DETAIL DESIGN
FOR
LABORATORY BUILDING
OF
DESALINATION RESEARCH PROJECT
IN
THE KINGDOM OF SAUDI ARABIA

VOLUME 4 of 6 VOLUMES

AUGUST, 1987

JAPAN INTERNATIONAL COOPERATION AGENCY

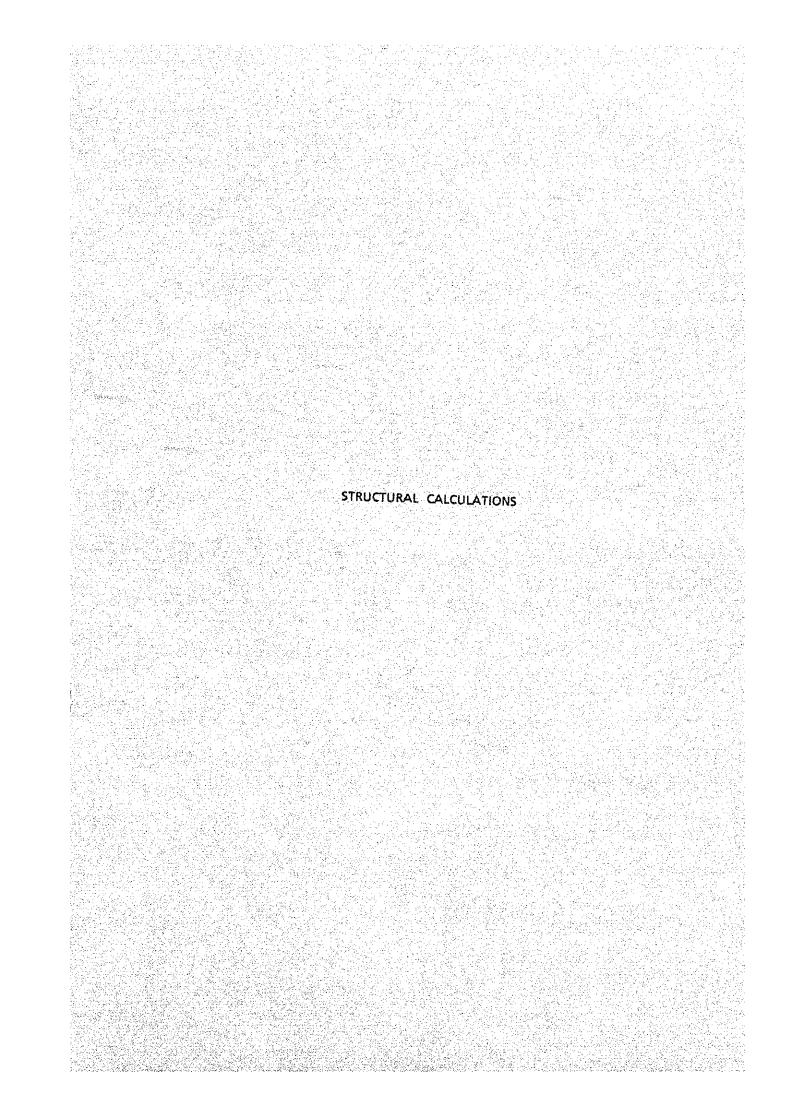
M F N

DETAIL DESIGN FOR LABORATORY BUILDING OF DESALINATION RESEARCH PROJECT IN THE KINGDOM OF SAUDI ARABIA

VOLUME 4 OF 6 VOLUMES

TECHNICAL DOCUMENTS

STRUCTURAL CALCULATIONS
MATERIAL TAKE OFF


1041501[6]

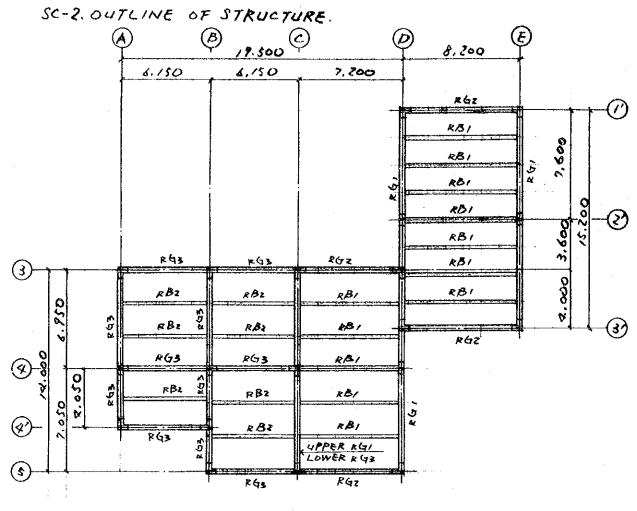
17244

AUGUST 1987

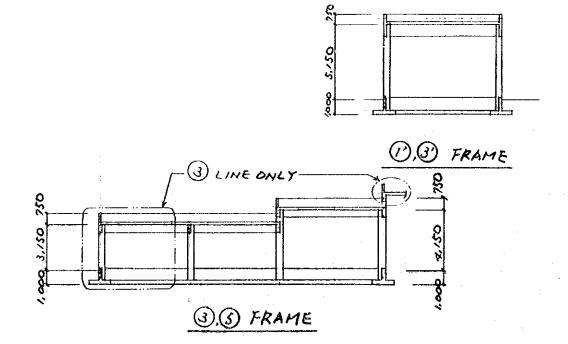
JAPAN INTERNATIONAL COOPERATION AGENCY

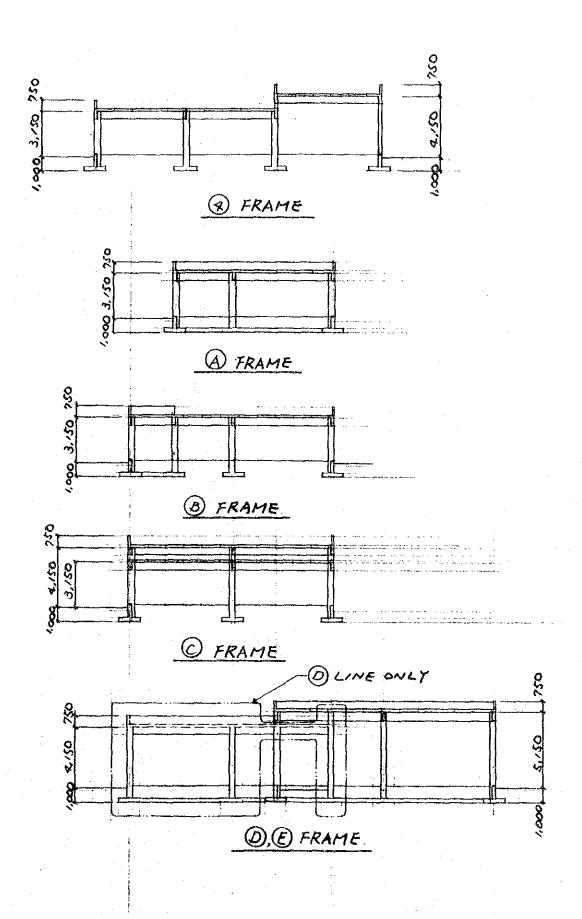
M P N
C R (3)
87 - 118

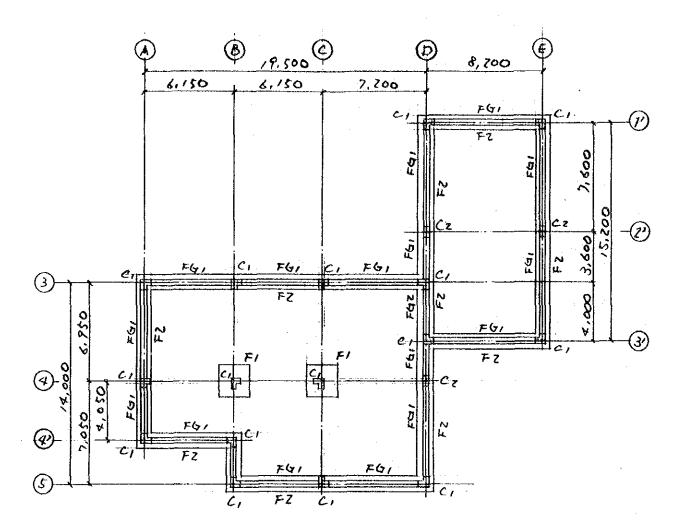
TEST PLANT BUILDING


CONTENTS -

		PAGE
SC -1	GENERAL	,
SC - Z	OUTLINE OF STRUCTURE	Z
SC-3	LOAD ASSUMPTION	\$
Sc-\$	DESIGN OF SECONDARY MEMBERS	7
sc-5	AXIAL FORCE OF COLUMN	9
sc-6	STRESS ANALYSIS	10
SC-7	DESIGN OF MEMBERS	18
SC - 8	DESIGN OF FOUNDATION	55


SC-1. GENERAL.


- 1-1. Type of Structure ; Reinforced Concrete Structure.
- 1-2 Application Codes, Specifications ect.
 - a) Reinforced Concrete Structure ; BS. CP110
 - b) Live Load & Wind Load ; BS. CP3
- 1-3 Materials
 - a) Concrete (For Column & Girder) ; Grade 25, fcu= 25 1/mm?
 - b) concrete (For Foundation); Grade 20, fcu=20 /mui
 - c) Reinforcing Bar ; Fy = 410 H/mm²
- 1-4 Soil Bearing Capacity


 10^t/m² (Long Term)

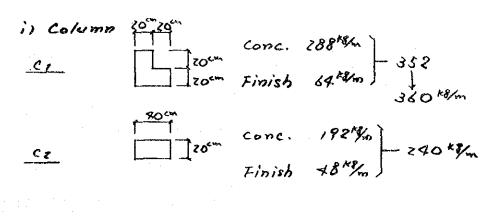
ROOF PLAN

FOUNDATION PLAN

SC-3. LOAD ASSUMPTION

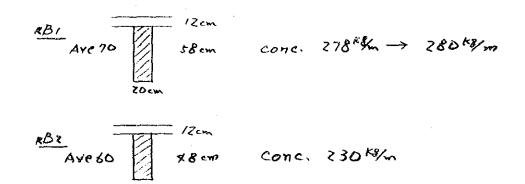
1) Dead Load (D.L)

a) Roof


b) Wall.

