- 4) The geothermal structure in the survey area is estimated to be the fault structure from the result of 2-D modeling analysis. The three major faults, which may control geothermal fluid movement and geothermal system in the area, are very important.
- II.3.3 Mise-á-la-masse survey
 - 1. Objectives

The Mise-á-la-masse (charged potential) survey was carried out in order to estimate the geothermal structure around the well which was drilled for the heat flow measurement in the most prospective area.

- 2. Survey procedure
 - (1) Measuring procedure

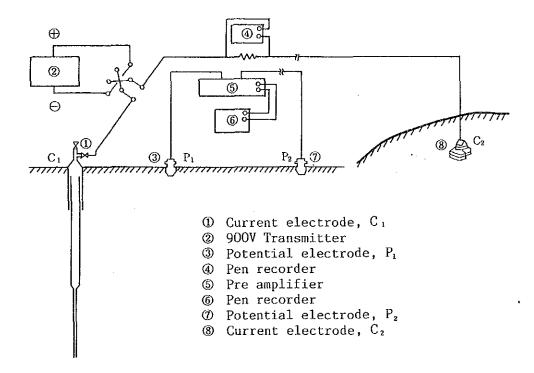


Fig. II.3.47 Equipment layout for Mise-á-la-masse measurement

Fig. II.3.47 shows the equipment layout for Mise-á-la-masse measurement. As shown in the figure, two current electrodes (C1, C2) and two potential electrodes (P_1, P_2) were used for the measurement. One of current electrodes, C₂, was earthed at the point as far as possible from the survey area. The potential electrodes, P_1 and P_2 , were used for the measurement of the potential difference which was excited by the current flowing into the geothermal reservoir and/or hydrothermally altered zone. One of potential electrodes, P_1 , was fixed, and the other, P_2 , was movable in the survey area. In this survey, in addition to C_1 which is connected to 200 m casing pipes in DG-1, two other current electrodes were applied such as 500 m casing pipes and a point source. The casing pipes of 500 m length were provisionally installed for the measurement in order to obtain the data concerned with the resistivity distribution caused by depth differences. On the other hand, the point source was also provisionally installed to obtain the resistivity distribution of the shallow part in the survey area. The fixed current electrode, C₂, was installed by burying ten plates of copper and stainless bars in the mud pond near the river. In order to decrease the contact resistance, 20 kg of salt was scattered in the soil as electrolytes. The fixed potential electrode, P_2 , was installed in the cotton field to the west far from DG-1, and every morning it was watered to retain the dampness to prevent high contact resistance.

(2) Analysis procedure

Fig. II.3.48 shows the flow of analysis for Mise-á-la-masse measurement. The data obtained from the survey was processed and analyzed according to this flow. The analysis was carried out by calculating the residual resistivities which are obtained by subtracting the theoretical resistivities from the observed resistivities. The apparent resistivities are calculated from the equation based on the theoretical potential which is generated by one line source and one point source. On the other hand, the theoretical resistivities are calculated from the linear equation using the least squared method which is defined by factors such as the observed apparent resistivities and the distance from the well to each point.

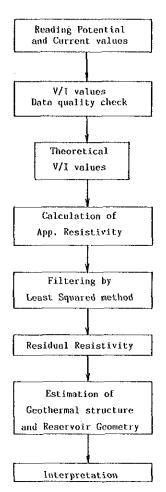


Fig.I.3.48 Flow of analysis for Mise-á-la-masse measurement

- 3. Results and interpretation
 - (1) V/I map

The patterns of the V/I maps by a point source, 200 m casing pipes and 500 m casing pipes show the same tendency as a whole. And in accordance with seeing the patterns starting from a point source to 500 m casing pipes, the contour distortions become large.

This is based on the principle that a long current line source is more effective in sending the current directly in deeper part of subsurface and to obtain information on the deep electrical structure.

However, the difference in contour distribution between the 200 m and 500 m casing pipes is not so clear, whereas the difference between the point source and the 200 m or 500 m casing pipes is clear.

The features in the V/I map is as follows:

1) V/I map by a point source (Fig. II.3.49)

The measured V/I values range between 0.6 m V/A and 4.2 mV/A. The contours show roughly concentric circles centered around DC-1 which is used as a current electrode C_1 . The contours of the northeastern and southwestern parts are distorted outwards, and this shows the existence of resistivity anomalies in and around those distorted parts.

2) V/I map by 200 m casing pipes (Fig. II.3.50)

V/I values range between 0.6 mV/A and 4.2 mV/A. The contour pattern shows a quasi-triangle shape caused by fault-like structures trending NW-SE and NE-SW from the elongation and trend of contours except around DG-1.

Along these directions, the contours have a high density and are distorted, so that faults are estimated to trend those directions as seen in Fig. II.3.51.

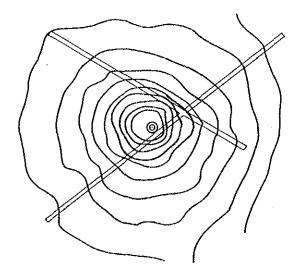


Fig. 1.3.51 Lineament estimated from V/I distribution

3) V/I map by 200 m casing pipes (Fig. II.3.52)

The V/I values roughly range between 0.6 mV/A and 4.2 mV/A. The pattern of the V/I distribution is almost the same as the previous one.

The tendency of contour distortion and elongation is more emphasized than those of previous maps.

(2) Theoretical potential map (Fig. II.3.53)

The theoretical potential maps from the point source, 200 m casing pipes and 500 m casing pipes show almost the same distribution patterns, so that the map by 500 m casing pipes will be explained as a representative.

The contours show nearly concentric circles centering DG-1, and the values decrease exponentially in accordance with the distance from DG-1 to each point. The values include the effect by topography and electrode configuration, however the effect of topography is not recognized clearly because there are no distorted parts. The effect of the electrode configuration is not recognized clearly near DG-1, whereas it is recognized as getting larger in proportion to the distance from DG-1.

Hence, contour intervals in the west part of DG-1 increase more than those in the east part in accordance with distance from DG-1. This is because C_2 the fixed current electrode 6 km from DG-1, was installed in the eastern part of the survey area.

(3) Apparent resistivity map (Fig. II.3.54 to II.3.56)

In the distribution patterns of the apparent resistivities using these kinds of current source, those figures show nearly similar distribution. As described previously, the pattern obtained from line source using long casing pipes which can send the current in deeper part directly seems to reflect the deep structure rather than that from a point current source.

The features are explained as follows:

1) The contours show an ellipse form whose major axis trends from the northeast to the southwest, so that a fault-like structure trending in that direction is estimated at Kaynarca.

- 2) From the elongation of the contours distorted outwards, a faultlike structure trending northwest to southeast is estimated.
- 3) The contour density in the northeastern part is small, and contours elongate outwards remarkably. This tendency is clear when using 500 m casing pipes.

The northeastern deeper part is considered that low resistivity zone or the sudden changes of resistivities by geological difference may exist.

- 4) The two fault-like structures trending northwest to southeast and northeast to southwest are inferred in the area where geothermal manifestations are recognized, so that these structures and the intersection of these structures are considered to be closely related to the geothermal structure in the area.
- (4) Residual resistivity map

From the residual resistivity map, it is possible to study the geothermal structure and reservoir structure in detail. The features of residual resistivity maps obtained from three kinds of current sources are explained as follows:

1) Residual resistivity map by a point source (Fig. II.3.57)

Residual resistivities range from $-2.0 \times 10^{-4} \text{ mV/A}$ to $1.5 \times 10^{-4} \text{ mV/A}$. The anomaly pattern seems to be correlated with the pattern of fault-like structures estimated from apparent resistivity maps.

2) Residual resistivity map using 200 m casing pipes (Fig. II.3.58)

Residual resistivities range from $-2.5 \times 10^{-4} \text{ mV/A}$ to $1.5 \times 10^{-4} \text{ mV/A}$.

The anomaly pattern is almost the same as that of the point source excluding the low anomaly near DG-1. The anomaly center trending northeast to southwest near DG-1 moved to the southern part. It indicates that the fault-like structure trending in that direction is dipping in a southern direction, and DG-1 seems to have been drilled at the shallower part of that fault.

This tendency is emphasized in the residual map using 500 m casing pipes. Therefore, the fault-like structure trending in that direction is important to study geothermal structure in this area. In the northeastern part, the low residual anomaly is also recognized, and the boundary contour of 0 mV/A between low and high residual anomalies shows a linear structure trending northwest to southeast. This structure is interpreted to be a fault trending in that direction, especially judging from the contour shape.

3) Residual resistivity map using 500 m casing pipes (Fig. II.3.59)

Residual resistivities range from -2.5×10^{-4} mV/A to 2.5 mV/A. The distribution pattern as a whole is nearly the same as that of the 200 m casing pipes. DG-1 is located to the north of the low anomaly zone, so this means that the low residual anomaly zone trending northeast to southwest moved southward. Thus, in accordance with the residual anomaly movement from a point source to the 500 m casing pipes, the low residual anomaly moves southward as if the fault-like structure is dipping to the south. (Fig. II.3.60)

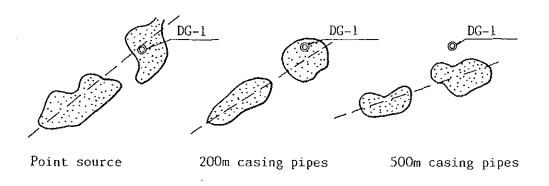


Fig. II.3.60 Difference of low potential anomalies in the case of different current source

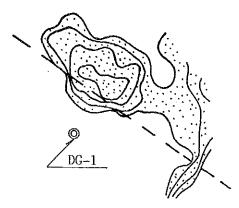


Fig. II.3.61 Fault trending NW-SE direction estimated from low potential anomaly shape in northeastern part of survey area

As described previously, the fault trending northeast to southwest is taking a very important role from the viewpoint of the geothermal structure. If a high temperature geothermal reservoir exists at depth in the area, it is estimated that it may be located further south of DG-1.

Regarding the low residual anomaly in the northeastern part, the fault trending northwest to southeast is inferred from the anomaly shape and contour elongation. (Fig. II.3.61)

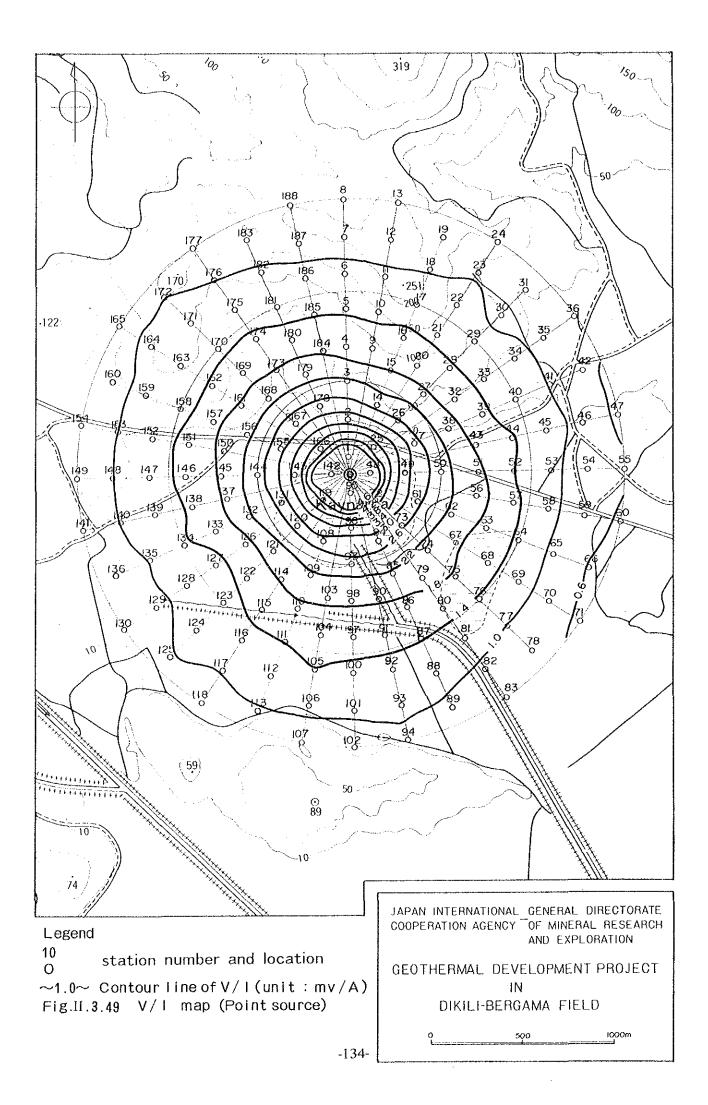
(5) Conclusion

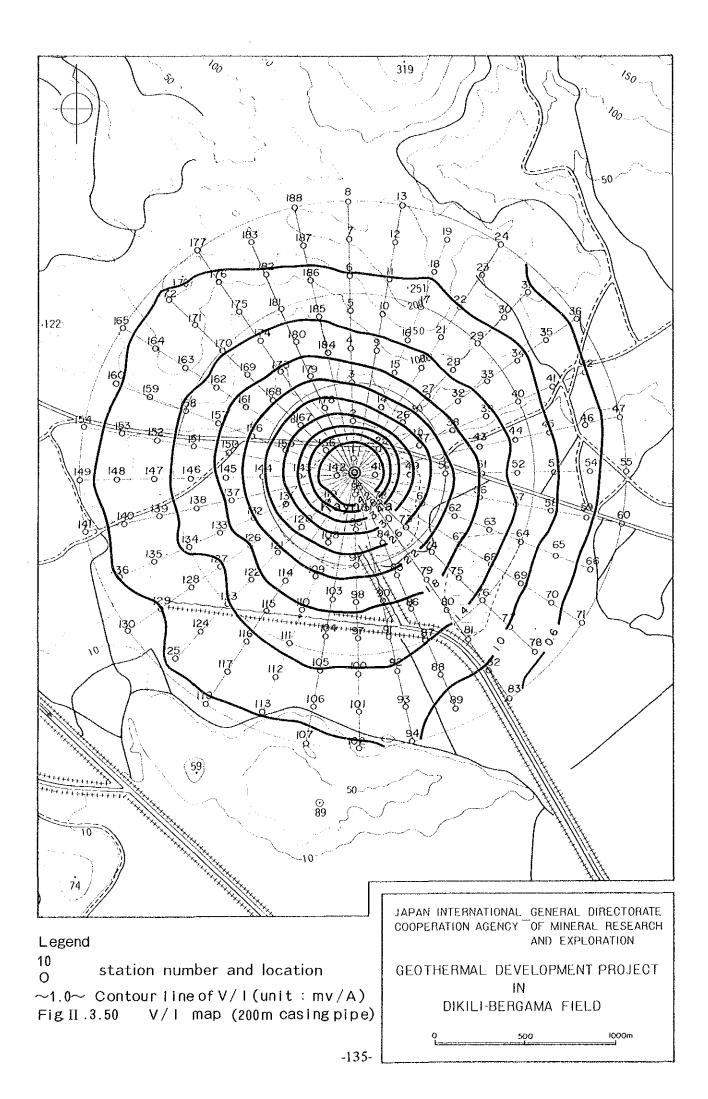
The geothermal structure in the Kaynarca geothermal area and the extent of the expected reservoir associated with DG-1 are concluded as follows:

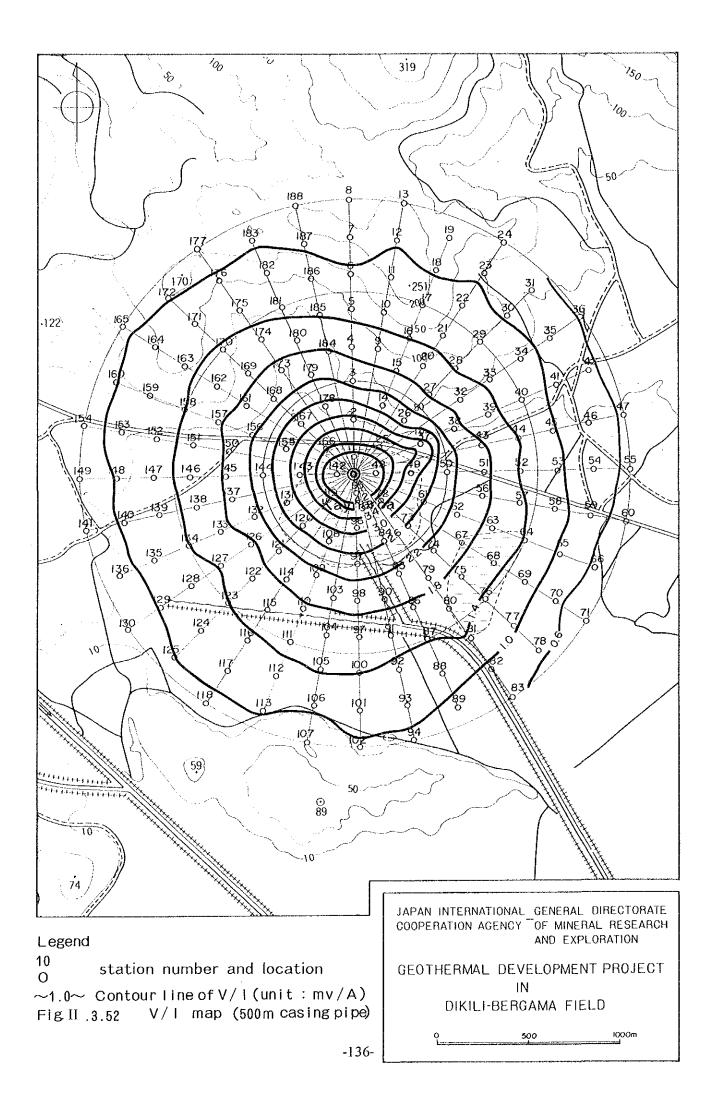
- Two faults trending northeast to southwest and northwest to southeast are estimated from the shape of the residual anomalies. Hence, these two faults are considered to be major structures which control the geothermal system and thermal structure in the area.
- 2) The fault trending northeast to southwest is assumed to be dipping southward from the movement of the anomalies near DG-1 when the current source was changed.

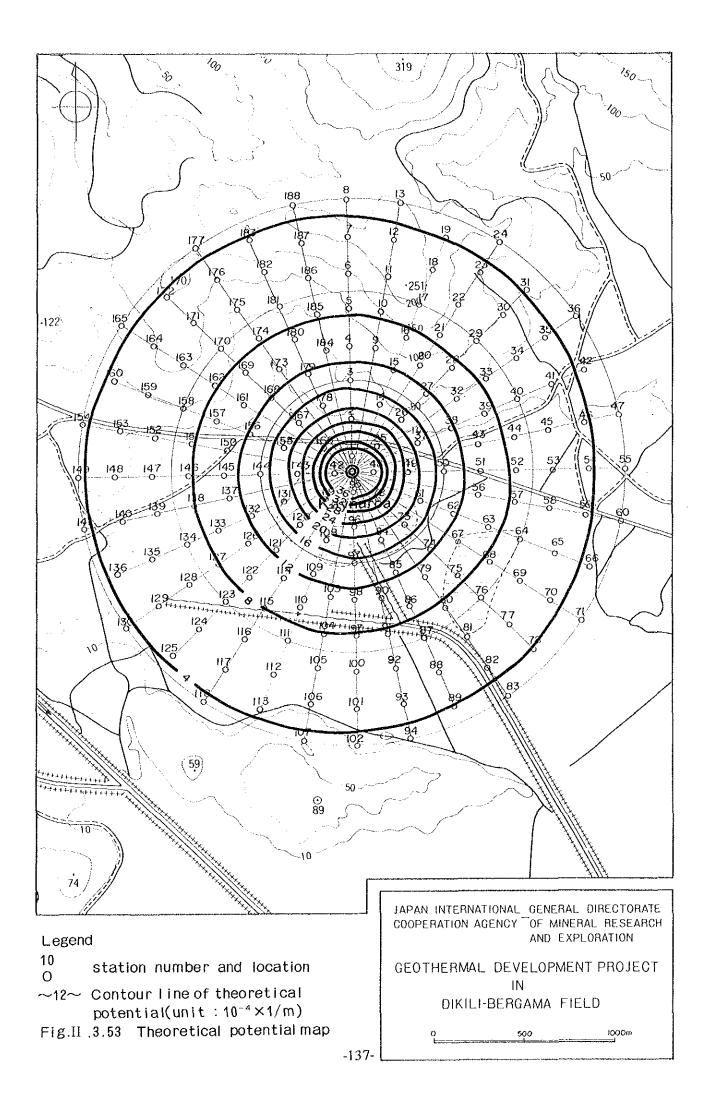
- 3) The geothermal reservoir encontoured by DG-1 may be the shallow part of the fault, so that a deeper reservoir is thought to be located to the south of DG-1.
- 4) The fault trending northwest to southeast is clearly defined from the CSAMT results, whereas it is estimated from the contour clongation at the boundary between low and high residual anomalies to the northeastern part of DG-1. The area along this fault may be promising from the extent of the low anomaly zone.
- (6) Conclusion of electrical surveys

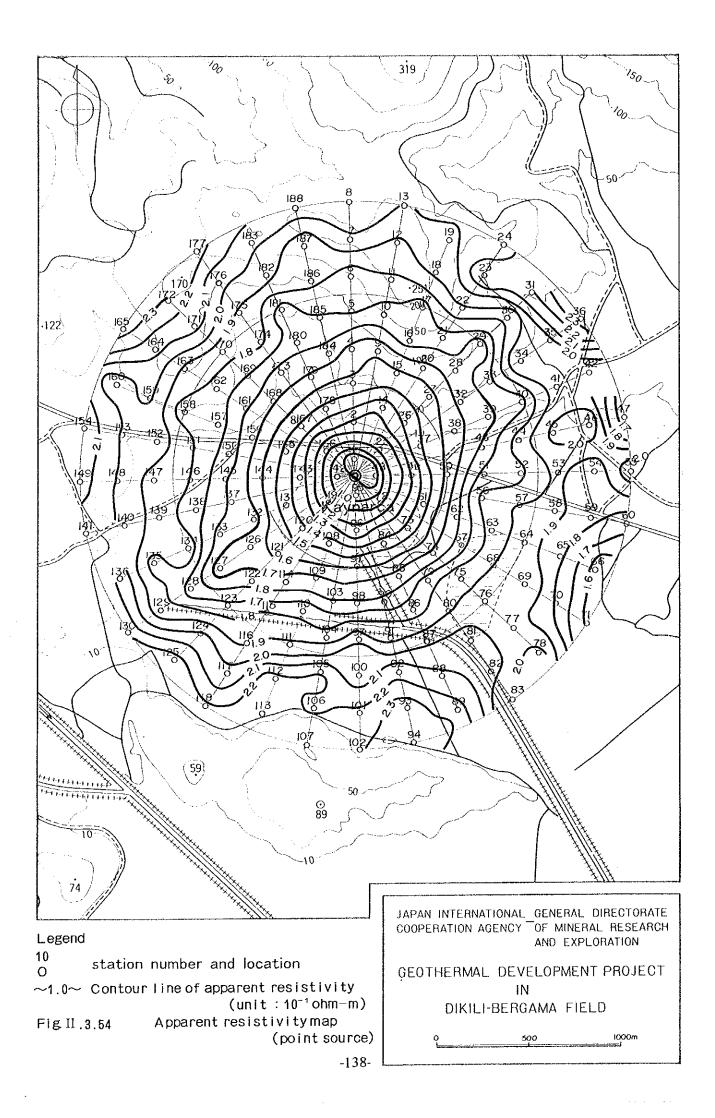
After analysis and interpretation of the two electrical surveys such as CSMAT and Mise-á-la-masse, the conclusion is summarized as follows: (Fig. II.3.62)

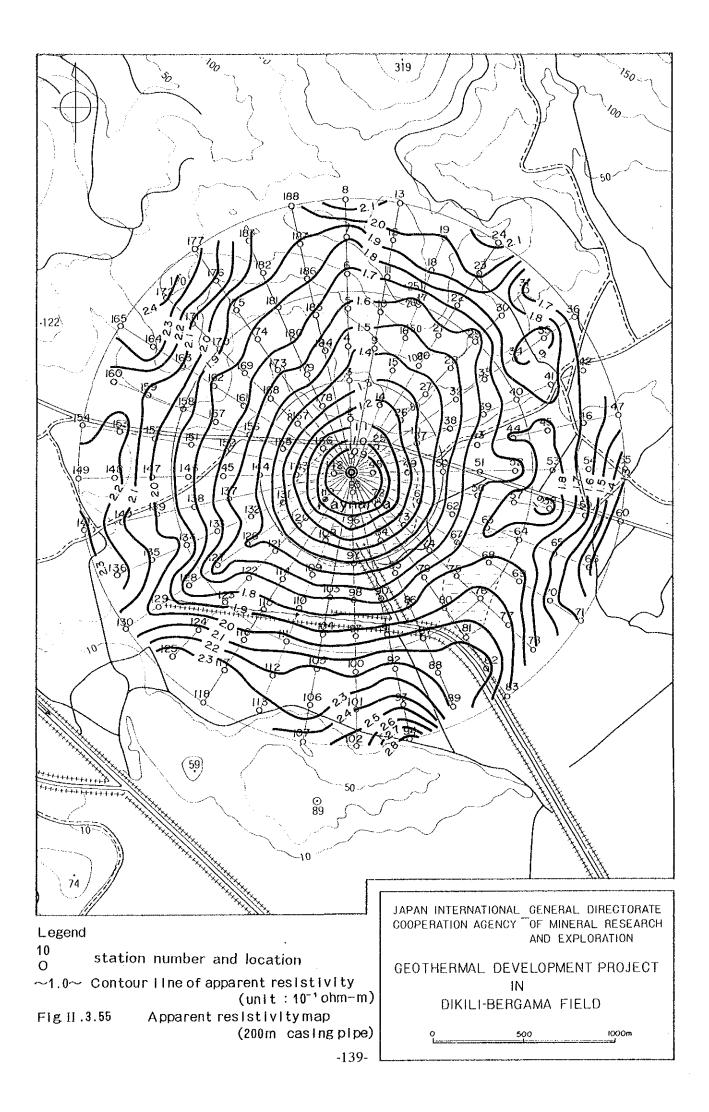

1) Estimated faults

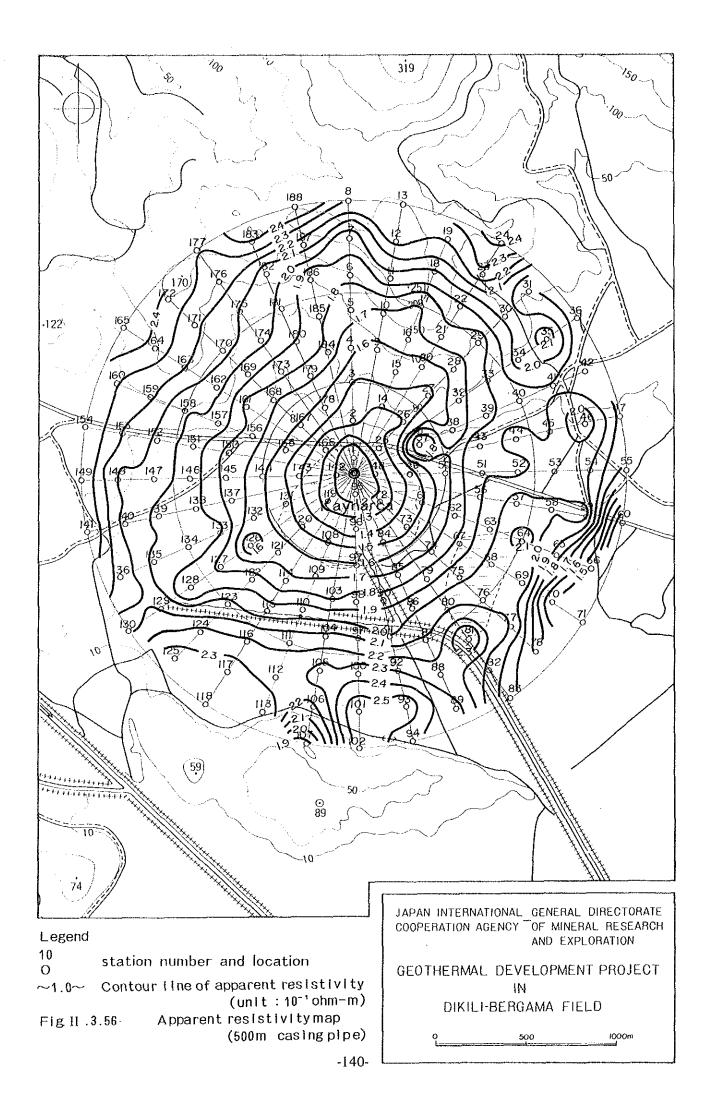

The following three major faults are inferred in the survey area.

