

REPUBLIC OF KENYA

MINISTRY OF TRANSPORT AND COMMUNICATIONS

THE NAIROBI BYPASS CONSTRUCTION PROJECT FEASIBILITY STUDY FINAL REPORT

VOLUME 1 (SUMMARY)

FEBRUARY 1988

JAPAN INTERNATIONAL COOPERATION AGENCY

REPUBLIC OF KENYA

MINISTRY OF TRANSPORT AND COMMUNICATIONS

THE NAIROBI BYPASS CONSTRUCTION PROJECT FEASIBILITY STUDY FINAL REPORT

VOLUME 1
(SUMMARY)

FEBRUARY 1988

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事	業団
党 入 '88.4. 7	407
月日 登録 15AC9	73.7
会就 17462 No.	SOF

PREFACE

It is with great pleasure that I present this Feasibility Study Report on the Nairobi Bypass Construction Project to the Government of the Republic of Kenya.

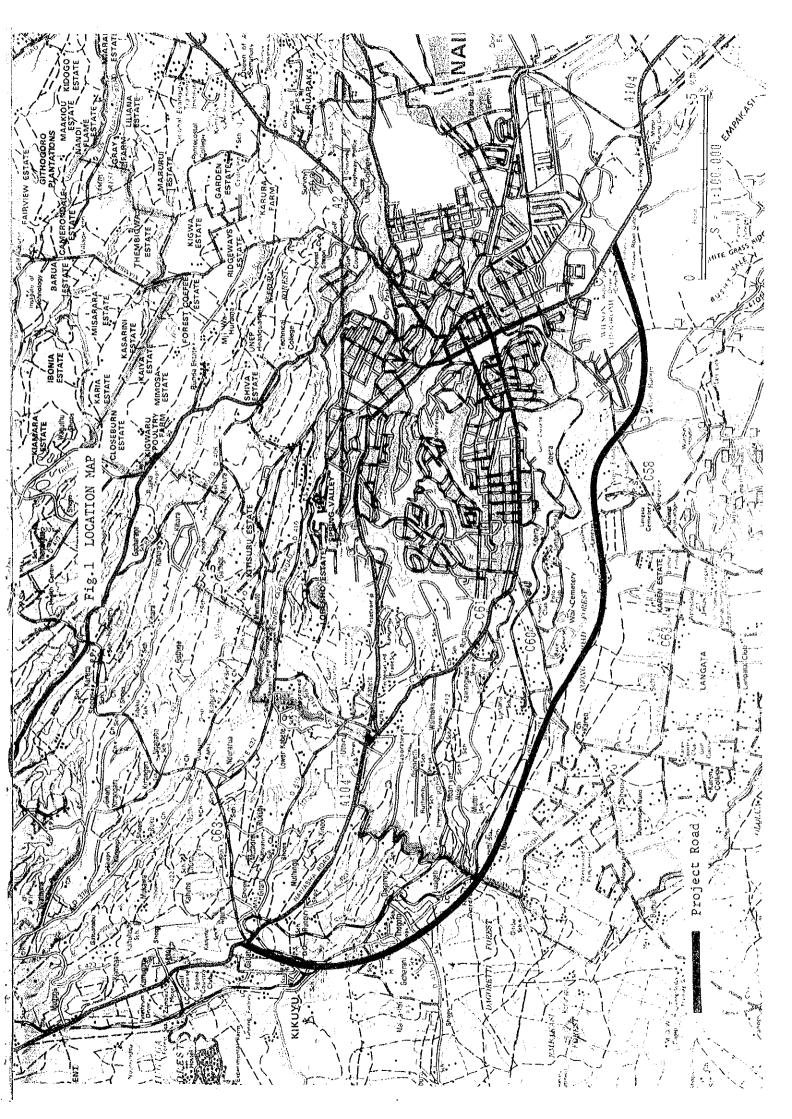
This report embodies the result of the study which was carried out from November, 1986 to November, 1987 by a Japanese study team commissioned by the Japan International Cooperation Agency following the request of the Government of Kenya to the Government of Japan.

The study team, headed by Mr. Hirokazu Itoh, comprising experts from Japan Engineering Consultants Co., Ltd. and Nippon Koei Co., Ltd., had a series of close discussions on the project with the officials concerned of the Government of Kenya and conducted a wide scope of field survey. After the team returned to Japan, further studies were made and the present report has been prepared.

I hope that this report will be useful as a basic reference for the development of the Project.

I wish to express my deep appreciation to the officials concerned of the Government of Republic of Kenya for their close cooperation extended to the team.

February, 1988


Kensuke Yanagiya

Kenenka Managina

President

Japan International Cooperation Agency

Currency Equivalents

Currency Unit = Kenyan shillings
US\$1.0 = Kshs 16.0 = \frac{\pmathbf{1}}{150.0} (August, 1987)

System of Weights and Measures: Metric

1 meter (m) = 3.28 feet (ft)

1 cubic meter $(m^3) = 35.29$ cubic feet (ft^3)

1 kilometer (km) = 0.62 mile

1 square kilometer (km^2) = 0.39 square miles

1 hectare (ha) = 2.47 acres

1 metric ton = 2,204 pounds (ℓ bs)

Abbreviation

Kshs : Kenyan shillings

K£ : Kenyan pound (1 K£ = 20 Kshs)

¥ : Japanese Yen

MOTC : Ministry of Transport and Communications

JICA : Japan International Cooperation Agency

Km/h : Kilometers per hour

JIS : Japan Industrial Standards

AASHTO : American Association of State Highway and

Transportation Officials

CBR : California Bearing Ratio

GDP : Gross Domestic Products

AADT : Average Annual Daily Traffic

PCU : Passenger Car Unit

VPD : Vehicle Per Day

O-D : Origin-Destination

VOC : Vehicle Operating Cost

NPV : Net Present Value

B/C

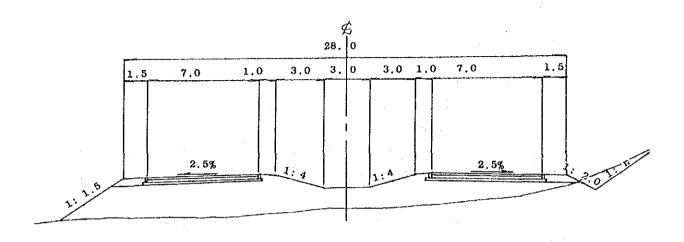
Ratio : Benefit/Cost Ratio

IRR : Internal Rate of Return

CONCLUSION AND RECOMMENDATIONS

1. Conclusion

1.1 Optimum Route


As shown in Figure 1, an optimum route has been determined by taking into consideration careful techno-economic studies after selecting two alternative routes from Mombasa Road (beginning point) to Dagoretti Road Junction and three alternative routes from Dagoretti Road Junction to Naivasha Road (ending point).

The project road starts to divert from an International Trunk Road A104 (Mombasa Road) at the Northeast edge of Nairobi National Park; passes over Langata Road (C58) at the east edge of Army Cantonment tracing the proposed right of way for the Trans-African Highway; goes along the right bank of Motoine River avoiding the housing estate: passes through the Ngong Road forest; passes over Ngong Road (C60) and Motoine River; and then, goes along the left bank of Motoine River in the Ngong Road forest; passes through private land and crosses over the Dagoretti Road (C63); goes up the east edge of the Dagoretti forest with a gradient of 5%; after that, passes through Thogoto village avoiding a built up area; then, goes around outside both Alliance Boys and Girls High School to the west; then crosses slightly the Ondiri Swamp and joins the C63; after that, passes under existing railway and finally connects an International Trunk Road A104 (Naivasha Road) at Kikuyu Junction, representing the dual carriage way of 29.2km in total length.

Table 1. Design Standards of Project Road

	<u>,</u>	
Design Speed	100 - 70	km/h
Road Reserve	60	m
Width of Carriageway	7	m
Minimum Curve Radius	600	m
Maximum Longitudinal Grade	5	%
Vertical Clearance	5.2	m

Fig. 2 Typical Cross Sections of Project Road

1.2 Construction Schedule and Costs

Construction schedule and construction cost are shown as follows:

(1) Construction Schedule

Table 2 Construction Schedule

Year	lst :	Year	2nd	Year	r .		3rd	Yea	ır	41	th 1	(ear	: 5	th :	rea 1
Month	3 6	9 12	15 18	21	24	27	30	33	36	39	42	45	48	51	54
Detailed l Design		12					`				-	-			
Land Acquisition	7		<u>1</u> 5												
Tender and Contract			3		25			1							
Construction					2	26 									55

(2) Construction Costs

The construction cost for the project is estimated on the basis of the preliminary design and construction plan and schedule as follows:

Table 3 Costs for Construction

(Unit: Million Kshs.)

		Foreign Currency	Local Currency	Total
1.	Direct Construction Cost	204.39	134.47	338.86
2.	Engineering Services	20.44	13.44	33.88
3.	Land Acquisition and Compensation	0	22.81	22.81
4.	Physical Contingency	20.44	13.44	33.88
	Sub-Total (1 to 4)	245,27	184.16	429.43
5.	Price Escalation	18.44	68.56	87.00
	Total	263.71	252.72	516.43

(3) Annual Disbursement Schedule

The annual disbursement is estimated according to the construction schedule and summarised as follows:

Table 4 Disbursement Schedule of the Construction Cost

(Unit: Million Kshs.)

Year	Foreign Currency	Local Currency	Total
1st	6.6	4.52	11.12
2nd	2.95	28.51	31.46
3rd	18.54	35.51	54.05
4th	147.73	118.27	266.00
5th	87.89	65.91	153.80
Total	263.71	252.72	516.43

(4) Maintenance Cost

Apart from the above-mentioned construction costs, the maintenance cost is estimated for annual routin maintenance cost: Kshs. 414,500/year.

1.3 Economic Evaluation

The economic evaluation of the optimum plan is summarized as follows:

Discount	Kshs	Million	В/С	Internal Rate
Rate (%)	Cost	Benefit	Ratio	of Return (%)
12%	279.4	424.8	1.52	18.26

Results of sensitivity analysis are as follows:

Sensitivi Case	ity	I.R.R.
(1)		
Cost :	20% up	15.58%
Benefit:	·	
(2)		
Cost :	·	
Benefit:	20% down	14.86%
(3)		
Cost :	20% up	
Benefit:	20% down	12.22%

2. Recommendations

(1) As the project is justifiable technically, economically and socially, it is strongly recommended to take necessary actions so as to implement the project as scheduled.

- (2) The alignment and the design of the proposed road involves many problems requiring a high level of engineering to solve them.

 On the other hand, it does not seem that special techniques or special types of equipment would be required for the construction therefore construction execution by joint venture of a local and a foreign contractor is reasonable.
- (3) The detailed design work for the project would involve highly complex engineering problems, especially for junctions with a different class roads, so it is desirable to employ qualified and experienced consulting engineers for the detailed design work.
- (4) The massive amount of fund is required for the development of the project, it will be one of the possible measures to arrange with an external source for financing the project.
- (5) The construction cost of 266 million K.Shs is to be invested for the 4th year construction cost of this project, which would be specially appropriated in the Government budget as the amount will occupy a high percentage of it.
- (6) About 10m difference in altitude between maps made by the survey of Kenya and the maps prepared by the survey section of MOTC for this study is found, which should be corrected in due course by the governments authorities concerned. Incidentally preliminary design in this feasibility study was carried out using the maps prepared by the MOTC. At the detailed design stage of the bypass project, special attentions should be paid to this problem.

