(1) Engine output

Engine output (metric horsepower: PS) can be found by using the followng formula:

Engine output: Pe
$$\geq \frac{P}{0.736 \times \text{M/G}}$$
 (P.S.)

$$1 (PS) = 0.736 (kW)$$

Generator efficiency (
$$H_G$$
) = 96 (%)

$$PG \ge \frac{5,000}{0.736 \times 0.96} \sim 7,080 \text{ (P.S.)}$$

(2) Rated capacity of the generator

The rated capacity ${}^{p}G$ (kVA) of the generator can be found by using the following formula:

$$PG = \frac{P}{P \cdot f} = \frac{5,000}{0.8} = 6,250 \text{ (kVA)}$$

where, power factor of the generator: P.f = 0.8

4.2.2 Step-up Transformer

Two (2) banks of single-phase transformer (Total 6 units, 18.75 MVA) are installed to step-up generated voltage at Bushrod Diesel Plant. As those banks are seriously obsolete and also spare one is already out of order, the total reliability of the plant is assumed very poor, and so one (1) bank of the said banks will be replaced with one 20 MVA transformer, considering the future development plan.

4.2.3 Station Service Transformer

Two (2) banks of 500 kVA Transformers are installed for station service purpose at Bushrod diesel plant, but those ones are obsolete. For the above-mentioned reason, one of the transformers will be replaced with one same capacity transformer.

4.2.4 Switchboard

The below-mentioned supervisory and control panels must be able to control and supervise the operation of the diesel generating units in this Project:

- (1) Main supervisory controls
- (2) Generating unit control panels
- (3) Neutral point grounding resistor panel
- (4) DC distribution panel
- (5) AC distribution panels
- (6) Excitor panels

4.2.5 Circuit Breakers

Switches are required to start and stop the power supply generated by the diesel generating units under this Project to the existing buses through which the power is supplied.

(1) 15 kV circuit breaker

A vacuum circuit breaker (VCB) should be adopted for this purpose since it is very reliable and economical. The function of the CB is to break the current if any troubles occur in protecting the electric equipment and instruments. It is "closed" during normal generation and "opened" during suspecded operation.

(2) 72 kV circuit breaker

A gas circuit breaker (GCB), SF6, which is generally adopted in this class of voltage, should be adopted in this Project.

4.2.6 Equipment Schedule

The specifications of the equipment to be granted are outlined below:

(1) Principal Equipment

Principal equipment shows in Table 4-1.

(2) Auxiliary system

As shown in the attached Fig. 3-7 and 3-8, the heavy oil and diesel oil should be branched from the existing system and supplied to the generating units, while the cooling water should be supplied from the nearest water supply pipe.

The new plant should be separated from the existing Bushrod Plants No. 5 and No. 6 to ensure reliability of power supply.

Special consideration should be given to the disposal of waste oil by constructing waste oil tanks and incinerators so that it may be disposed of within the power plant.

Concerning the steam for heating the heavy oil supply system which is presently supplied from the Luke Diesel Plant, consideration should be given to utilizing the steam from the engine to be constructed in this Project so that reliability and stability of the power supply may be enhanced.

(3) Materials for maintenance

(a) Main equipment

To the main equipment to be provided under this Project should be added those materials and spare parts which are required for the daily maintenance of the main equipment for a three-year operation as well as those spare parts which are required for carrying out two overhaulings (mainly of the engine), such as piston rings, gaskets, and bearings.

Table 4-1 Principal Equipment (1/2)

				Quantity	
Item		Specification	Phase I	Phase	Total
Diesel Engine	Type Output Speed Cooling method Fuel	: 4-cycle, stationary type, for power generation use : Approx. 7080 (PS), continuous : Medium-speed class : Radiator : Heavy Oil C	l set	i set	2 sets
	Type Rated output Rated capacity Voltage No. of poles Power factor Frequency Insulation class Excitation method Cooling method	: Three-phase, Ac, horizontal, synchronous generator : 5,000 (kW), continuous : 6,250 (kVA), continuous : 12.5 (kV) : 10 (poles) : 0.8 (delay) : 60 (Hz) : Class F : Brushless	 a n	∾. 0 11	2 sets
Set-up Transformer	Type Rated capacity Voltage Frequency Connection Neutral point	: Outdoor, 3 phases : 20 (MVA) : 12.5/69 (kV) : 60 (Hz) : Delta/Y : Direct grounding	·I	ა მ ⊓	1 set
Station Service Transformer	Type Rated capacity Voltage Frequency Connection Neutral point	<pre>: Indoor, 3 phases : 500 (kVA), continuous : 12.5 (kV)/440 - 254 (V), (3 phases-4 wires) : 60 (Hz) : Delta/Y : Direct grounding</pre>	٦ ٥ ٥	1 .	I set

Table 4-1 Principal Equipment (2/2)

+			3	Quantity	
ıcem		Specification	Phase I	Phase II	Total
Circuit Breaker	Type Rated voltage Rated current Rated breaking current	<pre>: Outdoor, three-phase gas circuit breaker : 72 kV : 1,200 (A) : 20 (kA)</pre>	· I	ი გ ე	1 set
Metal Enclosed Cubicle	Type Circuit breaker Rated voltage Rated current Application	<pre>: Indoor, enclosed, self-supported : Vacuum : 15 kV : 1,250 A : For 12.5 kV circuit</pre>			
		(a) For generators (b) For step-up transformer (c) For 12.5 kV feeder (d) For gas turbine generation (e) Station service transformer x 1	ი გ გ ზ	ი ი 1	S S E C C
Switchboard	Type Application	: Indoor, enclosed, self-supported : For control and protection			
		(a) Main supervisory control panel x 2 (b) Generating unit control panel x 2 (c) Neutral point grounding resistor panel x 1 (d) DC distribution panel (120 V) x 1 (e) AC distribution panel (400 V) x 2 (f) Excitor panel	Total 6 sets	Toatl 4 sets	Total 10 sets
Power Cable	Type Voltage Cable thickness	: CV cable : 15 kV : 250 (mm ²), 150 (mm ²), 38 (Mm ²)	l lot	l lot	2 lots

(b) Switchboards (and others)

It is natural that the types and quantities of spare parts to be porvided should differ between stationary equipment and equipment with movable parts. Spare parts (such as fuses and pilot lamps) which are required for daily maintenance for the three-year operation should be granted together with those spare parts which represent, at least, one item per one type for i) those which are subject to mechanical wear and degradation such as relays, electromagnetic contactor coils, contacts, gaskets, and bearings, and ii) those which cannot be repaired at the site, including bushings, thermometers, oil level gauges, and selector switches.

4.2.7 Affect on the Power System

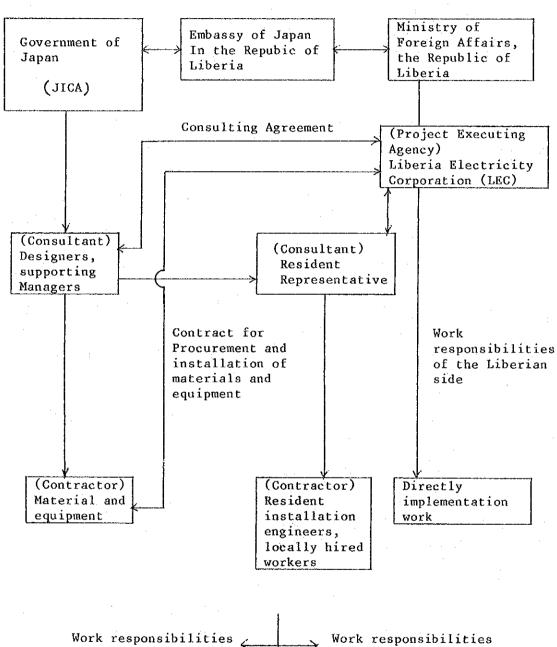
The power distributing facilities such as transmission lines and substations have ample capacities in the Monrovia Power System. No problems will occur in this system, providing the 10-MW generating units of this project are installed.

CHAPTER 5 PROJECT IMPLEMENTATION PLAN

CHAPTER 5 PROJECT IMPLEMENTATION PLAN

5.1 IMPLEMENTATION ORGANIZATION

As a result of discussions with the Government of Liberia, the Government of Japan has determined to implement the required work under the below-mentioned organization to carry out this Project under the grant aid cooperation of the Japanes Government. Fig. 5-1 illustrates the principal project implementation system.


5.1.1 Scope of Work on the Liberian Side

After conclusion of the Exchange of Notes (E/N), the LEC will assume responsibility for work items assigned to Liberian side. It will conclude agreements with a Japanese consultant and contractor and proceed with installation work of the grant equipment. The LEC Section in charge of this Project at the implementation stage is the Technical Section, the Corporate Planning and Development Dept., Technical Div. When the implementation stage reaches its peak, however, a project team composed of technical staff will be established.

The LEC is preparing budget for implementing the work that falls within the scope of Liberia's responsibilities.

Conclusion of banking arrangement (B/A) covering disbursements in this Project and the issuance of the authorization to pay (A/P) under the consulting agreement and contractual agreement will be conducted between a bank to be designated by the Liberian side and a Japanese foreign exchange bank.

Fig. 5-1 Project Implementation Organization

5.1.2 Scope of the Consultant's Work

After the Japanese Government decides on this Project, the Government of Liberia and the Government of Japan will exchange notes, and a consulting agreement for the Project will be concluded between LEC and a Japanese consulting firm. Detailed design, preparation of tender documents, bidding and supervision of construction work should then be carried out under the said consulting agreement.

(1) Detailed design

The consultant should determine the contractual conditions necessary for contracted work, including but not limited to the general and special conditions, agreement forms, technical specifications and other drawings and formats in accordance with the results of the basic design survey.

(2) Tenders for contractor selection

Before commencing construction, the consultant shall, for the purposes of selecting the contractor, issue a public notice inviting tenders, receive tender requests, convene a meeting to explain the tender conditions, and issue the tender documents. After the tendering period, the consultant shall accept and review the tenders and provide the necessary assistance in the conclusion of a contracting agreement between the LEC and the Japanese contractor.

(3) Review for approval drawings

Any necessary work required to approve the equipment and material manufacturing drawings to be submitted by the contractor shall be conducted by the Japanese consultant who acts on behalf of the LEC, since the drawings are indispensable for the procurement of such equipment and materials and are urgently required.

(4) Shop tests

So-called "shop" tests should be carried out to confirm that the equipment manufactured by the contractor is being or has been manufactured in accordance with the technical specifications designated

in the contracting agreement and the drawings approved by the consultant. These tests should be carried out in the presence of the Japanese consultant who acts for the LEC.

(5) Supervision of site construction work

The consultant shall dispatch its staff to the job site at the critical work stages, such as the discussion meetings prior to commencement of construction, installation of main equipment, equipment adjustment and tests, and delivery in accordance with the consulting agreement to supervise this project in such a manner that it is completed smoothly within the period specified in the E/N.

(6) Reports on Work Progress

The consultant shall send a monthly report, whenever appropriate, to the Government of Japan on the state of progress of this Project during those periods in which the contractor manufactures, transports, installs, adjusts and tests, and delivers the equipment.

5.1.3 Scope of the Contractor's Work

After concluding the contracting agreement with the LEC for the supply and installation of grant aid equipment under this Project, the Japanese contractor shall carry out the below-mentioned work.

(1) Preparation of manufacturing equipment drawings

The contractor shall prepare design drawings for manufacturing equipment to be granted under the conditions of the agreement and apply for approval to the consultant.

(2) Manufacturing of equipment to be provided

The contractor shall manufacture the equipment to be provided in accordance with the drawings duly approved and request the consultant to witness shop tests conducted by the contractor for the purpose of confirming that the equipment being produced or already completed meets the contractual conditions and the requirements specified in the approved drawings.

(3) Transportation

The contractor shall transport the equipment and materials from a port of departure in Japan to Monrovia as the port of destination in the Republic of Liberia and shall carry out land transportation to the Bushrod Power Plant site of the LEC after unloading and completing customs clearance at the port of destination.

(4) Installation

The contractor shall prepare the foundations for installing the equipment to be provided, and undertake installation work including connecting buses to the existing power system, connecting fuel pipes to the existing fuel pipeline, and connecting cooling water pipes to the existing cooling water pipeline.

(5) Adjustments and tests prior to taking-over

The contractor shall carry out a series of adjustments and tests to confirm the performance of the diesel power generators after completing the installation work.

(6) On-the-job training

During the installation of the equipment, the contractor shall provide on-the-job training and maintenance training to the LEC personnel who are expected to take responsibility for the operation and maintenance of the equipment.

5.2 SCOPE OF WORK

The scope of work to be performed by the Government of Liberia and the Government of Japan for this Project is stated below:

5.2.1 Scope of Work to be Performed by the Government of Japan

(1) Manufacturing of the equipment and materials listed in section 4.2.6 above

- (2) Marine and inland transportation of the equipment and materials as specified in the item (1) above
- (3) Installation, adjustments, and tests of the said equipment and materials
- (4) Consulting work related to detailed design, tendering and administration of construction
- 5.2.2 Scope of Work to be Performed by the Government of Liberia
 - (1) Provision and preparation of a construction site
 - (2) Opening and closing of an entrance into the generator house required for delivering the equipment and materials as specified in Section 5.2.1 (1) above
 - (3) Removal of the existing power plant and ancillary facilities and cleaning of the site after the removal
 - (4) Supply of water and electricity during the construction work and supply of fuel for trial operation
 - (5) All items other than those which are carried out under the grant aid cooperation

The implementation of this grant aid shall be based on the premise that the Government of Liberia is responsible for taking the necessary measures to provide exemption of all taxes and customs duties applicable to equipment, materials, and services to be given by Japanese people related to the construction work and to manage and operate this facility smoothly and promptly.