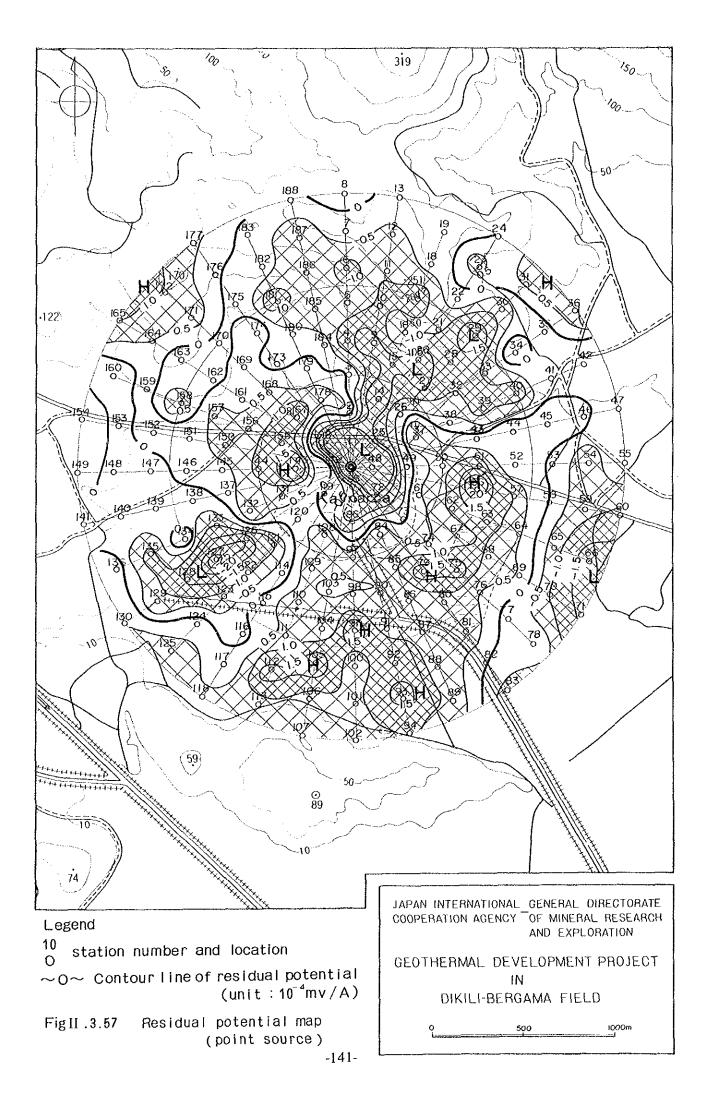

- (a) Fault trending NE-SW direction
 is recognized remarkably from Mise-á-la-masse results.
- (b) Fault trending NW-SE direction is recognized from CSAMT and Mise-á-la-masse results.
- (c) Fault trending E-W direction is recognized from CSAMT results.

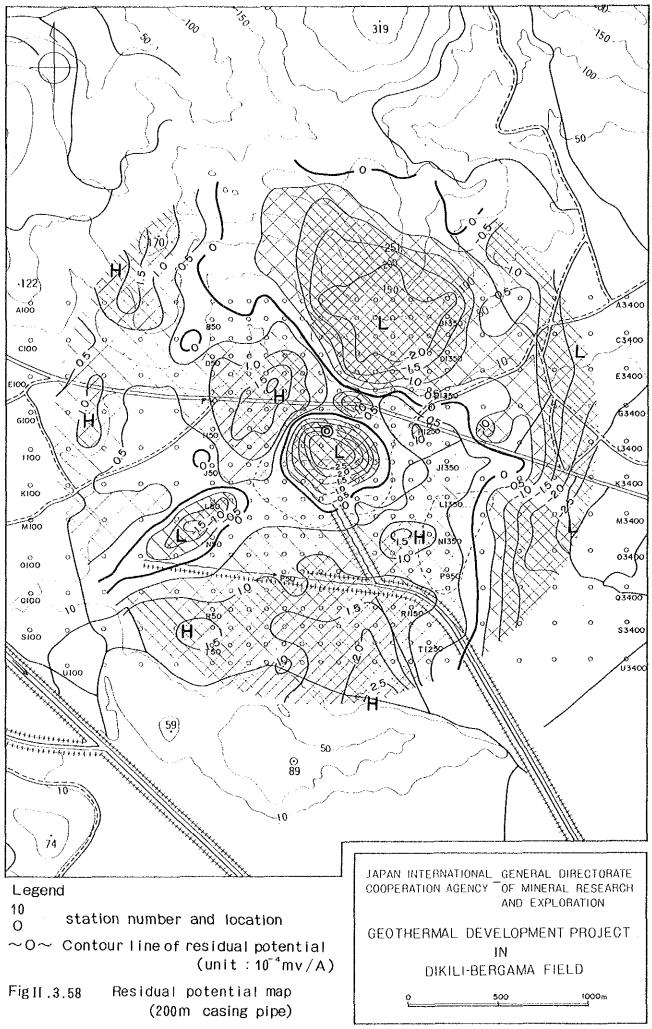

In these faults, the fault described in (a) shows a relatively good correlation between the two survey results as shown in Fig. II.3.62, but the fault in (b) does not correlate with those two surveys. That is, the fault from CSAMT is located in the Kaynarca geothermal area, whereas the same trending fault from Mise-á-la-masse is located to the northern part of Kaynarca.

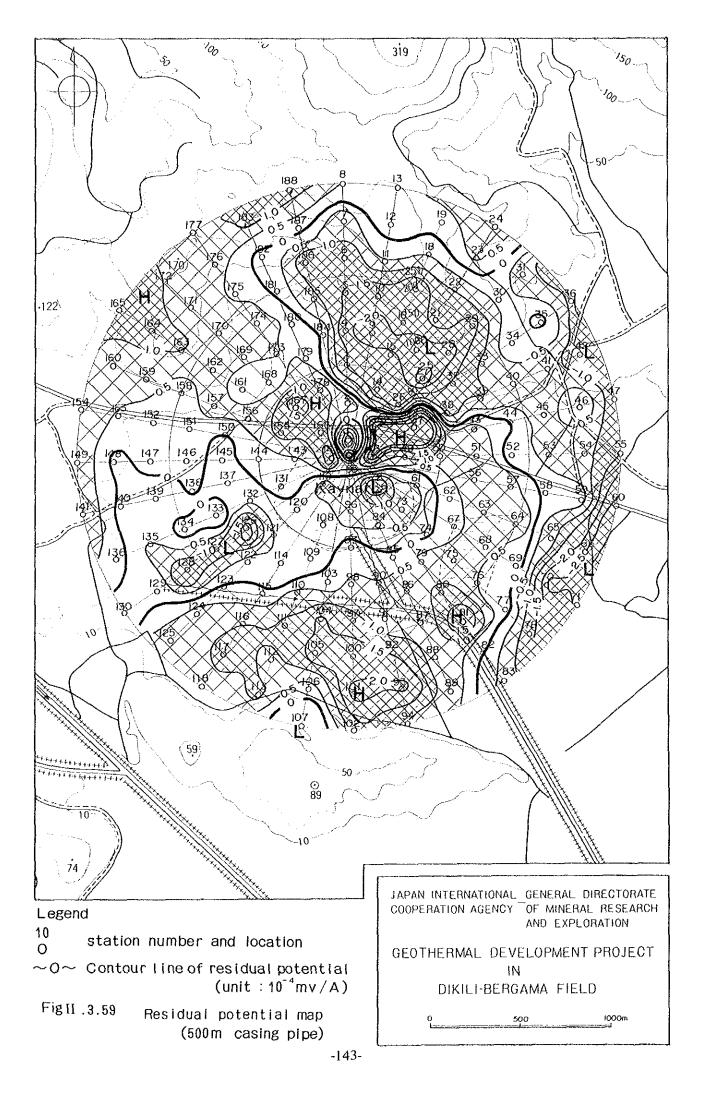

Concerning this difference, the Mise-á-la-masse method measures resistivity distribution three-dimensionally, the estimated fault location from CSAMT may be more reliable than that from Mise-á-la-masse.

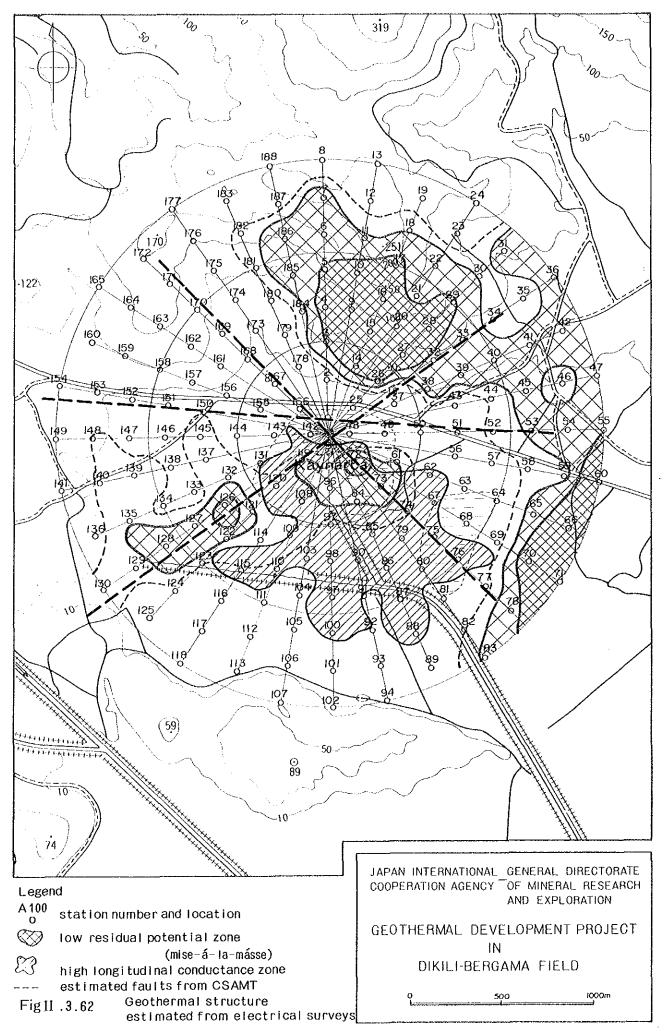












Of these three faults, the faults in (a) and (b) are considered very important by the reason as described below.

2) Geothermal structure

The high longitudinal conductance zone is located in between these two faults near Kaynarca, and the low residual anomaly from the Mise-á-la-masse results is located near the intersection of these two faults.

From the shape of anomaly zones from the electrical surveys, the Kaynarca geothermal area seems to be located at the intersection of these two faults. However, the low residual anomaly zone which is estimated to be related to the reservoir in the area by Mise-á-la-masse measurement, is relatively small (400 m x 300 m) compared with other geothermal fields in the world.

3) Additional comments on residual anomalies

The low residual anomaly located to southwest of DG-1 may be the indication related to the fault structure trending northeast to southwest. The low residual anomaly at northeastern part was detected as a high resistivity zone from CSAMT survey, but it is considered not to be caused by low resistivity zones of the underground but caused by steep resistivity changes because of geological structure. This low residual anomaly might a target for the geothermal exploration. The anomaly spreading at eastern edge is not reliable, because those points are located at the edge of the survey area. Therefore, this anomaly must be checked by the additional survey.

II.3.4 Thermal gradient survey

1. Objectives

The objective of the thermal gradient survey is to estimate the potential of the activity in the Kaynarca geotermal area by drilling thermal gradient holes and temperature logging.

The analysis of cores, cuttings and hotwater is carried out to obtain the basic data to understand the geological structure and construct a geothermal model.

2. Allotment of work

The allotment of work in the thermal gradient survey is as follows:

- (1) MTA:
 - 1) Preparation of drilling machine and logging equipment
 - 2) Drilling of thermal gradient hole
 - 3) Sampling of cuttings and core samples
 - 4) Sampling of hot water
 - 5) Temperature logging
 - 6) Management and supervision of work
- (2) JICA:
 - 1) Planning of drilling (drilling site, drilling depth, number of holes, casing program)
 - 2) Estimation of heat flow
 - 3) Geological and geophysical analysis of core and cuttings
 - 4) Geochemical analysis of hot water

3. Drilling of the thermal gradient holes

(1) Drilling site

The drilling sites of the thermal gradient holes are shown in Fig. II.3.63.

Hole DG-1:	Kaynarca
Hole DG-2:	East of Dede Tepe
Hole DG-3:	Northwest of Kargin Tepe

(2) Drilling depth

The drilling depth of each thermal gradient hole is as follows:

Hole DG-1:	683.0 m
Hole DG-2:	201.5 m
Hole DG-3:	201.2 m

(3) Casing program

The casing program of the thermal gradient holes is shown in Fig. II.3.64.

From the surface to a depth of 200 m in DG-1, 24 m in DG-2 and 30.7 m in DG-2. The casing pipe was set in order to cut off shallow cold water flowing into the hole.

4. Results of the temperature recovery test

The results of the temperature recovery test from each thermal gradient hole are arranged in Table II.3.2.

The temperature in the hole was measured using a thermister device. Temperature logging was carried out 2 hours after water circulation was stopped and also 12, 24 and 48 hours after. The static formation temperature was estimated using the formulas shown in Appendix A.4.1 and the results are shown in Fig. II.3.64. In order to ascertain the hole temperature, the temperature gradient every 20 m was calculated. The results of the calculation are given in Table II.3.3 and are graphed in Fig. II.3.65.

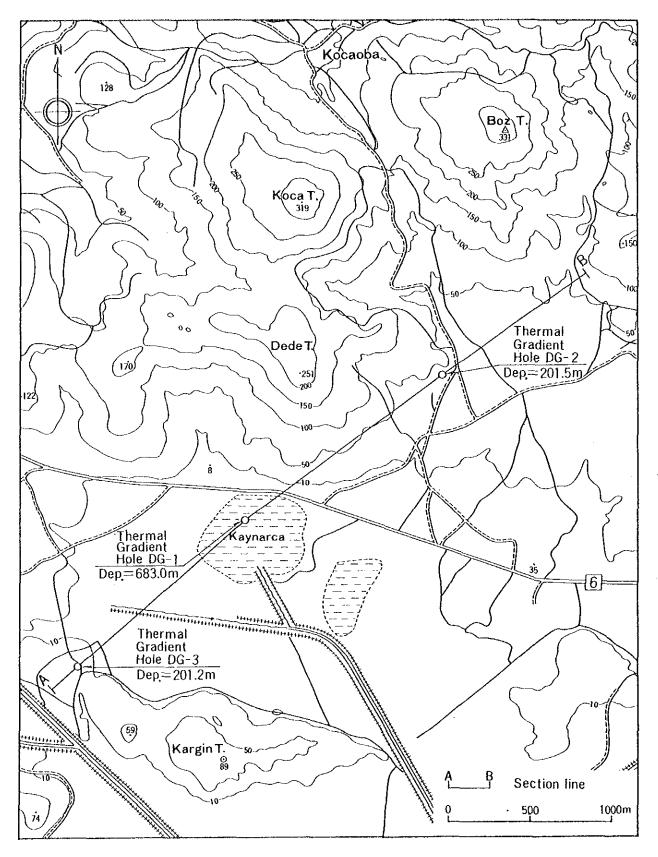


Fig. II.3.63 Location of thermal gradient holes


Well No.	[DG - 1								Date			·		1	4 /	/ s	epteml	per / 19	87)
Locality			X =	= 24	604.40 Y≈9727	2.3	22						Groun	l level			7.55 m	1	Wat	er I	level	^{GL(→)} 1	1.0m	(28.5.1987)
Depth Casing grogram A (m) Bit Casing size size	Lost Lut circu- lation log		Haid		Remarks		Qua	utz	ind 50		(%)			50			rature				(1		10	Note
(m) Bit Casing size Size	lation log	ō		Atlu	Sand, gravel, pumice,	ļи П	T	Т	гŤ	† -	П	T	0,0	20	60		0	<u>во</u>			0 -¥	100 1		
	<u> </u>	<u>e</u>	 iii	vium	fragment of Bitto-andesite Ho-Bi andesite Java	k		ŀ	╞┼		-	-								i i car	+	1	-	(Spot Core)
12/21/2	11 <u>% *CP</u> 7 × 42.3m 71				(30m~115m) fight greenish gray	/}	-+	+-	╞╧┟╴	- <u> </u>	┼┤					`	<u> </u>	12	()		<u> </u>	*)		1) (Ho-Bi-An) 1) (Ho-Bi-An) 12 52.05m
	-		E	Dikih lava	(phenocryst) P1: 1×3~3×7mm Ho: 0.5×2~2×8mm B1: ≠ 1~2mm		-			┼		-1-	+	~ 	-		<u> </u>	-[-])	·····j	1		52.05m
	ר ד 95~100	<u>ר:</u> [(1yu3)	Bi; ≠ 1 ~2mm weakly~slightly attered			╉	-	+-	-				•			-lf	- †	ſ	-/			15Ta 100.20m
100	🕶 "_	٦ ^	E	1	fracture zone (around 100m)			ſ	[-[H				-+	•		-[[-	ŕ	H	<i>⊢∦</i> −	-{·····	[100.20m 1 (1to-Bi-An) 102.20m
	0.5m/70 min L	. P	E		(Bi-) Ho andesite lava (115m~235m)				-		-							1	jí		-/ <u>;</u>			
		- · · ·	E	Koca	dark gray~reddish dark gray	Ŋ		+		• †-		┝╊			-+				ŕ7		ļ:			L (Ho-An) L (Ho-An) L 151.00m
	L L	L 🔨		Agil	(phenocryst)	1/	<u>}</u> +	+	╏╴╏╴	-		1						17	1	-	<i>∥-</i>	·		
	a v·ra L			(Lyd3)	P1; 2×3~3×4mm Ho; 1×2~1×6mm weakly~intermedially	H	f. -	-		-	$\left \cdot \right $	•	-1				1 \	1	1	-ľ			1	LL 185.00m LL (Ho-An) LL 187.00m
200 0%	8 <u>%*C</u> ₽1∟ ×199.0mr t	-	E		altered fracture and calcite		-	1	ft	-1-	† †	-f-			- (1	(-	-f	·····	1	Í—	LL 200.00m LL (Ho-An)
		[∟] ^	E		vein are abundant	M	1	ľ	약	art	Ż		1				/	17	1	1		abilization	[~ 201.00m
		1.1.1	F		Ho-Bi andesite lava (235m~270m)		ł	t	To	al	of 1	aīte	ration m	inerals				11	(i	Te	mperatur Iculation		250.00m (Ho-An) 251.00m
	n	1			dark gray~black, very hard		'n	1		-				-				1)-i					251.00m
	ר ר ר		ЪT		most phenocryst is replaced with	1/	t	-		-1									1-1	11	f			300.00m
300	n	-[[]	胆	1	hydrothermal minerals, a tot of fracture and	M	1			1		ST.	;/─ =2h(26	5.1987	ואנ	= 1.20m		-N.	1	ij	·	ST = 35 (30,6,19	days 1871	300.00m (<i>Ito-Bi-An</i>) 301.00m
					vein (calcite, quartz)		X			1		-1		Τ	T				il		/	WL = 0	m	
		.'	E		(270m~480m) light gray ~ medium	[]	X	1	T	T		<u>sr</u>	=12h(27 T	. <u>5.198</u> 7 1	<u>7) WL</u>	<u>=2.20m</u>		11	λĮ.	71		1) 1349.00m) (Ho-Bi-An) 13351.00m
	ר י	기			gray (phenocryst)		$\langle \cdot $	Ţ				ST-	24h (27	5.1987	7) WL	≔ 4.80m	\mathbf{i}		W.					
	ן אין אין אין אין אין אין אין אין אין אי	`-			P1: 1×2~2×3mm Ho: 1×3~1×5mm)[₽.			$\left \right $			T	T			Ľ	Яľ	1		1		399.00m [1] (Ho-Bi-An)
400	ר י	111		1	Bi; ≱0.5~1mm intermediatly altered	ĹĨ	Y	1		Ţ		<u>st</u> :	= <u>48h (28</u>	. <u>5.198</u> 7	<u>7}₩L</u>	= <u>11.0m</u>			i II	۲ ۱				(Ho-Bi-An) [1]400.10m
		111			hydrothermal veins are		I	ł.											M]
	-			-ĭy⊎]	scarecely observed		$\ $				1.1							X	N					רך 450,00m רבים (Ho-Bi-An) בים 452,00m
							$\langle \langle \langle \rangle \rangle$												Ň)	<u> </u>			452.000
500	L	-	E		Ho andesite lava (480m~683m)		Ň	1.					ļ					-	l	7	<u>(</u>]	<u> </u>		502.80m 1 (Ho-An) 1 504.00m
		L L L L			medium gray, compact		[]	<u>[</u> .]	ĺ.	L			[_[]	.[[LL 504.00m
					phenocrysts are unidentified because of		1			1			ļ	1				<u> </u>	_][\mathbb{N}	_ <u>\</u>			
	L	네.	E		alteration strongly attered as a		(1		Ll.	-	11				_1			1	{	Ц				
		L II.	1=		whole small fracture zone								l					4	_}	4				
600	L		iÈ=		(around 608m) 590m~682m	Ļľ	7	1						-l				1	`	1	1_1-	ļ		607.00m
		<u>'!!</u>	1		hydrothermal minerals	μļ	1	₽Ì	1		[.]	_	ĺ		_1_			$\left\{ \right\}$	e	U		[]		LCI 608.50m
	L	L II	ιĒ		(quartz, calcite, pyrite) are formed	Ì_Ì	X	1		1_		-		-			.)	<u> }_</u> }	[]
	L	- 111			boundary of 480m is unrecognizable	╞╎))												`]	77-	<u> </u>		682.00m
683.00m	ī			1			<u>(</u> [L	\square		1	<u> </u>					<u>`</u>	Ľ	11	\square		L (Ho-An) L (683.00m

