SUPPLEMENT

- SUPPLEMENT -1 Number of Science/Mathematics Teachers Needing Training
 - -2 ISMED Training Experience (1986)
 - -3 Memorandum of Agreement
 - -4 Related Organization Chart
 - -5 Boring Data

Supplement-1 Number of Science/Mathematics Teachers Needing Training

Regional Distribution of Total Science/Mathematics Teachers Needing Training by Subject and Type of School

					······································		·····	
Region	Туре	General Science	Biology	Chemistry	Physics	Mathematics	All Subjects	Grand Total
NCR	Private Public	66(53.2) 52(25.0)	65(47.4) 82(41.6)	76(59.0) 85(72.7)	46(76.6) 53(79.1)	104(23.5) 182(31.5)	357(40.0) 454(39.1)	811(39.5)
. 1	Private Public	48(40.4) 69(28.1)	41(35,3) 67(40.8)	30(41.0) 60(53.7)	35(44.4) 74(77.1)	169(43.3) 179(31.8)	323(41.6) 449(38.1)	772(39.5)
11	Private Public	39(52.8) 52(60.4)	29(37.2) 37(46.3)	36(58.1) 45(80.3)	28(60.8) 42(77.9)	56(34.6) 120(45.5)	188(44.5) 296(54.8)	484(50.3)
111	Private Public	13(18.8) 64(44.2)	12(46.1) 64(55.6)	34(72.4) 82(67.3)	11(44.0) 57(70.4)	55(34.1) 96(29.1)	125(38.1) 363(45.8)	488(43.5)
ΙV	Private Public	44(45.8) 66(38.8)	56(59.0) 73(47.3)	41(73.3) 99(76.7)	42(91.3) 67(85.9)	143(45.9) 207(42.7)	326(54.0) 512(50.4)	838(51.8)
V	Private Public	14(50.1) 40(44.9)	15(44.1) 46(44.2)	30(85.8) 50(92.7)	23(88.5) 38(90.5)	55(25.6) 225(51.6)	137(40.5) 399(55.0)	536(50.4
VI	Private Public	78(48.5) 427(59.1)	47(23.5) 225(45.1)	71(47.6) 177(58.0)	45(54.2) 154(73.7)	212(39.2) 272(24.6)	453(40.0) 1255(44.2)	1708(43.0
VII	Private Public	16(12.6) 161(62.0)	148(73.3) 142(45.5)	153(76.1) 155(79.0)	155(84.3) 64(67.4)	212(44.5) 272(38.6)	684(57.5) 794(50.6)	1478(53,6
VIII	Private Public	16(50.0) 44(38.3)	12(37.5) 51(50.1)	21(77.8) 49(76.6)	13(72.2) 36(78.2)	69(58.5) 159(51.8)	131(57.7) 339(53.5)	470(54.6
IX ·	Private Public	11(31.5) 63(48.1)	20(60.6) 52(62.0)	18(72.0) 44(68.8)	8(88.9) 29(78.4)	94(60.7) 82(25.4)	151(58.8) 270(42.3)	421(47.0
x	Private Public	3(27.3) 8(32.0)	10(47,7) 8(50,1)	8(100.0) 6(66.7)	5(83.3) 11(100.0)	37(55.2) 24(35.3)	63(658) 67(44.2)	120(49.6
X I .	Private Public	75(51.8) 79(50.7)	10(47.7) 8(50.1)	96(72.7) 63(75.0)	108(77.7) 78(90.7)	162(47.7) 298(56.2)	451(58.0) 526(60.2)	977(59.2
XII	Private Public	28(53.8) 32(59.4)	79(62.7) 62(53.0)	21(63.7) 19(67.8)	21(70.0) 17(62.9)	17(34.0) 66(40.7)	166(57.0) 196(50.5)	362(53.3
II Regions	Private Public	45.1(42.1) 1156(48.1)	544(48.5) 917(46.8)	635(65.0) 934(69.8)	540(71.9) 720(77.5)	1384(40.4) 2176(37.2)	3554(48.4) 5903(47.3)	
Total		1607(46.2)	1461(47.4)	1569(67.8)	1260(75.0)	3560(38.4)	9457(47.7)	9457(47.7

Supplement-2 ISMED Training Experience (1986)

Main Objectives		To increase comprehension of selected concepts and develop awareness of new approaches and strategies in science and mathe-	matics teaching. To upgrade content and techniques in the effective use of instructional materials.	To increase knowledge and competence in teaching High School Mathematics III and IV.	To develop skills in preparing and teaching lessons in Science and Technology I and upgrade comprehension of science concepts.	To develop skills in the construction/assembling/operation and use in classroom teaching of improvised equipment.	To become informed of the thrusts of the new Science and Technology II Curriculum.
Funding		NSTA	ടാളവ	DECS	DECS	NSTA	DECS
Number of Participants		149	50	16	15	16	75
Kinds of Participants		Secondary Science & Mathematics Supervisors	Elementary Math School Teachers	Secondary School Math Teachers	Secondary School Science Teachers	Tertiary Level Physics Instructors	Secondary Biology Teachers
Inclusive Dates		April 21- May 23	July 1-29	Aug. 5- Sept. l	Nov. 3-28	April 1- 11	May 26- June 7
Program	Packaged Courses	 Seminar for Science and Mathematics Supervisors at the Secondary Level 	 Materials and Techniques for Effective Teaching of Elementary Mathematics 	3. Secondary Mathematics Education	4. The Teaching of Science and Technology I	5. Workshop on Equipment Improvisation for College Physics Instructors	6. Try-out Training for the New Curriculum in Science and Technology II

