5-7 Outline of Various Train Radio Systems in JR

Table 1 Train Radio System Used in JR Conventional Lines

.

Line	Purpose	Range of communication	Frequency/ communication system
Yamanote and Keihin-Tohoku lines (started in 1981)	For communications between dispatchers and train drivers, as well as for communications in the event of ATC failure	Driver Dispatcher	400 MHz band Duplex 1 CH
Joban line (started in 1966)	For emergency communica- tions between wayside and train drivers at accident. Used to prevent secondary accidents, as well as for communications to support ATC	Driver - Dispatcher (emergency communications) Train - Train Wayside - Train (stop signal for train protection)	150 MHZ band Half Duplex 1 CH Protection radio 1 CH
Yokokawa - Karuizawa section (started in 1963)	For communications between drivers in double-header operations in the section	Main engine Auxiliary engine driver driver (communications for joint operation) Main engine Station manager/ driver engine depot manager Auxiliary engine driver dence communications)	400 MHz band Duplex 2 CH
Aomort - Hakodate ferryboat information service (started in 1962)	For communications between limited express train and wayside for information on ferryboat services	Train conductor —Related office (via switchboard) Reporting the number of train passengers and ferryboat information	150 殆足 band Duplex l CH

Table 2 Train Radio Systems Used in JR Shinkansen

5-8 <u>Classification and Allocation of the Existing Level Crossings between</u> <u>Ghaziebad and Kanpur</u>

Clas	s	Number
and and an opposite a classic sector of the sector of t	A	12
Туре	В	27
	С	127
	Total	166
Interlocked wit	h gate signal	51

where:

	Train-vehicle units per day
A	More than 14,000
В	More than 6,000
С	More than 5,000

.

5-9 Comparison among Level Crossing Control Systems

Table l	Level	Crossing	Control	Systems	of	India	and	Japan

.

Type Item	Japan	India	Improved method
Basic conception	 To warn the passersby on the road of train spproach 	 No warning of train approach to the passeraby on the road 	 To warp the passeraby on the road of train approach
	2) Timing of warning : the timing so that a passersby who has entered into the level crossing before the warning begins can safely cross it, and that matches the emergency braking distance of train.	 The gatekeeper is informed of the train's approach from the adjacent station by telephone, etc. beforehand. 	 Automatic barrier operation and, in case of accident at level crossing, manual operation by the gate keeper.
	3) Automatic barrier operation	3) The gatekeeper manual closes the gate well in ad- vance of the train's arrival on receipt of the announce- ment of train approach.	3) Gate signal is commonly used with the block signal
Inter- locking with signal	 No interlocking In the event of accident at level crossing, manual or automatic operation of spe- cial warning signal light to inform the train driver. 	 At the level crossing at a busy road, the interlocking between of gate and gate signal makes to allow 'go' to the gate signal after the gate has completely closed. 	 Interlocking between every level crossings and gate signals is provided.
Safety	 In case of level crossing facilities failure, the safety of passersby is ensured by sutomatically closing the barrier. 	 Gate signal indicates 'Stop' when the adjscent station fails to make the train approach announcement, or when the gate-keeper foregets the train approach announcement or fails to close the gate. 	 'Stop' is indicated on the gate signal when the gate closing operation is interrupted by passeraby or vehicles in the level crossing.
	2) When a passeraby remains within the level crossing after the warning time an accident may occur.	2) 'Stop' is indicated on the gate signal when the gate closing operation is interrupted by passersby or vehicles within the level crossing.	2) 'Stop' signal is manually indicated on the gate signal when a passersby remains within the level crossing after the gate has closed.
			 Gate is automatically closed for the safety of passersby by the fail~safe operation in case of facilities failure.

- 234 -

Calculation of the Traffic Suspension Ratio by Each System Table 2

			•
Item Type	Japan	India	Luproved method
Level crossing	Mainly unmanned level crossing	Manned level crossing	Manned level crossing
Warning and gate barrier closing oper- ation	Start of varning End of User of Varning Control of Varning Control of Varning till start of Varning till start of the of Varning Time from the gate closing time peaks closing time (TV)	HOHOHOHOHOHOHO	HO HO HO HO HO HO HO HO Time from start of warning till start of barrier clouing time and start areas divide a charter areas that from the start areas
Warning time	Without fixed time control TW = 33 \sim 71 sec.		Without fixed time control Tw = 2 ~ 4.3 min
(m1)	With fixed time control Tw = 33 sec		With fixed time control Tw = 2 min
Closing time	Without fixed time control Tc = 1.0 ~ 1.9 min	Tc = 4.1 ~ 5.4 min	Without fixed time control Tc = 2.4 v 4.9 min
(Tc)	With fixed time control Tc = 1.0 ~ 1.3 min		With fixed time control Tc = 2.4 ~ 2.6 min
Road traffic suspension	Without fixed time control n = 24.0%	п в 93.5%	Without fixed time control n = 70.92
rate (1)	With fixed time control n = 19.32	-	With fixed time control n = 47.3%
ς F α' Γ α' α	is coldinated based on the standard train	train disoram.	

cf a) η is calculated based on the standard train diagram. b) Gate specifications are based on JRS.22551-1D (A type). c) Closing method is the total closing with one pair of barriers(Full barrier). d) Calculation is made for the train traffic in 2,000.

- 235 -

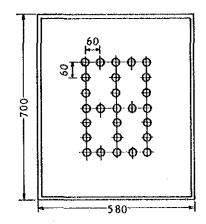
5-10 Speed Indicator and Preliminary Speed Indicator

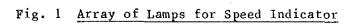
1. Speed Indicator

The speed indicator, installed on the block signal in the rear of the home signal, is to realize safe and efficient train operation by informing a driver of the speed limit at the turnout. One digit is considered sufficient for the indicator. Visibility distance of over 150 meters is necessary allowing a driver $4 \sim 5$ seconds to correctly read the numerical figure, who is operating a L. Exp. train in the rear of a signal indicating Y, at a speed of approximately 120 km/h.

2. Structure of Speed Indicator

In view of the visibility of 150 meters, use of a light source by LED or optical fiber is not suitable. In this appendix, therefore, a description is provided on a speed indicator using incandescent lamps. An indication part of the indicator is as shown in Fig. 1.


The indicator is equipped with 26 V 8 W incandescent lamps, an indicator board of dark coating, and covered with a transparent polycarbonate plate.


The indicator can be controlled by compact relays or a microcomputer device.

3. Preliminary Speed Indicator

In case the speed limit of the turnout is 70 km/h or higher, other trains than L. Exp. and Mail/Exp. are apt to reduce the speed to a greater degree than actually required in the rear of Y signal indication, resulting in a lower operating efficiency. To avoid this, at stations where there is a speed limit higher than 70 km/h, a preliminary speed indicator is installed on the block signal in the rear of that furnished with a speed indicator, to preliminarily indicate that the speed limit is higher than 70 km/h.

The preliminary speed indicator can be of a simple structure, with a single incandescent lamp, for example, but the visibility distance should be over 150 meters so that the driver operating the train at a speed of 160 km/h can acknowledge the indication.

5-11 Format of Report on Defective Devices of Shinkansen

			by	Tel. No.
Name or equipment room	Belonging	Electric Maintenance Center	Electric Branch	Electric Maintenance Reporter Branch
Name of equipment	A. Track circuit transmitter & rece B. CTC code modulator & demodulator C. CTC transmitter & receiver	iver H. I.		counter
		receiver K. L. M.	rrf (A)	OTBER
Name or type of rack				Type
Circuit name or track circuit name		Serial No. of device		Date of failure
Manufacturer		Date of manufacture		Serial No.
Reason for discovery	ing regular operation	C 1		
Phenomenon	Not operable, unstable, self-recovery, others ((Description)	poor performance, breakdown,	wn, wear, overheat,	teat, poor insulation,)
Remedy	Replacement, field repair,	ir, abandonment, others ((Date of previous repair
	(Description)			
Remarks				
Faulty parts	iode, 2 point,	rener diode, resistor, capacitor, terminal, others (coil,	transformer, wiring, fuse, solder,
Remedy	Adjustment, replacement, (Description)	, repair, others (
Condition and location of faulty part (Indicate in circuit diagram.)				
Inspection data				
Date of acceptance	Date of pre by company	preparation ny	Prepared by	Tel. No.

(Branch). Part B should be filled out by the Manufacturer. The Electric Maintenance Center (Branch) should send a copy of this report to the related railway operating division. 5°

5-12-(1) Improvement of Signal Lamp

The original signal lamps were imported from the U.S.A. by Japan National Railways in 1924. Later, the lamps were produced in Japan, and called the In the 1960's modernization of signalling facilities was A-type lamp. progressed, resulting in the rapid increase in number of colorlight signals, and the problem of the life of the signal lamp attracted Studies were done to improve the life and reliability of the attention. Consequently, a life of 2,000 hours was achieved at A-type signal lamp. However, the special filament structure featured poor the rated voltage. productivity, and lamps with a longer life were difficult to produce at low cost. As an alternative, the standard operating voltage was dropped to 90 - 80 percent of the rated value to extend the life to 5,000 hours. In addition, a signal lamp filament burn-out detector was developed in 1966 and mounted in major signals. Since this detector could detect burn-out of a filament in two, a lamp could be replaced before the whole filaments was burned out. In 1970, mass production car headlight bulbs were modified into signal lamps to replace the A-type lamps, and called G-type lamps. The G-type lamp has a filament configuration suitable for mass production. The filament is in two parallel lines arranged at different levels, and is equipped with 3 filament terminals: the main filament terminal, sub filament terminal, and common filament terminal. The life of the G-type lamp is 9,000 hours for the main filament, and 5,000 hours for the sub filament at the rated voltage. Therefore, the probability of simultaneous burn-out of the main and sub filaments is extremely low. In this respect, the filament burn-out detector can be more effectively used, and the reliability of signals has become extremely high.

1. Ratings

· · · · · · · · · · · · · · · · · · ·		Rating	Standard use	
Туре	Voltage V	Power consump- tion W	voltage V	Major use
A-type	30	40	24 ~ 27	Multiple type colorlight signal
G-type	30	45	24 ∿ 27	Multiple type colorlight signal, Route indicator, Hump shunting sign, Train approach indicator for level crossing

Table]

2. Performance

2.1 Optical Characteristics

Table 2

		Test	Initial c	harscteris		Hold rate	Life
Туре	Filament	voltage V	Power consump- tion W	Luminous flux Lm	Efficiency (1) Lm/W	of luminous flux (2) %	hours
A-type	~	30	40 <u>+</u> 4	400 + 80	10	80 or longer	2,000 or longer
	Main filament	27	20 + 2	140 ± 25	7	80 or longer	9,000 or longer
G-type	Sub filament	27	20 <u>+</u> 2	160 <u>+</u> 30	8	80 or longer	5,000 or longer

Note: (1) The figures for efficiency are rounded numbers.

(2) The hold rate of luminous flux is an expression of the ratio in percentage of the luminous flux at 1/2 of the life of the lamp being compared to the luminous flux at the initial characteristics. In the case of G-type, however, the value at 3,000 hours is taken.

2.2 Vibration Characteristics

The lamp should withstand the test conditions given in Table 3 over 24 hours.

Table	3	

Item	Condition
Frequency Hz	10 ~ 1,000
Acceleration m/s ²	9.8 constant
Cycle	6 minutes per l cycle
Direction of vibration	Vertical as the lamp is set in the standard position for actual use
Voltage	Test voltage

2.3 Adhesiveness

The adhesiveness of the base should be 1 N.m or greater.

2.4 Insulating Resistance (only for G-type)

The resistance between the terminals and the metal section should be 10 Mohms or greater at 500 VDC.

2.5 Withstand Voltage (only for G-type)

The terminals and metal section should withstand 1,000 V or higher of commercial frequency for over one minute.

3. Structure, Shape, and Dimensions

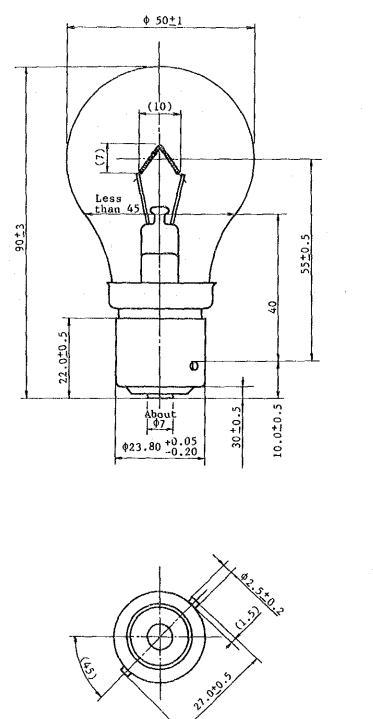
As shown in Fig. 1 and Fig. 2.

4. Test Method

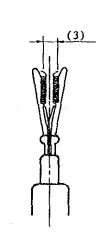
Item	Method
Initial characteristics	Apply 40 minutes aging at 120% of the test
· ·	voltage till the characteristics become
	stable. Then, test the lamp for power
	consumption and total luminous flux.
Hold rate of luminous flux	As shown in Note (2) of Table 2.
Life	Set the lamp with the lamp axis horizontal.
	Apply no vibration. Measure the time till
	the filament burns out.
Vibration characteristics	Set the lamp on a vibration tester in the
	standard position as it is actually used in
	the field. Apply DC or AC (50 or 60 Hz,
	close to sine wave) of the specified test
	voltage. Perform the test under the
	conditions given in Table 3.
Adhesiveness	Gradually apply a torsional moment between
	the base and the glass bulb.
Insulation resistance	Measure with a 500 VDC megger
Withstand voltage	Use a withstand voltage tester, and apply
WILLASCALL VOILAGE	one a vermetere torrade restort and after

Table 4

.


5. Sampling Test Method

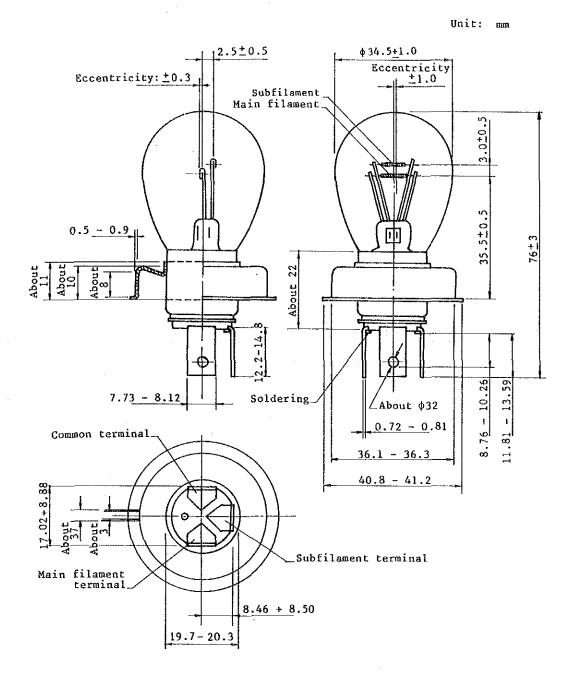
· · · ·


Table	e 5
-------	-----

Test item	Sample size	Number of specime for acceptance
Dimensions	10	0
Structure, outlook, indication	20	2(1)
Initial characteristics	10	1
Life	5	0
Base adhesiveness	5	0

Note: (1) Two specimens shall not have defects in the same test item.

Unit: mm


Enlarged filament shape

Remark: Figures in () are standard values.

Fig. 1 <u>A-type Signal Lamp</u>

- 244 -

.

Fig. 2 G-type Signal Lamp

- 245 -

5-13 Outline of Automatic Inspection Car for Electrical Equipment (for Shinkansen)

1) Inspection cycle

Basically, an inspection will be executed every 10 days.

2) Inspection crew

Two for signalling and two for telecommunication.

3) Inspection car data processing

At present, the inspection car can run at a speed of 210 km/h and inspect the conditions of ground facilities.

The high accurate data obtained through inspection are processed by a computer. The outline of the processing is as follows.

- a) Analog data and digital data ("Warning data" exceeding permissible values) are printed out on-board. The inspection crew can command a field survey, if necessary.
- b) Collected inspection data (see Table 1) is recorded on MT, and sent to the central control center.
- c) Inspection data on MT is processed the next day, and resultant maintenance data can be provided as lists from each SMIS terminal.

Car
Inspection (
of Automatic
~
n Data
Inspection]
Major
Table 1

Table l Major Inspection Data of Automatic Inspection Car	a Track Substation Overhead equipment Signalling Telecommunication	<pre>nt . Unevenuess (Transversal) (Transver</pre>	. Wear of contact wire
	Common data	. 10 km point signal signal	

- 247 -

5-14 <u>Electrical Equipment Maintenance Control by Shinkansen Management</u> Information System (SMIS)

1) Purpose

The Shinkansen Management Information System (SMIS) provides timely information to the related organizations both in administrative and field sector, greatly contributing to achieve highly efficient maintenance of rolling stock and ground facilities.

2) Fundamental policy of the system

- To employ a general purpose data base, hierarchical structured programming, high-level language, etc. to realize easy design, maintenance and high data security.
- To adopt on-line connection with the automatic centralized monitor system to improve information collection/distribution efficiency.
- To use intelligent terminals to improve operability and enable local data processing.

3) System structure

The overall structure of the SMIS is shown in Fig. 1.

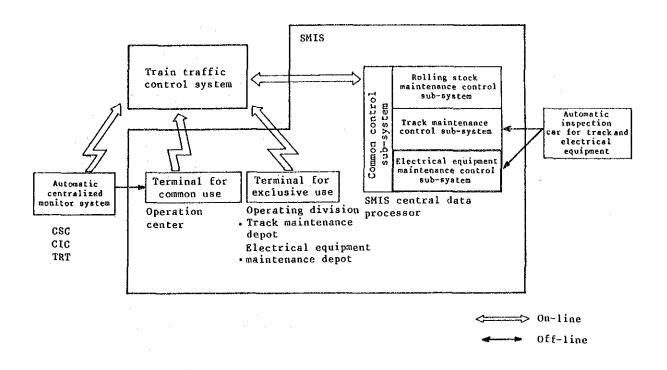


Fig. 1 Overall Structure

4) Electrical equipment maintenance control sub-system

The electrical equipment maintenance control sub-system composes one sub-system (for signalling, telecommunication, substation and overhead equipment) of the SMIS. This sub-system analyzes various data supplied by the automatic inspection car and provides various useful data such as statistical and time-sequencial failures data. The construction diagram and the outline of the function of the sub-system are shown in Fig. 2 and Table 1, respectively.

Maintenance work control Power supply (power rates calculation) Technical csiculation Power supply (power consumption) Power supply Others Structure of Electrical Equipment Maintenance Control System 1 Electric equipment (electric heater) Electric equipment (distribution panel, generator) Electric equipment (snow melting device) Electric point machine Overhead contact wire fittings Equápment maintenance control Signal relay Automatic centralized monitor and data processing Centralized information Control (CIC) Electrical equipment maintenance control Train radio restar (TRT) Centralized substation control (CSC) J Failure statisticn (power distribution) Failura statistics (power source and substation) Failure statistics (telecommuni-cation) Failure statistics (signalling) Failure statistics (overhead equipment) Pailure statistice l Equipment statistica Equipment atatistics Equipment statistics Data processing (Wear of contact wire) Data processing (preliminary processing) Date processing (telecommuni-cation) Data processing (overhead equipment) Data processing (Substation) Data processing Data processing (signaliing) Fig. 2 Substation and overhead equipment Signalling and Telecommunication

Table 1 Outline of Functions of Electrical Equipment Maintenance Control System

Classification	Detailed classification	Outline	
Automatic inspection car data processing	Preliminary processing	Point information (location of 10 km wayside device, tunnel, bridge, and other information needed for each processing) necessary for on-board processing is recorded on a magnetic tape.	
	Contact wire wear control	Contact wire wear data obtained by the inspection car is processed; time sequential control of wear data and various maintenance control lists are provided.	
	Substations	Changing over time, abnormal voltage in feeding circuit obtained by the inspection car are processed, and various maintenance control lists are provided.	
Overhead equipment		Contact loss rate, contact wire height, and contact wire deviation are processed, and various maintenance control lists are provided. Simultaneously, the contact wire eva- luation index for overall judgement is provided.	
	Signalling	ATC track circuit current data obtained by the inspection car is processed, and various maintenance control lists are provided.	
	Telecommunication	Data related train radio obtained by the inspection car is processed, and various maintenance control list are pro- vided.	
Statistical processing	Equipment statistics	The number of equipment is maintained for each increase or decrease to be used for failure statistics processing.	
	Pailure statistics	Processing of failure data input from a terminal on occurrence of failure is processed, and various maintenance control lists are provided.	
Equipment control	Centralized Substation Control (CSC)	Data of operating condition of each substation equipmen (number of operation of AC circuit breaker and switch-o breaker, inspection data of remote control system, prot tion relay, etc., and load current) obtained through CS are processed, and various maintenance control lists ar provided.	
	Train radio tester (TRT)	Mobile station failure data and inspection data by train radio tester are processed for each train make-up, and various maintenance control lists are provided.	
	Centralized information control (CIC)	Data obtained by Centralized Information Control are pro- cessed, and various maintenance control lists are provided.	
	Electric equipment control	Replacement data of the electric snow melting device is maintained from terminals, and various maintenance control lists are provided.	
	Contact wire fittings control	As to contact wire fittings of a relatively high replacement rate, aging is grasped from replacement data maintained from terminals, and various maintenance materials are provided.	
	Şignal relay control	Replacement data of signal relays used for interlocking devices are maintained from terminals, individual operation number is obtained, and various maintenance control lists for replacement plan are provided.	
	Electric switching wachine control	Replacement data of electric switching machine maintained from terminals are processed to obtain individual operation number, and various maintenance control lists for overhaul inspection plan are provided.	
Electric _I	power . Power supply	Power index data of substation obtained from Centralized Substation Control is processed, and various maintenance control lists for power consumption are prepared. Electric power rate is also calculated from power supply result from terminals.	
وحجا فاغتكاف بالبالية والبوانية والمتبارية والمواري والمتكار	البنجي يترجر ويهيها الشباية تترجيه فكمنا المتحكمة المجدوع ويهينه وبعدها الت		

•

Classification	Detailed classification	Outline
Others	Technical calculation	Contact wire structure calculation is processed on various input conditions from terminals.
	Application for maintenance work	For working without power supply, work application from ter- minals are transmitted to CSG. Replies to such applications are transmitted to terminals.

- 252 -

Configuration 180[°]rotating flexible whip antenna External connector External antenna jack Turn lock Power & channel select switch Transmission-indicating LED Earphone Jack (side) Volume control knob SQ control knob Speaker & microphone Press-to-talk switch Ni-Cd battery pack Transmitter-receiver unit Battery pack lock knob Type ATR-150P1 Portable Radio

Performance Specifications

General	
Frequency range	145 to 165 MHz
Number of channels	1 to 5
Power source	DC 7.5V +10%, 450 mAH Ni-Cd battery pack
Battery life per charge	8 hours
Communication mode	2-way press-to-talk (simplex)
Temperature	-10 to +50°C
Size	165 mm (H) x 60 mm (W) x 38 mm (D)
Weight	520 g including battery pack

5-16 AWS System in the World

Control method	Data transmission	Speed	check	Brake	Characteristics
	Contactor	Not equipped		Emergency	l. Less ability to follow signal
	Magnet	On-ground	Spot	Emergency	indication change 2. Easy to extend
Inter- mittent Spot coil Inductor Transponder	Spot Service	ajoining lines 3. Low cost			
		Continuous	۱ ۱	· · · · · · · · · · · · · · · · · · ·	
Continuous	Track circuit Wires btw. rails	On-board	Continuous	Service and emergency	Contrary to the above

Table l Classification

Table 2 Application

Control method	Data transmission	Speed	check	Brake	Name of AWS or railways
	Contactor	Not equipped		Emergency	(France) Crocodile
	Magnet	Not equipped		Emergency	(England) AWS
Inter- mittent	Spot coil	Not equipped		Emergency	(Japan) ATS-S
		On-ground	Spot	Emergency	(Japan) Nagoya Railways
	Inductor	On-board	Continuous	Emergency	(Germany) Indusi~BWU
Í	Transponder	On-board	Continuous.	Service & emergency	(Japan) ATS-H (Egypt)
	Track circuit	On-board	Continuous	Service	(Japan) Seibu Railways
Continuous	Wires btw. rails	On-board	Continuous	Service	(Germany) LZB

- 254 -

5-17 Remote Monitoring System

Table 1 shows examples of the equipment to be subjected to collective surveillance.