)

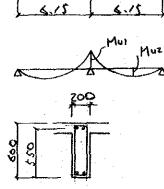
1


c) Parapet. (h = 550)

d) Structural Hember

ii) Girder

iii) Beam

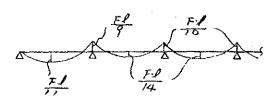


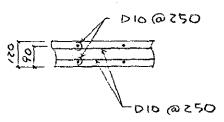
2) LIVE LOAD Roof (No Access) 77 18/m²

- 3) WIND LOAD.
 - a) Basic Wind Speed, Vs = 100 MPH = 44.4 11/SEC
 - b) Wind Presure $8 = 0.0625 \times 4R.^{R^2} = 173 \times 8/m^2$ $52 = 1.0 \quad (h < 10m) \quad CP3 \quad Table 3$ $Cp = 0.7 \quad (Windward Wall)$ $= -0.3 \quad (Leeward Wall)$ Total Wind Pressure $P = 1.0 \times (0.7 + 0.3) \times 173 = 123 \times 8/m^2$

SC-4 DESIGN OF SECONDARY MEMBERS

$$\frac{RBI}{Wu} = (\Lambda 4 \times 0.4 \times 1.4 \times 1.6 \times 0.077 \times 1) \times 1.9^{-1} + 1.4 \times 0.28 \times = 1.69 \times 1$$




ToP\$Bot. Z-D19 St. D10@250

 $Muz = \frac{9}{128} \times 1.93 \times 6.15^{2} = 5.13 + \infty$ $V = \frac{5}{8} \times 1.93 \times 6.15 = 7.42 + 0.00$ $\frac{Mul}{b} = \frac{9.17 \times 9.8 \times 10^{4}}{200 \times 550^{2}} = 1.48 \xrightarrow{700As} \frac{700As}{b} = 0.43$ $As = 0.93 \times 200 \times 550^{2} = 1.48 \xrightarrow{100} \frac{700As}{b} = 0.43$ $Use = \frac{7.019}{200 \times 570} = \frac{1.48}{200 \times 5$

Use Stirrup DIO @ 250

Roof Slab

F= (1, x x 0, x 0 + 1, 6 x 0, 077) x 2,35"
= 16/ t/m

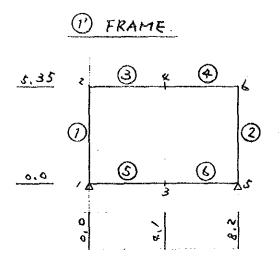
MU(TOP) = 16/x2.35/9 = 0.42tm/m

MU(Bot) = 1.6/x2.35/11 = 0.34tm/m

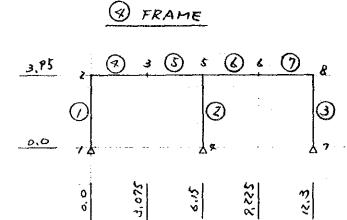
Vmax = 0.6 F = 0.6 x 1.6/ = 0.97t/m

As = 0.17x1000x90/100 = 153 mm/m

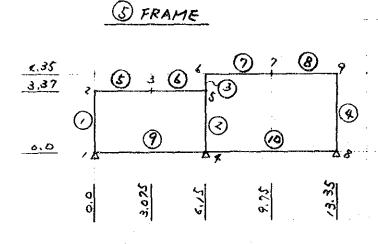
MUIBAT) = 0.34 tom/m < MU(TOP) = 0.42 tom/m

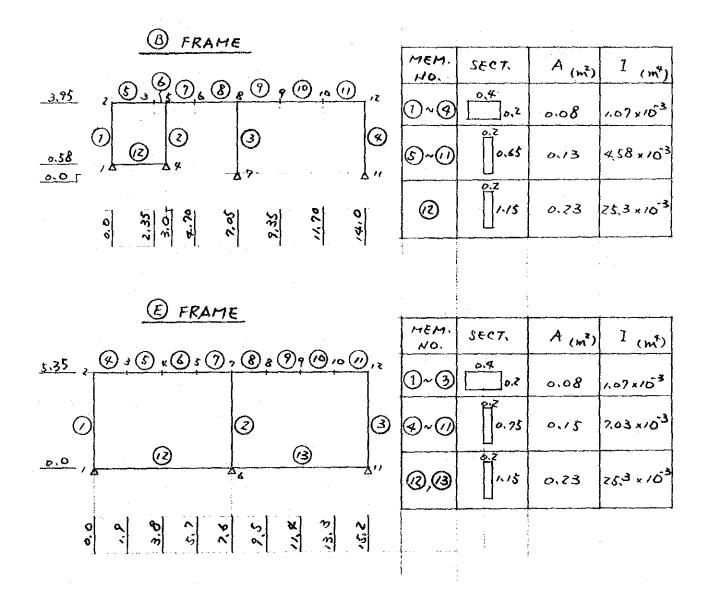

Use DIO @ 250 (As = 285 mm/m) Top & BOT.

SC-S. AXIAL FORCE OF COLUMN.

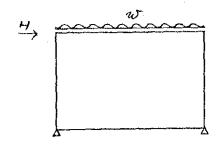

Col No.	Load	Member	Calculation	P	ZP (ton)
B-≪	D.L	Roof	0.40 5 x 6.15 x (6.95+4.05) /2	13,53	
		Girder	0.3/5 x (6.15x2+6.95+8,05)/Z	3,61	
		Beam	0.23 th x (6.15/2+6.15)	2.12	19.2
		Co lumn	0.36 m x 4.15 m	1.×9	20.7
	۷، ۷	Roof	0.0775 x 6.15 x (6.75+4.05)/2	7.60	(2.60
C - X	D.C	Roof	0.40 x 14.0 x (6.15+7.2) /4	18.89	
·		Parapet	0.29 14.0 / 2	2.03	
		Girder	(0.3/70.36 × 14.0/2+0.31 × 6.15/2	5.64	
	·	Beam	0.28 th 7.2 + 0.23 th x 6.15	3.43	2 9.7
		Column	0.36 th x 4.15 + 0.24 th x1.0	1.73	31,5
. *	د، د	Roof	0.0775x 14.0 x(6.15+7.2)/4	3.60	(3,69
E-7'	Dic	Roof	0.40 the 2.6 x 8.2 /4	٤.۶٤	
		Parapet Girden	0.29 x (7.6+8.2)/2 0.36 x 26/2 + 0.39 x 8.2/2	2.29 2.76	
	,	Beam	0. 28 5mx 8,2 x 3 /4	1.72	13.0
		Column	0.36 × x 6.15	5,21	,s.≥
	درد	Roof	0.077 x 7.6 x 8.2/4	7,20	(۸ ک
€ - ۲ ^۲	Dic	. /	0.40 x 2.6 x 8.2 /2	12.46	
		Parapet Girder	0.34 × 2.6	5,50	
		Beam	0.28 1/2) /Z	4.02	2/,2
		Column	0.24 5m x 6.15	1,48	22.7
	۷۰۷	Roof	0.0775 x 7.6 x 8.2 / 2	2,40	(5,4

SC-6. STRESS ANALYSIS


6-1 JOINT COODINATES AND MEMBER PROPERTIES


MEM.	SECT.	A(m²)	I (m²)
(J),(3)	0.4	0.00	1.07×103
3,9	0.7	0.14	5.7₹×10 ⁻³
⑤ ,⑥	6.7 [] 1.75	0.23	E01x 67\$5

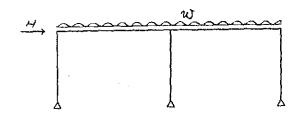
1-3 0.2 0.08 1.07 ×1	رځ ،	I (n	A (m2)	SECT.	MEM. NO
	₽ <u>3</u>	1.07×1	80.0		1 ~3
(4)~(7) 0.65 0.73 4.36 ×7	ري د	4.58×10	۵./3	0.65	@~ ⑦



		<u> </u>	
MEM. NOI	SECT.	A (m2)	$I_{(m^u)}$
① ~④	5.0	0.08	107×10
(S),(G)	ر ا	0.14	5.77×10 ⁻⁵
⑦ ③	0.65	0.73	4.58×10 ³
0.0	ø.₹ ,./\$	35.م	55.3 x10 ⁻³

6-2 LOADING DIAGRAM

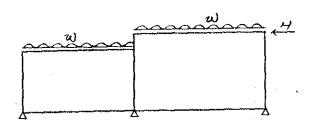
FRAME



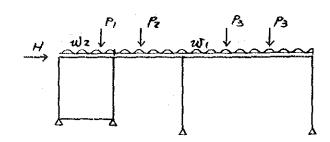
i) Dead Load (D.L)

$$W = 0.40 \times 1.9 \times 1.01 \times 1.01$$

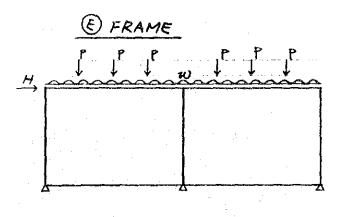
= 3.11 ton.


FRAME

ii) Wind Load (W.L)


= 2,00 ton

(5) FRAME



= 2, x3 ton.

B FRAME

iii) wind Load (W.L)
H=0.123 x 6.15 x (3.15/2 +0.75)
= 1.76 ton

i) Dead Load (D.L.)

Pr=(0.40 x 2.35 + 0.23) x 6.15/2

Pz =3.60+(0.40×4.05/2+0.23) x 6.15/2 = 6,80 ton

P3 = 3.60 x2 = 1.20 ton

W1 = 0,3/ t/m

= 3,60 ton

Wz = 0,3/+0,29 = 0,60 5/m

ii) Live Load (L.L)

P1 = 0.077 x2.35 x 6.15/2 = 0.56 ton

Pz =0.56+ 0.077x4.05/2x6.15/2

= 1.04 tan

P3 = 0.56 x2 = 1.12 ton

W1 = W2 = 0

i) Dead Load (D.L.)

Reof Beam

P=(0.80x1.9+0.28) x8.2/2=4.26ton

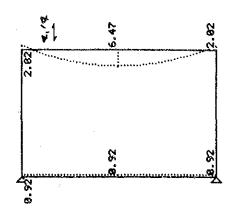
Parapet Girden

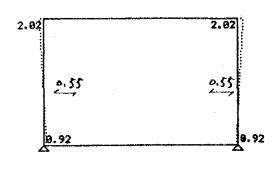
W = 0.29+0.36 = 0.65 t/m

ii) (ive Load (c.c)

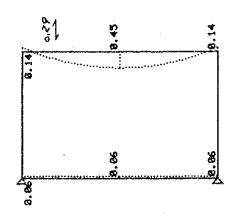
P = 0.077 x1.9 x 8.2/2 = 0.60 ton

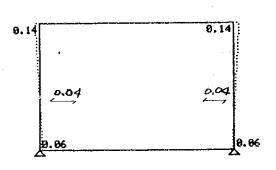
W = 0

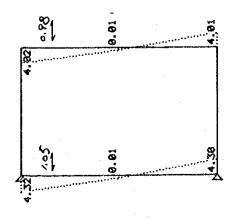

iii) Wind Load (W.L)

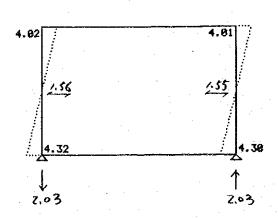

H = 0.123 x 8.2/z x (5.15/z + 0.75)

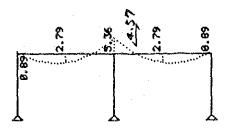
= 1.68 ton

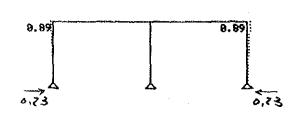

6-8. STRESS DIAGRAM

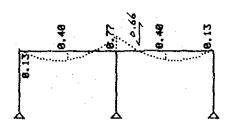

P FRAME.