Legend

Hardness breH 🧱

Medium Soft

Alteration

I Silica mineral type II Hexagonal sulfate type III Aluminum silicate type [___] Ⅳ Sheet aluminosilicate type V Framework silicate type Partially altered Unaltered

Fig. II.3.64(1) Geologic Column of DG-1

Γ	We	I No).	[DG - 2				 				Ti	Date		Τ					14 /	Septe	mber	r / 1	987	
	Loc	ality					X	=	25	579.94 Y=9884	4.1	11						1	Ground I	evel		EL	35	i.10 m		Water	level	ľ	GL(~)	5.80m	(10.5.1987)
		Casing Bit size	program 4	Lost circu- lation	Lith logy	-	Har në s	· •	Forma Lion	Remarks	0	Qui	uti	 nde 50	х ((%)	100),0	i		20	Tem	pe 3(rature D	40)	50	(°C) 60		70	Note
1 1 1				8¼*£₽	() 				TA	Sand; fragment of rock Ho-Bi andesite lava (5m -175m strongly weathered rock medium gray, soft (phenocryst) P1; 1×2~2×3mm whitened Ho; 0.5×2~1×3mm greend B1; #1~2mm fresh weakly~ slightly attered Ho andesite lava (175m~201,5m) purplish medium gray, compact, flow texture is remarkable (phenocryst) P1; 2×3~5×8mm whitened Ho; 1×5~2×8mm dark browned most phenocryst is replace with hydrothermal minerals intermediately attered, around 200m; strongly attered hydrothermal veins are obserbed					11				teration	minera							h (8.5. h (9.5.	<u>1987</u> 1987	<u>) WL =</u>) WL =	= 7.50m = 6.80m	(Spot core) 1 (Ho-Gi-An) 51.80m 1 (Ho-An) 1 (Ho-An) 1 (Ho-An) 1 (Ho-An) 1 (Ho-An) 1 (Ho-An) 1 (Ho-An) 1 (Ho-An) 1 (Ho-An)
2	00	6½ 2015	m		ւ ։ ւ	ι.					-	-	ľ				. .	-							-						ר ד 1 200.00m 1 (Ho-An.) 201.50m

Well No.							DG - 3									Date						14	/ s	eptem			
Locality	•				X	= 2	3485.04 Y = 960	96.	62	!						Ground	level		EL !	9.32	m	Wa	ter 1	evel	Grt-	⁾ 5.60m	(22.4.1987)
Depth Casing prop	A man	CILCU-			Hard		Remarks	Q	uai	tz			(%	<u> </u>					Temp			·		()	5) 60	70	Note
(m) Size s	asing	fation	105Y	ation	ness			0	-		5! 		- 1	- 11	χŋ	J	0	20		30		10 	- 54	<i>.</i>		f	
	- 11 1		10:00			TA	Fragment of rocks		1					[]			· `	1	1 /	1		- <u>\$</u>					
			רו				Ho-Bi andesite Tava	<u> </u>		f-I	$\left \cdot \right $	t		ł-ł	٠ŧ		<u> </u>	11	ħ~ tr	ł					1		1
			17	1	1		(1m~165m)	II.			ŧ.I		1		. [Л.	11.1.						1		1
			ר ר				brownish light gray ~		ſ			1					1	1	16 1	1						1	
1124	- AU	8 <u>% °CP</u> X 30.7m	רי [}	[1	greenîsh light gray	11.	- † -			~}		1-1	-}]		删十						-])
10%		× 50.7m	h 7	. ∼ .	1		weathered and weakly					ł		11	1		[Wali						I		J
10% ×42.pm							altered rock, soft	11	1	T	11		1	Π	1			1	16			1			1		
			. 		1		(phenocryst)	₿ -	- -	-					-4					ŧ							53.00m
			E		12.5		P1; 2×3~5×8mm				ļ				ł				-11			i			ļ		53.00m Hei-Ho Ar 54.50m
			ר]	l	ŀ		fresh~weakly	tt.	Ľ	ŧΙ	ŀł	Ť	-[t t	-t		1	٠t i	~ i i	I^{-}		1					54.50m
			רו״				altered		1-	Į.		. .		ļ			 					l					
			п		1.1.1	1	Ho; 1×3~1×5mm		1			Ì					1		- 1	1					1		
			דר	1		Dikiti	altered, few	ŀŀ	÷	Ł				14	-1				t								1
			-	i		lava	Bi; ∲0.5~-2mm tresh			L			1.	L													
				1		([1703)]	few pyrite is found	T	Т	ΓI					ĺ					l.					1		
100			<u>,</u> .		1	l I		1 I -	٠Ł٠	Ł	┝╍┝	÷	- [ŧ−ŧ	÷ł					ų		Ist=	4866	22.4.19	ส่วาพเ	== 5.60m	113 31100.0m
				<u>_</u>	Į			19						[1			M.	/	1	- Ì		1		1 1 1 (8i-Ho A
			1			1		11-	1	T	Ī	uar	tz	1-1	1					19.	7					1 70	101.0m
			רן			[Ho-Biandestic tuff	-	ŀ	1	. 1	7	-1-	1				· .				<u> ST=</u>	29h(21.4.15	1871 WL	=4.70m	4
			ר ר				[breccia(165m~201.2m)	M	1											141	/	l. –	ļ		1		
			ר	×.	1		purplish dark gray	X	1-	t	Ŧ	ital	के	alt	_1 er a	ation mi	ierals			1 Bill	/	ST≂	12h(21.4.1	987)WL	=3.15 m	1
lli			[n n]		1	{	compact	L K.	L	\square		1	1.	1.1	Т		<u> </u>			Liii.	L	1	[1
			- r	· .		1	lamina and sorting are	1/1	ſ											1 10	X.	CT-	26		ן ושרכמו	=0.00	Į
							not found	{- { -	+	1-1	-+		~	ł-ł	-+		 			1-5	11-	<u> 31</u>		20.4.1	1011		וין 149.0m Bi-Ho Ar
				1.1.1	ŀ .		weakly altered as a								1		í				W	i			I		Bi-Ho Ar
			٦	\sim			(whole ((ragment)	11-	1	11		Ĩ		1	1		1			1	í.U	Į		Stabili	1		1
			۵ ۸				size; #2~60mm	lil-	-	Ļ∤			+	!						ų.	14	fi —		Tempe		hv	4
	11		4	` *`		Į	kind of rock; biotite	ιų.	Į.	11			I.	Į	ļ		l	Ļ		L N	<u>, </u> , ,	11	ļ	calcula		"	ļ
							hornblende andesite	111-	+-	H	-1	-1	Ŧ	Ħ	t			-1-		1	17	Ni ~~			1		1
			Δ Δ				rate of tragment ;	11.	1.		Ll	. I.	- .	1_1	.			.			<u>.</u> j j	£_					199.45m
							70~80%	[i]	ſ											1		11:1					A GIOLASM
200 [201 [2m]	1.1		۵ ۵	<u> </u>	Ш.	I		ш	1		.	_	1.	L_L			L	_ L.		I	<u> </u>	<u>, 11 -</u>		·			me as thos

of geologic column of DG-1

Fig. II.3.64 (2) Geologic Column of DG-2, DG-3

Fig. II.3.65 Heat flow of thermal gradient hole.

-

Table [I.3.2(1) Results of temperature recovery test

Well ALDG-1

	26, 5, 1987 ST⇔ 2hour	27. 5. 1987 ST=12hour	27, 5, 1987 ST=24hour	28. 5. 1987 ST=48hour	Stabilization temporature by calculation	30. 6. 1987 ST=35dayв
10	5 5.8	59.0	66.4	59.0	65.1	75.0
20	62.5	70.6	7 4.7	79.0	90.6	91.1
30	67.6	78.9	78.6	84.9	96.5	99.7
40	69.9	79.6	83.0	86.5	99.1	101.4
50	72.3	80.0	84.5	87.1	98.1	100.0
60	72.9	<u>81.8</u> 61.8	85.0	87,3	98.3	98.7
70	74.0	81.2	84.9	87.1	96.6	96.3
90	74.5	81.2	84.6	86.5	94.8	95.2
100	74.2	81.0	84.3	86.8	95.3	94.2
110	7 4.5	81.1	84.0	86.5	94.4	93.5
120	74.8	81.0	83.9	86.0	93.3	92.6
130	74.5	80.5	83.7	86.0	93.4	91.9
140	7 4.9	80.1	83.0	85.5	91.7	91.2
150	7 4.9	80.0	83.0	85.5	91.7	90.6
160	74.8	80.0	828	85.0	91.0	90.1
170	74.5	80.0	825	84.8	9 0. 9	89.6
180	74.9	80.0	823	84.5	89.9	89.2
190	75.1	80.0	821	84.4	89.4	89.0
200	75.0	80.0	820	84.1	89.1	88.9
210	75.5	80.0	82.0	83.9	88.3	88.6
220	75.4	80.0	820	83.5	88.0	88.4
230	75.5	79.9 80.0	81.6 81.8	834	87.4	88.4 SB.1
240	75.5	80.0	81.8	83.2	87.4	88.1
260	75.9	800	81.9	83.5	87.4	88.1
270	76.0	80.1	81.9	83.5	87.3	88.2
280	7 5.3	80.0	81.8	83.3	87.7	88.2
290	76.0	80.2	81.9	832	86.9	88.3
300	76.0	80.5	82.0	83.5	87.4	88.7
310	76.5	80.8	821	84.0	87.6	89.2
320	7 6.2	81.1	82.5	84.1	88.4	89.5
330	7 7.0	81.6	830	84.5	88.4	89.8
340	7 7.0	81.7	830	84.8	88.8	90.1
350	77.9	81.9	83.4	85.0	88.4	90.3
360	78.0	820	83.5	85.0	88.4	90.4
370	7 7.5	\$2.0	83.7	85.1	89.2	9 0. 7
380	78.0	\$20	84.0	85.3	89.1	91.0
390	78.9	82.6	84.3	86.0	89.3	91.2
400	79.1	829	84.5	86.0	89.3	91.3
410	78.9	830	84.5	86.0	89.5	91.6
420	79.0	832	84.9	86.3	90.1	91.7
430	79.0	83.4 83.6	85.0	86.5	90.4 90.5	91.9
440	79.4	83.9	85.5	87.0	91.0	923
450	79.8	84.0	85.7	87.1	91.5	92.6
470	79.9	84.1	86.0	87.8	91.8	92.9
480	79.5	84.3	86.0	88.0	92.5	932
490	80.0	84.5	86.2	88.0	92.1	93.6
500	80.0	84.7	86.5	88.5	93.0	93.9
510	80.2	84.9	86.8	88.5	93.0	94.2
520	80.0	85.0	86.9	88.9	93.8	94.5
530	80.0	84.9	87.0	89.1	94.1	94.9
540	80.0	85.5	87.6	89.3	94.9	95.3
550	80.3	8 5.4	88.0	9 0.0	95.7	
560	81.0	86.0	88.2	90.4	95.6	
570	81.8	86.5	88.2	90.9	95.4	
580	81.2	86.4	88.9	91.0	96.7	
590	81.5	86.5	89.0	91.2	96.7	
600	82.1	87.8	89.9	91.8	97.7	
610	83.0	87.2	90.0	920	96.8	
620	82.0	87.1	90.0	92.0	98.0	· · · · · · · · · · · · · · · · · · ·
630	83.0	87.9	91.1	929	98.9	
640	831	887	91.2	93.0 -		
650	84.5	89.0	92.0	95.0	100.6	<u> </u>
660	84.9	89.5 90.1	93.0 95.1	95.2	101.2	
670	85.7	901	96.3	96.7	103.8	
680	87.9	930	97.0	98.2	105.3	
690	880	840	L		1. 1000	L

.

.

Well A DG-2

Depth	8. 5. 1987 ST= 2hour	9.5.1987 ST=12hour	9. 5. 1987 ST=24hour	10. 5. 1987 ST=48hour	Stabilization temperature by calculation
10	3 0. 5	2 9.0	285	280	2 7.6
20	3 0. 5	2 9.0	2 9.0	28.0	2 7.8
30	2 9.5	28.5	2 9.0	2 7. 5	2 7. 9
40	3 0.0	28.0	285	27.0	2 6.8
50	3 0.0	280	28.5	27.0	2 6. 8
60	3 0.0	28.0	2 8.0	2 7. 5	2 7.0
70	3 0.0	28.0	280	2 7. 5	2 7.0
8 0	2 9.0	280	2 8 0	2 7. 0	2 7. 2
90	2 9.0	2 8.0	280	2 7. 0	2 7. 2
100	2 9.0	280	2 8.0	2 7.0	2 7. 2
110	3 0.0	28.0	280	2 7. 5	2 7. 0
120	3 0. 5	28.5	28.5	2 7. 5	2 7.0
1 3 0	3 1.0	285	28.5	28.0	2 7. 1
140	3 1.0	28.5	2 9.0	280	2 7.4
150	3 1. 0	2 9.0	2 9. 5	285	282
160	3 1. 0	2 9.0	3 0. 0	28.5	28.5
170	3 1. 0	2 9.5	3 0. 5	2 9.0	2 9.3
180	3 1. 0	30.0	30.5	29.5	2 9.8
190	3 1. 0	3 0. 5	. 3 0. 5	29.5	2 9.9
200	3 1.0	3 1.0	3 1. 0	3 0.0	30.6

Well A DG-3

Depth	20. 4. 1987 ST= 2hour	21. 4. 1987 ST=12hour	21. 4. 1987 ST=24hour	22. 4 1987 ST=48hour	Stabilization temperature by calculation
10	280	235	2 3 0	2 2 0	1 9.9
2 0	2 7. 5	2 4.6	239	230	2 2.0
30	2 7.5	2 5. 5	2 4. 7	2 4 0	2 3. 5
4 0	2 7. 5	25.8	2 5.4	24.5	2 4.4
50	280	2 6. 2	2 6.0	2 5. 5	2 5. 3
60	2 8 5	2 6.4	2 7. 2	2 6. 5	2 6.4
70	288	2 6.8	282	2 7. 0	2 7. 2
80	2 9.0	2 7. 7	285	28.0	28.1
90	2 9. 5	28.6	2 9. 0	2 9.0	2 9. 0
100	3 0.0	29.5	2 9.8	3 0.0	2 9.9
110	30.4	3 0. 4	3 0. 5	3 1.0	30.6
120	3 0. 8	3 1. 2	3 1. 5	325	3 2.0
130	3 1.5	3 2. 1	3 2.7	3 4.0	33.5
140	32.0	330	3 4.0	350	34.9
150	329	34.0	3 5. 4	3 7.0	3 6. 9
160	3 2 8	3 5. 1	36.8	380	38.9
170	3 2 1	36.5	383	39.0	4 1.7
180	3 5.3	3 7. 7	39.6	40.5	4 1. 7
190	3 5, 9	3 9.1	41.1	4 2 0	43.8
200	3 6.8	4 0. 7	4 2.7	4 4.0	46.3

Depth	Stabilization temperature by calculation	Temperature gradient	Thermal conductivity	Heat flow
(<i>m</i>)	· (C)	(C/100m)	$(\times 10^{3} \text{ cal/ cm} \cdot \text{sec} \cdot \mathbb{C})$	(HFU)
20	90.6		200 (4)1	
40	99.1	+ 42.5	- 3.00 (Alluvivm)	12.75
60	98.3	- 4.0		- 1.23
80	96.6	- 8.5	3.0 8	- 2.62
100	95.3	- 6.5		- 2.00
120	93.3	- 10.0		- 3.42
140	91.7	- 8.0		- 2.74
160	91.0	- 3.5		- 1.20
180	89.9	— 5.5		- 1.88
200	89.1	- 4.0		- 1.37
220	88.0	- 5.5		- 1.88
240	86.8	- 6.0		- 2.05
260	87.4	+ 3.0		1.03
280	87.7	+ 1.5		. 0.50
300	87.4	- 1.5		- 0.50
320	88.4	+ 5.0	3.3 1	1.66
340	88.8	+ 2.0		0.66
360	88.4	- 2.0		— 0.66
380	89.1	+ 3.5		2.16
400	89.3	+ 1.0		0.62
420	90.1	+ 4.0	6.1 7	2.47
440	90.5	+ 2.0		1.23
460	91.5	+ 5.0		3.09
480	92.5	-+ 5.0		2.68
500	93.0	+ 2.5		1.34
520	93.8	+ 4.0		2.14
540	94.9	+ 5.5		2.95
560	95.6	+ 3.5		1.88
580	96.7	+ 5.5	5.36	2.95
600	- 97.7	+ 5.0	-1	2.68
620	98.0	+ 1.5		0.80
640	99.1	+ 5.5		2.95
660	191.2	+ 10.5		5.63
680	194.1	+ 14.5		7.77

Table $\Pi.3.3(1)$ Results of heat flow calculation

Well No. DG - 1

.

Table II.3.3(2) Results of heat flow calculation

Well No. DG - 2

Depth (m)	Stabilization temperature by calculation (C)	Temperature gradient (°C/100m)	Thermal conductivity (×10 ⁻³ cal/cm•sec•°C)	Heat flow (HFU)
20	27.8			
40	26.8	- 5.0		- 3.14
60	27.0	+ 1.0		0.63
80	27.2	+ 1.0	6.28	0.63
100	27.2	0		0
120	27.0	- 1.0		~ 0.63
140	27.4	+ 2.0		0.97
160	28.5	+ 5.5	400	2.67
180	29.8	+ 6.5	4.83	3.14
200	30.6	+ 4.0		1.93

Well No. DG - 3

Depth	Stabilization temperature by calculation	Temperature gradient	Thermal conductivity	Heat flow
(m)	(3)	(°C/100 m)	$(\times 10^{-3} \text{ cal/cm} \cdot \text{sec} \cdot \text{°C})$	(HFU)
20	22.0			
40	24.4	+ 12.0		4.27
60	26.4	+ 10.0		3.56
80	28.1	+ 8.5		3.03
100	29.9	+ 9.0	250	3.20
120	32.0	+ 10.5	- 3.56	3.74
140	34.9	+ 14.5		5.16
160	38.9	+ 20.0		7.12
180	41.7	+ 14.0		4.98
200	46.3	+ 23.0		8.19

.

(1) Thermal characteristics of DG-1

ł

The temperature data of DG-1 shows that the distribution of the well temperatures can be classified roughly into three patterns, upper (0 m to 240 m, middle (240 m to 500 m) and lower (500 m to 683 m) section.

1) Upper section (0 m to 240 m)

In the upper section, from the surface to a depth of 40 m the gradient $(42.5^{\circ}C/100 \text{ m})$ is very high and has a comparatively high temperature of 90 to $100^{\circ}C$.

As shown in Fig. II.3.64 (1), at around 40 m the degree of recovery is high. The temperature at 40 m, 101.4° C was obtained from temperature logging 35 days after water circulation was stopped. The hole temperature decreases gradually from 40 m to 240 m.

2) Middle section (240 m to 500 m)

In the middle section, from 240 m to 500 m, the gradient is $\pm 5^{\circ}$ C/100 m and the temperature of the hole is fixed at about 90°C.

3) Lower section (500 m to 683 m)

In the lower section, at a depth of more than 500 m, the gradient (3 to $15^{\circ}C/100$ m) is high compared with the standard gradient ($3^{\circ}C/100$ m) and increases with depth. The temperature recovery degree is high too. The static formation temperature by calculation at the bottom of the well (683 m) is about $105^{\circ}C$.

(2) Thermal characteristics of DG-2

In DG-2, the temperature recovery is very small, and the gradient (2 to $5^{\circ}C/100$ m) is almost the same value as the standard gradient. The static formation temperature at the bottom (200 m) is about 31°C.

(3) Thermal characteristics of DG-3

The temperature in DG-3 increases linearly. The gradient (5 to 17° C/ 100 m) is high. The static formation temperature at the bottom (200 m) is about 46°C.

5. Estimation of heat flow

Underground heat flows from high temperature zones to low temperature zones in proportion to the thermal gradient. The quantity of heat flow is controlled by the thermal conductivity of the rock. The heat flow in each thermal gradient hole was calculated from the static formation temperature and the thermal conductivity measurement of the core. From this the vertical distribution of the heat flow in the Kaynarca geothermal area can be elucidated. The results of the calculation are shown in Table II.3.3 and Fig. II.3.65. The formulas for the calculation are given in the Appendix A.4.2.

The mechanism for the supply of heat in the geothermal field is basically thermal conduction and transfer of hot geothermal fluid. A large quantity of heat is quickly carried by the geothermal fluid compared with heat supply from thermal conductivity.

(1) Characteristics of the heat flow in DG-1

The basic flow is presented in Fig. II.3.65. At around 40 m in depth it is remarkably high. It is difficult to explain the supply of heat using only thermal conduction. It is presumed that hot water of 100° C is flowing into the area. The value of the heat flow from 60 m to 240 m are negative. This shows that the heat moves from shallow depths to greater depths. The values of the heat flow at a depth of 240 m to 640 m are -0.66 to 3.09 HFU and they are roughly even. There is no disturbance in the area, the heat seems to be moving only by thermal conduction. The values of heat flow at depths greater than 640 m are as high as 5.63 to 7.77 HFU. There is a high possibility that this area is heated by hydrothermal fluid from below because the value of heat flow increase with depth.

(2) Characteristics of the heat flow in DG-2

The heat flow from the surface to 120 m is often a negative value. This indicates that the shallow part of DG-2 is influenced by cold shallow

water. From 120 m to the bottom (200 m), the values of the heat flow were fixed between -3.14 and 3.14. These values are the same as the mean value (1.65 HFU) in the continent.

(3) Characteristics of the heat flow in DG-3

The values of the heat flow are high (4.27 to 8.19 HFU) and increases with depth. This suggests the existence of hydrothermal fluid at depth around DG-3.

- 6. Analysis of core and cuttings
 - (1) Stratigraphy of the thermal gradient holes

The stratigraphy was deduced from the observation of the core and cuttings which were sampled from the thermal gradient holes. Microscopic observation was made on 21 thin sections. The stratigraphy is shown in Table II.3.4 and the results of the microscopic observation are shown in Table II.3.5.

The geological columns of the holes are drawn in Fig. II.3.64. As shown in the geological column, the stratigraphy of DG-1 in descending order is as follows: Alluvium, Dikili lava, Koca Ag1l lava and Yuntdağ volcanics I. The Dikili lava and Koca Ag1l lava belong to the Yuntdağ volcanics III.

The stratigraphy of DG-2 is composed of talus deposit of 5 m in thickness and Yuntdağ volcanics I.

In DG-3, the stratigraphy is composed of Dikili lava and 1 m of talus deposit.

(2) Occurrence of hydrothermal veins

Hydrothermal veins are dominant at depths of 150 m to 200 m in DG-1. The occurrence of hydrothermal veins coincides with that of the fractures. These fracture seem to be accompanied by faults. In most cases, the hydrothermal veins are filled with calcite and quartz of 0.1 cm to 2 cm in width, and frequently they are accompanied by druse. The druse is composed of well developed calcite and quartz crystals. The rocks in DG-1 were subjected to hydrothermal alteration at an older time, however, these hydrothermal veins appear to have been formed

Table II 3.4 Stratigraphy of thermal gradient holes

DG-1

Distribution depth (m)	Elevation (n)	Thickness (m)	Formation
0~ 30	7.6~ -22.4	30	Alluvium
30 ~ 115	- 22.4~-107.4	85	Yuntdag volcanics M (Dikili lava)
115 ~ 235	-107.4~ -227.4	120	Yuntdag volcanics III (Koca Agil lava)
235 - 683	-227.4~ -675.4	448	Yuntdag volcanics I

DG-2

Distribution depth (m)	Elevation (m)	Thickness (m)	Formation
0~ 5	35.1~ 30.1	5	Talus deposit
5 ~ 201.5	30.1~-166.4	196.5	Yuntdag volcanics I

DG-3

Distribution depth (m)	Elevation (m)	Thickness (m)	Formation
0~ 1	9.3 ~ 8.3	1	Talus deposit
1 ~ 201.2	8.3~-200.2	200.2	Yuntdag volcanics III (Dikili lava)

No.

