CHAPTER 15 AIRSPACE USE

15.1 Géneral

This chapter describes airspace use and the utilization of the airport.

Since the new airport site has been selected adequately there are no constraints in establishing aircraft operation procedures. This makes it possible to conduct the optimum aircraft operations with minimum requirements for the precision approach category-I.

The airport utilization by aircraft is expected to be more than 99% including wind, visibility and ceiling factors. This assumes that efficient and safe aircraft operations can be expected at the new airport.

15.2 Airspace

11,22

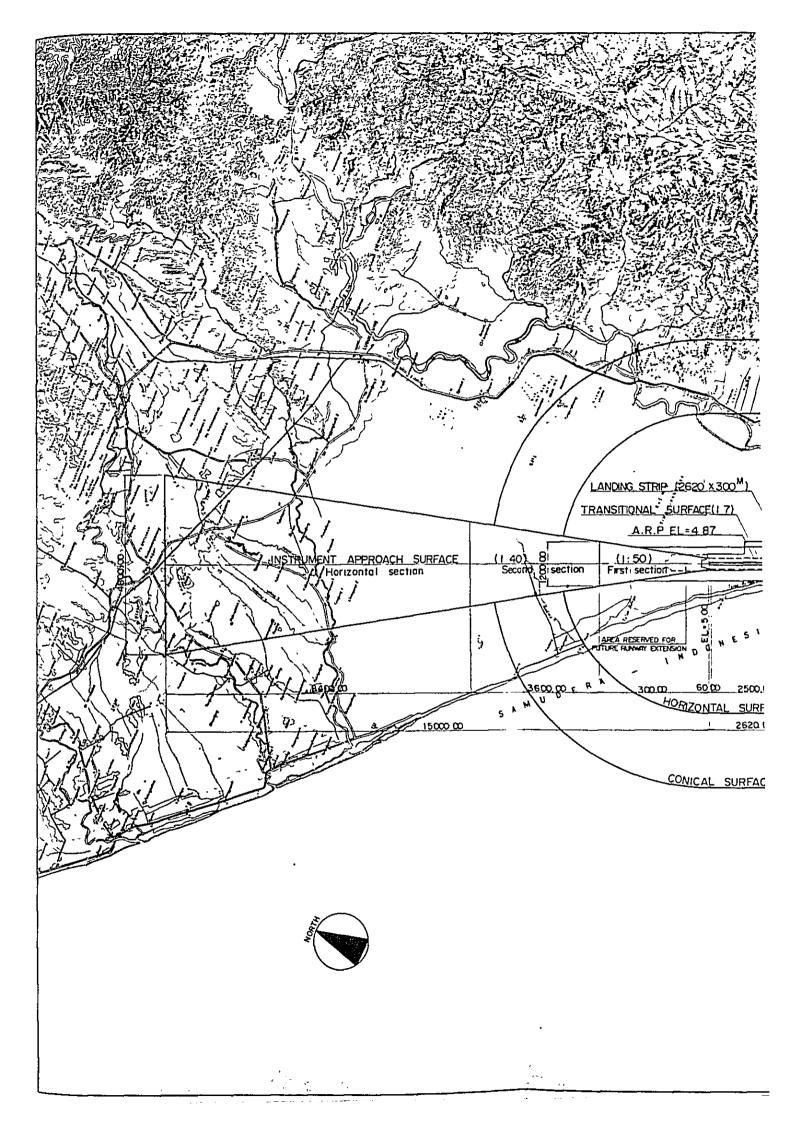
The law of the section of

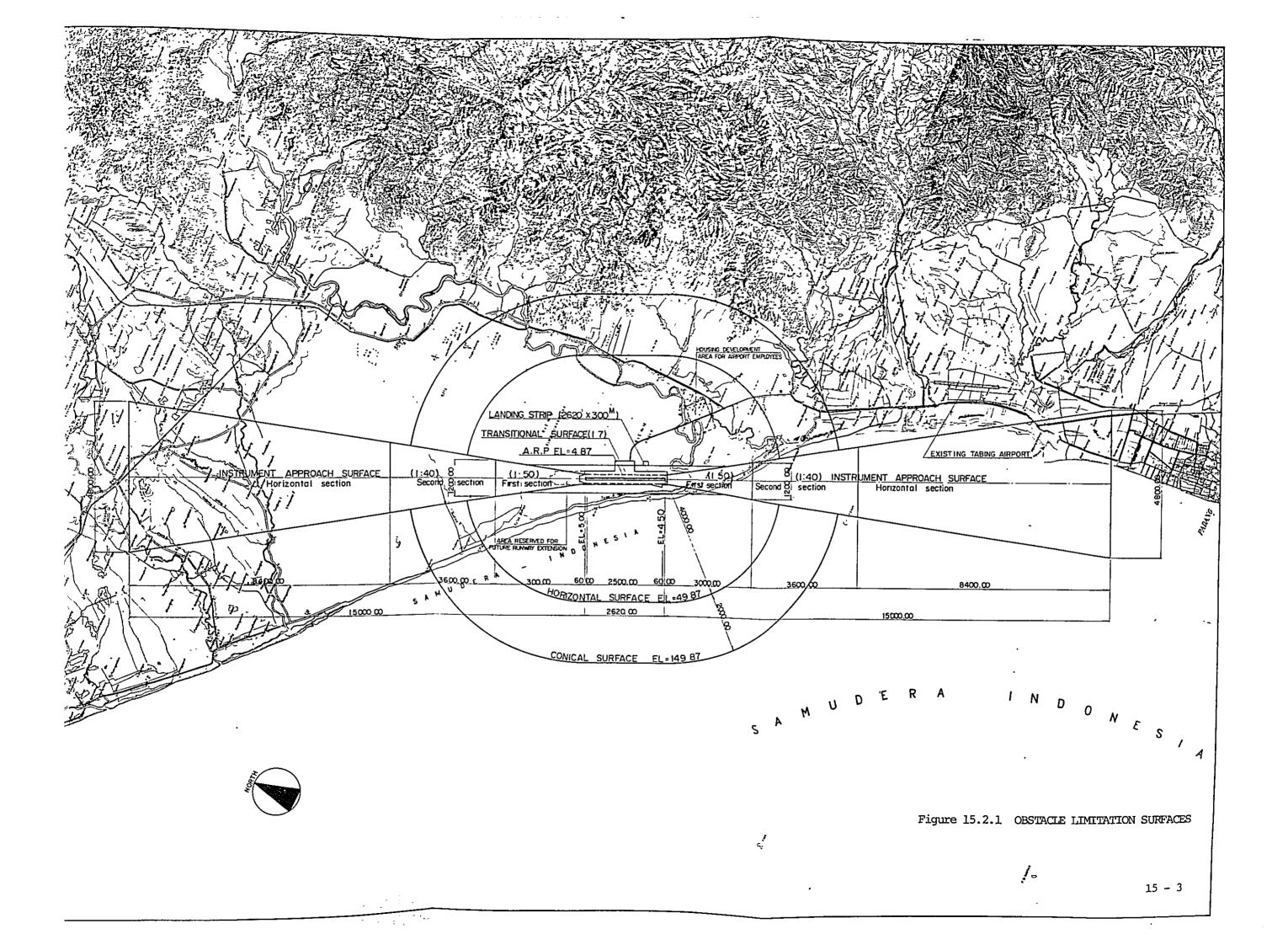
Control of the

This section discusses the results of the obstruction and aircraft operations studies, and indicates the most suitable procedures for the new airport.

15.2.1 Basic Assumptions and Conditions

Basic assumptions and conditions used for the Study are tabulated in Table 15.2.1


TABLE 15.2.1 BASIC ASSUMPTIONS


Item	Dimension
Runway Location (ARP)	S 00° 47' 26"
Runway Orientation	E 100° 17' 05" T-North 24.0 deg. West (Runway 34/Runway 16)
Magnetic Variation	0 degree
Runway Elevation	
ARP	4.87 m above Mean Sea Level
RWY 34 TDZ	4.76 m
RWY 16 TDZ	5.00 m "
RWY 34 Threshold	4.50 m
RWY 16 Threshold	5.00 m
Runway Length	2,500 meters
Runway Utilization Ratio	RWY 34 84%
	RWY 16 16%
Navaids	ILS, VOR/DME, NDB, Locator

15.2.2 Obstacle Limitation Surfaces

There will be no obstructions which affect the obstacle limitation surfaces, as shown in Figure 15.2.1.

It is, however, necessary to remove the coconut trees which are located within the approach surfaces area and near the transitional surfaces. The area which should be cleared for the obstacle limitation surfaces is shown in Figure 15.2.2.

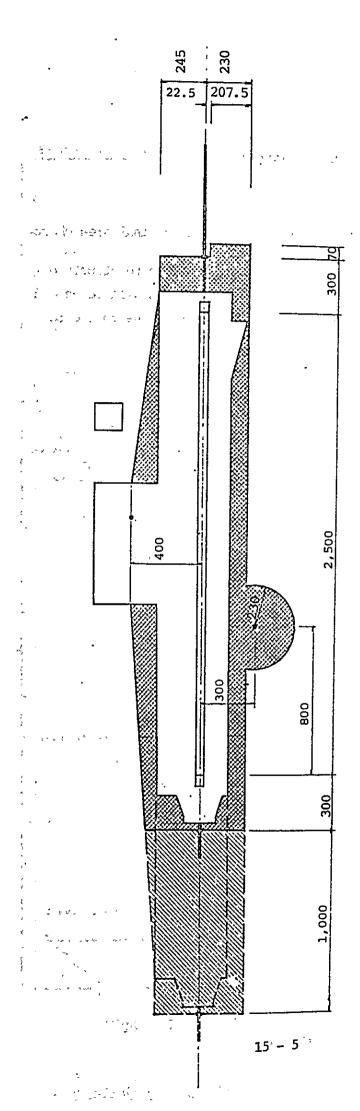


Figure 15.2.2 OBSTACLE CLEARANCE ZONE

LEGEND

The area necessary for present operations

Area reserved for future runway extension (Unit in meters)

15.2.3 Approach and Departure Procedures

Terminal Area Chart

Figure 15.2.3 shows one of the most feasible terminal area chart.

It is possible to comply with the existing air route structure without much modification. Only a slight modification will be needed for the magnetic bearings and the air route distances due to the relocation of the airport.

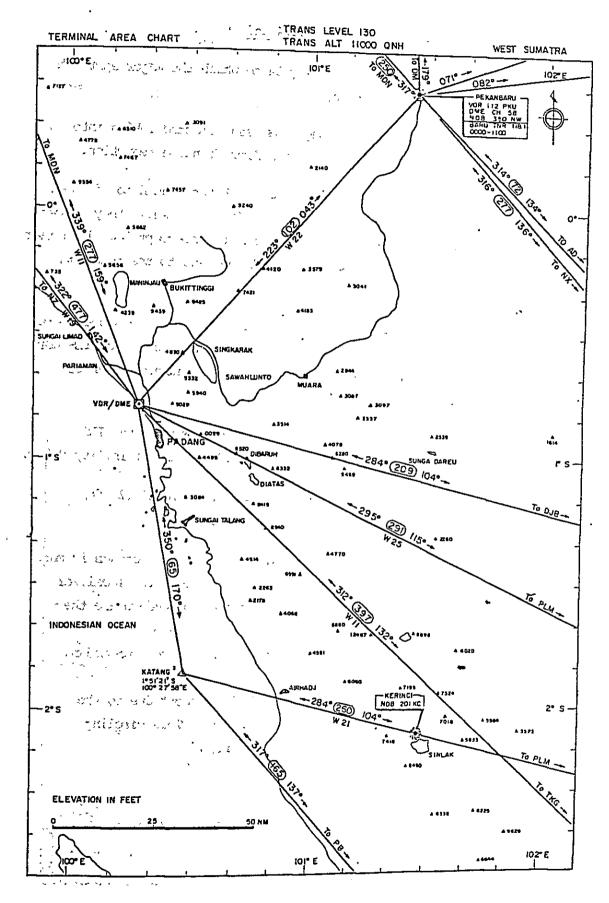


Figure 15.2.3 TERMINAL AREA CHART

IIS Approach (Refer to Figure 15.2.4 and 5)

IIS Approach is planned for Runway 34 to which the major approach traffic from Jakarta will be made.

The glide slope angle of 3.0 deg. has been selected taking into consideration international standards and aircraft noise reduction.

Approaching aircraft from the fix "Katang Katang" head to 350 deg. VOR inbound. At the holding point (13 DME, VOR R-170 deg.), they descend changing the heading to 006 deg., NDB inbound, to intercept the localizer course, then it intercepts the glide slope to descend to the touchdown point.

There will be no problem in establishing this procedure since there is no obstruction that affects the obstacle clearance surface of ILS nor noise problem to Padang City as shown in the noise contour (Refer to Figures 16.1.6 and 7 in Chapter 16).

The ideal aircraft operations minimum is obtained for the IIS category—I operations, i.e., Decision Height *220 ft and visibility 800 m.

* 220 ft is obtained adding the touch down zone level (20 ft) to the category-I operation minimum (200 ft).

As for the VOR/IIS NR-2 approach, the intermediate approach is made based on the VOR base-turn (2 minutes leg) to intercept the localizer course although the other segments of the approach procedure are the same with the previously mentioned IIS/VOR NR-1 approach.

This procedure is effective for the aircraft approaching from Medan.

IIS circling is available only west of the airport due to the mountainous terrain in the easterly circling area. This circling restriction does not affect the approach planning.

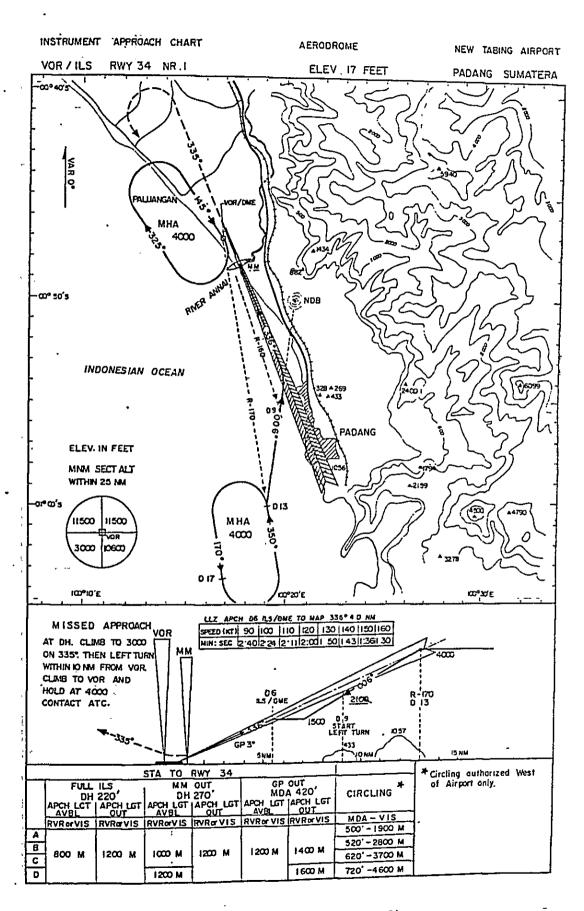


Figure 15.2.4 IIS APPROACH CHART (NR.1) 15 - 9

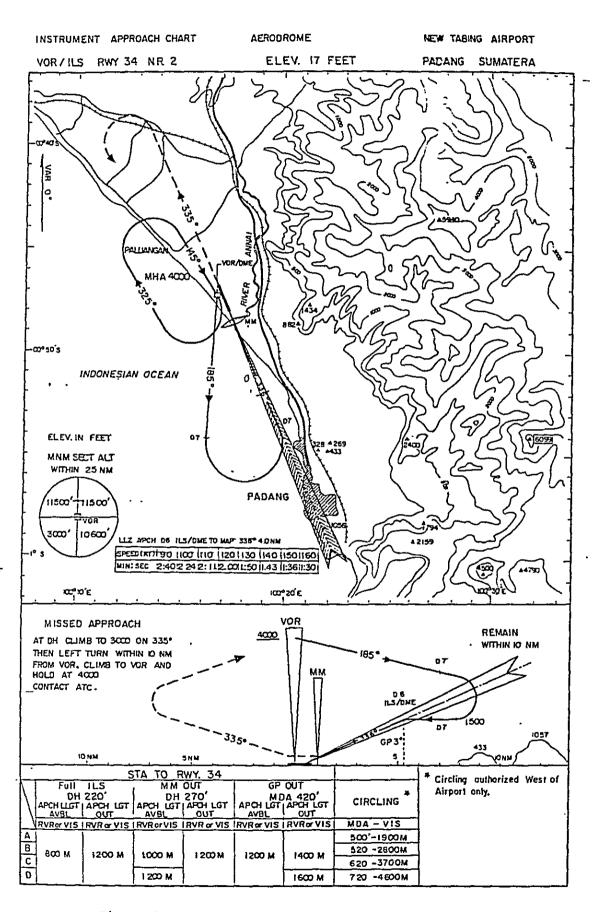


Figure 15.2.5 ILS APPROACH CHART (NR2) 15 - 10

VOR Approach (Refer to Figures 15.2.6 and 7)

It is possible to establish VOR/DME straight—in approaches for both Runways 34 and 16.

