REPORT
FOR
THE FEASIBILITY STUDY
ON

RAILWAY IMPROVEMENT PLAN
OF TRANSPORT CAPACITY AND TRAIN SPEED
ON THE DELHI-KANPUR SECTION

. IN INDIA

APPENDIX

DECEMBER 1987

JAPAN INTERNATIONAL COOPERATION AGENCY

REPORT FOR THE FEASIBILITY STUDY ON

RAILWAY IMPROVEMENT PLAN OF TRANSPORT CAPACITY AND TRAIN SPEED ON THE DELHI-KANPUR SECTION

IN

INDIA

APPENDIX

DECEMBER 1987

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

CONTENTS

1-1	Elasticity of Traffic Volume	1
1-2	Passenger Transport Time and Fare between Each Zone	3
1-3	Future OD Table of Railway (1)	4
1-4	Future OD Table of Railway (2)	5
1-5	Future OD Table of Railway (3)	6
1-6	Future OD Table of Railway (4)	. 7
1-7	OD Table of Railway	8
1-8	Assumed Passenger Link Traffic in 1985	9
1-9	Freight Link Traffic in 1985	10
1-10	Current Transport Volume at Each Station	11
2-1	Train Diagram Pattern (New Corridor)	13
2-2	Margin Time	15
2-3	Assumed Traffic Volume at the Time of Completion of	
	the 7th Five Year Plan (1990)	16
2-4	Use of EMU for Local Passenger Trains	20
2-5	Track Capacity	22
2-6	Number of Trains by Year Without Construction of	
	the New Corridor	24
2-7	Operation Time Reduction Effect due to Higher Point	
	Limit Speed	25
2-8	Number of Trains by Year and Fare Increase Rate	
	(The Section)	27
29	Train Number of the Section by Year and the Fare of	
	the New Corridor	29
2-10	Train Diagram Pattern (New Corridor)	32
	The Conditions of Arrival and Departure Track Utilization	
	and their Respective Capacity at Main Stations	36
2-12	Status of the Current Train Flow (Exp/Mail) (The Section)	48
	Track Capacity and Number of Train (One way) (1985)	49
3-1-	(1) Speed vs. Tractive Effort and Train Resistance Curve	
	of L. Exp. Trains on the Section	52

3-1-	(2) Speed vs. Tractive Effort and Train Resistance Curve	
	of Other Trains on the Section	52
3-2	Speed vs. Distance Curve of Trains on the Section (Powering)	55
3-3	Speed vs. Distance Curve of Trains on the Section (Braking)	56
3-4	Comparison of the High Speed Train Characteristics	57
35	Speed vs. Tractive Effort and Train Resistance Curve of	
	Trains on the New Corridor	58
3-6	Speed vs. Distance Curve of Trains on the New Corridor	
	(Powering)	59
3-7	Speed vs. Distance Curve of Trains on the New Corridor	
	(Braking)	60
3-8	Bolsterless Type Bogie	6.
3-9	'WN' Type Coupling	62
3-10	Electromagnetic Air Brake	64
	Disc Brake	66
	3-phase Asynchronous Motor and Regenerative Brake	68
3-13	Eddy Current Brake (ECB brake)	72
	Multi-step Controlled Brake and Continuous Controlled Brake	7:
	Light Alloy Body	.79
3-16	Information System	-83
3-17	Outline of Light Coach	86
3-18	Inspection Cycle for Coaches and Electric Locomotives of IR	8
3-19	Cycle and Content of Inspection for Coaches and Electric	
	Locomotives of JR	88
3-20	Example of Coach Repair Equipment in JR	91
3-21	Example of Inspection Equipment for 160 km/h EL and PC	92
3-22	Air Hose Assembly of JR's Rolling Stock	9:
3-23	Rolled Screw Air Pipe Exclusively Prepared for JR's	. :
	Rolling Stock	9
3-24	Welding of Rolling Stock Material	96
	Air Spring	9
	Inspection and Repair Facilities of Shinkansen	. 99
	Bogie Running Test Device	11
4-1	Standards of Cant in Foreign Countries	11.
4-2	Standards of Transition Curve in Foreign Countries	114
/ı 3	Reverse Curve	

4-5 Train Speed and Impact Load 4-6 Investigation of the Track Structure Associated with the Operation of High-speed Train at 160 km/h 4-7 Standards for Rail Replacement Cycle in Foreign Countries 4-8 Rail Welding Technique in Japan 4-9 General Requirements of Turnouts 4-10 Comparison of the New Corridor Terminals 4-11 Alternative Routes for New Corridor 4-12 Agricultural Road on Embankment Section 4-13 Location of Transition Curve Improvement 4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR			
4-5 Train Speed and Impact Load 4-6 Investigation of the Track Structure Associated with the Operation of High-speed Train at 160 km/h 4-7 Standards for Rail Replacement Cycle in Foreign Countries 4-8 Rail Welding Technique in Japan 4-9 General Requirements of Turnouts 4-10 Comparison of the New Corridor Terminals 4-11 Alternative Routes for New Corridor 4-12 Agricultural Road on Embankment Section 4-13 Location of Transition Curve Improvement 4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR			
4-5 Train Speed and Impact Load 4-6 Investigation of the Track Structure Associated with the Operation of High-speed Train at 160 km/h 4-7 Standards for Rail Replacement Cycle in Foreign Countries 4-8 Rail Welding Technique in Japan 4-9 General Requirements of Turnouts 4-10 Comparison of the New Corridor Terminals 4-11 Alternative Routes for New Corridor 4-12 Agricultural Road on Embankment Section 4-13 Location of Transition Curve Improvement 4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR			
4-6 Investigation of the Track Structure Associated with the Operation of High-speed Train at 160 km/h 4-7 Standards for Rail Replacement Cycle in Foreign Countries 4-8 Rail Welding Technique in Japan 4-9 General Requirements of Turnouts 4-10 Comparison of the New Corridor Terminals 4-11 Alternative Routes for New Corridor 4-12 Agricultural Road on Embankment Section 4-13 Location of Transition Curve Improvement 4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Vertical	Curve	116
the Operation of High-speed Train at 160 km/h 4-7 Standards for Rail Replacement Cycle in Foreign Countries 4-8 Rail Welding Technique in Japan 4-9 General Requirements of Turnouts 4-10 Comparison of the New Corridor Terminals 4-11 Alternative Routes for New Corridor 4-12 Agricultural Road on Embankment Section 4-13 Location of Transition Curve Improvement 4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Train Sp	eed and Impact Load	117
4-7 Standards for Rail Replacement Cycle in Foreign Countries 4-8 Rail Welding Technique in Japan 4-9 General Requirements of Turnouts 4-10 Comparison of the New Corridor Terminals 4-11 Alternative Routes for New Corridor 4-12 Agricultural Road on Embankment Section 4-13 Location of Transition Curve Improvement 4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Investig	ation of the Track Structure Associated with	
4-8 Rail Welding Technique in Japan 4-9 General Requirements of Turnouts 4-10 Comparison of the New Corridor Terminals 4-11 Alternative Routes for New Corridor 4-12 Agricultural Road on Embankment Section 4-13 Location of Transition Curve Improvement 4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	the Opera	ation of High-speed Train at 160 km/h	118
4-9 General Requirements of Turnouts 4-10 Comparison of the New Corridor Terminals 4-11 Alternative Routes for New Corridor 4-12 Agricultural Road on Embankment Section 4-13 Location of Transition Curve Improvement 4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Standard	s for Rail Replacement Cycle in Foreign Countries	130
4-10 Comparison of the New Corridor Terminals 4-11 Alternative Routes for New Corridor 4-12 Agricultural Road on Embankment Section 4-13 Location of Transition Curve Improvement 4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Rail Weld	ding Technique in Japan	130
4-11 Alternative Routes for New Corridor 4-12 Agricultural Road on Embankment Section 4-13 Location of Transition Curve Improvement 4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	General 1	Requirements of Turnouts	137
4-12 Agricultural Road on Embankment Section 4-13 Location of Transition Curve Improvement 4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Comparis	on of the New Corridor Terminals	140
4-13 Location of Transition Curve Improvement 4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Alternat	ive Routes for New Corridor	144
4-14 Railway Diagram of the Section (in 1990) 4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Agricult	ural Road on Embankment Section	146
4-15 Rail Replacement Cycle in JR 4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Location	of Transition Curve Improvement	147
4-16 Design of PRC Sleeper in JR 4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Railway I	Diagram of the Section (in 1990)	149
4-17 Design of Turnout in JR 4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Rail Rep	lacement Cycle in JR	155
4-18 General Longitudinal Section of the New Corridor 4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Design o	f PRC Sleeper in JR	159
4-19 Outline of Proposed Workshop for the New Corridor 4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Design o	f Turnout in JR	161
4-20 Track Maintenance Standards in Japan 4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	General 1	Longitudinal Section of the New Corridor	165
4-21 Progress of Track Breaking 4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Outline o	of Proposed Workshop for the New Corridor	167
4-22 Calculation of the Optimum Rail Structure 4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Track Ma:	intenance Standards in Japan	168
4-23 Maintenance Work System in JR 4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Progress	of Track Breaking	178
4-24 Improvement of Insulation Characteristics of the P.S.C. Sleeper	Calculat	ion of the Optimum Rail Structure	181
the P.S.C. Sleeper 5-1 80 Hz AC Code Track Circuit System 5-2 Design of the Jointless A.F. Track Circuit 5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	Maintena	nce Work System in JR	193
5-1 80 Hz AC Code Track Circuit System	Improveme	ent of Insulation Characteristics of	
5-1 80 Hz AC Code Track Circuit System	the P.S.	C. Sleeper	199
5-2 Design of the Jointless A.F. Track Circuit			
5-3 Distinction Method between Train and Trolley Using the Axle Counter 5-4 Comparison of Continuous Speed Detection and Spot Speed Control Methods 5-5 Transponder 5-6 Solid-state Interlocking Device 5-7 Outline of Various Train Radio Systems in JR	80 Hz AC	Code Track Circuit System	200
the Axle Counter	Design o	f the Jointless A.F. Track Circuit	204
Comparison of Continuous Speed Detection and Spot Speed Control Methods	Distinct	ion Method between Train and Trolley Using	
Control Methods	the Axle	Counter	209
5-5 Transponder	Compariso	on of Continuous Speed Detection and Spot Speed	
5-6 Solid-state Interlocking Device	Control N	Methods	211
5-7 Outline of Various Train Radio Systems in JR	=		215
	Solid-sta	ate Interlocking Device	220
5-8 Classification and Allocation of the Existing Level	Outline o	of Various Train Radio Systems in JR	231
> 5 5-255121044104 data fillocation of the harberne never	Classific	cation and Allocation of the Existing Level	
Crossings between Ghaziabad and Kanpur	Crossing	s between Ghaziabad and Kanpur	233

5-10	Speed Indicator and Preliminary Speed Indicator	236
5-11	Format of Report on Defective Devices of Shinkansen	238
5-12-	-(1) Improvement of Signal Lamp	239
5-12-	(2) Digest of Standards for Signal Lamps	240
5-13	Outline of Automatic Inspection Car for Electrical Equipment	
	(for Shinkansen)	246
5-14	Electrical Equipment Maintenance Control by Shinkansen	
٠,	Management Information System (SMIS)	248
5-15	Portable Radio	253
5-16	AWS System in the World	254
5-17	Remote Monitoring System	255
5-18	Example of Signal Lens of Long Visibility	258
5-19	Relation between Turnout Number and Alignment of	
	Locking Devices in JR	259
5-20	Signalling System of the New Corridor	263
5-21	Telecommunication System of the New Corridor	266
-22	Typical Instruments for Repair and Maintenance of Signalling	
	Electronic Devices	268
-1	Countermeasures for Frequent Trippings of Feeder Circuit	· / . · ;
	Breakers at Substation	269
-2	Substation Supervisory Remote Control System	273
-3	Outline of AT Feeding Circuit and Connections of Substation,	
	Sectioning Post and Sub-sectioning Post	278
-4	Shunt Capacitor Equipment	282
-5	Series Capacitor Equipment	290
-6	Thyristor Control Reactor (TCR)	294
5-7	Distance Relay	4 303
5-8	Automatic Inspection Device for Substation Equipment	305
9.	Performance of Simple Catenary System	308
5-10	JR's Shinkansen OHE under AT Feeding System	313
-11	Outline of Computer Simulation Technique on OHE	
	Characteristics	314
5-12	Simulation Contents in Reference to OHE Characteristics	
	at the Speed of 160 km/h	318
5-13	Computer Simulation Made on Pantographs of Different Mass	•
	for Various OHE System (72 m Span)	330

6-14	Contact Loss	333
6-15	Outline of the Electric Inspection Car of JR	334
7-1	Presumed Investment to be Made in the 7th 5 Year Plan by 1990 on	
, _	the Section	337
7-2	Number of Rolling Stock to be Acquired	339
8-1	Economic Analysis for the Delhi - Kanpur Railway Project -	
	Case (A)	341
8-2	Financial Analysis for the Delhi - Kanpur Railway Project -	
	Case (A)	343
8-3	Economic Analysis for the Delhi - Kanpur Railway Project -	
	Case (B)	345
8-4	Financial Analysis for the Delhi - Kanpur Railway Project -	
	Case (B)	347
8-5	Economic Analysis for the Delhi - Kanpur Railway Project -	
	Case (C)	349
8-6	Financial Analysis for the Delhi - Kanpur Railway Project -	
	Case (C)	352
8-7	Increments of Railways Personnel by Kinds of Jobs	360
8-8	Economic Price of Fuel and Tire	361
9-1	Determination of Guidelines for the Study	362
10-1	Present Ground Facilities on the Delhi - Kanpur Section	381

1-1 Elasticity of Traffic Volume

Trend of Passenger Traffic

Year	Population (Million)	GNP (Crores.Rs.)	Passenger-km (Billion)	Average lead (km)	No. of passengers (Billion x α)
1950	360.950	17,469	106.9	68.8	1,554
1955	390.397	20,190	118.4	69.6	1,701
1960	430.575	23,802	164.3	72.1	2,279
1965	479.005	30,399	240.6	74.4	3,234
1968	512.318	31,590	303.0	77.5	4,125
1973	572.999	36,629	416.2	88.5	4,703
1977	626.586	43,076	565.5	87.1	6,493
1980	670.040	47,180	726.6	103.9	6,993
1981	685.185	50,824	869.9	107.8	8,069
1882	700.672	53,166	945.2	111.4	8,485
1983	716.507	54,084	969.3	121.3	7,991
1984	732.628	58,112	1,059.7	125.8	8,424

Source: Surface Transport and Year Book of Railway

1971 price

 $Ln(NP*\alpha) = -7.260 + 1.493*Ln (GNP) Y=0.9946$

NP: No. of Passengers

NP=C*GNP^1.493 Elasticity=1.493

C, a: Constant

Passenger-km includes the road traffic volume Average lead is the data of non-suburban traffic by rail. Y: Correlation coefficient

Trend of Freight Traffic

Year	Population (Million)	GNP (Crores.Rs.)	Freight Ton-km	Average lead (km)	Traffic volume (Billion*α)
1950	360.950	17,469	56.2	513.0	109.55
1955	390.397	20,190	70.1	541.0	129.57
1960	430.575	23,802	108.3	603.0	179.60
1965	479.005	30,399	147.4	611.0	241.24
1968	512.318	31,590	171.4	633.0	270.77
1973	572.999	36,629	211.8	675.0	313.78
1977	626.586	43,076	260.2	713.0	364.94
1980	670.040	47,180	295.0	754.0	391.25
1981	685.185	50,824	319.7	743.0	430.28
1882	700.672	53,166	357.2	733.0	487.31
1983	716.507	54,084	371.3	734.0	505.86
1984	732.628	58,112	386.5	730.0	529.45

Source: Surface Transport and Year Book of Railway

1971 price

 $Ln(\tau*\alpha) = -8062 + 1.3089*Ln (GNP) Y=0.992$

7: Freight-ton transported.

τ=C*GNP^1.3089 Elasticity=1.3089

C, a: Constant

The ton-km includes the road traffic volume. Average lead is the data by rail traffic. Y: Correlation coefficient

1-1 Continued

Year	GNP per Capita	No. of Trips per Capita
	(Rs)(1971 price)	(Billion/year*a)
1950	483.97	4.305
1955	517.17	4.357
1960	552.80	5.293
1965	634.63	6.751
1968	616.61	8.052
1973	639.25	8.208
1977	687.47	10.363
1980 704.14		10.436
1981 741.76		11.776
1982 758.79		12.110
1983	754.83	11.153
1984	793.20	11.498

LN (No. of Trips per Capita)=-13.134+2.352*LN (GNP per Capita) Y=0.9774

NP=NPo*(No. of Trips per Capita) =NpO*C*(GNP per Capita)^2.352

Elasticity=2.352

Y : Correlation coefficient

C, a : Constant

1-2 Passenger Transport Time and Fare between Each Zone

(1) Transport time data

Item	Access/ Egress time	Waiting time, Check-in time	Commercial speed
Mode	(min.)	(min.)	(km/h)
Railway	100	20	Before upgrading 65
	1.	·	After upgrading 70
		·	New Corridor 170/Max. 250
			115/Max. 160
Bus	100	20	40 km/h
Aircraft	90	60	500 km/h

(2) Passenger fare data

	Access/ Egress cost (Rs)	Travelling cost (Rs/km)
Railway	(Bus) 7.0	Conventional lines 0.11 Rs/km Long Distance Express 0.36 Rs/km New Corridor 0% up ∿ 100% up
Bus	(Bus) 7.0	0.09 Rs/km
Aircraft	(Taxi) 40	1.00 Rs/km

(3) Time value

1985 5.0 Rs/h 2000 7.5 Rs/h

Since the future growth of the passenger's time value is more important than its value itself in determining the modal split, the time value for business travelers accounting for a major portion of train passenger is adopted as the representative time value.

And it is assumed that the time value distribution will change little from the present pattern in the future and that growth of the its average value will be proportional to the increase of GDP per capita.

Rail Passenger OD Table at Year 2000 without Project (Passenger/day)

SONE		. 7	~	4	~	9	_	80	6	27	11	12	ž	7.5	ន	22	17	188	TOTAL
Na,	DELHÏ	B GHAZIABAD	ULANDSHAR FAI	RIDABAD	AL ICARH	MATHURA	AGRA	ETAH	ETAWAH	KAMPUR	LUCKNON	HADORI	BARE ILL	> <u>x</u>	HARYANA	ું 🛣	WADHYA AN	8 IHAR	!
1 DELHI		18,570	7,611	1,192	6,514	5,435	5,998	896	1,446	6,735	8,034	6,122	9,015	11,672	-	6,153	10,000	7,297	122,762
2 GHAZIABAD	0 18,570	0	1,564	1,484	894	458	641	63	151	235	3,606	1,217	2,440	2,321	G	932	1,464	1,803	36,163
3 BUL ANDSHAR	AR 7,611	1,564	0	1,842	1,711	858	1,556	3,2	169	484	721	488	999	869	1,641	433	8	955	25,462
4 FARIDABAD	261,111 6	1,484	1,842	0	362	949	843	19	8	342	766	265	755	362	0	568	1,662	918	23,492
5 AL ICARH		694	1,711	396	0	506,2	1,785	125	237	352	1,129	79.8	1,089	1,211	2,415	Į0	1,284	1,521	25,639
6 MATHURA	5,435	458	858	946	2,909	0	1,791	017	184	437	638	450	609	611	2,374	627	2,035	979	21,180
7 AGRA		641	1,556	649	1,785	1,791	0	873	780	1,692	972	77.6	1,074	1,316	5,733	1,493	5,030	1,323	33,697
8 ETAH	896	87	'n	63	125	740	873	0	ğ	474	519	419	414	286	166	294	573	674	7,280
9 ETAWAH	1,446	151	169	88	237	184	780	307	0	2,029	1,273	828	692	512	1,817	565	1,107	1,465	13,621
10 KANPUR	6,735	532	484	342	352	437	1,692	474	2,029	0	5, 762	2,934	2,136	1,284	4,056	1,214	2,632	14,349	47, 445
11 LUCKNOW	8,034		721	766	1,129	638	972	519	1,273	5,762	0	ø	Ó	0	0	۵	6	0	21,419
12 HADORI	6,122		488	585	96.	450	77.6	419	828	2,934	0	Ь	0	0	0	9	•	a	14,825
13 BARETLLY	9,015	2,440	099	755	1,089	608	1,074	414	692	2,136	<i>o</i>	Đ	0	Ö	0	٥		0	18,883
14 MEERUT	11,672	•	869	362	1,211	611	1,316	286	512	1,284		Đ	6)	0	G	0	0	0	21,043
15 HARYANA	0	0	1,641	0	2,415	2,374	5,737	38	1,817	4,056	0	6	0	0	a	o	0	3,309	22,340
16 RAJASTHAN	4 6,153	932	431	899	707	627	1,493	767	545	1,214	0	0	0	0	•	0	٥	Ö	12,957
17 HADHYA	10,000	1,464	825	1,662	1,284	2,035	5,030	573	1,107	2,632	0	Ð	0	0	0	O	0	0	26,613
18 BIHAR	7,297	1,803	955	918	1,521	979	1,323	674	1,465	14,349	0	0	0	0	3,309	0	Ċ	0	34, 594
TOYAL	122,762	36,163		23,492	25,639	21,180	53,687	7,280	13,621	47,445	21,419	14, 825	18, 683	21,043	22,340	12,957	26,613	34,594	526, 407

Rail Passenger OD Table at Year 2000 with Upgrading the Section (Max. 160 km/h, Fare OW up) (Passenger/day)