Table II 3.5(1) Petrography of Rock-forming Minerals

		Remarks	•	Weakly altered	u	Intermediatly altered	11	Strongly altered	Strongly altered Qz, Ca veins are dominant	Weakly altered	Ш	Strongly altered	Strongly altered Do veins are dominant	
- 1			Ęρ						×		×	\bigtriangledown	0	
DG			Ah Ca			×			Ø					
No.	And ic	2012	Ň									×	×	Чd
Well No.	ntion Mic		Ka Mo Ch	Ø	0	\bigtriangledown	0	0	4	× ×	× 🖂		0	P seudamorph
	4	AILE	Qz AI			$\overline{\Box}$	\Box	0		\Box	0	0	0	∢
			ວັ	\triangleleft	4								×	Jount
			٦,				L							all an
		mass	PI Af Si GI	· · · · · · · · · · · · · · · · · · ·										× A very small amount
9		Ground mass	å	×	4	\triangleleft	×	\triangleleft	×	×	×	×	×	ount
	g minerals		Cpx Opx Bi						·					△ Small amount
201	Rock-forming		Qz											
5	Rock-	st	PI Af	0	0	∢	•	•	0	0	0	•	•	O Intermediate
y i i y		Phenocryst	do I											Inte
,£, a		Phe	B: OI	0	0	◀	4	∢	4	0	0	◄	¢.	
2			ਸੂ ×	•	∢	◀	•	◀	•	•	∢	۰.		Indant
· · / ·			Cpx Opx Ho											🔘 Abundant
I abic TT 3. 3/1/ I CII OBI abil		Rock		Ho - Bi andesite	n.	n	n	"	ĸ	11	11	H	2	LEGEND :
5		Lepth	(Ħ)	49.7	100.5	149.3	186.2	200.7	250.4	300.3	349.5	399.1	450.9	
							,	60-						

AI: Alunite Ka: Kaolinite Ch: Chlorite Mo: Montmorillonite Mi: Mica An: Anhydrite Ca: Calcite Ep: Epidote Do: Dolomite PI : Plagioclase Af : Alkali feldspar Qz : Quartz Si : Silica mineral GI : Glass Tr : Tridymine Cr : Cristobalite Op : Opaque mineral CPx : Clinopyroxene OPx : Orthopyroxene Ho : Hornblende Bi : Biotite Of : Olivine O Intermediate △ Small amount × A very small amount ▲ Pseudomorph

Book Condition Condinit Condition Cond				Rock-forming	ning minerals			- 11			
1 1	Lepth	Rock	Υ. Τ	henocryst	Gr	ound mass	¥	Iteration Mir	ierais		Remarks
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(H	5	ö	Op PI Af	Cpx Opx Bi	PI Af Si	Cr Qz	Ka Mo	Mi Ah Ca		•
	503.5		۵.	4		 X	0		×	0	Strongly altered
O I	08.0		 -	•		×	0	×	×		t
Image: state s	582.3		۵. 	4			0	· · · · · · · · · · · · · · · · · · ·	X	0	H
							· · · · · · · · · · · · · · · · · · ·	····			
									· · · · · · · · · · · · · · · · · · ·		

AI: Alunite Ka: Kaolinite Ch: Chlorite Mo: Montmorillonite Mi: Mica An: Anhydrite Ca: Calcite · Ep: Epidote Do: Dolomite

No. 2

-161-

Table II 3.5(3) Petrography of Rock-forming Minerals

$\begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Rock-forming minerals	erals		
$ \begin{array}{ $	Depth	Rock	Phenocryst	Ground mass	Alteration Minerals	Remarks
Hardware Hardware <t< th=""><th>(m)</th><th></th><th>Ho Bi OI OP PI Af Qz</th><th>Bi Op PI Af Si</th><th>Cr Qz Ai Ka Mo Ch Mi Ah Ca Ep</th><th></th></t<>	(m)		Ho Bi OI OP PI Af Qz	Bi Op PI Af Si	Cr Qz Ai Ka Mo Ch Mi Ah Ca Ep	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.7	Ho - Bi andesite	<	· · · · · · · · · · · · · · · · · · ·	□ ∇ . 	
Image: second	01.0	"	×	×	× × ×	Strongly altered
O I	5 0. 0	"	×	×	× ×	N
Image: state s	1.5	¢	ć	×	× ×	<i>u</i>
Image: state s						
Image: state s						
				· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·		

°N N

က

Table II 3.5(4) Petrography of Rock-forming Minerals

Fresh Flow texture is remarkable Weakly altered Remarks 5 2 Ο Tr | Cr |Qz | AI | Ka | Mo | Ch | Mi | Ah | Ca | Ep | Do က Well No. DG -Alteration Minerals Pseudomorph Ō Ο х igtriangletungety Abundant igcodol n Intermediate riangle Smail amount imes A very smail amount O Ο Cpx Opx Bi Op Pi Af Si Gi Ο Ground mass x х х × Rock-forming minerals CpxiOpxi Ho Bi OI OD Pi Af Qz 0 Ο Ο Ο Phenocryst Ο Ο Ο ∢ Ο ◄ ۴. ę~., Bi -Ho andesite Rock name LEGEND : Tuff breccia 2 : 201.5 550.7 101.0 150.0 Depth E

Do : Dolomite Ep: Epidote Qz : Quartz Si : Silica mineral GI : Glass Tr : Tridymite Cr : Cristobalite CPx : Clinopyroxene OPx : Orthopyroxene Ho : Hornblende Bi : Biotite OI : Olivine Op : Opaque mineral AI: Alunite Ka: Kaolinite Ch: Chiorite Mo: Montmorillonite Mi: Mica An: Anhydrite Ca: Calcite Af: Alkali feidspar P1 : Plagioclase

4

N N by more recent geothermal activity because the boundary between the hydrothermal veins and the wall rocks is clear.

In the rocks of DG-2 and DG-3, hydrothermal veins are sparse.

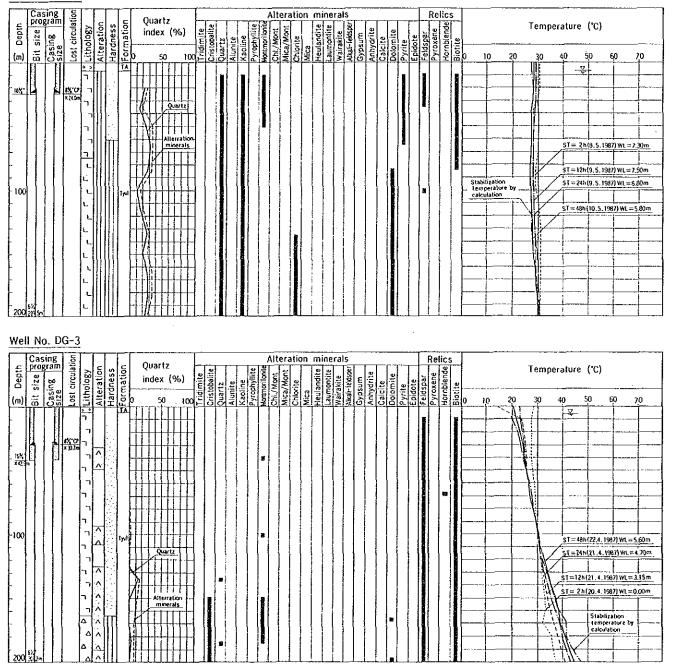
(3) X-ray analysis

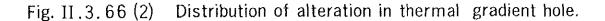
In order to know the characteristics and degree of hydrothermal alteration in the Kaynarca geothermal area, alteration zones were evaluated using the classification of alteration type and the quartz index. Their principles are outlined in Appendix A.4.3.

X-ray analysis was carried out on 65 samples, collected at intervals of about 15 m. The results of the X-ray analysis are shown in Table II.3.6 and alteration zones and the depth at which alteration of minerals appear are drawn in Fig. 11.3.66.

1) Hydrothermal alteration in DG-1

The following features of hydrothermal alteration of DG-1 become apparent from the results of X-ray analysis.


- (a) Silica minerals: Low-cristobalite is identified from 20 m to 170 m. Quartz occurs at 35 m and deeper than 149 m. As a whole, the Quartz-Index is less than 34 and a notable silicified zone (Type I) is not found.
- (b) Clay minerals: Montmorillonite formed in weakly acidic or neutral conditions is found at less than 300 m. At more than 415 m, mica clay minerals occur intermittently. Conversely, kaoline formed by acidic hydrothermal alteration is found at depths greater than 300 m.
- (c) Carbonate minerals: Much clacite and dolomite are formed from 215 m to 682 m.
- (d) Other minerals: At a depth of 35 m, alunite formed in sulfate acidic conditions is identified. Pyrite is distributed at all depths in DG-1.


From the occurrence of these hydrothermal minerals, the follow-

	Cas		<u>.</u>	Ī	Т	Т	٦-		η-	_				••		1	_						A	ite	era	itic	<u>эл</u>	n	nin	er	als	 5							T	F	₹el	ics	 5	Γ										· · · ·					
Depth	I		Lost circulation	I ithology		Alteration	Hardness	Formation	ļ		-	ari ex	z ('	%)	Tridimite	obalite	Ouartz	4	9	Duronhulita	Lontmore line to		LD L	/Mont	Chlorite			Leuistorice	Taumonne	akite	Alkali-feldsper	E,	drite	e E	mite			916	spar	Pyroxene	I lornblende	te						Ter	mp	era	atu	re	(*0	;}				
(m)	ii iii	Casing	Lost			ALLE	L22	FOC 1	þ	_		5)		100		Criste	Duar	Allan	Kaoli	2.0			5	Mica/	о С	Mica		Š.		Wair	Alkali-	Gyps	Anhy	Calcite				Ď		2 2	i lorn	Bioti	0	so	<u>. </u>	60		70	<u>}</u>	8	i0 		90		00	Y	10	
- <u>11%</u>			11 <u>%'0</u> × 4236	ן י			H	14-	Ň								•	i i	-																													1		$\overline{\langle}$		11/1/1-							
-100			95~10 *** 05*/71 *1	1				Lava Tyu3	-				╁																									ł																	ŀ			 	
-200	10%		×1990					Kach Agl Gwi Tyu]									•																																						Sta Te cal	abiliza mpera culati	ition		
-300				- - - -	יין וויי								rati rati																															<u>s1=2</u>	h(2	5.5.	1907	') WL		20m						1=35 0.6.1			
-400					2		=																				3																	<u>ST=12</u> ST=24 ST=49	h(2	7.5.	198	7) WI		. 8 0n	2-1-2-1				 				
-500						- 1 =		(yut																																											X								
-600	75.																																				and the second se			e															+++				

Well No. DG-1

Fig. II.3.66 (1) Distribution of alteration in thermal gradient hole.

									A L'	ΓEI	RAI	r10	N	М	IN	ERA	٨L٤	3						F		10	
	Well No.	DG-1.		I		11	I	11 1			IV				١	V				() th	ers			£	\$EL	103	5
Nos	Depth(m)	Alteration Type	Trídymite	Cristobalite	Quarts	Alunite	Kaolin	Pyrophyllite	Montmorillonite	Chl. / Mont	Mica / Mont	Chlorite	Mica	Heulandite	Leumontite	Wairakite	Alkali - feldspar	Gypsum	Anhydrite	Calcite	Dolomite.	Pyrite	Epidote	Feldspar	Pyroxene	Hornblende	Biotite
1	20	 		3																				4			
2	35	<u> </u>	1.999.99.0		7	1			0.5							-						1		4			
3	49.7	IV'		4					4															3			2
4	65	1		7					3															3			3
5	85			5					4															2			2
6	100.5			4					4													1		3		: 	1
7	115.0			5					3															3		, 	1
8	135			6					2													1		3		. 	
9	149				9				3													1				 	
10	170			5	5				2															3			
11	186.2				6				4															3			
12	200.8				5				4				e									1		3			
13	215				4				2						ļ					2		1		3			
14	235				8				2											2	2			2			
15	250				6				1											5	2	1		2		<u> </u>	
16	265	¥			7				2											4				3			1
17	285	<u> </u>			9																2	0.5		1			
18	300.3	<u>III</u>			4		2														6	2		2			3
19	315				8		1		1												3			2			2
20	335				26		4									ļ					2	1					1
21	349.5				16		3									 											2
22	365.0				10		0.5													2	2						0.5
23	385				17		2														15						
24	399.1		_		16		3														4	2	<u> </u>				-
25	415				21		3						1								4	1			 		
26	435				16		1					ļ				—					6	2	ŀ				
27	450.9	¥			17		1	L .					0.5								5	2			 	—	├
28	465	<u> </u>			15		2					ļ									4						\vdash
29	485	. ۱۸			19								1								5	1		4		<u> </u>	
30	503.5	\$			13								0.5					—			3	1		5			
	515	<u>IV'</u>			14								1								5	1		2			Í
32	535	<u> </u>			16		0.5						0.5		[]						5	1		1			
33	550	\$			12		1		0.5				1							1	2	1		—	\vdash	<u> </u>	
34	565	<u>) </u>			12		1		0.5				1							1	3	1					
35	585	١٧′			13								0.5			}				1	6	3	┣—	1		<u> </u>	
36	608	<u> </u>			34		2			·i	<u> </u>		1			<u> </u>		<u> </u>			<u> </u>	2				\vdash	
37	625	<u> </u>			29								0.5			—				1	4	1	 ·			<u> </u>	╞
38	640				15		1						0.5			<u> </u>				1	3	1				—	┣──
39	655	1			21		0.5	i		·			0.5					0.5			5	1		-	 		
40	670	<u> </u>			15		0.5						0.5								4	1		2			
41	682.3	IV'			18						L		1		l	L	l				2	1		4			

Table II.3.6(1) Results of X-ray analysis

The Arabic numbers show Quartz Index and Roman numbers show Alteration Type by Hayashi (1979)

	Vell No.								ΛL	TE	RA1	E I O	N	М	IN	ERA	A L S	5								100	4
	Veii No.	DG-2		Į		II	II	1			IV				١	/				Otł	ner:	5		r	(1517	108	'
Nos	Depth(m)	Alteration Type	Tridymite	Cristobalite	Quarts	Alunite	Kaolin	Pyrophyllite	Montmorillonite	Chl. / Mont	Mi ca ⁄Mont	Chlorite	Mica	Heulandite	La monti č e	Wairakite	Alkali - feldspar	Gypsum	Anhydrite	Calcite	Dolomite	Pyrite	Epidote	Feldspar	Pyroxene	Hornblende	Biotite
1	20	111			22		2		1		·											1	-	2	-		1
2	35	个			15		3		1													1		2			2
3	50.7				24		6		1													2					3
4	65				31		2	_														2					1
5	85				27		2														3						1
6	101				10		1						. .								5			1			
7	115				15		1														4						
8	135				25		1						1								2						
9	150				20		2						1								4						
10	165				26		2						1								3						
11	185	 ↓.			27		2						1		L						2		_				
12	201.5	111			22		1	L	! 				0.5								4					L	

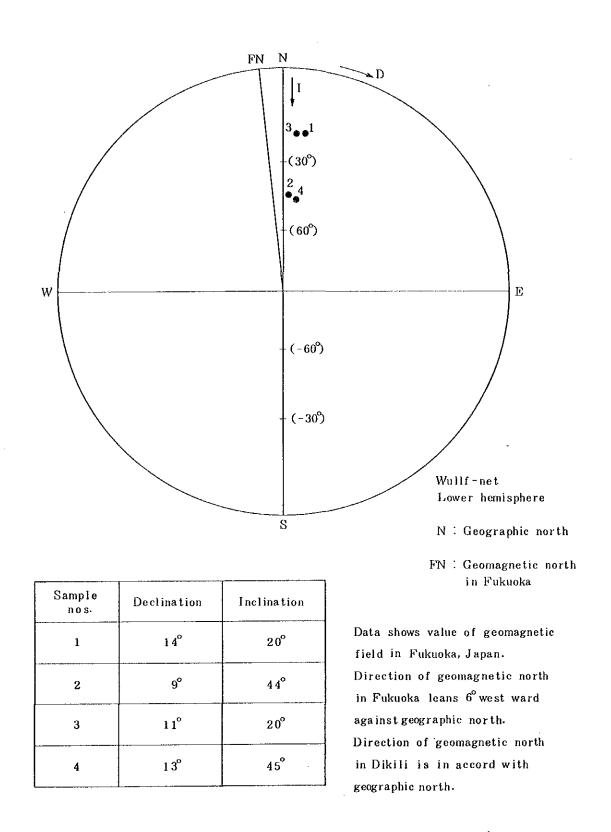
Table 11.3.6(2) Results of X-ray analysis

									٨ ۱	۲ F	RA	TI	ом	N	41N	ER	AL	S									
	/ell No.	DG- 3		I		li	1	1			IV				١	/			1	Oth	ers	,			REL	103	5
Nos	Depth(m)	Alteration Type	Tridymite	Cristobalite	Quarts	Alunite	Kaølin	Pyrophy Ilite	Montmorillonite	Chl. 🖯 Mont	Mi ca ⁄Mont	Chlorite	Mica	Heulandite	Laumontite	Wairakite	Alkali – feidspar	Gypsum	Anhydrite	Calcite	Dolomite	Pyrite	Epidote	Feldspar	Pyroxene	Hornblende	Biotite
1	20		-																		_			58			3
2	40	IV'							0.5															4			4
3	54																							12			2
4	70																							11		0.5	1
5	85																							13			3
6	101.0	١٧'							1															_4	<u> </u>		5
7	115																							8			1
8	135	١٧'			12																			14			1
9	149.4			5					4															3			1
10	165			3					1			_									2			3			1
11	185	<u>IV'</u>		5	2		_		0.5															4			1
12	200	PA		4																	2			20			

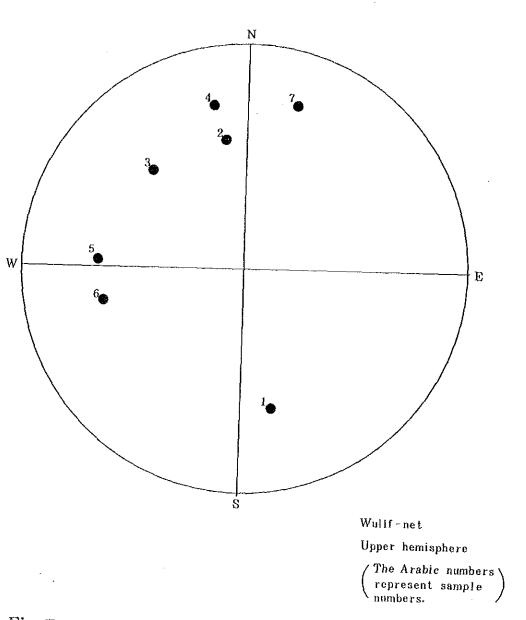
The Arabic numbers show Quartz Index and Roman numbers show Alteration Type by Hayashi (1979)

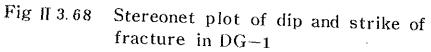
ing geothermal activity is presumed.

- (a) The transition depth from low-cristobalite to quartz is about 170 m. The transition temperature is considered to be 100°C and it indicates that the temperature has not reached 100°C shallower than 170 m. However, quartz occurs locally at a depth of 35 m, it is considered that the hot water greater than 100°C is flowing into this area.
- (b) Hot water around 35 m was acidic because alunite is found at this depth.
- (c) An acidic alteration zone characterized by kaoline exists from 300 m to the bottom of the hole. This alteration zone develops usually above or around the hot water reservoir. In the acidic alteration zone in DG-1, much quartz, dolomite and calcite filled up the fractures with druse. As a result this zone seems to form an impermeable bed, and it is thought that it forms the cap rock in the geothermal structure.
- 2) Hydrothermal alteration in DG-2


Much quartz and kaoline are found at the surface to the bottom (200 m) of the hole and an acidic alteration zone exists. From the results of the temperature logging (temperature is fixed at about 30° C), however, it is presumed that this alteration zone was formed by past geothermal activity.

3) Hydrothermal alteration in DG-3


Hydrothermal alteration in DG-3 is weak, alteration minerals cristobalite, quartz and montmorillonite are sparse at depth greater than 135 m.


(4) Fracture analysis in the core

The dip and strike of the hydrothermal veins and the fractures with slickensides in the spot core in DG-1 were measured using the natural remanent magnetization of rocks. Four rock samples of the Yuntdağ volcanics I were taken from outcrops 2 km north of Kaynarca. Using

II 3.67 Distribution of declination and inclination of field rock sample

Results of measurement of fractures in core (DG-1) Table II.3.7

[
Dip and strike of fracture	from direction of remanent magnetization	N 77 E 65 SE	N 80 E 60 NM	N 46 E 62 NW	N 78 E 73 NW	N 3 E 67 NW	N 13 W 65 SW	N 73 W 75 NE
n of t ation	Incli- nation	l Q	-40	-21	36	5.	23	64
Direction of remanent magnetization	Decli- nation	-167	10	44	-168	ო თ 	22-	163
Dip and strike of fracture	rrom temporary north	EW 65 S	EW 60 S	EW 62 S	EW 73 S	EW 67 S	EW 65 S	EW 75 S
	le n	ł	I	I	I	l	168	115
vein	Width (mm)	2~3	2 ~ 3	2~3	6 ~ 7	1~2	I	I
Hydrothermal	Mineral	Calcite, Pyrite	Calcite, Pyrite	Calcite, Quartz	Calcite	Calcite, Quartz	I	ł
Degree of	alteration	Internediatly altered	Intermediatly altered	Weakly altered	S trongly altered	Intermediatly altered	Intermediatly altered	Strongly altered
Rock	name	Ho andesite (Tyu 3)	Ho andesite (Tyu 3)	Ho andesite (Tyu 3)	Ho-Bi andesite (Tyu 1)	Ho-Bi andesite (Tyu 1)	Ho-Bi andesite (Tyu 1)	Ho andesite (Tyu 1)
Depth	(H)	1 5 0.8	185.8	200.0	250.9	399.5	451.4	608.2
Sample	Å.	H	5	κ	4	ۍ	Q	2

these samples, the directions of the natural remanent magnetization of the Yuntdağ volcanics I were measured. As shown in Fig. II.3.67, it was confirmed that the directions of magnetization of 4 samples coincides with the geographic north.

Therefore the direction of magnetization of the core with the fracture are measured and on the presumption that this direction was north, the dip and strike of the fractures or veins was decided. The results of the measurement are shown in Table II.3.7 and Fig. II.3.68. The flow chart of this method is drawn in Appendix A.4.4.

Detailed discussion is impossible because of few data. The fractures and veins which have an cast-west strike, dip 60° to 70° northward or southward and have north-south strike, dip 65° to 67° westward are aboundant shown in Fig. II.3.68. East-west striking veins are rich at shallow depths. From the occurrence of the hydrothermal veins in section 5.(2), there is a possibility that the veins are related to the east-west fault forming the graben in the Kaynarca area.

(5) Homogenization temperature measurement of fluid inclusions

The measurement was carried out in order to estimate the temperature at which a hydrothermal mineral is formed and estimate the static formation temperature in the hole.

Quartz and calcite in the cores and cuttings were collected at 7 different depths from DG-1 as shown in the following table.

Sampling depth (m)	Name of mineral	Occurrence
160.0	Calcite	Cuttings
250.0	Calcite	Vein in core
425.0	Quartz	Cuttings
608.0	Calcite	Vein in core
615.0	Calcite	Cuttings
655.0	Quartz	Cuttings
680.0	Calcite	Cuttings

List	of	sample
------	----	--------

The results are given in Table II.3.8. The distribution of homogenization temperature and the temperatures measured by a thermistor are shown in Fig. II.3.69. The details of the measurements are explained in Appendix A.4.5.

The lowest homogenization temperatures at depth substantially coincide with the present underground temperature at the same depth in the active geothermal field. In DG-1, the line which links the lowest value of the homogenization temperature is parallel to the logging temperature curve. The value of the homogenization temperature, however, is a little lower than the logging temperature. The underground temperature around DG-1 seems to be changeable because hot water from depth mixes with shallow cold water. Therefore, it is thought that the fluid inclusions which were formed at a lower temperature than present are located around DG-1. Moreover, homogenization temperature in DG-1 has a wide distribution ranging from 254.6°C to 79.9°C. These results suggest that vigorous geothermal activity, whose temperature reached 250° C existed in the area. The strong alteration zone around DG-1 is presumed to have been formed at that time.

(6) Rock property measurement

j

The rock property measurements were carried out on samples from spot cores taken from DG-1, 2, 3. The measurements consist of density (dry condition, wet condition), porosity, thermal conductivity, magnetic susceptibility and resistivity. The methods are shown in Appendix A.4.6.

Only two rock properties of DG-2 and DG-3 could be determined because most core from these holes was broken.

The results are shown in Table II.3.9 and the mean value of the original rocks which were collected during the 2nd stage survey are included in the table. Fig. II.3.70 shows a comparative diagram of rock properties against depth.

All core from DG-1 had undergone hydrothermal alteration, the density of the core is large and the effective porosity is small compared with the orignal rocks. Fig. II.3.70 indicates that the density increases and the effective porosity decreases with depth. The resistivity and thermal conductivity tend to increase proportionally with depth. The thermal conductivity of cores is used for the calculation of the heat flow.