After flying over the VOR/DME, the aircraft commences a base turn procedure and descends on the final approach course, as shown in Figures 15.2.6 and 7. A two minute base turn is applied for Runway 34 to avoid the aircraft noise in Padang City.

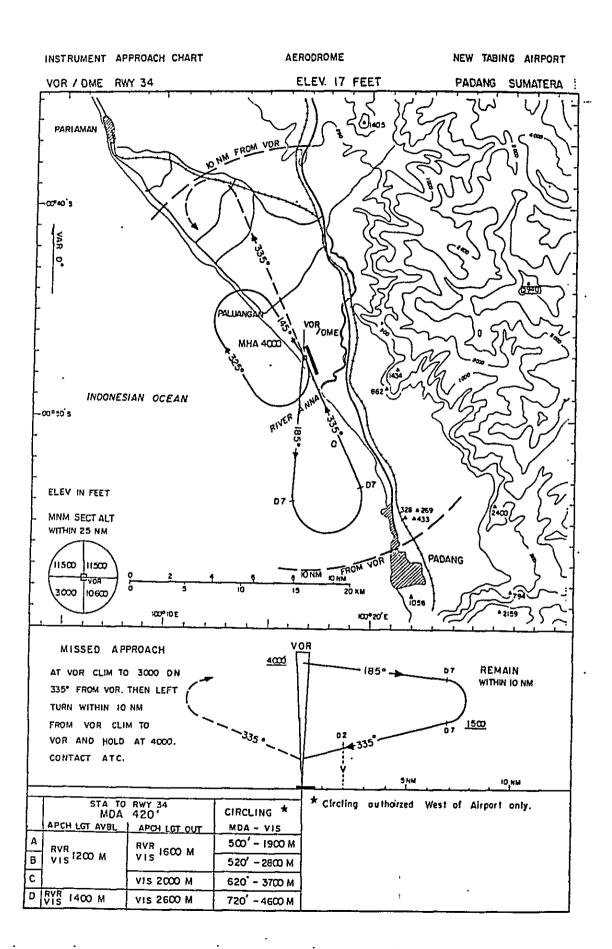


Figure 15.2.6 WOR APPROACH CHART (NR.1) 15 - 12

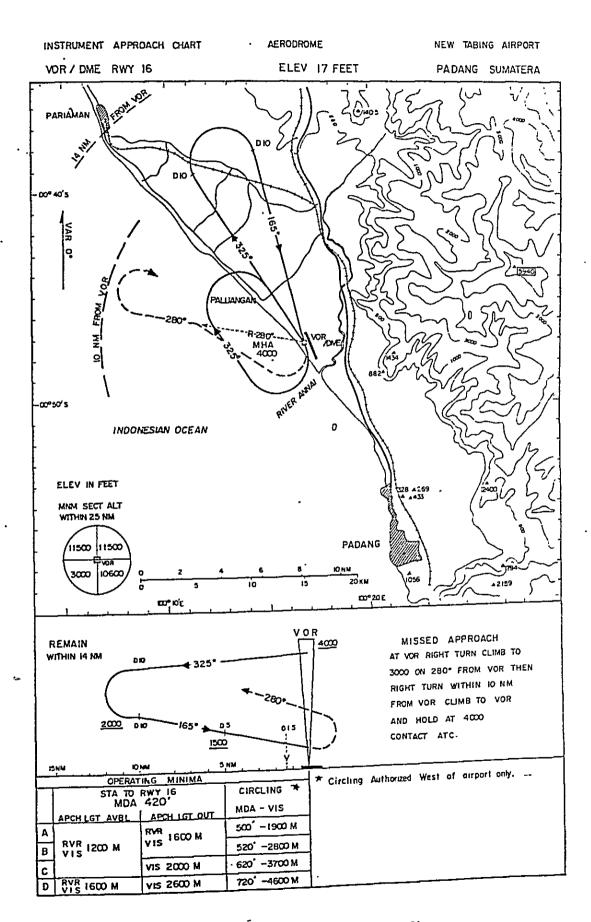


Figure 15.2.7 VOR APPROACH CHART (NR.2) 15 - 13

NDB Approach

Since the NDB approach will most likely be the VOR/DME approach, the figures and explanation are eliminated.

Take-off Procedures (Refer to Figure 15.2.8.)

It is impossible to establish direct climb up courses for Jakarta, and Pekanbaru, except to Medan, since the high mountainous terrain on the east side makes them almost impossible.

Accordingly, aircraft taking off from the airport must climb up, and then turn to fly over the VOR/DME at the defined altitude or more in order to clear the mountains. Then, aircraft takes tracks to the destinations. In the case of take-off for Medan, the aircraft flies by VOR outbound R-322 after straight climb up (RWY 34) or the reverse climb up (RWY 16).

Note: Flight Course above Padang City

There will be no aircraft under IFR conditions flying over the developed area of Pandang city if these aircraft operation procedures are followed.

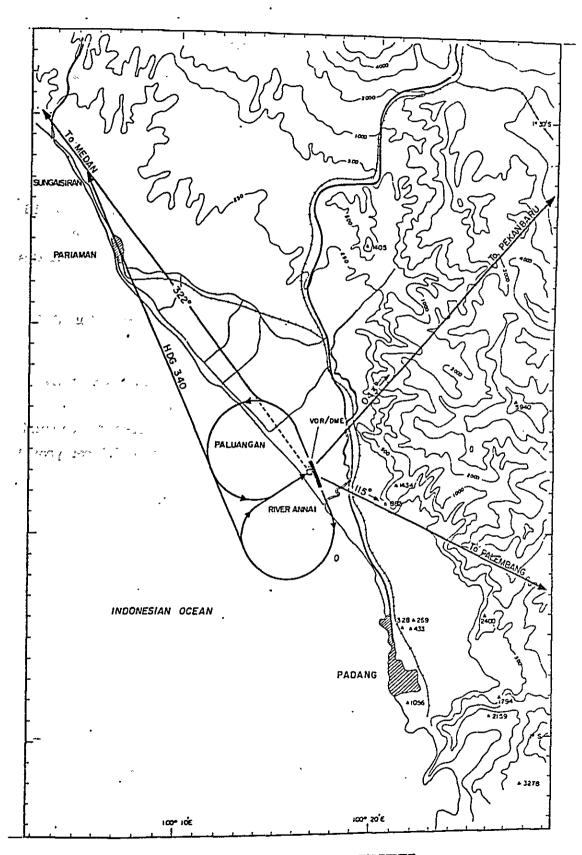
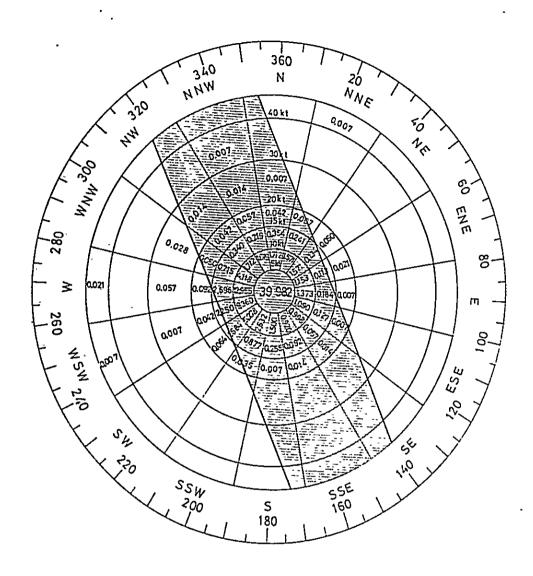


Figure 15.2.8 STANDARD INSTRUMENT DEPARTURE

15.3 Runway Usability

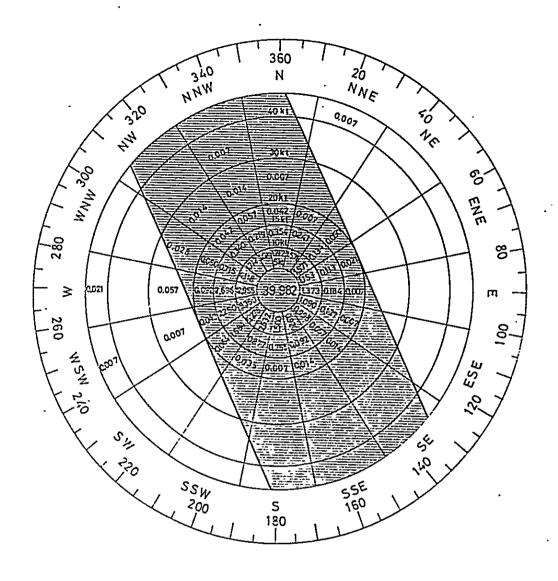

15.3.1 Runway Usability by Wind Conditions

Figures 15.3.1 and 15.3.2 show the wind coverage map for the new airport.

Since the meteorological data at the new airport site is not yet available, the meteorological data at the existing Tabing Airport has been applied for planning purposes to the new airport site based on the assumption that conditions at Tabing Airport and the new site would not be very different. The terrain conditions are exactly the same at both sites facing the Indonesian Sea on the west side and mountainous terrain on the east side.

97.97% of wind coverage results from the condition less than 13 kt cross wind, and 99.90% less than 20 kt cross wind.

This means that the wind condition is quite good and most of the airport operation time will not be affected by the wind conditions (99.90% wind coverage means that the airport will be closed due to wind conditions, for a total number of operating hours of only 5.5 per year.)


Source : Tabing Airport

Period : 1976 to 1978 (3 years)

Cross Wind : 13 knots
RWY Orientation : N 24° W

WIND COVERAGE : 97.97 percent

Figure 15.3.1 WIND COVERAGE MAP (Cross Wind 13 kt)

Source : Tabing Airport

Period : 1976 to 1978 (3 years)

Cross Wind : 20 knots RWY Orientation : N 24° W

WIND COVERAGE : 99.90 percent

Figure 15.3.2 WIND COVERAGE MAP (Cross Wind 20 kt)

15.3.2 Total Runway Usability

The wind coverage represents only wind conditions, and does not include other factors which affect the aircraft operation i.e., cloud height and visibility.

Hence, this subsection studies the runway usability taking into consideration wind, visibility and ceiling height.

The overall runway usability is defined by the following formula.

$$P = \frac{I \times Iw + C \times Cw}{100}$$

where, P: Runway Usability

T: Possibility of occurrence of the defined meteorological conditions (visibility and ceiling height) that exceed the aircraft operational minimum in the main approach runway.

IW: Wind coverage of main approach runway on the conditions under 20 kt cross wind component and 5 kt tail wind.

C: Possibility of occurrence of the defined meteorological conditions that exceed the aircraft operational minimum in the sub-approach runway.

CW: Wind coverage of sub-approach runway on the conditions under 20 kt cross wind component.

The following approach procedures and the operational minimum, as reported in the previous subsection, are applied to the calculation of the runway usability.

RWY Use	Procedures	Operational Minimu DH/MDA VIS						
RWY 34 (Main) RWY 16 (Sub)	HS RWY 34 Approach VOR RWY 16 Approach	220 ft - 800 m 420 ft - 1200 m						

Table 15.3.1 shows the correlation between the ceiling height and visibility, which is tabulated based on the analysis of the meteorological observation data for the past three years (1976 - 1978) at Tabing Airport Meteorological Station.

The possibility "I" could be obtained from the Table 15.3.2 counting the frequency of meteorological conditions more than 200 ft in the ceiling and more than 800 m in the visibility.

and the state of t

the second second second

a - and a situation will

وي مواجع المحمد المحمد

The first term that the state of the company

we have the same the same

the said the said

Carl II The

"I" is 99.57%.

Figure 15.3.3 depicts the possibility "Iw" i.e., 91.76%. This wind coverage has been made under the following conditions;

- Approach direction : Runway 34

- Cross wind : Not more than 20kt

- Tail wind : Not more than 5kt

a company of the second

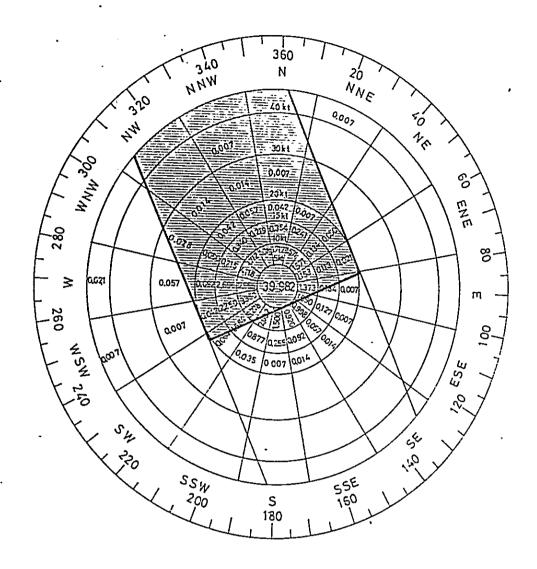

The state of the s

Table 15.3.1 CORRELATION TABLE OF CEILING HEIGHT AND VISIBILITY

· · · · · · · · · · · · · · · · · · ·		5000 Total	. ;	.	2 4		90 † 166	173 244	294 475	271 291	139 143		-		24 24		1 . 1	2943 2961	6333 , 6499	13615 14134	
2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	مع الم	4000 4400 -4400 - 5000	ļ;	 - 		6	3ó	7		6	4								6	त [ं] 0	Tabing Airport
	-	3600	f) 	3	27	26		_	5	,					12	06	112 0	Source: Tabin
	* *	2400 2800 3200 -2800 -3600]; 		2	10	, 01	11	22	7								4	13	0	Sout
	D VISIBI	p	-			,,,,,,		1	-		-							•	45	1 111	
	EIGHT AN	1600 2000 - 2400			2	1 12	. 15	1 10	. 17	4			-					H	15	177	
	CETLING	,1400		3	7	7 3	2	2	-			· -						-	-	7 .	
	PABLE OF	1000 1200 -1200 -140	7 !		2	ر د	11	9	11								•	Н	6	53 0	
	Table 15.3.1 Correlation Table OF CEILING HEIGHT AND VISIBILITY	900 - 1000																	1	1	
7,	3.1 CORF			;		m	1 2		-										1 1	6 4	
TH. 7.	jable 15.	. 009 - 200		2		2		7	7										1	4	
* (A STATE OF THE STA	400 ' 500 - 500 - 600	; ·	2	2	, 8 m	1	2 5		_ -										12 19	
	, , , , , , , , , , , , , , , , , , ,	- 400	-		2		-	4	1										2	12	
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	191	100	100 - 200	200 - 300	300 - 400	400 - 500	200 - 600	600 - 700	700 - 800	006 - 008	900 - 1000	1000 - 1100	1100 - 1200	1200 - 1300	1300 - 1400	1400 - 1500	1500 -		TOINE	
		CLOUD O'TX	-					15		21	L				1				_a/5		

Table 15.3.2 CORRELATION TABLE OF CEILING HEIGHT AND VISIBILITY (RUNWAY 34 APPROACH)

Total	7	ம	4 16	28 83			4 475	1 291	143	170	48 49		24 24		1 1	3 2961	13 9499	15 14134	ears)
5000				2	6	173	294	271	139	167	4		. ~		-	2943	. 9333	.13615	Tabing Airport
4400																		0	ng Air
4000			######################################	6	30	72	26	6			-,			-		12	90	211	1
3600 0 - 4000						-				-								0	Source: Period:
3200	-			-) 									0	
2800			7	10	10	11	22	7					-				. 45	111	
2400 - 2800	-			-		1	-				~ ··	'ni						7	
2000			7	. 12	15	10	17	4			-	1	} -			1	15	77	
1600 - 2000					•	,						pperated			*****		**	7	
1400 - 1600					. 2	2	1	_	_			cdn be	conda-czons				, 1	۲.	
1200 -1400						-					- *	hft c						0	
1000	7		/// ////	5	11	9	11	·				Aircraft	these		,	r-1	9	53	
900	-						•	-									1	. H	9957
900 -	-				7		, , ,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		711111	V/////		(/////		//////			= 0.
700 - 800	-	•		m		н		1311112			11111	,,,,,,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Н	49	19 2
600 -				2		٦ - ،	1	_ 	•••	-							1	4.	14,134 -
500 6 - 600		. 2	~	 &	4		_									·——		<u>6</u>	H H
200	-	2	2	m		2	- 1				·						 r-1	12	
400			2	m		- 4	-			 							7	77	
(m)	100	500 ;	300	400	500	, 009	700	900	. 006	30 1	00	 OC	- 6		 &				
CELLING (M)	7	100 - 20	200 - 30	300 - 4(400 - 50	500 - 60	600 - 70	700 - 80	800 – 90	900 - 1000	1000 - 1100	1100 - 1200	1200 - 1300	1300 - 1400	1400 - 1500	1500		TOTAL	
CLOUD O'TY CE	l		LJ					8/2	<u>.</u>		יי			[7]			8/5	F] [[[

Source : Tabing Airport
Period : 1976 to 1978

Allowed Cross Wind: 20 kt
Allowed Tail Winc:: 5 kt
WIND COVERAGE RWY34 = 91.76%

Figure 15.3.3 WIND COVERAGE MAP OF RWY34 APPROACH.