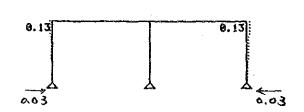


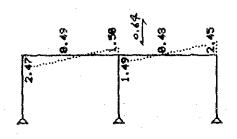

D.C

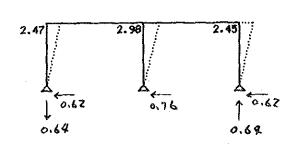


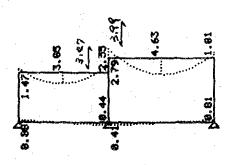

4.4

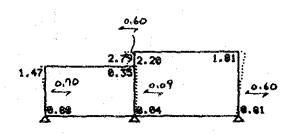


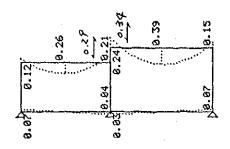

W.L

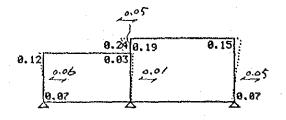


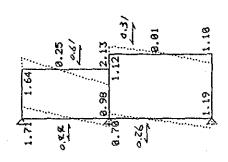

D.L

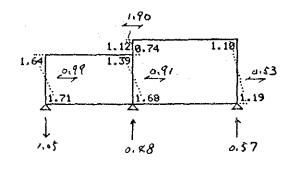

4.4

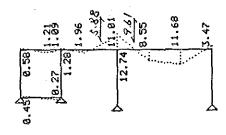


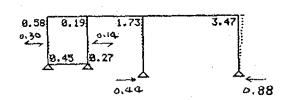

<u> W. L.</u>

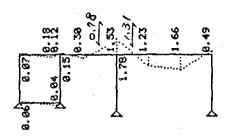

(5) FRAME



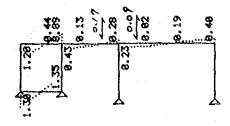

D.L

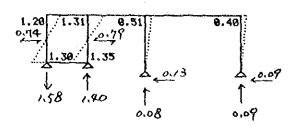

4.4



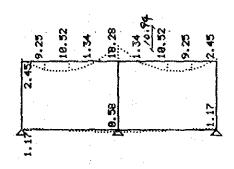

W.L

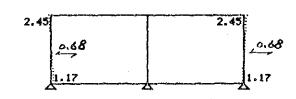
B FRAME



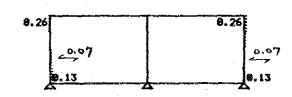


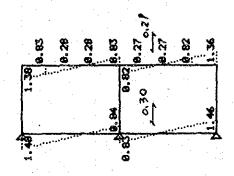
D.C

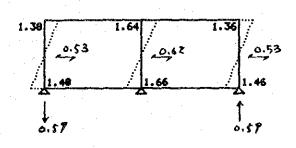




WIL


€ FRAME




D.L

4.6

<u> w.c</u>

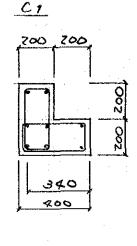
SC-7. DESIGN OF MEMBERS

7-1 Ultimate Stress

U1 = 14 D.L + 16 L.L

42 = 0.9 D.L + 1.4 W.L

(13 = 1,2 DL + 1,2 L.L + 1,2 W.L


1) Column

Co1.No.	Stress	DIL	4.6	W, L	41	Uz	43
Ci	M	2.02	0.14	4,07	3.05	7.45	7,42
	P	13.00	1.70	0.98	20.12	13.07	18.72
	~	0.55	0.08	1.56	0.83	2,68	2.58
Cz	N	0	0	1.68		2.30	
	P	21,26	2,40	0		19,13	
	~	0	0	0.62		0.87	

2) Girder

Girder No.	Stress	D.C	د.د	W.L	41	42	<i>U</i> 3
	M(70P)	18.28	1.87	0,83	28.74	17.61	25.30
91	M (BOT)	10.25	1.17	०, २४	16.22	9.67	14.05
	V	10.84	1.12	0.29	12.11	10.25	14.87
	M(TOP)	2,02	0.14	4.0Z	3.05	7.45	7.42
45	M (BOT.)	6.27	0,45	٥٠	9.78		
	V	2.14	0.29	0.98	6.26	5./0	4.49
	M(TOP)	12.78	1.78	0.23	20.68	11.78	17.70
(र) ३	M (BOT.)	11.68	1,66	0.19	19.01	10.78	16.24
	V	9.61	1.31	0,08	15.55	8.78	13.21

7-2 Design of Column.

$$\frac{MU}{b \cdot d^{2}} = \frac{7.85 \times 7.8 \times 10^{6}}{200 \times 340^{2}} = 3.16$$

$$\frac{PU}{b \cdot d} = \frac{13.07 \times 7.8 \times 10^{2}}{200 \times 340 + 200 \times 140} = 1.33$$

$$\frac{PU}{b \cdot d} = \frac{13.07 \times 7.8 \times 10^{2}}{200 \times 340 + 200 \times 140} = 1.33$$

$$\frac{Asc}{b \cdot d} = \frac{2 \times 200 \times 340 \times 140}{200 \times 340 \times 2} = 1.14 \longrightarrow v_{e} = 0.68$$

$$\frac{100 \text{ As}}{200 \times 340 \times 2} = 1.14 \longrightarrow v_{e} = 0.68$$

$$\frac{100 \text{ As}}{200 \times 340 \times 2} = 1.14 \longrightarrow v_{e} = 0.68$$

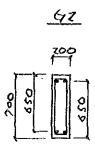
$$\frac{100 \text{ As}}{200 \times 340 \times 2} = 1.14 \longrightarrow v_{e} = 0.68$$

$$\frac{100 \text{ As}}{200 \times 340 \times 2} = 1.14 \longrightarrow v_{e} = 0.68$$

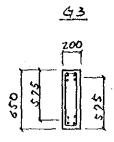
Use Stirrup DIO 10 250

$$\frac{AU}{b \cdot d^{2}} = \frac{7.30 \times 7.6 \times 10^{6}}{200 \times 340^{2}} = 0.97$$

$$\frac{PU}{b \cdot d} = \frac{19.13 \times 9.8 \times 10^{3}}{200 \times 340} = 7.76$$


Asc(min) = 0.0/x ZOO x 340 = 680 mm2

Use Stirrup DIO@250


7-2 Design of Girder

ASIBOT.) = 0.47 x 200 x 700 / 100 = 658 mm2.

Use Stirrup DIO @ 250

$$\frac{174(807.)}{b \cdot d^2} = \frac{9.78 \times 9.8 \times 10^6}{200 \times 650^2} = 1.13 \longrightarrow \frac{100 \text{ As}}{b \cdot d} = 0.31$$

AS(TOP) = 0.93 x 200 x 575 /100 = 1069.5 mm2 401 1148

Mulbor) = 180/x8.8x106 = 2.82 - 100As = 0.83

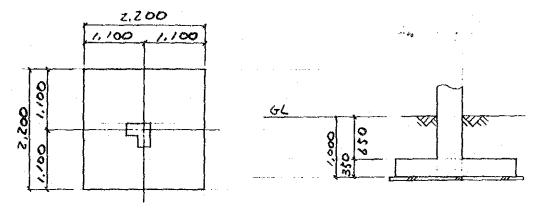
As(BOT.) = 0.83 x 200 x 575 /100 = 954.5 mm2

Use 4-D19 (As=1148mm3) TOP 4 BOT.

100As = 100 x 1148 = 1.0 -> Vc = 0.65 N/mm2

0 = Vu = 15.55 x 9.8 x 10 = 1.33 N/m = > Vc = 0.65 N/mm2 bid 700 x 575

DIO(Asv=143m2) Sv= 0.87. fgv: Asv = 0.87 x \$10 x 193 = 375 mm2


Use Stirrup DIO@ 250

SC-8. DESIGN OF FOUNDATION

8-1. DESIGN OF FOOTING.

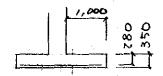
F1 (C-4)

a) Plan & Elevation.

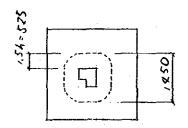
b) Foundation Weight

- c) Check of Contact Pressure
 - i) Total Vertical Load.

$$D.L + L.L = (81.52 + 9.59) + 3.60 = 44.71 + ...$$


$$D.L + L.L + W.L = 44.71 + 0.64 = 45.35 + ...$$

ii) Check of Contact Pressure


D.L + L.L
$$V = \frac{84.71}{2.22} = 9.24 \text{ t/m}^2 \text{ < } 10 \text{ t/m}^2 \text{ o.k}$$

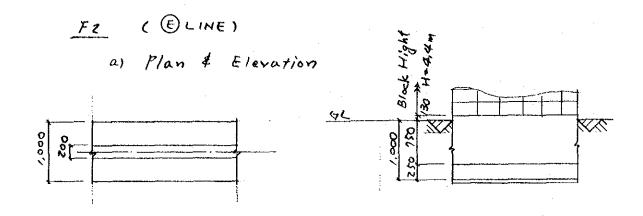
- d) Contact Pressure for Ultimate Load.

 Ultimate Vertical Load. $U = 1.4 \times 31.52 + 1.6 \times 3.60 = 49.89 + ...$ $U = \frac{49.89}{2.22} = 10.31 + 1/m^2$
- e) Stress of Footing Slab.

Mu = 1/2 x 10.31 x 1.02 = 5.16 tm/m

V = 4897 = 0.36 N/mm²

f) Design of Section


$$\frac{M4}{b \cdot d^2} = \frac{5.16 \times 9.8 \times 10^6}{1000 \times 280^2} = 0.65 \longrightarrow \frac{100 \, As}{b \cdot d} = 0.20$$

As = 0.70x1000 x 28 0 /100 = 560 mm2/m

Use 019@250 (As=1148 mm /m) Each Way

$$\frac{100 \text{ As}}{b \cdot d} = \frac{100 \times 1148}{1000 \times 280} = 0.41 \longrightarrow v_c = 0.41 \text{ N/mm}^2$$
(Grade 20)

V = 0.36 N/mm (Vc = 0.41 N/mm O.K

b) Foundation Weight.