	Main Objectives	To construct/improvise teaching devices for the study of wave motion and learn how to use these devices in teaching.	To produce transparencies and use them effective in teaching.	To develop essential knowledge about the fundamental properties and practical application of lasers and fiber optics.	To develop skills in constructing/ assembling some laboratory equipment/devices using recycled materials.	To introduce techniques in video production	To learn to integrate prepared software into the teaching of some chemistry topics.	
inding.	Agency	individual fees	individual fees	individual	individual fees	fees paid by res- pective schools	individual fees	
Number of	ÇL)	13	on .	14	12	m	Z .	
Xinda of	1.2.2	Secondary Level Physics Teachers	Secondary Level Teachers	High School Physics Teachers	High School Science Teachers	School Techni- cians	High School Chemistry Teachers	
ovi su fort	Dates	May 12-16	May 26-30	July 19,26 Aug. 2, 9, 16, 23	Aug. 16,23 30,Sept.6	Sept. 2-	Sept. 13, 20, 27 Oct. 4, 11 18	
	Program	Minicourses 1. Development and Utilization of Teaching Devices for the Study of Waves	 Production of Transparencies and Effective Use of the Overhead Projector 	3. Introduction of Lasers and Fiber Optics	4. Science Instrumentation Course for High School Teachers	5. Training on Video Production	6. Microcomputers in Chemistry Teaching	
	er er er			- 274 -				

	ţ	
ŧ	٠	1
	٠	
	١	

	Program	Inclusive Dates	Kinds of Participants	Number of Participants	Funding Agency	Main Objectives
7.	Electronics for Physics Teachers	Sept. 20, 27 Oct. 4	High School Physics Teachers	16	Pundasyon	To identify and explain the functions of electromagnets, diodes, transistors, and inductors.
ώ	Development and Use of Low Cost Equipment for Elementary Science Teaching	oct. 4, il	Science co- ordinators, head teach- ers and high school teachers	12	Pundasyon	To develop skills in constructing/ assembling low cost equipment for use in elementary science.
ஏ.	Quantitative Aspects in Chemistry	Oct. 20-24	High School Chemistry Teachers	31	Pundasyon	To develop skills in the use of the problem-solving approach in Chemistry teaching.
10.	Microcomputers in Mathematics Teaching	Nov. 8,15, 22, 29 Dec. 3	High School Math Teachers	বা	individual fees	To develop competencies in using the computer as a teaching aid in in Mathematics.
Sen	Seminars/Workshops/Convention					
. .	Association of Asian Biology Teachers (AABE)	Dec. 1-5	Secondary & Tertiary Biology Teachers	160	UNESCO AABE funds	To keep abreast of new developments in biology education and biological research.
	Regional Conference on Micro- computers in Physics Education	Aug. 20-22	Physics Educators from 12 Asia-Pacific	59 ASPEN	UNESCO ROSTEA) ASPEN ICTP and NSTA	External Agency
m m	Workshop on the Training of Physics Teachers	Nov. 15-29	Physics Educators from 13 Asia-Pacific	15	UNESCO	
4	Development of Exemplar "Science for all" Teaching/Learning Units for Primary Level	Jun. 2- Apr. 30	Primary School Science Teachers	12	UNESCO	To develop skills in writing teach- ing units for primary school science.

Supplement-3 Memorandum of Agreement

MEMORANDUM OF AGREEMENT

IKNOW ALL MEN BY THESE PRESENTS:

This Memorandum of Agreement, made and entered into this 2/8t day of <u>October</u> 1987 by and among

The Department of Education, Culture and Sports represented herein by Secretary Lourdes Quisumbing, with principal office at Palacio del Gobernador, Intramuros, Manila, hereinafter referred to as DECS

and

The Department of Science and Technology, represented hereingly Secretary Antonio V. Arizabal, with principal office at General Santos Avenue, Bicutan, Taguig, Metro Manila, hereinafter Wreferred to as DOST

and.

The University of the Philippines System, represented herein Aby President Jose V. Abueva with principal office at Diliman, Quezon City, hereinafter referred to as UPS.

WITNESSETH

WHEREAS, the Science Education Development Plan of the purpose of

STEN B. OGENA

1

Helenis anatrus

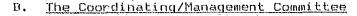
WHEREAS, the DOST in pursuit of its objectives to develop and implement, together with other entities concerned, programs for strengthening scientific and technological capabilities through manpower training and through infrastructure and institution building and rationalization.

WHEREAS, the DOST through its Science Education Institute is empowered to formulate plans and establish programs and projects for the promotion and development of science and technology education and training in coordination with DECS and other binstitutions of learning in the field of science and technology.

WHEREAS, the UPS, through its Institute for Science and Mathematics Education Development in spearheading science education in the Philippines has the necessary expertise and Dapabilities.

WHEREAS, DECS authorizes the improvement of curricular programs and the quality of instruction through training and retraining of teachers.

WHEREAS, the government of the Philippines in consideration of all the above premises has submitted the National Learning Resource Center for Teacher Training in Science and Mathematics project, hereinafter referred to as the PROJECT, to the government of Japan for financial assistance.


Carpen

ANIONIO V. ARIIMBAL Ethnologiand Technolog

JOSE V. ABJENA STATE OF THE PHILIPPINES SVS! Now, therefore, for and in consideration of the foregoing he parties hereby agree as follows:

- I. Establishment of a Steering and a Coordinating Committee for the Project
 - 1. The Steering Committee shall be composed of the Secretary, DECS, Secretary, DOST and the President, UPS and shall be chaired by the DECS Secretary.
 - 2. The Coordinating Committee shall consist of the following:
 - a. Undersecretary for Programs Chairman and Projects, DECS
 - b. Undersecretary, DOST Co-Chairman
 - c. Undersecretary for Foreign Vice-Chairman Assisted Programs, DECS
 - d. Director, INNOTECH Member
 - e. Director, ISMED-UP Member
 - f. Director, BHE-DECS Member
 - g. Director, BSE-DECS Member
 - h. Director, BEE-DECS Member
 - i. Dean, College of Education Member University of the Philippines
 - j. UP-ISMED Staff Secretary
- II. Roles and Responsibilities
 - A. The Steering Committee
 - Lays down policies and procedures for promoting coordination among the concerned agencies and institutions
 - Promotes cooperation among parties involved in teacher training as well as with other educational bodies and institutions.
 - Monitors and evaluates the project
 - Reviews the reports of the Coordinating Committee

- 1. Provides the implementing guidelines for the various activities of the project in accordance with the policies set forth by the steering committee
- 2. Evolves a 5-year plan of action
- Conducts discussions with the Japanese Missions dispatched by Japanese government
- 4. Sees to the implementation of planned programs for the full utilization of the center
- 5. Coordinates, monitors and evaluates the various activities of the project
- 6. Reports to Steering Committee matters related to project
- Performs other functions assigned by the Steering Committee.