CONTENTS

		<u>Page</u>
I	Introduction	1
II.	Background	
11.1	Outline of Kenya	3
11.2	Transportation of Kenya	3
III	Project Area	
III.1	Natural Conditions	5
111.2	Socio-Economic Profile	6
111.3	Road Network and Traffic	8
IV	The Project	
14.1	Methodology	11
IV.2	Alternative Routes	12
IV.2.1	Basic Ideas on Selection of the Alternative Routes	12
IV.2.2	Comparison of Alternative Routes	12
IV.2.3	Selection of Optinum Route	13
IV.3	Traffic Analysis	16
IV.3.1	Methodology	16
IV.3.2	Traffic Surveys Conducted	17
IV.3.3	Evaluation of Present Traffic System	17
IV.3.4	Study of Future Network	19
IV.3.5	Future Traffic Forecast	22
IV.4	Geometric Design Standards	30
IV.5	Preliminary Design	32
IV.5.1	Route Design	32
IV.5.2	Geology and Soil	37
IV.5.3	Pavement Design	41
IV.5.4	Intersection Design	42
IV.5.5	Design of Structures	42
IV.6	Construction Schedule and Costs	43
IV.6.1	Construction Period and Time Target	43
IV.6.2	Construction Schedule	43
IV.6.3	Annual Disbursement Schedule	43
IV.6.4	Maintenance Cost	43

		Page
V	Economic Assessment	
V.1	Economic Costs	49
V.2	Economic Benefits	52
V.3	Economic Assessment	53
VI	Overall Evaluation	57

I. Introduction

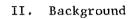
I. Introduction

This project is designed to alleviate the current traffic congestion in the City on A104 road which is part of the Trans-African Highway extending into Uganda and Zaire. It is also intended to provide a solution to the future growth in traffic demand.

The Government of Kenya has requested the Government of Japan to undertake a feasibility study for the Nairobi Bypass Construction Project.

Japan International Cooperation Agency (hereafter JICA) an executing agency of the Japanese Government, organized a feasibility study team, which has performed the field investigation and studies since November 1986 and completed the draft final report in mid-November 1987 and the final report in mid-February 1988.

This report sets forth the preliminary design, cost estimation, economic analysis and others for the Final Report.


The full report is presented in the following four volumes.

Volume 1: Summary

Volume 2 : Main

Volume 3: Appendix

Volume 4: Drawing

II. Background

II.1 Outline of Kenya

Kenya covers an area of about $583,000 \text{ km}^2$ and is bordered by the Indian Ocean and Somalia to the East, Ethiopia and Sudan to the North, Uganda to the West and Tanzania to the South.

The Nyika Plateau running from the Central South to the whole of Northern Kenya is between 1,000m and 1,500m above sea level, and the central highlands are more than 1,700m above sea-level. The coastal areas are less than 200m above sea-level.

The lake region and the vicinity of Mt. Kenya receive over 1,200mm of rainfall annually while the coastal region receives between 800mm and 1,000mm of rainfall. Northern and northeastern Kenya receives less than 500mm.

The vegetation consists of semi-arid dry land with scattered shrubs in northern and northeastern Kenya, tropical forest in most of central Kenya and savanna towards the southern part.

An agriculture-oriented economy growing maize, beans, sugarcane, coffee and tea as well as live stock products, provides enough food supply for Kenya and a high quality cash crop exportable to the international market.

The country has a population of about 21 million people (1986 estimate), and it is estimated that Kenya will have a population of about 35 million at the end of this century, a 67% increase over 1986.

II.2 Transportation of Kenya

Kenya serves as a transportation link between the port of Mombasa and Uganda, Rwanda and the eastern part of Zaire through both railway and road. The transport network in Kenya is characterized as the main trunk of the east/west corridor starting from Mombasa via Nairobi, crossing the Lake Victoria region thereafter to reach Uganda.

Total length of road in Kenya is 54,584 km of which trunk roads comprise 6,391 km, primary roads 8,782 km and remaining roads including secondary, minor and special purpose, 39,411 km.

Paved ratio is 12.3% in total. Total length of railway in Kenya is 2,651 km of minor and branch lines and private lines and cidings.

The port of Mombasa is Kenya's principal gateway to the sea as it faces the Indian Ocean. Kilifi, Malindi and Lamu ports hold minor positions. There are also Kisumu, Homa-Bay and Kendu-Bay along Lake Victoria.

Kenya has two International Airports, Jomo Kenyatta International Airport in Nairobi and Moi International Airport in Mombasa. There are also medium-sized airports as Kisumu, Malindi, and Wilson Airport, Nairobi.

Nairobi has approximately 1.2 million people with an annual growth rate of over 5%, the traffic volume in the central business district of Nairobi increases year after year, as it is the center of social and economic activities of the country.

III. Project Area

III. Project Area

III.1 Natural Conditions

The climate at the project area is tropical. Since Nairobi is located close to the equator and is at a high altitude, it is characterized by two distinct seasons, the rainy season from March to May and November to December and the dry season in the other months. The temperature in the area is warm and cool throughout the year. The annual average temperature is 20° C, and ranges between 26° C - 15° C.

The proposed Bypass area lies at an altitude between 1,660 m and 2,000m above sealevel, on a grass field sloping gently from west terrace to east plain.

Nairobi and its environs are located on the east side highland of the Rift Valley. Nairobi's Western and Northern parts are hilly and about 2000m above sea level. Southern and eastern parts of Nairobi are spread on the plains called Athi and Kapili which are about 1800m above sea-level. From west to east, the topography inclines gently. Rocky mountains lie in the Machakos District about 50-60 km east of Nairobi. Highland regions in the west and north of Nairobi are mainly used as farm land. The surface of the Athi plain is covered with black cotton soil which is very cohesive.

The route of the Bypass diverges to the west from A104 in the vicinity of the northeast edge of the Nairobi National Park and extends to the west of the border of the Wilson Airport and the National Park. After crossing C58, it passes through the Ngong Road Forest, and then crosses C60. Thereafter it runs approximately parallel to the Kenya Railway at southern side. Further on, it crosses C63, and passes through the northern part of the Dagoretti Forest, accessing to C63 once again. Finally it joins A104 (Naivasha Road at the northern part of the Kikuyu Village), representing the dual carriage way of 29.2 km in total length.

III.2 Socio-Economy Profile

(1) Economic Activity

Kenya's economy recovered strongly from the ravages of the 1984 drought, thanks to the decreased price of world oil and the booming price of world coffee together with favourable weather conditions.

The GDP grew by 4.1% in 1985, compared with a mere 0.9% growth achieved in 1984.

In order to challenge the development and the provision of basic needs, the Government of Kenya has established a target average GDP growth rate of 5.6% a year from 1984 to 2000.

Agriculture and manufacturing are the dominant sectors in Kenya's economy, providing 32% and 14% of the GDP, respectively. The manufacturing growth rate is about the same as that of the GDP while the growth rate of agriculture is below the average.

(2) Government Finance

Deficit as a percentage of current revenue declined from 45.8%, 1984/85 to 34.0%, 1985/86. External loans and grants dropped to 50.0%, 1985/86 of investment and development expenditures, compared to 84.5%, 1982/83.

It would be difficult to improve Kenya's economy considering the state of development, though it is acceptable that deficit of government budget to GDP and to revenue are to be 5% and 20%, respectively.

Debt service ratio (revenue to debt servicing charge) became about 30% as of 1986.

(3) International Economy

The balance of payments in 1985 deteriorated due to the weakening of the balance of trade with current account deficit of Kf 69 million in 1985. In order to close the deficit gap, the Government has been promoting long term capital inflow as well as borrowing from international institutions and acquiring short term loans.

Balance of Trade, 1981-1985

				Kt million	
Item	1981	1982	1983	1984	1985
Export	537.23	568.64	652.18	776.91	802.34
Import	932.41	900.30	905.62	1,097.21	1,201.13
Balance of Trade	△395.18	△ 331.66	△253.44	Δ 320.30	△398.78

Source: Economic Survey, 1986

Coffee, tea and petroleum products are the principal export commodities, having shares of 29.7%, 24.7% and 14.0%, respectively with 44.07 Ksh/kg of coffee and 30.36 Ksh./kg of tea in 1985.

It is projected that overall export will increase by 5.1% up to the year 2,000 with a 7.2% increase in coffee and a 4.6% increase in tea. Petroleum products export is up to the economy of Uganda, Rwanda and Burungi. Development of transportation (through traffic) and tourism are also expected to expand.

III.3 Road Network and Traffic

(1) General

The transport network in Kenya is characterized as the main trunk of the east/west corridor starting from Mombasa, gateway to the sea, via Nairobi, the nation's capital, crossing the Lake Victoria region thereafter to reach Uganda.

At 1985, gross output from transport sector is K£ 514 million (1985), up 19% from 1984 and about 5% of GDP. It is continuing its upward swing due to the general recovery of the economy.

Model inventories with rough review are as follows:

- a) Total length of roads in Kenya is 54,584 km of which trunk roads comprise 6,391 km, primary roads 8,782 km and remaining roads including secondary, minor and special purpose roads 39,411 km. Pavement ratio is 12.3% in total.
- b) Total length of railways in Kenya is 2,651 km. Main and principal lines comprise 1,450 km in addition to 1,201 km of minor and branch lines and private lines and cidings. The rail and rolling stock of railways are decrepit. Although diesel engines have been introduced recently, the average speed of operation remains slow.
- the port of Mombasa is Kenya's principal gateway to the sea, facing the Indian Ocean. Kilifi, Malindi and Lamu ports have minor positions. There are also Kisumu, Homa Bay and Kendu Bay along Lake Victoria. Port facilities have deteriorated, thereby delaying containerization.
- d) Pipeline with total length of 449 km was laid between Mombasa and Nairobi in 1987. The system is of the latest model and transports five different types of light petroleum products.

- e) Kenya has two international airports, Jomo Kenyatta
 International Airport in Nairobi and Moi International Airport
 in Mombasa. There are also medium-sized airports as Kusumu,
 Malindi and Wilson Airport, Nairobi. Kenya has as many as 460
 Aerodromes, including those which are privately owned. Overall
 passenger kilometers and freight carried by Kenya Airways
 reached 1,152 million km and 136.3 million kg·km, respectively
 in 1985 with more than 60% utility ratio.
- f) Inland water transport is, at present, operated in Lake Victoria by Kenya Railways Corporation.

According to the study by the Japan International Cooperation Agency, modal split ratios of railway and road, based on passenger km were 12.1% and 87.9%, respectively, in 1982. As for freight, modal split ratios of railway and road based on ton ·km were 45% and 55%, respectively, in 1982.