Fig. 1 shows an outline of the remote monitoring system. A sensor is attached to each item to be monitored. All the sensors on the facilities in the station yard are directly connected to the failure display board. Information of facilities located between stations is transmitted to the station by means of the central monitoring device and input to the failure display board. The failure display board prepares information to be transmitted to the center and inputs it to the CTC system. The failure information transmitted by the CTC system is displayed on the monitor board of the control center.

There are various types of central monitoring devices such as analog systems, frequency division types, time division systems, etc. Fig. 2 shows the principle of an analog type central monitoring device which can use a cable of even fairly poor transmission quality. when there is no failure of the facilities in the section to be monitored, local power source B is supplied to the station facility and CR relay is energized to indicate the correct condition. If some facility should fail, the sensor relay of the facility drops to cut off power source B, and connects resistors Rx and Ry to the circuit. The station facility, by means of power source A and the Wheatstone bridge, measures the value of Rx, and then, by means of the pole change relay, measures the value of Ry. Since there are 10 different values for each of Rx and Ry, a total of 100 conditions can be detected in combination. Table 1 Facilities to be Monitored by the Remote Monitoring System

Name of facility	Item to be monitored	Serious failure	Slight failure
Signaling facilities			
(Station yard)			
Signals	Bulb filament burn-out		0
Points	Deviations of lock bar		0
	Faulty switching	0	
Interlocking device	Failure of control system	0	
	Failure of monitor unit		0
Signal power source	Failure of one system		0
	Total breakdown	0	
Cable	Poor insulation		0
(Facilities located			
between stations)			
Signals	Bulb filament burn-out		0
Level crossing facili-	Failure of control system	0	
ties	Failure of barrier motor		0
. '	Voltage drop		0
Telecommunication			
		((
excuange	auture	Failure of 9 sional	Eailure of I signal
		cenerators	penerator
Carrier system	Failure		
		Failure of basic rack	Pilot lev
Wireless transmitter and	Failure		
receiver		Failure of power amplifier	Pilot level drop
Wireless terminal	Failure	C	C
station facilities		Failure of line	Pilot level drop
		amplifier	-
Power source facility	Failure of I system		0
	Total breakdown	0	
Air conditioning system	Failure	0	0
		Radio station	Exchange station
Electric clock	Failure		0
Communication cable	Door inculation		

Note: Monitoring for telecommunication facilities shall be carried out at the no maintenance staff stations.

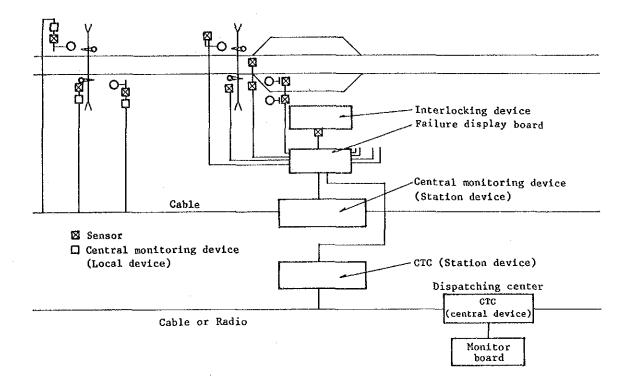
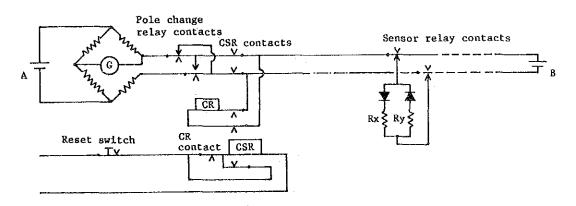
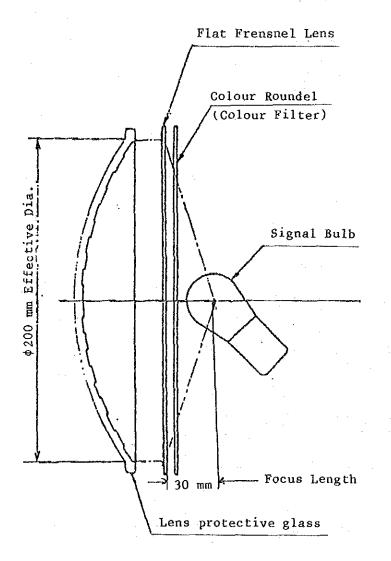



Fig. 1 Outline of Remote Monitoring System

(Station device)

(Local device)


Fig. 2 Principle of Central Monitoring Device

5-18 Example of Signal Lens of Long Visibility

1. Major Particulars

	Lens effective diameter	200 mm
Lens	Composition	Flat type frensnel lens
		(with colour filter)
	Material	Polycarbonate
Signal	Rate	30 V 15W/15W
bulb	Luminousness	27 V 120 &m (only main filament)
Range	Rated voltage x 90(%) 27 V	More than 1.5 Km
visibility	Rated voltage x 73(%) 21.9V	More than 1.0 Km

2. Configuration

- 258 -

\square	Turnout	Number of	Alignment	Type of	Characte	eristic
	number	drive		machine	Max. switching force	Withstanding thrust force
Conven- tional	<16	1	Fig-1	NS-A	300 kg	Max. 2000 kg
Line	≥16	2	Fig-2	G-CL	300 kg	Max. 2000 kg
New Corridor	<u>≥</u> 16	2	Fig-3	TS	800 kg	Max. 2000 kg

5-19 <u>Relation between Turnout Number and Alignment of Locking Devices in</u> JR

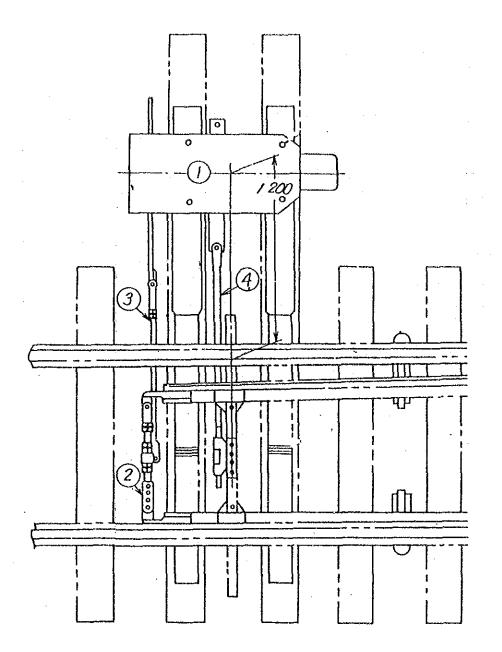


Fig. 1 Installation of Locking Device for NS-A Type Point Machine

the second s	
No.	Description
(1)	Point machine
2	Lock stretcher bar
3	Lock rod
(4)	Drive rod

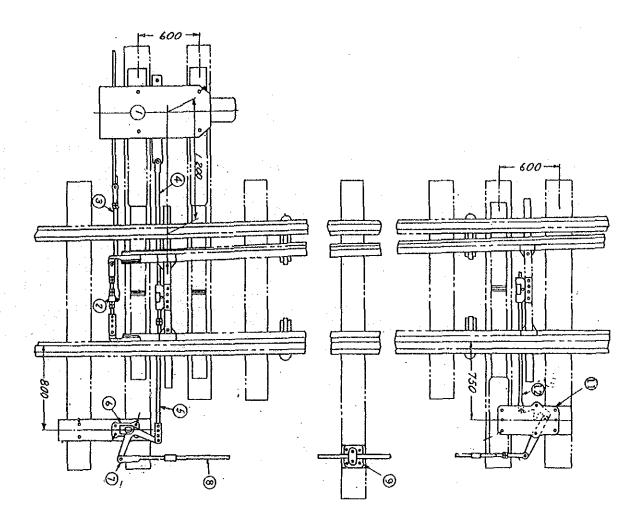


Fig. 2 Installation of Locking Device for G-CL Type Point Machine

.

No.	Description	No.	Description
	Point machine	\overline{O}	Jaw
2	Lock stretcher bar	8	Iron signal pipe
3	Lock rod	9	Rod carrier
(A)	Drive rod	0	Jaw
(5)	Insulation link		Escapement crank
6	Crank		Drive rod

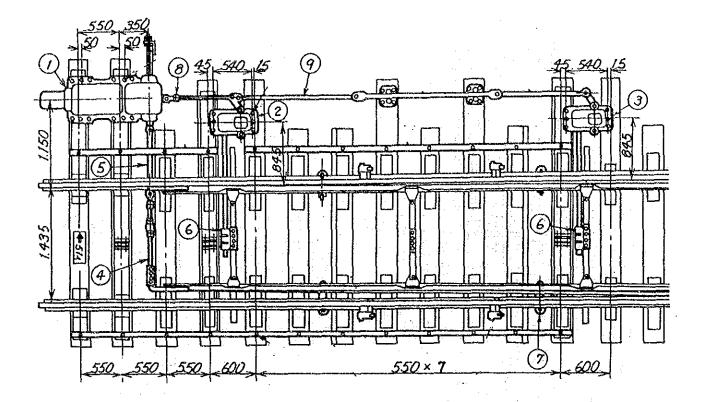
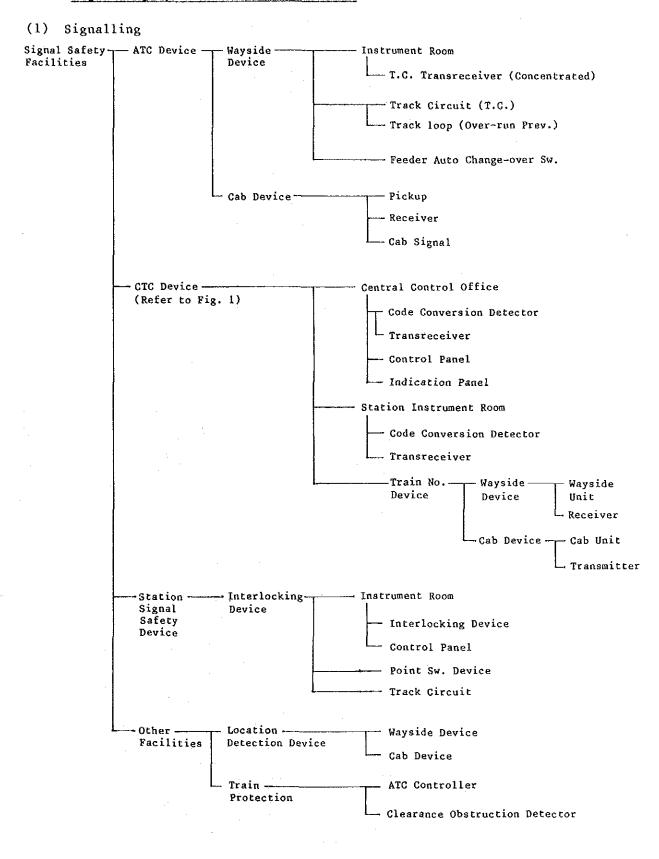
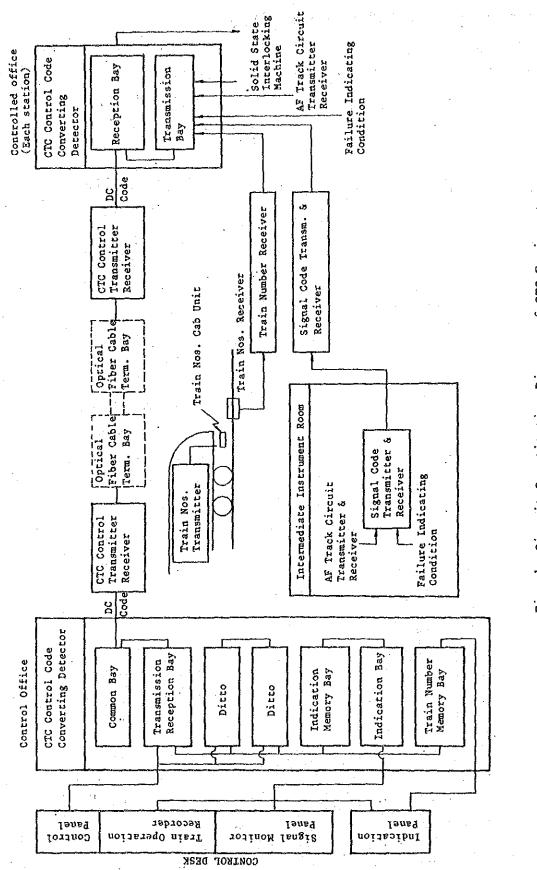
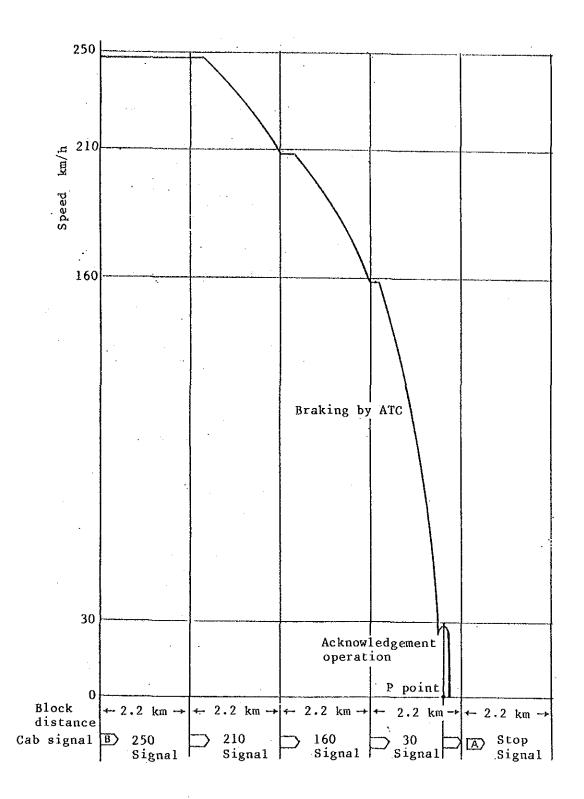



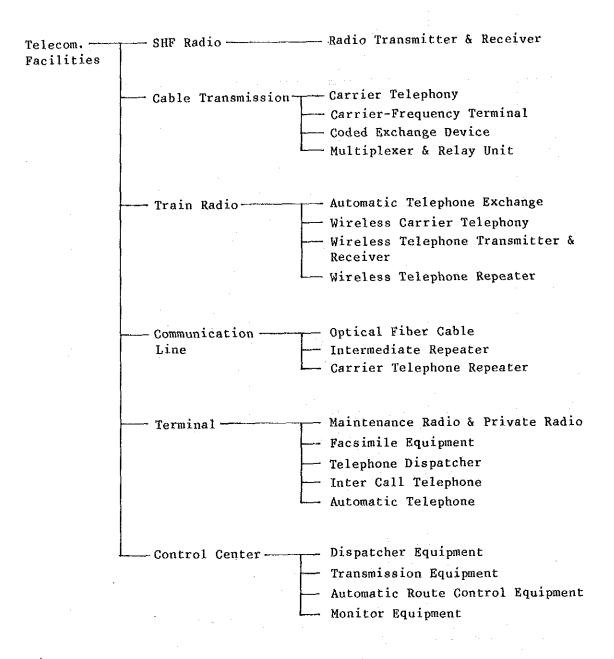
Fig. 3 Installation of Locking Device for TS Type Point Machine

No.	Description	No.	Description
1	Point machine	6	Drive lug
2	Escapement crank	\bigcirc	Point wear preventor
3	Escapement crank	8	Link
4	Lock stretcher bar	9	Link
5	Rock rod		· · · · · · · · · · · · · · · · · · ·

- 262 -

5-20 Signalling System of the New Corridor


Fig. 1 Circuit Constitution Diagram of CTC Equipment

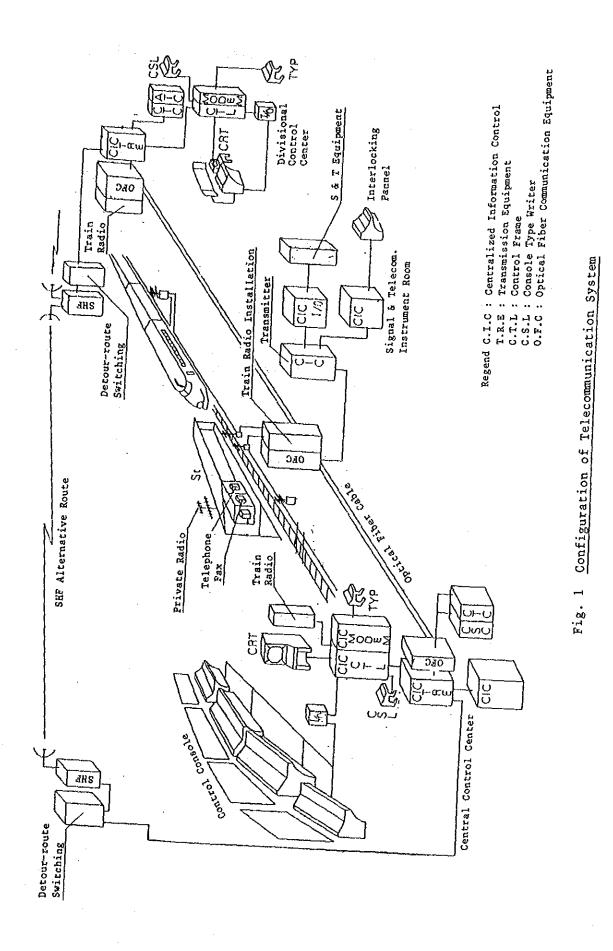


Fig. 2 Operating Curve by ATC (Between Stations)

5-21 Telecommunication System of the New Corridor

- 266 -

Jamman Japan Balan and Japan Stan Stan Stan State S	مىلىدىنى بىرىمى بىرى	
Equipment	Instrument	Cause
Solid-state	Logic analyzer	, Software errors
interlocking		. External errors
	Tester	(Field devices, operation
- -		handling)
	Synchroscope	
Electronic		. Hardware failure
level crossing	Voltmeter	(Processor, modules, sheets)
controller		. etc.
· ·	Level meter	. Deterioration of modules and
Centralized	wave analyzer	sheets
traffic	X-Y recorder	
control	frequency-counter	. External noise
Automatic	Synchroscope	. Logical error
train control	signal generator	
		• etc.
A.F. track		
circuit (Trans-		
mitter &		
Receiver)		
Train number	Delayed wave analyzer	. Hard and logical error
transmitter &		
Receiver		

5-22 <u>Typical Instruments for Repair and Maintenance of Signalling</u> <u>Electronic Devices</u>

- 268 -

6-1 <u>Countermeasures for Frequent Trippings of Feeder Circuit Breakers at</u> <u>Substation</u>

The problem IR is now facing in supplying electric traction power is the fact that feeder circuit breakers at the substation make extremely frequent trippings -- the problem that should be solved immediately.

The numbers of breaker trippings are not the same, varying with the feeding zones and seasons. Some breakers trip more than 100 times a month, and others only 4 or 5 times.

For reference, the trippings of circuit breakers installed at JR's substations average 4 or 5 times a year, with the exceptional cases such as typhoons and other natural disasters.

1. Problems

These frequent trippings give rise to frequent suspensions of power supply to trains. Attention must be given to the following actual conditions:

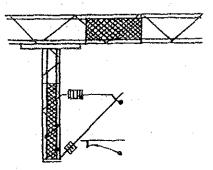
- (1) Under the current system, the feeder circuit breaker, connected to the secondary side of substation transformer, is commonly used for both up and down lines; therefore, when a trouble happens to one line, the power for the another sound line must be suspended, making a power suspension chance double.
- (2) After circuit breaker tripping, the interrupters of SS/FP, SSP and SP will be manually closed one by one controlling from the center. Thus, this series of the closing work requires some minutes.

These trippings will bring about the following problems:

- (1) Interrupt the train operations.
- (2) Shorten a service life of a circuit breaker, necessitating more maintenance.

Unless these problems are solved, therefore, the trippings will cause a grave adverse effect in attaining the increase in track capacity and the 160 km/h high-speed train operation.

2. Causes


The causes of breaker trippings include:

- (1) Birds. Some records say the 70 \sim 80% of the total breaker trippings were due to birds.
- (2) Flashover of the air gap installed on the roof of electric locomotive (connected in parallel to the primary side of transformer)
- (3) Flashover of the OHE insulator, frequently happen during the foggy season of December and January, and in the heavily air polluted area.
- (4) False working of distance relay due to load current

3. Countermeasures

It will take long time and great effort to settle out all these matters. However, there are measures that can be taken immediately such as:

- (1) Measures to remove the causes of circuit breaker trippings.
 - 1) In the bird-inhabited area:
 - A large number of bird nests are found. So it is recommendable to take measures to prevent nesting at places which are liable to cause ground fault. (See Fig. 1.)

Fig. 1 Places Effective in Preventing against Bird Nests

For example, it would be effective to insert a net of insulation material, such as plastics, inside the beam.

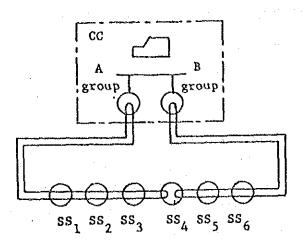
- 270 -

- Strengthen the insulation, such as fixing an insulating plate below the bottom of beam or covering an insulating tube to the catenary wire, when the clearance between the bottom of beam and the catenary wire is small, especially at overbridge.
- Change the air gap between horns provided on the roof of electric locomotive; adopt a gapless arrester for electric locomotive.
- Review the setting of distance relays in use and improve its characteristics.

At present the MHO relay is used as a distance relay, and its selecting capability of load and fault currents is limited. Therefore, it is desired that a distant relay with parallelogram characteristics be developed as early as possible. (See Appendix 6-7.)

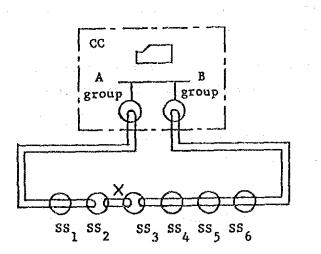
- 4) Survey the actual status of insulator flashovers by areas, seasons and causes, and clean or strengthen insulators in specific areas if required.
- (2) Measures to shorten the power stopping time after tripping
 - Adopt the high-speed, automatic reclosing method for circuit breakers. This method recloses a circuit breaker automatically 0.5 second right after it trips. When reclosed and retripped, the circuit breaker will be locked for further action.

From JR's experiences, it can be expected that the adoption of this method makes it possible to reclose about 80% of the total breakers that have tripped. In other words, in most cases it shortens the power stopping time to mere 0.5 second. According to "Single Pole SF-6 Circuit Breakers 25 kV AC: Specification No ETI/PSI/66/Rev. 1 (9/84)," the rated operating sequence of the circuit breaker is specified to be "0-0.3 sec-CO-3 min-CO." Therefore, this 0.5 second time is applicable.


- 2) Make it automatic to operate the interrupters of SS/FP, SSP and SP sequentially. At present, interrupters are manually operated from the control center. The automation will reduce the interrupter operation time to the matter of seconds. This method is especially effective in the Delhi area where the feeding system is complicated with many interrupters installed.
- (3) Measures to shorten the time for detecting a fault point. As described above, the transient faults -- about 80% of the total circuit breaker trippings -- will be solved by adopting the high-speed, automatic reclosing method. However, it is necessary to detect the remaining lasting faults of 20%, by making a time-consuming patrol. Introduce fault locators at each substation and then any fault point will be located with 0.5-1km accuracy, making it possible to drastically reduce the detecting time. Two methods are detailed as follows:
 - In the existing feeding system where the up and down lines are connected in parallel at SP and SSP, the accuracy of a fault location becomes deteriorated. Therefore, after re-tripping in reclosing, open all interrupters of SP and SSP, close the interrupters of SS for the up and down lines separately, and then a fault point can be located with accuracy.
 - 2) Open all the parallel interrupters for up and down lines before the CB recloses in 0.5 second by providing low voltage relays to each SP and SSP. Then the fault point can be located with high accuracy at a time of retripping with feeding current comparators which are provided to each feeder line.

