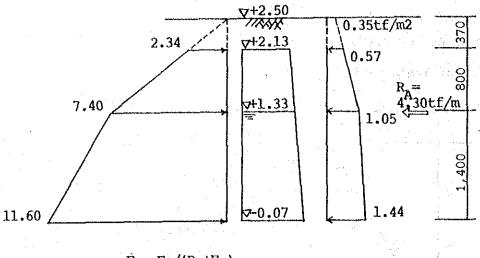
5. Design of Anchor Plate

(1) Location of Installation



$$L = h_1 \cot \zeta_0 + h_2 \cot \zeta_\rho$$

= 5.0 x \cot 60.1° + 2.57 x \cot 22.4°
= 9.11 ------- 9.5 m

(2) Height of Anchor Plate

$$\psi = \beta = 0$$
, therefore, Ka $\cos \delta = 0.35$, Kp $\cos \delta = 3.72$
 $Pa_{+2.50} = 0.35$
 $Pa_{+2.13} = 0.35 \times (1.00 + 1.70 \times 0.37)$
 $Pa_{+1.33} = 0.35 \times (1.00 + 1.70 \times 1.17)$
 $Pa_{-0.07} = 0.35 \times (1.00 + 1.70 \times 1.17 + 0.80 \times 1.40) = 1.44 \text{ tf/m}^2$
 $Pp_{+2.13} = 3.72 \times (1.70 \times 0.37)$
 $Pp_{+1.33} = 3.72 \times (1.70 \times 1.17)$
 $Pp_{+1.33} = 3.72 \times (1.70 \times 1.17)$
 $Pp_{-0.07} = 3.72 \times (1.70 \times 1.17 + 0.80 \times 1.40)$
 $Pp_{-0.07} = 3.72 \times (1.70 \times 1.17 + 0.80 \times 1.40)$
 $Pp_{-0.07} = 3.72 \times (1.70 \times 1.17 + 0.80 \times 1.40)$
 $Pp_{-0.07} = 3.72 \times (1.70 \times 1.17 + 0.80 \times 1.40)$

$$R_{A} = 4.30 \text{ tf/m}$$

 $E_{A} = 2.39 \text{ tf/m}$
 $E_{B} = 17.2 \text{ tf/m}$

$$F = Ep/(R_A + E_A)$$
= 17.2/(4.30+2.39)
= 2.57 > 2.50

(3) Section of Anchor Plate

 $M_{H} = TL/12$ (Horizontal max. bending moment)

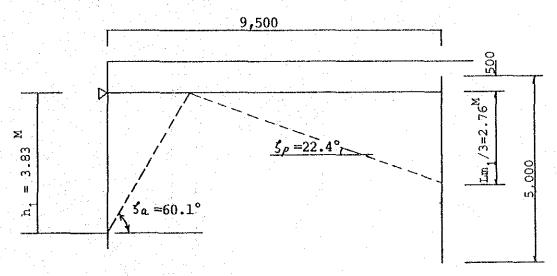
Mr = TD/8L (Vertical max. bending moment per 1 meter of quay wall length)

T = 6.88 tf/m

L = 1.60 m

D = 2.20 m

Therefore,


 $M_{H} = (6.88x2.20)/12 = 0.92 \text{ tfm}$

Mr = (6.88x2.20)/(8x1.6) = 1.18 tfm/m

	Horizontal	Vertical
M	0.92 tfm	1.18 tfm
В	$2 \times H = 100 \text{ cm}$	100 cm
Н	50 cm	50 cm
đ	40 cm	40 cm
As	D10 $(300 = 2.375 \text{ cm}^2/\text{m})$	D10 $0300 = 2.375 \text{ cm}^2/\text{m}$ Welded steel net (NK high mesh)
	B=2x50 =100cm	D=

Horizontal			2	Vertical		
σs	1,010	kgf/cm ²		1,300	kgf/cm ²	
σī	1.0	kgf/cm ²		12	kgf/cm ²	

(In case of the Sheet Pile)

Soil condition of loose sand

$$r_t = 1.70 \text{ tf/m}^3$$

 $r' = 0.80$

$$\phi = 25^{\circ}$$

$$\bar{N} = 5$$
 (Assume)