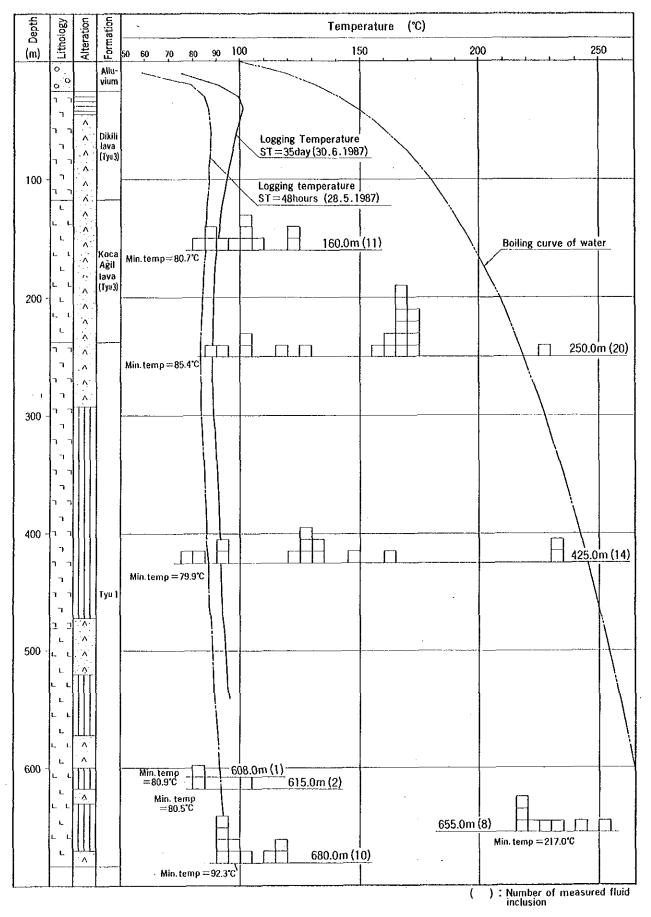
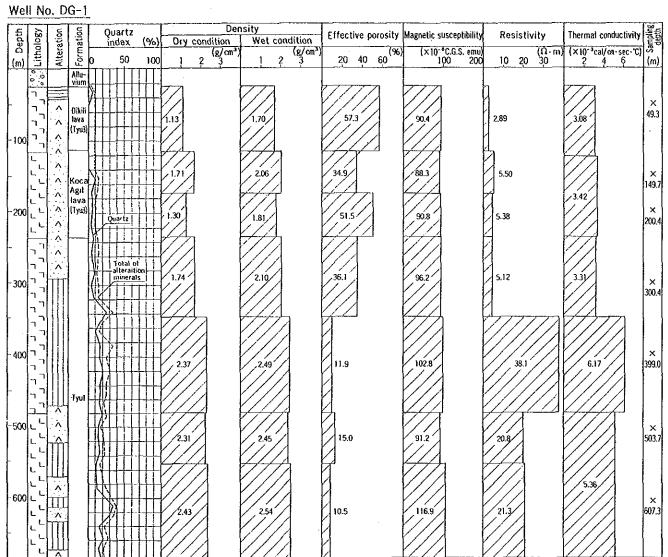
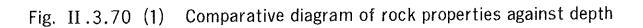




Fig. II.3.69 Homogenization temperature of fluid inclusions in DG-1

Well No. DG-1

Well	No.	DG-2

Depth	logy	ation	ation	Quartz index (f	6) Dry condition	ensity Wet condition			Magnetic susceptibility		sistivity	Thermal conductivity (×10 ⁻³ cal/on-sec.*C) 2 4 6	depth
(m)	Lithology	Alteration	Formation		00 1 2 3		20	40 60 ^(%)	(×10 ^{-*} C.G.S.emu) 100 200	10	20 30 (Ω·m)	(x10 ⁻³ cal/on·sec·C) 2 4 6	(m)
-100	<u>שי</u> ק איז		TA Tyul			2.63	5.7		99.8		18.0	6.28	× 101.4 150.0

.

Well No. DG-3

Depth	780	tion	ation	Quartz index (9	6) Dry cond		isity Wet condition			Magnetic susceptibility		sistiv	rity	Thermal co (×10 ⁻³ cal)	onductivity	depth
(m)	Lithology	Alteration			00 1 2	(g/cm³) 3	(g/cm³) 1 2 3	20 40	60 ^(%)	(×10 ^{-*} C.G.S. emu) 100 200	10	20	(Ω·m) 30	(×10 ⁻³ cal) 2	/cai·sec·℃) I δ	يم (m)
- 100	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		L TA Dikili Iava (Tyu3)		00 <u>1</u> 2 1.77 1.61 (1.69)		2.11	20 40 340 39.7 (36.9)		88.2 88.9 (88.6)	5.00)	<u> </u>	3.39 3.72 (3.56)	<u>.</u>	199.45
200		<u>^</u>			H <u>//</u>		///			V//	14_				mean va	LX

Fig. II.3.70 (2) Comparative diagram of rock properties against depth

Table II 3. 8 (1) Fluid inclusion data

۳H

Z

Remarks H.T. core)cuttings) Fluid inclusion Size ε å 160.00 Occurrence Sampling depth Mineral Remarks H.T. (C) 123.6101.3 98.2 87.6 104.3 107.1 92.3 88.2 1002 80.7 124.1 r-1 I ശ Fluid inclusion Size**6**1 40×72 24×10 12×16 Р 28×24 60×20 4 40×40 12×24 4 ø × ∾ 4 X 16 × 20 X 7 — a Well No. 65 | 10 – a م ы Ч ൻ ർ ୶ ർ đ đ Ň. | ო ا و ן ס | 0 | 4 Ŧ. . م , co Occurrence Calcite Calcite Mineral Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite

H.T. : Homogenization temperature

Table II 3. 8 (2) Fluid inclusion data

																	· · ·
		Remarks															
ings)	c	н.т. (°С)	169.4	164.2	166.3	166.0	168.3										
(core) cuttings)	Fluid inclusion	Size (#m)	4 × 4	12 × 8	6 × 10	30×4	18×6										
E	u	No.	ൾ വ	ته ا ب	م.	U	7 - 2										
250.00		Occurrence							,								
Sampling depth		Mineral	Calcite	Calcite			Calcite										
Sai		Remarks															-
		н.Т. (°С)	92.5	173.0	174.9	229.3	127.3	85.4	171.3	101.3	104.7	160.8	158.9	169.4	116.1	168.0	171.3
D D	Fluid inclusion	Size (µm)	4 × 6	10×14	10×16	10×4	28×10	8 × 4	6×12	4 × 14	2 X 4	16×12	8 × 12	4 × 12	2×20	2 × 6	16× 8
Weli No.	Ŀ	No.	1 - 2	م	υ	ਾਹ	2 - 9	3 	م,	4 - 2	Ą	ى ا ھ	Ω,	υ	ש	¢	યન
		Occurrence															
		Mineral	Calcite				Calcite	Calcite		Calcite		Calcite					

H.T. : Homogenization temperature

ę

~

윋

က

Table II 3. 8 (3) Fluid inclusion data

(core-cuttings) ε 425.00 Sampling depth D G – 1 Well No.

		1				L	I	r	, <u> </u>	[]	·	····					·
		Remarks															
		н.Т. ('C)															
	Fluid inclusion	Size (µím)															
	u.	No.															
	ł	Occurrence															
		Mineral															
		Remarks															
		н.т. (°С)	160.1	132.4	92.3	90.4	125.0	79.9	122.3	128.6	231.3	231.3	128.3	84.8	134.4	145.3	
	Fluid inclusion	Size (µm)	12×28	8×20	4 X 2	12 × 12	12 × 28	28×16	4 X 2	4 X 8	16× 8	8 × 4	24 × 2	6 X 4	8 × 4	12 × 12	
	Ŀ	No.	1 - a	ą	2 – a	م	3 1 8	٩	4 – a	Ą	ы 1 в	م	ບ	ъ 9 9	7 – a	8 8	-
J	1	Occurrence															
		Mineral	Quartz		Quartz		Quartz		Quartz		Quartz			Quartz	Quartz	Quartz	

H.T. : Homogenization temperature

Table II 3. 8 (4) Fluid inclusion data

4

Ŷ

(core) cuttings	
ε	
608.00	
Sampling depth	
1 0 0	
Well No.	

.

						r	r	 	 		 		 	
•		Remarks		· · · · · · · · · · · · · · · · · · ·						-				
	-	н.Т. (°С)												
	Fluid inclusion	Size (//m)												
	ι	No.						 						
	I	Occurrence			-									
		Mineral												
		Remarks								Yan Katalan ya K				
		н.Т. (°C)	80.9										}	
	Fluid inclusion	Size (µm)	70 × 56										 	
	Ē	No.	1 - 3									-		
J	 4	Occurrence											1	
		Mineral	Calcite											

H.T. : Homogenization temperature

ŧ

-181-

Remarks н.т. (<u>(C</u>) (core-cuttings) Fluid inclusion Size (<u>wm</u>) Ε No. 615.00 Occurrence Fluid inclusion data . Sampling depth Mineral Remarks н.Т. (°C) 103.3 80.5 Table II 3. 8 (5) ы ١ с Д Fluid inclusion Size 4 × 3 40×8 H.T. : Homogenization temperature Well No. 2 | 2 5 1 1 ö Z Occurrence Calcite Calcite Mineral

မာ No II 3. 8 (6) Fluid inclusion data

Table

			-									 		
		Remarks			-									
(égu		н.Т. (°С)												
(core-cuttings)	Fluid inclusion	Size (µm)												
ε	5	No.												
655.00		Occurrence												
Sampling depth		Mineral												
San		Remarks												
		н.т. (C)	224.7	254.6	240.4	217.0	219.6	228.3	231.9	219.0	· ·			
D D	Fluid inclusion	Size (µm)	10 × 10	8 × 16	6 × 12	Q A Q	6 × 10	10×10	17 8 8	10 × 6				
Well No.	Ē	No.	1 1 1	م	υ	ש־	¢	6 -1	<i>ъ</i> о	<u></u>				
		Occurrence												
		Mineral	Quartz											

H.T. : Homogenization temperature

₽

ဖ

2				Remarks													
2	(ings)			н.Т. (°С)													
	(core) cuttings)			Size (µm)													
	ε			No.													
n data	680.00			Occurrence													
Fluid inclusion data	Sampling depth			Mineral													
Fluid	Sa	•		Remarks													
3.8 (7)	G - 1			н.Т. (°С)	94.8	94.8	92.3	99.2	118.4	115.5	100.4	113.6	97.3	94.3			
Table II	А			Size (µm)	14×10	2× 6	20×4	4 × 12	24×4	8×6	8 X 2	20 × 36	12×2	20 × 4			
Tal	Well No.			, N	1 - a	<u>م</u>	υ	2 – a	٩	υ	יד <u>י</u>	8 0	4 1 8	٩	 		
			(Occurrence													
			:	Mineral	Calcite			Calcite				Calcite	Calcite				

H.T. : Homogenization temperature

-184-

		Den	sity	Effective	Magnetic		Thermal
Well <i>N</i> a	Depth		Wet Condition	Porosity	Susceptibility -6 (×10 C.G.S.emu)	Resistivity	Conductivity -3 (×10 cal/cm·sec·C)
	(m)·	(8/cnl)	(8/cm)	(%)	(×10 CG S emu)	$(\Omega \cdot m)$	(×10 cal/cm*see* ()
	49.3 m	1.1 3	1.70	5 7.3	90.4	2.89	3.0 8
	149.7 m	1.7 1	2.0 6	3 4.9	88.3	5.5 0	× (1.16)
	200.4 m	1.3 0	1.8 1	5 1.5	9 0.8	5.3 8	3.4 2
DG-1	300.4 m	1.7 4	2.10	3 6.1	9 6.2	5.1 2	3.3 1
	399.0 m	2.37	2.4 9	1 1.9	1 0 2.8	38.1	6.17
	503.7 m	2.3 1	2.4 5	1 5.0	9 1.2	2 0.8	5.36
	607.3 . m	2.4 3	2.5 4	1 0.5	1 1 6.9	2 1.3	※ (0.29)
DG-2	101.4 m	2.5 8	2.6 3	5.7	8 9.8	1 1 8.0	6.28
	150.0 m	2.3 1	2.4 6	1 4.6	9 5.1	3 2.0	4.8 3
DG - 3	199.45 m	1.7 7	2.1 1	3 4.0	8 8.2	5.00	3.3 9
174 - 2	199.75 m	1.6 1	2.0 1	3 9.7	8 8.9	6.9 8	3.7 2

Table II 3.9Results of rock property measurement

💥 () : Sample was broken during measurement

(Reference data (Mean value of fresh rock properties of Tyu1 and Tyu3)

V Yuntdag volcanics (Hor ublende Audesite)	2.4 1	2.4 7	6.27	3 5.8 0	191.9	4.0 9
Yuntdog voleanics (Hornblende Andesite)	2.5 9	2.6 3	3.8 8	3 4.2 0	522.2	5.2 1

(7) Chemical analysis of core and cuttings

Chemical analysis was carried out (using the same samples for X-ray analysis) in order to understand the relation between the rock chemical composition and geothermal activity or hydrothermal alteration in the survey area.

Items of analysis are 25 components as follows:

- (a) Main chemical composition of rock forming minerals
 (9 components)
 Si, Al, Mg, Ca, Na, K, Fe, Mn, Ti
- (b) Chemical composition related to volcanic divergent material (4 components)
 As, Hg, B, S
- (c) Chemical composition related to the hydrothermal deposit
 (2 components)
 Cu, Pb
- (d) Others
 (10 components)
 Li, Rb, Sb, Sr, Be, Ba, Co, Ignition loss, H₂O, pH

The results of the chemical analysis are arranged in Table II.3.10. The chemical composition against depth is shown in Fig. II.3.71 and 3 component diagrams are shown in Fig. II.3.72 and Fig. II.3.73.

The broken line indicates the mean value of the original rocks in the Yuntdağ volcanics I and III. As compared with the chemical compositions of fresh rock and core,, cuttings and alteration minerals by X-ray analysis, the following features are mentioned.

- 1) Rock chemical component in DG-1
- (a) The rocks in DG-1 show low contents of Al, Fe, Mg, Ca, Na which belong to the main component of rock forming minerals, rather than the original rocks.

These amounts become large in proportion to the strength of

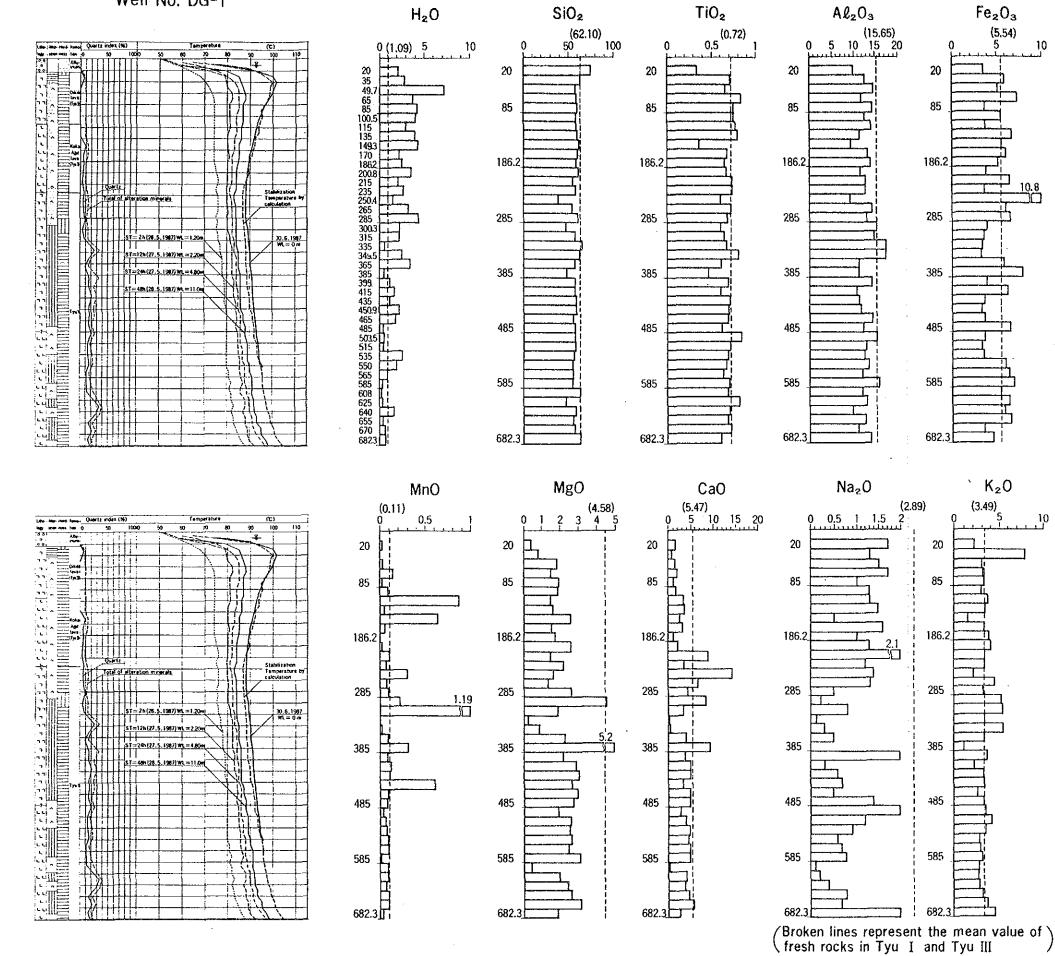


Fig. II.3.71(1) Chemical composition of rock in thermal gradient hole.

Ва

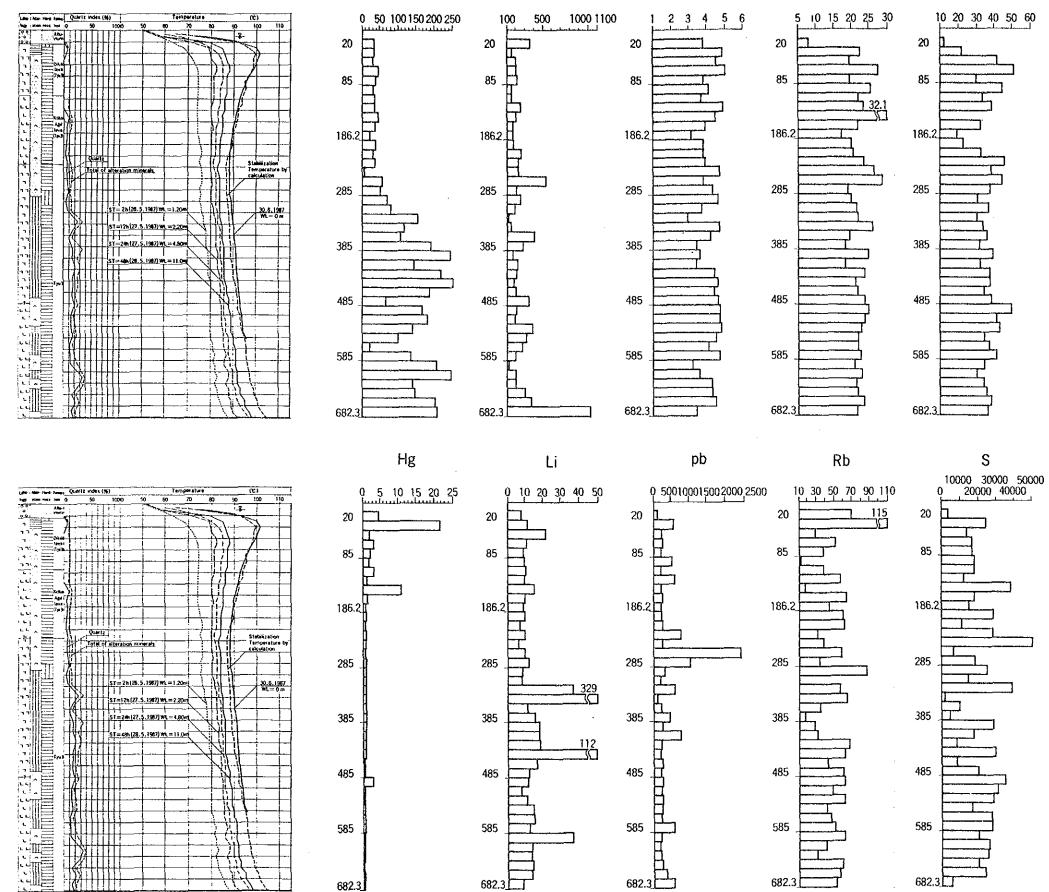
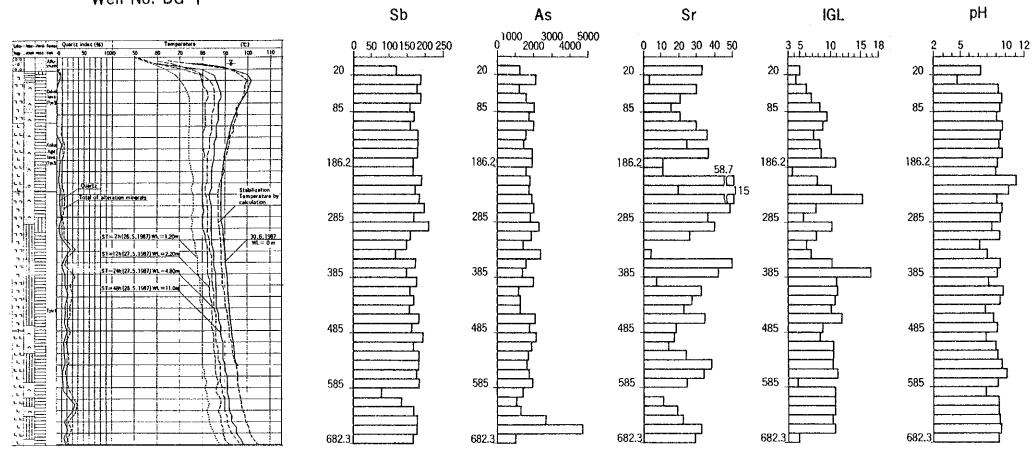
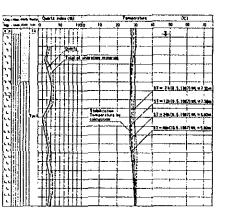
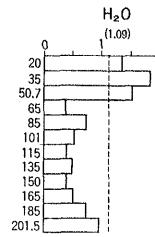
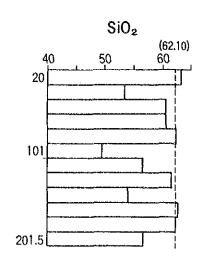
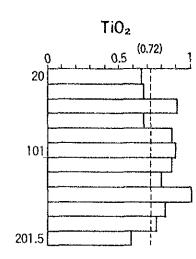
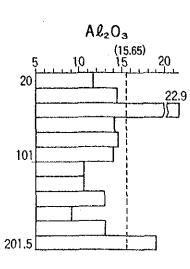


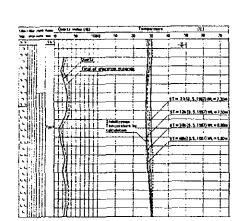
Fig. II.3.71(2) Chemical composition of rock in thermal gradient hole.

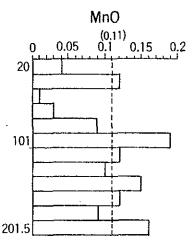
-188-

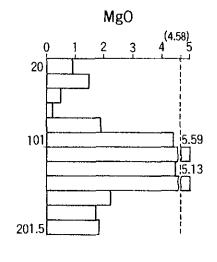





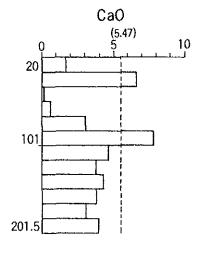

Fig. II.3.71(3) Chemical composition of rock in thermal gradient hole.

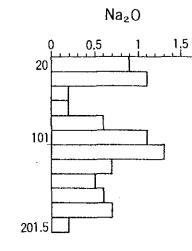

Well No. DG-2

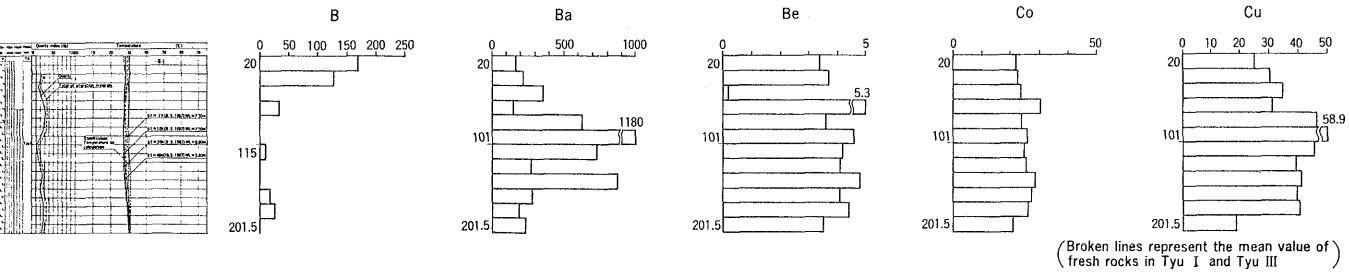


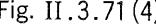






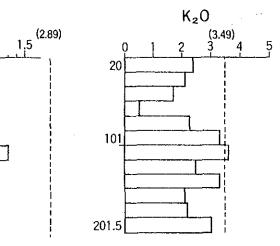


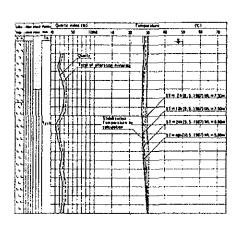


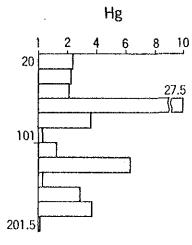


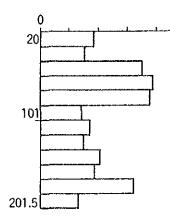


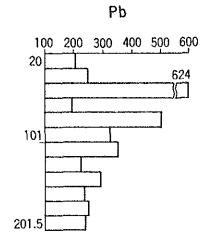


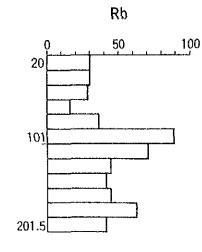


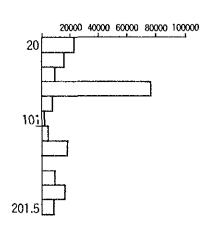


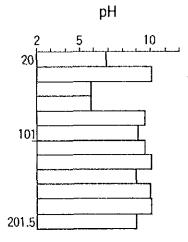




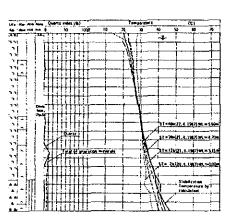


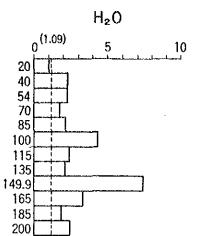


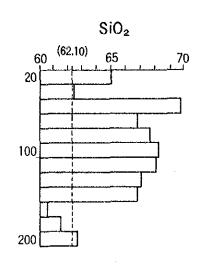


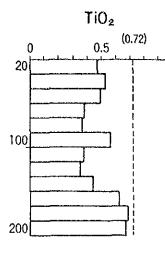

.