- c) Check of Contact Pressure
- i) Total Vertical Load

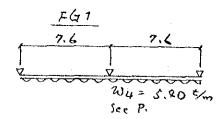
 D.L + L.L \((15.2) + 1.20 \) x z + (22.74 + 2.4) \(/ \) / 15.2"

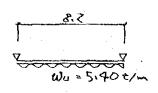
 + \$\pi\$, 08 \(\mathref{m} = 7.89 \tau/m \)
 - ii) Check of contact Pressure

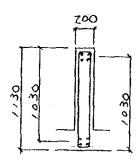
d) Contact Pressure for Ultimate Load.

$$U = 1.4 \times (15.21 \times 2 + 22.74) / 15.2^m$$

+ 1.6 x (1.2 x Z + 2.4) / 15.2^m = 5.40 +/m


el Stress of Footing Slab


f) Design of Section

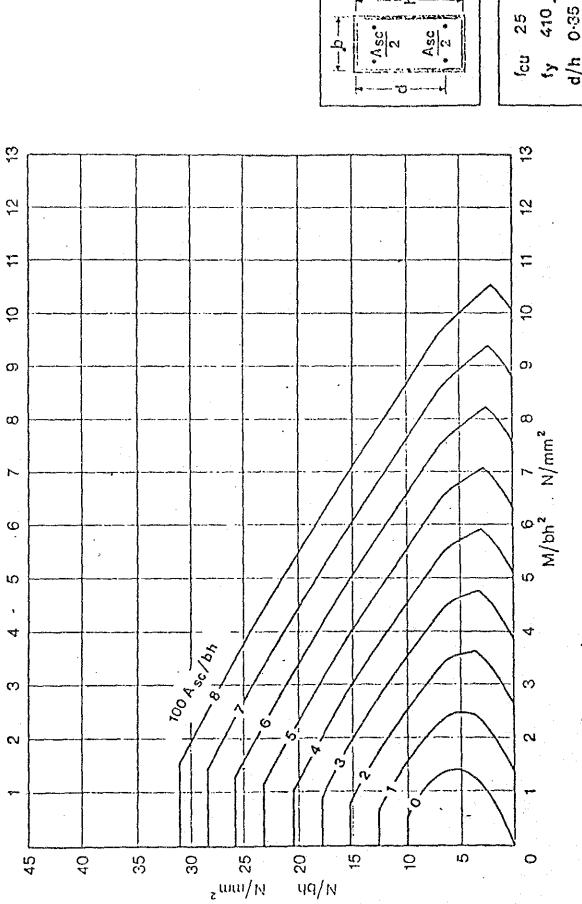

$$\frac{Hu}{b \cdot d^2} = \frac{0.83 \times 9.8 \times 10^6}{1000 \times 180^2} = 0.13 \longrightarrow \frac{100 \text{As}}{b \cdot d} = 0.05$$

As = 0.05 x 1000 x 180/100 = 90 mm3/m

8-2. DESIGN OF GRADE BEAM.

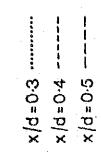
N 6

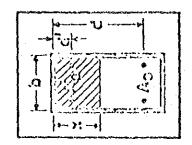
Use Stirrup DIO @ 250

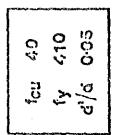

FGZ

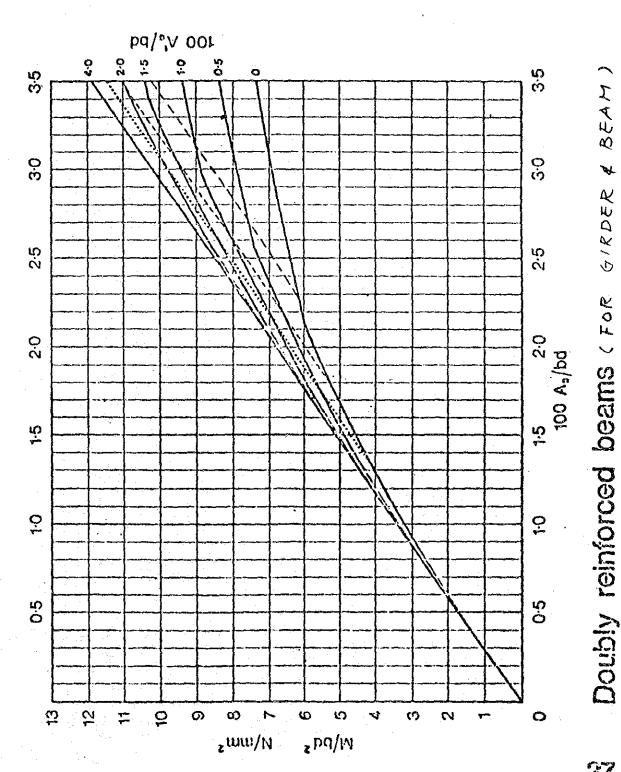
W4=5.40%

Vu=1/2 x 5,40 x 4,0 = 10.80 +.

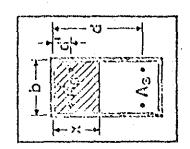

As = 0.40 x 200 x640 /100 = \$12 mm2

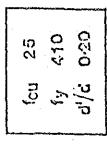

Use Stirrup DIO @250

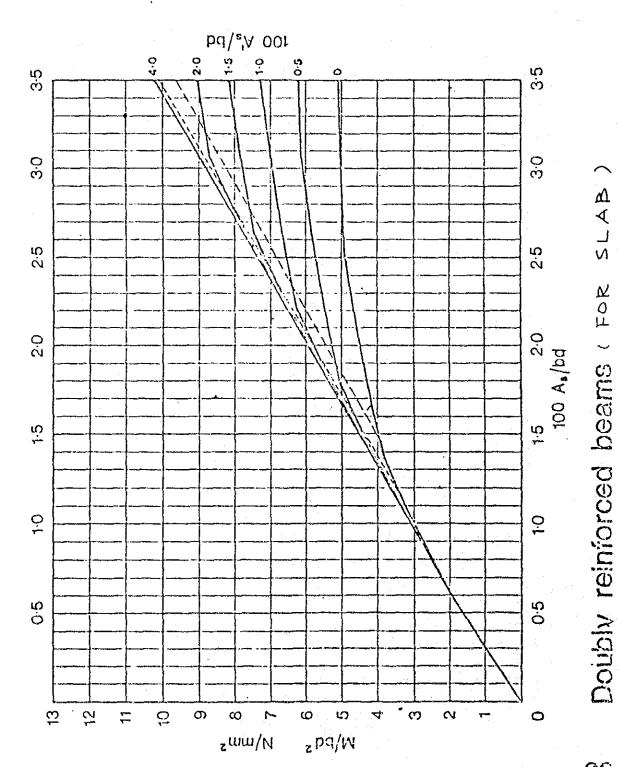



Rectangular columns

GIRDER & BEAT)







x/d = 0.3 x/d = 0.4 ------

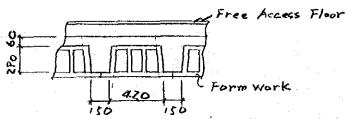
22

CHECK OF 2nd FLOOR AT LABORATORY BUILDING.

SC-1. GENERAL.

- 1-1. Application Codes, Specification ect.
 - a) Reinforced Concrete Structure; BS. CP110
 - b) Live Load

; BS CP3


- 1-2. Materials
 - a) concrete

i (grade 25 fcu = 25 4/mm?

b) Reinforcing Bar ; Fy=410 1/mil (#)

Fy = 250 H/mm (4)

SC-2 OUTLINE. MODIFIED FLOOR Free Access Floor

SC-3, LOAD ASSUMPTION.

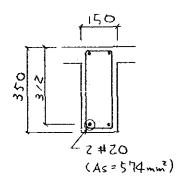
3-1 Dead Load ID.L)

a) Floor

b) Beam

Conc.

Form work

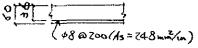

3-2. Live Load.

Laboratories, including equipment

306 8/m2.

SC-4 CHECK OF MEMBER.

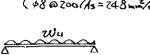
4-1. Beam.



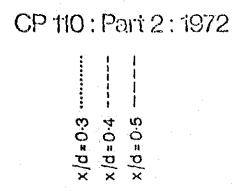
$$Mu = 1/8 \times 0.92 \times 6.6^2 = 5.01 \text{ tim}$$

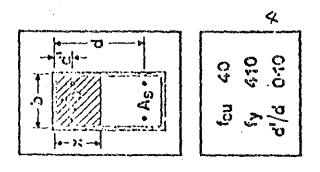
 $Vu = 1/2 \times 0.92 \times 6.6 = 3.04 \text{ t}$

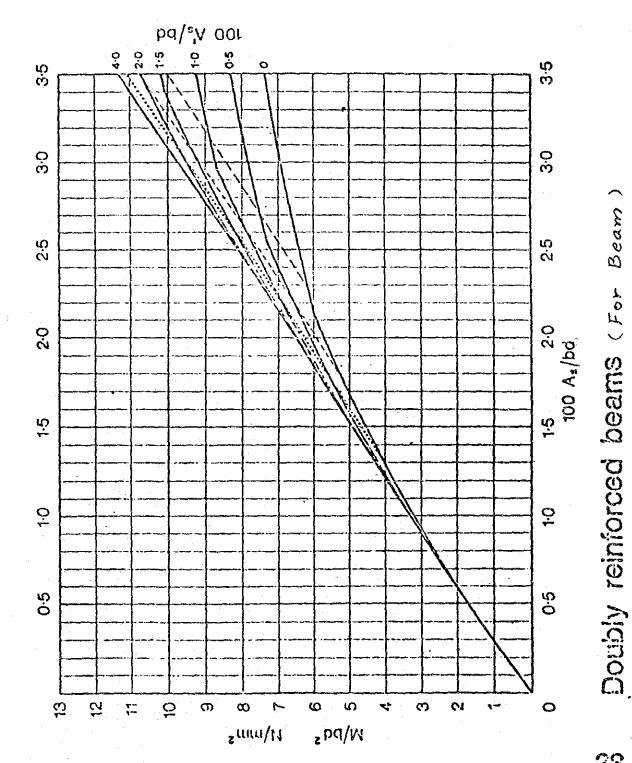
$$\frac{M_U}{b \cdot d^2} = \frac{5.0/x 9.8 \times 10^6}{150 \times 312^2} = 3.36 \rightarrow \frac{100 A5}{b \cdot d} = 1.07$$

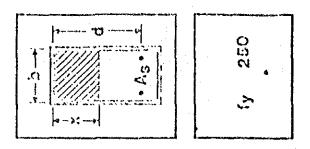

As=1,07x150x317/100=500.76mm2<574mm2

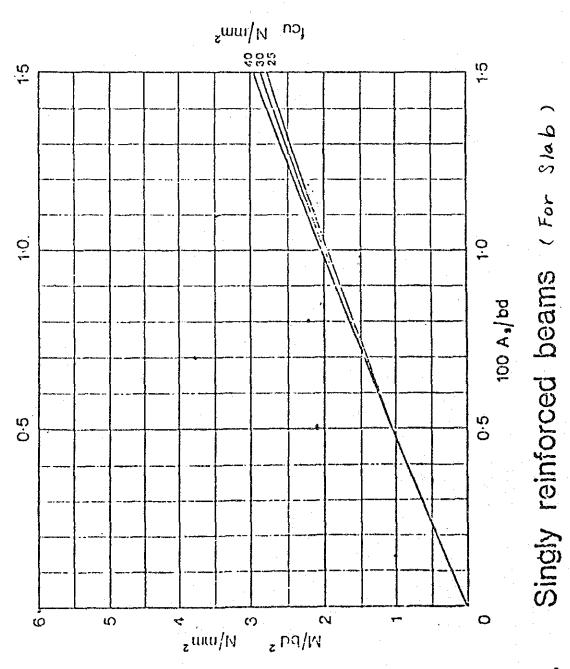
4-2. Slab.