E =
$$28N = 140 \text{ kgf/cm}^2$$

Therefore, $k_0 = 1/3 \times 0.2 \times 3140 \times 100^{-3/4}$ Fig 4-22 (p.98)
= 0.30 kgf/cm 0.6 - 1.0

$$\beta = \sqrt[4]{k_0 B/4EI}$$

$$B = 100cm$$

$$E = 2.1 \times 10^6 \text{ kgf/cm}^2$$

$$I = 16,400 \text{ cm}^4/\text{m} \text{ (SP Type-III)}$$

Therefore,

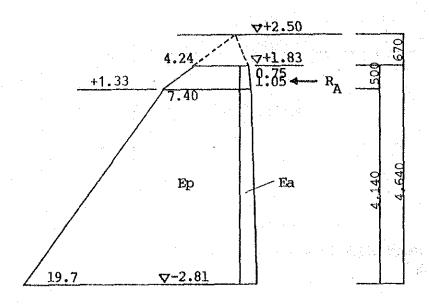
$$\beta = \sqrt[4]{(0.30 \times 100)/(4 \times 2.1 \times 10^6 \times 16,400)} = 0.00384 \text{ cm}^{-1} = 0.38 \text{m}^{-1}$$

$$Lm_1 = \pi c/\beta = \pi c/0.38 = 8.27 \text{ m}$$

$$Im_1/3 = 2.76 \text{ m}$$

$$L_{req} = h_1 \cos \delta_a + Im_1/3 \cos \delta_p$$
= 3.83 \cos 60.1° + 2.76 \cot 22.4°
= 2.02 + 6.70

$$= 8.72 \text{ m} < 9.50 \text{ m}$$


Length of embedding

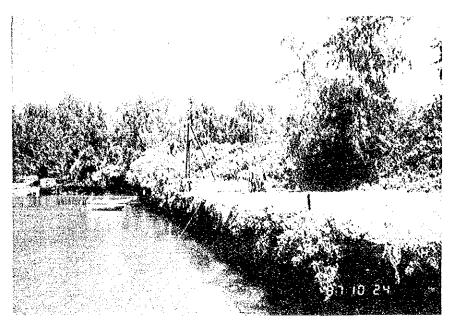
Therefore,

$$L = L_0 - 0.5 = 5.0 - 0.5 = 4.50 \text{ m} < Im_1 = 8.27 \text{ m}$$

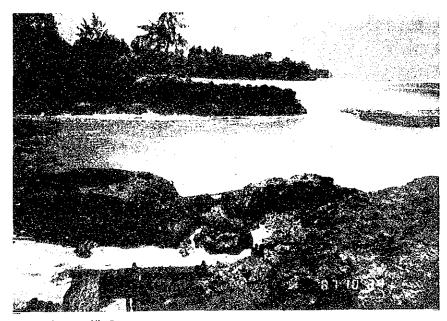
Therefore,

Same as for anchor plate because of short pile.

Herein, short pile between anchoring position and the point of $Im_1/2$ = 4.14m shall be neglected.

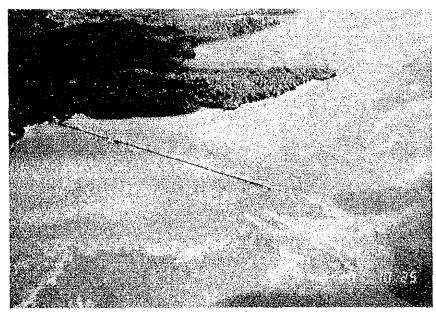

Against M_H, wale can resist as the front sheet pile.

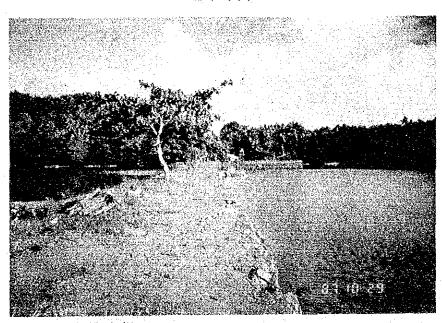
$$Mr = TD/8L = (6.88 \times 4.64)/(8 \times 1.6) = 2.49 \text{ tfm/m}$$