However, both passenger \cdot km and ton \cdot km of freight for railway are on the downward trends as they have decreased 6.9% and 4.8%, respectively, between 1981 and 1985.

(2) Road Transport

At present, 95% of the passenger flow and more than half of the commodity flow are to be transported by road, based on the study by the Japan International Cooperation Agency, 1984, considered together with the facts of the decreasing trend in the railway's share year by year. Despite the relatively high unit cost, the private sector has played a leading role in the development of the Mode.

Owing to the intensive efforts for road improvement by the Government, 54,584.2 km of road at present (1986), is classified as bitumen and gravel/earth standard. As for paved ratio of 12.3% of total length has been realized.

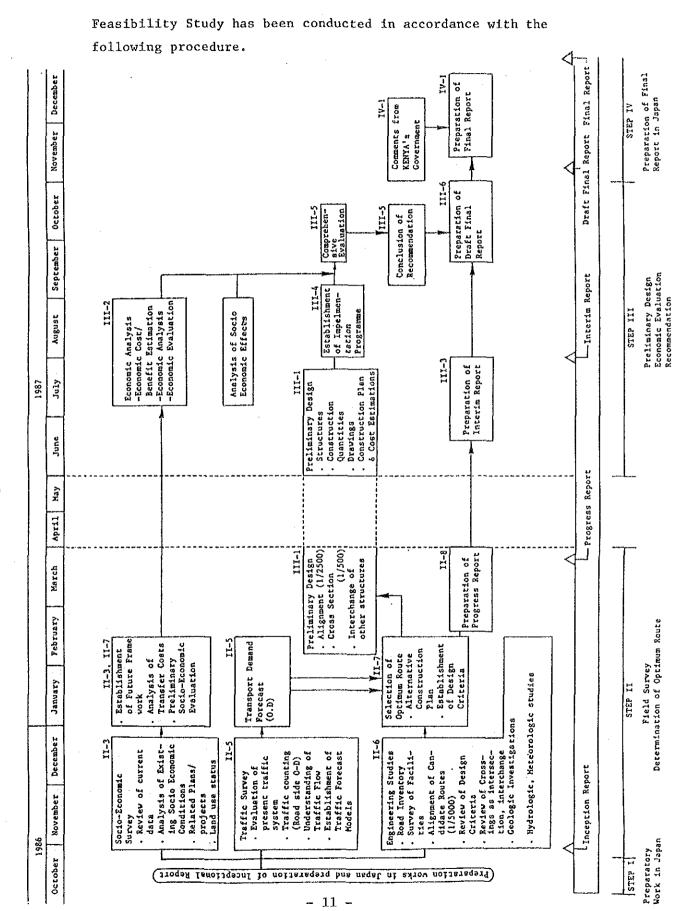
Registered vehicle population in the Country was estimated to be 266,613 in 1984 with a 2.6% growth rate between 1980 and 1984.

It is a difficult matter to assess the exact growth rate of road transport, even though 4.7% is forecast as the growth rate of road transport between 1981 and 1985.

A 4.7% growth rate is considered reasonable as GDP growth rate is 3.2% during the same period, considering the stage of development of Kenya's economy and the decreasing trend of railway's share.

As for the reference, several other macroscopic data which have high correlation with traffic, are listed as follows:

- a) Real GDP growth rate, between 1979 and 1986 was 3.2%
- b) Nominal GDP growth rate, between 1979 and 1986 was 13.3%
- c) Fuel sales of motor spirits and diesel fuel growth rate between 1977 and 1984 was 2.0%
- d) Registered vehicle population growth rate between 1980 and 1984 was 2.6%
- e) 60 points census traffic growth rate of 1983 to 1982 by MOTC are as follows:


i) by types of vehicle

Type	Passenger Vehicle	Light Good	Medium Good	Heav Good	y Bus	Total
Growth Rate %	17	6	22	22	1	6
11)	by province					
Province	Coast Eastern	North Eastern	Central	Rift Valley	Western	Nyanza
Growth Rate %	4 7	4	8	2	8	11
iii)	by class of	road				
Class of road	Trunk (Class A,B)	Primary C	Sec	ondary D	Minor E	Total
Growth Rate %	4	8		6	9	5

IV. The Project

IV. The Project

IV.1 Methodology.

IV.2 Alternative Routes

IV.2.1 Basic Ideas on Selection of Alternative Routes In selecting alternative routes the following factors as well as

other general matters of technology have been carefully taken into consideration:

- (1) Harmony with such regional development schemes as the Structural Plan by the Nairobi City Commission.
- (2) Connection with Langatta Road (C58), Ngong Road (C60) and Dagoretti Roads (C63).
- (3) Harmony with the future expansion plan of the road in the project road section.
- (4) Possibility of widening and improving the alignment of the existing C58 and C63.
- (5) Non-destruction of the natural environment as much as possible.
- (6) To consider that the project road is a part of the Trans-African Highway.

IV.2.2 Comparison of Alternative Routes

Two alternative routes from the beginning point at Mombasa Road to Dagoretti Forest and three alternatives from Dagoretti Forest to the end point at Naivasha Road were selected as shown in Fig. IV-2 Proposed Alternative Routes.

The route comparison was made by a simplified method considering five major factors: route length, engineering aspect, difficulty of implementation, social environment impact, costs including land acquisition, compensation and construction.

In order to select the optimum route a rating method was employed for evaluation of the alternative route from section 1 to section 3.

For alternative routes in Section 4, a tentative design was carried out and the alternatives were compared from the point of view of engineering, construction quantities and construction cost. Results of the route comparison are shown in Table IV-1, Comparison of Alternative Routes.

IV.2.3 Selection of Optimum Route

The selection of optimum route has been carried out on the rational consideration, so as for the first step, establishment of Route Alternatives was mentioned in Chapter VII in the Volume 2 (Main) to evaluate the route from geology, route alignment, road network with other trunk and feeder roads and many a ristricting control points of view.

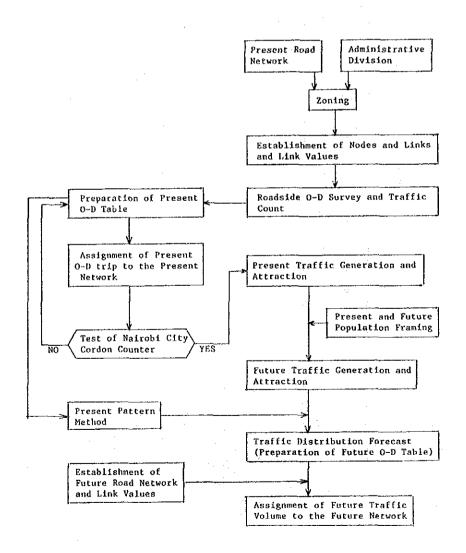
In the Table VII-4-1 Chapter VII in Volume 2 (Main) a comparison of Tentative construction cost, Construction cost/length, Transport efficiency showing the construction cost required for the future one vehicle running one km was given by alternative plans.

As seen on the Table VII-4-1, A-1 (so called shortest Route) was the most applicable route for the bypass.

Besides A104 (Naivasha Road) in the vicinity of Kikuyu Junction, where junction with the bypass, will be improved by MOTC to a dual carriageway road in near future, that would be the more encouragement to this route.

- 14 -

Table IV-1 Comparison of Alternative Routes


Description	ΤW	Section 1 A-I , A-I	Section 1 A-I, A-II	Sect:	Section 2 A-I , A-II	Secti A-I	Section 3 A-I , A-II	A-I	Section 4, A-II,	4 A-III
Length	(15)	15	12	15	13	15	13	15	12	12
Road Network	(5)	4	4	7	ო	4	က	m	ო	က
Engineering Aspect	(20	14	10	ا ع	12	12	15	12		13
Difficulty of Implementation	(15)	10	9	12	7	10	_	10	6	10
Social Environment Impact	(10)	7	4	თ	9	σ	7	9	9	_
Cost	(35)	28	20	21	18	21	21	24	21	21
	(100)	78	56	74	59	7.1	65	70	62	99

IV.3 Traffic Analysis

IV.3.1 Methodology

Traffic analysis were carried out using the following procedure; (1) the current level and characteristics of traffic were obtained from the traffic surveys, (2) Future traffic demand was forecasted using the results of (1) above and of forecasts of major economic indices and regional development schemes, etc., (3) Future traffic volume was assigned to the road network including the project road and (4) the anticipated traffic problems were solved. The overall framework of the above-mentioned procedure is shown in Fig. IV-3.

Fig. IV-3
Flow Chart of Traffic Demand Forecast

IV.3.2 Traffic Surveys Conducted

A number of traffic surveys in the project area were conducted with the cooperation of the MOTC traffic survey unit and Police Department as follows:

· · · · · · · · · · · · · · · · · · ·	Survey	Objective
a)	O-D Survey at road-side	Preparation of O-D table and
•	station	traffic analysis
ь)	Traffic Count Survey	Supplementary to complete O-D
		Table and Intersection Analysis
c)	Vehicle Running Speed	Evaluation of Traffic Network
	Survey	Traffic Analysis and Benefit
		Calculation

Site investigation and confirmation was done with the help of Police officers and MOTC traffic surveyors.

The results of the surveys conducted at representative points in the project area are shown in Table IV-2 Present Traffic Congestion Rate.

IV.3.3 Evaluation of present traffic system

(1) Links where the congestion rate exceeds 1.0

These links are seen on the three routes of A104, Ngong Road of C61 and Lusaka Road as shown in Table IV-2. Of these, the links on A104 are the 1) Uhuru Highway in the metropolitan center, 2) the single carriage way near Aga Khan High School and 3) the single carriage way with many slopes west of Kikuyu. On link 2) above, the problem will be solved as the project for widening the link into four lanes is likely to be implemented right away. On links 1 and 3, the traffic congestion rate is anticipated to turn for the better by the construction of Nairobi Bypass. Particularly on link 3, the effect of the sharp reduction in the traffic capacity is prominent as the ratio of the medium and heavy goods vehicles mixed in the traffic being high at 30% and the link being sloped.

On Ngong Road, the project of widening it into a four-lane road is about to begin any time, and when it is widened and improved, the problem of congestion would be eliminated.

Lusaka Road indicates a high congestion rate since it serves as an access road to the industrial area. In order to eliminate the congestion in this link, the problem shall be solved by connecting the starting point (near Wilson Aerodrome) of the bypass road and the center of the industrial zone with another access road.

(2) Link where the congestion rate is close to 1.0

The links where the congestion rate exceeds 0.7 and is close to 1.0 are observed in some parts of AlO4, A2, C61, Langata Road (C58), and Outer Ring Road (C54).

Of these, such links on A104 are seen 1) near Museum Hill and 2) Between Kabete and Kikuyu. While the situation is likely to improve by the construction of the bypass, link 2) does not pose any problem as the widening of this link into four lanes is in the stage of execution. Likewise, the link between Dagoretti Corner to Kabete on C61 exceeds 0.7 in congestion rate, but the congestion rate is not anticipated to rise any further due to the improvement of A104 and the construction of the bypass.

The link between Nyayo Stadium and Animal Orphanage on Langata Road also indicates a high congestion rate, but the problem would be eliminated in the future as the widening of this link into four lanes being considered.

