

THE ISLAMIC REPUBLIC OF PAKISTAN CAPITAL DEVELOPMENT AUTHORITY

THE REGIONAL STUDY

FOR

WATER RESOURCES DEVELOPMENT POTENTIAL

FOR

THE METROPOLITAN AREA

OF

ISLAMABAD-RAWALPINDI

APPENDIX A

(METEOROLOGY AND HYDROLOGY)

APPENDIX B (GEOLOGY AND GROUNDWATER)

FEBRUARY 1988

JAPAN INTERNATIONAL COOPERATION AGENCY

SDS 88-007

•

.

.

THE ISLAMIC REPUBLIC OF PAKISTAN CAPITAL DEVELOPMENT AUTHORITY

THE REGIONAL STUDY

FOR

WATER RESOURCES DEVELOPMENT POTENTIAL

FOR

THE METROPOLITAN AREA

OF

ISLAMABAD-RAWALPINDI

APPENDIX A

(METEOROLOGY AND HYDROLOGY)

APPENDIX B

(GEOLOGY AND GROUNDWATER)

FEBRUARY 1988

JAPAN INTERNATIONAL COOPERATION AGENCY

E				•		
受入 月日	'88	4.	8	,	11	1 . a
登録 No.	, 4 44, 79, 98 μ. μ. μ. βαζιζεγγ	17	'46	9		.8 05

.

.

マイクロ フィルム作成

man イ ク TI

APPENDIX A.

HYDROLOGY

TABLE OF CONTENTS

A.1.	Meteoro	logy	Page A-l
	A.1.1.	Climate	A-1
	A.1.2.	Evapotranspiration	A-5
	A.1.3.	Reliability of Meteorologyical and Precipitation Data	A- 14
	A.1.4.	Interpolation of Daily Precipitation Data	A-16
	A.1.5.	Seasonal Fluctuation of Precipitation	A-17
	A.1.6.	Areal Distribution of Precipitation	A-18
	A.1.7.	Long Term Fluctuation of Annual Precipitation	A-19
	A.1.8.	Probable Drought and Wet Years by Annual Precipitation	A-22
A.2.	River a	nd River Regime	A-25
	A.2.1.	Rivers	A-25
	A.2.2.	Types of Rivers	A-32
	A.2.3.	Water Rights	A-34
	A.2.4.	Coefficient of River Regime	A-43
	A.2.5.	Runoff Pattern	A-47
	A.2.6.	Annual Runoff	A-47
	A.2.7.	Probable Drought and Wet Years by Annual Runoff Amount	A-50
	A.2.8.	Floods	A-55
A.3.	Runoff .	Analysis	A-59
	A.3.1.	Introduction	A-59
	A.3.2.	Hydrological Data	A-60
	A.3.3.	Selection of the Appropriate Hydrological Stations	A-60
	A.3.4.	Runoff Analysis at the Gauging Stations	A67

.

ı.

	A.3.5.	Runoff Analysis at the Prospective Development Sites	A-70
	A.3.6.	Water Balance in the Jhablat Kas Basin	A-72
	A.3.7.	Base Flow in the Lower Reaches of the Kurang River	A-75
A.4.	•	s on the Development Potential of er Basins	A76
	A.4.1.	Introduction	A-76
	A.4.2.	Simulation Scheme of Available Water Resources	A77
	A.4.3.	Simulation Premises	A-77
	A.4.4.	Development Potential of the Dor River Basin	A-83
	A.4.5.	Development Potential of the Haro River Basin	A-85
	A.4.6.	Development Potential of the Soan River Basin	A-91
	A.4.7.	Comprehensive Evaluation of the Development Potential	A94
A.5.	Sedimen	t Analysis	A-123
A.5.	Sedimen	t Analysis	
A.5.		• • • • • • • •	A-123
A.5.	A.5.1.	Sediment Condition	A-123 A-156
A.5.	A.5.1. A.5.2.	Sediment Condition	A-123 A-156 A-158
A.5. A.6.	A.5.1. A.5.2. A.5.3. A.5.4.	Sediment Condition Sedimentation Estimation Methods	A-123 A-156 A-158 A-160
	A.5.1. A.5.2. A.5.3. A.5.4. Water Q	Sediment Condition Sedimentation Estimation Methods Specific Sediment	A-123 A-156 A-158 A-160 A-173
A.6.	A.5.1. A.5.2. A.5.3. A.5.4. Water Q Watersh	Sediment Condition Sedimentation Estimation Methods Specific Sediment uality	A-123 A-156 A-158 A-160 A-173 A-176
A.6.	A.5.1. A.5.2. A.5.3. A.5.4. Water Q Watersh	Sediment Condition Sedimentation Estimation Methods Specific Sediment uality ed Management	A-123 A-156 A-158 A-160 A-173 A-176 A-176
A.6.	A.5.1. A.5.2. A.5.3. A.5.4. Water Q Watersh A.7.1.	Sediment Condition Sedimentation Estimation Methods Specific Sediment uality d Management General Land Use Conditions and	A-123 A-156 A-158 A-160 A-173 A-176 A-176 A-177
A.6.	A.5.1. A.5.2. A.5.3. A.5.4. Water Q Watersh A.7.1. A.7.2.	Sediment Condition Sedimentation Estimation Methods Specific Sediment uality ed Management General Land Use Conditions and Watershed Management Program	A-123 A-156 A-158 A-160 A-173 A-176 A-176 A-177 A-185
A.6.	A.5.1. A.5.2. A.5.3. A.5.4. Water Q Watersh A.7.1. A.7.2. A.7.3.	Sediment Condition Sedimentation Estimation Methods Specific Sediment uality ed Management General Land Use Conditions and Watershed Management Program Factors in Dam Sedimentation	A-123 A-156 A-158 A-160 A-173 A-176 A-176 A-177 A-185 A-185

	A.7.7.	Recommendations Concerning Watershed Management and Sedimentation	A-194
A.8.	Data Us	ed for the Study	A-199
	A.8.1.	Meteorological Data	A-200
	A.8.2.	Precipitation Data	A-208
÷	A.8.3.	Discharge Data	A-230

. •

.

LIST OF TABLES

•

Table	A-1-1.	Climate Season	A-1
	A-1-2.	Climatic Elements at Murree and Chaklala (Rawalpindi)	A-3
	A-1-3.	Potential Evapotranspiration at Chaklala (Rawalpindi) by Modified Penman	A9
	A-1-4.	Potential Evapotranspiration at Murree by Modified Penman	A-10
	A-1-5.	Saturation Vapour Pressure (es) in mbar as Function of Mean Air Temperature (T) in°C	A-11
	A-1-6.	Mean Daily Duration of Maximum Possible Sunshine Hours (N) for Different Months and Latitudes	A11
	A-1-7.	Extra-terrestrial Radiation (Ra) expressed in equivalent evaporation in mm/day	A-12
	A-1-8.	Adjustment Factor (C) in Penman Equation	A-12
	A-1-9.	Sample Calculation by Modified Penman	A-13
-	A-1-10.	Meteorological Stations and Data for the Study	A-14
	A-1-11.	Key Rain Gauge Stations	A-16
	A-1-12.	Interpolation of Daily Precipitation Records	A-17
	A-1-13.	Mean Annual Areal Rainfall	A19
	A-1-14.	Wet and Drought Periods by Annual Rainfall	A-20
	A-1-15.	Probable Droughty and Wet Years by Precipitation	A-22
	A-1-16.	Weight for Computing Annual Areal Precipitation	A-24
	A-2-1.	Channel Morphology	A-28
	A-2-2.	Characteristics of Rivers	A-33
	A-2-3.	Existing Water Right and or Water Usage	A-35
	A-2-4.	River Regime	A-45

iv

Table	A-2-5.	Annual Runoff at Key Sites	A-48
	A-2-6.	Probable Drought and Wet Years by River Basins	A-52
	A-2-7.	Probable Drought and Wet Years by the Synthetic Annual Runoff	A52
	A-2-8.	The Synthetic Annual Runoff in the Study Area	A-53
	A-2-9.	Probability Analysis of Annual Runoff	A-54
	A-2-10.	The Maximum Recorded Floods in the Study Area	A-56
	A-2-11.	List of Drainage Area of Key Sites in the Study Area	A-58
	A-3-1.	Stream Gauging Stations	A60
	A-3-2.	Accuracy of Discharge Measurement by WAPDA	A-61
	A-3-3.	Runoff Analysis at the Gauging Stations	A-68
	A-3-4.	Runoff Analysis at the Prospective Development Sites	A71
	A-4-1.	Prospective Water Resources Development Sites	A-76
	A-4-2.	Lake Evaporation	A-78
	A-4-3.	Reservoir Sedimentation	A-79
	A-4-4.	Minimum Regulated River Flow	A-81
	A-4-5.	Available Water Resources in the Dor River Basin	A-84
	A-4-6.	Available Water Resources in the Haro River Basin	A-90
	A-4-7.	Available Water Resources in the Soan River Basin	A94
	A-4-8.	Potential Water Resources in the Study Area	A-97
	A-4-9.	Water Balance Simulation of the Dor River Basin (D-1 & Dw-1)	A-108
	A-4-10.	Water Balance Simulation of the Khanpur Dam (Existing)	A-109
	A-4-11.	Water Balance Simulation of the Haro River Basin (Khanpur + H-4)	A-110

V

· · · · ·

Table	A-4-12.	Water Balance Simulation of the Haro River Basin (Dor Link) A-111
	A-4-13.	Water Balance Simulation of the Shahpur Dam (Existing) A-112
	A-4-14.	Water Balance Simulation of the Nandna Kas (N-1) A-113
	A-4-15.	Water Balance Simulation of the Shahpur Dam (Heightening) A-114
	A-4-16.	<pre>(1) Water Balance Simulation of the Simly Dam (Second Phase) Demand = 49 MGD = 81 MCM/yr A-115</pre>
	A-4-16.	<pre>(2) Water Balance Simulation of the Simly Dam (Second Phase) Demand = 31.85 MGD = 52.8 MCM/yr A-116</pre>
	A-4-17.	Water Balance Simulation of the Chaniot (Upper Simly) A-117
	A-4-18.	Water Balance Simulation of the Soan River (S-1) A-118
·	A-4-19.	Water Balance Simulation of the Malal Kas (M-1) A-119
	A-4-20.	Water Balance Simulation of the Kurang River (KL-1) A-120
	A-4-21.	Water Balance Simulation of the Ling River (L-1) A-121
	A-4-22.	Water Balance Simulation of the Sil River (SL-1) A-122
	A-5-1.	Summary of Sediment Data A-125
	A-5-2.	Summary of Design Sedimentation A-163
	A-5-3.	Sedimentation of Mangla Reservoir A-164
	A-5-4.	Sedimentation of Rawal Reservoir A-165
	A-5-5.	Sedimentation of Small Dams A-166
	A-5-6.	Sediment Load (B) A-167
	A-5-7.	Sediment Load (D) A-168

Table	A-5-8. Summary of Sediment Load	A-169
	A-5-9. (1) Specific Sediment Method (1)	A170
	A-5-9. (2) Specific Sediment Method (2)	A-171
	A-5-10. Design Specific Sediment	A-172
	A-6-1. Water Quality in the Study Area	A-175
	A-7-1. Watershed Management Project for Khanpur Dam	A-180
	A-7-2. Watershed Management for Rawal Dam	A-181
	A-7-3. Watershed Management of Simly Dam Catchment Area	A-182
	A-7-4. Characteristics of Reservoirs and Sediment	A-184
	A-7-5. Monitoring and Survey of Sedimentation	A-198
	A-8-1-1. Mean Monthly Temperature at Chaklala	A-201
	A-8-1-2. Mean Monthly Relative Humidity at Chaklala	A-202
	A-8-1-3. Mean Monthly Sunshine Hours at Chaklala	A-203
	A-8-1-4. Mean Monthly Wind Speed at Chaklala	A204
	A-8-1-5. Mean Monthly Temperature at Murree	A-205
	A-8-1-6. Mean Monthly Relative Humidity at Murree	A-206
	A-8-1-7. Mean Monthly Wind Speed at Murree	A-207
	A-8-2-1. List of Rainfall Stations and Collected Data	A-209
	A-8-2-2. Monthly Mean Precipitation at Various Stations	A-212
	A-8-2-3. Monthly Precipitation at Bahtar	A-213
	A-8-2-4. (1) Monthly Precipitation at Borkot (before Interpolation)	A-214
	A-8-2-4. (2) Monthly Precipitation at Borkot (after Interpolation)	A-215
	A-8-2-5. Monthly Precipitation at Chaklala (1952 - 86)	A-216
	A-8-2-6. Monthly Precipitation at Fatehjang	A-217

•

vii

Table A-8-2-7.	Monthly Precipitation at Haripur A-218
A-8-2-8.	Monthly Precipitation at Kakul A-219
A-8-2-9.	Monthly Precipitation at Kallar A-220
A-8-2-10.	Monthly Precipitation at Khanpur A-221
A-8-2-11.	Monthly Precipitation at Murree (1952 - 86, interpolated) A-222
A-8-2-12.	Monthly Precipitation at Punjar A-223
A-8-2-13.	(1) Monthly Precipitation at Rawal Dam (before Interpolation) A-224
A-8-2-13.	(2) Monthly Precipitation at Rawal Dam (after Interpolation) A-225
A-8-2-14.	Monthly Precipitation at Shah Alladitta A-226
A-8-2-15.	Monthly Precipitaiton at Sultanpur A-227
A-8-2-16.	Monthly Precipitation at Murree (Long Term: 1931 - 86) A-228
A-8-2-17.	Monthly Precipitation at Rawalpindi (Long Term: 1890 - 1951) A-229
A-8-3-1.	List of Hydrological Stations and Collected Data A-231
A-8-3-2.	Monthly Mean Runoff at Various Sites A-232
A-8-3-3.	Monthly Runoff at Rajoia (recorded) A-233
A-8-3-4.	Monthly Runoff at Makhan (recorded) A-234
A-8-3-5.	Monthly Runoff at Khanpur (recorded + Left Bank Irrigation) A-235
A-8-3-6.	Monthly Runoff at Hassan Abdal (recorded) A-236
A-8-3-7.	Monthly Runoff at Cherah (recorded + CDA intake) A-237
A-8-3-8.	Monthly Runoff at Kahuta (recorded) A-238
A-8-3-9.	Monthly Runoff at Rawalpindi (recorded) A-239
A-8-3-10.	Monthly Runoff at Chahan (recorded) A-240

viii

.

A-8-3-11. Monthly Runoff at Cherah (interpolated) A-241 A-8-3-12. Monthly Runoff at Kahuta (interpolated) A-242 A-8-3-13. Monthly Runoff at Chahan (interpolated) A-243 A-8-3-14. Monthly Runoff at D-1 Site (computed) A-244 A-8-3-15. Monthly Runoff at Dw-1 Site (computed) A-245 A-8-3-16. Monthly Runoff at Simly Dam (computed) A-246 A-8-3-17. Monthly Runoff at L-1 Site (computed) A-247 A-8-3-18. Monthly Runoff at M-1 Site (computed) A-248 A-8-3-19. Monthly Runoff at KL-1 Site (computed) A-249

LIST OF FIGURES

•

Figure A-1-1.	Monthly Climatic Elements at Murree and Chaklala (Rawalpindi)	A4
A-1-2.	Isohyetal Map and Location of Meteorological and Hydrological Stations	A-15
A-1-3.	Moving Averaged Annual Precipitation	A-21
A-1-4.	Annual Areal Precipitation from 1952 to 1986	A23
A-2-1.	General View of River System	A-26
A-2-2.	Profile of the Dor Basin	A-29
A-2-3.	Profile of the Haro Basin	A-30
A-2-4.	Profile of the Soan Basin	A-31
A-2-5.	Discharge-Duration Curve	A-46
A-2-6.	Comparison of Runoff Pattern and Amount in Major Rivers	A49
A-2-7.	Fluctuation of Annual Runoff at Key Sites	A51
A-2-8.	Synthetic Annual Runoff and Its Probability	A55
A-2-9.	Maximum Recorded Discharge and Envelope	A-57
A-3-1.	Water flow Diagram into and in the Jhablat Kas Basin	A-73
A-3-2.	Preliminary Study on Hydrological Water Balance in the Jhablat Kas and the Bauhti Nala Basins	A-74
A-3-3.	Base Flow Diagram in the Lower Reaches of the Kurang River	A-75
A-4-1.	Typical Simulation Diagram for Water Balance	A-77
A-4-2.	Relation between the Firm Water Resources and the Size of Live Storage Capacity	A-96
A-4-3.	Water Resources Development of Dor River (D-1 & Dw-1)	A98
A-4-4.	Water Resources Development of Haro River (Khanpur Dam & H-4)	A99

Figure	A-4-5.	Water Resources Development of Nandna Kas (N-1) A-100
	A-4-6.	Water Resources Development of Nandna Kas (Shahpur Dam) A-101
	A-4-7.	Water Resources Development of Chaniot (Upper Simly) A-102
	A-4-8.	Water Resources Development of Soan River (S-1) A-103
	A-4-9.	Water Resources Development of Malal Kas (M-1) A-104
	A-4-10.	Water Resources Development of Kurang River (KL-1) A-105
	A-4-11.	Water Resources Development of Ling River (L-1) A-106
	A-4-12.	Water Resources Development of Sil River (SL-1) A-107
	A-5-1.	Sediment Station Key Map A-124
	A-5-2.	Sediment Concentrations and Volumes at Thapla A-127
	A-5-3.	Sediment Concentrations and Volumes at Khanpur A-128
	A-5-4.	Sediment Concentrations and Volumes at Sanjwal A-129
	A-5-5.	Sediment Concentrations and Volumes at Hasan Abdal A-130
	A-5-6.	Sediment Concentrations and Volumes at Chirah A-131
	A-5-7.	Sediment Concentrations and Volumes at Rawalpindi A-132
	A-5-8.	Sediment Concentrations and Volumes at Kahuta A-133
	A-5-9.	Sediment Concentrations and Volumes at Chahan A-134
	A-5-10.	Suspended Sediment at Phulra & Thapla A-135
	A-5-11.	Suspended Sediment at Khanpur & Sanjwal A-136

Figure A-5-12.	Suspended Sediment at Gariala & Rawalpindi A-137
A-5-13.	Suspended Sediment at Hasan Abdal & Chirah A-138
A-5-14.	Suspended Sediment at Kahuta & Chahan A-139
A-5-15.	Suspended Sediment at Jhangi A-140
A-5-16.	Sediment Rating Curve at Khanpur (1) A-141
	Sediment Rating Curve at Khanpur (2) A-142
A-5-17.	Sediment Rating Curve at Sanjwal (1) A-143
	Sediment Rating Curve at Sanjwal (2) A-144
A-5-18.	Sediment Rating Curve at Gariala A-145
A-5-19.	Sediment Rating Curve at Chirah (1) A-146
	Sediment Rating Curve at Chirah (2) A-147
A-5-20.	Sediment Rating Curve at Rawalpindi (1) A-148
	Sediment Rating Curve at Rawalpindi (2) A-149
A-5-21.	Sediment Rating Curve at Kahuta A-150
A-5-22.	Sediment Rating Curve at Chahan (1) A-151
	Sediment Rating Curve at Chahan (2) A-152
A-5-23.	Sediment Rating Curve at Dhokpathan (1) A-153
	Sediment Rating Curve at Dhokpathan (2) A-154
A-5-24.	Sediment Rating Curve at Papin A-155
A-5-25.	Trap Efficiency of the Reservoirs A-157
A-5-26.	Average Annual Sediment Load Rate Versus Catchment Size
A-5-27.	Specific Sediment A-162
A-7-1.	Simly Catchment Area A-183
A-7-2.	Relationship between Experimental Area and Control Area A-191
A-7-3.	Monitoring System A-197
A-8-3-1	. Tank Model at Khanpur A-250

.

xii

Figure A-8-3-2.	Tank Model at Cherah A-251
A-8-3-3.	Tank Model at Kahuta A-252
A-8-3-4.	Tank Model at Chahan A-253
A-8-3-5.	Hydrograph at Rajoir (Dw-1 Site) A-254
A-8-3-6.	Hydrograph at Khanpur A-255
A-8-3-7.	Hydrograph at Cherah A-256
A-8-3-8.	Hydrograph at Kahuta A-257
A-8-3-9.	Hydrograph at Chahan A-258
A-8-3-10	(1) - (5) Hydrograph at Hassan Abdal A-259

.

,

.

.

A.1. Meteorology

A.1.1. Climate

Climate can be classified into following major four seasons in the study area.

Season	Period
Cold Season	December - March
Hot Season	April - June
Monsoon	July - August some times mid
	September
	(fluctuating by year)
Post Monsoon	Mid September - November

Table A-1-1. Climate Season

<u>The cold season</u> lasts from December to March, characterized by moderate temperature and fine weather. However, depressions pass the area periodically from west, and bring widespread rains and low temperature meanwhile. Consequently, the diurnal range of temperature becomes large in this season. Although snow falls in the Murree and the Margala hills, most snow melts soon except at the high ranges around Murree because temperature rises after depression passing. The amount of rainfall, however, is not much as compared with that during the monsoon. In March and April the weather becomes progressively warmer with scarce spring time.

<u>The hot season</u> lasts from April to June, characterized by the continentality with hot and dry climate. May and June are usually hotest and dusty with the maximum temperature rising up to 45°C, and mean relative humidity becomes below 50 percent during these two months.

A-1

The monsoon (southwest monsoon) generally reaches the area towards the beginning of July and lasts up to the end of August or the mid September. During this period, the monsoon brings much rainfall of about 60 percent of annual rainfall, and the high floods are occasionally caused by a series of tropical depressions. The beginning and termination of monsoon varies by year, accordingly severe drought is caused when the monsoon reaches the area late. In case of such drought, serious difficulties are brought on water supply and irrigation.

The post monsoon lasts from mid September to November, and it is the most pleasant season in a year. During this season, it is fine weather and the temperature goes down toward the cold season.

Table A-1-2 and Figure A-1-1 show the major climatic elements at Chaklala and Murree which are the representative meteorological stations in the study area. There is much deference on the climates at Chaklala and Murree, and it is mentioned in Section 2.3. in Main Report. Table A-1-2 Climatic Elements at Murree and Chaklala (Rawalpindi)

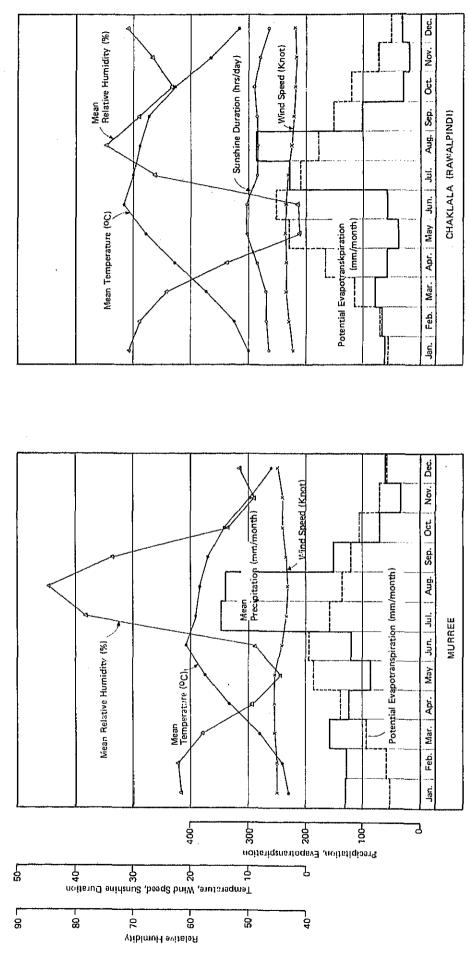
computed computed computed computed Period 1952-86 1954-86 1952-86 954-86 1954-86 954-86 957-86 966-73 954-86 954-86 1969 1981 1964 1977 0.0 1,735.1 32.2 1,085.8 12.5 708.9 11.6 21.5 70.8 62.5 0.0 1,295.1 6.0 12.5 51.5 59.5 4.9 4.4 4.6 3.8 21.5 62.5 2.6 8.2 12.5 59.5 60.1 1,749.5 58.9 2,093.7 65.9 2,289.7 Annual 1,662 1,374 J.6 6.5 1.9 1.7 Dec. 59 20 2.4 72 5.0 19.6 1.8 16.5 57.5 34.3 23.6 9.7 49.0 66.5 1.6 85.9 4.0 2.4 Nov. 8.1 72

 0
 160.9
 200.6
 523.5
 263.4
 221.5
 254.1
 5

 5
 85.7
 120.7
 347.8
 338.3
 150.1
 69.3
 3

 9
 110.9
 55.1
 219.8
 220.0
 95.7
 193.3
 3

 2
 17.4
 20.7
 19.0
 18.3
 16.9
 14.1


 4
 44.4
 48.9
 78.2
 84.7
 73.3
 53.4
 4

 4
 5.3
 4.2
 3.4
 3.2
 3.4
 3.9

 3.8 118 3.4 10.0 0.0 22.6 63.0 1.7 9.0 Oct. 30.3 171.2 139.7 105 338.2 131.3 287.6 101.5 5.0 47.0 27.3 68.9 2.0 8.6 4.0 Sep. 120 150 5.7 4.4 91.9 28.8 74.7 2.4 8.5 208.8 Aug. 136 177 580.2 3 254.0 2 263.7 263.7 29.9 66.1 347.7 268.7 6.7 8.5 Jul. 5.1 3.1 158 208 19.4 57.3 24.7 6.5 31.6 41.3 3.4 10.2 8.4 Jun. 195 252 209.0 160.9 6.0 41.0 3.5 208.8 309.1 7.4
 131.7
 128.9
 157.9
 124.5
 85.7

 42.9
 103.4
 113.5
 116.9
 110.9
 37.8 176.5 131.6 109.6 45.7 10.1 27.7 Мау 186 229 5.5 165 13.2 49.4 4.6 57.2 53.6 22.7 3.4 8.5 5.4 44.1 Apr. 138 15.7 152.4 3.0 78.2 3.7 8.0 57.8 5.4 20.6 Mar. 17.2 3.4 6.8 64.1 93 115 73.4 67.8 13.6 12.3 68.8 82.6 2.5 60.5 3.06.8 4.0 61.9 4.9 2.1Feb. 70 59 1.8 56 1.7 53 59.8 62.3 143.3 10.0 70.7 2.2 257.1 3.0 61.4 5.0 6.4 61.0 Jan. (hrs/day) (mm/day) (mm/day) (knot) (knot) 2,205m) Potential Evapotranspiration Chaklala (El. 1,670ft = 510m) (mm) Potential Evapotranspiration (°C) (%) (uuu) (mm) (°C) mm Climatic Element I Mean Relative Humidity Mean Sunshine duration Mean Relative Humidity Murree (El. 7,236 ft Mean Temperature Mean Temperature Mean Wind Speed Mean Wind Speed Pan-Evaporation Precipitation Precipitation Mean Mean Min Мах Min Мах :A--3

FIGURE A-1-1 MONTHLY CLIMATIC ELEMENTS AT MURREE AND CHAKLALA (RAWALPINDI)

A--4

A.1.2. Evapotranspiration

Evapotranspiration is one of important factors in meteorology. Petential evapotranspiration is calculated by the Modified Penman Method. The original Pernman equation (1948) predicted losses from an open water surface (Eo). Experimentally determined crop coefficients are ranging from 0.6 in winter months to 0.8 in summer months related Eo to grass evapotranspiration for the climate in England. The Penman equation consisted to two terms: the energy (radiation) term and the aerodynamic (wind and humidity) term. The relative importance of each term varies with climatic conditions. Under calm weather conditions the aerodynamic term is usually less important than the energy term. In such conditions the original Penman Eo equation using a crop coefficient of 0.8 has been shown to predict ETo closely, not only in cool, humid regions but also in very hot, and semi-arid regions. It is under windy conditions and particularly in the more arid regions that the aerodynamic term becomes relatively more important and thus errors can result in predicting ETo when using 0.8 Eo.

A modified Penman equation is suggested to determined ETo, involving a revised wind function term and an adjustment on day and night time weather conditions.

f(u) = 0.27 (1 + u/100)

where;

u = wind run in km/day at 2 meters height when wind (Uz) at different at Z meters, wind at 2 meters (U₂) is; U₂ = Uz $(\frac{2}{z})^{0,2}$

<u>Weighting factor</u> (1 - W)

(1 - W) is a weighting factor for the effect of wind and humidity on ETo.

$$W = \Delta / (\Delta + \gamma)$$

where;

Δ	=	slope of saturation vapour pressure-temperature
		curve in mbar/°C = $33.86[0.05904(0.00738T + 0.8072)^7$
		- 0.0000342]
γ	=	psychrometric constant = $cp \cdot p/(0.622\lambda)$
cp	=	0.240
р	=	atmospheric pressure in mbar = 1013 - 0.1055EL
ΕL	=	elevation from sea level in meters
λ	Ħ	latent heat of water in $cal/g = 595.9 - 0.55T$
Т	-	air temperature in °C

Vapour pressure (es - ea)

(es - ea) is the difference between the mean saturated vapour pressure (es) and the mean actual vapour pressure (ea) in mbar. es can be obtained by temperature ($T^{\circ}C$) in Table A-1-5, and ea is calculated by relative humidity (RH) thus ea = es*RH.

Net radiation (Rn)

Net radiation (Rn) is the difference between all incoming and outgoing radiation in mm/day. Rn can be calculated from solar radiation or sunshine hours (or degree of cloud cover), temperature and humidity data.

```
Rn = Rns - Rn\ell
where:
   Rns = net shortwave solar radiation in mm/day
   Rnl = net longwave solar radiation in mm/day
Rns = (1 - \alpha) Rs
where;
       = reflection depending on the nature of the surface
   α.
         cover and being approximately 0.25.
   Rs
       = solar radiation being dependent on Ra (amount of
         radiation received at top of the atmosphere) and
         transmission through the atmosphere, which is
         largely dependent on cloud cover.
Rs = (a + b n/N) Ra
where:
       = actual sunshine hours per day
   n
   N
       = maximum possible sunshine hours per day, N for a
         given month and latitude is given in Table A-1-6.
   a,b = constant by regions, 0.25 and 0.50 can be used
         respectively for practical purposes.
   Ra = Extra-terrestrial radiation, Ra for a given month
         and latitude is given Table A-1-7.
```

 $Rn\ell = f(T) f(ea) f(n/N)$ where;

Rnl respresents net energy loss, since outgoing is greater than incoming.

 $f(T) = effect of temperature = \sigma TK^{4}$ = 1.98 x 10⁻⁹(T + 273)⁴ $f(ea) = effect of vapour pressure = 0.34 - 0.044 \cdot ea^{0.5}$ f(n/N) = effect of the ratio actual and maximum brightsunshine hours = 0.1 + 0.9 n/N

Adjustment factor (c)

Adjustment factor (c) is given in Table A-1-8, to adjust calculated ETo to weather conditions by relative humidity, U day/U night, U day and Rs.

Table A-1-3 and A-1-4 are showing the evapotranspiration by the modified Penman equation at Murree and Chaklala, and sample calculation is presented in Table A-1-9.

