Table 1.6 Summary of Geological Survey

, 	,						*1 no reconnat	*Aanca
No.	CAR Hama	Geology	Geological Age	Strike/Oip	Heriness/Westhering	Fault, Fracture Zone	Resorks	Commante
(1) 1	Dummon *	candatons, con- plomerate	Plincens	Strike: E-W dip : \$	Soft/parely highly weathered to red tlay.	fault (Z-W) existe in southern area	#aciefactory	email collapse and landside.
(2) 4	Chico No.4	mandstone, mudstone conglossrate	Upper Miccene	H60.5/10.NE	hard-medium/moderately weathered (upland)	fault is present at the abutment	highly recommended.	bad rock is fairy good.
(3) 6	Chico Ho.1	hasic volcanics (baselt-spilite, dishase)	Cretaceous- Palaogene	-	Generally very hard		excellent site	
(4) .8	Chico-Hallig	Mandatone elterna- tion with whale	Upper Miocene	M25°E/54°MW (right bank)	soft/moderately-highly weathered		satisfactory, ex- cavation will be	extended river gravel, terrace deposit.
(5) 10	Hataisg	conplomerate, mand- stone	Upper Miocene	H40"E/35"45"SE	soft, partly hard/ anderstely weathered	-	large. very satisfactory.	remerkable cuests.
(6) 12	Pinukpuk	conglomerata, sand- stone	Upper Hiocena	#2*0f\\$*0EH	soft-partly hard		very satisfactory.	remarkable cueste, lanslides upstream right slope.
(7) 14	Bahaca *	conglowersts, sand- stone	Upper Miscene	qTö±A 2∓41y€+8%5-22A°	hard-sedius	strika fault is satinated on E-area.	very satisfactory.	little problem about fault.
(8) 15	Biteg	sandstons	Upper Miccens	#45°E/10°W	very soft/highly	•	satisfactory	wide riverbed, extended
(9) 13	Agguqadan	limestone	Upper Miocece	atrike: H-S dip:5°M	very hard/weathering is proceeding	. -	satisfactory	sandy river deposit. wall-Isysted, cracky rocks. Callao Cave at downstread.
(10) 24	Shiffu No.1 (A)	pebble-conglowerate	Pliocen#	strike:N-S dip: 30°E	soft/moderately to highly weathered	active atructure infered may be no problem.	very satisfactory.	remarkable coesta. wide collapse kone to be investigated.
(11) 24	Shiffu No.1 (B)	sandatons, shala, conglomerate	Upper Miocena	H25"H/40"E	soft-radium/moderately wastbared	-	very satisfactory.	collapse existing upstream. may be no problem.
	Shiffu Bo.2 .	volcanie rocks (basalt, andesite)	Cretacsous- Palaugane		venerably band/alightly -moderately weathered	-	highly recommended.	•
(13) 26	Mullig No.1	Conglomerata, sand- Stode	Upper Miocane	N15 10°E/20 1 30°E	hard triver had; soft tuplandl/highly-coderate- ly weathered	active structure (s inferred.	very satisfactory.	wide collapse xone at down-stream may be no problem. abutment excabation large.
(14) 27	Mallig No.2	Bandatoca, shale	Upper Mincens	Strike: M-S dip: E	soft-med./moderately weathered	wide fracture tone estimated (upstream)	very satisfactory.	fracture zone (estimated operread should be confirmed.
(15) 28	flagan Ho.l	mota-ancésite, diorita	Czetaceous- Paleogena	-	very hard-med./slightly altered.	-	highly recommended.	slight pyrite dissemination. sufficient river gravel.
(16) 29	Ilagan No.2	meta-andesits, applomerate, diorite	Cretaceous- Paleogene	~	wery hard-modium/highly weathered to red clay.	- .;	highly recommended.	
(17) 33	Disabungan	randstone, andssite granodio- rite	Creteceous- Paleogane/ Pliocene	almost horizontal (sandstone)	vary soft, highly (up- land)/hard (river bank)	-	very satisfactory	hardrock only civer bed level. right abutment should be ex- cabated.
(18) 34	Catelangan *	andomité, pyroclas- tide, agglomarate	Cretacsous- Paleogene		hard-med.	•	highly recommended.	many autorops on the river bed.
(19) 3)	Alimit So.1 (A)	aggiomerate. andemite	Crataceous+ Paleogene	N50-60*W/50*RE	generally hard/slightly -moderately weathered	•	highly recommended.	many outcrops on the river bad.
(20) 41	MATERN NO.1	nonglomerate	Middle Miocens	strike: E-W, dip : 30-40°N	hard/moderately weathered	. -	satisfactory, found- ation treatment necessary.	so high bedrock permeability.
(21) 47	Cagayan No.1	limestone (Callao-)	Upper Missene	stzike: N-5 dip : 7 % 8°N	hard/alightly-moderately with solutive taxture.	-	satisfactory.	many opened crake in places.
(22) 48	Cagayan Ho.2	limestone (Sicalao	Middle Miocene	dip : 10 24	hard-sad./soderately weathered.	_	satisfactory.	many cracks, progressive weathering.
(23) 49	Casachan (convap)	agglomerate	Opper Oligocene	atrike: NE-SW dip : 20-30°N	hard, massive	sheared sons, con- solidated.	very eatlefactory	no special problem.
124) 50	Addalam (A)	agglomerāts	011gocene	#60.A\10.2A	medvery hard/elightly -highly vesthered (right)	-	very satisfactory	
(25) 51	Diduyos	agglomerate, Andesite	Oligocane	N35-50'NE/25- 35'R	hard/quierally fresh	fault right bank	vatisfactory, foundation treatment scoressary.	weak zone in the right bank.
(26) 52	Elhuluan	materedizants	Cretaceous- paleogene	strike: NZ-5W dip : NM	meathered	<u>-</u>	very satisfactory.	-
t						·		

Table 1.7 Irrigation Efficiency for Second Screening

																					4						
CLASS	c	م د	ے د) C) «I	: 🕶	co	•€0	: <t< td=""><td>: <:</td><td>; ⊲1,</td><td>; 63</td><td>የ የርጋ</td><td>æ</td><td>m</td><td>മ</td><td>മ</td><td><u>ں</u></td><td>83</td><td>ر</td><td><τ.</td><td>82</td><td>Ç</td><td>60</td><td>ω</td><td>IJ</td><td>-</td></t<>	: <:	; ⊲ 1,	; 63	የ የርጋ	æ	m	മ	മ	<u>ں</u>	83	ر	<τ.	82	Ç	60	ω	IJ	-
IRRIGATION EFFICIENCY (US\$/y/cu.m)	u	, V) é	0	0	3.04	~	7	0		ဗ	6.3	ςς,	တ	ķ	Ŋ	∞.	٥,	7	۳,	o,	0	۲-4	2	3	۲,	ć
DAM VOLUNE (Mcm)	1	, S &	0		اسوا		٠	•					•		٠					•	•	•	•			٠	
IRRIGATION BENEFIT (1 (million US\$/y)		ır.	0	₹	7	10.94	3.7	∞.	0	?	∞.	7.	ß	ω,	S.	ŝ	4	r)	7	ທ	4	ς,	€.	3	+	.2	
AVERAGE DISCHARGE (cms)	1			ω	40	62.6	+(4	6	2	છ	7	છ	2	m	တ	ω.	₹	Ω	છ	'n	ο.	છ	ς.		0	
SEDIMENT STORAGE (Mcm)		4 +	0	G	0	128	3	0	Ø						0		O					ţ~		ιŊ			
ACTIVE STORAGE (Mcm)	<u>در</u> س	0	L LO	~	ω Ω	547	∞	O	0	0	4	∞	4	S	\sim		\sim	\sim	∞	~	! ~	+ ,	8	∞	r)	<u>, </u>	
GROSS STORAGE (Mcm)		4	' '	9	5	675	S	G	f~-	0	3	4	4,	$^{\circ}$	\sim	4	r4	ပ	L ~	£Ω	S	œ	3	4	3	6.3	-
C#1 (#)	~	Ō	ហ		4	106	Ó	ŝ			0	-	0	m	ŝ	۲-	!~	K)		0	m	0	~	'n	-	ത	
H 25 (日)	l €:	ശ	2		Ø	141	~ €	4	t~		~	4	ŝ	4	ഗ	\sim	O	∞	∞	α	ဖ	4	∞	ယ	ヾ		
DAM CREST ELEVATION (EL.m)	44	L)	3		r ~	1.46	$^{\circ}$	S	00		\sim	വ	\sim	S	ω	4	Ç)	တ		<>>	မ	4	∞	O	4	Ø	• • • •
C.A. (sq.km)			72	ത	65	856	S	Q	₹#	S	S	တ	က	36	S	€ ~	S	$^{\circ}$	in	5	-	\$	ഹ	တ	\sim	ល	
NAME OF DAM	目目	hico No.	hico No	hico-Wal	atala	Pinukpuk	abac	ita	sgugadda	iffu No.1(iffu No.1(B	iffu No.	allig No.	allig No.	lagan No	lagan No.	isabung	atalanga		aturo No	agayanNo	agayan	asecna	ddala	iduyon	ibulu	
NO.	F-4	4	တ			12																					
		7	m	4	ഗ	ပ	۲~	∞	ග	0	<u> </u>	2	<u>ب</u>	4	5	9	13	∞	5	20	2	22	23	ない	25	56	

/1 : Unit value of irrigation water --- 0.02 US \$/cu.m. /2 : Class 'A'>=2.4 , 2.4 > Class '8'>= 1.2 , 1.2 > Class 'C

NOTES:

Table 1.8 Power Generation Efficiency for Second Screening

												- 3. X	2 3 3		a a a	
≪.× ∵.	. E	CREST CREST LEVATION (EL.m)	##L (EL. m)	1.9L (EL.m) (TWL ST	GROSS TORAGE (Mcm)	ACTIVE STORAGE (Mcm)	SEDIMENT STORAGE (Mcm)	AVERAGE DIS- CHARGE (cms)	GROSS HEAD (Hg)	MET HEAD (He)	ENERGY OUTPUT (Gwh/y)	BEREFIT (Willi- on US\$	DAN VOLUME (Hom)	GENERA- GENERA- TION EPFICIEN((US\$/y/cu	CLASS CY u.a)
			1 -	1 4						1 .	,		,	ŧ	1 :	
	, V O	153 456	451	138 411	300	745	4 30 30	310	118.9	131.0	1180	-8	61.38	18.2	37.00	
	-	•	•	L¢*	¢	ď	Ų	_	ç	36	*	(955)	×	c	6.	<
000	. 0	305	300	260	180	\sim	ာဗ) IO	; 6	; ,	8	200	ο.		, φ.	ະ ບ
	co.	Ç	∞	₽	8	90	S	4	。	50.	c,	13	8.0	e.	Θ.	₩.
	5	162	157	138	28	S	ਯਾ	0	۲,	ф.	ci e	CO	٠. ١		٩.	es 6
,, c	אים וני	240	ດ ປ ກ ປ N	007	2 K	80 94 04 0	187	75.2 25.2	27.5 24.5 25.6	0.76 0.76	88. 20.5	73 L	, « % %	×2 ~	2 K	≃ ¢
		, ec rc	0 0	: KG	i es in	3 4	, го	0	. 6		, (2	ဗေ	, co		• •••	·-c
	9	N	N.	0	89	4	•	3	~	•	0	8	o.		∞.	2 23
	ပ္	3	S	0	7.0	S	ব	G	ŝ,	ω.	, . ,,	60	∞.		~	e ee
	۳.	·	!~	un:	165	∞	∞;	ç,	٠.	ω.	<u>د</u>	109	r.		4	ပ
	9	S	T	en i	ω 	Ç,	Ç,	۱ سپ	0	~ (00 t	70	S, G		ත (ပေ
	N (302	160	52	000	o c	ෙර	ကျ	٠ د		. ·	∀ t	N 60 100 100 100 100 100 100 100 100 100 1		× 1.	×1
) c	0 0	ဂင	200	200	v	ν.	9	, ,	> o	n c	~ <	a. n		ું બ	εα
	د د	0 <	20	Y2 0	20 H	N <	— ¢	> 0	ი დ		a e		, c		٠ -	م د
		> -	٠.	0 0	7 -	> 0	Л (0 0			· <	~ o	? -			٠.
	: :: : : : : : : : : : : : : : : : : :	٠,	٠.	e* - C	ا د م د	٧·	V) c	ם מ	چ- د	, 0 0	> e	00			٦ 4	ے د
	ء د د	-	٠,	· 6C		4	ю.	n,	٠.	٠,		0			? •	. ر
	0	က်	C/I	0	0	LC;	7.2	2 80			ci.	511 (528)	ဖ (၀		~	- GC
O.	1.4	165	160	146	118	956	828	330	73.9	35.0	31.0	ಲ	10.02	1.2	8. .35	~ C
		₹.	240		r ~	90	ic.	643	တ်	∞:	~		٠.	<u>ب</u> دع		c:a
5	0	432	427	398	222	2300	866	1434	76.4	190.0	171.0	953 (
								÷	-			ı	85.62	28.9	2.96	ങ
1		232	228	216	127	ı	ŀ	•	76.4	95.0	85.0	r-				
∞ マ	77	167 653	162	145 628	110	240 579	140 359	100	52.6	44.0	428.0	154	9.24	6.2	0.1 588	63 ≪
	59	385	380	338	150	182	110	7.2	9.7	208.0	187.0	γ	7.92	10.3	0.77	ပ

NOTES: Δ_1 : Energy value --- 0.06 US \$/kwh Δ_2 : Class 'A'>=3.3 , 3.3 > Class 'B'>=1.7 , 1.7 > Class 'C' Δ_3 : () means energy value estimated in F/S

Table 1.9 Flood Control Efficiency for Second Screening

101		•
SS (5 EF (2)	しししししゅ 8mg < < < < としし &し < ◆ し 8し し	1
C1.A	しこしじじなしゃ 《《音音》《《音音》とない《音音》とし	
0D ROL 1ENCY E)	00040044600400000000000000000000000000	
FL00 CONTR SFF1C1 (2)	OUUUUAAARBAWRHRUUUOAHARUURHO	
TROL TENCY)		
FLC CON EFFIC (1)	000000000000000000000000000000000000000	
AK LUNE Ocu.m)	849000000000000000000000000000000000000	
N V D V (100	400 H 2	
ENEFIT FROM DUCTION OF NUATION AREA 23 OOUS\$/y	23.4 - 20.0	
17 B 10N RE 1NU E 22 /y) (10		t i
BENEF FROK REDUCT OF DIKE VOLUM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
CT TON F AT TON EA (1	\$0000000000000000000000000000000000000	B./yr Class
IN REDU O INUND AR (ha		3 \$/cu.
EDUCTIO OF DIKE VOLUNE (Hcm)	6446 6446 6446 6446 6446 6446 6446 644	0.15 US ha./yr.
5-YR RE LOOD LUNEZI ORAGE) Mom)	2823 200 200 200 200 200 200 200 2	/\$ SI
R FI BLE VOT ALL (STO	20141 801 67824 1	70 kment 750
25-YF PROBAI RAINF (mm)	00000000000000000000000000000000000000	caban caban
ON FWI.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	icient f dike damas
DAM CREST LEVATI (EL.m)	1464 11 1101110 103108168 62 11648 11649 1	coeff alue o flood
C. A. B. B.	1446008000400000000000000000000000000000	Runoff Unit v Annual
DAN (s	1 (8) 1 (8) 1 (9) 1 (9) 1 (9) 1 (1 (9) 1 (1 (9) 1 (1 (9) 1 (1 (9) 1 (1 (1 (9) 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (12000
0 ۳	E THOORECCOO B D BEELD THE WENT THE BOOLES TO THE B	S
N A M R		NOTES
. 65		
}		1

Table 1.10 Results of Second Screening

		N X W W	Low officiencies, thought possible for irrisation.	High efficiency for power generation, Topo maps evailable.	High efficiency for power generation.	Low officiencies	ligh efficiencies, but difficult due to componsation.	Effective for each purpose.	Postponed for future development.	Migh efficiencies, but difficult due to compansation.	High efficiencies, but foundation consists of westhered like.	TORVINE BUILD BOLD BOOM TO BOOM TO THE TORVINE BUILD BOOM TO THE BUILD B	Siffu No.1(8) is discarded in favor of (A) due to lover	Postponed for fature development.	Postponed for future development.	likh efficiencies for each purpose.	High efficiencies for each purpose.	Postponed for future dovalopsent.	Flood control will be expected.	Low officiencies.	Alternative for irrigation and werer supply in case Magan	Mish efficiency for cover generation. Topo gaps systlable.	High officiencies. Compensation problem can probably be set-	lish officiencies. Alternative in case componention problem in Charama Ko. I cannot be estilled.	Definite design of going by Mis. Topo app. svoilable.	Effective for each purpose.	High officiency for power generation. Topo gaps available.	Low efficiencies,
		SELECTED DAKS JTE	;		۰		٠.	۰				۰			-	¢	0		¢		•	00	0	0	00	٥	00	
	BILITY	GELOGICAL COMDITION	Conglowerate, Sandstone	Sandstone, Mudstone	Basic volcanics	Sandstone/Shale	Constonerate, Sandatone	Congloserate, Sandstone	Conglomerate, Sandatana	Sandstone	Limentone weathered	Pobble-congloserate	Sandstone. Shale	Tolcanic rocks	Conglosorate, Sandatone	. Sandstone.Shale	Nota-Andesite, Dierite	Hota-Andasite, Aggloserate	Granodiorite, Sandstone	Andomite, Phyociastics	Andesits, Assionersis	Congloserate	Limestone (Callao-)	[[westone (Sicalno")	Asslowerate.	A 現在 3 の日本アカ にの	ARK caerate, Andes te	Ketassdisents
	ACCESSIBILITY LEKGTH	ACCESS ROAD (4m)	138	٥	0		0		Ξ	0	23	4	2	40	*2	12	2.2		s	61	2.5	*	2.2	20	80	55	2.5	28
	COMPENSATION	BUILDINGS IN RESERVOIR	40	390	230	880	2150	1050	470	3300	780	80	80	40	160	160	40	0	270	20	ø	٥	1440	0	120	•	0	0
	8	CLASS	: w	ບ	u	ŧ٥	ິມ	. E	89	æ	-	~	ŵG.	æ	⋖,	⋖₹	٧	U	Ų	U	€	Ų	∢<	~	U	æ	U	U
	e course.	CLASS (USS 73/cu.m)	0 52	2.70	2.88	2.74	2.89	4,41	4 74	4.23	5.73	8.45	4.84	3.29	5.53	11.73	5.07	2.80	2.20	0.87	4 31	1.10	34.95	5.63	2.88	3.37	1.98	0.73
Ì	00 00	CLASS	O,	ů	ս	b	ų	222	U	₹.	~	*	co	ຄາ	ഖ	≪	**	6 0	a 0	U	ಪ	U	**	æ	മ	æ	IJ	υ
	FL008	(1) (1) (05\$ /y/cu.z)	0.10	0.59	0.91	0.53	0.58	1.12	0.97	3.06	2,54	3.27	2.00	1.21	1.79	3.72	3.13	2.02	1.50	0,87	1,25	0.20	12.32	2.04	1.18	1.45	0.98	0.14
		CLASS	IJ	4	₩	U	*	a n	æ	m 5	~	*	607	ပ	บ	20	*	æ	U	U	¢.	*	~	לים	60	æ	~<	U .
	90958	EFFICIENCY (USS CLASS /y/cu.m)	09.0	3.37	0.35	1.64	3.65	3.05	2.05	3.05	3.30	2.83	2.70	1.45	1.62	2.82	4.57	1.89	1.57	1.13	1.57	3.79	3.33	2.17	2.95	3.19	0.58	0.77
		CLASS	. eo	ن	U	ប	≪5	≪€	æ	≪	*	~	≪:	æ	αŝ	₹	ట	es.	60	U	8	U	∢	co	U	ø	ಎ	U
		EFFICIENCY (US\$ CLASS	1.58	0.58	68.0	0.92	\$ 80	3.04	1.70	11.20	5.08	4.31	2.68	1.39	2.37	5.68	2.38	1.57	1.89	1.02	1,40	0.13	12.50	2.01	.18	1.28	1.35	0.29
		C.A. (sq.ke)	112	1410	720	1980	655	83 83 83 83 83 83 83 83 83 83 83 83 83 8	253	885	441	656	628	367	436	362	1350	878	259	235	559	\$50	2364	1831	1150	864	477	150
		HAKE OF DAM	Dummon	Chico Ho.4	Chico No.2	Chico-Kallfe	Katelas	Pinukpek	Babace	Bitsu	Assusaddan	Siffu No.1(A)	Siffu No.1(B)	Siffu No.2	Hallig No.1	Hallig No.2	Ilagen No.1	Ilagan No.2	Disabungan	Catalangen	Alimit No.1(A)	Maturo Mo. 1	Cagayan No.1	Cagayan #0.2	Casecnen	Adda 1 am (A)	Diduros	0:50:0
		Š.	-	7	8	€	13	3 12	1.4	12	61 6	23	. 54.	22	3 26	1 27	2 28	62. 8	33	3 34	37	41	1 47	2 43	2	\$	25	52
. !	l	ļ	,-	**	.,	4	,		•	~~		1.0	11	12	13	7.	23	2		8	9	20	2.1	22	53	24	2.5	26

HOTE : 21 : 00 Feanibility Study completed.

Table 1.11 Results of Geological Survey

Dam Name	Geology	Geological Age	Strike/Dip	Hardness/Weathering	Fault, Fracture Zone
Pinukpuk	conglomerate, sandstone	Upper Miocene	N30°E/30°SE	soft-partly hard	<u>-</u>
Chico No.4/1	sandstone,shale, siltstone	Upper Miocene	N60°W/70°NE	hard-medium/moder- ately weathered (upland)	fault is present at the abutment
Chico No. 2/1	basic volcanics (basalt-spilite, diabase)	Cretaceous- Paleogene	•	generally very hard	-
Siffu No.l	pebble-conglom- erate	Pliocene	strike: N-S dip: 30°E	soft/moderately to highly weathered	active structure inferred may be no problem
Mallig No.2	sandstone with conglomerate, mudstone	Upper Miocene	N10°/60°E	soft-medium/moder- ately weathered	• • • • • • • • • • • • • • • • • • •
Ilagan No.l	meta-ancesite, diorite	Cretaceous- Paleogene	~	very hard-medium/ slightly altered	-
Disabungan	sandstone, ande- site granodiorite	Cretaceous- Paleogene/ Pliocene	almost hori- zontal (sandstone)	very soft, highly (upland)/hard (river bank)	<u>-</u>
Alimit No.1	agglomerate, andesite	Cretaceous~ Paleogene	N50-60°W/50°NE	generally hard/ slightly-moderate.y weathered	
Matuno No.1 $\frac{1}{1}$	conglomerate, sandstone	Middle Miocene	strike: E-W, dip: 30-40°N	hard/moderately weathered	
Cagayan No.l	limestone (Callao-)	Upper Miocene	strike: N-S dip: 7-8°W	hard/slightly- moderately with solutive texture	
Cagayan No.2	limestone (Sicalao-)	Middle Miocene	strike: NE-SW dip: 10°NW	hard-medium/moder- ately weathered	
Casecnan <u>/l</u>	agglomerate	Upper Oligocene	strike: NE-SW dip: 20-30°N	hard, massive	sheared zone, con- solidated
Addalam	agglomerate	Oligocene	N60°W/10°SW	medvery hard/ slightly-highly weathered (right)	
Diduyon <mark>/1</mark>	agglomerate, andesite	Oligocene	N35-50°NE/25- 35°E	hard/generally fresh	fault right bank
Dibuluan	metasediments	Cretaceous- Paleogene	strike: NE-SW dip: NW	medium hard/moder- ately weathered	-

Note; 11: Source, Feasibility or Pre-Feasibility Report of Each Projects

_
'n
8
·H
į.i
O
ø
spe
ä
.1-1
n)
ace
ิตี
13.4
Sur
Þ
W
<u>.</u>
8
ដ
from
ز
_

Dam Name	Location	Material	Description	Class
2 km triver	upstream . bed	sand, gravel	including cobble-boulder,	Ą
0.8 km both b	downstream banks	conglomerate sand- stone (preocene) End Teriary	very loose, moderately weathered	M
*2.5 km right b	n SW Jank	sandstone, mud- stone (End Tertiary)	moderately-highly weathered soft rock	υ
**11 km (Chico l Channel	n NW River)	sand, gravel	including cobble-boulder, hard	∢
2 km down and 5 km river bed	downstream km upstream bed	sand, gravel	including cobble-boulder, hard	₩
l km upstr right bank	upstream bank	<pre>andesite etc. (metavolcanics) (Not to be specified)</pre>	moderately weathered soft rock	μ
l-2 km up right bank	upstream ink	agglomerate (cretaceous)	slightly-moderately weathered	Ą
3-5 km uriver bed	upstream ed	sand, gravel	including cobble-boulder, hard	₹.
0.5-3 km river bed	0.5-3 km upstream river bed	sand, gravel	including cobble-boulder, hard	∢
4 km SW b (upstream)	SW both banks eam)	agglomerate (cretaceous)	slightly-moderately weathered	A

means alternative plan each other * and ** Notes:

fresh-moderately weathered hard rock moderately weathered soft rock moderately-highly weathered soft rock Class A:

Table 1.13 Land Use and Number of Buildings in Reservoir Area

····						<u> </u>
Name of De-	Floren		Land Us		/1	No. of
Name of Dam	Elevation (El.m)	Paddy	Agri- culture	Residen- tial	Others /1	Buildings (Nos.)
Pinukpuk	70	0	0	0	38	0
	80	8	26	0	336	113
	90	48	164	0	494	225
	100	76	272	0	692	470
	110	76	302	0	1,050	712
	120	76	314	0	1,420	965
	130	76	326	0	1,842	1,215
Siffu No.l	70	0	0	. 0	50	0
•	80	0	30	0	180	25
	90	10	120	Ö	420	119
	100	40	240	. 0	700	219
	110	170	400	0	1,070	440
	120	340	590	0	1,610	492
	130	430	690	0	2,270	660
Mallig No.2	110	. 0	0	0	10	0
	120	0	10	0 .	70	0
	130	10	60	0	290	84
•	140	30	150	0	630	198
	150	100	220	0	1,040	332
	160	140	270	0	1,560	409
	170	190	290	0	2,310	540
Disabungan	60	0	0	0	30	0
	70	0	160	0	210	79
	80	50	320	0	510	311
	90	70	410	0	860	531
	100	90	540	0	1,350	727
·	110	100	640	0	2,030	881
lagan No.1	110	. 0	0	0	70	0
	120	0	50	0	250	2
	130	0	130	0	480	90
	140	0	210	0	890	267
	150	0	260	0	1,270	376
	160	0	270	0 :	1,820	415
•	170	0	280	0	2,850	436

(to be continued)

(Continuation)

			Land Us			No. of
Name of Dam	Elevation (El.m)	Paddy	Agri- culture	Residen- tial	Others 1	Buildings (Nos.)
Addalam /2	120	0	0	0	199	0
	140	0	140	0	325	0
	160	0	320	0	766	0
	180	0	550	0	1,303	0
	200	. 0	740	0	1,774	0
	220	. 0	990	0	2,386	0
Cagayan No.1	120	0	0	0	20	0
	130	0	10	0	110	0
	135	0	50	Ö	300	0
	140	0	340	0	650	4
	145	20	840	10	1,090	230
	150	100	1,180	40	1,840	1,586
	160	240	1,430	60	3,310	3,458
	170	470	1,600	80	4,890	5,282
Cagayan No.2	180	0	0	0	50	0.
	190	0	20	0	140	13
	200	0	100	0	290	38
	210	0	130	0	420	92
	220	0	160	0	560	173
	230	0	170	0	820	238
	240	0	180	0	1,220	288
	250	0	190	0 .	1,500	315
Alimit No.1 $\frac{/2}{}$	200	0	0	0	37	0
	220	. 0	0	. 0	166	0
	240	0	0	0	334	0
	260	0	0	0	652	0
	280	10	0	0	1,019	0
	300	50	0	0	1,394	0
	320	116	0	0	2,090	0
	340	186	0	0	2,777	0
in the state of th	360	271	0	0	3,177	0

Notws; 1: Include forest and grass land

Other site are estimated on the basis of the topographic map in a scale of 1 to 25,000.