C. The Department of Education, Culture and Sports

- Selects participants (teacher leaders, supervisors, science educators) for the training programs at the NLRCTT
- Provides financial support to the public sector participants (salary, travel, allowance) for national and regional programs
- 3. Follows up participants
- Conducts in service programs at the division and school levels.

Adultini

army

D. The DOST Through Institute of Science Education

- 1. Provides funding to national training programs at the NLRCTT (cost of training and related financial support per diem, book allowance)
- Provides financial support to the training program in the regional centers
- 3. Monitors the programs
- 4. Provides science and technology policy inputs into the program.

E. The UP Diliman Campus Through ISMED and College of Education:

- 1. Provides a site for the PROJECT
- Provides financial support for MOE and personnel services of the project
- ISMED director is manager of the day-to-day operations of the project, accountable to the Coordinating/Management Committee
- 4. ISMED provides secretariat support to project
- ISMED implements/conducts the training programs at the Center
- 6. ISMED takes responsibility for initiating/ organizing new science/science education courses for teachers which are lab/activity oriented, in collaboration with science specialists
- 7. ISMED shares its expertise and resources with the public and larger number of teachers by conducting activities/ programs designed for public education, upgrading teaching competencies of teachers and their knowledge and understanding of subject matter
- College of Education participates in the design, conduct and accreditation of courses.

Some

III. Effectivity

This agreement shall take effect immediately upon execution hereof and shall continue to be in force until the completion of the PROJECT unless otherwise revised or terminated upon consent of parties involved.

In witness hereof, the parties hereto have hereby affixed their signature on date and place, first above written.

ANTONIO V. ARZABAL Secretary, DOST LKULLIBUMBING
LOURDES R. QUISUMBING
Secretary, DECS

JOSE V. ABUEVA President, UPS

Witnesses:

ESTYR B. OGENA

Thinks O. Satrain

REPUBLIC OF THE PHILIPPINES) QUEZON CITY

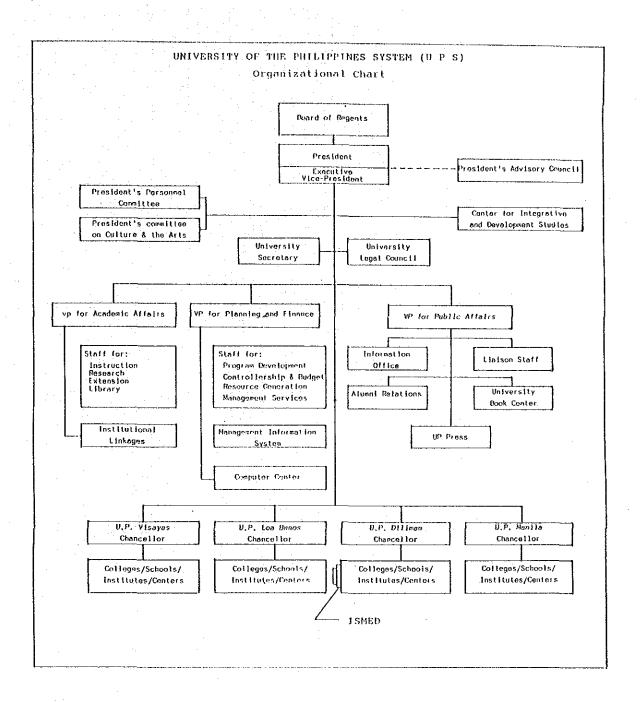
ACKNOWLEDGEMENT

the undersigned Notary Public on this _____ day of __**OGT 21 1987** ____ 1987 appeared LOURDES R. QUISUMBING in her capacity as Secretary of the Department of Education, Culture and Sports, exhibiting to me her Residence Certificate No. VVV68 G., issued at Quezon City on February 18, 1987, ANTONIO V. ARIZABAL in his capacity as Secretary of the Department of Science Technology, exhibiting to me his Residence Certificate 7012928 F , issued at Pasig, Metro Mla on March 5 and JDSE V. ABUEVA in his capacity as President of the University of the Philippines System, exhibiting to me his Residence Certificate No. 3938338 G, issued at Quezon City on October 5 , 1987, all three of whom are known to me and to me known to be the same persons who executed this foregoing Memorandum of Agreement consisting of 7 pages including this acknowledgement and acknowledged the same as their free and voluntary act and deed and that of their principals referred hereta.

IN TESTIMONY WHEREOF, I have hereunto set my hand and affixed my notarial seal at Quezon City, Philippines, on this ____ day of OCT 21 1987 . 1987.

Book No.