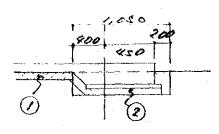


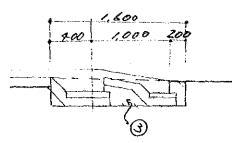

$$W_4 = 1.4 \times 0.326^{\text{tot}} + 1.6 \times 0.306^{\text{tot}} = 0.95 \text{tot}$$


$$M_4 = \frac{1}{8} \times 0.95 \times 0.42^2 = 0.021 \text{ total}$$




$$\frac{Mu}{b \cdot d^2} = \frac{0.02/ \times 9.8 \times 10^6}{1000 \times 36^2} = 0.16 \longrightarrow \frac{100 \, \text{As}}{b \cdot d} = 0.08$$





MATERIAL TAKE OFF

1. EXCAYATION.

(A) (18-04)x(28-04x2)x01 : 0.28 mg

Appon (2) KOS x (1,8+0 45+0,2) x 0,3 x 2 = 1,5 8 m3

105x 003 x 0.3 x 2 2 0.03 m3

10 STOP (3) 1.6 x 1.8 x 0.3 : 0.91 m3 2.76 m3

2. COBBLESTONE.

 $(1.8 - 0.25) \times (2.8 - 0.25 \times 2) \times 0.55 = 0.53 = 3$ $0.8 \times (1.8 + 0.25 + 0.1) \times 0.15 \times 2 = 0.56 = 3$ $0.8 \times 0.2 \times 0.5 \times 2 = 0.1 = 3$ $0.8 \times 0.2 \times 0.5 \times 2 = 0.1 = 3$ $0.8 \times 0.2 \times 0.5 \times 2 = 0.1 = 3$ $0.9 \times 1.7 \times 0.5 = 0.08 = 3$ $0.9 \times 1.7 \times 0.5 = 0.08 = 3$

3 LEVELING CONCRETE

FOR pron 08x (18+0x5+01)x005x2:0.19 m2

03x 0, 4 x 0.05 x 7 = 0.03 m3

Em 100: 20,0 x 2x x28,0

FOR TOP 0.3 x 1.7 x 0.05 : 0.03 m3

8. ONDPOSAL SOIL

0875 x (18 + 0.85) x 0.55 x 2 = 0.59 m³

0875 x 0.425 x 0.45 x 2 = 0.09 m³

0.825 x 1.5 x 0.75 = 0.05 m³

0.82 x 1.5 x 0.75 = 0.05 m³

0.82 x 1.5 x 0.75 = 0.05 m³

0.82 x 0.705 x /2 x 1.5 = 0.05 m³

0.82 x 0.705 x /2 x 1.5 = 0.05 m³

CEYELING CONCRETE. : 0.28 m3 2.71 m3

S. BACK FILLING.

2.76 m3 - 2.71 m2 = 0.05 m3 0.05 m

6. CONCRETE POR GRAND SCAB

JLAB $(J,B \neq 0.1) \times (EB \neq 0.1 \times 2) \times 0.5 = 0.86 \text{ m}^3$ $0.825 \times (J,B \neq 0.1) \times 0.5 \times 2 = 0.28 \text{ m}^3$ $0.825 \times 2.15 \times 0.15 = 0.18 \text{ m}^3$ $0.825 \times 2.15 \times 0.15 = 0.18 \text{ m}^3$ $0.95 \times (J,B \neq 0.85) \times 0.9 \times 2 = 0.87 \text{ m}^3$ $0.35 \times 0.75 \times 0.9 \times 2 = 0.16 \text{ m}^3$ $0.37 \times 0.75 \times 0.9 \times 2 = 0.05 \text{ m}^3$ $0.71 \times J.5 \times 0.72 = 0.05 \text{ m}^3$

7 CONCRETE FOR SUPER STRUCTURE

 $B_{2} = (0.8 \times 0.5) \times 1/2 \times (1.8 \times 0.1) \times 0.2 \times 2 = 0.38 \text{ m}^{3}$ $B_{1} = 0.8 \times (2.8 - 0.1 \times 2) \times 0.2 = 0.31 \text{ m}^{3}$ $Roof S(AB) = (1.8 - 0.1) \times (1.8 - 0.1 \times 2) \times 0.12 = 0.33 \text{ m}^{3}$ $0.35 \times (2.8 \times 0.1 \times 2) \times 0.12 = 0.13 \text{ m}^{3}$ $0.35 \times (2.8 \times 0.1 \times 2) \times 0.12 = 0.13 \text{ m}^{3}$

B. FORM WORK FOR STOUP

$$0.3 \times 1.1 \times 2$$

2.39 m?

3. PAIR JACKO FORM WORK

$$E2 \qquad (0.28 + 0.38) \times / 2 \times (1.8 + 0.1) \times ? \qquad (0.28 + 0.38) \times / 2 \times (1.8 + 0.1) \times ? \qquad = 1.12 \text{ m}^{2}$$

$$(0.28 + 0.38) \times / 2 \times (1.8 + 0.1) \times ? \qquad = 1.12 \text{ m}^{2}$$

$$E1 \qquad 0.28 \times ((2.8 - 0.1) \times (2.8 + 0.1) \times ?) \qquad = 1.57 \text{ m}^{2}$$

$$Roof S(AG) \qquad (1.8 + 0.25) \times ((2.8 + 0.25) \times ?) \qquad = 8.33 \text{ m}^{2}$$

$$(1.8 + 0.25) \times 0.12 \times ? \qquad = 0.52 \text{ m}^{2}$$

$$(2.8 + 0.25 \times ?) \times 0.12 \qquad = 0.52 \text{ m}^{2}$$

$$(2.8 + 0.25 \times ?) \times 0.12 \qquad = 0.52 \text{ m}^{2}$$

10. REINFORERD BAR.

DIO BE
$$\{(1.8 + 0.7) \times 2 \times 0.56^{\frac{1}{2}}\}_{XZ} = 9.26^{\frac{1}{2}}$$

B! $(2.8 + 0.2) \times 2 \times 0.56^{\frac{1}{2}}\}_{XZ} = 9.26^{\frac{1}{2}}$

ROW SCAR $(1.8 + 0.85) \times 17 \times 0.56^{\frac{1}{2}}\}_{XZ} = 21.42^{\frac{1}{2}}$
 $(2.8 + 0.2) \times 1/1 \times 0.56^{\frac{1}{2}}\}_{XZ} = 22.29^{\frac{1}{2}}$

STIRRUP BE $\{(0.95 + 0.2) \times 2 \times 8 \times 0.56^{\frac{1}{2}}\}_{XZ} = 11.65^{\frac{1}{2}}$

B! $(0.95 + 0.2) \times 2 \times 1/1 \times 0.56^{\frac{1}{2}}\}_{XZ} = 7.56^{\frac{1}{2}}$

DIS BE $\{(1.8 + 0.1) \times 2 \times 0.995^{\frac{1}{2}}\}_{XZ} = 7.56^{\frac{1}{2}}$

B! $(2.8 + 0.1) \times 2 \times 0.995^{\frac{1}{2}}\}_{XZ} = 7.56^{\frac{1}{2}}$

B! $(2.8 + 0.1) \times 2 \times 0.995^{\frac{1}{2}}\}_{XZ} = 7.56^{\frac{1}{2}}$

B! $(2.8 + 0.1) \times 2 \times 0.995^{\frac{1}{2}}\}_{XZ} = 7.56^{\frac{1}{2}}$

0.0844 104

11. WELDED WIRE PABRIC.

(1.8 x 0.85) x (2.8 x 0.25 x 2) = 8.34 m?

15x (1,0-0,85) = 0.83 m2

9.16 mi

12. CONCRETE BROCK, ZOO MA THE.

18 x (1.8 x2 + 28 - 1,2) = 9.36 m2

9,36 2

.

8. FINISH WORK

8A FLOOR

a) VINYL TILE

$$R-06, R-12.$$
 $13^{-24} \times 4.4 = 53.9$
 $R-06, R-07$
 $R-08, R-07. R-10$ $30^{-9} \times 6.8 = 208.9$
 $R-11$
 $R-11$
 $R-12$
 $R-13$
 $R-13$
 $R-14$
 $R-14$
 $R-15$
 $R-16$
 $R-16$
 $R-17$
 $R-18$
 $R-18$
 $R-18$
 $R-19$
 $R-19$

TOTAL STR. OG ME

b) FLOATING FLOOR

$$R-03$$
, $R-04$. $32^{-8} \times 7.8 = 255.88$
 $\times 2^{-1} \times 11.0 = 4.83.1$

TOTAL 232.78 42

C) VINY COVE BASE

$$R-06. \quad (6.75 + 4.4) \times 2 = 22.3$$

$$R-12 \quad (4.5 + 4.4) \times 2 = 19.8$$

$$R-06. \quad 07$$

$$08.09.00 \times 2 = 60.0$$

$$6.8 \times 8 = 52.3$$

$$9.3 \times 4 = 12.3$$

$$2.8 \times 2 = 5.6$$

$$R-11. \quad (12.4 + 6.8) \times 2 = 38.5$$

$$8.2 \times 6 = 25.3$$

$$2.1.0 \times 12 + 1.2 \times 9 + 1.8 = 2.2.6$$

$$R-03. R-04. \quad 82.8 \times 2 = 65.6$$

$$7.8 \times 4 = 31.3$$

TOTAL 3/5.7 4

$$9.^{\circ} \times 3.7 \times 2 \times 2.7 \times 2 \times 23.76$$
 $9.^{\circ} \times 3.7 \times 2 \times 2 \times 2 \times 2.76$
 $9.^{\circ} \times 3.7 \times 2 \times 2 \times 2 \times 2.76$
 $21.^{\circ} \times 3.7 \times 2 \times 2 \times 2 \times 2 \times 2.77$
 $21.^{\circ} \times 3.78$
 $21.^{\circ} \times 3.78$
 $21.^{\circ} \times 3.78$

TOTAL 123.66 M2

TOTAL SIB 42

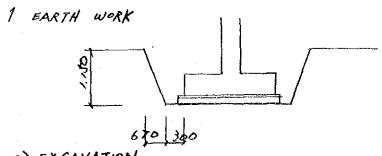
b) CEMENT PLASTER

0.3 x 2.7 x 6 = 8.86 TOTAL x 86 M3

6) LITHING SPRAT

TOTAL 12.8 M2

8P. WALL


4) CONCRETE BLOCK W/PLASTER

2-7 x 7-8 x 2 = 82.17

2-7 x 5-4 x 2 = 29.16

TOTAL 71,28 42

TEST PLANT BUILDING

a) EXCAVATION

F1.
$$(3.^{3} + 0.6 + 0.67) \times (3.^{3} + 0.6 + 0.67) \times /.5 \times 2 = 27.69$$