 $[\]overline{/2}$: Data source, MAF Region II's investigation.

Table 2.1 Results of Screening for Small Dam Project

No. Name of Dam	River	6. 6. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Anoual	Available	¥ ~	Le?	^ .		Crest	Storage	Storage	Storage	Height Volume		Storage Efficiency	Selected Damaites	(Dam height is decided by
	-	(m)		(953)	(e.13)	(E. [:])	(E:.a)	(E - 13)	- i	į	į	į		6.6.01			rollowing limits
Guitine			0016	7. 1		į	3	;			3	9		336.6			V 1 000
Bulkgro		17.3	2.100	12.21) F		26.44	Š	7 0	0.40	2 ()\$	2.70	2.6	0.160	12. K		Topographical condition.
San Luis		6.2	2,000	4.17	9	96	50.5	55	2	0.23	0.47	1, 20		2,11.7	, w		Topographycal conditions
Acasas	Annesi	8.0	2,900	5.85	19	49+	22.8	7	94	0.22	4.68	4.90		9, 504	9.3		Haximum dam height (30 m).
MANALAD	Afusing	6.7	2,000	4.50	17	50	41.5	\$7	20	0.25	36.0	1.20		0.137	6.9		Topographical condition.
Magogod		11.4	3,000	11.64	. 28	55+	15.0	50	55	0.43	2.67	3, 30		0.332	8.6		Михівив для перупт (30 в).
Manalo		76.9	2,900	26.21	52	52+	45.5	47	23	10.1	61.0	1.20		0.164	1.2		Maximum dam heyght (30 m).
SATONDO		21.0	2,800	19,76	52	\$24	32.0	4.7	23	0.79	5.81	6.60		0.619	7 6		Maximum dam height (30 m).
Stw. Darmara		42.4	2,800	20.79	52 24	534	38.6	90	S :	ري. د	2.17	9		0.28	7-1		Maximum dam haight (30 m).
San Tues		,,	2,600	6.5	/2	0,0	13.0	5	တ က	0, 28	2.72	3.00		0. 295	3.5		Topographical condition.
CAN COAR		* .	7,000	2.55	76	001	0. 0.	Ş.	32	0. I4	2.55	2.69		0.250	10.3		Hydrological condition.
CIERT ROTES) - 0 •	2,000	6.	5 F	0 ;	61.5	65	2	0.23	0.57	0.80		0,025	22.6	÷	Topographical condition.
Kapaca Maka		 	2,000	* 6	6.	106+	87.5	101	901	0.30	58.	2.10		0.187	9-6		Haximum dam height (30 m).
PART PARTS		7,7	2,000	. 4.	э. Э.	126+	106.1	121	126	61.0	16.1	2, 10		0.276	6.9		MAKE BUR ASH hergat (30 m).
20,000	-	7,7	2,000		20.	8 8	65.3	55	201	0.42	29.4	5.30		0.16	29.9	*	Topographical condition-
MANUAC L	- Skraner	,,,	2,000	21.27	۶;		20,	æ (6	2.86	5.84	9.10		0, 263	26.0	•	MAXIBUR date height (30 a).
7 08281888	racutage.	71.7	2,000	17.75	57	102+	87.5	76	102	1.92	8.08	10.01		0.386	20.9		Maximum dam height (30 m).
ST DANS THE		, S	2,000	26.4	120	071	129.4	32	140	0 33	0.77	1.10	•	0.270	2-9		Topographical condition.
E. Francisco		, c	2,000	10.00	2 3	+ / T ?	2.00	112		09.0	6.40	7.00		0.596	10.7		MAXIBUB GAS Deight (30 B).
San Contract		, , , -	200.0	67.7	0 5	÷		3.	. 6	81.0	1.29	3.47		0.430			
STO. BOLLEY		2 4	2, 200	2 3	3 4	, ,		70	5	3 : o :		20.0		77.0	*0.0		7447 BCB 648 067 20 BJ.
in the second		2 7	2.000	2. K2	200	200		100	8 5	0. 22	06.	4, 12		200	, , ,		Total A total Concorton
CArmency LA	Calidauan	8,0	2,000	3.36	2 20	110	92.0	105	2 -	2 0	70.7	2 2 2		200	44.7		Topo. & hydrological conduction.
Higuel		3.1	2,000	2.03	50.	20	54.0	65	2.02	2000	2,03	2.20		3.4	9.9		Topo, & hydrologyce, conditions
MADERA		14,3	2,000	6.61	0,6	300	93.6	95	100	0 54	0.46	00.1		0.00	5.1		Topographical condition.
04 4 40		8, 9	2.000	5.91	117	144	123.5	139	144	6.33	7.67	3.80		0.228	15.2		(30
Turod		3.0	2,000,	22.18	۲:	+001 :::	82.0	56	100	1.24	6.96	8.20		0.423	16.5		(30)
KANS-AyAn 1		100	2,000	10.15		104+	92.0	25.	701	0.57	0.73	J. 30		0-117	6.2		2
C. C		, . , .	7.000	9.05		+701	0.00	22	162	0 36	2, 14	2.50		0.151	14.2		2
San Rafayl	Cabadaya	4 6	30.6) X		0.7.0	: :	1	61.0	7.01	7.80		O	, .		3 5
Marines, em	Barrenthan	5 6	2,000		8 3	151	3 70	2 =	3	6.7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.40		77.0			2 3
Eden	-	13.5	2 000	(a -	5 5	122+	106-3	117	25	2 -	3 6	7.4		1/7	, , , , , , , , , , , , , , , , , , ,		TAKENDER DANG DANGER (10 DC DC)
Kapapi	MADADI	12-8	2,000	8.60	56	122+	101,0	117	7 2 2	**		6-20		0.306	8.81		8
Mangeuran	Hange	10,3	2,000	6.92	ø	8	0.14	57	0.5	0.39	1-61	2.00		0.116	13.9		1,00
Paca		17.9	2,900	17.44	95		104.5	112	11.7	0.67	1.13	1.80		0.222	5.1		Maximum dan height (30 m).
Fuyo		0.9	2,700	5.44	60	0	71.0	78	6 8	0.23	5-44	5.67		0.507	10.7		Hydrological condition.
Yahan		10.7	2,300	8.27		2	23.0	79	69	0,40	8-27	29.67		6.424	19.5		Hydrological condition.
San Francisco		11.4	2,600	96.6		20 ; 30 ;	0.89	2	80	0.43	6.07	6.50		0.126	48.2	*	
Song tong		10 a	2,100	9 3	2 2	a's	- C	2 v	S :	0.56	2.54	3, 10		0.13	22.5	. •	
CU37489		70.0	7,100	4		0 4) - -	2 2	9 :	0.78	10:02	10.86		0.530	9.6		
01000 c 40		2,4.5	2,000	73.65		2 2		2 7	3 5	0.86	2.84	3,70	2 2	0.103	27.6	• 4	Topographical conductions
Calebras	Manager 1	2,40	2,200	, a		e e	× 4	, J	5 ()	3.15	23.65	24-80	7.0	0.70	28.0	• 4	Hydrological condition.
Варозмае		1	2,100	24.20		20	7.19	. 9	, F	7	70.67	70-07	3 7	250	0 4 4		Constanting Continues
LinglingAy		15.6	2.000	10.48		20,	57.5	65	2 5	. 05 C	5	6-70	2 2	0.136	57.7	*	Topographical Conf. Conf.
Colorado	Synalugan	63.9	2,100	45.09		+/8	67.0	82	2 %	2.40	50-57	67.49	2	0.505	89.3	*	Max. den herene e bydro. condition
Lourde	Sto. Nine	12,7	2,000	8,53	67	60	52.7	23	9	64.0	0.62	1, 10	±	0,000	5.5		
Salvacion	HACATUAT	×.1	2,000	36.36		90	17.6	75	80	2.03	0						No effective storage
San Felips		11.9	2,000	00°8	66	96	82,8	85	98	0.45	0.95	1.40	77	0.082	11.6		Topographical condition.
BACEAGAI		14.8	2,000	9.95		080	71.0	25	S S	0.56	2.04	2.60	₹.	0.112	18.2		Topographical condition.
3 San Sebastian		0.6	2,000	6		001	2.6	5	90	0.34	2,46	2.80	87	0.130	18.9		Topographical condition.
Bello	DARRO	42.0	2,200	31.42		1404	0.77	200	145	1.59	12.71	14.30	2	0, 303	42.0	*	Maximum dam neight (30 m).
Fermin			2,000	2 60	30	115	97.3	011	8 -	2	5 ° 7 ° 7	0 2 3	9 2	960.0	14.1		Topographical conditions Associate Asm Salests (30 m)
SAR CATCOS			200						711	2	2	0	2	001.0			DAMAGE CAN DELEGIO CON MAN

Table 2.2 Results of Screening for Pond Scheme

Item		Pond 1 (Carmencita)	Pond 2	Pond 3	Pond 4
Catchment Area, at Intake	(km²)	16.0	4.2	2.9	2.4
at Pond	(km ²)	0.8	0.4	0.3	0.7
Annual Rainfall	(mm)	2,000	2,000	2,000	2,000
Potential Water to be stored	(106m3)	11.29	3.09	2.15	2.08
Ground Elevation	(El.m)	4.5	55	75	82
Possible Maximum Elevation	(E1.m)	09	70	90	100
Sediment Level	(E1.m)	48	58	80	85
HWL.	(El.m)	57	67	87	97
Dam Crest	(E1.m)	09	70	06	100
Sediment Storage Volume	$(10^{6}m^3)$	90.0	0.03	0.02	0.04
Effective Storage Volume	(106 _m 3)	1.34	0.51	0.35	0.84
Gross Storage Volume	(106m ³)	1.40	0.54	0.37	0.88
Dam Height	(m)	18	18	18	21
Dam Volume	(106 _m 3)	0.117	0.085	0.072	0.125
Length of Intake Channel	(m)	006	200	800	1,200
Storage Efficiency (1)		11.5	0.9	6.4	6.7
Storage Efficiency (2)		1,490	1,020	440	700
Selected Pond	مسا جسم مسار عمد نبية بيدة بيدة بيدة بيدة بيدة بيدة مسار مسار مسار مسار مسار بيدة بيد بيدة بيدة بيدة بيدة بيدة	`	of text win and and text and text are another		ALL \$100 AND AND AND AND AND
The state of the s					

Table 2.3 Priority Ranking for Porposed Small Dam

	With	With Irrigation Development	Lopment		Without	Without Irrigation Development	elopmen	
Name of Sites	Net Present Value/1(Fx106)	Benefit Cost Ratio	EIRR (Z)	Priority Ranking	Net Present Value/1(Fx106)	Benefit Cost Ratio	EIRR (%)	Priority Ranking
Liwan Norte	4.3	1.11	11.8	7	7.6	1.22	13.8	n
Santor	13.6	1.17	12.6	 4	18.7	1.35	16.5	• н
Maglatac 1	-24.4	0.81	7.1	7	4.7	1.07	년 년 년	'n
San Francisco	7.0	1.01	10.1	ທ	-2.5	0.89	88	9
Bagong	1.0-	66.0	8.6	9	7.7	1.22	14.0	7
Linglingay	3.6	1.07	11.1	М	4.7	1.12	12.5	7
Bello	5.8	1.06	10.8	7	6.6-	0.70	5.1	7
Carmencita Pond	0.7	1.02	10.3		6.6	1.44	18.6	

Note: /1; Discount Rate ... 10% per annum

Table 4.1 Unit Price for Dam Construction

Item	Unit	F.C.	L.C.	Total
1,000				
New road	km	825,000	675,000	1,500,000
Road improvement	km	165,000	135,000	300,000
Bridge	m	22,500	27,500	50,000
Excavation, common	m^3	35	30	65
rock	m ³	120	90	210
tunnel	m^3	740	300	1,040
shaft	m^3	820	320	1,140
Embankment, core & earth	m³	65	45	110
filter	m³	95	75	170
rock	m^3	110	80	190
riprap	m^3	160	120	280
Concrete, dam	ϵ_{m}	820	600	1,420
spillway & tailrace	\mathfrak{m}^3	910	890	1,800
powerhouse	m ³	950	950	1,900
tunnel	m³	1,080	1,010	2,090
plug & anchor block	m ³	870	840	1,710
other structure	m^3	1,010	990	2,000
Grout, curtain	m	1,310	590	1,900
blanket or consoli.	m	910	510	1,420
Reinforcement bar	ton	10,450	4,750	15,200
Steel support	ton	12,350	8,550	20,900
Metal works, valve	ton	188,100	20,900	209,000
intake gate	ton	116,280	12,920	129,200
other gate	ton	109,440	12,160	121,600
trash rack	ton	76,950	8,550	85,500
penstock	ton	68,400	7,600	76,000

Table 5.1 Allocated Dam Cost and Total Cost

							(Unit:	it: Px 100)
	Item	Dummon	Paranan	Zinundungan	Mailig No.2	Siffu No.1	Alimit No.1	Matuno No.1
H	Allocated Dam Cost		÷					
	Irrigation	354.56	355.46	226.13	1,188.68	i	1	578.28
	Hydropower	35.49	47.10	83.64	1	245.06	589.12	2,023.20
	Flood Control		i	ı	388.48	304.15	978.22	ı
	Wacer Supply	ı	i	ì	. 1	i	80.47	53.68
4	Irrigation/1	1	l	1	ľ	286.05	137.70	239.12
	Water Supply ^{/1}	1	ı	. 1	l	109.56	51.86	92.72
	Sub-Total of I	390.05	402.56	309.77	1,577.16	944.82	1,837,37	2,987.00
H.	Specific Cost			:				
:	Irrigation	34.37	26.41	66.59	2,138.09	1	ı	783.07
	Hydropower	24.96	22.01	41.70		112.41	199.73	2,085.00
	Sub-Total of II	59.33	48.42	108.29	2,138.09	112.41	199.73	2,868.07
III.	Total	449.38	450.98	418.06	3,715.25	1,057.23	2,037.10	5,855.07

Note: /1; Supplement of Magat dam

Table 5.2 Principal Features of Siffu No. 1 Dam

Purpose	Flood Control, Hydropower and Supple-
	mental water Supply of Magat Dam
Catchment area (km²)	656
River name	Siffu
Reservoir	SILIU
Flood water level (EL. m)	115.5
Surcharge water level (EL. m)	113.0
High water level (EL. m)	106.0 97.0
Low water level (EL. m)	314
Gross storage (100 m ³)	93
Storage for water utility (106 m ³)	75 115
Storage for flood control (10 ⁶ m ³)	115
Reservoir area at SWL (km²)	19.0
Dam	Pough 6: 11
Type	Earthfill
Crest elevation (EL. m)	118
Crest length (m)	240
Crest width (m)	12
Height (m)	58
Upstream slope	1:3.9
Downstream slope	1:2.7
Embankment volume (m ³)	1,659,500
Spillway	Canad and abutance
Type	Gated open chuteway
Design flood (m ³ /s)	3,000
Gate width (m)	9.4
Gate height (m)	11.7
Gate units (nos)	3
Crest elevation (EL. m)	101.3
Crest width (m)	28.2
Energy dissipator	Stilling basin
Diversion	Turn of
Type	Tunnel
Design flood (m ³ /s)	1,300
Tunnel diameter (m)	5.6 500
Tunnel length (m) Number of tunnel (lanes)	500 2
Waterway Maximum discharge (m ³ /s)	19.9
Tatala cill elevation (FL m)	93.5
Intake sill elevation (EL. m)	
Length of Waterway (m)	350
Power and Energy	19.9
Maximum plant discharge (m ³ /s)	
Maximum gross head (m)	40.0
Rated head (m)	32.0
Installed capacity (kW)	5,400
Annual energy (GWh)	41.1

Table 5.3 Project Cost of Siffu No. 1 Dam

nite A :	form that	Work	Foreign F Unit Price	Portion Amount	Local Por Unit Price	Amount	Total Amount
Work	tem Unit	Quantity Quantity	Unit Price (Pesos)	(Mil.P)	(Pesos)	(Mil.P)	(Mil.P)
I. PREPARATORY WORK							
(wew) baon esecution	km	1	825,000	0.83	875,000	0.68	1.5
improvement of exi Endge	sting road km m	6 20	165,000 22,500	0,99 0,45	135,000 27,500	0.81 0.55	1.1 1.1
Work shops, offices		20	42,000	28.32	21,000	19,97	48.
Tota	of t			30.59		22.00	52.5
	0, 1			******			
II. CIVIL WORKS 2.1 River Diversion	Waska						• .
Excavation (commo	n) m3	12,000	35	0.42	30	0.36	0,
Excavation (rock)	m3	48,000 39,100	120 740	5.76 26.93	90 300	4,32 11,73	10.40.
Excavation (tunnel Concrete (inlet and		39,100 660	1,010	0.67	990	0,65	. 1.3
Concrete (tunnel fi	em (gnir	14,500	1,080	15.66	1,010	14.65	30
Concrete (plug) Steel support	m3 ton	1,440 286	870 12,350	1.25 3.53	840 8,550	1,21 2,45	2. 5.
Reinforcement stee		751	10,450	7.85	4,750	3,57	11,
Consolidation grout	m m3	7,000	910 110	6.37 0.44	510 80	3,57 0,32	9. 0.
Coffendam Others	LS.	4,000	110	7.09	00	4.28	11.
Sub-Total	of 2.1			77.97		47,10	125.
2.2 Dam							
Excavation (common Excavation (rock)	n) m3 m3	133,000 54,000	35 120	4.66 6.48	30 90	3.99 4.86	8. 11.
Embankment (filte		27,500	95	2.61	75	2.06	4.
Embankment (eart	n) m3	1,555,000	65	101.08	45 120	69,98 9,24	171 21.
Embankment (ripr Curtain grout	m. €m. (qa	77,000 13,400	160 1,310	12.32 17.55	590	7,91	. 25.
Blanket or consolid	m twong node	3,800	910	3.55	510	1.99	5.
Others	L6.			14.82 163.07		10.00 110.02	24 273.
Sub-Total	04.5.5			163.07		110.02	
2.3 Spillway		83,700	35	2.93	30	2,51	5.
Excavation (Comme Excavation (rock)	n) m3 m3	334,700	120	40.16	90	30.12	70.
Concrete	m3	44.000	910	40.04	063	39.16	79.
Reinforcement stee	bar ton L.S.	860	10,450	9.20 9.23	4,750	4,18 7,60	13. 16.
Sub-Total			-	101.56		83.57	185.
2.4 Waterway							
Excavation (commo		500	35	0.01	30	0.01	0
Excavation (rock)	m3 m3	900 1,000	120 740	0.11 0.74	9 <i>0</i> 300	0,08	0: 1:
Excavation (tunnel Excavation (shaft)	m3	260	820	0.21	320	0.08	o.
Concrete (intake)	m3	70	1,010	0.07	990	0.07	. 0.
Concrete (tunnel i Steel support	ning) m3 ton	460 9	1,080 12,350	0.50 0,11	1,010 8,550	0.46	0. 0.
Reinforcement stee		9	10,450	0.09	4,750	0.04	0.
Others Sub-Total	LS.			0.18 2.02		0.11 1.24	0. 3.
	VI 2.4						
2.5 Powerhouse Excavation (commo	n) m3	700	35	0.02	30	0.02	. 0.
Excavation (rock)	m3	2,900	120	0.35	90	0.26	0.
Concrete Reinforcement stee	bar ton	1,010 53	950 10,450	0.96 0.55	950 4,750	0.96 0.25	0.
Archiectual works	m3	2,800	1,990	5.57	1,620	4.54	10.
Utility works	LS.			1.11		0.91	,2. 1.
Others Sub-Total	of 2.5			0.88 9.43		0.69 7.63	17.
Tolsi				354.08		249.57	503.
•	11 31		•	454.00		c46.01	503.
II. METAL WORKS Diversion closure g	ala tan	70	109,440	7.86	12,160	0.85	8.
Steel conduit	ile ton ton	71	68,400	4.86	7,600	0.54	5
Guard valve	ton	6	188,100	1.13	20,900	0.13	1.
Outlet valve Spillway gate	not net	10 288	188,100 109,440	1.88 31,52	20,900 12,160	0.21 3.50	· 2.
Intake gete	ton	â	116,280	1.05	12,920	0.12	1.
intaka trashracks Penstock	ton fon	9 28	76,950 68,400	0.69 1.92	8,55Ġ 7,600	0.08 0.21	0 2
Pensiock Draft tube gate	ton	28 6	109,440	0.66	12,160	0.07	0
Total	f 101			51.38		. 8,71	57.
					•		-,.
IV. ELECTRICAL WORKS Generating Equipme	nt LS.			47.85		5.32	53
Transmission line	km	7	171,000	1.20	266,000	1.86	. 3.
Sub-station	L.S.			4.18		0.95	5.
. Total o	f IV			53.23		0.13	61.
Total of	to IV			489.23		285,40	774.
			~	0.00		28.50	20
V. COMPENSATION						•	
VI. ENGINEERING SERVIC	E			61.97		15.49	. 77.
II. GOVERNMENT ADMIN	STRATION			0.00		38.73	38
III. PHYSICAL CONTINGEN	CY			82.68		55.22	137.
GRAND TOTAL				633.88		423.36	1,057.
AUVID IOIVE	Transfell		-				11001.