5.3 PROCUREMENT, TRANSPORTATION AND CONSTRUCTION PLAN

5.3.1 Equipment and Material Procurement Plan

Those items with specific applications required in implementing the construction work are seldom produced in the Republic of Liberia, and so their supply must come from imports from Japan. The table below shows the

plan to procure the main equipment and materials related to implementation of this Project:

Procurement from Japan	Local procurement
Diesel Engine Generator Transformer Switchboard Pump Pipe and valve Cable conduits and cable Steel material Paint Special maintenance tool Other material Spare parts (for three-year normal operation)	Crossties Cement Aggregate (sand and gravel)

It is necessary to determine the construction stages by fully considering the anticipated progress in inland transportation and delivery of the equipment and materials to the site as well as considering the foundation and installation work.

Presently it is thought appropriate that the marine transportation of equipment and materials should be divided into 2 times; the first vessel shall transport tools and ancillary equipment and materials while the second one shall transport the main equipment and other materials. After the main equipment and materials are unloaded at the port of Monrovia, transported to the site, assembled, and mechanical, and electric work adjustments and tests carried out, the completed diesel power plant shall be handed over to the organization responsible for project implementation.

When taking the above-mentioned factors and the time required for marine and inland transportation into consideration, the second vessel shall have to depart from a Japanese port at least five (5) months before the intended delivery date of the equipment to be provided. It is necessary, therefore, that procurement of the equipment and materials including manufacturing, inspection, packing, and transportation should be completed in time for such departure.

Concerning those items among the main equipment and materials which may be easily damaged by impact or humidity, and/or are sensitive to high temperature, great care should be given to packing and thorough inspections should be applied prior to shipment. For example, a switchboard, which incorporates lots of instruments and may be easily damaged on impact should be securely fixed in position when packed. Both the generator stator and the rotor which may be easily damaged by humidity should be vacuum-packed, and paints which are extremely sensitive to high temperature should be packed in a manner to prevent ignition during transportation.

Since periodic inspection and maintenance should be fully carried out during the management and operation of facilities to be provided after they are handed over to the LEC, it will be necessary for this Project to include an appropriate number of spare parts in addition to the main equipment and materials so that any possible troubles may be quickly and smoothly coped with.

5.3.2 Transportation

Several shipping companies ship from Japan to Monrovia each month. Although full container vessel may be sometimes assigned to this line, cargo to be loaded and unloaded at that port is sometimes so small that regular assignment is not always carried out.

Moreover, some types of equipment included in this Project are so eavy that a vessel equipped with a heavy derrick is required. It is necessary, therefore, to establish a shipping plan at an early stage.

Regarding inland transportation in the Republic of Liberia, transportation of heavy cargo needs particular review. The maximum available trailler in the Republic is 40 tons, and if the cargo exceeds this weight, some transportation means must be procured in a third country and delivered to the Republic. With reference to cranes to be used for unloading and installing equipment and materials at the power plant site, the LEC presently has one 70-ton crane. This has the capacity to unload only, and when hoisting upstairs, the 70-ton crane will have to be assisted by a crane with a lifting capacity of 30 tons or more. Since such a 30-ton crane is not available in the Republic, it is necessary to secure it in a third country.

It is recommended that equipment and materials other than heavy or long items should be housed in a container for the purposes of smooth cargo handling at Monrovia, inland transportation, protection from theft, and storage at the construction site.

5.3.3 Implementation Plan

Immediatly after the Exchange of Notes (E/N), the consultant shall conclude a consulting agreement with the LEC, prepare a detailed design in accordance with the plan of the Basic Design, and fully explain the results to the LEC. At the same time, the consultant shall have to confirm detailed schedules of the work to be carried out by the Government of the Republic of Liberia. Among others, the removal of existing equipment, the clearing of the site after removal, and the securing of an entrance for delivering the main equipment must be completed before the Japanese contractor commences installation work of the equipment. This is the key point if the whole work is to be smoothly completed. It is also necessary to devise a plan, as carefully as possible, and to establish concrete construction procedures which do not require any readjustments at a later stage, incorporating the scope of work of the Liberian side, installation and delivery work of equipment and materials, commencement schedules for work items in each stage, and demarcation of work between the parties.

Since this Project includes installation of the equipment in a power plant in which operating power facilities already exist, it is obviously essential to conduct discussions and adjustments between the parties concerned before the Japanese contractor starts such types of work as connection of the buses to the existing power system, connection of the pipes to the existing fuel pipeline, and connection of the pipes to the existing cooling water pipeline. It is hoped that the LEC will manage these works in an appropriate manner so that they may be completed in time.

5.4 IMPLEMENTATION SCHEDULE

The implementation schedule for this Project has been prepared as shown in Fig. 5-2 "Project Implementation Schedule", on the assumption that it will take twelve (12) months from the conclusion of the E/N between the Governments concerned to the transfer of the facilities to the Liberian authorities.

Implementation Schedule of the Project for Improvement of Electric Power Supply in Monrovia Fig. 5-2

			:							ar.			-
0	Item Month		1 2	က	4	ſΟ	ω_	2	ω	တ	10	11 1	2 × × × × × × × × × × × × × × × × × × ×
1	Exchange of Notes (E/N)	-;;;-										-	
23	Consultancy Service Contract Detailed Design / Preparation of Tender Documents	7	<u>[]</u>	<u> </u>								<u> </u>	o rhase
3.	Issue of Tender Documents		7	4	 	<u> </u>	ļ		<u> </u>		 - -		
4	Tendering and Signing of Contract/Verification		<u> </u>	├ ┃├	 -п⊲-	_			<u> </u>		 		ľ
S	Approval of Drawings		<u> </u>	<u> </u>	\coprod	$\ \cdot\ $	 				 		
. 9	Manufacturing Shop Test				 L_	 	<u> </u>	⊿	<u> </u>	_	 		
7.	Marine Transportation				 	<u> </u>				 	 	<u> </u>	
80	Pre-Construction Meeting			 	 		<u> </u>		Т' <u> </u>	П	 		
ი ე	Inland Transportation			<u> </u>	<u> </u>		<u> </u>		lπ	П			1
10.	Removal of Existing Equipment (LEC)				<u> </u>	Ш_				 			· ·
-	Installation Work			 	<u> </u>					+ -	+ -		
12.	Taking-over Test					ļ				1	 		
13.	Technical Transfer			<u> </u>		<u> </u>			_		$\dagger \dagger$	H	TOWN F-Breed
14.	Commissioning						ļ				 	4	
			1 2	3	4	ſΩ	9	7	σ	တ	0,	11 12	1
													1

The implementation of this project will be divided into two (2) phases due to the regulation of the grant aid program and in order to make more elaborate technology transfer during installation and testing stages.

5.5 OPERATION AND MAINTENANCE PLAN

Periodic inspections as well as daily checkings are indispensable so that the equipment can achieve full performance once operation begins. It is important, therefore, to be able to operate and maintain the equipment through the on-the-job training to be given during the installation stage. It is also important to prepare a maintenance and repair plan covering the operation plan based on the items described in the manual prepared by the manufacturer and to observe the plan without fail.

Presently, the operation and maintenance personnel of the Bushrod diesel plant belong to the common organization of the Luke diesel plant. But after installation of the new diesel generator at Bushrod plant, in order to clarify the responsibility of personnel of each plant, a separate organization of new Bushrod Plant should be set up and form a new management system similar to the present Luke plant.

Presently, the Luke plant is adopting an operation system whereby operation and maintenance is undertaken by Liberian engineers under the guidance of three foreign experts. Therefore, it will be necessary, that the training after the commissioning in operation and maintenance by Japanese experts for the equipment to be provided by the grant aid should be considered.

CHAPTER 6 PROJECT EVALUATION

CHAPTER 6 PROJECT EVALUATION

6.1 PROJECT BENEFITS

6.1.1 Alleviation of the load shedding

Despite the overall decline in power consumption, the load shedding have been, in the recent years, practiced daily in the Monrovia Power System in Liberia. Taking the load shedding during the dry season last year (January to May) for instance it averaged 3.3 hours a day for one feeder of the main substations and sometimes it reached appriximately 5 hours on average at a certain substation. Moreover, in some feeders no electricity was supplied for an entire day. The existing facilities cannot cope with such a grave situation since the facilities are extremely obsolete and even the newly installed facilities break down frequently. Therefore, there is little hope for a reliable supply of electric power under the present circumstances. It is predicted that there will be 6-hour power shortage a day in the 1989/90 and the supply-demand balance will become even more critical.

When the 10-MW generator which is planned to be provided from the Government of Japan commences operation, the shortage time will be reduced greatly, from 6 hours to 1 hour. Yet the problem will not be solved entirely unless additional diesel generators (20 MW) are introduced urgently or a new hydroelectric power plant is constructed. However, Japan's grant aid assistance can be regarded as an emergency measure expected to greatly relieve the intensive load shedding in the Monrovia Power System.

6.1.2 Contribution to Financial Position

As already stated, the financial position of the LEC is weak with problems such as uncollected electricity bills, non-technical losses and serious income deficiencies. For the implementation of the "Five-Year Development Plan", the securing of financial sources is a major task. By the implementation of this project, the LEC anticipates 520 GWh of newly generated electric power for 20 years (10 MW x 0.8 x 65,000 hours) and estimates 85 million U.S. dollars in revenue. Even considering a loss

ratio of 28%, the revenue from the electricity supply is expected to amount to 61.8 million U.S. dollars. As a result, the financial condition will be improved by about 309 million U.S. dollars annually. Since the total revenue of the LEC was approximately 35.6 million dollars in the 1984/85, this new revenue is equal to about 9% of the total revenue an amount that can cover almost 60% of the expenditure on fuel.

Even when deducting expenses for personnel, fuel and maintenance required in the operation of this project from the gross revenue, a 2.0 million U.S. dolairs increase in revenue will be netted to contribute greatly to the LEC's finances.

6.1.3 Savings of the Fuel Expenditure

Oil diesel generation is the LEC's main power source, particularly in the dry season. For this reason, the financial burden represented by fuel expenses is extremely heavy. In 1986 load shedding had to be practiced in larger areas due to budgetary restrictions on fuel purchases. The expenditure on fuel has fluctuated as follows: 9.4 million dollars in 1981/82, 8.6 million dollars in 1982/83, 7.7 million dollars in 1983/84 and an increase to 9.6 million dollars in 1984/85. In 1985/86, the expenditure decreased to 5.3 million dollars according to estimates. This nevertheless, does not mean savings were achieved, what actually took place was that load sheddings were incorporated in the fuel expenses budget for financial reasons. For that reason, substantial power restrictions were implemented.

Accordingly, the reduction of fuel costs is a presing task of the LEC. The corporation intends to restrain as much as possible gas turbine generation, in particular, which has a high fuel-unit price. The generator being considered for introduction in this project uses heavy oil, thus compared to a gas turbine with the same capacity, a total reduction of 44 million U.S. dollars for twenty years will be achieved. Based on the annual expenditures, the introduction of the new generator will enable costs to be saved by 2.2 million U.S. dollars.

As we have seen, by selecting a heavy oil diesel engines with lower operation costs, the LEC's financial burden will be lightened, and the existing gas turbine will be utilized as a reserve power source.

6.1.4 Impact on Liberian People and Public Services

The residential consumers of the LEC amount to 36,000 to 37,000 centering around the Greater Monrovia area. There are around 92,000 families, of which only about 40% are served with electricity.

In recent years the use of electric appliances has remarkably spread through ordinary households. It is expected that the power consumption by households will increase rapidly as the demand for TV, radio, refregerator, air-conditioner, etc. grows. Therefore, load shedding implemented over the past two or five years have been directed mainly at ordinary residence. The citizen's daily life has been seriously affected by the load sheddings. On the other hand, the practice of load shedding also adversely affects daily services of the public organizations such as the government offices, telephone and telegraph offices, hospitals, waterworks offices, etc. The suspension of the government office work caused by load shedding restricts seriously the public services to the citizens.

The increase of LEC's power supply capacity through Japanese cooperation will greatly improve the living conditions of citizens in Monrovia and public services in general. So it can be said that the citizens will be able to benefit substantially from electricity with the improvement of the Monrovia Power System.

6.1.5 Indirect Benefits to the Industrial Sector

The growth of the manufacturing sector has been falling in the reent past. It fell by an average of almost 6% over the five years from 1980 to 1984. As of 1981, there were 852 industrial establishments in Monrovia. The main type of the manufacturers are: wearing garments (426 companies), furniture (171), block factories (99), bakeries (39), Jewelleries (37), and printing and publishing (31). In addition, most of them are small or medium-sized enterprises.