F2. $\triangle LINE (1.0 + 0.6 + 0.67) \times (13.0 + 0.6 + 0.67) \times /.5 = 34.64$
 $\triangle " (1.0 + 0.6 + 0.67) \times (4.0 + 0.67) \times /.5 = 75.76$
 $\triangle " (1.0 + 0.6 + 0.67) \times (26.3 + 0.6 + 0.67) \times /.5 = 71.77$
 $\triangle " (1.0 + 0.6 + 0.67) \times (16.4 + 0.6 + 0.67) \times /.5 = 46.13$
 $\triangle ... (1.0 + 0.6 + 0.67) \times (3.53 \times 2) = 29.65$
 $\triangle ... (1.0 + 0.6 + 0.67) \times 3.88$
 $\triangle ... (1.0 + 0.6 + 0.67) \times 3.88$
 $\triangle ... (1.0 + 0.6 + 0.67) \times 3.88$
 $\triangle ... (1.0 + 0.6 + 0.67) \times 11.08$
 $\triangle ... (1.0 + 0.6 + 0.67) \times 11.08$
 $\triangle ... (1.0 + 0.6 + 0.67) \times 11.08$
 $\triangle ... (1.0 + 0.6 + 0.67) \times 11.08$
 $\triangle ... (1.0 + 0.6 + 0.67) \times 11.08$
 $\triangle ... (1.0 + 0.6 + 0.67) \times 11.08$
 $\triangle ... (1.0 + 0.6 + 0.67) \times 11.08$

b) DISPOSAL SOIL

F1. COBBLESTONE
$$3^{11} \times 3^{11} \times 0^{11} \times 2 = 1.5$$

LEVELING CONC. $3^{11} \times 3^{11} \times 0^{11} \times 2 = 0.58$

FOUND. CONC. $3^{11} \times 3^{11} \times 0.35 \times 2 = 3.89$

COLYHN $0^{11} \times 0^{11} \times 0.55 \times 2 = 0.16$

44B 5.28 M3

F2 COBBLESTONE

		,
A. LINE	12 × 12 × 0-1	= 1.46
B "	4. × /. × 0.7	· 0.5
<i>p</i> •	26. 4 12 × 0.1	= 3.17
E,	16.6 × 12 × 0-7	= /.99
1, 3 "	7° ×/2 ×0.1 × 2	* 1.68
3 ,	183 × 12 × 0.1	= 7. ₅
4 ′ •	x.95 x /2 x 0-7	e 0.89
5 .	13.15 x 1.3 x 0.1	= 1.46
		54B 13.05 43
LEVELING O	CONC.	
A. LINE	122 × 12 × 0-0\$	= 0.73
B. "	x x/2 x o.ot	= o.at
D .	26.4 x 1.2 x 0.05	= 1.58
E "	16.6 x 1.2 x 0.05	= /.0
1', 3' *	7° × 1° × pot × a	= 0.84
3 "	18.3 × 1.2 × 0.01	= /./
<i>y</i> ′ ,	gest x12 x0.05	= 0.3
· ,	12.15 x1.2 x0.05	e 0.73
	* * * * * * * * * * * * * * * * * * *	في دع

FOUNP. CON	10. , FG1 , FG2	
A. CINE.	12.0 × 1.0 × 0.25	= 3-03
FGI	112 × 0.75 × 0.2	= 1.68
	0-2 × 0.75 × 0-2	£0.03
<i>B</i> ′	4.0 x 1.0 x 0.25	= /*
F41.	3. x o x tx o x	= D. 42 8
	0.2 × 0.75 × 0-2	* 0-03
P "	26.2 x 1.0 x 0.25	= 6.55
F41.	11.5 × 0.76 × 0-3	, 73
Ĺ	10.3 × 0.7 × 0-2	2 1.55
FG 2	3.4 × 0.45 × 0.2	= 0.31
E ,	16.4 x 1.0 x 0.25	= 4-1
FG1	15.4 x 0.75 x 0-2	الارچ د
1, 3 "	7 × 10 × 0.25 × 2	= 3.6
FG1	8° × 0 7 × 0 × 2	= 2.4
3 "	•	= 4.63
	19.3 x 0.7 x 0.2	* 2.9
	o2 x ort x o2 x 2	= 0.06
	J. X x 1.0 x 0.21	= 1.29
	5.95 × 0.75 × 0.2	= 0.89
	12:3t x 1.0 x p.st	- 3-09
F41	13.15 x 0.25 x 0.2	= 1.97
		54B 43.63 M3 TOTAL 68.49 M3
		TOTAL SE M

c) BACKFILLING W/COMPACTION TO GL W/EXCAVATION SOIL

296.88 H3 - 68.49 H3 = 228.39

TOTAL 228. 39 43

d) CUTTING. Z = 100 N 300

GLAB ON 8.0 x 15.0 = 130.0

$$10.8 \times 19.3 = 208.44$$

 $3.0 \times 13.15 = 39.45$
 $5700P = 2.4 \times 1.3 \times 3 = 9.36$
 $1.5 \times 1.3 \times 3 = 1.95.$
 $3.6 \times 1.9 = 6.84$

TOTAL. 386-04 M2

C) COBBLESTONE

F1

F2

=
$$/3.05$$

SLAB ON 8.° × $/5.^{\circ}$ × $0.^{\circ}$ = $/2.^{\circ}$
 $/3.05$

SLAB ON 8.° × $/5.^{\circ}$ × $0.^{\circ}$ = $/2.^{\circ}$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.05$
 $/3.$

TOTAL 53-08 H3

t) VAPOR BARRIER

8° x 1.0 + 108 x 19.3 + 3.0 x 13.15 =

2. CONCRETE WORK.

a) LEVELING CONC.

3 LINE 18 \$
$$\times$$
 10 \times 0.25 = 4.63
19.3 \times 0.75 \times 0.2 \times 2 = 0.06
4' LINE 5.15 \times 1.0 \times 0.25 = 1.39
5 LINE 1.35 \times 1.0 \times 0.25 = 0.89
5 LINE 1.35 \times 1.0 \times 0.25 = 1.97
STOOP 2.4 \times 1.3 \times 0.12 \times 3 = 1.12
2.4 \times 0.25 \times 0.08 \times 3 = 0.14
1.5 \times 1.3 \times 0.08 \times 3 = 0.14
1.5 \times 1.3 \times 0.08 \times 3 = 0.04
1.5 \times 1.3 \times 0.08 = 0.03
3.6 \times 1.9 \times 0.08 = 0.03
3.6 \times 1.9 \times 0.08 = 0.07
GROWNO SLAB 3.2 \times 15.2 \times 0.05 = 18.7
13.35 \times 14.0 \times 0.15 = 18.7
13.35 \times 14.0 \times 0.15 = 28.04
4.17 \times 1.0 \times 0.15 = 28.04
4.18 \times 1.10 \times 0.15 = 10.15
FRUIT FOUND 2.87 \times 1.245 \times 0.6 = 2.14

TOTAL 108-62 M3

O) CONCRETE FOR SUPER STRUCTURE (2/018/on-)

COLUMN 5 LINE 0.6
$$\times$$
 0.2 \times 3.14 \times 2 = 0.38

4' , 0.6 \times 0.2 \times 3.2 \times 2 = 0.77

K " 0.6 \times 0.2 \times 3.28 \times 2 = 0.77

6.6 \times 0.2 \times 3.28 \times 2 = 0.57

6.6 \times 0.2 \times 3.21 \times 2 = 0.34

3 " 0.6 \times 0.2 \times 3.21 \times 2 = 0.82

6.8 \times 0.2 \times 3.21 \times 2 = 0.82

6.9 \times 0.2 \times 3.21 \times 2 = 0.82

6.9 \times 0.2 \times 5.14 \times 2 = 0.83

6.9 \times 0.2 \times 5.14 \times 2 = 0.83

6.9 \times 0.2 \times 5.30 \times 2 = 0.87

6.18 \times 0.2 \times 5.30 \times 3 = 0.87

6.18 \times 0.2 \times 5.30 \times 3 = 0.87

6.18 \times 0.2 \times 5.30 \times

1.54 × 0.4 × 13.0 C LINE 0.63 x 0.2 x 9.2 3.4 1.514 × 0.2 × 1.03 0.63 x 0.2 x 1.31 0.63 × 0.2 × 14.2 = 1.79 0.48 x 0.2 x 5.95 x 7 = 50 RBI 0.58 x 0. x 7.0 x 5 = 206 RB1 0.58 x 0,2 x 8.0 x 7 = 6.5 8.4 x 15.4 x 0.12 SLAB. 7. 4 x 14. x 0.12 = 12.61 5.95 × 6.85 × 0.12 6.05 × 7.15 × 0.12 = 5.19 6.25 × 11.2 × 0.12 = 8,8 0.12 × 0-12 × 19-7 = 1,23 PARAPET 0.24 × 0.12 x 19.5 = 0.56 0.38 x ,4.0x2= 1.28 × 0.12 0.38 x 9.8 × 0-12 = 0,85 0.52 15.4 × 0-12 = 0.96 0-356 x 0-12 × 15-4 0.438 × 0.12 x 8. / x 2 = 0.85 1 (0.07 + 0.05) x 0.07 x /2 x 14.0 = 0.06 (0.07+0.05) x 0.07 x /2 x x.0 = 0.02 GARGOTLE 0-2 x 0-1 x 0-2 x 3 = 0.01 (0.3 + 0-2) x 0-2 × 1/2 x 2 x 3 = 0.3

76.83

کی ۔

* O. ? 0.31 x 0.2 x 2.82 DROP WALL 0.2 x 0.2 x 2.0% = 0.08 0.21 x 0.2 x 0.72 = 0,03 6-21 x 0-2 x 2-0 K = 0,09 0.63 × 0-2 × 4.87 = 0.61 0.31 × 0.2 × 1.64 = 0.11 0.31 x 0.2 x 1.62 = 0.11 0514 x 02 x 3.42 = 0.35 0-15 x 0.2 x 3-65 = 0.08 ot x 0-2 x 2-04 = 0.06

TOTAL 96.97 43

3. FORH WORK

a) FORM WORK FOR UNDERGROUND. F1. 22 x x x 0.3t x 2 = COLUMN. (0. 42 + 0-2 x2) x 0.78 x 2 = 1.87 F2, FG1. FG2. A. LINE (12.0+ 100) x 0.25 22 11.2 x 0.75 x 2 16.8 0- × 0-7+ × 2 0.3 3.0 × 0.25 × * tr.o × =.E 28 0-2 × 0.75 × 2 D LINE 24-2 x 0.25 11 × 0.7 × 2 = 17.25 10.3 × 0.7 × 2 22,85 34 × 0. 81 × 2 = 3.06 E LINE (16.4+14.4) x 0.25 = 7.7 15.4 × 0.75 × ~ 23. 1,3 LINE (72+62) x 0-25 x 2 8.0 x 0.75 x = x 18 x 0.25 x. 2 9.25 3 LINE 19.3 × 0.75 × 2 28.85 0- x 0.75 x K'LINE 5. 1 x 0.25 x 2 82.5 5.91 x 0.75 x 2 8,93 5 LIME 12-St x o. st x x

13. A x 0.75

= 19.13

TOTAL 2228/ H2

b) FORM WORK FOR STOOP

TOTAL & 17 M2

C) FORM WORK FOR ABOVE GROUND.