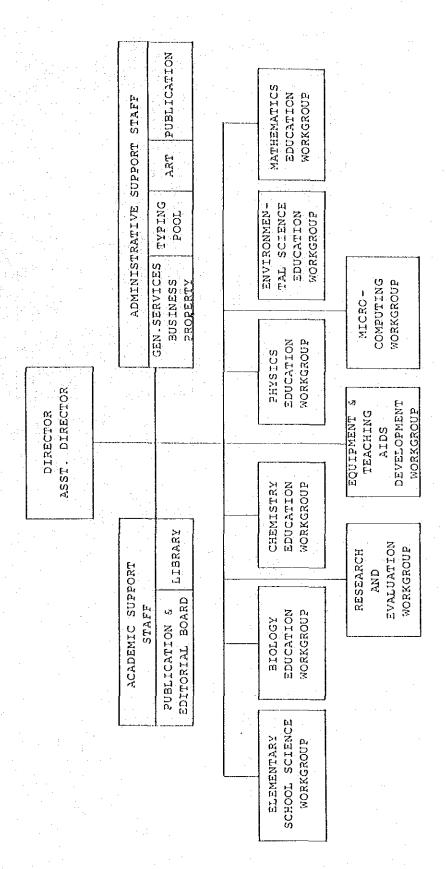
Series of

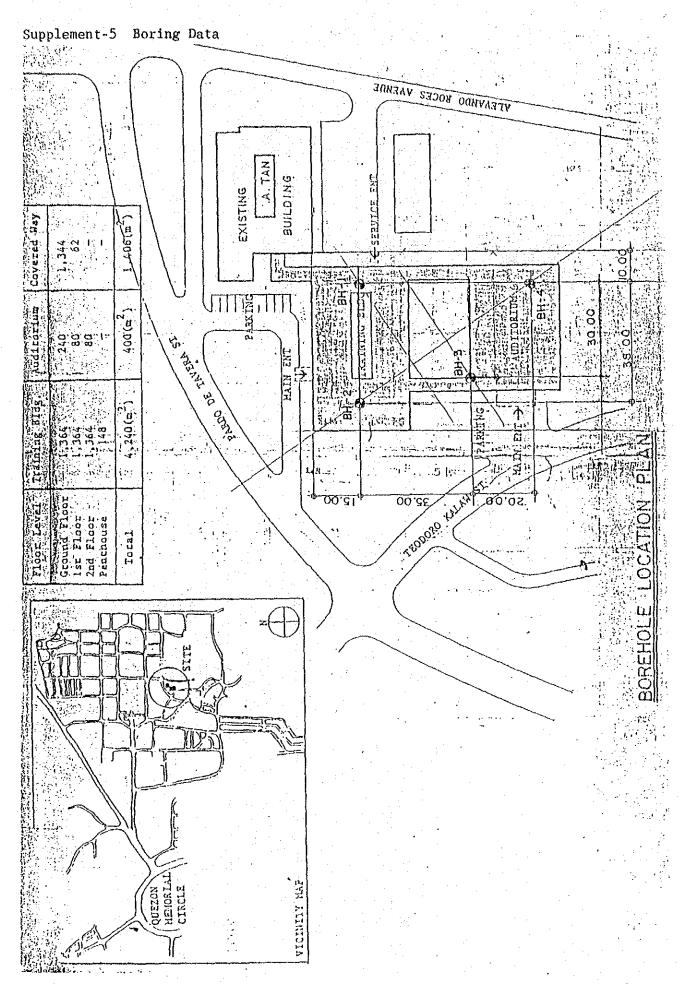

Supplement-4 Related Organization Chart

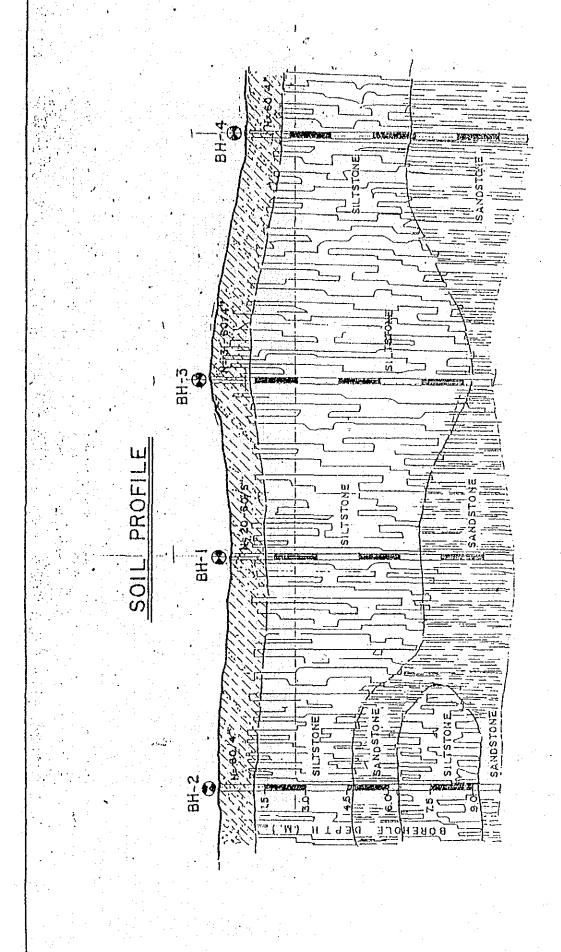
DEPARTMENT OF EDUCATION, CULTURE & SPORTS (DECS)
ORGANIZATIONAL CHART

SUPERVISION	BOARD OF HIGHER EDUCATION	FOREIGN STUDENTS & SPECIAL ACTIVITIES OFFICE	HEAD EXECUTIVE ASSISTANT OFFICE	EDPITAF	INSTITUTE OF ARTS AND LETTERS	
ADHINISTRATIVE SUPERVISION	EDUCATIONAL ASSISTANCE POLICY COUNCIL	POPULATION EDUCATION PROGRAH UNIT	INFORMATION AND PUBLICATION SERVICE	BUREAU OF SPORTS DEVELOPHENT	INSTITUTE OF MAT'L LANGUAGE	
OFFICE OF THE MINISTER	INSTRUCTIONAL MATERIALS COUNCIL	SCHOOL HEALTH AND NUTRITION CENTER	PLANNING SERVICE	BUREAU OF CONTINUING EDUCATION	NATIONAL HISTORICAL INSTITUTE	REGIONAL OFFICES (13)
OFFICE	BOY SCOUTS OF THE PHILIPPINES	OOLLGES AND UNIVERSITIES MATIONAL EDUCATIONAL TESTING CENTER	FINANCIAL AND HANAGEMENT SERVICE	BUREAU OF TECHNICAL & VOCATIONAL EDUCATION	NATIONAL HUSEUM	REGIONA
	NATIONAL YOUTH AND SPORTS DEVELOPMENT FOUNDATION OF THE PHILIPPINES	HUSIC PROHOTION FOUNDATION NAT'L SCHOLARSHIP & STUDENT LOAN CENTER	ADMINISTRATIVE SERVICE	BUREAU OF HIGHER EDUCATION	THE NATIONAL LIBRARY	
ATTACHED CORPORATION	INSTRUCTIONAL HATERIALS CORPORATION	GIRL SCOUTS OF THE PHILIPPINES PHILIPPINES CHILD & YOUTH RESEARCH CENTER		BUREAU OF SECONDARY EDUCATION		
ATTACHED	NATIONAL SOCIAL ACTION COUNCIL			BUREAU OF ELEHENTARY EDUCATION		