1																				
20NE	:	-	2	3	4	35	9	7	æ	6	01	17	12	ລ	14	15	31	17	18	TOTAL
Ž		DELHI		BULANDSHAR	AR	AL ICARH		ACRA	ETAH	ETAMAH	KANPUR	KONXON		BARE ILL	> -	HARYANA		A).HOXX	BIHAR	
:			CHAZIABAD	٥	Fartdabad	^	MATHURA			* *		-	HADORI	-	WEERUT		RAJASTHA	3		
~	DELHI	0	19,617	8,282	11,450	6,872	5,513	6,086	1,056	1,506	6,956	9,187	6,215	9,228	11,992	ö	6,251	10,082	7,952	127,242
2	CHAZIABAD	19,617	0	1,679	1,496	726	463	643	8	153	551	1,618	1,224	2,484	2,360	0	938	1,472	1,843	37,562
ň	BULANDSHAR	8,282	1,679	0	1,878		881	1,608	83	182	536	767	202	683	902	1,723	440	852	1,014	23,857
4	FARIDABAD	11,450	1,496	1,878	0		949	649	65	Ð,	346	166	593	756	596	Ö	568	1,662	923	23,817
ين	AL IGARH	6,872	927	1,846	996		2,950	1,830	133	252	383	1,178	63	1,108	1,249	2,529	11.7	1,312	1,588	25,62
9	HATHURA	5,513	463	891	546		0	1,791	144	190	462	653	450	609	613	2,374	627	2,035	1,002	21,405
~	AGRA	6,086	643	1,608	848		1,791	0	906	907	1,773	1,004	978	1,076	1,320	5,737	1,493	5,030	1,366	34,095
60	ETAH	1,056	76	8	8		144	906	Θ	328	524	556	428	424	305	1,084	Ŕ	265	720	7,750
6	ETAWAH	1,506	153	192	87		190	807	328	0	2,179	1,342	820	703	538	3,986	559	1,153	1,538	14,354
20	KANPUR	6,956	551	536	346		462	1,773	524	2,179	0	5,950	3,010	2,181	1,333	4,434	1,240	2,688	14,885	49,431
#	FINCKINGW	8,187	1,618	191	766		653	1,004	556	1,342	5,950	0	a	0	9	ø	o	0	0	22,020
12	HADORI	6,215	1,324	Š	593		450	978	429	950	3,010	0	O	0	0	0	6	0	0	15,051
13	BARE ILLY	9,228	2,484	683	756		609	1,076	424	703	2,181	တ	🖨	e ,	0	0	0	0	0	19,252
4	MEERIT	11,991	2,360	905	963		613	1,320	ğ	\$38	1, 333	0	0	0	0	0	0	0	٥	21,574
35	HARYANA	Ö	0	1,723	٥	2,529	2,374	5,737	1,084	7,986	4,434	a	a	0	0	Ċ	o	0	3,616	23,483
16	RAJAS THAN	6,251	938	8 4	568	711	627	1,493	Ŕ	859	1,240	0	O	0	0	0	0	0	ø	13,130
17	JHANSI	10,082	1,472	852	1,662	1,332	2,035	5,030	287	1,153	2,688	٥	0	0	0	0	0	¢	o	36,447
18	91148	7,951	1,843	1,014	923	1,588	1,002	1,366	720	1,538	14,885	0	0	0	0	3,616	0	0	-	36,447
	TOTAL	127,242	37,562	23,857	23,817	26,641	21,405	34,095	7,750	14,354	49,431	22,020	15,051	19,252	21,574	23,483	13,130	26,879	76,447	543,989

1-4 Future OD Table of Railway (2)

Rail Passenger OD Table at Year 2000 with New Corridor Construction and with Upgrading the Saction (Max. 250 km/h, Fare Of up) (Passenger/day)

19,617 8,1272 11,459 6,872 6,688 7,731 1,446 1,904 8,099 12,257 6,215 9,228 11,991 0 6,21 12,109 1,679 1,679 1,496 927 5,14 665 94 165 767 501 683 902 1,723 440 652 1,679 0 1,876 1,127 1,608 83 182 556 767 501 683 902 1,723 440 652 1,876 1,876 966 646 649 69 98 379 820 576 963 1,627 963 1,731 1,226 963 1,731 1,226 963 1,732 1,246 1,226 963 1,244 3,011 1,126 1,229 3,011 1,246 3,011 3,033 1,127 440 963 1,126 1,247 2,22 981 1,126 428 428 428 428 428 <th>No.</th> <th></th> <th>DELHI</th> <th>2 Bi GHAZIABAD</th> <th>3 BULANDSH O</th> <th>4 Faridaba</th> <th>5 AL TGARH D</th> <th>6 MATHURA</th> <th>7 AGRA</th> <th>8 ETAH</th> <th>9 ETAMAH</th> <th>10 KANPUR</th> <th>11 LUCKNOW</th> <th>12 HADORI</th> <th>13 BAREILI</th> <th>14 -Y HEERUT</th> <th>15 Haryana</th> <th>16 RAJASTHA</th> <th>17 MADHYA</th> <th>18 Bihar</th> <th>TOTAL</th>	No.		DELHI	2 Bi GHAZIABAD	3 BULANDSH O	4 Faridaba	5 AL TGARH D	6 MATHURA	7 AGRA	8 ETAH	9 ETAMAH	10 KANPUR	11 LUCKNOW	12 HADORI	13 BAREILI	14 -Y HEERUT	15 Haryana	16 RAJASTHA	17 MADHYA	18 Bihar	TOTAL
19,617	۱ ۳	DELHI	0	19,617	8,232		6,872	6,688	7,731	1,446	1,904	8,099	12,257	6,215	9,228	11,991	٥	6,251	12,109	15,139	145,278
Harror H	61	CHAZIABAD	19,617	٥	1,679		927	514	665	34	163	929	1,876	1,224	2,484	2,360	0	939	1,584	2,083	38,340
11,450 1,496 1,496 1,496 1,496 1,496 1,496 1,496 1,496 1,496 1,496 1,496 966 646 649 98 379 920 593 756 963 0 56 1,462 6,608 51 1,846 966 64 3,247 1,930 137 252 381 1,126 805 174 5,137 1,248 56 1,246 84 1,274 6 734 1,447 3,014 2,349 1,038 1,244 5,137 1,444 5,137 1,444 5,144	*	BULANDSHAR	8,282	1,679	9	1,878	1,845	1,127	1,608	83	182	536	167	<u>2</u>	683	805	1,723	440	652	1,014	24,103
6,812 927 1,846 966 0 3,247 1,830 137 252 383 1,178 805 1,108 1,249 2,529 711 1,512 6,688 514 1,127 646 3,247 1,634 226 355 981 1,126 506 754 652 2,774 6,713 1,714 5,737 1,446 37 1,446 37 1,446 37 1,447 5,737 1,447 5,737 1,447 5,737 1,447 5,737 1,446 37 1,448 3,737 1,448 3,737 1,448 3,737 1,448 3,737 1,448 3,737 1,448 3,737 1,447 3,737 1,447 3,737 1,448 3,737 1,448 3,737 1,448 3,737 1,448 3,737 1,448 3,737 1,448 3,737 1,448 3,737 1,448 3,737 1,448 3,737 1,448 3,737 1,448 3,737 1,448 3,7	4	FARIDABAD	11,450	1,496	1,878		396	949	649	69	86	379	920	593	756	963	0	999	1,662	866	23,990
6,608 514 1,127 646 3,247 0 2,234 226 355 981 1,126 506 754 652 2,374 627 2,128 7,731 665 1,608 649 1,807 22,34 0 904 1,447 349 1,038 1,277 1,474 5,177 1,474 5,177 1,444 5,177 1,444 367 1,444 3,101 2,144 367 1,464 367 1,444 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,448 3,101 1,449 3,101 1,449 3,101 1,449 3,101 1,449 3,101 1,449 3,101 1,449 3,101 <	٠,	AL IGARH	6,872	927	1,846		0	3,247	1,830	137	252	383	1,178	803	1,108	1,249	2,529	711	1,312	1,588	26,938
7,731 665 1,608 669 1,830 2,234 0 904 1,447 3,014 2,349 1,038 1,277 1,474 5,737 1,493 5,030 1,446 94 65 137 226 904 0 328 524 428 424 305 1,084 305 5,930 1,904 163 182 256 904 1,447 328 924 424 305 1,084 305 5,930 301 928 734 1,711 93 891 3,014 328 924 3,411 0 5,950 3,010 2,181 1,566 857 734 1,871 1,771	•	MATHURA	809'9	514	1,127		3 247	⇔	2,234	226	355	981	1,126	90 90	754	652	2,374	627	2,128	2,706	25,891
1,446 94 83 69 137 226 904 0 328 524 526 428 424 305 1,034 303 591 1,904 163 182 96 252 355 1,447 328 0 3,471 2,813 1,146 897 734 2,854 781 1,771 8 0.99 635 536 379 383 981 3,014 524 3,471 0 5,950 3,010 2,181 1,585 6,558 1,479 2,688 12,127 1,834 632 1,176 1,126 2,349 556 2,813 5,950 0 0 0 0 0 0 1,244 683 756 1,108 754 1,277 424 877 2,181 0 0 0 0 0 0 0 0 1,1991 2,360 902 963 1,249 6,52 1,474 305 734 1,585 0 0 0 0 0 0 0 1,723 0 2,529 2,774 5,777 1,084 2,854 6,558 0 0 0 0 0 0 0 1,514 9,928 1,014 9,98 1,588 1,706 2,177 2,128 2,949 1,711 2,188 0 0 0 0 0 0 0 15,139 1,534 9,91 1,784 1,785 2,177 2,128 2,177 2,121 2	7	AGRA	7,731	\$98	1,608		1 830	2 234	6	904	1,447	3,014	2,349	1,038	1,277	1,474	5,737	1,493	5,030	2,877	41,356
1,904 163 182 98 252 355 1,447 328 0 3,471 2,813 1,166 857 734 2,854 781 1,771 8,099 635 536 379 383 981 3,014 524 3,471 0 5,950 3,010 2,181 1,585 6,558 1,479 2,688 12,257 1,844 581 561 593 803 566 1,038 424 875 2,181 0 0 0 0 0 0 0 1,728 2,484 683 756 1,108 754 1,274 305 734 1,585 0 0 0 0 0 0 0 1,191 2,360 902 963 1,449 552 1,474 305 734 1,585 0 0 0 0 0 0 0 1,723 440 563 711 627 1,435 307 731 1,479 0 0 0 0 0 0 0 1,513 2,083 1,014 998 1,588 1,706 2,177 2,128 3,170 2,951 1,711 2,188 3,400 24,103 23,991 24,105 24,105 2,174 2,178 2,	80	ETAH	1,446	98	83		137	226	904	0	328	524	956	428	424	303	1,084	303	591	22	8,222
8,099 636 536 536 379 383 981 3,014 524 3,471 0 5,950 3,010 2,181 1,585 6,558 1,479 2,688 12,257 1,876 767 820 1,176 1,126 2,349 556 2,813 5,950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	σ.	ELAWAH	1,904	163	182	98	252	355	1,447	328	0	3,471	2,813	1,166	. 857	734	2,854	781	1,771	2,591	21,768
N	9	KANPUR	8,099	636	536	379	383	981	3,014	524	3,471	0	5,950	3,010	2,181	1,585	6,558	1,479	2,688	14,885	56,356
LY 9,228 2,484 683 756 1,108 754 1,277 424 957 2,181 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ī	LUCKNOW	12,257	1,876	767	820	1,176	1,126	2,349	556	2,813	5,950	Ö	0	0	0	0	0	0	0	29,691
L1Y 9,228 2,484 683 756 1,108 754 1,277 424 957 2,181 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	77	HADORI	6,215	1,224	501	593	803	506	1,038	428	1,166	3,010	0	0	c	0	Ö	0	0	0	15,484
11,991 2,360 902 963 1,249 652 1,474 305 734 1,585 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	BARE ILLY	9,228	2,484	683	756	1,108	754	1,277	424	857	2,101	0	0	0	0	o	0	0	0	19,751
N	71	XEERUT	11,991	2,360	902	963	1,249	652	1,474	36	77.	1,585	0	÷	0	0	0		0	0	22,215
HAN 6,251 939 440 568 711 627 1,493 303 781 1,479 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	HARYANA		0	1,723	0	2,529	2,374	5,737	1,084	2,854	6,558	0	0	0	0	0	0	0	13,131	35,991
12,109 1,584 852 1,662 1,312 2,128 5,030 591 1,712 2,688 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16	RAJASTHAN	6,251	939	440	569	711	62.7	1.493	X0X	781	1,479	0	C	0	0	0	0	¢	9	13,591
15,135 2,083 1,014 998 1,588 1,706 2,877 720 2,591 14,865 0 0 0 0 13,151 0 0 0 0 14,151 14,151 14,151 14,151 14,151 15,484 19,751 22,215 55,991 13,591 29,728	13	MADHYA	12, 109	1,584	852	1,662	1,312	2,128	5,030	591	1,771	2,688	6	0	٥	0	٥	Ö	0	6	29,726
145,278 36,340 24,103 23,990 26,938 25,891 41,356 8,222 21,768 56,358 29,691 15,484 19,751 22,215 35,991 13,591 29,728	38	BIHAR	15,139	2,083	1014	866	1,588	1 706	2, 877	720	2,591	14,885	0	0	0	0	13,131	c	0	0	56,734
		TOTAL	145,278	38,340	24,103	23,990	26,938	25, 891	41,356	8,222	21,768	56,358	29,691	15,484	19,751	22,215	35,991	13,591	29,728	56,734	635,428

Rail Passenger OD Table at Year 2000 with New Corridor Construction and Upgrading the Section (Max. 250 km/h, Fare 25% up) (Passenger/day)

ZONE	٠.	7	8	m	4	ı۸	ø	^	ထ	6	Q	נו	11	13	14	23	16	17	18	TOTAL
No.		DELHI	~	BULANDSH		AL IGARH		AGRA	ETAH	ETAWAH	KANPUR	LUCKNO	_	BARE ILL	٠,	HARYAN	_	MADHYA	BIHAR	
			GHAZIABA	٥	FARIDABA	۵	MATHURA			-			HADORI		MEERUT		RAJASTHA	3	•	
7	OELHI	0	19,617	8,262	11,450	6,872	6,279	7,153	1,194	1,833	7,855	11,307	6,215	9,228	11,991	0	6,251	11,395	12,582	139,502
2 GH	4ZIABAD	19,617	0	1,679	1,496	927	491	929	94	159	598	1,763	1,224	2,484	2,360	0	938	1,550	1,982	38,618
Z BU	BULANDSHAR	3,282	1,679	0	1,878	1,846	1,050	1,608	93	182	536	767	501	683	305	1,723	440	852	1,014	24,026
4 FA	? IDABAD	11,450	3,496	1,878	0	986	949	649	69	37	365	8	263	756	696	0	568	1,662	962	23,917
5 AL.	TCARH	6,872	927	1,846	996	C	3,115	1,830	137	252	363	1,178	803	1,108	1,249	2,529	77.1	1,312	1,588	26,805
6 MA	THURA	6,279	491	1,050	949	3,115	Ó	2,078	210	335	880	1,076	487	721	613	2,374	627	2,100	3,596	24,708
7 AGF	25	7,153	959	1,608	649	1,830	2,078	6	904	1,360	2,747	2,105	1,028	1,240	1,320	5,737	1,493	5,030	2,509	39,446
8 ETA	3	1,194	96	8	69	137	210	904	0	328	524	955	428	424	365	1,084	ð	291	52.7	7,955
9 ET	WAH	1,833	159	182	7.	252	335	1,360	328	0	3,117	2,520	1,136	835	609	1,986	736	2,648	2,307	19,437
10 KA	PUR	7,855	865	536	365	383	880	2,747	524	3,117	ø	5,950	3,010	2,181	1,370	4,434	1,411	2,688	14,885	52,932
11 LUC	KONX:	11,307	1,763	191	801	1,178	1,076	2,105	556	2,520	5,950	0	0	a	6	¢	0	0	t 3	28,020
12 HAC	HADORI	6,215	1,224	501	593	803	487	1,028	428	1,136	3,010	.	0	පා	0	0	0	0	ဝ	15,425
13 8AS	EILLY	9,228	2,484	683	756	1,108	751	1,240	424	635	2,181	a	0	c	6	0	0	0	0	19,689
14 MEE	.ROT	11,991	2,360	905	963	1,249	613	1,320	ģ	609	1,370	0	0	ප	0	O	ø	O	ø	21,683
15 HAS	YANA	0	0	1,723	0	2,529	2,374	5,737	1,084	1,986	4.434	0	0	0	0	0	0	0	9,131	28,999
16 RA.	JASTHAN	6,251	938	440	89€	111	627	1,493	303	736	1,411	0	Đ	0	a	0	0	0	0	13,478
17 MA	HADHYA	11,395	1,550	852	1,662	1,312	2,100	5,030	591	1,648	2,688	0	0	0	0	0	0	O	0	28, 330
18 81	3 IHAR	12,582	1,982	1,014	962	1,588	1,596	2,509	720	2,307	14,885	0	0	0	0	9,131	0	D	9	49,277
_	TOTAL	139,502	38,018	24,026	23,917	26,805	24,708	39,446	7,955	19,437	52,932	28,020	15,425	19,689	21,683	28,999	13,478	28,830	49,277	602,150

1-5 Future OD Table of Railway (3)

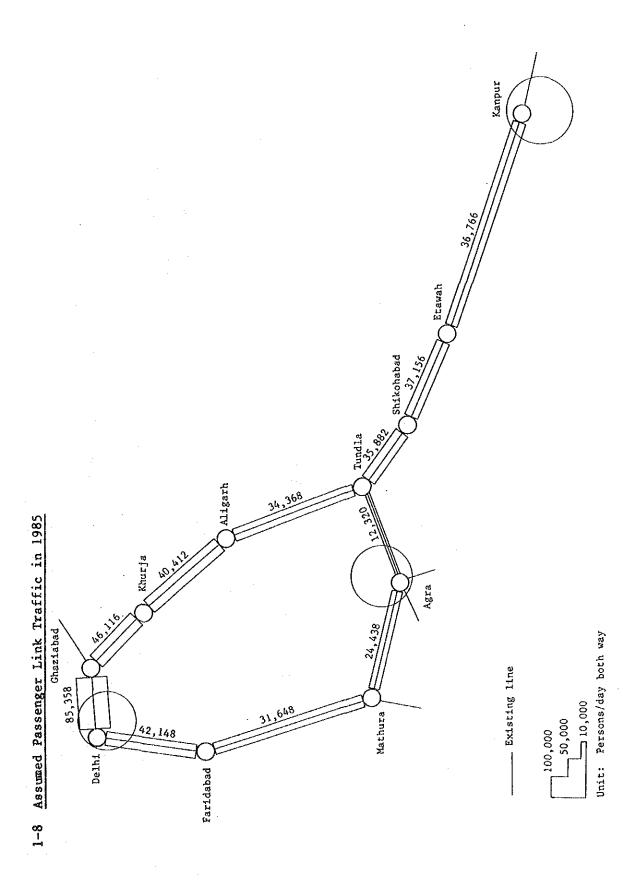
Rail Pessenger OD Table at Year 2000 with New Corridor Construction and Upgrading the Sention (Max. 250 km/h, Fare 50% up) (Passenger/day)