							1			10116+14	10118+1000 · · · · · · ·		(more comparate	(1110 - 7	
Eac	Eactors	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua1	Remarks
Tmean	(ລູ)	10.0	12.3	17.2	22.7	27.7	31.6	29.9	28.8	27.3	22.6	16.5	11.6	21.5	Given data
RHmean	(%)	70.7	68.8	64.1	53.6	41.0	41.3	66.1	74.7	68.9	63.0	66.5	70.8	62.5	E
U ₂	(knot)	2.2	3.0	3.4	3.4	3.5	3.4	3.1	2.4	2.0	1.7	1.6	1.7	2.6	
п	(hours/day)	6.4	6.8	6.8	8.5	10.1	10.2	8.5	8.5	8.6	9.0	8.1	6.5	8.2	11
Ra	(mm/day)	8.38	9.88	12.5	14.8	16.5	18.0	16.8	15.5	13.4	10.9	8.61	7.33	·	Table A-1-7
Ŋ	(hours/day)	10.2	11.0	11.9	13.0	13.9	14.4	14.2	13.4	12.4	11.4	10.4	9.9		Table A-1-6
• U day	(m/sec)	1.13	1.55	1.75	1.75	1.80	1.75	1.60	1.24	1.03	0.88	0.82	0.88		
° Rs	(mm/day)	4.72	5.52	6.69	.8.56	10.1	10.9	9.23	8.80	8.02	7.01	5.51	4.24		
(1) (1-W)f(U)	U) (es-ea)	0.83	1.13	1.61	2.39	3.44	3.62	1.92	1.22	1.33	1.33	1.01	0.77		
(2) W·Rn		1.00	1.44	2.27	3.36	4.28	5.07	4.57	4.30	3.55	2.41	1.35	0.80		
(3) = (1) + (2)	(2)	1.83	2.57	3.88	5.75	7.72	8.69	6.49	5.52	4.88	3.74	2.36	1.57		
U		0.98	0.96	0.95	0.98	0.96	0.97	1.03	1.04	1.02	1.01	1.0	0.99		•
ETo = C * (3	= C * (3) (mm/day)	1.8	2.5	3.7	5.5	7.4	8.4	6.7	5.7	5.0	3.8	2.4	1.6		
ETo	(mm/month)	56	70	115	165	229	252	208	177	150	118	72	20	1,662	

Note) 1) Wind speed is given at 2m height.

2) for estimating adjustment factor (C), assuming U day/U night = 1.0.

3) * sample computation is presented in Table A-1-8.

(Latitude: 33°35' Longitude: 73°03' Altitude: 510m)

Table A-1-5 Potential Evapotranspiration at Chaklala (Rawalpindi) by Modified Penman

A-9

Factors	<u>Jan.</u>	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual	Remarks
Tmean (°C)) 3.0	4.0	8.0	13.2	17.4	20.7	19.0	18.3	16.9	14.1	9.7	6.0	12.5	Given data
RHmean (%)) 61.4	61.9	57.8	49.4	44.4	48.9	78.2	84.7	73.3	53.4	49.0	51.5	59.5	Ξ
U ₂ (knots)) 5.0	4.9	5.4	5.4	5.3	4.2	3.4	3.2	3.4	3.9	4.0	4.9	4.4	
n (hours/day)) 6.4	6.8	6.8	8.5	10.1	10.2	8°.5	8.5	8.6	0.0	8.1	6.5	8.2	u (*)
Ra (mm/day)) 7.92	9.82	12.4	14.5	16.5	17.1	16.8	15.5	13.4	10.8	8.53	7.23		Table A-1-7
N (hours/day)) 10.1	11.0	11.9	13.1	14.0	14.5	14.3	13.5	12.4	11.3	10.3	9 8		Table A-1-6
T day (m/sec)) 2.58	2.52	2.78	2.78	2.73	2.16	1.75	1.65	1.75	2.01	2.06	2.52		
Rs (mm/day)) 4.49	5.49	6.65	8.35	10.1	10.3	9.19	8.75	8.00	7.01	5.49	4.21		
(1) (1-W)f(U) (es-ea)) 1.23	1.24	1.69	2.40	2.89	2.46	0.88	0.59	1.03	1.82	1.78	1.69		
(2) W·Rn	0.77	1.21	1.92	2.82	3.80	4.24	3.97	3.67	2.98	1.98	1.06	0.63		
(3) = (1) + (2)	2.00	2.45	3.61	5.22	6.69	6.70	4.85	4.26	4.01	3.80	2.84	2.32		
C	0.84	0.87	0.84	0.89	0.89	0.97	1.04	1.04	0.99	06.0	0.84	0.80		
ETo = C * (3) (mm/day)) 1.7	2.1	3.0	4.6	6.0	6.5	5.1	4.4	4.0	3.4	2.4	1.9		
ETo (mm/month)) 53	59	93	138	186	195	158	136	120	105	72	59	1,374	

1) Wind speed is given at 2m height. Note)

2) for estimating adjustment factor (C), assuming U day/U night = 1.0.

3) * using data at Chaklala.

Table A-1-4 Potential Evapotranspiration at Murree by Modified Penman

•

A-10

Т (°С)	es (mbar)	Т (°С)	es (mbar)	Т (°С)	es (mbar)	Т (°С)	es (mbar)
0	6.1	10	12.5	20	23.4	30	42.4
1	6.6	11	13.1	21	24.9	31	44.9
2	7.1	12	14.0	22	26.4	32	47.6
3	7.6	13	15.0	23	28.1	33	50.3
4	8.1	14	16.1	24	29.8	34	53.2
5	8.7	15	17.0	25	31.7	35	56.2
6	9.3	16	18,2	26	33.6	36	59.4
7	10.0	17	19.4	27	35.7	37	62.8
8	10.7	18	20.6	28	37.8	38	66.3
9	11.5	19	22.0	29	40.1	39	69,9

Table A-1-5	Saturation Vapour Pressure (es) in mbar a	S
	Function of Mean Air Temperature (T) in °	С

.

· · · ·

.

Data Source: HY-1

Table A-1-6 Mean Daily Duration of Maximum Possible Sunshine Hours (N) for Different Months and Latitudes

forthern Lats	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	'No♥	Dec
Southern Lats	July	Aug	Sept.	Oct	Nov	Dec]an	Feb	Mar	Apr	May	Juna
50° 48 46	8.5	10.1	11.8	13.8	15.4	16.3	15.9	14.5	12.7	10.8	9.1	8.
48	8.8	10.2	11.8	13.6	15.2	16.0	15.6	14.3	12.6	10.9	9.3	8.
46	9.1	10.4	11.9	13.5	14.9	15.7	15.4	14.2	12.6	10.9	9.5	8.
44 . 42	9.3	10.5	11.9 '	13.4	14.7	15.4	15.2	14.0	12.6	11.Ŏ	<u>9</u> .7	8.
42	9.4	10.6	11.9	13.4	14.6	15.2	14.9	13.9	12.6	11.1	9.8	9.
40	9.6	10.7	11.9	13.3	14.4	15.0	14.7	13.7	12.5	11.2	10.0	9.
35	10.1	11.0	11.9	13.1	14.0	14.5	14.3	13.5	12.4	11.3	10.3	9.
35 30 25 20 15 10 5	10.4	11.1	12.0	12.9	13.6	14.0	13.9*	13.2	12.4	11.5	10.6	10.
25	10.7	11.3	12.0	12.7	13.3	13.7	13.5	13.0	12.3	11.6	10.9	10.
20	11.0	11.5	12.0	12.6	13.1	13.3	13.2	12.8	12.3	11.7	11.2	10.
15	11.3	11.6	12.0	12.5	12.8	13.Õ	12.9	12.6	12.2	11.8	11.4	11.3
10	11.6	11.8	12.0	12.3	12.6	12.7	12.6	12.4	12.1	11.8	11.6	11.
5	11,8	11.9	12.0	12.2	12.3	12.4	12.3	12.3	12.1	12.0	11.9	11.
0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0

•

Data Source: HY-1

Table A-1-7 Extra-terrestrial Radiation (Ra) expressed in equivalent evaporation in mm/day

			•	Nor	thern	Kemi	<u>isphe</u> i	re							Sout	nern l	Hemis	pher	e					
Jan	Feb	Max	· Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Lat	Jan	Feb	Mar	Apr	Мау	june	July	Aug	Sept	Oct	Nov	Dec
3.8 4.3 4.9 5.3 5.9	6.6 7.1 7.6	9.8 10.2 10.6	13.0 13.3 13.7	15.9 16.0 16.1	17.2	16.5 16.6 16.6	14.3	10.9 11.2 11.5 11.9 12.2	7.8 8.3 8.7	5.0 5.5	3.7 4.3 4.7		17.6 17.7 17.8	14.9 15.1	11.5 11.9	7.5	4.7 5,2	3.5 4.0		6.0 6.5 6.9	8.9 9.3 9.7 10.2 10.6	13.2 13.4 13.7	16.6 16.7 16.7	18.2 18.3 18.3
7.4	8.6 9.0 9.4 9.8 10.2	11.8 12.1 12.4	14.5 14.7 14.8	16.4 16.4 16.5	17.2	16.7 16.7 16.8	15.3 15.4 15.5	$13.1 \\ 13.4$	10.0 10.6 10.8	7.0 7.5 8.0 8.5 9.0	5.6 7.2		17.9 17.9 17.8	15.8 16.0 16.1	12.5 12.8 13.2 13.5 13.8	9.6 10.1 10.5	7.5	5.8 6.3 6.8	6.3 6.8 7.2	8.j 8.8 9.2	11.0 11.4 11.7 12.0 12.4	14.4 14,6 14.9	17.0 17.0 17.1	18.3 18.2 18.2
9.3	10.7 11.1 11.5 11.9 12.3	13.4 13.7 13.9	15.3 15.3 15.4	16.5 16.4 16.4	16.8 16.7 16.6	16:7 16.6 16.5	15.7 15.7 15.8	14.1 14.3 14.5	12.0 12.3 12.6	9.9 10.3 10.7	8.8 9.3 9.7	26 24	17.6	16.4 16.4 16.5	14.0 14.3 14.4 14.6 14.8	11.6 12.0 12.3	9.3 9.7 10.2	8:2 8.7 9:1	-8-6 9.1 9.5	10.4 10.9 11.2	13.0 13.2 13.4	15.4 15.5 15.6	17.2 17.2 17.1	17.9 17.8 17.7
11.2 11.6 12.0 12.4 12.8	13.0 13.3 13.6	14.6 14.7 14.9	15.6 15.6 15.7	16.1 16.0 15.8	16.1 15.9 15.7	16.1 15.9 15.7	15.8 15.7 15.7	14.9 15.0 15.1	13.6 13.9 14.1	12.0 12.4 12.8	11.1 11.6 12.0	18 16 14	17.1 16.9 16.7	16.5 16.4 16.4	15.0 15.1 15.2 15.3 15.4	13.2 13.5 13.7	11:4 11.7 J2.J	10.4 10.8 11.2	10.8 11.2 11.6	12.3 12.6 12.9	14.1 14.3 14.5	15.8 15.8 15.8	16.8 16.7 16.5	17.1 16.8 16.6
13.2 13.6 13.9 14.3 14.7 15.0	14.5 14.8 15.0 15.3	15.3 15.4 15.5 15.6	15.6 15.4 15.5 15.3	15.3 15.1 14.9 14.6	15.0 14.7 14.4 14.2	15.1 14.9 14.6 14.3	15.4 15.2 15.1 14.9	15.3 15.3 15.3 15.3	14.8· 15.0 15.1 15.3	13.9 14.2 14.5 14.8	13.3 13.7 14.1 14.4	10 8 6 4 2 0	16.1 15.8 15.5 15.3	16.1 16.0 15.8 15.7	15.6	14.4 14.7 14.9 15.1	13.1 13.4 13.8 14.1	12.4 12.8 13.2 13.5	12.7 13.1 13.4 13.7	13.7 14.0 14.3 14.5	14.9 15.0 15.1 15.2	15.8 15.7 15.6 15.5	16.0 15.8 15.5 15.3	16.0 15.7 15.4 15.1

Data Source: HY-1

Table A-1-8 Adjustment Factor (C) in Penman Equation

		RH	iax + ;	30%		R.H.n	n ax - 6	io%		RHm	•x • 90)%
Rs mm/day	3	6	9.	12	3	6	9	12	3	6	9	12
Uday m/sec					Uday	/Unig	n t - 4. 0)		-		
0 3 6 9	.86 .79 .68 .55	. 90 . 84 . 77 . 65	1.00 .92 .87 .78	1.00 .97 .93 .90	.96 .92 .85 .76	.98 1.00 .96 .88	1.05 1.11 1.11 1.02	1.05 1.19 1.19 1.14	1.02 .99 .94 .86	1.06 1.10 1.10 1.01	1.10 1.27 1.26 1.16	1.10 1.32 1.33 1.27
					Uday	/Unig	1t = 3.0)				
3 9	.86 .76 .61 .46	.90 .81 .68 .56	1.00 .88 .81 .72	1.00 .94 .88 .82	. 96 .87 .77 .67	. 98 . 96 . 88 . 79	1.05 1.06 1.02 .88	1.05 1.12 1.10 1.05	1.02 .94 .86 .78	1.06 1.04 1.01 .92	1.10 1.18 1.15 1.06	1.10 1.28 1.22 1.18
					Uday	/Unig	nt = 2.0)				
0 3 6 9	.86 .69 .53 .37	.90 .76 .61 .48	1.00 .85 .74 .65	1.00 .92 .84 .76	.96 .83 .70 .59	.98 .91 .80 .70	1.05 .99* .94 .84	1.05 1.05* 1.02 .95	1.02 .89 .79 .71	1.06 .98 .92 .81	1.10 1.10 1.05 .96	1.10 1.14* 1.12 1.06
					Uday	/Unig	h t - 1. C)				
0 3 6 9	.86 .64 .43 .27	.90 .71 .53 .41	1.00 .82 .68 .59	1.00 .89 .79 .70	• 96 • 78 • 62 • 50	.98 .86 .70 .60	1.05 .94* .84 .75	1.05 .99* .93 .87	1.02 .85 .72 .62	1.06 92 .82 .72	1.10 1.01+ .95 .87	1.10 1.05* 1.00 .96

Data Source: HY-1

	Period	: Chaklala (Rawalpindi) : 33°35'N : EL 510m MSL ement: 2 meters in height : January ht : 1.0	
Dat	8	Calculation	
T mean	10.0 °C	es = 12.3 mbar	(Table A-1-5)
RH mean	70.7 %	ea = es x 0.707 = 8.70 mbar (es - ea) = 12.3 - 8.70 = 3.60 mbar	
U ₂	2.2 knot	u = 1.13 m/s = 97.9 km/day f(u) = 0.27(1 + u/100) = 0.27(1 + 97.	9/100) = 0.534
T mean Altitude	10.0 °C, EL 510 m	$\Delta = 33.86[0.05904(0.00738*T mean + 0) - 0.0000342] = 0.822 mbar/°C$ $\lambda = 595.9 - 0.55 T mean = 590 °C$ $\gamma = 0.24(1013 - 0.1055EL)/(0.622\lambda) = 0.24(1013 - 0.1055EL)/(0.622\lambda) = 0.0000000000000000000000000000000000$	
Ra		Ra = 16.7mm/day(January at latitude	33°35'N) (Table A-1-7)
n		n = 6.4 hr/day (data)	
Ν		N = 10.2 hr/day (January at Latitud n/N = 0.627 Rs = (0.25 + 0.50 n/N)Ra = 4.72 mm/d	(Table A-1-6)
$\alpha = 0.25$		$Rns = (1 - \alpha) Rs = 3.54 mm/day$	
$\delta = 1.98$	$x 10^{-9}$	$f(T) = \delta(T \text{ mean } + 273)^4 = 4.72$	
ea = 8.70	mbar	$f(ea) = 0.34 - 0.044 ea^{0.5} = 0.210$	
n/N = 0.5	47	f(n/N) = 0.1 + 0.9 n/N = 0.665 Rnl = f(T)f(ea)f(n/N) = 1.77 mm/da Rn = Rns - Rnl = 3.54 - 1.77 = 1.	
W = 0.738		$W \cdot Rn = 1.00 \text{ mm/day}$ $W \cdot Rn + (1 - W)f(u)(es - ea) = 1.00 + 0.8$	3 = 1.83
U day/U n RH max = Rs = 4.72 U day = 1	90% mm/day	C = 0.98 ETo = C[W·Rn + (1 - W) f(u) (es - ea] = 0 = 1	(Table A-1-8) .98 x 1.83 .8 mm/day

.

Table A-1-9 Sample Calculation by Modified Penman

A.1.3. Reliability of Meteorological and Precipitation Data

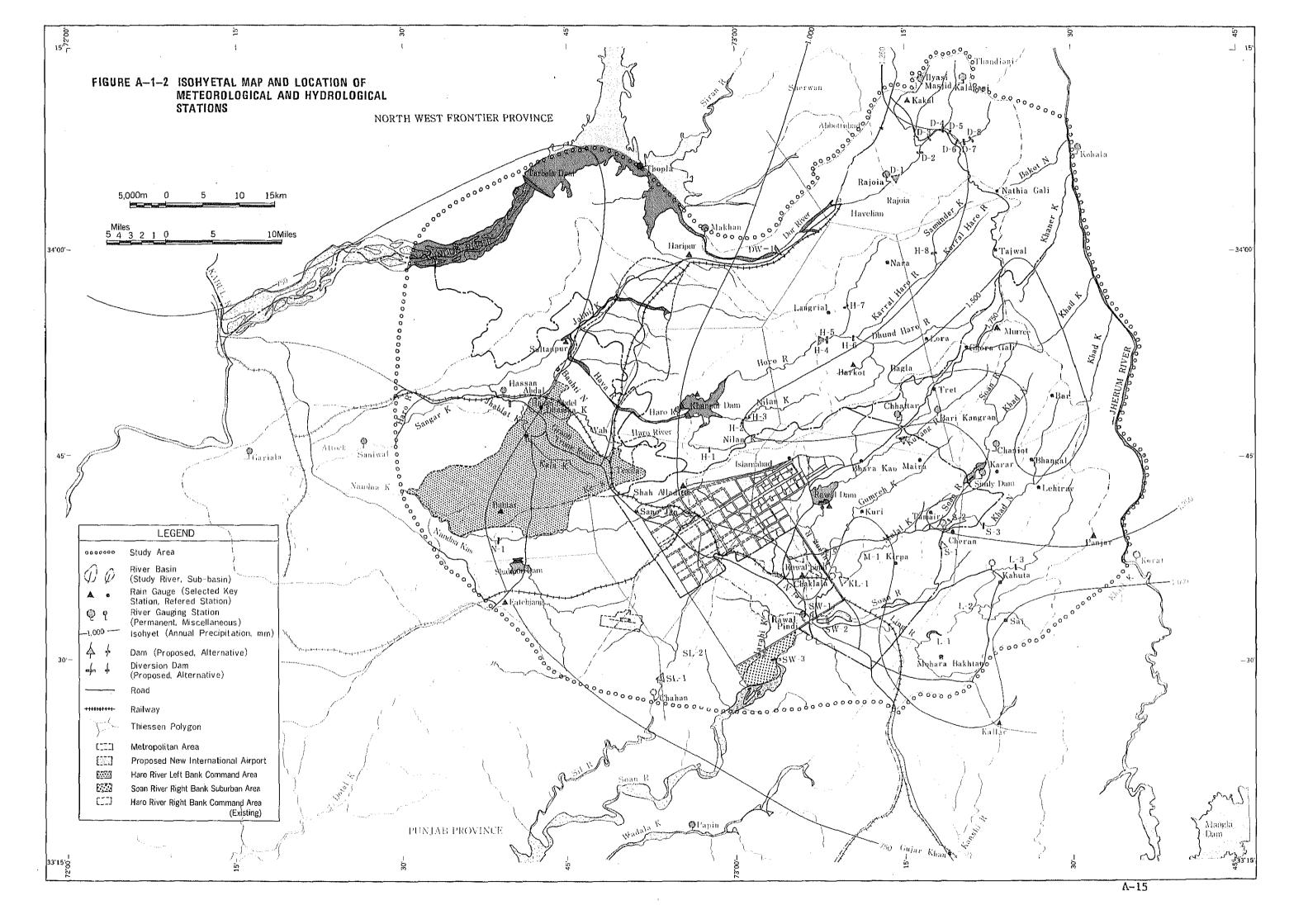

The reliability is judged to be sufficiently high on data at the synoptic stations belonging to RMC and WAPDA (Chaklala, Murree, Barkot, Rawal dam). For this study, the data at Chaklala and Murree have been used considering the length of observation period and the representativeness for areas at the alluvial plain and at the mountains. The observation period is for 33 years from 1954 to 1986 excepting few observation items at the selected two representative stations.

Table A-1-10. Meteorological Stations and Data for the Study

	Station and Obs	ervation Period
Observation Items	Chaklala	Murree
(Altitude) MSL	510 m(1,670 ft)	2,205 m(7,236 ft)
Mean Temperature	1954 - 86	1954 - 86
Relative Humidity	1954 - 86	1954 - 86
Wind Velocity	1954 - 86	1954 - 86
Sunshine Duration	1957 - 86	not observed
Pan Evaporation	1966 - 73	not observed

On the other hand, precipitation data are judged to contain lower reliable data at some stations. For evaluating the reliability of data, isohyet has been prepared using annual precipitation data as shown in Figure A-1-2. Omitting such stations to differ from other stations on their annual precipitation amount in the Figure, following thirteen (13) key rain gauge stations have been selected to represent the study area. The study estimates areal precipitation using those 13 key rain gauge stations.

A-14

Bahtar Sep.1952 - 68 Monthly some 759 RMC Barkot * Oct.1962 - 79 Daily no 1,364 WAPDA Chaklala * 1952 - 86 Daily no 1,086 RMC Fateh Jang 1948 - Apr.86 Monthly 1980-83 743 Forest(P) Haripur 1952 - 83 Monthly some 820 RMC Kakul * 1953 - 86 Daily no 1,039 RMC Kakul * 1953 - 86 Daily no 1,039 RMC Kakul * 1953 - 86 Daily no 1,039 RMC Kallar * Jul.1960 - 80 Daily no 1,064 RMC Murree * 1952 - 86 Daily some 1,064 RMC Murree * 1952 - 68 Monthly some 1,300 RMC Panjar Aug.1952 - 68 Monthly some 1,231 WAPDA Shah Alladitta 1963 - 79 Daily some	Rain Gauge Station	Data Period	Basis	Data <u>Missing</u>	Annual Precipitation	Agency
Barkot * Oct.1962 - 79 Daily no 1,364 WAPDA Chaklala * 1952 - 86 Daily no 1,086 RMC Fateh Jang 1948 - Apr.86 Monthly 1980-83 743 Forest(P) Haripur 1952 - 83 Monthly some 820 RMC Kakul * 1953 - 86 Daily no 1,039 RMC Kakul * 1953 - 86 Daily no 1,039 RMC Kallar * Jul.1960 - 80 Daily no 1,064 RMC Murree * 1952 - 86 Daily some 1,064 RMC Murree * 1952 - 86 Daily some 1,750 RMC Panjar Aug.1952 - 68 Monthly some 1,300 RMC Rawal Dam * 1963 - 79 Daily some 1,231 WAPDA Shah Alladitta 1953 - 68 Monthly many 1,036 RMC	Babtar	800, 1052 - 68	Monthly	0.070	• •	DMC
Barkov 1952 - 86 Daily no 1,086 RMC Chaklala * 1952 - 86 Daily no 1,086 RMC Fateh Jang 1948 - Apr.86 Monthly 1980-83 743 Forest(P) Haripur 1952 - 83 Monthly some 820 RMC Kakul * 1953 - 86 Daily no 1,039 RMC Kakul * 1953 - 86 Daily no 1,039 RMC Kallar * Jul.1960 - 80 Daily no 938 WAPDA Khanpur Aug.1954 - 86 Monthly some 1,064 RMC Murree * 1952 - 86 Daily some 1,750 RMC Panjar Aug.1952 - 68 Monthly some 1,300 RMC Rawal Dam * 1963 - 79 Daily some 1,231 WAPDA Shah Alladitta 1953 - 68 Monthly many 1,036 RMC		•	•			
Fateh Jang 1948 - Apr.86 Monthly 1980-83 743 Forest(P) Haripur 1952 - 83 Monthly some 820 RMC Kakul * 1953 - 86 Daily no 1,039 RMC Kallar * Jul.1960 - 80 Daily no 938 WAPDA Khanpur Aug.1954 - 86 Monthly some 1,064 RMC Murree * 1952 - 68 Daily some 1,300 RMC Panjar Aug.1952 - 68 Monthly some 1,300 RMC Rawal Dam * 1963 - 79 Daily some 1,231 WAPDA Shah Alladitta 1953 - 68 Monthly many 1,036 RMC	Barkot *	Oct.1962 - 79	Daily	no	1,364	WAPDA
Haripur 1952 - 83 Monthly some 820 RMC Kakul * 1953 - 86 Daily no 1,039 RMC Kallar * Jul.1960 - 80 Daily no 938 WAPDA Khanpur Aug.1954 - 86 Monthly some 1,064 RMC Murree * 1952 - 86 Daily some 1,750 RMC Panjar Aug.1952 - 68 Monthly some 1,300 RMC Rawal Dam * 1963 - 79 Daily some 1,231 WAPDA Shah Alladitta 1953 - 68 Monthly many 1,036 RMC	Chaklala *	1952 - 86	Daily	no	1,086	RMC
Kakul * 1953 - 86 Daily no 1,039 RMC Kallar * Jul.1960 - 80 Daily no 938 WAPDA Khanpur Aug.1954 - 86 Monthly some 1,064 RMC Murree * 1952 - 86 Daily some 1,750 RMC Panjar Aug.1952 - 68 Monthly some 1,300 RMC Rawal Dam * 1963 - 79 Daily some 1,231 WAPDA Shah Alladitta 1953 - 68 Monthly many 1,036 RMC	Fateh Jang	1948 - Apr.86	Monthly	1980-83	743	Forest(P)
Kallar * Jul.1960 - 80 Daily no 938 WAPDA Khanpur Aug.1954 - 86 Monthly some 1,064 RMC Murree * 1952 - 86 Daily some 1,750 RMC Panjar Aug.1952 - 68 Monthly some 1,300 RMC Rawal Dam * 1963 - 79 Daily some 1,231 WAPDA Shah Alladitta 1953 - 68 Monthly many 1,036 RMC	Haripur	1952 - 83	Monthly	some	820	RMC
Khanpur Aug.1954 - 86 Monthly some 1,064 RMC Murree * 1952 - 86 Daily some 1,750 RMC Panjar Aug.1952 - 68 Monthly some 1,300 RMC Rawal Dam * 1963 - 79 Daily some 1,231 WAPDA Shah Alladitta 1953 - 68 Monthly many 1,036 RMC	Kakul *	1953 - 86	Daily	no	1,039	RMC
Murree * 1952 - 86 Daily some 1,750 RMC Panjar Aug.1952 - 68 Monthly some 1,300 RMC Rawal Dam * 1963 - 79 Daily some 1,231 WAPDA Shah Alladitta 1953 - 68 Monthly many 1,036 RMC	Kallar *	Jul.1960 - 80	Daily	no	938	WAPDA
PanjarAug.1952 - 68Monthlysome1,300RMCRawal Dam *1963 - 79Dailysome1,231WAPDAShah Alladitta1953 - 68Monthlymany1,036RMC	Khanpur	Aug.1954 - 86	Monthly	some	1,064	RMC
Rawal Dam * 1963 - 79 Daily some 1,231 WAPDA Shah Alladitta 1953 - 68 Monthly many 1,036 RMC	Murree *	1952 - 86	Daily	some	1,750	RMC
Shah Alladitta 1953 - 68 Monthly many 1,036 RMC	Panjar	Aug.1952 - 68	Monthly	some	1,300	RMC
	Rawal Dam *	1963 - 79	Daily	some	1,231	WAPDA
Sultannur Sen 1952 - 68 Monthly some 699 RMC	Shah Alladitta	1953 - 68	Monthly	many	1,036	RMC
darganbar ochriste och monettal Boling (201) 1010	Sultanpur	Sep.1952 - 68	Month1y	some	699	RMC

Table A-1-11. Key Rain Gauge Stations

Among above 13 key rain gauge stations, six (6) stations marked with * have been used for runoff analysis of the study rivers, because daily precipitation records are available at these six stations.

A.1.4. Interpolation of Daily Precipitation Data

Interpolation has been made for the daily precipitation data of Barkot, Murree and Rawal dam using adjacent stations such as Kakul and Chaklala. Table A-1-12 shows methodology of the interpolation. Table A-1-12. Interpolation of Daily Precipitation Record

Station	Interpolated Period	Method
Barkot	Jan.1960-26 Oc	<pre>t.'62, 1980 Y = 0.797 X -0.066 (r = 0.847) Y: Precipitation at Barkot (mm/day) X: Precipitation at Murree (mm/day) Regression equation is derived by corelation on monthly basis.</pre>
Murree	Aug. 1961, Dec	.'68, JanMay'70, Jan14 Apr.'71, May'85 Since monthly records are available in these periods at Murree, monthly precipitation is provided to paticular days in accordance with the daily records at Kakul.
	Jan12 Jun. 1	972 Since monthly records are not available in this period, daily records at Kakul are applied without any revision.
Rawal Dam	Jan. 1960-Dec.	<pre>1972, 19-31 Jan. 1964, 1980 Y = 1.054 X -0.366 (r = 0.924) Y: Precipitation at Rawal Dam (mm/day) X: Precipitation at Chaklala (mm/day) Regression equation is derived by corelation on monthly basis.</pre>

A.1.5. Seasonal Fluctuation of Precipitation

As mentioned above, most rainfall of about 60 percent of annual rainfall is brought by the southwest monsoon from July to the mid September with the highest amount of rainfall in August. (see Table A-1-2) On the other hand, the depressions also bring rainfall during the cold season, but the amount of rainfall is only about 20 percent of annual rainfall, less as compared with that during the monsoon.

Consequently, the amount of rainfall varies by season, and such variation of rainfall is one of major obstructions on agricultural development in the area. Furthermore, annual amount of rainfall also greatly varies by year, and droughts occasionally bring difficulties on water supply and damages on agricultural products.

A.1.6. Areal Distribution of Precipitation

As seeing the isohyetal map in Figure A-1-2, annual amount of rainfall remarkably differs by area. Annual rainfall ranges from 700 mm to 1,000 mm in the western alluvial plain, and increases toward the eastern mountainous area and reaches 1,750 mm at Murree. Abundant rainfall is observed in the Margala and the Murree hills which are the uppermost river basins of the Haro, the Kurang and the Soan rivers. On the other hand, the river basins of the Dor and the Ling rivers receive relatively less rainfall as compared with above three river basins.

Mean annual rainfall of each river basin has been estimated by Thiessen method, and it may be highest as 1,413 mm in the Soan river basin and least as 837 mm in the Nandna Kas basin. Mean annual rainfall of the whole study area is estimated around at 1,000 mm. Table V-1-13 shows mean annual rainfalls of various river basins estimated by Thiessen method.