SCIENTIFIC and TECHNICAL SERVICES GROUP (6) SECTORAL PLANNING COUNCILS COLLEGIAL and SCIENTIFIC BODIES SNId PAGASA PCASTRD PCAMRD PCAFRD PCLERD PCHRD NAST PNSS STI PSHS DEPARTMENT OF SCIENCE & TECHNOLOGY (DOST) ORGANIZATIONAL CHART (E.O. 128, 30 JANUARY 1987) US (STS) SECRETARY 3 ASST. SEC. REGIONAL OFFICES (12) US (RO) US (R&D) EN EN SEC. and U.S. in SECTORAL PLANNING COUNCILS CHAIRED BY SEC, DST FPROI ALS INTER COUNCIL REVIEW BOARD FMS PES RESEARCH and DEVELOPMENT GROUP (4) PTRI STAFF SERVICES (3) ASTI MIRDC **2081** PNR IDL


TAPI


ISMED


ORGANIZATIONAL CHART OF THE U.P. DILIMAN

- 586 -

The Research and Evaluation Workgoup, the Equipment and Teaching Aids Development (ETAD) Workgroup, and the Microcomputing Workgroup actually cut across all the other workgroups.

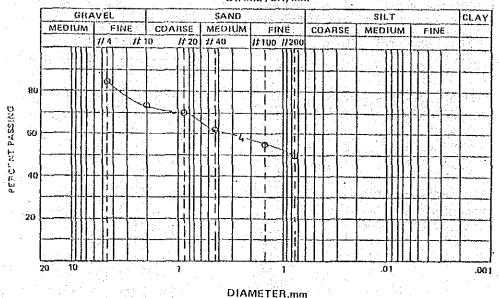
BORING LOG

SAMPLE DESCRIPTION	် ဝ ဂ	CONSISTENCY	U.C.S SYMBOL	R	N - Q - Q 40	81 0	0	W S	 7.	Pl	-	<u> </u>	NI	MC	-	LĻ	P.I.	OTH TE RES	ST.
(SS-1) light gray silty SAND with fragments of SILTSTONE inclusion (CS-1) light gray weakly cemen- ted SILTSTONE (Rec: 150/53/0 cm) (CS-2) Same Formation (Rec: 150/27/0 cm)	ログラングラング	VERY DENS COR 1.50	SM SM	20	40	100	10.8										· 《 · · · · · · · · · · · · · · · · · ·	WAT 2.3	TER CA
Same Formation (Rec: 150/57/20 cm) (CS-4) brown slightly cemented SILTSTONE to brown slightly weathered tuffaceous SANDSTONE (Rec: 150/126/79 cm) (CS-5) Brown to gray highly weathered tuffaceous SANDSTONE (Rec: 150/24/10 cm) (CS-6) gray highly weathered tuffaceous SANDSTONE																		等於 有其事的 人名英格兰人姓氏克勒特的变体 人名英格兰人姓氏克克斯的变体 化二丁二丁二丁二丁二丁二丁二丁二丁二丁二丁二丁二丁二丁二丁二丁二丁二丁二丁二丁	

BORING LOG

PROJECT INSTITUTE OF SCIENCE LOCATION UP DILIMAN, QUEZOI	V CUT	Υ	WIY,	BOREHOLF NO	BH-5 Grit AYYY DEAEIIDIR W	1.0N	li Digital
SAMPLE DESCRIPTION	۲0 <i>و</i>	CONSISTENCY	U.C.S SYMBOL	■ - ACT. REC,	WATER CONTENT	P. I.	OTHER TEST RESULT
gray sandy SILT with fragments of SILTSTONE (CS-I) light gray slightly cemented SILTSTONE (Rec: 150/112/108 cm) (CS-2) light gray well cemented SILTSTONE (Rec: 150/150/150 cm) (CS-3) gray well cemented SILTSTONE to light brown slightly weathered SANDSTONE (Rec: 150/150/110 cm) (CS-4) light brown to light gray highly weathered SILTSTONE (Rec: 150/29/0 cm) (CS-5) Light gray slightly cemented SILTSTONE (Rec: 150/60/0 cm) (CS-6) light gray SILTSTONE to brown to gray highly weatered SANDSTONE (Rec: 150/60/0 cm) (CS-6)		VERY DENSI (COR) (1, 50	NG		AL = 26,35 A din 2		WATER W/O CA AT 2.80 M