Table 5.4 Principal Features of Mallig No. 2 Dam

Purpose	Irrigation and Flood control
Catalment area (1-2)	060
Catchment area (km²)	362 at damsite and 1,951 at Chico
Divon name	river intake weir site
River name	Mallig
Reservoir	
Flood water level (EL. m)	185.5
Surcharge water level (EL. m)	183
High water level (EL. m)	180
Low water level (EL. m)	160
Gross storage (10° m ³)	1,037
Storage for water utility (10^6 m^3)	545
Storage for flood control (10 ⁶ m ³)	112
Reservoir area at SWL (km²)	41
Dam	
Type	Rockfill
Crest elevation (EL. m)	188
Crest length (m)	300
Crest width (m)	12
Height (m)	84
Upstream slope	1:2.9
Downstream slope	1:2.0
Embankment volume (m ³)	2,365,000
Spillway	
Type	Gated open chuteway
Design flood (m ³ /s)	1,680
Gate width (m)	7.2
Gate height (m)	9.0
Gate units (nos)	.3
Crest elevation (EL. m)	174
Crest width (m)	21.6
Energy dissipator	Stilling basin
Diversion	v
Туре	Tunne1
Design flood (m³/s)	800
Tunnel diameter (m)	4.4
Tunnel length (m)	650
Number of tunnel (lanes)	2
Waterway	
Maximum discharge (m ³ /s)	61
Intake sill elevation (EL. m)	150
Length of Waterway (m)	270
Transbasin basin (from Chico river to	Mallig No. 2 dam)
Type	Open channel and tunnel
Design discharge (m ³ /s)	30
Tunnel diameter (m)	4.0
Tunnel length (m)	4,000
Channel length (m)	1,600
	2,000

Table 5.5 Project Cost of Mallig No. 2 Dam

Work Item	Unit	Work	Unit Price	Amount	Unit Price	Amount	Amount
		Quantity	(Pesos)	(MILP)	(Pesos)	(MILP)	(Mit.P)
1. PREPARATORY WORKS							
Access road (New)	km	11	825,000	9.08	875,000	7.43	16.51
Improvement of existing road	km	4	165,000	0.66	135,000	0.54	: 1.20
Bridge	m	20	22,500	0.45	27,500	0.55	1.00
Work shops, offices and quarters	ĻS.			46.90		32.26	79.16
Total of i				57.09		40.78	97.87
II. CIVIL WORKS				-			
2.1 River Diversion Works Excavation (common)	m3	2,700	35	0.09	30	0.08	0.17
Excavation (rock)	m3	10,600	120	1.27	90	0.95	2.22
Excavation (tunnel)	m3	33,500	740	24.79	300	10.05	34.84
Concrete (inlet and outlet)	m9	320	1,010	0.32	990	0.32	0.64
Concrete (tunnel lining)	m3	13,700	1,080	14.80	1,010 840	13.84 1.09	28.64 2.22
Concrete (plug) Steel support	m3 lon	1,300 260	870 12,350	1.13 3.21	8,550	2.22	5.43
Reinforcement steel bar	ton	700	10,450	7.32	4,750	3,33	10.65
Consolidation grout	កា	7,200	910	6.55	510	3.67	10.22
Cofferdam	m3	9,200	110	1.01	80	0.74	1,75
Others	L.S.			6.05		3.63	9.68
Sub-Total of 2.1			*	66.54		39.92	106.46
2.2 Dam Excavation (common)	m-0	79.500	ar	2.78	30	2.39	
Excavation (common) Excavation (rock)	m3 m3	79,500 56,500	35 120	2.78 6.78	80	5.09	5.17 11.87
Embankment (core)	rn3	310,000	65	20.15	45	13.95	34.10
Embankment (filter)	m3	165,000	. 95	15.68	75	12.38	28.06
Embankment (rock)	m3	1,890,000	110	207.90	80	151.20	359.10
Curtain grout	m	17,500	1,310	22.93	590	10.33	33.26
Blanket or consolidation grout Others	m L.S.	4,450	910	4.05 28.03	510	2.27 19.76	6.32 47.79
Sub-Total of 2.2	Ļ.o.			308.30		217.37	525.67
2.3 Spiliway						•	
Excavation (Common)	m3	52,700	35	1.84	30	1.58	3.42
Excavation (rock)	m3	210,700	120	25.28	90	18.96	44.24
Concrete	m3	38,600	910	35.13	890	34.35	69.48
Reinforcement steel bar Others	ton L.S.	772	10,450	8.07 7.03	4,750	3.67 5.86	11.74 12.89
Sub-Total of 2.3	L.O.			77.35		64.42	141.77
2.4 Waterway						i	
Excavation (common)	m3	11,600	35	0.41	30	0.35	0.76
Excavation (rock)	m 3	32,400	120	3.89	90	2.92	6.81
Excavation (tunnel)	m3	89,000	740	65.86	300	26.70	92.56
Concrete (intake) Concrete (tunnel lining)	m3 m3	4,120 31,000	1,010 1,080	4.16 33.48	990 1,010	4.08 31.31	8.24 64.79
Steel support	ton	748	12,350	9.24	8,550	6.40	15.64
Reinforcement steel bar	ton	325	10,450	3.40	4,750	1.54	4.94
Consolidation grout	m	1,600	910	1.46	510	0.82	2.28
Others Sub-Total of 2.4	L.S.			12.19 134.09		7.41 81.53	19.60 215.62
Total of II				586.29		403.24	989.52
III. METAL WORKS Oliversion closure gate	ton	73	109,440	7.99	12,160	0.89	8.88
Steel conduit	ton	12	68,400	0.82	7,600	0.09	0.91
Guard valve	ton	44	188,100	8.28	20,900	0.92	9.20
Outlet valve	ton	68	188,100	12.79	20,900	1.42	14.21
Spillway gate	ton	142	109,440	15.54	12,160	1.73	17.27
Intake gate Intake trashracks	ton ton	65 28	116,280 76,950	7.56 2.15	12,920 8,550	0.84 0.24	8.40 2.39
Total of III			•	55,13		8.13	61,26
Total of I to III				*			. **
				698,50		450.15	1,148.65
V. COMPENSATION				0,00		50.50	50.50
VI. ENGINEERING SERVICE		•		91.89		22.97	114.86
VII. GOVERNMENT ADMINISTRATION				0.00		57.43	57,43
III. PHYSICAL CONTINGENCY				118.56	• .	87.16	205.72
GRAND TOTAL (FINANCIAL)				908.95	:	568,21	1,577.16
							

Table 5.6 Principal Features of Alimit No. 1 Dam

Purpose	Compensation for Flood control by Magat dam, Hydropower and Supplemental water supply of Magat dam
Catchment area (km²)	559
River name	Alimit
Reservoir	RITHIC
Flood water level (EL. m)	279
High water level (EL. m)	271
Low water level (EL.3m)	246
Gross storage (100 m ³)	254
Storage for water utility (10 ⁶ m ³)	156
Reservoir area at HWL (km ²)	8.4
Dam	
Туре	Concrete gravity
Crest elevation (EL. m)	281
Crest length (m)	430
Crest width (m)	8
Height (m)	89
Upstream slope	1:0.1
Downstream slope	1:0.8
Embankment volume (m ³)	647,000
Spillway	
Туре	Non-gated open chuteway
Design flood (m ³ /s)	2,000
Crest elevation (EL. m)	271
Crest width (m)	44
Energy dissipator	Stilling basin
Diversion	
Type	Tunnel
Design flood (m³/s)	450
Tunnel diameter (m)	5.4
Tunnel length (m)	630
Number of tunnel (lanes)	1
Waterway	
Maximum discharge (m³/s)	26.0
Intake sill elevation (EL. m)	240
Length of Waterway (m)	130
Power and Energy	
Maximum plant discharge (m ³ /s)	26.0
Maximum gross head (m)	75.0
Rated head (m)	56.3
Installed capacity (kW)	12,200
Annual energy (GWh)	80.6

Table 5.7 Project Cost of Alimit No. 1 Dam

	*** * **			Foreign		Local Pe		Total
	Work Item	Unit	Work Quantity	Unit Prico (Pesos)	Amount (MII,P)	Unit Price (Pesos)	Amount (MILP)	Amount (MILP)
1 00	EPARATORY WORKS							
	Access road (New)	km	30	825,000	24.75	675,000	20,25	45.00
	Bridge Work shops, offices and quarters	m L.S.	50	22,500	1.13 58.95	27,500	1.38 42,31	2.51 101,26
÷		c.o.						
	Total of I				84.83	•	63,94	148.77
	IL WORKS				•			
2.1	River Diversion Works							
	Excavation (common) Excavation (rock)	m3 m3	1,800 7,200	35 120	0.06 0.86	30 90	0.0 5 0.65	0.11 1.51
	Excavation (tunnel)	m3	23,100	740	17.09	300	6.93	24.02
	Concrete (inlet and outlet)	m3	300	1,010	0.30	990	0.30	0.60
	Concrete (tunnel lining)	m3	8,670	1,080	9.36	1,010	8.76	18.12
	Concrete (plug) Steel support	m3 ton	1,200 171	870 12,350	1.04 2.11	840 8,550	1.01 1.48	2.05 3.57
	Reinforcement steel bar	ton	446	10,450	4.66	4,750	2.12	6.78
	Consolidation grout	m	4,280	910	3.89	610	2.18	6.07
	Cofferdam	m3	68,500	110	7.54	. 80	5.48	13.02
	Others Sub-Total of 2.1	L.S.			4.69 51.60		2.89 31,83	7.58 83.43
	Po-m					4.		
2.2	Dam Excavation (common)	m3	20,500	35	0.72	30	0.62	1.34
	Excavation (rock)	m3	60,000	120	7.20	90	5.40	12.60
	Concrete	m3	647,000	820	530.54	600	388.20	918,74
	Curtain grout	m	26,300	1,310	34.45	590	15.52	49.97
	Blanket or consolidation grout Others	m L.S.	5,300	910	4.82 57.77	510	2.70 41.24	7.52 99.01
	Sub-Total of 2.2	L.O.			835.50		453.68	1,089.18
2.3	Spiliway				* .			
	Excavation (Common)	m3	5,400	35	0.19	30	0.16	0.35
	Excavation (rock)	m3	21,800	120	2.62	90	1.96	4.58
	Concrete Reinforcement steel bar	m3 ton	25,700	910	23.39	890	22.87	46.26
	Others	L.S.	257	10,450	2.69 2.89	4,750	1.22 2.62	3.91 5.51
	Sub-Total of 2.3				31.78		28.83	60.61
2.4	Waterway			14				•
	Concrete (intake)	m3	1,200	1,010	1.21	990	1.19	2.40
	Reinforcement steal bar Others	ton	60	10,450	0.63	4,750	0.29	0.92
	Sub-Total of 2.4	L.S.			0.18 2.02		0.15 1.63	0.33 3.65
2.5	Powerhouse							
2.0	Excavation (common)	m3	1,900	35	0.07	30	0.06	0.13
	Excavation (rock)	m3	7,800	120	0.94	90	0.70	1.64
	Concrete	m3	2,700	950	2.57	950	2.57	5.14
	Reinforcement steel bar Archtectual works	ton m3	140 3,950	10,450 1,990	1.46 7.88	4,750	0.67	2.13
	Utility works	L.S.	3,500	1,980	1.57	1,620	6.40 1.28	14.26 2.85
	Others	L.S.			1.45	·	1.17	2.62
	Sub-Total of 2.5				15.92		12.85	28.77
	Total of II				736.82		528.82	1,265.64
III. MET	AL WORKS							
	Diversion closure gate	ton	59	109,440	6.46	12,160	0.72	7.18
	Intake gate Intake trashracks	ton	18	116,280	2.09	12,920	0.23	2.32
	Penstock	ton ton	12 130	76,950 68,400	0.92 8.89	8,550 7,600	0.10 0.99	1.02 9.88
	Draft tube gate	ton	7	109,440	0.77	12,160	0.09	0.86
	Total of III	•			19.13		2.13	21.26
IV. FLE	CTRICAL WORKS							
IV. ELEV	Generating Equipment	L.S.			72.05		9.01	81.06
	Transmission line	km	36	171,000	6.16	266,000	9.58	15.74
	Sub-station	L.S.			4.18		0.95	5.13
	Total of iV				82.39		19.54	101.93
	Total of I to IV				923.17	•	614.43	1,537.60
V, COM	PENSATION				0.00		3.15	3.15
	INEERING SERVICE						2	* .
					123.01		30.75	153.76
	ERNMENT ADMINISTRATION				0.00	•	76.88	76.88
III. PHYS	SICAL CONTINGENCY				156.93	•	108.78	265.71
	GRAND TOTAL (FINANCIAL)			_	1,203,11		833.99	2,037.10
<u> </u>								

Table 5.8 Principal Features of Santo Niño Dam

Purpose	Irrigation
Catchment area (km ²)	13.9
Reservoir Flood water level (EL. m) High water level (EL. m) Low water level (EL. m) Gross storage (10 ⁶ m ³) Storage for water utility (10 ⁶ m ³) Reservoir area at HWL (km ²)	148 145 142 4.6 2.0 0.77
Dam Type Crest elevation (EL. m) Crest length (m) Crest width (m) Height (m) Upstream slope Downstream slope Embankment volume (m ³)	Earthfill 150 450 8 18 1:4.0 1:3.0 145,100
Spillway Type Design flood (m ³ /s) Crest elevation (EL. m) Crest width (m) Energy dissipator	Non-gated open chuteway 210 145 21 Stilling basin
Diversion Type Design flood (m ³ /s) Channel length (m)	Open channel 120 130
Waterway Maximum discharge (m ³ /s) Intake sill elevation (EL. m) Length of Waterway (m)	0.8 140 10

Table 5.9 Project Cost of Santo Niño Dam

			Forei	gn Portion	Loc	al Portion	Total
Work Item	Unit	Work	Unit Price	Amount	Unit Price	Amount	Amount
	·····	Quantity	(Pesos)	(Mil.P)	(Pesos)	(MII.P)	(Mil.P)
1. PREPARATORY WORKS						•	
Access road (New)	km	1	350,000	0.35	300,000	0.30	0.65
Work shops, offices and quarters	L.S.		·	0.74	·	0.57	1.31
Total of i				1.09		0.87	1.96
II. CIVIL WORKS							•
2.2 Dam						100	
Excavation (common)	m3	14,500	15	0.22	15	0.22	0.44
Embankment (filter)	m3	3,600	65	0.23	55	. 0.20	0.43
Embankment (earth)	m3	123,400	30	3.70	20	2.47	6.17
Embankment (riprap)	m3	18,100	90	1.63	90	1.63	3.26
Olhers	L.S.			0.58		0.45	1.03
Sub-Total of 2.2				6.36		4.96	11.32
0.0.0.10							
2.3 Spillway	0	0.400	4 P	0.04	45	0.04	. 0.07
Excavation (Common)	m3	2,400	15	0.04	15	0.04	0.07
Excavation (rock)	m3	9,500	60	0.57	40	0.38	0.95
Concrete	m3	1,740	800	1.39	700	1.22	2.61
Reinforcement steel bar	ton	35	10,450	0.37	4,750	0.17	0.53
Others	L.S.			0.24		0.18	0.42
Sub-Total of 2.3				2.60		1.98	4.58
2.4 Waterway		100					
Excavation(common)	m3	500	15	0,01	15	0.01	0.02
Concrete	m3	180	800	0.14	700	0.13	0.27
Reinforcement steel bar	ton	. 9	10,450	0.09	4,750	0.04	0.14
Others	L.S.	. 5	10,400	0.02	4,700	0.02	0.04
Sub-Total of 2.4	1.0.			0.02		0.19	0.46
Total of II				9.23		7.14	16,37
III. METAL WORKS			352 .22				
Guard valve	ton	0.03	188,100	0.01	20,900	.0.00	0.01
Outlet valve	ton	0.05	188,100	0.01	20,900	0.00	0.01
Intake gate	ton	0.2	116,280	0.02	12,920	0.00	0.03
Intake trushrack	ton	0.05	76,950	0.00	8,550	0.00	0.00
Total of III				0.04		0.00	0.05
Total of I to III			-	10.36	_	8.01	18.36
V. COMPENSATION				0.00		0.29	0.29
VI. ENGINEERING SERVICE				1.47	•	0.37	1.84
VII. GOVERNMENT ADMINISTRATION				0.00		0.92	0.92
VIII. PHYSICAL CONTINGENCY				1.77		1.44	3.21
GRAND TOTAL (FINANCIAL)			-	13.61	-	11,03	24.63
GRAND TOTAL (ECONOMIC)	~~~~~~~			13.61		8.77	22.38

Table 5.10 Principal Features of Sta. Maria Dam

Purpose	Irrigation
Catchment area (km ²)	30,6
Reservoir Flood water level (EL. m) High water level (EL. m) Low water level (EL. m) Gross storage (10 ⁶ m ³) Storage for water utility (10 ⁶ m ³) Reservoir area at HWL (km ²)	76.5 73.5 65 24.1 18.1 3.2
Type Crest elevation (EL. m) Crest length (m) Crest width (m) Height (m) Upstream slope Downstream slope Embankment volume (m ³)	Earthfill 78.5 160 8 26.5 1:4.0 1:3.0 163,000
Spillway Type Design flood (m ³ /s) Crest elevation (EL. m) Crest width (m) Energy dissipator	Non-gated open chuteway 330 73.5 32 Stilling basin
Diversion Type Design flood (m ³ /s) Tunnel diameter (m) Tunnel length (m) Number of tunnel (lanes)	Tunnel 150 3.5 240
Waterway Maximum discharge (m ³ /s) Intake sill elevation (EL. m) Length of Waterway (m)	1.5 63 240

Table 5.11 Project Cost of Sta. Maria Dam

1. PREPARATORY WORKS	Foreign Po	Foreign Portion		Local Portion	
i. PREPARATORY WORKS Access road (New) km 3 Bridge m 10 Work shops, offices and quarters Total of I II. CIVIL WORKS 2.1 River Diversion Works Excavation (common) m3 600 Excavation (rock) m3 2,200 Excavation (tunnel) m3 4,180 Concrete (inlet and outlet) m3 80 Concrete (plug) m3 1,870 Concrete (plug) m3 1,870 Concrete (plug) m3 1,870 Concrete (plug) m3 1,060 Reinforcement steel bar ton 37 Consolidation grout m 1,060 Cofferdam m3 7,000 Others Ls. Sub-Total of 2.1 2.2 Dam Excavation (common) m3 8,700 Embankment (filter) m3 4,100 Embankment (garth) m3 138,500 Embankment (graph) m3 138,500 Embankment (graph) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Curtain grout m 900 Curtain grout m 3,000 Rescavation (common) m3 10,700 Excavation (common) m3 10,700 Embankment (garth) m3 138,500 Embankment (garth) m3 138,500 Embankment (graph) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Curtain grout m 3,000 Reinforcement steel bar ton 170 Others Ls. Sub-Total of 2.2 2.3 Spiliway Excavation (common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Stael conduit ton 22 Guard valve ton 2.4 Outlet valve ton 2.3 Intake gate ton 2.3 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III V. COMPENSATION VI. ENGINEERING SERVICE	nit Price	Amount	Unit Price	Amount	Amount
Access road (New) km 3 Improvement of existing road km 3 Bridge Work shops, offices and quarters L.S.	(Pesos)	(MII.P)	(Pesos)	(Mil.P)	(Mil.P)
Access road (New) km 3 Improvement of existing road km 3 Bridge Work shops, offices and quarters L.S. Total of I II. CIVIL WORKS 2.1 River Diversion Works Excavation (common) m3 600 Excavation (trock) m3 2,200 Excavation (tunnel) m3 4,180 Concrete (tintet and outlet) m3 80 Concrete (plug) m3 1,870 Concrete (plug) m3 1,870 Concrete (plug) m3 120 Steel support ton 33 Reinforcement steel bar ton 97 Consolidation grout m 1,060 Cofferdam (others L.S. Sub-Total of 2.1 2.2 Dam Excavation (common) m3 10,700 Excavation (rock) m3 8,700 Embankment (filter) m3 4,100 Embankment (filter) m3 4,100 Embankment (filter) m3 138,500 Embankment (filter) m3 138,500 Embankment (filter) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 3,000 Blanket or consolidation grout m 3,000 Concrete m3 8,500 Reinforcement steel bar ton Others L.S. Sub-Total of 2.2 2.3 Spillway Excavation (Common) m3 7,000 Excavation (rock) m3 8,500 Reinforcement steel bar ton Others L.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE					•
Improvement of existing road Bridge m 10 Work shops, offices and quarters Total of I II. CIVIL WORKS 2.1 River Diversion Works Excavation (common) m3 600 Excavation (unnet) m3 2,200 Excavation (unnet) m3 80 Concrete (inter and outlet) m3 80 Concrete (inter and outlet) m3 1,870 Concrete (plug) m3 1,200 Steel support ton 33 Reinforcement steel bar ton 97 Consolidation grout m 1,060 Cofferdam m3 7,000 Cofferdam m3 7,000 Excavation (common) m3 10,700 Excavation (rock) m3 8,700 Embankment (filter) m3 138,500 Embankment (filter) m3 138,500 Embankment (riprap) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Others LS. Sub-Total of 2.2 2.3 Spiliway Excavation (Common) m3 7,000 Excavation (rock) m3 8,500 Embankment (filter) m3 18,500 Embankment (filter) m3 18,500 Embankment (filter) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Others LS. Sub-Total of 2.2 2.3 Spiliway Excavation (Common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others LS. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III V. COMPENSATION VI. ENGINEERING SERVICE	350,000	1.05	300,000	0.90	1.95
Total of I II. CIVIL WORKS 2.1 River Diversion Works Excavation (common) Excavation (unnet) Excavation (un	70,000	0.21	60,000	0.18	0.39
Total of I	12,000	0.12	14,000	0.14	0.26
### CIVIL WORKS 2.1 River Diversion Works Excavation (common)		2.64		1.78	4.42
2.1 River Diversion Works Excavation (common) m3 600 Excavation (rock) m3 2,200 Excavation (tunnel) m3 4,180 Concrete (flut and outlet) m3 80 Concrete (flutnel lining) m3 1,870 Concrete (plug) m3 120 Steel support ton 33 Reinforcement steel bar ton 97 Consolidation grout m 1,060 Cofferdam m3 7,000 Cofferdam m3 7,000 Cofferdam m3 7,000 Excavation (common) m3 10,700 Excavation (rock) m3 8,700 Embankment (filter) m3 4,100 Embankment (filter) m3 4,100 Embankment (rock) m3 3,000 Embankment (riprap) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Curtain grout m 3,000 Blanket or consolidation grout m 900 Curtain grout m 3,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Concrete m3 8,500 Reinforcement steel bar ton 170 Concrete		4.02		3.00	7.02
Excavation (common)					
Excavation (tunnel) Excavation (common) Excavation (common) Excavation (rock) Embankment (filter) Embankment (riprap) Excavation (rock) Excavation (Common) Excavation (rock) Exca					مفم
Excavation (tunnel) m3 4,180 Concrete (inlet and outlet) m3 80 Concrete (tunnel lining) m3 1,870 Concrete (plug) m3 120 Steel support ton 33 Reinforcement steel bar ton 97 Consolidation grout m 1,060 Cofferdam m3 7,000 Others Ls. Sub-Total of 2.1 2.2 Dam Excavation (common) m3 10,700 Excavation (rock) m3 8,700 Embankment (filter) m3 4,100 Embankment (filter) m3 138,500 Embankment (riprap) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Others Ls. Sub-Total of 2.2 2.3 Spiliway Excavation (Common) m3 7,000 Excavation (Common) m3 7,000 Excavation (Common) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others Ls. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 2.3 Intake trashracks ton 0.3 Total of III Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	15	0.01	15	0.01	0.02
Concrete (inlet and outlet) m3 1,870 Concrete (plug) m3 1,270 Concrete (plug) m3 120 Steel support ton 33 Reinforcement steel bar ton 97 Consolidation grout m 1,060 Cofferdam m3 7,000 Others Ls. Sub-Total of 2.1 2.2 Dam Excavation (common) m3 10,700 Excavation (rock) m3 8,700 Embankment (filter) m3 4,100 Embankment (riprap) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Curtain Grout m 900 Curtain Grout m 900 Curtain Grout m 1,000 Blanket or consolidation grout m 900 Curtain Grout m 900 Concrete m3 8,500 Reinforcement steel bar ton 170 Cuters Ls. Sub-Total of 2.2 2.3 Spiliway Excavation (Common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Cuters Ls. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 2.4 Outlet valve ton 2.4 Outlet valve ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	.60	0.13	40	0.09 1.25	0.22 4.05
Concrete (tunnel lining) Concrete (plug) Steel support Ton 33 Reinforcement steel bar ton 97 Consolidation grout m 1,060 Cofferdam m3 7,000 Others LS. Sub-Total of 2.1 2.2 Dam Excavation (common) m3 10,700 Excavation (rock) m3 8,700 Embankment (filter) m3 4,100 Embankment (earth) m3 138,500 Embankment (riprap) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Others LS. Sub-Total of 2.2 2.3 Spillway Excavation (Common) m3 7,000 Excavation (rock) m3 8,500 Reinforcement steel bar ton 170 Others LS. Sub-Total of 2.2 1.3 Spillway Excavation (Common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others LS. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	670	2.80	300	0.06	0.12
Concrete (plug)	800	0.06 2.28	700 920	1.72	4.00
Steel support ton 33 Reinforcement steel bar ton 97 Consolidation grout m 1,060 Cofferdam m3 7,000 Others L.S. Sub-Total of 2.1 2.2 Dam Excavation (common) m3 10,700 Excavation (rock) m3 8,700 Embankment (litter) m3 4,100 Embankment (riprap) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Others L.S. Sub-Total of 2.2 2.3 Spillway Excavation (common) m3 7,000 Excavation (rock) m3 8,500 Reinforcement steel bar ton 170 Others L.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Total of III Total of It to III V. COMPENSATION VI. ENGINEERING SERVICE	1,220	0.10	700	0.08	0.18
Reinforcement steel bar consolidation grout m 1,060 Cofferdarm m3 7,000 Others L.S. Sub-Total of 2.1 2.2 Dam Excavation (common) m3 10,700 Excavation (rock) m3 8,700 Embankment (filter) m3 4,100 Embankment (riprap) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Cthers L.S. Sub-Total of 2.2 2.3 Spillway Excavation (Common) m3 7,000 Excavation (rock) m3 8,500 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Cthers L.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 0.3 Total of III Total of III Total of II to III V. COMPENSATION VI. ENGINEERING SERVICE	. 800	0.10	8,550	0.28	0.10
Consolidation grout m 1,060 Cofferdam m3 7,000 Others L.S. Sub-Total of 2.1 2.2 Dam Excavation (common) m3 10,700 Excavation (rock) m3 8,700 Embankment (liller) m3 4,100 Embankment (earth) m3 138,500 Embankment (riprap) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Others L.S. Sub-Total of 2.2 2.3 Spiliway Excavation (Common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others L.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake trashracks ton 0.3 Total of III Total of II to III V. COMPENSATION VI. ENGINEERING SERVICE	12,350 10,450	1.01	4,750	0.46	1:47
Cofferdam Others Sub-Total of 2.1 2.2 Dam Excavation (common) Excavation (rock) Embankment (lilter) Embankment (earth) Embankment (riprap) Curtain grout Blanket or consolidation grout Others Sub-Total of 2.2 2.3 Spiliway Excavation (Common) Excavation (rock) Concrete Final Blanket or consolidation grout Curtain grout Blanket or consolidation grout Blanket or c	910	0.96	510	0.54	1.50
Sub-Total of 2.1 2.2 Dam Excavation (common) Excavation (rock) Embankment (filter) Embankment (earth) Embankment (riprap) Emb	30	0.96	20	0.14	0.35
Sub-Total of 2.1 2.2 Dam Excavation (common) Excavation (rock) Embankment (filter) Embankment (earth) Embankment (riprap) Curtain grout Blanket or consolidation grout Others Sub-Total of 2.2 2.3 Spiliway Excavation (Common) Excavation (rock) Concrete Fig. 3 8,500 Reinforcement steel bar Others Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate Courted valve Coutlet valve Intake gate Intake trashracks Total of II Total of III Total Of IIII Total Of IIII Total Of III Total Of III Total Of IIII Total Of III Total Of III Total Of III Total Of IIII Total Of III Total Of III Total Of IIII Total Of III Total Of	30	0.80	20	0.46	1.26
Excavation (common) Excavation (rock) Embankment (filter) Embankment (liter) Embankment (earth) Embankment (earth) Embankment (riprap) Embankment (riprap) Embankment (riprap) Estavation (rock) Embankment (riprap) Estavation (rock) Embankment (riprap) Estavation (rock) Esta		8.77		5.09	13.86
Excavation (common) Excavation (rock) Embankment (filter) Embankment (earth) Embankment (earth) Embankment (riprap) Estavous estavou	-				
Excavation (rock) m3 8,700 Embankment (filter) m3 4,100 Embankment (earth) m3 138,500 Embankment (riprap) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Others L.S. Sub-Total of 2.2 2.3 Spiliway Excavation (Common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others L.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Total of III Total of III Total of III V. COMPENSATION VI. ENGINEERING SERVICE	15	0.16	15	0.16	0.32
Embankment (filter) m3 4,100 Embankment (earth) m3 138,500 Embankment (riprap) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Others L.S. Sub-Total of 2.2 2.3 Spiliway Excavation (Common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others L.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 2.4 Outlet valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Total of III Total of III Total of III V. COMPENSATION VI. ENGINEERING SERVICE	60	0.52	40	0.35	0.87
Embankment (earth) m3 138,500 Embankment (riprap) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Others L.S. Sub-Total of 2.2 2.3 Spillway Excavation (Common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others L.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 2.4 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Total of III Total of III Total of III V. COMPENSATION VI. ENGINEERING SERVICE	65	0.32	55	0.23	0,50
Embankment (riprap) m3 20,400 Curtain grout m 3,000 Blanket or consolidation grout m 900 Others L.S. Sub-Total of 2.2 2.3 Spillway Excavation (Common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others L.S. Sub-Total of 2.3 Total of ii III. METAL WORKS Diversion closure gate ton 2.4 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of iii Total of iii Total of iii V. COMPENSATION VI. ENGINEERING SERVICE	30	4.16	20	2.77	6.93
Curtain grout m 3,000 Blanket or consolidation grout m 900 Others L.S. Sub-Total of 2.2 2.3 Spillway Excavation (Common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others L.S. Sub-Total of 2.3 Total of ii III. METAL WORKS Diversion closure gate ton 2.4 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Total of iii Total of iii Total of iii Y. COMPENSATION VI. ENGINEERING SERVICE	90	1.84	90	1.84	3,68
Blanket or consolidation grout Others Sub-Total of 2.2 2.3 Spillway Excavation (Common) Excavation (rock) Concrete Reinforcement steel bar Others Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate Steel conduit Guard valve Outlet valve Intake gate Intake trashracks Total of II Total of II Total of II Total of III Total of III V. COMPENSATION VI. ENGINEERING SERVICE	1,310	3.93	590	1.77	5.70
Others Sub-Total of 2.2 2.3 Spillway Excavation (Common) Excavation (rock) Concrete M3 8,500 Reinforcement steel bar ton 170 Others Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 2.4 Guard valve ton 2.4 Guard valve ton 3.7 Intake gate ton 2.3 Total of III Total of III Total of III V. COMPENSATION VI. ENGINEERING SERVICE	910	0.82	510	0.46	1,28
Sub-Total of 2.2 2.3 Spiliway Excavation (Common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others Ls. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of III V. COMPENSATION VI. ENGINEERING SERVICE	310	1.17	310	0.76	1.93
Excavation (Common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others L.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE		12.87		8.34	21.21
Excavation (Common) m3 7,000 Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others L.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE					
Excavation (rock) m3 28,000 Concrete m3 8,500 Reinforcement steel bar ton 170 Others L.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	15	0.11	15	0.11	0.22
Concrete Reinforcement steel bar ton 170 Others L.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 2.4 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	60	1.68	40	1.12	2.80
Reinforcement steel bar ton U.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	800	6.80	700	5.95	12.75
Others L.S. Sub-Total of 2.3 Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	10,450	1.78	4,750	0.81	2.59
Total of II III. METAL WORKS Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III V. COMPENSATION VI. ENGINEERING SERVICE	,0,400	1.04	.,	0.80	1.84
Diversion closure gate ton 11 Steet conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE		11.41		8.79	20.20
Diversion closure gate ton 11 Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III V. COMPENSATION VI. ENGINEERING SERVICE		33.05		22.22	55.27
Diversion closure gate ton 11 Steet conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE					
Steel conduit ton 22 Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	109,440	1.20	12,160	0.13	1.33
Guard valve ton 2.4 Outlet valve ton 3.7 Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	68,400	1.50	7,600	0.17	1.67
Outlet valve ton 3.7 Intake gate ton 2.3 Intake gate ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	188,100	0.45	20,900	0.05	0.50
Intake gate ton 2.3 Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	188,100	0.70	20,900	0.08	0.78
Intake trashracks ton 0.3 Total of III Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	116,280	0.27	12,920	0.03	0.30
Total of I to III V. COMPENSATION VI. ENGINEERING SERVICE	76,950	0.02	8,550	0.00	0.02
V. COMPENSATION VI. ENGINEERING SERVICE		4.14		0.46	4.60
VI. ENGINEERING SERVICE		41.21	_	25.68	66.89
		0.00		2.32	2.32
VII. GOVERNMENT ADMINISTRATION		5,35		1.34	6.69
		0.00		3.34	3.34
VIII. PHYSICAL CONTINGENCY		6.98	·	4.90	11.88
GRAND TOTAL (FINANCIAL)		53.54		37.58	91.12
GRAND TOTAL (ECONOMIC)		53.54		29.53	83.07