Table	A-1-13,	Mean	Annual	Areal	Rainfall
					J

River Basin	Mean Annual <u>Rainfall</u> (mm)	Point	Catchment Area (sq.km)	Remarks
Dor River	1,269	Dw-1 Site	517.7	
Haro River	1,403	Khanpur Dam	778.0	
Kurang River	1,309	Soan Junction	580.3	
Soan River	1,413	Sw-l Site	487.9	Excluding the Kurang, the Ling
Ling River	1,129	Soan Junction	404.6	••••••••••••••••••••••••••••••••••••••
Jabbi Kas	(820)	Haro Junction	304.0	
Bauhti Nala	(820)	Bauhti Village	12.8	
Jhablat Kas	857	Hassan Abdal SGS	248.6	
Nandna Kas	837	N-1 Site	462.0	
Lei Nala	1,009	Soan Junction	211.2	
Sil River	1,009	SL-1 Site	237.6	
Whole Study Basin	(1,000)		6,800	

Note: see weight of station in Table A-1-16.

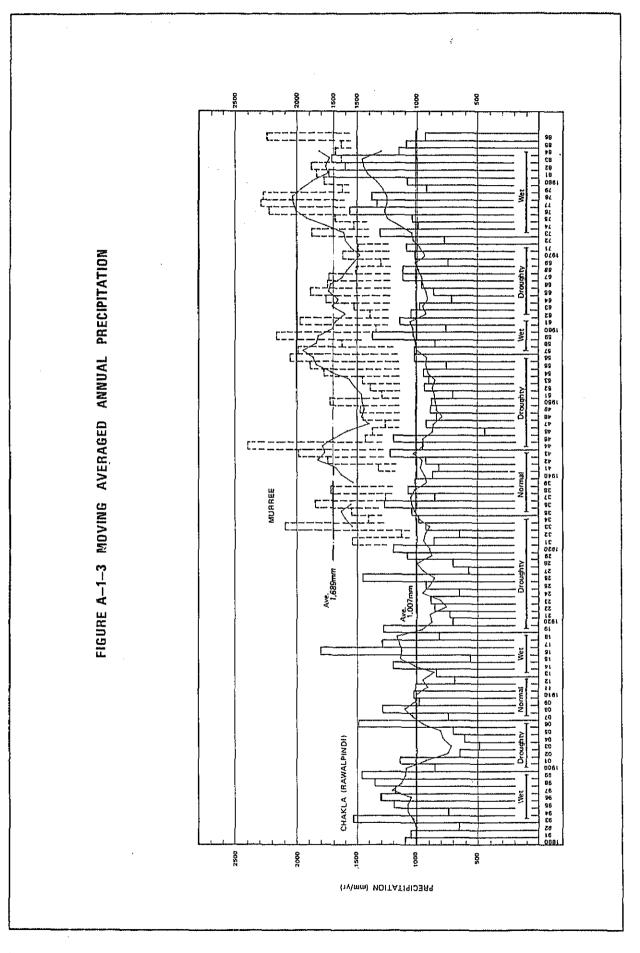

A.1.7. Long Term Fluctuation of Annual Precipitation

Figure A-1-3 shows the long term fluctuation of annual rainfall by 5 years moving average at Chaklala, and Murree where rainfall is observed for a long period. As seeing the Figure, two stations show similar pattern of fluctuation, the long term fluctuation of annual rainfall of the study area can be studied by the record at Chaklala where the longest observation record is available. According to the record at Chaklala, followings can be stated;

Although the cycle of wet and droughty periods is not clear, but there are clear periods of wet and drought, and they last for certain years. This fact suggests the necessity to consider not only the particular drought year on planning the water resources development but also the certain years before and behind the particular drought year in case of the development by dams. Table A-1-14 shows the distinguinshable periods of wet and drought years. Although there were a few short wet periods in the years from the 1920s to the 1960s, this 50 years was the drought term with less rainfall. On the other hand, it was wet term after 1973.

Period	Duration	Wet/Droughty
1893 - 1899	7 years	Wet Period
1900 - 1906	7	Droughty "
1913 - 1918	6	Wet "
1919 - 1934	16	Droughty "
1944 - 1956	13	Droughty "
1957 - 1961	5	Wet "
1962 - 1971	10	Droughty "
1973 - 1986	14	Wet

Table A-1-14. Wet and Droughty Periods by Annual Rainfall

A.1.8. Probable Drought and Wet Years by Annual Precipitation

The drought year and the wet year have been studied using the weighted annual rainfall by the data at Chaklala, Kakul and Murree where reliable long term observation records are available. (weight 2:1:1, period 1952-86, see Figure A-1-4) The weighted annual rainfall can be considered to be approximate annual areal rainfall in the Margala and the Murree hills. Probable 1/10 drought year (once in ten years) is close to the years of 1953 and 1972. And, the years of 1960 and 1969 were considerably droughty and equivalent to 1/30 drought year approximately.

Table A-1-15. Probable Drought and Wet Years by Precipitation

M	lean ,	Annual We:	ighted	Rai	nfal.	L	,	306	mm	(100%)	1952-6	56				
Maximum Annual Rainfall 1,748 mm (134%) 19								1976								
M	Minimum Annual Rainfall 971 mm (74%) 1969															
	Drought Year Wet Year															
Ret	urn	Probable							Pr	obable						
Per	iod	Rainfall	Y	ears	Cor	resp	ondi	ng	Ra	infall	Y	ears	Cor	resp	ondi	ng
		(mm)								(mm)						
2	yrs	1,287	1956,	67,	68,	75,	80,	85	1	,287	1956,	67,	68,	75,	80,	85
5	U.	1,129	1958,	63,	64,	74,	79		1	,472	1961,	73,	86			
10	81	1,057	1953,	72					1	,581	1959,	83				
15	11	1,023	-						1	,640	1977,	78,	81,	82		
20	н	1,002	-						1	,679						
30	н	974	1960,	69 '					1	,733	1976					
													- Til - Marine Ma			

1 206 mm (100%) 1052-86 Moon Annual Watchtod Painfall

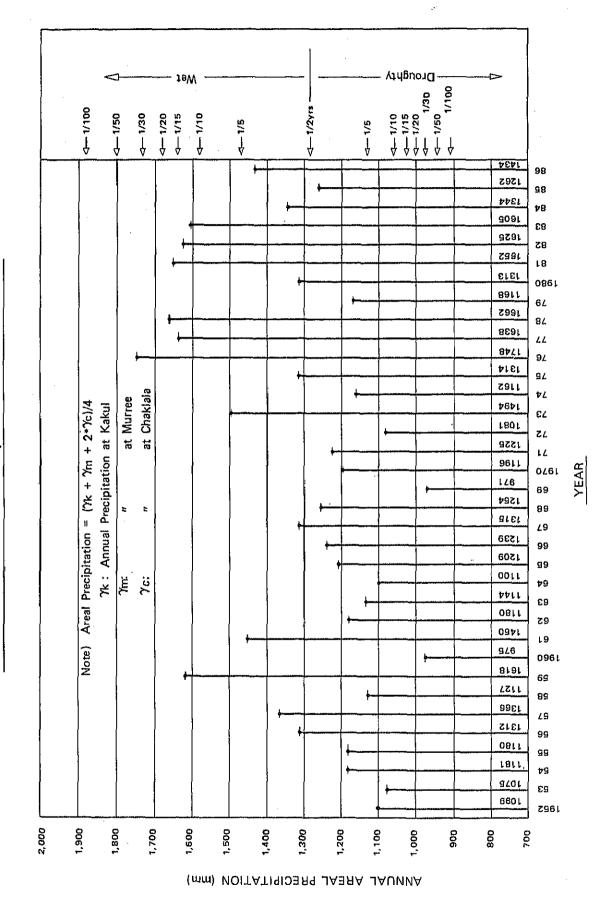


Figure A-1-4 Annual Areal Precipitation from 1952 to 1986

. А́-23

Basin	D.A. (km ²)	Annual Rainfall (mm/yr)	Weight of Station (%)
Dor River			₩ [,] ₩,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
D-1	292.3	1,309	Kakul (100)
Dw - 1	517.7	1,269	Kakul (83), Barkot (8), Haripur (9)
Haro River			
H-4	498.5	1,539	Kakul (5), Murree (46), Barkot (49)
Khanpur Dam	778.0	1,403	Kakul (3), Murree (29), Barkot (44), Rawal Dam (1), Khanpur (20), Shah Alladitta (3)
Jhablat Kas			
Hasan Abdal	248.6	857	Khanpur (4), Shah Alladitta (35), Sultanpur (24), Bahtar (37)
Nandna Kas			
N-1	462.0	837	Shah Alladitta (31), Bahtar (19), Fateh Jang (50)
Soan River			
Kurang			
Rawal Dam	275.0	1,417	Murree (25), Barkot (42), Rawal Dam (33)
Gumreh Kas	129.3	1,276	Murree (8), Barkot (6), Rawal Dam (83), Chaklala (3)
M-1	82.8	1,231	Rawal Dam (100)
KL-1	283.7*	1,219	Barkot (2.6), Chaklala (22.6), Murree (3.4), Rawal Dam (71.4)
Whole Kurang	580.3	1,309	Murree (13), Barkot (21), Rawal Dam (54), Chaklala (12)
Soan River			
Cherah	326.3	1,530	Murree (52), Panjar (42), Rawal Dam (6)
S-1	341.1	11	- ditto -
Soan at Sw-l	(exclud)	ing Kuran	g and Ling river basins)
	487.9	1,413	Murree (36), Panjar (35), Rawal Dam (9), Chaklala (20)
Ling River			
Kahuta	145.0	1,300	Panjar (100)
L-1	285.0	1,188	Panjar (69), Kallar (31)
Whole Ling	404.6	1,129	Panjar (49), Chaklala (9), Kallar (42)
Sil River			
SL-1	237.6	1,009	Shah Alladitta (62), Chaklala (24), Bahtar (14)
Chahan	241.0	11	- ditto -

Table A-1-16 Weight for Computing Annual Areal Precipitation

Note) 1) Weight of station is computed by Thiessen polygon as shown in Figure A-1-2.

 Mean annual precipitation before interpolation is applied for Barkot and Rawal dam.

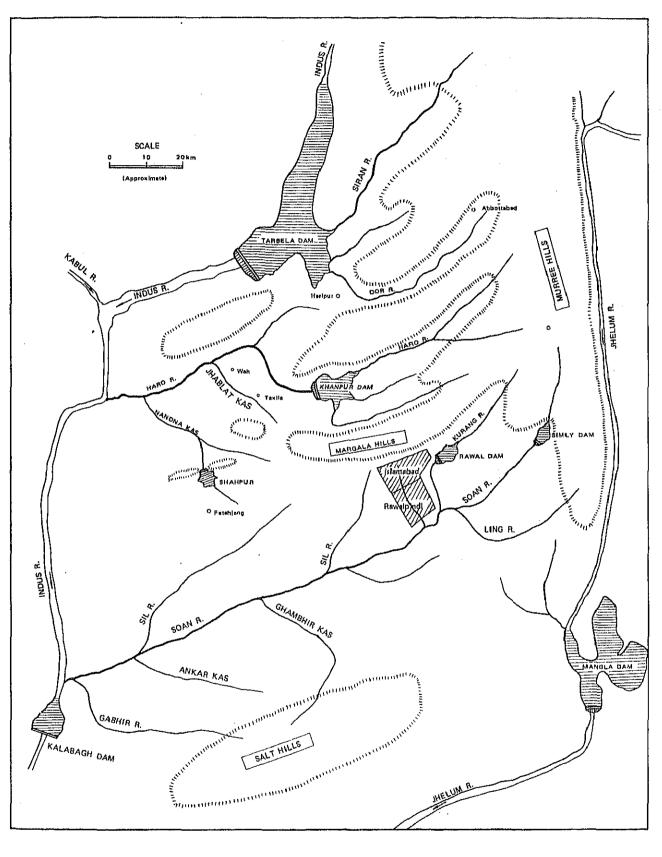
3) * excluding the catchment area of Rawal dam.

A.2. River and River Regime

A.2.1. Rivers

As seeing in Figure A-2-1, the Study area is composed of three major river basins of the Dor, the Haro and the Soan, and bounded by the Indus and the Jhelum. Table A-2-11 is showing the drainage area at the key sites for the study.

(1) Dor River


The profile of the Dor river and its important tributaries on the left and right banks are shown in Figure A-2-2.

The Dor river is a left bank tributary of the Siran river and it joins the Indus river also. The confluence with the Siran river has been submerged in the Tarbela reservoir since construction of Tarbela dam in 1974. The characteristics of the Dor river, as may be seen from the above figure, are similar to those of the Haro river in that it falls rapidly in the first 10 km and then runs with a gentler slope. The left bank tributaries are longer and steeper than those on the right.

(2) Haro River

The profile of the Haro river and all the important tributaries on its left and right banks important tributaries on its left and right banks are shown in Figure A-2-3.

The Haro river is a left bank tributary of the Indus river. As may be seen from the above figure, the left bank tributaries are longer and steeper than the right bank tributaries. It may also be seen that the Haro river, like the Dor river, falls very rapidly in the first 10 km or so and then runs with a gentler slope.

FIGURE A-2-1 GENERAL VIEW OF RIVER SYSTEM

Nandna Kas

The Nandna Kas is a major tributary of the Haro river and its length is about 68 km. It joins the Haro river on left bank at 10 km upstream from the confluence of the Indus. It drains the area of 912 sq.km and its slope is 1/70 in upstream and 1/140 in downstream at the confluence of the Bahudra Kas.

- Jhablat Kas

The Jhablat Kas is a tributary flowing into the left bank of the Haro river. It originates from Pind Bahadur Khan Village located between Fatehjang-Hassanabdal road and joins the Haro river at a point some 5 km of the downstream of Hassanabdal. The Kas runs through the high ridge near Hassanabdal.

(3) Soan river

The profile of the Soan river and the major tributaries on its left and right banks are shown in Figure A-2-4.

The Soan river is a left bank tributary of the Indus river. It rises in the south-western range of Murree hills, and after flowing through various hills and gorges enters the plains near Cherah.

Flowing in a south-western direction a distance of about 240 km through the plains, it joins the Indus river about 16 km upstream of Kalabagh.

- Malal Kas

The Malal Kas is a tributary with length of 24.8 km joining the Kurang river which drains into the Soan river at 216 km upstream from the Indus. It drains the area of 92.3 km² with a bed slope of 1/90.

Ling River

The Ling river is a major tributary of the Soan river on left bank. It originates in the Lehtrar hills with altitude of 1,850 m and drains the area of 427 km² into the Soan river at 225 km upstream from the Indus at Kahuta where altitude is 470 m. It flows in the mountainous area and its bed slope is about 1/40.

Sil River

The Sil river is a major tributary of the Soan river and it is also called as the Fateh Jang Kas. It originates near Bodia Rustam Khan with altitude of 560 m and drains the area of 595 sq.km into the Soan river at altitude of 338 m near Balawal. The length of the Sil river is 71 km and the bed slope is about 1/300.

Table A-2-1 shows the summary of channel morphology of each river.

Name of River	Drainage Area	Length of River	Average Width of Basin	Coefficient of Shape	Average Slope	Elevation
	A (km ²)	L (km)	W (km)	F		(m)
Dor R.	608	64.4	9.4	0.147	1:30	2,690-390
Haro R.	3,095	144.8	21.4	0.148	1:60	2,740-270
Nandna Kas	912	68	13.4	0.197	1:320	550-335
Soan R.	11,228	273.5	41.1	0.150	1:120	2,440-240
Malal Kas	92.3	24.8	3.7	0.150	1:90	760-470
Ling R.	427	58	7.4	0.127	1:40	1,850-470
<u>Sil, R.</u>	596	71	8.4	0.118	1:300	560-338

Table A-2-1. Channel Morphology

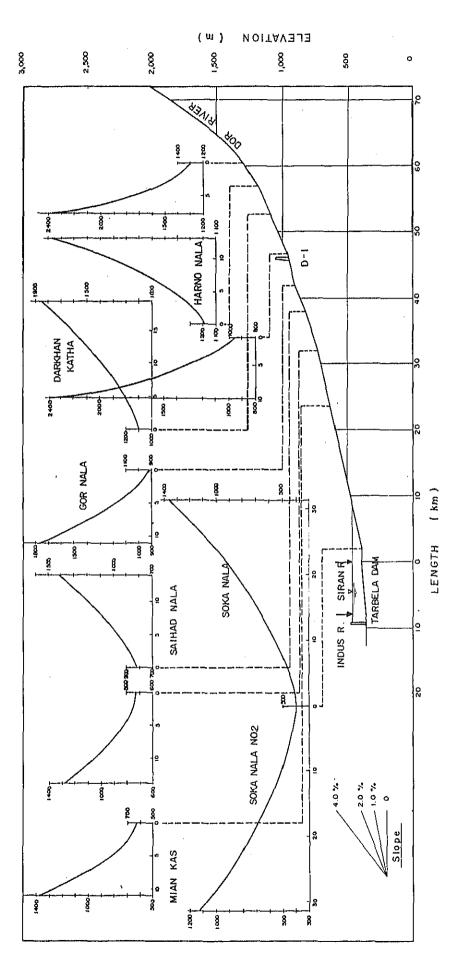


Figure A-2-2. Profile of the Dor Basin.

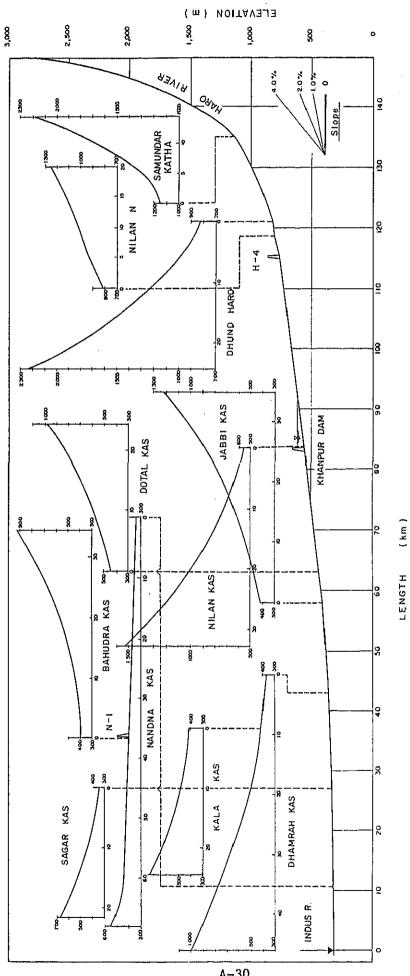


Figure A-2-3. Profile of the Haro Basin

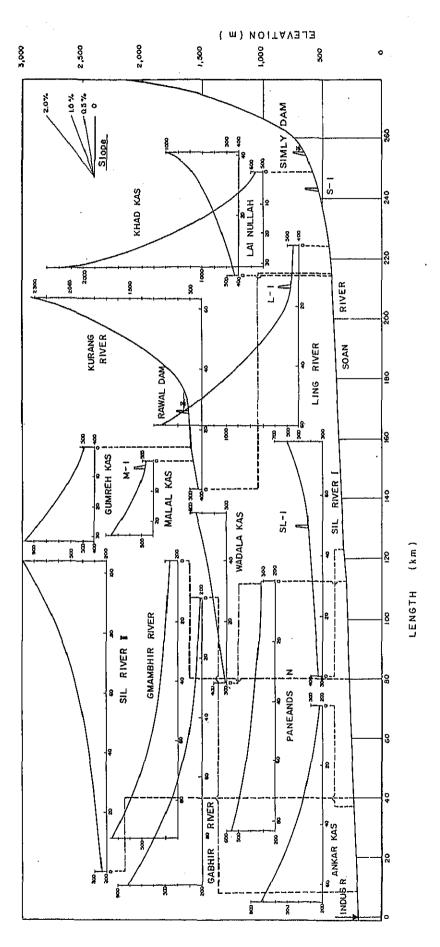


Figure A-2-4. Profile of the Soan Basin

A.2.2. Types of Rivers

The rivers in the study area flow through various types of physiographic zones and take on a variety of characteristics. The study area is divided into an upstream mountainous region and a middle or downstream plain.

In order to understand the behavior of the three rivers they have been characterized into the following broad categories:

- 1. Meandering alluvial plain rivers
- 2. Mountain rivers
- 3. Hill torrents

The predominant characteristics of these rivers, in terms of lateral shifting and vertical processes, are summarized in Table A-2-2.

(1) Meandering Alluvial Plain Rivers

These rivers have enclosed channels exhibiting regular meander patterns (sine-wave) with a few cutoffs an oxbow lakes. The rivers appear relatively stable compared to others and generally aggrade slowly. Parts of the upper middle of the Soan River are like this. This type of river has a well defined meander belt within which most of the channel activity takes place. River widths are reasonably constant and beds generally consist of sandy soil. The rivers are capable of flowing down flood safely with the erosion in alluvial terraces.

(2) Mountain Rivers

Mountain rivers are characterized by frequent bedrock outcrops on their beds or banks which control their lateral activity and slopes.

At locations where the river valley widens, terraces and flood plains have been built up and these are usually under attack by the

	Alluvial Plans Meandering	Meandering Within meander belt, some bund erosion, natural cut offs, ox bows.	Accelerated aggradation after bund construction. possible short term degrad- ation below barages.	Bunds outside meander beit spurs to protect bunds at selected points, also breach sections in bund	
Characteristics of Rivers	Hill Torrents	Radiating Alluvial fan. channels switch frequently during flood.	Aggradation over alluvial fun	Channelize main flow into several channels, control switching of channels by weirs small dams to reduce peak flows.	
Table A-2-2.	Mountain River	Erosion of terraces, frequent lateral control by bedrock, channel pattern irregular.	Degradation, scour holes at obstructions, aggradation within wide valleys.	Local bank protection, short bunds, also spurs to deflect flow.	
		Lateral Shifting	Vertical Processes	Main Type Flood Control	SKETCH

rivers. The rivers are in a process of long-term downcutting (degradation) and are generally able to move most of the sediment supplied form local tributaries and terrace erosion. The rivers are capable of flowing down flood safely by rising the water level within the channel. Most of the upstream areas of the three rivers can be classified as mountain rivers.

(3) Hill Torrents

"Hill torrents" mainly refers to channels flowing over their own massive alluvial deposits, usually alluvial fans. The channels switch frequently and sweep across the fans depositing sediment and aggrading their beds. The channels flow into the rivers and their main tributaries can be categorized into those types described above.

A.2.3. Water Rights

(1) River Act and Other Regulations

It appears that there are no regulations which would correspond to the Japanese River Act or other government river controls. It also appears that water rights are not recognized in Pakistan and that there are no laws or government controls to protect rights already acquired. However, in the planning of new water utilization projects it is of course necessary to know the state of water utilization up and down stream of the site proposed.

(2) Protection of Existing Water Utilization

The protection of existing rights to water usage downstream is the principle to be followed in the establishment of water utilization projects. (3) Outline of Water Usage

Existing water usage for the three rivers in the study area is shown in Table A-2-3 and Supplement.

•

Table A-2-3. Existing Water Right and or Water Usage (Surface Water)

River	Tehsil	Remarks
Dor	Abbottabad	About 225 ha irrigated from main Dor between Havelian and Tehsil boundary. All private. No domestic water directly from the Dor.
	Haripur	Ditto about 3,600 has between Tehsil boundary and Tarbela Lake. Some private, some under Irrigation Dept. NWFP.
Haro	Haripur	Existing intakes from main Haro are all unauthorised since the area treated by the Khanpur Project.
	Rawalpindi	Seems no intake facilities authorized.
	Attock	Ditto but Sanjwal Cantt. (Population 6,200 in '81) taking water from the Haro.
Soan	Murree	None from the main Soan
	Islamabad	See Table D-4-1, Appendix D.
	Rawalpindi	Simly Dam. Refer to Table D-4-2, Appendix D.
	Chakwal	None from the main Soan
	Pindi Gheb	Ditto
	Talagang	Ditto
		Note; Refer to Supplement for details.

(4) Minimum Regulated River Flow

The future development of water resources in the study area must be considered allowing for water demands above and beyond the new demands for urban water, irrigation water and water for the new international airport. The grand total of such water demands will be regarded as the "minimum regulated river flow" that will preserve the natural functions of the river downstream of surface water development facilities.

The following items are taken into account in the determination of the minimum regulated river flow.

- a. The amount of flow necessary to preserve the natural functions of the river.
- b. Already acquired water rights (permitted or customary).
- c. Other development projects.
- Note: Other than its two major functions (water supply, flood control) a river also has such functions as fishing, water quality preservation (deterioration prevention), underground water maintenance (preventing decreases in the water level), etc.

Basic policies are proposed based on field studies and preparatory investigations.

(a) Amount of Flow Necessary to Maintain the Natural Functions of Rivers

The amount of flow necessary to maintain the natural functions of a river is considered to be the amount of possible discharge 355 days per year. This is not to be less than the actual amount of discharge for a 355 day period. This value observed at the following gauging stations will be the value used for the above mentioned discharge.

Dor River:	Havelian Gauging Station
Haro River:	Khanpur Gauging Station
Soan River:	Rawalpindi Gauging Station

(b) Water Rights

The amount of discharge necessary to compensate for present water use in the dry season is included in the discharge described in item (a). This is for the following reasons.

- i) It was discovered in the field reconnaissance that no water rights have been granted on the three main rivers. However, there have been several granted in connection with the S.D.O. program on tributaries. However, these tributaries join the main rivers downstream of the base gauging stations listed above and the proposed weirs. Therefore, the water rights on the tributaries have not been included in this study.
- 11) There are customary water rights at Havelian and Haripur where to DW-1 diversion dam has been proposed. Crops, from an agricultural stand point, can endure a one week water shortage, so it is recommended that water would be supplied for 355 days. Surface water will be supplied in the future to the area downstream of Khanpur Dam from the left bank irrigation program.
- 111) Future Water Demands of Other Projects The future water demands of other projects should also be considered. The program considered for the study area is already in P.C.I. form and gauging stations are positioned upstream.

SUPPLEMENT: WATER RIGHT

1. Existing Water Right and Water Use

In the course of the study, almost all the members of the team have suffered in lack of information about existing water right and water usage in the study area.

Therefore, study trips to all concerned Tehsils were made to inquire the actual conditions of their water usage. The followings are informations by officers of these Tehsils.

The team wishes to acknowledge with gratitude the kindness of concerned Tehsilder and Naib Tehsildar who have answered and furnished data to us.

1.1. Abbottabad

In Tehsil Abbottabad, although no water taxes are paid to the Government, extensive water usage exists. All along the river Dor, people use the water for drinking and irrigation purposes.

The villages being effected are, Joal, Rajoia, Babda Bozar, Bandi Atai Khan, Havelian, Lari, Langla, Sultanpur, Wazira, Nowshera, Kalumera Khorian and Doronimera. The approximate total area covered by irrigation from Dor river is about 400 - 600 acres (200 - 250 ha).

In the monsoons no intake from the river is necessary as water is available in sufficient quantities, but acute shortage is faced in the dry season and almost all the irrigation requirements are from the river Dor by constructing temporary diversion and weirs. The vegetables grown in the dry season are cauliflower, potato, onions, radish, spinach, tomato.

A-38

Informed by Mr. Mushtaq Ahmad Tehsildar Abbottabad 29th Feb. 1987

1.2. Haripur

Extensive Water right and usage can be seen in Haripur Tehsil. River Dor flows through this Tehsil and many villages are irrigated in the process. There are 51 villages in this Tehsil having a total area of 21,024 acres (8,500 ha), out of which 8,870 acres (3590 ha) is irrigated.

Table D-5-1 is the detail of the area.

Informed by Mr. Sarang Khan Naib Tehsildar Hripur lst & 10th Feb. 1987

1.3. Attock

Scarce water right and usage exist in Tehsil Attock. River Haro flows through the tehsil and entered into the Indus at Bagh Nilab (village Dhok Haja). Enroute, one major usage of water from the river Haro is the water supply scheme for the Sanjwal Ordinance Factory at Sanjwal.

According to the 1981 population census. Sanjwal Cantonment has a population of 6,191. Very few people use the water of the river Haro downstream of Jhablat for drinking purposes at the Nullah Jhablat which carries the sewerage and industrial waste from Wah, Hassan Abdal and Rawalpindi enter into the Haro at Jhablat.

As far as usage for irrigation purpose are concerned, only Jhablat, Kacha and Burhan with approximate irrigated areas 194, 110 and 100 acres (80,45 and 50 ha) respectively have water right and usage. The rest of the villages in Tehsil Attock have other sources for irrigation such as tubewells, persian wheel etc.

> Informed by Mr. Abdul Ghaffar Tehsildar Attock 3rd Feb. 1987

1.4. Pindi Gheb and Talagag

No water right and water usage exist downstream side of the river Soan and Nullah Sil in Tehsil Pindi Gheb and Talagang.

However, the river Soan passes through the following villages in Tehsil Pindi Gheb namely Gandoko, Mallowala, Kot Malarian, Dhk Malarian, Purani.

> Informed by Mr. Sultan Fayaz Kiani Tehsilder Pindi Gheb 24 th Jan. 1987

1.5. Chakwal

Almost no water right or usage exist in Tehsil Chakwal. some perennial Nullahs do exist but they are of no relevance with respect to water right or usage. There are 38 villages in Chakwal Tehsil and 58 villages in Chakwal District.

> Informed by Mr. Farasat Ali Khan Naib Tehsildar Chakwal 28th Feb. 1987

Table	S-1.	List	of	Villages	Irrigated	by	the	River D	or
-------	------	------	----	----------	-----------	----	-----	---------	----

.

	Table S-1. List	of Villages	Irrigated by	y the River	Dor
<u>s.1.0.</u>	Name of Village		Aria <u>Unirrigated</u> (Acres)	Total Area (Acres)	Remarks
1.	Chohar	471	-	471	
2.	Fhewa	-	-	-	
3.	Qazian	355	-	355	
4.	'Padhana	150		150	
5.	Chak Sikandarpur	82	-	82	
6.	Mathan	353	84	440	
7.	Bajeeda	366	226	592	
8.	Dobanai	255		255	
9.	Jama	51	-	51	
10.	Dhaenda	316	496	712	
11.	Jaga1	90	585	675	
12.	Kalas	317	-	317	
13.	Panian	12		12	
14.	Kakka	120	154	274	
15.	Pharhala	108	450	558	
16.	Mohrahuhamau	77	56	133	
17.	Manakrai	367	1045	1412	
18.	Akhun Bandi	118	127	245	
19.	Thanda Choha	26	83	109	
20.	Maqsood	82	188	270	
21.	Kalawan	101	216	317	
22.	Nikapah	71	43	114	
23.	Nohri	176	266	442	
21.	Maira Toot.	43	8	51	
25.	Gheba	45	176	221	
26.	Doian Abi	162	218	380	
27.	Meelaz	161	570	731	
28.	Alam	71	181	252	
29.	Bhand	10	90	100	
30.	Darwesh	429	850	1279	

,

Continued

31.	Haripur	198	250	448
32.	Sikandarpur	117	111	528
33.	Malkiar	732	118	850
34.	Dheri.	351	251	602
35.	Serai Saleh	364	1229	1593
36.	Bhori Lahanbandi	290	715	1005
37.	Gir	85	1	86
38.	Pholian	150	610	760
39.	Dobandi	26	154	180
40.	Pandak	181	246	427
41.	GherKhn	200	224	424
42.	Ali Khan	127	333	460
43.	Shah Mohd	183	-	183
44.	Murad Abad	160	. 358	518
45.	Moonon	60	344	404
46.	Chak Shah Mohd	20		20
47.	Bagra	205	579	784
48.	Shorag.	34	193	227
49.	Ratta Bana	11	59	70
50.	Karwala	84	144	228
51.	Balaher.	4	128	132
	Total	8870	12154	21024

,

A.2.4. Coefficient of River Regime

As seeing in Table A-2-4, the coefficient of river regime extremely differs by rivers. And the Figure A-2-5 shows the discharge-duration curves at the several key sites in the study area.