As for the "C" and "Cw" of the sub-approach (RWY 16), the possibilities are calculated by the same procedures.

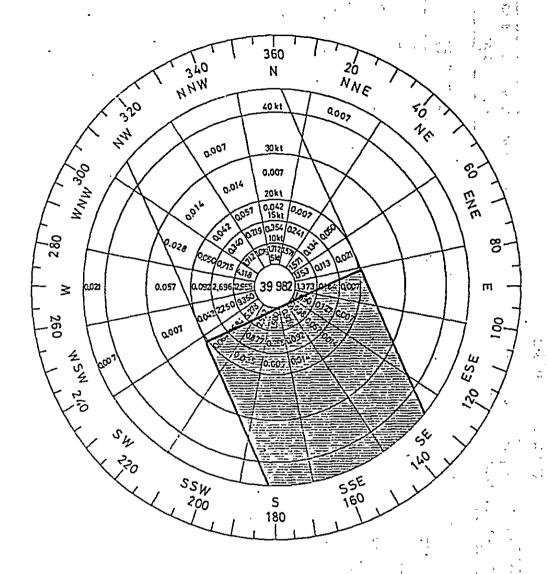

Table 15.3.3 shows that "C" is 98.73%. Figure 15.3.4 indicates that "Cw" is 8.14%.

Table 15.3.3 CORRELATION TABLE OF CEILING HEIGHT AND VISIBILITY (RUNWAY 16 APPROACH)

	Potal	7			(E		24.6	475	291	143	170	9	2	Τ,	1,1	Τ.	4	<u>i-</u> -		
	+									-	1			.].	4			736 <u>7</u>	9439	14134
	5000			4	5		12.	29.4	27.	130	167	48	2	7	7.4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	2943	9333	13615 }
į	4400 5					1-2-1-1														0 1
	.4000			-	6	Thint:	7	26	6	41	2	-	1					172	8	21.1
	3500 ·					HF-14/F-														0
	3200 3500 .4000 -3600 -4000 -4400				1	<i>#FEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF</i>							יט							0
		, <i>'</i>	j. 	7	01	<i>!!!!!!!!!!</i> ! 10	11	22	7				operated	i,				4	45	Ħ
	o l					35				-	-			conditions						111
	10 2400 400 - 280	:		. 2	. 2	The Handing St.	10		. 54			 	can be				-			Н
				-	4		-	17				-	Aircraft	in these			-		13	77
יייייייייייייייייייייייייייייייייייייי	1200 1400 1600 -1400 - 1600 - 2000				-	V-	١ .		-	-	-		Air	ui	-					
2	1400			1	-				-	;						-		'	۲	7
4	1200					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		 						 		***			1	5
i L	- 1	5			1	7.00									1	~~~	111			
	- 1	7	٦.	. 2	5	11	9	11									,		6-	53 53
	1000	7		. 2	2	11	9	11									,		6	1 . 53
TOTAL	900 1000			. 2	25	2 11	9	1 1 11											- T	4 1 53
	800 900 1000 0 -900 -1000 -1200	2	1	. 2	υ. 	1	1 6												-	
	700 800 900 1000 0 - 800 - 900 - 1000 - 1200			. 2		2													- - - - - - - - - -	4
	600 700 800 900 1000 0 - 700 - 800 - 900 - 1000 - 1200	7	2	2	<i>m</i>	2	rt	1												6 4 1
	500 600 700 800 900 1000 10 -600 -700 -800 -900 -1000 -1200	7		2	2 3	1 2 1	1 1	1												4 6 4 1
	400 500 600 700 800 900 1000 -500 -600 -700 -800 -900 -1000 -1200	7	2		8 2 3	1 2 1	5 1 1	1 1												1.9 4 6 4 1
	-400 -500 -600 -700 800 900 1000 -700 -800 -900 -1000 -1200		2 2	2 2	3 3 8 2 3	1 4 1 2 1	4 2 5 1 1	1 1 1 1												12 19 4 6 4 1
	(m) 400 500 600 700 800 900 1000 - 1200 - 400 - 500 - 600 - 700 - 800 - 900 - 1000 - 1200	100	200 2 2	300 2 2	400 3 3 8 2 3	500 1 4 1 2 1	600 4 2 5 1 1	700 1 1 1 1	- 800	- 900	- 1000	- 1100	- 1200	- 1300	- 1400	- 1500			7 7 7	12 12 19 4 6 4 1
	(m) 400 500 600 700 800 900 1000 - 1200 - 400 - 500 - 600 - 700 - 800 - 900 - 1000 - 1200		2 2	2 2	3 3 8 2 3	1 4 1 2 1	4 2 5 1 1	1 1 1 1	700 - 800	800 - 900	900 - 1000	1000 - 1100	1100 - 1200	1200 - 1300	1300 - 1400	1400 - 1500	1500		7 7 7	12 19 4 6 4 1
VISTRI 1412	-400 -500 -600 -700 800 900 1000 -700 -800 -900 -1000 -1200		200 2 2	300 2 2	400 3 3 8 2 3	500 1 4 1 2 1	600 4 2 5 1 1	600 - 700 1 1 1 1			900 - 1000	1000 - 1100	1100 - 1200	1200 - 1300	1300 - 1400	1400 - 1500	1500			12 12 19 4 6 4 1

Source: Tabing Airport Period: 1976 to 1978 (3 years)

 $C = \frac{14,134 - 180}{14,134} = 0.9873$

Source : Tabing Airport

Period : 1976 to 1978

Allowed Cross Wind : 20 kt WIND COVERAGE RWY16 = 8.14%

Figure 15.3.4 WIND COVERAGE MAP OF RWY16 APPROACH.

The runway usability is calculated as follows:

JOS 235

City .

* 12 m

الأراقية والوياض أأأ أأسا

$$P = \frac{1}{99.57 \times 91.76 + 98.73 \times 8.14} = 99.40$$

As a result, more than 99% of the runway usability is obtained for the new airport, provided that the operation procedures of RWY 34 IIS Approach and RWY 16 VOR Approach are applied, and 20 kt cross wind component is allowed. This value of more than 99% usability means that the new airport could be operated very efficiently with little disruption to aircraft operations due to weather conditions. the second of the second of the

on the sound of th

,

i .

16.1 Aircraft Noise

16.1.1 Calculation Model for WECPNI.

WECPNL (Weighted Equivalent Continuous Perceived Noise Level) has been applied to the aircraft noise measures, as reported in Chapter 12. The calculation model for the WECPNL is described here.

The WECPNL is defined as follows:

WECPNL (i) = 10
$$\log_{10}$$
 [anti \log (EPNL ij)/j] + 10 \log_{10} N - 39.4

Where, j: Type of aircraft and type of flight patterns

N: Total weighted number of flight at " i " point

N = N day + 3 N evening + 10 N night

i: Any selected point

The take off profile is determined, as shown in Figure 16.1.1, to be a function of distance to destination and type of aircraft. Hence, the distance to aircraft from the any point, or the so called "Slant Distance" is calculated as shown in Figure 16.1.2. Since EPNL (Effective Percieved Noise Level) for every aircraft has been obtained as a function of the slant distance as is indicated in Figure 16.1.3. EPNL; at "i" point can be calculated based on each aircraft type and flight pattern.

Accordingly, WECPNL at "i" point can be calculated by the aforementioned formula.

A precise calculation by computer is required to obtain the ECPNL.

There is, however, a simplified method based on the assumption that PNL is approximately equivalent to dB(A) + 13 and that the expected aircraft are civil aircraft which are considered to have approximately the same power level in type and also to take off and land under the same

conditions. WECPNL is simplified to the following formula, as indicated in Chapter 12.

WECPNL = $\overline{dB(A)}$ + 10 log_{10} N - 27

The precise calculation of the former model is applied here for aircraft noise evaluation and assessment.

....

the state of the s

en in the second section of the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the section of the

e de la companya de la co

A CONTRACTOR OF THE STATE OF TH

رئين نهن جايده

and the second of the second o

and the state of t

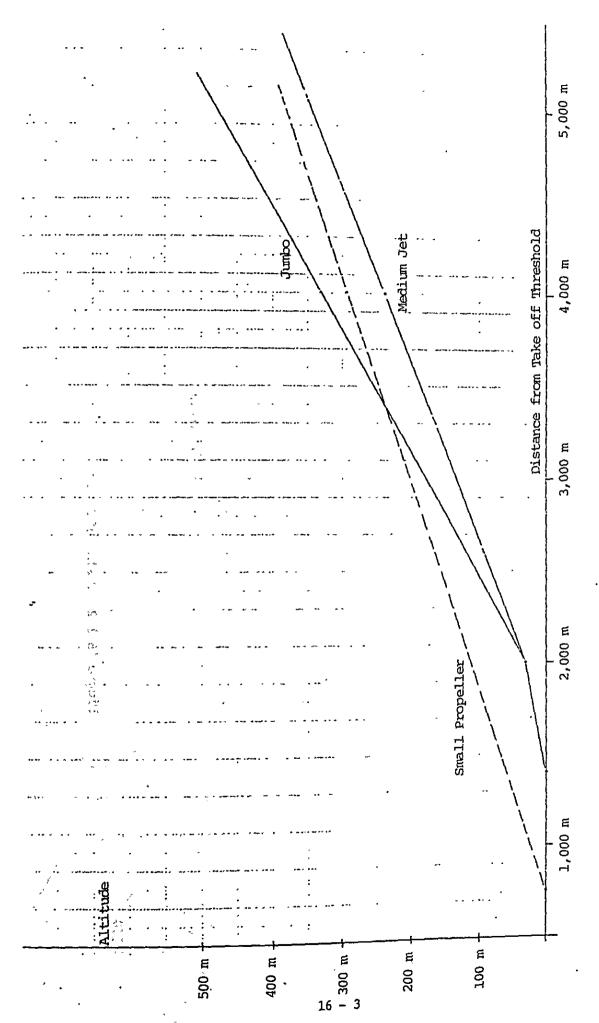


Figure 16.1.1 TAKE OFF PROFILE

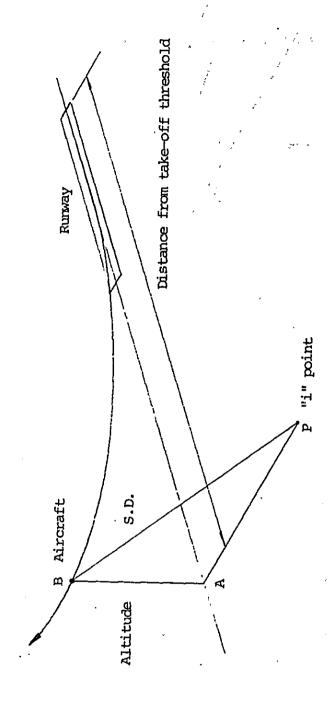
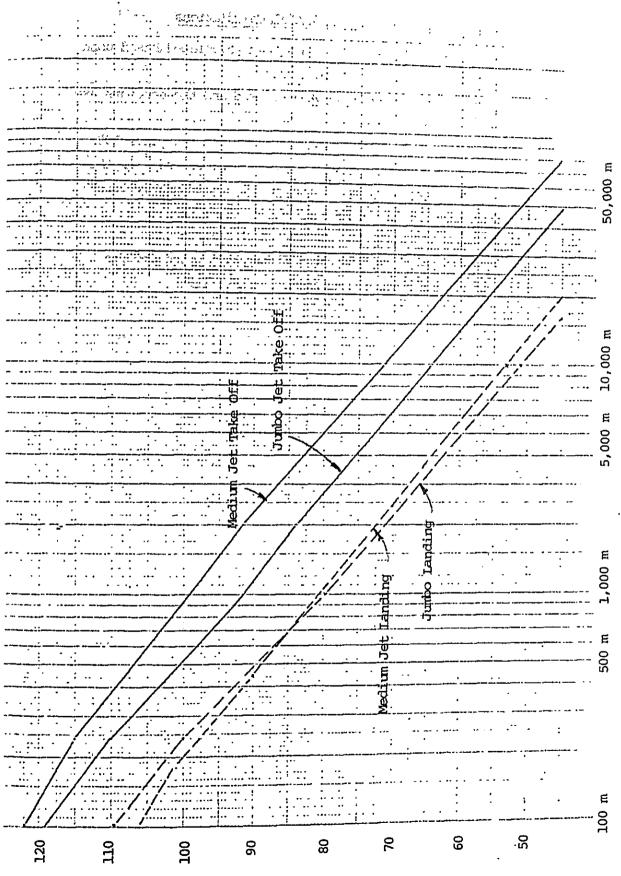



Figure 16.1.2 SLANT DISTANCE

DISTANCE FROM AIRCRAFT

(ab) Level seion beverled

16.1.2 Basic Conditions for the WECPNL Calculations

The aircraft noise contours have been calculated based upon the conditions tabulated in Table 16.1.1.

Actually, a high speed computer is used and the contours are plotted using an XY plotter.

Since the area covered by the WECPNL 70 for the years 1990 is understood to be wider than those for the other years in the project period, the contours for the year 1990 are mainly used for airport planning in the Study.

The contours for the year 2005 were also determined to indicate the trend of the reduction in aircraft noise and its impact and the anticipated condition for Phase II.

,~+ ,~ !...