- 272 -

6-2 Substation Supervisory Remote Control System


The JR's latest substation supervisory remote control system using a microprocessor is outlined below:

- 1. Features
 - (1) A communication circuit is constructed in the form of a loop to highten the reliability of transmission line connected to CC, SSs, SPs and SSPs. When a trouble arises in the line, the part in trouble will be automatically cut off, and at the same time the circuit will be automatically reformed; therefore, only one trouble will not hamper the operation of trains. Fig. 1 illustrates the configuration of communication circuit and a principle diagram showing how to deal with a circuit trouble when it happens.
 - (2) The supervisory remote control system, using a microprocessor and LSI (Large Scale Intergrated Circuit), can control many items and collect a large volume of information;
 - In addition to the function of controlling devices separately, it is capable of one-touch control of feeding circuit structure, and of overall control when suspending a feeding over a certain section, making the control simpler with smaller handling errors.
 - 2) It can compile information on many items of the controlled point so that dispatchers can make a right judgment.

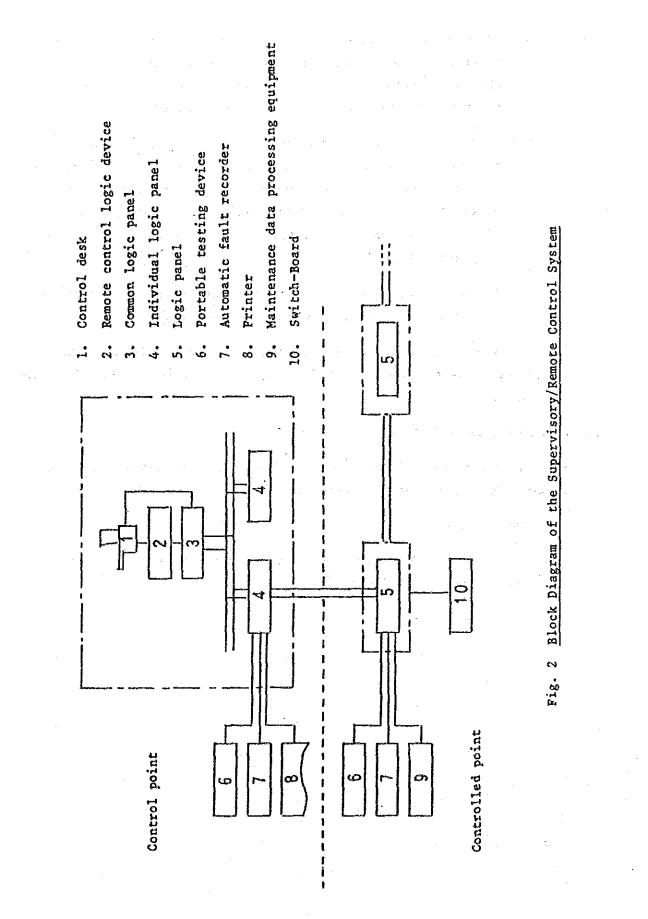
a. Composition of Circuits When Normal

ss _l ,	ss ₂	and	ss3	controlled	Ъу	A	group
ss ₄ ,	SS5	and	ss ₆	controlled	Ъy	B	group

b. Recomposition of Circuits When in Trouble on the X Marked Section

SS_1 and SS_2	controlled by A group
SS3, SS4, SS5 and SS6	controlled by B group

Fig. 1 <u>Composition and Recomposition of Circuits</u> When a Trouble Arises


- 274 -

- 3) Capable of printing out the time sequential record of controlling every device and their working conditions, also of the power consumption at each substation in the form of a daily report, making the equipment management easier.
- 4) Capable of collecting various data necessary for maintenance of devices, such as the values of feeding voltage, load current, fault current, operating frequency of devices, and controlling frequency, and the number of temporary stagnations of the remote control system, making their maintenance more easy and efficient.
- 5) Selfdiagnosis function, that is capablity of detecting parts in trouble by itself, makes the system highly reliable.
- (3) Being static, the system is small in size. Having almost no movable parts, the system is easy to maintain and has a longer service life.
- 2. Block Diagram of System Composition

Fig. 2 shows the block diagram of the supervisory/remote control system. Main parts of the system are:

(1) Control desk

By using CRT on control desk, it controls the power supply system and all the other devices.

276 -

(2) Remote control logic device

This is a controlling purposes processor, capable of controlling devices automatically, separately and totally, and also of dealing with figure display to CRT.

(3) Common logic panel

This is a device for mutually making interface among control desk, remote control logic device, and individual logic device. It stores control information and output the conditions of equipment at a controlled post to CRT display or the control desk when receiving answer-back signals.

(4) Individual logic panel

It is provided for each group. It controls transmission of such information as supervision of the condition of communication lines, the collation of sending/receiving codes, and supervision of temporary stagnations of control signals. It also creates codes necessary for testing the system.

(5) Logic panel

It is provided at the controlled point. It works as the interfaces with the control center, adjacent controlled points and with the switch-board. 6-3 Outline of AT Feeding Circuit and Connections of Substation,

Sectioning Post and Sub-sectioning Post

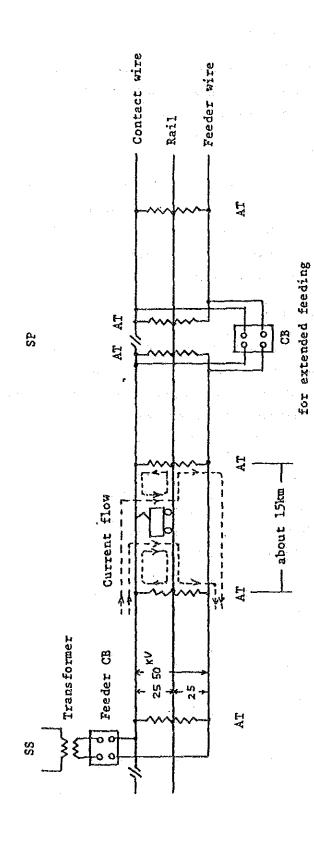


Fig. 1 Outline of AT Feeding Circuit

- 278 -

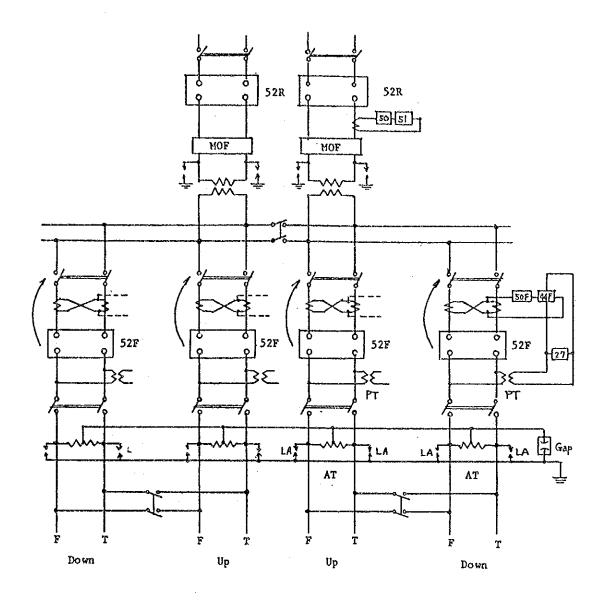


Fig. 2 <u>Standard Schematic Diagram of Traction Substation for AT Feeding</u> <u>System</u>

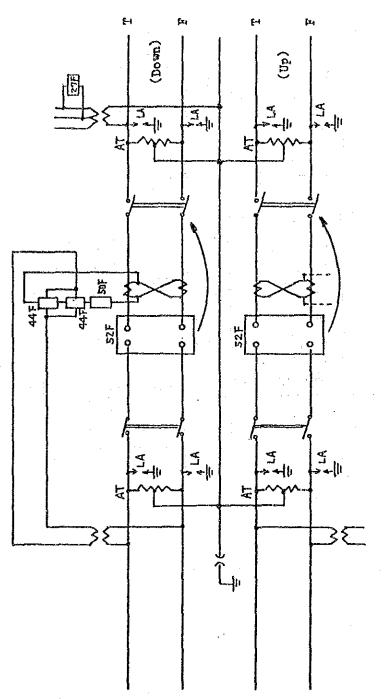
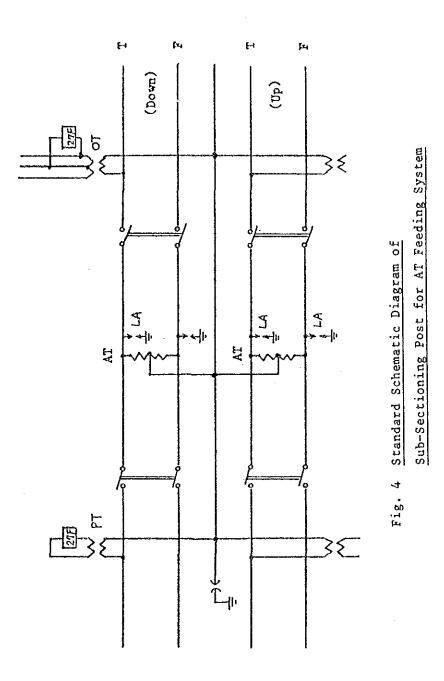



Fig. 3 Standard Schematic Diagram of Sectioning Post for AT Feeding System

- 280 -

6-4 Shunt Capacitor Equipment

In cases where a shunt capacitor is to be installed at substation to improve the power factor of load current, the following points must be taken into account to prevent abnormal phenomena and damages to the shunt capacitor equipment.

- 1. Important Items on Shunt Capacitor Equipment
 - (1) Inductive reactance value of series reactor of shunt capacitor equipment

Fig. 1 shows the circuit of traction power supply, and Fig. 2 its equivalent circuit.

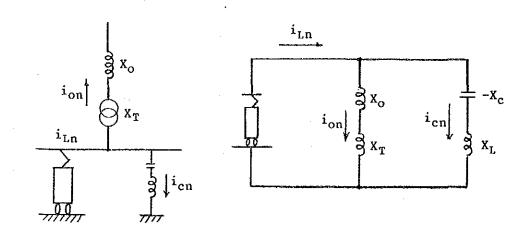


Fig. 1 Traction Power Supply Circuit Fig. 2 Equivalent Circuit

where Xo : Inductive reactance of power source

- X_{T} : Inductive reactance of main transformer
- $-X_{C}$: Capacitive reactance of shunt capacitor
- X_L : Inductive reactance of series reactor of shunt capacitor

When a study is to be made of high harmonic current in the traction power supply circuit, an electric motive unit is considered to be its source. The following equation represents i_{cn} and i_{on} :

where n : degree of high harmonic

Note the above equation, denomination, the second term. If $(nX_L - X_C/n)$ turns to be minus, i_{Cn} or i_{On} or both will become greater than i_{Ln} , and the high harmonic current generating from the electric motive unit will be amplified with the shunt capacitor equipment.

The load current contains high harmonic current which exceeds the 3rd harmonic current, such as I₃, I₅, I₇; therefore, it is necessary for the shunt capacitor equipment to be inductive in the frequency area above the 3rd high harmonic frequency (3 X 50 = 150 Hz).

Fig. 3 shows the characteristic of $(nX_L - X_c/n)$ when $X_L = 0.13$ Xc.

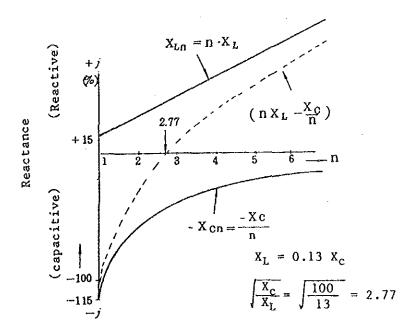
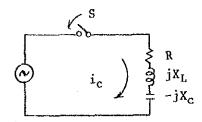



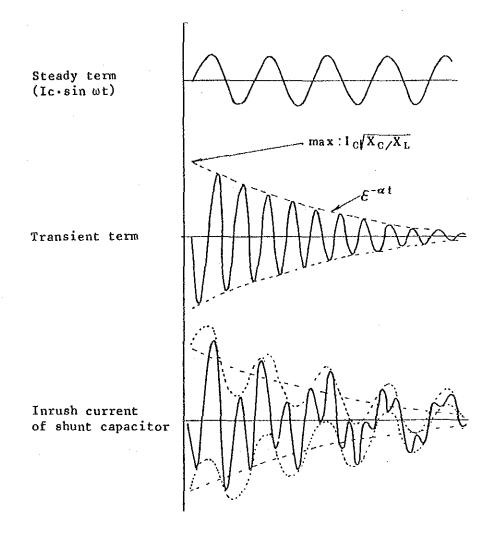
Fig. 3 Reactance of Shunt Capacitor Equipment vs. Frequency

(2) Transient phenomena

1) Inrush current when closed

Fig. 4 Equivalent Circuit of Shunt Capacitor Equipment

When S is closed in the circuit of Fig. 4, i_c is expressed by the following equation:


ic = Ic(sinwt -
$$\varepsilon$$
 $\frac{-\alpha t}{\omega}$ sin wot)
= Ic {sin $\omega t - \varepsilon$ $\frac{-\alpha t}{\sqrt{\frac{Xc}{X_L}}}$ sin($\omega \sqrt{\frac{Xc}{X_L}}$) t} ... (2)

where

Ic : rating current of shunt capacitor ω : angular velocity (rad/sec) $\omega o = 1 / \sqrt{LC}$ (rad/sec)

 $X_c = 1/\omega c$: capacitive reactance of capacitor at 50 Hz $X_L = \omega L$: inductive reactance of series reactor at 50 Hz Fig. 5 shows wave forms of inrush current.

- 284 -

Fig. 5 Wave Forms of Inrush Current

Maximum theoretical value of inrush current and frequency are expressed by:

$$i_{c} \max = I_{c} \times (1 + \sqrt{\frac{X_{c}}{X_{L}}})$$

 $f_{ic} = 50 \times \sqrt{\frac{X_{c}}{X_{L}}}$
(3)

When $X_L = 0.13X_c$, i_c max will be 3.8 times as large as the rated current, and frequency 2.8 times. Therefore, the capacitor must be capable of withstanding the inrush current.

Should the capacitor be equipped with a fuse, it is necessary for the fuse not to blow due to the inrush current. If a fuse in a certain unit capacitor is blown, the total capacitive reactance value, X_c , will increase, and the resonance frequency will become higher, and this will cause the amplification of high harmonic current. Basically, therefore, it is not recommendable to use a fuse in unit capacitor. When the unit capacitor is detected defective, it is necessary to cut off the whole shunt capacitor from the circuit with circuit breaker.

2) Transient over-voltage of capacitor

The capacitor must be capable of withstanding the transient over-voltage shown in Equation (4).

 $e_c (max) = E_c (-\cos \omega t + \varepsilon^{-\alpha t} \cos \omega o t) \dots (4)$

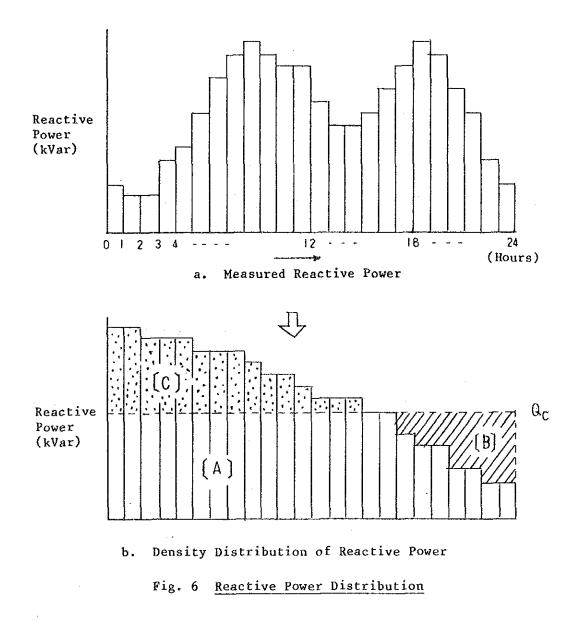
3) Transient over-voltage of series reactor

The series reactor must be capable of withstanding the transient over-voltage expressed in Equation (5).

 $e_{\rm L}$ (max) = $\omega L I_{\rm c} \cos \omega t + \frac{1}{\omega c} I_{\rm c} \varepsilon^{-\alpha t} \cos \omega c$ (5)

4) Recovering voltage appeared to CB terminals when opened

In cases where CB is to be installed on the shunt capacitor equipment, it is necessary to use a CB which will not restrike, since recovery voltage, which is two times as large as the power source voltage, will arise between CB terminals when CB is opened.


(3) Ferranti effect

Install a shunt capacitor, and, when there is no train load, the voltage, $(X_0 + X_T)$ I_c, will go up (Ferranti effect), exceeding the power source voltage. It is necessary to keep this voltage within the allowable value.

where X_0 : Inductive reactance of power source

- X_L : Leakage reactance of transformer
- I_c : Rating current of shunt capacitor
- (4) Capacities of shunt capacitor and power factor

Assume the variations of the reactive power measured at a certain substation, as shown in Fig. 6 a. Arrange them in order from the largest, and Fig. 6 b. shows the density distribution of reactive power.

Install a shunt capacitor, Qc value, and the power factor will improve from Equation (5) to Equation (6).

Power factor before improvement

$$\cos \theta_{1} = \frac{P_{L}}{\sqrt{P_{L}^{2} + Q_{L}^{2}}} = \frac{P_{L}}{\sqrt{P_{L}^{2} + (A + C)^{2}}} \qquad (5)$$

Power factor after improvement

$$\cos \theta_{2} = \frac{P_{L}}{\sqrt{P_{L}^{2} + (Q_{L} - KQ_{c})^{2}}} = \frac{P_{L}}{\sqrt{P_{L}^{2} + C^{2}}} \qquad (6)$$

A : _____ area (kVarH) H B : _____ area (kVarH) H C : _____ area (kVarH) H

2. Study on Shunt Capacitor Equipment at Panki SS

(1) Constants of the existing shunt capacitor equipment

1) Constants

C : 16 units, 1022 kVar at 25 kV unit capacitor : 9.2 kVar, 7.5 kV

L : 11.316 at 50 Hz, continuous current 49.2 A

2) Study

The following values are obtainable from the above constants.

a. Capacitive reactance of capacitors at 50 Hz

$$X_{c} = \frac{(25 \text{ kV})^2}{1022 \text{ kVar}} = 611.5\Omega$$

b. Ratio of X_L to X_c

$$x_L / x_c = 11.361 / 611.5 = 0.0186$$

 $(1.9\% \text{ of } X_c)$

- 288 -

c. Resonance frequency

$$f = \frac{1}{2\pi/LC}$$
 = 366.8 Hz = 7.34 x 50 Hz

- (2) Problems
 - 1) Over-current of shunt capacitor and high harmonic current interference with power source

The value of X_L is 1.9% of X_C , and resonance frequency is 7.34 X 50 = 366.8 Hz. Therefore, the shunt capacitor amplifies 7th, 5th, and 3rd harmonic currents. In other words, it gives over-current to the shunt capacitor, and high harmonic current interference to the power source.

2) Blowing of unit capacitor fuse and breaking of capacitor

Since the value of series reactor is not appropriate, the probability of fuse blowing and capacitor breaking is high. Causes are:

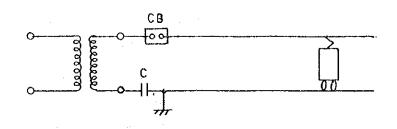
- a. Over-current of shunt capacitor due to the amplification of high harmonic current shown in 1).
- b. As can be seen by Equation (3), i_c max flows about 8 times larger than the rated current.
- c. The capacitor is breakable due to the over-current or over-voltage. The over-current in the above a. and b. will break the capacitor.
- d. When the fuse of a unit capacitor is gone, the resonance frequency of shunt capacitor equipment will become higher. As a result, the amplification of high harmonic current will be enhanced, and the inrush current enlarged. In other words, it can be assumed that capacitors will break one after another due to the domino effect.

(3) Recommendations

- 1) The value of series reactor of shunt capacitor at the Panki Feeding Post is not appropriate. Therefore, it is suggested that this series reactor be improved immediately. Check on X_L of shunt capacitor equipment at other feeding posts and substations, and improve if necessary. It is recommendable that the value of X_L be 13-15% of X_c .
- 2) It is essential that the series reactor should not be saturated due to the fluctuation in load current and the transient phenomena that arise when the shunt capacitor equipment is closed. When the value of X_L becomes close to 11% of the value of X_c , parallel resonance in the 3rd harmonic frequency to the inductive reactance on the side of power source (($X_0 + X_T$) in Fig. 1) might take place.
- 3) The use of a fuse is effective in protecting a unit capacitor, but pernicious to the shunt capacitor equipment. Therefore the current protection method must be re-studied.
- 4) In cases where CB is to be used for shunt capacitor equipment, it must be well capable of closing and opening the leading current.

6-5 Series Capacitor Equipment

In cases where a series capacitor is to be used to reduce the voltage drop due to inductive reactance of transformer or feeding circuit, important items that should be taken into account are as given below:


1. Connection Method and Allowable Ohm Value of Series Capacitor

- (1) Series capacitor for main transformer
 - 1) Connection method

To compensate the leakage reactance of main transformer, connect a series capacitor in series on the secondary side of transformer.

- 290 -

- a. The voltage compensation effect is the same even when a series capacitor is connected on the primary side of transformer, but this is not economical since the insulation level of the series capacitor against ground will be higher.
- b. In connecting a series capacitor on the secondary side of transformer, it is economical to connect it on the negative side as shown in Fig. 1.

Fig. 1 Series Capacitor for Main Transformer

2) Ohm value

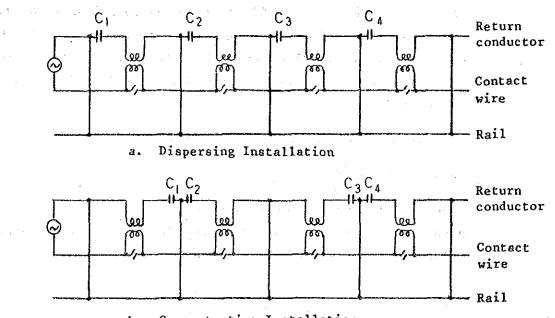
Appropriate ohm value at 50 Hz of series capacitor is 80-90% of the main transformer leakage reactance at 50 Hz. If the ohm value is made larger than this, an abnormal phenomenon, such as a fractional harmonic oscillation, will arise when CB is closed.

(2) Series capacitor for feeder circuit without BT

1) Connection method

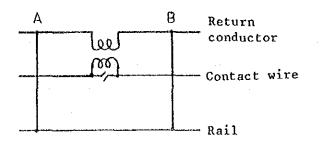
Insert series capacitors in series with the contact wire and dispersedly according to the amount of load and the voltage value to be compensated, as shown in Fig. 2.

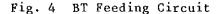



Fig. 2 Series Capacitors for Feeder Circuit without BT

- 291 -

2) Ohm value


From JR experiences, appropriate ohm value at 50 Hz of series capacitor at a place is approximately 5Ω . That is, let the inductive reactance of return conductor is at 0.5Ω /km. A 5- Ω capacitor will be installed every 10 km.


- (3) Series capacitor for feeder circuit with BT
 - 1) Connection method
 - a. Whether a series capacitor is connected on the side of contact wire or return conductor, the voltage compensation effect is the same; however, the latter is more economical.
 - b. The number of places where series capacitors are to be installed will be decided according to the size of load and the voltage value to be compensated. However, in cases where series capacitors are to be provided at every BT, install them in a concentrating way as shown in Fig. 3 b., rather than 3 a., because maintenance is easier.