(1) The Dor and the Haro Rivers

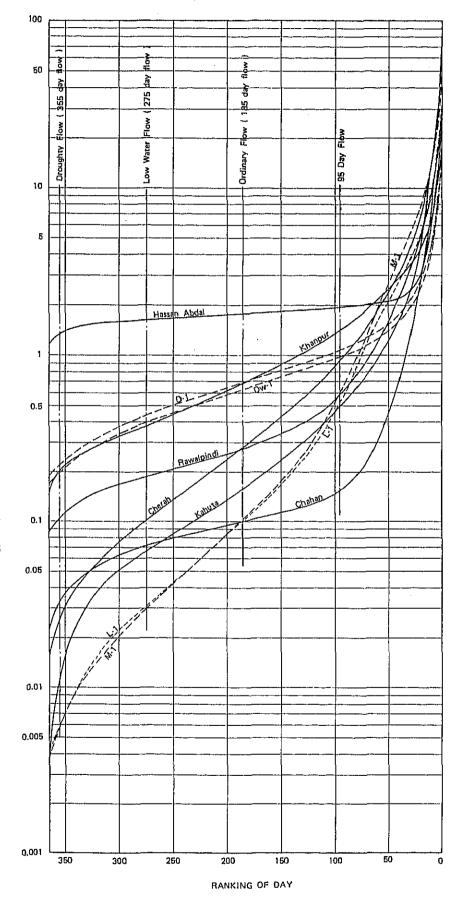
The coefficients of river regime of the Dor and the Haro rivers are so small as more or less than 100 that the flow of these rivers is relatively steady. The geology of these two river basins is composed of calcareous layers. As many cavities can be seen, their permeability might be judged to be considerably high. In these rivers, the base flow is fed mainly with groundwater, consequently the river flow becomes so steady. Furthermore, hydrographs of these rivers are relatively gentle (see Figures A-8-3-5 and A-8-3-6), because the interflow has a large portion in total runoff and the groundwater recharge is also large. The Jhablat Kas, a tributary of the Haro river, which flows through the alluvial plain has a particularly small coefficient of river regime. This river is extremely steady in its flow. (refer to discharge-duration curve at Hassan Abdal in Figure A-2-4) In the Jhablat Kas basin, there exist many springs where abundant groundwater outflow erupts. As the Jhablat Kas is gaining the groundwater outflow in its base flow, its river flow is so steady. The Bauhti Nala, adjacent to the Jhablat Kas on north, has also steady flow due to same natural conditions as the Jhablat Kas. According to the geological study, the groundwater in these basins is recharged not only by rainfall but also from the upper reach of the Haro river beyond watershed boundary. This fact will be discussed in Section A-3 in more detail.

(2) The Soan River

On the other hand, the river basin of the Soan river and its tributaries, the Kurang river and the Ling river, is composed of alternation of sandstone and shale. Consequently, the base flow of these rivers is scarcely fed with the groundwater. Therefore, the river flow of these rivers is not steady and their coefficients of river regime are so large. Groundwater recharge is relatively small in the basin as comparing in the Dor and the Haro river basins. And the surface runoff has a large portion in total runoff. As the result of these facts, the runoff increases sharply when raining and decreases also sharply after raining in the Soan river and its tributaries. The hydrograph of these rivers, therefore, is very sharp and the discharge sharply drops to the level close to the base flow after rain. (see Figure A-8-3-7 and A-8-3-8) However, the lower reaches of the Kurang river below the Rawal dam has a good quantity of base flow, because the Kurang river flows through the groundwater basin which has higher groundwater table than river bed of the Kurang river. The Sohan Nala, a small stream, flowing through the National Park and draining into the Kurang river, has also a good quantity of base flow due to same reason. This fact will be also discussed in Section A.3. The Soan river at the GT road bridge nearby Rawalpindi after confluence with the Kurang river gains much increase of base flow mainly from the Kurang river and the coefficient of its river regime becomes small.

(3) Tributaries in the Alluvial Plain

The Haro river and the Soan river at their downstream have many tributaries flowing through the alluvial plain. These tributaries except the Jhablat Kas and the Bauhti Nala have relatively large coefficients of river regime but less than those in the upstream basin of the Soan river. The hydrographs of the tributaries are also sharp (see Figure A-8-3-9). However, there exists perennial flow in the tributaries which have a certain extent of basin area


	Gauging Station or	Catchment			Discl	Discharge (cu.m/sec)	ı/sec)		Coefficient of
River	Development Site	Area	Minimum	Droughty	Low	Ordinary	95 Days	High	River Regime
		(km^2)		(355 days)		(275 days)(185 days)(95 days)	(95 days)		·
Dor	D-1	292.3	0.561	0.65	1.30	2.03	3.27	46.6	83.1
	Dw-1	517.7	0.893	1.03	2.10	3.28	5.30	75.8	84.9
Haro	Khanpur	778.0	1.19	1.57	2.95	5.29	11.17	156.1	131.0
Jhablat Kas	is Hasanabdal	248.6	2.90	3.39	4.08	4.41	4.89	61.7	21.3
Soan	Cherah	326.3	0.051	0.083	0.33	0.91	3.04	235.0	4,626.0
	Rawalpindi 1,684	1,684	1.46	1.78	3.15	4.71	10.3	667.0	457.0
Ling	Kahuta	145.0	0.005	0.018	0.095	0.225	0.72	93.4	18,680.0
	L-1	285.0	0.012	0.017	060.0	0.297	1.45	87.9	7,325.0
Malal Kas	M-1	82.8	0.003	0.004	0.024	0.084	0.48	37.1	12,367.0
SHI	Chahan	241.0	0.055	0.084	0.17	0.24	0.38	80.5	1,464.0
Remarks	Remarks 1) Average observed discharge		at gauging	gauging stations, Average computed discharge at prospect dams.	Average co	omputed dis	charge at	prospect	dams.
. 1	2) Coefficient of river regime		= High fl	High flow/Minimum flow	flow				

•

Table A-2-4. River Regime

ŝ

FIGURE A-2-5 DISCHARGE-DURATION CURVE

.

(e.g. the Sil river at the Chahan Station: 241 sq.km, the Nandna Kas at the Shahpur dam: 203.9 sq.km), but base flow is relatively small as about 35 litres/sec/100 sq.km.

A.2.5. Runoff Pattern

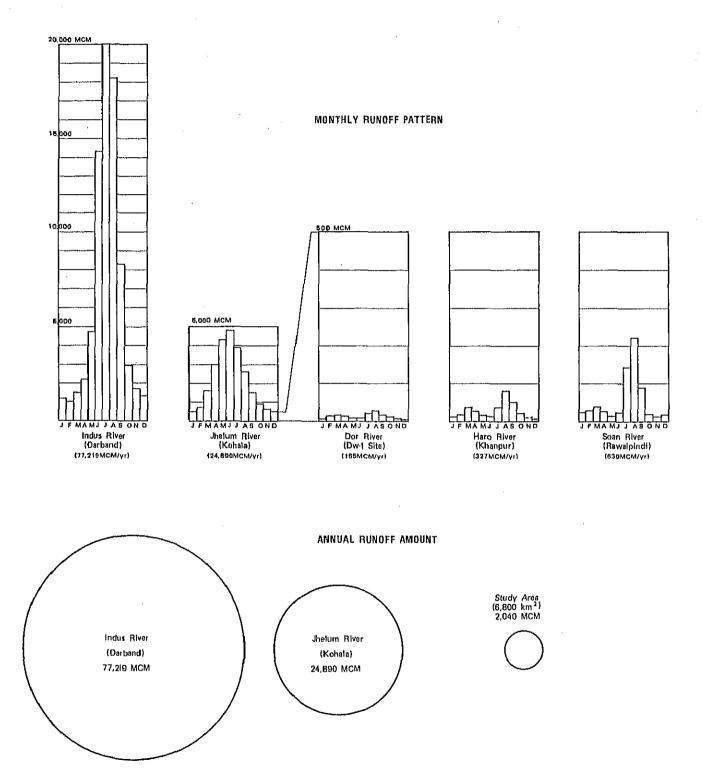
As seeing in Figure A-2-6, the rivers in the study area have two peaks of runoff in March and August, because runoff by rainfall is dominant. However the runoff of March is less than that of August. On the other hand, since snowmelt is dominant in runoff of the Indus and the Jhelum rivers, they have only one peak of runoff in June for the Jhelum and in July for the Indus.

A.2.6. Annual Runoff

According to the analysis on precipitation and runoff analysis, total runoff amount can be assumed annually at 2,040 MCM on average as below;

Drainage Area x Areal Precipitation x Runoff coefficient = $6,800 \text{ km}^2 \times 1,000 \text{ mm/yr} \times 0.30 = 2,040 \text{ MCM/yr}$

On the other hand, Table A-2-5 shows the annual runoff at the key sites from 1960 to 1980.


As seeing in the above table, the rivers in the study area generally have a large fluctuation of annual runoff by year. On the other hand, the fluctuation of that of the gigantic rivers as the Indus and the Jhelum is relatively small. In the study area, only the Jhablat Kas has a steady flow with less fluctuation due to abundant outflow of groundwater in its basin. Table A-2-5. Annual Runoff at Key Sites

					I	'n		•						
Ratío to Mean	Min.	0.72	0.39	0.30	0.46	0.56) ^{*5}	0.42	0.89	0,40	0.84	0.83	0.52		- *4
Ratio	Max.	1.55	1.92	2.06	2.04	1.90	2.06	1.10	1.98	1.32	1.22	1.39		than *1
nt (mm)	Min.	216	163	158	173	204	216	611	83	389	341	522		30 other
Runoff Height (mm)	Max.	464	808	1,106	773	694	1,062	752	413	612	502	1,386		1960 - 1980 other than *1 - *4
Rune	Mean	299	420	536	379	364	514	686	209	462	411	1,000	1974	
Annual Runoff (MCM)	Min.	112	127	51.7	291	56	31.3	152	20.0	64,400	57,400	13,000	1961 - April 1974	1965 - 1980
	Max.	240	629	361	1,301	191	154	187	99. 5	01,600	84,500	34,500	*2: 19	
	Mean	155	327	175	639	(100	74.6	170	50.3	76,700 101,600	69,200	24,900		986
Drainage Area	(sq.km)	517.7	778.0	326.3	1,684	275.1	145.0	248.6	241.0	166,019	168,350	24,890	- June 165	September 19
	Site	D_{W-1}	Khanpur	Cherah	Rawalpindi	Rawal Dam	Kahuta	*I Hassan Abdal	Chahan	barband ^{*2}	Tarbela Dam *3	*4 Kohala	Note) *1: September 1961 - June	*3: October 1973 - September 1986
	River	Dor	Наго	Soan		Kurang	Ling	Jhablat	Sil	Indus		<u>Jhe</u> lum	Note) *1:	*3:

Upper Kurang Study

Data Source:

*5**:**

FIGURE A-2-6 COMPARISON OF RUNOFF PATTERN AND AMOUNT IN MAJOR RIVERS

On the other hand, seeing the mean annual runoff heights, the runoff height of the Jhelum reaches 1,000 mm in a year which is extremely higher than other rivers. This fact is because of existence of the heavy rain zone reaching the maximum annual precipitation more than 2,000 mm in Kashimir which covers almost of the uppermost river basin of the Jhelum. The Indus river, the other gigantic river, has less runoff height of 411 mm in a year than that of the Jhelum river, but the Indus river has extremely larger runoff amount than the Jhelum because of the huge river basin extending to the central area of the Himalayas.

In the study area, the Jhablat Kas has the highest runoff height reaching 686 mm in a year on average. As mentioned above, this river is a peculiar river receiving abundant outflow of the groundwater in its river basin and is much different from other rivers in the runoff mechanism. Among other rivers than the Jhablat Kas, mean annual runoff height is highest of 536 mm at Cherah in the upstream of the Soan river and least of 209 mm in the Sil river in the alluvial plain. Mean annual runoff height of the rivers in the study area, except the rivers having abundant outflow of the groundwater, ranges from 209 mm in the alluvial plain and to 536 mm in the uppermost of the study basin where much precipitation is received.

A.2.7. Probable Drought and Wet Years by Annual Runoff Amount

As seeing in Figure A-2-7, large fluctuation was observed in annual runoffs in the study area. Based on the probability analysis of data for 21 years from 1960 to 1980, the wet year and drought year differ by the rivers, as seeing Table A-2-6. According to Table A-2-6, these 7 years as 1960, 1962, 1963, 1969, 1972, 1974 and 1979 are corresponding to the drought year of return period of 10 years or more.

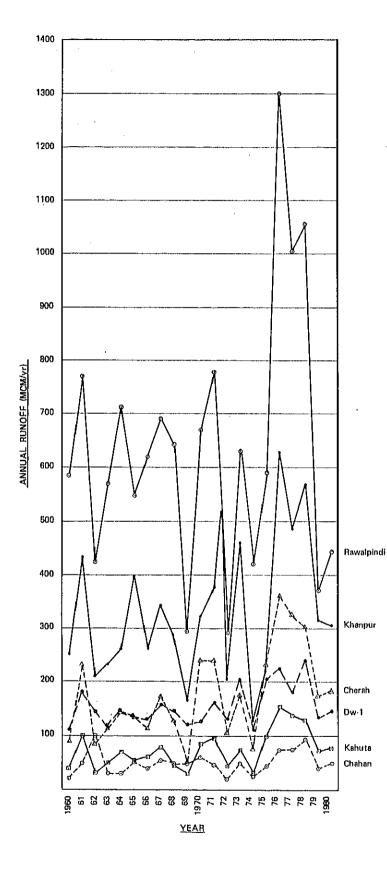


FIGURE A-2-7 FLUCTUATION OF ANNUAL RUNOFF AT KEY SITES

<u></u>		<u></u>						respond: urn Per:	~
			Prob	able An	nual	Wet	Year	Dourght	Year
			Runo	ff (MCM,	/yr)		Over		Over
Rivers	Site	D.A	Wet*	Normal	Drought	<u>y*10 yrs</u>	10 yrs	<u>10 yrs</u>	<u>10 yrs</u>
		(km ²)							
Dor	Dw-1	517.7	203	147	116	1973,75	76,78	1963	60,74
Haro	Khanpur	778.0	505	305	180	1977	76,78		69,74
Soan	Cherah	326.3	295	158	80	1978	76,77	1962	69,74
	Kahuta	145.0	124	67	36	1978	76,77	1960	62,69,74
	Rawalpindi	1,684	969	602	360	1977	76,78	1979	69,72
<u>S11</u>	Chahan	241.0	78	47	27	1977	62,78	1974	60,72

Table A-2-6. Probable Drought and Wet Years by River Basins

Note: 1) - : no particular year corresponding 2) detail computation is shown in Table A-2-9. 3) * .. 1/10 yrs.

Accordingly, these years of the whole study area have been analyzed using the synthetic runoff estimated as shown in Table A-2-7. As the result of probability analysis, the years of return period of 10 years are estimated at the year of 1977 as the wet year and at the year of 1974 as the drought year. And the normal year is at the year of 1968.

Table A-2-7. Probable Drought and Wet Years by the Synthetic Annual Runoff

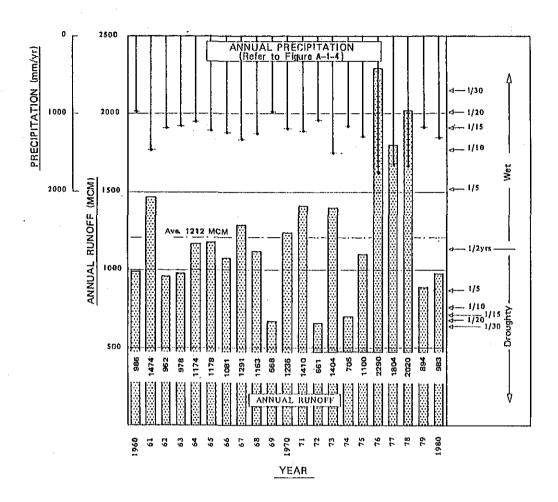
Wet/Droughty	The Year Equivalent to the Return Period 10 Ye	
Wet Year	1977	1976, 78
Normal Year	1968 (note:	Return Period 2 years)
Drought Year	1974	1969, 72

 River	D.A. (sq.km)	Mean Annual Runoff (MCM)	Point
Dor Haro	517.7 778.0	155 327	Dw-1 Site Khanpur Station
Soan Sil	1,680.0 441.5	639 92	Rawalpindi Statión Total basin area at SL-1 (237.6 sq.km) and Shahpur dam (203.9 sq.km)
 Total	3,417.2	1,213	

Table A-2-8. The Synthetic Annual Runoff in the Study Area

·	Probab	le Annual Runof	f (MCM)
Return Period	Wet	<u>Normal</u>	Droughty
2 years		1,139	
5 "	1,515		869
10 "	1,767		759
15 "	1,911		711
20 "	2,011		682
30 "	2,153		646

Note) Drainage area has been considered at the potential water resources development sites.

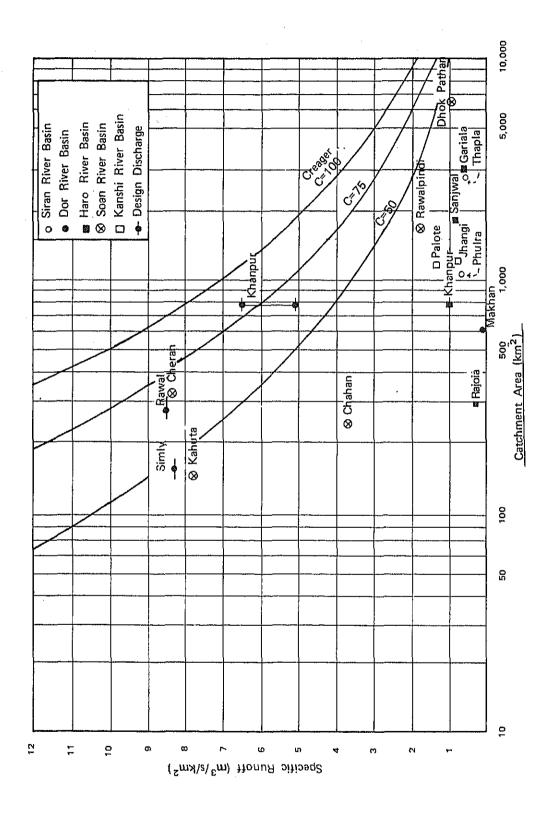

Figure A-2-8 shows a series of the synthetic annual runoff. The following facts can be recognized in this figure.

- Wet years continuing from 1976 to 1978.

- Drought years frequently occurring from 1969 to 1974.

Table A-2-9 Probability Analysis of Annual Runoff

X0= 1159.1201 B=-179.9468855 XX0= 2.981789698 XX2= 8.91886789 1/A= 2.41611E-01 DeTa DeTa 22296..343 22296..548 1467.5.984 1465..588 1465..588 1469..589 1178..1449 1178..1449 1178..1449 1178..1449 1178..1449 1178..1449 1178..1449 1178..1449 1178..1449 1178..1449 1178..1557 985.667 985.657 985.657 895.657 660.557 660.557 1138.883851 868.6180595 759.1642975 711.25145 682.8533895 646.861185 687.4884582 348515 764647 - 792271 885051 227475 534811 782897 PRBBL. AMOUNT Synthetic 1158.8 1515.2 1767.5 1918.7 2811.5 2152.7 2558.7 Runoff N THOMAS PLOT F=1-(1/(N+1)) 2 95.45 95.56 712.72 712.72 712.72 712.72 712.72 712.72 712.72 712.72 712.72 72.72 56.56 45.45 56.56 45.45 56.56 45.45 56.56 15.64 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 45.45 56.56 (Unit: MCM/yr) RETRN PERIOD UNEXCEEDANCE 99.0418 99.0418 99.054 84.654 84.654 86.1596 66.1596 66.1596 66.1596 49.1578 49.1578 49.1578 49.1578 44.1297 44.1297 44.1297 44.1297 44.1297 44.1297 251.478 21.155 21.157 46.54121835 14.67877916 1.792356828 5.238276822 5.238276822 1.92974E-81 47.3162442 52.91148755 26.76724614 24.88538064 22.29781521 28.1658722 17.84171496 47,5162442 66.88128914 78.85346461 84,67419692 89,67419692 89,26218659 95.62426654 183.5845654 PR3BL. AMOUNT Sil River Chahan N THOMAR PLOT F=1-(1/(M+1)) 2 95.45 95.45 95.45 95.45 95.45 71.127 71.127 71.127 71.127 71.127 71.127 71.127 72.155 55.64 55.64 55.55 54.55 55.64 55.64 55.64 55.64 55.64 55.65 UNEXCEEDANCE RETRN PERIOD 595.2885464 185.958215 185.958215 2.849871854 8.148856214 2.881246-91 681.8855744 452.865526 568.2119518 528.8591759 588.1988567 285.465861 256.5552871 681.8855744 825.1826441 968.6124899 1848.27484 1185.59688 1186.458499 1275.889949 PR33L. AMOUNT Rawalpindi THDmas PL07 F=1-(1/(H+1)) 2 95.45 96.45 96.45 77.27 77 UNEXCEEDANCE ^{ល ហ} ឆ្នាំ ហ ឆ្នាំ ឆ្នាំ ឆ្នាំ RETRN PERIOD កំពុំតុំពុំតំពូ EXCEEDANCE X0= 66.95816511 5=-1.961652955 XX0= 1.811178455 XX2= 5.524875566 1/9= 5.85717E-81 66.78248859 44.54559134 36.17659478 32.62995532 38.51314646 27.9485477 25.25738931 66.78248559 198.3878697 124.4851668 138.6296364 148.7622885 165.2456664 181.3818864 PRBBL. AMDUNT Soan River 50. EXCEEDANCE 5. 16. 5. 16. 15. 138.6. 28. 148.761 58. 148.761 58. 163.2496 58. 15.2496 Kahuta 24 THOMAS PLOT 7=1-(1/(H+1)) x 95.45 95.45 95.45 72.13 UNEXCEEDANCE PERIOD RETRN 155.3164932 23.17731475 2.258938999 5.133368424 5.133368424 2.696655-81 157.9729688 182.8182266 86.8199531 78.55919954 64.88968634 57.88989615 58.35611579 157.9729688 258.952782 254.8160025 326.9789259 349.7806425 382.86425 382.86425 PRBEL. AMOUNT Cherah THOMAS PLOT F=1-(1/(++1)) 2 98:45 98:45 71:27 28:56 56:156:15 56:1 UNEXCEEDANCE RETRN PERIOD EXCEEDANCE 382.8719162 52.53816425 2.52878688 6.418968929 2.229635-61 585,2439182 216,3862344 179,5657676 163,3175498 163,3175498 153,5668932 151,72866653 127,72866655 565.2439182 425.9617716 585.5726966 549.996699 581.1848342 524.7941844 679.253548 PRBEL. AMOUNT Haro River Khanpur 58. 2.2.5 2.42. 18.585. 115.549. 26.551.118. 58.551.118. 58.551.118. 58.551.118. ~ THOMAS PLOT F=1-(1/(H+1)) , 96.45 96.45 96.45 96.25 58.56 XX Se = 1 XX Se = 1 XX S 1/85 ក់តំឡំឡំឡំឡំឡំ UNEXCEEDANCE RETRN PERIOD 248.365 248.365 248.365 244.555 264.578 128.581 178.581 178.547 145.56 145.56 145.56 145.56 145.56 145.56 145.56 145.56 145.56 145.56 145.56 112.556 112.556 1112.556 Kë= 154.7750001 3=-76.27280315 40= 1.850418671 42= 5.4614595 42= 0.28028751 147.1416623 124.5425877 115.7428928 111.9996584 111.9996584 186.7525138 186.96895 184.8481951 147.1416623 186.3229775 285.4577466 216.8565891 216.8565891 226.3856726 239.9185195 257.1611298 PREBL. AMOUNT Site River 22 THURAS PLOT F=L-CIT(6+11) 96.945 96.945 96.36 86.36 86.38 56.18 56 Dw-1 Dor XX0= XX2= 178= ម្មរក្ស ស្ត្រីស្ត្រីក្រុស្ត្រ ANCE EBANCE EXCE E B B S X B B RETRN PERIOD UNEXCEEDANCE


A.2.8. Floods

According to the flood records in the study area, high floods generally occur during the monsoon centering in August. The specific runoff of the maximum recorded flood reached 8.35 cu.m/sec/sq.km in the study area. This specific runoff is equivalent approximately to c = 75 in the Creager equation as seeing in Figure A-2-9. Table A-2-10 shows the maximum floods recorded at major gauging stations in the study area. Table A-2-10. The Maximum Recorded Floods in the Study Area

	Date	30 Jun. 77(1971-78)	2 Aug. ¹ 76(1971–78)	9 Aug. *71(1971–78)		2 Aug. ¹ 76(1971–77)	23 Jun. 71(1960-75)	2 Sep. 61(1960-75)	26 Aug.'70(1969-75)							31 Aug. ⁷ 70(1961-70)		20 Aug.'75(1960-75)	13 Aug.'70(1953-75)	30 Jul.'67(1964-75)	20 Aug. ¹ 75(1962–75)			8 Sep. 61(1960-70,72-73)	23 Jun. 71(1970-75)	11 Jul. ¹ 60(1960-67)
ľ	$(m^3/s/km^2)$			0.31		0.076	1.05	0.87	0.60							7.77		8.35	1.80	0.91	3.69		0.68	0.58	1.37	0.80
Discharge	(<u>n</u> /s)	41.8	16.1	90.2		46.0	816	1,566	1,838							1,127		2,724	3,030	5,919	889		722	1,609	1,521	957
	(cusecs)	1,477	570	3,186		1,624	28,800	55,300	64,900							39,800		96,200	107,000	209,000	31,400		25,500	56,800	53,700	33,800
D.A.	(sq.km)			292.3	357.5	605.9	778	1,800	3,056		45.4	29.7	272.0	321.1	558.8	145.0	126.4	326.3	1,684	6,475	240.9		1,057	2,797	1,111	1,197
	Station	* Kalapaní _*	Ilyasi,Masjid	Rajoia	Havelign	Makhan	Khanpur	Sanjwal	Gariala		Bari Kangran	Chhattar	Rawal Dam	Dok Khana	Lohi Bher	Kahuta _*	Chaniot	Cherah	Rawalpindi	Dhok Pathan	Chahan	Kas Papin	Phulra	Thapla	Palote	Jhangi
	River	Dor					Haro			Soan	Kurang)				Ling	Soan				Sil	Wadala Ka	Siran		Kanshi	

Note) *: daily discharge basis

FIGURE A-2-9 MAXIMUM RECORDED DISCHARGE AND ENVELOPE;

A--57

Table A-2-11 List of Drainage Area of Key Sites in the Study Area

List of Drainage Area of Key Sites in the Study Area

...

.

Dor River Basin		Haro River Basin			Sor	n River Basin							
	Drainage,	ABIO NIVEL BASIN	Drainage,	Kurang River		Soan River		Ling River		Jhelum River Ba		* * *	
Site	Area (km ²)	Site	Area (km ²)		Drainage ₂		Drainage,		Drainage	JHEIGH RIVEF BA	Drainage	Indus River	
N N 1			<u></u>	SILE	Area (km ²)	Site	<u>Area (km²)</u>	Site	Area (km ²)	Site	Area (km ²)	Site	Drainage
Harno Nala Kalapani S.G.S.		Samundar Katha H-8		Kurang River		Soan River		7.4				Dite	<u>Area (km²)</u>
Darkhan Katha		Nilan Nala	61.6	Bari Kangran S.G.S.	45.4	Chaniot S.G.S.	126.4	Ling River L-3		Jhelum River		Talbra Dam	168,350
Ilyasi Masjid S.G.S.		H-7		K-1	2.3	Simly Dam	152.8	Kahuta	115.3	Kohala S.G.S.	24,890		
Dor River		Haro River	56.7	К-2	137.0	Confluence to Khad Nala	174.8	L-2	145.0 240.3	Karot \$.G.S.	26,677		
D~8	51.6	H6	407.9	Chhattar S.G.S.	29.7	Khad Nala		L-1	285.0	Mangla Dam Jhelum Right Bank	33,333		
D-7	77.8	H-5	468.9	Bharakao	158.8	S-3	115.1	Confluence to Soan River	404.6	Total of Tributaries	1		
D-6	105.9	11-4	498.5	Shahdara	24.3	Confluence to Soan River	149.1		40410	TOTAL OF TELEDUCATIES	1,311		
D-5	113.6	Nilan Kas (Right)	430.3	Nurpur Rawal Dam	4.8	Soan River							
D-4	149.1	н-з	41.8	Rawal Dam S.G.S.	275.1	After Khad Nala	323.9						
D-3	158.6	H-2	49.7	Kawal Dam 5.0.5.	272.0(?)	8-2	324.6						
D-2	246.5	Nilan Kas (Left)		Dhok Khanna S.G.S.	300.0 321.1	Cherah S.G.S.	326.3						
D-1	292.3	н-1	41.3	Confluence to Gumreh Kas	326.9	S-1	341.1						
Rojoia S.G.S.	292.3	Confluence to Haro River	134.9	After Gumreh Kas	456.2	Confluence to Ling River After Ling River	451.7						
Havelian S.G.S. Dw-1	414.5	Haro River		Confluence to Malal Kas	467.7	Confluence to Kurang River	856.3						
Makhan S.G.S.	517.7 605.9	Khanpur Dam	778.0	After Malal Kas	555.4	After Kurang River	892.5 1,472.8						
to Tarbela Reservoir	608.1	Khanpur S.G.S.	778.0	Lohi Bher S.G.S.	558.8	Sw-1	1,472.8						
Lo satuela Reselvoit	000.1	Hw-2 Hw-1	800.7	Confluence to Soan River	580.3	Lai Nala	1,472.0						
		nw-1 Highway Bridge	817.3	Gumreh Kas		Confluence to Span River	211.2						
		Confluence with Jabbi Kas	910.9	Dhok Khanna 5.G.S.	125.0	Soan River							
		Confluence with Jablat Kas		Ge-2	125.0	After Lai Nala	1,684.0						
		Jhablat Kas	•	Confluence to Kurang River	129.3	Rawalpindi S.G.S.	1,684.0						
		Hassan Abdal S.G.S.	248.6	Malal Kas		Sil River (Upper)							
		Confluence to Haro River	240.0	N-1	82.8	SL-2	196.7						
-		Jw-1	244.9	Confluence to Kurang River	87.7	SL-1	237.6						
		Nandna Kaa				Chahan	241.0						
		Shapur Dam	203.9			Soan River							
		N-1	462.0			Dhok Pathan S.G.S. Makhad S.G.S.	6,475						
		Confluence to Naro River				to Indus River	10,749						
		Haro River				to thous kiver	11,228						
		Sanjwal S.G.S.	1,800										
		Confluence with Nandna Kas											
		Gariala S.G.S. to Indus River	3,056					Note) S.G.S. : Stream Gaugi	ing Station				
		CO THOUS KIVEL	3,095										

,

A.3. Runoff Analysis

A.3.1. Introduction

Runoff analysis has been made in order to estimate runoff at the prospective water resources development sites.