Table 16.1.1 BASIC CONDITIONS FOR NOISE CALCULATION

Item	Conditions
Targetted Year	Phase-I: 1990
1° 1	Phase-II: 2005
Traffic Pattern	As shown on Figures 16.1.4 and 5.
Ratio of RWY Use	RWY34: 86%
1	RWY16: 14%
Number of Flights	As tabulated in Tables 16.1.2 and 3.
Runway Length	2,500 m
Glide Slope Angle	3.0 deg.
Background Sound Pressure Level	40 dB

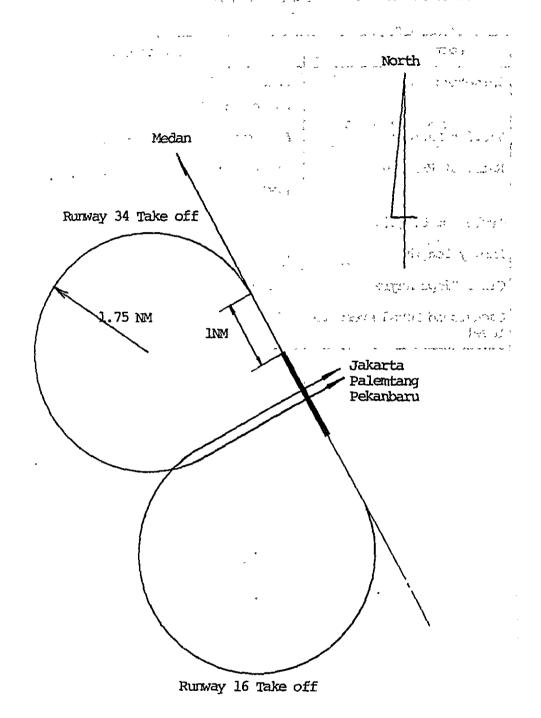


Figure 16.1.4 TRAFFIC PATTERN FOR NOISE CONTOUR CALCULATION

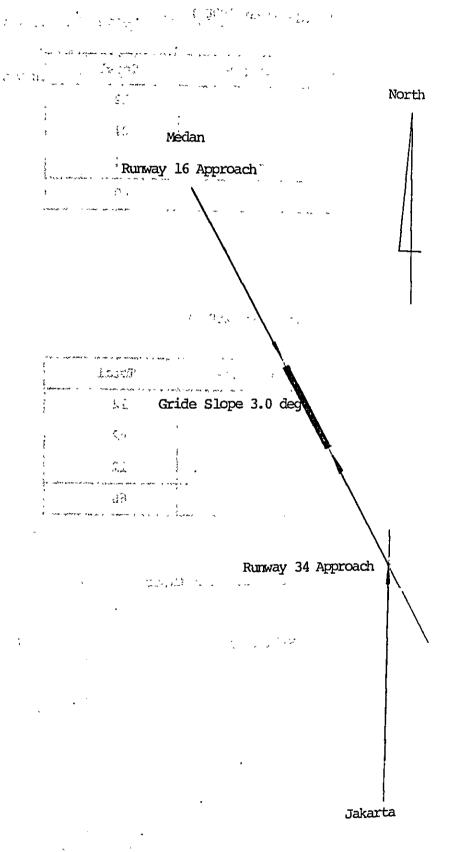


Figure 16.1.5 TRAFFIC PATTERN FOR NOISE CONTOUR CALCULATION

Table 16.1.2 NUMBER OF FLICHTS (Year 1990)

Aircraft	Day Time	Night Time	Total
Wide Body	10	2	12
Medium Jet	24	- **.	24
Stol	4	- %2	4
Total	38	2	40

Table 16.1.3 NUMBER OF FLIGHTS (Year 2005)

Aircraft	Day Time	Night Time	Total
Jumbo	10	2	<i>i</i> 12
Wide Body	36	6	42
Stol	12	-	12
Total	58	8	66

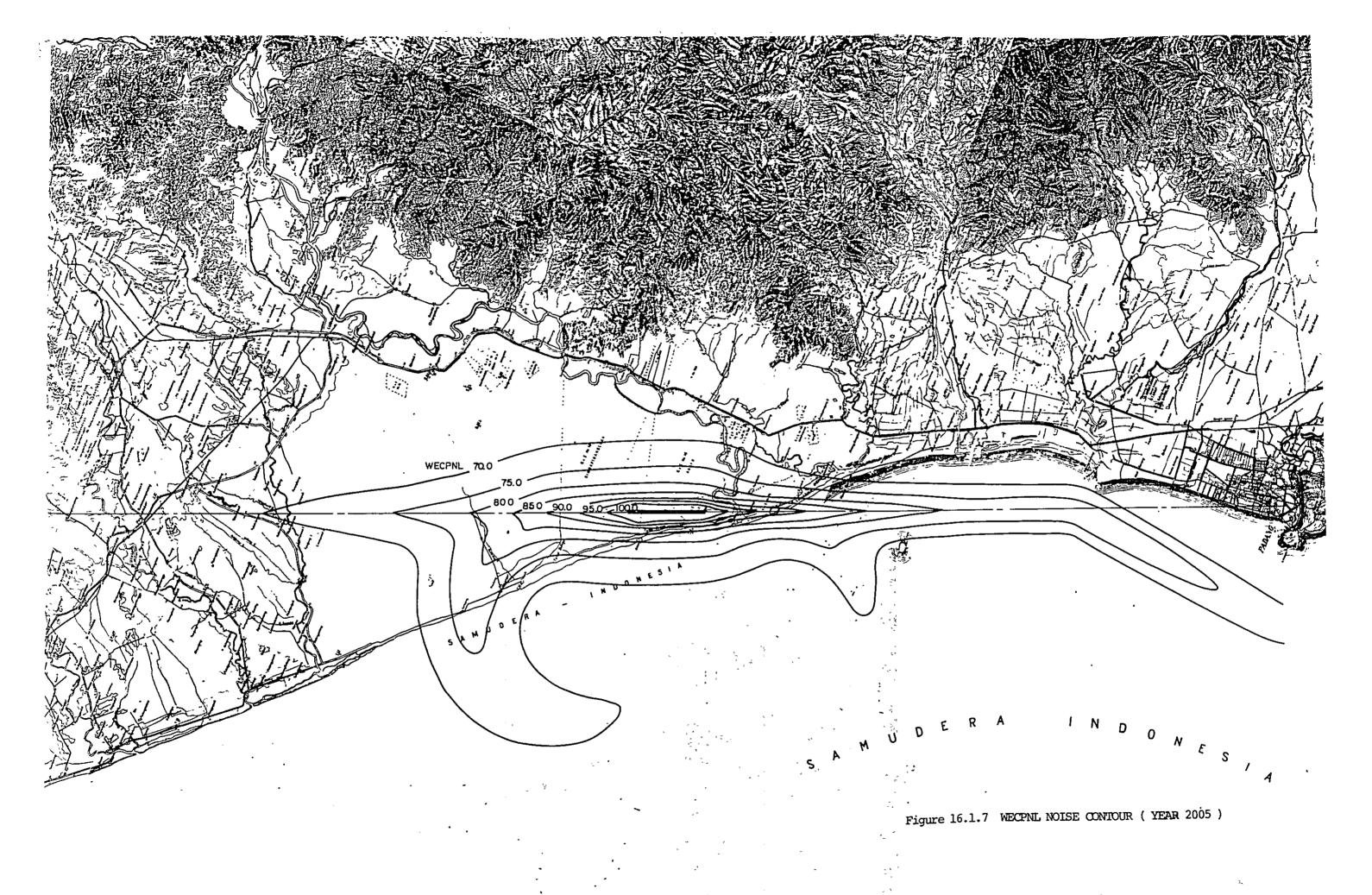
Jumbo:

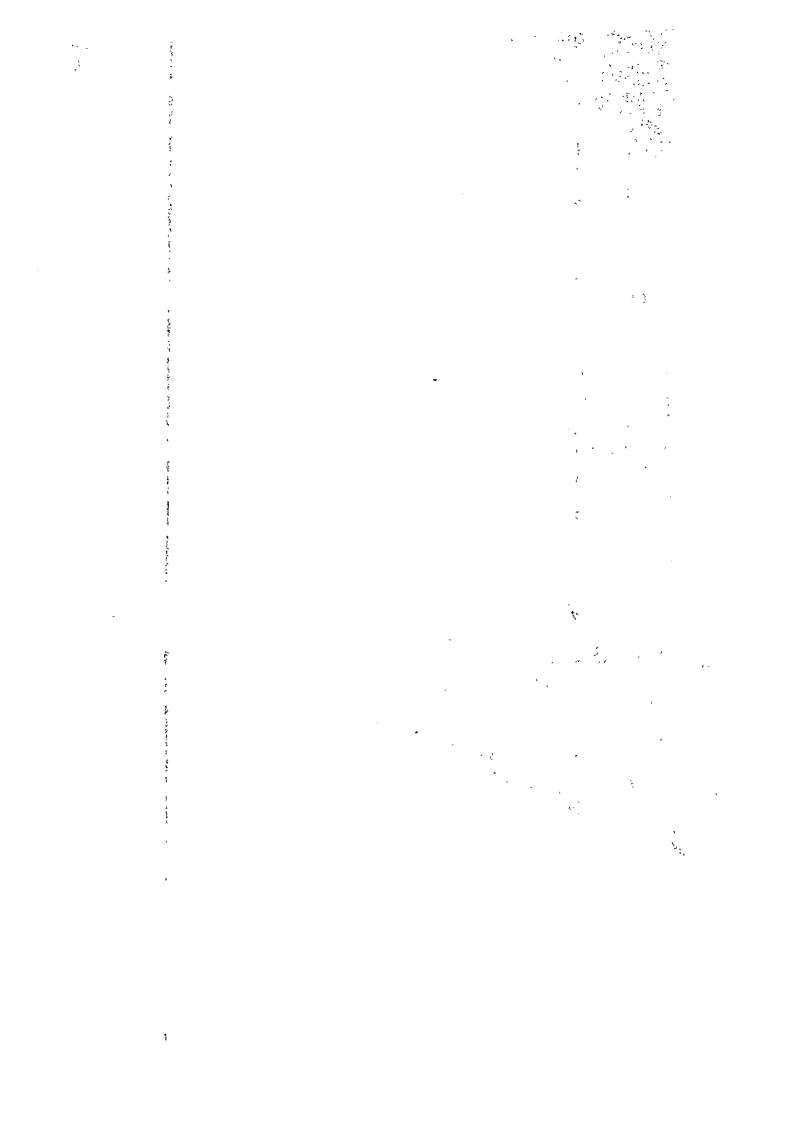
B-747

Wide Body: DC-10, A-300, New Medium Jet Class

Medium Jet: DC-9-30, F-28

Stol:


F-27, DHC-6, YS-11, etc.


16.1.3 Calculated Noise Contours

Figures 16.1.5 and 6 show the WECPNL noise contours for the new airport site for the years 1990 and 2005, respectively.

Figure 16.1.6 WECPNL NOISE CONTOUR (YEAR 1990)

16.2 Considerations on Future Land Use

Land use controls are classified broadly into the land use zoning regulations based on aircraft noise and height restrictions, etc. which are related to safe aircraft operations.

Each regulation or requirement is explained in detail hereinafter and the controls for future land use in the vicinity of new airport are proposed taking into account the existing local conditions, ICAO Aerodrome Manual Parts 3 and 8, Aviation law and environmental standards of Japan, FAA, etc.

1) Considerations on Aircraft Noise

}

The existing land in the vicinity of the new airport is very sparsely inhabited and the land use consists of rice fields, coconut tree plantations, natural forest, and waste land, etc.

The agricultural use of this area will be more positively encouraged by the implementation of the irrigation works presently planned by the local government of West Sumatra.

The agricultural use except for poultry is compatible with aircraft noise and will contribute economically to the Province using the land even close to the airport which would otherwise be left as waste or idle land because of the serious exposure to noise from the airport operations.

Table 16.2.1 compares the land use controls for the airport vicinity in Japan, USA, and France. The proposed controls are based on Japanese standards which is the most severe among the three. The airport vicinity, is somewhat virgin land, and is not expected to be developed extensively for other than agricultures in the foreseable future. It is therefore easy to control.

The existing houses which are exposed to a noise level higher than WECPNL 85 may be removed because they cannot be soundproofed because of their existing structural condition.

464

Table 16.2.1. LAND USE CONTROLS FOR NOISE

WECPNL = NEF 4 48 = N-10	Proposed for Ketaping	Standard	No schools, hospitals, etc. is permitted.		No new residences basi- cally are permitted.	Agricultural, commer- cial and industrial	land use only recommended.	Prohibited area for	Agricultural, outdoor recreational, commercial, and industrial land use are recommended. For more than 95, only agricultural use or sound abatement plantation are recommended.
	14	WEC- PNT.	More than 70		More than 75			More	than 85
Conversion:	French	Standard	No bldg. restrictions	New residential develop-	ment to be avoided.	,	Nó school, hospital, residential bldg. and public bldg.	permitted.	No building permitted.
		z	Less than 84	More	than 84		More than 89		More than 96
	LSA	Standard	Necessary noise reduction measures required for schools, hospitals, churches.	compatible with residential, commercial, hotel,	offices, outdoor recreational, indust- rial.	Compatible with commer-	cial, outdoor recreational and industrial. Schools, hospitals,	churches, theaters,	
		NEF	Less than 30			More	than 30		More than 40
	Japanese	Standard	No construction of schools, hospitals, etc. is permitted.		No construction of residences is		Noiseproof consturction for existing residence is necessary.		Compensation for removal of the existing residences.
		WEC-	More than 70		More than	2]	More than 80		More than 90

2) Considerations related to aircraft operations

The obstacle limitation surfaces consisting of approach surfaces, take off climb surfaces, inner horizontal surface, transitional surfaces, and conical surfaces are established in accordance with ICAO Annex 14 for the precision approach runway which is 2500 meters long.

Height limitations for structures and trees are required for the above stated surfaces in order to keep any structures below the surface elevations and to maintain a safe operation for aircraft

An obstruction clearance zone without structures or trees should be established around the air navigation facilities such as VOR/DME, GP, etc. for adequate and safe operations, for the area necessary to maintain the clear and continuous visibility from the control tower to all the final approaches, traffic patterns, runway and centerline of taxiways, and for the area within 230 meters from the runway centerline.

At this point the elevation of the transition surface becomes 11 meters above the runway, and the extended runway safety area is a rectangle with a width of 300 meters and a length of 240 meters measured from the end of 60 meter long overruns.

In addition to the above limitations, the following regulations are considered necessary:

- Business and activity with a potential fire hazard to the surrounding property of the airport,
- Signs, and lights to create a hazard for aircraft,
- Smoke, electronic and radio interference, accumulation of refuse or trash, glare, heat emission, odorous matter, etc.

3) Proposed Controls

(1) Land use zoning

From the view point of compatibility with the noise, the zoning standard described in Table 16.2.1 is proposed for the airport vicinity.

Continuance of the existing land use is considered desirable if the height of trees will be maintained to satisfy the height limitation, and no new residential building will be permitted in the area exposed to higher than WECPNL 75.

(2) Height limitation

All the structures and trees are restricted in height so as not to infringe upon the obstacle limitation surface.

For the surfaces on the runway 16 side (the northern side), the height restrictions should be enforced for the surfaces to be established when the planned 2500 meter long runway is extended to 3500 meters.

(3) Obstacle clearance

From the standpoint of safety and efficient operations of aircraft and the air navigation system, any structures and trees should be avoided in the area indicated in Figure 16.2.1.

(4) Reservation of Housing Area for the airport staff

About 70 ha of the land is to be reserved along the airport access road as indicated in Figures 14.6.1 and 15.2.1 so that the noise level above WECPNL 75 will not affect this area and the acquisition of the existing rice field will not actually be required.

This area will be able to accommodate the houses for 2000 families including 400 singles, schools, public facilities, parks, etc. which will be anticipated by the year 2005.

The required area is estimated in paragraph 4) of this section.

(5) Others

The areas required for the runway extension to 3500 meters and the possible future maintenance base should be reserved by maintaining existing land use.

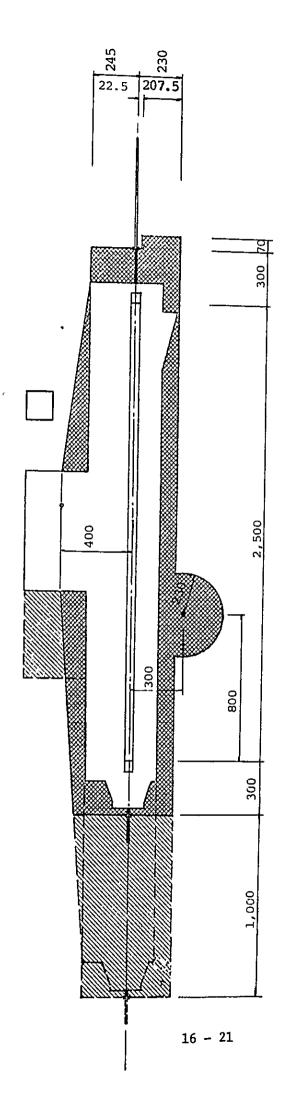


Figure 16.2.1 OBSTACLE CLEARANCE ZONE

LEGEND

The area necessary for present operations

Area reserved for future extension

4) The area required for housing

Airport employees has been estimated and is shown in Table 12.3.1 to accommodate 950 and 2200 persons for Phase I and II respectively.

Although the number of employees living close to the airport generally depends on the distance from the airport to the Central Business District (CBD) about 50 to 90 percent of the airport employees in Japan are said to live within the vicinity of their respective airports.