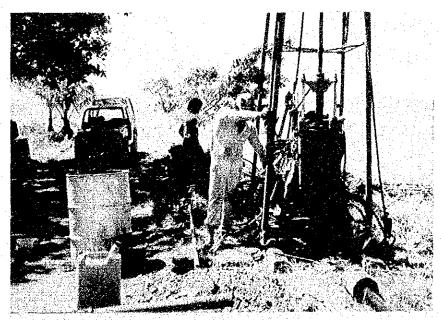

$$= M/Z = (2.49 \times 10^5)/1,310 = 190 \text{ kgf/cm}^2$$

F = 59.0/(4.30+7.20) = 5.13 > Fs = 2.50

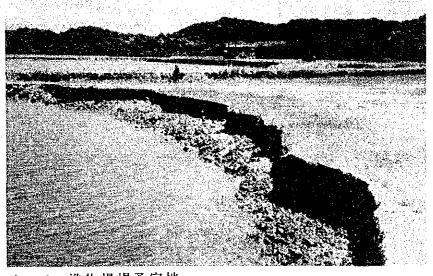
写 真 集


アンガウル港物揚場予定地

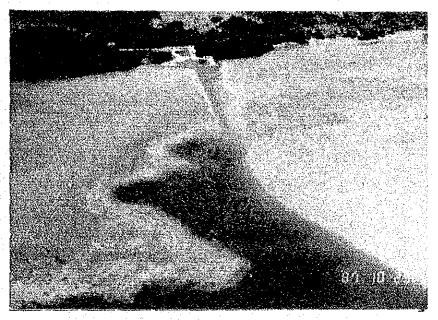

アンガウル港入口

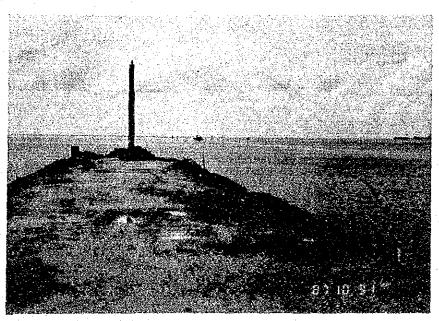

アンガウル港全景

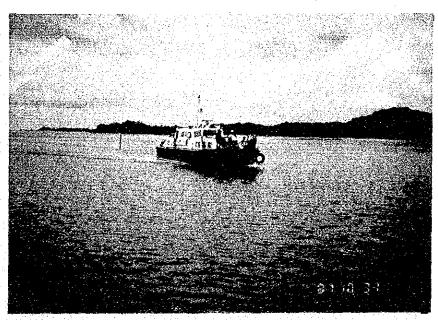
アルコロン港空中写真

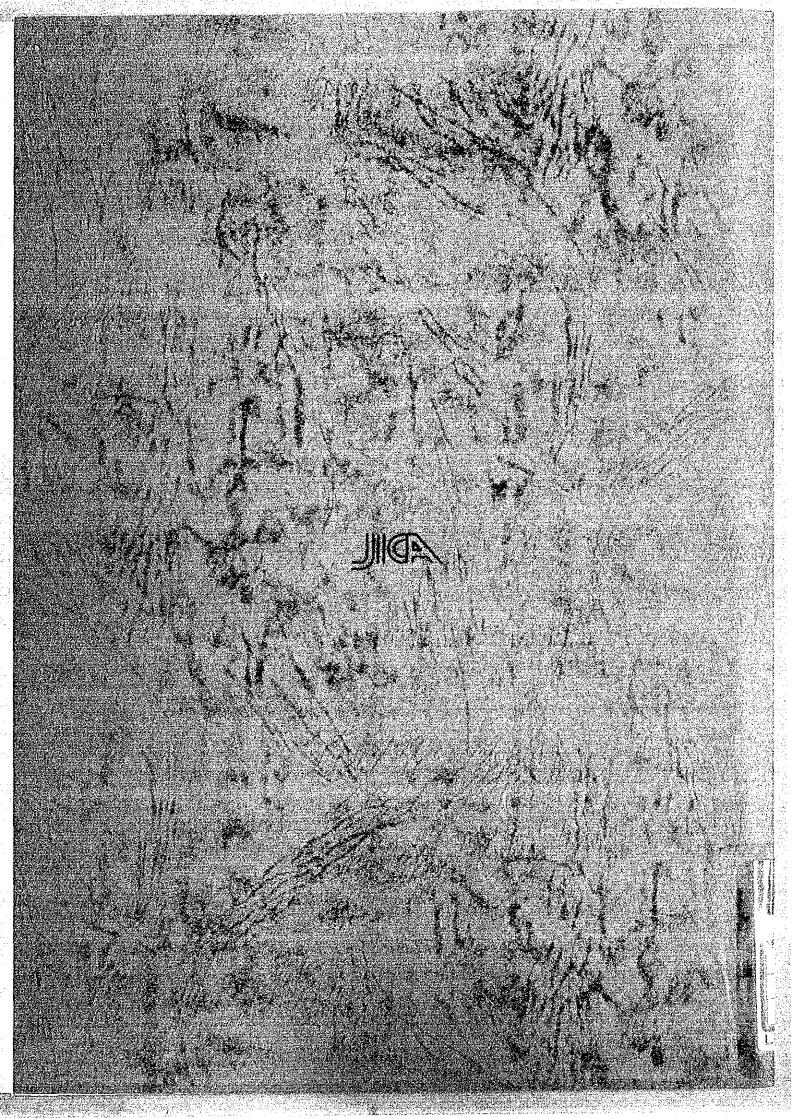

アルコロン港突堤

マルコロン・ボーリングサイト


ガッパン港突堤


ガッパン港物揚場予定地


ガッパン港空中写真


メレケオク港空中写真

メレケオク既存突堤

メレケオク港定期船

