	0.92	0.98	0.92	0.62	0.25	0.03
0.70 0.82 0.99 1.05 0.98 0.75 0.73 0.96 1.08 1.10 1.03 0.92 0.78 0.92 0.98 0.92 0.62 0.25 - - - 1.05 - - 0.78 0.92 0.93 0.92 0.62 0.25 - - - 1.05 - - 0.78 0.92 1.00 1.05 0.95 0.85	0.70 0.82 0.99 1.05 0.98 0.75 0.73 0.96 1.08 1.10 1.03 0.92 0.78 0.92 0.93 0.92 0.62 0.25 - - - 1.05 - - 0.78 0.92 0.93 0.92 0.62 0.25 0.78 0.92 1.05 - - - - 0.78 0.92 1.05 0.95 0.85	0.33	•		\$	I	i	1.00	1.05	I	1	0.55
0.73 0.96 1.08 1.10 1.03 0.92 0.78 0.92 0.98 0.92 0.62 0.25 1.05 0.78 0.92 1.00 1.05 0.95 0.85	0.73 0.96 1.08 1.10 1.03 0.92 0.78 0.92 0.93 0.92 0.62 0.25 1.05 0.78 0.92 1.00 1.05 0.95 0.85	0.40 0.48	0.48	~	0.57	0.70	0.82	66*0	1.05	0.98	0.75	0.55
0.78 0.92 0.98 0.92 0.62 0.25 1.05 0.78 0.92 1.00 1.05 0.95 0.85	0.78 0.92 0.98 0.92 0.62 0.25 1.05 0.78 0.92 1.00 1.05 0.95 0.85	0.27 0.30	0.3(50	0.52	0.73	0.96	1.08	1.10	1.03	0.92	0.79
1.05 0.85 0.78 0.92 1.00 1.05 0.95 0.85	1.05	0.39 0.50	0.5(~	0.63	0.78	0.92	0.98	0.92	0.62	0.25	0.03
0.78 0.92 1.00 1.05 0.95 0.85	0.78 0.92 1.00 1.05 0.95 0.85	0.33	•	ŀ	1	ł	I	ł	1.05	ł	1	0.75
		0.39 0.50	0.50	~	0.63	0.78	0.92	1.00	1.05	0.95	0.85	0.75

2 Irrigation Requirements of Grops in Punjab, 4 Adjusted 1 On Farm Water Management Field Manual, 3 FAO Technical Paper No. 24, Note:

Table C-2-10. (2) Crop Coefficient (Kc) (Kharif Season)

	·															
100	1.08	0.56	0.55	0.55	16.0	1	0.45	0.45	1	0.69	0.50	0.50	0.79	0.03	0.60	0.60
90	1.18	0.77	1	0.80	1.08	I	ł	0.64	I.	0.77	ŝ	0.80	0.92	0.25	ł	0.85
80	1.25	16.0	ł	1.00	1,19	ſ	ſ	0.82	1	0.78	1.05	1.05	1.03	0.62	¥.	0.95
70	1.29	0.85	1.05	1.05	I.23	ł	1,00	1.00	ł	0.71	1.00	1.00	1.10	0.92	1.05	1.05
60	1.27	0.24	J	0.74,	L. 20.	1	1 .	. 26.0	I	0.63	1	0.92	1.08	0.98	I	1.00
50	1.19	0.65	ł	0.65	1,12	i	ł	0.91	L.	0.56	0.85	0.85	0.96	0.92	1	0.92
40	1.06	0.60	I	0.60	0.98	ι	i	0.79	I	0.49	I	0.70	0.73	0.78	1	0.78
30	0.86	0.56	3.	0.56	0.80	Ĩ	I	0.65	1	0.44	1	0.57	0.52	0.63	ł	0.63
20	0.65	0.53	 1	0.53	0.55	1	I	0.45	1	0.40	I	0.48	0.36	0.50	ł	0.50
10	0.46	0.50	0.28	0.50	0.32	1	0.35	0.35	i,	0.37	0.38	0.40	0.27	0.39	0.53	0.39
(%)																•
Stage	r-1	7	Ś	4		5	ო	4	1	7	m	4	r-1	2	ŝ	4
Crop Growing Stage (%)		Maize				Soybean				Fodders				Vegetables		

2 Irrigation Requirements of Crops in Punjab, 4 Adjusted

Note: 1 On Farm Water Management Field Manual, 3 FAO Technical Paper No. 24, Table C-2-10. (3) Crop Coefficient (Kc) (Pernnial)

Suger cone	urop wrowing stage (k) 1 Suger cone 2 3	10 0.60 0.66	20 0.82 0.92	30 1.00 0.89	40 1.10 0.80	50 1.11 0.79	60 1.05 0.93	70 0.94 0.84	80 0.78 0.63	90 0.60 0.49	100 0.47 0.35 0.35
	- tr (0.66	0.74	0.82	0.95	1.05	1.05	1.05	1.00	1.00	56.0
Orchard	9 S	0.85	0.85	- 0.85	0.85	0.85	0.85	0.85	- 06*0	- 00.0	- 0.85
	4	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.90	0.90	0.85

Note: 1 On Farm Water Management Field Manual, 3 FAO Technical Paper No. 24,

2 Irrigation Requirements of Crops in Punjab, 4 Adjusted

(3) Consumptive Use of Crops

c

N N N 0 ---ო 9.4 0.25 0.25 5'1 S ~* 7 . . MAY 2 0.35 0.25 0.45 2-1 275 2.6 £ 0.25 0.44 0.83 9.44 .4 3/5 2.4 2 ო 0.56 0.44 26-0 6.8 2.5 0.25 3 **4/5** APR ĸ ۶ 5.5 0 1.05 0.66 0, 44 0.63 0.52 0.25 3.5 3.6 5/5 80) ន ----0.82 0.32 1.05 3.0 0.44 0.63 1.04 3.0 Field Irrigation Requirement(Wheat) 8 36 3 0.63 1.04 8 0.92 1.05 0.33 3.4 3.4 MAR З 88 3.7 ē ŝ 0.39 8.1 0.96 0.32 1.05 1.04 3.7 31 ЬĊ 83 ----1.05 1.04 8.3 0.36 0.92 0.39 2.5 2.5 ß 12 eò Wheat (Rabi), -1.00 0.96 0.92 0.83 0.36 1.04 2.4 FEB 7 2.4 ಸ 2.5 22 N 0.32 0.36 0.92 0.84 8 0.88 5.3 2.3 ន 8 ---0.76 0.83 0.84 0.36 0.92 0.87 1°8 9.1 <u>9</u> ŝ ŝ 0.92 0.35 0.84 0.76 0.65 0.81 NAL 1.5 1.5 5 3 1.3 \$2 N 0.75 0.88 0.85 _ 0.84 0.76 0.59 7 47 Ξ ----0.87 0.84 0.76 0.66 0.59 0.52 _ 1.1 3 7 Ξ 0.76 0.66 0.59 0.52 0.60 0.45 080 0.1 2 35 2 : 6 33 N Table C-2-11(1) 0.66 0,45 0.52 0.53 0.52 0,40 0. 8 0.8 S/5 30 ŝ ••• 0.59 0.52 0.45 0.40 0. 49 4/5 0. 2 1/5 က 24 2 ខ្ល •---0.52 0.45 0.46 NΟN 0.40 0.7 13 1/5 3/5 Ξ 2 0 2.4 3 5 ភ -0.45 0.40 0.43 0.4 21 2/5 2 1/2 2 7 ---0.40 0.40 0.3 22 1/5 ω 1/5 ო 2 2 -----007 0 1/5 2 ¢1 3,8 ន ន ---(YAA/MA) (XX) CROPPING PATTERN CROP COEFFICIENT (kc) 10 DAY X OF GROWING SEASON SOIL SATURATION HORMAL FREIGHT FON HTNOK 3. TATER REQUIREMENT LAND SOAXING (MX) NORMAL IRRIGATION XX / 10 DAYS (XVQ/XX) 913. (YAU/MK) T3 KK / XONTH 2. EQUATION LAND SOAKING Ke AVERAGE