The percent of employees who will live close to the Ketaping airport is assummed to be 90 based on a safe assumption considering the airport distance from the CBD and the tendency stated above.

The land areas required for housing have been estimated and are shown for both Phases I and II in tabular form in Table 16.2.2.

Table 16.2.2 THE AREA REQUIRED FOR HOUSING

	Phase I	Phase II
No. of Employees living in the airport vicinity.	90% of 950:860	90% of 2200:2000
No. of Families	80%*1 of 1:690	1600
No. of Single Occupants	20% ^{*1} of 1:170	400
Houses for Families	400 m ^{2*2} x 690: 27.6 ha.	400 m ² x 1600: 64 ha.
Apartments for Single Occupants	2000m ^{2*3} x 170 1.2 ha.	$2000\text{m}^2 \times \frac{400}{30}$: 2.8 ha.
Schools	3 ha.	3 ha.
Public Facilities (Mosque, hospital, assembly hall, park, etc.)	2 ha.	2 ha.
Total.	Sum of 4 thru 7: 34 ha.	72 ha.
	living in the airport vicinity. No. of Families No. of Single Occupants Houses for Families Apartments for Single Occupants Schools Public Facilities (Mosque, hospital, assembly hall, park, etc.)	No. of Employees living in the airport vicinity. No. of Families No. of Single Occupants Houses for Families Apartments for Single Occupants Apartments for Single Occupants 2000m ^{2*3} x 170/30 : 1.2 ha. Schools Public Facilities (Mosque, hospital, assembly hall, park, etc.) Total Sum of 4 thru 7:

- *1: The proportion of married and single persons has been estimated to be 80 and 20 percent respectively.
- *2: The space required for a one house unit including a portion of the internal roads is assumed to be 400 m² considering the existing conditions at Tabing airport, and in the light of similar experience in Indonesia and Japan.
- *3: The single employees are assummed to live in a 3 story apartment with an accommodation of 10 rooms on one floor of 500 sq. m in area. An area of 2000 sq. m will be required for one apartment building including the surrounding space, a portion of the internal roads, etc.

16.3 Airport Organization

The existing organization chart of Tabing Airport is attached as Appendix 2.3.1 of this report.

A proposed organization for the new airport operations has been established for Phase I and Phase II in accordance with the following factors:

- i) The existing organization of Tabing Airport
- ii) The current organization for other major airports in Indonesia, such as Ujung Pandang, Medan, Menado, etc. and
- iii) The forecast number of airport employees for DGAC as listed in Table 12.3.1.

The organization chart and the required number of staff for Phase I and II are shown in Figures 16.3.1 and 2, and Table 16.3.1.

The new organization for the airport administration and operation will belong to the DGAC. It totals 410 personnel in Phase I and 880 personnel in Phase II.

The organization will consist of 15 sections as shown in Figure 16.3.1 and these sections can be classified into 3 major groups, i.e. Air Safety, Engineering and Administration. Although these 15 sections can function under the directions of the airport manager in Phase I, the Phase II operation will be made by 3 directions as shown in Figure 16.3.2 considering effective functioning of the large number of DGAC staff.

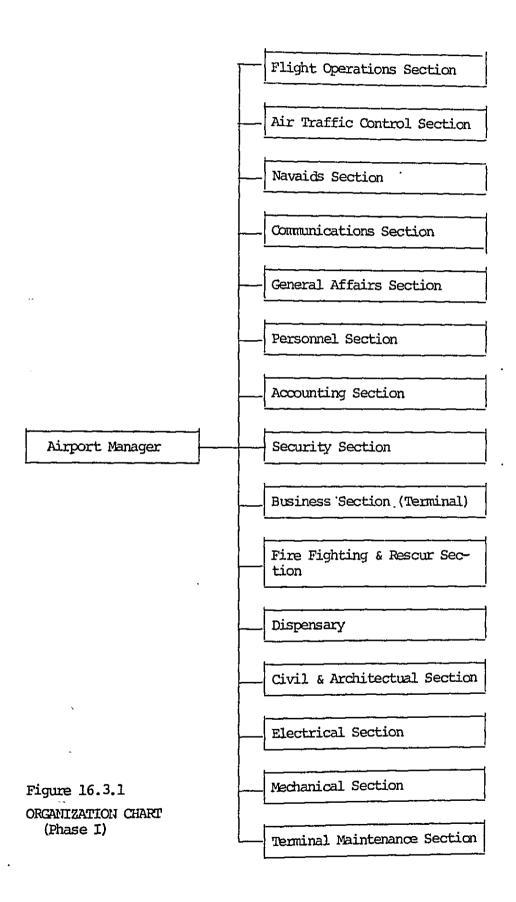
(The function of the organization is explained in the Appendix 16.3.1.)

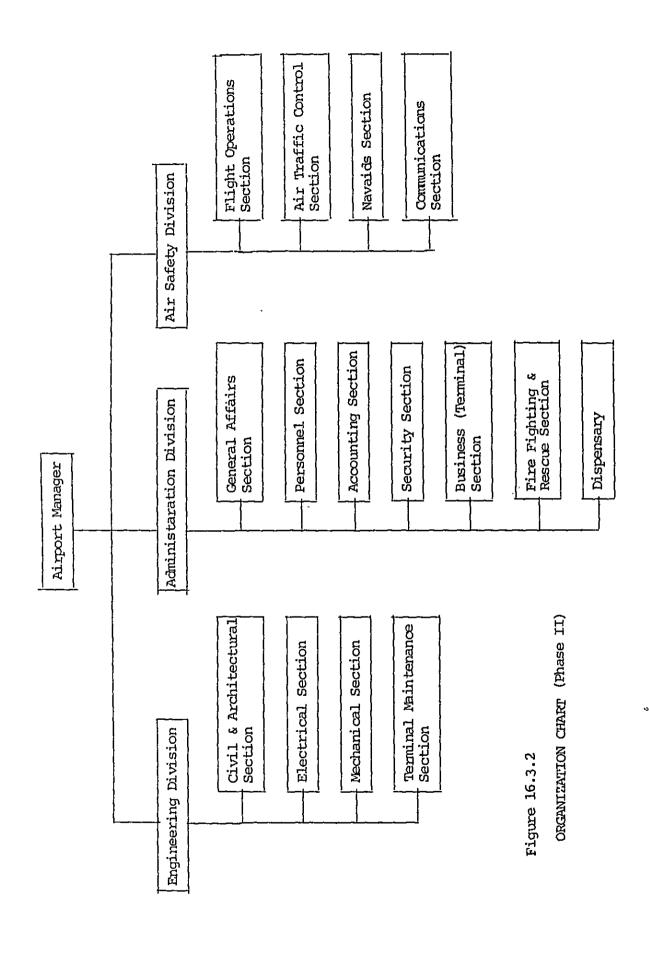
In these 15 sections, the following sections will require shiftwork in order to provide safe and efficient operations for the airport and also maintain airport security.

Air	Safety:	Flight Operations	4 shifts	ε	,
		Air Traffic Control	11		
		Fire Fighting	11		
		Communications	11		
		Navaids	12		

Security: Security Guard 4 shifts

The planned shift work operating hours (0600h to 2100h) can be divided into 4 categories;


- i) No. 1 shift: 0600h to 1300h
- ii) No. 2 shift: 0900h to 1600h
- iii) No. 3 shift: 1400h to 2100h
 - iv) No. 4 shift: Off duty


During the busier hours of operation, the two shifts will overlap. One of the 4 shift groups will repeat from No. 1 shift to No.4 shift, thus working 36 hours in an average week with a day-off every 4 days normally.

In Phase II three divisions, consisting of Air Safety, Engineering and Administration, will be established for the increased number of staff (a total of 880 personnel).

Table 16.3.1. PROPOSED ORGANIZATION FOR THE NEW KETAPING AIRPORT

		Numb	er of St	aff	
Year	1985	1990	1995	2000	2005
Airport Manager	1	1	1	1	1
Director of Administration Division	! ! !	{ }		1,	1
General Affairs Section	7	10	12	20	22
Personnel Section	7	10	12	20	22
Accounting Section	6	9	13	25	62
Security Section	17	24	52	84	164
Business Section (Termi- nal)	10	18	30	40	62
Fire Fighting & Rescue Section	33	44	65	84	124
Dispensary	2	4.	7	15	18
Director of Engineering Division				1	1
Construction Section	11	21	35	44	51
Electrical Section	9	21	30	40	46
Mechanical Section	7	9	10	24	28
Terminal Maintenance Section	15	25	40	60	80
Director of Air Safety Division		\$		1	1
Flight Operations Section	9	16	25	28	30
Air Traffic Control Section	9	15	25	28	38
Navaids Section	13	17	33	65	101
Communication Section	9	16	20	24	28
Total	165	260	410	605	880

CHAPTER 17 CONSTRUCTION SCHEDULE AND COST ESTIMATES

17.1 Construction Conditions

17.1.1 Soil and Rainfall

The results of the soil investigation made in Aug., 1981, reveal that poorly graded sand underlies the proposed airport site uniformly having a relatively low water content of 8 percent except for the wettish area.

In the wettish area, sand with water content of 30 percent exists.

Based on these soil classifications and water contents, a value of 0.9 was assumed for the conversion coefficient of soil (compacted soil volume vs. original soil volume before excavation).

Rainfall intensity is set at 80 mm/hr as described "14.3. 2. stormwater drainage system plan."

17.1.2 Construction Materials

1) Sand and gravel

Although sand and gravel can easily be found at the upper stream of neighboring rivers in the vicinity such as Batang Anai, its quality and quantity should be confirmed for detailed design purposes.

2) Cement, Asphalt and Steels

There is no problem in acquiring portland cement since cement production plays an important role in the industrial development of Padang.

Most of the asphalt used in the airport construction must be imported.

Locally produced steel materials should be used as much as possible.

17.2 Civil Works

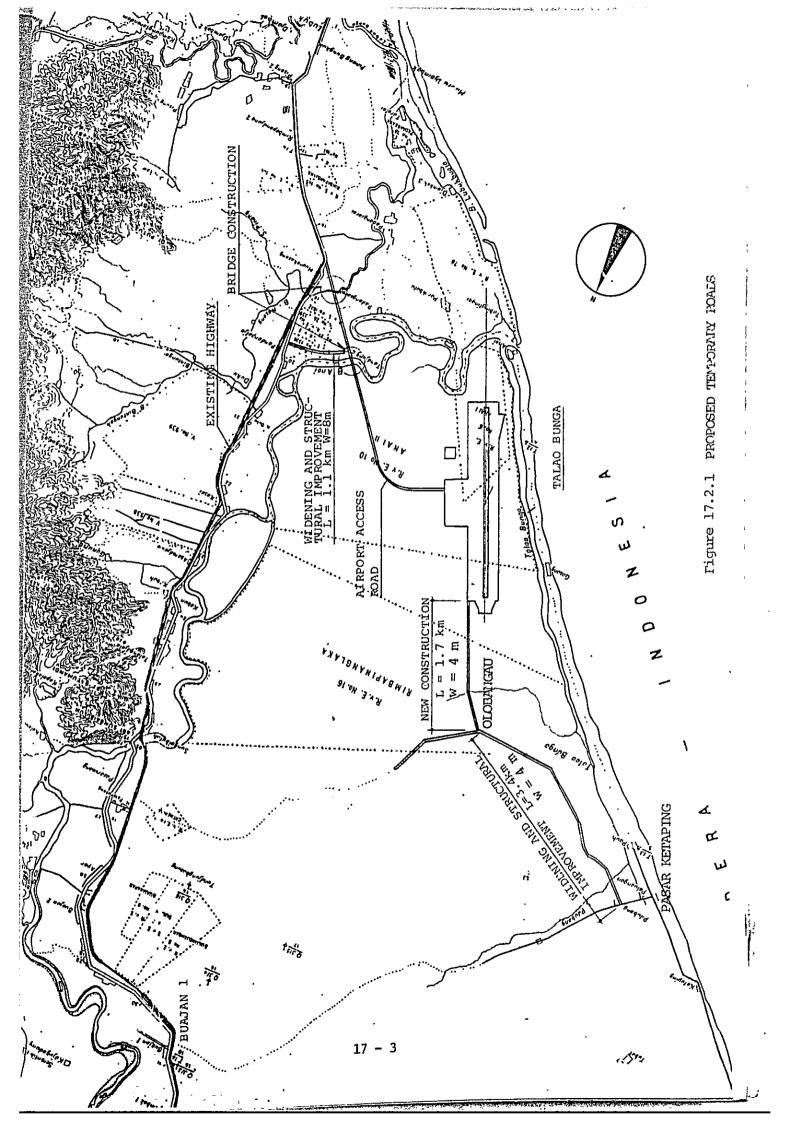
17.2.1 Temporary works

Construction of temporary roads is required before the start of airport construction.

At present, the proposed site can be reached by vehicle via Buajan 1 and Pasar Ketaping however, this road is a rather long detour coming from Padang City by means of the existing highway.

In addition to this, it is necessary to across the Talao Bunga with a small boat.

An airport access road is therefore necessary to be constructed as soon as possible to carry construction equipment and materials to the airport site.


First of all, the airport access road requires two bridges which need a longer construction period than the road on ground. Therefore, the existing dust road that branches off the existing highway and reaches the construction site of the bridge over Batang Anai, is to be widened and improved so as to be utilized as temporary road as shown in Figure 17.2.1.

The airport access road shall be partially constructed in advance with the construction of another bridge.

Meanwhile, widening and some structural improvement of the existing road that reaches Olobangau from Pasar Ketaping and new construction of a temporary road with some 1.7 km as shown in Figure 17.2.1 will allow earthwork equipment and temporary materials to be carried to the airport site before the completion of the airport access road.

Abovementioned temporary works shall start as soon as possible after acquiring land and should be completed within one quarter year together with other temporary works including site office, motor pool, etc.

, hg 153 2 , 23

17.2.2 Earthwork

Earthwork is to start immediately after completion of the aforementioned temporary road.

As described in "14.3.1 Grading Plan," the quantities of excavation work and embankment work are 290,000 m³ and 370,000 m³ respectively.

Sufficient trafficability for bulldozers and scrapers is anticipated based on the in-situ soil conditions.

Meanwhile, top soil in the bush and forest areas will be removed up to 30 cm depth and a part of this removed top soil can be utilized as fertile soil after temporary stockpiling.

About a 5 percent contingency was considered in the cost estimate of earthwork in order to include the possible increase in the volume of earthwork resulting from the detailed topographic and hydrogical surveys made during the detailed engineering stage.

17.2.3 Pavement Work

Pavement work should start immediately after completion of the airport access road and will take approximately one and one-half years to complete.

An asphalt plant and concrete plant are planned to be installed at the proposed NDB site.

In-situ sand stabilized by cement will be utilized as subbase course to reduce the construction cost for the flexible pavement for runway and taxiways.

17.3 Building Works

Building works, including the passenger terminal building, cargo terminal building etc., should start immediately at the same time with the abovementioned pavement works after completion of access road.

All of the buildings will be of reinforced concrete except for the storage area of the cargo terminal building which will be of steel frame structure.

Cost estimates for the buildings have been based on the unit construction price presented by DGAC.

17.4 Other Works

Lighting facility works, including the installation of cables, manholes, approach lights, runway lights etc. will start during the site preparation phase and finish within one half year after completion of the pavement construction. A half year is required for installation of lighting facilities on the pavement.

17.5 Construction Schedules

Table 17.5.1 summarizes the construction schedule for each construction item discussed before.

As can be seen in the table, approximately three and a half years are required for the completion of all the necessary constructions.

After completion, one half year is required for flight check, test operation for various navaids, maturity flight, etc.

Meanwhile, about two years are required for topographic survey, soil investigation, detailed design and tender evaluation after completion of this Feasibility Study. Therefore, inauguration of construction will be set around April, 1984 and completion around Oct., 1987.

The opening of the new airport will be scheduled around April, 1988.

grant of the const.

mummum 2nd Phase Const.