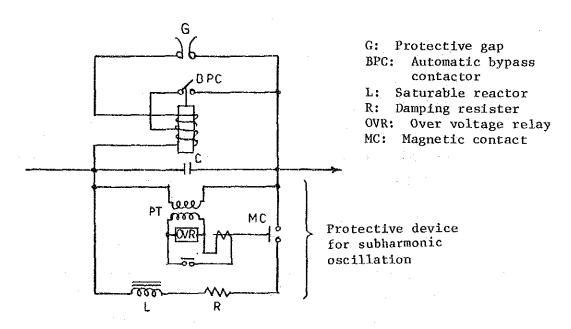
- b. Concentrating Installation
- Fig. 3 Series Capacitors for Feeder Circuit with BT

2) Ohm value

The ohm value of series capacitor to be inserted in a BT circuit will be the inductive reactance value of return conductor between A and B.

For reference, JR experiences show that the inductive reactance value of return conductor is approximately 0.5Ω /km at 50 Hz. That is, if the distance between boosting lines is 2.6 km, the value of capacitor to be inserted will be 1.3Ω .

2. Protection device


When a short-circuit fault occurs in a circuit where a series capacitor is installed, a short-circuit current of that circuit flows in that series capacitor. It is considered not economical to provide a series capacitor that is capable of withstanding this short-circuit current. As a countermeasure, gap and bypass contactor will usually be provided in parallel with the series capacitor.

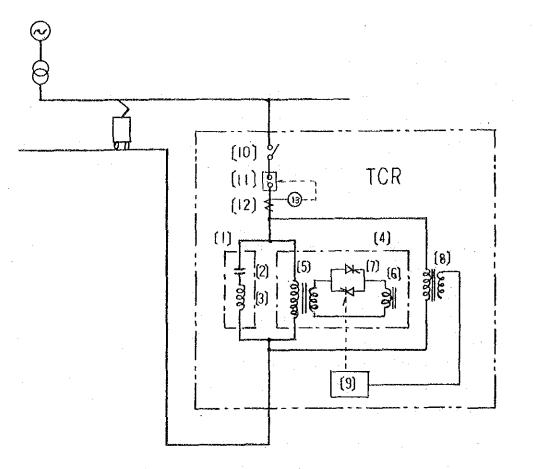
Protective gap for use with series capacitor is to be provided with the following features:

- a. Uniform and stable sparking characteristics
- b. Robust construction with sufficient mechanical strength and short time over current characteristics
- c. Self arc quenching abilities.
- d. Minimum and easy maintenance requirements.

After sparking the gap, the bypass contactor is closed within 10 ms to bypass the gap.

Fig. 6 shows a circuit diagram for this application. The most remarkable difference from ordinary applications is that a device specially developed for the prevention of subharmonic oscillation due to frequent switching of no load traction transformer is incorporated with capacitor. The device comprises a saturable reactor and resister connected in series, and delivers low impedance discharging circuit for the low frequency voltage across capacitor induced by inrush current of no load transformer.

Fig. 6 Connection of Series Capacitor for AC Electrified Railway


6-6 Thyristor Control Reactor (TCR)

A study has been made of a TCR, shunt capacitor and thyristor-controlled shunt reactor provided at the end of feeding zone. Normally, keep the shunt capacitor and shunt reactor in parallel resonance. When the feeder voltage drops, the reactor will be accordingly automatically controlled by thyristor, and leading reactive power supplied to the feeding circuit. Consequently, the power factor seen from the substation will be improved, and the voltage drop in the feeder circuit reduced.

1. Composition of TCR

Fig. 1 shows the composition of TCR.

- Shunt capacitor branch [1] is a capacitor in terms of a function, but, when to be used as a traction feeder circuit, it needs series reactor [3]. For the reason why the reactor is required and the reactance value required for the reactor, see Appendix 6-4, Shunt Capacitor Equipment.
- (2) In principle, it is enough to put the thyristors of inverse parallel connection and the reactor in series for shunt reactor branch [4]. Actually, however, in designing hardware, since connecting thyristors directly with the 25 kV circuit will make the equipment expensive for their protection, provide transformer [5], set the secondary voltage of the transformer, for example, at 2,000 V, at which the thyristors are controllable, and connect thyristors [7] and reactor [6] with the secondary winding circuit.
- (3) Make the value of reactance, including the leakage reactance of transformer [5], so that shunt reactor branch [4] and shunt capacitor branch [1] will be in parallel resonance.
- (4) Conduct the control of TCR by detecting the feeder voltage with operating transformer [8].

- [1] Shunt capacitor branch
- [2] Shunt capacitor
- [3] Series reactor
- [4] Shunt reactor branch
- [5] Transformer
- [6] Reactor
- [7] Thyristor

- [8] Operating transformer
- [9] Thyristor control device
- [10] Disconnecting switch
- [11] Circuit breaker
- [12] Current transformer
 - [13] Over current relay

Fig. 1 Connection Diagram of TCR

2. Outline Design of TCR

To study the features and effects of TCR, its approximate constants are required; therefore, an outline design is made of two kinds of capacities. Taking into account the load in the Section, the maximum leading current that TCR can supply is assumed to be at 300 A and 600 A.

Table 1 shows the main features of TCR.

Item	Feature	Rating	No.	of		
		600 A	300 A	Fig.	1	
Shunt	Rating voltage	31.1 kV	31.1 kV	[2]	[1]	
Capacitor	Rating current	600 A	300 A			
	Rating capacity	18.6 MVA	9.3 MVA			
	Capacitive reactance	52 . 7Ω	105.4Ω			
Series reactor	Rating voltage	3.58 kV	3.58 kV	[3]		
••••	Instant voltage	27.5 kV	27.5 kV			
	Rating current	600 A	300 A			
	Rating capacity	2.15 MVA	1.07 MVA			
	Inductive reactance	6.85 Ω	13.7Ω			
Transformer	Rating voltage (pri/second)	27.5/2 kV	27.5/2 kV	[5]	[4]	
	Rating current (pri/second)	600/8,250A	300/4,125A			
	Rating capacity	16.5 MVA	8.25 MVA			
Reactor	Rating voltage	2 kV	2 kV	[6]		
	Rating current	8,250 A	4,125 A			
	Rating capacity	16.5 MVA	8.25 MVA			
	Inductive reactance	0.242 N	0.484Ω			
Thyristers	Single phase,			[7]		
	Inverse parallel connection					
	Phase control					
	Rating voltage	2 kV	2 kV			
	Rating current	8,250 A	4,125 A	··		
Operating	Rating voltage (pri/second)	27.5kV/220V	27.5kV/220V	[8]		
transformer	Rating capacity	10 kVA	10 kVA			
Thyristor	Voltage control			[9]		
control device						
Disconnecting	Rating voltage	27.5 kV	27.5 kV	[]	[10]	
switch	Rating current	600 A	300 A			
Circuit breaker	Rating voltage	27.5 kV	27.5 kV	[]	[1]	
	Rating current	600 A	300 A			
	GCB					

Table 1 Main Features

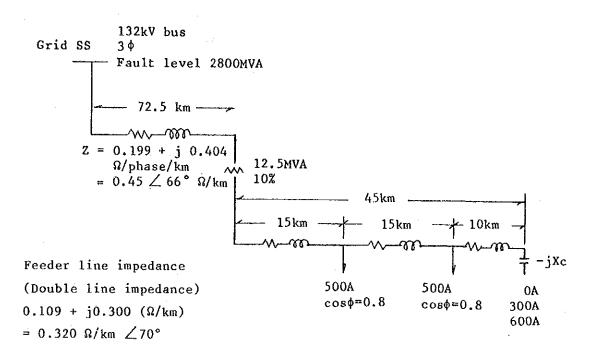
.

Given below for reference is the calculating process on the main equipment in the case of the rated current 600 A:

(1) Shunt capacitor, [2] of Fig. 1

Suppose inductive reactance of series capacitor is 13% of capacitive reactance of shunt capacitor;

1) Capacitive reactance at 50 Hz


 $Xc (1 - 0.13) = \frac{27.5 \times 10^3}{600}$

 $X_{c} = 52.7 \Omega$

- 2) Rating voltage = $27.5 \text{ kV} \times 1.13 = 31.1 \text{ kV}$
- 3) Rating capacity = 31.1 kV x 600 A = 18.6 MVA
- (2) Series reactor, [3] of Fig. 1
 - 1) Inductive reactance at 50 Hz $X_{SR} = 52.7 \times 0.13 = 6.85 \Omega$
 - 2) Instant voltage = 27.5 kV
 - 3) Rating voltage = $27.5 \times 0.13 = 3.58 \text{ kV}$
 - 4) Rating capacity = 3.58 x 600 = 2.1 MVA
- (3) Transformer, [5] of Fig. 1
 - 1) Voltage ratio = 27.5 kV/2 kV = 13.75
 - 2) Secondary winding current = $600 \text{ A} \times 13.75 = 8,250 \text{ A}$
 - 3) Rating capacity = $2 \text{ kV} \times 8,250 \text{ A} = 16.5 \text{ MVA}$
- (4) Reactor, [6] of Fig. 1
 - 1) Rating voltage = 2 kV
 - 2) Rating current = 8,250 A
 - 3) Inductive reactance = $2 \text{ kV}/8,250 \text{ A} = 0.242 \Omega^*$
 - * Including transformer leakage impedance at 2 kV base.

4) Rating capacity = 2 kV x 8,250 A = 16.5 MVA

3. Precondition of Calculation

Fig. 2 Precondition of Calculation

Circuit constants are all converted to be at 27.5 kV base. 1) Power source impedance at 27.5 kV base, Xo:

$$Xo = j2 \frac{V^2}{P} = j2 \times \frac{27.5^2 \times 10^6}{2,800 \times 10^6} = j \ 0.54 \ \Omega$$

2) Transmission line impedance at 27.5 kV base, X_{TM} :

$$X_{\text{TM}} = 2 \ (0.199 + j0.404) \ x \left(\frac{27.5}{132}\right)^2 \ x \ 72.5$$

= 1.25 + j 2.54 Ω

3) Transformer impedance at 27.5 kV base, X_T :

$$X_{\rm T} = j \frac{\sqrt{2} \times \sqrt{2}}{100 \times P} = j \frac{27.5^2 \times 10^6 \times 10}{100 \times 12.5 \times 10^6} = j6.05 \ \Omega$$

4) Feeder line impedance, X_L :

 $(0.109 + j0.3) \times 15 = 1.635 + j4.5\Omega/15$ km $(0.109 + j0.3) \times 10 = 1.09 + j3.0\Omega/10$ km 5) Load impedance, ZL1, ZL2:

The loads of the up and down lines are given as a whole: namely, impedance, about that for 500 A (cos $\phi = 0.8$), is provided each at the two points, 15 km and 30 km.

6) Capacitive reactance of shunt capacitor, Xc:

Capacitive reactance is so assumed that the current is to be about 300 A (and 600A).

Impedance map is shown in Fig. 3.

- 4. Results of Calculation and Review
- Fig. 4 shows the results of calculation.
 - (1) Improvement effect of feeder voltage

13.4 kV at the load point at the 30 km point without TCR provided will improve to be 18.1 kV when the leading current, 300 A, is supplied with TCR provided, and 22.4 kV when 600 A. The improvement effect of feeder voltage is remarkable. The voltage at the end of feeding zone will slightly rise above that at the secondary load point, raising no particular problem.

(2) Improvement effect of power factor

Assume the power factor of load is 0.8. The power factor from substation is 0.69 when TCR is not provided. This will improve to be 0.87 when the leading current, 300 A, is supplied with TCR provided, and 0.98 and 600 A. The improvement effect of power factor is as large as that of feeder voltage. (3) Supply current reduction effect attended with power factor improvement

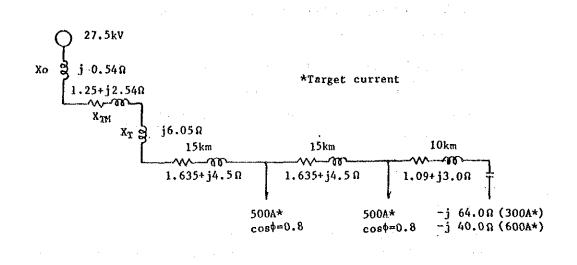
When TCR is not provided, the substation supply current will be the load current in total, but if the leading current, 300 A, is supplied, it will be reduced by 11% to 89%, and 600 A, by 13% to 87%, respectively.

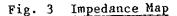
(4) Power losses of TCR

See Fig. 1 and Table 1. One of the biggest TCR problems is the power losses of shunt reactor branch [4]. That is, in the case of 600 A, the capacity each of transformer [5] and reactor [6] is 16.5 MVA, the reactor having 8,250 A at 2 kV. In the case of 300 A, 4,125 A.

Assume that the total power loss due to transformer and reactor is 2%. Losses will be 330 kW when 600 A is on. Furthermore, thyristor loss, and 8 kW, if the forward drop is 1 V, must be added.

Actually, the current of reactor being controlled with thyristor when there is a load, these losses will not be always made; however, the value of losses as described above is considered too large.


Expenses to be required against power losses will become much larger than part of the demand charges reduced through the improvement of power factor.


(5) Cost of TCR

The cost of a 300 A TCR is higher than that of a substation to construct.

(6) Others

Studies should have been made of the control method of TRC, high harmonic current, and high harmonic voltage that appears in the feeder circuit, but they have been omitted because the problems involved in (4) and (5) are so important and serious.

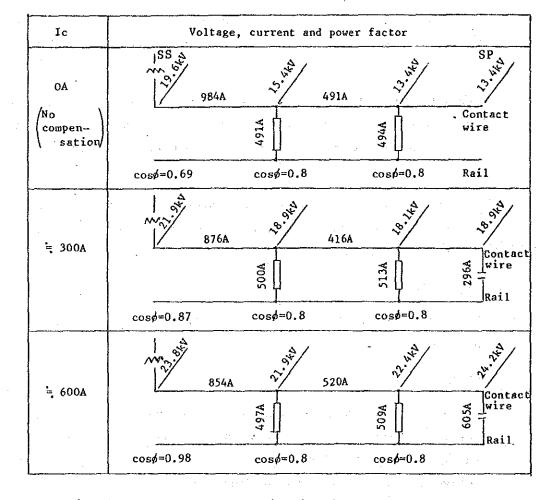


Fig. 4 Voltage, Current Distribution and Power Factor

5. Conclusion and Recommendations

TCR will improve the power factor and also will be effective in reducing the voltage drop; however, it is considered not practical to use it because its power losses is strikingly large and its cost is much higher than a substation.

To improve the power factor, it is much better to install shunt capacitors at substation. See Appendix 6-4.

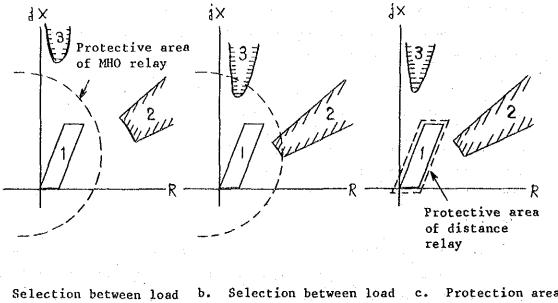
For reducing the voltage drop, it is recommendable that series capacitor to compensate the leakage reactance of main transformer and the inductive reactance in the feeder circuit be provided. See Appendix 6-5.

In any event, for the Section where the future load current is expected to increase two times or more than the present one, the best solution is to add 6 more substations.

6-7 Distance Relay

What are most basically required for distance relay? They are:

- assured detection of feeder circuit faults; and


- non-malfunction due to load current and exciting inrush current to no load transformer of rolling stock.

The MHO relay is now used as a distance relay at IR's substations. As is shown in Fig. 1 a. the MHO relay is capable of selecting the fault current when the load current is small, but not capable when the load current is large as shown in Fig. 1 b.

To solve this problem, the distance relay of semiconductor static having parallelogram characteristics has been developed. Fig. 1 c. shows the characteristics.

It is convenient for this semiconductor static type distance relay to obtain the protection area desied, but if high harmonic component is contained in the feeder voltage/current, this protection area might be changed; therefore, this point must be taken into account for designing.

- 1: Fault current zone
- 2: Load current zone
- 3: Exciting inrush current zone

a. Selection between load and fault current when load current is small Selection between load and fault current when load current increases Protection area of parallelogram type distance relay

Fig. 1 Protection Area of Distance Relay

6-8 Automatic Inspection Device for Substation Equipment

On JR's existing lines, the automatic inspection device is used to inspect switchboards at substations, sectioning posts and sub-sectioning posts automatically and efficiently. There are two types of device, one fixed aboard the motorcar and the portable.

1. Switch-boards to be Inspected

At AC substation: Main switch-board, receiving sending power and switch-board, transformer switch-board, AC feeding switch-board, and high-tension power distribution switch-board.

At DC substation: In addition to the foregoing switch-boards, rectifier switch-board, and DC feeding switch-board.

2. Kinds of Inspection

(1) Overall inspection

In the form of various signals such as operating command signals and fault detecting signals, voltage and current are to be sent from the inspection device to the switch-board, and the functions of the switch-board, that is, whether or not the mechanical/electrical interlocking and fault indication have been performed correctly within the allowable time, are checked. Every sequence of the switch-board functions and the operations of equipment are inspected. Take the closing of a circuit breaker for example, it is actually closed by command signal, response time measured and recorded. Depending on the type of switch-board, the number of items to be inspected ranges from 15 to 20.

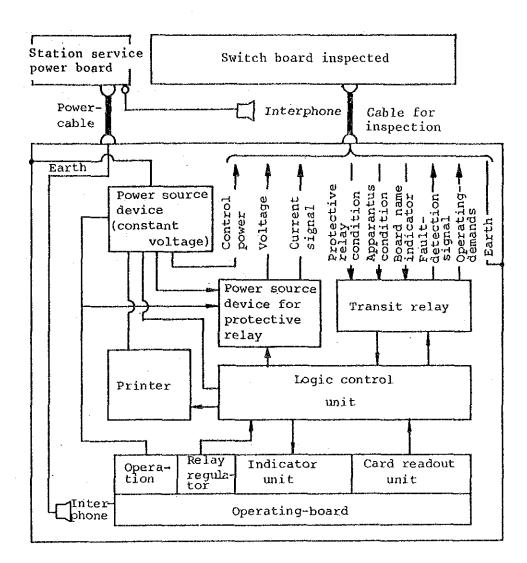
Inspection results are to be judged in such a way as given below:

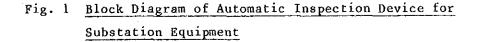
- Good : Switch-board and other equipment have functioned correctly within the allowable time.
- Caution: Response has been made as expected, but timing not appropriate.

- Bad : No response.

When judged to be "Caution" or "Bad", the circuits concerned are to be inspected again individually, necessary adjustment and repair made.

(2) Protective relay inspection


The operational characteristics of protective relay are to be inspected. The inspection is to be conducted when the protective relay has been found abnormal during the overall inspection or when it is deemed necessary otherwise. Voltage/current generator for inspecting the protective relay and other instruments are provided on the operating panel of the inspection device.


3. Inspection Method

Connect the inspection device with the switch-board to be inspected by a special cable of 120 cores and a coupler. To do this, the switch-board must be equipped with a receptacle, with some modification of circuit connection to enable automatic inspection.

4. Construction

Fig. 1 is a block diagram, outlining the construction of the automatic inspection device.

5. Effects

- (1) Operations and characteristics of substation main equipment, such as mechanical/electrical interlocking, protective relays, circuit breakers, disconnecting switches, can be checked under the same conditions as actual.
- (2) All date are to be automatically recorded. Therefore, it is possible to prepare figures and data for maintenance. Comparison of previous and present data will serve to judge the deteriorating status of equipment and forecast the occurrence of failure.
- (3) Since no circuit disconnection or dismantlement of protective relay terminals is required inspection is highly reliable; that is, if the terminals are dismantled for inspection, there might be a chance for them to be loosely tightened or circuits to be misconnected, resulting in failures.
- (4) With the use of the automatic inspection device, the inspection time may be greatly reduced, from the average three hours to only 10 minutes for a team of three inspectors to inspect one switch-board.

6-9 Performance of Simple Catenary System

1

1. Wave Propagation Velocity and Train Speed

In order to collect current with contact wire in good order and without trouble, it is necessary to keep stable contact force between the contact wire and the pantograph.

When a train runs with the pantograph sliding the contact wire, the contact wire is distorted and the distorted waves propagates in it. In case the train speed is the same or faster than its propagation velocity, the contact wire behind of the pantograph will vibrate heavily as shown in Fig. 1.

- 308 -

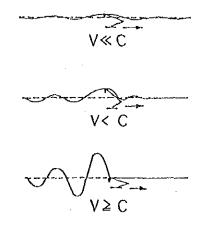
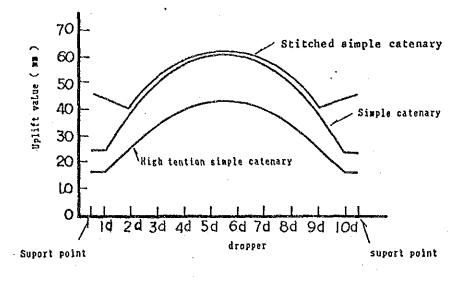
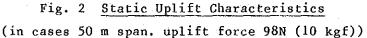


Fig. 1 Models of Contact Wire Waves

Under the condition of $V \ge C$, an abnormally big force will work between the pantograph and the contact wire, and either of them may be damages. Theoretically, therefore, the speed less than the wave propagation velocity allows the current collection with pantograph. Generally, a speed, some 70% of the wave propagation velocity is considered to be the maximum allowable speed.

C, the wave propagation velocity, is obtained using the following formula:


$$C = \sqrt{T/\rho} \dots (A)$$


where T: Wires tension (N)

P: Mass of unit length of OHE wires (kg/m)

2. Spring Constant

Since the catenary wire is supported at every supporting point, it is difficult for them to move at the supporting point, but easy inbetween the span. Fig. 2 shows the features of static uplift of three catenary systems - simple, stitched and high tension simple - when a constant force is added.

These curves can be considered to be the locuses of pantograph contact strips when they move very slowly, so slowly to the extent that their vibrations are negligible. This curve is attributable that the spring constant varies within the span.

It is the smallest in the middle of the span, and the largest at the supporting point.

3. Resonance Velocity

One of the most serious problems involved in the interaction between catenary and pantograph systems is a large contact loss that arises repeatedly over each span. This contact loss occurs due to the mechanical interaction of the catenary and pantograph systems. In general, Vc, the resonance velocity, at which the vertical movement of the pantograph becomes extremely large, is expressed by the following formula:

$$Vc = \frac{S}{2\pi} \int \frac{\overline{K}}{M} (1 - \frac{1}{2} \varepsilon^2) \dots (B)$$

where K: The average value of spring constant

- ε: Variation ratio of spring constant
 - $\epsilon = (\text{Kmax} \text{Kmin})/2\vec{R}$
- S: Span length
- M: The total equivalent masses of pantograph, catenary and contact wires.

There are two ways of increasing Vc in the above formula. One is to make \overline{K} larger, and the other to make M smaller.

4. Resonance of OHE System and Pantograph

The movements of contact wire and catenary wire on a simple or compound catenary system are almost the same. Namely, the OHE system has natural vibration where its wave length is the same as the span length, between the supporting points where the catenary wire is fixed. While the pantograph shows the complicated vertical movement due to the corelation between different static uplift values at different points in the span and the natural vibration cycle. Fig. 3 shows the pantograph locuses by train speed on simple catenary system.

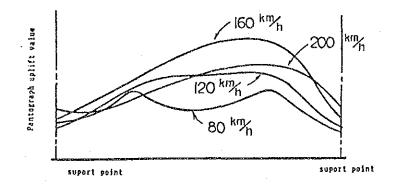


Fig. 3 Pantograph Locuses of Simple Catenary System

The vertical movement of the pantograph like this will bring about a change in contact force against the contact wire due to the inertia of pantograph, and, when this change is extremely big, will give rise to a large contact loss. And this is what is called the resonance of a single pantograph. Fig. 4 illustrates the contact loss rate, and uplift value, actually measured on JR's simple catenary systems.

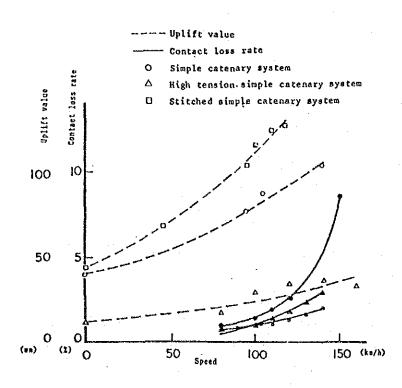


Fig. 4 Uplift Value and Contact Loss Rate Actually Measured on JR's Simple Catenary Systems

As can be seen in Fig. 4, the contact loss rates of both the stitched simple catenary and the high tension simple catenary systems are better than that of simple catenary system.