On the link of the A-2 Road in the metropolitan center and some parts of the Outer Ring Road (C59), it was pointed that the problem of congestion will not be generated immediately. There is a future necessity to build a new eastern bypass that detours the eastern side of the center of Nairobi.

IV.3.4 Study of future network

(1) Target year

Out of the roads in Nairobi or in its environment which are to be constructed, widened or improved by the year 1991, estimated as the target year of the construction of Nairobi Bypass, following are selected.

(2) Roads to be widened and improved

- A104 (Upper Parkland Estate Orthopaedic Hospital)
- AlO4 (Kabete Limuru)
- Ngong Road (Intersection of Uhuru Highway and Haile Selassie Avenue - Dagoretti Corner)
- Langata Road (Uhuru Highway Animal Orphanage)

(3) New Road

- Link Road between Ngong Road and Langata Road

	-	Present	Traffic	Congestion Rate.		v	u		٢
4	14-23/11/86	24/11/86	21/11/86		25/11/86	17/11/86	19/11/86		14/11/86
Aga Aga H.S	AlO4 at . Khan	C62 at Ruaraka Trading	A2 at Safari Park Hotel		650	Lusaka Road	AlO4 at Drive-in Cinema		C58
Both	ų	Both	NRB -Thika	Thika- NRB	Both	Both	Nairobi	Mombasa	Both
Φ	9,254	1,473	3,114	•	3,199	12,174	4,939	5,991	7,014
ന	3,308	868	1,722	1,998	1,614	7,011	9	1,852	2,555
	522	267		661	1,367	866	562	488	244
	487	108	169	146	325	692	292	176	. 09
	859	150		365	146	116	88	81	386
μ- -{	1,393	368		912	689	697	332	499	729
	132	70	54	99	4.1	415	09	42	58
15	15,955	3,304	6,747	7,109	7,381	21,743	8,336	9,129	11,346
	3.1	2.0	3.5	3.5	2.0	2.0	2.0	2.0	2.0
	1.5	1.5		1.5	1.5	7.5	1.5	1.5	1.5
	0.5	0.5		0.5	0.5	0.5	0.5	0.5	5.0
									,
20	20,508	3,993	9,875	10,463	9,543	23,444	9,414	10,102	12,671
_	10.000	9.300	14-600	14.600	7.200	11.100	13.800	13,800	11,100
1	1.27	1.22	1.17		1.33	1.15) .)	1.19	· •
-	12,700	11,300	17,100	17,100	9,700	12.800	17,000	16,400	14,100
	1.61	0.35	0.58	0.61	0.98	1.83	0.55	0.62	0.90

1/ Source : MOTC "Traffic Census Estimated Daily Traffic and Historical Traffic Flow Data 1985"

Present Traffic Congestion Rate.

Station No.	_∞	σ	10	11	12	13	14	15	16
Date	18/11/86	26/11/86	1/12/86	28/11/86	29/11/86	24/11/86	28/11/86	25/11/86	1/12/86
Road Name	C61	A104 At The Rest-	C58	090	A104 Naivash/Rd.	C64	C63	860	C63
Direction	Both	Both	Both	Both	Both	Both	Both	Both	Both
A.A.D.T.									
1. Car Taxi	5,940	1,885	1,641	2,088	1,173	2,667	753	2,360	2,653
2. Light G.V.	2,314	896	869	1,225	1,005	1,371	368	1,249	1,047
3. Medium G.V.	354	880	219	310	423	195	86	1,193	171
4. Heavy G.V.	63	602	26	11	433	24	11	114	116
5. Bus	706	239	84	133	322	201	37	125	59
6. Matatu	747	274	236	312	292	438	30	847	54
7. Motorcycle	96	27	19	37	27	18	σ,	38	37
Total	10,220	4,875	2,923	4,116	3,675	4,914	1,306	5,527	4,139
PCU Rate.									
<pre>l. Medium G.V. Heavy G.V./Bus</pre>	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
2. Matatu	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
3. Motorcycle	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
AADT Total Traffic (PCU)	11,668	6,720	3,361	4,708	986,7	5,544	1,463	7,164	767,7
Traffic Capacity	7.700	8.200	6,500	000.6	9,400	8,000	10,100	11.400	7.400
$24 \mathrm{Hr}$ /12Hr Rate 1	1.23	1.23	1.21	1.26	1.27	1.22	1.24	1.17	1.27
24Hrs	9,500	006.6	7,900	11,300	8,100	9,800	12,500	13,300	9,400
Congestion Rate	1.23	0.68	0.43	0.42	0.62	0.57	0.12	0.54	0.48

IV.3.5 Future Traffic Forecast

Three alternative routes are prepared for the bypass, all of which start from the neighbourhood of Wilson Aerodrome and take the same route as far as the eastern end of the Dagoretti Forest, but from there until the bypass merge with the existing AlO4, each takes the shortest, the longest and the intermediate route respectively. The objects of traffic assignment here is the shortest route and the longest route only. Functionally, the intermediate route is almost the same as the longest route. Furthermore, both four-lane and two-lane traffic shall be considered for each proposed plan, as a result of which the following cases have been set up.

Alternative A-0	Without Byapss		Target year 2000
A-3-4	Longest Byapss	(4-Lane)	ii ii
A-3-2	Longest Bypass	(2-Lane)	11
A-1-4	Shortest Bypass	(4-Lane)	n
A-1-2	Shortest Bypass	(2-Lane)	11

Alternative A-O consists of the present trunk roads mainly, the roads under construction and the anticipated planning roads in and around the Nairobi. Another Alternative networks are consisting of Alternative A-O and the Bypass.

(2) Results of Future Traffic Forecast

With increasing of future trip generation/attraction, the number of bottleneck links, over 1,00 congestion rate, for the alternative A-O will be 15 links on the representative roads (A104, C58/63, C60/61) and 30 on all the network.

The decrease of traffic congestion attributable to the bypass is shown in Table IV-3 as bottleneck link numbers.

This suggests that alternative plan A-1-4 is most effective. It would be most advisable, therefore, to establish a 4-lane bypass on the shortest route by 2,000 year from the results of Future Traffic Forecast.

Table IV-3

Number of Bottleneck Links by Alternative Plan

A 1 4	Future AADT	Repr	esenta	tive Roa	ds		A 7 1
Alter- native	in pcu On the Bypass	Bypass	A104	C58/63	C60/61	Subtotal	All Network
A-0	-	_	5	4	6	15(100%)	30(100%)
A-1-4	$18-26 \times 10^3$		3	1	4	8(53%)	24(80%)
A-3-4	$11-24 \times 10^3$	-	4	1	4	9(60%)	25(83%)
A-1-2	$11-12 \times 10^3$	3	5	3	4	15(100%)	31(103%)
A-3-2	$8-11 \times 10^3$	1	5	3	5	14(93%)	30(100%)

Additionally, when the Bypass is completed as a dual carriage, the following measures will be required for the future road network to improve the traffic congestion in the city of Nairobi.

- a) Construction of the Nairobi Eastern Bypass
- b) Improvement of radial road in the Eastern area of Nairobi, such as
 The Jogoo Road Widening and the Koma Rock Road Widening
- c) Intensification of the public transport
- d) Improvement of the Roundabout on the Uhuru Highway to increase traffic capacity
- e) Improvement of the parking facilities in the city centre of Nairobi.

The stage construction of the Bypass should be referred to the growth rate of the diverted traffic and the capacity of the single carriageway.

The Table IV-4 shown the growth of traffic by link. According to the Road Design Manual of Kenya, where the traffic volume over AADT 8,000 in PCU, dual carriageway should be considered and the year to be exchanged for dual carriageway would be in 1992 at latest.

Table IV-4 FUTURE TRAFFIC GROWTH OF THE BYPASS BY LINK

												(77-4CT) 4-477	. :	
	Bo	th di	Both direction	Both di	Both direction	Both direction	ection	frem 22	to 134	from 134 to	34 to 22	2	Both direction	ection
	AADT	pcu	AADT in	AADT	AADT	AADT	AADT	AADT	AADT	AADT	pcu A	AADT	AADT	AADT
		rate	bcu		in pcu		in pcu		in pcu		rate î	in pcu		in pcu
car,taxi	868	1.0	868	1,208	1,208	3,468	3,468				1.0		3,812	3,812
Light goods V.	414	1.0	717	934	934	1,675	1,675				1.0		1,846	1,846
Medium goods V.	588	2.0	1,176	575	1,150	224	877				3.8		295	1,112
Heavy goods V.	491	2.0	982	465	930	374	748				3.8		412	1,583
Bus	313	2.0	626	172	344	104	208				3.8		112	429
Matatu		1.5	•	,	1	1	1	-			1.5			t
Total	2,704		960,4	3,354	4,566	5,845	6,547						6,477	8,782
	100.0		100.0	100.0	100.0	100.0	100.0						100.0	100.0
S Car, taxi	5,790	1.0	5,790	4,517	4,517	5,274	5,274				1.0		3,853	3,853
Light goods V.	4,200	1.0	4,200	3,534	3,534	3,620	3,620				1.0		2,628	2,628
Medium goods V.	676	2.0	1,886	77.1	1,542	259	518				3.8		383	1,459
Heavy goods V.	855	2.0	1,710	749	1,498	597	1,194				3.8		701	2,711
Bus	677	2.0	868	287	574	121	242				۳. 8.		148	571
Matatu	1	1.5	ı	ŧ	ı	1	1				1.5		t	1
Total	12,237		14,484	9,858	11,665	9,871	10,848						7,713	11,222
	452.6		353.6	293.9	255.5	168.9	165.6						119.	1 127.8
S Car, taxi	12,750	1.0	12,750	8,780	8,780	9,371	9,371	4,973	4,973	867.5	1.0	5,498	10,921	10,921
Light goods V.	8,272	1.0	8,272	6.547	6,547	5,220	5,220	3,549	3,549	3,039	1.0	3,039	6,588	6,588
Medium goods V.	965	2.0	1,930	771	1,542	629	1,318	303	909 .	380	3.8	1,444	683	2,050
Heavy goods V.	1,066	2.0	2,131	666	1,998	1,027	2,054	581	1,162	520	3.8	1,976	1,101	3,138
Bus	255	2.0	510	37	74	41	82	27	24	21	3.8	80	78	134
Matatu	*	1.5	1	•	•	ı		1	1	1	~-	,	•	
Total	23,308		25,594	17,134	18,941	16,318	18,045	9,433	10,344	806.6		12,037	19,341	22,831
	862.0		6.779	510.8	414.8	279.2	275.6						298.6	6 260.0
Annual overage growth														
rate of 4-land Bypass	16.62		14.02	12.4%	10.72	7.62	7.5%						8.1%	7.0%

Accordingly, it would be said that a dual carriageway will be recommendable in view of traffic planning in the opening year.

(3) Analysis of Converted Traffic

The construction of the bypass has two major purposes, that is, converting the through traffic of Nairobi from AlO4 (international trunk road) and eliminating traffic congestion on the roads inside the city. It is necessary, therefore, to divide the bypass traffic according to the purposes of utilization, and then the benefits pertaining to each division constitute the effects of improvement to be measured.