Table 17.5.1 CONSTRUCTION SCHEDULE

Calendar Year														ည်ဒ	Dosign Year for		the 1	1st Phase	se	
Work Items	1981	8.5	83	84	85	98	87	88	68	90	91	92	93	94	23	96	97	86	66	2000
Feasibility Study and Engineering Services	E/S	Topo.	α⁄α	1/E	c/s			Cine	Orening Line					1						
Land Acquisition and Campensation				1	 						1	 		· 	-		-	-		
CONSTRUCTION] 			 - -		1		-			-	-	+-		111111		1	1	
l Temporary Works				I	 -	 	 -			 	-	1		 -			-	-		
2 Access Road		•			l		 	-		 				 -	1 2		-	 		
3 Site Proparation				 - -			1	·	-	!	<u> </u>	 - -	·	-	=	-	-	-	-	
4 Pavenent							1	 	-	-	 		+-	 	1	1811	-	-		
5 Car Parking Area and Internal Road				<u> </u>			I	 	 -											
6 Passenger Terminal Building	,				┊ ╏			 				-		-		1111111	 	 		
7 Cargo Terminal Building			-				1	[4 5 5 7 1 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		 	<u> </u>	 	
8 Achministration and Other Duilding														 				<u> </u>		
9 Lighting					;-₽- 		1	-	 	 	-				=	700			-	
10 Radio Navaids, Telcommunications and Meteorological Facilities							1			<u> </u>										
11 utilities				<u></u>	-	-)116,4341,434			 	_	
Management and Test Operations						 -	ğ	₽ 21		-					-					
Informed completion time of related projects by others					Padar	ed/fq fx	Padang bypass road	ŭ				-					 			
	Power line b	transm PIN	Power transmission line by PLN V																 	
		Straighten of B. Mai	htenir. Mai			۵													-	
F/S Feasibility Study Topo. Topographical survey Soil Soil investigation	ity Stu Aical s estigat	đy urvey ion		0 17 0 5 15 0	-	Detail d Tender e Construc	Detail desiyn and Tender Tender evaluation Construction supervision	and The	desiyn and Tender document evaluation ution supervision	docume	nt.		07 31	•	Establishmer fest op-rati duccks, etc.	Establishment of Test op-rations, decks, etc.		airport various	organi flight	organization flight

17 - 6

17.6 Construction Cost Estimate

Construction cost estimate has been executed based on the master plan.

Cost estimates are based on the following assumptions:

- 1) Unit construction prices are based on the data collected from DGAC, DPU during the Study team's stay in Indonesia.
 - Exchange rates are set at US\$1 = Rp.625 = Jap.Yen 220.
 - Items of foreign portion and local portion are the same as described in Chapter 9, and
 - 4) Percentages for engineering fee and contingency are the same values as indicated in Chapter 9.

The construction cost is estimated by item and year, as tabulated in Table 17.6.1 and 17.6.2. Construction cost for Phase I is estimated to be 27.47 billion Rupiah however, it can be reduced to 26.55 billion Rupiah if land acquisition and construction of the airport access road are executed by Bina Marga.

Construction cost can be further reduced to 26.23 billion Rupiah if the transmission line for power supply is constructed by PIN (Government Electricity Enterprise).

		- 1										
<u> </u>	Phase	of Construction	tion	Phase	e I		Phase	e II			Total	,
Ĥ	Item			Foreign Portion	Local Portion	Total	Foreign Portion	Local Portion	rotal	Foreign Portion	Local Portion	Total
	Temporary	y Roads		45	24	69	1	*	ı	45	24	69
	Access Road	oad		428	244	672	460	296	756	888	540	1,428
	Earthwork	ķ		780 .	580	1,360	415	225	. 640	1,195	805	2,000
orks	Drainage	Work		49	78	127	19	49	68	68	127	195
M (T	Pavement	Work		2,883	1,989	4,872	1,120	612	1,732	4,003	2,601	6,604
CIV	Carparking	ng Area		239	375	614	06	53	143	329	428	757
**_	Miscelaneous	eous Work	,	324	31	355	I	ı		324	31	355
	SUB	TOTAL	:	4,748	3,321	8,069	2,104	1,235	3,339	6,852	4,556	11,408
Σķ	Passenger	r Terminal	Bldg.	2,929	2,449	5,378	3,211	2,25ì	5,462	6,140	4,700	10,840
and t Wo	Cargo Te	Terminal Bldg		207	253	460	222	27.1	493	429	524	953
ding paen	Administration Other Bldg.	ration and		426	283	402	92	137	229	518	420	938
Buil	SUB	TOTAL		3,562	2,985	6,547	3,525	2,659	6,184	7,087	5,644	12,731
дэ - дэ -	Lighting			978	379	1,357	, 643	322	965	1,621	701	2,322
sks i Tarn	Radio Navaids,	vaids, Tele-	, D	2,340	241	2,581	1,050	110	1,160	3,390	351	3,741
Air tior Work	SUB	TOTAL		3,318	620	3,938	1,693	432	2,125	5,011	1,052	6,063.
	ļ	Transmission Line	ion	135	711	. 252				j.35	117	252.
:ķa	System	Power Supp in Airport	21.y	1,065	305	1,370	465	83	548	1,530	388	1,918
OM S	Water Su		E	286	140	426	181	68 .	270	467	229	969
įtįs	Sewerage			457	225	682	171	84	255	628	309	937
1	Incinerator	ıtor		135	7	142	ł	ı	ı	135	7	142
1	മാട	SUB TOTAL		2,078	794	2,872	81.7	256	1,073	.2,895	1,050	3,945
	TOTAL OF WORKS	PRKS		13,706	7,720	21,426	8,139	4,582	12,721	21,845	12,302	34,147
	Engineering			2,056	1,158	3,214	1,221	687	1,908	3,277	1,845	5,122
· ·_	Airport	Land Acqu	isition	-	203	203	1	ı	1	1	203	203
		Compen-	Coconut	1	44	44	1	1	ı	ı	44	44
bna no.			Houses b Land Acquisi-		α.	7	, 1				N	N
 Inisiti Ation			Houses exposed to nois	t o	18	18	1	1	1	1	18	18
	Access	Land Acqu	Acquisition	1	62	62	1	ı	1	1	62	62
		Compensation	ion	\$	ι	Т	t	1	1	-	τ	7
	SUB	TOTAL		1	330	330	1	ı	1	ı	330	330
	Contingency	,		1,576	921	2,497	936	527	1,463	2,512	. 1,448	3,960
17 -	GRAND TO	TOTAL		17,338	10,129	27,467	10, 296	5,796	16,092	27,634	15,925	43,559
	Exchange rate:	me is sn	Rp. 625	= Jap,Yen	220						-	

• a president and amount of the con-1 ¥ ' •' • • • • •

Table 17.6.2 ESTIMATED ANNUAL CONSTRUCTION COST

Unit: Million Rupiah

				
Yea	r	Foreign portion	Local portion	Total
	1982	-	91	91
	1983	339	372	711
	1984	843	570	1,413
Phase I	1985	1,912	1,244	3,156
	1986	7,792	4,378	12,170
	1987	6,338	3,412	9,750
	1988	114	62	176
	Sub Total	17,338	10,129	27,467
	1993	278	15	293
	1994	268	151	419
Phase II	1995	4,058	2,296	6,354
	1996	5,692	3,334	9,026
	Sub Total	10,296	5,796	16,092
Tota	1	27,634	15,925	43,559

, ,

CHAPTER 18 FINANCIAL AND ECONOMIC ANALYSIS

This chapter describes the financial and economic analyses for the Padang Airport Development project, which are based on the master planning and cost estimates which are described in Chapters 14 - 17. The purpose and the basic concept of the financial and economic analyses are explained in detail in Chapter 10 - 11 and Appendix 11. This chapter discusses further analysis based on the more detailed cost estimates obtained from the master planning. In order to avoid unwarranted redundancy, however, the overlapping arguments with those in the previous chapters are reduced to a minimum.

18.2 Financial Analysis

The financial analysis for the project is essentially completed in Chapter 10. This section updates only the construction cost estimates based on the more detailed master planning, and analyses its impacts on the borrowing policy and airport charges pricing policy.

18.2.1 Detailed Construction Estimates

Detailed current and capital expenditures are projected as shown in Tables 18.2.1 and 18.2.2, on the basis of the construction and other cost estimates which were prepared and discussed in Chapter 17.

18.2.2 Financial Projection

As indicated in Chapter 10, the financial analysis has been made based on the assumption that the personnel salaries will be raised at the same pace with the real income growth of the economy. Table 18.2.3 summarises the airport revenues from aircraft operations for the key years. Table 18.2.4 summarises the revenues and expenditures based on the cost estimate in the master planning. Table 18.2.5 shows the same projection except for personnel and material costs unit prices of

which are allowed to increase by 5.5 and 2.25 percent per year respectively (See Para. 10.3.2 for the detail explanation). Table 18.2.6 presents the projection which estimates the necessary increase in airport charges to allow the current airport revenues to meet both the current and capital expenditure requirements.

18 - 2 .

i a company

The second second second

and the second of the second o

Something the state of the same

a tayya ya

Table 18.2.1 OPERATION AND MAINTENANCE COST

(1981 Rp. million)

,			1 1 1 1 1 1 1 1 1 1									
		90	OPERATION				_ ₹	HAINTE AANGE			¥ + 0	SAVED
YEAR	DIEL	•	MATEL	UTIL	0-T01AL	RUNUAY	84116	£ 01.1P.	DINERS	N-TOTAL	J	
1 1 1		1 5 6 1 1 1	; ; ; ;									
1981	0	0	-3	0	a	o	9	-	÷	0	9	a
1982		•	9	C	9	0	0	c	9	c	5	0
1983		0	c	0	0	0	3	c	0	0	0	c
1984		c	c	c	0	0	=	¢	٥	0	⊋	c
1985		0	0	0	0	0	0	0	0	c	0	٥
1986		0	J	0	0	٥	-	c	٥	C	Þ	•
1987		0	0	0	0	0	3	c	0	0	0	0
1988		0	205	11	404	67	65	197	58	340	708	-895
1089		0	222	105	525	57	\$9	151	58	340	865	-895
1990		0	240	105	559	63	9	197	62	340	668	-895
1661		0	267	105	610	67	45	197	ON CV	340	356	-895
1992		0	296	105	499	67	6 5	197	29	340	1004	-895
199		0	324	105	717	67	53	197	52	340	1057	208-
199			351	105	768	64	89	197	29	343	1111	1895
100		0	379	14.0	856	67		197	29	343	1199	-895
199		0	415	140	926	5 7	89	197	52	777	1267	-895
1997		c	157	140	992	72	127	202	Ď.	577	1437	-895
1998		0	285	140	1040	72	127	202	6	445	1505	-895
661			525	140	1127	72	127	202	30	445	1572	-895
2000		0	558	175	1230	72	127	202	30	445	1675	-895
200		c	609	175	1326	72	127	202	61	577	1771	-845
201		0	099	175	1422	7.2	127	201	6	445	1867	1895
200		0	711	175	1519	7.5	127	202	6 ₹	445	1961	-895
200		0	762	175	1615	7.5	127	202	39	445	2060	1845
5002		0	815	260	1795	72	127	202	3.9	445	2240	- 895
200		c	812	260	1795	72	127	202	39	577	2240	-895
203		0	812	260	1795	72	127	207	39	445	2240	-895
200		c	812	260	1795	72	127	707	œ.	5 7 7	5240	-895
203		0	812	260	1795	72	127	202	5.0	445	2240	-895
2013	3 723	0	812	560	1775	22	127	207	39	575	2240	268-
TOTAL	10975	0	12331	3842	27148	1449	2372	4671	807	9299	\$6447	-20585

Source: JICA Estimates

Table 18.2.2 CONSTRUCTION AND EQUIPMENT COST

(1981 Rp. million)

1 1 1 1 1 1	1 1 1 1 6 5	20	COUSTRUCT 10!	34			+ 41111111	1,41,1			FERIPHERA	RAL		
YFAR	RIPLAY	50110	OTHERS	REPLACE	0-210	1441	OTHERS	REPLACE	£-51/18	AC.ROAD	HIGHWAY	UTTL.	P-SuR	10141
, X	c	c	c	5	-	c	=	c	=	c	3	c	c	c
	> <u>:</u>	•	3 6	c	×	.	.	: <	9 6	9 6		e C	3 5	*
7	2	÷ c	. 0	• •	2 4 4 4	•	: 5	= c	• •	• •	÷ c	• •	. c	444
740	* S	c	7 7 9		7 7 7	•	· =		• •	3.56		· c	***	1284
985	13.6	975	643		2533	0	. 0	c	0	356		0	336	2869
986	3742	5274	643	c	7659	1969	0	c	1969	C	9 3	1436	1436	11064
1987	2089	2727	643	o	5459	1909	0	0	1969	c	5	1436	14.56	8864
8R6	0	0	140	c	160	c	3	c	0	c	9	0	0	160
686	0	c		0	0	0	o	c	0	•	Ç	6	c	=
1990	0	c	ü	0	0	0	0	c	0	0	c	0	c	C
166	0	0	ټ	0	0	0	3	C	0	0	\$	0	0	c
1002	c	0	٥	c	0	0	0	c	0	0	c	0	c	c
993	0	267	0	c	267	C	c	0	0	0	3	Ð	c	767
766	0	C	383	0	381	0	o	c	0	a	0	0	-	361
1905	1574	2001	763	С	4398	0	Þ	643	643	378	٥	357	7.55	\$776
966	1009	3856	764	0	5629	195	J	1287	1482	378	0	21¢	1094	8,705
166	0	0	0	0	0	0	0	c	0	0	0	c	c	c ·
£-5	0	¢	0	c	0	0	0	¢	0	0	0	0	٥	=
646	0	0	3	0	0	0	9	0	0	0	0	0	0	c
2000	0	0	0	0	0	c	0	c	0	o	•	c	0	c
กมา	c	0	Ð	0	0	0	0	c	0	0	0	0	c	6
2002	0	Ç	3	0	0	0	0	c	•	0	0	O	c	c
500	0	0	=	c	0	0	0	c	0	0	c	0	¢	c
700	C	c	0	0	9	0	٥	c	0	0	0	0	c	C (
005	0	c	0	0	0	0	0	~	0	0	3	0	=	5
Seb 0	Ö	0	0	0	0	0	0	¢	0	0	9	0	a	c
2002	¢	0	٥	0	0	0	0	0	0	c	o	0	c	c
800	0	0	0	0	0	0	0	0	0	0	3	0	c	C
600	٥	c	0	0	0	c	0	c	0	0	3	0	0	د
7010	0	0	0	0	0	0	3	C	0	9	3	0	C	C !
TUTAL	10310	12751	\$122	C	28163	4133	0	1930	6063	1428	э	3945	5.523	39599

Source: JICA Estimates

Table 18.2.3 BENEFIT BY AIRCRAFT MOVEMENT

	CHMDL	c		AND SULES SURED	1007	¥.	EL MEDIUM JET	37 =) 	MEDIUM	JET	SMALL JET	JET	E.	PROPELLER	LLER	46/1018 	724	1	45.45.
		-		018181 077 0	340 151810					3478	39900	2318	26933		1160	56430	590	17100		137.4
1981	י כ		, (12041		c		,'`	23 18	39900	4636	26933	-	0	c	1160	17100	!	388.4
1990	0		ə (24.0	217026 706.	ַ ב	8 7 7 7	100015		92.94	39900	9	7	0	0	0	1748	17100		\$96.1
1995	0	,	- (3556	517622 0225 \$17622 0277			100035		5226	39900	0	-	0	0	0	2318	17100	٥	795.2
2002	2518	99,765	ے د	9 4 6	229415			100035		4954	19900	0	;	ا 0	0	0	3478	17100	,	1090.9
2005	1478 45776U	4577) 0 0	9907	4006 227015	. <u>.</u>		10001		9569	39900	0		•	0	•	3478	17100		1090.9
ã	DOUTS ATH MAVICATION FACILITY CH	2	16.4]	ION FA	C 1 L 1 T	Y CH,	ARGECAC	• WE 1 (GHT F	ACTOR.	JARGE (AC+WEIGHT FACTOR+DISTANCE	E FACTOR)	. (80		1	•	1	1) 	1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1
YEAR	YEAR JUMED WIDE BODY &	07		WIDE.	WIDE ROOY	12	REA MEDIUM JET	- X		MEDIUM JET	JE1	SHAL	SMALL JET	¥.,	L/M PRUPELLER	ELLER	STOL	STOL/SP		TOTAL
	.	1 1 1 1	1	1 1 1 1 1 1	1			•									•	:		112.2
1985	0	c	2	590	590 52	0-	٥	0	0	3478	21 7	2318 16	\$	-	1160	6 92	265	= ;	n ,	
1990	0	0	5	3478	6.3	•	0	0	0	2318	6 12"	4636	4636 160 3	;	6.	o (1160	:	, ,	1.19.
1995	0	G	5	5226	8	~	1748	3.8	۰	9 2 9 7	21 3	0	0	<u> </u>	0	0	1748	= :	,	
0002	2318 109	109	с ъ	5478	£0	~	290	38	'n	9229	21 3	٥	٥	٥	• •	0 1	2318	<u>-</u> :	m r	595.2
2002	3478 109	109	o.	4000	89		1160	38	۲	695421	.21 .3	0:	: 0 :	i	ر ا) ·		: :		2.565
2010	3478 109	109	~	4004	80 9907	~	1160	38	v	9954	2.1 3	0	•	0	0	0	24.2		1	