When a train with plural pantographs runs, plural pantograph resonances will arise due to the different mechanism. This is caused by the coincidence between the natural vibration cycle of contact wire and the running cycle of pantograph. Therefore, the rear pantograph, the worse will have the worse current collection characteristics.

6-10 JR's Shinkansen OHE under AT Feeding System

Type of catenary system	High tension compound
AT feeder wire	ACSR 330 mm ²
Protective wire	ACSR 95 mm ²
Catenary wire	St 180 mm ²
Auxiliary catenary wire	Cu 150 mm ²
Contact wire	Cu-sn 170 mm ²
Tension length	1500 m
Regulated or unregulated	Regulated
Span length	50 m
Stagger	<u>+</u> 15 cm
Height of contact wire	5.0 m
Section on main line	Insulated overlaps
Current carrying capacity	1020 Amps

Table 1 The Features of JR's Shinkansen OHE

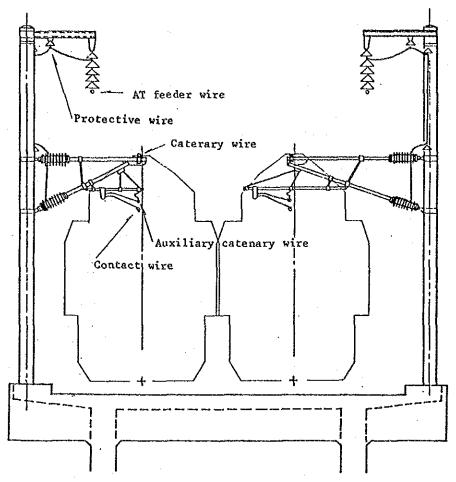
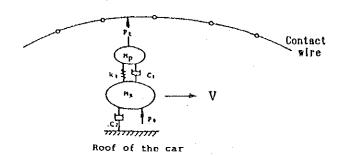


Fig. 1 JR's Shinkansen OHE Under AT Feeding System

6-11 Outline of Computer Simulation Technique on OHE Characteristics


JR does a great deal of analysis through computer simulation for solving complicated phenomena of current collection such as in the case of overlapping, hard spots, and deformed catenary systems.

A catenary line is composed of such fittings as droppers and hangers attached to wires such as contact wire and catenary wire, etc. Also the pantograph is a complicated assembly of a slider, a pan, retaining springs, a main frame, main springs, dampers, etc.

It is almost impossible to analyze theoreticaly such complicated structures as they are, while the simulation method enables us to handle the system as it is. For this purpose, therefore, a suitable model is required. The Fig. 1 illustrates the models of overhead system and a pantograph.

The most important thing in a simulation method is how well reality can be expressed; and this is pursued by comparing the test results with an actual value.

Kind of system	Real Installation	Analyzed model	Code
Simple			N.S
Stitched Simpe			S.S
Compound			N.C
Composed Compound			c.c

- Pt: Contact force between contact wire and pantograph
- Po: Uplift force of pantograph
- Mp: Equivalent mass of pantograph
- Ms: Equivalent mass of main frame
- K1: Spring constant of pantograph
- Cl: Damping constant between pan and main frame
- C2: Damping constant between main frame and foundation frame

Fig. 1 Simulation Models of Overhead Contact System and Pantograph

Fig. 2 illustrates a comparison of the measured value by test with the result of simulation at the displacement of the turn out in case of varied train speed. The results show how well the displacement coincide. The simulation method is established through such confirmation. Using this method, research is being done on the influence of speed, pantograph interval and uplift on the overhead system. Contact loss ratio, pantograph's up and down motion, contact force as well as the uplift can be grasped through the simulation method, which are very useful to find out the actual dynamic characteristics of OHE system and pantographs.

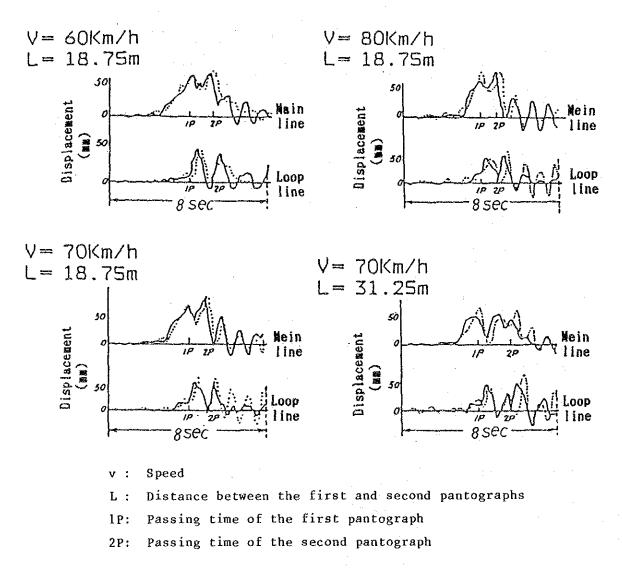
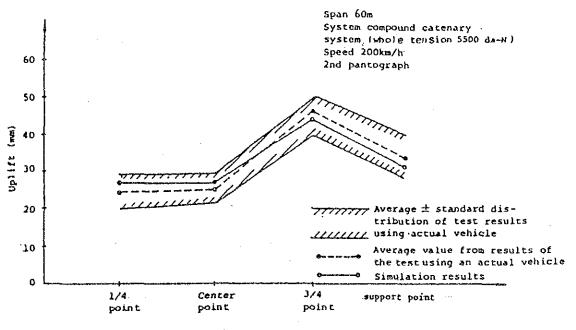



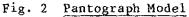
Fig. 2 Comparison of Measured Value with Simulation Result

Fig. 2 shows a comparison of the uplift waveform, while Fig. 3 is a comparison of the maximum values of uplift at each position. In either case it can be seen that they coincide well with the measured values.

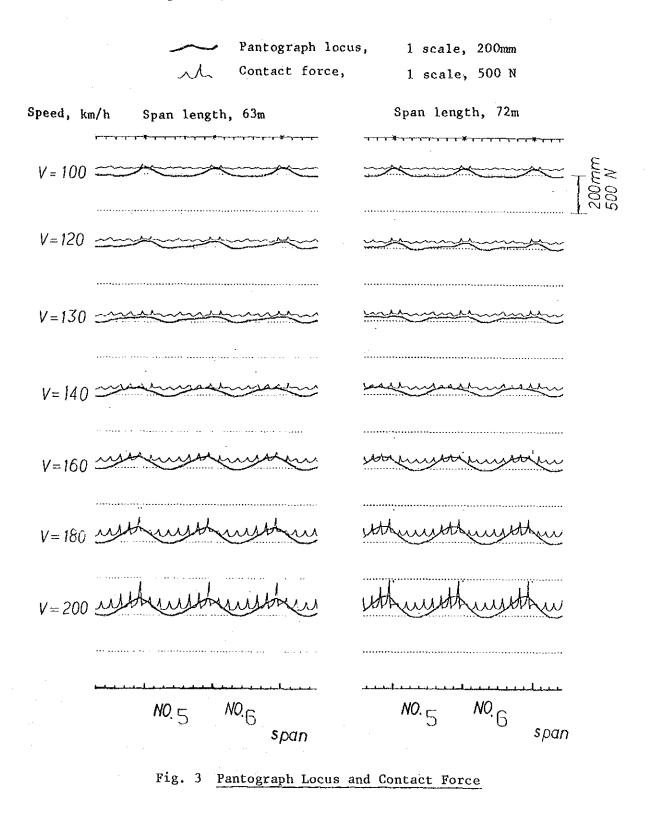

Position within the Span

Fig. 3 <u>Measured and Simulated Uplift Values of</u> High Tension Compound Catenary System

6-12 <u>Simulation Contents in Reference to OHE Characteristics at the Speed</u> of 160 km/h


- 1) Existing OHE system
 - a) Basic conditions

For computer calculation, the OHE system is supposed to be composed of 8 spans, the both ends of which being fixed.


It is assumed that the pantograph AM-12 is a single-mass model with 32 kg equivalent mass and that the pantograph uplift force is 65 N (6.5 kgf) when the car is at static condition and 114 N when running at the speed of 160 km/h. Fig. 2 shows the pantograph model.

b) Results

Fig. 3 shows the pantograph locus and contact force in reference to the existing OHE system.

- 319 -

As can be seen, the faster the up-and-down motion of pantograph, the larger the vibration amplitude, and also the faster the speed, the stronger the contact force.

Fig. 4 shows the correlation between contact loss ratio and speed, and Fig. 5 that between pantograph vibration amplitude and speed. The contact loss ratio is less than 3% when the speed is 160 km/h, and the pantograph vibration amplitude is 80 mm when 160 km/h.

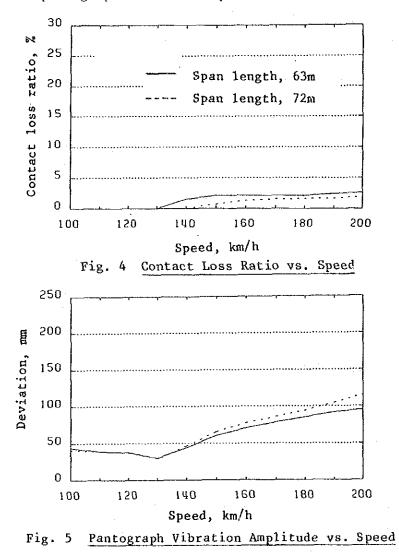


Fig. 6 shows the uplift at each point in a span moving with time passing. The uplift moves 63 m (the length of one span) in about 2.2 seconds when the speed is 100 km/h, and also 63 m in about 1.4 seconds when 160 km/h. Residual vibration barely occurs when the speed is 100 km/h, but it does when 160 km/h.

- 320 -

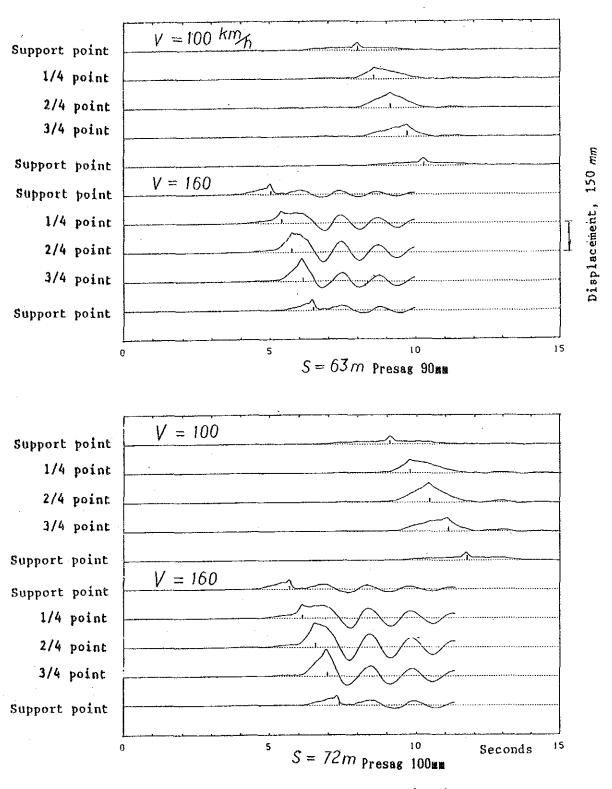


Fig. 6 Uplift and Vibration at Each Point in a Span

Fig. 7 shows the relations between contact wire uplift and speed at the support point of the 5th span, the 1/4 point, the 2/4 point (the span center), and the 3/4 point.

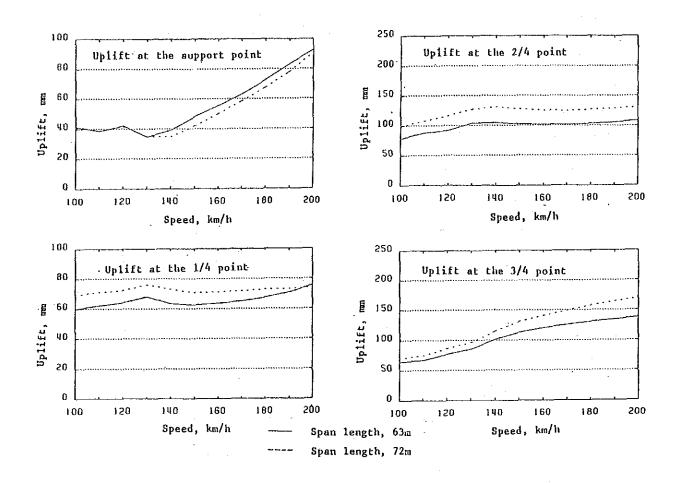


Fig. 7 Uplift at Each Point in a Span and Speed

Simulation has been made under the following conditions:

- Simple catenary Catenary wire Tension Contact wire Tension

cdcu 65 mm² 1,000 kgf Hard drown copper 107 mm² 1,000 kgf

c) Simulation conditions

- Span length	63 m/72 m
- Presag	90 mm/100 mm
- Contact wire gradient ratio	0
- Dropper distance	9 m, equal distance for easier
	calculation
- Number of running pantographs	1
- Pantograph type	AM~12
- Pantograph equivalent mass	32 kg
- Pantograph uplift force	
at static	65 N
- Pantograph uplift force	
at 160 km/h	114 N* ¹

*1 Aerodynamic lift at high speeds is taken into account, lift characteristics is assumed to be the same as PS16.

Table 1 Shows the Pantograph running speeds and uplift forces.

Table 1 Pantograph Running Speeds and Uplift Forces

Running speed, km/h	100	110	120	130	140	150	160	170	180	190	200
Uplift force, N	84	88	93	97	102	108	114	120	127	134	141

2) Upgraded OHE system

a) Simulation conditions

Simulation conditions are the same as those in 1)-c, except that the tension each of catenary wire and contact wire is changed from 1,000 kgf to 1,200 kgf.

b) Simulation results

Pantograph locus and contact force are shown in Fig. 8, pantograph running speed vs. contact lost in Fig. 9, and pantograph running speed vs. vibration amplitude in Fig. 10. The pantograph locus and contact force show the same tendency as that shown in Fig. 3 of the existing OHE system simulation. That is, the faster the pantograph running speed, the larger the pantograph vibration amplitude and contact force.

Fig. 9 shows the contact loss smaller than that in Fig. 4. The contact loss at the speed of 160 km/h is about 2% when the span length is 63 m, and 0.5% 72 m. These values are fairly better than 2.1% and 1.2%, respectively, in the case of the existing OHE system simulation.

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Pantograph locus, Contact force,	l scale, 200mm 1 scale, 500 N		
Speed, km/h	Span length	, 63m	Span length,	, 72m	
V=140	numu	mun	manunt	man	
V=160 >	yanne	man	yaammaan	man	200mm 500 N
V=180 \$	Manna	um	yaamudaa	man	
V=200 5	Munul	malan	Munthe	utter	
	^{NO} 5 [/]	⁶ 6	NO ₅ NO	6 span	

# Fig. 8 Pantograph Locus and Contact Force

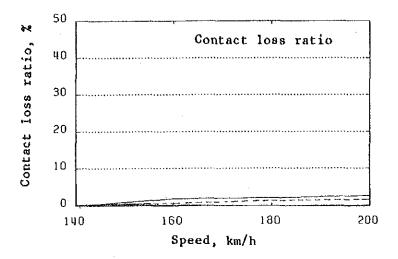



Fig. 9 Pantograph Running Speed vs. Contact Loss

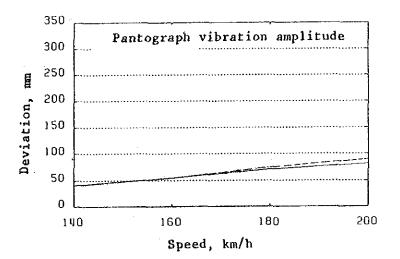
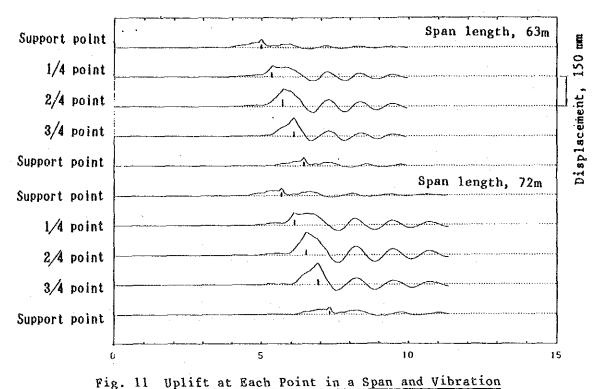




Fig. 10 Pantograph Running Speed vs. Vibration Amplitude

The pantograph vibration amplitude is about 55 mm at the speed of 160 km/h, about two-thirds of 80 mm on the existing OHE system.

Fig. 11 shows the uplift at each point in a span along with the time.



Residual vibration exists at the speed of 160 km/h, and this vibration shows the phenomenon similar to that on the existing OHE system (see Fig. 6). Tables 4.4.3-2 and 4.4.3-3 show the natural vibration. As can be seen from these figures, the vibration cycles on the upgraded OHE system are somewhat shorter then those on the existing OHE system.

Fig. 12 shows the relations between the uplift at each point in a span and the speed.

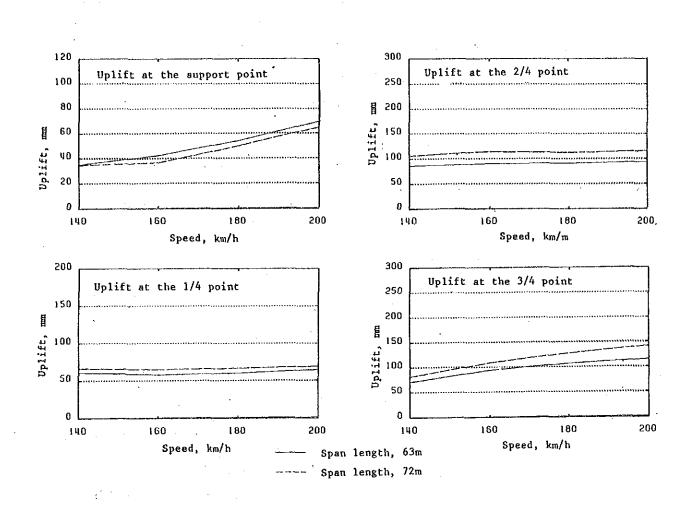
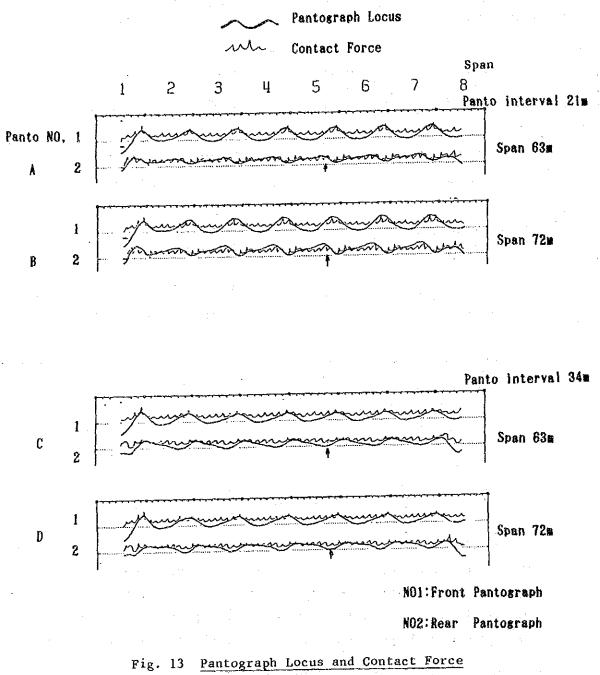


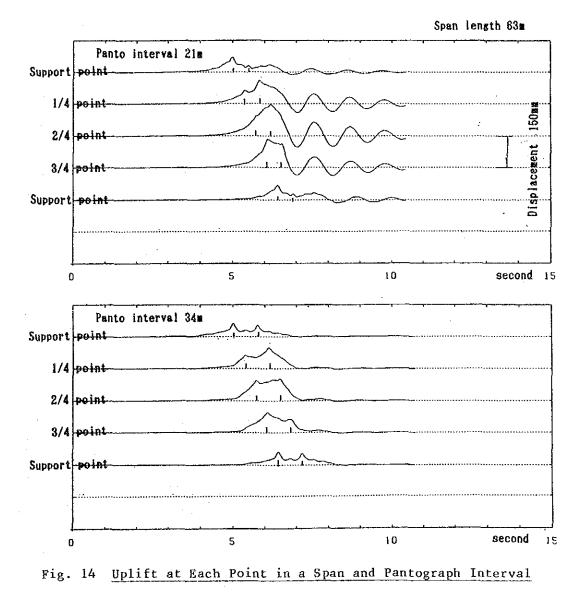

Fig. 12 Uplift at Each Point in a Span and Speed


The uplift at the support point is about 40 mm at the speed of 160 km/h. In other words, this uplift on the upgraded OHE system is smaller compared with that of about 55 mm on the existing OHE system in Fig. 7; and the uplift each at the 1/4 point, the 2/4 point (the span center) and the 3/4 point is also smaller than that in Fig. 7.

3) Two-pantograph running (at upgraded OHE system)

a) Results

Fig. 13 shows the pantograph locus and contact force when the speed is 160 km/h. Both pantographs are of AM-12 type; No. 1 is the front


pantograph, and No. 2 the rear. The distance between pantographs each in Diagrams A and B is 21 m, and C and D 34 m; the span each in A and C is 63 m, and in B and D 72 m.



As can be seen in both the 63 m and 72 m spans, where the distance is 21 m the contact wire is uplifted by the rear pantograph together with the residual vibration, and where 34 m the rear pantograph is passing when the phase of vibration is in reverse (arrow marks).

- 328 -

Fig. 14 shows the relations between the uplift at each point in a span and the pantograph interval along with the time. As can be seen in Fig. 14 in the case that the two trains, one with 21 m pantographs interval and the other with 34 m, are running in a 63 m span at the speed of 160 km, the uplift by the former is larger than that by the latter. In the 34 m intervals residual vibration remaining after the rear pantograph has passed is little. This is because the rear pantograph has passed when the vibration phase of the OHE system is in reverse. On the other hand, there arises some residual vibration in the 21 m interval due to the vibration of OHE system overlapped.



# 6-13 <u>Computer Simulation Made on Pantographs of Different Mass for Various</u> OHE System (72 m Span)

Computer simulation has been made on the following three combinations:

(i)	Catenary	:	Simple without presag
	Tension	:	1,000 kgf x 2
	Pantograph	;	AM-12, 32 kg (equivalent mass)
(ii)	Catenary	:	Simple with presag 100 mm
	Tension	:	1,000 kgf x 2
	Pantograph	:	AM-12, 32 kg (equivalent mass)
(iii)	Catenary	:	Simple without presag
	Tension	:	1,000 kgf x 2
	Pantograph	:	PS-16, 18 kg (equivalent mass)

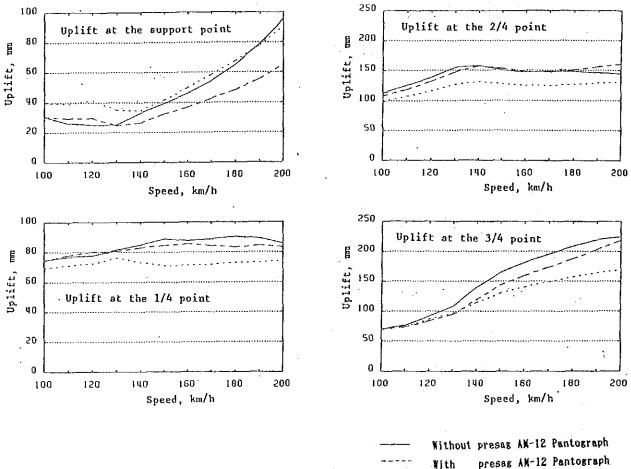
Other calculation conditions are the same as those in Appendix 6-12(1).