Table C-2-11(2) Field Irrigation Requirement(Oilseed)

KONTH	OCT			NON	 	<u>р</u>	DEC		N Y I	. 7		11 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14			MAR		<	APR	 	MAY	•	: : :
10 DAY	1 2	3	1	8	e		2		8	<i>с</i> о		8	e		2	8		3		21	S	
					-		 .			<u> </u>					 			 			فبد.	
CKOPPING PATTERN			/	\int	1					0 i l s	Seeds (Beb)	^				[;		-/				
					/	+		-	-	-									Λ			۱ <u>.</u>
1. ELEMENT X OF GROWING SEASON	-				1	21	- 53 - 38	6 63	20	6	25	12	62	S.	8	<u>8</u>	 -	 .				, T
		 		0.37	0.40	0.45	0.51 0.	0.57 0.65	35 0.75	5 0.83	3 0.88	0.90	0.85	0.78	0.60	0,35	 			• <u>•</u> •••		F
CROP COEFFICIENT (kc)				} 	0.37	0.40	0.45 0	0.51 0.57	57 0.65	5 0.75	5 0.83	0. 65	0.90	0.89	0.78	0.50	0.35	: 			. <u>.</u> ,	ſ
						0.37	0.40	0.45 0.51	51 0.57	7 0.65	5 0.75	0.83	0.83	0.30	0.89	0.78	0.60	0.35			•	
				 		<u> </u>	0.37 0.	0.40 0.45	12 0.51	1 0.57	7 0.65	0.75	0.83	0.88	0.90	0.85	0.78	0.60	0.35			
-						 											 :					
Ke AVERAGE				0.37	0.33	0.41	0.43 0	0.48 0.54	S4 0.62	2 0.70	2.0	0.85	0.85	0.38	0.81	0.67	0.59	0.48 0	0.35			r
ET& (NM/DAY)	i			2.4	 	8.1	8	 	1.8	ľ		2.5			3.7	 :	ניט	5.5	 			
ET (XX/DXY)				0.9	0.9	0.7	0.7	0.8 1.0	1.1	1.3	2.0	2.1	2.2	3.3	3.0	2.5	3.2	5.5	- 51			
SOIL SATURATION (MM)				33			50	 			 											1
2. EQUATION LAND SOAKING			1/4	1/4	1/4			· .				_			 		·			· .		r
NORMAL IRRIGATION				1/4	2/4	3/4	4/4									4/4	3/4	2/4 - 1	1/4		<u> </u>	
3. RATER REQUIREMENT LAND SOAKING (MM)			5	13	12	12						.						· · · · ·	 	-	·	
NORMAL (RRIGATION (MM/DAY)				0.2	0.5	0.5	0.7 0	0.5 1.0		8. 	2.0	2.1	2.2	3.3	3.0	2.5	2.4	1.3	0.5			r
AW / IC DAYS			13	15			- -	10	=	2	8	21	ន	8	8	ន	2	33	5	<u>.</u>		
ATUR / SH							5		1			ł			2	 						r

÷

.

0 0

Table C-2-11(3) Field Irrigation Requirement(Fodder)

•

and a state of the state of the

Table C-2-11(4) Field Irrigation Requirement(Vegetable)

·

10. DAY 1 CROPPING FATTERN X. ELEMENT X. OF GROFING SEASON	01	0						_		,					- - 		2	MAR		α. ∢	۲. ۲.
CROPPING PATTERN I. ELEMENT X. OF GROPING SEASON CROP CREEFICLENT (Ac.)		 م	1	8	ຕ່	1	8		5	ю —		.01	e	. T	61	S	1	01	3	4	
CROPPING PATTERN I. ELEMENT I. ELEMENT I. GLEMENT SCOP COEFFICLENT (Acc)				·						1 	• : 				· .						
X OF CROPTING SEASON CROPTING SEASON CROPT COEFFICIENT (A.C.)				- <i> </i>					Yeseta	etable (Rabi)				1.		fi		·····		······	
ELENENT SEASON X OF GROWING SEASON CROP CDEFFICLENT (A.C)												-		:		·				i	
CROP COEFFICIENT (Ac)		8	16	32 	33	41 5	50 58	99	72		57	100		· ·			••••• •				·
CROP CDEFFICIENT (kc)		0.38	0.46	0,57	0.61	0.72 0.	33	0.58 1.	1.03 1.	1.01 0.32	2 0.34	0.75			- <u>-</u>		• • • • •		-		• ••••
			0.38	0.45	0.57	0.61 0	0.72 0.	0.32 0.	0.98	1.03 1.01	0.32	0.84	0.75								
				0.38	0.46	0.57 0	0.61 0	0.72 0-	0-92 0.	58 1.03	3 1.01	0.52	0.84	0.75							
					0.38	0.46 0.	57 0.	61 0	72 0.	92 0.98	1 03	10.1	0.52	0.84	0.75				:		
			. .			0.38 0.	46 0.	57 0.	61 0.	72 0.32	2 0.38	1.03	10-1	0.32	0.84	0.75				- 	
						-	0 83	46 0	57 0.	61 0.72	2 0.32	0.98	1.03	10.1	0.32	0.84	0.75		÷		• • • • • • •
Ke Average		0.38	0.42	0.47	0.51	0.55 0	0.81	38 0.	46 76 0.	57 0.61 53 0.88	1 0.72 8 0.92	0.32	0.33	1.03	1.01	0.82	0.84	0.75	: 		
ETo (XK/DAY)	5.0 -			3.8	: 	2.4	4		9 . 6			1.8			2.5			3.7			
ET (KK/DAY)	: 	S.1	1.8	1.8	6	1.3	1.5	9	1.2 1.	1.3 1.4	1.7	1.7	1.7	2.3	2.2	2.1	3.0	2.8			
SOIL SATURATION (MM)	5			20													- 	а.			
Z. EQUITION LAND SDAKING	11	17	- 1/1		1/1		1/1		: 												
NORMAL IRRIGATION		4/17	2/7 -	3/7	4/7	s/7 6	8/7 7					1/1	6/7	5/7	4/2	3/7	2/7	1/1	-		
3. WATER REGULARMENT LAND SOAKING (MM)		۲.			6	7	8			· · ·								·			
HORMAL IRRIGATION (MM/DAY)		0.3	0.5	0.8	1.1	0.9	1.3	1.6	1.2 1.	1.3 1.4	1.1	1.7	1.5	s 1	1.3	6.9	0.9	0.4			
SAVO DI / WM		10	12	15	18	16 2	21 1	16 12	13	14	12	1	15	35	13	63	 07				
HIM / MONTH	17			45			53		ខ្ល			49			38			13			

.