Source: JICA Estimates

Table 18.2.4 PROJECTED REVENUES AND EXPENDITURES

(1981 Rp. million)

X ()	R PEVESSES	1440.FEE	NAV.FEE	2 8 6	4641	FAPE4D.	FLRSOM	MATERIAL	MAINTE
,		•		c		٠	c		•
2		;	•	•	•	•	•	•	•
198		ċ	•	0	.	Ö	9	• •	ċ
198		Φ.	•		č	•	÷	0	ð
198		C	0	c	· c	0	c	•	°
198		C	0	0	· c	0	.	•	0
1980	•	0	ó	0	· =	0	o	0	0
198		0	.0	0	· =	С	c	•	0
198		256.3	68	267.5	107.8	804.0	182.0	282.0	340
178	•	515.5	359.6	\$03.2	119,5	865.0	198.0	327.0	340
199	•	\$58.4	£	544.1	132.0	899.0	214.0	345.0	340
199	•	425.2	×	184.0	146.7	0.050	238.n	372.0	340
159	1474.1	401.0	421.2	6"HZ7	163.0	1004.0	265.0	4.01.0	340.
150	•	502.3	194.1	478.5	181.0	1057.0	0.885	429.0	340.
199	4 1651.5	547.2	368.7	534.4	20102	1111,0	312.0	456.0	343,0
199		596.1	345.0	296.4	223,5	1199.0	337.0	519.0	543
199		651.5	360.5	650.0	243.3	1267.0	369.0	555.0	343
199		0.699	376.6	708.3	265,0	1437.0	401.0	591.0	445
199		748.6	39%, 5	772.1	288.5	1505.0	433,0	627.0	445
100		7.067	411.1	841.8	314,1	1572.0	0.597	662.0	445
. 200	2484.2	2.542	429.5	917,5	342.0	1675.0	0.265	733.0	445
200		847.1	458.5	995.0	364.8	1771.0	24.2.0	784.0	445
200		905.4	489.4	1079.0	38.7.2	1867.0	587.0	835.0	445
200		961.3	\$22.4	1169,8	415,2	1964.0		886.0	445
1912		1024.1	557.6	1268.9	442.9	2000		937.0	445
200	5 3534.H	1090.9	595.2	1376.3	472.5	2240.0		1072.0	445
200	٠	1090.9	2,565	1376.3	472.5	2240.0		1072.0	445
2016		1040.9	595.2	1376.3	472,5	2240.0		1072.0	445
200		1090.9	2,865.	1376.3	472,5	2240.0		1072.0	445.
200	•,	1090,9	595.2	1376.3	472,5	2240,0		1072.0	445
200	•	6: 600							

Source: JICA Estimates

THE TOTAL OF THE SECRET OF THE COMPANY OF THE CASE

Table 18.2.5 PROJECTED REVENUES AND EXPENDITURES (WITH REAL INCREASE IN PERSONNEL COST)

-- J,

ないではない。 ちゅうしょ

(1981 Rp. million)

YEAH .	· h f VE* 116 S	14:10.FEE	HKV.FLE) S d	REUT	Exp[ND.	TridOS NJd.	BATERIAL	HAINTE,
							l 		t 1 1 1 1 7
15X	ď	0	ċ	0	ċ	•	0	•	o
1982	•	0	•		ċ	<u>.</u>	c	•	0
1983	°°	c	ó	0		0	0	ċ	0
1984			.0	0	ċ		. 0	0	0
1985	0	¢	0	d	· c	0	· -	c	o
1980	0	0	ò	0	ć		· -	ָּבָ י	. 6
1987	•	•	•	0	Ċ	0	c	•	0
1988	900.3	256.1	268.8	267.5	107,8	934.5	4.492	3.69.5	3.025
1989	1097.6	315.5	359.6	303.2	119.5	1034.6	303.9	390.7	140
1990	1345.6	388.4	481.1	344.1	132,0	1108.0	5.645	421.5	0.075
1661	1463.9	423.2	450.1	584.0	146.7	1211.2	106.5	7.794	3.00.5
1992	1474.1	461.0	421.2	6.854	161.0	1326.2	0 7 2 7	512.2	075
1993	1555.9	\$02.3	394.1	478.5	181,0	1447.8	547.5	540.3	340.0
1994	1651.5	547.2	368.7	534.4	201.2	1577.8	625.8	609	343
1995	1761.0	596.1	345.0	596.4	223.5	1764.8	715.1	7.807	343.0
1976	1885.4	631.5	360.5	650.0	243.3	1941.7	823.8	774.9	343.0
1997	2018.8	0.649	376.6	708.3	265,0	2233.2	944.5	845.7	445
1998	2162,7	708.6	393.5	772.1	288.5	2436.2	1075.9	915.3	445.0
4666	2317.7	7.50.7	4.11.1	841.8	314.1	2652.1	1219.0	988.1	745.0
2000	2484.2	795.2	429.5	917.5	342.0	2958.2	1374.5	1118.7	445.0
2001	2665.4	847.1	458.5	0.566	364.8	3249.9	1581,4	1225.4	0.577
2002	2860.0	905.4	4.89.4	1079.0	589,2	3584.3	1806.9	1532.5	0.544
2003	3068.7	961.3	\$25.4	1169.8	415,2	3946.2	2055.7	1445.5	7.45.0
2005	3293,5	1024.1	557.6	1268.9	442,9	4.531.1	2322,9	1563.1	445.0
2002	3534,8	1050.9	595.2	1376,3	472,5	4886.9	2613.5	1828.6	445.0
2006	3554.8	1000	595,2	1376,3	472,5	5071.8	2757.1	1869.7	445.0
2002	3534.8	10.00	2,565	1376.3	472.5	5265.5	2908.7	1911.8	445,0
2008	3554.8	1000	595.2	1376.3	477,5	5468.5	3068.7	1954.8	0.577
2009	3534.8	1090.9	595.2	1376.3	472.5	5681.3	353/*5		0 4 5 5 7
2010		1040.9	595.2	1376.3	472.5	5904.3	3415.5	2043.8	0.544
MULTIPLIE	7	REVENUES A	1.0000	-	1 	 	1 1 1 1 1 1 1 1 1	; ; ; ; ;	
16FLAT108 16FLA3108	2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PIRSONEL = MATERIALS = MATERIALS =	1,0550						
lir r. A. J	2	37.4.3.6.1	*1*0000						

Source: JICA Estimates

# () ! !		1115 USF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FUID	SOURCE	1456
YEAR	CAPITAL	EXPEND.	LOAN	p I S H	hecessany	REVERBES
	,	,	,			
1981	å,	ċ	ċ	ċ	•	ċ
1982	83.0	ċ	•	83.0	ċ	=
1983	0.959	•	•	646.0	5, 2	c
1984	1784.0	c	21.9	1284,0	21.9	c
1985	2869.0	-		2869.0	7.09	c
1986	11064.0	.	146.5	11064,0	٠.	· c
1987	8864.0	· c	-	8864.0	×	°C
1988	160.0	9.75	٠.	160.0	M	900.
1989	•	1034.6	796.1	•0	1850.7	1097.6
1990	•	1168.0	877.7	•	1985.6	1345.6
1991	<u>.</u>	1211,2	1059.2	•	2270.4	1403.9
1945	0	1326.2	1992	•		1474.1
1993	5	1447.8	2306.2	767,0	3754.0	1555.9
1661	8	1577.8	274.	381,0	-	1651,5
1995	5776.0	1764.8	236	5776.0	4001.2	1761.0
1996	205	1941.7	2359.7	8205.0	-	1885.4
1997	•	2.53	2556.0	•		.810
1998	•	4.56	2506.0	•	4942.2	2162.7
1999	•	652	473.	•	5125.4	3
2000	0		7.77		5385.7	24842
1002	•	\$249.9	769.	0	-	5665.4
2002	•		3237.6	•	-	86
2003	ċ	3946.2	153.	e C	70602	069.
201.4	ċ	3.51	032.	•	_	53
2005	.	BK6.	871.	ď	_	3534.A
2006	c	50/1,8	610.		7682.5	3534.8
2007	· •	265.	825	0	-	3534,8
200X	ć	5468.5	1205.3	0	6.673.8	3534.8
50(1)		5681.3	1165.4	6		3534.8
2010	Ĉ	5904.3	1136.1	•0	70702	23
			************	166931111101	101211111111111111111111111111111111111	. 11 - 1 - 1 - 1 - 1 - 1

GRACE PERIOD = 5 REPAYMENT TERM = 15 LUAM INTERST = 0,0300 Based on this projection, the necessary revenue increases are estimated as measured in the increase ratio of the necessary revenues to the base revenues (same as in Chapter 10). The increase ratios for the key years are estimated as follows.

1	1990	1995	2000	2005
Increase ratio	1.48	2.27	2.17	2.19

The increase ratios are slightly lower than the ones calculated in Chapter 10, primarily because the construction cost estimates based on the present projections are lower than for the previous case.

Nevertheless, it is necessary to implement a steep charge increase in order to raise the necessary fund requirements for both capital and current expenditures solely from the current airport charges.

18.3 Economic Analysis

: ., : - . **.** .

As in the financial analysis, the economic analysis is also esentially completed for the base case projection. This section completes the economic analysis by conducting a sensitivity analysis on traffic projections and cost estimates. The analysis first updates the cost estimates based on the master planning. As explained fully in Chapter 11, the economic prices are assumed to be the same as the financial market prices used in the financial analysis.

Second, the sensitivity analysis will be conducted on the assumption that traffic and cost projections are subject to a certain stochastic uncertainty. This will provide a basis for judgement on the probabilitic distribution of the economic profitability of the project. Third, the analysis will be made on the economic profitability of the first phase construction. This is to supply pertinent information for future potential financing agencies.

18.3.1 Base Case Projection

The base case projection is updated based on the cost estimates obtained in Chapter 17. Other projected items are explained in Chapter 11.

and the second of the second of

المراجعة والأنوا والمواجع المستعدد المراجعة والواجي

وشويه والموالية ويهوي والمراكب المراكبة

A war of a same with the war of the same of the fit

the state of the s

Control of the second of the se

Cost and benefit projections are extended to the year 2010. This is about 25 years after the end of the Phase I development. For projecting benefits, it is assumed that they will stabilize after 2005 because the Phase II development is designed to meet the demand level up to 2005.

Benefits to the Airlines: In addition to the benefit items which are explained and estimated in Chapter 11, and additional benefit item is estimated in terms of cost reduction for airline operations. This cost reduction is due to the larger aircrafts which airlines would introduce into operation at Padang as the airport capacity is developed. The estimation is completed as follows. First, the operating cost for an aircraft including personnel, fuel, and capital depreciation cost is estimated for each aircraft category operated at Padang. Then, for each year and based on the route structure and the operating aircraft mix as projected in Chapter 3, the average operating cost for the present aircraft mix at Padang is compared with that for the projected aircraft mix. Finally, the total cost reduction is estimated by multiplying the per passenger operating cost reduction by the number of passengers without the project. Table 18.3.1 summarises the operating cost for each aircraft type. Table 18.3.2 summarises the projected cost reduction of aircraft operation which will accrue to airline as benefit. The state of the s

18, - 10,

Table 18.3.1 AIRCRAFT OPERATING COST

t)			
	, ' • 1	Rp million per hour	
* * * * * * * * * * * * * * * * * * *	Jumbo	8.5	
* .	Wide body	5.7	
1 3 1 	New Medium Jet	5.1	
,	, Medium Jet	2.8	
i Hiji	Small Jet	2.3	
ì	IP/MP	0.9	
	STOL/SP	0.7	

Source: JICA estimates

AL TOTAL CONTRACTOR OF THE PARTY OF THE PART

2 - 27 - CA

. 1.1.

CHI TO

.

Table 18.3.2. BENEFITS TO AIRLINES (OPERATING COST REDUCTION)

Year	Number of	Without	Case	With (Lase	Denefit
leat	Passengers	Op.Cost/PAX	.Op. Cost		Op. Cost	Benefit
1981	(X1,000Pax)	(RP/PAX)	(MIL.RP)	(RP/PAX)	(MIL.RP)	(MIL.RP)
2			_		_	_
3			_		-	_
4	•		-	1 %	· · -	_
1985	400	77,500		77,500	/* . . –	_
6	470	73,500	***	73,500	_	_
7	540	69,500	_	69,500	_	-
8	H	11	37,530	65,500	35,370	2,160
9	11	11	ti	61,500	33,210	4,320
1990	ti	11	0	57,500	31,050	6,480
1	II ,	11	ji .	58,560	31,622	5,903
2	11	11	11	59,620	32,195	5,335
3	11	"	11	60,680 [.]	32,767	4,763
4	11	11	11	61,740	33,340	4,190
1995	11	11	11	62,800	33,912	3,618
6	"	11	11	59,200	31,968	5,562
7	11	11	, O	55,600	30,024	7,506
8	н	17	11	52,000	28,080	9,450
9	"	et	11	48,400	26,136	11,394
2000	11	11	11	44,800	24,192	13,338_
1	11	11	11	44,060	23,792	13,738
2	11	"	li .	43,320	23,393	14,137
3	tt .	11	"	42,580	22,993	14,537
4	"	11	11	41,850	22,594	14,936
2005	"	tf .	11	41,100	22,194	15,336
6	"	n	17	11	It .	11
7		"	17	11	n	IT .
8	11	"	IT	lt .	"	11
9	11	11	ti	ıı .	ıı .	11
2010	11	t)	tı .	!!	11	
						233,388

Table 18.3.3 presents the base projection which consolidates cost estimates shown in Tables 18.2.1 and 18.2.2 and the benefits projections. As shown in the table, EIRR is estimated to be 45.4 percent. This is a comfortably high rate, which underscores the necessity and potential economic profitability of this project to the national economy.