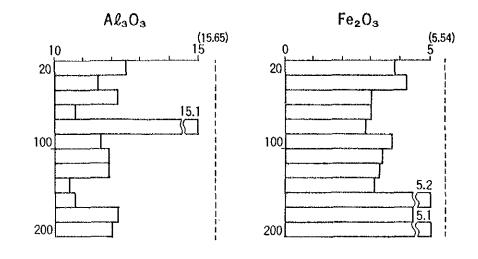
IGL Sb As Sr 5 6 7 8 9 10 11 12 13 14 15 500 1000 1500 2000 2500 50 100 150 200 250 10 20 30 40 50 0 0 0 20 20 20 20 Vel. I'd a yarm area 102 17-112.5.1971-5-7 -12 (1.1.117) 51.-1 101 101 101 101 0.018.5.1907) 9L = 5. 201.5 201.5 201.5 201.5

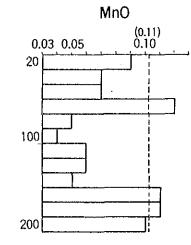

50

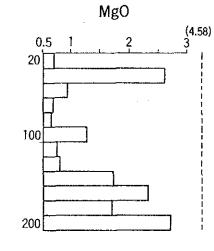


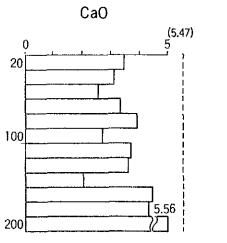


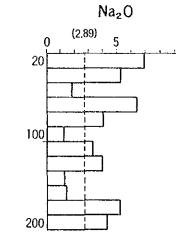

-191-


S

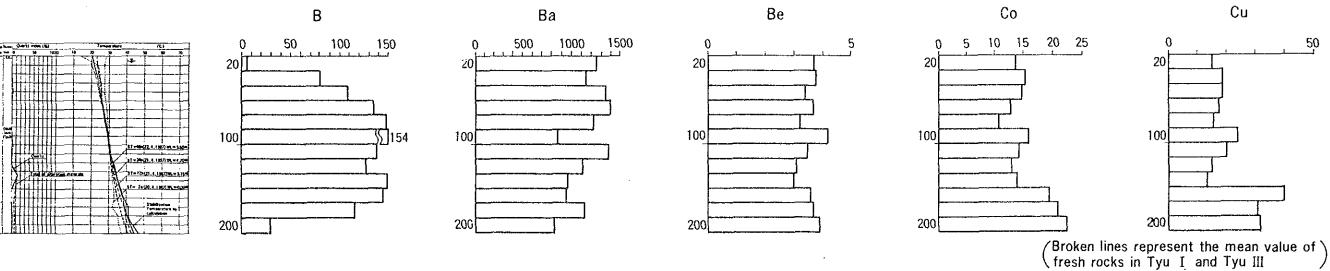
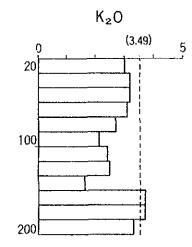
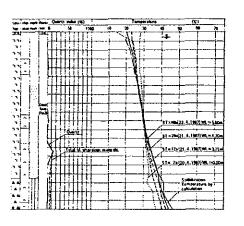
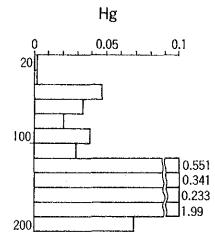


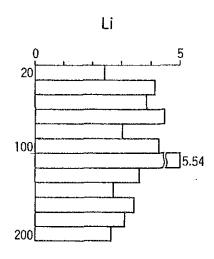


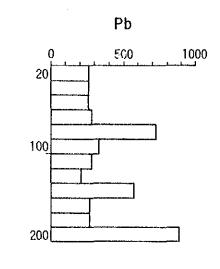


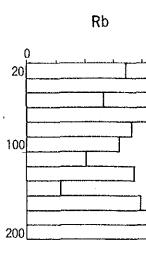

10

0.00 41 - 7M21.4.19471 mL=4.3 51×12121.4.1907/01.+1 57= 24(20.4,19(7) ml =-0.0 Stabilization Temperature it


Fig. II.3.71(6) Chemical composition of rock in thermal gradient hole.





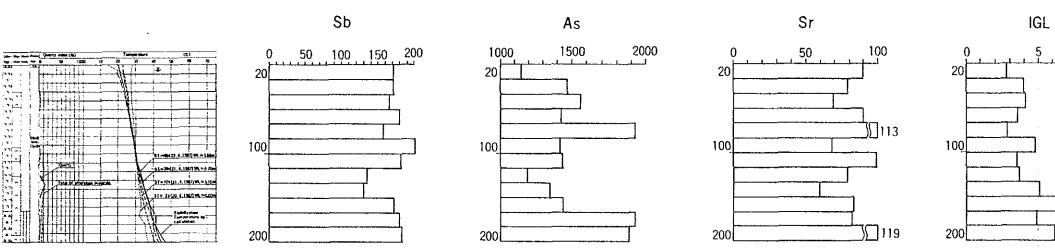
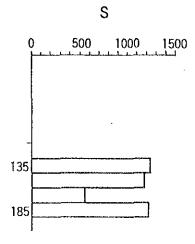
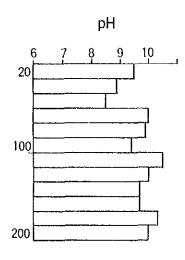




Fig. II.3.71(7) Chemical composition of rock in thermal gradient hole.

10

50

54

.

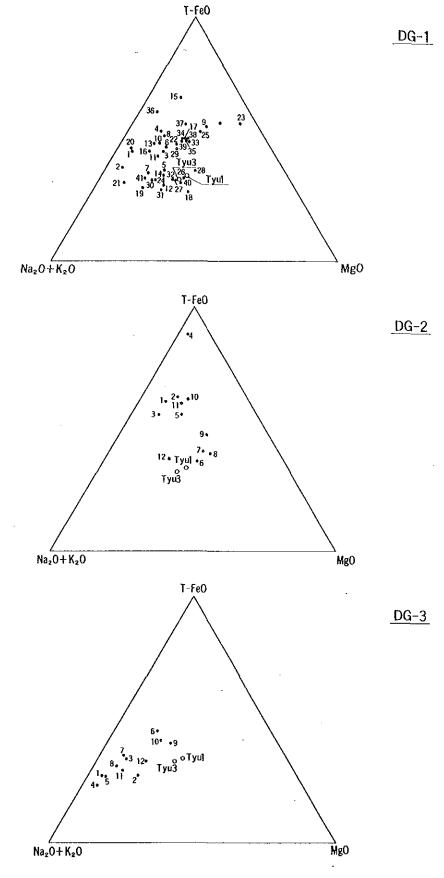


Fig. II.3.72 Chemical composition of core and cuttings plotted onto the AFM diagram.

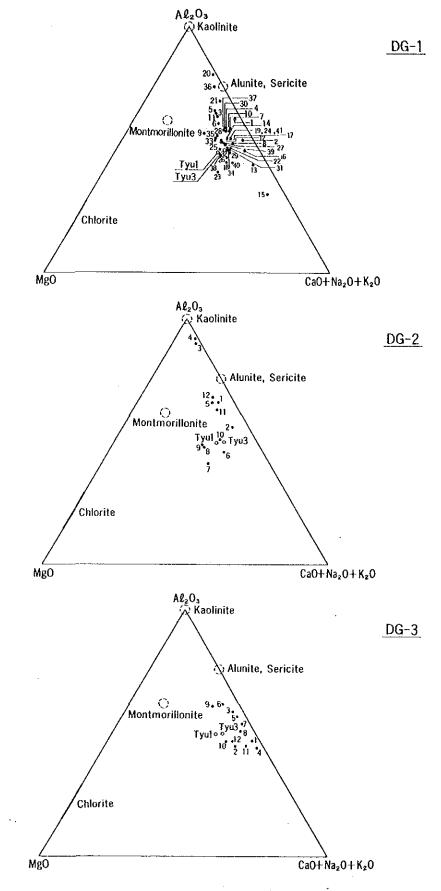


Fig. II.3.73 Chemical composition of core and cuttings plotted onto the $A\ell$ -(Ca+Na+K)-Mg diagram

Table II.3.10 (1) Chemical composition of core and cuttings

.

Well & DG-1

Щ	(၁ ဆ)	7.3	3.6	9.2	9.6	9.4	1.6	9.6	9.4	6.9	9.6	9.I	0.6	111	10.3	5.2	9.6	9.4	ນ ຜ	5.2	7.1
ម្មី	18	3.82	4.2.5	5.78	6.59	8.10	9.23	8.60	7.18	8.0.5	8.2.5	1 0.6	361	7.68	9.8.8	15.1	7.34	542	10.0	7.52	5.9 I
ч N	•	325	3.0	2.9.5	2 0.3	15.2	203	29.4	35.6	239	3 6.1	I 0.7	1 0.7	58.7	161	115	47.9	35.7	39.6	25.9	Q.X.
A3		1240	2080	1190	1590	2010	1740	- 0661	1560	1460	1970	1920	1630	1800	1780	1940	2070	1850	2300	1890	1430
Sb Sb		120	188	178	138	160	172	162	181	182	180	168	169	192	174	186	199	169	210	159	152
w		3730	24700	13900	16800	16700	18200	18100	12300	38400	17900	15300	28500	00011	28000	50100	6670	18000	24700	14800	39000
유권		689	115 2	1 0.62	525 . 1	383 1	13.2 1	39.2	57.4	19.4 3	63.8	4 5.6	20.9	61.0	320 2	3 9.2	58.4	34.4 1	87.2 2	6 0.5	56.9
ЪЪ С		156	594	266	283	250	541	243	616	252	274	250	257	293	800	286	2480	1050	354	247	633
Li	ag∕Kg (ppm)	8.35	12.1	219	116	9.58	9.88	11.3	10.2	15.5	10.5	9.2.1	1 0.4	7.5 5	1 0.6	61.7	1 0.5	123	9.06	8.81	37.1
Нg	N/bu	4.89	21.7	231	344	258	205	3.38	1.39	1 0.9	1.68	0.944	1.04	0.997	1.07	102	0.986	1.07	1.04	1.04	107
Сп		126	21.8	41.6	5 0.8	29.6	4 4.5	332	38.5	1 0.4	322	19.0	226	324	45.7	383	44.0	37.4	30.1	36.6	30.2
ပိ		8.2	225	1 9.6	27.3	1 9.6	25.4	21.9	23.6	321	21.9	1 6.9	2 0.1	20.6	23.4	2 6.5	287	18.7	1 9.9	21.5	21.9
Ве В		38	4.9	4.5	5.0 2	8 8	41	37	64	4,5	ರ್ ಲೆ	3.1	ರು ಗ	89 17	65	4.7	3.5	4.3	4,6	3.7	29
Ва		а 4 8 8	147	189	198	217	155	154	240	661	167	166	170	258	233	230	532	201	245	190	116
μQ		33 3	34	31	4 4	34	31	36	37	47	8 4	18	42	32	37	9	ŝS	50	לי סי	62	154
K ₂ 0		21	2.7	30	3.2	8 8 8	3.0	3.7	3.4	1.5	33	39	4.1	3.4	34	21	4.6	33	5.3	5.5	34
Na ₂ O		1.7	13	1.5	1.7	1.0	1.3	1.3	TS	0.5	1.6	1:0	1.3	21	L2	1.4	1.3	0.5	0.2	0.8	0.1
CaO		1.47	0.68	I.4 4	1.86	1.29	1.74	3.39	350	248	315	1.23	2.26	8.70	3.69	14.4	6.8 0	4.38	8.38	3.60	0.25
MgO		0.390	0.8.09	1.84	1.54	1.94	1.90	1.5.1	1.66	2.58	1.57	1.75	266	1.50	221	1.71	1.4 2	265	4.58	1.93	0.309
MnO	भ्र	0.02	N.D	0.03	0.15	0.02	0.09	0.87	0.05	0.64	0.06	Q'N	0.02	0.11	0.08	0.3 1	0.08	0.1.0	0.23	1.19	C N
A403 Fe03		5 3.4	4 5.8	3 5.1	4 7.3	3 36	5 5.4	0 3.7	3 6.7	3 5.5	3 6.0	1 5.1	5 3.7	4 6.4	7 3.6	1 10.8	3 6.0	9 6.5	I 3.9	7 35	2 33
		4 9.	1 124	5 14.3	3 11.4	5 14.3	12	7 14.0	9 11.3	ත් හ	7 133	5 14.I	7 11.5	3 12	3 12	1.6 0.	2 143	7 129	9 15.	4 14.7	7 17.2
2 TiO2		0.3	0.7	0.6	0.8	0.7	2 0.74	0.7	0.7	0.3	0.6	2 0.63	0.6	0.7	0.7	0.6	0.7	0.6	0.5	0.6	0.6
0 SiO		7 5.0	3 62.7	2 5 7.S	1 586	0 59.6	7 58.2	0 58.1	4 586	3 6 0.9	s 59.0	8 582	9 60.6	4 54.5	2 580	7 3&3	6 54.3	3 60.0	9 46.0	5 57.3	7 648
ь H ₂ O		20 207	5 2.83	9.7 7.22	5 371	5 42	0.5 4.07	5 29	5 39	9.3 4.2 5	0 22	6.2 2.48	34	5 21	5 27	0.4 1.47	5 32	5 4.3	0.3 2.25	22	5 0.6
le Depth	ît,	3	3	4 9	9	80	100	11	13	149.	17	18	200.8	21	23	25	26	28	30	31	8 8 8 9
Sample	20U	-	81	ო	4	വ	Ŷ	7	8	თ	10	11	12	13	14	15	16	17	18	61	000

Table II.3.10 (2) Chemical composition of core and cuttings

Well A DG-1

E H	(ລຂ)	8.0	9.4	9.1	8.1	5.2	9.4	7.8	8.7	1.9	67.	9.0	9.2	9.6	1.01	9.2	7.9	9.3	9.3	9.4	9.5	9.3
IGL	x	6.87	1 0.2	1 6.6	1 0.7	11.0	1 0.6	9,93	116	8.5 0	8.01	1 0.0	1 0.2	10.3	111	461	1 0.6	1 0.5	1 0.5	9.79	10.5	4.73
Sr		3.80 (4 9.3	4 1.6	7.3	31.8	26.9	225	338 3	181 8	1 7.1 8	137 1	234	37.8	33.5	24.5	U.N	1 0.8	18.6	220	323	288
		2420 3	1620 4	1380 4	2040	1610 3	1690 2	1670 2	2090 3	06	50	1900	1700 2	1640 3	50	1940 2	1420	0111	1320	2680 2	4680 3	1060
A				0	7	~~~~	3	 5	9	6 I 17	4 21	5	cu cu	4	8 17		сл	r-		1		
Sb		0 11	0 17	0 15	0 17	0 16	0 17	0 15	0 18	0 16	0 19	0 17	0 18	0 18	0 17	0 18	0 80.	0 13	0 17	0 18	0 18	0 16
8		2250	10200	4750	28700	17400	\$100	30700	8400	20600	35200	31200	28500	16900	27800	27800	20700	26300	25700	20300	23500	5680
R5		64.0	3 5.3	18.5	28.6	31.5	67.4	629	437	2 6.9	620	48.2	626	435	4 7.5	528	624	4 0.7	315	6 0.4	5 7.5	53.4
Ρb	(ppm)	146	262	485	265	780	275	247	288	256	287	268	284	287	276	623	263	223	266	287	397	620
Ľi	mg Kq	329	1 T 8	15.7	1 8.0	18.1	18.4	112	1 7.0	124	11.9	8.4.1	I 1.5	15.3	15.7	127	3 7.2	14.3	1 4.5	1 4.8	14.2	9.23
Яg		T.0.3	LOS	1.06	1.03	, T.O.6	1.06	1.06	0.738	0.653	318	0.629	0.586	0.883	0.997	0.789	0.517	0.635	0.692	0.272	0.438	0.102
ů		33.4	3 S.7	3 I.6	39.2	321	37.6	3 7.8	34.1	38.6	49.6	4 L.S	431	339	36.8	4 1.2	33.8	30.8	33.8	35.4	38.0	35.9
ပိ		26.1	1 9.3	18.2	24.8	18.3	23.8	21.3	21.9	23.7	25.0	24.1	228	219	22.0	233	21.3	230	21.5	21.8	23.6	21.8
Be		4.7	4.2	3.4	36	3.4	4.4	4.6	4.4	4.6	4.7	4.7	4.8	4.5	4.1	4.7	3.2	3.6		4.3	4.5	3.4
Ba		153	413	285	160	219	206	111	198	344	199	186	385	305	260	195	109	200	200	294	357	1020
щ		116	106	189	245	146	222	251	187	65	163	6 L T	141	98	23	134	207	246	140	147	19 9	207
K ₂ O		5.7	3.4	1,1	38 13	23	34	3.5	26	3.4	36	4.3	3.6	29	3.0	3.3	28	28	29	3.3	3.9	4.8
Na ₂ 0		0.3	0.5	N.D	2.0	0.3	0.6	0.7	0.5	1.4	50	1.2	0.9	0.6	0.7	0.8	0.1	0.2	0. 4	0.8	0.7	50
Ca0		0.43	4.48	9.6 I	3.83	5.29	5.28	336	5.29	5.20	298	4.31	5.21	4.95	5.49	5.70	0.42	4.53	4.09	5.09	5.9.2	2.70
MgO		0.909	2.2.8	5.2.0	222	296	3.10	2.65	299	2.85	204	2.69	2.65	276	2.60	3.14	0.565	212	2.54	2.74	3.19	1.98
on ko	₩.	0.02	0.1.0	0.32	0.1 0	0.14	0.13	0.62	0.1 1	0.1 0	0.05	0.0 8	0.09	0.11	i 0.1 1	0.02	0.11	0.11	0.08	0.1 1	1 1.0	0.05
D. Fe2O.		2 3.2	1 5.8	2 7.9	3 39	8 6.3	1 36	7 3.3	4.5 3.6	2.2 6.5	S.4 3.7	1 3.3	24 3.6	4 6.0	2.0 6.4	8 7.0	2.1 5.5	1 6.5	9.6 5.9	29 6.6	1.0 3.6	.1 4.6
02 AL205		1 17.2	1 1 1 1	6 11.2	9 14.3	0 10.8	111	9 11.7	8 14	н	4	1 131	т - в	7 13.4	 ຕ	0 15.	1 6	2 131	•	л 	7 7 7	1 14.1
io ₂ Tio2		4 0.8	0.6	5 0.4 (0.6	0 0.60	6 0.7	0.6	0.6	0.6	0.8	0.7	0.6	0.6	3 0.6	3 0.7	0.6	1 0.8.2	4 0.7	2 0.6	0.7	9.0.61
o sic		3 62,	3 57.3	6 47.	2 57.4	0 57.0	8 58.	6 588	0 55.6	9 56.8	6 57.5	1 57.0	7 56.1	0 54.8	3 55.	3 55	3 64.3	4 47.1	7 58.	1 55.	5 57.4	7 629
H ₂		5 2.5	5 343	5 0.58	9 1.22	s 1.70	5 1.18	21	5 1.8	5 0.3	0.5	0.5	35 247	50 1.90	5 0.9	5 0.4	8 0.3	25 0.44	0 1.6	5 0.4	0 0.6	23 0.67
le Depth		349.	36		39	41	43	4 5 0.9	46	48	5035	515	ۍ د	S	5 G	58	60	9	64	65.	67	89
Sample	201	21	22	23	24	25	26	27	28	53 -19	30	31	32	33	34	35	36	37	38	39	40	41

Well		KDG-2		İ	ŀ	ľ						ŀ	ŀ	ŀ								ŀ			
•	Depth	H _z o	sio.	Tioz	AL203	Fec03	MnO	MgO	CaO 1	Nar O	K _z O	B	B.s	3e	°°	Сч	Hg	Li	Ph J	Rb	s	Sb	A.	Sr I	IGL PH
	(H					*												₩/Kg ((mqq)						€ (262)
1	20	135	632	0.65	11.6	6.7	0.04	0.932	170	670	24	168	169	34	221	253	242	187	205 3	30.1 2	23300	132	1604	34 7	7.2.7
8	35	183	535	0.68	143	8.0	0.12	147	6.57	r:	21	127	226	3.7	225	30.3	228	15.3	250 3	30.5 1	15900	162	1600	19.0 8	896 109
3	50.7	L54	60.7	160	229	3.0	401	0.492	0.16	0.2	1.7	л, п й	360	0.2	23.7	350	217	34.9	624 2	28.7	9810	147	524 D	N.D.	6.6.4
+	65	0.37	60.7	0.68	142	7.5	0.03	0.246	0.34	0.2	G S	33	150	ອ ນຳ	30.6	314	27.5	38.7	195 1	16.0 7	76900	133	1380 1	n v	818
s	85	0.74	623	0.87	146	6.2	000	190	2.89	0.6	23	о.й х	636	36	242	46.6.	366	37.8	504 3	37.3	7930	148	1320 1	137 7	728
6 1	101	0.53	4 9.5	0.9.0	14.0	51	619	4.38	7.8.1	1	33	n ż	1180	46	26.3	589	0.255	145	326 8	89.5	2200	207 ;	2040	102.1	134
7 1	115	0.4 2	566	0.8 <i>7</i>	10.5	7.2	0.12	5.59	471	1.3	36	12	730	42	249	4 5.6	1.28	169	350 7	110	5600	239	1420 3	38.1 8	8.7.7
8	135	0.50	ê L 4	0.80	1 0.6	5.2	010	446	3.76	0.7	25	о ż	279	17	25.3	3 9.5	6.28	148	225 4	446 1	18000	142	1340	141 7	7.7 2 10.5
г 	150	0.39	538	101	129	84	0,15	5.13	432	0.5	33	o ż	871	4.8	28.7	4 T.4	0.320	20.7	293 4	416	372	184	1790 3	36.2 9	9.60
10 1	165	0.51	626	0.83	9.2	8.0	0.12	2.2.3	383	0.6	21	19	283	41	27.5	39.8	285	18.6	237 4	452	9700	141	1320 2	250 8	819 10.2
11 1	185	0.74	624	7.7 6	130	1.7	0.09	172	312	67	22	26	161	4.4	26.5	4 0.8	369	323	252 6	634 1	16300	165	988	15.2 7	7.18 10.6
12 2	201.5	0.86	56.6	0.59	19.0	32	0.1.6	184	3.88	0.2	30	N. D	239	3.S	200	18.8	0.108	133	240 4	4 T 6	9640	162	1 9611	5 1.7 1	9.71
Well	11 AG	ן ס																							
Sample I	Depth	H ₂ O	S102	TiOz	A4205	Fe2O.3	М пО	MgO	C≜O	NA ₇ O	K₂O	в	Ba	Be	ပိ	n U	ЯR	Li	4ª	а к	s	Sb	48	Sr I	ICL 2H
	E					1 8												₩, K9 ((ppm)						ر29C) ≉
	20	L00	55.0	0.47	125	3.8	609	0,687	3.4.7	6.9	30	4	1240	3.7	13.7	151	0.002	244	266 3	344	N. D	172	1150 8	89.9 2	279
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40	230	624	0.53	1 25	4.2	2.07	260	311	5.3	32	81	1150	3.8	15.4	18.8	0.002	415	269 5	540	N. D	172	1470	788 4	400
	54	229	69.8	0.49	122	3.0	0.07	0.934	256	1.8	32	108	1350	3.4	14.8	187	0.047	384	261 2	26.6	й. D	164	1560 6	\$ 689	412
*	70	1.78	66.8	0.3.8	10.7	3.0	0.12	0.687	336	6.4	3.1	135	1400	3.7	12.7	1 7.5	0.034	4.45	279 4	481	С.N	180	1430 5	5.05	354 10.0
	35	214	6,7.7	0.36	151	28	0.05	0.645	391	41	27	147	1210	32	10.7	15.4	0.020	3.00	731 3	36.4	N.D	157	1930 1	113 2	283
6 1	100	428	682	0.56	116	3.7	0.04	L27	269	1.2	21	154	376	4.2	16.2	240	0.039	425	331 3	320	U.N	203	1420 6	680 4	4.83
7	115	238	58.1	0.37	11.9	3.4	0.06	0.749	3.7.2	33	24	138	1380	3.5	14.4	20.5	0.029	\$.54	290 2	20.4	й. D	182	1440 5	9.9.6	352 105
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	135	2.14	6 7.I	0.35	119	33	0.06	0.804	3.6.2	40	25	127	1110	31	130	15.2	0.551	360	214 3	37.4	1240	135	1 0611	787 3	364 100
 σ	149.9	7.3 9	66.8	Q.4.4	1 0.5	31	0.05	L74	204	13	7ę	148	954	3.0	13.8	134	0.341	2.69	567 1	113]	1180	130	1350	\$ 3 6 . 5	112
01	165	331	605	Q.62	10.7	5.2	0.11	233	4.4 7	L4	37	144	949	3.6	19.5	4 û.I	0.223	6 8 2	271 3	39.3	546	173	1440 8	831 6	6.69
11	185	183	8.LS	0.68	122	44	110	T10	433	5.2	3.7	116	1130	3.7	21.0	30.9	667	310	277 4	45.6	1220	179	1930 8	827 4	492 103
	000	1.80	507	0.67	001	5	010	040	4 5 2		6.6	10	- u - a	0	220	000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				; ;				;

9.7 1 0.3 10.0

6.2.2

119

182 1892

Q Z

320 0.069 2.65 891 47.1

225

15) 6 6

1130 815

3.7 33

_ 43 1.4

0.10 2.69 5.56 TT0 -233

5.1 44

120 122

0.68 0.67

615 627

183 241

200

12 11 10

144 116 29 hydrothermal alteration. From these facts, it is thought that plagioclase, biotite and hornblende of primary mineral were decomposed and these chemical components were leached out.