The growth of the domestic industries has slowed down due to the recent world-wide recession and sluggish international price of primary commodities, but until 1980 industrial sector accounted for 17% of the total power consumption.

The LEC's prolonged outages have seriously affected the major industries. Their financial cost burden has been considerable, since they had to install private and back-up generators by themselves in the event of inadequate power supply.

In fact, in case of the Liberia Industrial Free Zone, established in 1975 by the government, it owns a 113-acre total area, however only five companies have moved in so far. In negotiations with foreign companies, the one of main issues cited is the reliable supply of power. The foreign companies have expressed their concern that their initial investment costs will increase remarkably with the addition of emergency equipment to be used in times of power cuts. These added costs will reduce the viability of their investment.

The LEC supplied 14.64 GWh of power to the manufacturing sector in 1985/86. This accounts for little less than 7% of the total. The LEC, nevertheless, intends to increase to more than 28.51 GWh, or 11% in 1986/87. Under these circumstances, the project is extremely important to ensure full year round supply to the industrial sector and it would contribute to reducing the financial burden on each company.

6.2 FINANCIAL EVALUATION

The financial evaluation attempts to analyze the proposed Project of 10 MW diesel units if it has viable financial impact on the LEC. The evaluation assessed the project on the following assumptions regarding the plant operation schedule, projected energy sales, investment costs, operation and maintenance costs, fuel expenses as well as project benefits.

(a) Plant operation schedule

The proposed project is aimed at supplying additional electricity over the present level to the Monrovia Power System during the dry season. Toward the end of the twentieth century it is expected that hydroelectricity power projects will be operational to gradually replace the high cost diesel generation units and to cater to the major energy requirements in the MPS. Thus the said plant operation schedule is envisaged to provide a generation mix and meet rather

medium-term energy needs in view of the current in adequate power generation capacity. Taking the above conditions into account, the plant operation schedule is set as follows:

> 1990 - 1999 3,600 hours operation per annum 2000 - 2009 2.900 hours operation per annum

The gross power generation is computed in that manner accordingly.

(b) Increment in energy sales

The increment in energy sales has been computed by deducting 20% losses in the transmission and distribution systems as well as 8% for auxiliary usage. The total losses of 28% is the projected figure made by the LEC. The present total losses of 39% is also tried as a case in the sensitivity analysis.

(c) Investment Cost

The capital investment cost has been taken from the study team's estimation of the new diesel plant construction cost.

(d) Operation and maintenance costs

The operation and maintenance (0&M) costs are calculated at US\$0.01 per kWh including manpower costs, lubrication oil costs, spare-parts and other related overhead costs. In this connection, the LEC's estimation of 0&M costs i.e., US\$0.012 per kWh is carefully studied for our reference.

(e) Fuel cost

Fuel costs are computed, in this analysis, at the LPRC concession price for fuel oil (US\$0.543 per gallon) and gas oil (US\$0.708 per gallon) as of March 1987 and fuel usages of 0.0526 and 0.0605 gallon per kWh respectively. As international oil prices cannot be predicted easily at present, a 10% increase in prices is tested in the sensitivity analysis.

(f) Benefits

The project benefits have been worked out by multiplying the increment in sales by the average price of energy paid by the consumers which is almost equivalent to the present power tariff rate of the LEC i.e., US\$0.165 per kWh, then collection efficiency which is projected at 87% is applied to complete the Project benefits.

(g) Project life

The project life is taken as twenty (20) years in this evaluation.

The overall financial evaluation, as a result of the above computations, indicates that the financial internal rate of return (or equalizing discount rate) on the project is 19.24%. The net present value is US\$4.72 million at a discount factor of 10% and US\$3.17 million at 12% respectively. The benefit-cost ratio is 1.32 at a discount factor 10% and 1.24 at 12%.

The sensitivity analysis for the following cases shows:

Case-1: 10% rise in fuel costs FIRR is 18.25%

Case-2: 39% for total losses FIRR is 13.79%

Case-3: 77% collection efficiency FIRR is 15.06%

The financial evaluation described above has indicated that the project is viable and will contribute to improving the financial status of the LEC.

Nevertheless, as the sensitivity analysis indicates, the Project feasibility would be affected by the management efforts of the LEC, particularly commercial losses and collection efficiency problems. It should be reminded therefore that the present LEC strategy toward the above issues e.g. Block Mapping Project should be continued and further strengthened so as to fully accomplish the projected benefits.

CHAPTER 7 CONCLUSION AND RECOMMENDATIONS

7.1 CONCLUSION

Reliable power supply is indispensable for people's lives, commercial activities and industrial development.

This project aims at alleviating the urgent problem of power shortages in the Monrovia Power System. As a result of the review of details of the Project, it is confirmed that the proposed project is appropriate and viable from the viewpoints of power supply requirements, technical level and, above all, national economy.

Implementation of the Project will contribute to the elimination of the prolonged power blackouts brought about by the shortage in power supply and thereby will lead to improvements in the metropolitan functions in Monrovia, enhancement of the nation's living standard, and the revitalization of industrial activity. It is also believed that the proposed project will consequently contribute to restoring public confidence in the LEC system.

The Government of Liberia has already committed itself to preparations for establishing an implementation organization, operation and maintenance team, administrative restructuring and personnel training for the Project. Therefore, it is convinced that the proposed project is judged to be fully appropriate for the grant aid cooperation of the Government of Japan.

7.2 RECOMMENDATIONS

The power generating facilities to be provided under the said project will form an integral part of the Five-Year Development Plan of the Liberia Electricity Corporation. It is recommended that removal of the existing equipment, provision of a new entrance to the present generator house, and other works stipulated under the undertakings of the Government of the Republic of Liberia should be carried out in a timely manner and that the construction work detailed in this project be smoothly undertaken within the proposed implementation schedule after conclusion of the Exchange of Notes.

For the purpose of satisfactory operation of the granted equipment over a long period, the Government of Liberia should enable the LEC technical staff who will be engaged in the operation and maintenance in the new Bushrod Power Station to take an active part in assembling and installation works and testing, as far as opportunities permit, so that they will acquire the necessary technologies from the Japanese experts to be dispatched under the project.

It is also recommended that the Government of Liberia ensure the technical staff to observe the inspection and maintenance procedures described in manuals to be submitted by the Japanese contractor and allocate the appropriate budgets required for procuring spare-parts and fuel for the subsequent diesel operations.

It is desirable, in this connection, that technical assistance by the Japanese Government should be continued for a certain period after commencement of operation so that the LEC staff will be fully accustomed to handling the equipment and develop their own technical knowledge and knowhow through on-the-job training.

ANNEX

ANNEX PERTINENT DATA AND INFORMATION

ANNEA NUMBER	•	
1.	Key Personnel with whom the Study Team Met	A-1
2.	Member List of the Basic Design Study Team	A-4
3.	Itinerary	A~5
4.	Minutes of Discussion (Photo Copy)	A-8
5.	List of Recieved Data and Information	A-13
6.	Selection of Diesel Engine Type	A-16
7.	Evaluation of the Existing Concrete Foundations	A-28
8.	Tables	A-32
Q	Figures	۸ الم

ANNEX - 1
Key Personnel with whom the Study Team Met

Organization Name Name Position or Title Embassy of Japan Mr. T. Ishidoh Counselor Mr. J. Usui Third Secretary Attaché Mr. M. toriumi Mr. M. Yoshimura Japan Overseas Coope-Director ration Volunteers/ Liberia, JICA Liberia Electricity Corporation (LEC) Mr. D. Allison Chairman of LEC Board Mr. S.N. Burnette Managing Director (M.D.) Mr. C.Z. Neyor Acting & Dupty M.D. for Technical Services Mr. E.L. Clarke Comptroller, Deputy M.D. for Finance Mr. J.T. Mayah Deputy M.D. for Operations Mr. G.B. Coleman Manager, Corporate Planning Department Mr. E.A. Thomas Assistant Manager, System Study Section Ministry of Foreign Mr. Bestman Assistant Minister for Asian Affairs Affairs Ministry of Planning Ms Liberty Assistant Minister for and Economic Affairs Statistics Mr. Liberty Assistant Minister for Sectoral Planning Ministry of Land, Mr. W. Stewart Deputy Minister for Planning Mines and Energy & Development Ministry of Finance Dr. A. Sayeh Advisor to the Ministor of Finance

Chairman

Mr. C. Bolu

11

Organization Name	Name	Position or Title
Ministry of Public Works	Mr. A. Ricks	Economist, Planning Department
n	Mrs. Belleh	Chief, Planning Department
Liberia Central Bank	Mr. Hunder	Economist, Finance Department
Ministry of Commerce, Transportation and Industry	Mr. B.T. Collins	Assistant Minister for Insurance
Liberia Petroleum Refinary Corporation	Mr. W. Burnette	Deputy Manager for Marketing
Liberia Water and Sewerage Corporation	Mr. A.F. Koiguah	Deputy Managing Director for Operation & Outstations
International Bank for Reconstruction and Development (IBRD)	Mr. J.C. Kendail	Resident Representative
Liberia Industrial Free Zone Authority	Mr. M.W. Dweh	Operation Manager
Local Constructor	Mr. P. Pelizzari	Managing Director, BAO
71	Mr. P.F.J. Stappers	Marketing Manager, Scanship Inc.
	Mr. P. Manninen	Resident Manager, Lemminkainen OY
. "	Mr. M. Mathis	General Manager, Fabra Inc.
n '	Mr. M.S. Hedjazi	General Manager, Hedjazi Steel Works
He'	Mr. D. Frankfort	General Manager, Nesstra Inc.
n .	Mr. S.Z. Ghoussainy	General Manager, K&H Construction Company
	Mr. R.T. Barnes	Manager, Lone Star Insurance Inc.
	Mr. R. Schlitt	Superintendent, Electrical Department Bong Mining
		Company

Organization Name	Name	Position or Title
Educational TV Project (Grant Aid)	Mr. T. Satoh	Chief Engineer, International Division, All Japan Radio & Television Engineering Services Co., Ltd.
U	Mr. Tanagashima	Engineer, Broadcast Installation Section, NEC Corporation

MEMBER LIST OF THE BASIC DESIGN STUDY TEAM, JICA

NAME	DESIGNATION	ORGANIZATION
Mr. Seiichi Kanai	General Direction (Leader)	First Basic Design Study Division, Grant Aid Planning & Survey Department Japan International Cooperation Agency (JICA)
Mr. Takeshi Ichikawa	Electric Power Planner	EPDC International Limited (EPDCI)
Mr. Itsuo Ichinose	Electric & Mechanical Engineer	EPDC International Limited (EPDCI)
Mr. Hisashi Takanashi	Economíst	EPDC International Limited (EPDCI)

ITINERARY

Ordinal Number of Days	Date	Description
. 1	April 19 (Sun)	Leave Tokyo, SR187 at 20:20
2	20 (Mon)	Arrive in Zurich at 06:35
3	21 (Tue)	Leave Zurich 12:40 - Arrive Monrovia 20:40 SR242
4	22 (Wed)	Visit Japanese Embassy, meet the Counselor, Mr. Ishidoh and brief him on the team's activi- ties and schedule according to the inception report.
5	23 (Thu)	Courtesy call to Ministry of Economic Planning, Ministry of Foreign Affairs, Ministry of Finance, Ministry of National Defence (Minister, Chairman of LEC board of directors).
6	24 (Fri)	Bushrod Power Plant. To brief the team's activity and schedule by inception report. To survey the Plant.
, 7	25 (Sat)	Survey Mt. Coffee Hydroelectric Power Station
8	26 (Sun)	Internal meeting to evaluate the collected data
9	27 (Mon)	Visit Bushrod Power Plant. Confirm and discuss the matters of inquiry.
10	28 (Tue)	Visit JOCV office. Visit LEC head office, to sign the minute of discussions.
11	29 (Wed)	Embassy, intermediate report. (Leader to leave for Japan). Visit Educational TV Project contractor's office (Grant Aid).
12	30 (Thu)	Bushrod Power Plant, to collect data and discuss survey schedule. Visit Educational TV Project consultant office (in LBS, Liberia Broadcast Station)
13	May 1 (Fri)	Visit LEC head office, meet Mr. Burnette, Managing Director. Bushroad Power Plant, to inspect its substa- tion. Visit Ministry of Planning and Economic Affairs to collect economic data.
14	2 (Sat)	Visit Bong Mine Co (BMC) to survey electric facility for mining.

ITINERARY

Ordinal Number of Days	Date	Description
15	May 3 (Sun)	Study collected data. Preplaration for studies.
16	4 (Mon)	Visit Bushrod Power Plant to inspect control room. Visit National Port Authority (NPA) for inspection. Visit transport agencies to collect data. Visit Liberia Petroleum Refinery co (LPRC), to survey oil and fuel prices. Visit United Nations Development and Planning (UNDP) to collect research and development data.
17	5 (Tue)	Bushrod Power Plant, basic survey for diesel generating facility. Visit construction companies to collect data. Ministry of Planning and Economic Affairs to collect data. Inspect LEC training center.
18	6 (Wed)	Bushrod Power Plant, inspect for auxiliary equipment. Visit assembly companies to collect data. Visit National Energy Committee, NEC, to research energy policy. Visit Ministry of Land, Mine and Energy to examine mining and industrial statistics.
19	7 (Thu)	Bushrod Power Plant, inspect pipe routing. Visit glass factories, inspect industrial electric facilities. Visit Industrial Free Zone Agency, IFZA, survey for industrial activities. Visit World Bank office collect information on economic affairs.
20	8 (Fri)	Bushrod Power Plant to inspect transportation route for heavy equipment in the site. Survey land transport routes. Visit Ministry of Public Works and research on unit price for construction. Visit Ministry of Finance. Visit Liberia Central Bank, to obtain information on financial affairs, eg., lending rates.
21	9 (Sat)	Bushrod Power Plant, supplementary study and photographing. Visit Telecommunications and Telephone Company, to research tariffs.
22	10 (Sun)	Visit hotels and rentacar companies to collect information on tariffs. Review collected data. Draft understandings of discussions.