Table 5.12 Principal Features of Colorado Dam

Purpose	Irrigation
Catchment area (km²)	63.9
River name	Sinalugan
Reservoir Flood water level (EL. m)	87.5
High water level (EL. m)	84.5
Low water level (EL.,m)	72.5
Gross storage $(10^{\circ} \text{ m}^{\circ})$	71.3
Storage for water utility (10 ⁶ m ³)	58.4
Reservoir area at HWL (km ²)	9.8
Dam	
Туре	Earthfill
Crest elevation (EL. m)	89.5
Crest length (m)	360
Crest width (m)	8
Height (m)	32.5
Upstream slope	1:4.0
Downstream slope	1:3.0
Embankment volume (m ³)	571,900
Spillway	
Туре	Non-gated open chuteway
Design flood (m ³ /s)	630
Crest elevation (EL. m)	84.5
Crest width (m)	- 60
Energy dissipator	Stilling basin
Diversion	
Type	Tunne1
Design flood (m ³ /s)	280
Tunnel diameter (m)	4.3
Tunnel length (m)	220
Number of tunnel (lanes)	1
Channel length (m)	·
Waterway	
Maximum discharge (m ³ /s)	3.3
Intake sill elevation (EL. m)	70,5
Length of Waterway (m)	220
- · · · · ·	

Table 5.13 Project Cost of Colorado Dam

ramanin da Maria and and Alla Alla and an anti-anti-anti-anti-anti-anti-anti-anti-				gn Portion		al Portion	Total
Work Item	Unit	Work Quantity	Unit Price (Pesos)	Amount (MILP)	Unit Price (Pesos)	Amount (MILP)	Amount (Mil.P)
I. PREPARATORY WORKS							
Access road (New)	km	0.5	350,000	0.18	300,000	0.15	0.33
Improvement of existing road	km	6	70,000	0.42	60,000	0.15	0.33
Work shops, offices and quarters	L.S.		. 5,000	5.74		3.95	9.69
Total of I				6.34		4.46	10.80
II. CIVIL WORKS					-		
2.1 River Diversion Works							
Excavation (common)	m3	1,400	15	0.02	15	0.02	0.04
Excavation (rock)	m3	5,700	60	0.34	40	0.23	0.57
Excavation (tunnel) Concrete (inlet and outlet)	m3	5,450	670	3.65	300	1.64	5.29
Concrete (tunnel lining)	m3 m3	150 2,260	800 1,220	0.12 2.76	700 920	0.11 2.08	0.23
Concrete (plug)	m3	210	800	0.17	700	0.15	4.84 0.32
Steel support	ton	42	12,350	0.52	8,550	0.13	0.88
Reinforcement steel bar	ton	119	10,450	1.24	4,750	0.57	1.81
Consolidation grout	m	1,200	910	1.09	510	0.61	1.70
Cofferdam	m3	5,000	30	0.15	20	0.10	0.25
Others	L.S.			1.01		0.59	- 1.60
Sub-Total of 2.1				11.07		6.46	17.53
2.2 Dam							
Excavation (common)	m3	33,500	15	0.50	15	0.50	1.00
Excavation (rock)	m3	27,400	60	1.64	40	1.10	2.74
Embankment (filter)	m3	14,300	65	0.93	55	0.79	1.72
Embankment (earth)	m3	486,100	30	14.58	20	9.72	24:30
Embankment (riprap) Curtain grout	m3 m	71,500 7,400	90 1,310	6.44	90	6.44	12.88
Blanket or consolidation grout	m	2,200	910	9.69 2.00	590 510	4.37 1.12	14.06 3.12
Others	L.S.	£,200	310	3.58	310	2.40	5.12 5.98
Sub-Total of 2.2				39.36		26.44	65.80
2.3 Spillway							
Excavation (Common)	m3	14,000	15	0.21	15	0.21	0.42
Excavation (rock)	m3	56,100	60	3.37	40	2.24	5.61
Concrete	m3	15,700	800	12.56	700	10.99	23.55
Reinforcement sieel bar	ton	314	10,450	3.28	4,750	1.49	4.77
Others Sub-Total of 2.3	L.S.			1.94 21.36	4	1.49	3.43
						16.42	37.78
Total of II				71.79		49.32	121.11
III. METAL WORKS							1, 1
Diversion closure gate	ton	16	109,440	1.75	12,160	0.19	1.94
Steel conduit Guard valve	ton	27	68,400	1.85	7,600	0.21	2.06
Outlet valve	ton	5.2	188,100	0.98	20,900	0.11	1.09
Intake gate	ton ton	8 2.5	188,100 116,280	1.50 0.29	20,900	0.17	1.67
Intake trashracks	lon	0.8	76,950	0.06	12,920 8,550	0.03 0.01	0.32 0.07
Total of III				6.43		0.72	7.15
Total of I to III				84.56		54.50	139.06
V. COMPENSATION				0.00		6.20	6.20
VI. ENGINEERING SERVICE				11.12		2.78	13.90
VII. GOVERNMENT ADMINISTRATION				0.00	•	6.95	6.95
VIII. PHYSICAL CONTINGENCY				14.35		10.56	24.91
GRAND TOTAL (FINANCIAL)				110.03		80.99	191.02
							191,02
GRAND TOTAL (ECONOMIC)				110.03		62.54	172.57

Table 5.14 Principal Features of Calaocan Dam

Purpose	Irrigation
Catchment area (km ²)	26.8
River name	Madalan
Reservoir Flood water level (EL. m) High water level (EL. m) Low water level (EL. m) Gross storage (10 ⁶ m ³) Storage for water utility (10 ⁶ m ³) Reservoir area at HWL (km ²)	87.5 84.5 72 46.9 41.0 5.5
Dam Type Crest elevation (EL. m) Crest length (m) Crest width (m) Height (m) Upstream slope Downstream slope Embankment volume (m ³)	Earthfill 89.5 260 8 30.5 1:4.0 1:3.0 348,200
Spillway Type Design flood (m ³ /s) Crest elevation (EL. m) Crest width (m) Energy dissipator	Non-gated open chuteway 290 84.5 28 Stilling basin
Diversion Type Design flood (m ³ /s) Tunnel diameter (m) Tunnel length (m) Number of tunnel (lanes)	Tunne1 130 3.1 180 1
Waterway Maximum discharge (m ³ /s) Intake sill elevation (EL. m) Length of Waterway (m)	1.8 70 180

Table 5.15 Project Cost of Calaocan Dam

	استانه استانه شخص اردن بربولیده این باوی که در حجر رسیم واقعی با در مست مساطح ب <u>در نین بردن به بر</u> د بدر مستور در در				gn Portion		al Portion	Total
	Work Item	Unit	Work Quantity	Unit Price (Pesos)	Amount (Mil.P)	Unit Price (Pesos)	Amount (Mil.P)	Amount (Mil.P)
i de	EPARATORY WORKS							
(. 1 1)	Access road (New)	km	1	350,000	0.35	300,000	0.30	0.6
	Bridge	m	10	12,000	0.12	14,000	0.14	0.2
	Work shops, offices and quarters	L.S.			3.38		2.31	5.6
	Total of 1				3.85	•	2.75	6.6
	IL WORKS							
2.1	River Diversion Works	O	2 600	15	0.04	15	0.04	0.0
	Excavation (common)	m3 m3	2,600 10,600	60	0.64	40	0.42	1.
	Excavation (rock) Excavation (tunnel)	m3	2,540	670	1.70	300	0.76	2.
	Concrete (inlet and outlet)	m3	60	800	0.05	7.00	0.04	0.
	Concrete (tunnel lining)	m3	1,180	1,220	1.44	920	1.09	2.
	Concrete (plug)	m3	110	800	90.0	7.00	9.08	-0,
	Steel support	ton	19	12,350	0.23	8,550	0.16	0.
	Reinforcement steel bar	ton	61	10,450	0.64	4,750	0.29	0.
	Consolidation grout	m	930	910	0.85	510	0.47	1.
	Cofferdam	m3	3,000	30	0.09	20	0.06 0.34	0.
	Others Sub-Total of 2.1	L.S.			0.58 6.35		3.75	10
2.4	Dam							
2.2	Excavation (common)	m3	25,300	15	0.38	15	0.38	0
	Excavation (rock)	m3	16,800	60	1.01	40	0.67	1
	Embankment (filter)	m3	8,700	65	0.57	55	0.48	1
	Embankment (earth)	m3	296,000	30	8.88	20	5.92	14
	Embankment (riprap)	m3	43,500	90	3.92	90	3.92	7
	Curtain grout	ts.	5,000	1,310	6.55	590	2.95	9
	Blanket or consolidation grout	m	1,500	910	1.37	510	0.77	2
	Others Sub-Total of 2.2	L.S.			2.27 24.95		1.51 16,60	3 41
2.2	Spillway							
2.0	Excavation (Common)	m3	7,200	15	0.11	15	0.11	0
	Excavation (rock)	m3	28,800	60	1.73	40	1.15	2
	Concrete	m3	8,100	800	6.48	700	5.67	12
	Reinforcement steel bar	ton	162	10,450	1.69	4,750	0.77	5
	Others	L.S.			1.00		0.77	1
	Sub-Total of 2.3				11.01		8.47	19
	Total of il				42.31		28.82	71.
II. ME	TAL WORKS	40.0	10	100 440	1.09	12,160	0.12	.4
	Diversion closure gate	ton ton	10 19.2	109,440 68,400	1.31	7,600	0.12	1
	Steel conduit Guard valve	ton	2.7	188,100	0.51	20,900	0.06	Ö
	Outlet valve	ton	4.1	188,100	0.77	20,900	0.09	ō
	Intake gate	lon	2.2	116,280	0.26	12,920	0.03	0
	Intake trashracks	ton	0.3	76,950	0.02	8,550	0.00	0
	Total of III				3.96		0.45	4
	Total of I to III			-	50.12		32.02	82
v. co	MPENSATION				0.00		4.39	4
VI. EN	GINEERING SERVICE				6.57	•	1.64	8
'II. GO	VERNMENT ADMINISTRATION				0.00		4.11	4
III. PH'	YSICAL CONTINGENCY				8,50		6.32	14
	GRAND TOTAL (FINANCIAL)				65.19		48,48	113.
				•				
							37.77	

Table 5.16 Principal Features of Paranan Dam

Purpose	Irrigation and Hydropower
Catchment area (km ²)	64
River name	Paranan
Reservoir Flood water level (EL. m) High water level (EL. m) Low water level (EL. m) Gross storage (10 ⁶ m ³) Storage for water utility (10 ⁶ m ³) Reservoir area at HWL (km ²)	173 170 155 28.5 18.1 0.8
Type Crest elevation (EL. m) Crest length (m) Crest width (m) Height (m) Upstream slope Downstream slope Embankment volume (m ³)	Rockfill 175 180 12 50 1:2.9 1:2.0 640,000
Spillway Type Design flood (m ³ /s) Crest elevation (EL. m) Crest width (m) Energy dissipator	Non-gated open chuteway 760 170 73 Stilling basin
Diversion Type Design flood (m ³ /s) Tunnel diameter (m) Tunnel length (m) Number of tunnel (lanes)	Tunnel 440 3.7 380 2
Waterway Maximum discharge (m ³ /s) Intake sill elevation (EL. m) Length of Waterway (m)	2.8 153 350
Power and Energy Maximum plant discharge (m ³ /s) Maximum gross head (m) Rated head (m) Installed capacity (kW) Annual energy (GWh)	2.8 39.0 28.4 600 4.96

Table 5.17 Project Cost of Paranan Dam

	1872-3. 62.0	£174	Marie	Foreign I		Local P		Total
	Work Item	Unit	Work Quantity	Unit Price (Pesos)	Amount (Mil.P)	Unit Price (Pesos)	Amount (Mil.P)	Amount (Mil.P)
1 097	PARATORY WORKS							
1, 111	Access road (New)	km	2	825,000	1.65	675,000	1.35	3.0
	Improvement of existing road Bridge	km m	6 40	165,000 22,500	0.99 0.90	135,000 27,500	0.81 1.10	1.8 2.0
	Work shops, offices and quarters	L.S.	40	22,300	12.81	27,500	9.09	21.9
	Total of I				16.35		12.35	28.7
					10135		12.50	
	L WORKS River Diversion Works							
2,1	Excavation (common)	m3	2,600	. 35	0.09	30	0.08	0,1
	Excavation (rock)	m3	10,400	120	1.25	90	0.94	2.1
	Excavation (tunnel) Concrete (inlet and outlet)	m3 m3	14,500 190	7 40 1,01 0	10.73 0.19	300 990	4.35 ° 0.19	15.0 0.3
	Concrete (tunnel fining)	m3	6,300	1,080	8.80	1,010	6.36	13,1
	Concrete (plug)	m3 ton	530 114	870 12,350	0.46 1.41	840 8,550	0.45 0.97	0.9 2.3
	Steel support Reinforcement steel bar	ton	322	10,450	3.36	4,750	1.53	4.8
	Consolidation grout	m	3,500	910	3.19	510	1,79	4.\$
	Colferdam Others	m3 L.S.	4,700	110	0.52 2.80	80	0.38 1.70	0.9 4.5
	Sub-Total of 2.1	L.O.			30.80		18.74	49.5
22	Dam						·	
	Excavation (common)	m3	39,700	35	1.39	30	1.19	2.5
	Excavation (rock) Embarkment (core)	m3	32,400	120	3.89	90	2.92	6.8
	Embankment (core)	m3 m3	105,800 52,900	65 95	6.88 5.03	45 75	4.76 3.97	11.6
	Embankment (rock)	m3	481,300	110	52.94	80	38.50	91.4
	Curtain grout Blanket or consolidation grout	m m	8,600 2,600	1,310 910	11.27 2.37	590 510	5.07 1.33	16.3 : 3.3
	Others	LS.	2,000	910	8.38	. 510	5.77	14.
	Sub-Total of 2.2				92.15	1	63.51	155.6
2.3	Spillway							
	Excavation (Common)	m3	13,900	35	0.49	30	0.42	0.
	Excavation (rock) Concrete	m3 m3	55,700 21,400	120 910	6.68 19.47	90 890	5.01 19.05	11.6 38.9
	Reinforcement steet bar	ton	428	10,450	4.47	4,750	2.03	6.
	Others Sub-Total of 2.3	łS.			3.11 34.22		2.65 29.16	5.1 63.1
					4.22		20.10	00.
2.4	Waterway Excavation (common)	m3	30	35	0.00	30	0.00	0.4
	Excavation (rock)	m3	130	120	0.02	90	0.01	0.
	Excavation (tunnel)	m3	530 60	740	0.39	300	0.16	0.9
	Excavation (shaft) Concrete (intake)	m3 m3	14	820 1,010	0.05 0.01	320 990	0.02 0.01	. 0,0
	Concrete (tunnel lining)	m3	250	1,080	0.27	1,010	0.25	0.
	Steel support Reinforcement steel bar	ton ton	4.3 2.2	12,350	0.05 0.02	8,550	0,04 0,01	0.0
	Others	LS.	2.2	10,450	0.08	4,750	0.05	0.
	Sub-Total of 2.4				0.89		0.55	1.4
2.5	Powerhouse	_						
	Excavation (common) Excavation (rock)	m3 m3	130 530	35 120	0.00 0.06	30 90	0.00 0.05	0.0
	Concrete	m3	180	950	0.17	950	0.17	0.:
	Reinforcement steel bar	ton	9.4	10,450	0.10	4,750	0.04	0.
	Architectual works Utility works	m3 L.S.	630	1,990	1.25 0.25	1,620	1.02 0.20	2.2 0.4
	Others	LS,			0.18		0.15	0.
	Sub-Total of 2.5				2.01		1.63	3.0
	Total of II				160.07		113.59	273,6
	AL WORKS			÷				
	Diversion closure gate	ton	35	109,440	3.83	12,160	0.43	4.3
	Steel conduit Guard valve	ton ton	17.8 1.7	68,400 188,100	1.22 0.32	7,600 20,900	0.14 0.04	1.3 0.3
	Outlet valve	ton	2.6	188,100	0.49	20,900	0.05	0.5
	inlake gate	ton	2	116,280	0.23	12,920	0.03	0.2
	Intake trashracks Ponstock	ton ton	0.6 10.7	76,950 68,400	0.05 0.73	8,550 7,600	0.01 0.08	0.0 0.8
	Draft tube gate	ton	2.1	109,440	0.23	12 160	0.03	0.2
	Total of III				7.10		0.81	7.9
V E150	TRICAL WORKS	LS.					2.00	100
Y. ELEC	INICAL WORKS	LS.			9.27		1.03	10.3
	Total of I to IV			*****	192.79	****	127.78	320.5
V. COM	PENSATION				0.00	•	0.54	0.5
I. ENGI	NEERING SERVICE				25,85		6.41	32.0
	SAMENT ADMINISTRATION							
					0.00		16.03	16.0
1. PHYS	ICAL CONTINGENCY				32.77		22.61	55.3
	GRAND TOTAL (FINANCIAL)				251.21		173.37	424.5

Table 5.18 Principal Features of Dummon Dam

Purpose	Irrigation	and	Hydropower
Catchment area (km ²)		112	
River name	Dı	ımmoı	ı
Reservoir Flood water level (EL. m) High water level (EL. m) Low water level (EL. m) Gross storage (10 ⁶ m ³) Storage for water utility (10 ⁶ m ³) Reservoir area at HWL (km ²)		133 130 122 43. 24.	.1
Type Crest elevation (EL. m) Crest length (m) Crest width (m) Height (m) Upstream slope Downstream slope Embankment volume (m ³)	Roo 493,	2kfil 135 240 12 36 1:2,	,9
Spillway Type Design flood (m ³ /s) Crest elevation (EL. m) Crest width (m) Energy dissipator		220 130 117	n chuteway basin
Diversion Type Design flood (m ³ /s) Tunnel diameter (m) Tunnel length (m) Number of tunnel (lanes)	ר	Tunne 710 4. 240 2	
Waterway Maximum discharge (m ³ /s) Intake sill elevation (EL. m) Length of Waterway (m)		4, 120 240	0
Power and Energy Maximum plant discharge (m ³ /s) Maximum gross head (m) Rated head (m) Installed capacity (kW) Annual energy (GWh)		4. 25. 18. 600 4.	.0

Table 5.19 Project Cost of Dummon Dam

	Wade born	I dale	Wast	Foreign i		Local P		Total
	Work Item	Unit	Work Quantity	Unit Price (Pesos)	Amount (MII.P)	Unit Price (Pesos)	Amount (MII.P)	Amount (MII.P)
I. PREP	ARATORY WORKS							
	rocess road (New) Iridge	km	10	825,000	8.25	675,000	6.75	15.00
	Vork shops, offices and quarters	m L.S.	50	22,500	1.13	27,500	1.38 8.46	2,51 20,29
	Total of 1				21.21		18.59	37.80
II. CIVIL	WORKS							
2.i F	liver Diversion Works							
	xeavation (common) xeavation (rock)	m3 m3	2,800 11,100	35 120	0.10 1.33	30 90	0.08	0.18
Ę	xcavation (tunnel)	m3	13,400	740	9.92	300	1.00 4.02	2.33 13.94
	concrete (inlet and outlet)	m3	370	1,010	0.37	990	0.37	0.74
	concrete (tunnel lining) concrete (plug)	ന3 ന3	5,420 570	1,080 870	5.85 0.50	1,010 840	5.47 0.48	11.32 0.98
	teel support	ton	103	12,350	1.27	8,550	0.88	2.15
	einforcement steel bar onsolidation grout	ton m	286 2,770	10,450 910	2.99 2.52	4,750 510	1.36 1.41	4.35 3.93
C	offerdam	m3	13,500	110	1.49	80	1.08	2.57
ć	thers Sub-Total of 2.1	L.S.			2.63 29.97	•	1.62 17.77	4.25 46.74
2.2 0	am							
6	xcavation (common)	m3	40,700	35	1.42	30	1.22	2.64
	xcavation (rock) mbankment (core)	m3 m3	33,300 90,900	120 65	4.00 5.91	90 45	3.00 4.09	7.00 10.00
E	mbankment (filter)	m3	45,400	95	4.31	75	3.41	7,72
	mbankment (rock) urtain grout	m3 m	357,000 9,100	110 1,310	39.27 11.92	80	28.56	67.83
В	lanket or consolidation grout	m	2,700	910	2.46	590 510	5.37 1.38	17.29 3.84
C	thers Sub-Total of 2.2	L.S.			6.93 76.22		4.70 51.73	11.63 127.95
22 €	plliway						JII.73	127,30
E	xcavation (Common)	m3	14,400	35	0.50	30	0.43	0.93
	xcavation (rock)	m3	57,600	120	6.91	90	5.18	12.09
	oncrete einforcement steel bar	m3 ton	25,400 508	910 10,450	23.11 5.31	890 4,750	22.61 2.41	45.72 7.72
o	thers Sub-Total of 2.3	L.S.			3.58	7,720	3.06	6.64
					39.41		33.69	73.10
	aterway reavation (tunnel)	m3	560	740	0.41	300	0.17	0.58
	oncrete (intake)	m3	130	1.010	0.13	990	0.13	0.26
	oncrete (tunnet fining) eel support	m3 ton	230 4.6	1,080 12,350	0.25 0.0 6	1,010 8,550	0.23 0.04	0.48 0.10
	elnforcement steel bar	ton	6.5	10,450	0.07	4,750	0.03	0.10
U	thers Sub-Total of 2.4	L.\$.			0.09 1.01		0.06 0.66	0.15 1.67
2.5 P) Werhouse							
	cavation (common)	m3	140	35	0.00	30	0.00	0.00
	cavatlon (rock)	m3 m3	580 200	120 950	0,07 0,19	90 950	0.05 0.19	0.12
Re	inforcement steel bar	ton	10.4	10,450	0.11	4,750	0.05	0.38 0.16
	chtectual works litv works	m3 L.S.	720	1,990	1.43	1,620	1.17	2.60
	hers	L.S.			0.29 0.21		0.23 0.17	0.52 0.38
	Sub-Total of 2.5		•		2.30		1.86	4.16
	Total of It				147.91		1,05.71	253.62
III. METAL						•		
	rersion closure gate sel conduit	ton ton	38 13.5	109,440 68,400	4.16 0.92	12,160	0.46	4.62
Gu	ard valve	ton	1.8	188,100	0.34	7,600 20,900	0.10 0.04	1.02 0.38
	tlet valve ake gate	ton ton	2.8 3	188,100	0.53	20,900	0.06	0.59
Int	ake trashracks	ton	0.9	116,280 76,950	0.35 0.07	12,920 8,550	0.04 0.01	0.39 0.08
	nstock dit tube gale	ton ton	11.5 2.3	68,400 109,440	0.79 0.25	7,600 12,160	0.09 0.03	0.88
	Total of III			100,440		12,100		0.28
U/ E/ 507					7.41		0.83	8.24
IV. ELECIP	ICAL WORKS	L.S.			10.80		1.20	12.00
	Total of I to IV				187.33		124,33	311,68
V. COMPE	NOITABN		•		0.00		2.66	2.66
VI. ENGINE	ERING SERVICE				24.93		6.23	31.16
VII. GOVER	MENT ADMINISTRATION				0.00		15.58	15.58
VIII. PHYSIC	AL CONTINGENCY			•	31.84	1.4	22.32	54.16
G	HAND TOTAL (FINANCIAL)				244.10		171.12	415,22
	RAND TOTAL (ECONOMIC)		······································		244.10			