Table C-2-11(5) Field Irrigation Requirement(Maize)

AONTH		APR			MAY			NNC			101	•		AUG	}		SEP		001	
IC DAY	1	2	ю.	·1	2	S	1	2	3	1	2	8		2	3	-	2	3	 (1)	0
CROPPING						1				*	ta ize (kha⊴	10				1			 	
	^																		 	
L ELEMENT X OF GROFING SEASOH					0	50	8.	40	20	09	20	08	8	100					 	
					0.50	0.53	0.56	0.60	0.85	0.74	1.05	00-1	0.80	0.55				·•	 	
CROP COEFFICIENT (kc)						0.50	0.53	0.56	0.60	0.65	0.74	1.05	1.00	G. 80	0.55				 	
				-			0.50	0.53	0.56	C. 60	0.65	0.74	1.05	1.00	0.80	0.55			 	
							-	0.50	0.53	0.56	09.0	0.85	0.74	1.05	1.00	0.80	0.55			
									0.50	0.53	0.56	0.60	0.65	0.74	1.05	1.00	0.80	0.55		
		·																· · - -		
KG AVERAGE					0.50	0.52	0.53	0.55	0.57	0.62	0.72	0.81	0.85	0.83	0.85	0.78	0.63	0.55		
ETo (WH/DAY)					8.4			8.7			5.7	·····		5.0			3.8			
ЕТ (ЖИ/ОЛУ)				,	4.2	4.4	3.6	3.7	3.8	3.5	4.1	4.6	4.3	4.2	5.2	3.0	13	2.1	 :	
SOIL SATURATION (MW)																				ļ
2. ECUATION LAND SOAKING				1/5	1/5	1/5	1/5	1/2												
NDRMAL IRRIGATION					1/5	2/5	3/5	4/5	5/5					5/5	4/5	3/5	2/5	1/5		
3. WATER REQUIREMENT LAND SOAKING (MW)		·															·			
NORMAL IRRIGATION (MM/DAY)					0.8	1,8	2.2	3.0	3.8	3.5	1.1	4.6	4.3	4.2	3.4		0.1	0.4		
AK / 10 DAYS					8	18	22	30	38	35	. 4 1	S†	43	42	34	18	10	\$		
NK / XONTH				 	26			08			12			. 811			32			
													ĺ							

C--118

· .		- - 			:																	
	ø											Γ										
N O N	2	- 	- 					·			- ÷	1						·				
		•																				
	с. С								 				 				, "			 		
0 C T	67			- <i>• •</i> •							,			3.8			-				••••	-4
	1		- 1		2	•		 		0,45			0.45	1 - 1 ⁻	1.7			1/6	- 	0.4	- -	
							•		0.45	0.64			0.55		2.8			2/4		4	14	
с. Ш	~		1					0.45	0.64	0.82			0.64	5.0	3.2			3/4		2.4	57	75
S		- <u></u>	(100	0.45	0.64	0.82	1. 00			0.73	ŝ	3.7			4/4		3.7	37	
	3		 :			90 -	0.64	0.82	1.00	0.97			0.86		4.9		<u>.</u>		,	6.7	49	
AUG	8					80	0.82 C	1.00	0.97	0.91 (0.53	5.7	5.3		-				53	154
A S	1		C C	 	2	20	1.00	0.97	0.91	0.79 (0.82	ശ	5.2		-			5.2 -	52	
	3		Soybean (Kharif)			50 · · · 7	0.97	0.91	0.79	0.65			0.83		5.6					5.6	55	
JUL	୍ ର		S C			50 6	0.91 0	0.79	0.65	0.45 0			0.70	6.7	4.7					4.7	47	14]
ן ר		_	-			10 5	0.79	0.65 C	0.45	0.35 0			0.56	3	3.8			4/4		3.8	38	ň
-	3	• •					0.65 0	0.45 0	0.35 0				0.48 0		4.0		1/4	3/4 4		3.0	8	
z	2					30	0.45 0	0.35 0	• .				0.40		8 y 8		1/4	2/4 3		1.7	17 3	54
NDT	8					50	0.35 0.	0					0.35 0	8.4	2.9 3	0	1/4 1	1/4 2		0.7		1 0
_	-			<u> </u>		2						<u> </u>	6		∾i		1/4			? 		
λ.	8		/									-					- I	·				
MAY	0									. 	 			7.4		0					ļ	
	 											<u>.</u>				·				<u>.</u>		
			:													_				(YAG/MM)	 .	
Ŧ	1 1		RN SN			NO		(kc)								IDH (MM)		ION		1	YS	
HINCH	AYO DE		CROPPING PATTERN		1. ELENENT	X OF GROWING SEASON		CROP COEFFICIENT (kc)					KC AVERAGE	ETO (MM/BAY)	ET (KM/DAY)	SOIL SATURATION (MM)	2. EQUATION LAND SOAKING	NORMAL IRRIGATION	3. TATER REQUIREMENT LAND SOAKING (NN)	NORMAL JERIGATION	SAYO OI / NM .	HAN / MONTH
Ļ				<u></u>	J	<u>-</u> -											I		L			

MONTH	10 044	CROPPLING		1. ELEMENT X OF GROWING SEASON		CROP COEFFICIENT (kc)	L		<u> </u>	<u> </u>	Xc AVERAGE	ΞΤο (ΜΜ/DAY)	ЕТ (ЖК/DAY)	SOIL SATURATION (AN)	2. EQUATION LAND SOAKING	NORMAL IRRICATION	3. TATER REQUIREMENT LAND SOAKING (MK)	NORKAL EREICATEOR (MM/DAY)	SAVO DI / MA	MX / MONTH
A									-						1/13		÷.1		~	
APR	~				0.41			 		<u> </u>	0.41	3.7	1.5	20		1/13	1.1	0.1	10	15
	m			ន	0.50						0.46		1.7			2/13	4.2	0.3	I-	
•				8	0.61						0.51		2.8			3/13	4.2	0.6	2	
МАҮ	01			44	0.75						0.58	5.5	3.2	20 20	·	1/13	4.2	1.0		0
	е г		···· -	26	0.97		<u> </u>				0.65		9		. 	5/13	4.2	3.6	81	-
יו				61 7	1.00						0.71		5.3 5.3		<u> </u>	6/13	4.2	5.4	58	
JUN	8			78 89	1.04			[0.76 0	7.4	5.6 5	50		.7/13 8	4.2 4	3.0 3.	34	101
			 	00	0.83 D.						0.77 0.		5.7 5.2			8/13 3/	¢.2 4.	 	39 47	
101	10	der s			0.55						0.74 0.	3.4	2 6.2	20		3/13 10/	4.2 4.1	4.3 4.	25	155
۔ ا د	ю —						 				0.74 0.74		2 6.2			11/13	1 4.1	4.8 5.2	28	
						- <u>-</u> -				0.41	74 0.74		2 5.0			13 10/13		2 3.8	8	
AUC	~									11 0.50	74 0.74	6.7	0 5.0			13 9/13		8 3.5	35	105
	6		1	 			:			0.61	4 0.79		5.3			3 8/13		3.3	R	
	_							 			0.83		4.7			3 2/13		2.5	25	
SEP	N										0.86	5.7	4.9			6/13		2.3	ន	67
	n		1			-					0.88		5.0			5/13		6.1	51	
0						 		 			0.86	ĺ	4.3			4/13		5.1	2	
0 C T	2							}	<u>.</u>		0.81	5.0	4.1			3/13		0.9	00	2
	- 										0.69	- -	3.5		 	2/13		0.5	5	-
N N	1	·	T								0.55	8.5	2.1			\$1/1		0.2	2	
NON	0 		. <u>.</u>		 			 			 	80								
-																				
DE(10																			
<u>ں</u>	~								 						-	,				

Table C-2-11(7) Field Irrigation Requirement(Fodder)

· .