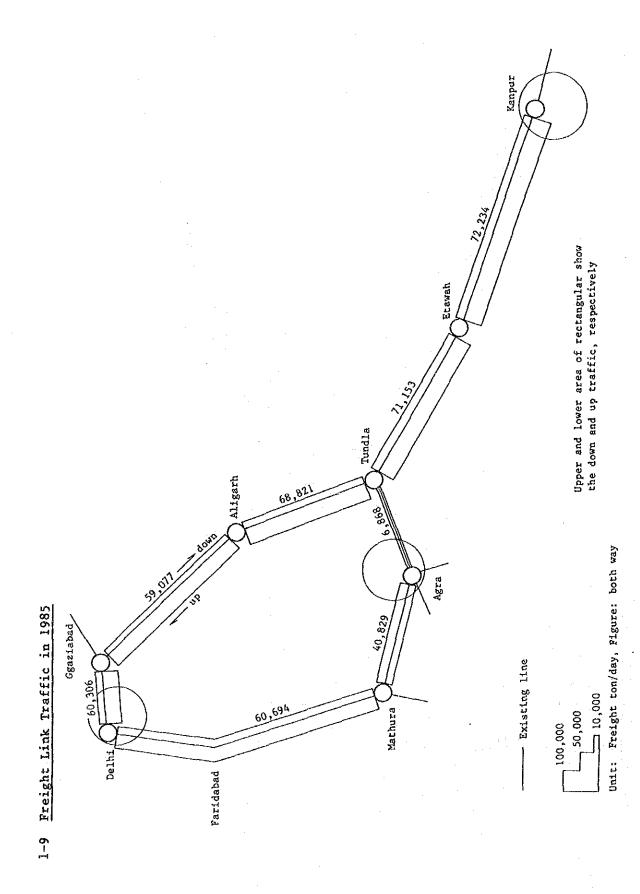
ZONE.) OCCHI	81	BULANDS	4	S AL IGARH	9	7 AGRA	S ETAH	9 ETAWAH	10 XANPUR	11 LUCKNOW	23	13 BARE ILI	\$1 ×	15 HARYAMA		17 NADHYA	18 9 I HAR	TDTAL
			GHAZIABAD	9	FARIDAB	QV	MATHURA				ļ		HADORI		MEERUT		RAJASTHA	AK.		
-	OELHI	6	19,617	8,282	11,450		5,804	6,443	1,056	1,714	7,347	9,505	6,215	9,228	11,991	0	6,251	10,667	9,540	131,980
8	GHAZIABAD	19,617		1,679	1,496	927	\$9	643	34	153	551	1,618	1,224	2,484	2,360	0	938	1,502	1,863	37,592
*	BULANDSHAR		1,679				596	1,608	63	182	536	767	5	683	902	1,723	740	852	1,104	23,939
4	FARIDABAD	11,450	1,496	1,878			909	649	69	. 63	346	766	593	756	963	0	568	1,662	923	23,817
۸,	ALIGARH		927	1,846		ප	2,953	1,830	75.	252	383	1,178	8	1, 108	1,249	2,529	7:1	1,312	1,588	26,544
40	MATHURA	5,804	454	963		2,953	0	1,929	195	311	740	993	456	747	613	2,374	627	2,071	1,427	23,314
۲.	ACRA	6,443	643	1,608		1,830	1,929	ø	904	1,263	2,396	1,795	1,012	1,191	1,320	5,737	1,493	5,030	2,070	37,312
. 0	ETAH	1,056	94	8	-	137	195	304	0	328	524	556	428	424	303	1,084	30	591	720	7,801
ç	ETAWAH	1, 114	153	182		252	3:1	1,263	328	0	2,749	2,216	1,100	96/	536	1,986	989	1,535	2,917	17,893
92	KANPUR	7,347	551	536	346	383	740	2,396	\$24	2,749	2	5,950	3,010	2,181	1,333	4,434	1,312	2,588	14,885	51,363
=	LUCKNOW	9,505	1,618	767	766	1,178	566	1,795	256	2,216	5,950		D	0	0	Θ.	0	9	0	15,74
21	HADORI	6,215		ğ	593	8	456	1,012	428	1,100	3,010	.	0	•		0	8	0	O	15,341
7	BAREILLY	9,228	2,484	683	756	1,108	747	161,1	424	366	2,181	.0		Ω	0	÷	0	0	0	19, 597
*	MEERUT	11,991		902	963	1,249	623	1,320	36	538	1,333	0	•	0	<u>-</u>	6	0	0	0	21,574
ń	HARYANA	0		1,723		2,529	2,347	5,737	1,084	1,986	4,434	0	0	0	0	0	0	O	5,235	25, 102
76	RAJASTHAN	6,251	938	440	568		627	1,493	, 0	989	1,312	0	0		0	0	0	0	0	13, 329
17	MADHYA	10,667	1,502	852	1,662		2,071	\$,030	591	1,515	2,688	0	Ď	:	0	0	0	O	0	27,892
18	BIHAR	9,540	1,843	1,014			1,427	2,070	720	2,017	14,885	0	0	•	0	5,235	C	0	0	41,262
١.	TOTAL	131,980	37,592	23,939	23,817	7	23,314	37,312	7,801	17,893	51,363	25,344	15, 341	165'67	21,574	25,102	13,329	27,892	41,262	571,098

Rell Passanger 00 fable at Year 2000 with New Corridor Construction and with Upgrading the Section (Max. 250 bm/h, Fare 75% up) (Passanger/day)

30%		м	2	n	∢.	٧	9	7	60	•	or	11	12	13	14	n	91.	17	18	TOTAL
č		DEL H.I	8 GHAZIABAD	ULANDSH	' Faridabad	AL IGARH	MATHURA	AGRA	ETAH	ETAWAH	KANPUR	LUCKNOW	_ =	BARE ILL	Y MEERUT	HARYANA	RAJASTHAY	MADHYA	B IHAR	
-	IK130	0	19,617	8,282	11,450	6,872	5,513	6,086	1,056	1,530	6,956	8,187	6,215	9,228	11.991	0	6.251	10,323	8.072	127.627
r.	GHAZIABAD	19,617	0	1,679	1,496	927	463	643	94	153	551	1,618	1,224	2,484	2,360	.0	938	1,472	1,843	37,562
m	BULANDSHAR	8,282	1,679		1,878	1,846	881	1,608	83	182	536	767	501	583	-206	1,723	440	852	1,014	23,857
4	FARIDABAD	11,450	1,496	1,679	0	996	646	649	69	8	345	766	593	756	963	0	568	1,662	923	23,817
Ś	AL IGARH	6, 872	927	1,846	996	0	2,950	1,830	5	252	363	1,178	89	1,108	1,249	2,529	111	1,312	3,588	26,641
•	MATHURA	5, 513	€99	981	949	2,950	0	1,791	181	282	574	872	450	742	613	2,374	627	2 039	1, 197	22,196
~	AGRA	6,086	649	1,608	649	1,830	1,791	0	904	1,160	1,976	1,443	986	1,124	1,320	5,737	1,493	5 930	1,605	35,385
æ	ETAG	3,056	36	8	69	137	181	906	<u>-</u>	328	524	556	428	424	305	1,084	303	593	720	7,787
Φ.	ETAWAH	1,530	153	182	87	252	. 282	1,160	328	0	2,380	1,914	1,055	734	538	1,986	632	1,375	1,730	16,318
2	KANPUR	956'9	553	536	346	383	574	1,976	524	2,380	•	5,950	3,010	2,181	1,333	4.434	1,240	2,688	14, 885	49,946
7	LUCKNOW	8,187	1,618	767	766	1,178	872	1,443	556	1,914	5,950	0	-	o	Đ	O	ø	a	G	23,250
17	HADORI	6,215	1,224	S	593	903	450	986	428	1,055	3,010	0	a	0	0	о	0	0		15,264
£	BAREJULY	9,228	2,484	683	756	1,108	742	1,124	424	7,	2,181	Ö	ca.	•	C		ø	O	ø	19,462
14	MEERUT	13,991	2,360	902	296	1,249	613	1,320	305	538	1,333	0	•	0	0	•	0	0	0	27,574
2	HARYANA	Ö	O.	1,723	0	2,529	2,374	5,737	1,084	1,986	4,434	٥	0	•	0	0	္	0	3,616	23,483
16	RAJASTHAN	6,251	938	440	895	117	627	1,493	363	632	1,240	a	0	G	D	0	O	0	a	13,203
7	MADHYA	10, 323	1, 472	952	1,662	1,312	2,039	6,030	69	1,375	2,688	0	0	6		6	a	0	Ω	27, 347
18	BIHAR	8 072	1, 963	1,014	923	1,588	1,197	1,605	720	1,730	14,385	O	a	0	c	3,616	0	0	0	37,193
	TOTAL	127,627	57,562	23,857	23,817	26,641	22,196	35,385	7 787	16,318	956,64	23,250	15,264	19,462	21,574	23,483	13, 203	27, 347	37, 193	551,912

TOTAL 17 18 MADHYA BIHAR 8,072 1,843 1,014 923 1,588 1,002 1,366 1,366 1,536 1,536 10,323 1,472 852 1,662 1,312 2,035 5,030 5,030 1,232 2,688 RAJASTHAN 6,251 938 940 568 711 627 1,497 303 575 Real Pessonger DD Table at Year 2000 with New Coridor Construction and with Upgrading the Section (Max. 250 km/h, Fare 100% up) (Fassenger/day) 16 15 HARYANA 0 1,723 0 2,529 2,374 5,737 1,084 1,986 4,434 13 14 BAREILLY MEERUT 11,991 2,360 902 902 965 1,249 613 1,720 705 705 705 1,730 1,730 9,228 2,484 683 756 1,108 7,34 1,076 424 703 2,181 6,215 1,224 501 593 803 450 978 428 1,002 3,010 HADORI 12 9 10 11 ETAWAH KANPUR LUCKNOW 8,187 1,618 767 766 1,178 1,090 1,613 5,650 6,956 551 536 746 746 747 777 1,773 7,010 1,506 157 182 252 252 250 1,051 1,621 1,623 1,002 1,00 ETAH. 7 AGRA 64,086 643 1,608 649 1,930 1,731 1,090 1,076 1,0 ALIGARH 2,846 1,846 1,846 1,846 1,176 1,178 1,178 1,178 1,178 1,178 1,178 1,249 1,529 1,1249 1,529 1,1388 1,1388 1,1388 1,1388 1,1388 FARIDABAD 568 1,662 923 23,817 4 BULANDSH GHAZIABAD F 8,282 1,679 0 1,846 1,846 1,846 1,608 1,608 1,002 1,727 1,72 19, 617 0 1, 679 1, 496 927 643 94 1, 518 1, 618 2, 484 2, 560 ~ 19,617 9,282 11,450 6,872 5,513 6,086 1,066 1,506 6,956 6,956 8,187 6,215 9,228 11,991 DELHI 2 GHAZIABAD 3 BULANDSHAR 4 FARIDABAD 5 ALIGARH 6 HATHURA 7 AGRA 9 ETAMH 10 KANPUR 11 LUCKNON 12 HADORI 13 BAREILLY 14 MERUT 15 HARYMA 16 RAJASTHAN 17 NADHYA ZONE No.


1-7 OD Table of Railway


Rall Freight OD Table at Year 1985 (ton/day)

			,				\ ,	1			,		:	:	:	
CON E		DELHI	2 AL IGARH	KATHURA	AGRA	ETAH	KANPUR	LUCKNOW	SHAJAHANPUR	Y HORADABAD	MEERUT	HARAYANA	RAJASTKAN	HADHYA PRADE	SIHAR BIHAR	450
-	DELHI	6 ~	83	"	91	7	E	22	21	14	8	443	187	1,433	869	3,148
64	ALIGARH	25	97	-	11	n	105	23	0	4	Oĭ	83	136	786	267	1,473
m	HATHURA	1,143	74	0	89	Μ.	323	723	18	468	269	4,164	653	1,672	1,072	10,463
₫	AGRA	•	~	2	0	~	77	92	7	01	74	717	ጽ	223	160	888
'n	ETAH	Ħ	~	0	11	0	44	14	-4	88	11	23	63	392	417	1,089
49	XANPUR	747	151	4	2	8	ξť	403	77	524	386	545	21	277	1,125	3,974
۲	LUCKNOW	98	묫	2	20	n	19	0	0	0	ø	O	0	0	6	218
Ó	SHADAHANPU	•	5	~	20	7	226	o	6	0	0	0	0		0	279
ō,	MORADABAD	ķ	~	r	11	15	185	0	0	6	Ċ	O	O	0	0	259
2	MEERUT	721	₹	*	78	102	118	0	0	6	0	Ö	0	0	0	709
=	HARYANA	6,257	·	99	577	8	379	6	6 5	0		Ö	3,282	12,544	14,763	38,708
12	RAJASTHAN	2,526		65	557	33	793	D	0	.	0	11,157	0	0	0	15,381
~	MADHYA	5,723	1,311	151	1,018	621	1,761	0	6	0	0	16,272	cs.	0		26,364
4	BIHAR	14,287	7,646	128	1,621	277	4,900	9	ø	0	0	26,197	0	0	0	55,056
	TOTAL	X, 801	10,402	948	4,070	718	9,002	778	113	2,107	1,142	59,200	4,378	17,027	18,802	157,988

Rail Freight OD Table at Year 2000 (ton/day)

1 2 3 3 4 5 6 7 8 9 10 11 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	ł																
OCLHI ALIGARRH MATHURA GTRA KANPUR LUCKNOM SHAJAHANPUR HORADASAO HEERUT HARAYANA RAJASTHAN HADHYA 30 256 7 6 249 201 56 1 10,31 531 4,042 95 40 2 0 8 309 56 1 1007 1,294 10,547 1,561 354 1,254 3,231 196 6 2 9 56 1 1007 1,294 10,547 1,561 354 1,254 354 1,254 357 1,254 357 4,042 377 1,254 1,564 357 1,564 357 4,042 377 1,564 357 1,564 357 4,042 377 1,564 357 1,564 357 4,042 377 1,564 357 1,564 357 4,042 377 1,564 357 1,564 357 4,042 377 1,564 377			-	. 7	~		ا	, V9	^	8	.	유	17	12	13	3,4	
30 256 7 45 6 249 201 56 36 10 25 228 354 1,564 95 40 2 30 8 309 56 1 10 25 228 354 1,524 1,231 196 0 16 13 39 56 1 10 25 228 354 1,524 16 1 16 0 11 37 59 5 21 1,524 10,547 1,564 3,974 16 1 1 37 59 5 21 1,524 10,547 1,564 3,974 1,111 4 0 11 37 59 5 21 159 60 10 0	- 1	ZONE	OCCHI		MATHURA		ETA	KANPUR	LUCKNOW	SHAJAHANPUR	MORADASAD	HEERUT	HARAYANA	RAJASTHAN	MADHYA	BIHAR	TOTAL
95 40 2 30 8 309 56 1 10 25 224 354 1,254 3,231 196 0 165 8 801 534 1,254 10,547 1,561 3,794 16 1 165 8 801 534 1,254 1,274 10,544 1,561 3,794 1,111 451 10 135 13 57 1,070 1,678 995 1,564 57 794 257 77 12 44 7 1,53 0	-	DELHI	R	256	1-	65	vo	249	102	. %	3,6	242	1,331	531	4,042	1,924	8,955
3,231 196 0 167 881 534 40 1,007 1,294 10,547 1,561 3,974 18 1 6 0 11 33 59 5 21 169 804 72 530 1,111 45 0 123 34 12 46 77 1,030 185 1,278 995 1,564 57 744 257 73 13 57 1,030 185 1,278 995 1,564 57 744 257 73 15 10 0 <td< td=""><td>~</td><td>AL ICARH</td><td>56</td><td>97</td><td>2</td><td>æ</td><td>හ</td><td>808</td><td>35</td><td></td><td>or</td><td>25</td><td>82Z</td><td>354</td><td>1,254</td><td>1,429</td><td>3,838</td></td<>	~	AL ICARH	56	97	2	æ	හ	808	35		or	25	82Z	354	1,254	1,429	3,838
16 1 6 0 11 33 59 5 21 169 804 72 530 131 3 4 43 0 123 31 134 28 61 167 552 1,111 451 10 135 0 10 0	13	HATHURA	3,231	961	ø	163	ற	188	534		1,007	1,294	10,547	1,561	3,974	2,490	25,928
1,111 451 10 136 135 31 1,100 185 1,278 995 1,564 57 744 752 1,000 185 1,278 995 1,564 57 744 745	4	AGRA	36	~	9	0	Ξ	'n	\$		21	169	804	7.2	530	373	2,102
1,111 451 10 138 139 57 1,030 185 1,578 995 1,564 57 744 257 73 12 44 7 155 0	S	ETAH	33	^	0	43	O	123	*	~	194	28	19	167	952	066	2,625
257 77 12 44 7 155 0<	φ	KANPUR	1,111	451	2	138	139	27	1,030		1,278	566	1,564	57	46	2,960	10,719
24 11 12 46 30 572 0<	~	FUCKNOW	257	7,	12	44	,	155	0		0	Đ	0	0	0	Ö	946
94 14 7 40 36 499 0 </td <td>60</td> <td>SHAJAHANPU</td> <td>24</td> <td>11</td> <td>17</td> <td>46</td> <td>尺</td> <td>572</td> <td>0</td> <td>0</td> <td></td> <td>O</td> <td>Ģ</td> <td>0</td> <td>0</td> <td>6</td> <td>694</td>	60	SHAJAHANPU	24	11	17	46	尺	572	0	0		O	Ģ	0	0	6	694
848 185 34 175 234 301 0 <t< td=""><td>ø.</td><td>MORADABAD</td><td>8</td><td>14</td><td></td><td>40</td><td>×</td><td>499</td><td>0</td><td>0</td><td>c</td><td>0</td><td>0</td><td>9</td><td>٥</td><td>6</td><td>691</td></t<>	ø.	MORADABAD	8	14		40	×	499	0	0	c	0	0	9	٥	6	691
18,492 2,103 164 1,456 204 1,081 0 0 0 0 0 0 8,194 31,148 1,121 669 1,59 87 2,200 0 0 0 0 0 8,194 31,148 1,148 1,148 1,149 1,149 1,081 1,081 1,081 1,081 1,081 1,081 1,081 1,081 1,081 1,081 1,081 1,081 1,081 1,081 1,081 1,081 1,081 1,912 1,9	O	MERRIT	848		74	175	234	70°	0	O	0	0	6	0		0	1,776
NA 7,271 669 158 1,369 87 2,200 0 0 0 28,762 0 0 16,038 3,437 357 2,434 313 4,758 0 </td <td>~</td> <td>HARYANA</td> <td>18,492</td> <td></td> <td>164</td> <td>1,456</td> <td>204</td> <td>1,081</td> <td>0</td> <td>0</td> <td>o</td> <td>0</td> <td>co</td> <td>B, 194</td> <td>31,148</td> <td>35,830</td> <td>98,674</td>	~	HARYANA	18,492		164	1,456	204	1,081	0	0	o	0	co	B, 194	31,148	35,830	98,674
16,038 3,437 357 2,434 313 4,758 0 0 0 0 0 40,834 0 0 0 0 3,53,441 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N	RAJASTHAN	7,271		158	1,369	87	2,200	0	c	6	5	29,762	0	0	0	40,517
36,556 19,347 292 3,742 648 12,779 0 0 0 0 65,441 0	\sim	MADHYA	16,038		357	2,434	313	4,758	10	0	0	D	40,834	c	6	O	68,172
86,177 26,789 1,060 9,724 1,731 23,998 1,912 287 2,544 2,754 147,572 10,935 42,644	43	BIHAR	38,636		192	3,742	648	12,779	6	0	0	0	63,441	0	0	C	138,885
	ı	TOTAL	86,177	26,789	1,060	9,724	1,731	23,998	1,912	287	2,544	2,754	147,572	10,935	42,644	45,995	404,123

1-10 Current Transport Volume at Each Station (Delhi-Kanpur)

Station	Passenger	transport			r=-	Frei	ght transport		No. of the second	-2272212
	No. of board	ing passengers	Tonnage	coming-in	Tonnage	going-out	No. of vagons	coming-in	No. of wagons	going-ou 1985
Fiscal year	1984	1985	1984	1985	1984	1985	1984	1985	1304	1903
Delhi	36,421	33,822			16				0.2	
New Delhi	41,234	40,484	6,400	6,567	1,073	.975	260	260	72	68
Delhi Shahadara	14,484	14,023	28	33	6	12	2	2	0.7	0.
Sahibabad	3,721	4,017	242	171	158	187	12	10	ļ <u>2</u>	2
Ghaziabad	18,282	19,190	2,203	2,810	2,097	3,163	101	103	9	10
Chipayana Brurg	•••			i						i
Maripat Dadri	4,040	801 3,613	32	31,		1	2	2	0,2	0.
Boraki Halt	194	185			<u> </u>					
Ajaibpur	649	623		 		1				
Dankaur	4,123	4,338	9	10	108	127	0.8	0.6	5	7
Wair	494	390								
Chola	650	548								
Sikandarpur	184	218		ļ	 				<u></u>	
Khurja	2,276	2,075	3	2	86	139	0.1	0.2	4	6
Kamalpur Halt	125	128					ļ			
Danvar	297	423		 	├──	 	!		 	ļ
Somna	889 279	638		 		· · · · · ·				
Kulwa Hehrawal	55	42		· · · · · · · · · · · · · · · · · · ·						
Aligera	11,487	12,751	666	430	174	197	23	24	8	9
Daud Khan	158	178		1				3		
Mandrak	661	761								
Sashi	569	638	1	1	3	3	. 0.1	0.1	0.4	0.
Hathras	1,624	1,727	142	55	93	106	6	5	44	5
Pora	690	347			<u> </u>					
Jalesar	851	937				<u> </u>			 	
Chamorola	267	262			_					
Barhan	629 175	603 162	<u> </u>	 	<u> </u>	 				
Mitavali Tundla	2,948	3,547	13	18	16	14	0.6	2	1	ı
Hirangaon	365	319			·					T
Pirozabad	1,687	2,046			7	12			1	1
Hakkhanpur.	351	280	11	11	156	35	5	0.5	7	2
Shikohabad	1,883	2,111								
Kaurara	215	227								
Bhadan	357	427		ļ	ļ	ļ		, <u>.</u>		
Barlai	266	267 409	-		28	27	0.4	0.2		1
Jasvant	361 54	60	<u>'</u>	4	10	21	V.4	0.4	}	1
Sarai Bhupat Etavah	3,732	4,235	76	86	198	129	6	5	7	6
Ekdil	208	230		1	}		l			<u> </u>
-Bharthana	1,552	1,648	10	5	88	37	0.5	0.3	2	1
Samhon '	243	285		 	l		1			
Achalda	1,353	1,354	2	1	5	6	0.1	0.1	0.3	0.
Pata	252	298								
Phaphund	2,233	2,217	7	6	59	74	0.4	0.5	3	4_
Kanchausi	449	432		ļ		ļ	<u> </u>	ļ	ļ	
Jhinjhek	1,593 454	1,670	<u> </u>	 	 	ļ		 	 	
Ambiapur Rura	1,440	1.394	4	5	2	2	0.2	0.2	0.1	0.
Roshan Hau Halt	100	131		1	-		· · · · · · · · · · · · · · · · · · ·	V. 2	†	T
Haitha	541	560	·	 		 			ļ	1
Bhaupur	652	529	<u> </u>	 	 	<u> </u>		i	l	
Panki	361	366	4,163	2,918	2,019	2,160	145	131	95	98
Covindpuri	1,119	1,243		1						
Juhi Yard					l	T				1
Kanpur Central		*1 2,781			*2 27	±2 17			2	1
Total	171,071	173,664	14,019	13,164	6,423	7,423	565.2	546.7	224.9	. 223

^{*1 :} Upper class passegers between Delhi and Kanpur *2 : Freight traffic volume between Delhi and Kanpur

1-10 Current Transport Volume at Each Station (Faridabad - Agra Cant)