Table 5.20 Principal Features of Zinundungan Dam

	·
Purpose	Irrigation and Hydropower
Catchment area (km²)	147
River name	Zinundungan
Reservoir Flood water level (EL. m) High water level (EL. m) Low water level (EL. m) Gross storage (10 ⁶ m ³) Storage for water utility (10 ⁶ m ³) Reservoir area at HWL SWL (km ²)	78 72 60 78.4 53.1 6.0
Type Crest elevation (EL. m) Crest length (m) Crest width (m) Height (m) Upstream slope Downstream slope Embankment volume (m ³)	Concrete gravity 79 150 8 48 1:0.1 1:0.8 60,500
Spillway Type Design flood (m ³ /s) Crest elevation (EL. m) Crest width (m) Energy dissipator	Non-gated open chuteway 1,340 72 50 Stilling basin
Diversion Type Design flood (m ³ /s) Tunnel diameter (m) Tunnel length (m) Number of tunnel (lanes)	Tunnel 440 5.0 290
Waterway Maximum discharge (m ³ /s) Intake sill elevation (EL. m) Length of Waterway (m)	7.2 57 220
Power and Energy Maximum plant discharge (m ³ /s) Maximum gross head (m) Rated head (m) Installed capacity (kW) Annual energy (GWh)	7.2 33 24.3 1,400 10.21

Table 5.21 Project Cost of Zinundungan Dam

		manus de la composição de Composição de la composição		Foreign		Lecal P	Total	
	Work item	Unit	Work Quantity	Unit Price (Pesos)	Amount (MILP)	Unit Price (Pesos)	Amount (MILP)	Amount (MII.P)
) ppr	PARATORY WORKS							
i, Phi	Access road (New)	km	4	825,000	3.30	675,000	2.70	6.
	Improvement of existing road	km	10	165,000	1.65	135,000	1.35	3.
	Bridge Work shops, offices and quarters	m L.S.	50	22,500	1.13 9.49	27,500	1.38 6.51	2. 16.
		Cio.						
*	Total of !				15.57		11.94	27.
	IL WORKS River Diversion Works							
2.1	Excavation (common)	£m3	500	35	0.02	. 30	0.02	0.
	Excavation (rock)	m3	1,800	120	0.22	90	0.16	0.
	Excavation (tennel)	m3 m3	9,300 240	740 1,010	8.88 0.24	300 990	2.79 0.24	9. 0.
	Concrete (inlet and outlet) Concrete (tunnel fining)	m3	3,600	1.080	3.89	1,010	3.64	7.
	Concrete (plug)	m3	440	870	0.38	840	0.37	0.
	Steel support	ton	. 70 190	12,350 10,450	0.86 1.99	8,550 4,750	0.60 0.90	1. 2.
	Reinforcement steel bar Consolidation grout	ton m	1,800	910	1,64	510	0.92	2.
	Cofferdam	т3	29,800	110	3.28	80	2.38	5.
	Others	LS.			1.94 21.34		1.20 13.22	34.
	Sub-Total of 2.1				21.54		10122	04.
2.2	Dam Excavation (common)	m3	6,700	35	0.23	30	0.20	0.
	Excavation (rock)	m3	26,900	120	3.23	90	2.42	5
	Concrete	m3	60,500	820	49.61	600	36.30	85
	Curtain grout Blanket or consolidation grout	íte Mi	11,500 3,450	1,310 910	15,07 3,14	590 510	6.79 1.76	21
	Others	LS.	3,430	910	7.13	3.0	4.75	11
	Sub-Total of 2.2				78.41		52.22	130
2.3	Spillway							_
	Excavation (Common)	m3	2,800	35	0.10	30 90	0.08 1.01	0
	Excavation (rock) Concrete	m3 m3	11,200 9,940	120 910	1,34 9,05	890	8.85	17
	Reinforcement steel bar	ton	199	10,450	2.08	4,750	0.95	3
	Others Sub-Total of 2.3	L.S.			1.26 13.83	•	1.09 11.98	2 25
	Sub-total of 2.3				15.05			
2.4	Waterway	m3	60	35	0.00	30	0.00	
	Excavation (common) Excavation (rock)	m3	250	120	0.03	90	0.02	Č
	Excavation (tunnel)	m3	570	740	0.42	300	0.17	0
	Excavation (shaft)	m3	90	820	0.07	320	0.03	0
	Concrete (intake) Concrete (tunnel lining)	m3 m3	32 275	1,010 1,080	0.03 0.30	990 1,010	0.03 0.28	0
	Steel support	ton	5	12,350	0.06	8,550	0.04	Ô
	Reinforcement steel bar	ton	4	10,450	0.04	4,750	0.02	0
	Others Sub-Total of 2.4	i_S,			0.10 1.05		0.06 0.65	1
	•							
2.5	Powerhouse Excavation (common)	m3	310	35	0.01	30	0.01	. (
	Excavation (rock)	m3	1,230	120	0.15	, 90	0.11	. (
	Concrete	m3	430	950	0.41	950	0.41	
	Reinforcement steel bar	ton m3	22.4 1,200	10,450 1,990	0.23 2.39	4,750 1,620	0.11 1.94	
	Archtectual works Utility works	L.S.	1,200	1,350	0.48	1,020	0.39	
	Others	LS.			0.37		0.30	
	Sub-Total of 2.5				4.04		3.27	7
	Total of II				118.67		81.34	200
II. MET	AL WORKS				:			
	Diversion closure gate	ton	26	109,440	2.85	12,160 7,600	0.32 0.13	. 1
	Steal conduit Guard valve	ton ton	17.6 2.7	68,400 188,100	1.20 0.51	20,900	0.13	
	Outlet valve	ton	4.1	188,100	0.77	20,900	0.09	C
	Intake gate	ton	5.2	116,280	0.60	12,920	0.07	. (
	Intake trashracks Penstock	ton ton	1.7 12.6	76,950 68,400	0.13 0.86	8,550 7,600	0.01 0.10	
	Draft tube gate	ton	2.4	109,440	0.26	12,160	0.03	Č
	Total of III				7.18	* *	0.81	7
IV EI E	CTRICAL WORKS	L.S.			18.90		2.10	21
,,, ELC							•	*
	Total of I to IV			-	160.32		96,19	256
v. con	IPENSATION				0.00		10.70	10
VI. ENG	INEERING SERVICE				20.52		5.13	25
II. GOV	ERNMENT ADMINISTRATION				0.00		12.83	12
н. РНҮ	SICAL CONTINGENCY				27.13	* *	18.73	45
	GRAND TOTAL (FINANCIAL)				207.97		143,58	351

Table 5.22 Principal Features of San Vicente Dam

Purpose	Irrigation
Catchment area (km²)	10.2
Reservoir	
Flood water level (EL. m)	72
High water level (EL. m)	69
Low water level (EL. m)	57 . 5
Gross storage (10° m ³)	8,8
Storage for water utility (10 ⁶ m ³)	6.9
Reservoir area at HWL (km ²)	1.1
Dam	
Туре	Earthfill
Crest elevation (EL. m)	74
Crest length (m)	355
Crest width (m)	8
Height (m)	30
Upstream slope	1:4.0
Downstream slope	1:3.0
Embankment volume (m ³)	384,000
Spillway	
Туре	Non-gated open chuteway
Design flood (m ³ /s)	120
Crest elevation (EL. m)	69
Crest width (m)	12
Energy dissipator	Stilling basin
Diversion	
Туре	Open channel
Design flood (m ³ /s)	50
Channel length (m)	320
Waterway	
Maximum discharge (m ³ /s)	1,6
Intake sill elevation (EL. m)	56
Length of Waterway (m)	180
Oni or unreal (m)	100

Table 5.23 Project Cost of San Vicente Dam

the contraction to the contraction of the contracti		The second as a part of the second se	Foreign	Portion	Local Portion		Total
Work Item	Unit	Work	Unit Price	Amount	Unit Price	Amount	Amount
中心一个人的一个人们就是一个人们的一个人们的一个人们的一个人们的一个人们的一个人们的一个人们的一个人们的		Quantity	(Pesos)	(Mil.P)	(Pesos)	(Mil.P)	(Mil.P)
I. PREPARATORY WORKS							
Access road (New)	km	1	350,000	0.35	300,000	0.30	0.65
Improvement of existing road	km	5	70,000	0.35	60,000	0.30	0.65
Work shops, offices and quarters	L.S.			2.83		1.94	4.77
Total of I				3.53		2.54	6.07
II. CIVIL WORKS							
2.1 River Diversion Works & Wa	-						
Excavation (common)	m3	5,900	15	0.09	15	0.09	0.18 1.96
Excavation (rock)	m3 m3	19,600 400	60 800	1.18 0.32	40 700	0.78 0.28	0,60
Concrete Reinforcement steel bar	ton	20	10,450	0.32	4,750	0.10	0.31
Cofferdam	m3	5,000	30	0.15	20	0.10	0.25
Others	L.S.	-,		0.20		0.14	0.34
Sub-Total of 2.1				2.15		1.49	3.64
2.2 Dam							
Excavation (common)	m3	34,600	15	0.52	15	0.52	1.04
Excavation (rock)	m3	23,000	60	1.38	40	0.92	2.30
Embankment (filter)	m3	9,600	65	0.62	55	0.53	1.15
Embankment (earth)	m3	326,400	30	9.79	20	6.53	16.32
Embankment (riprap)	m3	48,000	90	4.32	90	4.32	8.64
Curtain grout	m,	5,300	1,310	6.94	590	3.13	10.07
Blanket or consolidation grout	m	1,600	910	1,46. 2,50	510	0.82 1.68	2.28 4.18
Others Sub-Total of 2.2	L.S.			27.53		18.45	45.98
2.3 Spillway		5 000		0.00	15	0.00	0.16
Excavation (Common)	m3 m3	5,000 19,900	15 60	0.08 1.19	15 40	0.08 0.80	1,99
Excavation (rock) Concrete	m3	3.850	800	3.08	700	2.70	5.78
Reinforcement steel bar	ton	77	10,450	0.80	4,750	0.37	1.17
Others	L.S.			0.52	•	0.40	0.92
Sub-Total of 2.3				5.67		4.35	10.02
Total of II				35.35		24.29	59.64
III. METAL WORKS							
Steel conduit	ton	5	68,400	0.34	7,600	0.04	0.38
Guard valve	ton	2.4	188,100	0.45	20,900	0.05	0.50
Outlet valve	ton		188,100	0.70	20,900	0.08	0.78
Intake gate	ton		116,280 76,950	0.27 0.02	12,920 8,550	0.03 0.00	0.30 0.02
Intake trashracks	ton	0.3	76,930	0.02	6,330	0.00	. 0.02
Total of III				1.78	·	0.20	1.98
Total of 1 to 111				40.66		27.03	67.69
V. COMPENSATION				0.00		0.45	0.45
VI. ENGINEERING SERVICE				5.42		1.35	6.77
VII. GOVERNMENT ADMINISTRATION				0.00		3.38	3.38
VIII. PHYSICAL CONTINGENCY				6.91		4.83	11.74
GRAND TOTAL (FINANCIAL)				52.99		37.04	90.03
GRAND TOTAL (ECONOMIC)				52.99		29.95	82.94

Table 5.24 Principal Features of Santor Dam

Purpose	Cattle farm and Irrigation
Catchment area (km²)	11.3
Reservoir Flood water level (EL. m) High water level (EL. m) Low water level (EL. m) Gross storage (10 ⁶ m ³) Storage for water utility (10 ⁶ m ³) Reservoir area at HWL (km ²)	98 95 85 5.3 4.7 0.8
Type Crest elevation (EL. m) Crest length (m) Crest width (m) Height (m) Upstream slope Downstream slope Embankment volume (m ³)	Earthfill 100 240 8 23 1:4.0 1:3.0 139,000
Spillway Type Design flood (m ³ /s) Crest elevation (EL. m) Crest width (m) Energy dissipator	Non-gated open chuteway 150 95 15 Stilling basin
Diversion Type Design flood (m ³ /s) Tunnel diameter (m) Tunnel length (m) Number of tunnel (lanes)	Tunnel 70 2.4 100 1
Waterway Maximum discharge (m ³ /s) Intake sill elevation (EL. m) Length of Waterway (m)	0.56 84 100

Table 5.25 Project Cost of Santor Dam

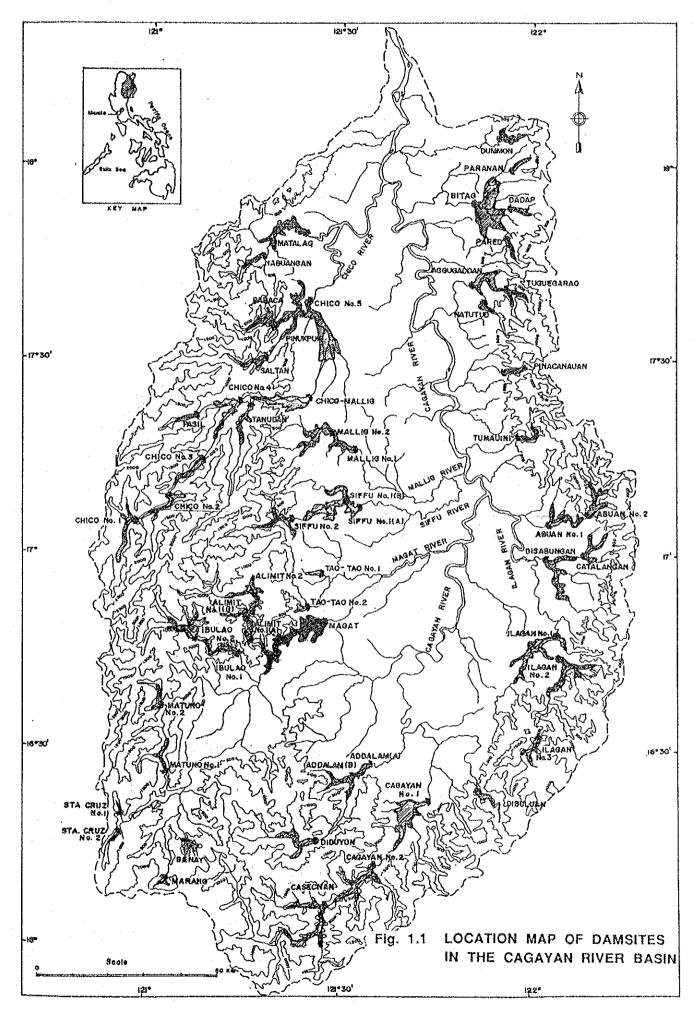

			Foreign Portion		Local	Portion	Total
Work Item	Unit	Work	Unit Price	Amount	Unit Price		Amount
The second secon		Quantity	(Pesos)	(MII.P)	(Pesos)	(MII.P)	(MILP)
I. PREPARATORY WORKS							
Access road (New)	km	2	350,000	0.70	300,000	0.60	1.30
Bridge	m	10		0.12	14,000	0.14	0.26
Work shops, offices and quarters	L.S.			0.85		0.62	1.47
Total of I				1.67		1.36	3.03
II. CIVIL WORKS							
2.1 River Diversion Works							
Excavation (common)	m3	900	15	0.01	15	0.01	0.02
Excavation (rock)	m3	3,600	60	0.22	40	0.14	0.36
Excavation (tunnel)	m3	790	670	0.53	300	0.24	0.77
Concrete (inlet and outlet)	m3	50	800	0.04	700	0.04	0.08
Concrete (tunnel lining)	mЗ	340	1,220	0.41	920	0.31	0.72
Concrete (plug)	m3	50		0.04	700	0.04	0.08
Steel support	ton	6		0.07	8,550	0.05	0.12
Reinforcement steel bar	ton	19	-	0.20	4.750	0.09	0.29
Consolidation grout	m	300		0.27	510	0.15	0.42
Others	L.S.	000	• • • •	0.18		0.11	0.29
Sub-Total of 2.1	L.O,			1.97		1.18	3.15
						. :	
2.2 Dam						0.04	
Excavation (common)	m3	20,900		0,31	15	0.31	0.62
Embankment (filter)	m3	3,500		0.23	55	0.19	0.42
Embankment (earth)	ពា3	122,500		3.68	20	2.45	6.13
Embankment (riprap)	m3	13,000	90	1.17	90		2.34
Others	L.S.	•		0.54		0.41. 4.53	0.95
Sub-Total of 2.2				5.93		4.53	10.46
2.3 Spillway							
Excavation (Common)	mЗ	2,600		0.04	15	0.04	0.08
Excavation (rock)	m3	10,500		0.63	40	0.42	1.05
Concrete	m3	1,800		1.44	700	1.26	2.70
Reinforcement steel bar	ton	36	10,450	0.38	4,750	0.17	0.55
Others	L.S.			0.25	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.19	0.4
Sub-Total of 2.3	•			2.74		2.08	4.82
Total of II				10.64		7.79	18.43
III. METAL WORKS				•	,		
Diversion closure gate	ton	. ,	109,440	0.22	12,160	0.02	0.24
Steel conduit	ton		68,400	0.30	7,600	0.03	
Guard valve	ton		188,100	0.32	20,900		0.36
Outlet valve	ton		188,100	0.49	20,900	0.05	0.54
Intake gate	ton		116,280	0.06	12,920	0.01	0.0
Intake trashracks	ton	0.1		0.01	8,550	0.00	0.0
Total of III				1.40	-	0.15	1.55
Total of I to III				13.71		9.30	23.01
V. COMPENSATION				0.00		0.38	0.38
VI. ENGINEERING SERVICE				1.84	4	0.46	2.30
VII. GOVERNMENT ADMINISTRATION				0.00		1.15	1.15
VIII. PHYSICAL CONTINGENCY				2.33		1.69	4.02
GRAND TOTAL (FINANCIAL)			,	17.88		12.98	30.86
GRAND TOTAL (ECONOMIC)		· · · · · · · · · · · · · · · · · · ·		17.88		10.29	28.17

Table 5.26 Principal Features of Carmencita Pond

Purpose	Cattle farm and Irrigation
Catchment area (km²)	0.8 at damsite and 16 at Intake site
Reservoir Flood water level (EL. m) High water level (EL. m) Low water level (EL. m) Gross storage (10 ⁶ m ³) Storage for water utility (10 ⁶ m ³) Reservoir area at HWL (km ²)	58 57 48 1.4 1.2 0.23
Type Crest elevation (EL. m) Crest length (m) Crest width (m) Height (m) Upstream slope Downstream slope Embankment volume (m ³)	Earthfill 60 270 8 18 1:4.0 1:3.0 119,600
Spillway Type Design flood (m ³ /s) Crest elevation (EL. m) Crest width (m) Energy dissipator	Non-gated open chuteway 15 57 7.5 Stilling basin
Diversion Type Design flood (m ³ /s) Channel length (m)	Open channel 10 130
Waterway Maximum discharge (m ³ /s) Intake sill elevation (EL. m) Length of Waterway (m)	0.15 47 120
Transbasin channel Design discharge (m ³ /s) Channel length (m)	0.1 900

Table 5.27 Project Cost of Carmencita Pond

	**************************************		Foreign Portion		Local Portion		Total
Work Item	Unit	Work Quantity	Unit Price (Pesos)	Amount (Mil.P)	Unit Price (Pesos)	Amount (MII.P)	Amount (Mil.P)
I. PREPARATORY WORKS				* .	•		
Access road (New)	km	0.5	350,000	0.18	300,000	0.15	0.33
Work shops, offices and quarters	L.S.			0.52		0.41	0.93
Total of I				0.70		0.56	1.26
II. CIVIL WORKS							
2.2 Dam		*.					
Excavation (common)	m3	26,100	15	0.39	15	0.39	0.78
Embankment (filter)	m3	3,000	65	0.20	55	0.17	0.37
Embankment (earth)	m3	101,600	30	3.05	20	2.03	5.08
Embankment (riprap)	m3	15,000	90	1.35	90	1,35	2.70
Others Sub-Total of 2.2	LS.			0.50 5.49		0.39 4.33	0.89 9.82
2.2 Sallingu							
2.3 Spillway Excavation (Common)	m3	900	15	0.01	15	0.01	0.02
Excavation (continuity	m3	3,600	60	0.22	40	0.14	0.02
Concrete	m3	400	800	0.32	700	0.14	0.60
Reinforcement steel bar	ton	8	10,450	0.08	4,750	0.04	0.12
Others	LS.	Ū	10,400	0.06	4,700	0.05	0.11
Sub-Total of 2.3	20.			0.69		0.52	1.21
2.4 Waterway							
Excavation(common)	m3	3,000	15	0.05	15	0.05	0.10
Concrete	m3	180	800	0.14	700	0.13	0.27
Reinforcement steel bar	ton	9	10,450	0.09	4,750	0.04	0.13
Others	L.S.			0.03	.,	0.02	0.05
Sub-Total of 2.4				0.31		0.24	0.55
Total of II				6.49		5.09	11.58
III. METAL WORKS							
Guard valve	ton	0.03	188,100	0.01	20,900	0.00	0.01
Outlet valve	ton	0.05	188,100	0.01	20,900	0.00	0.01
Intake gate	ton	0.2	116,280	0.02	12,920	0.00	0.02
Intake trushrack	ton	0.05	76,950	0.00	8,550	0.00	0.00
Total of III				0.04		0.00	0.04
Total of I to III			-	7.23		5.65	12.88
V. COMPENSATION				0.00		0.08	80.0
VI. ENGINEERING SERVICE				1.03		0.26	1.29
VII. GOVERNMENT ADMINISTRATION				0,00		0.64	0.64
VIII. PHYSICAL CONTINGENCY				1.24		0.99	2.23
GRAND TOTAL (FINANCIAL)			· •	9.50	-	7,62	17.12
GRAND TOTAL (ECONOMIC)			-	9.50	-	6.18	15.68