In addition, the benefits arising from this project ought to be calculated conservatively, as a basic rule, regarding the items capable of being quantified. There is something numerically uncertain the negligible amount on the urban road network about the development traffic and induced traffic which arise incidentally after completion of the bypass. Because, most of development schems are including in the future Land-use plan and most of existing roads are already paved. Excluding these, therefore, the future traffic assigned to the bypass should include only the normal traffic converted from the existing roads.

Table IV-5 shows the distribution ratio and conversion rate of the traffic utilizing the bypass classified by Bypass link and itemized by traffic category. Using both of the Table IV-5 and the converted OD trip table (given in appendix Table A-VI-5, the trends of bypass utilization and the characteristics of bypass traffic were analyzed and the volume of traffic converted from A104 into the bypass was calculated.

The results of analysis are summarized as follows.

a) Regarding the bypass traffic volume itemized by traffic category, the internal plus external traffic represent more than 90% in every section, whereas the through traffic ranges approximately from about 1,200 to 1,300 vehicle/day, accounting for less than 10% of the total traffic.

- b) The bypass conversion rate becomes higher as the direction of the desired line between zones becomes closer to that of the bypass route.
- c) The through traffic has its trip ends over the extensions of both beginning and ending points of the bypass. For reasons started in b) above, the through traffic shows a very high conversion rate (over 95%).
- d) The conversion rates of external and internal traffics were about 80% and 50% respectively. This is suggestive of a tendency that the bypass conversion rate becomes lower as the gap between the direction of the bypass route and that of the desired line becomes greater. Such a tendency seems to reflect the effect of the traffic assignment method that is capable of selecting the shortest time route.
- e) The traffic converted from A104 and running throughout the bypass was considered to include both the through traffic and external traffic which has its origin around the beginning point of the bypass (in or around the airport, industrial area, and other districts) and its destination beyond the ending point of the bypass. The results of an analysis of converted OD trips on the Bypass show that the volume of converted-throughout traffic amounts to a total of 6,282 vehicle/day, consisting of 1,213 through and 5,069 external trips (see Table IV-6). The bypass conversion rates of these cars are almost 100%.
- f) Therefore, the traffic volume excluding 6,282 vehicle/day constitutes the volume of other converted traffic (see Table IV-6).

The volume of converted traffic other than from A104 to the bypass were estimated to reach 10,040 to 17,030 VPD (depending on different bypass links) by 2,000 years. These trips most often originate in Nairobi City. In the case of closer direction of their OD pairs to that of the bypass route, the higher conversion rate to the bypass was assigned. In addition, there are OD pairs with high growth potential, linking the increasingly populous districts to urban centers and industrial areas such as South-west and South-east development area of Nairobi. The direction of these OD pairs is close to that of the bypass route and therefore the high conversion rates was assigned in these pairs.

Due to the reasons described above, it was forcasted that much of the traffic from roads other than A104 was assigned to the bypass.

Concerning the forecasted bypass traffic in 2000, the volume of bypass traffic in 1991 is also shown in Table IV-6 for the benefit calculation.

The traffic volume in 1991 was determined on the basis of interpolation between the traffic volumes in 1986 and 2000.

Table IV-5 Trends of Bypass Utilization in 2000 by the Bypass Link

	Conversion rate (%)	51	74	66	94
Link 4	Distri- bution ratio (%)	39	54	7	100
	Traffic Volume (100) (VPD)	75	105	13	193
	Conversion rate (%)	47	78	100	63
Link 3	Distri- bution ratio (%)	38	55	7	100
	Traffic Volume (100) (VPD)	19	06	12	163
	Conversion rate (%)	67	80	86	62
Link 2	Distri- bution ratio (%)	47	46	7	100
	Traffic Volume (100) (VPD)	80	- 62	12	171
	Conver- sion rate (%)	64	84.	95	7.1
Link l	Distri- bution ratio (%)	09	35	S	100
	Traffic Volume 1 (VPD)	138	82	12	232
Bypass	Tra- ffic Cate- gory	Internal Traffic	External Traffic	Through Traffic	Total

Note:

External Traffic : Zone pairs having their trip ends both inside and outside of Nairobi City Internal Traffic : Zone pairs having both trip ends inside Nairobi City

THrough Traffic : Zone pairs passing through Nairobi City

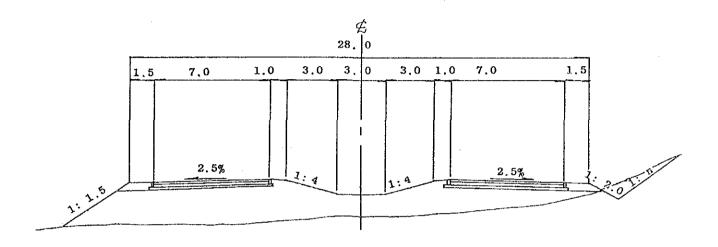
Table IV-6 Total Converted Traffic to the Bypass by link

												Unite:	ı	AADT	
Bypass	Converted Traffic			Year	ır in 1991	1.					Year	in 2000	_		
No.	from	Car	L.G.V.	M.G.V.	н.с. v.	BUS	MA.	Total	Car	L.G.V.	M.G.V.	H.G.V.	BUS	MA.	Total
	(1)	237	150	122	388	11		806	351	222	132	967	12.	ł	1,213
	from AlO4 (2)	1,009	1,336	415	454	18	!	3,202	1,778	2,309	460	502	20		5,069
ret	(1)+(2)	1,246	1,486	537	812	29	t I	4,110	2,129	2,353	592	966	32		6,282
	from other roads	3,990	1,799	186	13	135		6,123	10,621	5,919	373	68	223	-	17,026
	Total	5,236	3,285	723	825	164		10,233	12,750	8,272	965	1,066	255	1	23,308
	(3)	237	150	122	388	T	1	806	351	222	132	967	12	ł	1,213
	from A104 (2)	1,009	1,336	415	424	18	ł	3,202	1,778	2,309	760	502	20		5,069
2	(1)+(2)	1,246	1,486	537	812	29	!	4,110	2,129	2,353	592	866	32	<u> </u>	6,282
	from other roads	3,009	1,626	38	7	7	ļ	4,681	6,651	4,194	179	н	Ŋ		10,852
	Total	4,255	3,112	575	816	33	1	8,791	8,780	6,547	771	666	37		17,134
	(1)	237	150	122	388	11	1	806	351	222	132	967	12	1	1,213
	from Al04 (2)	1,009	1,336	415	425	18	-	3,202	1,778	2,309	460	505	20	ŀ	5,069
m	(1)+(2)	1,246	1,486	537	812	58		4,110	2,129	2,353	592	866	32	1	6,282
	from other roads	3,871	1,136	105	78	4	ı	5,194	7,242	2,867	67	29	o,	1	10,036
!	Total	5,117	2,622	642	890	33	į	9,304	9,371	5,220	629	1,027	41	1	16,318
	(1)	237	150	122	388	11		908	351	222	132	967	12	;	1,213
	from A104 (2)	1,009	1,336	415	425	18	<u> </u>	3,202	1,778	2,309	460	505	20	ļ	5,069
4	(1)+(2)	1,246	1,486	537	812	53	ŀ	4,110	2,129	2,353	592	866	32	1	6,282
	from other roads	5,727	1,940	89	103	16	1	7,875	8,792	4,235	16	103	16	i	13,059
	Total	6,973	3,426	626	915	45		11,985	10,921	6,588	683	1,101	48	1	19,341
	Note:	L.G.V. M.G.V. H.G.V.	: Light : Medium : Reavy : Matatu	spoogs Spoogs	Vehicle : Vehicle Vehicle	·	(1)	: Thro : Conv Nair	Through-Traffic of Nairobi Converted from A104 to Bypa Nairobi (External Traffic)	fic of N om AlO4 ernal Tr	airobi c to Bypas: affic)	Through-Traffic of Nairobi converted Converted from A104 to Bypass of both Nairobi (External Traffic)	frc	from AlO4 or either	to Bypass O-D inside

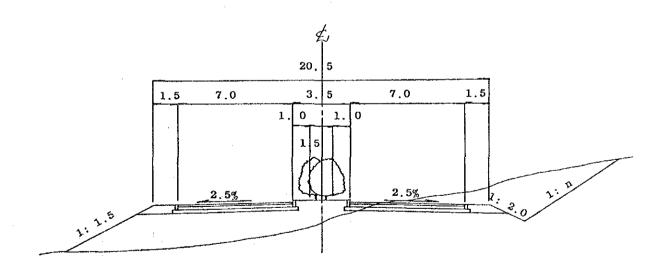
IV.4 Geometric Design Standard

Geometric design standards depend on the Road Design Manual Part 1 MOTC Kenya as follows: -

Geometric Design Standard for Main Road


Item	Description
Road Classification	Class A
Design Speed	100 - 70 km/h
Lane width	3.5m
Shoulder width	
Right	1.0m
Left	1.5m
Central Reserve	11.0 - 3.5m
Crossfall	2.5%
Longitudinal Maximum Gradient	
Flat	3.0%
Rolling	4.0%
Mountainous	7.0%
Minimum Horizontal Curve	
Radii	600m
Right of Way	60m

Geometric Design Standard for Intersection


Item	Description
Design Speed	50 - 40 km/h
Lane Width	One way: $W = 4.0m$
	Two way: $W = 6.0m$
Shoulder Width	Right : W = 1.0m
	Left : W = 1.5 (for one lane)
	: $W = 1.0$ (for two lane)
Cross fall	2.5%
Minimum Radius	50.00m
Acceleration lane	240m for design speed 100 Km/h
	210m for design speed 80 Km/h
Deceleration lane	150m for design speed 100 Km/h
	130m for design speed 80 Km/h

Typical Cross Section of the Bypass

Typical cross section of the Nairobi Bypass has been proposed in accordance with the Geometric Design Standard of Kenya (1979) as follows:

TYPICAL CROSS SECTION (CENTRAL RESERVE, $w_c^{\,\oplus}$ 11.0 m)

TYPICAL CROSS SECTION (CENTRAL RESERVE, $_{c}^{w} = 3.5^{m}$)

IV.5 Preliminary Design

Preliminary design of the project road was carried out on topographical maps (scale = 1: 2500) in accordance with the tentative design by JICA Study Team on maps (scale = 1: 5000) which were prepared by MOTC.

Geometric design of the project road was done in accordance with the Road Design Manual Part 1, Geometric Design of Rural Roads and close discussions between MOTC and JICA Study Team.

IV.5.1 Route Design

Nairobi Southern Bypass begins on the Mombasa Road A104 at the northeast edge of Nairobi National Park and ends at Kikuyu Junction (A104).

Horizontal alignment from the beginning point to Langata Estate was planned in accordance with the structural plans of Nairobi (Departmental Reference No. 42-28 85-9) by the Department of Physical Planning of the Ministry of Works, Housing and Physical Planning. Then the alignment was planned as much as possible to pass through the Ngong Road Forest and Dagoretti Forest (namely Government land) in view of reducing land acquisition costs.