Station	Passenger transport
	No. of boarding passenger
Fiscal year	1986
Faridabad	2,848
Fardabad N.T.	2,434
Ballab Garh	1,861
Bad	44
Mathura	3,123
Bhteshwar	682
Vrindaban Road	213
Ajhai	1,361
Chatta	231
Kosi	952
Hodal	281
Sholak	172
Rundí	322
Palwal	2,059
Asaoti	592
Frah	62
Kitam	63
Runkta	55
Blochpura	62
Agra City	708
Rajaki Mandi	1,985
Agra Cant	6,744
Total	26,853

2-1 Train Diagram Pattern (New Corridor)

Train Number Ratio between

DLI-AGC and AGC-CNB Sections

	DLI ~ A	GC ∿ CNB
S. Express 250 km/h	2	2
L. Express	2	ì
160 km/h		

$$N = \frac{H \times 60 \times f}{h} \times A$$

$$= \frac{(24-4) \times 60 \times 0.8}{50} \times 4$$

$$= 77 \rightarrow 80$$

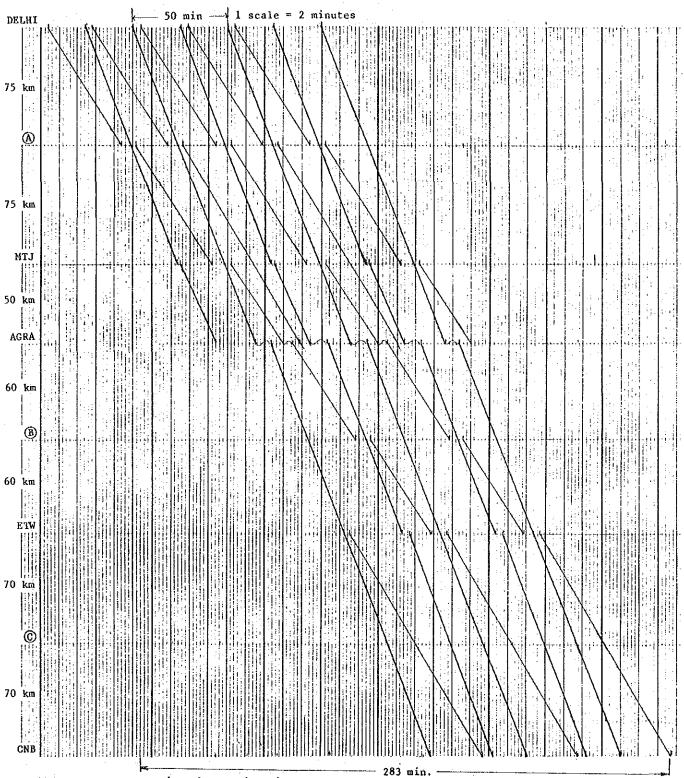
N = Track capacity

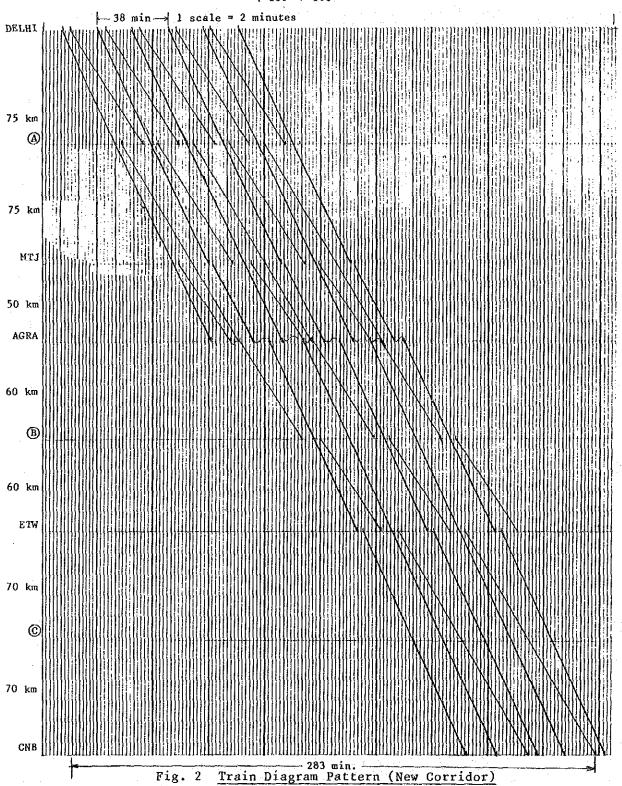
H = Time zone for train operation (excluding 4 hours for maintenance work)

f = Track use ratio ... 0.8

h = Period required per pattern (min)

A = Train number per pattern




Fig. 1 Train Diagram Pattern (New Corridor)

Train Number Ratio between DLI-AGC and AGC-CNB Sections

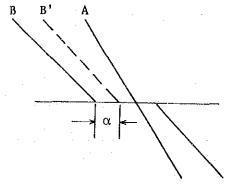
N = Track capacity
H = Time zone for train operation
 (excluding 4 hours for maintenance work)
f = Track use ratio ... 0.8
h = Period required per pattern (min)
A = Train number per pattern

	DLI	AGC	CNB
S. Express	2	2	
200 km/h	3	1 :	
L. Express	2	1	
160 km/h		: [

 $N = \frac{H \times 60 \times f}{h} \times A$ $= \frac{(24-4) \times 60 \times 0.8}{38} \times 4$ $= \frac{101 \rightarrow 100}{38}$

2-2 Margin Time

In operating trains, it is most desirable to run them in accordance with a fixed schedule. It is unavoidable, however, that their operation is sometimes delayed due to construction work, accidents, and bad weather. For this reasons, a certain margin time is provided in the time schedule.


How much percentage of the standard operation time should be set aside for margin time varies with the types of trains.

For instance, a delay in the operation of Train A which will be connected to many trains may affect a wide area of railway sections for a long period of time, while the same delay of Train B may hardly influence operations of other sections and time periods.

Accordingly, extensive study is needed on how much time should be secured for margin time. It is customary for JR, however, to set aside around 2% of the standard operation time of super express trains and $3 \sim 4\%$ of that of express trains for margin time based on past experience.

In actual train diagrams, however, some time is additionally allotted to the above time in connection with various factors such as overtaking trains, yard-work, stoppage at major stations and other technological considerations related to diagrams.

As for other trains (local passenger trains and freight trains), there are many cases in which the loss time like α in Fig. 1 has the same meaning as the margin time and if examined in completed train diagrams, the loss time will amount to about 8 \sim 10%. From above reason, formal margin time for these trains is not allotted except in special cases.

- A: High-speed train
- B: Low-speed train
- B': Low speed train (with minimum stopping time for being taken over by a high-speed train)
- a: Loss time of Train B

Fig. 1 Loss Time in Overtaking-stop

2-3 Assumed Traffic Volume at the Time of Completion of the 7th Five Year Plan (1990)

The 7th Five-Year Plan of the IR calls mainly for reinforcement of transport capacity during 1985 \sim 1990. Its objectives are being attained in stages.

With regard to the section between Delhi and Kanpur, construction of block huts, storage loops, and extension of platforms are provided for in the plan.

The Traffic volume in the section between Delhi and Kanpur at the time of the completion of the 7th Five Year Plan, estimated in consideration of the past record and existing situation, is as follows. The estimate is based on the assumption that, since transport demand will continue surpassing transport capacity until 1990, the transport capacity and actual traffic volume will be equal.

1) Increase in train kilometers

The per-day train kilometers between GZB and CNB in the period from 1980/81 to 1986/87, calculated on the basis of the operated train number are as follows:

Table 1 Increase in Train Kilometers

(Train-km/day)

	1980-81	1981-82	1982-83	1983-84	1984-85	1985-86	1986-87
Passenger	17,390	17,560	17,840	18,670	20,530	20,530	20,860
Freight	17,380	17,326	18,560	18,670	17,880	23,220	24,000
Total	34,770	34,886	36,400	37,340	38,410	43,750	44,860

The annual growth rate of total train kilometers has been 4.3% on an average between $1980/81 \sim 1986/87$ and 2.5% between 1985/86 and 1986/87.

Since reinforcement of such facilities as block huts and storage loops is being pushed in the Section, and some transport capacity build-up can be expected, the growth rate of 2.5% is adopted.

Accordingly, the anticipated increase in the total train kilometers between 1985 and 1990 are calculated as follows:

43,750 (km) x 1,025⁵ = 49,500 (train-km/day) 49,500 (km) - 43,750 (km) = 5,750 (train-km/day)

The km increment is to be allotted evenly (50% each) to passengers and freight.

2) Per-train Increase in Transport Capacity

a) Passenger Train

The rate of annual increase in the number of connected coaches per train in the Allahabad Division between 1981/82 and 1985/86 was 3.7% on an average, according to DOMESTIC STATISTICS PART-1, Traffic (1986 - NORTHERN RAILWAY).

Load in bogies (Normal) for Exp./Mail in the Section in 1985/86 was 17.6 coaches. Assuming that the similar growth to that of the Allahabad Division is attained in that Section, the formation length in 1990 will be around 21 coaches on average.

In view of the effective length of tracks and platforms, it is considered difficult to comprise all trains with 21 coaches. If the number of coaches is increased to the level of Load in Bogies (maximum), namely 18~21 in accordance with OPERATING DEPARTMENT BROAD GAUGE (1986 NORTHERN RAILWAY), the increment will be about 2,080 passengers/day (equivalent to 2 additional trains of 18-coach formation).

If local trains are increased in stages to the level of Load in Bogies (Maximum) - 14 \sim 17 coaches, the local train increment will become about 1,620 \sim 3,400 persons/day.

b) Freight Train

The annual rate of per-train increase in transport volume in the Allahabad Division between 1981/82 and 1985/86 was 4.6% on an average, according to DOMESTIC STATISTICS PARTS-1, Traffic (1986 NORTHERN RAILWAY).

On the assumption that an average annual growth of 4.6% can be secured from 1985 to 1990 by increasing Box-N wagons and 9,000-ton trains, the following per train transport volume can be anticipated between Ghaziabad and Kanpur.

Table 2 Transport Volume Per-Train

(ton/train)

	GZB	ALJN	Т	DL	ETW	CNB
*1985	1,425		1,434	1,594	1,616	
1990	1,780		1,790	1,990	2,020	

* Based on the Freight Link Traffic of 4-2-1, (2)-3) of this Report.

3) Estimated Traffic Volume in 1990

Based on results of prediction under 1) and 2), the traffic volume in 1990 is presumed to be as follows:

a) Passenger

Table 3 Passenger Traffic Increase by 1990

(man/day)

	GZB KI	RJ AL	JR TD	L SK	в ет	W CNB
1985	44,892	41,478	41,286	44,924	40,674	42,274
Increase of train kilometers*	6,900	6,900	6,900	6,900	6,900	6,900
Increase of connected coaches	3,700	3,700	4,744	5,484	3,856	4,744
1990	55,492	52,078	52,930	57,308	51,430	53,918

- *1 The additional number of passengers as a result of the increase in train kilometers is as follows:
 - . 5,750(km) \div 2 = 2,875(km) Increase in train kilometers
 - . 2,875(km) ÷ 438.2(km) = 6(trains) ... Increase in the number of

trains

. 1,040(persons) \times 3(trains) = 3,120(persons) ... 18-car formation 1,260(persons) \times 3(trains) = 3,780(persons) ... 21-car formation

Total: 6,900(persons)

- *2 The additional number of passengers as a result of the increase in the number of connected coaches is as follows:
 - . Exp./Mail: 36 coaches for 14 trains (equivalent to two trains of 18 coach formation) 1040 (persons) x 2 = 2,080 (persons)
 - . Local 1,620(person) ∿ 3,404(persons)

b) Freight

Table 4 Traffic Volume Increase by 1990

(ton/day)

	GZD AL	JN TD	L ET	W CNB
1985	59,077	68,821	71,153	72,234
Increase in train kilometers *1	10,680	10,740	11,940	12,120
Increase in hauling tonnage *2	14,770	17,150	17,750	18,060
1990	84,527	96,711	100,843	102,412

- *1 The increase in transported tonnage due to the increase in train kilometers is as follows:
 - . 5,750(km) ÷ 2 = 2,875(km) Increase in freight train kilometers
 - . 2,875(km) ÷ 411.7(km) = $6^{\text{(trains)}}$... Increase in the number of trains
 - . 6(trains) x hauling tonnage per train for respective sections (1990)
- *2 The transported tonnage due to the increase in hauling tonnage is calculated as follows:
 - . The numbers of trains for respective sections multiplied by the increase in the per-train hauling tonnage.

The train numbers for respective sections in 1985 are as follows:

GZB - ALJN ... 41.5 (trains)

ALJN - TDL ... 47.9 (trains)

TDL - ETW 44.6 (trains)

ETW - CNB 44.7 (trains)

2-4 Use of EMU for Local Passenger Trains

The distance between stations for local trains is relatively short, with many of them being less than 10 km. The average distance between stations is 6 km for the GZB ν TDL section (about 184 km) and 7 km for the TDL ν CNB section (about 228 km).

For the GZB \sim C.BUZUG section (3.6 km) and the CHL \sim SKQ section (9.2 km) in the GZB \sim ALJN section (about 131 km), comparison of the standard operation time is made between the case of EL (WAG-4) traction train of 1,000 tons and EMU (1M3T x 2) train.

- Notes: 1. Regarding EMU, running performance at more than 75 km/h is estimated.
 - 2. It is assumed that the track is straight, the gradient is level, and there is no limit on train operation speed.

As shown in Fig. 1, EMU trains feature high acceleration and deceleration. For local passenger trains which are operated in small inter-station distance, therefore, use of EMU is effective in shortening operation time and recovery of delay. In addition since EMUs require no connection changes and allow shorter yard-work and shuttling time, their employment in suburban transport, which requires high transport capabilities and faces the problem of insufficient platform capacity, is desired.

Table 1 Example of Operation Time Reduction Effect

	GZB ∿ C.BUZUG	CHL ∿ SKQ
WAM-4 (1,000 ton)	4'46"	8'54"
EMU	4'00"	8'00"
Shortened operation	46"	54"
time	·	÷

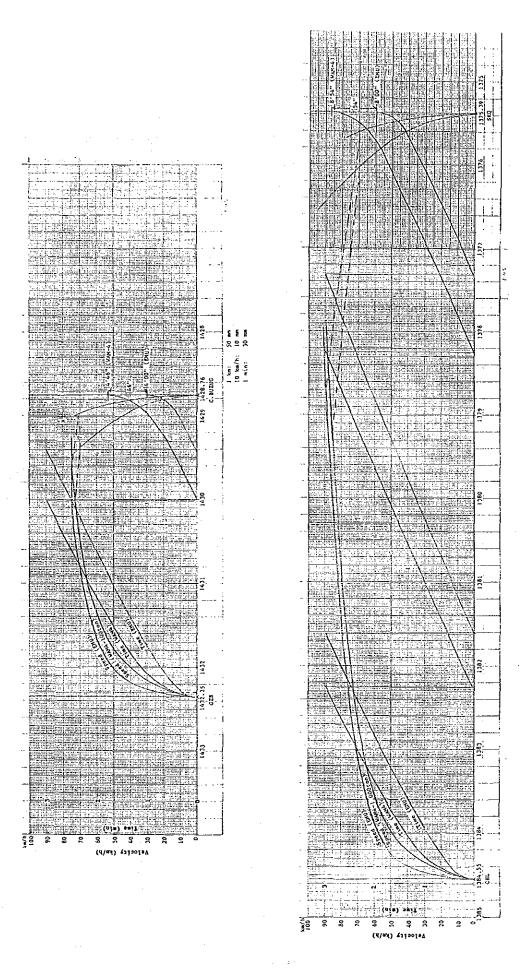


Fig. 1 Train Operation Diagram (Locomotive and EMU)

2-5 Track Capacity

As a result of calculation based on the automated signals and improved train speed, and also applying the ratios of number of trains by types, as indicated below, the track capacity turns out as shown below.

1) Ratio of train types

The ratios of number of trains by types are assumed as follows.

- 2) Pattern diagram and time required for one cycle

With average distance of approx. 10 km between two locations of passing tracks (including passing tracks to be prepared newly between GZB and CNB), and the aforementioned train number ratio by types, the pattern diagram can be composed with approximately 270 minutes per cycle.

3) Rough calculation of track capacity

The track capacity is roughly calculated as follows.

- . Preconditons:
 - . H = Train operation time zone ...
 22 hours (2 hours are for maintenance)
 - . α = Margin time ratio 20% of running time
 - . f = Track usable rate

75% (upper limit of actual data of JR)

- . P = Time required for 1 cycle of trains pattern 270 min
- . A = No. of trains in 1 cycle of train pattern
 34 trains
- . N = Track capacity (number of trains)

$$N = \frac{H \times 60 \times f \times A}{P (1 + \alpha)} = 103 \text{ (trains)}$$

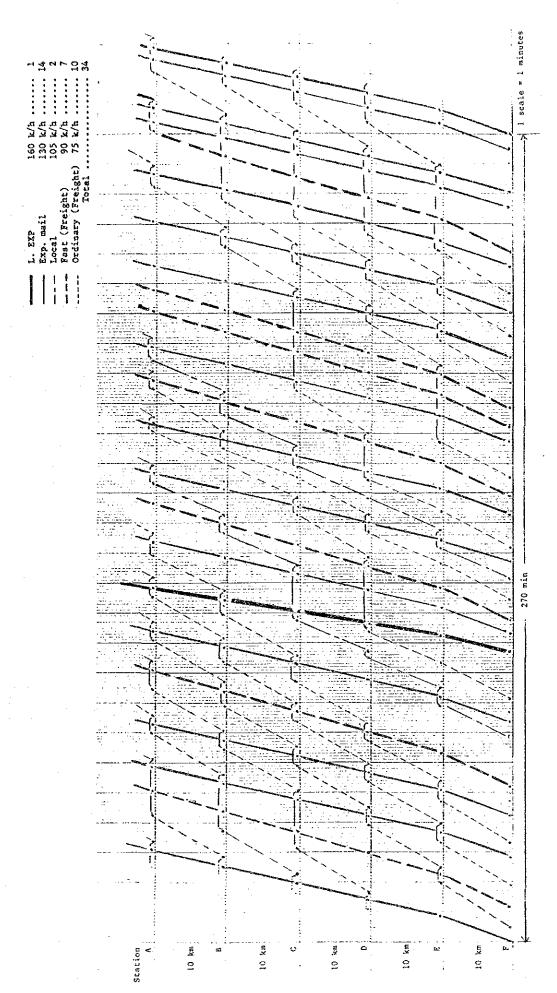


Fig. 1 Model Diagram Pattern (The Section)

2-6 Number of Trains by Year Without Construction of the New Corridor

Table 1 The Section

-	Year		Train	DLI	G	ZB		KRJ		Al	LJN	T	DL	Sì	(1)	E,	TW		CN
Actual	1985	Pass.	L. Exp			~		_ -			-		-		l=		-		
Record	1	i	Exp. Mail	(40)		40		40)		40	·	44		42		42		_
	} .	\	Local	(10)		10		12			10		8		4		6	:	
	į .	! :	V.P	(2)		2		2			2		2		2		2		
	١.			1	(52)		52		54		-	===	-	54	-	48	├ ─	50	
			Total		(22)		_24				Ļ	52				40	ļ—.	- 70	
	1	Fre.	Fast			-					<u> </u>						1-,		
			Ord.			39		45			48		44		46		44		<u> </u>
			Total				39		45			48		44		46	Γ	46	
i			M	·			1		1		 			2	t	2	-	2	
			otal					92		100	-	101		100	-	96	1		98
			Γ					+								···-··································			
	1990	Pass.	L. Exp			_					<u> </u>		-		ــــــــــــــــــــــــــــــــــــــ		l		
implementation	}	'	Exp. Hail			43		43			43	·	47		45		45		
of the 7th	l		Local	(10)		10		112			10		8		4		6		
five year plan	ļ		V.P	(2)		2		1 2			2		2		2		2		
tive your plan	1	j	Total	3. 77	(55)		55		57		 	55		57	1	51	 	53	
	l I	-			177)		· <u>· · · · · · · · · · · · · · · · · · </u>		,,,				<u></u>		-		<u> </u>		—
		Fre.	Fast	<u> </u>		-							-	 			51		
		1	Ord.			43		49			54		49		51		121		
		i	Total				43		49		1	54	١.	49	L	51	L_	51	
			Н				1		ī			1		2		2	Γ	2	
		r	otal	·				99		107		110		108		104		1	90
After upgrading	1001	Dace	L. Exp	(4)		. 4		4			4		4		4	·	4		
	1,771	1003.		(52)		52		- 52			52		47		45		45		
the section			Exp. Hail																
			Local	(10)	·	10		12			10		8		4		6		
			V.P	(2)		2		2			2		2		2		2		
•			Total		(68)		68	1	70			68		61		55		57	
		Fre.	Fast			20		20	1		20		20		20		20		
			Ord.			23		7 29			36		30		32		32		
						-23					20		30		132		132		
			Total				43		49			56		50	<u> </u>	52		52	
	!		М				1	L_	1		i	1		2	_	2	i	2	
		T	otal				1	12		120		125		113		109		1	11
	1995	Peec	L. Exp	(5)		5	-	5			5		5		5		5		
	1777		Exp. Mail	(67)		67		67			67		58		56		56		
•											10		8						
	1	'	Local	(11)		II		17							4		6		
			V.P.	(4)		4		- 4			4		4		4		4		
			Total		(87)		87		88		Ŀ	86		75		69	L	71	
	. !	Fre.	Fast			30		30	1		30	-	30		30		30		
			Ord.	 		25		31			41		34		36		36		
	l i			 			55	-1-21	61		 	71	ٽٽ ــ	41.	٠,,		 -	66	
		<u> </u>	Total										ļ	64		66			
	۱ ۱		H				1		1	4			L	2	<u> </u>	2	L	2_	
			Total				1	43		150	ĺ	158		141		137		1	39
	2000	Pass.	L. Exp	(7)		7		7			7		7		7		7		
	'ج	Ī .	Exp. Mail			93		- 93			86		78		76		76		
	2015		Local	(12)		12		- 1/2			10		8		4		6-		
	2013					_													
)	'	V.P	(4)	·	4		4			4		. 4		4		4		
		:	Total	l	(116)	L	116	_L	116			107	l	97		91	1	93	
1	1	Fre.	Fast			37		37			37		37		37		37		
1	!		Ord.	-		41		47			60		51		53		53		
İ				1		4.					LVU		ث		122		_ددا		
	1			1			70	- 1			1	0.7		0.0	1	00		~~	
İ			Total				78	_	84			97	L	88		90		90	
							2	96	84 2			97 2 206		88 4 189	ļ	90 4 185	ļ	4	87

Note: 1. The Number Train is total of up and down trains per day. Train respectively.