ITINERARY

Ordinal Number of Days	Date	Description
23	11 (Mon)	Visit Bushrod Power Plant to discuss understandings of discussions and request additional data. Visit insurance companies to collect data. Visit National Investment Committee, NIC, to research investment by foreign countries. Visit Liberia Water and Sewage Corporation to collect data for tariff and water quality, LEC Headquarters. Division of Commerce to obtain information on collection of electricity bills.
24	12 (Tue)	LEC head office, to sign understandings of discussions and farewell call. Visit Embassy and JOCV office to report. Ministry of Finance to collect data on financial matters. Visit IFZA, UNDP and LEC head office, Department of Personnel Affairs.
25	13 (Wed)	Monrovia 10:20 - Amsterdom 22:10, KL578
26	14 (Thu)	Amsterdom 14:20, KL861
27	15 (Fri)	Tokyo 08:50

MINUTES OF DISCUSSION

ON

THE PROJECT FOR IMPROVEMENT OF ELECTRIC POWER SUPPLY IN MONROVIA

IN

THE REPUBLIC OF LIBERIA

In response to the request made by the Government of the Republic of Liberia for the Project for Improvement of Electric Power Supply in Monrovia in the Republic of Liberia (hereinafter referred to as "the Project"), the Government of Japan has sent, through the Japan International Gooperation Agency (hereinafter referred to as "JICA") which is an official agency implementing the technical cooperation of the Government of Japan, the team headed Mr. Seiichi Kanai, to conduct the survey for 27 days from April 19 to May 15, 1987.

The team carried out a field survey, held a series of discussions and exchanged views with the authorities concerned of the Government of the Republic of Liberia.

Both parties have agreed to recommend to their respective governments and the authorities concerned to examine the attachment herewith toward the realization of the Project.

April 28, 1987.

Leader JICA Study Team

Chirstopher Z.

Acting Managing Director

Liberia Electricity Corporation

Attachment

- 1. The objective of the Project is intended to increase the dry season generating capacity on the Monrovia Power System in order to moderate the intensive load shedding currently being practiced and decrease the dependence on highly expensive gas turbine operations.
- 2. As one solution of the above-mentioned difficulty, the Government of the Republic of Liberia planned an additional total 10 MW diesel generating unit(s) and requested the Grant Aid to the Government of Japan.
- 3. The Team will study and propose the most suitable plan for the Project, after careful investigations on the present electrical power system situation.
- 4. The Team will convey the Government of Japan the desire of the Government of the Republic of Liberia that the former takes necessary measures to cooperate in implementing the Project and bears the cost of the items requested by the latter shown in Annexure-I with in the scope of Japanese economic co-operation program in grant form.
- 5. The Government of the Republic of Liberia will take necessary measures listed in Annexure-II under the condition that the grant aid: assistance by the Government of Japan is extended to the Project.
- 6. Both parties confirmed that the Survey Team explained Japan's aid programme and the Liberia side has understood it.

8

ANNEXTURE-I

The Government of Republic of Liberia has requested to install at Bushrod Yard 10 MW of diesel generating capacity as grant aid assistance from Japan.

The Japanese Mission is to compare and contrast the following options:

- 1) Slow-speed units
- 2) Medium-speed units

B

ANNEXTURE-II

Demarcation of Works Between the Government of Liberia and the Government of Japan.

No.	Description	Covered by	Governmen
		Torant and	Qf_Liberi
1.	To remove the defunct diesel engine generators from Bushrod Power Station		0
2.	To bear the following commissions to the foreign exchange bank for the banking service upon the B/A		
	i) Advising commission of A/P ii) Payment commission		0 0
3.	To ensure unloading and customs clearance at port of disembarkation in Liberia		
	i) Marine transportation of the equipment and devices from Japan to Liberia	0	
	ii) Tax exemption and customs clearance of the equipment and devices at the port of dis- embarkation		o .
 	iii) Inland transportation from the port of disembarkation to project site.	0	
4.	Installation	0	
5.	 To accord Japanese nationales whose services may be required in connection with the supply of equipment and devices and the services and the services under the verified contract such 		· 0
	facilities as may be required for their entry into Liberia and stay therein for the performance of their work.		
	ii) To exempt Japanese nationals from customs duties, internal taxes and other fiscal levies imposed in Liberia with respect to the supply of equipment, devices and services under the Contracts to		0

5

No.	Description	Covered by Grant Aid	Covered by Government of Liberia
6.	To maintain and use properly and effectively the facilities procured and installed under the Grant Aid.		0
7.	To bear all the expenses other than those to borne by the Grant, necessary for the execution of the Project.		0

The Japan International Cooperation Agency (JICA) will send 10 copies of the basic design report to the Government of Liberia around end of August 1987.

6

List of Received Data and Information (1/3)

	E	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Date	o Jacom V Q
•	litie	Author/Fubilsher	published	кепатку
1.	Country Economic Memorandum Preparated for the Liberia Round Table Meeting	Ministry of Planning and Economic Affairs	Oct., 1983	
2.	Economic Survey Liberia 1982		Dec., 1983	
3	Economic Survey Liberia 1983		Dec., 1984	
4	Annual Report of the Ministry of Planning and Economic Affairs to the People's Redemption Conuncil for the Period	=	Jan., 1981	
	April 12 - December 31, 1980			
5	"January 1 - December 31, 1982	=	Jan. 1983	
9	A Study on Public Foreign Assistance and Development Expenditure in Liberia (19868 - 72)	=	Jan. 1974	
7.	External Trade of Liberia Imports 1980	*	Oct. 1981	
∞	Annual Report Jan. 1, 1982 - Dec. 31, 1982	Libelia Electricity Corporation		
٠ •	1979 Annual Report Jan. 1 - DEc. 31, 1979	=		

List of Received Data and Information (2/3)

Annual Report						
Libelia Electricity Corporation "" Sconomic Affairs "" 1980 Ministryu of Planning & Oct. " 1977 " Ministry of Lands and Mines Ministry of Lands and Development Department (LEC) Ministry of Planning and Bevelopment Department (LEC) Ministry of Planning and Ministry of Planning and Ministry of Planning and Ministry of Planning and Economic Affairs		Title	Author/Publisher	Date published	Remarks	
1980 Ministryu of Planning & Oct. Economic Affairs ol.1, Ministry of Lands and Mines Ministry of Planning and Development Department (LEC) Ministry of Planning and Economic Affairs 19977	An	Report 1981 - Dec. 31,	Libelia Electrícity Corporation			
1980 Ministryu of Planning & Oct. Economic Affairs " 1977 101.1, " Nov. Ministry of Lands and Mines Ministry of Planning and Development Department (LEC) Ministry of Planning and Economic Affairs 1977	Ą	Dec. 31,	2			
Beconomic Affairs In the netherlands If the netherlands Ministry of Lands and Mines Corporate Planning and Ministry of Planning and Economic Affairs	₹ >⊃		=			
ria Vol.1, ria Vol.1, " " " " " " " " " " " " "	[12]	Pro-4	of Planning Iffairs			
ria Vol.1, " " " " " " " " " " " " "	O	974 Population and Housing Census f Libería	=	1977		
ITC, The netherlands ITC, The netherlands Ministry of Lands and Mines Ministry of Planning and Development Department (LEC) Ministry of Planning and Economic Affairs	o z	tatistical Bulletin of Liberia Vol.l, o.2	Ξ			
ITC, The netherlands 1982 Ministry of Lands and Mines Ministry of Planning and Development Department (LEC) Ministry of Planning and Economic Affairs	<u>Д</u>	lanning and Development Atlas	=	1983		
lan (1987-1991) Corporate Planning and Development Department (LEC) Ministry of Planning and Economic Affairs	⊱ -1	opographical Map of Liberia : 1,000,000		1982		
Corporate Planning and Development Department (LEC) Ministry of Planning and Economic Affairs	н	ourist Map of Monrovia : 25,000	Ministry of Lands and Mines	1		
Census Ministry of Planning and Economic Affairs	h <u>z</u> 4	ive-Year Development Plan (1987-1991)	Corporate Planning and Development Department (LEC)			
			Ministry of Planning and Economic Affairs	1977		

List of Received Data and Information (3/3)

No.	Title	Author/Publisher	Date published	Remarks
21.	Statistical Bulletin of Liberia, 1986 No.2	Ministry of Planning and Economic Affairs	Nov., 1986	
22.	Country Economic Memorandum, 1983	. =	Oct., 1983	
23.	Second National Development Plan 1981 - 85	=	Jan., 1985	
24.	External Trade, 1980	=	Oct., 1981	
25.	Economic Survey of Liberia, 1982	2	Dec., 1983	
26.	1983	2	Dec., 1984	
27.	" 1984	=	Aug., 1985	
28.	Annual Report, 1980	Ξ.	Jan., 1981	
29.	" 1982	=	Jan., 1983	
30.	1984	£	Jan., 1985	
31.	1986	E	Dec., 1986	
32.	Foreign Assistance and Development Expenditure in Liberia, 1968 - 72	=	Jan., 1974	
33.	Planning and Development Atlas	=	1983	

Selection of Diesel Engine Type

1. Purpose

To select the most suitable diesel-engine type after comparing lowspeed and medium-speed engines technically and economically.

2. Conditions

(1) Output : 10 MW (5 MW (7,080 PS) x 2 units)

(2) Fuel Oil : Heavy oil - Class C

(3) Place to be installed : On No.2 and 3 foundations in the

existing power house

(4) Starting year of operation: Each engine will start operating by

the end of fiscal 1988 and 1989.

(5) Budget : There is a budgetary limitation for

the Japanese Government grant.

3. Sample of Diesel Engine

A sample is shown in Table 1.

4. Limitation of Existing Overhead Travelling Crane

Height from floor level to existing crane rail: approx. 6.5 m

The low-speed engine cannot be serviced by the existing crane as the crane requires 7.7 m from the floor level to pull out the piston (see Table 1). The medium "L" and "V" type engines can be serviced by the existing crane as the height is within the limitation (see Table 1).

5. Weight Limitation of the Existing Foundation

Weight of the existing foundation (see Fig. 1): approx. 400 ton

The following equation is used to calculate the weight limitation for the foundation:

Wf = 0.15 W/N

Wf: Foundation weight (ton)

W : Engine-generator weight (ton)

N : Engine revolving speed (rpm)

The rough estimation of the necessary foundation weight is as follows:

Medium speed "V" engine : approximately 260 ton

No problem

Medium speed "L" engine : approximately 410 ton

to be studied for details

Low speed engine : approximately 450 ton

impossible to use foundation

For a low-speed type, the existing foundation should be reinforced, though reconstruction or reinforcement is very difficult.

6. Size Limitation of the Existing Foundation

The engine anchor bolt size of the existing foundation is approximately 1.8 m wide by 7.2 m long. Therefore, the low-speed engine is not suitable because its base is too wide. The same is true of the medium-speed "L" engine (see Table 1).

7. Running Cost Comparison

For operation and maintenance conditions, see Table 2. Assuming that the personnel cost and lubricant consumption are equal, the spare parts cost is estimated as shown below for 75,000 operating hours and 5,500 startup/shutdown operations.

Item (US\$)	Medium speed "V"	Medium speed "L"	Low speed
Spare parts cost	662,000	622,000	702,000
	(¥98,000,000)	(¥92,000,000)	(¥104,000,000)
Spare parts cost	33,100	31,100	35,100
/year	(¥4,900,000)	(¥4,600,000)	(¥5,200,000)
Difference	<u>+0</u>	-40,000	+40,000
	(<u>+0</u>)	(-¥6,000,000)	(+¥6,000,000)

On the other hand, Table 3 shows the fuel consumption based on the basis of medium speed "V":

Medium speed "L" Increase of US\$31,000 (¥4:6 M)
Low speed engine Decrease of US\$872,000 (¥129.1 M)

8. Operation/Maintenance Technology

Low speed engines, such as Bushrod, Luke, etc. are already familiar to the operators and therefore advantageous in operation and maintenance. However, it is the first time that this type of engine of a Japanese engine of this type is introduced, so operation/maintenance technology will have to be learned for any type of engine. Operation/maintenance technology can be gained by training the instructors after installation, test running and operation startup. Whatever type of engine may be adopted for this Project, it should be considered to arrange for instructor(s) to be stationed in Bushrod New Plant before and until the maintenance staff of LEC may acquire techniques of operating and maintaining the diesel-engine set to be provided under the grant aid.