- As simulation results, Fig. 1 on contact loss shows almost the same tendency up to the speed of 170 km/h referring to both (ii) combination, and (iii) combination. This means that catenary with presag or pantograph of light equivalent mass (PS-16 type) are effective in suppressing contact loss.

On the other hand, in the case of (i) combination, the contact loss rate is about 5% at 160 km/h.

- Fig. 2 on vibration amplitude shows that the amplitude of vibration made by (ii) combination is the smallest. This means that the pantograph is capable of running nearly at a fixed height.

In the case of the catenary without presag, the vibration amplitude of pantograph becomes larger. Fig. 3 shows, however, that even with the catenary without presag, change in contact force is small if the equivalent mass of the pantograph is light. This means that the following characteristics of light pantograph to contact wire is good. Therefore, the contact loss (Fig. 1) as in (ii) and (iii) will show the same tendency.


- 330 -



- Fig. 4 shows the uplift of contact wire at each point given within a span. The faster the speed, the larger is the uplift at the supporting point; however, when the pantograph is light, the uplift is smaller even with the high speed.

In the case of the OHE with presag, the uplift each at the 2/4 point (the center of the span) and the 3/4 is small. This means that the presag is effective in suppressing the uplift of contact wire. Comparing the uplifts at the 2/4 point (the span center) and the 3/4 point, the speed becoming faster, the point where the uplift is maximum moves to the 3/4 point side. (Refer to Appendix 6-9, Fig. 3)

- In the area where the train runs at high speeds, the OHE with presag and pantograph of light equivalent mass is effective to achieve good current collection.



Without presse PS-16 Pantograph

#### Fig. 4 Uplift of Contact Wire vs. Speed

### .6-14 Contact Loss

Contact loss means that the contact force of pantograph becoming zero or the contact wire and pantograph are separated affected by hard spot.

The contact loss usually accompanies spark discharge, which brings about a rise in temperature and partial wear to both the pantograph and contact wire. It also brings about surge voltage to the main circuit, threatening insulation. It can be classified by causes, as given below:

(1) Cyclic contact loss at the support point

Contact loss period is approximately 0.01 to 0.1 second. It occurs cyclically per span. When a span length is short, multipantographs run closely, or due to the lowered tension of OHE system, it continues over several or more than ten spans. This is considered resulted from the pantograph and catenary system excessively used, which must be prevented.

(2) Contact loss due to non-continuous point

This contact loss occurs when a pantograph shoe is hit by hard spot repeatedly, being a typical one on the OHE system, medium in size and continued for 0.001  $\sim$  0.01 second.

To prevent this contact loss, it is necessary to reduce the hardness of the spot. Overlap is an cause of hard spot together with, dropper, splicer, etc.

(3) Contact loss due to vibration

The pantograph shoe and contact wire have their own natural vibration characteristics.

When either the pantograph shoe or contact wire vibrates, one cannot follow the other with the same vibration, causing contact loss. The contact loss period is 0.001 second or less, repeating cycle approximately 0.01 second, and continues 10  $\sim$  100 times.

# 6-15 Outline of the Electric Inspection Car of JR

The electric inspection car efficiently performs inspections of the OHE equipment, which previously required much labor, at a regular train operation speed.

Its appearance and measuring equipment are shown in Photograph 1 and 2.

1) Items measured

(a) Abrasion of contact wire

By grasping the abrasion conditions of contact wires, a replacement program is made to prevent the breaking troubles of contact wires.

The abrasion conditions of contact wires are continuously measured by the optical equipment whose main features are as follows.

- (1) Measuring can be made by day or night.
- (2) Four contact wires can be simultaneously measured.
- (3) Accuracy of measurement is 0.2 mm on wear width.
- (b) Height of contact wire

For proper current-collecting the pantograph requires the uniform contact wire height.

The main axle of the pantograph is rotated by the up-and-down movement of the pantograph corresponding to the change in the contact wire height. The dynamic height of the contact wire above the railroad surface is continuously measured by detecting the rotating angle of the main axle.

(c) Deviation of contact wire

The installation of contact wire with proper deviation is one of the requirements to maintain good current-collecting characteristics.

The same optical measuring equipment as in the case of the abrasion measurement detects deviation of contact wire.

(d) Obstacles in the way of the pantograph driving

The obstacle detector catches obstacles against the pantograph passage as well as wrongly fitted angles of the OHE fittings (steady arms, pull-off fittings).

The pan of the pantograph is equipped with an antenna with a micro-switch which gives a signal when the fitting of the contact system hits the antenna.

(e) Hard spot

In the case of the contact wire having a partially heavy part, or having some bad points, the pantograph will be jolted causing contact loss or a partial wear of the contact wire.

The hard spot detector detects acceleration in the forward-backward and upward-downward directions of the pan head through a wire strain gauge-type accelerometer on the reverse side of the pan.

#### 2) Data processing

The data measured and processed by the electric inspection car are effectively utilized for maintenance and control of the overhead contact system to secure safety in train operation.

The electric inspection car is equipped with data processing apparatus mainly composed of a mini-computer for the purpose of immediate processing the measured data during train operation.

The processed data is output in digital & analogue. The digital data is output by two terminal devices, (1) a high speed printer (whole data output at each span) and (2) typewriter (alarming data output).

Moreover, the entire data obtained are recorded in a magnetic tape in analogue by the data recorder and are effectively utilized for time sequential control of the contact wire abrasion.

#### 3) Measurement period

Seven electric inspection cars are stationed on conventional lines throughout Japan.

The number of measuring inspection is 4 times a year in each line.

For Shinkansen lines, inspection cars in two sets are employed on the Tokaido & Sanyo Shinkansen Lines, and also two other sets on the Tohoku & Joetsu Shinkansen. The running speed is 210  $\sim$  240 km/h and the frequency of measuring inspections is about once a week.

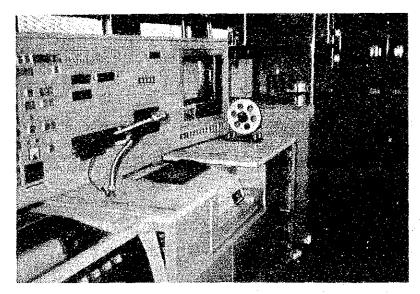
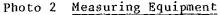





Photo 1 Electric Equipment and Track Inspection Train





7-1	Presumed Investment to be Made in the 7th 5 Year Plan by	<u>1990 on</u>
	the Section	
1.	Track and structure	
(1)	Extension of loop lines	
	Kanpur (up), Dankaur (up)	(Sanctioned
(2)	Construction of loop lines	
	Saraibhopat and 5 other stations	(Sanctioned
	Mandrak and 9 other stations	(Programmed
	Balrai and 4 other stations	(Proposed)
(3)	Construction of emergency crossovers	
	Jalesar Road and 7 other stations	(Sanctioned)
	Balrai and ll other stations	(Programmed)
	Jinjhak and 9 other stations	(Proposed)
(4)	Construction of hot axle sidings	
	Saraibhopat and 2 other stations	(Sanctioned
	Jalesar Road and 2 other stations	(Programmed)
	Dadri and 8 other stations	(Proposed)
(5)	Track renewal work	
	Replacement of sleeper (P,R,C)	
	Dn 69.8 km	(Proposed)
	Up 81.0 km	(Proposed)
(6)	Extension of platform (to hold 25 coaches)	
	Kanpur	
	Etawah }	(Programmed
	Tundla	
	Aligarh J	
2.	Signalling and telecommunications	
(1)	Construction of block huts	
	Samhon - Achalda and 4 other places	(Sanctioned)

	Automatic signalling
	Tundla ∿ Mítawalí (Sanctioned) Aligarh ∿ Dankhan (Programmed)
(3)	Auxiliary warning system
	Delhi ∿ Mughalsarai (part of the section) (Sanctioned)
(4)	SHF plan
	The nation wide SHF network plan is being studied by I.R.
3.	Substation
(1)	Substation construction plans
	Pura and 5 other places
	Rolling stock
	EL (unit)
	Express train (passenger) 3
. •	Ordinary train (freight) 6
	Coach (make-up)
	Express train 3
	Wagon     (make-up)       Ordinary train     6
	Olumary trank
	and and a second se A second

7-2 Number of Rolling Stock to be Acquired

the	the Section	e	ŀ	$\mathbf{F}$	$\mathbf{F}$	ł	ŀ	┝	ŀ	<u>۽</u> آ	ŝĽ	New Corridor	şΕ	8 -		ž -	Construction	₋┞	F							
1			0 2	25 5	50 7	75 1	100	0 25		2	8	0 25	2	50 75 100	<u> </u>	0 0	2	8	75	75 200	0	ន	8		ğ	
Perfod 1986/ 1991/ 1990 1995 em		1996/ 2000 -		51 22	1996/ 2000				2001/ 2005	32			X X	2010				2011/ 2014	74		2016/	/ 2016	2016/ 2016/	2022	2024	Note
	1	6	0			ŝ	~	0	N H	2	N	o	PH	2	2	3_0	0	2	ñ	n	0	0	0	7	ور	New EL × 2
		2	A34 A27	27 6	624 A	A24 A24	24	1		1	,	1					'		-	1	1	1	•	1	,	1 dyn
			- 0	- 0			8	0	0 0	Q	9	м	1	0	0	- 0	<u> </u>	1	1	1	١	'	۱ 	:	1	кана
1 ``	=	8		8			- 0	141	14 14	14 14	14	11	11	11	11 11		1	1	1	'	1	•	•••••	1	1	kacs
l		8	- 0	ප			0	2	7 7	ŀ	*	าม	12 12 15 15	1 2		ڊ د		1	1	1	3	•	` د محمد	1	1	ANCES
<u> </u>	32	ក្ត		~~	~~~	~	5 21	21 22	2 2 3	23 23 23		27 2	28 28 29 29	- <del>7</del>	<u>~~</u>	0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	n	۵	•	°	2	\$	
	-	~				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Š	0	3	м	2	0		N		<u> </u>	0 0	~	PA	n	0	0		7	\$	. Showing No. of formations
(9)	 9	21 Å	74	27.4	A 427 424 424	24 0	۵2۸			9	•	P	ī			1			•	'	I	1	۱ 	1	1	. L. Exp. & Local: ] 18 coaches /formation
م اربی				8		-0			0	0	0		-			+			-	+	3	1	•	1	,	. Exp./Meil: 19.5 cosches/formation
(8)		5	0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~~~	8	3	2	~		N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3	0	N	<u>``</u>	m	0	0	0	7	9	
21 21 21	=	60	6	8			14		4	14 14 14 14		1	1 1	n n	n u	!				1	3		••••	•	1	. Showing No. of formations . Fast:
€⊣		. 0	÷	- 0		ò		~	7 7	7	7	151	12 1	15 11	15 15			1	-	*	1	1	•	1	۱	56 wagons/formation . Ordinary:
(12) 23	11	8		- 8		- 0	0	21 21	1 21	21	21	26 2	26 2	26 2	26 26					'	I	,	•	1	,	28 xegons/formetion
		1	40 29	_	n S) L	20 20 20	۵ وا	~	7 5	n	2	0	8	9	4	2 0	0	7	5	n	0	0		6	83	. Showing No. of Formations
<b> </b>	   ,		9	~	6	II	11	0	1 2	2	2	•	-1	2	5	3 0	0	8	ĥ	<b>^</b>	•	a 	•	~	Ŷ	. To coscies/ tormarter
			_		<u> </u>																					

The number in parenthesis are those included in the 7th 5-year Plan. The number in double parenthesis are those to be imported. The number attached with triangle are those to be transferred to the other railway section.

## 8-1 <u>Economic Analysis for the Delhi - Kanpur Railway Project - Case (A)</u>

( UNIT : 1000 RS )

			(	UNIT : 10	00 <u>RS</u> )														,					
	1000	1000	1000	1001	1992	1993	1994	1995	1998	1997	1998	1999	2000	2001	2002	2003	2904	2005	2006	2007	2008	2009	2010	2011
	1988	1989	1990	1991	-151174	-151174	-151174	-125226	-283785	-233394	-283630	-356073	-538287	-347535	-370791	-212864	-386096	-385861	-529350	-601434		-511793	-513889	-2101
INVESTMENT DIFF	58788		985092	-160884	-1011/4 nationate	######################################	-131114 -131114			2020223				22503222	12011155	22232223	-7415252	37535232	*******	20049305 3		2251	0	345434
YITE	58788	999109	985092	219617	219617	219617	219617-	245565	245565	245565	245565	245566	2251	0	0	157928	0	0	0	·		2251		345434
THE SECTION	53788		985092	219617	219617	219617	219617	245565	245555	245565	245565	245565	2251		0	157925	0 	0	0			د سین 		35140
ELECTRIFICATION	0	51839	51849	0	0	0	0	0	0	0	0	0	0 2251	0 0	0	0 157925	0 0	о 0	0	0	0	2251	Ö 0	310294 0
SIGNALS & TELECON CIVIL VORK	0 56338	393538 144272	397850 127934	0	0	Ő	ŏ	0	ð	ů o	ò	ò	0	· ð 0	0 0	0 0	0 0	0 0	0 0	5	0	້	0	0 0
LAND ACQ & COMP ROLLING STOCKS	2450	2000 407460	407460	219617	219617	219617	219517	245385	245565	245565	245565	245565	0	0	0	0 0	0 0	0	0 0	0	0 6	ŏ	0	0
-SALVAUE VALUE	0		v	v	. <b>v</b>	Ŷ	-	ų	v		Ť	·										5110/4	513889	347535
VITHOUT	0	0	0	380501	370791	370791	370791	370791	529350	528959	529194	601639 	568518	347535	370791	370791	386096	385361	529350	601484	568518	514044 39324	39324	39324
BUS TRUCK	0	0	0	72290 308212	39324 331467	39324 331467	39324 331467	39324 331467	54629 474720	54394 474565	54629 474565	126919 474720	93953 474565	39324 308212	39324 331467	39324 331467	54629 331467	54394 331487	54529 474720	126919 474565	93953 474565	474720	474565	308212 0
AIRPLANE -Salvage value	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0	0	0 0	0	0 0	0 0	0	ò	ō	0
HAINT & OPE COST DIFF	0	<u>^</u>																2100080	2100082	-3109982	210/082	- 3109982		-3109982
FACILITY HAINT COST DIFF	0 =======	0	0		-315029	-578048	-841039	-1103176	-1503389	·1903293		-2703574		-3109982					========	-1506921	**===	12522222	=======	-1506921
PROTECTI ANIAL COST DIFF	0			-60555 	-189118	-317682	-446245	-573990	-759349 <b>-</b>	-944602	-1129903	-1315263	-1506921	-1506921	-1506921	-1506921	-1506921 	-1506921	-1506921	-1500921				
VITH	0	0	0	71376	76916	82456	87996	94355	100713	107071	113429	119787	119787	119787	119787	119787	119787	119787	119787	119787	119787	119787	119787	119787
THE SECTION	0	0	0	71376	76916	82456	87996	94355	100713	107071	113429	119787	119787	119787	119787	119787	119787	119787	119737	119787	119787	119787	119787	119787
ELECTRIC FAC. SIGNALS & TLELCOM	0	0	0	1786 27635	1786 27635	1786 27635	1786	1786 27635	1786 27635	1786	1786	1786	1786	1786 27635	1786 27635	1786 27635	1786 27635	1786 27635	1786 27635	1736 27635	1786 27635	1786 27635	1786 27635	1786 27635
CIVIL WORK ROLLING STOCK	ů o	0	Ŏ	12968 28987	12968 34527	12968 40067	12968 45607	12968 51965	12968	27635 12968	27635 12968	27635 12968	27635 12968 27208	12968	12968	12968 77398	12968	12968	12968 77398	12968 77398	12968 77398	12968 77398	12968 77398	12968 77398
VITHOUT	ů O	0	ŏ	131931	266035	400138	534241	668344	860062	64682 1051673	71040 1243332	77398 1435050	77398 1626709	77398 1626709	1626709	1626709	1626709	1626709	1626709	1626709	1626709	1626709	1626709	1626709
BN2	0	0	0	14643	22609	30574	38540	46506	57571	68590	79656	90722	101788	101788	101788	101788	101788	101788	101788	101788	101788	101788	101788	101788 1524921
TRUCK AIRPLANE	0	0	0	117288 0	243426 0	369563 0	495701 0	621839 0	802491 0	983084 0	1163677	1344328 0	1524921	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524521
OPERATING COST DIFF	0	0	0	8545	-125911	~260366	-394794	-529186	-744039	-958690	-1173458	-1388311	-1603061	-1603061	-1603061	-1603061	-1603061	-1603061	-1603061			-1603061	-1603061	-1603061
117.00					•							~~~~~~~~							454700			853738	853738	853738
VITH	0	0	0	214208	281860	349512	417192	484907	558670	632432	706195	779957	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738
THE SECTION	0		0	214208	281860	349512	417192	484907	558670	632432	706195	779957	853738				853738	853738	853738		853738		38720	38720
PSNL COST ELEC COST	0	0 0	0	4341 209867	7677 274183	11014 338498	14378 402814	17778 467129	21963 536707	26148 606285	30332 675862	34517 745440	38720 815018	38720 815018		38720 815018	38720 815018	38720 815018	38720 815018	38720 815018	815018	815018		815018
VITHOUT	0	0	0	205664	40 <b>7</b> 771	609879	811986	1014094	1302709	1591122	1879653	2168268	2456798	2456798	2456798	2456798	2456798	·2456798	2456798	2456798		2456798	2456798	2456798
PSNL COST	0	0	0	123254	243130	363006	482882	6027 <u>5</u> 8	773884	944883	1115959	1287085	1458162	1458162	1458162	1458162	1458162	1458162	1458152	1458162	1458162	1458162	1458162	1458162
BUS Truck	0	0	0	23854 99400	36830	49806	62782 420100	75758 527000	93784 680100	111733	129759	147785	165812	165812	155812	165812	165812 1292350	165812 1292350	165812 1292350	165812 1292350	165812		165812 1292350	165812 1292350
AIRPLANE	¢	0	ŏ	99400	206300 0	313200 0	420100	0	0	833150 0	986200 0	1139300 0	1292350 0	1292350 0	1292350 0	1292350 0	1292350	1222350	1292330	1292200	1292320		0	0
FUEL COST	0	0	0	82410	164641	246873	329104	411336	528825	ō46240	763694	381183	998637	998637	998637	9986.37	998637	998637	998637	998637	998637	998637	998637	998637
BUS TRUCK	0	0	0	12034 70375	18581 146060	25127 221746	31674 297431	38220 373116	47314 481511	56370 589870	65464 698230	74558 806624	83653 914984	83653 914984	83653 914984	33653 914984	83653 914984	83653 914984	83653 914984	83653 914984	83653 914984	83653 914984	83653 914984	83653 914984
AIRPLANE	ŏ	ŏ	õ	0	0	0	0	õ	0	009010	090230	000024	314904 0	914504 0	914904	914904	914904 0	914904 0	014004	0	0	0		0
PAS TINE SAVING BENEFIT	0	0	0	94851	128098	163235	200656	240093	295910	354877	417719	191001	555140	580467	589756	508052	614153	820040	646333	662424	680304	697289	715168	733941
		-									417713	484681	555149	569453 =======	583756 ======	598953 ======	614151 =======	630242 ======						
CASHFLOV FOR EIRR	-58788	-999109	-985092	307746	594301	892456	1192868	1468495	2083084	2541564	3004704	3544329	4231398	4026970	4064529	3921800	4110229	4126085	4285665	4373891	4358804	4319064	4339039	3846025
EIRR X	42.62	42.62	42.62	42.62	42.62	42.62	42.62	42.62	42.62	42,62	42.62	42.62	42.62	42.62	42.82	42.62	42.62	42.52	42.62	42.62	42.52			42.62

997	1998	1000	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2015	2017	2018	2019	2020	2021	2022	2023	2024
594	-283630	-356075	-536267	-217575	-370791	-212864	~386096	-385861	-529350	-501434	-568518	-511793	-613889	-2101	-386096	-385861	-386096	-300460	-568673	-513889 =======	-511638	-514044 =======	-529194	871931 ======	-188479	-221725	-263738
:== = :05	245565	245565	2251	***************************************	 0	157925	0	0	0	0	0	2251	0	345434	0	0	0	157925	0	0	2251	0	0	1034535	219617	238681	-1304651
	245565	245565			0	157929	 0	0		0	0	2251	0	-345434	0	0	0	157925	0		2251		0	1034535	219617	335561	-1804661
0	0		0	0	0	0	0	3	0	0	0	) 2251	0	35140 310294	0 0	о С	0	0 157925		0	2251	0 0	0 0 0	0	0	0 0 17044	0 0
0	0	0 0 0	2251 0	0 0	0	157926 0 0	o o	0	o o	. 0	õ	3	0	0	0	0	0 0	0	0 0	0	ů í	0 0	0 0	0 1034535	0 219617	3 219617	0 219617
563 0	245565 0	245565 0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	õ	0	0	0	0	0	0	Q	0	2024278
159	529194	601639	568518	347535	370791	370791	386096	385861	529350	501484	568518	514044	513889	347535	386096	385861	386096	458386	568673	513889	513889	514044	529194	362605	386096		-1540924
94	54629	126919	93953	39324	39324	39324	54629	54394	54629	126919	93953	39324	39324	39324	54629	54394 331467	54629 331467	126919 331467	93953 474720	39324 474565	39324 474565	39324 474720	54629 474565	54394 308212	54629 331467	126919 331467	93953 331467 0
65 0	474565 0	474720 0	474565 0	308212 0	331467 0	331467 0	331467 0	331467 0	474720 0	474565 0	474565 0	474720 0	474565 0 0	308212 0 0	331467 0 0	0	0	0 0	0 0	0 0	0	0	0	0	0 0	õ	1966343
v		U	U	. 0	0	U	U	. 0	<b>U</b>	0	U		-			21 000 80	-3109982	-3109982	-3109982	-3109982		-3109982	-3109982				-3109982
	2303361	*======	-3109982	-3109982	-3109982	-3109982	-3109982				3222-4	••••		-3109982 		-1506921	-1506921	-1506921	-1506921	-1200951	-1506921	-1508921	-1506921	-1506921	-1506921	-1506921	-1506921
02 - 	1129903	-1315263	-1506921	-1506921	-1506921	-1506921	-1506921	-1506921	-1506921	-1506921	-1506921		-1506921					119787	119787	119787	119787	119787	119787	119787	119787	119787	119787
71 	113429	119787	119787	119787	119787	119787	119787	119787	119787	119787	119787	119787	119787	119787	119787	119787	119787 119787	119787	119787	119787	119787	119787	119787	119787	119787	119787	119787
71 	113429	119787	119787	119787	119787	119787	119787	119787	119737	119787	119787	119787	119787	119787	119787	119787	1786	1786	1786	1786	1786 27635	1786 27635	1786 27635	1786 27635	1786 27635	1786 27635	1786 27635
36 35 38	1786 27635 12968	1786 27635 12968	1786 27635 12968	1786 27635 12968	1786 27635 12968	1786 27635 12968	1786 27635 12968	1786 27635 12968	1786 27635 12968	1786 27635 12968	1786 27635 12968	1786 27635 12968	1788 27635 12968	27635	27635 12968	27635 12968	27635 12968	27635 12968 77208	27635 12968 77398	27635 12968 77398	12968	12968 77398	12968 77398	12968 77398	12968 77398	12968 77398	12968 77398
32	71040	77398	77398	77398	77398	77398	77398	77398	77398	77398	77398	77398	77398	77398 1626709	77398 1626709	77398	77398 1626709	77398 1626709	1626709	1626709	1626709	1626709	1626709	1626709	1626709	1626709	1626709
3  0	1243332  79656	90722	1626709	1626709	1626709 	-1	1626709  101788	1626709	1626709	1626709	1626709	1626709	1626709	1020703	101788	101788	101788	101788	101788	101788	101788	101788	101788	101788	101788 1524921	101788 1524921	101788 1524921
4 0	1163677	1344328	1524921	1524921			1524921	1524921	1524921	1524921	1524921	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524921 0	1524521	0	0
0	1173458	-1388311	-1603061	-1803061	-1603061	-1603061	-1603061	-1603061	-1603061	-1603061		-1603061	-1603061	-1603061	-1603061	-1603061	-1603061	-1603061	-1603061	-1603061		~1603061	-1603061	-1603061	-1603061	-1603061	-1603061
2	706195	779957	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738
2	706195	779957	853738	853738	853738		853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738	853738
 3 5	30332 675862	34517 745440	38720 815018	38720 815018	38720 815018	38720	38720 815018	38720 815018	38720 815018	38720 815018	38720 815018	38720	38720 815018	38720	38720	38720 815018	38720 815018	38720 815018	38720 815018	38720 815018	38720 815018	38720 815018	38720 815018	38720 815018	38720 815018	38720 815018	38720 815018
2	1879653	2168268	2456798	2458798	2456798	2456798	2456798	2456798	2456798	:	· ·						2456798	2456798	2456798	2456798	2456798	2456798	2456798	2456798	2456798	2456798	2456798
3	1115959	1287085	1458162	1458162	1458162	1458162	1458162	1458162	1458152	1458162	1458162	1458162	1458162			1458162	1458162	1458162	1458162	1458162	1458162	1458162	1458162	1458162	1458162	1458162	1458162
3	129759 986200	147785 1139300	165312 1292350	165812 1292350	165812 1292350	165812 1292350	165812 1292350	165812 1292350	165812 1292350	163312 1292350	165812	185812 1292350	165812 1292350	165812 1292350	165812 1292350	165812 1292350	165812 1292350	165812 1292350	165812 1292350	165812 1292350	165812 1292350	185812 1292350	165812 1292350	165812 1292350	165812 1292350	165812 1292350	165812 1292350
)	0	0	0	0	0	0	0	0	)	)	)	)	11222200	1292000 9	1292330	1292550	0	0	0	0	1232330 Û	0	0	0	0	0	U U
)  h	753694 65464	381183 74558		998637	998637	998637	998637	998637	998637	398637	998637	998637	998637	998637	998637	998637	998637	998637	998637	998637	998637	998537	998637	998637	998637	998637  33653	
) )	698230 0	806624 0	83653 914984 0	83653 914984 0	83653 914984 0	83653 914984 0	83653 914984 0	83653 914984 0	83653 914984 0	83653 914984 0	83653 914984 0	33653 914984 0	33653 914984 0	33653 914984 0	83653 914984 0	83653 914984 0	83653 914984 0	83653. 914984 0	83653 914984 0	33653 914984 0	83653 914984 0	33653 914984 0	83653 914984 0	83653 914984 0	83653 914984 0	914984 0	a4 /00 /
7				•	·			Ŭ	•					v	v			• •	. v		Ŷ					AA 1077	1000008
; ; ;;	417713	484681	555149 ======	569453 ======	583756	598953	614151	630242	646333 ======	662424	680304	697289 =======	715168	733941	752714	771487	791155	811716	832277	853732 ======	876081 ========	898430	921673	944916 =======	969947 =======		1020008 ======
ŧ :		3544329	4231398	4026970	4064529	3921800	4110229	4126085	4285665	4373891	4358804	4319064	4339039	3846025	4248793	4267330	4287233	4222158	4510932	4477603	4497701	4522456	4560849	3382967	4246408		4393728
?	42.62	42.62	42.62	42.82	42.82	12.62	42.62	42.62	42.62	42.62	42.62	42.62	42.62	42.62	42.62	42.62	42.62	42.62	42.62	42.62	42.62	42.52		42.62	42.62	42.62	42.62