2. Pass, Fre., V.P., Ord and M in the "Train" Column are Passenger, Freight, Parcel, Ordinary and Miscellaneous Train, respectively.

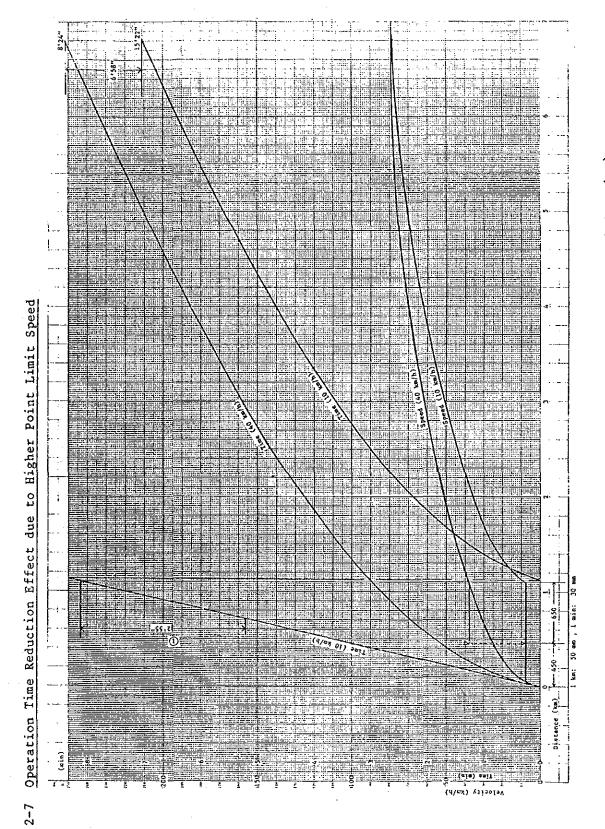


Fig. 1 Departure (Freight Train of 4,500 tons and WAG6 Traction).

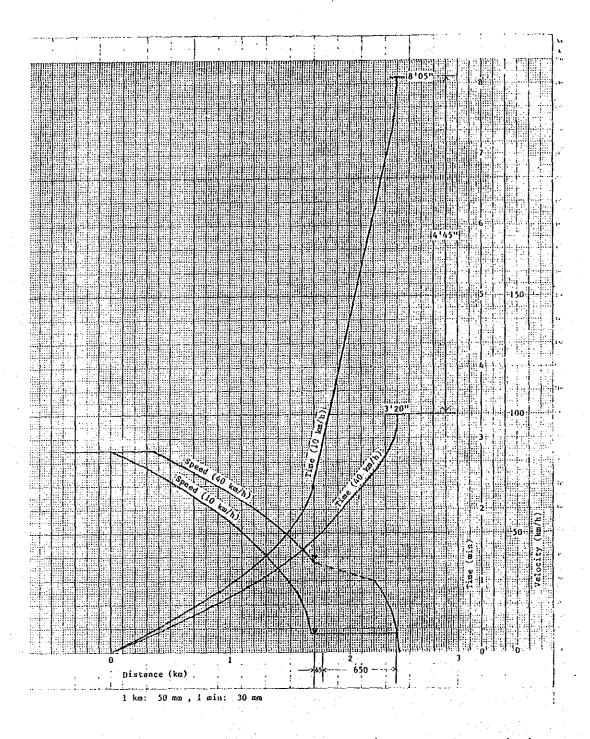
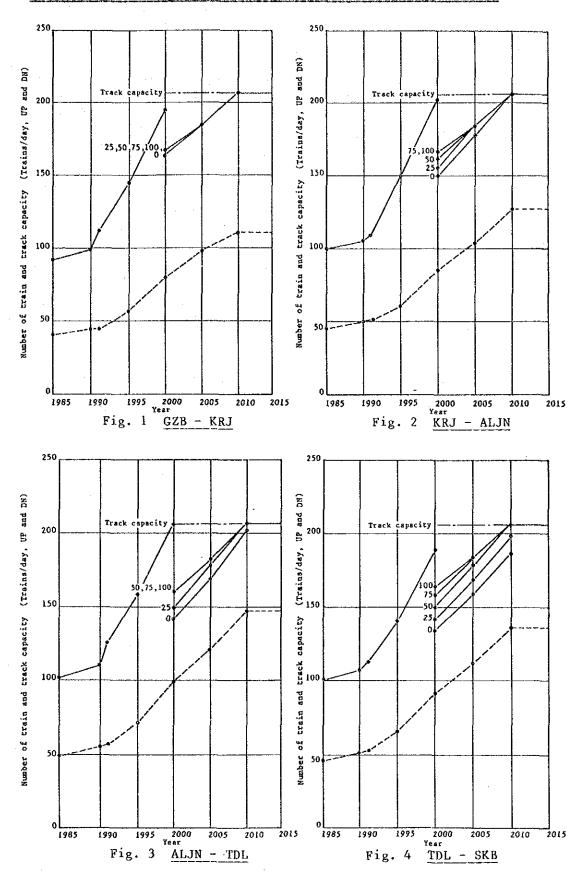
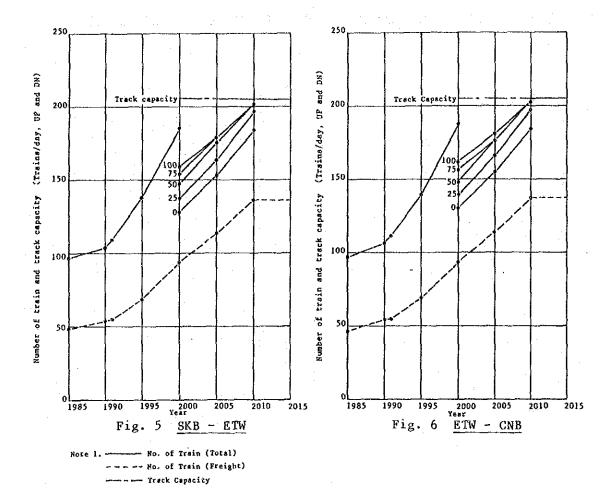




Fig. 2 Arrival (Freight Train of 4,500 tons and WAG 6 Traction)

2-8 Number of Trains by Year and Fare Increase Rate (The Section)

2-9 Train Number of the Section by Year and the Fare of the New Corridor

Table 1 Number of Train by Year after Construction of the New Corridor

(the Section)

Year		Train	DLI	G	28	KI	IJ	A	LJN	T	DL	sk	В	E'	ſW		СИВ
2000	Pass.	Exp. Mail	(68)	V 1	68		48		28		28		26		26		
		Local	(12)		12		12		10		8		4		6		
		V.P	(4)		. 4		4		. 4		4		4		4		
		Total		(84)		84		64		42		40		34		36	
	Fre.	Fast			37		37.		37		37		37		37		
	i	Ord.			41		47		60		51		53		53		
		Total				78		84		97		88		90		90	
		М				2		2		2		4		4		4	
	T	otal				164		150	L	141		132		128		130	0
2005	Pass.	Exp. Mail	(70)	7.1	70		57		34		33		31		31.		
		Local	(12)		12		12		10		8		4		6		
	j	V.P	(4)		4		4		4		4		4		4		
	l	Total		(86)		86		73		48		45	-	39		41	
	Fre.	Fast			50		50		50		50.		50		50		
		Ord.			46		52		68		58		60		60		
	l <u></u>	Total			~~~	96		102	<u> </u>	118	ļ	108		110		110	
		H				2		2	1	2		4	_	4	ļ	4	
	T	otal				184		177	1	168		157		153		15	<u></u>
2010	Pass.	Exp. Mail	(70)		70		64		41		39		37		37		
2		Local	(12)		12		12		10		8		6		-8		
2015		V.P	(4)		- 4		4		4		4		4		4		
		Total		(86)		86		80		55		51		47		48	
	Fre.	Fast			60		60		60		60		60		60		
	l i	Ord,	l		58		64		84		71		73		73		
	li	Total				118	l	124		144	L	131		133		133	<u> </u>
		d .				2		2	L	2	L	_4		_ 4	<u> </u>	4	
	Т	otal				206		206	L	201	<u> </u>	186		184		18	5

Notes: 1. The number of train is total of Up and Down trains per day.

2. Pass. Fre, V.P., Ord and M in the "Train" Column are Passenger, Freight, Parcel, Ordinary and Miscellaneous Train, respectively.

3. Since track capacity will be fully occupied after 2010, the number of trains will be the same thereafter.

4. The hatched column shows the passenger train number set at lower levels than the demand for the purpose of saving track capacity to satisfy freight traffic demand until 2010.

Table 2 Number of Train by Year after Construction of the New Corridor

25% UP

(the Section)

Year		Train	DLI	G	ZB	K)	RJ		Al	JN		TDI	i.	S	KΒ		ETW		CNB
2000	Pass.	Exp. Mail	(70)		70		54			37		1.	37		35		35		
			(12)		12		12		,	10			8		4		6		
		y.8	(4)		4		4			4			4		4		4,		
1		Total		(86)		86		70			51			9		43		45	
	Fre.	Fast			37		37			37			37		37		37		
1		Ord.			41		47			60			1		53		53		<u> </u>
		Total				78		84			97.		8		L	90		90	·
		M		1, 11		2	1	2			2			4	ļ	4		4	
	T	otal				166			156		15	50		141	<u> </u>	13	-	1	39
2005	Pass.	Exp. Mail	(70)		70		64	:		44		1	./,		42		42		
		Local	(12)		12	************	12			10			8		4		6		
l l		V.P	(4)		4		4			4	777		4		4		4		
		Total		(86)		86		80			58	十	5	6	Ť	50		52	
İ	Fre.	Fast		X + + 2	50		50			50		- 1	0		50		50		
)		Ord.			46		52		-	68		19	58		60		60		
- 1	. 1	Total				96		102			118	7	10	8		110		110	
- 1		М				2	1.7	2			2			4	T .	4		. 4	
i		otal				184			184		17	78		168		16	4	1	66
2010	1	Exp. Mail	(70)		70		64			46			52		50		50		
ح	i i	Local	(12)		12		12			10			8	. 91	6		- 8		
2015	ìì	V.P	(4)		4		4			4			4		4		4		
	İ	Total		(86)		86		80			60		6	4	<u> </u>	60		62	
1	Fre.	Fast			60		60			60			50		60		60	·	
	"	Ord.			58		64			84			71		73		73	<u> </u>	
ļ	1	Total			1	18		124			144	l_	13			133	_	133	
. 1		Н				2		2			2			4	L	4		4	
Ì	T	otal				206	Γ'''	-	206		20)6		199		19	7]	99

Table 3 Number of Train by Year after Construction of the New Corridor
50% UP

(the Section)

Year		Train	DLI	G2	B	K	λJ	AL	JN	Ti	DL _	SI	B		ETW	CN	8
2000	Pass.	Exp. Mail	(70)		70		60		46		46		44		44		
		Local	(12)		12		12		10		8		4		6		
- 1	l	V.P	(4)		4.		4		4		4	<u> </u>	4		4		
}	1	Total		(86)		86	<u> </u>	76		60		58		52	4	54	
i	Fre.	Fast			37		37		37		37_		37		37		
		Ord.			41		47		60		51		53		53		
		Total				78		84		97	L	88	L	90		90	_
- 1		И				2		2		2		4		4		4	_
1	T	otal				166		162		159		150		14	6	148	_
2005	Pass.	Exp. Mail	(70)		70		64		46		55		53		53		
		Local	(12)		17		12		10		8	3.74	4		6	· · · · · · · · · · · · · · · · · · ·	
٠.		V.P	(4)		4	<u></u>	4		4		4		4		4	· · · · · · · · · · · · · · · · · · ·	_
-		Total		(86)		86		80		60	<u> </u>	67		61		63	
	Fre.	Fast			50		50		50		50		50		50		
		Ord.			46		52		68		58		60		60		
		Total				96		102	<u> </u>	118]	08	L	110		110	
		К				2		2		2		4		4		4	
	Т	otal				184		184		180		179		17	5	177	_
2010	Pass.	Exp. Mail	(70)		70		64		46		59		57		5.7		ű
ج .		Local	(12)		12		12		10		8		4		6		
2015		V.P	(4)		4		4	7.7	4		4		4	·	4		
		Total		(86)		86		80		60	<u> </u>	71		65	_	67	
	Fre.	Fast			60		60		60		60		60		60		
		Ord.			58		64		84		71		73		73		_
		Total	T			118		124		144]	31	L	133	_	133	_
		М				2		2		2		2		2		2	
	T	otal				206	Γ	206		206		204	1	20	0	202	

Table 4 Number of Train by Year after Construction of the New Corridor 75% UP

(the Section)

Year		Train	DLI	G	.B	KE	IJ	AL	JN TI) L S	кв в	rw cnb
2000	Pass.	Exp. Mail	(70)		10		64		45	54	52	52
	1	Local	(12)		12		12		10	8	4	6
		V.P	(4)		4		4		4	4	4	4
	l	Total		(86)	86		80		60	66	60	62
	Fre.	Fast			37		37		37	37	37	37
	·	Ord.			41		47		60	51	53	53
		Total			78		84		97	88	90	90
		4			2		2		2	4	4	4
	T	otal			1	66		166	159	156	154	156
2005	Pass.	Exp. Mail	(70)		70		64		46	59	57	57
	i	Local	(12)		12		12	~~~	10	8	4	6
- 1	1	V.P	(4)		4		4		4	4	4	4
i	1	Total		(86)	86		80		60	75	65	67
Ì	Fre.	Fast			50		50		50	50	50	50
1		Ord.			46		52		68	58	60	60
	Ì	Total			96		102		118	108	110	110
1	ì	1			2		2]	2	4	4	4
	Te	tal			1	84		184	180	183	179	181
2010	Pass.	Exp. Mail	(70)	7	70		64		46	59	57	57
2	İ	Local	(12)		12	*	12		10	8	4	6
2015		V.P	(4)		4		4		4	4	4	4
	Ī	Total		(86)	86		80		60	71	65	67
	Fre.	Fast			60		60		60	60	60	60
	1	Ord.			58		64		84	71	73	73
	[Total			118		124		144	131	133	133
[ì	1			2		2		2	4	2	2
	Te	otal	:		2	06		206	206	206	202	204

Table 5 Number of Train by Year after Construction of the New Corridor 100% UP

(the Section)

Year		Train	DLI G	ZB KI	RJ A	ljn ti	DL SI	(B E1	W CNB
2000	Pass.	Exp. Mail	(70)	70	64	46	59	57	57
	i	Local	(12)	12	12	10	8	4	6
-		V.P	(4)	4	4	4	4	4	4
		Total	(86)	86	80	60	71	65	67
	Fre.	Fast		37	37	37	37	37	37
		Ord.		41	47	60	51	53	53
		Total		78	84	97	88	90	90
		н		2	2	2	4	4	4
	T	otal		166	166	159	163	159	161
2005	Pass.	Exp. Mail	(70)	70	64	46	59	57	37
		Local	(12)	17	12	10	8	4	6
		V.P	(4)	4	4	4	4	4	4
		Total	(86)	86	80	60	71	65	67
	Fre.	Fast			50	50	50	50	50
	1.00	Ord.		46	52	68	58	60	60
		Total		96	102	118	108	110	110
- 1		4		2	2	2	4	4	4
	T	otal		184	184	180	183	179	181
2010	Pass.	Exp. Mail	(70)	70	64	46	59	57	57
٠ج		Local	(12)	12	12	10	8	4	6
2015		V.P	(4)	4	4	4	4	4	4
		Total	(86)	86	80	60	71	65	67
	Fre.	Past			60	60	60	60	60
		Ord.			64	84	71	73	13
		Total	· · · · · · · · · · · · · · · · · · ·	118	124	144	131	133	133
		M		2	2	2	4	4	4
	T	otal		206	206	206	206	202	204

2-10 Train Diagram Pattern (New Corridor)

•		1						
. work)	· · · · · · · · · · · · · · · · · · ·							
train operation bours for asinjenance work) ito 0.8 ed per pettern (min) per pattern								
capacity some for train operation uding 4 hours for meinter ; user ratio - 0.8 required per pettern (# inumber per pettern (#). Train								.1
r crain bours rio red per								
Track capacity Lime sone for train operation (axcluding 4 hours for axinyenanc Track use ratio 9.8 Priod required per pettern (min) Train number per pettern 5. Exp. Itain	L. EXP. Train							
	i							
** ***								
~					1			
κ κ Φ	minutes				5			
Вибои би 124-4) и 60 и 124-4) и 60 и	2 1						3	
и н н ж н ж н н н н н н н н н н н н н н	scale							2000
8 R					5/			
NB Sections NB Sections NB Sections			,		!//			
84 E S C C C C C C C C C C C C C C C C C C	С 2				j.			
LI-AGC and A LI-AGC and A S. Express 250 km/h L. Express 160 km/h	-22			Í				
1255				7				
	Delhi	75 km	75 km MTJ	50 km Agra	60 km	60 km ETW	2 T (O)	70 km
		••			<u>-</u>			

Fig. 1 Train Diagram Pattern (New Corridor)

- 32 -

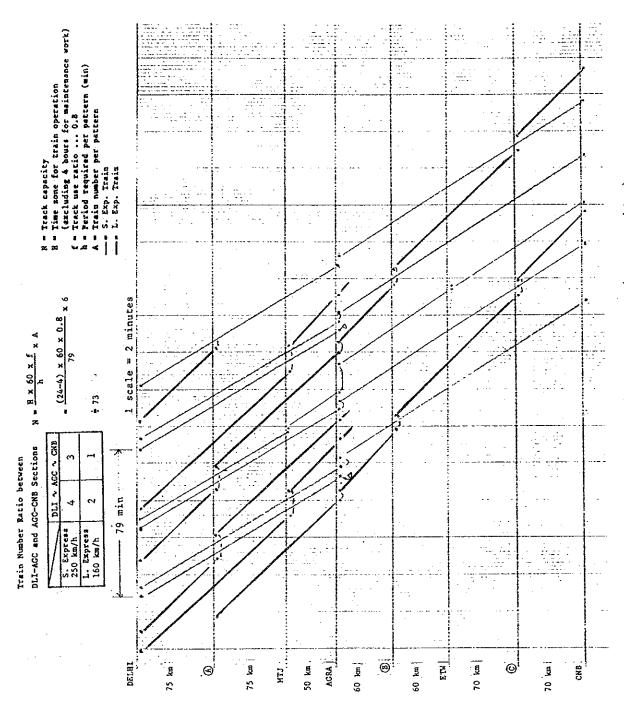
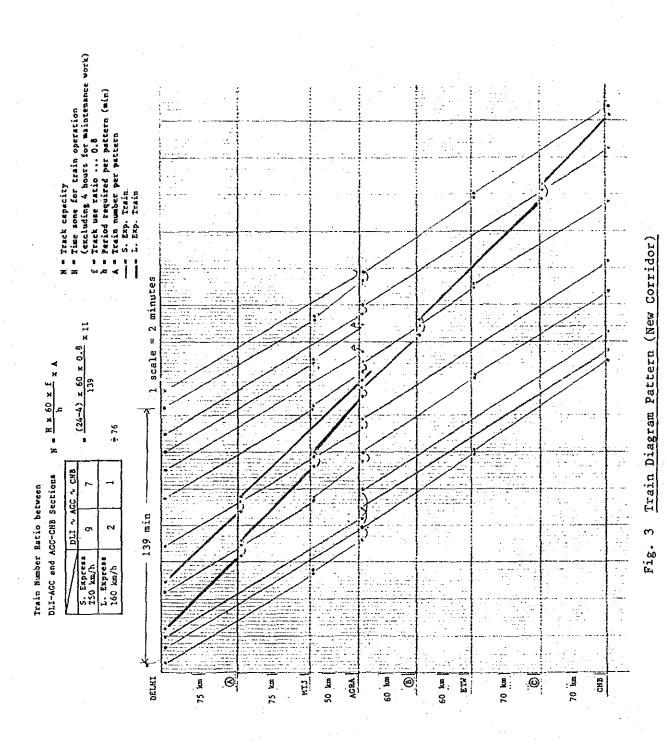



Fig. 2 Train Diagram Pattern (New Corridor)

- 34 -

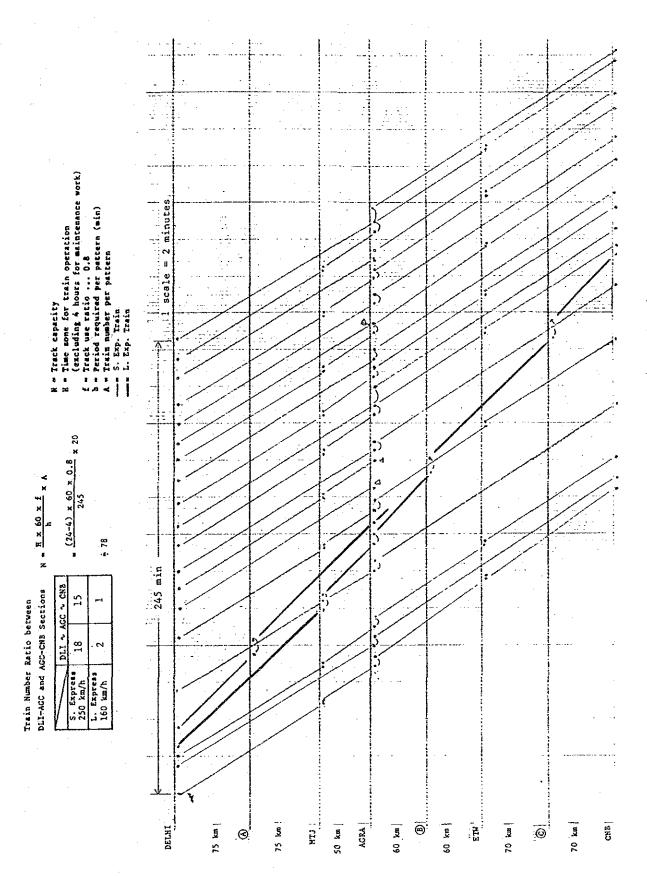


Fig. 4 Train Diagram Pattern (New Corridor)

2-11 The Conditions of Arrival and Departure Track Utilization and their Respective Capacity at Main Stations

The conditions of utilization of arrival and departure tracks and their respective capacity at the Delhi, New Delhi, Tundla and Kanpur stations are as follows:

The time used is according to the 1986-10-1 Working Time Table (NORTHERN RAILWAY).