- (b) At various depths, it is found that the values of Fe, Mn, Mg, Ca are high. The depth corresponds to the depth of appearance of calcite and dolomite. These components seem to precipitate in the rocks as thermal veins.
- (c) High concentrations of K are found at 35 m and is thought to be related to the formation of alunite. Concentration of K is high at depth where biotite which escaped alteration has remained.
- (d) The change in B concentration corresponds well with the degree of alteration. Therefore, B seems to concentrate in altered rocks.
- (e) Hg and Rb concentrations are high in the high temperature part of DG-1. These components indicate the existance of a geothermal fluid.
- (f) Concentrations of metal elements such as Pb deposited in hydrothermal veins at 200 m to 270 m.
- (g) Concentration of S appears high as a whole. S appears to be derived from volcanic activity. Therefore it is thought that the area around DG-1 has been active geothermally from the past to present.
- 2) Rock chemical component in DG-2
- (a) Much Si, Al, Mn, Mg, Ca, Na, K were leached out from rocks in DG-2, because alteration is strong as a whole.
- (b) The Hg component shows a high value at 65 m. Judging from the temperature in the hole, 30°C, Hg seems to be concentrated in altered rock formed in the past.
- 3) Rock chemical component in DG-3
- (a) The value of H_2O is high, therefore the rocks in DG-1 are presumed to be highly porous.

(b) Thee concentration of Hg and S increases with depth. Therefore, there is a possibility of geothermal activity at depth around DG-3.

As shown in Fig. II.3.72 AFM diagram, the strongly altered rocks in DG-1 and DG-3 have lower contents of $Na_2O + K_2O$ than the original rocks and show a slight increase in T-FeO. It is thought that rock forming minerals such as plagioclase, hornblende and so on were decomposed and Na, K were leached out and Fe deposited in hydrothermal veins.

Fig. II.3.73 Al-(Ca+Na+K)-Mg shows that the changes of chemical compositions are controlled by formation of the secondary minerals such as kaoline, mica, alunite and silica minerals. In DG-1 and DG-2, much mica clay minerals and kaoline were formed by geothermal alteration.

7. Chemical analysis of hot water sampled from holes DG-1, 2 and 3

On the basis of the chemical analysis data of hot water sampled from holes DG-1, 2 and 3, the subsurface condition of the geothermal fluid was discussed from a geochemical viewpoint. The chemical compositions of the water samples are shon in Table II.3.11.

- (1) On the water sampled from DG-1:
 - The sampled water was of weakly alkaline SO₄-HCO₃ type (Table II.3.11)
 - 2) The contents of mainly dissolved chemical components except for SiO₂ are very similar to those dissolved in the hot water discharging in the Kaynarca hot spring.
 - 3) The temperature of the reservoir which provided mainly the water sampled from DG-1 is calculated to be between 33°C and 67°C using a silica thermometer. However, the temperatures calculated using a Na-K-Ca-Mg thermometer and SO₄-H₂O (oxygen-18) thermometer are relatively high (180 to 194°C). Therefore, it seems that the water discharging from DG-1 was composed of low temperature water and high temperature water.
 - 4) Isotopic characteristics (Figs. II.3.74 and 75) of the water from DG-1 are very similar to that of the Kaynarca hot-spring. Therefore, it is reasonable to consider that geothermal fluids originate

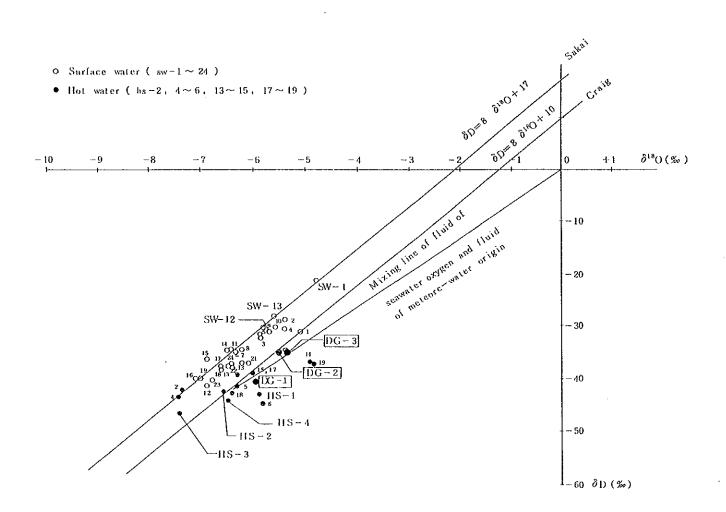


Fig II 3.74 Deuterium and oxygen-18 isotope ratios of hot spring and cold water(surface water) in the Dikili-Bergama geothemal field

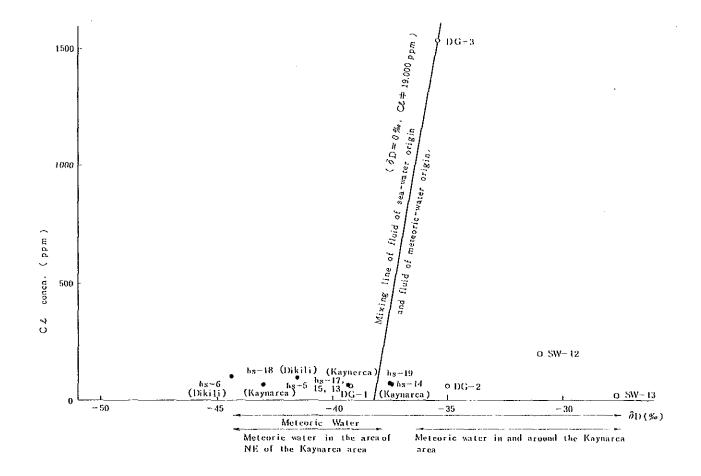


Fig II 3.75 Relationship between Cℓ concentration and δD value in geothermal water in the Dikili-Bergama geothermal field.

Items		DG - 1	DG - 2	D G - 3
		0.0(05 22)		7.7(25°C)
рН	_	9.0(25°C)	7.6 (25 °C)	
COND	µs/cm	1800	1170	5500
T–S	mg∕L	1180	912	3500
Na	mg∕L	363	115	737
K	mg/L	3 2.1	8.1 8	8 7.0
Li	mg/L	0.533	0.077	0.143
Ca	17g/L	1 0.8	129	313
Mg	mg/l	2.29	2 8.3	6 3.0
F	119/L	4.23	1.68	0.27
CL	mg/L	5 1.2	6 3.1	1530
SO4	™9/L	553	320	131
HCO3	mg/L	282	281	251
HBO₂	1118/L	6.7	0. 7	3.7
TSiO2	mg/L	2 1.6	5 6.5	96.1
H ₂ S	mg/L	< 0.0 3	< 0.0 3	< 0.0 3
T - Fe	1119/L	6.90	1 0.3	0.95
٨l	mg∕L	0.53	8.5 3	4.30
Br	mg/L	< 3.0	< 3.0	4.7
I	my/L	< 0.30	< 0.3 0	0.48
As	mg/L	0.0061	0.0153	0.0570
NH4	mq∕L	0.67	0.22	0.20
δD	‰	- 3 9,2	- 3 5, 0	3 5.5
δD δO δO (H,O)	%0	5.9	5. 6	- 5.4
8 ³⁴ C	‰	1 6.3	1 0.9	1 3.4
δ ¹⁸ (SO₄)	‰	3.2	4. 0	1 0.1
(SO₄) Tritium	T.R	< 0.8	< 0.8	< 0.8
TFCO2	mg∕L	169	189	. 171

Table Π 3.11 Chemical composition of hot water from thermal gradient hole

from meteoric water recharged from the northern area and its circulation time from the recharge area to the discharge area is long because of the very low concentration of tritium in the sampled water, as well as the hot water in the Kaynarca hotspring.

- 5) The chloride concentration and the Cl/B ratio of the water from DG-1 (Fig. II.3.76) are thought to indicate that the sampled water consists of a mixture of high temperature water discharging from the Kaynarca hot spring and cold groundwater flowing in from the vicinity of Kaynarca at shallow depth. Therefore, it is reasonable to consider that the water discharging from DG-1 is not provided directly from the conduit connecting the Kaynarca hot-spring and the deep reservoir as shown in Fig. II.3.77.
- (2) On the water sampled from DG-2:
 - 1) The sampled water was of neutral SO_4 -HCO₃ type (Table II.3.11).
 - 2) Contents of dissolved chemical components except for Ca, SO_4 and HCO_3 are low but Cl content in the water is relatively high as compared with those in groundwater recharged from the northern area of the Kaynarca hot spring.
 - 3) Subsurface temperatures calculated with a silica thermometer and a Na-K-Ca-Mg thermometer are 77°C and 50°C, respectively and are considered to be relatively low. However, the SO₄-H₂O (oxygen-18) thermometer giving 185°C, indicates that reservoir at deeper level or far from this well is relatively high temperature.
 - 4) Judging from the isotope ratio data (Figs. II.3.74 and 74), the water sampled from DG-2 is considered to be of meteoric origin. Furthermore, considering the low concentration of tritium in the water and relatively lower delta-D values of the water compared with those of groundwater around this well, the water from DG-2 is considered to be ground water recharged from the northern area of the Kaynarca hot spring.
 - 5) The main water in DG-2 seems to be of meteoric water origin. Deep geothermal water or sea water is considered to mit slightly, because the Cl content in the water is relatively high in com-

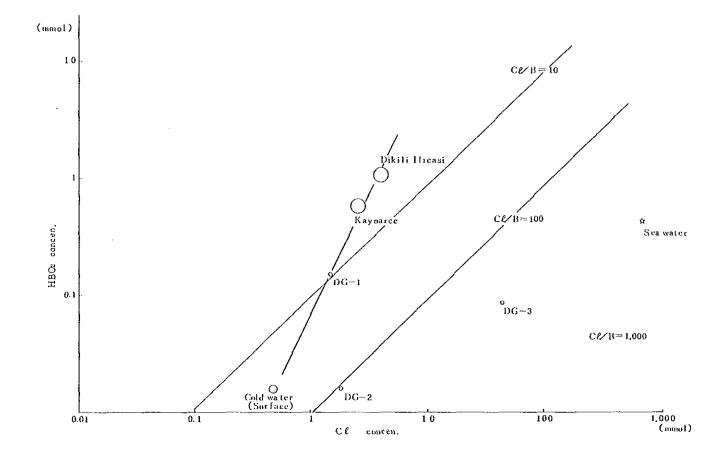
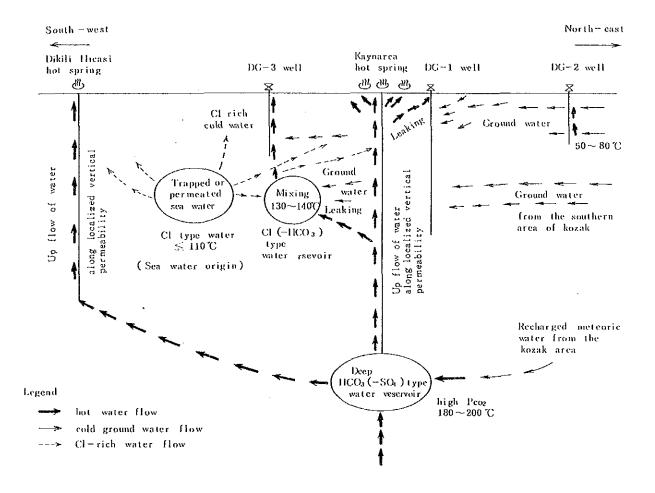



Fig II 3.76 Relationship between Cl and HBO2 Concentration.

Fig II 3.78 Simplified modal of geothermal fluid estimated from chemical analysis data of temperature gradient holes

parison with that in groundwater in the vicinity as shown in Fig. II.3.76.

- (3) On the water sampled from DG-3:
 - 1) The sampled water was of neutral Cl-HCO₃ type (Table II.3.11).
 - 2) Mainly dissolved chemical components such as Na, Ca, Cl, SO_4 and so on in the water have a high concentration.

The concentrations of the dissolved chemical components in the water are considerably high in comparison with those in the hot water discharging from Kaynarca and Dikili Ilicasi.

- 3) The temperature of the reservoir which provided the water in hole DG-3 directly are calculated to be 132 to 135° C using a silica thermometer (Quartz) and Na-K-Ca-Mg thermometer. Its temperature is the highest of the drilled holes (DG-1 to 3) in this area. However, the SO₄-H₂O (oxygen-18) thermometer with which the reservoir temperature of deeper level or far from the DG-3 well can be obtained, indicates a relatively low temperature (111°C).
- 4) Considering Figs. II.3.74, II.3.75 and II.3.76 and Table II.3.12, the hot water from DG-3 seems to be a mixture of hot water discharging from Kaynarca and Dikili Ilıcasi (meteoric water origin) and water of sea-water origin. However, it is reasonable to consider that direct mixing between hot water and sea water does not occur, because of the different characters of delta-³⁴S(SO₄), Cl/B atomic ratio, Cl/As atomic ratio and so on between the DG-3 water and sea water. Containing plenty of SO₄ ion, sea-water origin fluid is considered to be less than 111°C.
- 5) According to the results' of geochemical survey performed in 1986, there was a possibility that the Cl-rich water contained in hot water discharging from Kaynarca and Dikili Ilıcasi originated from a deep water reservoir. However, judging from the results of this survey using chemical data of the holes, it is possible that the Cl-rich water originates from sea water and its chemical-character-istics have changed by water-rock interaction.

Table II.3.12	Geochemical temperatures and CL/B and CL/As
	atomic ratios in the waters sampled from
	DG-1, $DG-2$, $DG-3$ and others

		Geo	chemical Ter	mperature	(°C)	0470	014
		Quartz	Chalcedony	Na•K•Ca•Mg	SO 4-H2 O	Cℓ∕B	CL/As
wel l	D G - 1 D G - 2 D G - 3	67 108 135	33 77 107	180 50 132	194 185 111	9.4 111 511	1 7,7 0 0 8,7 2 0 5 6,7 0 0
spring	Kaynarca	172 \$ 200	149 \$ 182	147 \$ 178	797 5 218	$3.4 \sim 4.5$	927 ~ 1270
hot s	Dikili I lıcasi	136 5 142	108 \$ 115	148 5 162	2 2 9 5 2 3 1	$2.4 \sim 3.0$	218~366
С	cold Spring	-		_	-	34~49	126,000 ~222,000
P	resent Sea water		_	-		1207	4.0×1.0^{7}

- 6) Assuming subsurface dilution of silica with low temperature groundwater, the reservoir temperature is estimated to be approximately 200°C, as shown in Fig. II.3.78.
- 7) As a results of the survey on the water sampled from holes DG-1, 2 and 3 and previously performed geochemical surveys, the target for future development is considered not to be Cl type but water reservoir but to be SO_4 -HCO₃ type hot water reservoir in and around the Kaynarca hot spring and its temperature can be expected to be approximately 200°C (Fig. II.3.78). Furthermore, unfortunately, because of the high content of CO₂ in the water, its depth seems to be considerably deep.
- 8. Geological structure and geothermal activity in Kaynarca geothermal area

Based on the results of the geological analysis of core and cuttings from the thermal gradient holes and the previous surveys, the geological cross section was drawn in Fig. II.3.79.

From the detailed geological mapping, the depression zone which was located from west to east around Kaynarca was presumed to be filled up by effusive materials from the Demirtas felsic volcanism and Soma formation. However, the core and cuttings in the thermal gradient holes have revealed that the Yuntdağ volcanics III overlie the Yuntdağ volcanics I thickly in the depression zone as shown in the geological cross section.

Many fractures and hydrothermal veins are found at depths of 100 m to 250 m in the spot core of DG-1. The direction of many fractures in this zone is east-west. It is presumed that these fractures and veins accompany the castwest fault. DG-1 seems to cut the fault or was drilled near the fault at shallow part, because this fault near DG-1 is presumed to dip south from the gravity survey and the geological survey. Therefore, DG-1 was drilled on the horst side in the depression zone.

The isothermal line in the subsurface around the thermal gradient holes is shown in Fig. II.3.80. The temperature in the subsurface increases along the fault. In DG-1, the temperature increases rapidly from the surface to a depth of 40 m and the heat flow is large, 12.75 HFU.

The hot water reservoir of about 100°C is presumed to exist in Alluvium and the upper part of the Dikili lava from a depth of 10 m to 100 m around DG-1

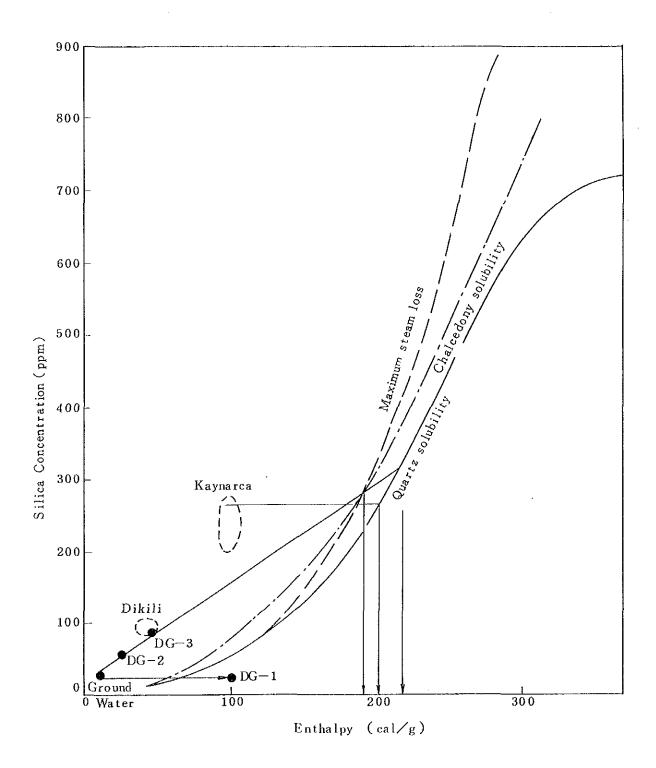
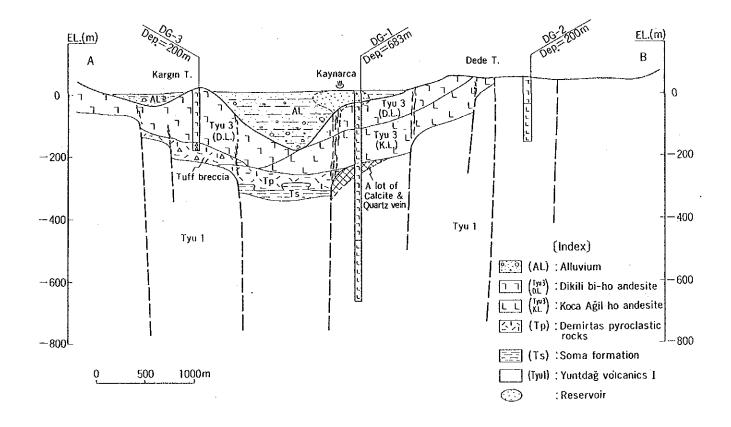
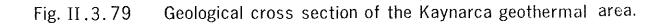
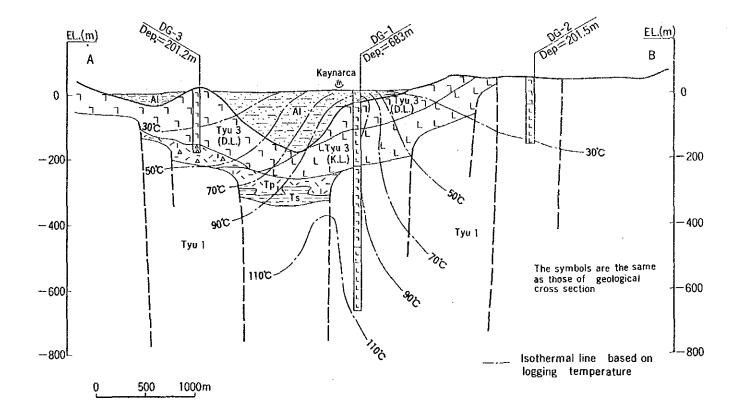
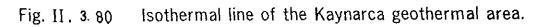






Fig II 3.77 Silica temperature using mixing model

.

because cristobalite changes to quartz, Hg concentration is high and a small lost circulation was confirmed at 95 m.

From 100 m to 500 m, the temperature gradient is small and the temperature is fixed. The lost circulation was not confirmed deeper than 100 m. This part corresponds to the massive and impermeable rocks of the Yuntdağ volcanics I.

At depths greater than 500 m, the temperature in the hole increases gradually. From the results of the chemical analysis of the thermal gradient hole, the existence of a hot water reservoir of 180°C to 200°C is expected at depth below Kaynarca.

Judging from the mean temperature gradient (5 to 10° C/100 m) in the hole, it is presumed that the depth of the hot water reservoir is greater than 1,000 m.

CHAPTER III. INTEGRATED ASSESSMENT

•

.

CHAPTER III. INTEGRATED ASSESSMENT

III.1 Delimitation of the geological reservoir and modelling of the geothermal system

III.1.1 Delimitation of the geothermal reservoir

The shallow reservoir in Kaynarca which was observed as low resistivity zones probably extends into the alluvial deposits near the surface, while, there is a high possibility that a deep reservoir is formed in the fracture zones in the Tertiary volcanic rocks.

It is considered that the resistivity values in the Tertiary volcanic rocks are not so low compared with those of shallow reservoir and sedimentary rocks.

A deep reservoir was roughly delimited by elucidating the existence of the faults as a passage of geothermal fluid from the geological survey, geochemical survey, CSAMT survey and Misc-á-la-masse survey.

In Fig. III.1.1, the shallow reservoir in the Kaynarca area is presumably shown as a high longitudinal conductance extending in the southern part of the Kaynarca. It is correlated with the high anomaly zone of Hg content in soil and soil air. Accordingly, it is defined that the shallow reservoir is formed to the south of the Kaynarca hot spring.

From the results of geological survey and geophysical explorations, the reservoir is through to extend southward from NW-SE tending faults through the Kaynarca.

On the other hand, a deep reservoir in and around Kaynarca is considered to be developed in fracture zones along the following three faults; NE-SW, NW-SE and E-W trends. As shown in Fig. II.3.57, a low residual potential zone detected by the Mise-á-lamasse survey extends roughly from the NE to the SW. That is, Kaynarca is situated at the intersection of the NE-SW trending fault and NW-SE trending fault. Besides, the area 200 m southeast from well DG-1 is not only of obviously high longitudinal conductance zone but also of low residual potential anomaly zone. Accordingly, there is a high possibility that the anomaly area represents a conduit for geothermal fluid from the deep reservoir.

III.1.2 Conceptual geothermal model

From the results of three stage explorations, the geothermal system model in and around the Kyanarca area is illustrated as shown in Fig. III. 1.2.

In the Dikili-Bergama geothermal area, an E-W trending basin extends from Kiriklar to Dikili. There are two hot spring, one at Kaynarca characterized by boiling hot spring and one at Dikili Ilıcasi characterized by relatively high Cl content in the hot spring. The basin is formed by the movements of the WNW-ESE trending fault and the NW-SE fault, it is observed as a district low gravity anomaly.

In addition to the abovementioned E-W trending fault, there are two kinds of faults trending NW-SE and NE-SW. Hot springs and hydrothermal altered zone tend to arrange along those faults. Therefore, it is clear that geothermal fluid is coming up along the faults and must be partially reserved in fracture zones.

As to fracture in outcrops of Tertiary to Quaternary volcanic rocks, the NW-SE trending fractures are predominant. Especially most of the fractures which are filled with secondary minerals trend in a NW-SE direction. It is concluded that near surface geothermal activity is caused by thermal fluid that has flowed up in fractures along faults.