## 8-2 Financial Analysis for the Delhi - Kanpur Railway Project - Case (A)

( UNIT + 1000 RS )

	1988	1989	1990	1991	1002	1993	1984	1995	1996	1997	1998	1099	2000	2001	2002	2003	2004	2005	2008	2007	2008	2009	2010	2011	2012	2013	2014	2015
OPERATING PROFIT	0	0	0	44992	274285	503537	732770	959865	1301782	1643660	1985557	2327454	2687360	2687360	2887360	2687360	2687380	2687380	2887380	2687360	2687360		2887360	2687360	2887380	2687360		2687380
OPERATING REVENUE	0	0	0	329295	611929	804563	1177197	1450831	1861422	2263013	2664604	3086195	3467786	3467786	3467786	3467788	3467786	3487786	3467786	3487788	3467786	3467786	3467786			3467788		3467780
THE SECTION Passenger Freight	0	0	0	134394 194901	207407 404523	280419 814144	353432 823765	426444 1033387	527902 1333520	629360 1833653	730818 1933786	832276 2233920	933734 2534053	933734 2534053	933734 2534053	933734 2534053	933734 2534053	933734 2534053	933734 2534053	933734 2534053	033734 2534053							
τοτλι,	0	0	0	329295	611929	894563	1177197	1459831	1861422	2263013	2684804	3066195	3467786	3467788	3467786	3467786	3467786	3407780	3487788	3467786	3467788	3467786	3467786	3467786		3467786	3487788	3407788
OPERATING EXPENSE	0	0	0	284303	337664	391026	444427	499966	559660	619353		738741	780428		780426			780428		780428	780426	780428	780428	780428	780428	780428	780426	780428
THE SECTION	0	0	0	284303	337664	391026	444427	499968	559880	619353	670047 520427	738741 569970	780428	780428 811658	780428	780420	780428	780428	780428	780426	780426	780428	780428	780426	780426	780426		780428
VORKING COST NAINTENANCE COST Personnel Cost	0 0	0	0 0	193515 95907 8058	237799 102777 10700	282083 109647 15344	326407 116517 20028	371708 124401 24763	421339 132285 30588	470883 140169 36414	148053 42239	155938 48085	155938 53918	155938 53916	155938 53916	155938 53918	155938 53916	155938 53916	155938 53916	155938 53916	811658 155038 53018	611656 155938 53918	611856 155938 53916	811656 155938 53916	811656 155938 53916	611656 155938 53918	811858 155938 53918	611656 155938 53916
ELEC COST DEPRECIATION	ů v	ů o	ů o	91551 90788	124321 99865	157092 108943	189862 118020	222832 128170	258466 138320	294300 148470	330134 158620	385968 168770	401802 168770	401802 188770	401802 168770	401802 188770	401802 168770	401802 108770	401802 168770	401802 188770	401802 168770	401802 168770	401802 168770	401802 168770	401802 188770	401802 168770	401802 188770	401802 168770
INVESTNENT	69530	1351945		272325	272325	272325	272325	304500	304500	304500	304500	304500	3336	0	0	182855	0	0	0	0	0	3336	0	808438	0	0	0	182855
FOREIGN TOTAL Local Total	======================================	149250 1202695	149850 1187021	0 272325	272325	272325	0 272325	0 304500	0 304500	0 304500	0 304500	0 304500	600 2736	0	0	1210 181645	0 0	0	0 0	0	0 0	600 2736	0	192830 415608	0	0 0	0 0	1210 181845
ELECTRIFICATION	0	75888	75898	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	78115	0	0	0	0
FOREIGH CURRENCY	0	16260 59628	16260 59638	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0 0	0 0	0 0	0 0	32520 43595	0	0 0	0 0	0 0
LOCAL CURRENCY SIGNALS & TELECON	0	597897	603503	· 0	ů.	ů ů	ů.	0 0	0	0	0	0	3336	0	0	182855	0	0	0	0	0	3338	0	532321	0	0	0	182855
FOREJON CURRENCY LOCAL CURRENCY	0	132990 464907	133590 469913	0	0	0	0	0 0	0 0	0 0	0 0	0 0	600 2738	0 0	0 0	1210 181845	0	0	0 0	0 0	0	600 2738	0 0	160310 372011	0 0	0 0	0 0	1210 181845
CIVIL WORK	67080	170910	152220	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FOREIGN CURRENCY Local Currency	0 67080	0 170910	0 152220	0	0	0 0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 0	0 0	0 0	0 0	0 0							
LAND ACG & COHP	2450	2000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FOREIGN CURRENCY LOCAL CURRENCY	0 2450	0 2000	0	0	0	0	0	0	0	0	0 0	0 Q	0	0 0	0 0	0 0	0	0	0	0	0 0	0	0	0 0	0 0	0 0	0 0	0 0
ROLLING STOCK	0	505250	505250	272325	272325	272325	272325	304500	304500	304500	304500	304500	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
FOREIGN CURRENCY Local Currency	0	0 505250	0 505250	0 272325	0 272325	0 272325	0 272325	0 304500	0 304500	0 30450D	0 304500	0 304500	0 0	0	0	0 0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	· 0 0
-SALVAGE VALUE INT. DURING CONST.	0 4734	0 91778	0 212239	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
FINANCE PROGRAM																												
FINANCE TOTAL BORROVING	74284	1443723	1549110	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Q	0	0	0	0	0
REPAYKENT BALANCE	0 74264	0 1517987	0 3087097	0 3087097	0 3067097	0 3067097	0 3067097	0 3067097	0 3087097 242897	0 3067097 242897	0 3087097 242807					15484 3020648		2989678		15484 2958710 240023	15484 2943228 239597	15484 2927742 239171	2912258	15484 2896775 238319	15484 2881291 237894	2865807	2850323	
INTEREST FINANCE IN FOREIGN CCY	4734	91778	212239	242897	242897	242897	242897	242897	242001	242001	242897	242897	242897	242577	242152	241726	241300	240014	230440	240023	200301	230111	200740	200010	201001	207100	200012	
BORROVING	0	152393	157285	0	0	0	0	0	. 0	0	0	0	0	0 15484	0 15484	0 15484	0 15484	0 15484	0 15484	0 15484	0 15484	0 15484						
REPAYHENT BALANCE INTEREST	0	152393 3143	309878 7435	309678 8518	309678 8516	309678 8518	309678 8516	309678 8516	309878 8516	309678 8516	309678 8518	300678 8516		294194	278710 7771	263226 7345	247742	232258	216775	201291 5842	185807 5218	170323 4790	154839	139355 3939	123871 3513	108387 3087	92903 2661	77419 2235
FINANCE IN LOCAL CCY																												
BORRO¥ING REPAYKENT	74284 0	1291330 0	1391825 0	C O	0	0	0	0	0	0 0 2757419	0	0	0	0252410	0	0	0 0 2757419	0 0 2757419	0 0 2757419	0 0 2757419	0 0 2757419	0 0 2757419	0 0 2757419	0 0 2757419	0 0 2757410	0 0 2757419	0 0 2757410	0 0 2757419
BALANCE INTEREST	74264 4734	1365594 88635	2757419 204804	2757419 234381	2757419 234381	2757419 234381	2757419 234381	234381	2757419 234381	234381	2757419 234381	234381	2757419 234381			2757419 234381				234381	234381	234381		234381	234381			
NET CASHFLOW	0	0	0	-379442	-141092	97258	335569	540838	892686	1244733	1598780								2600198									2421176
CUN NET CASHFLOW	0	0	. 0	-379442	-520533	-423275	-87706	452932	1345818	2590351	4187132	6135960	8745858	11343927	13942423	18358489	18957836	21557609	24157807	28758431	20359482	31957622	34559523	36553415	39156168	41759348	44362952	46784129
CASIL IN OPERATING PROFIT	74284	1443723	1549110	135780 	374130 274265	812480 503537	850700 732770	1088035 959865	1440083	1792130 1643860	2144177 1985557	2496225												2856131	2856131	2856131	2856131	
DEPRECIATION BORROVING	0 74264	0 1443723	0 1549110	90788 0	99865 0	108943 0	118020	128170 0	138320	148470	158620 0											168770		168770	168770 0		168770	
CASH OUT	74284	1443723	1549110	515222	515222	515222	515222	547397	547397	547397	547397				257636						255081	257991	254229	862239	253377	252952	252528	434955
INVESTMENT INT. DURING CONST.	89530 4734	1351945 91778	1336871 212239	272325 0	272325 0	272325 0	272325 0	304500 0	304500 0	304500 0	304500 0			s 0 ) 0	0	18285	5 (	0 0	0 0 0 0	0	0	3336 0	0 0	608436 0	0	0 0	0 0	182855 0
REPAYHENT Interest	0 0	0	0	0 242897	0 242897	0 242897	0 242897	0 242897	0 242897	0 242897	0 242897	0 242897	242897	15484 242577								15484 239171	15484 238745	15484 238319	15484 237894	15484 237468	15484 237042	15484 230616
CF FOR FIRR		-1351945		-136545	101805	340155	578465	783535	1135583	1487630	1839877		2852791									2852795		2247895				
FIRR %	25.79	25.79	25.79	25,79	25.79	25.79	25.79	25.79	25.79	25.79	25.79	25.79	25.76	) 25.79	) 25,79	25.7	9 25.7	9 25.79	9 25,79	1 25.79	25.79	25.79	25.79	25.79	25.79	25.79	25.79	25.79

2000	2001	2002	2003	2004	2005	2008	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
37360 37788	2687360		2687380 	2687360	2687380 3467786	2687360	2887380	2687360	21222223	**==*==*	2087360 3467786	*******	2887360 	*======	2687360	3401100	2401100	22202227 3467788		3467786	3407780	3=903932	3907760	2687360 3467786
										033734	033734	933734	933734		933734	933734	933734	933734	933734	933734	933734	933734	933734	933734
34053	2534053	933734 2534053 3467786	933734 2534053 3467786	933734 2534053 3407786	933734 2534053 3467786	933734 2534053 3467786	933734 2534053 3467786	933734 2534053 3467788	833734 2534053 3467788	2534053	2534053 3407780	2534053	2534053	2534053		2534053	2534053 3467788	2534053 3467786	2534053 3467786	2534053 3407780	2534053  3467786	2534053 3407788	2534053 3487788	2534053 3407780
80426 80428	780428 780426	780428	780428	780428	780428	780428	780428		· · · · · ·	780428	780428	780428	780426	780428	780426	780426	780428	780428	780426	780428 780428	780428 780428	780426 780426	780426 780426	780428
11858	611656 155938	611656 155938	611656 155938	611656 155938	611658 155938	611656 155938	611656 155938	780426 611656	780426 611658	811656	611658	780428 611856	811656	811656	611656	611656	811658	611656	811656 155938	611656 155938	611656 155938	611856 155938	811856 155938	611856 155938
53916 01802 88770	53916 401802 168770	53916 401802 188770	53916 401802 168770	53910 401802 168770	53918 401802 188770	53916 401802 188770	53918 401802 188770	155938 53918 401802 188770	155938 53916 401802 188770	155938 53916 401802 168770	155938 53916 401802 168770	155938 53916 401802 168770	155938 53916 401802 168770	155938 53918 401802 188770	155938 53916 401802 168770	155938 53910 401802 168770	155038 53018 401802 168770	155938 53918 401802 168770	53918 401802 168770	53910 401802 168770	53916 401802 168770	53916 401802 168770	53918 401802 188770	53916 401802 168770
3336 ===== 600	0 *********	0 ====================================	182855 ==================================	0	0	0	0	0	3336  600	0 	608436 192830	0	0	0	182855  1210	0	0	3336 ********* 600	0 ====================================	0 0		272325	292255	272325
2736	ŏ	ŏ	181645	õ	ŏ	ŏ	ŏ	ŏ	2738	Ŏ	415606	ŏ	ŏ	ŏ	181845	ŏ	Ō	2736	ŏ	ŏ	1282825	272325	292255	272325
0	0 0 0	0 0	0 0	0 0	0	0 0 0	0 0 0	0 0	0 0 0	0 0	76115 32520	0	0 0	0 0	0 0	0 0	0 0 0	0	0	0 0	0 0	0 0 0	0 0 0	0 0
0 3336	Ō	0 0	0 182855	0 0	ō O	0 0	0	0 0	0 3336	0 0	43595 532321	0 O	0	0 0	0 182855	o o	0	0 3336	0 0	0	0	0 0	0	0 0
600			1210 181845			0	0	0	800 2738	0	160310 372011	0	 0 0	0	1210 181645	 0 0		800 2736	 0 0	0	0	0	0	
2738 0	0	ò	101040	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19930	0
0 0	0 0	0	0	0 0	0 0	0	0	0	0	0	0 0	0	0 0	0 0	0 0	0	0	0 0	0 0	0 0	0 0	0	0 19930	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0 0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0	0
0	0	0	0		0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1282825	272325		272325
0	õ	0	ŏ	0	ŏ	Ŏ	ŏ	ŏ	ŏ	0	ò	Õ	Õ	ŏ	Ŏ	ŏ	Ŏ	ŏ	ŏ	õ	1282825	272325	0 272325	0 272325
0	0 0	0 0	0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0 0	0 0	0	0	0 0	0 0	0	0 0	0 0	2682845 0
0 0 087097	0 15484 3051813	0 15484 3036130	0 15484 3020646	0 15484 3005162	0 15484 2989678	0 15484 2974194	0 15484 2958710	0 15484 2943226	0 15484 2927742	0 15484 2912258	0 15484 2896775	0 15484 2881291	0 15484 2865807	0 15484 2850323	0 15484 2834839	0 15484 2819355	0 15484 2803871	0 15484 2788387	0 15484 2772903	0 15484 2757419		0 0 2757419	0 0 2757419	0 0 2757419
242897	242577	242152	241726	241300	240874	240448	240023	239597	239171	238745		237894						235339	234913					
0 0 109678 8516	0 15484 294194 8197	0 15484 278710 7771	0 15484 203220 7345	0 15484 247742 6919	0 15484 232258 6494	0 15484 216775 6068	0 15484 201291 5642	0 15484 185807 5216	0 15484 170323 4790	0 15484 154839 4385	0 15484 139355 3939	0 15484 123871 3513	0 15484 108387 3087	0 15484 92903 2661	0 15484 77419 2235	61936	46452	0 15484 30968 958	0 15484 15484 532	0 15484 0 108	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
	0 0 2757419 234381	0 0 2757419 234381	0 0 2757419 234381		0 0 2757419 234381	0 0 2757419 234381		0 0 2757419 234381	0 0 2757419 234381	0 0 2757419 234381		0 0 2757419 234381		0 0 2757419 234381			0 0 2757419 234381	0 0 2757419 234381	0 0 2757419 234381	0 0 2757419 234381	0 0 2757419 234381			0 0 2757419 234381
	2598069																	2601972				2349425	2329495	5012070
856131	2856131	2856131	2856131	2858131	2856131	2856131	2856131	2856131	2856131	2858131	2856131	2856131	2856131	49362952 2858131	48784129	49388585 2856131	51993468 2856131	54595440 2856131	57201174	59807334 2856131	61146259	63495684 2856131		70837249 2856131
687360		2687360 168770 0	2687360 168770 0	2687360	2887360		2687380 168770		2687380 168770 0	2687360 168770 0	2687360 168770 0		2887360	2887360	2687360 188770	2687360 168770 0	2887360				2687360 168770 0	2687360 168770 0	2687380 168770 0	2687360 168770 0
246233	258061	257636	440084	256784	256358			255081	257991	254229	862239	253377	252952	252526	434955	251674	251248	254159	250397	249971	1517208	506708	526636	-2155940
3336 0 0	0 0	0	182855 0 15484	0 0 15484	0 0 15484	0 0 15484	0 0 15484	0 0 15484	3336 0 15484	0 0 15484	808436 0 15484	0 0 15484	0 0 15484	0 0 15484	182855 0 15484	0	0	3336 0	0	0 0	1282825 0	272325 0	292255 0	-2390320
242897	15484 242577	15484 242152							239171	238745	238319	237894	237468	237042		15484 236190	15484 235765	15484 235339	15484 234913	15484 234487	0 234381	0 234381	0 234381	0 234381
852795 25.79	2856131 25.79	2856131 25.79		2856131 25.79				2856131 25.79	2852795 25.79	2856131 25.79	2247895 25.79	25,79	2856131 25.79	2858131 25.70		2856131 25.79	2856131 25.79	2852795 25.79	2850131 25.79	2856131 25.79	1573308 25.79	2583808 25,79	2563876 25.79	5248451 25.79
								•						·										
										·	• •													ų

## - 343 -

( UNIT : 1000 RS )

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2008	2007	2008	2000	2010	2011	2012		2014	2015	2016	2017	1
VESTHENT DIFF	1444816	3243891	4318122	0.00000	2194270	-3280301	-630891 =======	-630891	-630891 ======	~630891	-610478	-703094 =======	-702859	-1518766		-3911618 =======	-786262	-786262 =======		-797093	-796858 	-1894314	-980586	ز = :
î N	1444818	3243891	4318122	5485036	2194270	155371	155371	155371	155371	155371	175548	175548	175548	175548	1321719	0	0	0	0	0	0	0	0	0
NEW CORRIDOR	1444816	3243891	4318122			155371	155371	155371	155371	155371	175548	175548	175548	175548	1321719	0	0	0	0	0	0	0	0	/
ELECTRIFICATION SIGNALS & TELECON CIVIL WORK LAND ACQ & COMP ROLLING STOCKS -SALVAGE VALUE	0 0 1289778 155040 0 0	355665 798975 1872331 216920 0, 0	590085 798975 1872331 165240 891492 0	2002198 0	266325 403402 0	0 0 155371 0	0 0 0 155371 0	0 0 0 155371 0	0 0 0 155371 0	0 0 0 155371 0	0 0 175548 0	0	0 0 0 175548 0	0 0 0 175548 0	0 1148171 0 0 175548 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	
ITHOUT	0	0	0	0	0	3435672	786262	786262	786262	786262	786026		878407	1694314	960586	3911618	786262	786262	786026	797093	798858	1694314	960586	-
BUS TRUCK AIRPLANE -SALVAGE VALUE	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	815672 0 2620000 0	82179 376582 327500 0	82179 376582 327500 0	82179 376582 327500 0	82179 378582 327500 0	81944 376582 327500 0		92776 458131 327500 0	908683 458131 327500 0	174955 458131 327500 0	178487 458131 3275000 0	82179 376582 327500 0	82179 376582 327500 0	81944 376582 327500 0	93011 376582 327500 0	92776 376582 327500 0	908683 458131 327500 0	174955 458131 327500 0	1
NINT & OPE COST DIFF ACILITY MAINT COST DIFF	0 0 0	0 ======== 0	0 ======== 0	0 ********* 0	0 ========== 0.				-2103492	-552415	-721558		-1120346	-1328763	~1531133	-1755805	-5989852 -1755605	-5989852 -1755605		-5989852 -1755605	-5989852 -1755605	-5989852 -1755805		-= 95
тн	0	0	0	0	0	414893	420261	425629	430997	436365	442440	448514	454588	460662	466737	466737	466737	466737	466737	466737	466737	466737	466737	
NEW CORRIDOR	0	0	0	0	0	414803	420261	425629	430997	436365	442440	448514	454588	460662	466737	466737	466737	466737	486737	466737	466737	466737	466737	7
ELECTRIC FAC. SIGNALS & TLELCON CIVIL VORK ROLLING STOCK	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	29841 83587 138837 162828	29841 83587 138037 168196	29841 83587 138837 173564	29841 83587 138637 178932	29841 83587 138637 184300	29841 83587 138637 190375	29841 83587 138637 196449	29841 83587 138637 202523	29841 83587 138637 208597	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138837 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	1 7 7
THOUT	0	0	0	0	0	287722	462987	638251	813516	988781	1163998	1372490	1580934	1789426	1997870	2222341	2222341	2222341	2222341	2222341	2222341	2222341	2222341	1
BUS TRUCK AIRPLANE	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	165226 0 122498	181872 143306 137808	198519 286612 153120	215166 429918 168432	231812 573225 183744	248411 716531 199056	267252 890870 214368	288045 1065209 229680	304886 1239548 244992	323679 1413887 260304	343187 1588226 290928	7 6							
PERATING COST DIFF	0	0	0	0	0	~782316	-1095201	-1408087	-1720973	-2033859	-2346557	-2709312					-4234247		-4234247	-4234247		-4234247	-4234247	
ITH	0	0	0	0	0	203288	211220	219152	227083	235015	243018	251378	259738	268098	276458	284890	284890	284890	284890	284890	284890	284890	284890	
NEV CORRIDOR	0	0	0	0	0	203288	211220	219152	227083	235015	· • • • • • • •	251378	259738	268098	276458	284890	284890	284890	284890	284890	284890	284890	284890	r -
PSNL COST ELEC COST	0 0	0	0	0 0	0	69282 134007	70489 140751	71657 147495	72844 154239		75291	78460 174917	77630	78800 189298		81211 203679	81211 203679		81211 203679	81211 203679		81211 203679	81211 203679	1
THOUT	0	0	0	0	0	985604	1306422	1627239	1948057		2589575	2960890	3331688	3702804		4519137	4519137	4519137	4519137	4519137	4519137	4519137	4519133	_
PSNL COST	0	0	0	0	0	270743	419509	568275	717042	865808	1014496	1193136						1908829		1908829			1908820	
BUS TRUCK AIRPLANE	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	269153 0 1590	298270 121450 1789	323387 242900 1988	350505 364350 2187	377622 485800 2386		435353 755000 2783	465967 902750 2982	496658	527272	559052			559052 1346000 3777	559052 1346000 3777		559052 1346000 3777	559052 1346000 3777	- 2 0
	0	0	0	0	0	714861	886912	1058964	1231015	1403086		1767554	1959989	2152464	2344900	2610308	2610308	2610308	2610308	2610308	2610308	2610308	261030	8
BUS TRUCK ATRPLANE	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	135789 0 579072	149470 85987 651456	163150 171973 723840	176831 257960 796224	343946	204154 429933	219638 534540	235082 639147 1085760	250566 743754	286011 848361	282044 952968	282044 952968	282044 952968	282044 952968 1375296	282044 952968 1375296	282044 952968	282044 952968 1375296	28204 95296 1375296	48
S TIHE SAVING BENEFIT	0	0 =======	0	0	0	1588773	1760846 ======	1939508	2127933	2323358	2529371	2761896	3002784					4080147			4399968			
	-1444818 - 24.09			-5485036 24.09						5540524	6207984 24.09		7903939 24.09								11186678 24.09			8