9. Comparison of Construction Expenses

As shown in Table 4, the construction expenses are approximately US\$ 10^3 x 4,289 (\footnote{4}635 M) for the medium speed "V" engine. Based on this figure, the construction expense increas will be:

Medium speed "L" U\$\$ 10^3 x 1,069 (¥158 M) Low speed engine U\$\$ 10^3 x 3,996 (¥591 M)

10. Simple Comparison of Total Expenses

Taking the medium speed "V" type as standard, expense increases will be:

Medium speed "L" US\$ 10^3 x 1,060 (¥156 M) Low speed engine US\$ 10^3 x 3,164 (¥468 M)

ll. Expediency

As shown in Fig. 2, alleviation of electric power shortage is of prime importance. To adopt the low speed engine, it is necessary to modify the power house and foundations on a large scale or construct new ones. Consideration the various preparations invoilved, we estimate that there will be a delay of about one year.

12. General Evaluation

Considering the gratuitous donation budget, the above comparison and investigation lead, to the conclusion that it is very difficult to adopt the low speed engine and that either a medium speed "V" or "L" engine should be adopted, as shown in Table 5.

It is difficult to transport the medium speed "L" type with full accessories because of its height. This type of engine should therefore be transported as a knock-down kit, thus being disassembled after the plant test-run. This fact imply the necessity of a test-run to confirm the performance prior to the normal field test after reassembly. This disassembly and reassembly will increase cost and time.

13. Suggestion

It is believed appropriate that a "medium speed" and "V" type engine be taken up for the Project. Even if any type of engine is selected, it will be essential that necessary guidance be made in operation and maintenance of the diesel-engine set for a reasonable period of time with the full-fledged cooperation of parties concerned.

Table 1 Comparison of Diesel Engine Generator (Example)

				•
Item	Medium Speed "V" Type Engine	Medium Speed "L" Type Engine	Low Speed Engine (1)	Low Speed Engine
Capacity Class (kW)	5,000	5,000		5,000
Engine Speed (rpm)	720 class	500 to 600 class	277 to 400 class	150 to 160 class
Total Weight (ton)	76	110		240
Necessary Installation Space (m)	·		·	
Length	10.3	11.5	Not avail-	10.5
Width	1.3	2.0	able in Japan	2.6
Height from Common Bed for Piston Overhaul	2.8	4.5		7.7
Fuel Consumption Rate				
Engine End (g/ps.h) at 80% output	137.5	138.0		124.0
Generator end (g/kW.h) at 80% output	194.7	195.4		175.6
Generator Efficiency (%)	96	96		96
Lub. Oil Consumption Rate (g/ps.h)	1.0	1.0		0.8

Table 2 Operation 5 Maintenance Condition (Example)

	7																	
Number of Start-Stop	3				**	- %								365				5,505
Energy Generation (x105 kWh)	14.4			d	······	- <u>-</u>	:							5.8				(289)
Capacity Factor (2)	32.8767					26.484								13.242				(Average 26.393)
Lond Factor (%)	80		,,,, _ ,			·												(Average 80)
Overhaul (After-flour)		7,500	15,000	22,500	30,000	37,500			45,000	52,500		000'09			67,500			6
Midterm Inspection (After-Hour)	2,500	10,000	17,500	25,000	32,500	40,000		42,500	50,000		55,000		62,500			70,000	72,500	20
Aggregate of Operation Hours (Hour)	3,600	10,800	21,600	25,200	32,400	38,900	41,800	44,700	50,500	53,400	56,300	62,100	65,000	66,450	69 350	70,800	72,250	(72,250)
Operation Hours		,	24 hours/day	3,600 hours/year				Feb. to May;	Jun. to Jan.;	6 hours/day	2,900 bours/year				4 hours/day	1,450 hours/year		
Ordinal Number of Year	F- (V	೯೪೪	n w r	- 00	10		12	7 3		9	18	19	27	21	23	24	25	Total No. of

Table 3 Comparison of Fuel Cost (Example) 1/2

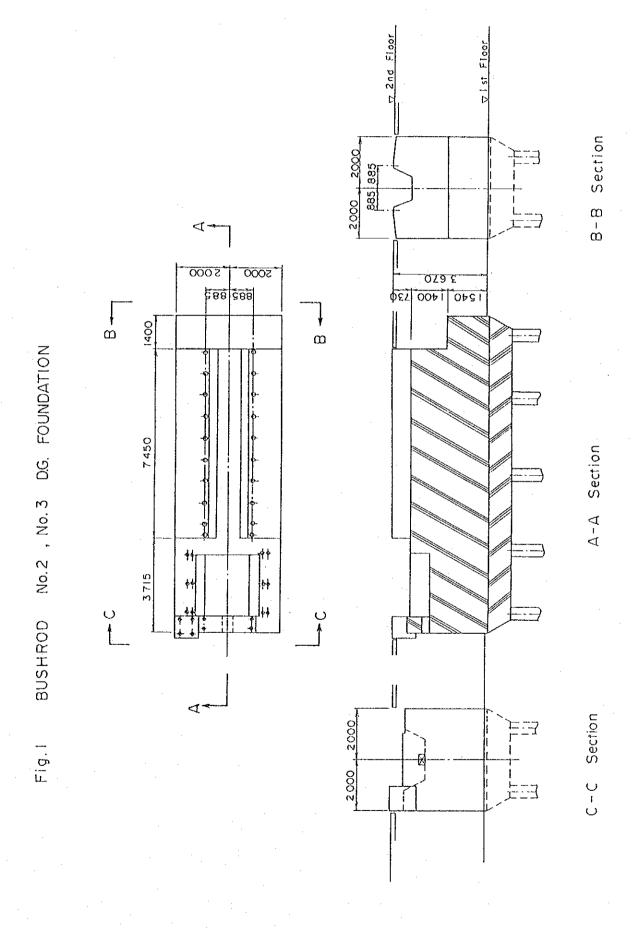
US\$1 = ¥148

20%	item	Explanation	Equation	Unit	Medium Speed "V" Type Engine	Medium Speed "L" Type Engine	Low Speed Engine	Remorks
	Engine Output			PS	7,080	7,080	7,080	
. 7	Generator Output	1 PS = 0.7355 kW	7 = 0.90 kW	K.S.	2,000	2,000	5,000	
m	Engine Fuel Consumption Rate	at 80% load facton		8/ps.lt	137.5	138.0	124.0	Average of Each Company
~	(PS - kW)	1 kW = 1.35962 PS		g/kW.h	186.9	187.6	9.891	France horse power
٠.	Generator Efficiency			×.	96	96	96	
v	Firel Consumption Rate at Generator end	_	4 / 5	8/kW.h	194.7	195.4	175.6	
_	Total Operation Bour	for 25 years		Hour	75,000	75,000	75,000	
60	Number of Starting Times			Time	5,500	5,500	5,500	
6	Operating Hour by Diesel Oil/Time			Hour	-	_	1	
10	Total Operating Hour by Diesel Oil			Hour	5,500	5,500	5,500	
Ξ	Total Operating Hour by Heavy Oil		7 - 10	Hour	005'69	69,500	005'69	
7.7	Average Load Factor			×	- 80	80	80	
Ξ.	Total Energy Generation		2×7×12	×106 kWh	300	300	300	
2	Energy Generation by Diesel Oil		2×8×12	×106 kWh	22	22	22	
15	Energy Generation by Reavy Oil		2×8×12	x10f kWh	278	278	278	
16	Heavy Oil Consumption		6.× 15	×106 kg	54.127	54.321	48.817	
17	Heavy Oil Gravity			, 1/8×	0.9775	0.9775	0.9775	
8	Meavy Oil Consumption (kg - !)		15 / 17	1 901 ×	55.373	55.571	49.941	

Table 3 Comparison of Fuel Cost (Example) 2/2

US\$1 = 4148

No. No. No. No. No. No.	į									
## 1-	N O		Explanation	Equation		Medium Speed "V" Type Engine	Medium Speed "L" Type Engine	Low Speed Engine	Remarks	
oil Consumption (for 25 years) 18 x 20 x106 US\$ 7.946 7.976 on (kg/f)	61				US\$/gal	0.543	0.543	0.543	Price in 1987, US gal	
Oil Consumption (for 25 years) 18 x 20 x106 US\$ 7.946 7.974 On (kg/l) 6 x 14 x106 kg 4.283 4.299 On (kg/l) 22 / 23 x106 f 5.039 5.058 On (kg/l) 1 gal = 3.785 f 0.1871 0.708 0.708 Oil Consumption (for 25 years) 24 x 26 x106 US\$ 0.943 0.946 il Consumption 21 + 27 x106 US\$ (1,315.6x106 TS) (1,320.2x106 TS) ites 28 x 2 x106 US\$ 17.778 17.840	20	:	I gal = 3.785 f		NS\$/8	0.1435	0.1435	0.1435		
on (kg/f)	2		(for 25 years)	18 x 20	×106 US\$	7.946	7.974	7.167		
on (kg/f) on (kg/f) 1 gal = 3.785 f il Consumption (for 25 years) 24 x 26 x106 US\$ (1,315.6x106 1,300.2x106 its 28 x 2 x106 US\$ 1,778 1,778 1,1.840	22			6 × 14		4.283	4.299	3.863		
on (kg/f) on (kg/f) 1 gal = 3.785 f 01 S\$/g1 0.708 0.708 0.1871 011 Consumption (for 25 years) 24 x 26 x10 ⁶ US\$ (1,315.6x10 ⁶ 13.70.2x10 ⁶ xen) xen) 40.031 year) ite 17.778 17.840	23				kg/8	0.85	0.85	0.85		
1 gal = 3.785 f US\$/f 0.1871 0.1871 0il Consumption (for 25 years) 24 x 26 x106 US\$ 0.943 0.946 1 Consumption 21 + 27 x106 US\$ (1,315.6x106 x130.2x106 x106 US\$ +0.031 x106 US\$ x106 US\$ x20.3x106 x20.3x106 x20.3x106 x20.3x106 x20.3x106 x20.3x103 x20.3x103 x20.3x103 x20.3x103 x20.3x103 x20.3x103 x20.3x103 x20.3x106 US\$ x17.778 x20.3x103 x20	24	Diesel Oil Consumption (kg/7)		22 / 23	x306 g	5.039	5.058	4.5450		
011 Consumption (for 25 years) 24 x 26 x106 US\$ 0.943 0.946 il Consumption 21 + 27 x106 US\$ 0.943 0.946 1	25	Diesel Oil Price			US\$/8u1	0.708	0.708	0.708		
Oil Consumption (for 25 years) 24 x 26 x 106 US\$ 0.943 0.946 il Consumption 21 + 27 x 106 US\$ 8.889 8.920 il Consumption 21 + 27 x 106 US\$ (1,315.6x106 Ten) 17.30.2x106 Ten) ite 28 x 2 x 106 US\$ 17.778 17.840	26		1 gel = 3.785 g		∄/\$SA	0.1871	0.1871	0.1871		
il Consumption 21 + 27 ×10 ⁶ US\$ 8.889 8.920 xx10 ⁶ (1,315.6x10 ⁶ (1,320.2x10 ⁶ Yen) xen) xen) xen) xen) xen) xen) xen) x	27	Total Cost of Diesel Oil Consumption	(for 25 years)	24 × 26	×106 US\$	0.943	976.0	0.850		
x10 ⁶ US\$ +0 +0.031 (+4,588×10 ³ Ycn) 1te 28 x 2 x10 ⁶ US\$ 17.778 17.840	28			21 + 27		8.889 (1,315.6x10 ⁶ xen)	8.920 (1,320.2×10 ⁶ Yen)	8.017 (1,186.5×10 ⁶ Yen)		
28 x 2 x10 ⁶ US\$ 17.778 17.840	29	Surplus of Fuel Cost	· .		×106 US\$	0+1	+0.031 (+4,588×10 ³ Yen)	-0.872 (-126,056x10 ³ Yen)		
	30	Fuel Cost for Two Units		~ .	×106 US\$	17.778	17.840	16.034		


Table 4 Comparison of Construction Cost (Example)

US\$1 = \$148

Item	Medium Speed "V" Type Engine (x 10 ³ US\$)	Medium Speed "L" Type Engine (x 10 ³ US\$)	Low Speed Engine (x 10 ³ US\$)
Engine & Aux. Equipment	1,980	2,575	3,169
Generator & Aux. Equipment	729	878	1,460
Packing Cost	142	176	244
Insurance & Sea Transpor- tation	581	695	872
Inland Transportation	88	109	135
Installation Work	405	486	608
Civil & Architectural Work	67	81	1,351
Design & Supervising	297	358	446
Total Construction Cost	4,289	5,358	8,285
	(635 x 10 ⁶ Yen)	(793 x 10 ⁶ Yen)	(1,226x10 ⁶ Yen)
Surplus	<u>+</u> 0	1,069	3,996
	(<u>+</u> 0)	(158.1x10 ⁶ Yen)	(591.3x10 ⁶ Yen)

Table 5 Comparison of Each Item

Item	Medium Speed "V" Type Engine	Medium Speed "L" Type Engine	Low Speed Engine
l. Ext. Crane	Possible	Possible	Impossible
2. Ext. Foundation	Possible	Possible	Impossible
3. Suitability of Size of Ext. Foundation	Good	Wide is no good	No good
4. Comparison of Fuel Cost	100	101	90
5. Comparison of Construction Cost (%)	100	125	190
6. Surplus of Total Cost (x 10 ³ US\$) (x 10 ⁶ Yen)	+0 (+0)	+1,254 (+186)	+3,182 (+471)
7. Urgent Repair	Possible	Possible	Impossible
8. Budget Ceiling ,	In	Over	Way over
9. Overall Judgement	Suitable	There are some problems	Unsuitable

Evaluation of the Existing Concrete Foundations

Sufficient data are not available to explain how the existing concrete foundations were designed and built, since they were constructed about 25 years ago.