The outline of the horizontal alignment and the vertical alignment is shown in Fig. IV-4 and Fig. IV-5.

(1) Mombasa Road Junction - Uhuru Junction (Langata Road Junction).

Referring to a Nairobi Structure plan by the Ministry of Works, Housing and Physical Planning, the horizontal alignment was designed in the right of way of the proposed Trans-African Highway and Railway Reserve and in consideration of Uhuru Monument and an existing restaurant.

Vertical alignment was designed slightly rising over existing ground level to make it easy to drain rain water from the road surface. After passing through the edge of the National Park, the vertical alignment rises to cross over Langata Road (C58).

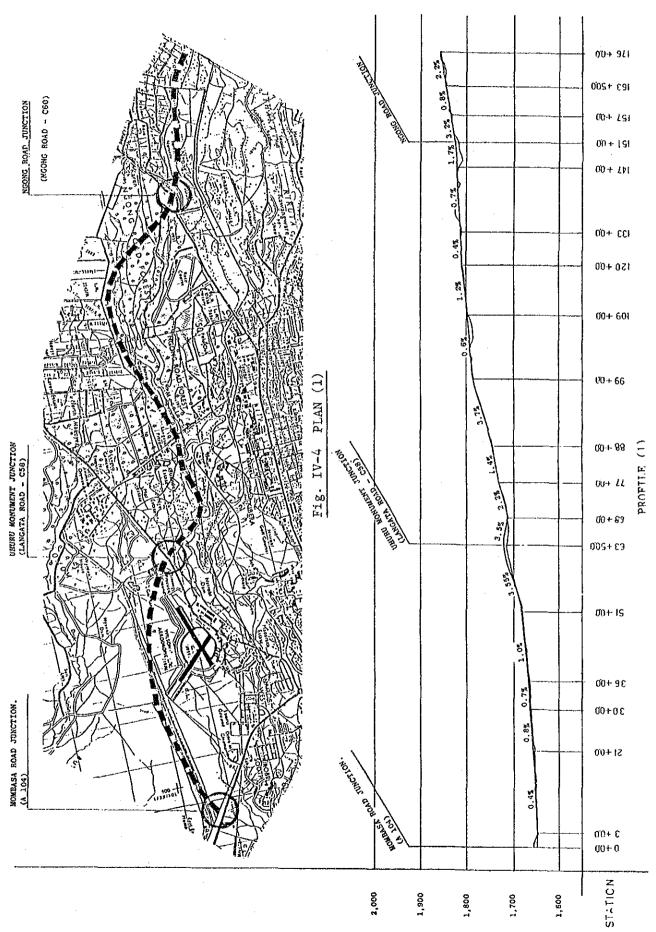
(2) Uhuru Monument Junction - Ngong Road Junction

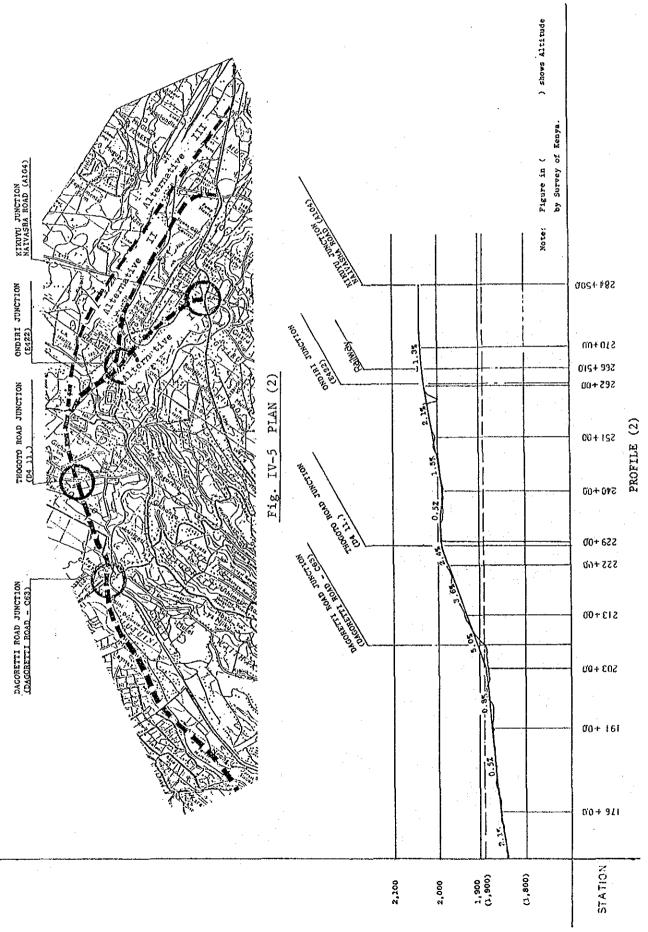
The Bypass was designed along the right bank of Motoine River avoiding the Housing Estate. After that it stretches along the south edge of Ngong Road Forest and crosses over the intersection of Ngong Road Forest and Motoine River. In this section, the proposed route was designed in consideration of the existing housing estates and the forest station as much as possible.

(3) Ngong Road Junction - Dagoretti Road Junction

The Bypass crosses over Ngong Road and Motoine River and stretches through the Ngong Road Forest on the left bank of the Motoine River.

After passing through the forest the route stretches on the top of the left slope of the Motoine River avoiding a lot of houses and crosses over Dagoretti Road (C63) at the foot of Dagoretti Forest near the railway.


In this section, an attempt was made to take an existing road for the Bypass, but there are many houses along the existing road.


Moving the people to construct the Bypass will cause much disturbance, thus after a discussion between MOTC and the JICA Team on the tentative design, it was decided to have the horizontal alignment along the edge of the left bank of Motoine River.

(4) Dagoretti Road Junction - Kikuyu Junction

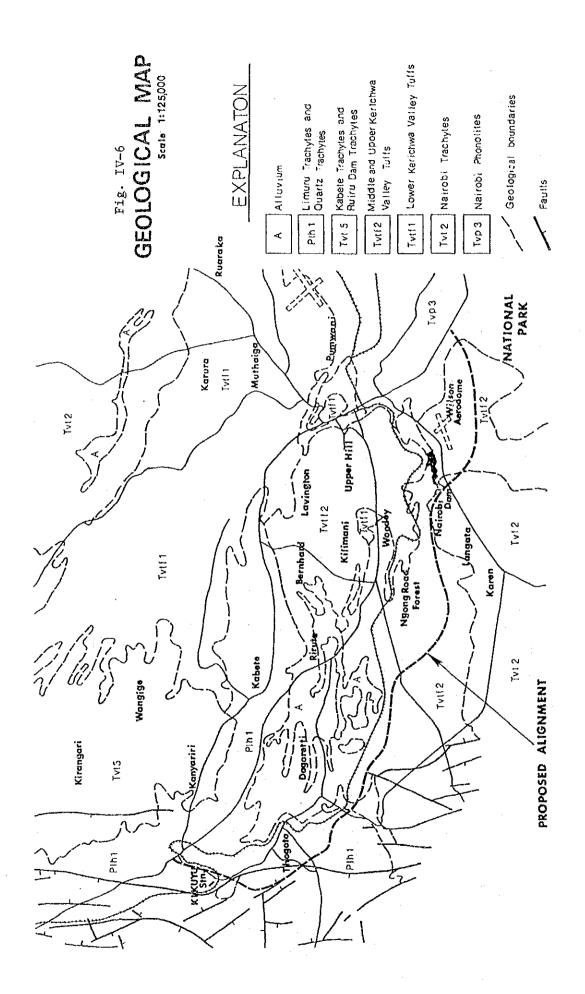
The topography of the beginning point of this section is very steep and the rock below the top soil was found, from a geological survey, to be hard. Therefore a 5% gradient was adopted for vertical alignment so as to reduce the earth volume, especially rock excavation.

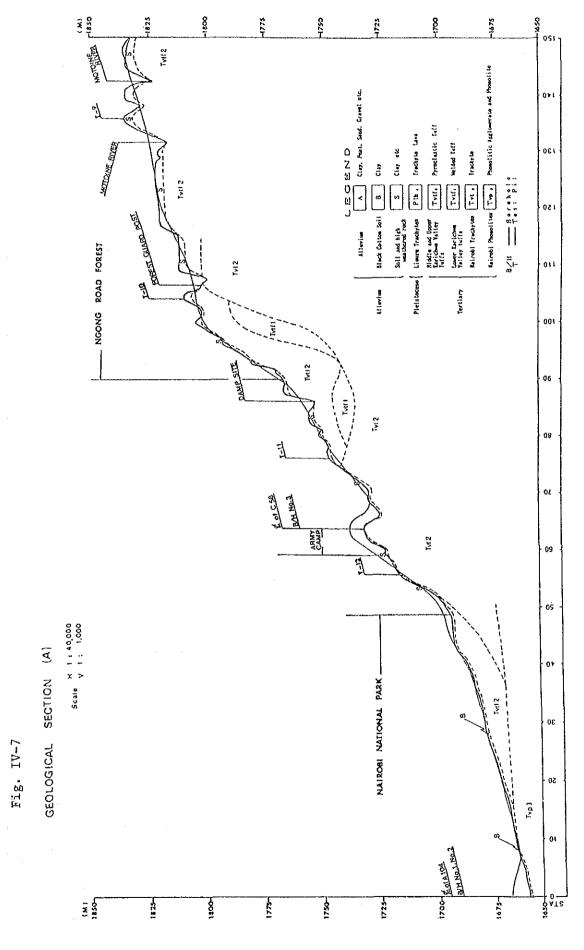
The proposed alignment climbs up the Dagoretti Forest and passes through the northeast edge of the forest and Thogoto Village avoiding a built up area. After that the Bypass goes around both Alliance Boys and Girls High Schools to the West, thus avoiding breaking the school community and destroying a famous church. The Bypass then crosses slightly the Ondiri Swamp with a high embankment and joins the route C63 avoiding the swamp as much as possible. After that it passes under an existing railway and joins Naivasha Road (A104) at Kikuyu Junction.