The following conditions are also assumed as premises.

- . The track occupation chart at respective stations shall be used for the computation.
- . In counting the number of trains, any train shall be counted as "one" train when it goes into an arrival track or leaves from a departure track.
- . The time for using the arrival and departure tracks shall be the total of the stopping time plus 5 minutes for advancing into the arrival track or leaving from the departure track.
- . The precise capacity of the arrival and departure tracks can be calculated on the basis of the actual train diagram and track occupation chart. This time, however, it shall be obtained through a rough calculation method used as the standard for studying improvement of facilities.

(1) Delhi Station

1) Present state of platform tracks

There are 16 platform tracks. Four tracks (Tracks No. 13 - 16) are dead-end tracks with their accommodation capacity being relatively small, 8-11 coaches. In addition, for 8 tracks (Tracks No. 3-12), simultaneous arrival and departure of two trains of short formation (with 12-15 coaches each) and a train of long formation are made possible by using two tracks divided to use the same platform.

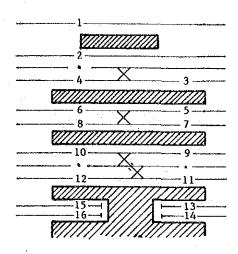


Fig. 1 Present State of Platform Tracks

Table 1 No. of Coaches that can be Accommodated at the Platforms

Platform track	No. of coaches that can be accommodated	Platform track	No, of coaches that can be accommodated
1	17	9	15
2	18	10	12
3	14	11	14
4	14	12	14
5	14	13	10
6	14	14	8
7	14	15	11
8	13	16	11

2) State of the use of platform tracks

The number of arrival and departure trains, utilization time and usage rates for the respective platforms are shown in Table 2.

As for the main arrival and departure tracks (Track No. 1 - No. 12), the average utilization time for a train is 103 minutes and the average use rate of platform tracks is 57%.

Table 2 No. of Arrival and Departure Trains, Utilization Time and
Usage Rates for the Respective Tracks

Platform	No. of	Utilizatio	n time (min.)	Average u	tilization		cate (%)
No.	trains	0-24:00 (A)	4:30-22:30 B	time for (A)	a train (min.) B	(A) ÷ 1440 ×100	(B)÷1080 x100
1 2 3 4 5 6 7 8 C 10 C 11	12 8 12 5 [5.5] 8 [4.5] 7 [5] 6 [7] 8 [7.5] 9 [6.5] 8 [8.5] 9 [13.5]14	767 645 780 1,147 770 855 735 815 870 840 675 865	667 580 675 862 770 855 735 590 675 715 655	64 81 65 229 96 122 123 102 97 105 75 62		53 45 54 80 53 59 51 57 60 58 47	62 54 63 80 71 79 68 55 63 66 61 75
Subtotal	[95](106)	(9,764)	(8,584)	(103)	*1(102)	(57)	(66)
13 14 15 16 Subtotal	7 1 3 3 3 (14)	780 110 460 395 		111 110 153 132 		54 8 32 27 (30)	
Total	120	11,509		(96)		(50)	

- Note: 1. The mark [in the platform No. column indicates the single platform which is used by two lines.
 - 2. The figures [] in the no-of-trains column show the number of trains counted in such a way that the train simultaneously using 2 lines is counted as 0.5 trains.
 - 3. The figures marked with *1 result from calculations based on the assumption that the number of trains between 4:30-22:30 is 84.

 No. of arrival and departure trains that can be accommodated at platforms

Assuming that the main time zone for the arrival and departure of passenger trains is between 4:30 and 22:30 (18 hours), the number of coaches that can arrive at or depart from the platforms calculated for the 12 main tracks (Tracks No. 1-12) is as follows. The maximum platform use rate is 75%.

a. In the case that the platform use time for one train is assumed to be 103 minutes just as at present, the arrival and departure of 11 more trains will be possible.

(Time zone for arrival and departure of trains x 60 x Platform use

N = rate x No. of platform tracks) - (Present utilization time)

Average utilization time for a train

$$= \frac{(18(Hr)\times60\times0.75\times12)-8584(min.)}{103(min.)} = 11 \text{ (trains)}$$

b. If, considering that a passenger train length will be expanded to 18-21 coaches in the future, 5 tracks for the arrival and departure of more than 18 coaches are secured (for instance, Nos. 1, 2, 3-4, 5-6 and 7-8) while the 4 other (Nos. 9-12) tracks are used for the arrival and departure of short trains as at present, the number of arrival and departure tracks will become insufficient even with the present number of trains. Therefore, it is necessary to reduce the stopping time.

$$N = \frac{(18(Hr) \times 60 \times 0.75 \times 9) - 8584(min.)}{103 (min.)} \div \Delta 12 (trains)$$

- c. In cases where the stopping time is assumed to be 20 minutes, 30 minutes, and 40 minutes.
 - (a) In the case of a stopping time of 20 minutes.

$$N = \frac{(18(Hr) \times 60 \times 0.75 \times 9)}{20 + 5 + 5} = 243 \text{ (trains)}$$

(b) In the case of stopping time of 30 minutes

$$N = \frac{(18(Hr) \times 60 \times 0.75 \times 9)}{30+5+5} = 182 \text{ (trains)}$$

(c) In the case of stopping time of 40 minutes (almost the same number as at present in New Delhi)

$$N = \frac{(18(Hr) \times 60 \times 0.75 \times 9)}{40 + 5 + 5} = 145 \text{ (trains)}$$

Currently on tracks No. 1-12, the total number of arrival and departure trains a day is 95 (84 trains during the period between 4:30 - 22:30). Assuming that the stopping time is about the same as that for the present New Delhi Station (145 trains - 84 trains = 61 trains), the addition of trains between Delhi - Kanpur (about 50 trains, bothway, in the year 2000) is basically possible partly because the New Delhi Station will be also used.

Regarding the steps for the above, a review of the plan for using terminals of both Delhi and New Delhi stations, expansion of platforms, improvement or laying of storage tracks, raising coach utilization efficiency, etc., are presumably needed.

(2) New Delhi Station

1) Present state of platform tracks

Platform tracks total 11. Of them, 2 tracks (Track No. 10-11) are dead end tracks, and the number of coaches that can be accommodated here is 16-slightly fewer than the 18-22 trains for tracks No. 1-9.

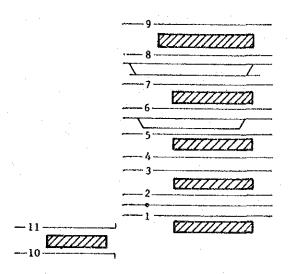


Fig. 2 Present State of Platform Tracks

Table 3 No. of Coaches that can be Accommodated at Platforms

Platform track	No. of coaches that	Platform track	No. of coaches that
1	18	7	22
2	18	8	22
3	18	9	22
4	22	10	16
5	22	11	16
6	22		

2) State of utilization of platform tracks

The number of arrival and departure trains, utilization time, and use rate for respective platform tracks are as shown in Table 4.

Taking the example of the main arrival and departure tracks (Tracks No. 1-9), the average utilization time for one train is 50 minutes, with the use rate of platform tracks being 48%.

Table 4 No. of Arrival and Departure Trains, Utilization Time, and Use
Rates for Respective Tracks

Platform No.	No. of trains	Utilizatio 0-24:00 (A)	n time (min.) 4:30-22:30		tilization a train (min.)		ate (%) B ÷1080 x100
1 2 3 4 5 6 7 8	19 21 25 13 10 8 8 10	905 745 760 770 670 480 605 549 715	765 650 760 770 670 460 605 549 715	48 35 31 59 67 60 76 55 65		63 52 53 53 47 33 42 38 50	71 60 70 71 62 43 56 51
Subtotal	(125)[112]	(6,199)	(5,944)	(50)	(52)	(48)	(61)
10	2 3	103 390		52 130		7 27	
Subtotal	(5)	(493)		(99)		(17)	
Total	130	6,692		(52)		(42)	/

3) No. of arrival and departure trains that can be accommodated at respective platforms

Assuming that the main arrival and departure time zone for passenger trains is between 4:30 and 22:30 (18 hours), the number of arrival and departure trains that can be accommodated by 9 main tracks (Tracks No.1-9) computed on a trial basis are as follows:

a. In the case that the platform utilization time for a train is assumed to be 50 minutes as at present, the arrival and departure of about 26 more trains will be possible.

$$N = \frac{(18(Hr) \times 60 \times 0.75 \times 9) - 5944}{50} = 26 \text{ (trains)}$$

- b. In the case that the stopping time is assumed to be 20 minutes and 30 minutes:
 - a) In the case of stopping time of 20 minutes

$$N = \frac{(18(Hr) \times 60 \times 0.75 \times 9)}{20(min.) + (5+5)(min.)} = 243 \text{ (trains)}$$

b) In the case of stopping time of 30 minutes

$$N = \frac{(18(Hr) \times 60 \times 0.75 \times 9)}{30(min.) + (5+5)(min.)} = 182 \text{ (trains)}$$

Currently, on tracks No. 1-9, the number of arrival and departure trains per day is 125 (112 trains between 4:30 and 22:30). Based on the present stopping time, the arrivals and departures of about 26 trains are possible, so there is somewhat more room than in the case of Delhi Station.

(3) Kanpur Station

1) Present state of platform tracks

There are 6 platform tracks. Of these six, one (track No. 8) is a dead end track, while the No. 3 track is also used as a long-term storage track.

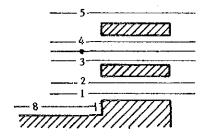


Fig. 3 Present State of Platform Tracks

Table 5 No. of Coaches that can be Accommodated at Respective Platforms

Platform track	No. of coaches that	Platform track	No. of coaches that
1	17	4	17
2	16	5	18
3	13	8	12

(Note) No. 8 track is a dock platform.

2) State of utilization of platform tracks

The number of departure and arrival trains, utilization time and use rates for respective platform tracks are as shown in Table 6.

Table 6 No. of Arrival and Departure Trains, Utilization Time and Use
Rates for the Respective Tracks

Platform	No. of	Utilization	Average utilization	Use rate (%)
No.	trains	time (A) (min.)	time for a train (min.)	(A) ÷ 1440 x 100
1	21	755	36	52
2	17.	695	41	: 48
4	15	630	- 42	44
5	14	885	6161	62
Subtotal	(67)	(2,965)	(44)	(51)
3	8	955	119	62
8	6	855	143	59
Subtotal	(14)	(1,810)	(129)	(63)
Total	81	4,775	(59)	(55)

As for the main arrival and departure tracks (Tracks No. 1, 2, 4 and 5), the average utilization time for a train is 44 minutes, and the average platform use rate is 51%.

3) No. of arrival and departure trains that can be accommodated at respective platforms.

Results of the trial computation for 4 main tracks (Tracks No. 1, 2, 4 and 5) are as shown below.

Since the train setting time zone is not strictly limited, the platform utilization time is assumed to be 60%.

a. In the case that the platform utilization time for a train is set at 44 minutes as at present, the arrival and departure of about 11 more trains than at present will be possible.

$$N = \frac{(24(Hr) \times 60 \times 0.6 \times 4(tracks) - 2.965(min.)}{44(min.)} \div 11 \text{ (trains)}$$

b. Since Kanpur plans the establishment of platform tracks, the arrival and departure of about 39 trains will become possible if the utilization time for one train is assumed to be 44 minutes.

$$N = \frac{(24(Hr) \times 60 \times 0.6 \times 2(tracks))}{44(min.)} = 39 \text{ (trains)}$$

In the year 2000, an increase of about 50 trains (both way) from the present level is anticipated. The additional accommodation capacity requirement will be met with the present capacity for 11 trains and the capacity for 39 trains to be created by the year 2000.

(4) Tundla Station

1) Present state of platform tracks

There are 4 platform tracks. For tracks No. 2 and 3, improvement of signalling facilities is planned under the 7th Five Year Plan.

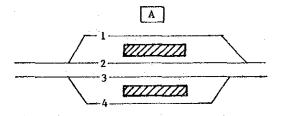


Fig. 4 Present State of Platforms

Table 7 No. of Coaches that can be Accommodated at Platform Tracks

Platform tracks	No. of coaches that can be accommodated
1	6
2	17
3	18
4	14

Note 1: Track No. 1 is a dock platform.

2) State of use of platform tracks

The numbers of arrival and departure trains, utilization time, and use rates for respective platform tracks are shown in Table 8.

Table 8 No. of Arrival and Departure Trains, Utilization Time, and Use
Rates for the Respective Tracks

Platform	No. of	Utilization	Average utilization	Use rate (%)
No.	trains	time (A) (min.)	time for a train (min.)	(A) ÷ 1440 x 100
1	3	620	207	43
2	22	607	28	42
3	25	762	31	53
4	17	705	42	49
Total	67	2,694	(41)	(47)

- No. of arrival and departure trains that can be accommodated at platforms
 - a. In the case that the average stopping time for a train is assumed to be 41 minutes as at present, the arrival and departure of about 18 more trains will be possible (the platform use rate is assumed to be 60%).

$$N = \frac{(24(Hr) \times 60 \times 0.6 \times 4(tracks)) - 2,694(min.)}{41(min.)} \neq 18 \text{ (trains)}$$

b. In the case that the stopping time of a train is assumed to be 10 minutes, 15 minutes, or 20 minutes:

(a) In the case of stopping time of 10 minutes

$$N = \frac{(24(Hr) \times 60 \times 0.6 \times 4(tracks))}{10(min.) + (5+5)(min.)} = 172 \text{ (trains)}$$

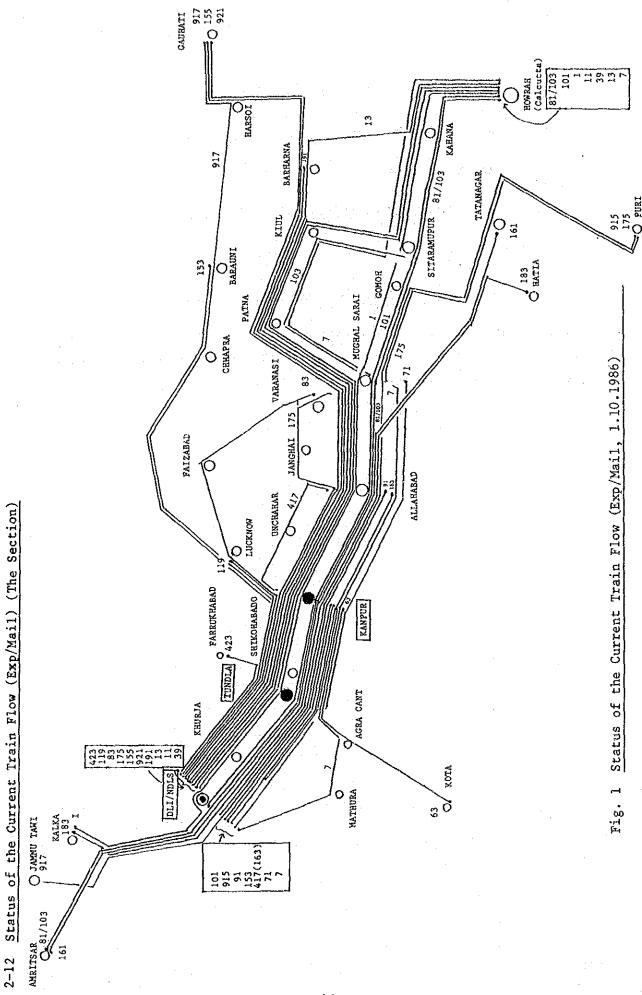
(b) In the case of stopping time of 15 minutes:

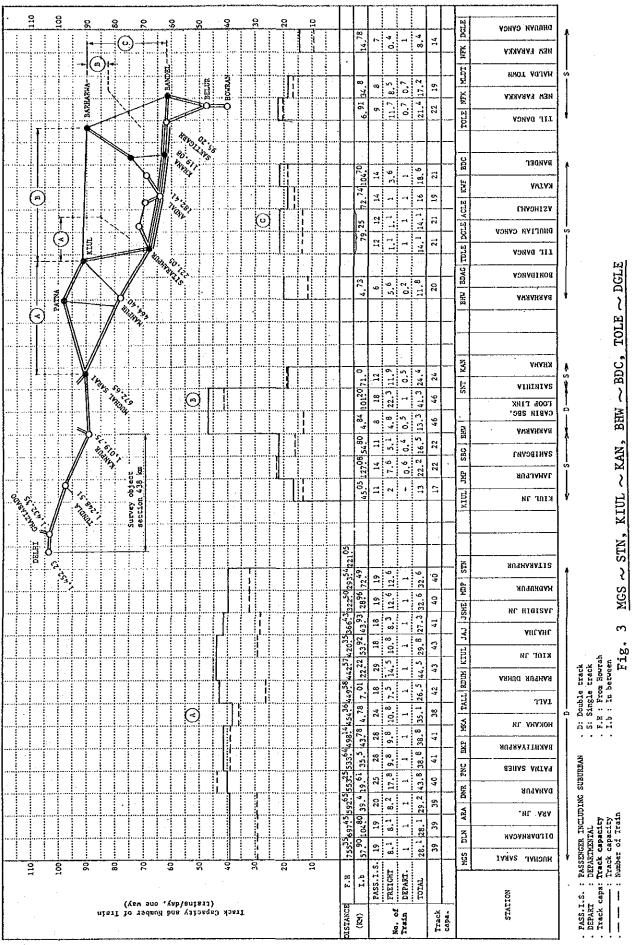
$$N = \frac{(24(Hr) \times 60 \times 0.6 \times 4(tracks))}{15(min.) + (5+5)(min.)} \stackrel{?}{=} 138 \text{ (trains)}$$

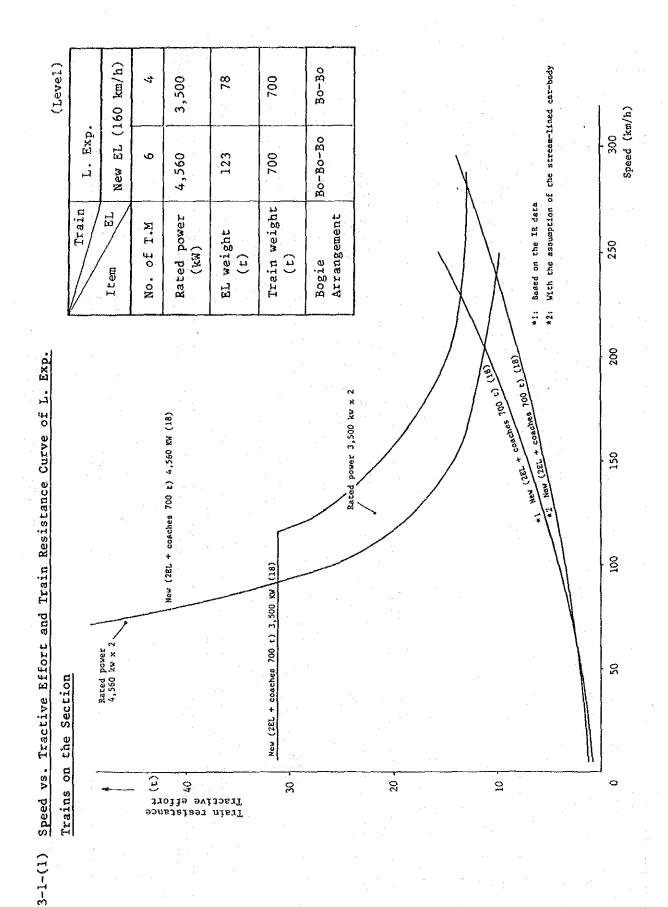
(c) In the case of stopping time of 20 minutes:

$$N = \frac{(24(Hr) \times 60 \times 0.6 \times 4(tracks))}{20(min.) + (5+5)(min.)} = 115 \text{ (trains)}$$

About 50 more trains (both way) are expected in the year 2000. Since the present number of trains is about 50, it is necessary to set the average stopping time for a train at about 20 minutes.