BORING


PROJECT INSTITUTE OF SCIENCE		MATICS EDUCATION	AL DEVELOGIMANT
LOCATION UP DILIMAN, QUEZO	ON CUTY	BOREHOLE NO.	BH-3_SHT,_IOF
SAMPLE DESCRIPTION	L O G	M - ACT. REC. N m N - BLOWS U ≥ A - R Q D 20 40 60 (10 000*4)	WATER CONTENT PL NMC LL PL TEST RESULT
(SS-I) light gray sandy SILT with fragments of SILTSTONI inclusion (CS-I) light gray well cemented SILTSTONE (Rec: 150/150/139 cm) (CS-2) light gray slightly cemented SILTSTONE (Rec: 150/111/96 cm) (CS-3) light gray slightly cemented SILTSTONE (Rec: 150/150/112 cm) (CS-4) light brown (slightly cemented SILTSTONE (Rec: 150/87/70 cm) (CS-5) Same Formation (Rec: 150/96/88 cm) (CS-6)	DEN (GC	Y SM	20 40 60 80 100 % WATER W/O CA AT 3.00 M G(1 = 37.0 kg/cm) ²

]	CATION UP DILIMAN, QUEZ	DN. CI.	TY		_BOREHOLE NO	SHT	of
£ .	SAMPLE DESCRIPTION	5 O J	CONSISTENCY	U.C.S SYMBOL	A-RQD	WATER CONTENT PL NMC LL 20 40 60 80 100 %	OTHER TEST RESULT
フェーを見る動き	(SS-I) light gray sandy SILT with		V&RY DENSE	SM			WATER LE W/O CASING
3	hragments of SILTSTONE inclusions (CS-1) Light gray slightly cemen-			ГИС			1.70 M.
3	ted SILTSTONE (Rec: 150/116/96 cm) (CS-2)						•
4	light gray weakly cemented SILTSTONE (Rec: 150/30/17 cm)						
5. S.	(CS-3) Light brown slightly cemented SILTSTONE to brown SANDSTONE					<u> </u>	
4. (O.) - 3.	(CS-4) light brown slightly						
7	cemented SANDSTONE (Rec: 150/80/70 cm)						
3	(CS-5) light brown highly weathered tuffaceous SANDSTONE						
9	(Rec: 150/68/35 cm) Same Formation (Rec: 100/54/27 cm)						

DIAMETER, mm

DIAMETER,mm

								• • •	
вн хо.	SAMPLE NO.	DEPTH	CURVE NO.	NMC	LL	PL.	PI	U.C.S. CLASS	DESCRIPTION
3	5S-1	1.00	3	43	-	_	•	SM	
4	SS - I	1.00	4	42	u	-		SM	
-									

ASIA SOILTEST, INC.

	Job No.
PROJECT: UP ISHED	Borohole/Sample No.BH-2.CS-1Date Sampled: 11-04-86
Contract No.	Depth: 1.50-3.00 M. Date Tested: 11-04-86
	Tested By: PM/JS Date Finished; 11-04-86

UNCOMFINED COMPRESSION TEST REPORT

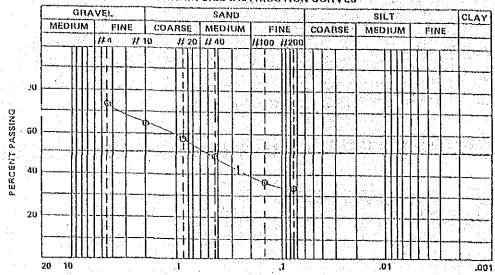
но.	SP(CO)	1017 1017	ION	ļ	HE	4.5		<u> </u>			ER		M(C	OIS ONT	ruri Ent	E	DI	WE ENS	T HTY	į	JNC OM ST	ONF PRE	INE SSIV GTH		FAIL STR	.URE AIN (%)	SEI	NSIT RATI	O
		-			H	(cin)	· 		Ø	(cit	1)			<i>(/-</i>	(%)	L		(0/	cm³	ر (qu	(ka/	cm ²		€	(%)		St	-
1		S			1.	1.4	0			5.0)						1	. 66	572		26	.3	 б	1	2.0)		T	
										-						7				1				+	· · · · · ·	· ·	_		
REMARKS	•							٠٠,-				i								L							.1		
/ISUAL C	LAS	SIF	CAT	ION					<u> </u>									۰	·				 -						
				· 	<u> </u>	ros	mi	sh	gr	ау	ទា	1t	st	one	-				-	-		******			يي استونين	***************************************	and the second second	(Control	الودفعوناهما
																		•								SF	ULTI	MEN MAT	E.
	Ī	_			<u></u>																						FAI	LUR	E
•	-			+-	-		-			_									-	_	_	_			•				
:	-			-	-	-	-											-	{	{					٠.,				
•				1	-															-	7	-	+		•				
4																									•				1
kg/cm²	.			-	-	_				ļ										_			_						i
kg (·		-}-	-			├			_	_			 - -						_		-	-						
ρ .	30.	+		-	┼-	-	-		ᆣ				 	╁╌			-			-		-	-		,				Ĩ
ડેડ																				1	,	-	1				胍		1
STRE																				Z							W		
N T	-	-		-	-	ļ	_	_			_		-	 	-		_	_5			Ĺ								
щ	20	+		-	┼-	-	-	-			-	-	-		-	(,	_		-		7					٠.		٠,
COMPRESSIVE			1	-	十			-				-		-		~		-											
ผ														\geq	<u> </u>														
X.	-		_ _		_	_	_	_				2	1							_									
ζ,	10	}	_ -	+	-		-		1	کرا			<u> </u>	-	 -	-					-	_					•		
	}-		- -		┤	-	-	5	-	-	-			╟	-					-					·				
	. }	1		-	\Box		V-	1	-		-	-	-		-							-							
			_	47	φ	-																			•				!
	Į.			L.	<u> </u>	 _	1_		<u> </u>	<u> </u>	_	L	_	<u></u>	L_			Ļ_	<u> </u>	L			Ш			-			, .
					Ü	1.5				3.	. 0				. 1	!5				2.	O					[:

ASIM STOPPING TO THE PARTY.