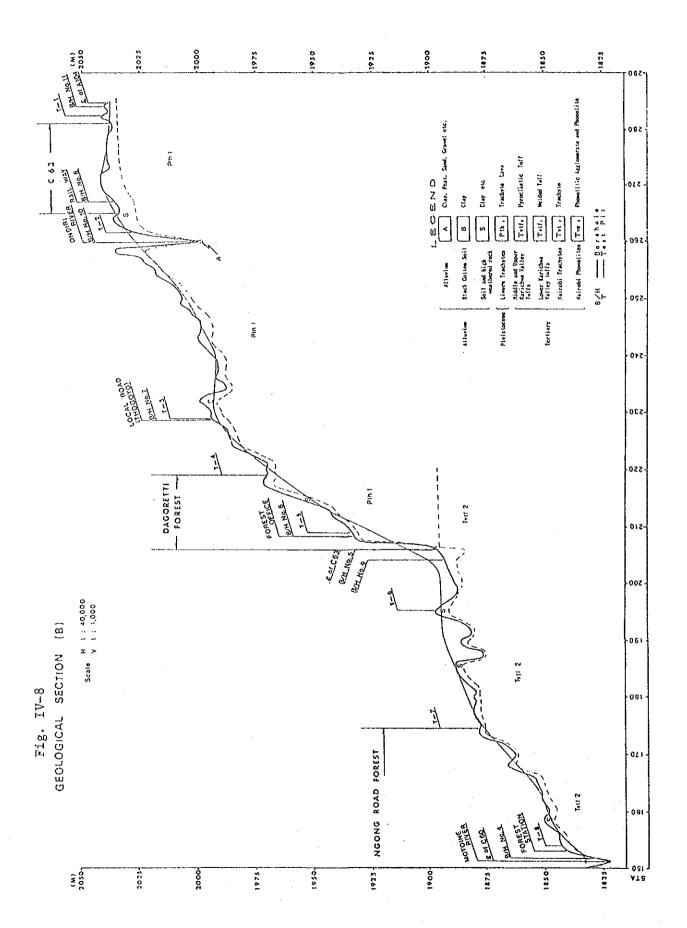
IV.5.2 Geology and Soil

The project area belongs to the Athi River Drainage System and has been dissected by many rivers (Motoine River, Mokoyoti River, Nairobi River etc.) which flow from the eastern highlands of the Rift Valley to the east forming alluvial deposit plains in places.

The bedrock of the East Africa, including Kenya, is formed by Precambrian crystalline rocks belonging to the Mozambique Belt. The geological structure is specialized by the Great Rift Valley stretching South and North.


Bedrock in this area has been cut by a lot of faults along the Rift Valley and the environs have been covered with thick volcanic rock produced by aggressive igneous action after the tertiary period.


Accordingly, phonolite, trachyte, tuff etc., which were spouted sometimes from tertiary to pleistocene have been distributed on the east highlands of the Rift Valley including Nairobi.


Surface soil in the northwest highland region of Nairobi is composed of soil from volcanic ash, weathered volcanic rocks etc. Black cotton soil, however, which is cohesive and hygroscopic is distributed in the Athi Plain on the southeast side of Nairobi.

The proposed road starts on the Mombasa Road (104) near the northeast edge of the Nairobi National Park and reaches the Kikuyu Junction of Naivasha Road (A104) passing through Ngong Road Forest located to the south and Dagoretti Forest to the west of Nairobi City.

The filed survey area has been dissected by a lot of rivers belonging to the Athi River Drainage System, and there is some intermittent distribution of alluvial deposit. Some of this alluvial deposit shows locally in the swamp during the rainy season. The geological conditions of Nairobi and environs is shown in Fig. IV-6 and geological conditions of the project road are shown in fig. IV-7 and Fig. IV-8.

IV.5.3 Pavement Design

Pavement design was carried out in accordance with Road Design Manual Part III by MOTC Kenya.

The Material Branch of MOTC and the JICA team discussed the procedure of pavement design and the pavement material to be used. The proposed pavement structures are as follows.

Note: Detailed soil investigation should be carried out at the detailed design stage to design suitable pavement structures in every section.

Crushed stone for subbase course would be imported from quarries in Eastland. Cement stabilized material in this case is similar to lean concrete.

Proposed Pavement Structure by Section Section Traffic Subgrade Proposed Pavement Structure STA 0 + 0.0**S**5 100mm T_1 Surface -STA 90 + 0.0| 200mm | Cement Stabilized Material | 175mm | Cement improved Material (or crushed stone) STA 90 + 0,0 S4100mm T₁ Surface -End 200mm Cement Stabilized Material 225mm | Cement improved Material (or crushed stone) S6 STA 207 + 0.0100mm T, Surface -STA 200mm Cement Stabilized Material STA 214 + 0.0**S6** T_1 -STA

IV.5.4 Intersection Design

(1) Intersection Alignments and Traffic Control Policy
Intersection designs have been made for the intersections at which
the project road crosses the major trunk roads. Structural type
and traffic control policy of each major intersection are
summarized as follows:-

		بقدي سازون وينفيه ومستنف الدويث فيستند وسنبر فيهمي ويسوي والمناف ويأوجون والمتناف والمرجوع والمستنف والمستنف
Name of Intersection	Name of Road	Traffic Control Policy and Structural Type
Mombasa Junction	Mombasa Road (A104)	Partial clover leafs
Uhuru Monument Junction	Langata Road (C58)	Diamond Interchange. To provide for traffic from all directions
Ngong Road Junction	Ngong Road (C60)	Compound T-Junction. To provide for traffic from all directions
Dagoretti Road Junction	Dagoretti Road (C63)	Compound T-Junction . To provide for traffic from all directions
Kikuyu Junction	Naivasha Road (A104)	Directional Interchange. To provide for traffics of full direction

IV.5.5 Design of Structures

Three bridges, five road box culverts and five box culverts, were designed. After discussion with the structural engineer of MOTC, Design Criteria for structural design have been referred to the Road Earthwork Manual by Japan Road Association. Live load for preliminary design of bridge was adopted TL-20, and earthquake load was not considered.

Types of structures are studied and selected with due consideration of low construction cost and especially the following items:

- 1. Easy construction work by Kenya Contractors
- 2. Construction using local material and easily imported material in Kenya
- 3. Easy maintenance work after construction
- 4. Beauty (Not to interfere with natural sights).

IV.6 Construction Schedule and Costs

IV.6.1 Construction Period and Time Target

The total construction period of the Nairobi Bypass Project is scheduled to be about 4.5 years. The first 2 years are required for such pre-construction works as detailed engineering design, land acquisition, tendering and contractual events. The later 2.5 years are required for actual construction works of the project.

IV.6.2 Construction Schedule

The construction schedule is shown in Fig. IV-9 and Fig. IV-10 by bar chart.

IV.6.3 Annual Disbursement Schedule

The disbursement schedule of the construction cost is tabulated as follows.

-	37	D	Local	Total
	Year	Foreign	Local	TOTAL
		Currency	Currency	(Million Kshs)
		(Million Kshs)	(Million Kshs)	
lst	Year	6.60	4.52	11.12
2nd	Year	2.95	28.51	31.46
3rd	Year	18.54	35.51	54.05
4th	Year	147.73	118.27	266.00
5th	Year	87.89	65.91	153.80
	Total	263.71	252.72	516.43

IV.6.4 Maintenance Cost

The road maintenance cost is estimated for the following items: Annual routine maintenance cost and periodical maintenance cost. The annual maintenance cost consisting of cleaning cost and repairing cost is estimated based on the "BREAKDOWN OF ROAD MAINTENANCE RATES FOR 1987/88 FINANCIAL YEAR, MOTC". The periodical maintenance cost for overlays is estimated at intervals of 5 years after completion of construction.

(1) Annual routine maintenance cost: 6,600 Kshs/km/year is adopted for a single carriage road. The maintenance rate is reflected by the level of financial allocation from the Treasury (Ministry of Finance). The main road is planned to be a dual carriage road and the ramp is to be single carriage road. The annual routine maintenance cost is estimated below:

Main road

 $6,600 \text{ Kshs/km/year} \times 2 \times 29.220 \text{km} = \text{Kshs.} 385,700$

Ramp

6,600 Kshs/km/year x 1 x 4.365km = Kshs. 28,800 Sub-Total Kshs.414,500/year.

(2) Periodical Maintenance cost:

The periodical maintenance cost is estimated at the overlays cost after 5 years, 10 years and 15 years.

The overlays are planned as 35mm thick asphalt pavement at intervals of 5 years. Therefore, each overlay cost is estimated below:

Main Road

1,500 Kshs/m³ x 0.035m x 7m x 2 x 29,220m = Kshs.21,476,700

Ramp (1-1ane)

1,500 Kshs/m³ x 0.035m x 4m x. 3,345m = Kshs. 702,500

Ramp (2-lane)

1,500 Kshs/m³ x 0.035m x 6m x 1,020m = Kshs. 321,300

Sub-Total Kshs.22,500,500/each.

Period		Periodical Maintenance.		
After	5 years	Kshs.22,500,500		
After	10 years	Kshs.22,500,500		
After	15 years	Kshs.22,500,500		

Fig. IV-9 Construction Schedule (1/2)

22		181	Year		2nd Year		ard	Year		4 th Y			5 th Y ear	
UESCAIP I CN	QUANTITY	3 2 3 4 5 6	7 8 9	12136451	16	222222	० व ६ देश यू ८ देश दे	191 b 2 b 3 b 4 b	586375835	4041424344	45/46/47/48	495051525	354555657	6 5 9 5 0
Detalled design		Detailed	D cs i	1										
Land acquisition			Land Argui	uis in ron										
Tender and contract			4	Presout III it of 1	'dn Tender	o) guo	f foot							
Construction Work							-Comment	z m ent				Completion	t80#_	
1. Mobilitation, Preparatory work	L.S													
2.Section 1.	-													
Clearing and grubbing ha	37.5													
5	3 6,3 50						1							
Embank ment	3 325,070								1					
Subgrade														
Crusher-run subbase m														
Cement stabilized base m	21,990													
Asphalt surface course m3	3 10,990													
Drainage work	۲.5													
Bridge No.1	7.2													
Road turniture	1.5													
3. Section 11														
Clearing and greabing	6.54													
	m3 43,180								- -		 			
Embankment m	371,510													
Subgrade	m ³ 268,700											- 1		
Crusher-run subbase	33,910													
Cement stabilized base m	m ³ 25.690									1				
Asphalt surface course m	m³ 12,840													
Drainage work	۲۰۶										T			
Box culver! No 1 drain. m	. S.S							1						
Box culvert No.2 for drain, m	63								1					
Bridge No 2	e e													
Road furniture	1.5													

Fig. IV-10
Construction Schedule (2/2)

5th Year 4 th. Year Schedule (2/2) 3rd Year Construction 2nd Year N QUANTITY 37.6 8.00 24,980 12,490 35,210 41.5 2 6 520,510 220,530 ę, 5 0 ę. 012,7 29 \$ 1 5,430 7 a, ho 18.5 m³ 50,330 m³ 165,400 21,750 7, r. s 93,300 E | Cement stabilized basema Asphalt surface course m3 Box culvert No 2 for road m Box culvert No4-2 for road m Box culvert Not-1 for road Box culvert Net for drain. Box culvert No3 for road Box culvert No3-1 for drain. Asphalt surface course Box culvert Holfor road Cement stabilized base Clearing and grubbing Box culvert No.3-2 for drain. Citaring and grubbing Crusher-run subbase Crusher - run subbase DESCRIPTION Road furniture Drainage work Drainage work Road turniture S. Section 14 4. Section III Embankment Embankment Bridge No 3 Subgrade Subgrade

- 46 -

Table IV-7
Summary of Construction Cost

Unit: 1,000 Kshs.