.

Table C-2-11(8) Field Irrigation Requirement(Vegetable)

Table C-2-11(9) Field Irrigation Requirement(Orchard)

MONTH	-	APR			MAY			NDJ			JUE			AUG			sер	
10 DAY	-	0	s S		~	с		8	ю 1	-	8	6	-	2	e		~~	0
																	:	
CROPPING							·	 	Orchar	pra							· · ·	
																		1
L ELENENT * OF GROWING SEASON																		
					├]					
CROP COEFFICIENT (kc)								 										
											•							
									 -									
	:						••••							·			}	
														~				
KC AVERAGE	0.85																	0.85
ETo (MM/BAY)		5.5			7,4	 		8.4			6.7			5.7			5.0	
ET (MX/DAY)	4.7	4.7	4.7	6.3	6.3	6.3	1.1	7.1	1.1	5.7	5.7	5,7	4-8	4.8	4.8	4.3	4.3	4.3
SOIL SATURATION (NH)																		
2. EQUATION LAND SOAKING				· · ·								· ·						
HURRAL IRRIGATION						· · · ·												
3. RATER REQUIREMENT LAND SOAKING (MM)																		-
NORMAL TRAIGATION (MM/DAY)	4.7	4.7	4.7	5.3	6.3	5.3	7.1	7.1	7.1	5.7	5.7	5.7	4.8	4.8	4.8	4,3	4.3	4.3
SAN DAYS	47	47	47	ß	63	83	71	11	11	51	57	51	48	48	· 35	13	≮3	43
MK / MONTH		141			189			213			121			144			123	

Table C-2-11(10) Field Irrigation Requirement(Orchard)

KONTK		-	ост			NON			DEC			JAN			60 10 11			MAR	
YAG DE		1	2	s	-	2	8	1	8	<i>с</i> у		2	3		2	ю		à	ო
CROPPING PATTERN										010	Greberd								
	L																	-	1
1. ELENENT X. OF. GROFING . SEASON			1				· ·												:
		 . ;																7	
CROP. COEFFICIENT (kc)															:				
	L			•									.,						
								- -											
														:				-*	
Ke AVERAGE		0.85								- 0.85	0.3					.0.9	0.85	0.85	0.85
ETO (MM/DAY)			3.8			2.4			1.5	: : :		1.8		- X	2.5			3.7	
ET (WW/DAY)		3.2	3.2	3.2	2.0	2.0	2.0	1.4	1.4	1.4	9	1.6	971	2.3	2.3	2.3	3.1	3.1	
SOIL SATURATION (NW)																			
2. EQUATION LAND SOAKING												· .	. <u> </u>						
NORMAL IRRIGATION		 																	
3. BATER REQUIREMENT LAND SOAKING (MK)			-									·						4	
NORMAL TREEGATION (MM/DAY)		3.2	3.2	. 3.2	2.0	2.0	2.0	1 1	1 1	4-1-	1.6	1.6	9 1	2.3	2.3	2.3	3.1	3.1	3.1
AK / 10 DAYS		32	32 .	32	20	20	20	- 14	14	14	15	15	16	ដ	23	z	31	31	31
HINON / NN			96			60			45			48		 	83			ន	

Table C-2-11(11) Field Irrigation Requirement(Sugarcane)

HINCH			MAR			APR			МΑΥ			J UN			JUL			AUC	
IO DAY			8	e	-	5	ε	-	2	3	1	~	0	-	~	0		2	ຕ
CROPPING PATTERN										Suga Can	L U			 					
1. ELEMENT \$ OF GROFING SEASON		~	9	~~~~	=	14	17	13	22	25	58	31	33	. — 	8	53	24	13	50
		0.66	0.66	0,86	0.67	0.69.	0.70	0.73	0.76	0.78	0.80	0.83	0.86	090	0.34	0.37	0.95	1.02	1.05
CROP COEFFICIENT (Kc)					 									·					
											`								
Ke AVERAGE																			
ЕТо (ИК/ DAY)			3.7			5.5		•	7.4			8.4			5]	·		5.7	
ET (MA/DAY)		2.4	2.4	2.4	3.7	3.8	3.9	5.4	5.8	5.8 .	8.7	7.0	7.2	6.0	6.3	8.5	5.6	5.8	6.0
SOIL SATURATION (MM)																			
2. EQUATION LAND SDAXING																			
KORMAL TRRICATION																			
3. WATER REQUIREMENT LAND SOAKING (MM)																			:
NORMAL TRRIGATION (MM/DAY)	- (XYQ/	2.4	2.4	2.4	3.7	3.8	3.9	5.4	5.6	3.6	6.7	7.0	7.2	6.0	8.3	6.5	5.8	5,8	5.0
MK / 10 DAYS		24	24	24	37	æ	62	Ş	56	58	5	70	72	8	8	6 5	ŝ	85	80
HA / KONTH			72			114			168			203			188			- 176 -	