Therefore we must include our own opinions in our evaluation of their design and construction.

The field surveys did not reveal anything apparently abnormal such as unequal sinking or structural failure.

We assume that the said foundations can be used again, by taking of the following observations.

(a) Structure and weight of the concrete foundation

The outline of the concrete foundations is as follows:

- 1. Size (width x length x height): 4.0 x 12.5 x 4.5 (m) approxi.
- 2. Volume and weight : 180 m³ & 400 tons approxi.
- 3. Ferroconcrete:

We assume half-inch iron bars were buried in 6-12 inch pitches around the foundation.

4. Concrete-made supporting pile:

Although their width and length are unknown, we assume eighteen piles were used in each foundation.

5. The soil strength:

The result of studies on the soil surrounding the building indicates that an efficient supporting layer is about fifteen meters below the surface.

(b) Weight of the existing engine generator

The weight of each of the existing No. 4, 5 and 6 diesel engine generators has been recorded as 140 tons. We can assume from this that the weight of the No. 2 and 3 diesel generators is around 110 tons on average.

(c) Adaptability of the existing foundations to a new engine generator

Although there are various theories, the required weight of the foundatiuon should be three to five times the equipment weight. As a guideline, this weight can be calculated by the following formula:

$$Wf = 0.15W/N$$

where,

Wf: foundation's weight (ton)

W: equipment's weight (ton)

N: engine rotation speed (rpm)

The required weight of the foundation is as follows, based on the estimated total weight of the engine generators in our draft.

	<u>Item</u>	Medium- speed V type engine	Medium- speed L type engine	Low-speed engine
1.	Diesel engine generator's total weight (ton)	65	110	240
2.	Rotation speed (rpm)	720 class	500-600 class	150-160 class
3.	Foundation's required weight (ton)	260	400	460
4.	Estimated existing foundation's weight	400	400	400
5.	Evaluation	Satis- factory	Needs detailed study	Must be rein- forced

As is obvious from the above chart, the low-speed engine will require the foundation either to be renewed or to be reinforced, thus involving problems in construction. The Medium-speed V or L-type engine is feasible as far as the foundation volume is concerned. However, the Medium-speed L-type is not recommended in view of its size.

As a conclusion, it is most appropriate to adopt the Medium-speed V-type engine because of the foundation's limitations.

As for the foundation for the equipment provided by this paper, if both the engine and the generator are assembled on the same frame, at least the existing anchor bolt on the engine side can be reused. With regard to the foundation on the generator side, we plan to use the existing concrete and anchor bolts as much as possible. However, minor renovations may occur if necessary.

ANNEX-8

OF EACH POWER STATION (1/4) STATE OPERATION Table 2-14

CORPORATE PLANNING & DEVELOPMENT DEPT.

MONTHLY GROSS GENERATION

DURING 1984

SYSTEM STUDY SECTION:

	TOTAL	63,540.0	92,093.0	72,370.0	54.050.0	282,053.0	26,189.0		13,779.0	1	39,968.0	42,245.25	14,544,76	5,577.98	62,467.93					,,,,,	2.010	1,912.80	1,912.80	886,401.73	
	DEC.	3,650	9,360	410	4,580	18,000			6,444	1	6,444	1,635.5	1,635.5		9,570,10		1	ı	1	, ,	102.0	108.0	213.6	7.	が シ シ
	NOV.	7,280	10,033	9,870	076.6	37,123	1		854.0	-	854.0	-		-	397.20		1	•	7	* 000	173.0	9.6	139.2	38,513.4	1000
	OCT.	7,820.0	11,130.0	11,330.0	11,330.0	41,610.0			52.0		52.0	,	,	!	9.3	,	1	-			180.0	1	180.0	41,851.3	8.
	SEPT.	8,560.0	10,600.0	10,950.0	10,590.0 11,330.0	40,740.0 41,610.0	3.0	1	71.0		74.0				1,778.0	,		ı	1		148.8		148.8	42,740.8	
	AUG.	10,140.0	9,330.0	10,990.0	6,680.0	41,050.0	34.0		224.0	,	258.0	118.56		ı	118.56	,	1				υ a,		48.0	•	1 1
K.W.H.	JULY	9,880.0	9,430.0	6,660.0	260.0	33,150.0	65.0	1	51.0		116.0	98.29		1	98.29		,				9		4.8	33,369.09	
x 1000	JUNE	8,420.0	8,830.0	9,410.0	10.00	26,920.0	0.694		1,376.0		1,845.0	3,322.6	1		3,322.60		ı					21.6	21.6	32,109.20 33,369.09 41,474.56	
GENERATION	MAY	4,020.00	10,520.00	10,180.00	1	24,730.00	0.696	1	2,994.0	-	3,963.0	3,975.0	,	1	3,975.0		i	-				4.8	0		
GROSS G	APRIL	0.034	5,210.0	1,670.0	20.0	7,340.00	5,903.00	.1	1,713.00	1	7,516.00	5,803.10	-	-	5,803.10	ı	1	1			1	2.6	,	00 20,761.30 32,672:80	
	MARCH	430.0	1,890.0		1	2,340.0	7 239 0	ı	•	ı	7,239.0	6,456.2	3,628.4		10,093.6	ı	ı	-	,			7.7		19,687.	
	FEB.	800,00	1,560.0	1	,	2,360.0	6,539.0	ı		·	6,539.0	6,214.20	5,871.89	58.98	12,144.98							270.4	,	21.922.38	
	JAN.	2,080	3,700	006	10	6,690	4,968	ı		-	4,968	6,129.2	3,509.0	5,519.0	15,157.20	1	,				00 730	256.80		27,072.00	
	Unit		2	8	4	g	7	~	m	1	Cote	~1	2	~	rota.					5,	10	TOTA			
	Plant	<u> </u>	133	COS COS	HXI.	W	. !	AEB	CAS	ยกเ	I,		KE	רח				GO GO	ศ ร.ศ นหร	DI) BO	_ a	10 		TOTAL	

EACH POWER STATION (2/4) H H STATE OPERATION Table 2- 14

CORPORATE PLANNING & DEVELOPMENT DEPT.

MONTHLY GROSS GENERATION

DURING 1985

SYSTEM STUDY SECTION:

41,440.00140,030.00.44,090.00 39,950.00 22,720.00 1276,350.00 44,129.9 \$39,969.2 27,921.35 \$85,807.55 55,780.00 28;840:00 407.0 18,441.0 新工作品的? 82,570.00 47,688.00 64,410.00 TOTAL 31,575.8 28,894.1 803.35 968.0 ,528.8 496.8 100 6,320.00 10,660.00 10,440.00 11,430.00 10,190.00 6,740.00 9,890.00 10,840.00 9,840.00 2,110.00 6,920,00 5,103.15 DEC. 4,691.0 55.0 4121150 24.4 28.8 43.2 55.0 9,900.00 10,990.00 10,080.00 00 078 6 NOV. 49.2 19.2 199.2 9,800.00 10,830.00 OCT. 1.0 --36.0 0. 36.0 36.0 , 5.9 2.9 388.3 388.3 41,791.00 40,418.3 SEPT. * 8,210.00|10,010.00|10,270.00| 10, 280.00 10,290.00 10,420.00 10,230.00 AUG. 351.00 351.0 K.W.H. 300.00 | 5,830.00 | 10,460.00 11.530.00 24,310.00 37,210:00 37,906.30 612.30 612.30 57.60 26.40 84.00 JULY 1000 1,681.20 22,686.50 24,114.40 30,202.70 3,193.00 3,193.00 380.10 2,061.30 JUILE 638.40 316.80 321.60 × GENERATION 2,334.80 572.00 8,936.00 8,936.00 3,560.00 2,390.00 7,670.00 741.60 2,906.80 348,00 393,60 MAY 3,620.0d 8,622.00 5,093.50 9,620.90 3,112.00 4,527.00 5,510.00 810.00 379,20 825.60 420.00 446.40 APRIL GROSS 2,390.00 24,104.00 MARCH 140.00 1,580.00 5,792.00 4,311.00 10,103.00 5;205:99 6,725.50 234.20 13;217.50 12,428.20 111,931.40 254.40 489.60 28,699.90 23,862.00 6,710.60, 1,440.00 1,550.00 8,066.00 8,361.00 2,780.00 2,952.00 .43.20 292.80 409.00 5,717.60 245 FEB. 7,090.00 2,360.00 460.00 8,066.00 5,246.00 1,290.00 7,971.50 19.20 307.20 326.40 JAN. ota otel Plent| Uni GRAND PARTINES (OKS) TOTAL нурко жатаор. ти HONDY. DIESELS BUSHKOD OPD

OPERATION STATE OF EACH POWER STATION (3/4) Table 2-14

LIBERIA ELECTRICITY COHPORATION CORPORATE PLANNING & DEVELOPMENT DEPT.

SYSTEM STUDY SECTION:

MONTHLY GROSS GENERATION

DURING 1986

	TOTAL	55.500	34.950	78.010	61 201	270 753	21,00	13 617. 2		349.0	1	16.663.2		70, 930. 5	20,797.3	39,682.4	81 410 2			1	,		676	745	8.0 ₇	382.8	376,009.
	DEC.	3.740.0	6.830.0	8,030,0	2,000.0	20 620 0		1 043 0		422.0	1	3 465 0	2.00.	0,505.7	ľ	26.8	6.330.5		1	1	ı		(0.7	0.00		0.87	30,463.5
	NOV.	10,030.0	10,070	10,860.0	9.530.0	40.490.0				1.0		2.3		t		1	l		-	ı	ı		9 57	2.01		9/57	40,537.9
	OCT.	10,650.0	10,010.0	11,470.0	10,770.0	42.900.0		1		18.0	1	18.0		ı	_	1	,		l	1	1	-	8 91	,	1	16.8	42,934.8
	SEPT.	10,430.0	9,730.0	11,100.0	10,330.0	41,590.0					1	1				•	1			1	١	t			ı	1	41,590.0
	AUG.	10,510.0	9,830.0	11,130.0	10,520.0	41,990.0	-		0.7		-	2.0			•	ı	l					1	2.4			2.4	41,994.4
00 K.W.H	JULY	7,280.0	8,750.0	6,780.0	7,730.0	30,540.0			237.12	88		2,608.0	-	, 60.2	2000	2,066.5	2,225.8	1				•	33.6			33.6	15,407.4
N X 1000	JUNE	2,860.0	8,800.0	6,810.0	6,100.0	24,570.0		0 0 % 7 %	7.04/44	017	,	1,779.0	•	200	22	5,219.3	6,141.3			1		,	45.6			4.5.6	32,535.9
GENERATION	MVX	1	6,290.0	5,980.0	3,830.0	16,100.0	1	1,113		3		1,142.0	344.8	3 500 6	20.00	6,450.3	10,304.7	ı	-	-	,	ı	33.6		,	53.6	27,580.3
GROSS (APRII,	1	4,580.0	1,140.0	,	5,720.0	1	0 202 0			,	3,004.0	225.5	6 625 5		7,241.0	14,092.0	1		1		ı	9.6	-	7 0	0.4	22,825.6
	MARCH	1	2,540.0	2,270.0	30.0	4,840.0	ì	278.0				278.0	3,065.5	6.511.6		٠.	16,157.6	1	1			ı	1		ī	1	21,275.6
	FEB.	ı	1,380.0	1,270.0	3.0	2,653.0		1,315.0			9	1,315.0	4,479.6	3.069.3	6	8,147.8	13,691.7	1	ı			-	13.2	26.4	9.61		17,699.3
	JAN	1	6,120.0	1,170.0	450.0	7,740.0	1	850.0	1			850.0	6,511.4	,	6 956 5	- 1 -	12,466.6	•	1			_	93.6	14.4	108.0		21,164.6
	Uni	7	2	<u>~</u>	寸	rota	r=4	2	2	7	Pota			Ø	řC		1012	-1	N	je.		-	ıΩ	9	Potal	****	
	Plant Uni	33	EE.		ryh T			ES	SA:) 	ı.I.			3	יחו	1				a.	HC TES	EZ	DE DI	'n	ю	11.00	TOTAL

Operation Hours, Consumption of Heavy Oil & Gas Oil (1984-1986) OPERATION STATE OF EACH POWER STATION (4/4) Table 2- 14