Column 5 Line
$$(0.4 \times 2 + 0.2 \times 4) \times 3.14$$
 = 5.0? $(0.4 \times 2 + 0.2 \times 4) \times 4.14 \times 2 = 13.25$ $4''' (0.4 \times 2 + 0.2 \times 4) \times 3.2 \times 2 = 10.26$ 6.85

		/
GIRDER 5 LINE	(0.53 + 0.65) x 5.75	= 6.79
·	(0.58+0.7) x & d	= 8.xs
x' "	(p.53 + p.65) × 5.55	= 8.55
4 4	0.53 x 2 x 5-75	= 6.
	0.53 × 2 × 5.55	= 5.88
3 "	< x tr. 2 x (20.0 + 62.0)	= 13.57
	(0.58 + 0.7) x 6.6	= 8.45
1, 3 "	(0.58 + 0.7) × 7.6 × =	= 19.86
	(0.53+0.65) × 10.0	= //,8
ß "	0.53 x 2 x /2-6	= /3.36
	1.53 x 2 x 13.0	= 39.78
	(0.63 + 0.75) × 9-2	= 12.7
	1.514 x 2 x 3.4	= 10.3
	(0.63 + 0.75) × 10.4	= /8,35
E "	(0.63+0.75) × 14.2	= 19.6
RB2.	0.88 x 2 x 5.95 x 5	= 28.56
	6.05 × 7.15	= 83.26
	8.25 × 11.2	= 70.0
PARAPE	1 0.52 × 19.7	= 10.78
,,	0.24 × 19.5	= & 68
	0.38 × 14.0 × 2	= 10.6%
	0.38 × 9.8	= 3.77
	0.52 x 15.4	= 801
	0.316 x 15.4	88,2
	0.438 x 8-1 x 2	= 7.1

388.83 6 16 5 8

TOTAL 515.88 4

PROP WALL
$$0.3t \times 2.82 \times 2 = 1.97$$
 $0.2 \times 2.04 \times 2 = 0.82$
 $0.21 \times 0.72 \times 2 = 0.3$
 $0.21 \times 2.04 \times 2 = 0.86$
 $0.63 \times 4.87 \times 2 = 6.76$
 $0.3t \times 1.64 \times 2 = 1.73$
 $0.3t \times 1.62 \times 2 = 0.8$
 $0.1t \times 2.6t \times 2 = 0.8$
 $0.1t \times 2.6t \times 2 = 0.61$

d) FAIR FACED FORM WORK RB2 0.48 x 2 x 5.75 x = 11.82 R81 0.58 x 2 x 7.0 x = x0,6 = 64.96 0.58 x 2 x 8-0 x 7 SLAB 8.4 × 15.4 = 129.36 7.4 × 14.2 = 105.08 5.85 x 6.85 = ×0.76 PARAPET 0.52 x 19.7 = 10.28 0-24 × 19-5 = £.68 10,6% 0.38 × 9.8 = 3.72 0.52 x 15.4 = 8.01 0.316 × 15.4 5,88 0.438 x 8-1 0007 x 1x.0 + 0.07 x 4.0 = 1.26 GARGOTLE 0.31 × 0.2 × 3 (0.3+0.2) × 0.2 × 1/2 × 2 × 3 = 0.3 (0-2+0-1) x 0-2 x 1/2 x 2 x 3 = 0.18

TOTAL KERO HZ

4. REINFORCED WORK

F1 D19 (3.25 Kg/m)

F2 D13 (0.995 Kg/m)

DIO (0.56 48/m).

FG1. D22 (3.04 HP/2)

31,221 =

DID (0.56 x9/-)

022

022

$$13.96 \times 4 \times 3.04 \times 10^{1} = 157.59$$
 $11.76 \times 4 \times 3.04 \times 10^{1} = 123.0$
 $12.72 \times 4 \times 3.24 \times 10^{1} = 114.88$
 $1.52 \times 4 \times 3.24 \times 10^{1} = 103.68$
 $5.52 \times 4 \times 3.24 \times 10^{1} = 29.68$

D 10

$$(3.66 \times 86 + 3)^{2} \times 4 + 0.4 \times 2 \times 22) \times 0.56 \times 10^{2} \times 181.25$$

$$(1.8 \times 17 + 4.0 \times 2 + 0.21 \times 5) \times 0.56 \times 10^{2} = 22.32$$

دد0

D19

010

019

022 258.57 21.26 4 DIA 187.18 DID 2 x 20) x 0. 56 pg/2. 166.96 4 + 0 2 + 022 3.04 kg/m 7.91 x x 019 2-25 Hg. 69.03 7.67 x 4 x P10 (2.66 x 26 + 6.15 x x + 0.25 x x x 7) x 0.16 x 9/m = 5265 022 15.11 x x x 3.06 kg/m D19 2-21 KB/4 /33.83 1x.87 x & Y

(2.66 x \$\$ + 13.31 x \$4 + 0.21 x 2 x 14) x 0.46/4 = 115.75

COLUMN D22 (3.04 +8/2) × 3-04 ×9/m 107.88 4.x x 8 x 3.04 x0/m 263.63 8 DID (0.56+9/2) 28.19 2.4 × 18 × 0.56 × 0/4 2 x 22 x 0 16 40/ 29.57 D 22 4.48 × 8 × 3.04 mg. × 2 D10 24 x 18 x 0. 56 FOI £8.38 022 4.561 3-04 +8/+ X 221.85 8 × 5-561 x 3.0 x +8/0 x 2 = x 4 010 D. 16 KB/M X 2 /8 y x 0.56 kg/ x 2 : 28.57 022 4.7 3.08 kg x 1 228.61 8 5.7 3.04 E/ X 2 : 217.25 x 8 DID x 0.56 F8/ x 2 = 51.07 3.4 × 19 x 0-56 +8/1 x 3 = ~>- ¥ × 23

$$6^{12} \times 8 \times 8^{-4} \times 9^{-1} \times 2 \times 3^{12.27}$$

$$6^{12} \times 9 \times 8^{-9} \times 9^{-9} \times 2 \times 3^{12.27}$$

$$6^{12} \times 9 \times 3^{-9} \times 9^{-9} \times 2 \times 3^{-9} \times 9^{-9}$$

$$7^{10}$$

$$7^{10} \times 7^{10} \times 7^{10}$$

$$7^{10} \times 7^{10} \times 7^{10}$$

219 15.52 × 8 × 2-25×9 × 2 = 558.72 010 (1.7x 56+14°x 2+0 x 14) x 0.56 x 1 2 = 1 4/8 RGI DOZ 15.76 x 6 x 3.04 x 2 = 579.9? 010 (1.9 x 56 + 14.0 x 2 + 0 - 1 x 14) x 0 - 6676/2 12 = 15 x xs D-2 16.96 x 6 x 3.04 kg x 2 x 6/8.7 (19 x 61 + 15-2 x 2 + 0.21 x 16) x 0.56+9 x 2 = 168,34 RG2 D19 9.72 x 4 x 2-25 x3/2 x 2 = 178.96 010 (1.8x 33+8 x 2+0-2 x 8) x0 56 kg/x 2 2 87.19 RB1 D22 9.96 x 2 x 3.04 x3/2 x 7 = \$23.9 D16 (1.56,8/4) 9.48 x 2 x 1.56 x8/2 x 7 = 207.050 010 (1.8 x 33+8-2 x 2+ 0-25 x 8) x 0-56 kg/m x 7 = 30x, 88

022

016

710

P10

ROOF DID

DIO

$$0.92 \times 620 \times 0.56 \times 8/m = 207.98$$

$$0.92 \times 620 \times 0.56 \times 8/m = 319.42$$

GARGOYLE DIO;

$$(1.0 \times 12 + 3.32 \times 4) \times 0.56 \times 9/2 = 12.16$$

$$(0.9 \times 9 + 3.4 \times 2) \times 0.56 \times 9/2 = 6.82$$

$$(0.86 \times 1/1 + 3.16 \times 2) \times 0.56 \times 9/2 = 8.89$$

$$(1.36 \times 20 + 5.37 \times 4) \times 0.56 \times 9/2 = 26.14$$

PID

$$(7.0 \times /3 + 3.66 \times \%) \times 0.56 \times \%$$

$$= 15.28$$

$$(7.264 \times /4 + 3.84 \times 4) \times 0.56 \times \%$$

$$= 18.51$$

$$(0.9 \times /8 + 5.39 \times 2) \times 0.56 \times \%$$

$$= 15.11$$

$$1.05 \times 52 \times 2 \times 0.56 \times \%$$

$$= 61.15$$

$$0.934 \times /6 \times 2 \times 0.56 \times \%$$

$$= 16.78$$

70TAL 1764859kg

b) WELDED WIRE FABRIC
$$p_{6} \times 10 \times 10$$
 $8^{-2} \times 15^{-2} + 6^{-15} \times 11^{-0} + 13^{-35} \times 14^{-0} = 379.19$
 $2^{-4} \times 1^{-3} \times 3 = 9.96$
 $1^{-5} \times 1^{-3}$
 $= 1.95$
 $3^{-6} \times 1^{-9}$

TOTAL 387,38 42

5. MASONRY WORK

a) CONG. BLOCK 200 THK.

1.3' LINE
$$7.6 \times 4.44 \times 3 = 67.49$$
 $2.70 \times 0.9 \times 3 = 0.26$
 $2.30 \times 3.00 \times 3.00 \times 3 = 0.26$
 $2.30 \times 3.00 \times 3.00 \times 3 = 0.26$
 $2.30 \times 3.00 \times$

					-
D CINE	7.	¥	4.44		= 32.33
,			K-5-5 X		£0.71 =
	8.35	γ	3.39		= 22.3
	2.65	У	3-39		= 3.98
	3. ×	×	3.39		= 1/53
	A 3.0	ж	¢. D		= 0 /2.0
	8 ا ک	×	ا - د		~ A 3.78
	4 2.8	×	7 'D X	<u></u>	= 0 8.0
	≥ p. 3	ĸ	D. 3		=0.09
	D 0.361	*	the o		= 2 0!3
	A 3.42	×	8.514		= 1,76
	a s. et	×	0.15		= 2 0.5
	D 2.04	*	0.15		= \$ 0.3/
C ZINE	8 22				= 18.19
	6.45	×	2-77		= 17.87
	Δr				\$2 _{.5} &=
	A 1.6				= 0 3.36
	21.62				- 2 0.57
	A 1.64			,	= 4 0.57
B LNE	×.95				= 13.71
			77.		= 9.56
	2.6	X	رد ال		= 7.2

25/37

6. WATER PROOF WORK.

GA. WATER PROOFING.

a) LIGHT WEIGHT CONCRETE t= 60

7.7AL 379. 43

b) WATER TIGHTNESS PUC SHEET. t= 1

$$8.2 \times 1.2 = 124.64$$
 $13.3^{\frac{1}{2}} \times 14.0 = 126.9$
 $6.1^{\frac{1}{2}} \times 11.0 = 67.64$

TOTAL XZXXX MZ

C) THERMAL INSULATION E= 40

TOTAL 379-19 M

d) pro vapor TIGHTNESS MEMBRANE pro-200 MICRON. 8-2 x 15.2 + 13.85 x 14.0 + 6.15 x 11.0 = 379.19

TOTA L 37 7-19 M2

6A. SEALING.

a) COMPRESOIVE FILLER

$$8^{+} \times 2 + 19^{+} \times 2 = 55^{-1}$$
 $14.^{\circ} + 16.^{\circ} + 25.^{\circ} = 54.^{\circ}$
 $14.^{\circ} + 16.^{\circ} + 25.^{\circ} = 54.^{\circ}$
 $2.^{\circ} \times 2 + 1.^{\circ} \times 2 = 3.^{\circ}$
 $3.^{\circ} \times 2 + 1.^{\circ} \times 2 = 30.^{\circ}$
 $3.^{\circ} \times 2 = 30.^{\circ}$
 $3.^{\circ} \times 3 = 7.^{\circ}$
 $3.^{\circ} \times 4 = 30.^{\circ}$
 $3.^{\circ} \times 4 = 30.^{\circ}$
 $3.^{\circ} \times 4 \times 3 = 7.^{\circ}$
 $3.^{\circ} \times 4 \times 3 = 7.^{\circ}$
 $3.^{\circ} \times 4 \times 3 = 7.^{\circ}$
 $3.^{\circ} \times 4 \times 3 = 10.^{\circ}$
 $3.^{\circ} \times 4 \times 3 = 10.^{\circ}$
 $3.^{\circ} \times 4 \times 3 = 10.^{\circ}$
 $3.^{\circ} \times 4 \times 3 = 30.^{\circ}$
 $3.$

```
T. pook & WINDOW
```

B. FINISH WORK

BA INTERIOR

a) MORTAR STEEL TROWEL &= 20.