ſ

Requirement(Sugarcane)
Irrigation
Field
Table C-2-11(12)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ADATH		с S E P			OCT			- NON			DEC			NA			8 23 4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			۱ŀ					-			-	1	- -			- -		1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10 DAY		01	e		8	en L	-	~	ო	-	2	ю 1			ŝ	• ••	2	3
Nice Serve Serve <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																			
	CROPPING PATTERN				、 -			. <u></u>		ျမားပ	LE	 							
										1					- ·	 			
		8	56	58	5	3	67	- 63	1		78	81	ĸ	- 98		35		31 15	8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.05		1.05	1.05		1.05	1.05	<u>+</u>		1.01	8	8.1	1.00	8	0.39	0.98		0.95
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CROP COEFFICIENT (kc)						 								╞╌┯				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											 				 		 		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. ,				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															†		1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ke AVERAGE									-								 	
00 6.3 5.3 5.3 4.0 4.0 2.5 2.6 1.6 1.5 1.8 1.8 1.8 1.8 1.8 1.8 2.5 2.4 00 (680) 1	ETO (NM/DAY)		5.0	-		3.8			2.4	· ·		1.6			1.8			2.5	
0H (86) 0H (86) 0H (86) 0H (80) 0H (80) 0H (90) 0H (90) 0H (90) 0H (90) 0H (90) 0H (90) 0H (90) 0H (90) 0H (90) 0H (90) 0H (90) 0H (90) 0H (90) 0H (90) 5.3 5.3 4.0 4.0 4.0 2.5 2.6 1.6 1.6 1.8 1.8 1.8 2.5 2.4 2.5 2.4 2.5 2.4 2.5 2.4 2.5 2.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 2.5 2.4 2.5 2.4 2.5 2.4 1.2 2.5 2.4 1.8 1.8 2.5 2.4 2	ET (MK/DAY)	5.3	5.3	5.3	4.0	0.4	4.0		in i	2.6	:e	s. -	1.5	8.1	1.8	8.1	2.5	4 7	1.2
Init Init Init Init Init Init Init Init Init Init <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td> </td> <td>1</td> <td></td> <td></td>					 											 	1		
OH OH OH MUT 5.3 5.3 5.3 4.0 4.0 2.5 2.6 1.6 1.8 1.8 2.5 2.4 MUT 5.3 5.3 5.3 4.0 4.0 2.5 2.6 1.6 1.8 1.8 2.5 2.4 10 100 40 40 2.5 2.6 1.6 1.6 1.8 1.8 2.5 2.4 118 1180 120 25 26 16 16 18 18 2.5 2.4 120 120 76 76 26 2.6 3.4 3.4		 						· · · · · · · · · · · · · · · · · · ·											
(MM/DAY) 5.3 5.3 5.3 5.3 5.3 5.3 4.0 4.0 4.0 2.5 2.5 1.6 1.6 1.8 1.8 1.8 2.5 2.4 1 53 53 53 40 40 20 2.5 2.5 1.6 1.6 1.8 1.8 1.8 2.5 2.4 153 53 53 40 40 25 2.5 2.5 2.6 1.6 1.8 1.8 1.8 2.5 2.4 153 153 123 123 7.6 4.8 54 2.5 2.4	RORALL ERICATION														 	 			
(MM/DAY) 5.3 5.3 5.3 4.0 4.0 4.0 2.5 2.5 1.6 1.6 1.8 1.8 1.8 2.5 2.4 53 53 53 40 40 25 25 16 16 18 18 1.8 25 24 153 53 53 40 40 25 25 16 16 18 18 18 25 24 153 153 123 76 40 25 26 16 16 18 18 25 24 153 153 123 76 76 48 54 73 73	3. RATER REQUIREMENT LAND. SOAKING (NA)										·	<u></u>							
53 53 53 60 40 25 26 16 18 18 18 18 25 159 120 120 120 120 120 120 13 13 13 13		5.3	5.3	5.3	4.0	4.0	4.0	2.5	2.5	2.6	1.6	1.6	1.6	1.8	-1.8	1.8		2.4	2.4
	NH / 10 DAYS	53	53	53	6	¢0	40	52	25	26	18	16	9	18	81	8	55	24	24
	HTH / HONTH		159			120			76			. 84			54			- 23	
	·														-				

· #

• *

(4) Irrigation Efficiency

Table C-2-12. Irrigation Efficiency	Tabl	e C-2-12.	Irrigation	Efficiency
-------------------------------------	------	-----------	------------	------------

		•
		ICID
		or
	TCCL Jan and (Fa)	ILRI
a. Cor	weyance Efficiency (Ec)	an da birti. Disadiyaying
0	a three makers and	v and small variation of
v	Continuous water supply	and small variation of 0.9
	discharge	0.9
0	D 1 1 1 1 1 2 000 7	000 ha, Rotative irrigation
•	Project area 5,000 = 7	300 ha well maintained) 0.8
	(Rotation block 700 -	SUU Ha well maintained,
0	T C 1. (10,000 be)	and small scale (1,000 ha)
-	Large Scale (10,000 na,	sation (poorly-maintained) 0.6 to
	Project, Rotative IIII	action (poorly-marnearmed) or co
۱. ۲.	al Refigioney (Rb)	
b. Cai	al Efficiency (Eb)	
0	On-farm (20 ha)	no lining 0.8
	on-tarm (20 ma)	lining, piped 0.9
		amono, tabar second second
0	On-farm (20 ha)	no lining 0.7
		lining, piped 0.8
	Υ.	
c. Dis	stribution Efficiency (Ed =	= Ec x Eb)
Party of the second	<u></u>	ny <u>a mana kataka ka</u> nggang perupakan
o	Average value in rotati	ve irrigation
	 Operation and main 	tenance (Excellent) 0.6
	*1	(Good) 0.5
	D .	(fair) 0.40
	11	(Bad) 0.3
d. App	olication Efficiency (Ea)	US (SCS)
0		
v	Surface irrigation	
	~ Slop furrow irriga	0.60 - 0.75 0.5
÷		
	- Basin irrigation,	
	level irrigation .	
		a 0.50 - 0.55
	- Contour irrigation	
	- Contour irrigation	a 0.50 - 0.55 0.55 - 0.70 0.55
	 Contour irrigation Border irrigation 	0.55 - 0.70 0.57
	 Contour irrigation Border irrigation 	
	 Contour irrigation Border irrigation 	0.55 - 0.70 0.5

0.67

Source; IR-4

REGUIREMENT
IRRIGATION
GROSS
C-2-13
TABLE

0.050		¥ 4					໌ ເກ
ARCANE=	1000HA)		6.552 6.5722 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 6.5535 7.55557 7.55557 7.55577 7.55577 7.555777 7.5557777 7.55577777777				6.04
o sner	TMCM/	(DEC)	0.458 0.289 0.272 0.072 0.272 0.072 0.072 0.072 0.072 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.0000 0.072 0.0000 0.0000000000	48404484480	4 4 MM MM 4	HAMHO	0.313
p_=0.05	INN	(NOV)	0.629				0.476
ORCHAR		(0CT)	0.624 0.469 0.469 0.450 0.450 0.450 0.450 0.450 0.450 0.648 0.613	0.641 0.542 0.548 0.548 0.447 0.448 0.5480 0.5480 0.5480 0.5480 0.5480 0.5480 0.5480 0.54800000000000000000000000000000000000	0.52933	0.408 0.408 0.528 0.507 0.136	0.435
=0.150		(SEP)	0.755 0.755 0.7465 0.7455 0.7455 0.7455 0.7455 0.7455 0.7455 0.7455 0.7556 0.7556 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.745 0.7550 0.7550 0.7550000000000				0.481
EGETABLE=	+		0.201	A ONLEGNICE OCHNIC			0.267
50 VE	= 60.0%	(10L) (30L)	0.295 0.295 0.252	NOUNING CONTRACTOR			0.457
RS =0.05	ICIENCY =		0.773 1.172 0.773 0.7740 0.7740000000000	0,40,44,40,40,40			0.995
FODDER	La	(MAY)	0,825 0,735 0,716 0,716 0,825 0,825 0,855 0,855 0,855 0,855 0,855 0,855 0,656 0,656	00004000000000000000000000000000000000	839799 8337978 833	47.877 47.877	0.759
≡0.050	IRRIGAT	(APR)	0.8860000000000000000000000000000000000	00000000000000000000000000000000000000	24522 2666 2666 2666 2666 2666 2666 2666	100040	0.616
OYBEAN	20	(MAR)	0.668 0.668 0.666 0.666 0.666 0.668 0.668 0.688 0.688 0.688 0.5880 0.58800 0.58800 0.58800 0.58800 0.58800 0.58800 0.588000 0.588000 0.5880000000000	0 4 M M M M M M M M M M M M M M M M M M	500 4 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	0448N	m
ŝ	ITY = 1		0.0257 0.0257	4464066446	NONNWW	140400	0.378
	NG INTE	**	0.230 0.00100000000	00044000000	N. N	000004	0.315
	Ω.	YEAR	00000000000000000000000000000000000000	000000000000000000000000000000000000000	~~~~~	9854 9854 9854 9854 9854 9854 9854 9854	EAN