	(Gals)	986 Total						3,517 243,993	3,514 399,714	68,031 649,707	1	1,767,800 1,777,700			3,100 13,570,200			iΩ		
	as 011	1985			17-17-17			41,543 48	263,964 13	405,507 68			1	ļ	6,081,400 1,909,100	227,220 502		<u> </u>	290,994 1,020,837	77.001.0007
	0	1984						53,933	122,236	176,169	+		1,928,700 2,8		5,579,700 6,0	93,298 2	31,807	9,306	134,411 2	7 0 000 000
	(s)	Total														6,199,481	4,241,440	2,690,612	13,131,533	12 12 151
	ii (Gals	1986														986,083	1,413,682	2,284,163	4,683,928	4 GB 3 Q 2B
	v y 0il	1985														2,278,049	1,803,446	31,350	4,112,845	4 334 750 4 1 12 845
	Heovy	1984										-				2,935,349	1,024,312	375,099	4,334,760	4 334 760
	S)	Total	14,915	20,050	14,41	12,619	61,995	1,795	2,305	4,100	6,9	1,209	2,480	1	8,608	10,450	6,052	4,769	21,271	95 974
	Hours (Hrs	1986	3,984	6,844	5,403	4,221	20,452	228	29	257	1	1,101	7.7		1,178	2,112	2,100	3,504	7,716	29,603
	Operation Ho	1985	5,368	6,417	3,820	4,664	20,269	1,090	1,430	2,520	2,258	108	1,357		3,723	3,379	2,581	499	6,459	32,971
	Oper	1984	5,563	6,789	5,188	3,734	21,274	477	846	1,323	2,661	.	1,046		3,707	4,959	1,371	766	7,096	33,400
			# #	# 2 G	#36	.1N # 46	Total	# 20	9 # #	D Total	#	# 26	# 36	# 4 G	Total	9 - #	# 2 6	#36	Total	Grand Total
4				7 7 "		· + V\	<u> </u>		431	ď		ч !Ч.	<u>τυT</u>	>U!	ا ر:		υХ	'nη	<u> </u>	উ

Table 2-15 69kV OVERHEAD TRANSHISSION LINES FOR MONROVIA GRID AND ITS ENVIRONMENTS

Serial		No, of		LENGTII IN	KM	0.1.1	
No.	FEEDER NAME	Circuits	Wood Pole	Steel Lattice	Steel Tubular	Conductor Size & Type	REMARKS
1	Bushrod - Krutown	2	- .	6.3		AAAC 158.6 ***	Equivalent to 266.8 NCM
2	Bushrod - Capitol	1		8.2		158.6 mm²	11 N N
3	Bushrod - Capitol through Stockton Creek Junction	1	3.1	4.5	_	266.6 HCH 158.6 mm²	И И Б
4	Stockton CrkGardnersville	1	5			266.8 MCM	
5	Gardnersville-Paynesville	1	5	1		266.8 иси	
6	Bushrod - Nt. Coffee	1	26.4			AAAC 266.8 HCH	
7	Bushrod - Mt. Coffee through Caldwell Junction	1	26.4			AAAC 266.8 HCH	
8	Bushrod – Kle through Virginia Substation	1	42.6			AAAC 266.8 HCH	
9	Kle - Bomi Hills	1	29	_	_	266.8 HCH	
10	Mt. Coffee - Todee	1	37			266.8 NCH	
11	Todee - Bong Mines	1	19	_		266.8 nch	
12	Mt. Coffee - Paynesville	2	····	26.3	_	AAAC 266.8 HCH	
13	Capitol - Congotown	1	<u> </u>	4.6		158.6 ##²	Equivalent to 266.8 MCH
14	Congotown - Paymesville	1			8.7	AAAC 266.8 HCH	
15	Paynesville - Kakata through Mt. Barclay	1	56.6		; -	ллас 266.8 иси	
16	Mt. Barclay - Caldwell	1	11.3			266.8 иси	
17*	Paynesville - Robertsfield	1	46			AAAC 3/0 AWG*	
18	Robertsfield - Buchanan	1	75	_		ллас 266.8 иси	
	Sub-total		382.4	50.9	8.7		
	Grand Total			442			

Transmission lines with conductor size = 266.8 MCM or equivalent have a rating capacity (MVA) = 42 * Rating capacity (MVA) = 30

Table 2-23 LOAD SHEDDINGS IN MONROVIA POWER SYSTEM (JAN. - MAY, 1986)

\$u	bstation	Bushrod	Virginia	Krutown	Newport	Capitol	Congotown	Gordners Ville	Poynes - Ville	Total	ſ	Remarks
Number	of Feeders (A)	3	4	6	4	5	3	3	5	33		
	JAN.	46	96	322	34	102	×	68	194	862		Nol Avairable
ings	FEB.	128	358	472	152	230	112	70	154	1,676		7110110011
Switchings	MAR.	76	26 4	524	102	162	94	56	194	1,472		
1	APR.	82	560	406	166	192	134	32	165	1,43 7		
Number of	МАҮ	62	112	220	32	156	. 6	48	26	662		
N Z	Total (B)	394	1,090	1,944	486	842	346	274	733	6,109		
	1	0.87	1.80	2.15	0.80	1,12	0.96	0.60	0.97	1.23		· · · · · · · · · · · · · · · · · · ·
ko.	JAN.	129	189	870	200	321	*	268.	812	2,789	¥	Not Available
Hours	FEB.	313	982	1,085	547	613	243	372	464	4,619		
s)	MAR.	174	494	999	306	359	393	322	583	3,630		
Accumulated Shedded (Haurs)	APR.	282	755	1,050	523	568	278	123	630	4,209		······································
ulatec (MAY	110	200	299,	69	282	11	147	107	1,225		
CCUM	Total (C)	1,008	2,620	4,303	1,645	2,143	925	1,232	2,596	16,472		
	2	2.22	4.34	4.75	2.72	2.84	2,60	2.72	3,44	3.30		
	JAN.	238.37	106.43	846.44	187.67	357.77	×	509.11	1,135.98	3, 381, 77	1 ×	Vol Available
	FEB.	553-69	591.67	1 103.61	542.34	791.45	408.78	583.14	656.22	5,230.90		
Energy wh.)	MAR.	301.56	302.06	951.08	35 3.27	488.07	678.66	736.28	703.70	4,514.68	-	
-	APR.	483.16	473.84	943.01	516.72	675.17	456.09	287,82	898,73	4,734.54		
Shedded	MAY	198.26	117. 77	304.83	66.87	394.55	19.5	331.20	128,95	1,561.93		
₿	Total (D)	1,775.04	1,591.77	4,148.97	1,665.87	2,707.01	1,563,03	2,447.55	3,523.58	19, 423 . 82		
Datie Co	3	22,650	7, 936.6	21,852 .7	11,451.8	25,476.7	14,083.2	10,002.2	21,744	135, 197.2		
	hedded Energy D/E) (%)	7.8	20.0	19.0	14.6	10.6	11.1	24.5	16.2	14.4		
Max. Sheddi	ed Hours / Day	19	21	22	22	24	20	23	24	_		

NOTE: ** Total Days = 151 Days except Congotown
= 120 Days for Congotown

(3) Estimated Energy will be transmitted through all Feeders during JAN. - MAY 1986 (E) (MWh)

Table 2-27 SPECIFICATION OF BUSHROD POWER STATION FACILITIES

	Plant	Bushrod Di	Diesel Unit	Ű	Gas Turbine G	Turbine Generator Units	ts	Luke Diesel Units
		2 & 3	4, 5, 6	1	2	8	7	1, 2, 3
Type		Fairbanks- Morse TGZO	Fairbanks- Morse IGZO	BBC WT521	BBC WT521	.BBC WT521	BBC WT521	ASEA
Generator apparent power	kVA	2,500	3,445	23,000	23,000	23,000	23,000	16,000
Generator active power	KX	22,000	2,500	15,500	14,700	19,100	19,100	13,500
Power factor	φ soo	0.80	0.72	0.67	0.64	0.83	0.83	0.849
Rated voltage	٨	12,500	12,500	13,800	13,800	13,800	13,800	13,800
Rated current	-E	115.5	159.0	965.0	965.0	965.0	965.0	669.4 ± 10 %
Engine type		Fairbanks-	Fairbanks-	BBC	BBC	BBC	BBC	Gotaverken Motor
		31A18	31A18	GT11L	GTIIL	GT 9	6T 9	B & W IOK67GS
Power at coupling	HP	2,800	3,500	20,785	19,712	25,613	25,613	14,000 км
Rated speed	rpm	277	277	3,600	3,600	3,600	3,600	150
Number of cylinders			10	1	I	1	l	01
Number of strokes	77 97 98	2	2		1 .	Ì		63
Year installed		1961	1963	1966	1969	1973	1973	No. 1, 2 1980
						-		,

COMM/GRANT (1)/(2) 2 monthes O Yrs man th \$ × Ł * è ÷. tx1 2-2 ω α ထူ ထ Φ EXPERIENCE Years 21 8 13 16 24 22 8 ဖ 33 8 8 21 Egypt-Arabfund Arab Contries League Italy-Inpresit CPDD COUNTRY/COMPANY EXPERITIES ndia-TATA Demark-BMW Demark-BMW Sweeden India Mec. Engineer Sr. Supt. Luke Plant Commercial D. Pt Maintenance Mech Luke Plant Civil Engineer CPDD Consultant Mech. Engineer Consultant, CPDD General Manager Power System Sp LEC Commercial Sp. 0. Manager Snr. Civil Eng. Elect. Maint. System Study Consultant POSITION Training Instractor Meter-SP Table 2-28 Elec. Maintenance Diesel Engineer Elec Meter Sp. SPECIALITY Power System Gas Turbine Traiying Elect/Mech Electrical Commercial Electrical Computers Mechanical Civil' Civil William A. Botrous J. L. Petersen J. L. Sorensen S. Dattatrega Silvio Secchi (JL) Raman K. Gupra X. Ram I. M. Omar .Вао Rammle S. Joseph S. Ali <Ľ = George S က Ś z: æ œ Ł 2 က цЭ 10 12 7