DA- 107

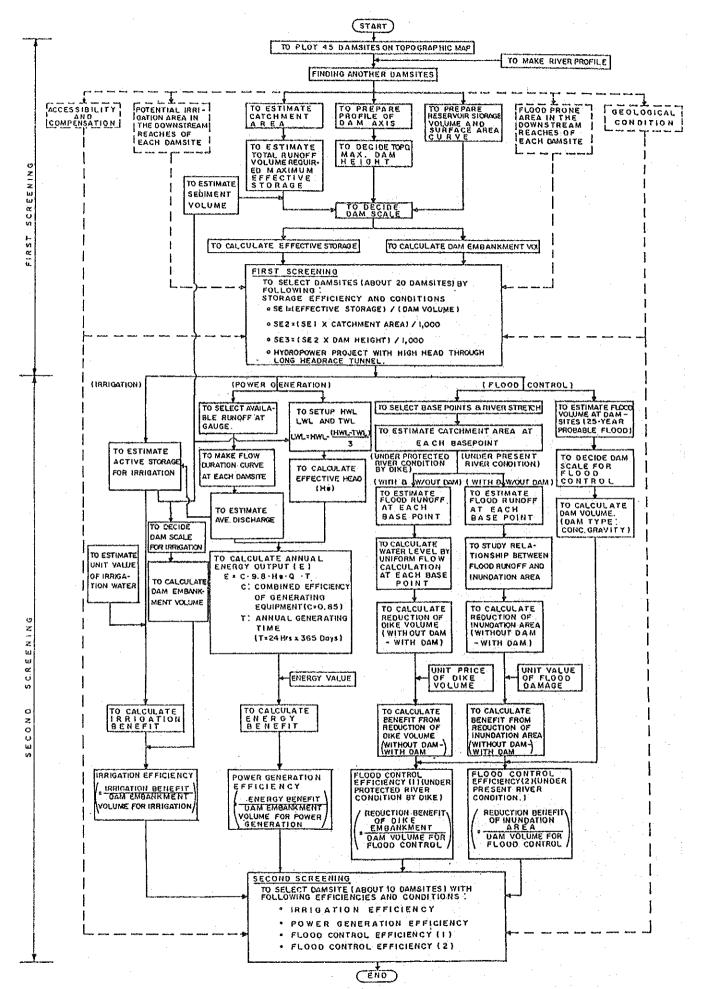
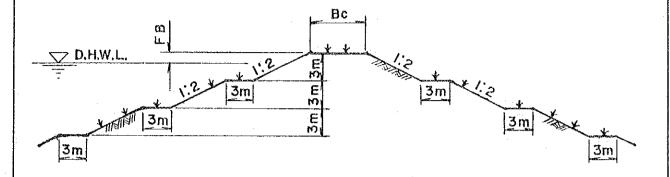
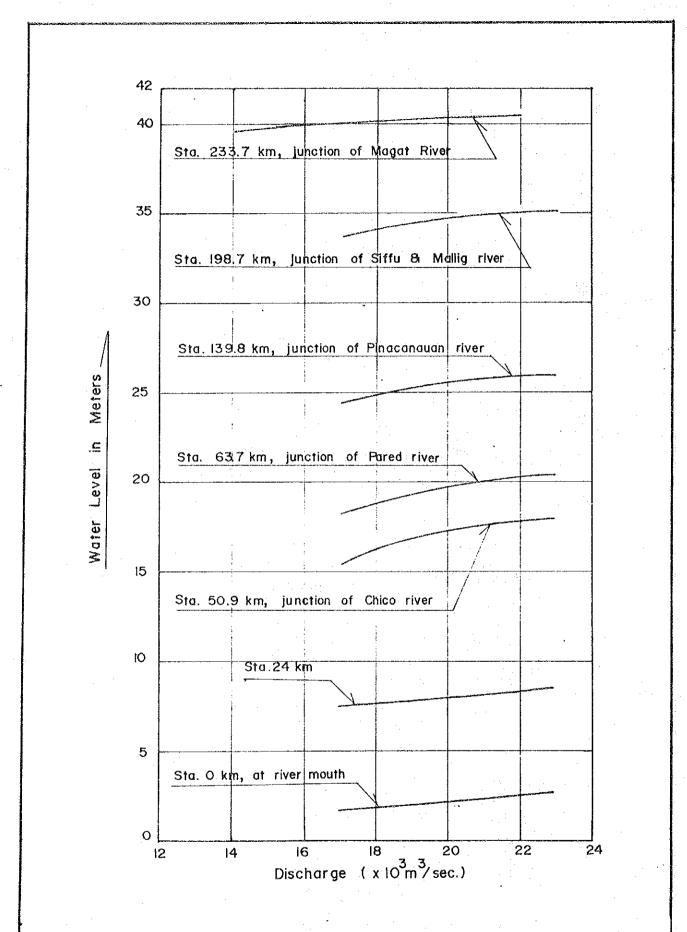
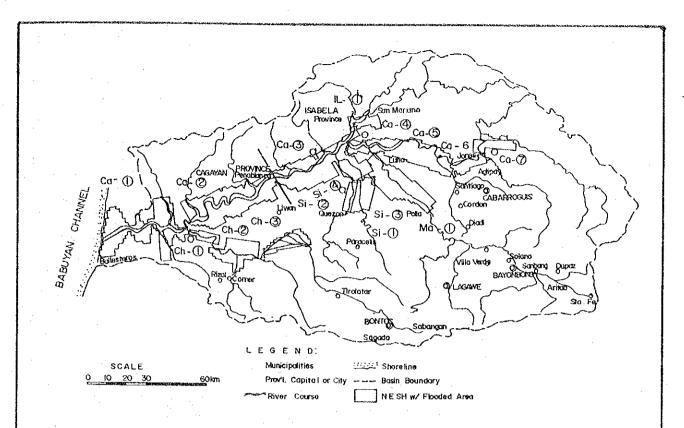
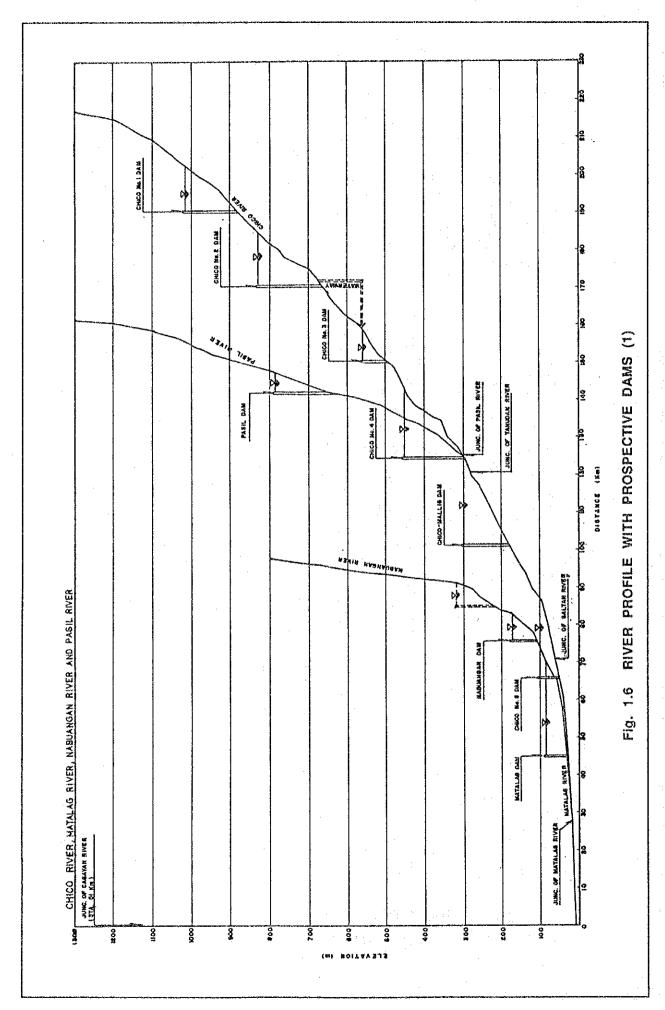



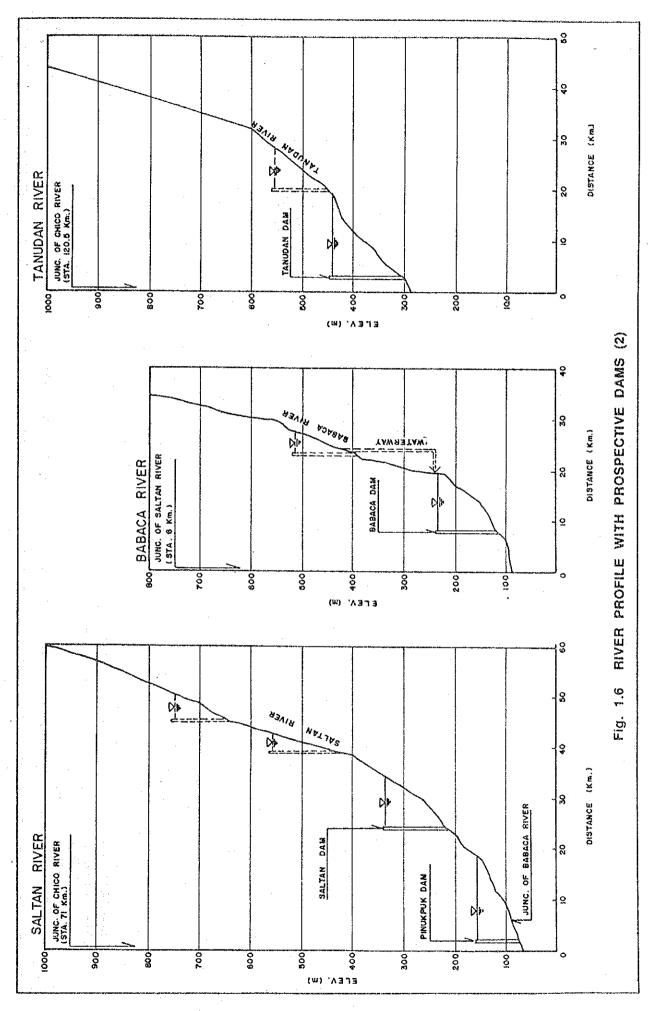
Fig. 1.2 FLOW CHART FOR SELECTION OF PROSPECTIVE DAMSITES

Design Discharge Q (m³/,)	Free-board FB (m) not less than	Crown width Bc (m) not less than
< 200	0.6	3
200 to 500	0.8	3
500 to 2,000	1.0	4
2,000 to 5,000	1.2	5
5,000 to 10,000	1,5	6
10,000 <	2.0	7

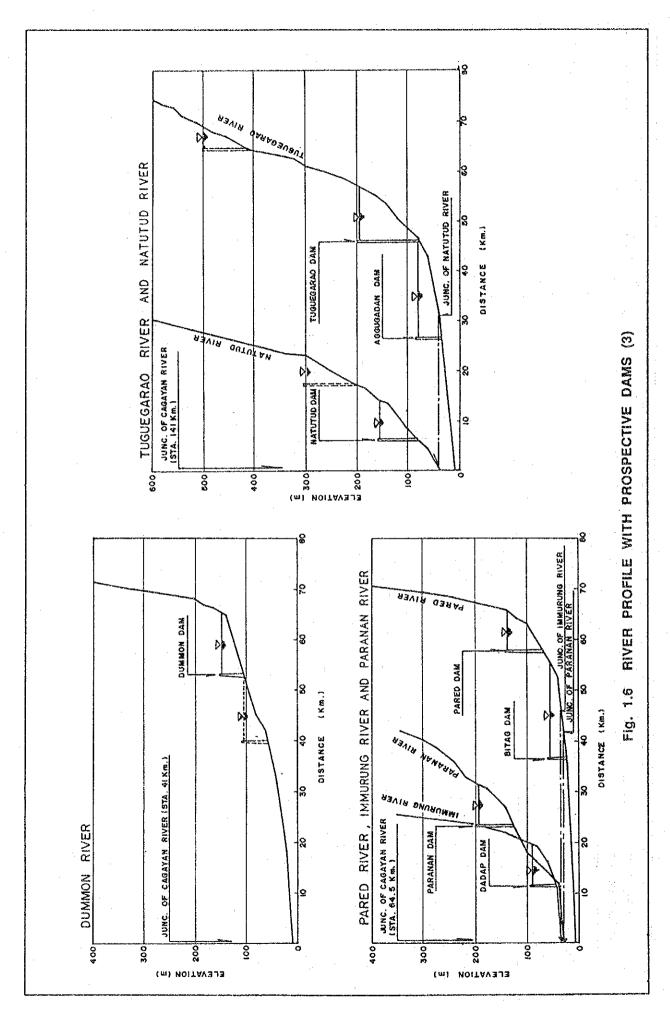
Fig. 1.3 STANDARD CROSS SECTION OF DIKE

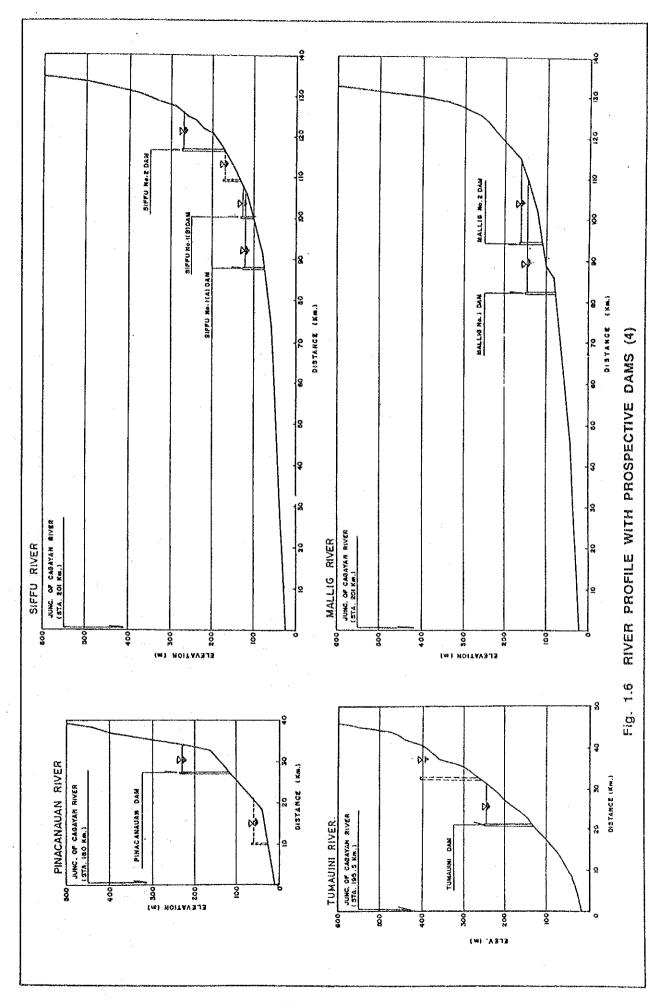



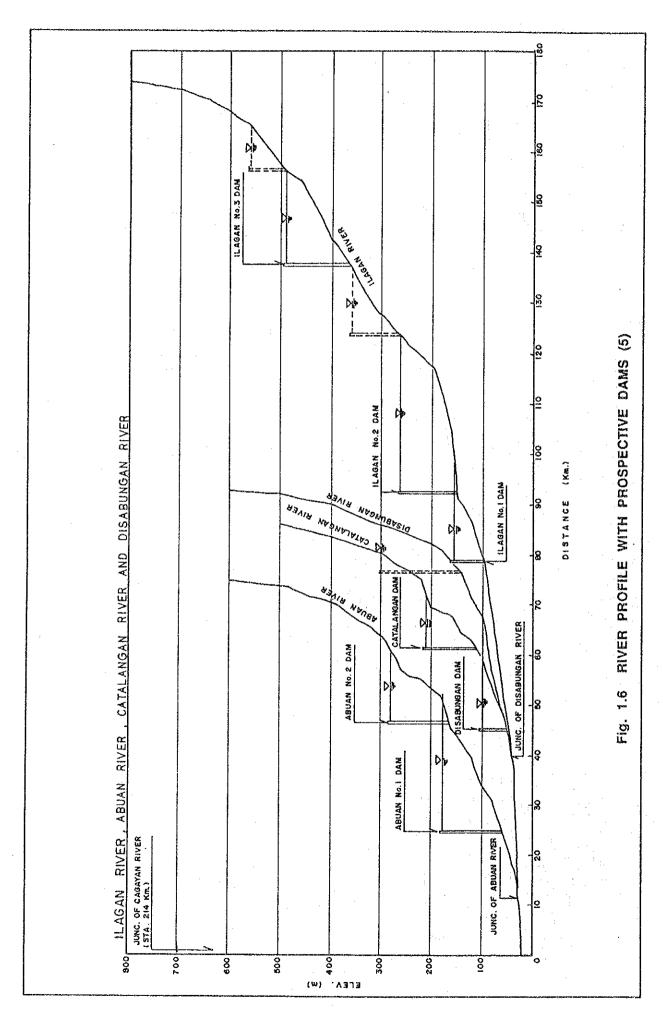

Fig. 1.4 DISCHARGE RATING CURVES AT SELECTED CROSS SECTIONS

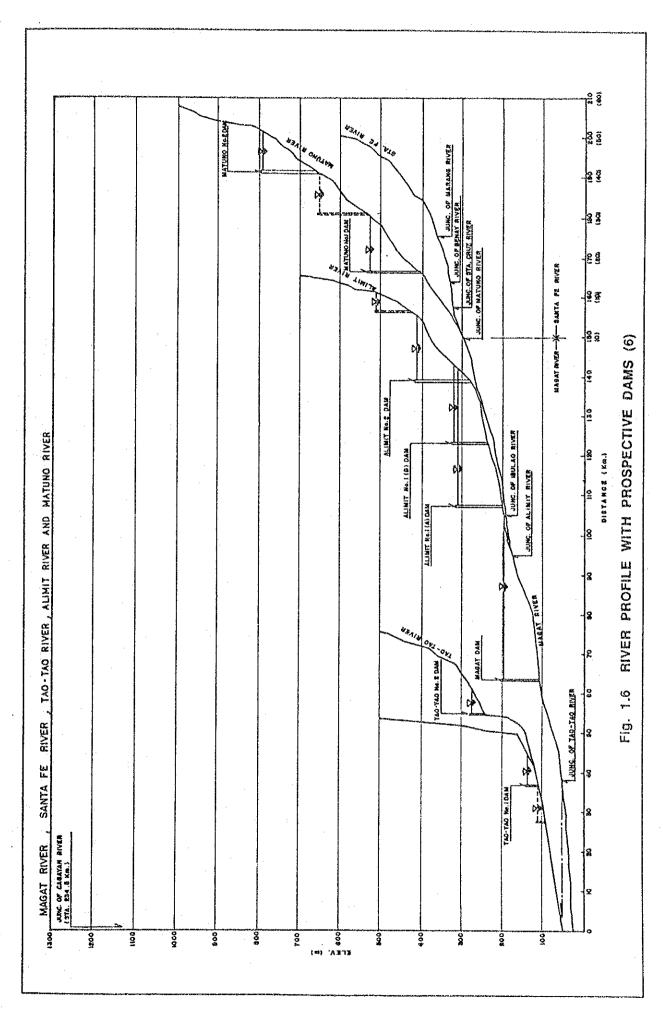


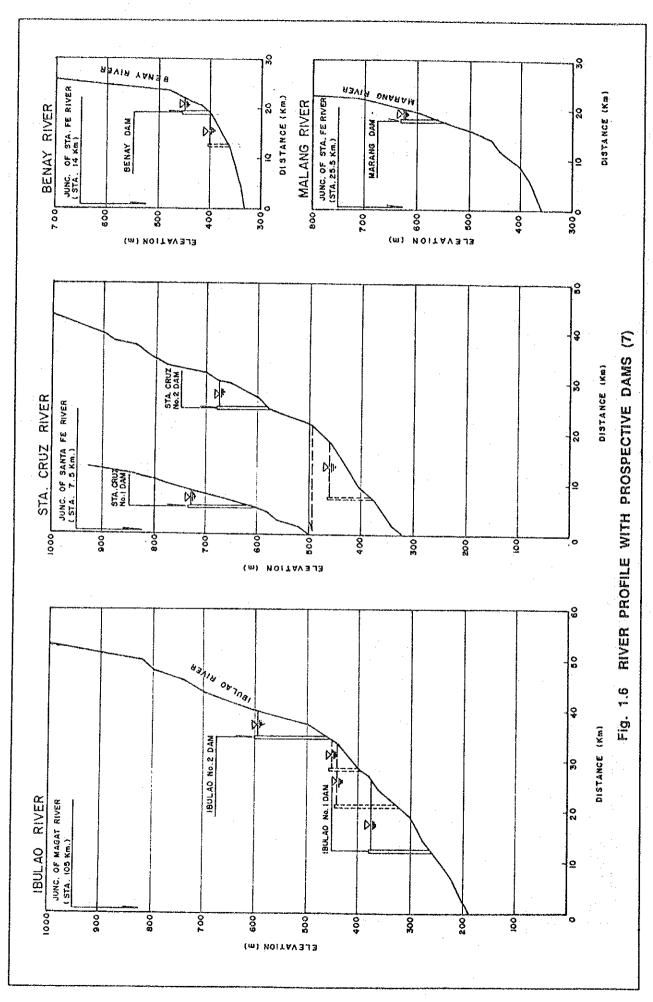
Unit: ha

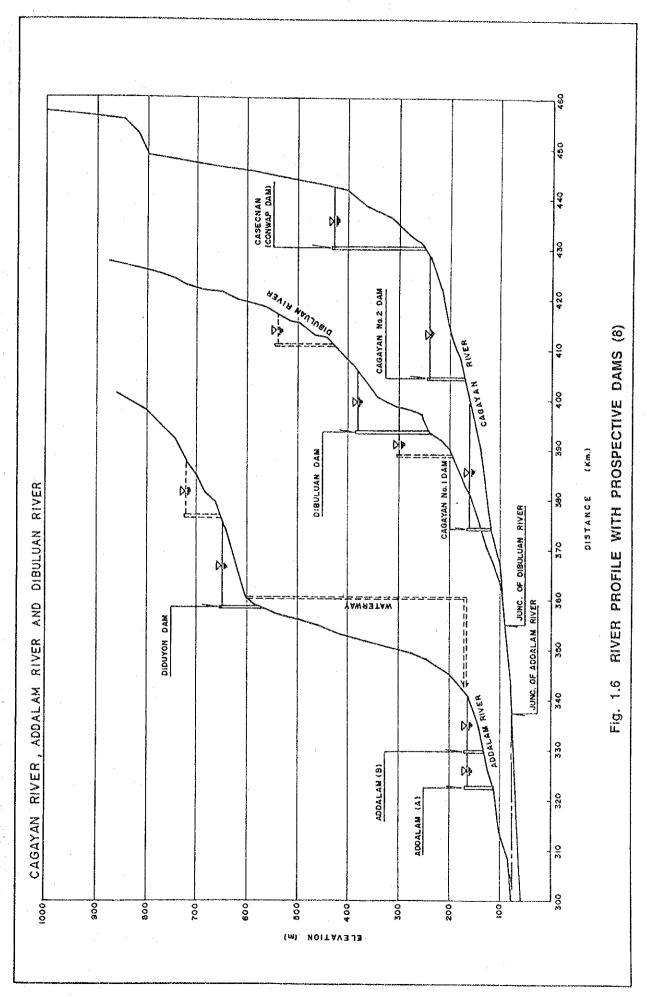

	100		_:							
Block No.		Re P	turn	1.05	2.00	5.00	10.00	25.00	50.00	100.00
Cagayan	Block	No.	1	1,104.1	3290.0	5,640.0	8,550,0	11,957.3	14430.0	16,425.0
Cagayan	Block	No.	2	22,711.9	30,550.7	33,890.5	35,268.9	37,095.4	38,518.8	39,762.3
Cagayan	Block	No.	3	12,8420	16,649.2	19,731.5	21,3450	22,687.3	23,638.7	24,749.2
Cagayan	Block	No.	4	1,069.3	1,264.4	L640.4	2,736.4	3,222.3	3,422.7	3,643.6
Cagayan	Block	No.	5	2,791.4	5,398.0	7,384.3	8,990.9	10,731.5	11,971.5	13,304.7
Cagayan	Block	No.	6	3,265.0	3,512.9	3,743.3	4,065.9	4,207.4	4,383,6	4,581.8
Cagayan	Block	No.	7	2,895.0	3,209.7	3,484.1	3,827.7	3,935,8	4,042.3	4,156.8
Chico	Block	No.	1	0.0	0.0	72.7	0.00	100.0	100.0	227.2
Chico	Block			3,300.8	3,642.7	2,133.2	ļ	ì		
Chico	Block		3 .		10,370.0	, -				1 '
Siffu	Block	No		1,591.5	1,697.7	1,720.0	1720.0	1,775.5	1,810.0	1,861.9
Sitfu	Block		2	645.0				1,840.9	1,910.0	1 '
Siffu	Block		3	0.0		540.0	•	962.6	•	
Siffu	Block		4	965.6					***	i. • *
llagan	Block	No.	1	490.0	589.3	877.9	990.6	1,188.3	1,354.4	1,531.8
Magat	Block	No.	,	5,858,6	9,057.7	12,866.5	15,083.5	17,256.9	18,996.1	20,825.0
					L					i

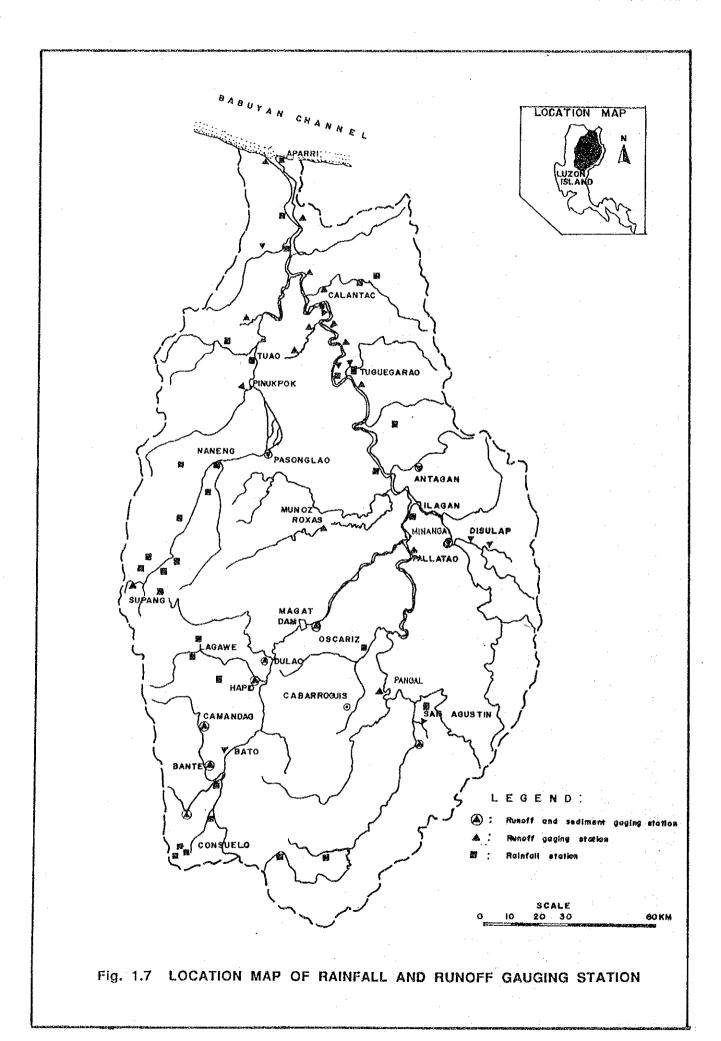

Fig. 1.5 INUNDATION AREA ESTIMATED UNDER PRESENT RIVER CONDITION WITH MAGAT DAM




DA- 113

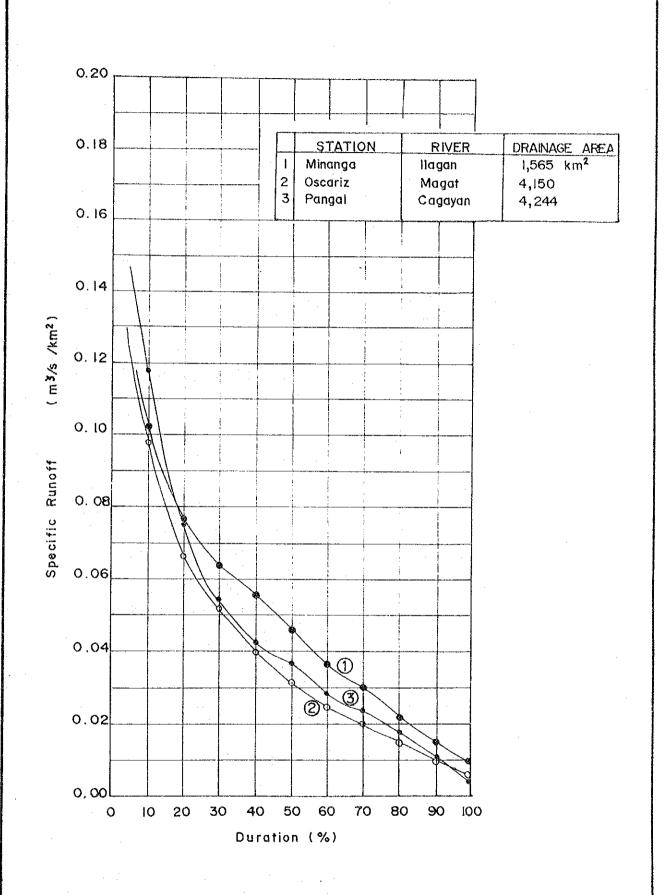
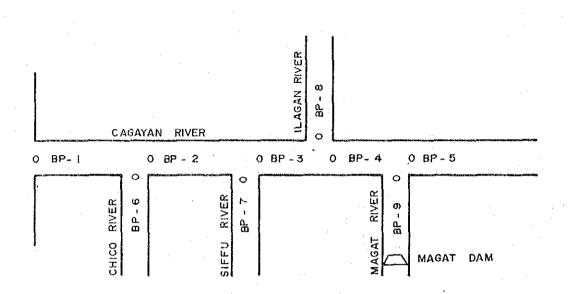