TOTA - 257, 36 42

C) CERAMIC TILE W/ MORTAR DED toxt. TOTAL 85.73 MZ

TOTAL 13,18 42

d). HORTAR STEEL TROWEL BASE
$$H=100$$

STORAGE $(5.9^{4}+6.8^{4}) \times 2$ = 25.6

 $\Delta 0.8 + 1.6$ = $\Delta 2.8$

HACHINE $(7.0^{4}+13.8) \times 2$ = 81.6

 $\Delta 1.6 + 1.2 + 1.8 + 1.8$ = $\Delta 6.8$

HOPULE $(8.0^{4}+1.0^{4}) \times 2$ = 26.0

 $\Delta 3.0 + 1.0$ = $\Delta 9.0$

TOTAL 99.6 M

(c) UINYL COUE BASE

MEETING. $(4.2 + 5.15) \times 2$ = 11.1

 $\Delta 0.0 + 0.65$ = $\Delta 0.52$

CORRIDOR $6.75 \times 2 + 12.1 \times 2$ = 37.7

 $6.3 \times 2 + 12.1 \times 2 = 37.7$
 $6.3 \times 4 + 1.8 \times 2 = 2.6$
 $\Delta 0.9 + 1.2 = 2.6$
 $\Delta 0.9 + 1.2$
 $\Delta 0.9$

```
f) CERAMIC WALL TILE
 TONET. (2.95+ 3.45) x 2 x /.6 = 20.48
       0,7 x 2 x 1,6
                            2,24
      A 0.65 x 1.6 = A 1.04
 SHOWER (30+1.8) × 21 = 10.08
9) MORTAR STEEL TROWEL (WALL) TOTAL 31.76 M2
 MODULE TEST (8°+ 15.°) × 2 × 5.° = 230.°
       8 7.0 × 0.9 × 2 = 0 /2.6
       A 3.0 × 2.0 × 3 = A /8.0
        SOUTH X 0.35 X 6 = A 0.76
       4 3.0 X 4.0
                           = 4 /2.0
 MACHINE (7.0 + 13.8) x 2 x 4.0 = 166.4
       A 2.0 × 2.0 × 3
                          = 4 /2,0
       0.3 x 0.3
                             = 0.09
       418 x 21 x 3
                             = 0 11.34
       A 12 x 2-1
                              = 4 2,52
     41.6 x 2.1
                             = 3,36
  STORAGE (5.95 + 6.85) x x x 3.0 = 76.8
      4 2-0 x 0-9
                             = 4 /. 8
      A 1-6 x 2-1
                              = 4 3,36
      0-8 x 2-1
                             = 4 1,68.
```

375, 60

CORRIDOR
$$(6^{7}x) + 12^{-1}x^{2}) \times 3^{-1} = 90.48$$
 $5^{3} \times 2 \times 3^{-1} \times 2 = 25.88$
 $41^{3} \times 3^{-1} \times 2 = 25.88$
 $41^{3} \times 3^{-1} \times 2 = 25.88$
 $40^{3} \times 3^{-1} \times 2 = 25.88$
 $40^{3} \times 3^{-1} \times 2 = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1} \times 2^{-1} = 25.88$
 $40^{3} \times 3^{-1} \times 2^{-1$

TOTAL 599, 24

TOTAL 61.05 42

1) GLASS FIBER CEMENT BOARD CEILING.

TOTAL 80, 93 42

i) EXPOSED CEILING.

TOTAL 257, 36 M2.

EXISTING CONTROL BUILDING

a) PLASTER WALL BOARD.

TOTAL 108.9 42

BB. EXTERIOR.

a) CEHENT MORTAR BROOM FINISH		
A LINE 11.2 x 3.64	æ	80,77
a 1.8 x 2.1	5 =	3 ′ 28
& 2.0 x 0-9	~ Q	/. P
a o.et x o.et	= 4	0,06
R LINE 3.0 X 3.64	=	10.92
CLINE 14 × 1.01	₹	14.34
D LINE 100 x 4.64	E	86. 8
11.2 × 5.64	, mar.	63.17
42 × 1.01	z	8,28
8 2° × 2° × 2	= 4	A. °
△ 3.° × 4.°	= △	12.0
E.O. X E.O. A	<u> </u>	0.09
the, o x theo a	= 0	0.13
E. LINE 15.4 x 5.64	=	P6. P6
83.0 × 2.0 × 2.	c 0	12.0
s or attern a str	= 4	0.13
1,8 LIME 8. X 5.64 X 2	2	94.25
47.0 x 0.9 x =		
4 3° × 2.0	= 4	6.0
x x this x this A	- d	0.5

3,5 LINE
$$7^{2} \times 8.64 \times 1 = 66.72$$
 $12.3 \times 3.64 \times 2 = 89.54$
 $18 \times 2.1 \times 2 = 87.56$
 $80.9 \times 2.1 = 87.56$
 $82.9 \times 2.1 \times 2.1$

$$(8.4 \times 2 + 19.5 \times 2) \times 0.15 = 9.37$$

$$(19.2 \times 2 + 11.2 \times 2) \times 0.15 = 7.62$$

$$2(3.6 + 2.4 + 1.5 + 2.4) \times 0.15 = 2.1.89$$

TOTAL 17. 88 M2

$$(8^{-2} \times 2 + 15^{-2} \times 2) \times 0^{-17} = 7.96$$

$$(19^{5} \times 2 + 14.0 \times 3) \times 0^{-17} = 13.77$$

$$= 40.68$$

TOTAL 21.05 M2

d). MORTAR STEEL TROWEL WINDOW SICL

7. TAL 27.0 M

TOTA L 23,7/ M2

8C. PAINTING.

$$7.8 \times 3.^{1} \times 9 \times 3.^{7} = 80.82$$
 $3.^{\circ} \times 9.^{\circ} \times 3.^{7} = 32.9$
 $0.9 \times 2.^{1} \times 3.^{7} = 5.00$

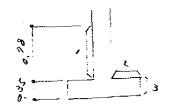
| b) FOR WOOD DOOR.

 $7.5 \times 3.^{1} \times 3.^{7} = 6.0$
 $1.6 \times 3.^{1} \times 3.^{7} = 9.07$
 $1.8 \times 3.^{1} \times 3.^{7} = 9.07$
 $1.8 \times 3.^{1} \times 3.^{7} = 10.27$
 $0.8 \times 3.^{1} \times 3.^{7} = 22.60$
 $0.61 \times 3.^{1} \times 3.^{7} = 3.69$
 $0.61 \times 3.^{1} \times 3.^{7} = 3.69$
 $0.61 \times 3.^{1} \times 3.^{7} = 3.69$

9. MISC . WORK

$$(1.8 \times 3 + 3.0 + 1.5) \times 3.1 = 13.52$$

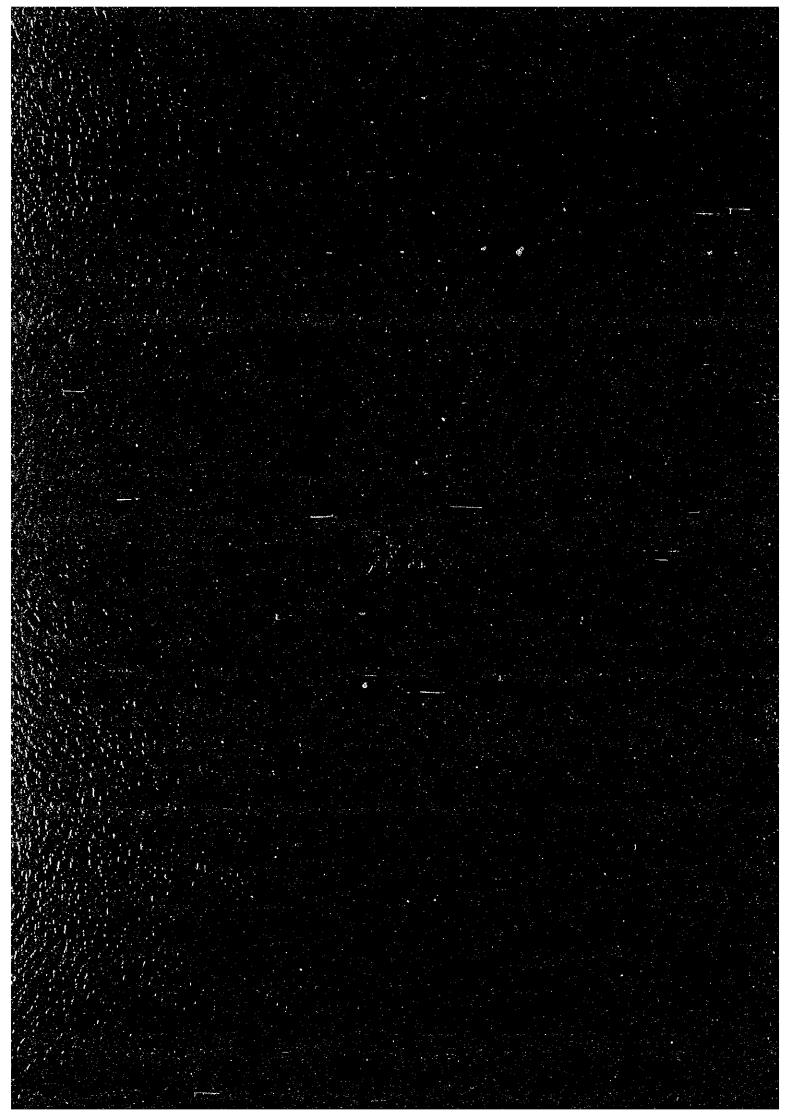
TOTAL 02, 95 MR


b) MISC. STEEL

LADDER \$ 19 12 × 0.4 ×
$$2^{-3}$$
 × 8/m = 10.7
8 × 1.2 × 2^{-3} × 8/m = 21. ×
FB-JO19 6. × 2 × 3^{-33} × 9/m = \$2.36
FB-JOX9 0.2 × 8 × 7^{-06} × 9.32

TOTAL. PS. 78 kg

8E. COAL TAR PAINT (for CONCRETE SURFACE IN contact with soil)


	(A) cms: 035 x (12.0 + 10.0 +)	ť	2,2
	(B. UNE = 0.25 " × 3.0 " X ?	÷	2,
,	(CINE = 0.25 x (24? * + 23.7 ")	;	11,98
:	(CINE: 025 " (182 + 183 ")	Ł	2.6
3 . ,	(CINE = 055 ×1 92 mx 22 m)		4.1
	(CIME: 0.25 x (1757 185")	*	2.8
	(82 + 72 m)	=	28.E
	CECINE: OSEM FEISMY ?	٤	3.08
,	(2) CINE : 0'52 " 1 18 32 " 18 32 ")	z	6.68

SUB TOTAL 18.1

JUB 10 TAL 32904

Total 367.14 m2