***************************************		Description	Foreign Currency	Local Currency	Total
1.	Dire	ct Construction Cost			
	1.1	General	0	16,136	16,136
	1.2	Site clearing and topsoil stripping	2,962	1,410	4,372
	1.3	Earthwork	59,976	31,267	91,243
	1.4	Pavement work	110,325	44,956	155,281
	1.5	Drainage work	2,802	9,163	11,965
	1.6	Road Furniture	6,440	11,026	17,466
	1.7	Box Culvert	14,035	12,871	26,906
	1.8	Bridge	7,848	7,640	15,488
		Sub-total (1.1 to 1.8)	204,388	134,469	338,857
2.	Engi	neering Services			
		Detailed design, super- vision and administration	20,439	13,447	33,886
3.	Land	Acquisition and Compensation	0	22,805	22,805
4.	Phys	ical Contingency	20,439	13,447	33,886
		Total (1 to 4)	245,266	184,168	429,434
5.	Pric	e Escalation	18,443	68,556	86,999
		Grand Total	263,709	252,724	516,433

	•		

V. Economic Assessment

V. Economic Assessment

The procedure of the economic assessment is illustrated in Fig. V-1.

V.1 Economic Costs

(1) Initial Capital Investment Cost

516,433,000 Shill. is estimated, based on the preliminary design in the financial term at August, 1987.

Approximately 17,670,000 Shill. per km is considered reasonable for a dual carriageway for a 29.22 km long Bypass with grade separation of main junctions having an additional 4.4 km of ramp way.

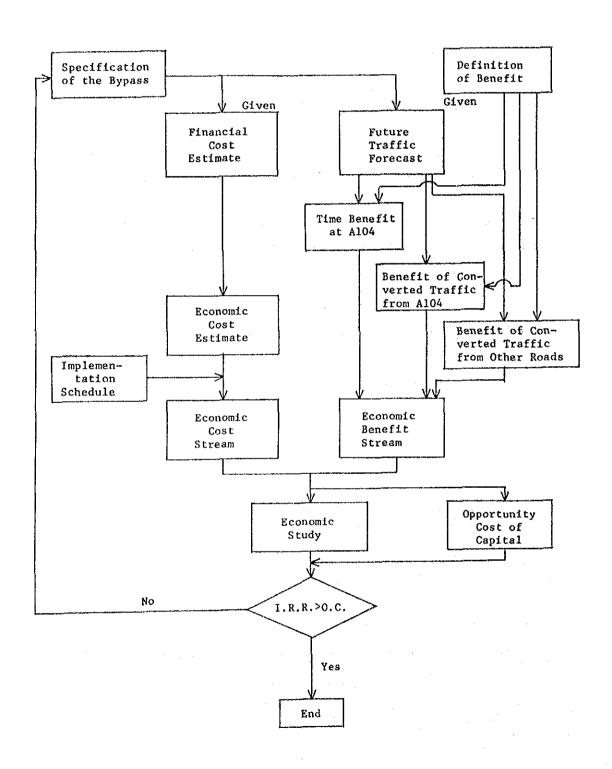
A financial cost of 516,433,000 Shill. is to be converted into economic cost using the following procedures.

- Deduction of land acquisition cost
- Deduction of Tax and Duty
- Adjustment of the shadow price of unskilled labour
- Exemption of price escalation

Thus, initial economic investment cost becomes 338,374,000 Shill.

(2) Maintenance Cost

Total maintenance cost per year is estimated as 414,500 Shill. 414,500 Shill. is converted into 271,498 Shill. in economic terms which is used for Economic Assessment.


Periodical maintenance costs for the overlay after each 5 years is estimated as 22,500 x 10^3 Shill. in financial terms and 14,838 x 10^3 Shill. in economic terms.

(3) Implementation Schedule

A Preliminary Implementation Schedule is established as follows:

- Starting with detailed design at 1988
- Completion at 1992
- Full utilization at 1993
- Partial utilization at 1992 of 42%

Fig. V-1 Flow Chart for Economic Assessment

(4) Economic Cost Stream

Table V-1

Economic Cost Stream

			Unit: Economi	c, mid 19	987, 10 ³ Shi	11.
Project Year	Fiscal Year	Initial Capital Investment Cost	Maintenance Cost	Total Cost	Discounted by 12%	1/
1	1988	4,418	0	4,418	4,418	
2	89	8,263	0	8,263	7,378	
3	90	41,479	0	41,479	33,067	
4	91	214,092	0	214,092	152,386	
5	92	127,344	0	127,344	80,929	
6	93	0	272	272	2 154	
7	94	0	272	272	138	
8	95	0	272	272	123	
9	96	0	272	272	110	
10	97	0	14,738	14,738	5,315	
11	98	0	272	272	2 88	
12	99	. 0	272	272	2 78	
13	2000	0	272	272	? 70	
14	1	0	272	272	2 62	
15	2	0	14,738	14,738	3,016	
16	3	0	272	272	2 5,0	
17	4	0	272	272	44	
18	5	0	272	272	9 40	
19	6	0	272	272	35	
20	7	0	14,738	14,738	1,711	
		$\triangle 84,344 \frac{2}{}$		△84,344	△ 9,793	
•	20	311,252 <u>3</u> /	47,478	358,730	279,419	

^{1/ :} Opportunity cost of capital See IX.3.1

^{2/}: Residual value, \triangle : Minus

^{3/ :} Included price change

V.2 Economic Benefits

(1) Definition of Benefit

Based on direct benefit considered, the following 3 items which can be quantified logically are adopted for the calculation of the benefit in the Study.

- a) The difference of required passing time with and without project at AlO4.
- b) The differences of Vehicle Operating Costs and required passing time in the case of using AlO4 and the Bypass.
- c) The difference of transport cost in the case of using other roads and Bypass.

(2) Vehicle Operating Cost

Vehicle Operating Cost is assessed, based on the formula established by Japan's Ministry of Construction with the latest data collected from interviews with manufacturers, forwarders and dealers in Nairobi.

VOC is calculated by types of vehicle, speed, slopes of roads and conditions of roads with the cost per km in economic term.

(3) Time Value

Time Values are estimated separately for passenger car passengers and the mass-transit passengers (bus and matatu) with working hours and non-working hours.

- a) The passenger vehicle passenger
 - working hours, 68 cents/minute
 - non-working hours, 41 cents/minute
- b) The mass-transit passenger
 - working hours, 17 cents/minute
 - non-working hours, 4 cents/minute

(4) Economic Benefit Stream

In order to calculate the figures of benefit, future traffic unit indices for benefit as VOC and time value as well as the speed of vehicles, design speed, legal speed limit, the velocity curve and the traffic capacity were adopted.

The calculated stream of the economic benefits is shown in Table V-2.

V.3 Economic Assessment

(1) NPV

NPV based on Economic Cost Stream and Economic Benefit Stream is calculated to be $145,332 \times 10^3$ Shill.

NPV for the project has a positive figure.

(2) Benefit Cost Ratio

B/C Ratio is calculated to be 1.52, which is above the figure of acceptability, based on Economic Cost Stream and Economic Benefit Stream.

(3) IRR of 18.26% is calculated, based on Cost and Benefit Stream, which is considered an acceptable figure.

(4) Sensitivity Analysis

a) A Case Study of Cost Alternatives based on Table V-2, Economic Benefit Stream and the Cost of 20% higher to Table V-1, whereas 20% was adopted as the admissable error of the cost based on preliminary design.

IRR 15.58%

b) A Case Study of Benefit Alternative based on Table V-1, Economic Cost Stream and the benefit having been decreased by 20% against Table V-2, Economic Benefit Stream.

IRR 14.86%

Table V-2 Economic Benefit Stream

				! :		
Project Year	Fiscal	Time Benefit at A104	Benefit of Converted Traffic at Bypass from AlO4	Benefit of Converted Traffic at Bypass from other Roads	Total Benefit	Discounted $\frac{1}{2}$ by 12% $\frac{2}{2}$
~	1988	0	0	0	0	0
2	88	0	0		0	0
ო	06	0	0	0	0	0
4	91	0	0	0	0	0
Ŋ	92	5,755	6,033	3,820	15,608	9,919 3/
o	93	14,840	16,760	11,697	43,297	24,568
7	76	15,943	19,399	14,925	50,267	25,467
ω	- 95	17,128	22,455	19,045	58,628	26,520
ο,	96	18,400	25,991	24,301	68,692	27,744
10	26	19,767	30,085	31,008	80,860	29,159
11	86	21,236	34,824	39,567	95,627	30,789
12	66	22,814	40,309	50,487	113,610	32,660
13	2000	24,509	46,663	64,421	135,593	34,803
14	H	25,489	48,530	866,998	141,017	32,317
15	7	26,509	50,471	69,678	146,658	30,009
16	m	27,569	52,490	72,465	152,524	27,866
17	7	28,672	54,589	75,364	158,625	25,875
18	Ŋ	29,819	56,773	78,378	164,970	24,027
19	· •	31,012	59,044	81,513	171,569	22,311
20	7	32,252	61,405	84,774	178,431	20,717
M	20	361,714	625,821	788,441	1 775 976	424,751

c) A Case Study of Cost Alternative and Benefit Alternative based on the benefit of 20% decreased to the Table V-2, Economic Benefit Stream and the cost of 20% increased to the Table V-1, Economic Cost Stream.

IRR 12.22%

(5) Qualitative Benefit

Indirect Benefit

- Economic Development Effect
- Transport Network Improvement Effect
- Introduction of Highly Sophisticated Transport Infrastructure
- Regional Development Effect
- (6) It can be concluded that the Project is firmly acceptable as the positive effect of congestion mitigation at AlO4 is clearly anticipated with the traffic conversion from AlO4 to the Bypass being 4,110 ADT and 6,282 ADT at 1991 and 2000, respectively.

VI. Overall Evaluation

VI. Overall Evaluation

- (1) As the project is justifiable technically, economically and socially, it is strongly recommended to take necessary actions so as to implement the project as scheduled.
- (2) The project is firmly acceptable as the positive effect of congestion mitigation at AlO4 is clearly anticipated with the traffic conversion from AlO4 to the Bypass being, 4,110 ADT and 6,282 ADT at 1991 and 2000, respectively.
- (3) In the case of no Bypass, according to a future traffic assignment estimation, a congestion rate (traffic/traffic capacity) as of the year 2000, will become 2.30 on AlO4 at City Centre and 1.29 on Ngong Road and 1.18 on Langatta Road. Therefore it is quite necessary for the City to commence the Bypass construction.
- (4) In accordance with the economic assessment for the project, the Internal Rate of Return of 18.26% is calculated based on Cost and Benefit Stream, which is considered an acceptable figure for the project.
- (5) The alignment and the design of the proposed road involves many problems requiring a high level of engineering to solve them. On the other hand, it does not seem that special techniques or special types of equipment would be required for the construction therefore construction execution by joint venture of a local and a foreign contractor is reasonable.
- (6) The detailed design work for the project would involve highly complex engineering problems, especially for junctions with a different class roads, so it is desirable to employ qualified and experienced consulting engineers for the detailed design work.
- (7) The massive amount of funds required for the development of the project, will be one of the possible measures to arrange with an external source for financing the project.
- (8) The construction cost of 266 million K.Shs is to be invested for the 4th year construction cost of this project, which would be specially appropriated in the Government budget as the amount will occupy a high percentage of it.