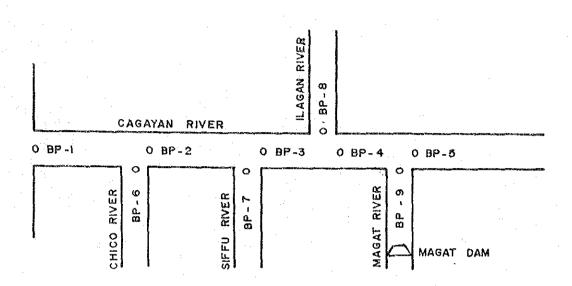



DA- 116

DA- 119

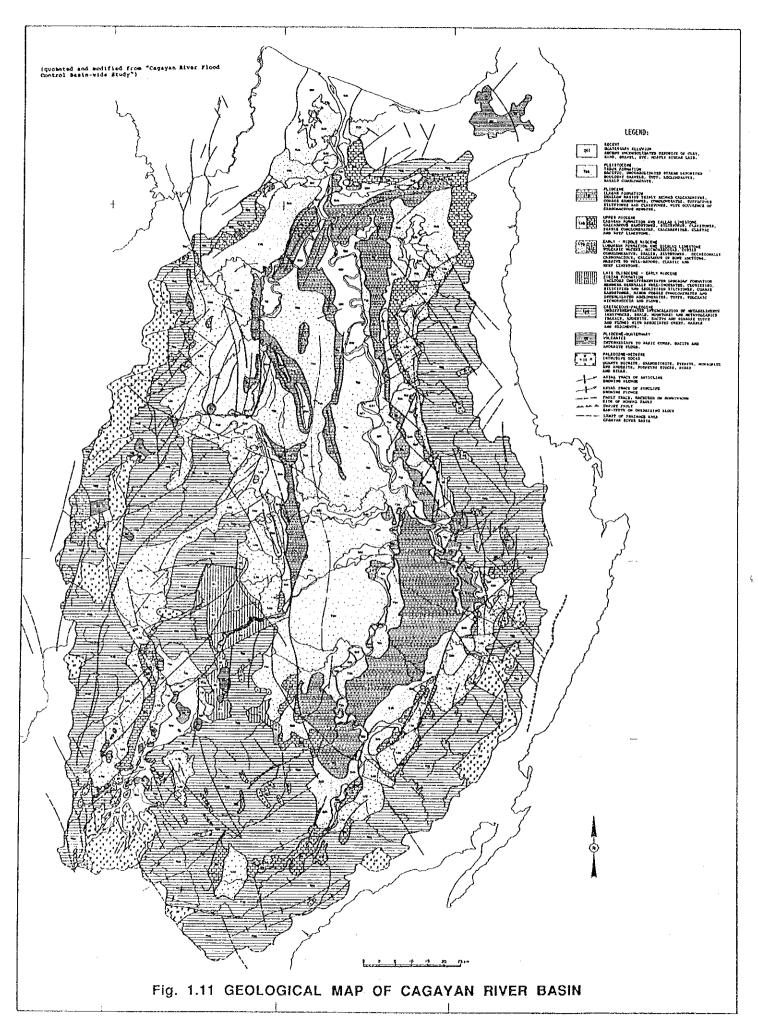
DA- 120

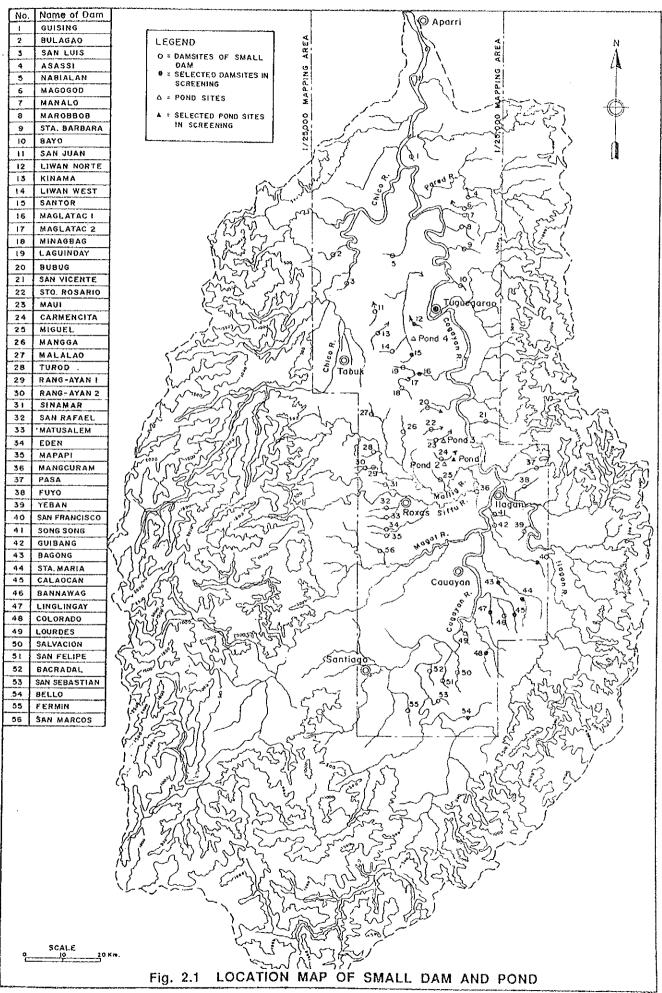



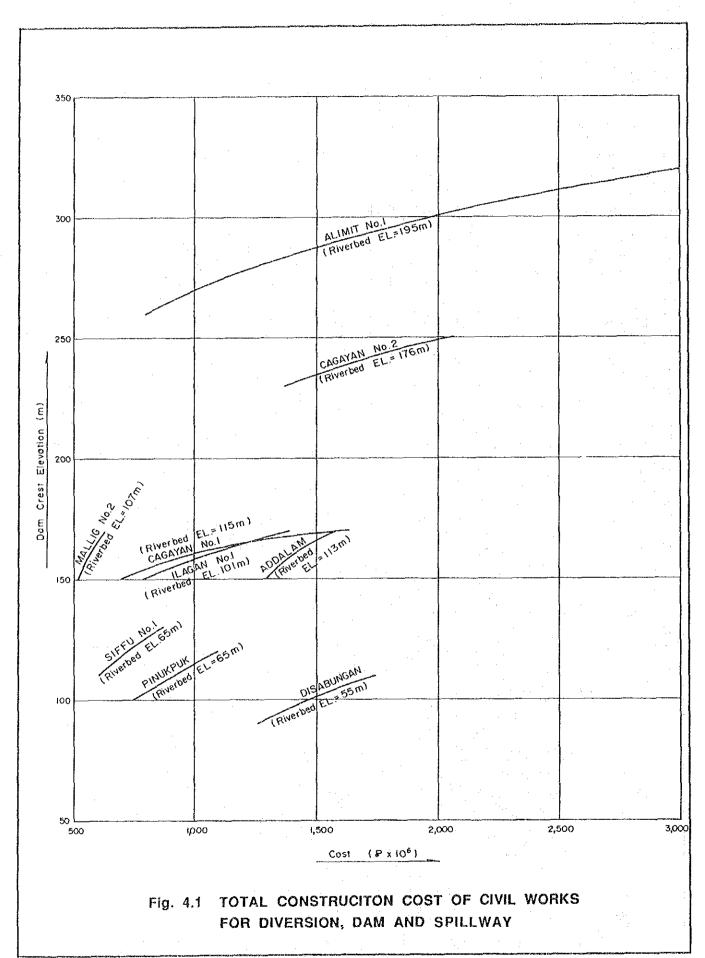

Fig. 1.8 RUNOFF DURATION CURVES AT SELECTED GAUGES

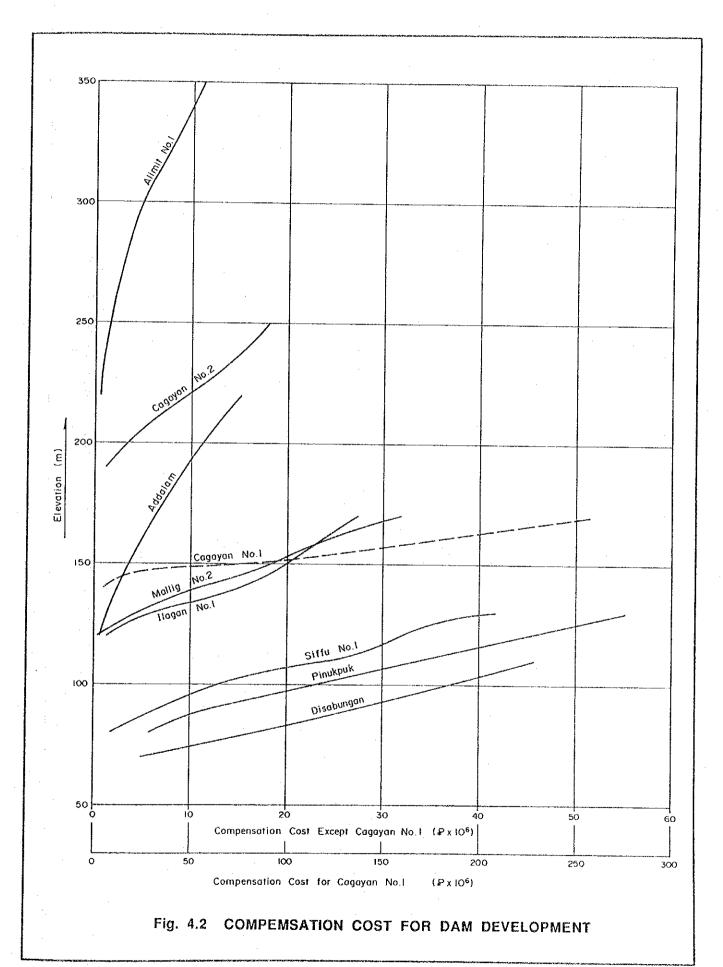
PE'AK RUNOFF (m 3/s)

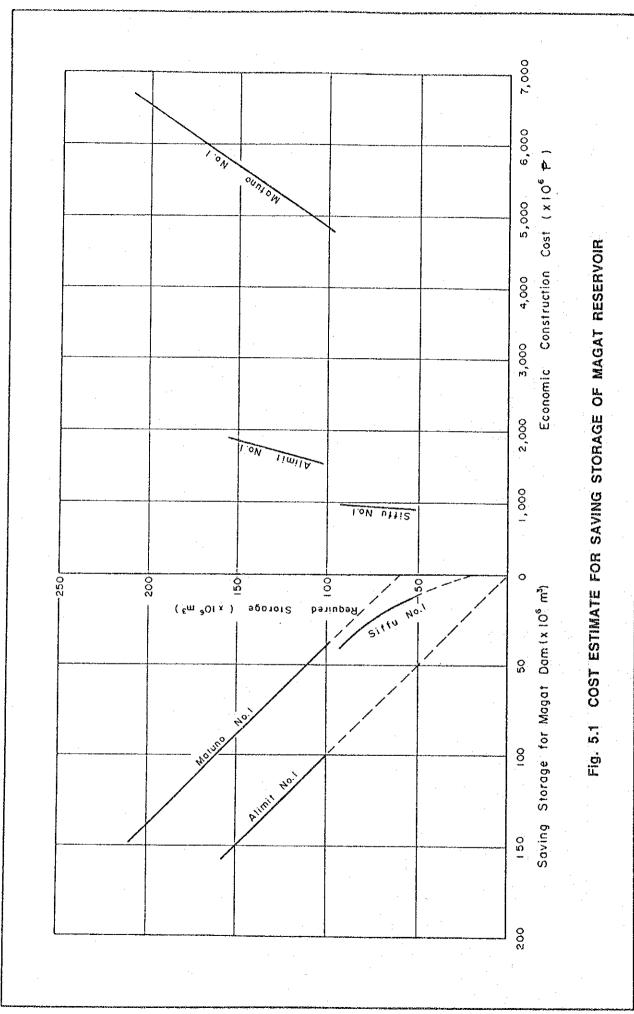
RETURN PERIOD BASE (YR) POINT	1. 05	2	5	10	25	50	10 0
8P - 1	3,950	8,250	8,100	9,250	10,250	11,600	12,650
BP-2	3,750	6,150	6,000	9,350	10,800	11,950	13,050
BP - 3	4,380	7,000	9,250	10,850	12,950	14,600	16,380
BP - 4	4,000	6,750	9,300	11,050	12,950	13,150	15,700
BP - 5	2,500	3,750	5,250	6,300	8,000	9,200	10,800
BP - 6	1,950	2,850	3,600	3,950	4,350	4,700	5,150
BP - 7	1,000	1,480	2,000	2,400	2,900	3,250	3,600
8P - &	1,600	2,800	3,750	4,400	5,250	5,650	6,450
BP - 9	2,100	3,400	4,600	5,480	6,700	7,650	8,650

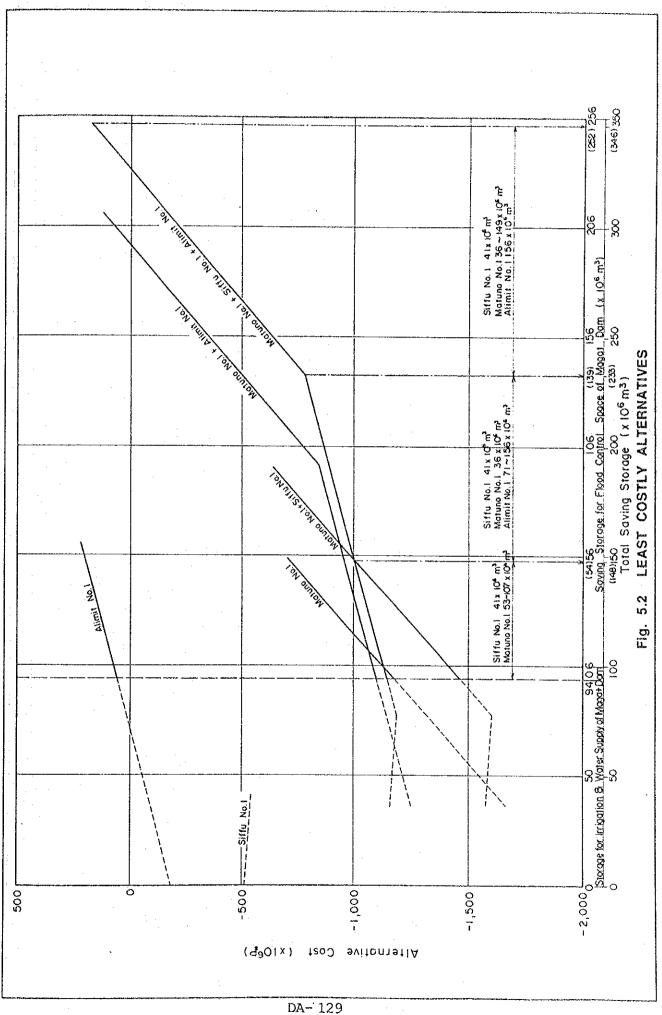

Fig. 1.9 DISTRIBUTION OF FLOOD RUNOFF UNDER PRESENT RIVER CONDITION WITH MAGAT DAM

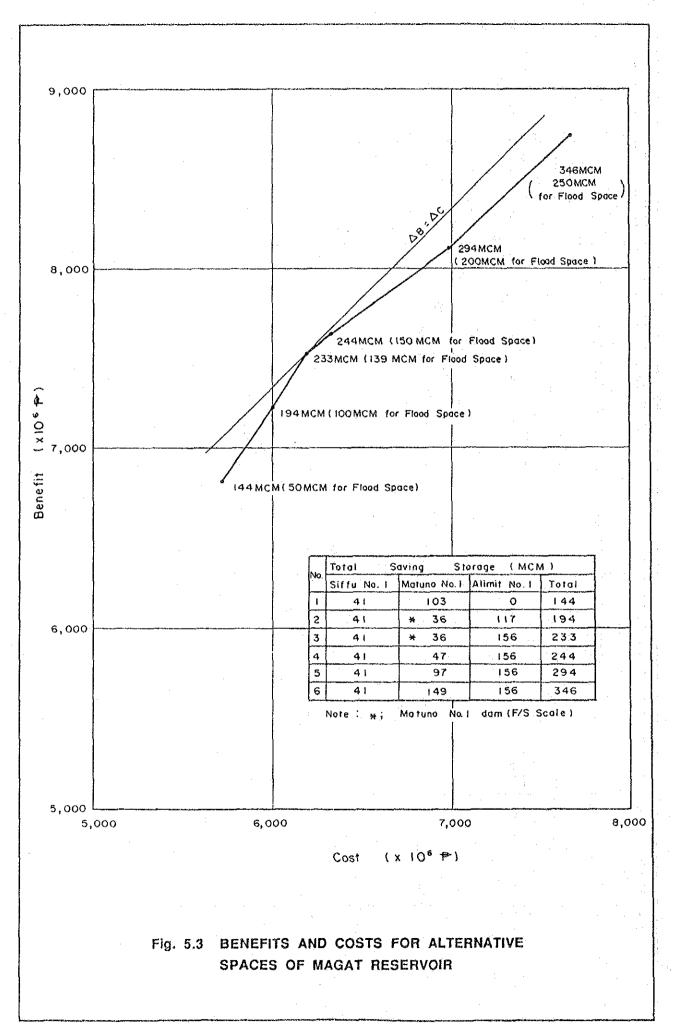
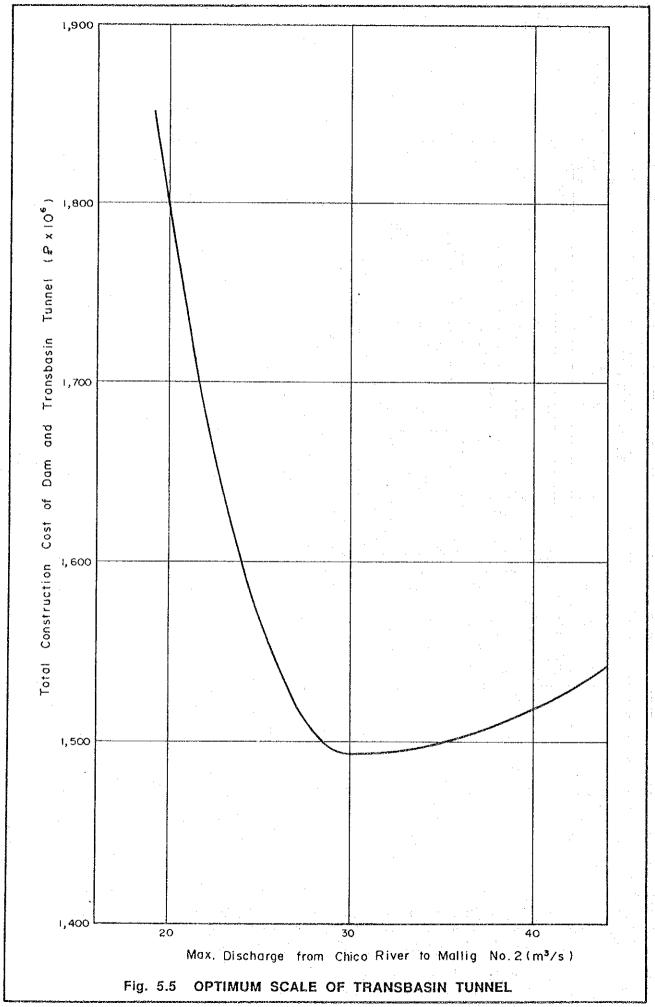
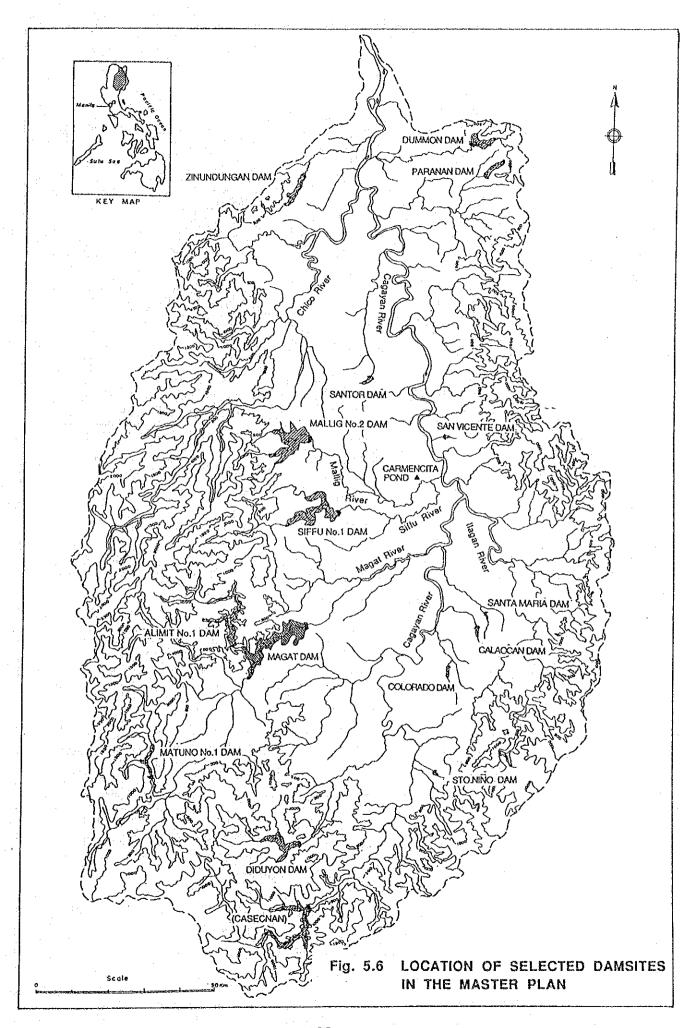
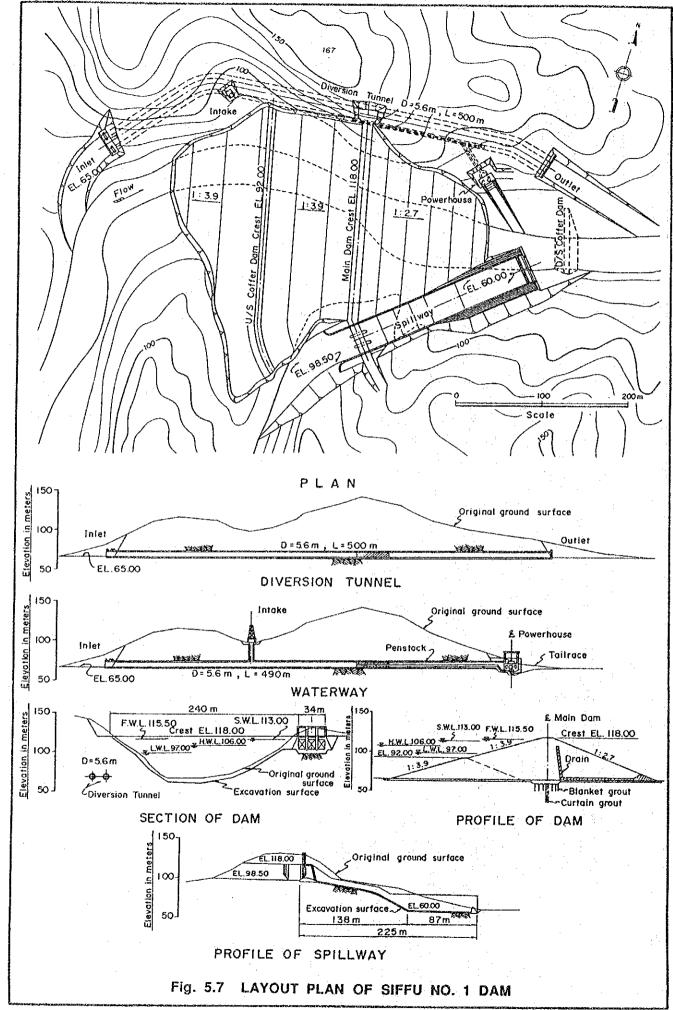



PEAK RUNOFF (m 3/a)


RETURN BASE PERIOD POINT (YR)	10	25	50	100
BP- I	17,000	19,500	21, 400	23,100
BP - 2	17,000	19,500	21,400	23,100
BP- 3	17,000	19,500	21,400	23,100
BP - 4	15,700	17,100	19,700	22,400
BP- 3	7,900	10,200	11,200	13,450
BP-6	4,050	5,000	5,700	6,460
BP - 7	2,550	3,200	3,750	4,300
BP - 8	5,200	6,550	7,250	8,000
8P - 9	8,050	9,900	11,300	12,600