Table 18.3.3 ECONOMIC ANALYSIS COST AND BENEFIT FOR NEW AIRPORT

(1981 Rp. million)

		SUO					1 N E	118			
•	:	•	SAVED	• • • • • • • • • • • • • • • • • • • •	VERF	• • •	: :			•	#E.1
11.AK	FIE 1106			101AL	 	CARGU	PASS.	ACCESS	011158	T01AL	FENEFITS
1981	0.	•	•	ċ		ċ	•	6	9	0	¢
1982	83.0		0	÷		: .	5	0		, ₅	; ;
1983	6,640		. c	ç			62.	66			583
1984	1284.0	c	•	2º4.	ċ	•	£	113.	•	_	121
1985	2869.0	0	.	လွ်		0	20	124.	ō	£	2790.
1986	11064.0	•	ċ	į		ċ	0	14.1.	0	Ţ,	\$25
1987	8864.0	0	ċ	30%	Ü	Ċ	60.	160.	0	100.	8763.
1988	160.0	804.0	ģ	ž	015	95.	60.	160.	160.	5471	5403.
1989	•	865.0		÷	6423	3.	50.	160.	\$20.	1257.	1288.
1990	•	9.66	-896.0	÷	0.512	ž.	50.	160.	480.	7551.	7548.
1991	•0	950.0		54.	4114	23.	ģ	160	908.	1040.	. 2660
1992	•	1004.0	0.964-	80	8396	215.	ŝ	160.	535.	5047.	4939.
1993	267.0	1057.0	•	2	3116	545.	ŝo.	160.	763.	9256	9006
1661	~1	1111.0	-896.0	ĕ.	8447	910.	ŝo.	160.	190.	4647.	4051.
1995	5776.U	1199.0	•	ç	4346	\$17.	ŝ	160.	618.	0382.	4303.
1996	1.0	1267.0	•	276	9458	703.	ç.	160.	562.	7825.	4249.
1001	•	1457.0	•	Ξ.	2008	129.	ŝ	60.	506.	2744.	5203,
100B	0	1505.0		ŝ.	1082	595.	ŝ.	160,	9450.	, 228	3619.
1999	•	1572.0	-896.0	Š	7724	107.	ģ	160.	1394.	\$326.	2650.
2000	0	1675.0		Ĉ	4934	669.	, 0,	160.	3338.	3042	2263.
2601	0	1771.0		75.	2319	298	ŝ	160.	3758.	1456	0581,
2005	•	1867.0	96	971.	316	989.	50.	160.	4137.	0542	9571.
2003	0	1904.0	896	068	3968	749.	ç.	90	4537	0355	9287
2002	0	0	896	70.	98406	586	9	90	9267	1029	9865
2002	o .	~	896	344.	08632	507.	Š	9	5336	2575.	1231.
9007	o ·	v	,	777	U 50 32	200	ġ	001	55.00	5262	1231
2007	•	v		,,,,	08032	505	ģ	9	5550	22.75	5 1 2 5 1 .
9010	• •	v	•	• • • •	700	200	<u>,</u>	9	2230	6262	, 1231
2410		5240.0	0.98	1544.0	108632.0	8507.5	260.7	-160.3	15536.0	132575.9	151251
	:	•	•		,	•	٠	2			,
•		1) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	; ; ; ; ;	É) } } ! ! !	· · · · · · · · · · · · · · · · · · ·		1	
3614 IV	PISCOURT RAIE 1	15.0 PERCENT									
A/C RATIO	œ	799.								4	٠ ٢

II > 1	131551	.436									
1 1 1 1 1	1		111111111111		,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1
£100(1)		0102 37	c						•		
		ひょう・ヘア									

Source: JICA Estimates

18.3.2 Sensitivity Analysis

This section describes the sensitivity analysis. The sensitivity analysis is accomplished by changing the assumptions for the various components of cost and benefit items. This is made in order to form some confidence boundary related to the economic analysis. Two basic items are selected to make the sensitivity analysis. One is traffic projection, and the other, construction cost.

The traffic projections are either raised or reduced by 10 percent, and the EIRR is calculated for each case. The construction cost estimates are raised or reduced by 10 percent and their EIRR are calcualted.

The results of sensitivity analysis are listed in Table 18,3.4.

Table 18.3.4 SENSITIVITY ANALYSIS
(EIRR in percent)

	Percent Charge in -10%	n Cost/Benefit Items +10%
Benefits		
Passenger traffic	41.0	49.6
Cargo traffic	45.1	45.7
Costs		
Construction cost	47.8	43.3
O&M cost	45.5	45.3
Memo Item: EIIR for B	ase Case = 45.4 perc	net

The sensitivity analysis shows that the economic profitability of the project depends crucially on the passenger traffic. EIRR changes about 9 percent in response to a 10 percent change in the passenger traffic volume both upwards or downwards. The second item which affects the profitability of the project is construction cost,

a 10 percent change of which changes EIRR about 5 percent in both directions. The trend of the passenger traffic volume should therefore be closely monitored.

18.3.3 Economic Analysis on Phase I Development

Since construction is completed in two phases and financing of the project accordingly is planned in two stages, it would be useful to make available the information on the economic profitability of the Phase I development only to potential financing donors. Assume that only Phase I development is implemented, that the project life is up to 2010, and that the Phase I development can sustain the demand up to 2000 (i.e. benefits and O&M cost items will be stabilized after 2000). Table 18.3.5. presents the cost and benefit projection on those assumptions. EIRR, benefit cost ratio, and net present value are calculated for this case, and are compared with the base case as shown below. It is concluded that even Phase I development alone can yield high return, which would give assurance to the potential financing institutions who may consider the Phase I development independently of Phase II.

COMPARISON OF BASE CASE WITH PHASE I DEVELOPMENT

	Base Case	Phase I development
EIRR (Percent)	45.4	45.5
At discount rate 13 percent:		ed. Secure
B/C Ratio	8.58	9.05
NPV (1981 Rp million)	130,148	116,165

A CAMPANIAN AND A STATE OF THE STATE OF THE

of all the the about a side

Table 18.3.5 ECONOMIC ANALYSIS (PHASE I DEVELOPMENT ONLY)

:				•					•		
YEAR FUI	CUNST- FULTION		SAVED O + M	TOTAL	OVERFLUUTHU PAX CAR	1.01.1146 CARGO	> V S S S S S S S S S S S S S S S S S S	ACCESS	OTHER	TOTAL	taet Benefiis
		;	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					:	100110111111111111111111111111111111111		1
981	5	0	0.	3	9	0	0.	•	0.	0	ö
982	85.0			85.0	· •	0			0.	.	-85.
. X	0.040	0		0.0.0	÷ 5	0	162.3	_*	•	62.5	-583.
786	1284.0			1284.0		0	185.1		0	71,3	-1212.
2 2 2	2469.0		0	2869.0	0	0	202	N	· •	78.1	-2790.
-	11064.0	· •	0	11064.0		•	250.5	-141.6	•	88.7	-10975.
	8464.0	•	•	8864.0	-	•	2002	-160.3	• •	100.4	-8763.
948	160.0	804.0	-896.0	68.0	10	195.6	2.095	-160.3	÷-	5471-1	5403
949	.	865.0	-896.0	-51.0	6423.5	413.5	2,002	-160.3	₹	11257.4	11288.
066	0	0.004	-896.0	3,0	\sim	658.6	260,7	-160,3	ç	17551.6	17548.
971	• •	0.050	-896.0	54.0		923.5	2,092	-160.3	5	21046.1	20992.
266	0	1004.0	-896.0	108.0	•	1215.7	260,7	-160.3	53	25047.8	657
9.05	267.0	1057.0	-896.0	428.0	23116.0	1545.0	260.7	9	\$	29524-4	806
5661	, ,	1111.0	-896.0	215.0	28447.1	1910.2	2.095	-160.3	4190.0	34647.7	34432.7
1995	0	0 6611 .	0.968-	303.0	34346.2	2317.5	260.7	-160.3	61	40382.2	00
946	• •	1267.0	-896.0	371.0	39458.8	2703.8	2.60.7	60	3	47825.0	74.5
166	د د	1355.0	-896.0	439.0	7.8005 h	\$129.7	2.092	-160.3	Š	58244.5	230
800	.0	1403.0	0.968-	501.0	51082.4	1595.9	2.092	-160.3	\$	64228.7	372
640	.	1470.0	-896.0	274.0	5.226.4	4107.7	2.092	-160.3	139	73326.5	2752.
20110	ŗ,	15/3.0	-896.0	0.556	64934.5	4.669.7	2.092	-160.3	3	83042.6	2365-
2001	· •	1573.0	-896.0	0.770	64934.5	699	2.092	ŝ	553	83042.6	365.
2002	.	1573.0	-896.0	0.576	64934.5	4469.5	260.7	-160-3	×	83042.6	82365.6
2003	o	1573.0	-896.0	677.0	64934.5	4669-7	260.7	9	~	B3042.6	365.
2004	0	15/3.0	-896.0	0.776	64934.5	•	260.7	ŝ	33	83042.6	565.
2005	3	15/3.0	-896.0	677.0	64984.5	4669.7	2.092	-160.3	2	83042.6	2365.
SOUG	• •	1573.0	-896.0	677.0	64934.5	4.669.7	260.7	ø	5.3	83047.4	265.
2002	• •	1573.0	-896.0	677.0	934.	4.609.7	200.7	9	2	83042.6	365.
2003	ģ	1573.0	-896.0	6/7.0	934.	4669.7	2.69.7	-160,3	5	83042.6	82365.6
2009	, ,	1573.0	-896.0	677.0	64934.5	4,669.7	2.092	-160.3	13338.0	83042.6	2365.
2010	0	1573.0	0.968-	677.0	64934.5	4,669.7	260.7	-160.3	13538.0	1042	ø

AT DISCUURT RATE 15.0 PERCENT

8/C RATIO # 9.052

NPV = 110164.984

FIBN(%) # 45.5889

Source: JICA Estimates

•	
-	
·	

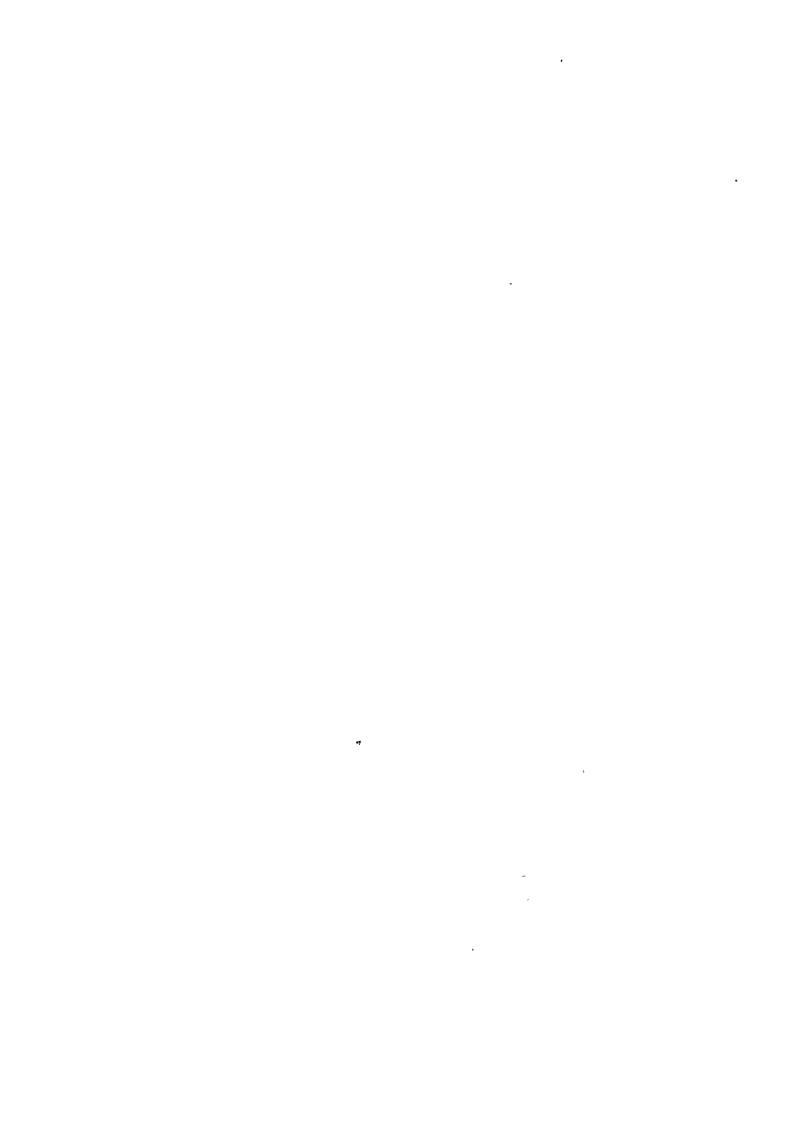
CONCLUSIONS

CONCLUSIONS

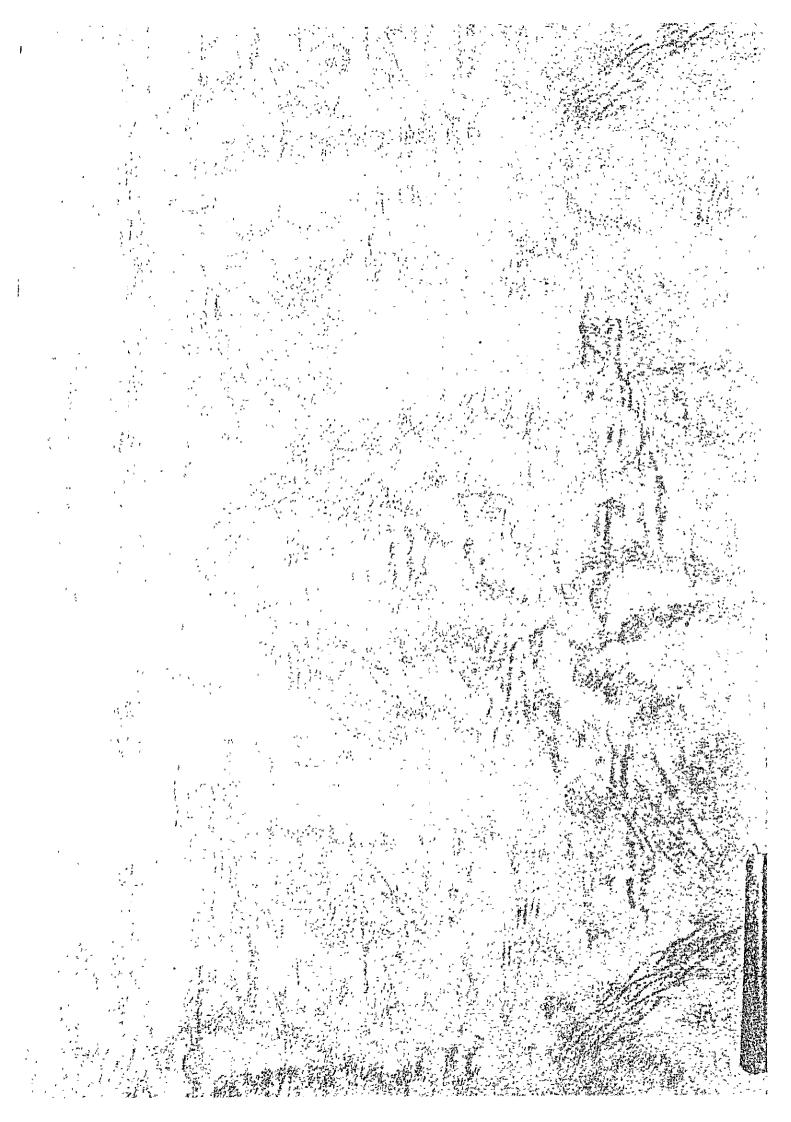
SELECTION OF THE NEW AIRPORT

After discussing the comprehensive study presented in Part III, it is recommended that a new airport be constructed at KETAPING, facing the Indonesian sea and located some 25 km north of Padang city. Completion should be accomplished by the end of 1987 and the new airport will serve as a replacement for the existing Tabing airport. This conclusion was reached for the following major reasons:

- The new airport construction is estimated to be much cheaper than the redevelopment of the existing airport because of the low cost of land acquisition and compensation and this will imply less affect from delays and acquisition problems on the progress of the construction and the airport operation in the future;
- The excavation of the Hill is a prerequisite for the redevelopment of the existing airport. It is not, however, considered practically feasible from the environmental view point;
- There is no significant limitation to expansion of the new airport to cope with unexpected changes in demand while the further expansion of the existing airport is not considered economically justifiable;
- If the existing airport is redeveloped because of the advantage in allowing possible step by step redevelopment in line with the demand, the airport would sooner or later suffer from social problems arising from noise pollution etc.,
- The new airport construction will give a beneficial opportunity to the local government to utilize for other purposes the existing airport area of some 280 ha. The new airport construction provides an opportunity to develop an almost virgin area in the future; and


- The new airport construction is judged to be economically feasible from the national economic view point.

15 . .


THE NEW AIRPORT MASTER PLANNING

- 1) The new airport construction project at Ketaping, Padang is indispensable to the regional economic development and unity of the country and its urgency and importance are strongly backed by the high internal rate of return (EIRR) of 45.4 percent.
- 2) The preparations including request for financial assistance, topographic survey, soil investigation, etc. should be initiated at the earliest possible date so that the engineering services including basic design, detailed design, preparation of tender documents, assistance in evaluation of the contractors, etc. can be completed by early 1984.
- 3) The first phase construction work should be started in 1984 so that the airport can become operational in early 1988.
- 4) The first phase facilities for the new airport are to be so designed to cope with the demand in 1995 and to be utilized without any expansion works until 1996 when the second phase of construction planned based on the year 2005 demand will be completed.
- 5) The existing Tabing airport should be improved with an overlay of the runway, taxiway and apron, expansion of the passenger terminal building, and completion of the runway extension to 2,150 meters to accompose A300 in 1983 and is to be used until early 1988 when the new airport operation will be inaugurated.