•

2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
30891	-610478		-702859	~1518766	361133	-3911618	-786262	~786262	-786026	-797093	-798858	-1694314	-960586	182053	-867811	1772312	-644397	-855484	-655229	-4974017
5371	175548		175548	175548		i . (		0	0	0	0	0	0	1146171	0	5587623	141629	141629	141629	-9163152
55371	175548	175548	175548	175548	1321719	0		0	0	0	0	0		1146171		5587623	141629	141629	141629	-9183152
0 0 0 55371 0	0 0 0 175548 0	0 0 0 0 0 175548 0	0 0 0 175548 0	0 0 175548 0	0 1146171 0 0 175548 0	0 0 0 0 0	0 1146171 0 0 0 0	0 0 0 0 0	586048 697090 0 4304484 0	0 0 0 141629 0	0 0 0 141629 0	0 0 0 141629 0	0 0 141629 9304781							
36262	786026	878642	878407	1694314	960586	3911618	786262	786262	786026	797093	796858	1894314	960586	984118	867811	3815311	786026	797093	796858	-4189135
2179 6582 7500 0	81944 376582 327500 0		327500	908683 458131 327500 0	174955 458131 327500 0	458131 3275000		327500	81944 376582 327500 0	93011 376582 327500 0	327500		174955 458131 327500 0	178487 458131 327500 0	82179 458131 327500 0	82179 458131 3275000 0	81944 376582 327500 0	93011 376582 327500 0	92776 376582 327500 0	908683 376582 327500 5801900
6275  2415 	-3068115 -721558	-923976	-4198296 	-1328783	~1531133	-1755605	C 2 5 7 7 2 3 2	-1755605	-1755605	-1755605	-1755605	~1755605	-1755605	~1755605	-1755605	200222220	-1755605	25252222		-1755805
6365	442440		454588	460662	466737	466737	466737	466737	466737	466737	466737	466737	466737	486737	466737	468737	466737	466737	466737	466737
6365	442440			480662	466737	466737	466737	486737	466737	466737	466737	466737	466737	468737	468737	466737	466737	466737	468737	468737
9841 3587 8637 4300	29841 83587 138637 190375	29841 83587 138637 196449	29841 83587 138637 202523	29841 83587 138637 208597	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672	29841 83587 138637 214672
8781	1163998	1372490	1580934	1789426	1997870	2222341	2222341	2222341	2222341	2222341	2222341	2222341	2222341	2222341	2222341	2222341	2222341	2222341	2222341	2222341
1812 3225 3744	248411 716531 199056	267252 890870 214368	286045 1065209 229680	304886 1239548 244992	323679 1413887 260304	343187 1588226 290928	343187 1588226 290928	343187 1588226 290928	343187 1588226 290928	343187 1588228 290928	343187 1588226 290928	343187 1588226 290928	343187 1588226 290928	343187 1588226 290928	343187 1588226 290928	343187 1588226 290928	343187 1588226 290928	343187 1588226 290928	343187 1588226 290928	343187 1588226 290928
3859	-2346557	-2709312	-3071950	-3434708		-4234247	-4234247	-4234247	-4234247	-4234247	-4234247	-4234247	-4234247	-4234247	-4234247	-4234247	-4234247	-4234247	-4234247	-4234247
5015	243018	251378	259738	268098	276458	284890	284890	284890	284890	284890	284890	284890	284890	284890	284890	284890	284890	284890	284890	284890
5015	243018	251378	259738	268098	276458	284890	284890	284890	284890	284890	284890	284890	284890	284890	284890	284890	284890	284890	284890	284890
032 983	75291 187727	76460 174917	77630 182108	78800 189298	79970 196488	81211 203679	81211 203679	81211 203679	81211 203679	81211 203679										
	2589575	2960890	3331688	3702804	4073802	4519137	4519137	4519137	4519137	4519137	4519137	4519137	4519137	4519137	4519137	4519137	4519137	4519137	4519137	4519137
•	404662	1193136	1371699		1728902	1908829	1908829	1908829	1908829	1908829	1908829	1908829	1908829	1908829	1908829	1908829	1908829	1908829	1908829	1908829
622 800 386	607250 2584	435353 755000 2783	465967 902750 2982	496658 1050500 3181	527272 1198250 3380	559052 1346000 3777	559052 1346000 3777	559052 1348000 3777	559052 1346000 3777	559052 1346000 3777	559052 1346000 3777	559052 1346000 3777	559052 1346000 3777							
	1575079	1767554	1959989	2152464	2344900	2610308	2610308	2610308	2610308	2610308	2610308	2610308	2610308	2610308	2610308	2610308	2610308	2610308	2610308	2610308
946	204154 429933 940992	219838 534540 1013376	235082 639147 1085760	250566 743754 1158144	266011 848361 1230528	282044 952968 1375296	282044 952968 1375296	282044 952968 1375296	282044 952968 1375296	282044 952968 1375296										
	2529371	2761896	3002784 ======	3260803	3523198	3876624	3978385	4080147							4870009				5393353	5529035
524 ( .09	207964 24.09	7098278 24.09	7903939 24.09	9542838 24.09	8490542 24.09	13778094 24.09	10754499 24.09	10856260 24.09	10957786 24.09	11075461 24.09	11186678 24.09	12195587 24.09	11578158 24.09	10556664 24.09	11727672 24.09	9213539 24.09	11756239 24.09	11902988 24.09	12038434 24.09	16492903 24,09
																	·		·	
						4														
I																				

## 8-4 Financial Analysis for the Delhi - Kanpur Railway Project - Case (B) ( UNIT : 1000 RS )

0 4 Thunchur in				,		(	UNIT : 100	)0 RS )																	2010	2020	2021	2022
	1895	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2008	2007	2008	2009	2010	2011	2012	2013	2014	2015	2010	2017	2018	2019			2855973
OPERATING PROFIT	0	0	0	0	0		1670011	1805946		2077815	2211521	2379287	2547053	02222222	*******		2855973			,,,,,,,,,,,,,,,,,,	2222222 ²		5160538	5160538	5160538	5160538	5180538	5160538
OPERATING REVENUE	0	0	0	0	0	3426767	3803594		3957249	4134076		4523312									4546505	4548505	4546505	4548505	4546505	4548505 014034	4546505 614034	4540505 814034
NEV CORRIDOR SUPER EXPRESS	0	0	0	0	0	2898796 429971	3157029 446565	3317263 483158	3477497 479752	3637731 486345	3797984 512939	3985099 538213	4172235 583488	4359370 588760	4548505 814034	4546505 014034	4546505 614034	4548505 614034	4548505 614034	614034	614034	614034	614034	614034 5160538	614034 5180538			5180538
LONG EXPRESS Total	0 0	0 0	0	0	0	3426787	3603594			4134076	4310803	4523312	4735721	4948129	5160538	5180538	5100538	5160538	5160538		5100538 2304565	5160538 2304585	5160538 2304565	2304565	2304585	2304565	2304565	2304505
OPERATING EXPENSE	0	0	0	0	0		1933583	1974476		2056261	2099382	2144025	2188867	2233310	2277053	2304565					2304565		2304565	2304565	2304505	2304565	2304565	230456
NEV CORRIDOR	0	0	0	0	0	1892690	1933583	1974476		2058261	2099382	2144025	2188667		2277953	2304565	2304585	2304565  1449189	2304565		1449189	1449189	1449189	1449189 639884	1449189 639884	1449189 639884	1449189 639884	1440189 639884
VORKING COST MAINTENANCE COST PERSONREL COST ELEC COST DEPRECIATION	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1127710 575599 98309 453802 764980	1159254 582255 99971 477027 774329	1190797 588912 101633 500252 783678	1222341 595568 103296 523477 793027	1253885 602224 104958 546702 802376	1286408 609756 108722 569927 812976	1320449 817288 108361 594799 823578	1354491 624820 110000 619671 834176	1388534 632352 111638 644543 844776	1422576 639884 113277 669415 855376	1449189 639884 115018 694287 855376	639884 115018 694287 855376	639884 115018 694287 855376	639884 115018 694287 855376	839884 115018 694287 855376	839884 115018 694287 855376	639884 115018 694287 855376	639884 115018 694287 855376	639884 115018 694287 855376	115018 694287 855376	115018 694287 855376	115018 604287 855378	115018 694281 855378
	•	~	·		0000000				192860	192660	217680	217680	217680	217680	2021925	0	0	0	0	0	0	0 =========	0	1804245	********	8595120 ====== 1894000	175620 ====================================	17562( ======
INVESTMENT	1895620	4144906 ====== 393240	6122981 ======= 1098340	7604521 ======= 1098340	2820692 ====================================		192660 ===================================	192680 ======= 0		***= 0	0	0	========= 0		544300	******** 0 0	********* 0 0		97777922 0 0	0 0	0 0	0 0	0 0	544300 1259945		1894000 6701120	175620	17562
FOREIGH TOTAL Local Total	1695620	3751866	5024841	6506181	2649812	192660	192660	192660	192660	192660	217880	217680	217680	217680	1477825	v O	0	0	. 0	0	0	0	0	0	. n 0	م 887750	0 Q	ļ
ELECTRIFICATION	0	414140	789240	751340	309630 	0	0	0 0	0	0 0	0	0 0	 0	0	0	0	0	0	•	0		0	0	0	0	199000 888750	0	
FOREIGN CURRENCY	v O	414140	689840	871740	289830	ò	ò	ò	ò	Ó	0	0	0	0	0	0	0	0	) 0 - 0	0	0	. 0	) O	1804245	0	1231400	ů 0	1
SIGNALS & TELECON	0	1279718	1279716		426572	0	0	0	0	0	0 0	0	0 0	0	1804245	0	0	0	0	0	0	0	0	544300	0	444000	0	
FOREIGN CURRENCY Local Currency	0	393240 886476	393240 888476	393240 886476	131080 295492	0	Ò	0	0	ŏ	ŏ	ò	õ	ŏ		õ	0	0	) 0	0	0	. 0	v 1 0	1259945 0	. 0	787400 0	0	
CIVIL WORK	1540580	2234130	2234130		480150	0	0	0	0	0	0	0	0	0	0	0	· · · ·		) 0  ) 0	0	0	, 0	0	0		0		
FOREIGH CURRENCY Local Currency	0 1540580	0 2234130	0 2234130	0 2389210	0 480150	0 Q	0	0	0	ŏ	Ŏ	õ	ŏ	0	ŏ	ō	i o	0		0	0	0 	0 \	U O	. 0	U O	0	y y
LAND ACQ & COMP	155040	216920	165240	0	0	0	0	0	0		0	0	0	0	0	0	) () 	0	) 0 0 ) 0	0	0	 0 0	) 0	0	0	0		g
FOREIGH CURRENCY LOCAL CURRENCY	0 155040	0 216920	0 165240	0	0	0 Q	0 Q	0 0	0 0	ů 0	0	Ŏ	Ŏ	ŏ	Ó	Č		Ğ	ó ö	0	0	0	· 0	0	0	0	175820	0 175620
ROLLING STOCK	0	0	1874655		1604340		192660	192680	192660	192660	217680	217680	217680	217680	217680		) ()	) () 	0 0	0	0	) 0  ) 0	) U  D D	0 0 0	) 0 0 ) 0	6475970 1251000	175820	
FOREIGN CURRENCY Local Currency	0	0	625500 1049155	625500 2558755	0 1604340	0 192860	0 192660	0 192660	0 192660	0 192660	0 217580	0 217680	0 217680	0 217680	217680	(			o õ	õ	ŏ	• 0 > C	i 0 0 0	0	0 ) 0	5224970 0	175620 0	) 175820 ) 0
-SALVAGE VALUE INT. DURING CONST.	0 115456	0 428159	0 919685	0 1588919	0 2088428	0	0 Q	0	0	0	0	Ő	0	0	0	ò			Ď Ō	Ō	ò	, 0	) 0	0	0	0	0	đ
FINANCE PROGRAM											_						- 4		^ ^	0	a	n (	0 0	c	) 0	0	0	, a
BORROVING REPAYNENT BALANCE	~	0 8384141	0 13426807	9193440 0 22620246	0	97500268	0 0 27509366 2168724	0 0 27509366 2168724	0 0 27509366 2168724	0 0 27509366 2168724	0 0 27509366 2168724	0 0 27509366 2168724	0 0 27509366 2168724	0 C 2750936( 216872/	) 0 ) 0 5 27509366 4 2168724	147454 27361913 2165683	0 03014464	1 2768766	5 76010651	26772097	26624643	3 28477190	4 147454 0 28329738 3 2137298	26182282	2 28034828	25887374	25739921	147454 25592467 2117023
INTEREST FINANCE IN FOREIGN CCY	110400	420109	919685	1000419	2000-120	2100124	2100124	6100124	6100167						•													<u> </u>
BORROVING REPAYNENT	0	401521 0	٥	0	250259 0	0 0 2949076	0 0 2949076	0 0 2949076	0 0 2949078	0 0 2849076	0 0 2949076	0 0 2940076	0 0 2948076	0 2949076	0 0 0 0 3 2949076				5 2359281	2211807	2064353	3 1918900	0 1789448	1821992	2 1474538	1327084	1179631	1 1032177
BALANCE INTEREST	0	401521 8281	1534268 34405		79379									81100			8 7400	3 8994	8 65893	61838	57783	3 53728	8 49674	45619	9 41584	37509	) 33454	29399
FINANCE IN LOCAL CCY	1011070	1181210		0000000	4030001		· •	٥		0	0	. 0	0	,	n 0	r (	0 (	0 (	0 0	0	, c	0 (	) · · · 0	o	) 0	, o	, o	, o
BORROVING REPAYHENT BALANCE	<u>م</u>	4171543 0 5982619	^	8028889 0 19921429	· ^	0 24560290	0 24560290	0 24580290	0 24560290	0 24560290	0 24560290	0 24560290	0 24560290			2456029	0 0 2456029	0 2456029	0 0 0 0	24560290	0 24580290	) 0 0 2456029( 5 208762)	0 0 0 24560290 5 2087625	0 24560290 2087625	+ 0 24580280 5 2087625	0 24560290 2087625	0 24560290 2087625	0 0 0 24560290 5 2087825
INTEREST	115458	419877	885280	1522708	1989049	2087625	2087625	2087825	2087625	6400000	2001023	2001025	2001023	208782			1 - 1 - 1 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						÷					7 1271252
NET CASHFLOW CUN NET CASHFLOV	0 55777775 0	0 ======== 0	0 ========= 0		0 ======== 0	-82327 ====== -82327	82956 ******* 20629	228240 ===== 248869	2202#322	12222222	5=1255=a	12======	========		* *******	222653C	= =======			========	: <b>2</b> ≶5¥≏255	* 2*52****	$\begin{array}{c} 1426597 \\ = = = = = = = = = = = = = = = = = = =$	22572736		*********	= =========	5 12053527
CASH IN			7042886	9193440	4889120		2444340	2589624	2734908	2880191		3202863		3559596	3 3737962	371134	0 371134	9 371134	9 3711349	3711349	3711349	9 3711349	9 3711349	3711349	9 3711349	9 3711349	9 3711349	9 3711349
OPERATING PROFIT DEPRECIATION BORROVING	0 0 1811076	0 0 4573065	0 0 7042668	0 0 9193440	0 0 4889120	784980		1805948	1941880	2077815	2211521	2379287 823578 0	2547053	2714819 844776	2882586	285597	3 2855973	3 2855973	3 2855973	2855973	2855973	3 2855973		2855973		3 2855973		3 2855973
CASH OUT	1811076	4573085	7042666	9193440	4889120	2361384				2361384				238640						2296917	229286	2 2288807	7 2284752	408494	2 227664	2 10867703	7 244415:	52 2440097
INVESTMENT	1695620 115456	4144908 428159	6122981		2820692						217680	217680	217680	21768(	0 2021925		0	0	0 0	0	· · · · · · · · · · · · · · · · · · ·	0 0	0	180424		0 859512		
INT, DURING CONST. Repayment Interest	115490 0 0	420159 0 0	918089 0 0	0	2000428 0 0	0	0 2168724	0 2168724	0 2168724	0 2168724	0 2168724	0 2168724	0 2168724	2168724	0 0 4 2168724	14745 216568						4 147454 8 2141353	2 0 4 147454 3 2137298					
CF FOR FIRR FIRR X	-1695620 9,86	-4144906 9.80								2687531 9.86				3341916 9,81					9 3711349 6 9.80			9 3711349 6 9.88			04 3711341 86 9.8			29 3535729 86 9,86
																							:					

2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
2547053	2714819	2882586	2855973	2855973	2855973	2855973	2855973	2855973	2855973	2855973	2855973	2855973	2855973	2855973	2855973	2855973	2855973
4735721		5180538	5160538			5160538		5160538	5160538	5160538	5160538	5160538	5160538	5180538	5160538	5160538	5160538
4172235	4359370	4548505	4546505	4548505	4546505	4548505	4546505	4546505	4546505	4546505	4546505	4546505 614034	4546505 014034	4546505 814034	4546505 614034	4548505 614034	4548505 614034
583486	588760	814034	014034	614034	614034	614034	614034	614034	614034 5100538	614034 5160538	614034 5160538	5180538	5160538	5160538	5160538	5160538	5160538
4735721 2188667	4948129 2233310	5160538 2277953	5160538 2304565	5180538 2304585	5160538 2304585	5160538 2304585	5180538 2304565	5160538 2304565	2304585	2304565	2304565	2304585	2304565	2304565	2304565	2304565	2304585
2188667	2233310	2277953	2304565	2304565	2304565	2304565	2304565	2304565	2304585	2304565	2304565	2304565	2304565	2304565	2304585	2304565	2304565
1354491	1388534	1422578	1449189	1449189	1449189	1449189	1449189	1449189	1449189 639884	1449189 639884	1449189 639884	1449189 639884	1449189 639884	1449189 839884	1449189 639884	1449189 639884	1449189 639884 115018
624820 110000 619871	632352 111638	639884 113277	639884 115018	639884 115018 694287	639884 115018 694287	639884 115018 694287	639884 115018 694287	639884 115018 694287	115018 694287	115018 694287	115018 694287	115018 694287	115018 694287	115018 894287 855378	115018 694287 855376	115018 694287 855376	694287 855376
834176	844543 844776	669415 855378	694287 855376	855376	855376	855376	855376	855376	855376	855376	855376	855376	855376	000010			105404
217680	217880	2021925	0	0	0	0	0	0	0	0		0 =======	8595120	175820	175620	175620 ====================================	175820 ====================================
0 217680	0 217680	544300 1477625	**************************************	0 0	0	0	0	0	0 0	0	544300 1259945	0 0	1894000 6701120	175820	175620	175620	175820
0	0	0	0	0	0	0	0	0	0	0	0	0 0	ი 887750	0 0	0	0 0	0
0	0	0	0	0	0	0	0	0	0	0	0	0 0	199000 688750	0	0	0	0
0	0	0 1804245	0	0	0	0	0	0	0	0	1804245	0	1231400	0	0	0	0
0	••••••	544300	0	0	0	0	0	0	0 0	0	544300	0	444000	0	0	0	0
0	0	1259945	0	0	0	0	0	0	, U Q	0	1259945	0	787400 0	0	0	0	0
0	0	0	0	0		0		0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
0	0 0	0	0 0	0 0 0	0 0	0	0 0	0 0	0	0	0	0	0	0	0	0	0
0	0	0	Ó	Ō	Ō	Ó	Õ	Ó	0	0	Ó	0	0	0	0	0	0
217680	217680	217680	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0	0	0 0	0 0	8475970 1251000	175620	175620	175620	175820
217680	217680	217680	Ŏ	Ō	Ó	Ō	0	Ō	0	Ó	ō	Õ	5224970	175620	175820	175620	175820
0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	13063155 0
0	0	0	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	Ó 147454	0 147454	0 147454
27509366 2168724		27509366 2168724	27361913	27214459	27067005 2157573		26772097 2149463	26624643		26329736 2137298		26034828	25887374 2125133		25592467 2117023		25297559 2108913
0	0 0	0	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454	0 147454
2949076 81100	2949076 81100	2949076 81100	2801623 78058	2654169 74003	2506715 89948	2359261 65893	2211807 61838	2064353 57783	1918900 53728	1769446 49674	1621992 45619	1474538 41584	1327084 37509	1179831 33454	1032177 29399	884723 25344	737269 21289
																	·
0 0	0 0	0	0 0	0 0	0	0	0	0	0 0 24560290	0 0	0 0 24580200	0	0 0 24560290	0	0	0	0
24560290 2087825	24580290 2087625	24560290 2087625	24560290 2087825	24560290 2087625	2087625	24560290 2087625	24560290 2087625	2087625	2087625	2087625	2087625	2087625	2087625	2087625	24560290 2087625	24560290 2087625	2087625
994825		-452887	1398213	1402268	1406323	1410378	*******	22022222	1422542	1426597	-373593	1434707	-7156358		1271252		14342518
3590576 3381230	4783768 3559598	4311080 3737982	5709293	7111560	8517883		11342693					16671435	9515078	10782275		13328835	
2547053	2714819	2882586	3711349 2855973	3711349 2855973	3711349 2855973	3711349 2855973	3711349 2855973	3711349  2855973	3711349 2855973	3711349 2855973	3711349 2855973	3711349 2855973	3711349 2855973	3711349	3711349	3711349	3711349
834176 0	844778 0	855378 0	855376 0	855376 0	855376 0	855378 0	855376 0	855376 0	855376 0	2055973 855376 0	855376 0	2855376 855376 0	2055973 855376 0	2000973 855376 0	2855973 855376 0	2855973 855376 0	2855973 855378 0
2386404	2386404	4190849	2313137	2309082	2305027	2300972	2296917	2292862	2288807	2284752	4084942	2276642	10867707	2444152	2440097		-10631168
217680 0	217680	2021925 0	0 0	0	0	0	0	0	0	0	1804245	0	8595120 0	175620 0	175620	175620	-12887535
0 2168724	0 2168724	0 2168724	147454 2165683	147454 2161628	147454 2157573	147454 2153518	147454 2149483	147454 2145408	147454 2141353	147454 2137298	147454 2133243	147454 2129188	147454 2125133	147454 2121078	147454 2117023	147454 2112968	0 147454 2108913
3163550	3341916	1716037	3711349	3711349	3711349	3711349	3711349	3711349	3711240	3711349	1907104						
9.86	9.86	9.86	9.86	9.86	9.85	9.86	9.85	9.86	9.86	9.80	9.86	3711349 9.86	-4883771 9.86	3535729 9.86	3535729 9.86	3535729 9.86	16598885 9.86
						•											

- 347 -