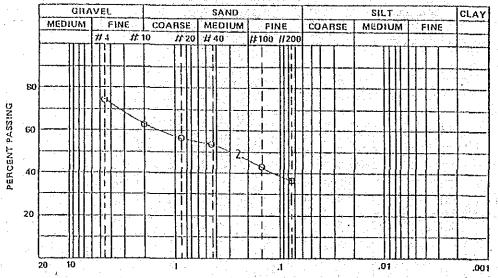
	Job No.
PROJECT: UP ISMED	Dorehole/Sample No. 1811-3, CS-20ale Sampled : 11-04-86
Contract No.	Depth: 3.00 - 4.50 M. Date Tested: 11-04-86
Location: Diliman, Quezon Ci	

UNCORFINED COMPRESSION TEST REPORT

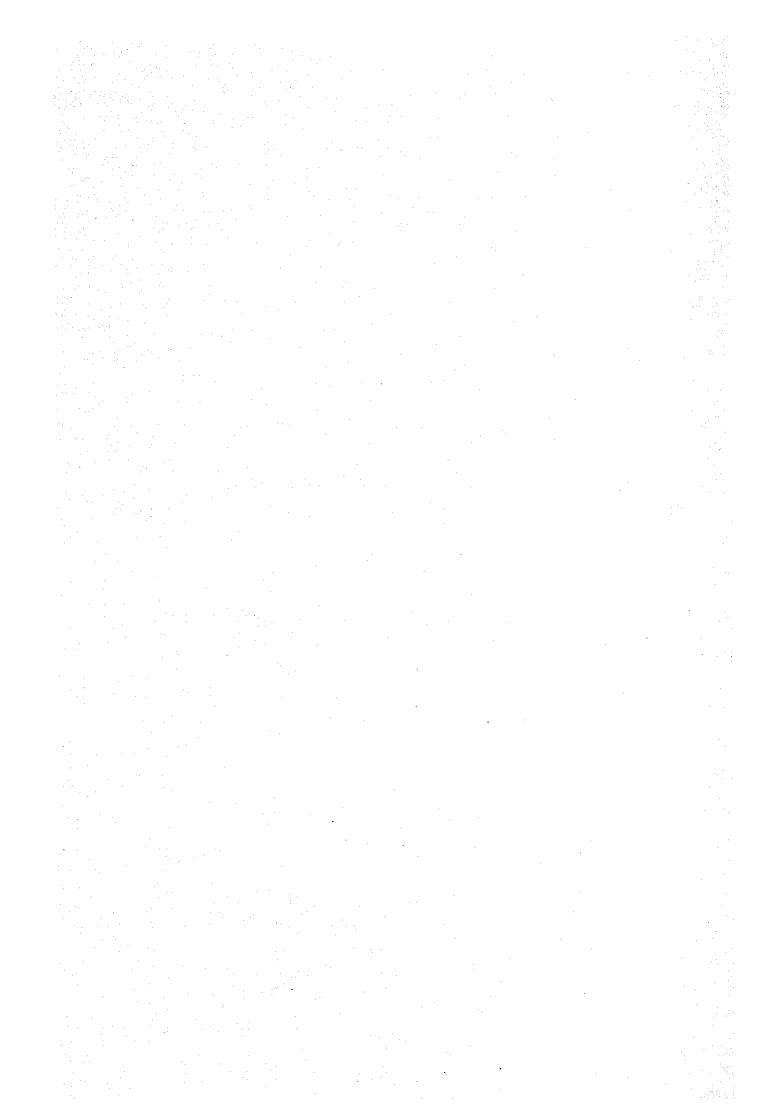
BPECIMEN No.		EES ICS				ME			-				4	C(TIC	URI		ં છા	WE.	TY		ONC	ONE PRE	GTI SSIVE	Q K	FAII	URE IAIN (%)	SENSITIVITO RATIO	
	٠٠٠					HE IC	int one		D	IÀ!	le f	ER)		1	<i>(</i> /*	(%)		ð	lo.∕	cm3)	gli S I I	(ka	cin ²	5	ϵ	(%)	St	
2		CS				1	1.	50			5	0.				 1.(582	9			37	.00		4.40					
				_													- -						 -	 -	1				
EMARKS	•			<u>-</u>									1	•			1_					·			_1_			<u></u>	
VISUAL C	LAS	SIF	IC/	riic	, NC																					<u> </u>			
	-						LO	17111	SII	<u>g</u>	ay	<u>s</u>	and	lst	Ott	e 			. 2.								1		
			•				*				ż					٠.				N 3					1			ECIMEN AT	
	Ĩ]																					Ī					FAILURE	
•					_							-				_												÷ " ;	
			-				-					_				-			_	-	_				\dashv				
				-														-					\dashv	-					
				-		-							-						2 2								l r		
K E									3		i.														. 227				
2 mo/s 4() [,								1. :			_		4 : ' 4 - '								1 1		
6			_			-			_				==	ξ	_	_	_			_					_				
	}					2-1		-		_	2	_	-		_								_				1		
88.83 3(_	-			/					-	h -	-								:				
S S) -															7			-									ane eacher.	
ш									L				_			-			_										
>					_		-	1	_	_	_	_	_			_			ļ	_	_				_				
(i) 20) -			-		-		1	-	-				-		-	-		-	-	-	-			1				
<u>ت</u> 0;				-	-		7	1-	一	-			-	-		ببد	-		-			-							
>18888800 >18888800						Q)— 		<u> </u>		\Box																		
	٠				5	<u>7</u>																			- 1			:	
16	•				2	 		1.	-	ļ.,	-		<u> </u>			2	-			-			1.0		1				
		;		10	-		-		-	-	-	-		-	-			-				-							
4		9	<u></u>	-	-	-	L	ļ.,		<u> -</u>	-	-	-		-	-	 -	-	-	-	-		-		 -				
		Y	/ -	L	<u> </u>	ـــــ	 1	4	 -	·L	1	 '2	J	٠	· I	ل ,	} }	خياه رو	!	4	ا		Щ	L	-	1		· .	
	•						_				:	<u>.</u>	-	1							:.	į,	•				1		