Taking into account the fact that design drought year is set in once in ten years, runoff analysis must be returned for at least 20 years. Observation period of runoff gauging differs by stations. Since fairly good rating daily basis data during the period from 1960 to 1980 are collected, runoff analysis can be returned for the period of 21 years from 1960 to 1980.

Considering the minimum regulated river flow to be released to maintain the rivers healthy and the water resources development by diversion dams, runoff analysis has been made basically in daily basis, but in 10 days' basis in some rivers.

Runoff analysis has been made by using the correlation analysis between gauging stations (10 days' basis), the tank model analysis (daily basis) and the conversion by catchment area ratio. Runoff analysis has been proceeded in three steps. In the first step, appropriate hydrological stations are selected taking their reliability into account, and in the second step the gauging records have been interpolated to prepare complete data for 21 years from 1960 to 1980 at Khanpur, Cherah, Kahuta and Chahan gauging station. However, interpolation of the data at Hassan Abdal gauging station was not able to be achieved due to no available daily rainfall record nearby this station. And, using complete data at gauging stations, runoff analysis has been made to estimate runoff at the prospective development sites in the third step.

A.3.2. Hydrological Data

Hydrological observation is conducted by WAPDA, the Irrigation Department and the Capital Development Authority (CDA) in the study area. Although the observation accuracy and period vary at the stream gauging stations, all of the rivers have or had been observed in the study area. All of these observation records have been obtained in this study, at 32 stations in the study rivers and 4 stations in the adjacent rivers. The WAPDA stations are observing not only water level and discharge but also suspended sediment and water quality.

The following table shows the summary of collected hydrological data;

		Sti	ıdy R:	lvers		Ad	acent	Rivers		
Observation Institute	Indus	Dor	Haro	Soan	Jhelum	<u>Total</u>	<u>Siran</u>	Kanshi	Total	Grand Total
WAPDA .	1	1	7	9	3	21	2	2	4	25
Irri.Dept(F))	4	-	-	-	4	-	-	-	4
"" " (P)	- (-	-	5	_	5	-	-	-	5
CDA	-	-	-	2		2	-			2
<u>Total</u>	<u>1</u>	5	<u>7</u>	16	<u>3</u>	<u>32</u>	2	2	4	<u>36</u>
Note:					ince, () e shown				5	

Table A-	3-1.	Stream	Gauging	Stations
----------	------	--------	---------	----------

A.3.3. Selection of the Appropriate Hydrological Stations

The data of WAPDA is judged to be most reliable among available hydrological data. WAPDA has set own criteria as shown in the table below for evaluating the accuracy of discharge measurement, and discharge measurement is evaluated at each WAPDA station every year.

Table A-3-2. Accuracy of Discharge	Measurement	bv	WAPDA
------------------------------------	-------------	----	-------

Accuracy Evaluation	Measurement Error
Excellent	Within <u>+</u> 2% + 2% - + 5%
Good Fair	+ 5% - + 8%
Poor	more than + 8%

Accuracy of discharge measurement is not known at other stations than WAPDA, because there is no such criterion as WAPDA at those stations. The accuracy is judged, however, to be fairly low, because of inexpedience in the measurement and no rating curves at those stations.

Consequently, this study is using only the data of WAPDA in hydrological study. Following are summary of evaluation of major hydrological stations concerned with the study.

(1) Indus River

Gauging station (Darband) WAPDA

- ^o Accuracy : Good (1960 Apr. 1974)
- ° Catchment area: 166,019 km²
- * Annual runoff : 77,219 MCM (runoff height 465 mm)

The amount of inflow to Talbera dam can be estimated by the above annual runoff. However, it must be considered that runoff from the Siran river and Dor river also flows into the Talbera.

(2) Jhelum River

Gauging station (Karot): WAPDA

- Accuracy : Fair (Apr. 1969 79)
- [°] Catchment area : 26,677 km²
- ° Annual runoff : 24,160 MCM (runoff height 906 mm)

Gauging station (Mangla) WAPDA

- ^o Accuracy : Good (1960 1980 no data in 1978)
- ' Catchment area : 33,411 km²
- ^o Annual runoff : not computed in the study

Mangla gauging station, located at just downstream of Mangla dam, has observed spill from the dam, so to speak, controlled runoff since 1967. Runoff at Karot and Kohala stations is fair enough in rating to be applied to the study. However, a care must be taken about the application of data because Karot gauging station at downstream observes less runoff than Kohala station at upstream.

(3) Dor River

Gauging station (Kala Pani) IRR (Frontier)

^o Accuracy : unknown (1971 - 1986)	
--	---	--

- ° Catchment area :
 - * Annual runoff : not computed in the study

11

This station, located in the Harno river which is a right bank branch of the Dor river, can not be applied to runoff analysis due to the fact that its location was not clear during the field survey.

 This station, located in the Dorkhan Khata which is a right bank branch of the Dor river, can not be applied to runoff analysis due to the same reason mentioned above.

This station is located at just downstream of D-1 site in the Dor river. No water use is observed in upstream. Daily basis hydrograph shows that recorded runoff does not correspond with rainfall and the hydrograph is unreliable shape. It must be considered that rating is poor because water level is converted to runoff by using Manning Formula. Therefore, the runoff data of this station can not be applied to runoff analysis.

Taking into account the advantage that this station is located at a gorge of the river where sediment deposit is less in the river bed, it is desirable to measure actual discharge by a current meter from now on.

Gauging	station (Haveli	an)	WAPDA
	-		unknown (Apr. 1970 - June. 1974)
0	Catchment area	:	414.5 km^2
o	Annual runoff	:	unknown because of few observation in a year

This station was set temporarily as a miscellaneous station, and made measurements seven or eight days a year, so that runoff data can not be applied to runoff analysis. These actual gauged data are considered to be fairly good in rating.

Gauging station (Makhan) IRR (Frontier)

- Accuracy : unknown (Apr. 1971 Nov. 1977)
- ° Catchment area : 605.9 km²
- ^o Annual runoff : 182 MCM (runoff height 300 mm)

Gauged data can not be applied to runoff analysis because of their poor rating. No flows are oftenly observed in May and June during irrigation period because irrigation water is taken at upstream. This data is fairly precious to know how the river is presently utilized.

(4) Haro River

Gauged data does not include the intake from the left bank, so that the data have been revised by adding the intake. The amount of this division was estimated in the previous study (Khanpur-Islamabad Conduction). The revised data is good enough to be applied to this study.

Gauging station (Sanjwal) WAPDA ^o Accuracy : Good (1969 - 1979) ^o Catchment area : 1,800 km² ^o Annual runoff : 546 MCM (runoff height 304 mm)

Gauging station (Gariala) WAPDA

Accuracy : Good (1969 - 1979)

- Catchment area : 3,056 km²
- Annual runoff : 737 MCM (runoff height 253 mm)

These two stations are located at upstream and at downstream of the junction of the Haro river and the Nandna Kas respectively. The gauged data are good enough for estimating the runoff of the Nandna Kas. Gauging station (Hassan Abdal) WAPDA

- Accuracy : Good (Sep. 1961 June 1965)
- ° Catchment area : 248.6 km²
- ° Annual runoff : 170 MCM (runoff height 686 mm)

This station was located in the Jhablat Kas running in the alluvial plain on the left bank of the Haro river and closed in 1965. Runoff height is much higher than that in other river basins because there are a lot of spring in the basin and a part of the basin is irrigated. The collected data does not make it clear whether those springs are brought by irrigation, but abundant groundwater is prospected judging from the fact that these springs have been reported since ancient time. River flow is so stable that some runoff have been utilized for irrigation (22 cusecs = $0.62 \text{ m}^3/\text{s}$ in observation period). The basin is so unique that the data can not be applied to other alluvial basins.

(5) Soan River

Gauging station (Chiniot) DHF (Punjab), CDA

Accuracy : unknown (Apr. 1963 - 1981)

- ° Catchment area : 126.4 km²
- ' Annual runoff : not computed in the study

Gauging station (Simly) CDA

o	Accuracy	:	unknown	(Apr.	1963		Sep.	1982)	
---	----------	---	---------	-------	------	--	------	-------	--

- Catchment area : 152.8 km²

Runoff height at the Simly station is so high that the runoff exceeds the rainfall studied on the Khanpur conduction F/S. The data are unapplicable for runoff analysis. Since runoff at Chiniot station (DHF) is not converted to discharge, those data are not applied to the study. CDA's runoff data are not applied to the study by the same reason as Simly Station. Gauging station (Cherah) WAPDA

- ° Accuracy : Good (Apr. 1960 1980)
- ° Catchment area : 326.3 km²
- ° Annual runoff : 175 MCM (runoff height 536 mm)

This data are good enough in rating and long enough in observation period for runoff analysis.

Gauging station (Rawalpindi) WAPDA

- Accuracy : Good (1960 1980)
- ° Catchment area : 1,684 km²
- ^o Annual runoff : 639 MCM (runoff height 379 mm)

This station is located at downstream of the junction of the Kurang river and the Ling river. The data are good enough in rating and long enough in observation period to make it possible to evaluate the out come of runoff from the Kurang, Soan and Ling rivers.

Gauging station (Dhok Pathan) WAPDA ° Accuracy : Fair Gauging station (Makhan) DHF (Punjab) ° Accuracy : unknown

(6) Kurang River, Gumreh Kas

Data gauged at six stations are so poor in rating and short in observation period that data are not applied to the study.

(7) Ling River

Rating is fair but observation period is not enough only about 10 years.

(8) Sil River

Gauging Station (Chahan) WAPDA

- ° Accuracy : Good (3 Mar. 1962 1980)
- ° Catchment area : 241.0 km²
- * Annual runoff : 52.0 MCM (runoff height 216 mm)

Data are good enough in rating, fairly long in gauging period, and are not affected by irrigation or intake. The data re considered to be applicable to rivers in the alluvial plain.

A.3.4. Runoff Analysis at the Gauging Stations

At the gauging stations where data are not available for long period and are considered to be applied to other river basins, runoff analysis has been returned by the tank model or the correlation from 1960 to 1980.

Daily rainfall data applicable for the tank model analysis are available only at the following six stations, so that the areal rainfall has been modified, referring to the isohyetal map when needed. Computed runoff can not be adjusted exactly to the observed runoff especially when flood, because the precise areal rainfall can not be computed by the data only at 6 stations.

Therefore, in due consideration that computed runoff is adjusted to the total amount of observed runoff in long term basis and to the observed recession, the structure of tank has been determined.

Rainfall Stations applied to the Tank Model

Rainfall stations where gauging period is long enough
 Kakul, Murree, Chaklala (1960 - 80)

 Rainfall stations where gauging period is not long enough Barkot (Oct. 1962 - 79) Kallar (Jul. 1960 - 80) Rawal Dam (1963 - 79)

Following Table A-3-3 showing the summary of result of runoff analysis at the gauging stations.

Table A-3-3. Runoff Analysis at the Gauging Stations (unit: mm)

			Analysis	by Ta nk	Model			
	Analized	Annual Average	Actual		Computed		Analysis by	
Station	Period	Areal Rainfall	Runoff	Runoff	Evapotrans.	Grand Water	Correlation	Interpolation
Khanpur	'63-'75	1,318	363 (0.275)	381 (0.289)	711 (0.540)	226 (0.171)		
Cherah	'63-'75	1,318	453 (0.344)	459 (0.348)	704 (0.534)	156 (0.118)	Rawalpindi Correlation Coefficient r = 0.887 Apr.1960-1980	by correlation JanMar. 1960)
Kahuta	'62-'70	1,258	391 (0.311)	401 (0,319)	714 (0.567)	143 (0.114)	Cherah Correlation Coefficient r = 0.911 Jul.1960-10	by correlation 1960-20 Jul. 1961 11 Jul. 1971-1980 Jul.'71)
Chahan	'63-'80	981	204 (0.208)	211 (0.215)	605 (0.617)	159 (0,162)	Jul, 1900-10	by tank model 1960-2 Mar. 1962

Remarks: () ratio to rainfall

Regression equations for estimating runoff at Cherah and Kahuta are as follows;

```
Cherah Station
Y = 0.2722X + 0.0106
```

where Y: 10 day runoff at Cherah Station (MCM) X: 10 day runoff at Rawalpindi (MCM)

Kahuta Station

Y = 0.4258X + 0.0008

where Y: 10 day runoff at Kahuta Station (MCM) Y: 10 day runoff at Cherah Station (MCM)

Structure of tank models is presented in Figure A-8-3-1 for Khanpur, in Figure A-8-3-2 for Cherah, in Figure A-8-3-3 for Kahuta and in Figure A-8-3-4 for Chahan. Sample output of each tank model is shown in Figure A-8-3-5 to 9 to see applicability of tank model for the study. Although applicability is relatively low for estimating flood peak discharge, developed tank models are explaining the characteristics of river regime mentioned in Section A.2.4 and will be able to be applicable for estimating the water resouces on the whole.

As the result of above study, runoff coefficients are estimated approximately at 0.21 in the alluvial plain, at 0.28 in the Dor and the Haro river basins and at 0.31 to 0.34 in the Soan river basin. Groundwater recharge rate is lower in the Soan river basin as 0.11 to 0.12 to annual rainfall, and higher in the alluvial plain and the Dor and the Haro river basins as 0.16 to 0.17. These facts are expressed in Table A-3-3. From this table, it is also understood that evapotranspiration has large portion in hydrological balance in the area.

Appling above study, interpolation has been conducted to extend the runoff records at the gauging stations. These results are shown in Table A-8-3-11 to 13.

A.3.5. Runoff Analysis at the Prospective Development Sites

Considering the analogy of river basins, runoff at the prospective development sites has been computed with the interpolated gauging data by applying the catchment area ratio and the tank models developed at the gauging stations.

Runoff analysis of the Dor river basin has been made by applying the tank model at Khanpur station because the Dor river basin is similar to the Haro river basin on geology and morphology. The Soan river basin has been analyzed with the tank model developed at Cherah and Kahuta. The tributaries in the alluvial plain have been analyzed using the tank model developed at Chahan in the Sil river.

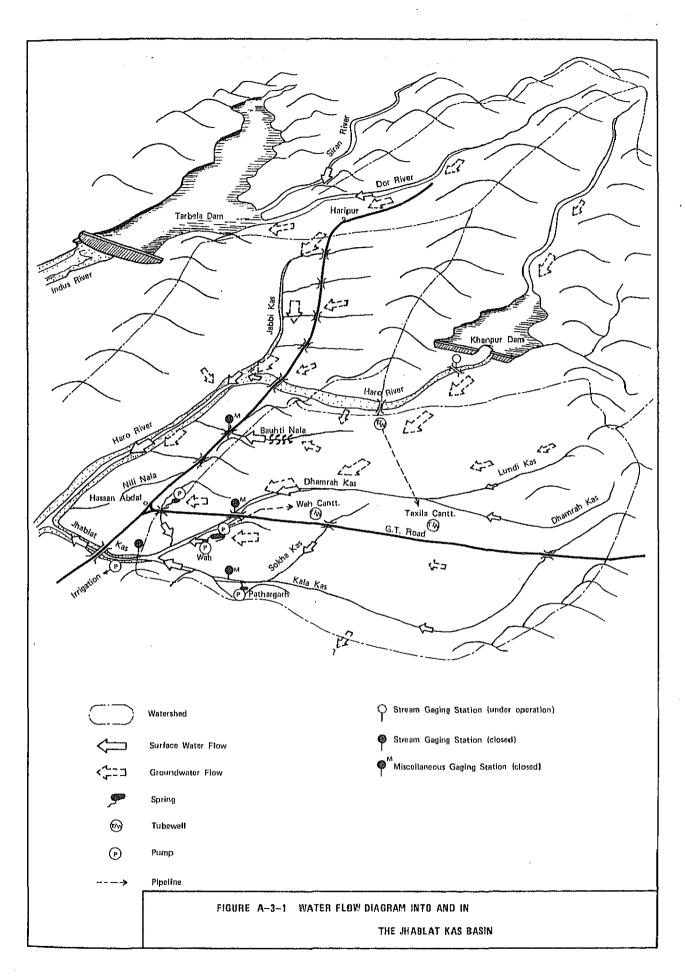
The results of above analysis are summarized in Table A-3-4. And, the derived runoffs are presented in Tables A-8-3-14 to 19. Table A-3-4. Runoff Analysis at the Prospective Development Sites

River	Develop- ment Site	Catchment Area	Runoff Analysis	Annual Runoff	Average Height
		(km ²)		(MCM)	(mm)
Dor	D-1 Dw-1	292.3 517.7	Tank model at Khanpur Station - ditto -	96.24 154.72	329 299
Haro	H-4	498.5	Multiplied Khanpur runoff by catchment area ratio	209.50	420
	Khanpur Dam	* 778.0	Applied Khanpur runoff	326.95	420
Nandna	Kas	st			
	Shahpur Dam	203.9	Multiplied Chahan runoff by catchment area ratio	42.54	209
	N-1	462.0	- ditto -	96.35	209
Soan	Simly Dam [*]	152.8	Multiplied Cherah runoff by catchment area ratio, and adding CDA intake after 1969 (Same procedure as Khanpur Conduction F/S)	83.45	546
	S-1	341.1	Multiplied Cherah runoff by catchment area ratio	182.85	536
	Sw-1	1,472.8	Multiplied Rawalpindi runoff by catchment area ratio	558.70	379
Kurang	KL-1	283.7**	Using three tank models at Khanpur, Cherah and Chahan, and applying C.A.4.0, 157.7, 122.0km ² considering geological formation.	102.66	362
Malal	Kae				
114.641	M-1	82.8	Applying tank model at Cherah and Kahuta	38.03	459
Ling	L-1	285.0	Multiplied Kahuta runoff by catchment area ratio, then adjusted the runoff by reduction of runoff coefficient estimated by tank model	107.10	376
Sil	SL-1	237.6	Multiplied Chahan runoff by catchment area ratio	49.57	209
Note *	Existi dam	ng Dam, **	excluding the catchment area	of the R	awal.

dam

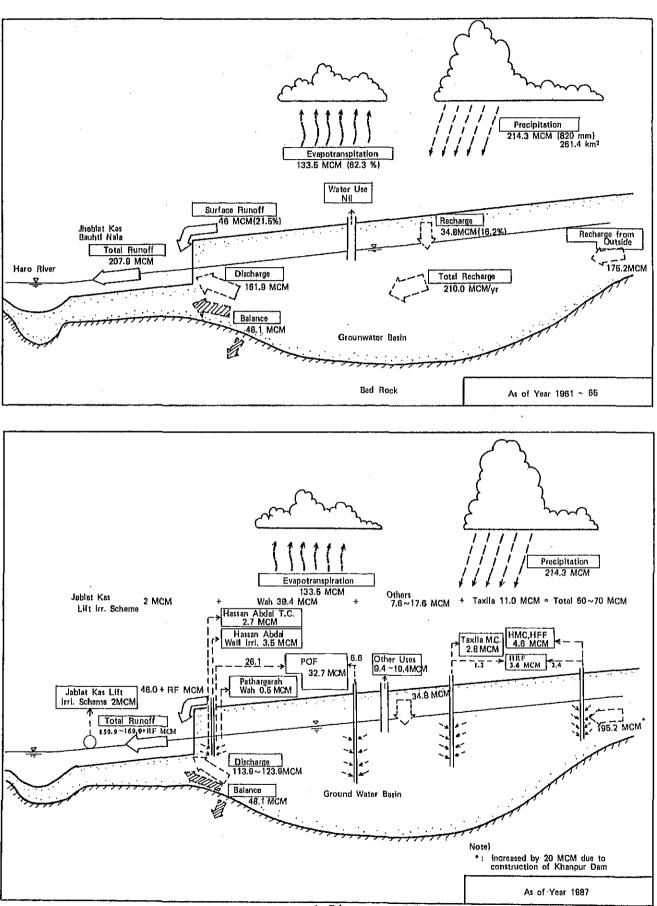
A.3.6. Water Balance in the Jhablat Kas Basin

As seeing hydrographs of the Jhablat Kas in Figures A-8-3-10(1) to 10(5), abundant steady baseflow is available through the year. Comparing with the discharge computed by the tank model developed at Chahan, baseflow of the Jhablat Kas is much higher than the computed discharge. This difference of discharge might be outflow of groundwater.


Using the discharge record at Hassan Abdal Station which was located at the lowermost of the Jhablat Kas and the observation of the Bauhti Nala by the study team, total runoff of both rivers is estimated at about 208 MCM in a year on average as of the years from 1961 to 1965. Out of total runoff of 208 MCM, 162 MCM was bone by outflow of groundwater.

Average Annual Runoff from the Jhablat Kas and the Bauthi Nala (as of 1961 - 65)

Jhablat Kas		(recorded from 1961 - 65)
Bauhti Nala	37.47 "	(1.12 m ³ /sec: observed Aug.1987)
Total	207.90 MCM/yr	
Nation and a second d		


Note: no particular water usage in the Bauhti Nala.

Taking above amount and the tank model results into consideration, hydrological water balance has been preliminarily analyzed for the said years and for the year of 1987. The results of this analysis are presented in Figure A-3-2. According to the results, groundwater recharge from out side of the basin was assumed at 175 MCM/yr in the years from 1961 to 1965, and at 195.2 MCM/yr at present increased by 20 MCM/yr after Khanpur dam construction. Figure A-3-1 shows the general view of flow diagram in surrounding areas.

.

FIGURE A-3-2 PRELIMINARY STUDY ON HYDROLOGICAL WATER BALANCE IN THE JHABLAT KAS AND THE BAUHTI NALA BASINS

A.3.7. Base Flow in the Lower Reaches of the Kurang River

As mentioned in Section A.2.4., steady and relatively good quantity of base flow is available in the lower reaches of the Kurang river. However, since appropriate observation record is not available in this river, exact amount of base flow is not known. Therefore, discharge observation was conducted by the study team to know the amount. Fortunately, monsoon reached the area very late, base flow was able to be observed in time. Results of the observation is shown in Figure A-3-3.

According to the observation, total base flow discharge was 1.13 m^3 /sec in the lower reaches after confluence of the Gumreh Kas. Below this site base flow does not increase so much, because base rock appears out in the river bed. Therefore, base flow can be assumed at about 1.0 m³/sec in the lower reaches of the Kurang river.

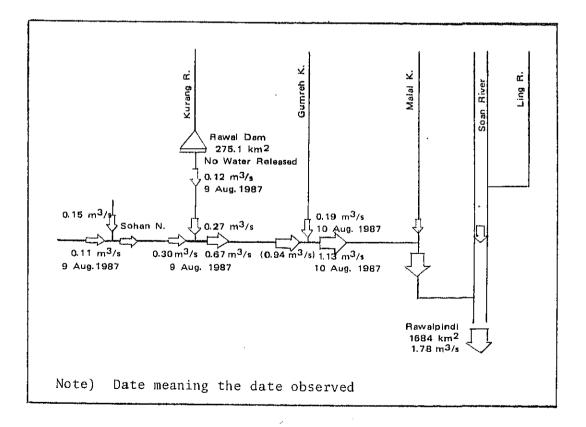


FIGURE A-3-3 BASE FLOW DIAGRAM IN THE LOWER REACHES OF THE KURANG RIVER

A.4.1. Introduction

From the view points of construction difficulty, socio economic, geography and hydrology, water resources Potential sites (27 dam sites, 4 diversion dam sites) are squeezed to several prospective water resources development sites. Available water resources are simulated at these prospective development sites. The prospective sites are finally squeezed to 9 sites of dams, 1 site for heightening the existing dam and 3 sites for diversion dams as shown in Table A-4-1.

Available water resources have been simulated in accordance with the size of dams or diversions to secure 1/10 years drought. Economically available water resources have been analyzed on the basis of unit water cost of the developed water resources in Chapter 7 in the Main Report.

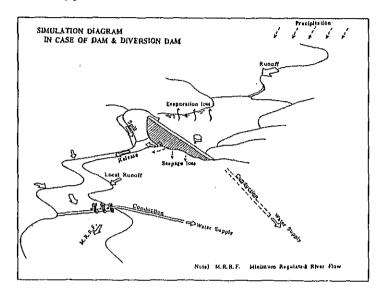

River	Points	Area	Туре
		(km ²)	
Dor River	D-1	292.3	Dam
•	Dw~1	517.7	Diversion Dam
Haro River	K-4	498.5	Dam
Jhablat Kas	Jw-1	244.9	Diversion Dam
Nandna Kas	N-1	462.0	Dam
	Shahpur	203.9	Heightening Existing Dam
Soan River	S-1	341.1	Dam
	Chaniot	126.4	Dam (Upper Simly)
	SW-1	1,472.8	Diversion Dam
Kurang River	KL-1	558.8	Dam
Malal Kas	M-1	82.8	Dam
Ling River	L1	285.0	Dam
Sil River	SL-1	237.6	Dam

Table A-4-1. Prospective Water Resources Development Sites

A.4.2. Simulation Scheme of Available Water Resources

Available water resources are simulated by computer on the basis of 10 days' runoff at each development site from 1960 to 1980. The results of simulation of each site including the Khanpur and the Simly dams are shown in Tables A-4-9 to 22.

Figure A-4-1. Typical Simulation Diagram for Water Balance

A.4.3. Simulation Premises

(1) Runoff

Runoff has been derived from runoff analysis, and 10 days' basis runoff for 21 years from 1960 to 1980 is applied to the simulation. Table A-8-3-14 to 19 show the monthly runoff data summarized from 10 day's basis data.

(2) Lake Evaporation Loss

Lake evaporation has been estimated at 80 percent of potential evapotranspiration at Chaklala, and water loss by lake evaporation is balance with precipitation at each development site. The values of lake evaporation loss are presented in Table A-4-2.

			Tat	Table A-4-2		Lake Evaporation	ration						
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua1
Potential Evapo- *1 transpiration (mm)	56	70	IIS	165	229	252	208	177	150	118	72	20	1,662
<u>N-1, SL-1, Shahpur</u> Precipitation ^{*2} (mm) Lake Evaporation	33.5	46.5	62.0	32.5	24.4	36.8	174.5	221.6	46.2	21.1	13.5	26.4	738.6
(mm) (mm/day)	22.5 0.73	23.5 0.84	53.0 1.71	132.5 4.42	204.6 6.60	215.2 7.17	33.5 1.08	0 0	103.8 3.46	96.9 3.13	58.5 1.95	23.6 0.76	
D-1, Khanpur, Chaniot, Simly, S-1, M-1, KL-1 Precipitation *3 (mm) 62.3 67.8 78.2	62.3	<u>, S-1, N</u> 67.8	<u>1-1, KL-</u> 78.2	.1, L-1 57.2	37.8	57,3	254.0	287.6	101.5	30.3	19.6	32.2	I,085.8
(mm) (mm/day)	0 0	2.2 0.08	36.8 1.19	107.8 3.59	191.2 6.17	194.7 6.49	0 0	0 0	48.5 1.62	87.7 2.83	52.4 1.75	17.7 0.57	739.0
Note) *1 Potential Evapotranspiration *2 Precipitation at Fateh Jang	Potential Evapotranspirat Precipitation at Fateh Ja	otranspi at Fateh		at Chaklala	lala								

A-78

*3 ... Precipitation at Chaklala

(3) Sediment

Sediment at each water resources development site is estimated on the basis of specific sediment and project life of dam (100 years). Only sediment discharge from direct catchment area is considered in the case that dam is located upstream.

Specific sediment in every river basis in estimated as follows.

Dor river basin	500 m ³ /km ² /year
Haro river basin	400 "
Soan river basin	900 "

Table A-4-3 shows the estimated sediment at proposed dam site considering above specific sediment and direct catchment area.

	Draina	ge Area	Unit	Sediment	·· <u>···································</u>
Reservoir	Total	Direct	Sediment Rate	in 100 Years	<u>Remarks</u>
	(km ²)	(km ²)	(m ³ /km ² /yr)	(MCM)	
D-1	292.3	292.3	500	14.62	
н-4	498.5	498.5	400	19,94	
N-1	462.0	258.1	400	10.32	Shahpur Dam: 203.9 km ²
S-1	341.1	188.3	900	16,95	Simly Dam: 152.9 km ²
M-1	82.8	82.8	900	7.45	
L-1	285.0	285.0	900	25.65	
SL-1	237.6	237.6	900	21.38	
KL-1	558.8	283.7	900	25,53	Rawal Dam: 275.1 km ²

Table A-4-3. Reservoir Sedimentation

(4) Seepage Loss

Seepage loss is composed of losses from reservoir bed and through dam body. This study, however, does not count such seepage loss in water balance, considering most of seepage loss to appear in downstream and to feed minimum regulated river flow to be released from the development sites.

(5) Minimum Regulated River Flow

Minimum regulated river flow is released from dam or diversion dam to ensure 355 days flow (droughty flow) for downstream water utilization or for maintaining rivers in healthy condition at the fixed gauging station. Minimum regulated river flow at each development site is shown in Table A-4-4.

(6) H-A, H-V Curve

H-A, H-V curves of proposed damsites are prepared by survey or using topographical maps of 1:50,000 scale.

Dead water level has been set to equal to sediment amount described in Table A-4-3.

<u></u>		Minimum R	egulated Ri	ver Flow		
	Drainage	Specific		Annual	Regulated	Regulated
Site	Area	Runoff	Discharge	<u>Release</u>	Site	Flow
	$({\rm km}^2) ({\rm m}^3)$	/sec/100km	²)(m ³ /sec)	(MCM)		(m ³ /sec)
Dor River						
<u>D-1</u>	292.3			-		
Dw-1	517.7	0.199	1.03	32.48	Dw-1	1.03
Haro River						
H-4	398.5	*** *				
Khanpur D		0.202	1.57	49.51	Khampur Da	m 1.57
Hw-2	800.7		2.27	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Nonlan Voo						
Nandna Kas Shahpur D	am 202 0					
N-1	462.0	0.0347	0.160	5.05	N-1	0.160
N-T	402.0	0.0347	0.100	2.02	M - T	0.100
Soan River						
Malal Kas					Rawalpindi	ŋ
M-1	82.8	0.106	0.0878	2.78	S.G.S.(168	4km ²) 1.78
Soan River						
Simly Dam		-		- 11.42	Rawalpindi	2
S-1	341.1	0.106	0.362	11.42	S.G.S.(168	4km ²) 1.78
					Rawalpindi	
Sw-1	1,472.8	0.106	1.561	49.23		4km^2) 1.78
Idaa Bdaraa					Rawalpindi	
Ling River L-l	285.0	0.106	0,302	9.52	S.G.S.(1684	$\frac{2}{1}$ 1 79
L-1 KL-1	283.7	0,067	0,302	6.00	5.6.5.(100	+KIII J 1.470
KL-1	203./	0,007	0.190	0.00		
Sil River						
SL-1	237.6	0.0347	0.0824	2.60	SL-1	0.0824

Table A-4-4. Minimum Regulated River Flo	Table A-4-4	. Minimum	Regulated	River	Flow
--	-------------	-----------	-----------	-------	------

.