In Kaynarca, the NE-SW trending fault was determined by Hg concentrations in the soil and soil air, distribution of high longitudinal conductance zone and low residual potential zone as shown in Fig. III.1.1. The fact implies that there is a NE-SW fault trend besides the NW-SE trending fault. Kaynarca is situated at the intersection of these two faults.

The geological structure of the pre-Tertiary rocks and Kozak pluton that make up the basement is characterized by small grabens and horsts formed mainly by NW-SE and E-W trending faults. Hot springs at Dikili Ilicasi and Kaynarca are distributed on the south and north margins of a graben respectively.

The geothermal reservoir in the Kaynarca area is expected in the fracture zone of the Yuntdağ volcanics I lava flow. Moreover, there is a possibility that a reservoir scats in limestone intercalated with pre-Tertiary basement. Tuff and tuff breccia which are interbedded with the Yuntdağ volcanics I and Demirtas pyroclastic rocks may form sealing, layer for the deep reservoir. These sealing layers are overlain by the Yuntdağ volcanics III and alluvial deposits. The shallow reservoir must be developed in a permeable zone of them.

The Sulu Kaya lava and the Koca Tepe lava which resulted from the latest volcanism in the survey area are distributed between the Kaynarca and Kocaoba hot springs. There is a great possibility that the post volcanism in the heat source for the present geothermal activity. In fact, a low residual potential zone is situates at the southern slope of Mt. Sulu Kaya, and it supports the above possibility.

From the results of hydrothermal alteration survey, it is made clear that the

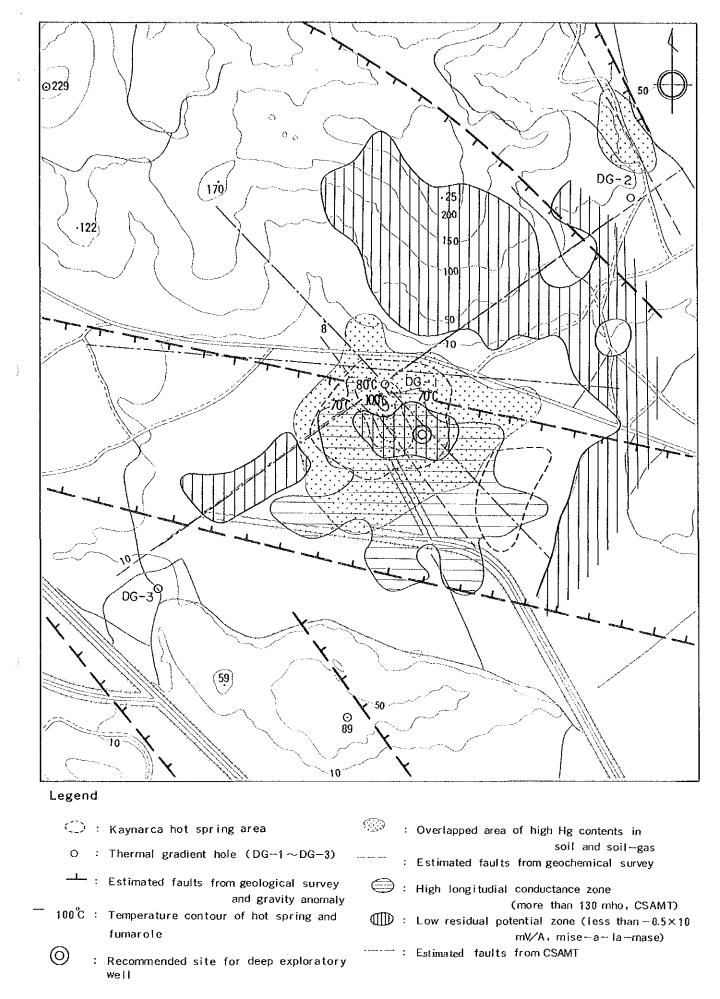


Fig.III.1.1 Synthetic interpretation map

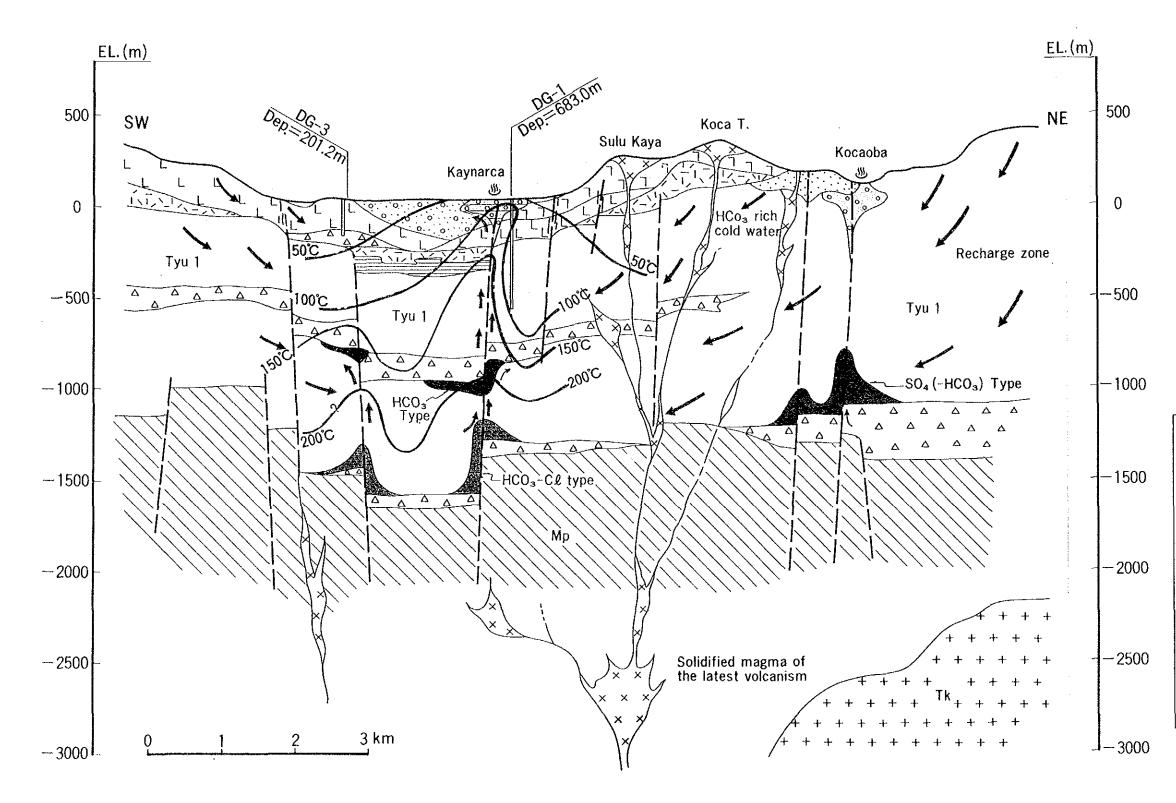


Fig. III.1.2 Conceptual model of the Kaynarca geothermal area

.

		LEGE	ND	
	[yu₃;	Dikili Bio Andesite	otite-He (Yuntda	ornblende ag Volcanics III)
$\langle \cdot \rangle$	Тр ;	Demirtas	s Pyroc	clastic Rocks
	⊺s ;	Soma Fo	ormatio	ו
	Tyu,;	Saganci (Yuntdağ	Hornble Volca	ende Andesite nics I)
	Mp ;	Mesozoio Rocks	c and F	Paleozoic
× × × S	Solidifi Volcani	ed Magma cs III	a Rese	rvoir of Yuntdağ
$\begin{bmatrix} + & + & + \\ + & + \end{bmatrix}$	Tk ;	Kozak P	luton	
,	Fault	•		SO ₄ Type Reservoir
	Upflow Therm:	of al Fluid		HCO ₃ (-SO ₄) Reservoir
1	Inflow Cold W	of		HCO ₃ -C£ Type Reservoir
生	Hot Sp	ring		

geothermal activity was affected by the volcanism of Miocene age to Piocene age and has continued.

The geothermal system (the Kaynarca system) of the most prospective area in the Dikili-Bergama geothermal area was interpreted on the basis of the chemical characteristics of hot springs and surface water. Geothermal fluid in the Kaynarca system is of water-dominated type and originated from meteroric water.

In the Kaynarca geothermal area, there are presumably two kinds of reservoirs; a shallow reservoir and a deep reservoir. The former is formed mainly in alluvial deposits, and the latter is formed in fracture zones of Tertiary volcanic rocks, Yuntdağ I. Hot water in the both reservoirs is mainly of neutral HCO_3 type.

The reservoir temperature of the water reserved at depth is thought to be 180 to 200°C. Furthermore, a 220 to 230°C reservoir at greater depth is inferred from the isotope thermometer results. Considering water-rock reaction, it is possible to assume that this water at deeper level is of neutral HCO₃-Cl type. Besides, neutral Cl type water of relatively low temperature (lower than 110°C) and of sea water origin is reserved around this system. The hot water discharging in Kaynarca and Dikili Ilncasi is formed by mixing of these waters and ground water. The neutral HCO₃(-SO₄) type water seems to be common in the both waters and must be main constituent water in the Kaynarca system. The neutral HCO₃(-SO₄) water higher than 180°C is considered to be restricted to the area in and around Kaynarca and to be reserved at considerably deep level due to high PCO₂. Besides, judging from the results of the CSAMT survey, the prospective reservoir is estimated to exist at the depth of more than 800 m. It is concluded that the depth of the reservoir is relatively deep for approximately 200°C water in comparison with other active geothermal systems.

The circulating time of water recharged from the surface to the northwest of Kaynarca in this system is relatively long (more than 75 years). Therefore, similar to other active geothermal systems, this hydrothermal system is considered to be broadened considerably.

This water of high temperature is considered to be up-flowing in the fracture zone developed at the intersection of the NW-SE trending fault and NE-SW trending one from the results of CSAMT survey, Mise-á-la-masse survey and geochemical survey. Unfortunately, well DG-1 (683 m in depth) could not encounter the fracture zone along the fault, and the high temperature reservoir could not be confirmed. However, the drilling did revealed that the high temperature water is flowing up in limited conduit and does not spread out horizontally to a depth of 700 m. These results are supported by the Mise-ála-masse survey. As described above, a geothermal fluid of higher than 200°C is expected to be reserved at great depth in the Kaynarca area. However, it is difficult to consider that the fluid is reserved at a depth shallower than 1,000 m and is broadened considerably at depths.

III.2 Assessment of the geothermal potential (feasibility of electric power development)

III.2.1 Assessment of geothermal potential

In this section, the major conclusions arising from each result, that are of particular geothermal significance, are summarized. These conclusions are combined to construct an overall concept of the resource for assessment on the feasibility of electric power development in the Kaynarca area in the Dikili-Bergama geothermal area.

- 1. The heat source of the geothermal activity in the Kaynarca area is considered to be related to the post-volcanism of the Sulu Kaya lava and the Koca Tepe lava which were the latest volcanism in the Dikili-Bergama geothermal area. But, unfortunately it is presumed that the geothermal activity following a vigorous period in the study area has been declining, because, the latest volcano in the area erupted before 2 million years BP in Pliocene time and its activity must be small.
- 2. The chemical characteristics of hot water discharging from the Kaynarca hot spring indicate that geothermal fluid of 180°C to 200°C is reserved in fracture zones in the Tertiary volcanic rocks, Yuntdağ volcanics I at depth. However, a isotope thermometer gives temperature higher than 220°C which is presumed to represent a deeper reservoir but is not confirmed.
- 3. Judging from the Hg anomaly in the geochemical survey, the extent of high longitudinal conductance zones by the CSAMT survey and low residual potential zones by the Mise-á-la-masse survey, the geothermal reservoir (1 km²) is probably located to the south of the Kaynarca. High temperature water from deep level is considered to be flowing up through limited conduits at the intersection of NE-SW trending and NW-SE trending faults.
- 4. The thickness of low resistivity zones around the discontinuities in the electrical basement ranges between 600 and 800 m from the results of electrical surveys. Considering that the geothermal reservoirs are mostly formed in the electrical basement, the expected reservoir in the survey area is estimated to exist at depths greater than 800 m.
- 5. The problems of calcium carbonate scale deposition in production wells (expensive steam supply system) and low quality of steam containing a high

content of non-condensable gas (low efficiency of generation of electric power) will cause difficulties in the future development in the Kaynarca area.

As described above, it is scarcely expected that a geothermal fluid of higher than 200° C is reserved at depths shallower than 1,000 m in the Kaynarca area which is considered to be the most active in the Dikili-Bergama geothermal area. The activity (geothermal potential) of this area seems to be relatively low, compared with those of other geothermal areas, even with those of the K1z1ldere and Germencik geothermal areas in Turkey.

III.2.2 Feasibility of electric power development in the Kaynarca area

Geothermal activity (geothermal potential) in the Kaynarca area, such as temperature of reservoir fluid, depth and size of the reservoir and predicted problems in the future development (carbonate scale and noncondensable gas troubles) was discussed in the previous section. From the results of the prefeasibility study, it is judged that the economical development for electric power generation in the Dikili-Bergama geothermal area is not feasible at present.

CHAPTER IV. FUTURE DEVELOPMENT PLAN

•

CHAPTER IV. FUTURE DEVELOPMENT PLAN

IV.1 Plan of the future development

For the development of geothermal resource, it is recommended to prepare an exploration strategy by considering peculiarities of the study area, and to proceed with the exploration step by step. For instance, it is recommended to make a flow chart for the development such as that shown at the beginning of the Study, to understand the purpose and applicable limitation of each exploration method, and then evaluate the results of each step by integrated analysis. In accordance with the evaluation of each step, it will be necessary to decide to proceed or interrupt the project, or to modify the exploration strategy.

As a result of the Study, the geothermal potential of the Kaynarca area which was selected as the most prospective area in the Dikili-Bergama geothermal area is not so high to develop a geothermal power plant from an economical point of view. There is, however, a possibility that a deep reservoir exists at the Kaynarca geothermal area from the results of the Study and by comparing to other geothermal fields in Turkey. For example the temperature of production well in the Germancik-Omerbeyli geothermal field is around 90°C at a depth of 600 m. 1,100 m depth, the temperature reaches 206°C. The potential of the Kaynarca geothermal area will be evaluated as feasible to utilize for power generation by new devices in the future. Deep exploratory wells (1,500 to 2,000 m in depth) should be drilled to confirm the reservoir.

The site for the deep exploratory well is recommended at about 200 m south of DG-1, and is shown in Fig. III.1.1.

Considering the peculiarities of the project area, there is a possibility to develop the deep reservoir at the Kaynarca geothermal area for multi purpose utilization.

IV.2 Multi-purpose utilization of the geothermal resource

Collection of mineral matters and heating applications are the main subjects of multi purpose utilization of geothermal resources in general. CO_2 gas collection to produce dry ice is one possible utilizations of the geothermal resource of the Kaynarca geothermal area.

The project area is not a residential area or an industrial area, but is used only for sheep pasturage in winter. Therefore, for the planning of multi purpose utilizations of geothermal resource at the survey area, it is recommended to keep high load factor by combining applications in winter and in summer. For example, a combination of greenhouse heating and cattle house heating in winter, and grass drying and refrigeration using a heat pump in summer. Other utilizations are process heating for the leather industry and carpet industry which are a special product of Turkey.

It is necessary to carry out a demand study and an economic study to make a firm plan of the multi purpose utilization.

IV.3 Prediction of scale deposition in future gcothermal utilization scheme and recommendation on scale prevention method

In general, there are two kinds of scales deposited in equipment of geothermal power plants. Scale in the steam supply system such as production wells, two phase fluid transportation pipes, etc. and in the reinjection system such as transportation pipes of hot water after separation of steam, reinjection wells etc. are mostly constituted of calcium carbonate ($CaCO_3$) and silica (SiO₂) respectively. If a separator with insufficient capacity is used, scale such as silica and sodium chloride sometimes deposits on turbine blades in the power plant.

The mechanism of each scale deposition is not uniform and factors effecting on the scale deposition depend on each reaction of scale formation. Therefore, in case of considering countermeasures against the scale troubles in a geothermal power plant, the objective scale formation mechanism has to be fully understood. Then, the most suitable countermeasure has to be selected.

It is difficult to predict the scale troubles from the results of surface surveys such as geological survey, geochemical survey and geophysical surveys. Especially, scaling in the steam supply system can not be predicted without understanding accurate physical and chemical conditions of the subsurface fluid. If the conditions of the subsurface fluid is revealed by an exploratory well, the scale deposition in the future development can be predicted easily. During the Study, unfortunately geothermal fluid could not discharge successfully from the wells of DG-1, 2 and 3, and therefore, the characteristics of the subsurface fluid for future development could not be determined. Therefore, assuming that chemical characteristics of hot water discharging from the Kaynarca hot spring are the same as those of reservoir water at depths, scale deposition in this area is predicted. On the basis of the predicted results, a reasonable and the most suitable countermeasure is recommended.

IV.3.1 Prediction of scale deposition

As described in the previous reports (Progress Report II) the subsurface fluid of the Dikili-Kaynarca system is composed of Na-Ca-SO₄ (-HCO₃) type water and Na-Ca-

 HCO_3 (-Cl) type water containing relatively rich-Cl ion. It is considered that hot waters discharging from DG-2 and from DG-3 mainly consist of the former water and of the latter water, respectively.

The water discharging from the Kaynarca hot spring is of neutral (pH 7.4 to 8.7) Na-Ca-SO₄ (-HCO₃) type and its subsurface temperature was estimated to be a maximum of 220 to 230°C. Since bubbling gas composed of CO_2 is the main components in the Kaynarca hot spring, the PCO₂ of reservoir fluid must be high compared with those of other geothermal systems. The chemical characteristics of hot waters discharging from hot springs in Kaynarca are analogous to each other. Regarding the chemical components related to scaling, HCO₃ ion and T-CO₂ contents are high, but Ca ion and SiO₂ content are low in concentration.

On the basis of the chemical characteristics of hot water discharging form the Kaynarca hot spring scale deposition in the future development is predicted.

At present, there are two methods to predict calcium carbonate scale formation using chemical data of the hot water. One is the method of saturation index SIC (SIC = [practically measured activity product]/[thermodynamic activity product]) and the other is the method of Langelier saturation index S (S = pH [measured] – pHs [calculated]). Quantitative prediction of scaling can not be performed using these two methods. However calcium carbonate scale tends to deposit from the waters having high SIC and S values. These indexes of SIC and S seem to be excellent qualitative indicators. In this study, scale deposition of the Kaynarca geothermal system was discussed using the Langelier saturation index.

The calculated results are described in Progress Reports I and II. The value of the Langelier saturation index of each hot water discharging from the Kaynarca hot spring is not high. However, all S values of the hot water are positive and the hot water are considered to be supersaturated with CaCO₃. Empirically, CaCO₃ scale tends to deposit from hot water having more than ± 1.0 S and 60° C. In practice, scale deposition from the water of more than ± 2.0 S seems to be troublesome. In the case of the boiling hot-spring in Kaynarca, S value indicated to be ± 1.8 . Therefore, it is assumed from the S value of the boiling hot spring that the carbonate scale troubles will occur in the steam supply system in the future development at Kaynarca. If the reservoir of high PCO₂, namely hot water containing Ca and CO₃ ions is developed, there is a high possibility of CaCO₃ scale deposition.

In the case of prediction on silica scaling, the possibility of silica scale is generally judged from the supersaturated concentration of monosilicic acid and the pH of hot water. Prediction for the hot water in the Kaynarca system was performed using

estimated silica content assuming the reservoir temperature calculated with geochemical thermometers. If the production wells tap the 200°C reservoir, the concentration of monosilicic acid in discharging hot water after the separation of steam is calculated to be about 340 ppm SiO₂. Silica in water above 99°C does not tend to deposit due to the concentration being lower than the solubility of silica. Therefore, it is not necessary to pre-treat the hot water after steam separation for reinjection. In the case of tapping the 220°C reservoir by production wells, however, concentration of monosilicic acid in discharging water after the separation of steam is about 450 ppm SiO_2 . Therefore, in order to avoid scale trouble, it is necessary to pretreat the hot water after steam separation or to keep the water-temperature higher than 120°C for reinjection. If open-air type channels or pipelines and reinjection wells for the reinjection water are adopted without pretreatment of the reinjection water, silica scale must deposit in them and the flow rate in the channel or pipeline and reinjection capacity of the well must decrease. Concerning the reservoir of relatively low temperature in this area, it is considered that there is no terrible silica scale trouble but there is calcium carbonate scale. For development of the Kaynarca area, calcium carbonate scale in production wells has to be noted.

IV.3.2 Scale prevention method

Since deposition of calcium carbonate scale in the steam supply system is anticipated, countermeasures against the carbonate scale are described in detail here.

Formation of CaCO₃ is expressed by the following chemical reaction.

$$Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3$$
 (ppt)

The concentration of carbonate ion $[CO_3^{2^2}]$ relating to the above reaction is increased and the reaction rate is accelerated by the following degassing reactions.

 $2HCO_{3}^{-} \rightarrow CO_{2} (Aq) + CO_{3}^{2-} + H_{2}O$ $HCO_{3}^{-} + H^{+} \rightarrow CO_{2} (Aq) + H_{2}O$ $CO_{2} (Aq) \rightarrow CO_{2} (Vap)$

Therefore, if the above reactions can be prevented, scaling in the steam supply system can be mitigated.

The following reaction tends to occur at a flashing point in the production well. Practically, the scale deposited in a few meter length from flashing point and tapers upwards in shape, as shown in Fig. IV.3.1. Therefore, treatment for scale prevention has

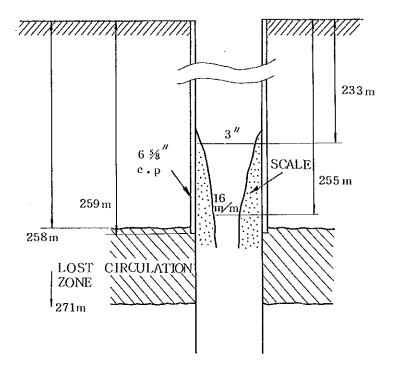
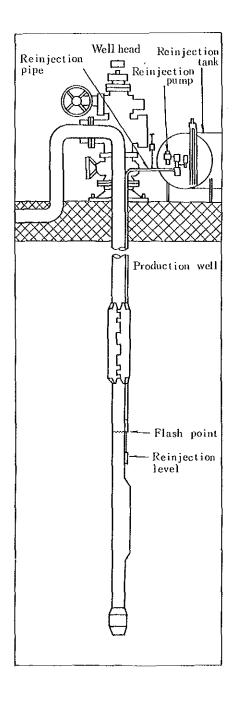


Fig. IV. 3.1

.

An example of carbonate scale deposited in a production well (Otake geothemal field)

-225-


to be performed below the flashing point. In the case of flashing in the reservoir, $CaCO_3$ deposits clog cracks in rocks. In this case, flashing point has to be controlled for the treatment by operating the wellhead valve.

So far, various prevention methods against carbonate scaling such as wellhead pressure controlling, water injection, downhole mechanical pump, carbonic acid equilibrium system, injection of chemicals and so on have been developed. At present, considering successful cases in Japan (the Mori and Noya geothermal fields) and theory on chemical reaction of scaling, the injection of chemicals such as polyacrylate, etc. are recommended. Adding a slight amount of sodium polyacrylate into the geothermal water (less than a few ppm) decreases the carbonate scale formation rate. This method does not effect the surrounding environment because of the low concentration. According to the report on carbonate scaling investigation, it is advisable to inject sodium polyacrylate into a production well.

Besides, the injection of phosphate reagent or mineral acid is expected to be effective. Acidification by acid injection is considered to be effective for prevention of not only calcium carbonate but also silica. The efficiency of inhibitor against corrosion, however, has not been proven under injection conditions at high temperature. So, for adoption of the acid injection, test work is required to confirm materials and down-hole chemicalproblems at a depth.

The chemicals have to be injected below the flashing point in a production well using injection pipes as shown in Fig. IV.3.2. As change of physical characteristics (enthalpy, pressure and flow rate) of discharge from the well is probably caused by the installation of a chemical injection pipe in the well and the injection pipe is possibly eroded in strongly discharging well, the injection pipe should be installed outside of the well. As described previously, superior techniques for the injection of chemicals are required, because the chemicals have to be injected at a depth below the flashing point of high pressure and temperature from the surface. Various factors relating to this method have to be investigated in detail. The procedure of this method is considered as follows.

- (1) Estimation of the depth of the flashing point in advance of installation work of the chemicals injection pipe.
- (2) Check on adequate materials for injection pump and pipe.
- (3) The choice of effective chemicals and their injection pressure and flow rate from the surface on the basis of estimated chemical and physical characteristics of subsurface fluid.

Fig. **N.** 3. 2

Injection system of chemicals for carbonate scale prevention

Regarding the cleaning of production wells clogged with calcium carbonate scale, the scale can be removed mechanically because the deposition of carbonate scale is around the flashing point in the wells, but dissolution of the scale by injection of acid solution with corrosion inhibitor seems to be effective. In case of adopting the acid injection method, the efficiency of the inhibitor and handling of the strong acid solution should be noted.

Neglecting the cost of the removal and prevention methods, it is recommended that the calcium carbonate scale problems in wells and pipes in Turkey are solved by using the above methods.