Fig. 1 DLI/NDLS ~ CNB


. :	071		8		8		8		20		5	3	;	3		?	Ş	3	Ş	3	ç	}												
Ī					Ī		1	Ţ	-17						Ī																			
				<u> </u>		-							••••		ļ								****				i	i		_				
		·		ļ	 			-							i		! !					.,	••••	_		-	_							
		·		<u> </u>											i		ļ										_							
	i	İ	ļ	<u>.</u>	 	-		1							ļ				•					-			-		-					
-		ļ	 	ļ	ļ,	ļ								ļ		ļ.,	ļ		ļ					-				1						
	ļ	ļ	ļ	ļ	ļ	<u>!</u>	<u></u>	-	<u>!</u>						ļ	ļ		ļ	ļ ļ								-							
	ļ	<u> </u>	ļ	ļ	ļ	ļ						ļ			! !			ļ	<u> </u>										_		-			•
		 	ļ	ļ	<u> </u>	<u>]</u>									ļ												-	_	_		-			
_		-	ļ	ļ	ļ		-								ļ	ļ	ļ										_	_	_		_			
-			ļ	-																										H	-			
		ļ	ļ	ļ	ļ		-					ļ			ļ	.,	ļ		İ								_		-		-			
_		ļ	-	ļ		-						ļ			<u>.</u>		ļ										_		_	<u>.</u>				
_		<u>.</u>	ļ	<u>.</u>	-								,			ļ			ļ					·			_		_		_			
		<u>.</u>	<u>.</u>	ļ	ļ										<u> </u>	ļ	<u>.</u>		<u>.</u>					2	_						L			
	ļ	<u>.</u>	<u> </u>		<u> </u>	ļ	ļ					ļ		_	<u>.</u>	: 				_				2,1019,	_		_	_				SNB CNB	KENEUR CENTRAL	
	ļ	<u>į</u>	1	<u> </u>	ļ		<u> </u>					L	11	ļ	<u>.</u>	ļ	<u> </u>	<u>.</u>	ļ					5 1021.	1.40	33	22			59		OH5	C.M.C. YARD	
		ļ	ļ	ļ,	ļ	ļ						`.	iL		<u> </u>	ļ	ļ	ļ	ļ					1028. 1	7 40		92			51		PNK		
				-	<u> </u>									i L.,.			<u></u>							1248, 1212.	36.49 18347	22	23.	ω Ο	49.3	77		SKB F	ентконаваро ли.	
		<u>.</u>		<u>.</u>		<u>.</u>							ا لم	∐.	<u></u>	<u>.</u>	<u></u>	ļ						1248	36.45	27	23.5	-		47			TUNDLA EAST	
		<u> </u>	<u>.</u>	<u>.</u>								j	L		<u> </u>		<u></u>	ļ							(T 10	31	24	0	55.7	54		į	TUNDLA JK.	
						ļ.,,			i					i L		<u>.</u>	<u></u>							1326. 1263.	63,30 14,71 (11,10)	25	~:	ò	48.7	45	L	BRN T	.NC NAIMAG	
	<u> </u>				<u>.</u>	<u>.</u>											<u> </u>	ļ	<u></u>					1326.	63.30		25.5	o.	47.2	42	L	ALJN	чгісувн ли.	
			<u> </u>	<u>.</u>		<u>.</u>					,		ļ		<u>.i.</u>		<u> </u>	<u>.</u>						1369.	28.2043.30	24	2		42.6	36	L	KR.J. A.	KHUKUA JN.	
			<u> </u>			<u> </u>					:		ļ											1398.	28.20		82	0		35		ж эсхс	DYHKYNK	
						_			i			_	<u> </u>	<u> </u>	<u>!</u>	∐.			<u>.</u>					1432.	34, 33	25	18	ф О	43.6	37	Ĺ	CZB DK	OGABAIZAHD	
İ						L	į	1	:				•											1457. 1455. 1442. 1439.	2.88 12.81 3.19 6.72	ß	20.4	°.	ho3.7	96		SBB	OGASASIIIAZ	
	<u> </u>				<u>.</u>										l		<u></u>							1442.	3, 19	20.5	Ħ	1	51.5	4.5		15	(в) рамет	
																								1455.	12.81	20,5	37.2	,		45		5	TILAK BRIDGE	
								Ī																1457	2.88	57	37.3	0.5	94.5	96		NDLS TKJ		ovrah
					-	Ī	Ī	Ī																					_			2	нем регит	ron F
						ļ									ļ																Г			F.M : From Howrah I.b : In between
			ļ	ļ								 -			 							.,,	.,,,				-		_	_		Ц		III H
			<u> </u>												<u></u>												-							(A.N
			ļ	ļ	<u>;</u>	ļ		-							ļ.,							,		1439.								Ш		INCLUDING SUBURBAN
-		-	ļ	!	ļ	ļ !		<u></u>	-	-		-	Ţ	_		_			_					42.14	8	5.2	7.	۲,	2.1	7.5	_	SBB	2VHIBVBVDO	ING S
			ļ	<u> </u>		<u></u>		-				1	I.		!									46. 14	3 24 3 90	32,75 32,5	-	2.	57 5.	7.5	-		(V) EVHEL JN.	g 12
	•	ļ	<u>.</u>	-	ļ	-		-				. l .			ļ _.									1452. 1446. 1442.	6.02 3.	39.5 32	8.	2	2	75 7	H	DSA	DELNI SHANDARA	PASSENGER INCLUD DEPARTMENTAL
	2	<u>. </u>	007	<u>:</u>	5		80	4	- 2			1		<u></u>		-	<u>: </u>	<u>:</u>	: :	3		:		143	9	S. 39	8	o	58	7	\vdash	170	региі	PARTE
			~																					7.H.	I.b.	PASS.I.S.	FREIGHT	DEPART	TOTAL					
						ute	23.3.	(Á	PM 28	oge auc) */ 3N 9	(ep/	eut tue	eat bac) P) :	1281	IJ.									ă.				25	Ļ		STATION	PASS.I.S. : DEPART :
						**	-	•		• • •	.,			_	٠ - ٠		_							DISTANCE			No. of	Talt		Track	e de la		ST	PASS DEPA

2-13 Track Capacity and Number of Train (one way) (1985)

	120			8		8			8 		2	•		ž		8		0,7		8		Ş	3	•	2	Ì	٠, ا					İ		į	122	ноличн
3. 3.		;	بب		1	9	٠		₩ !	1	4	-				1	-	1	T		-		<u></u>				52,	57	149	13.4	~	164.4	188) HWE	
۴۱	ķ	÷		-	-	$^{+}$	-	_	<u> </u>	÷	1			Ţ.	ļ	ļ	<u> </u>	-		-							82,88 6,57	76.31 6.57	_			55 8 16	90		350	ยยากห
	ļ			.	Ì			Ì	Ì	ļ.,,		أ		ļì.		<u> </u>	<u>!</u>	-	-	-	_ ;		_	<u> </u>			82	76	37	1		55		<u> </u>	SKC	нячэттх48
		į							<u>.</u>	<u>!</u>							<u>l</u>	<u>.</u>						<u>.</u>												<u> </u>
											1																							-		<u></u>
	Ì	i			-	'n		i	•	-			444.0				1	Ì		Ť		•												.,		
					-				!	ļ	+		••••		ļ	ļ	 	-				••••						-	-				-		_	
	ļ.			ļ	-			Ì	ļ	<u>.</u>	-	,, <u> </u>	•••••		ļ	ļ	ļ		i					ļ			<u>.</u>	-								
	İ.,	!		Ì	ļ			<u>.</u>	ļ 	ļ	_				ļ	ļ	į	j.,						ļ					_							
															!	<u> </u>	•		1					<u>.</u>												
	Ī	1				Ì					Ī		****																							
	ŀ					•••			ļ	ŀ	1		••••		ļ	ļ	i	ļ	·-i								0									
नि	h	١.		-	-	+		-	<u>!</u>	-	÷	-			<u>. </u>	<u> </u>	-	+	-	+				├-				52	9	7		7			5,43	HOWBAH
18.4		ræ		ļ					ļ	ļ				ļ	ļ	ļ	ļ	ļ.,		<u>Ì</u> .				ļ			2 6.57	8 6,57	149		61	919	188		BEQ	вегли
132		122.6.						<u>.</u>	<u> </u>	<u> </u>	į		-	ļ	<u>.</u>	<u>.</u>	İ.,	<u>.</u>									22,	15.5	117				132		SHE	SEORAPHULI JM.
			,				1	!																			39.25	17.14	ខ្ល	η η		8.5	98		<u> </u>	вумоег
ļ	İ		.,,			Ì		_	İ	<u> </u>	i			1	Ţ		•		-	Ť							5.20	6.	9	6.6		50,9	59		BDC	
ļ	Ì			Т	<u>!</u>	÷	_	-	 	╁	+			:Ц !	J	-	<u> </u>							ļ			6/3/9	11,53 65,91 17,14 15,58	89			97.6	108	-	SKG	SAKTIGARN
<u> </u>	μ	}		i.				Ì	ļ	١		r				-	 	-				·	,	! -			8810	51		-2	_	0			348	Викрили
<u> </u>	١.								ļ	Ļ					ļ	-	ļ	4						ļ			27028 26131 25546 22105 21212 168241 11988 2067 3 95 20 39 29 29 22 25	25.71 66.53 13,15	34		_	9 69 5		_	KAN	ис Аиаия
	L				L				<u>!</u>						į	<u>.</u>	<u>.</u>							<u> </u>			182	99	32	39.9	-	72	110		nor.	AND AL JAGNA
	į																										23.21.2	25.71	8	73.5		74. 2	6			PSPRSOL LN.
İ	Ť	ij		Γ	Ϊ	١	****	<u></u>					1				1	ľ		Ĭ							2105	8.93	28	33.9	7	6.19	66		I ASN	
-	÷		.,	L	-	-	7.	<u></u>		-	-		J		 	T	. 	╁						ļ			462	3,418	<u>ر</u>			7 87	88	-	STN	.NL AUTHARATIS
<u> </u>	-		:	<u>.</u>			L	<u> </u>	┼-	<u>!</u>	-		,	ļ		ļi.	ļ.,	<u> </u>						ļ			31 25					_			중	CHROIA AHBANA
<u>.</u>		į						.	ļ				<u> </u>	ļ	<u>.</u>	ļ	ļ.,	! !						İ		ļ	8 261	5.85	រា	24.1	-		3	_	PKA	PRADIUM KHUNTA JU.
	•		٠,	:									,			<u>.</u>	<u>.</u>	1	1						Ì,			9.57	Ξ		_	77	8		DEN	HL GABANAH
	Ī																										54904 49264 30015	79.46 16949 29.27	7	28.7	-4	43.7	ş			
·	1			-		ï		ļ	<u> </u>		7		L	<u> </u>	İ	i	j:			T							797	6,6	3			42.7	4.5		A GHO	oomoh ju.
ļ	+			ļ				-	-	-			·••			ŀr	۱.	Į.,,		-				ļ			3	97	-	• **		en .	48	-	GAYA	GAYA JH,
į				ļ	į			į	ļ	ļ				-	_	<u>ij</u> .	ļ	Ϊ.,										,	2	38		-	<u> </u>	-	SEB	SON NACAR JN.
<u>. </u>	i				Ĺ			<u>i</u>	<u> </u>						L	Ì	<u>.</u>	<u>.</u>						<u> </u>	<u></u>	ļ	77 680 67265 552	7.81 11785 5.76	Ľ	Ε,			3		Sog	ZNOS-NO-INHAG
	1																										6726	1178	7	37.5		49.5	23	1	MGS E	HUCHAL, SARAI JA.
	ï	:	••••		-				[ï								T		Ī							80,46	18.	14	25	0 9	39.9	.97		! -	<u> </u>
ļ	ï							<u>.</u>	 !	1	ì			i	ļ		:	į.		Ť				Ì			77		2	'n	9	7 7	9,7	ļ —	Ę,	SUSHITAROST
	<u>.</u>		••	<u>.</u>	-			 	<u> </u>	 	-			ļ	-	4	ļ	Ų.,									8573	2,08		5	9		87	 -	ž	СИПИЛЕ
ļ	<u>.</u>		••••	ļ	ļ			<u> </u>	<u> </u>	<u>.</u>				ļ	ļ	Ļ		<u>.</u>						ļ			1019 1008 1942 19 1942 1825 54 18 18 06 165 135 85 54	80.8 31.08 24.31	ន	24.5	6 0	9 45	-	_	MZP	RUAZAIR
				ļ	<u>.</u>			<u>.</u>	<u>.</u>	<u>.</u>				ļ	<u>.</u>		4.	1						<u>.</u>			918	89	61	2	6.0	7	7.5		COI	синеок 1
	•						7.						:						4								818 Q	1,41	ន	23.5	٥.	7,	67		J	INIAN
	1		••••		Ī		••••		;	-			••••		I			Ī		ï			,,,,,,				25.54	7.48	82	•	٥,	52.9	57	—	ALD NYN	TELLA
	-		••••					ļ	ļ	-				L	μ.	÷	'n	ri		-		•••					2988	77	18		6.0	٧,	43		À	ALLANABAD
ļ	÷				-	-		!	ļ	-				ļ			Į.L	į.						-			61	21		3	0	4 41			Ä	IRNANAM
ļ	ļ.	}	••••		ļ]		į	ļ	ļ					į	<u>.</u>		ļ.,						ļ			4 942	\$ 99	18	5 21.5		4.0	42		£	FATEHPUR
										!								ķ.					.,				1008	11,61 65,95 99,21 17,44	2			7 17	.2		CHX	CHYKERI
	:			•				•						[ſ	-									019	1.61	2	22.5	٥.	42.4	7,	ř	5	
•	9		5	: 3 	<u>. </u>	96	?		8	·	-0.2	•	-;	9	·	Š	<u> 11</u>	0,7	. <u>.</u>	8	:		3	•	≘	<u>. </u>			vi	Ħ				Γ	8	КАПРЫЯ СЕНТЯЛЬ
																											я.	, i	PASS.I.S.	5	DEPART.	TOTAL				in.
								ute	тГ	10 (γε	7. 7.8	គួយ សូវនា	o .	one.	/8u	198	de)	СК	BIT								L		Z.		-		_	L.		STATION
								,,,	- 1		0		-1			'		,,,									١	STATE OF THE PARTY	ľ	No. 01	d		Track		Ι.	S. C.

- 50 -

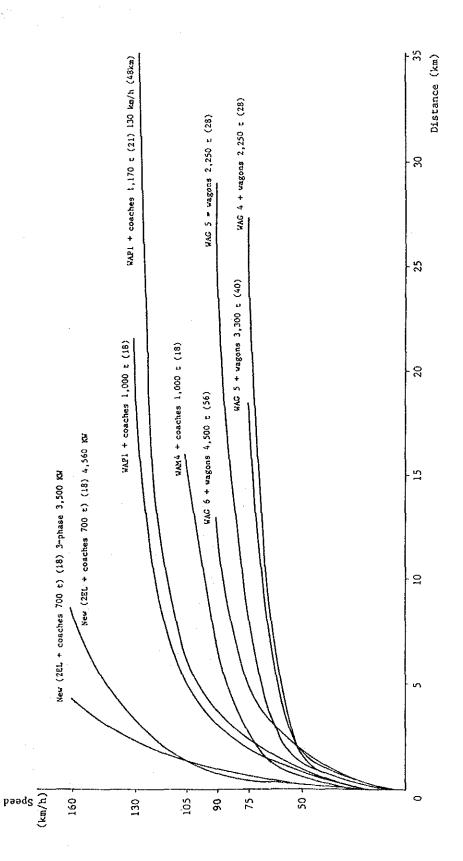
The rated power (P) of the traction motor (TM) is set with consideration given to the increase in allowable temperature. It is indicated in the following formula:

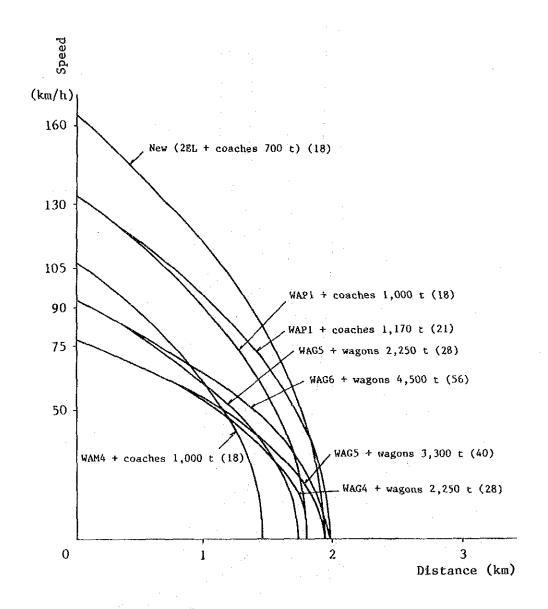
$$P = \frac{1}{1000} \text{ NEtIn (Kw)}$$

Here, N: No. of TM

Et: Terminal voltage of TM

I: Current of TM

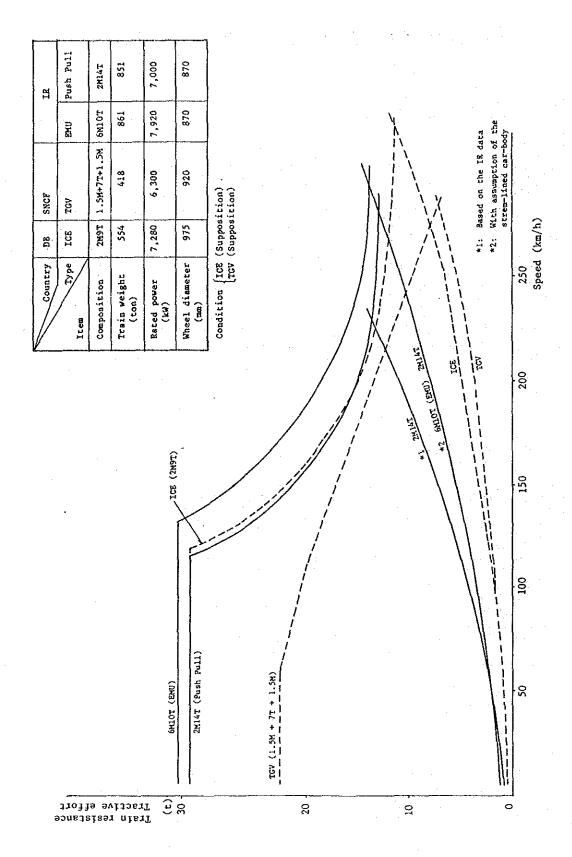

n: Efficiency


The actual power, however, can generally be raised to 50% more than the rated power in consideration of the coefficient of adhesion and the allowable, short-period overcurrent value (a shorter service life due to temperature increase should be remembered, using the rule of halving of the service life with each increase of 6°C or 8°C).

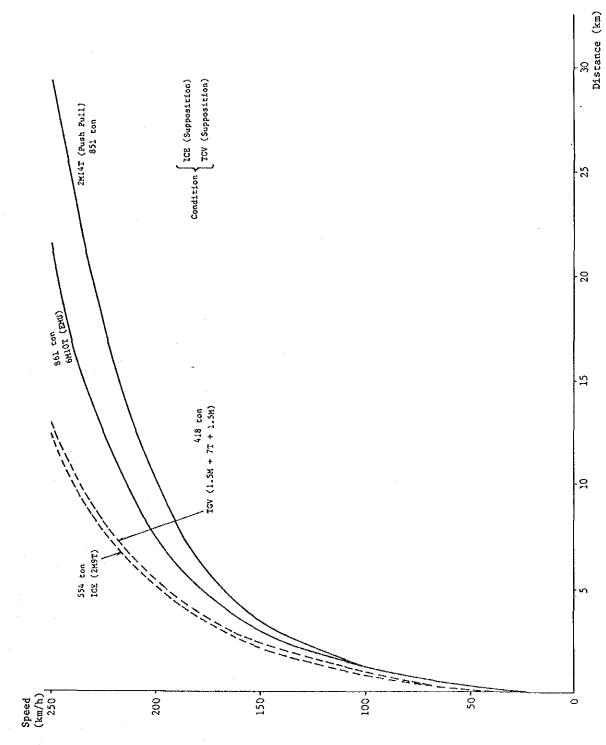
In view of the higher outdoor temperature in India, however, power up to 1.2 times the rated power can be used in the case of 4,560 KW EL as seen in an attached table.

In the case of the 3,500 KW EL, the 3-phase asynchronous power system with excellent readhesion characteristics are used, and commutator and armature winding are eliminated, therefore it is assumed that power amounting to 1.4 times the rated power will be possible.