(7) Initial Storage Capacity

Simulation of water balance has been made from January 1960 to December 1980. Average storage capacity in the end of December from 1960 to 1980 is considered to be initial storage capacity in January 1960. Initial storage capacity is at about 70 percent of effective storage capacity in case that effective storage capacity is small comparing annual runoff.

(8) Water Demand

For urban water the following monthly fluctuation of water demand is applied in water balance simulation. Peak water demand occurs in June and least water demand appears in January.

Monthly Fluctuation of Urban Water Demand

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Average 0.80 0.85 0.90 1.00 1.15 1.25 1.05 1.00 1.05 1.05 1.00 0.90 1.00

For irrigation water requirement, 10 days irrigation water requirement from 1960 to 1980 is used for the simulation.

Average irrigation water requirement per 1,000 ha from 1960 to 1980 is 6.158 MCM/yr as shown below. This table shows that peak irrigation water requirement to appear in June.

Monthly Fluctuation of Irrigation Water Requirement

Irrigation Water Requirement in MCM per 1,000 ha, 1960-80 Cropping Intensity 140%

<u>Jan.</u>	0.349	<u>May</u>	0.757	Sep.	0.474			
Feb.	0.401	Jun.	0.961	Oct.	0.478			
<u>Mar.</u>	0.570	Jul.	0.456	Nov.	0.477			
<u>Apr</u> .	0.611	Aug.	0,285	Dec.	0.330	Annual	6.158	MCM

(9) Safe Water Utilization Ratio

Safe water utilization ratio is to be designed to allow water shortage to occur once in 10 years. In the simulation of water balance, therefore, water shortage is allowed to occur twice in 21 years. Water shortages less than 5 percent of water demand are not considered as water shortage, because such minor water shortages are to be patient.

A.4.4. Development Potential of the Dor River Basin

(1) General

The Dor river is not yet fully developed, however some of its flow has been utilized by farmers for irrigation below Havelian. The irrigation area is estimated at 3,800 ha in this river basin. Therefore, a large amount of water resources remains for further water use in this basin and it will be able to be conducted to the metropolitan area through the Khanpur reservoir.

On above considerations, the D-l dam is proposed at Rajoia in upstream and the Dw-l diversion dam in downstream.

(2) Water Balance Simulation

Water balance has been simulated on various sizes of the D-1 dam to estimate the available water resources in the Dor river basin. The Figure A-4-3 shows the available water resources at the Dw-1 diversion damsite. Table A-4-9 shows the results of simulation on selected size of the D-1 at V= 60 MCM. Conduction capacity from the Dw-1 to the Khanpur reservoir is set at 5 m^3 /sec by the study on optimizing the conduction capacity. However it will be necessary to re-examine the conduction capacity in the feasibility study.

(3) Available Water Resources

From the results of water balance simulation in the Dor river basin shown in Figure A-4-3, water resources will be developed upto 109 MCM annually out of total runoff of 155 MCM at the Dw-1 diversion damsite when large storage capacity is given to the D-1. However, water resources will not increase so efficiently beyond 100 MCM/year. The optimum development size of the D-1 dam has been studied from a economic viewpoint of unit cost of water developed by the D-1 and the Dw-1. And the optimum water resources development has been finalized at 107.1 MCM in a year on average with the live storage capacity of 60 MCM (dam height H = 85 m) for the D-1 dam as shown in Figure VII-3-1 in the Main Report.

As extra water resources, some amount of water can be expected other than above. This extra water will be borne by flood water from the residual basin below the D-1 damsite, and it is estimated at 7.8 MCM/year in a year on average when conduction capacity is set at 5 m^3 /sec. However, for utilizing this extra water effectively, it is necessary to control this extra water in the Khanpur reservoir without spilling. This fact has been examined in a simulation combining the Dor river basin and the Haro river basin. However, none of the extra water will not be able to be controlled and utilized due to less capacity of the Khanpur reservoir and almost of the extra water will spill from the Khanpur dam.

Site	<u>D.A.</u> (km ²)	Average Annual <u>Runoff</u> (MCM)	Live Storage <u>Cap</u> . (MCM)	Annual Firm Water <u>Resources</u> (MCM)	Unit <u>Water Cost</u> (Rs/m ³)
D-1	292.3	96.2	60.0		,
Dw-1	517.7	154.7	0	107.1	0.60
Total	517.7	154.7	60.0	107.1	0.60

Table A-4-5. Available Water Resources in the Dor River Basin

A.4.5. Development Potential of the Haro River Basin

(1) General

The Haro river and its tributaries as the Jhablat Kas have been utilized for agriculture in a traditional way since ancient time because of relatively steady flow through a year. The large scale development of water resources in this basin, however, has been started recently by constructing the Khanpur dam in the Haro river and the Shahpur dam in the Nandna Kas. On the other hand, the Jhablat Kas is utilized by many agencies for domestic water and agricultural water taking water by pumps from the outflows of springs or from the Jhablat Kas. Total present utilization of surface water including the springs is estimated at 31 MCM/year or equivalent to 0.98 cu.m/sec (see Table D-4-3 of Appendix D) in the Jhablat Kas basin.

However, present water resources development does not yet reach to the full scale development in the Haro river basin, and the considerable large potential of water resources development still remains in this basin. For evaluating such potential, following four potential sites have been studied in this basin.

- H-4 dam: proposed at upstream of the Khanpur dam in the Haro river to control the spill of the Khanpur dam.
- N-1 dam: proposed at downstream of the Shahpur dam in the Nandna Kas, but canceled due to submergence of the irrigation area of the Shahpur dam.
- Shahpur dam heightening: proposed instead of the N-1 dam to utilize the runoff of the Nandna Kas fully.
- Jw-1 diversion dam: proposed at the lower reaches of the Jhablat Kas.

Other than above potential sites, the Khanpur reservoir will be linked with the Dor river to introduce water from the Dor river after completion of the D-1 dam and the Dw-1 diversion dam.

(2) Water Balance Simulation

Water balance simulation has been made in the following manner to estimate the available water resources in the Haro river basin.

a. Haro River Main Stream Development

Case 1(H) ... Khanpur dam only

This case has been made to examine the firm water resources developed by the Khanpur dam under prospective safe water utilization to allow water shortage once in ten years. The MRRF is also given to the Khanpur dam as same as in other cases below. The MRRF is estimated at 49.5 MCM/yr equivalent to 1.57 cu.m/sec. In this simulation, the firm water resources by the Khanpur dam is estimated at 158.8 MCM/yr out of the total runoff of 327 MCM/yr. The result of simulation is shown in Table A-4-10.

Case 2 (H) ... Khanpur dam + H-4 dam

In this case, the H-4 dam is proposed in upstream of the Khanpur dam to minimize the spill of the Khanpur dam. And available amount of water resources has been examined on various sizes of the H-4 dam. The water resources can be developed upto around 250 MCM/year in this case. However, annual water resources will not increase so efficiently beyond 230 MCM as shown in Figure A-4-4. From the study of water cost, the optimum size of the H-4 dam has been set at 125 MCM of live storage (H = 117.5 m) as shown in Figure A-4-2. In case of this size, total available water resources will be at 241.4 MCM in a year. The result of simulation is shown in Table A-4-11 for selected size.

A--86

Case 3 (H) ... Khanpur dam + H-4 dam + Dor Link

In this simulation, the Dor river has been linked with the Khanpur reservoir by the conduction from the Dw-1 diversion dam. The possibility of extra utilization of water of the Dor river has been examined in this simulation, but none of extra water will be utilized due to less capacity of the Khanpur reservoir as explained in A.4.4. The result of simulation is shown in Table A-4-12.

b. Nandna Kas Development

Case 1 (N) ... N-1 dam

The Nandna Kas is one of major left bank tributaries of the Haro river, which flows beside the Haro River Left Bank Command Area. The N-1 dam is proposed on the Nandna Kas below the Shahpur dam which was completed construction recently. Though the direct catchment area of the N-1 dam is reduced to 258.1 km² from 462 km² due to the Shahpur dam, the N-1 dam has still large catchment area for development and some of runoff to the Shahpur dam can be expected as spill from the Shahpur dam. However the N-1 dam has been canceled due to submergence of the irrigation area of the Shahpur dam.

The N-1 dam has been simulated under the condition of spill from the Shahpur dam. Spill of the Shahpur dam is simulated in the same manner as shown in Table A-4-13, and spill has been given to the N-1 dam as inflow combining with direct runoff into the N-1 dam. The MRRF has been given to the N-1 dam by 5.05 MCM/yr equivalent to 0.160 m^3/sec .

In simulation of the Shahpur dam, conditions on water demand and capacity of the Shahpur dam have been taken from PCI report of the Shahpur dam. Those conditions are summarized as follows;

Water Demand 10.67 MCM/year

 Irrigation Water 7.35 MCM/year
 (5,959 Aft/year for 4,308 acres)
 Domestic Water 3.32 MCM/year (2.0 MGD)

 Storage Capacity

 Full Water Capacity 17.66 MCM
 (14,320 Aft at 1,458.25 ft)
 Dead Water Capacity 12.63 MCM
 (10,241 Aft at 1,452.5 ft)
 Effective Capacity 5.03 MCM

Mean annual inflow is estimated at 20.6 MCM (16,700 Aft) at the Shahpur damsite in PCI report, however it seems too small in our study. Therefore, mean annual inflow is revised to 43.0 MCM averaged from 1960 to 1980 in this study and simulation of the Shahpur dam has been made using the revised inflow. According to the result of Shahpur dam simulation, water shortage will occur five times in 21 years equivalent to once in four years.

Under above conditions, water balance simulation of the N-1 dam has been made as shown in Table A-4-14 and its result is presented in Figure A-4-5. As seeing in the figure, the N-1 dam will be able to develop the available water resources ultimately upto about 67 MCM/yr which will be able to cover the irrigation area of 10,900 ha. However this amount of water resources can not be expected due to cancellation of the N-1 dam.

Case 2 (N) ... Shahpur Dam Hightening

Instead of the N-1 dam, heightening of the Shahpur dam has been considered to utilize water fully at the Shahpur dam site. In this case, modification of the Shahpur dam is considered as follows;

Shahpur Dam Modification

- (1) Lowering the DWL from 442.72 m (1,452.5 ft) to 440.44 m. Dead Water Capacity = 7.18 MCM
- (2) Raising the FWL from 444.47 m (1,458.25 ft) to 449.58 m. Full water capacity = 47.26 MCM
- (3) Effective Storage Capacity increased from 5.03 MCM to 40.08 MCM.
- (4) MRRF is newly given to the Shahpur dam by 2.24 MCM/yr equivalent to 0.071 cu.m/sec.

Under above conditions, available amount of water resources has been estimated at 27.92 MCM/yr by heightening the Shahpur dam as shown in Table A-4-15. However, net available amount is only at 17.25 MCM, because prospective water demand to the existing Shahpur is at 10.67 MCM/yr out of 27.92 MCM/yr.

c. Jhablat Kas Development

The Jw-1 diversion dam has been proposed at the lower reaches of the Jhablat Kas for producing the irrigation water for the Haro River Left Bank Command Area. Water balance simulation of the Jw-1 has been made using the runoff data only limited in a short period from September 1961 to July 1965 due to difficulty to extend the runoff data in hydrological analysis. However, in this period, considerable droughty year 1964 in the alluvial plain is included, accordingly this simulation will be acceptable to estimate the available amount of water resources in the Jhablat Kas. The year 1964 is estimated at the droughty year approximately once in 20 years by the record at Chaklala.

In simulation of the Jw-1 diversion dam, the existing water right has been estimated at 2.0 cu.m/sec including the MRRF at the Jw-1 sites.

POF (Operation Capacity)	1.00 cu.m/sec
Jhablat Kas Lift Irrigation	0.28 "
MRRF and Other Water Use	<u>0.72</u> " (22.7 MCM/yr)
Total Water Right	2.00 cu.m/sec

As the result of simulation, lifting capacity of pumps is set at 2.7 cu.m/sec at the Jw-1 site with providing the regulating ponds in the irrigation area of which total capacity is 8.0 MCM. The Jw-1 diversion dam will be able to produce irrigation water of 70.8 MCM in a year which will cover about 10,000 ha even in a droughty year once in 10 years.

(3) Available Water Resources

In the Haro river basin, total net water resources will be 170.65 MCM in a year by the development.

	Prospecti	ve Water I	Resources			Annual Av Water Res	
Site	D.A.	Ave. Annual <u>Runoff</u>	Live Storage Cap.	Annual Firm Water Resources	Unit Water Cost	Developed by Exist. Facil.	Net Production
	(km ²)	(MCH)	(MCM)	(MCM)	(Rs/m^3)	(MCM)	(MCM)
H4	498.5	209.5	125.0	82.6	1.54	-	82.6
Khanpur	778.0	327.0	112.9	158.8	-	158.8	-
Shahpur	203.9	42.5	5.03	10.67	۰ ۳	10.67	-
Heightening	203.9	42.5	40.0	17.25	0.27	-	17.25
N-1	462.0	84.3	105	60.0	1.66	-	~
Ju-1	248.6	170.4	0	70.8	0.77*	-	70.8
Total		_				169.47	170.65

Table A-4-6. Available Water Resources in the Haro River Basin

Note: * cost including the regulating Ponds. (see Table VII-3-6 in Main Report)

A.4.6. Development Potential of the Soan River Basin

(1) General

The Soan river is composed of three major rivers in upstream, one is main stream of the Soan river and others are the Kurang river and the Ling river which are tributaries of the Soan river. In these three rivers, the Soan and the Kurang rivers have been developed by the Simly dam and the Rawal dam respectively. On the other hand, the Ling river remains without any development on water resources. However, the Soan and the Kurang rivers are not yet reaching the ultimate development on water resources by said two dams. Furthermore, other tributaries like the Sil river still remains without development in the alluvial plain.

Considering above conditions, six dams and one diversion dam have been considered in this basin.

- Upper Simly dam: proposed at Chaniot in the Soan river at upstream of the Simly dam to minimize spill of the Simly dam and to increase the availability of water resources in the uppermost of the basin. However this dam is canceled due to extreme higher water cost than that by the S-1 dam (see Table D-3-4, Appendix D), and the S-1 dam will develop the water resources including these by the Upper Simly dam with cheaper water cost.
- S-1 dam: proposed in the Soan river at downstream of the Simly dam to develop the water resources in the residual area below the Simly dam and spill of it.
- M-1 dam: proposed in the Malal Kas which is a lower most tributary of the Kurang river, but canceled due to higher water cost than the KL-1 dam which is proposed at downstream of the M-1 dam and the dam construction is not feasible technically.

KL-1 dam: proposed at the most downstream of the Kurang river to develop the residual area below the Rawal dam.

L-1 dam: proposed in the Ling river

SL-1 dam: proposed in the Sil river

- Sw-1 diversion dam: proposed at just upstream of the GT road bridge in the Soan river, but canceled due to following reasons clarified by the hydrological study;
 - The Soan river is relatively unsteady in its flow for developing by diversion dam.
 - Almost of base flow at the Sw-l site is fed by the Kurang river, and this base flow will be developed in the Kurang river basin in future.
- (2) Water Balance Simulation

In the Soan river basin, water balance simulation has been made individually on each development site, and the results are shown in Tables A-4-16 to 22 and in Figure A-4-7 to 12. Following conditions are given to the simulation;

Development Site	Related Existing Structure	MRRF	D.A.	
		MCM/yr (cu.m/sec)	(km ²)	· · · · · · · · · · · · · · · · · · ·
Upper Simly dam	Simly Dam	-	126.4	MRRF is not considered for this dam.
Simly dam	-	-	152.8	Simulated under Second Phase Development
S-1 dam	Simly Dam	11.42 (0.362) ^{*1}	341.1	
M-1 dam	-	2.78 (0.088) ^{*1}	82.8	
KL-1 dam	Rawal Dam	6.00 (0.190) ^{*2}	283.7	Considering only the residual area below
				Rawal dam,
L-1 dam	-	9,52 (0,302) ^{*1}	285.0	
SL-1 dam		2.60 (0.082)	237.6	

Conditions on Simulation

Note: *1: To feed 1.78 cu.m/sec of flow at the Rawalpindi Station in accordance with the drainage area.

*2: This flow will be utilized by development of the Kurang river below Rawal dam.

In connection with simulation of the S-1 dam and the Upper Simly dam, the Simly dam has been also examined on its water resources availability and spill from the Simly dam, because spill from the Simly dam will flow into the S-1 reservoir. Water balance of the Simly dam has been examined under its second phase development which is under execution to increase water supply by raising storage water level. In second phase, it is proposed to increase water supply to 49 MGD, however, it is grasped in simulation that only 65 percent of 49 MGD (equivalent to 31.85 MGD = 52.8 MCM/yr) can be developed with safe water utilization ratio of once in 10 years in second phase development. The simulation of the S-1 dam has been made under water supply of 31.85 MGD by the Simly dam.

The Upper Simly dam has been analyzed in combined operation with the Simly dam. The effectiveness of the Upper Simly dam is to minimize spill of the Simly dam, accordingly the available amount of water resources of the Upper Simly dam is only the amount increase from 52.8 MCM/yr which is already developed by the Simly dam.

(3) Available Water Resources

Table A-4-7 shows the optimum development scale at each prospective site from a economic point of view taking unit water cost into consideration. The Upper Simly dam will produce the most expensive water and the M-1 will follow it in this basin. The water resources produced by these two dams can be also developed with lower cost by other dams such as the S-1 dam and the KL-1 dam in the lower reaches. Therefore, it is recommended to develop four dams, namely S-1, KL-1, L-1 and SL-1, and they will produce the available water resources of 203.8 MCM in a year in this basin.

Table A-4-7 Available Water Resources in the Soan River Basin

	Prospecti	ve Water 1	lesources			Annual Av Water Reg	
Site	<u>D.A.</u>	Ave. Annual <u>Runoff</u>	Live Storage Cap.	Firm Water <u>Resources</u>	Unit Water Cost	Developed by Exist. Facil.	Net Production
	(km ²)	(MCM)	(MCM)	(MCM)	(Rs/m ³)	(MCM)	(MCM)
Upper Simly	126.4	69.0	30.0	9.6	7.01	-	-
Simly dam	152.8	83.4	40.09	52.8	-	52.8	-
S-1 dam	341.1	130.9	66,0	60.0	0.43		60.0
M-1 dam	82.8	38.0	20.0	22.5	2.05	-	-
KL-1 dam	283.7	102.7	16.3	34.0	0.46	-	34.0
L-1 dam	285.0	107.1	91.0	69.8	1.55	-	69.8
SL-1 dam	237,6	50.1	62.0	40.0	0.51	-	40.0
Total	-					52.8	203.8

A.4.7. Comprehensive Evaluation of the Development Potential

Simulation on available water resources under respective safe water utilization ratio at the prospective development sites is summarized in Figure A-4-2. The figure shows the relation of the live storage capacity to the available water resources.

In the figure, setting the live storage capacity on abscissa and water resources on ordinate, the relation between available water resources and live storage is indicated on a curve connecting respective safe water utilization of 2 years shortage in 21 years from 1960 to 1980. Therefore this curve indicates the firm water resources under respective safe water utilization ratio. Within a range where curve has steep gradient, available water resources effectively increase with the size of storage capacity of dam, however, available water resources will not increase as much as storage capacity increases in a range with gentle gradient. The marked point on a curve means a point of the lowest unit water cost of developed water.

Table A-4-8 shows the potential development selected from a point of economic view. And, the table reveals the following facts.

- Total live storage capacity of dams (including Khanpur dam) will be 573 MCM, and, in this case, average utility ratio will be 1.89 to the total inflow 1,085 MCM.
- Total net available water resources is prospected at 482 MCM, and development ratio at 0.444 to the total inflow 1,085 MCM.
- 3. Total MRRF will be 133 MCM, which will be 12.3 percent of the total inflow 1,085 MCM.
- 4. The total of the net available water resources development and the MRRF will be 614 MCM, and that is 56.6 percent of the total inflow 1,085 MCM.

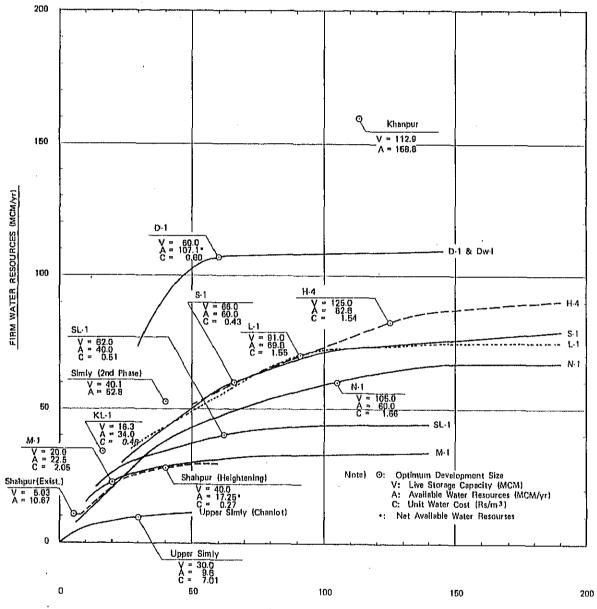


FIGURE A-4-2 RELATION BETWEEN THE FIRM WATER RESOURES AND THE SIZE OF LIVE STORAGE CAPACITY

SIZE OF LIVE STORAGE CAPACITY (MCM)

Years in Shortage	1966 , 7 0	1970, 75	1970, 75	1973, 75	1970,73,75	1970, 75 1970, 75 1962. 74 1962. 75 1962,70,74,75	1962,70,73,74,75
Spill (MCM/yr)	10.9 10.9	36.6 36.6	40.4	5.9	45.9 88.4	55.0 22.3 59.6 5.1 140.0	239.3
M.R.R.F. (NCM/YT)	32.5 32.5	49.5 49.5	49.5 49.5	2.2	22.7 74.4	11.4 9.5 2.5 2.6 2.5	152.7
Evp. Loss (MCM/yr)	9 . F	ני נו	5.3	6.6	- 11.9	4.5 5.5 6.8 2 <u>1.2</u>	34.7
Development Ratio (5)/(1)	0.692	0.253	0.434	0.406	0.415 0.316	0.458 0.652 0.531 0.798 0.521	0.444
(5) Net Water Resources Development (3) - (4) (MCM/YT)	1.701	82.6	189.7	17.25	70.8 <u>170.65</u>	60.0 69.8 54.0 40.0 203.8	481.55
<pre>{4) Water Resources developed by ExistingFacil. (MCM/yr)</pre>	000	0 158.8 158.8	0 158.8 158.8	10.67	31.0 <u>200.47</u>		200.47
(5) Potential Water <u>Resources</u> (MCM/yr)	107.1	241.4	348 . 5	27.92	101.80 371.12	60.0 69.8 34.0 40.0 203.8	682.02
Utility Ratio (1)/(2)	1.60 +	1.68 1.04 1.37	m/sec.) 1.68 2.02 1.84	1.06	-	1.98 1.18 6.50 0.81 <u>1.66</u>	1.89
(2) Live Storage (MCM)	60.0 0 60.0	125.0 112.9 237.9	ty 5.0 cu 125.0 112.9 237.9	40.0	0 277.9	66.0 91.0 16.3 62.0 235.3	573.2
(1) Ave. Annual Runoff <u>S</u> (MCM/yr)	96.2 58.5 154.7	209.5 117.5 327.0	n Capaci 209.5 228.2 437.2	42.5	170.4 559.9	150.9 107.1 102.7 50.1 50.8	1085.4
р.А. (km ²)	292.5 517.7 517.7	498.5 778.0 778.0	Conductio	203.9	248.6 1230.5	341.1 285.0 283.7 283.7 257.6 1147.4	2895.6
Development Site	Dor River D-1 Dw-1 Sub-Total	Haro River H-4 Khanpur Dam Total	Dor-Haro Link (Conduction Capacity 5.0 cu.m/sec.) H-4 209.5 125.0 1.68 Khanpur Dam 228.2 112.9 2.02 Total 457.2 257.9 1.84	Shahpur Dam	Jw-l Sub-Total	Soan River S-1 L-1 KL-1 SL-1 SL-1 Sub-Total	Total

Table A-4-8 Potential Water Resources in the Study Area

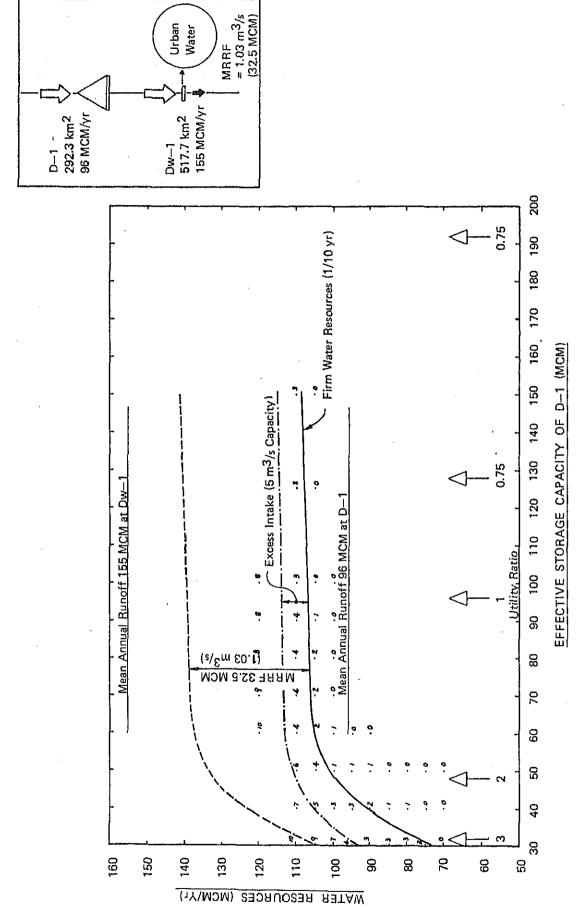


FIGURE A-4-3 WATER RESOURCES DEVELOPMENT OF DOR RIVER (D-1 & Dw-1)

VLeft B. Urban Wate Wah Texila Left B. (Exist) 210 MCM 327 MCM Khanpur 778 km² 49.5 MCM (1.57 m³/s) H-4 498.5 km² <u>6</u> MRRF Right Bank Firm Water Resources by Khanpur Dam & H-4 (1/10 yr) 300 ب m 0.75 Firm Water Resources only by Khanpur Dam (1/10 yr) Effective Storage Capacity of Khanpur Dam (112.94 MCM) 250 ŀ ņ EFFECTIVE STORAGE CAPACITY OF H-4 (MGM) Development only by Khanpur Dam ò *3 200 ņ ŗ ŗ Mean Annual Runoff at Khanpur 327 MCM ņ Utility Ratio маяе 49.5 мсм 150 Ņ 0 N 9 " 100 ņ က m 20 300 250 200 150 100 WATER RESOURCES (MCM/yr)

FIGURE A-4-4 WATER RESOURCES DEVELOPMENT OF HARO RIVER (KHANPUR DAM & H-4)

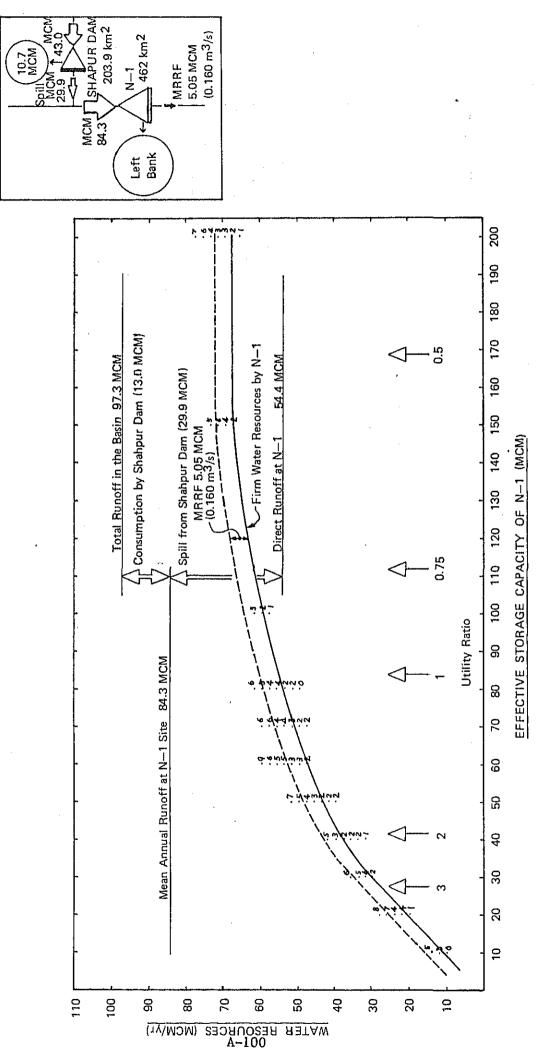
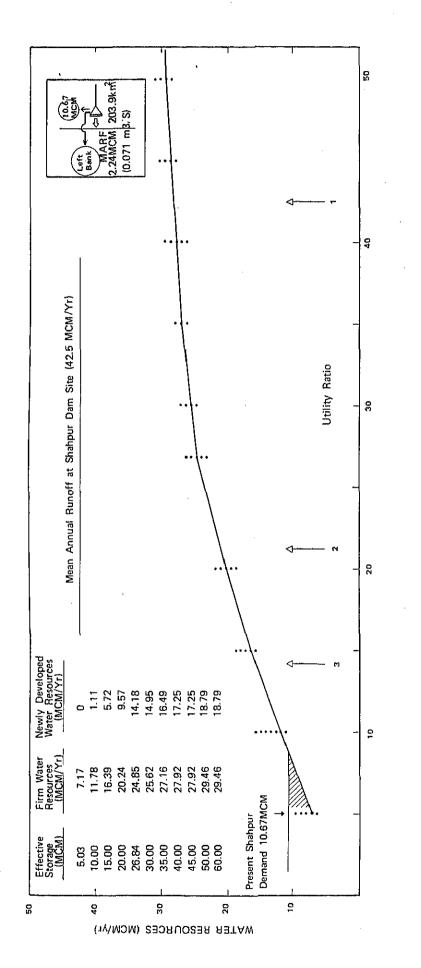



FIGURE A-4-5 WATER RESOURCES DEVELOPMENT OF NANDNA KAS (N-1)

(

FIGURE A-4-6 WATER RESOURCES DEVELOPMENT OF NANDNA KAS (SHAHPUR DAM)

EFFECTIVE STORAGE CAPACITY OF SHAHPUR DAM (MCM)