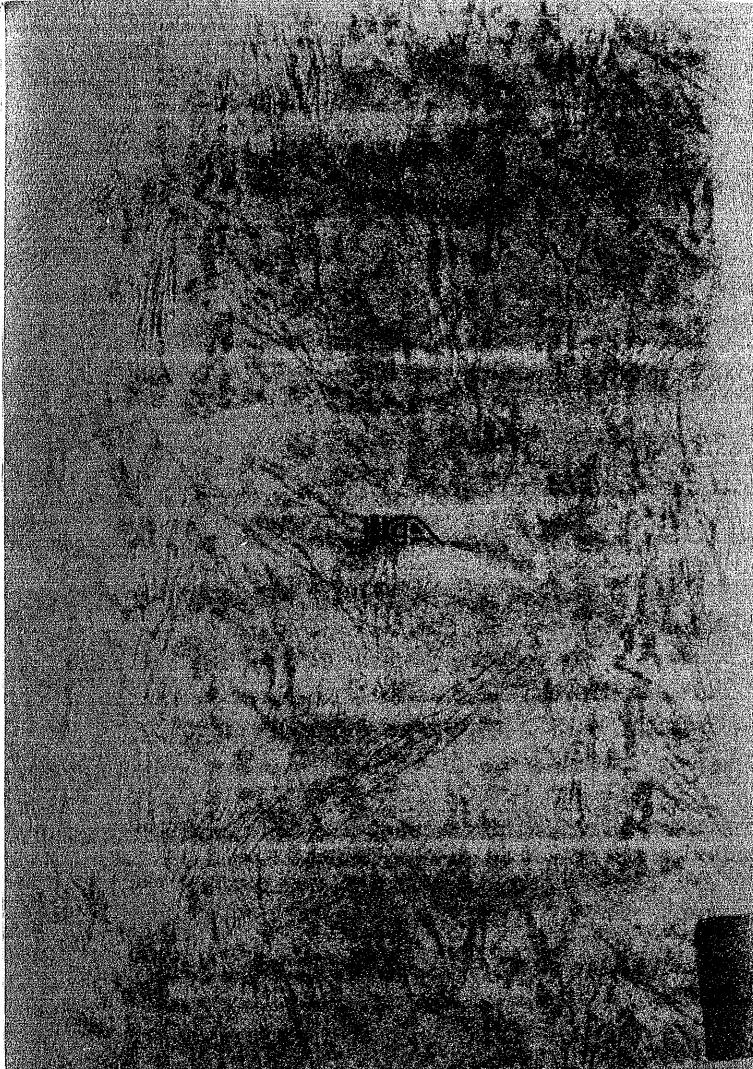

ASIM SOIL THE CAT OF ST. OUEZON CITY

	Job No.	
PROJECT: U ISMED	Borehole/Sample No.NII-4, CS-3Date Sampled: 11-04-86	
Contract No.,	Depth: 4.50-6.00 M. Date Tested: 11-04-86	
Location; Dilliman, Quezon (City Tosted By: PM/JS Date Finished, 11-04-86	


UNCONFINED COMPRESSION TEST

ST DOIME	EN S	srêς	: :IM(:N	C	MI	.NS	lOR 	ot	SP	ECI	ME	N	М	OIS	TU	ĴΕ		W N3C	ΞT		ŪΝ	IQON MPR	VF IN	ΕD	F/	411-L	IRE	SEN	SITIVIT
но,				ON		HE	(cm	T I		DIA	(cr	TE n)	ì) <i>[/</i>	TEN (%	()	1)EN [(g	SIT A:m	Y 3)	Qu	TRE	NG NG	1) 1)	S	AILU TRA € (N (%)	l . A	ST
3	_ _	_cs				1.	1.0)		5	0							1	9	96			56.	<i>/</i> 0		٠	3.2		_	1
																							-214.4	LILV.				,		-
REMAR	KS.		1	. 1. 1. 4.									~~ : ·	•			-	4				·		~	<i>l</i>	•			L	 _
VISUAL	CL.4	YSSI	FIC	ĮΤΛ	ON	•	ira	yi	sh	br	ow	— n	ะภท	ds.		······································						-2000						:		
		*		 -							-									·		<u></u> -		·					وفلستاني	
	60	-	· 				1 —			·		3				- <u>1</u>		 	-									U	LTIN	EN AT
•		 	-	-	-	-		<u> </u>	_		_	-	_	_	_	-	_	_										;	FAIL	UKE
								-	\vdash	-		-	-	-	-	/	 		7)	-		-	-	·	·				
	:50	_	_								1		_	_	Z		3			7						٠.			:	
11.		-		-	-					-	-	-	-	/	_	-	-	_	120	-	7	 -	-	<u> </u>						-
kg/cm ²											_		<u> </u>									-		 					N A	
D.	40		ļ	-	_	-	-		_		_	-) 	_	ļ		-				_		_						
6			_									2.0		-			-	-	_		L 		-				1	8		
ESS		.€. •	ļ				_		_	_		1					_												抓	
o.	30	-	-			}					-9	/ _	-	_	-	-	-					_	-					R:Y	继.	测
te		-					_			(Z										-								-	
ES51V:	200		_	-			-			/	-		-			_							_	-		-		٠	٠,	•
e e	20								Z)— —						_	-												٠.	٠
COMPR	:	-	_		-	_	_	1	5	_		-	_																	
	10			 		7	7		-	-		-				-		-							_				•	. •
		ļ	_			၂၀			_					-		_														
	•	-	l _Q	7	,							-	-	-		-								_						:
		Ø																									1.			: ,
*		•	•]	Ĺ				:	2	•	٠.			3				. 4		•							1




DIAMETER, mm

DIAMETER,mm

BH NO.	SAMPLE NO.	DEPTH	CURVE NO.	NMC	LL	. .	PI	U.C.S. CLASS	DESCRIPTION
	ss - 1	1.00		41		_	-	sM	
2	SS-I	1.00	2	38				SM	