. 3

Θ

 Ξ

 \exists

 Ξ

 \exists

3

 Ξ

 \exists

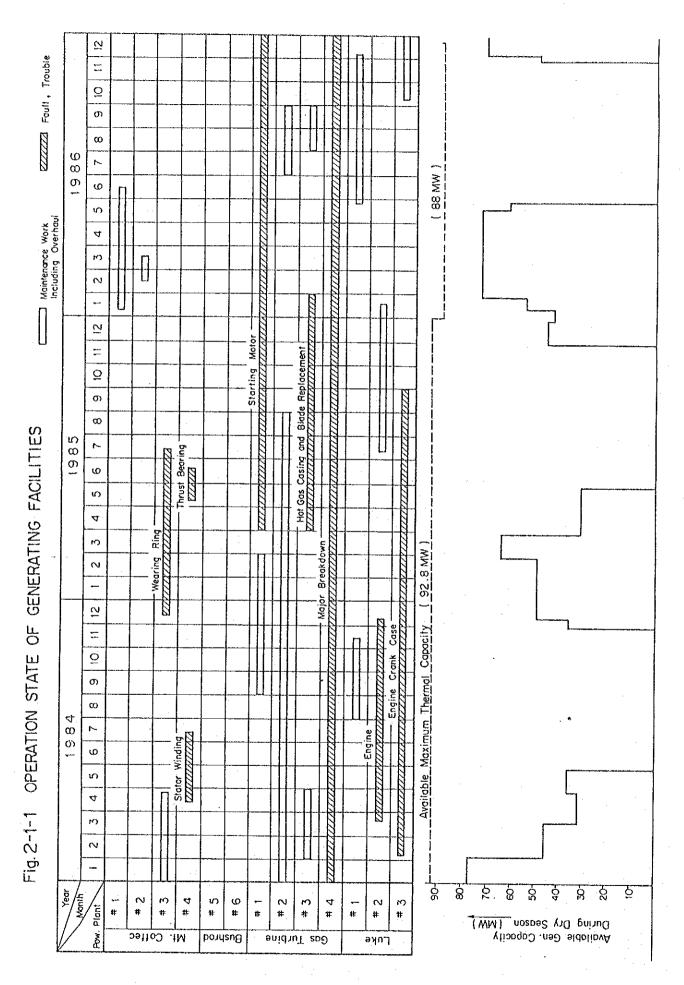
 \exists

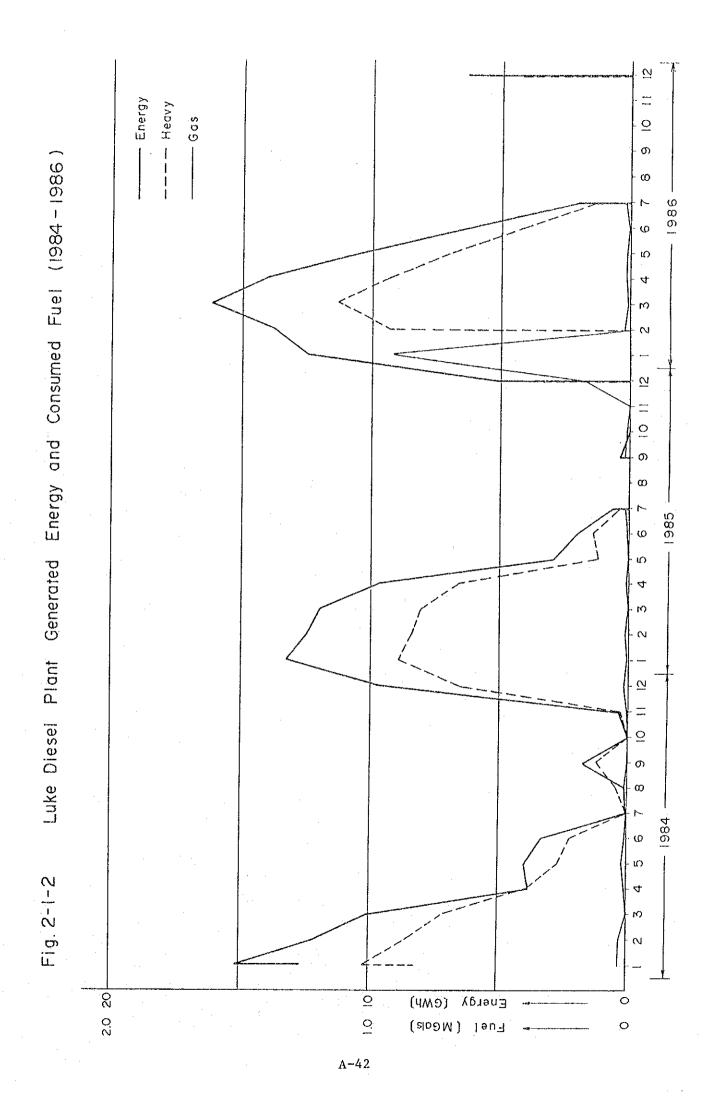
<u>0</u>

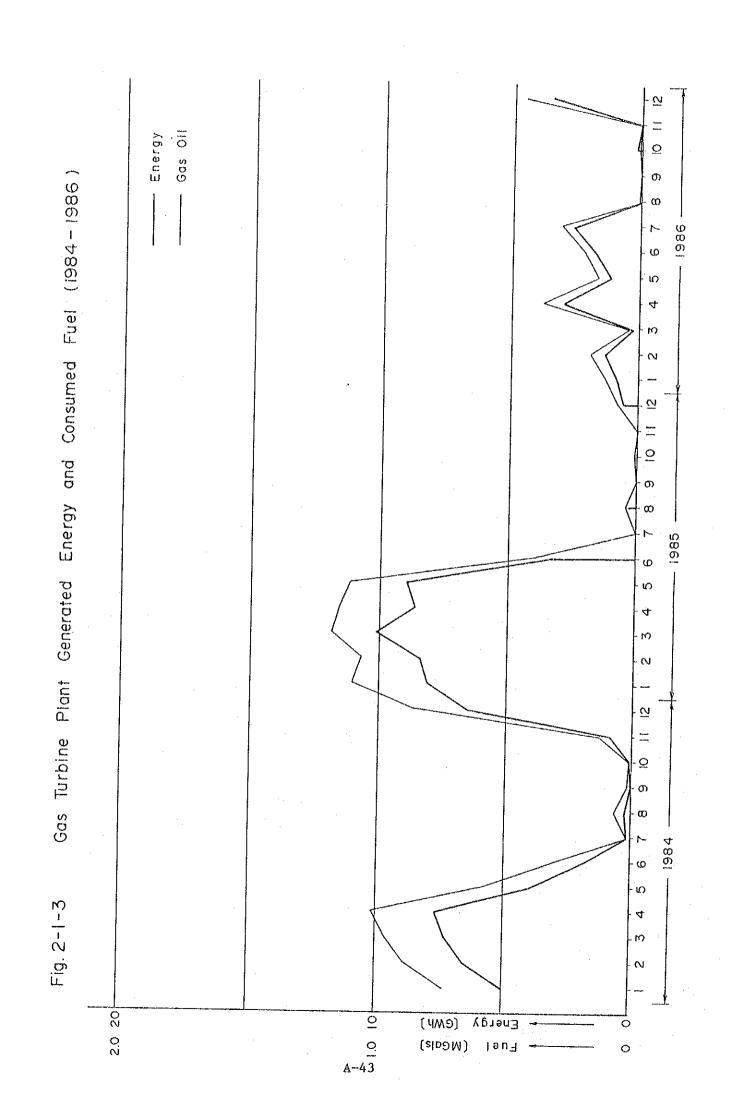
 $\widehat{\mathfrak{D}}$

(2)

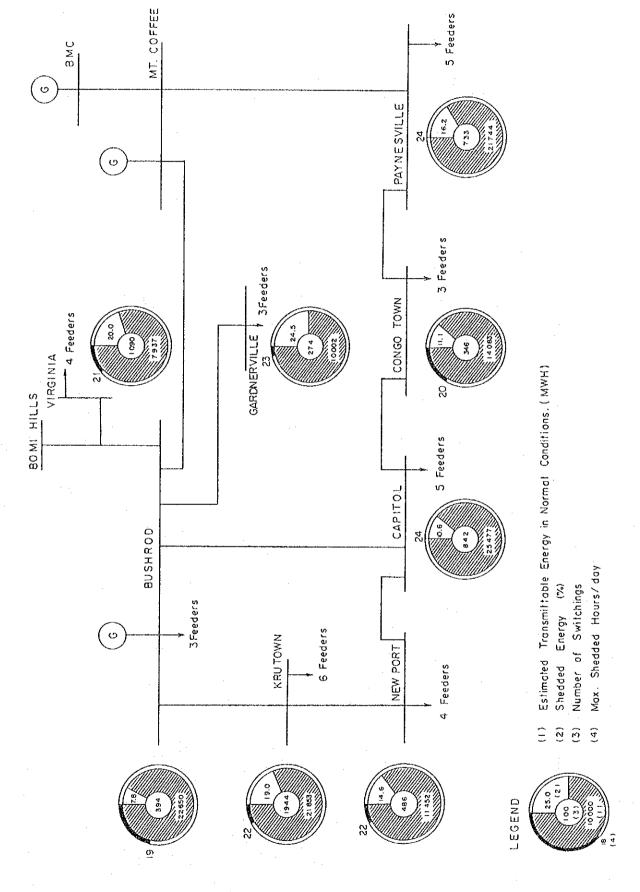
3

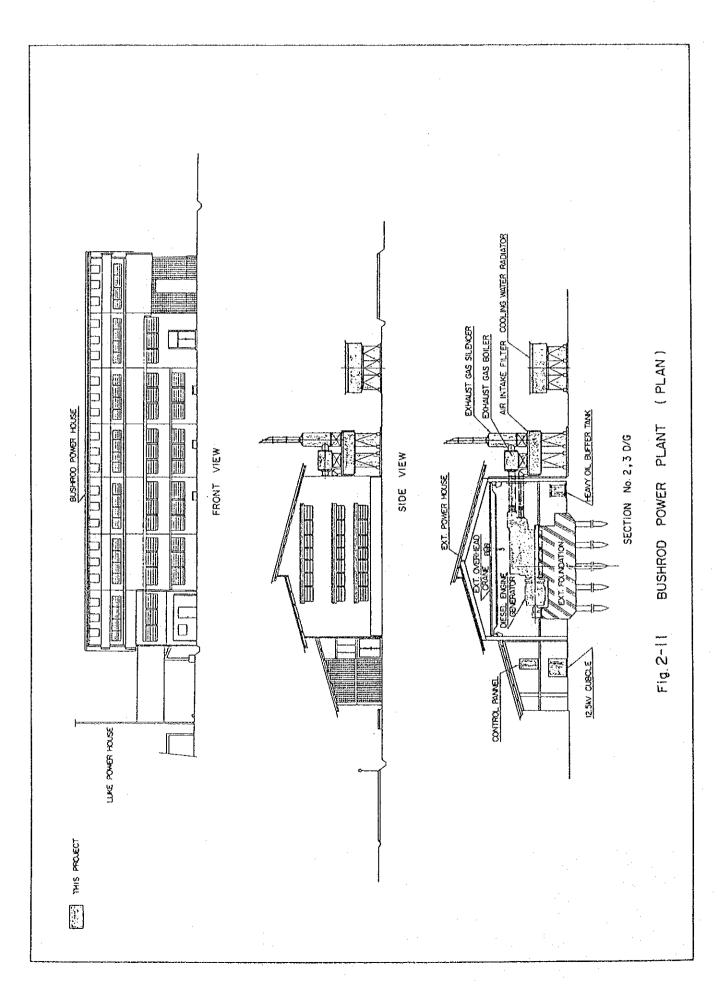

 ∞

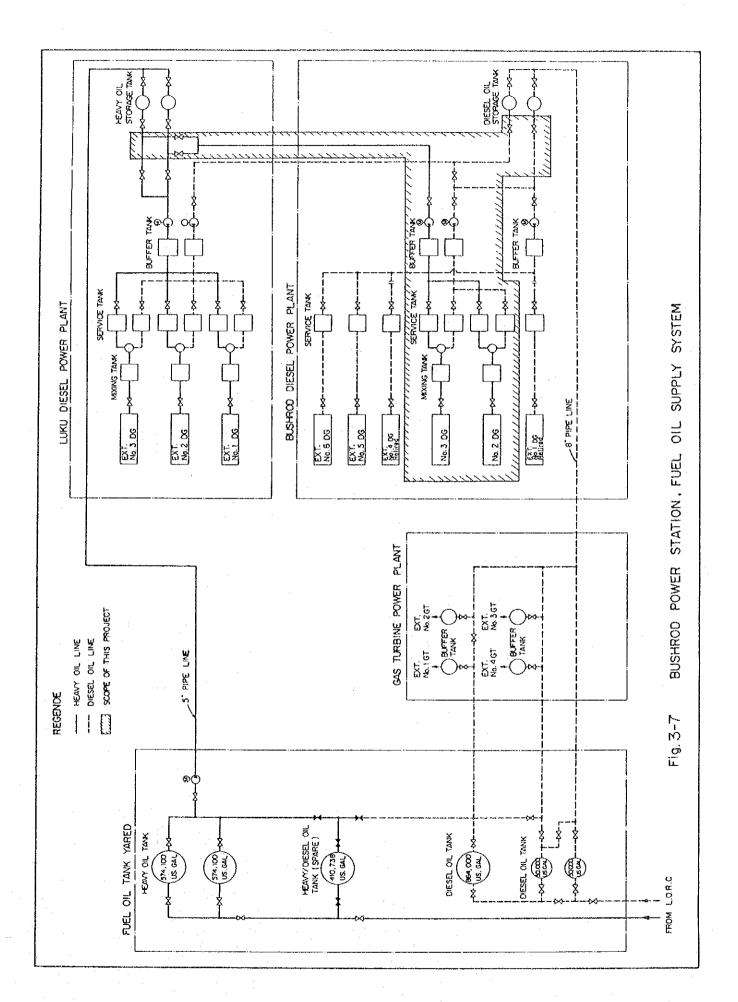

മ

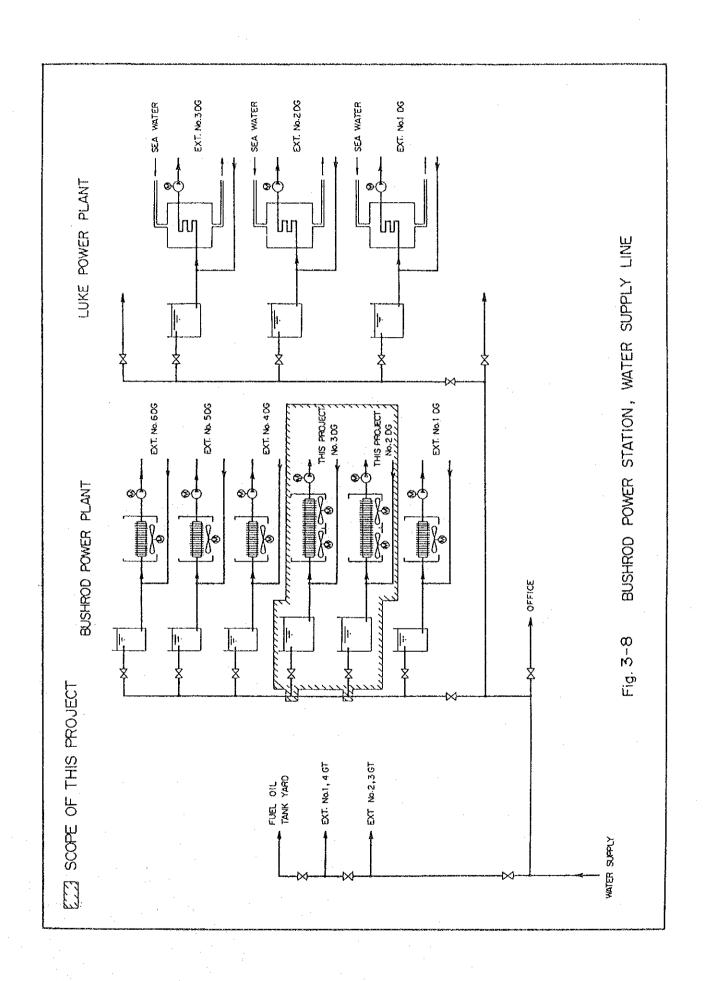

H

ယ


ANNEX - 9







LOAD SHEDDINGS IN MONROVIA POWER SYSTEM (JAN. THRU MAY, 1986) Fig. 2-8