REQUIREMENT	
IRRIGATION	
GROSS	
C-2-14	
TABLE (

ZE =0.300 SARCANE=0.050	1000HA2	ANNUAL *		6720		• •	•	•	•	. •	•	•	٠	. •	•		•	•	•	ં •		٠	. •	· •	•	, F	ė		٠	•	•			4.494		•	.879	5.570
0 MAIZ 0 SUGA	T MCM/	(DEC)	1	0.318			. 4	•	•	•	•	•	•	•	•	•	. •	•	•	ુ હ			•	•		۰.			•	•	•	•	۴			•		0.288
3BL E=0.10 2D =0.05	CUNI	-*	1.4	0.586	ŝ	ŝ	ŝ	9	Ś	9	റ	ed S	Ϋ́	ņ	പ	1	പ	\sim	2	•	ŝ	S,	10	s,	s,	ŝ	ņ	4.	9	4.	ĥ	<u></u>	2	4	ŝ	ŝ	<u>_</u>	0.444
VEGETA ORCHAR		(0CT)		0,442			•	•	*	•	•	٠	٠	•	•	•	•	•		•	•			•					•		•	•				٠		0.417
=0.050	•	(SEP)	1	0 749	1	\sim	1	~	ŝ	9	4	9	4	ņ	9	Γ.	4	ŝ	\sim	်		4	N,	m	r.	m	4	ŗ,	~	~*	ņ	ņ	ŝ	N,	ņ	Ŷ	0	0.475
FODDERS VEGETABLE		(AUG)	1.0	0.312	2	ŝ	0	2	Ņ	<i>6</i> 4	m,	n,	덖	2	-1	•	N,	<u>ر ا</u>	5	P,	N,	님	ő	્યુન્ન	ņ	2	ှ	ņ	ှ	ຸ	Ŋ	<u>°</u>		-	넊	ŝ	ιM)	0.265
200	= 60.0%	(10L)		0.348	1	1	5	2	M	M	ņ	1	শ	ς,	ų	<u>,</u>	4	<u> </u>	ŝ	Γ.	4	ŝ	9	۳,	N	M,	4	9	N	ę	•	-1	٩,	N	~	~	4	0.418
EDS =0.0 RS =0.0	ICLENCY	* (Nnr)		1.008	0	5	0	φ.	ှ	0	9	ç,	`	୍ର	°.	<u>م</u>	0	0	റ	ς,	ŝ	÷	5	0	ິ	°.	ထ	Ŷ	ς,	ŝ	Ŷ	ိ	<i>с</i> .	ŝ	5	9	÷.	0.847
PILSE	TION EF	(MAY)	I K	0.694	7	\$. 76	5	2	52	2	.06	<u>6</u>	.54	- 64	5	10.	. 62	- 62	52.	25	\$0	. 69	.63	22	53	23	33	Б.	. 8 8	22	.45	ñ	.60	22	.61	100. 100.	0.632
=0.400 =0.050	IRRIG	(APR)	٢α	0.710	80	0		5	Γ.	Ŷ	റ	m,	٢.	Ŷ	'n	9	Ľ,	ŝ	ŝ	0	ς.	Ŷ	4	Ч	~	r,	m,	ņ	Γ.	~	Ľ,	~	5	ر م	Ľ,	` .	0	.0.577
WHEAT SOYBEAN	30.0%	(MAR)		0.996	• i •		ं. र					*		*				.		· •			•		e		. F		•	•	: 3		•		•	•	375	0.547
72	= 711S	(FEB)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.293	i õ	59	5	54.1	.78	0	ŝ	20	្រុ	5	44	10 74	52.	1	22	E.	m.	50	5	46	2	22.	8	5	5	ň	5	÷.	6	ស៊	4	ŝ	2	0.366
CROPPING PATTER	INI DNI	CJAN	10	0.055	08	52	5	8	52	:12	20	. 25	. 16	.50	6.	м.	° 57	ñ	22	5	4.3	40	. 18	5	. 59	:53	2	8.	.56	24.5	Ş	6	.28	14	53.0	8	0.41	0.292
CRO		>	15	1955	5	18	5	56	\$	ŝ	8	8	8	96	8	98	98	8	8	8	6	5	5	6	26	5	55	8	62	5	88	8	98	86	8	88	198	MEAN

TABLE C-2-15 GROSS IRRIGATION REQUIREMENT

0.300		į i	
IZE =0 GARCANE=0	1000HA)	ANNUAL	5.007388331 5.00738831 5.0073885555555555555555555555555555555555
0 MAIZ 0 SUGP	TMCM/	(DEC)	0.2837 0.2937 000000000000000000000000000000000000
BLE=0.05	INNO	(NON)	0.2386200000000000000000000000000000000000
VEGELA	4	(DCT)	0.23244 0.23244 0.23246 0.23244 0.23244 0.23244 0.23246 0.23244 0.23246 0.23244 0.23246 0.232666 0.232666 0.23266666666666666666666666
=0.050	4	(SEP)	68 68 68 68 68 68 68 68 68 68
FODDERS = VEGETABLE=		(AUG)	0.254 0.2578 0.2578 0.2578 0.2578 0.2578 0.2578 0.2578 0.258 0.
50 VI	= 60,0%		0.273 0.273 0.2735 0.2755
EDS =0.0		*	0.552 0.552 0.552 0.555 0.
FODDEI	LION EFF		0.56 0.523 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.555 0.5
=0.400 =0.050	IRRIGA	(APR)	0 0 0 0 0 0 0 0 0 0 0 0 0 0
WHEAT SOYBEAN	20.0%	(MAR)	× * * * * * * * * * * * * * * * * * * *
2	= ¥ŢIS	(FEB)	22 22 22 22 22 22 22 22 22 22
CROPPING PATTER	PING INTE	-*******	* * * * * * * * * * * * * *
CROP	CROPI	* ΥΕΑR	* 1952 1952 1955 1955 1955 1955 1955 1955

•

TABLE C-2-16 GROSS IRRIGATION REQUIREMENT

.250				
MAIZE =0. SUGARCANE=0.	1000HA)	ANNUAL	4 5 5 5 5 5 5 5 5 5 5 5 5 5	
00	TMCM/	(DEC)	4 4 4 4 4 4 4 4 4 4 4 4 4 4	
(BLE=0.05) 20 ==0.05	CUNI	CVON)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2
VEGETAI ORCHARI	+	(001)	2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u>}</u>
=0.050 =0.050	•	(SEP)	00000000000000000000000000000000000000	
FODDERS	•	(AUG)	8422050000000000000000000000000000000000	31
050 F	= 60.0%	(3RL)	00.222 00.222 00.222 00.222 00.222	2
EDS =0. RS =0.	ICLENCY		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•
PODDE	TION EF	CMAY)	0 0 0 0 0 0 0 0 0 0 0 0 0 0	2
=0.350	IRRIG	(APR)	0.70 0.70	3
WHEAT SOYBEAN	10.0%	(MAR)	6	5. 1
	1Y =	(FEB)	0.000000000000000000000000000000000000	2
CROPPING PATTERN	NG INTE		00000000000000000000000000000000000000	G
CROP	CROPPI	YEAR	* 1955 1955 1955 195555 195555 195555 195555 195555 195555 195555 195555 195555 195555 195	11

C.3. Water Demand for New International Airport

C.3.1 Background of New Airport and its Location

(1) Background

In order to cope with the increasing air traffic requirements as well as with international standards to be recommended for the capital city of Pakistan, new facilities including expansion of the existing it in Chaklala Cantonment area are absolutely necessary. Consequently, following options were considered by Civil Aviation Authority (CAA):

- Expansion Plan: Expansion of the existing facilities; or construction of facilities on the north side of the existing runway.