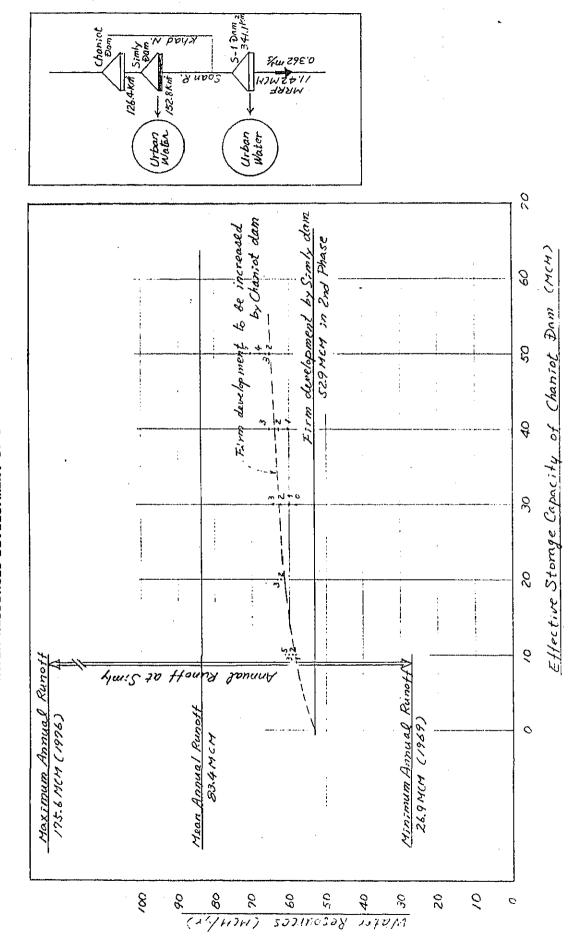
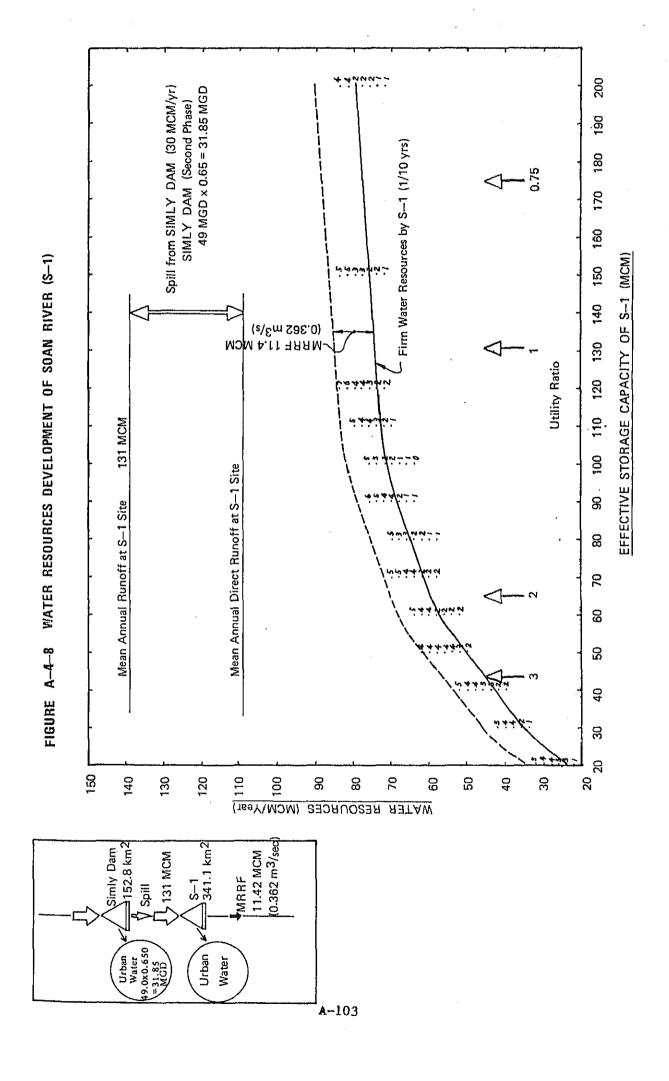
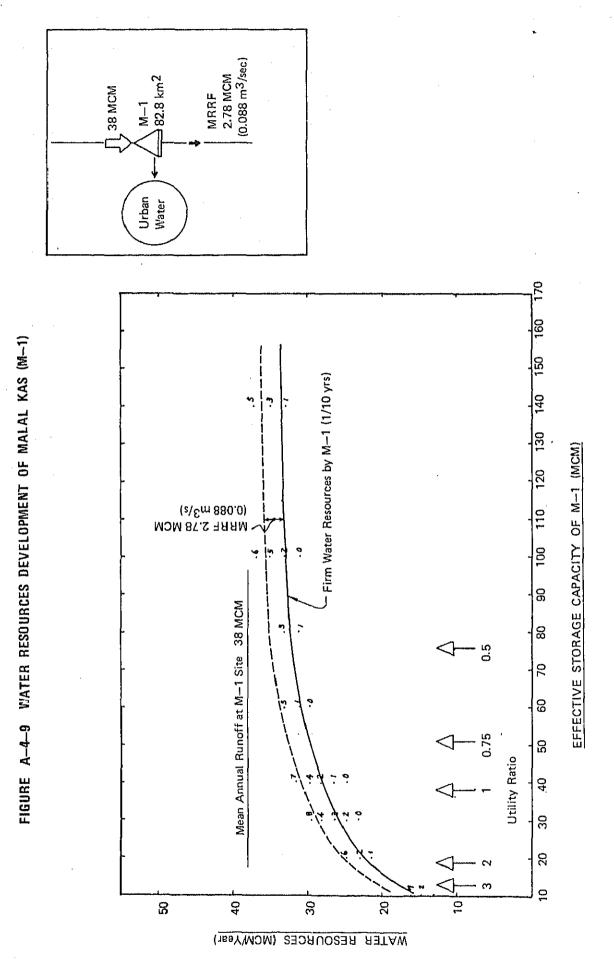
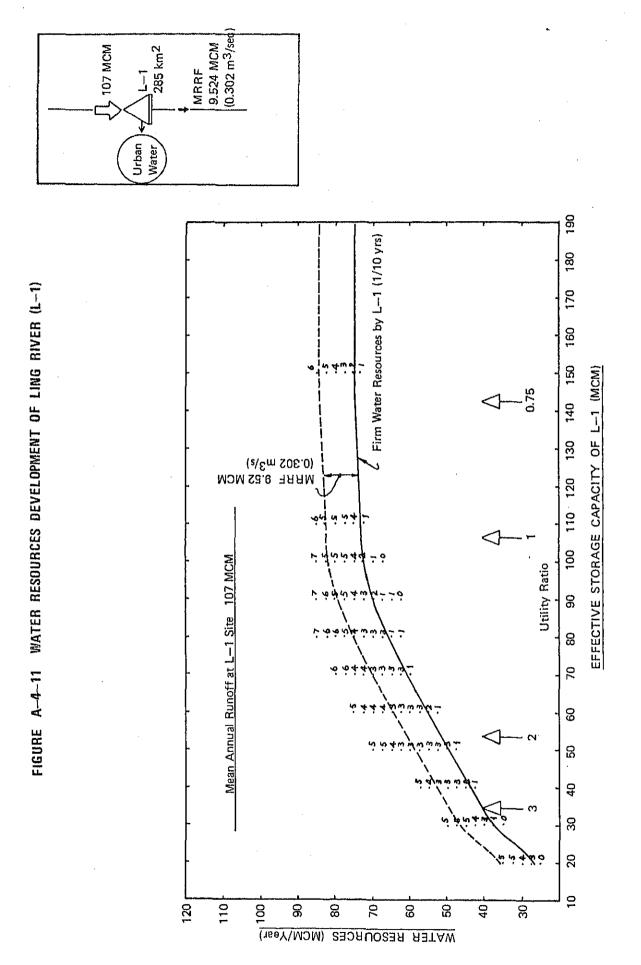
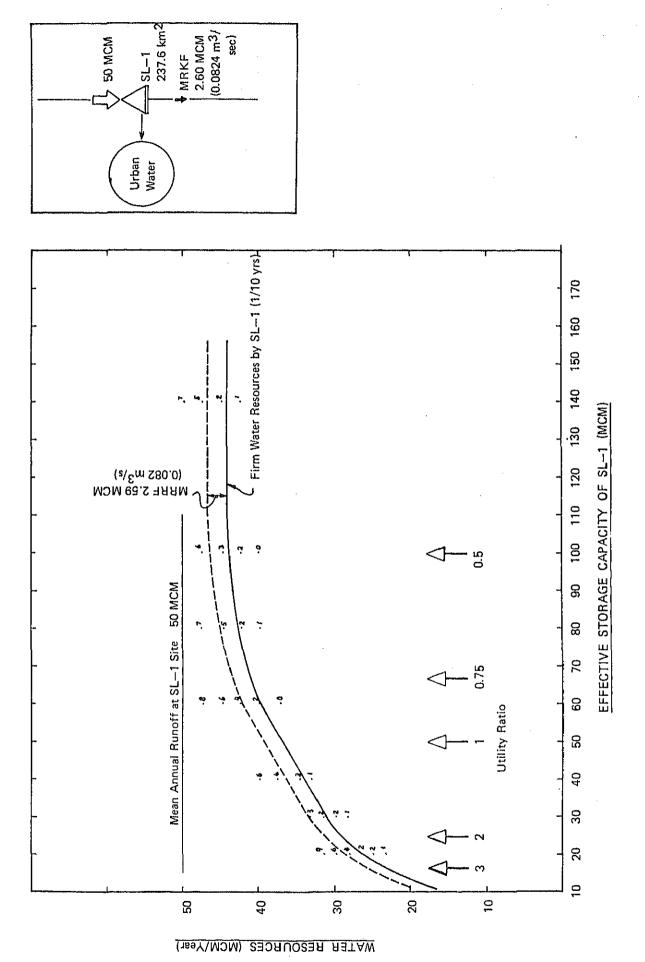




FIGURE A-4-7 WATER RESOURCES DEVELOPMENT OF CHANIOT (UPPER SIMLY)





	S					
5.						
	12 2 2	21 21 21 22 22 22 22 22 22 22 22 22 22 2		·····································		
<u> </u>	Z J J X	22 362 6	¥2			
- R	1 2 U U	344	4 0			
5	4 E 4	TAA AG	200			
<u> </u>	46-45					
× č		25				
Ś	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
	12	1 / 253				
		(233)				
		531				
						1-10
ı						N
5						
-						
6						
5	• • • • • • • • • • • • • • • • • • • •	i in series	ę			
	<u> </u>					
1		λ				
		~/~	(***********			
			X			
4			4 Annes			
2			$\overline{\mathbf{x}}$			
2		N N	A			
			to a cop-			<u> -e</u>
				λ		
			<u> </u>	- mpan-		
				\$ 6 6 kg	755 6	
- • •						- L
					·····	· · · · · · · · · · · · · · · · · · ·
!						
•						
					<u>, istor i si i</u> Statu Esta i	e -
	<u>C</u>		<u>ę</u>	<u>a</u>	6	
•	·		হলসমা	VER BED	1 1111 11 111 11	
1		111111				

A-105

.

4	SHORTGE	Current and the second
+	SPILL SPILL	11 - 62 - 60 - 60 - 60 - 60 - 60 - 60 - 60
4	STORAGE OF D-1	45. 503 45.
4	SP.LOSS S AT D-1	
	EVAPRTN : AT D-1	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
3	RELEASE AT D-1	A Construction of the second s
و الم	DEMAND TO D-1	97. MCM 97. MCM 97. MCM 97. MCM 92. 850 92. 850 95. 138 95. 175 95. 17
CASE =	RELEASE AT DU-1	332.562 332.562 332.562 332.562 332.562 332.562 332.562 332.562 332.562 332.562 332.562 332.562 332.562 332.562 332.562 332.562 332.662 <td< td=""></td<>
7	INTAKE SURPLUS (4)-(3)	7 75 4 2010 23880 000 2000 2000 2000 2000 2000 200
PERATION	INTAKE AT DW-1 (4)	(MCM) (M
0	TOTAL DEMAND	(MCM) 107.058 107.068 107.068 107.068 107.068 107.068 107.068 107.068 107.068 107.068 107.068 107.068 107.068 107.068 107.068 107.068 107.068 107.068 107.068
₩-1 RE:	TOTAL RUNOF	(MCM)
0F D-1.	F RUNOFF (2) (J
	D-1 RUNOF (1)	90. 23. 150. 252. 252. 252. 252. 252. 252. 252. 2
	PERIOD	* 1960 1963 1964 1965 1965 1965 1977 1977 1977 1977 1977 1977 1977 197

.

Table A-4-9 Water Balance Simulation of the Dor River Basin (D-1 & Dw-1)

.

200

***** SUMMARY OF SHORTAGE *****
5 % OF DEMAND (MCM) = 5.357
LESS THAN 5 % (YEAR) =
GREATER OR EOUAL TO 5 % (YEAR) =
TOTAL OF SHORTAGE (YEAR) =

ъ.

4

3	SHORT	(WCM)	000.000	000.0	.000	000.000		000-000-0	000.0	000.0	.875	000.0	. 000	.000	306	.149	.000	000-0	.000	000-0	.000		¥ 1 1
4	÷ ;	(MCM) (•	ч.						147 2	
	SPILL		201	-	***	Ý) (À	50	0		ŝ	17	-	23	Ť	Ŭ	380	5	36	ñ	č	116.1	
-	STORAGE	(WCM)	125.672	106.645	110.927	101.347	71 × 027	119.701	103.628	49.908	111.876	98.932	94.875	112.381	19.140	69.718	118.196	125.694	124.128	92.394	106.026	100.142	*
4	RELEASE S	(MCM)	255.230	65.274	65.792	89.010	247.41U	177.238	145.270	49.511	105.263	224.817	49-647	279.903	48.463	49.511	429.772	306.544	414.395	184.491	136.331	**	-*
3	SEEPAGE R LOSS	CWCM	000	0.00	0.000	0.000		00000	0.000	0.000	0.000	0.000	000 0.	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.00.0	• *
4	EVPO S LOSS		5.812	5.175	4.691	5.256	020 7	5.799	5.523	3.940	3.399	4.223	5.039	5.591	3.235	2.425	5.809	4.948	5.504	5.716	5.580	4.905	1*
2	TOTAL	(MCM)	149.113	159.209	159.150	176.029	122.024	155.991	151.837	164.434	156.168	167.356	152.738	156.626	178.692	165.423	145.328	165.260	151.076	154.397	149.033	158.787	+++++++++++++++++++++++++++++++++++++++
CASE =	TURE-	CMCM)		0.000	0.000	000-00		00000	0.000	0.000	000 0	000 0	000 0	000-0	000 0	0000 0	000 0	000 0	0000-0	0.000	000 0	* 000 0	****
_	D AGRICUL RIGHT	(MCM)	78.538	88.634	88.575	105.283	04.700 85 606	85.416	81.091	93.859	85.593	96.781	81.992	86.051	108.117	94.848	74.582	94.685	80.501	83.822	78.287	88.163	
PERATION	ER DEMANI IAL TAXILA		7.259	7.259	7.259	7.278	7.070	7.259	7.278		7.259				• •							7.264	
0	WATER -INDUSTRIA	CWCM)	8.089	8.089	8.089	8.111	0.00y	8.089	8.111	8.089	8.089	8.089	8.111	8.089	8.089	8.089	8.111	8.089	8.089	8.089	8.111	8.095	
R RESERVOIR	SUPPLY	(MCM)	37.424	37.424	37.424	37.511	27 1.21	37.424	37.511	37.424	37.424	37.424	37.511	37.424	37.424	37.424	37.511	37.424	37.424	37.424	37.511	37.449	
F KHANPU	-WATER SUI	(MCM)	17.803	17.803	17.803	17.845	202.11	17.803	17.845	17.803	17.803	17.803	17.845	17.803	17.803	17.803	17-845	17.803	17.803	17.803	17.845	17.815	*
SUMMARY OF KHANPUR	NFLOW	(MCM)	433.160	210.632	233.915	260.715	406-468	342.702	286.558	164.166	323.924	383.452	203.367	459.626	126.892	222.790	629.388	484.251	569.409	312.869	304.576	326.937	
S ,	PERIOD	2	1961																	1979	1980	MEAN	

Table A-4-10 Water Balance Simulation of the Khanpur Dam (Existing)

•

***** SUMMARY OF SHORTAGE *****
5 % OF DEMAND (MCM) = 7.939
LESS THAN 5 % (YEAR) =
GREATER OR EOUAL TO 5 % (YEAR) =
TOTAL OF SHORTAGE (YEAR) =

HNM

SUMMAR	Ξ		RVOIR	OPERATION	7 	CASE =	** ** 	*	*					*
	KHANPUR RUNOFF (2)	CONDU ION DI (3)	TOTAL WATER (1+2+3	TOTAL	RELEASE KHANPUR	DEMAND TO H-4	RELEASE AT H-4	EVAPRTN CTOTAL)	SP.LOSS KHANPUR	STORAGE KHANPUR	SPILL	STORAGE H-4	SPILL H-4	SHORTGE
(MCM)	(WCM)	** (MCM)	(MCM)	U U U	(MCM)	1 5	MCM)	(WCM)	(MCM)	1 2	(MCM)		ŝ	(MCM)
1960 159.638	8	0.000	249.145	248.37	49.647	53.430	+ 857	5.197	0,000	19.140	000-0	131.	26	0.000
1961 277.54	155	0.000	433.160	230.33	89.278	283	201	5.644	0.000	111.736	39.767	145	5	0.000
1962 134.96	22	0.000	210.632	241.79	49.511	ğ	2	6.362	0.000	4.	0.000	145	2	0.000
1963 149 88	210	0.000	233.915	241.72	49.511	5	064 1670	4.049 7 n/7		-1, ₹	000.0	3. 5	88	000-000
1964 16/.052 1965 257 855	2 95.665 5 144 575		200.429	201-02	44,04/	239,445	88	5.858	000	19-140	000		108.585	0-000 4.532
1966 167.70	6	0.000	261.737	238.4	49.511	834	610	4.308	0.000		0.000	113	76	0.000
1967 219.58	123	0.000	342.702	238.14	49.511	833	806	5.913	0.000		0.000	145.	74	000-0
1968 183.61	102	0.000	286.558	233.57	49.647	676	526	6.039	0.000		0.000	145	2	0.000
1969 105.18	о С	0.000	164.166	247.72	49.511	4 19	012	5.756	0000	19.140	0000		1.252	2.833
(9/U 20/ 3)			202.924	20.00	41.UYO			0.71C	•		2000 01	1 1 1 1 1	200	
972 130 30	jκ		203-367	234.593	10	3.722		5.753	0.000		0.000	1001	78.723	000.0
973 294 50	165	0.00	459.626	238.861	4	2.560	350	5.736				145.	790	0.000
974 81.30	40	0.000	126.892	263.917	•	803	298	4.430	•			27.	495	0.000
975 142.75	80	0.000	222.790	248.850	49.511		.720	2.716			•	Ч	0.000	82.187
976 403.27	226	0.000	629.388	226.180			.947	5.338	0.000		•	145.	. 909	0.000
977 310.28	173	0.000	484.251	248.666			138	6,733	0.000	114.261	163.982	•	198	0.000
	204		312 8409	252.52	527-585 120-786		201./01 107 786	(80. / 8733				145	10/.100	
980 195.15	6 109.421	0.00	304.576	230.387			.072	6.794	0.000	68.050	0.000	145.	.072	0.000
MEAN 209.484	-** 4 117.454	0.000	326.937	241.357	86.067	94.879	205.043	5.332	0.000	47.754	36.632	115.454	118.335	8.171 8.171
ŧ	t		4 4 4	とうざんらいと	0 F SF	***	•	ŧ				ŧ	L	•
				날았내	EV LAU (MCM-) S 1+8A 5 % AT FR CR EGU		68 (YEAR) 2 (YEAR)	C3 [7						
•			• .	5	ŝ	TAGE	[YEAR]	4					I	
•														

Table A-4-11 Water Balance Simulation of the Haro River Basin (Khanpur + H-4)

÷

: •

۹,

ł	GE *	M 1000000000000000000000000000000000000	* } }
ł	SHORTGE	*	;
	SPILL H-4	(MCM) (MCM) (157, 5837 151, 8777 0, 8072 0, 8022 0, 8022 110, 048 110, 048 111, 709 110, 438 124, 824 1361, 763 1361, 763 1361, 763 1361, 763 1361, 763 1361, 763 1361, 763 1361, 763 1361, 763 1361, 763 137, 138 137, 138 148 148 148 148 148 148 148 148 148 14	
	STORAGE H-4	MCM MCM 145.007 157.007 145.000 157.007 145.000 157.007 1445.000 157.007 1445.000 157.007 1445.000 157.007 1445.000 157.007 1445.000 157.007 1545.000 170.007 1545.000 170.007 155.000 170.007 155.000 170.007 155.000 170.007 155.000 170.007 155.000 170.007 165.000 170.007 175.000 170.007 165.000 170.007 165.000 170.007 165.000 170.007 165.000 170.007 165.000 170.007 175.000 170.007 165.000 170.007 175.000 170.007 175.000 170.007 175.000 170.007 175.000 170.007 175.000 <t< td=""><td>• •</td></t<>	• •
	SPILL S KHANPUR	(MCM) (MC	*
*	STORAGE KHANPUR	A Contraction of the second se	• •
*	SP.LOSS SKHANPUR K		
, , , ,	EVAPRTN STOTAL)	A 200 200 200 200 200 200 200 200 200 20	•
1	RELEASE AT H-4	MCM) (MC	•
CASE =	DEMAND TO H-4	MCm MCm MCm MCm MCm MCm MCm MCm	* •
+ 	RELEASE KHANPUR	(MCM) (MCM)	* · · · · · · · · · · · · · · · · · · ·
ERATION	TOTAL DEMAND	Cmcm Cmcm	**-
RVOIR OP	TOTAL WATER (1+2+3	(MCM) (MCM) 2545.166 2543.146 2543.146 2540.983 2540.983 2540.983 2511.129 2550.983 2511.129 2551.129 2551.129 2557.985 271.129 2577.985 271.129 2653.410 663.410 770.5000 770.50000 770.50000 770.50000 770.50000000000	401 - 120 +
ROS RESE		(MCM) (MCM)	TTC. FUL
<u>م</u>	KHANPUR CON RUNOFF ION (2)	(MCM) (MCM)	111.404
SUMMARY	H-4 RUNOFF (1)	(MCM) 45 (275) 45 (277) 45 (27	×+
	PERIOD	* 19865 19865 19865 19865 19865 19865 19865 19865 19865 19865 198755 19875 19875 19875 19875 19875 19875 19875 19875 19875	**

Table A-4-12 Water Balance Simulation of the Haro River Basin (Dor Link)

HNM

***** SUMMARY OF SHORTAGE *****
5 % OF DEMAND (MCM) = 17.425
LESS THAN 5 % (YEAR) =
GREATER OR EOUAL TO 5 % (YEAR) =
TOTAL OF SHORTAGE (YEAR) =

A-111

.