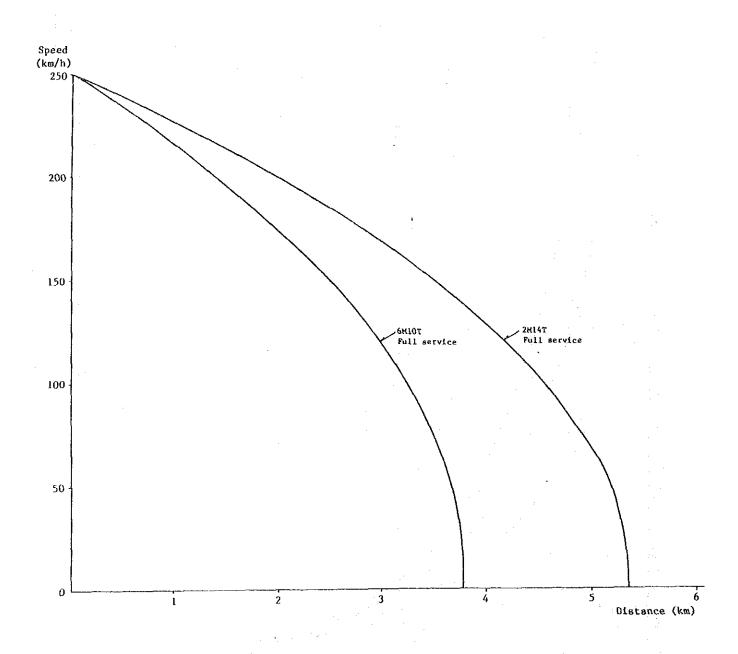
3.95 MG-1580 (MG-710) 87.6 (Level) Ordinary Freight PAGA 1,270 1,000 2,324 *1,102 2,250 680 3.94 WAG6 ø 970 850 960 4,560 1,102 123 4,500 Fast Speed (km/h) Condition: Tractive effort (Rated power) Local Pass. TAO-659 (BS-1050) 160 4.13 112.8 WAM4 9 1,095 750 2,677 1,055 1,000 978 150 WAP1 + coaches 1,000 c (18) WAM4 + coaches 1,000 c (18) Exp./Mail Pass. TAO-659 (HS-1050) 2.76 108.3 WAP1 1,095 2,795 1,055 1,000 750 840 WAP1 TE (43ZP) 140 Cont.
Rated voltage (V) Train Cont.
Rated current
(A) Train weight (t) 130 Rated power (KW) T.M No. of revolution (rpm) Cear ratio EL weight (t) No. of T.M. Wheel dismeter (mm) T.M type Item 120 Speed vs. Tractive Effort and Train Resistance Curve of Other 110 001 WAGG T.E (47ZP) 8 8 2 WAGS T.E (95%). WAM T.E (95%). WAGA ILE (182F) B (WAG5) + wagons 2,250 t (28) WAG5 + WARONE 4,500 t (56)
WAG5 + WARONE 3,300 t (40)
WAG4 + (WAG5) + WARONE 2,250 t
WAR1 + GORCHER 1 170 တ္တ 9 Trains on the Section 39 20 2 Train resistance Itactive effort \mathfrak{T} 20 8 9 3-1-(2)



3-4 Comparison of the High Speed Train Characteristics


Îtem	Country	Germany DB	France SNCF		Japan JR		Note
					Shinkansen		
Туре	of EMU	ICÉ	TGV	Series O	Scries 100	Series 200	
Comp	osition	2M9T	1.5M + 7T + 1.5M	16 H	12H4T	12 M	,
Carr	ying capacity (passengers)	432	386	1,342	1,277	885	
Trai	n length (m)	276	200	400	402	300	
	n weight (ton)	554	383 418	892 970	845 922	697 759	Tare Weight of loaded car
	sxle weight (ton)	20	16.8 16	16	15.3 13.9	16.4	H T
Max.	speed (km/h)	250	270	220	230	240	Operation
Rate	d power (kW)	3,640 × 2 7,280	525 × 6 × 2 6,300	185 × 4 × 16 11,840	230 × 4 × 12 11,040	230 × 4 × 12 11,040	Continuous
Room	Seat pitch (mm)		972 864	1,160 940	1,160 1,040	1,160 940	Pirst-class Ordinary
	Corridor width (Ea)		400 400	640 600	600 600	600 600	First-class Ordinary
Nois	e level dB (A)		90 ∿ 95	Under 80	Under 80	Under 80	
Acce	leration (km/h/s)	1.86	1.76 0.60 0.20	0.96 0.25	1.60 0.40 0.25	1.60 0.40 (240km/h) 0.13	5 km/h 210 km/h 260 km/h
Brak	ing distance (m)		0.20 260 km/h → 0 3,700	210 km/h → 0 3,000	0.25 230 km/h → 0 3,840	0.13 230 km/h → 0 4,100	Weight of loaded car and full service
pass Powe	ing capacity per enger r (kW/pass.) ht (ton/pass.)	16.9 1.28	16.3 0.99	8.8 0.66	8.6 0.66	12.5 0.79	
	umption energy passenger.km)		43	33	28	34	
Tran	sport service		1984 16 43	1985 13 37		1985 31 85	Million passengers/year Thousand passengers/day
Trai	n cost per passenger	173	166	78	100	152	<u></u>

Speed vs. Tractive Effort and Train Resistance Curve of Trains on the 3-5


Ņ	ŀ
ridor	
Corr	
New	

3-7 Speed vs. Distance Curve of Trains on the New Corridor (Braking)

3-8 Bolsterless Type Bogie

The bolsterless type bogie is so designed to improve running stability and riding comfort for the high speed rolling stock, and to reduce track destruction and vibration noise for its light weight, and requires less power cost.

(1) Outline

- I) In order to reduce track destruction and improve the running stability during the high speed drive, the air spring is directly mounted on the bogie frame instead of the conventional mounting method using the bolster and bolster anchor. The traction device is mounted at the rolling stock body which connects it with the bogie. Furthermore, the bolsterless type bogie has the following features in order to minimize the non-suspended weight.
 - a) One-wear wheel
 - b) Hollow axle
 - c) Flanged cylindrical roller bearing as the journal bearing which reduces the overall length of the axle
 - d) Grease lubrication for axle bearing
 - e) Gear box and axle box made of aluminum alloy
 - f) Speed generator mounted in the suspended part

In order to minimize the suspended weight, the following systems are adapted which reduce the weight of bogie frame.

- a) To change the position of the brake cylinder to scrap the end
- b) To adapt the new system of axle box suspension to reduce the length of side beam
- 2) For the rolling of bogie, the damper to add resistance is modified to minimize the snaking motion and the lateral force at a sharp curve, which reduces the wear of the wheel flange and improves riding comfort during high speed drive.
- The air spring is modified to improve the running stability, curving performance and riding comfort.

4) The wheel tread shape modified, and appropriate support rigidity of axle box is applied to reduce the lateral force and improve the running stability.

Fig. 1 shows an example of bolsterless type bogie and Fig. 2 shows the

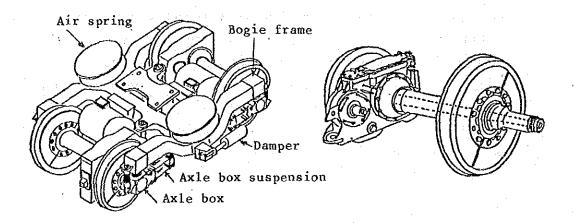


Fig. 1 An Example of Bolsterless

Type Bogie

Fig. 2 Hollow Axle

3-9 'WN' Type Coupling

(1) Function

The 'WN' type coupling couples the armature shaft of traction motor in the suspended part and the pinion shaft of gear box in the non-suspended part, and transmits power allowing their relative motion.

The 'WN' type coupling has enough degree of freedom for the displacement of both shafts caused by the variation of deflection of bogie axle spring, and the lateral and longitudinal motion of wheel set.

There are new and old types of couplings. In the new type, the rubber stopper system is adapted in which the air cushion is used instead of the coil spring to prevent the vibration in the axial direction and the coil spring failure.

Figs. 1 and 2 show the driving device and sectional view of coupling respectively.

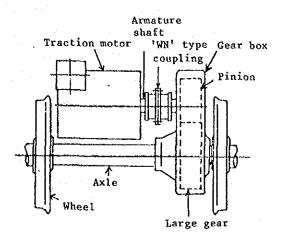


Fig. 1 Driving Device

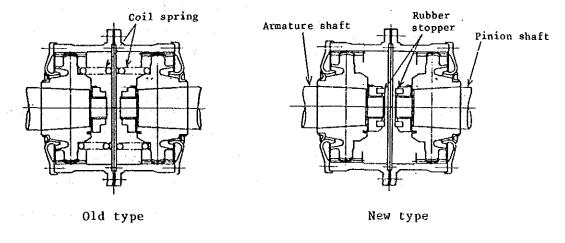
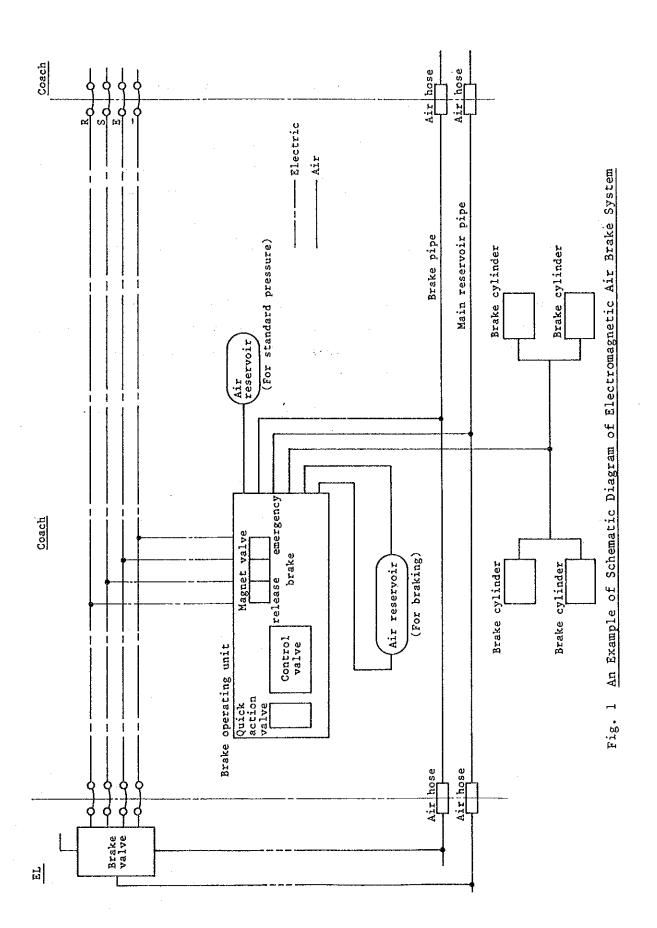


Fig. 2 Sectional View of Coupling

(2) Structure

1) The 'WN' type coupling, the double internal external gear type coupling, has the external gears shrinkage fitted with the tapered part at the end of traction motor armature shaft and pinion shaft, together with the sleeve with the internal teeth of the same number, and the flange on the sleeve tightened by the reamer bolt.


- 2) The external gear has round teeth end for large crowning, and the internal gear has the large face width to allow the displacement.
- 3) The sleeve joint has the center plate. In the old type coupling, the function of gear is ensured by pressing both ends of the center plate (which has a hole at the center) with the coil spring, while in the new type, the rubber stopper with the nut presses the center plate (which has no hole at the center) for displacement.
- 4) For easy assembling and disassembling of traction motor and gear box, 2 pcs. of center plate are mounted.

3-10 Electromagnetic Air Brake

In the conventional automatic air brake, the brake valve controls the pressure reducing and pressure intensification in the brake pipe, and with that brake, the brake is applied in the order from the top to the end of train. For this reason, long idle running time is required to have the effective brake power if the train is long, and the train cannot stop with short brake distance.

For highly responsive brake control, therefore, the magnet valve is mounted in each rolling stock. With this electromagnetic air brake, each magnet valve (Fig. 1) simultaneously operates at cab brake operation, enabling the synchronous brake application and taking off throughout the train.

Fig. 1 shows the schematic diagram of electromagnetic air brake system.

3-11 Disc Brake

The disc brake system has the axle disc type as shown in Fig. 1 and the wheel disc type as shown in Fig. 2.

The brake power of the disc brake is obtained by pressing the brake disc mounted in the axle or on the wheel onto the lining, it is being widely used as the friction brake for rolling stock and the wheel tread brake.

It features the large absorbing energy and is used for the air brake of high speed train with large brake load, or for eddy current brake of the trailer.

The air or hydraulic power is used for brake cylinder. The brake disc is mounted in the driving truck, which has the traction motor and gear box, at both sides of wheel (wheel disc type), and, in the trailer, between the left and right wheels (axle disc type).

The high speed train with disc brake has the wheel tread cleaner for stable coefficient of friction between rail and wheels.

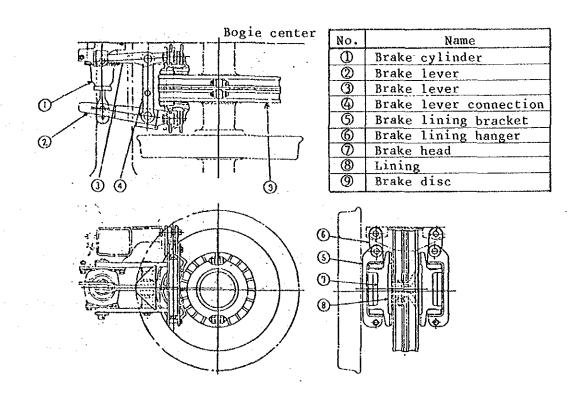


Fig. 1 Axle Disc Type

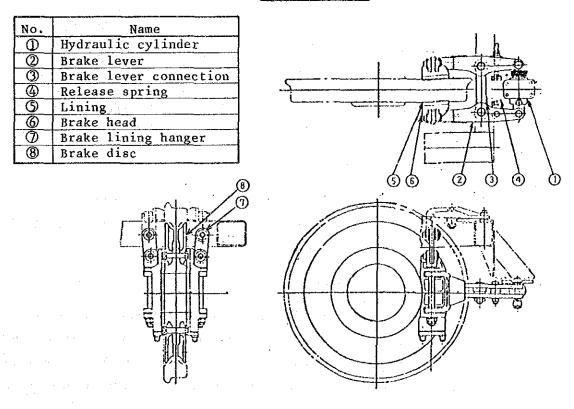


Fig. 2 Wheel Disc Type

3-12 3-phase Asynchronous Motor and Regenerative Brake

(1) General

In improvement in speed of rolling stock, making its weight lighter is desired to avoid raising track maintenance cost. However, the weight of rolling stock tends to increase because of the requirement for increased capacity of individual units of power equipment.

As one way of keeping the weight of rolling stock light while increasing the capacity of power equipment, the DC motor is replaced with an induction motor and the rheostatic brake with a regenerative brake. This allows the traction motor and the main transformer to be light and the main resistor and main controller eliminated. Although an inverter, must be additionally used, the power plant section which accounts for about one fourth of the total weight of a rolling stock can be reduced by about one third.

(2) Problems with brushes and commutator

The following problems are associated with the use of brushes and the commutator which are required for a DC motor.

1) Necessity of regular inspection

Regular inspection including replacement of worn brushes, check of commutator condition, check for contact of commutator and its repair, are required.

2) Failure-causing factors

Failures of DC motors are mostly improper commutation and flashover. In addition, failures of the traction motor plays a major part in rolling stock troubles.

3) Difficulty in increasing the capacity of the traction motor

Because the commutator and brushes occupy a relatively large area, the capacity per unit volume of the traction motor cannot be increased as desired. Consequently, it is difficult to enlarge the output of the traction motor which is to be accommodated in a small space of bogie.

4) Structural weakness

The commutator consists of mica and copper layers laid upon and tightly fastened to one another, resulting in a structural weakness.

(3) The use of induction motor

The induction motor provides a required speed characteristic curve by controlling the interlinkage flux of the rotor and rotor current. However, since, it is difficult to directly detect these two components, it is necessary to calculate and control the frequency, voltage, and slip frequency to be applied to the induction motor based on such parameters as circuit constant, rpm, direction of revolution, current of different phases, etc. Introduction of state-of-the-art power electronics technology with GTO (gate turn-off thyristor) and a microcomputer makes it easier to control frequency and complicated and operation of various parameters, which made application of the induction motor possible. Because a greater torque is required for the induction motor used as a traction motor, it is necessary to generate a 3-phase current using an inverter. The following improvements are made by utilizing the induction motor.

- The problem described in (2) is solved by using the induction motor as a traction motor, which does not need any brushes or commutator. This lowers the maintenance cost while enhancing reliability and capacity without increasing the weight of rolling stock.
- 2) Because torque is abruptly decreased with increase in revolution speed, the re-adhesion performance at the time of slippage of wheels is improved.
- 3) The induction motor provides the simplest structure of AC motors as well as strength withstanding a higher revolution speed.
- 4) The capacity of the main transformer can be reduced by controlling and improving power-factor by GTOs.

(4) The use of regenerative brake

The 3-phase asynchronous motor system does not require a main resistor and resistors for brakes because the powering circuit is used as a regenerative brake as it is. This system has advantages in weight, maintenance, and power-factor over the existing rheostatic brake system and regenerative brake system by DC motor.

(5) Others

The problems with the 3-phase asynchronous motor system to be solved in the future include lowing the cost of GTOs, establishing design standard, and enhancing the reliability of the bearings for a high speed motor.

Shown below are the block diagram of the traction circuit by 3-phase asynchronous motor and the standard speed characteristic curve for an induction motor.

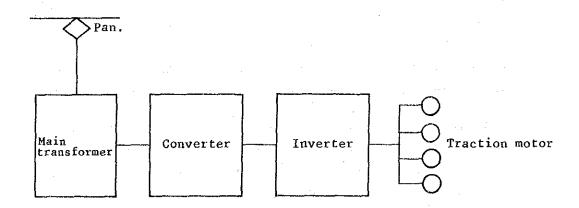
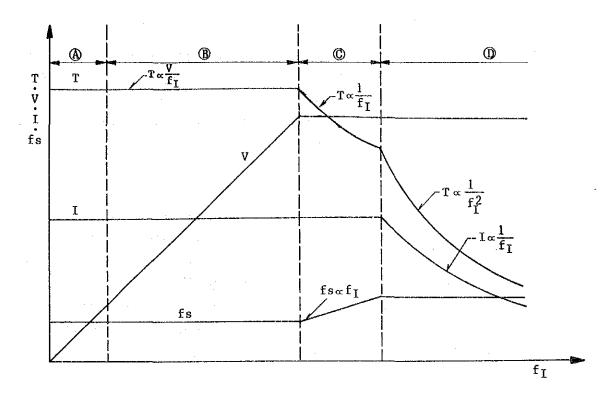



Fig. 1 Block Diagram of Traction Circuit by 3-phase Asynchronous Motor

(A): Starting region

B: Constant-torque region

(C): Constant-power region

(D): Characteristic region

T: Torque

V : Invertor output voltage

I: Motor current

f_s: Slip frequency

 f_{1} : Invertor frequency

$$T = K \cdot \left(\frac{V}{f_{I}}\right)^{2} \cdot f_{S} \qquad T = K' \cdot \frac{V}{f_{I}} \cdot I$$

K, K': Constant

Fig. 2 Standard Speed Characteristic Curve for an Induction Motor

3-13 Eddy Current Brake (ECB brake)

As for the trailer brake system, the rheostatic brake cannot be used, and the air brake application during high speed drive causes the large brake disc and lining abrasion, increasing the maintenance cost. Therefore, in the series 100 Shinkansen EMU, the eddy current brake is used instead of the rheostatic brake in the electric motor coach.

(1) Principle and conception

- 1) The coils of the same of different pole are mounted on the opposite side on the axle disc. When the current flows to the coils, the disc has the eddy current, and the braking force is obtained by the operation in the magnetic field. Figs. I through 4 show the chart of principle, external view, the brake characteristics of each pair of poles, and the characteristics of speed and braking force according to the coil current variation, respectively.
- 2) The heat energy generated during the brake application causes the temperature rise in the disc and wheel. The material with high heat resistance and good magnetic characteristics has to be used to keep the axle temperature surge within the tempering temperature.
- 3) For long brake disc and lining life, it is desirable to apply the eddy current brake up to the low speed area as much as possible. Therefore, the mono-pole opposition system which ensures the braking force for up to 70 km/h speed is used. (See Fig. 3 Brake Characteristics for each Pole Opposition.)

Table 1 shows the brake application system of trailer for each speed.

Table 1 Braking System of Trailer

(An example of series 100 Shinkansen EMU)

Speed range	System
230 ∿ 70 km/h	Eddy current brake
70 ∿ 25 km/h	Eddy current brake (required braking force by the rheostatic brake in electric motor coach)
25 km/h or less	Air brake

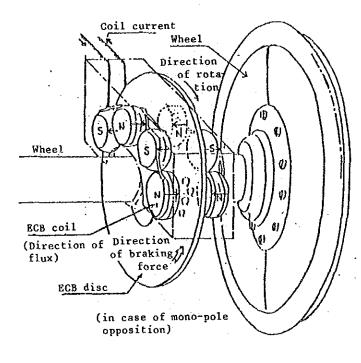
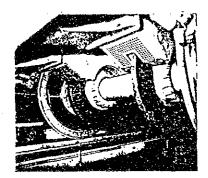



Fig. 1 Chart of Principle Drawing

Eddy-current brakes

The eddy-current brake used for the trailers consists of a wheel disc held between coils to generate an electromagnetic braking force.

Fig. 2 External View

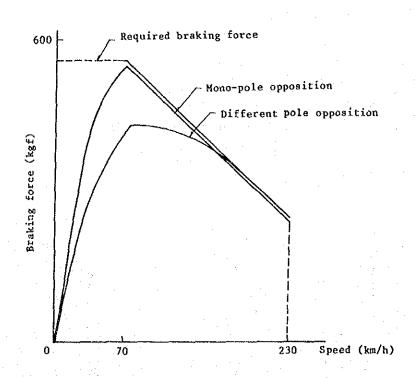


Fig. 3 Brake Characteristics for each Pole Opposition
(An example of series 100 Shinkansen)

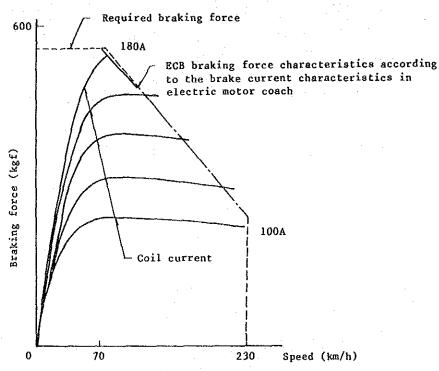


Fig. 4 Speed and Braking Force Characteristics
(An example of series 100 Shinkansen)