- New Plan: Shifting of the airport to a new site. Expansion plan was rejected, because the existing site does not have any further potential for expansion of parking aprons and terminal facilities. The area on the north side of the existing runway was studied for the construction of aprons and terminal facilities, but it was concluded that the many environmental and physical constraints render it unsuitable.

The CAA during its 7th board meeting on July 1983 has decided to study the feasibility of a new airport, its location was further decided to be near the village Rakh Pind Ranjha in Rawalpindi Tehsil. Master plan and preliminary study for new airport was completed on June 1986.

(2) Location and Main Facilities

The new airport will be located south west of Islamabad at 25 km from the center of the city, at about 15 km east of Fatehjang

town and about 18 km south of Sang Jani railway station. The present airport will be reserved for the exclusive use of PAF. Total area is about 1,060 hectares, and land acquisition works has been proceeding by CAA.

The airport will include a runway of 3,800 x 45 m. South of this runway a land reservation will allow the construction of a future second runway if needed as well as an industrial area of 120 ha. All buildings related to the airport operations are situated north of the runway on the direct access from a city, and the planned buildings are:

- the passenger terminal with a total area of building bout 38,600 sq.m.
- the control tower and the operation building,
- the fire station
- the cargo terminal
- the CAA office building
- the airport maintenance area with a vehicle maintenance building, facilities maintenance building, warehouse, etc,
- the power plant
- the flight kitchen
- the mosque
- agricultural horticultural building
- various ancillary buildings.

C.3.2. Traffic Projection

The statistics of passenger traffic, cargo traffic and aircraft traffic edited by the CAA and long term projections of each traffic were recommended by the Master Plan of new airport. (1) Passenger Traffic

Year	Domestic	<u>Transit</u>	International	<u>Transit</u>	Total	Growth Rate (%)
197980	680	2	205	4	891	
1980-81	703	2	206	6	917	1.53
198182	714	1	211	5	931	6.66
1982-83	722	1	266	4	993	11.78
1983-84	781	4	320	5	1,110	5.73
1990	1,189	2	559	100	1,850	8.89
1995	1,394	2	832	270	2,498	6.19
2000	1,599	2	1,178	270	3,049	4.07

The average increase over the period of total traffic is 6.03 %, domestic value is 4.15 % and 9.66 is for international traffic. It is evident that international traffic will be increased year by year.

(2) Cargo Traffic

		· •		(metric ton)
Year	Domestic	International	<u>Total</u>	Growth Rate (%)
1979-80	6,207	4,522	10,729	
1980-81	7,482	4,860	12,702	18.39
1981-82	8,182	4,853	13,035	2.62
1982-83	8,276	7,208	15,484	18.78
1983-84	8,270	6,742	15,012	-0,15
1990	16,700	16,400	33,100	14.09
1995	20,300	25,000	45,300	6.48
2000	24,100	36,100	60,200	5.85

The average annual growth of cargo traffic is 8.56 % over the period.

(3) Aircraft Traffic

Year	Domestic	<u>International</u>	Total	Growth Rate (%)
1979-80	13,809	1,382	15,191	
198081	12,380	1,421	13,801	-9.15
1981-82	11,506	1,179	12,685	-8.09
1982-83	11,074	1,274	12,348	-2,66
1983-84	10,774	1,685	12,459	0.90
1990	13,500	2,800	16,700	5.00
1995	14,000	4,900	18,900	2.51
2000	14,500	5,900	20,400	1,54

The average increase of aircraft traffic is only 1.41 % due to the fast growth of the average payload of commercial aircraft.

(4) Passenger Peak Hour Traffic

Peak passenger traffic (arriving and departing) as shown below will be considered for water demand.

Year	Peak Ho	ur Passenger Flow
1990		1,006
1995		1,159
2000		1,369

C.3.3. Water Demand Projection

The water requirement of new international airport was evaluated about 0.5 MGD (2300 cmd) at the target year of 2000 tentatively. This value came from new airport master plan report, which issued by CAA, and discussion between CAA and JICA study team. Since this projection is only considered new airport facilities requirement, total water demand for the target year 2030 will be reached about 1.50 MGD (6,800 cmd). This value includes requirement of airport facilities and relative industry/commerce.

APPENDIX D.

PRELIMINARY DESIGN OF THE FACILITIES

TABLE OF CONTENTS

D.1.	Existin	g Water Resources Facilities	D-1
۰.	D.1.1.	Existing Storage Dams	D1
	D.1.2.	Existing Water Supply System	D-4
D.2.	Prelimi	nary Design of the Facilities	D-5
	D.2.1.	Storage Dams	D-5
	D.2.2.	Diversion Dams and Intake Tower	D-56
	D.2.3.	Pumping Station	D-65
	D.2.4.		D-66
D.3.	Cost An	alysis and Comparison of Alternatives	D-81
	D.3.1.	Construction Costs and Operation/Maintenance Costs	D-81
	D.3.2.		D-84
· .	D.3.3.	Alternatives to the Water Conduction from the Dor River	D-88
D.4.	Water R	esources Development Plan	D-90
	D.4.1.	Present Water Resources and Water Supply	D-90
	D.4.2.	Major Water Resources in the Study Area	D-93
	D.4.3.	Water Allocation from Khanpur Dam	D-97
	D.4.4.	Development of Nandna Kas for the Irrigation of HRLBCA	D-98
	D.4.5.	Alternative Irrigation Method by Groundwater Lifting	D-101
D.5.		ndation on the Future Operation/Maintenance Existing Dams (Rawal, Khanpur, Simly)	D-104
	D.5.1.	Present Status on the Operation/Maintenance of the Existing Dams	D-104
	D.5.2.	Assessment of the Present Operation/ Maintenance System	D-108
	D.5.3.	Improvement Schedule of Dam Operation/ Control System	D-109

LIST OF TABLES

Table	D-1-1.	Salient Features of Existing Dams D-3
	D-2-1.	Proposed Damsites (First Stage) D-7
	D-2-2.	Reservoir Storage Capacity (First Stage) (1)(6) D-11
	D-2-3.	Geology and Topography of the Proposed Damsites (1) (3) D-17
	D-2-4.	Dimension for Dam Sizing (First Stage) (1)(13) D-20
	D-2-5.	General Features of Selected Dams D-45
-	D-2-6.	Dam Foundation and Construction Materials D-46
	D-2-7.	Reservoir Storage Capacity (Second Stage) (1)(2) D-47
	D-2-8.	Dimension for Optimum Dam Series D-49
	D-2-9.	Dimension for Dam Sizing (Second Stage) (1)(6) D-50
	D-2-10.	Hydraulic Calculation Sheet for Dor Conduction D-73
	D-2-11.	Dimensions of Pumping Station D-78
	D-2-12.	Specifications of Intake and Conveyance Facilities D-79
	D-3-1.	Sizes and Costs of Proposed Facilities D-83
	D-3-2.	Construction Costs of Proposed Dams D-82
	D-3-3.	Recommended Sizes of Potential Dams D-85
-	D-3-4.	Sizes and Costs of Proposed Dams D-86
	D-3-5.	Costs for Construction and Operation/Maintenance D-89
	D-3-6.	Diversion of Facilities Required D-89
	D-4-1.	Existing Urban Water Supply Facilities (Islamabad) D-91