PERIOD INFLUE UATER DEMAND Contract LUSS LOSS LOSS <thl>LOSS <thl>LOSS <thl>LOSS<th></th><th>SUMMARY</th><th>SUMMARY OF SHAHPUR</th><th>R RESERVOIR</th><th></th><th>OPERATION</th><th>Ĵ</th><th>CASE =</th><th>; ;-1</th><th>4</th><th>÷</th><th>ł</th><th>÷</th><th></th><th>÷</th></thl></thl></thl>		SUMMARY	SUMMARY OF SHAHPUR	R RESERVOIR		OPERATION	Ĵ	CASE =	; ;-1	4	÷	ł	÷		÷
(mcn) (mcn) <th< td=""><td>PERIO</td><td>INFLOW</td><td>-WATER ISLAM</td><td>AL A</td><td> UATI </td><td>) I.CT</td><td>AGRICUL</td><td></td><td>TOTAL</td><td>и ,</td><td>EPAGE LOSS</td><td>¥ -</td><td>TORAGE</td><td>spill</td><td>SHORT</td></th<>	PERIO	INFLOW	-WATER ISLAM	AL A	UATI) I.CT	AGRICUL		TOTAL	и ,	EPAGE LOSS	¥ -	TORAGE	spill	SHORT
1960 18.399 0.000 5.328 0.000 5.760 15.515 5.760 1961 40.835 0.000 5.320 0.000 0.320 10.000 5.370 15.515 5.760 15.515 5.760 1965 40.835 0.000 5.320 0.000 0.320 0.000 15.727 71.791 15.772 71.791 1965 35.606 0.000 5.320 0.000 0.000 7.830 11.150 2.849 0.000 74.721 15.464 50.575 1965 353.051 0.000 5.320 0.000 0.000 7.830 11.150 2.849 0.000 15.727 7.173 1966 353.051 0.000 5.320 0.000 0.000 15.66 31.317 1966 46.754 0.000 5.754 11.671 2.857 0.000 2.747 31.317 1970 52.116 0.000 5.764 11.671 2.857 0.000 2.741 26.754<	* 	i –			(MCM)	(MCM)	(MCM)	(MCM)	ð	(MCM)	(MCM)	{	(MCM)	(MCM)	(WCM)
1961 40.833 0.000 5.720 0.000 5.730 17.431 25.939 17.431 25.793 17.431 25.793 17.431 25.793 17.431 25.731 71.791 1965 38.205 0.000 5.320 0.000 0.000 7.231 10.952 2.849 0.000 17.791 16.577 15.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 16.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.	1960	18.399		3.328	0.000	0.000	0.000	7.880	Ę	2.816	0.000		15.515	5.760	0.750
1962 84.224 0.000 5.320 0.000 7.323 10.643 2.849 0.000 71.791 16.572 71.791 1965 45.606 0.000 5.328 0.000 0.000 15.86 14.915 15.655 14.742 1965 45.640 0.000 5.328 0.000 0.000 5.325 14.694 50.255 14.915 15.655 13.917 1966 53.561 0.000 5.328 0.000 0.000 5.325 14.694 50.255 14.694 50.255 15.455 18.903 15.455 18.903 15.455 18.903 15.456 18.903 15.456 18.903 18.754 18.600 57.41 16.756 18.754 15.656 18.737 15.656 18.737 15.656 18.737 15.656 18.737 15.656 18.737 15.656 18.737 15.656 18.737 15.656 18.737 15.656 18.737 15.656 18.737 15.656 15.754 18.737 16.7	1961	40.833		3.320	0.000	0.000	000-0	6.780	5	2.878	0.000	N	17.431	25.939	0.000
1963 26.606 0.000 3.320 0.000 0.000 3.320 10.000 3.320 14.742 14.742 14.742 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 14.742 15.161 17.541 53.55 14.694 50.255 15.267 15.267 15.267 15.267 15.267 15.267 15.267 15.267 15.267 15.267 15.267 15.267 16.267 15.267	1962	84.224		3.320	0.000	0.000	0.000	7.323	<u>ц</u>	2.849	0.000	~	16.372	71.791	0.000
1964 26.556 0.000 5.328 0.000 5.328 14.915 15.686 14.915 15.686 14.915 15.686 14.915 15.686 14.915 15.686 14.915 15.686 14.915 15.686 14.915 15.686 14.915 15.686 31.317 17.640 31.317 17.541 30.2355 14.691 30.2355 14.691 30.2355 14.691 30.2355 14.691 30.2355 14.691 30.2355 14.691 30.2355 14.691 30.2355 14.691 30.2355 14.691 30.2355 14.691 30.2355 14.691 30.2355 14.691 30.2355 14.691 30.2355 14.691 30.2355 17.540 31.317 31.3	1963	26.606		3.320	0.000	0.000	0.000	7.830	÷.	2.630	0.000		16.161	14.742	1.846
1965 43.640 0.000 5.320 0.000 0.000 7.411 10.731 2.886 0.000 30.255 14.694 30.255 1966 35.3051 0.000 5.320 0.000 0.000 6.7207 10.577 2.881 0.000 31.517 17.660 31.317 1966 35.3051 0.000 5.320 0.000 0.000 6.7207 10.577 2.881 0.000 31.517 17.541 28.183 17.341 28.183 <t< td=""><td>1964</td><td>26.356</td><td></td><td>3.328</td><td>0.000</td><td>0.000</td><td>0,000</td><td>8.624</td><td></td><td>2.782</td><td>0.000</td><td>-</td><td>14.915</td><td>13.686</td><td>0.818</td></t<>	1964	26.356		3.328	0.000	0.000	0,000	8.624		2.782	0.000	-	14.915	13.686	0.818
33.051 0.000 3.320 0.000 0.000 0.000 5.887 10.527 2.881 0.000 31.317 17.660 31.317 40.750 0.000 3.322 0.000 0.000 6.774 10.571 2.854 0.000 31.317 17.660 31.317 41.075 0.000 3.322 0.000 0.000 6.774 10.571 2.854 0.000 27.708 16.990 27.708 41.077 2.857 0.000 3.322 0.000 0.000 8.197 11.691 2.851 0.000 27.708 16.217 39.960 27.708 41.877 0.000 3.322 0.000 0.000 8.197 11.516 2.851 0.000 27.708 16.217 39.960 27.708 40.877 0.000 3.322 0.000 0.000 8.197 11.516 2.857 0.000 27.708 26.277 2.323 46.754 15.108 27.728 16.297 2.323 16.297 2.323 16.297 2.323 16.297 2.323 16.297 2.323 16.297	1965	43.640		3.320	0.00	0.000	0.00	7.411	ខ្ព	2.896	0.000	ю	14.694	30.235	0.000
1967 46.587 0.000 5.322 0.000 51.317 17.660 31.317 1968 40.750 0.000 5.322 0.000 6.704 10.077 2.857 0.000 27.708 16.277 31.317 1969 41.750 0.000 5.322 0.000 0.000 0.000 6.774 10.277 2.857 0.000 27.708 16.217 39.960 1970 52116 0.000 5.322 0.000 0.000 0.000 6.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 15.108 26.754 16.297 2.323 16.297 2.323 16.297 2.323 16.297 2.323 16.297 2.323 16.297 2.325 16.297 2.325 16.297	1966	33.051	0	3.320	0.000	0.000	0.000	7.207	ц.	2.881	000-0		15.435	18.903	0.000
1968 40.750 0.000 5.328 0.000 0.000 5.734 15.41 28.183 17.341 28.183 1970 52.1116 0.000 5.320 0.000 0.000 8.751 11.691 2.851 0.000 27.708 16.217 39.960 27.708 16.217 39.960 27.708 16.217 39.960 27.708 16.217 39.960 27.708 16.217 39.960 27.708 16.217 39.960 27.708 16.217 39.960 27.708 16.217 39.960 27.708 16.217 39.960 27.708 16.217 39.950 27.708 16.217 39.950 27.708 16.217 39.950 27.708 16.217 39.950 27.708 16.217 39.950 17.714 14.779 26.754 17.714 14.779 26.7754 10.9755 14.749 10.9755 14.749 10.9755 14.749 10.9755 14.779 16.287 25.229 10.9755 14.779 16.777 14.779 26.177 14.779 26.177 14.779 26.177 14.779 26.1777 14.779 26.	1967	46.587	o	3.320	0.000	0.000	0.000	6.887	<u>р</u>	2.838	0.000	М	17.660	31.317	0.000
1969 41.900 0.000 3.320 0.000 0.000 5.778 10.077 2.857 0.000 27.708 16.990 27.708 1971 40.013 0.000 3.320 0.000 0.000 6.758 10.077 2.857 0.000 26.754 15.108 26.754 1972 16.877 0.000 3.320 0.000 0.000 6.632 9.952 2.855 0.000 26.754 15.108 26.754 1972 15.877 0.000 3.320 0.000 0.000 5.327 9.952 2.855 0.000 27.708 16.287 27.57 1974 21.560 0.000 3.320 0.000 0.000 8.810 12.150 2.857 10.77 2.857 16.280 37.37 1974 21.560 0.000 3.322 0.000 0.000 8.810 11.350 2.442 0.000 26.177 14.779 26.177 1975 52.425 0.000 3.328 0.000 5.277 9.555 2.847 0.000 26.972 47.780 16.992	1968	40.750	o	3.328	0.000	0.000	0.000	6.704	9 9	2.854	0.000	N	17.341	28.183	0000.0
1970 52.116 0.000 3.320 0.000 0.000 5.758 10.077 2.857 0.000 26.754 15.108 26.754 1971 40.013 0.000 3.320 0.000 0.000 0.000 7.182 10.509 2.857 0.000 26.754 15.108 26.754 1972 16.877 0.000 3.320 0.000 0.000 0.000 7.182 10.509 2.857 0.000 26.754 15.108 26.754 1973 49.876 0.000 3.320 0.000 0.000 0.000 0.000 56.52 9.952 2.875 0.000 26.754 17.793 26.754 1974 21.877 0.000 3.320 0.000 0.000 0.000 8.017 11.516 2.877 0.000 37.373 16.280 37.375 1976 62.425 0.000 3.3220 0.000 0.000 6.000 6.000 56.747 14.779 26.177 14.779 26.177 14.779 26.177 14.779 26.177 14.779 26.177 14.779 <t< td=""><td>1969</td><td>41.900</td><td>o</td><td>3.320</td><td>0.000</td><td>0.000</td><td>0.000</td><td>8.371</td><td>17</td><td>2.851</td><td>0.000</td><td>N</td><td>16.990</td><td>27.708</td><td>000-0</td></t<>	1969	41.900	o	3.320	0.000	0.000	0.000	8.371	17	2.851	0.000	N	16.990	27.708	000-0
1971 40.013 0.000 3.320 0.000 0.000 5.328 0.000 26.754 15.108 26.754 1972 16.877 0.000 3.320 0.000 0.000 7.182 10.509 2.850 0.000 37.373 16.287 2.329 1974 21.506 0.000 3.320 0.000 0.000 6.632 9.952 2.805 0.000 37.373 16.287 2.329 1974 21.506 0.000 3.320 0.000 0.000 0.000 8.017 11.392 2.442 0.000 37.373 16.280 37.373 1975 52.425 0.000 0.000 0.000 8.072 11.392 2.442 0.000 37.378 14.779 26.177 1976 52.425 0.000 3.000 0.000 6.027 11.392 2.447 0.000 16.992 47.780 1977 62.425 0.000 3.320 0.000 0.000 6.7491 10.793 14.779 26.177 1977 63.173 0.000 3.320 0.000	1970	52.116		3.320	0.000	0.000	0.000	6.758	្ព	2.852	0.00	М	16.217	39.960	0.000
1972 16.877 0.000 5.328 0.000 0.000 0.000 2.329 16.297 2.329 1975 49.876 0.000 5.320 0.000 0.000 5.537 16.280 37.373 1975 57.876 0.000 5.320 0.000 0.000 5.632 9.952 2.805 0.000 37.373 16.280 37.373 1975 57.877 0.000 5.320 0.000 0.000 8.810 12.130 2.295 0.000 37.373 16.280 37.373 1975 57.877 0.000 5.000 0.000 8.810 12.1392 2.442 0.000 26.177 14.779 26.177 1977 62.425 0.000 5.787 0.000 0.000 6.227 9.555 2.847 0.000 47.780 16.992 47.780 1977 62.425 0.000 5.787 10.811 2.847 0.000 47.780 16.992 47.780 1977 53.173 0.000 5.798 10.118 2.867 0.000 26.0771 17.7660 </td <td>1971</td> <td>40.013</td> <td>o</td> <td>3.320</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>8.197</td> <td>1</td> <td>2.851</td> <td>0.000</td> <td>N</td> <td>15.108</td> <td>26.754</td> <td>0.00</td>	1971	40.013	o	3.320	0.000	0.000	0.000	8.197	1	2.851	0.000	N	15.108	26.754	0.00
1973 49.876 0.000 3.320 0.000 0.000 37.373 16.280 37.373 1974 21.506 0.000 3.320 0.000 0.000 8.810 12.130 2.295 0.000 10.939 14.749 10.939 1975 37.877 0.000 3.320 0.000 0.000 8.810 12.130 2.295 0.000 10.939 14.749 10.939 1975 37.877 0.000 3.320 0.000 0.000 8.072 11.392 2.442 0.000 47.780 16.992 47.780 1977 62.425 0.000 3.320 0.000 0.000 6.227 9.555 2.877 0.000 47.780 16.992 47.780 1977 63.173 0.000 3.320 0.000 0.000 6.0381 12.137 0.000 47.780 16.992 47.780 1977 63.177 0.000 3.320 0.000 0.000 0.000 47.780 16.992 47.780 1978 71.377 0.000 3.320 0.0000 0.0000<	1972	16.877	0	3.328	0.000	0.000	0.000	7.182	5	2.850	0.000		16.297	2.329	0.000
1974 21.506 0.000 3.320 0.000 0.000 3.322 0.000 0.000 3.4.749 10.939 14.749 10.939 1975 37.877 0.000 3.320 0.000 0.000 0.000 8.072 11.392 2.442 0.000 26.177 14.779 26.177 1976 62.425 0.000 3.320 0.000 0.000 0.000 6.227 9.555 2.877 0.000 47.780 16.992 47.780 1977 63.173 0.000 3.320 0.000 0.000 0.000 6.227 9.555 2.877 0.000 47.780 16.992 47.780 1977 63.173 0.000 3.320 0.000 0.000 6.227 9.555 2.887 0.000 47.780 16.792 47.149 1978 71.377 0.000 3.320 0.000 0.000 6.788 10.118 2.862 0.00177 17.660 58.094 1979 33.912 0.000 3.3220 0.000 0.000 6.987 10.307 2.887 0.000 </td <td>1973</td> <td>49.876</td> <td>ò</td> <td>3.320</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>6.632</td> <td>¢.</td> <td>2.805</td> <td>000.0</td> <td>М</td> <td>16.280</td> <td>37.373</td> <td>0.238</td>	1973	49.876	ò	3.320	0.000	0.000	0.000	6.632	¢.	2.805	000.0	М	16.280	37.373	0.238
1975 37.877 0.000 3.320 0.000 0.000 0.000 2.442 0.000 26.177 14.779 26.177 1976 62.425 0.000 3.328 0.000 0.000 6.227 9.555 2.877 0.000 47.780 16.992 47.780 1977 63.173 0.000 3.328 0.000 0.000 6.227 9.555 2.877 0.000 47.780 16.992 47.780 1977 63.173 0.000 3.320 0.000 0.000 6.227 9.555 2.877 0.000 47.780 16.992 47.780 1978 71.377 0.000 3.320 0.000 0.000 6.788 10.118 2.862 0.000 58.094 17.660 58.071 1979 33.912 0.000 3.322 0.000 0.000 6.987 10.307 2.887 0.000 20.717 17.660 20.717 1979 35.912 0.000 3.322 0.000 0.000 6.987 10.507 2.887 0.000 20.717 17.660 20.717 <td>1974</td> <td>21.506</td> <td>0</td> <td>3.320</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>8.810</td> <td>ц Ц</td> <td>2.295</td> <td>0.000</td> <td>44</td> <td>14.749</td> <td>10.939</td> <td>2.758</td>	1974	21.506	0	3.320	0.000	0.000	0.000	8.810	ц Ц	2.295	0.000	44	14.749	10.939	2.758
1976 62.425 0.000 3.328 0.000 0.000 0.000 0.000 6.227 9.555 2.877 0.000 47.780 16.992 47.780 1977 63.173 0.000 3.320 0.000 0.000 0.000 7.491 10.811 2.847 0.000 49.149 17.558 49.149 1978 71.377 0.000 3.320 0.000 0.000 0.000 6.798 10.118 2.862 0.000 58.094 17.660 58.094 1979 33.912 0.000 3.322 0.000 0.000 0.000 6.987 10.307 2.887 0.000 20.717 17.660 20.717 1980 41.617 0.000 3.328 0.000 0.000 0.000 6.197 9.525 2.891 0.000 29.01 17.660 29.201 MEAN 42.529 0.000 3.322 0.000 0.000 0.000 7.351 10.673 2.797 0.000 29.368 16.346 29.368	1975	37.877	0	3.320	0.000	0.000	0.000	8.072	딉	2.442	000.0	2	14.779	26.177	2.443
1977 63.173 0.000 3.320 0.000 0.000 0.000 7.491 10.811 2.847 0.000 49.149 17.358 49.149 1978 71.377 0.000 3.320 0.000 0.000 0.000 6.798 10.118 2.862 0.000 58.094 17.660 58.094 1979 33.912 0.000 3.322 0.000 0.000 0.000 6.987 10.307 2.887 0.000 20.717 17.660 20.717 1980 41.617 0.000 3.328 0.000 0.000 0.000 6.197 9.525 2.891 0.000 29.201 17.660 29.201 MEAN 42.529 0.000 3.322 0.000 0.000 0.000 7.351 10.673 2.797 0.000 29.368 16.346 29.368	1976	62.425	0	3.328	0.000	0.000	0.000	6.227	<u>۰</u>	2.877	000.0	4	16.992	47.780	0.000
1978 71.377 0.000 3.320 0.000 0.000 0.000 6.798 10.118 2.862 0.000 58.094 17.660 58.094 1979 33.912 0.000 3.320 0.000 0.000 0.000 6.987 10.307 2.887 0.000 20.717 17.660 20.717 1980 41.617 0.000 3.328 0.000 0.000 0.000 6.197 9.525 2.891 0.000 29.201 17.660 29.201 ************************************	1977	63.173	0	3.320	0.000	0.000	0.000	7.491	ů.	2.847	0.000	4	17.358	49.149	0.000
1979 33.912 0.000 3.320 0.000 0.000 0.000 6.987 10.307 2.887 0.000 20.717 17.660 20.717 1980 41.617 0.000 3.328 0.000 0.000 0.000 6.197 9.525 2.891 0.000 29.201 17.660 29.201 ************************************	1978	71.377	0	3.320	0.000	0.000	0.000	6.798	; 0	2.862	0.000	S	17.660	58.094	000.0
1980 41.617 0.000 3.328 0.000 0.000 0.000 6.197 9.525 2.891 0.000 29.201 17.660 29.201 	1979	33.912	o.	3.320	0.000	0.000	0.000	6.987	ġ	2.887	0.000	2	17.660	20.717	0.000
	1980	41.617	0	3.328	0,000	000.0	0.000	6.197	\$	2.891	000-0		17.660	29.201	0.000
**	MEAN		0		0.00		0.000	7.351	10.673	2.797			16.346	29.368	0.422
	*	*	• * • • • • • • • • • •		******	·) *				- X	₩		*

20

	11	11		
	(YEAR)	CYEAR)	(YEAR)	
*** 0.534		EOUAL TO 5 %		
· #		Ē	щ	
AGE M)	N	OUAI	ORTAGE	
: SHORTAGE ***** ND (MCM) = 0.1	Ś		F SHO	
ND	THAN	R OR	ΟĿ	
RY OF DEMAN	⊢ ∽	GREATER	TOTAL OF	
MARY OF OF DEMA	LESS	GRE	101	
Σ				
* S <u>'</u>				

<u>ы</u>г. о

•

Table A-4-13 Water Balance Simulation of the Shahpur Dam (Existing)

4	SPILL SHORT	CMCM CMCM 0.000 0.000 0.000 56.110 4.917 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 22.583 0.000 0.000 0.000 0.000 0.000 17.058 0.000 0.000 5.644 0.000 0.000 17.058 0.000 0.000 13.354 0.000 0.000 11.57 0.000 0.000	-0/4 0.
-	STORAGE	C C C C C C C C C C C C C C C C C C C	•
3	RELEASE	MCM3 MCM3 MCM3 MCM3 MCM3 MCM3 MCM3 MCM3	- -
4	SEEPAGE LOSS	*£2000000000000000000000000000000000000	222.0
÷	EVPO LOSS	MCH 2000 Constraints of the constraint of the co	1.01
1	TOTAL	(MCH) (MCH)	00.00
CASE =	TURE- LEFT	MCM MCM MCM MCM MCM MCM MCM MCM MCM MCM	
	D	*£888888888888888888888888888888888888	0.000
RATION	ER DEMAN IAL TAXILA	÷ • • • • • • • • • • • • • • • • • • •	0.000
VOIR OPE	WAT -INDUSTR WAH	÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷	000.0
M RESERVOIR	SUPPLY		0.000
F N-1 DAM	-WATER SUI	<u> </u>	0.000
SUMMARY OF	INFLOW -	1 2	202.68
4	PERIO	* * *	NATE

ï

	000	
≭≭≭≭≭ SUMMARY OF SHORTAGE ≭≭≭≭≭ 5 % OF DEMAND (MCM) ≈ 3.000	LESS THAN GREATER O TOTAL OF	

Table A-4-14 Water Balance Simulation of the Nandna Kas (N-1)

) 	SHORT	**************************************
	SPILL	CMCM CMCM 33.1333 0.0000 0
	STORAGE	(MCM) (M
* 	RELEASE S	8 * 200 8 *
 } 	EPAGE	
	EVPO SE LOSS	C. 252 252 252 252 252 252 252 252 252 252
1	TOTAL	Constant of the second
CASE =		C. C
•	AGRICUL	
DPERATION	ER DEMANE IAL	
- 1	WATH WATH WAH	
RESERVOIR		
SUMMARY OF SHAHPUR	-WATER SUPPLY- ISLAMA RAWA	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
UMMARY O	INFLOW -	(MCM) (MCM)
3	PERIOD	* 1960 1961 1962 1963 1965 1965 1966 1976 1976 1977 1977 1977 1977 1977

Table A-4-15 Water Balance Simulation of the Shahpur Dam (Heightening)

٦,

***** SUMMARY OF SHORTAGE **** 5 % OF DEMAND (MCM) = 1.396 LESS THAN 5 % (YEAR) = GREATER OR EOUAL TO 5 % (YEAR) = TOTAL OF SHORTAGE (YEAR) =

¹⁰ m

•

+	*	SHORT	(WCM)	12.693	12.615	16.030	35.365	21.625	7.047	31.140	7.100	14.399	54.785	30.196	0.000	7.137	7.219	29.223	34.940	0.000	0.823	0.000	0.000	11.768	15.910	¥
.		SPILL	(MCM)	0.000	12.537	000.0	0.000	0.00	0.000	0000-0	0.000	0.000	0.000	38.539	41.779	0.000	000-0	0.000	43.783	88.856	70.391	70.480	19.375	0.000	18.368	-*
	• •	STORAGE	(MCM)	10.790	37.371	10.790	17.393	23.343	10.790	13.202	18.812	11.119	10.790	37.787	31.419	10.790	23.849	10.790	33.345	37.137	43.299	38.429	24.663	10.790	22.224	1 ₩
3	ł	RELEASE		0	12.	o	ਂ	o	o	0	ဝ	o	0	ŝ	41.	ਂ	0	ပ်	ţ.	88 .	5	202	5		18.368	-#
÷	6	SEEPAGE 1 LOSS	(MCM)	-	-	-	-		_	_			_	_	_	_	Ĩ	~	Ū	-	~	<u> </u>	<u> </u>	0	0.00.0	*
3	ŧ	EVPO : LOSS	(MCM)	0.947	0.905	0.827	0.662	0.778	0.999	0.750	0.966	0.795	0.627	0.854	1.114	0.880	0.962	0.708	0.847	1.407	1.029	1.216	1.365	0.758	0.924	- X
F1	4	TOTAL	(MCM)	81.528	81.339	81.339	81.339	81.528	81.339	81.339	81.339	81.528	81.339	81.339	81.339	81.528	81.339	81.339	81.339	81.528	81.339	81.339	81.339	81.528	81.393	- *
CASE =		.TURE- LEFT	(MCM)	0.000	000.0	000.0	000-0	000 0	000.0	0.000	0.000	0.000	000-0	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.000	0.000	000 0	0,000	-*
	Q	-AGRICUL RIGHT		<u>.</u>	o	0	o	o	ਂ	<u>.</u>	ਂ	റ	0	់	ပ်	ൎ	<u>.</u>	0	0	<u>.</u>	o	0	o	ਂ	000 0	-**
OPERATION	ER DEMAN	TAXILA	(MCM)	0,000	0.00	000.0	0.000	0000	000 0	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	* 000 ° 0	
	TAW				000-0	0.000	000-0	0.000	0.000	0.000	0.000	0.00	0.000	000.0	000.0	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.000	000 0	0.000	
AM RESERVOIR		SUPPLY IA RAWALP	2	0.000	•		•				•	•		0.00			•	•	•		•		•		-*-000°0	
IF SIMLYDAM		-WATER SU ISLAMA	(MCM)			٠	•	•	•		•		•				•							81.528	81.393	- #
SUMMARY .OF	+ + - - -	INFLOW -	(MCM)	41.722	108.746	39.556	53.355	66.662	62.738	53.362	80.814	60.230	26.852	117.538	117.864	54.642	88.141	39.765	113.584	175.583	158.098	148.165	88.313	56.645	83.446	- * - •
		PERIOD	4																					1980	**- MEAN	-**

Table A-4-16 (1) Water Balance Simulation of the Simly Dam (Second Phase) Demand = 49 MGD = 81 MCM/yr

1251

***** SUMMARY OF SHORTAGE *****
5 % OF DEMAND (MCM) = 4.070
LESS THAN 5 % (YEAR) =
GREATER OR EOUAL TO 5 % (YEAR) =
TOTAL OF SHORTAGE (YEAR) =

TOAUST AND
WATER INDUSTRIAN WAH TI
000.0
0.000 0.000 0
0.000
0.000
0.000
0.000
0.000
000"0
0000-0
0.000
0.000
0.000
0.000
0.000
0.000
0000.0
000-0
0.000
0.000
0.000 0.000

.

Table A-4-16 (2) Water Balance Simulation of the Simly Dam (Second Phase) Demand = 31.85 MGD = 52.8 MCM/yr

.

۰.

**** SUMMARY OF SHORTAGE *****
5 % OF DEMAND (MCM) = 2.645
 LESS THAN 5 % (YEAR) = 2
 GREATER OR EOUAL TO 5 % (YEAR) = 2
 TOTAL OF SHORTAGE (YEAR) = 4

ŧ

4	SHORTGE		r
4	SPILL SH	 ₩	ł
4		* * <td>ł</td>	ł
	STORAGE CHANIOT	0 8 4 4 8 6 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4	ł
	SPILL	C C C C C C C C C C C C C C C C C C C	
7	STORAGE SIMLY	Chine and Chine	•
•	SP.LOSS SIMLY		ł
\$	EVAPRTN (TOTAL)	M 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	÷
1	RELEASE AT AT CHANIOT	(MCA) (M	ł
CASE =	DEMAND TO CHANIOT	(MCM) 28.951 28.951 28.951 28.951 28.957 38.179 37.179 37.	ł
•	RELEASE	(MCM) (MCM) (MCM) (MCM) (MCM) (0.0000 0.000000	ł
ERATION	DEMAND	(MCM) (M	F
RVOIR OPE	TOTAL WATER (1+2+3	MCM) (MCM) 41.722 53.555 55.555 5	f
SUMMARY OF UP SIMLY RESERVOIR OPERATIO	CONDUCT ION (3)		E
OF UP SI	SIMLY RUNOFF (2)	(MCM) (MCM)	
SUMMARY	PERIOD CHANIOT RUNOFF (1)	MCM MCM MCM MCM MCM MCM MCM MCM	+
		MEAN ************************************	

Table A-4-17 Water Balance Simulation of the Chaniot (Upper Simly)

٠

•

***** SUMMARY OF SHORTAGE **** 5 % OF DEMAND (MCM) = 3.123 LESS THAN 5 % (YEAR) = 0 GREATER OR EQUAL TO 5 % (YEAR) = 2 TOTAL OF SHORTAGE (YEAR) = 2

ł	SHORT	C MCM C	¥
	SPILL	Chick	
ł	STORAGE	MCM MCM 772.0881 772.0881 772.088 773.088 641.150 641.150 651.155 775.884 707.094 662.749 662.749 662.749 707.886 662.749 707.886 662.749 707.886 662.749 707.886 707.694 707.	
4	RELEASE SI	Contraction (Contraction) (Con	****
4	EEPAGE LOSS	÷0000000000000000000000000000000000000	- X
1	EVPO S LOSS	A Construction of the second s	*
+ 	TOTAL	60.020000000000000000000000000000000000	-*
CASE =	TURE- LEFT		-*
	D -AGRICUL RIGHT	÷	**
RATION	ER DEMAN IAL	*	
VOIR OPE	WAT WAT WAH	* 5000000000000000000000000000000000000	****
M RESERVOIR	SUPPLY		
JF S-1 DAM	-WATER SU ISLAMA	MCm MCm MCm 80.041	-*
SUMMARY DF S-1	INFLOW -	(MCM) 51.415 171.385 65.759 65.771 84.795 84.795 87.584 87.584 87.584 87.584 116.086 87.584 87.559 116.086 1176.086 116.086 10	-*
•	PERIOD	**************************************	*******

. .

-

Table A-4-18 Water Balance Simulation of the Soan River (S-1)

***** SUMMARY OF SHORTAGE ***** 5 % OF DEMAND (MCM) = 3.004 LESS THAN 5 % (YEAR) = 1 GREATER OR EOUAL TO 5 % (YEAR) = 2 TOTAL OF SHORTAGE (YEAR) = 3

3	SHORT	÷000000	6000	0.000 0.0000 0.0000 0.0000 0.000000	0.373
3	SPILL	(MCM) 0.000 0.000 1.588 27.108 27.108 27.108 27.000 000	0.000 0.000 24.754 0.000	20.706 20.243 20.243 20.243 20.000 2.243 2	10.276
1	STORAGE	(MCM) 9.641 19.224 23.420 22.957 20.706	17.274 24.500 22.293 15.153	22.980 21.114 7.450 11.402 11.402 11.402 11.402 11.402 11.402 12.935 20.935 20.874 20.884 20.684 20.684 20.684 20.783	19.233
) 	RELEASE S	(MCM) 2.776 2.776 2.776 4.357 4.357 29.877 29.877 29.877 29.877 29.877	2.769 2.769 27.530 27.530	23.475 23.012 2.776 2.776 2.776 4.161 45.763 29.834 25.463 25.423 25.423 25.423 25.423 25.423 25.423 25.423 25.765 27.66	13.034
	SEEPAGE R LOSS		00000	00000000000000000000000000000000000000	0.000
*	EVPO S LOSS	(MCM) 1.366 1.427 1.415 1.619 1.927 927	1.570 1.656 1.914	1.699 1.699 1.699 1.699 1.699 1.699 1.699 1.699 1.570 1.570 1.570 1.570 1.570 1.570	1.609
1	TOTAL	(mCm) 23.710 23.655 23.655 23.655 23.710 23.710	23.655 23.655 23.710 23.655	23.655 23.755 23.7557 23.7557 23.7557 23.7557 23.7557 23.7557 23.7557 23.7557 23.7557 23.7557 23.75577 23.75577 23.7557777777777777777777777777777777777	23.670
CASE =	TURE-		000000		0.000
	D -AGRICUL RIGHT		000000		0.000
OPERATION	ER DEMAND IAL TAXILA		00000		0.00
- 1	WAT		00000		0.000
A RESERVOIR			00000		0.000
F M-1 DAM		(MGM) 23.710 23.655 23.655 23.655 23.710	23.655 23.655 23.710 23.655	23.655 23.755 23.7557 23.7557 23.7557 23.7557 23.7557 23.7557 23.7557 23.7557 23.7557 23.7557 23.75577 23.75577 23.7557777777777777777777777777777777777	23.670
SUMMARY OF M-1	INFLOW -	(MCM) 18.043 37.433 32.881 54.689 43.060	30.605 35.307 50.947 20.811	56.457 13.925 13.925 13.925 25.567 71.496 55.734 55.734 55.734 55.734 55.734 55.734 55.734 55.734 55.734	38.022
S ,	PERIOD	1960 1961 1962 1963 1964	1965 1967 1968 1968	1970 1971 1972 1975 1975 1977 1977 1977 1980	**

Table A-4-19 Water Balance Simulation of the Malal Kas (M-1)

.

***** SUMMARY OF SHORTAGE *****
5 % OF DEMAND (MCM) = 1.184
LESS THAN 5 % (YEAR) =
GREATER OR EOUAL TO 5 % (YEAR) =
TOTAL OF SHORTAGE (YEAR) =

MNIN

PERIOD INFLOW PERIOD INFLOW *													
1960 49- 1061 103	ISLAMA	UPPLY		DEMAN 	D -AGRICUL RIGHT	TURE- LEFT	TOTAL	EVPO SI LOSS	EEPAGE R Loss	ELEASE	STORAGE	SPILL	SHORT
960 49. 061 103	**	 	U U U U U U	ΙΣ	. 2	5	CMCMD	(MCM)	CMCMD	CMCMD	CMCM)	CMCMS	CMCMD
201 102	74 0.00	33.94	00-			- 00	3.94	n		6-29	3.08	.40	0
72 +22	22 0.00	33.86	00-		•	00-	3.86	5	•	2 - 49	68.	5.61	000-0
962 90.	34 0.0	33.86	0.000	0,000	0.000	0000-0	33.863	2.813	000-0	53.196	41.139	46.382	3.041
963 136.	80 0.00	33.86	00.			.00	3.86	Ř		3.41	- 20	6-60	1.765
964 102.	33 0.00	33.94	00-		•	00-	3-94	ŝ		1.38	3.71	67-7	0
965 62.	86 0.00	33.86	00-		•	00-	3.86	4	•	8.88	0.61	2.01	0
966 81.	73 0.00	33.86	00-		- 1	00-	3.86	5		1.29	3.65	4-41	0
967 99.	59 0.00	33.86	00-	- 4	•	00-	3.86	吕		4.16	1.76	7.29	0
968 135.	65 0.00	33.94	00-		•	00.	3-94	128		0.03	0.17	3.14	0
969 58.	19 0.00	33.86	00-			00-	3.86	4		3.87	7.31	66.	0
970 142.	00-00-00	33.86	00-		•	- 00	3.86	16		5.12	7.37	8.24	0
971 123.	02 0.00	33.86	00.			00.	3.86	2		9.71	4.59	- 84	0
72 4	85 0-00	33.94	00.			.00	3-94	8		0.19	- 76	. 29	\mathbf{c}
973 101.	80 0.00	33.86	00-			00-	3.86	10	•	7.38	4-62	-51	0
974 76.	75 0.00	33.86	00-		•	00-	3.86	8		7.88	2.59	1.53	-1
975 93.	15 0.00	33.86	00,		•	00.	3.86	뒶	•	7.06	4 - 12	0.35	Š
976 189.	57 0.00	33.94	00-		•	00-	3.94	<u>.</u>	•	1.23	5.24	.34	0
977 128.	00-0 77	33.86	00.			00-	3.86	H	•	8.73	8.16	1.86	0
978 166.	62 0.00	33.86	.00			0	3.86	Š	•	9.11	8.39	м	0
979 93.	96 0-00	33.86	00.			00	3.86	6		9.29	5.23	2-42	0
980 7	02 0.00	33.94	00-			8	3-94	2	•	2.14	5.2	5.25	0
MEAN 102.6	560 0-000	33.886	0.000	0.000	0.000	0.000.0		3.079	0000"0	66.330	35.781	59.488	0.598

,

Table A-4-20 Water Balance Simulation of the Kurang River (KL-1)

4 M 4

***** SUMMARY OF SHORTAGE **** 5 % OF DEMAND (MCM) = 1.694 LESS THAN 5 % (YEAR) = GREATER OR EOUAL TO 5 % (YEAR) = TOTAL OF SHORTAGE (YEAR) =

•

유럽

3 . 	AGE RELEASE STORAGE SPILL SHORT OSS	** ** <td< th=""><th>000 31.259 78.496 21.845 2.205</th></td<>	000 31.259 78.496 21.845 2.205
4	EVPO SEEPAGE LOSS LOSS		4.039 0.
1	T TOTAL		00 72.879
CASE	AGRICULTURE- RIGHT LEFI	500000000000000000000000000000000000000	0.000 0.000
OPERATION	TER DEMAND RIAL	* £ 200000000000000000000000000000000000	0.000
RESERVOIR OP	WA	90000000000000000000000000000000000000	0.0
	SUPPLY-		0.000
SUMMARY. OF L-1 DAM	-UATER	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 72-879
	INFLOW	* * * * * * * * * * * * * *	107.110
	PERIOD	* 19650 19650 19651 19651 19770 19772 19772 19772 19772 19773 19775 1977	MEAN

.

Table A-4-21 Water Balance Simulation of the Ling River (L-1)

•

***** SUMMARY OF SHORTAGE ***** 5 % OF DEMAND (MCM) = 3.644 LESS THAN 5 % (YEAR) = 1 GREATER OR EQUAL TO 5 % (YEAR) = 2 TOTAL OF SHORTAGE (YEAR) = 3

	SHORT	Current Constraints of the constraint of the con
	SPILL	MGM MGM MGM MGM MGM MGM MGM MGM
•	STORAGE	(MCM) 26,005 28,9839 28,9839 28,9839 28,9839 28,9839 28,996 28,1123 28,123 24,1
+	RELEASE	* 1,220 * 2,220 * 2,200 * 2,200 * 2,200 * 2,200 * 2,200 * 2,200 * 2,200 * 2
4	SEEPAGE R LOSS	
4	EVPO S LOSS	(MCM) (M
+ +	TOTAL	70.839 39.839 39.839 39.839 39.839 39.839 39.839 39.839 39.839 39.839 39.839 39.839 39.839 39.839 39.839 39.839 39.839 39.8339
CASE =	TURE	
	AGRICUL	
OPERATION	DEMAN	
	WATER WATER 	
AM RESERVOIR	1 1 1	
IF SL-1 D	-WATER SU	Current Curren
SUMMARY OF SL-1 DAM	INFLOW	MCM MCM MCM MCM MCM MCM MCM MCM
+	PERIOD	* 1960 1961 1962 1965 1965 1966 1977 1977 1977 1977 1978 1977 1978 1978

Table A-4-22 Water Balance Simulation of the Sil River (SL-1)

۰.

***** SUMMARY OF SHORTAGE *****
5 % OF DEMAND (MCM) = 1.993
LESS THAN 5 % (YEAR) = 2
GREATER OR EDUAL TO 5 % (YEAR) = 2
TOTAL OF SHORTAGE (YEAR) = 4

•

.