	D-4-2.	Existing Urban Water Supply Facilities (Rawalpindi)	D-91
	D-4-3.	Water Usage in Taxila/Wah Area	D-92
•	D-4-4.	List of Potential Water Resources and Water Users	D-94
	D-4-5.	Principal Conversion Factors for Sizing Facilities of the Project	D-96
	D-4-6.	Water Allocation from Khanpur Dam	D-98
	D-5-1.	Salient Features of Existing Dams	D-105
	D-5-2.	Operation/Maintenance of Existing Dams	D-106
	D-5-3.	Improvement Schedule of Dam Operation/ Control System	D-113
	,		

•

LIST OF FIGURES

Figure D-2-1.	Location of Proposed Damsites	D-9
D-2-2.	Unit Cost and Storage Capacity	D-10
D-2-3.	Schematic Geological Cross Section of Proposed Damsites (1)(4)	D-33
D-2-4.	Nomogram of Hazen-Williams Formula (c = 110)	D-80
D-3-1.	Unit Water Cost and Water Production	D-87
D-4-1.	Schematic Profile of Potential Water Resources and Users	D-95
D-4-2.	Irrigation Scheme for the Haro River Lift-Bank Command Area	D-103

LIST OF DRAWINGS

DWG	NO.	Title	
	1	Preliminary Design of D-1 Dam	D-114
-	2	Preliminary Design of H-4 Dam	D-115
	3	Preliminary Design of S-1 Dam	D-116
	4	Preliminary Design of L-1 Dam	D-117
	5	Preliminary Design of SL-1 Dam	D-118
i	6	Preliminary Design of KL-1 Dam	D-119
	7	Preliminary Design of Shahpur Dam Heightenning Scheme	D-120
1	8	Route of Conduction Main (1)	D-121
1	9.	Route of Conduction Main (2)	D-122
1	0	Profile of Dor Conduction Main (1)	D-123
1	1	Profile of Dor Conduction Main (2)	D-124
1	2	Dor Diversion Dam (1)	D-125
1	3	Dor Diversion Dam (2)	D-126
1	4	Pumping Station	D-127
1.	5	Intake Tower	D-128
1	6	Stilling Basin	D-129

۷

D.1 Existing Water Resources Facilities

D.1.1 Existing Storage Dams

Major water sources undertaking at present and near future supply of water requested in the cities of Islamabad and Rawalpindi are surface water drained by the Haro, Kurang and Soan rivers, supported by the storage function of the Rawal, Khanpur, and Simly reservoirs.

The salient features of the three existing dams are shown in Table D-1-1.

(1) Rawal Dam

The Rawal Dam Project was conceived to meet chronic shortage of water supply having been experienced in Rawalpindi and Cantonment, and was formally inaugurated by the President of Pakistan on 17th May, 1962. In the original plan of the dam, the reservoir was proposed so as to provide 29.0 MGD of water to Rawalpindi and Cantonment, but the Project was revised due to the drought during the years 1972-73 with the conclusion that the supply of water be reduced to 21.0 MGD and the filtration plant was completed in 1979 with design capacity of 21.0 MGD.

In addition to supplying domestic water, the canal system was designed to irrigate a net CCA of 8390 acres (comprising 5010 acres on the right bank and 3300 acres on the left) and maturing 12,000 crop acres annually.

(2) Khanpur Dam

Originally the Khanpur Dam Project was approved in 1963 envisaging construction of 41.8 m (137 ft) high earth-fill dam and a canal system to irrigate 31,150 ha (77,000 acres) of agricultural land situated both on the left and right bank of the river including some area on the eastern side of the Margala range of hills, and the construction work was started in the beginning of 1967.

D-1

Due to growing need for municipal and industrial water supply in the terrain, irrigation water in the vicinity of twin city of Islamabad and Rawalpindi, heavy industrial complexes at Taxila and Wah, the Project was revised in 1973 converting the primary objective of the scheme from irrigation to water supply.

Consequently, the Khanpur Reservoir was designed with the raising of dam height to 50.9 m (167 ft), which is the maximum allowable from technical, geographic and geologic point of view, to supply 33.0 MGD of water to Islamabad and 69.37 MGD of water to Rawalpindi for domestic purposes, 28.5 MGD to the various industries at Wah and Taxila, and irrigation water for 14,770 ha (36,470 acres) of culturable command area of both the Left and Right Bank Canal.

(3) Simly Dam

The Simly Dam Project is recognized as an essential constituent of bulk water supply scheme for Islamabad. The reservoir stores not only the perennial low flows but also a considerable part of flood water of the Soan river. Water released from the reservoir is conveyed to Islamabad through twin conduction main pipes after treatment and the reservoir is expected to provide 24.0 MGD of water for drinking and domestic uses to the Federal Capital of Islamabad.

In the original design, it has been mentioned that the normal conservation level of the reservoir will be raised from 2,295 ft to 2,315 ft level in order to increase the live storage of the reservoir after abut 21 years of operation when almost all of the dead storage is lost due to sediment. deposit. This will be done by providing three 7.62 m (25 ft) high gate, and may result an additional live storage of 11.8 MCM (9,600 acre ft) obtainable. It has become realized that the installation of gates can be advantageously progressed in near future to raise the conservation level to 2,315 ft thereby increasing live storage by 11.8 MCM resulting in gain of a substantial safe yield from the catchment.

D--2

Table D-1-1 Salient Features of Existing Dams

۲

Name of Dam		Khanpur	<u>Rawal</u>	Simly
Construction (and address)		200	106	50
Catchment Area (sq. miles)		308	106	59
Reservoir	6 a .	1	4 67 6 7	
High Water Level	(ft)	1,982	1,761	2,320
Retention Water Level	(ft)	1,982	1,752	2,295
Low Water Level	(ft)	1,902	1,708	2,233
Gross Storage	(AF)	107,000	45,500	28,750
Live Storage	(AF)	91,500	43,000	20,000
Dead Storage	(AF)	15,500	4,500	8,750
Main Dam				
Type of Dam		Earthfill	Gravity	Earthfill
Dam Top Elevation	(ft)	1,992	1763.5	2,330
Maximum Height	(ft)	167	133.5	263
Length of Dam	(ft)	1,546	700	1,010
Freeboard above HWL	(ft)	10	2.5	10
Width of Dam Top	(ft)	35	14	30
U/S Slope of Dam		1:3.5	1:0.04	1:3.0 & 2.25
D/S Slope of Dam		1:2.5	1:0.675	1:1.75 & 1.5
Spillway				
Type	0ge	e Type Weir	Ogee Type Weir	Ogee Type Weir
Capacity	(cusec)	166,000	82,000	45,000
Crest Elevation	(ft)	1,947	1,742	2,300
Gates (W x H)	(ft)	5-Radial	8-Radial	No
		40'x35'	30'x10.2'	
Overflow Depth	(ft)	35	19	20
Overflow Length	(ft)	200	240	96(110)
Max. Probable Flood	(cusec)	182,000	120,000	90,684
Construction		·		
Commenced Year		1967	1959	1972
Completion Year		1983	1962	1982

D.1.2. Existing Water Supply System

Detailed descriptions of existing water supply systems were sold a sifted to C.1.4 of Appendix C.

D--4