Fig. 1.10 DISTRIBUTION OF FLOOD RUNOFF UNDER FLOOD CONTROL SCHEME WITH CONFINING DIKES AND MAGAT DAM



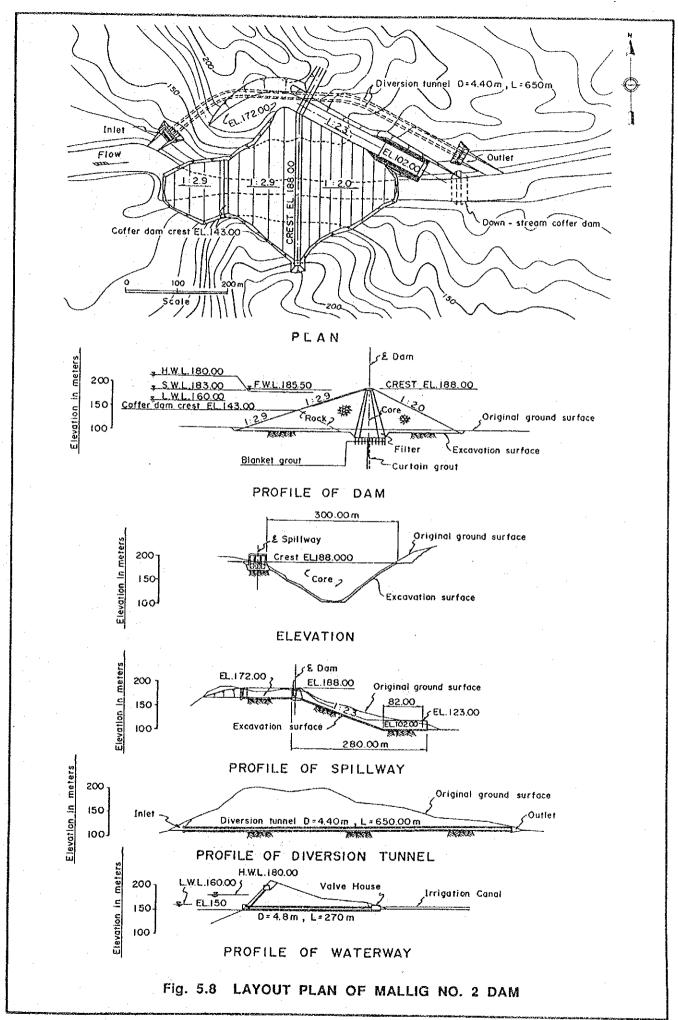
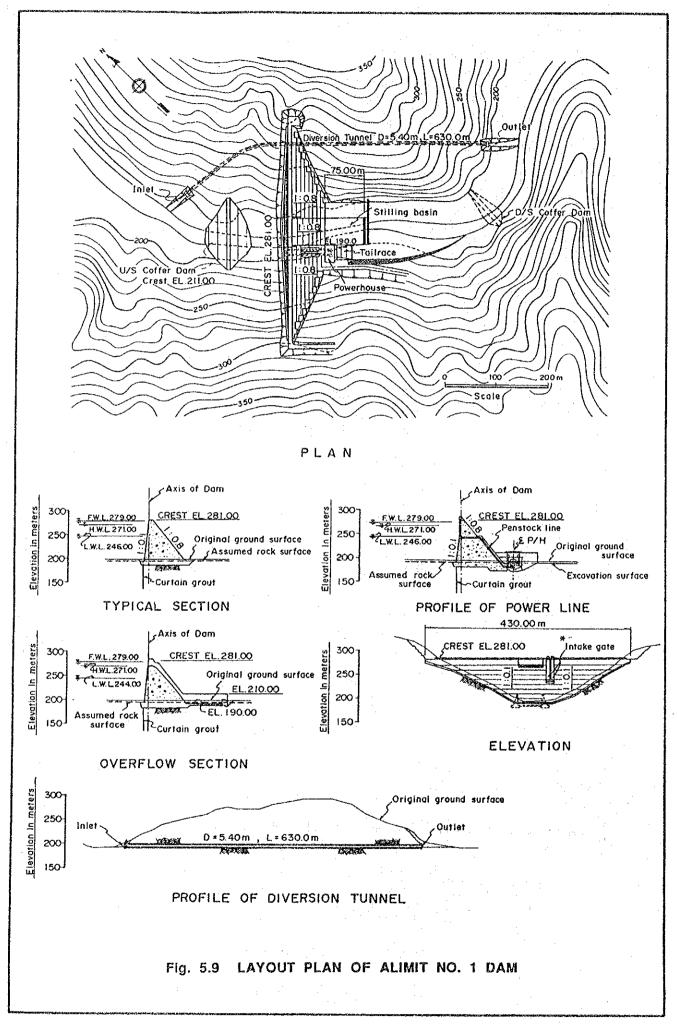
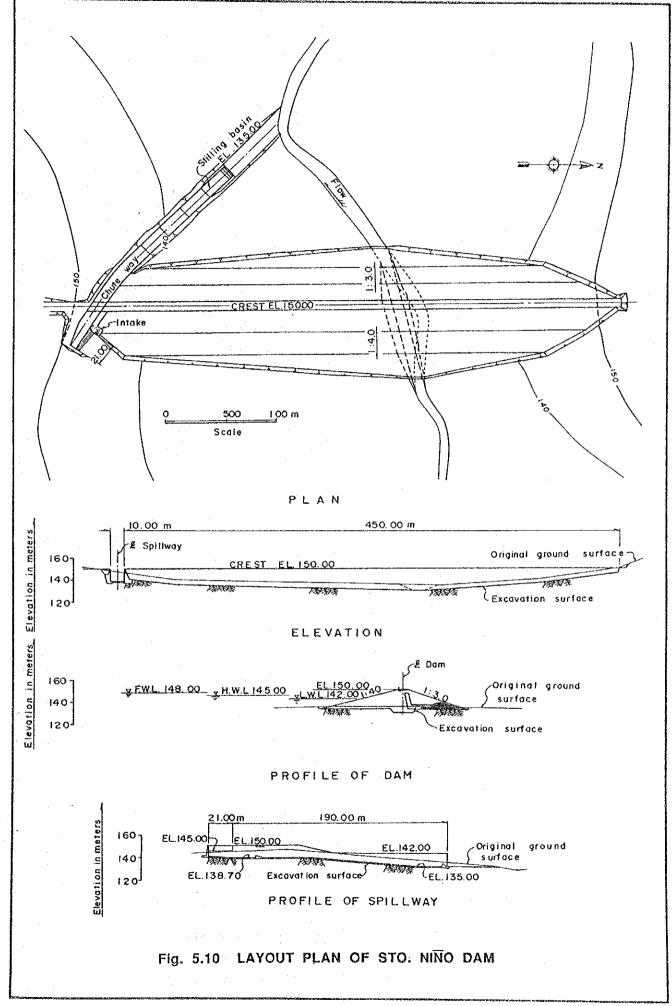
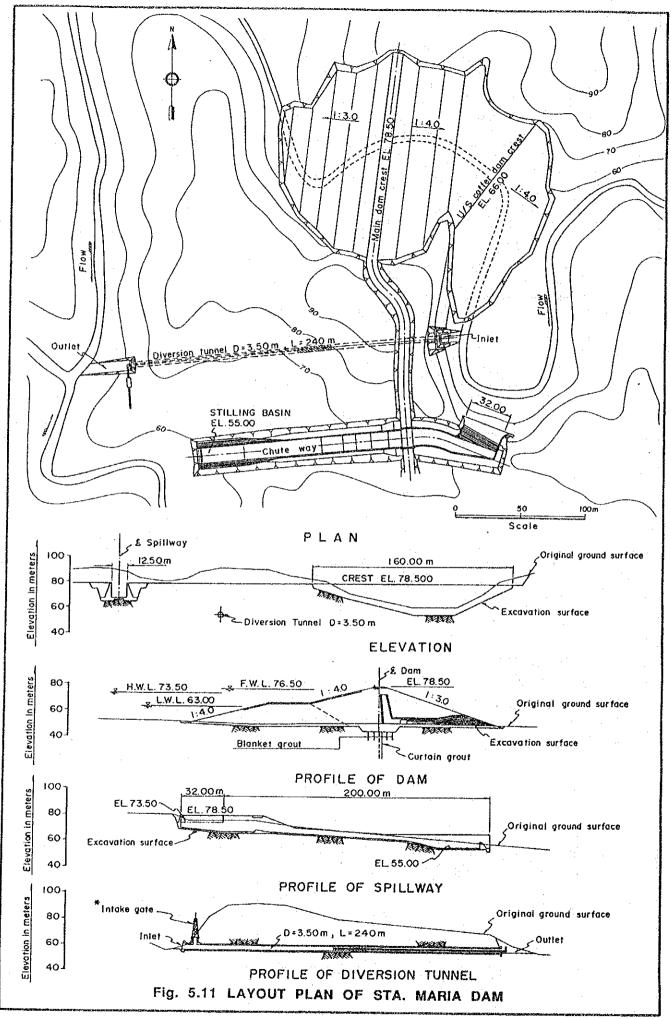
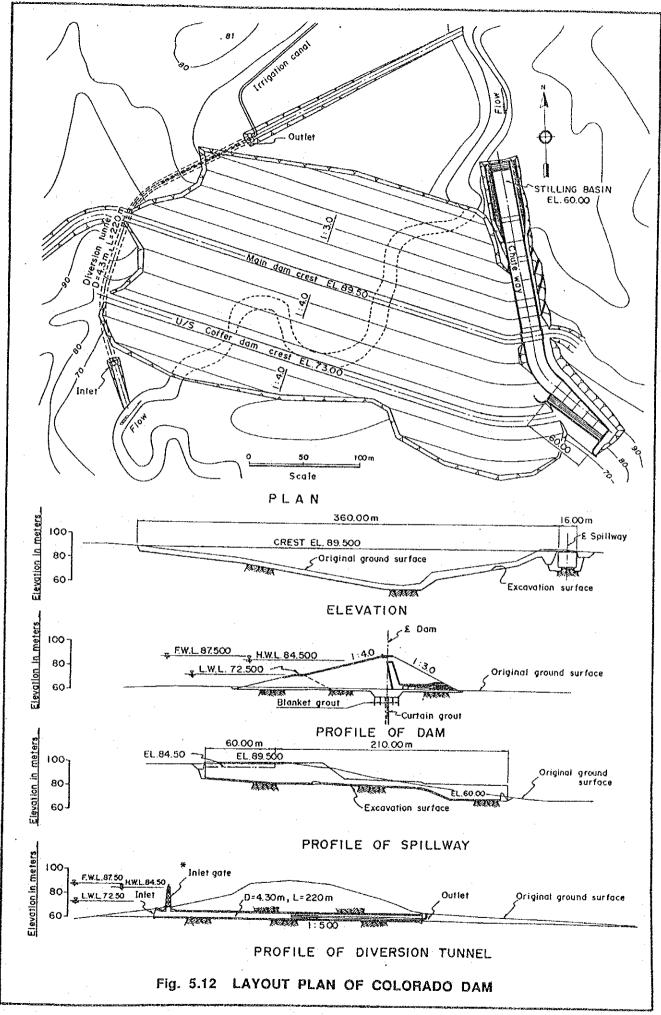


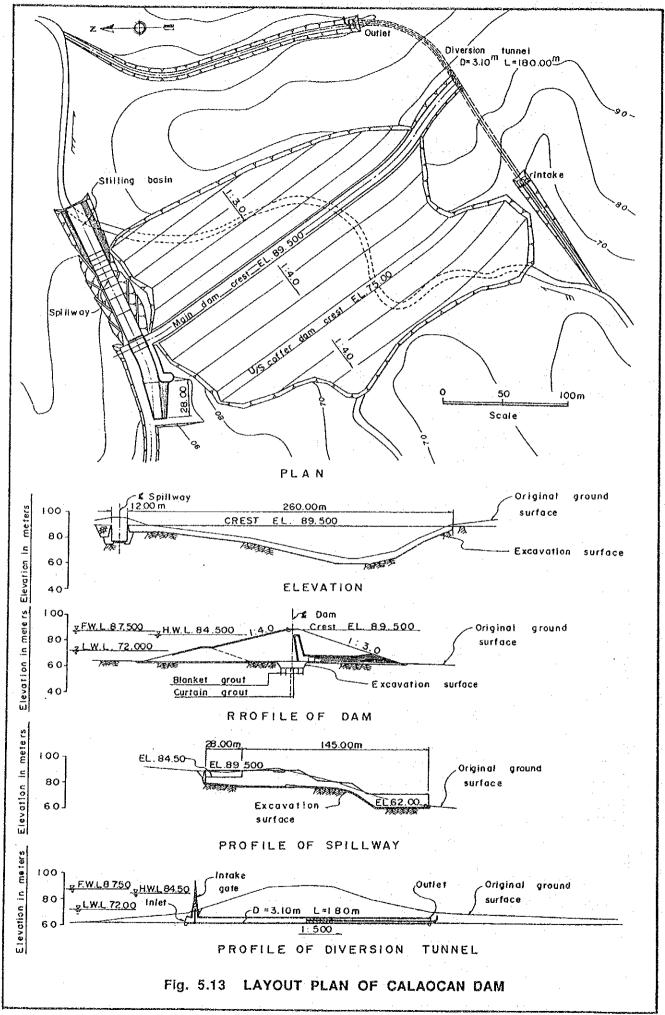
Fig. 5.4 BENEFITS AND COSTS FOR ALTERNATIVE SCALES OF DAM

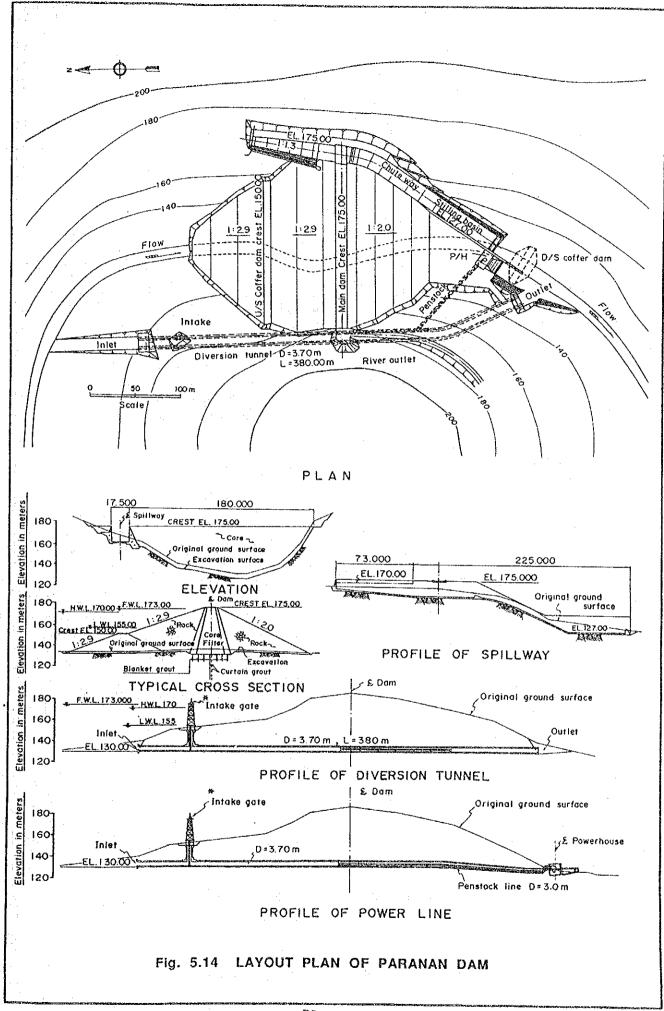


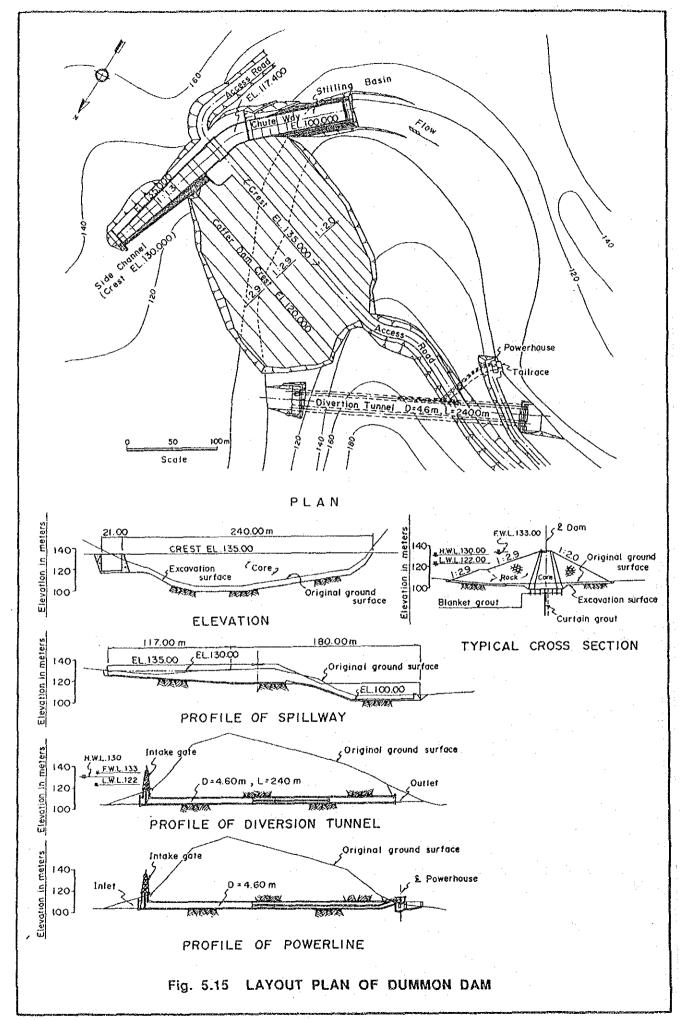


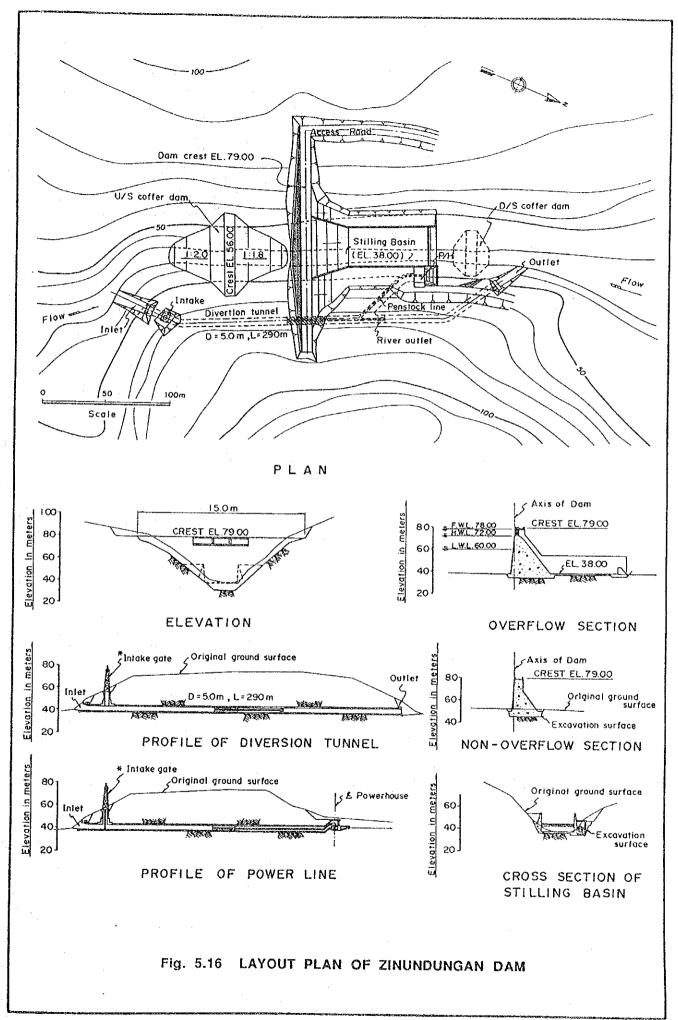


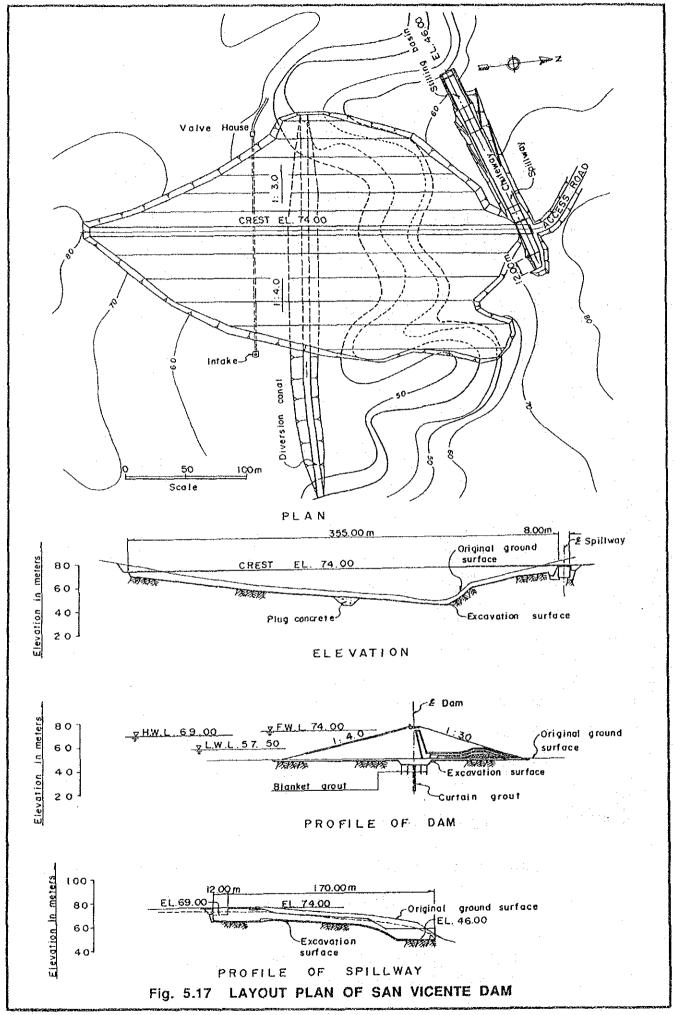


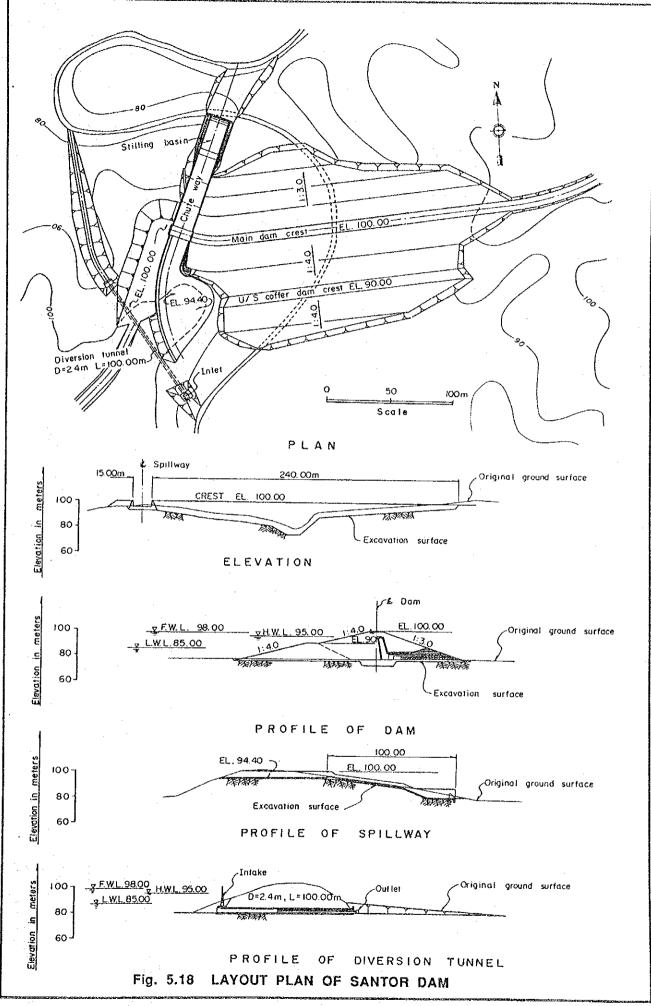

DA- 135

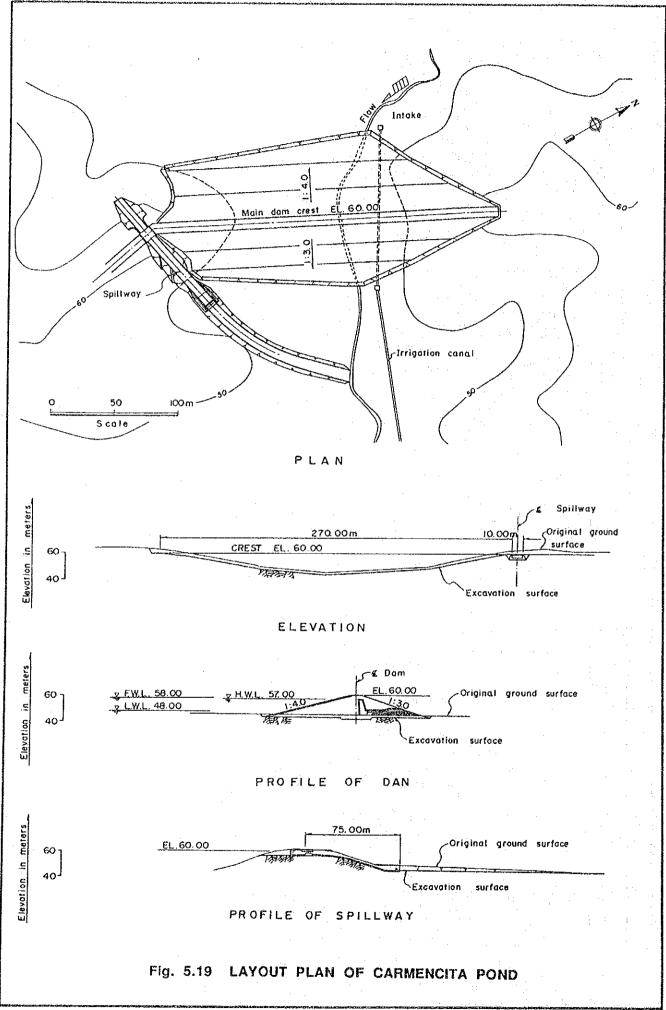


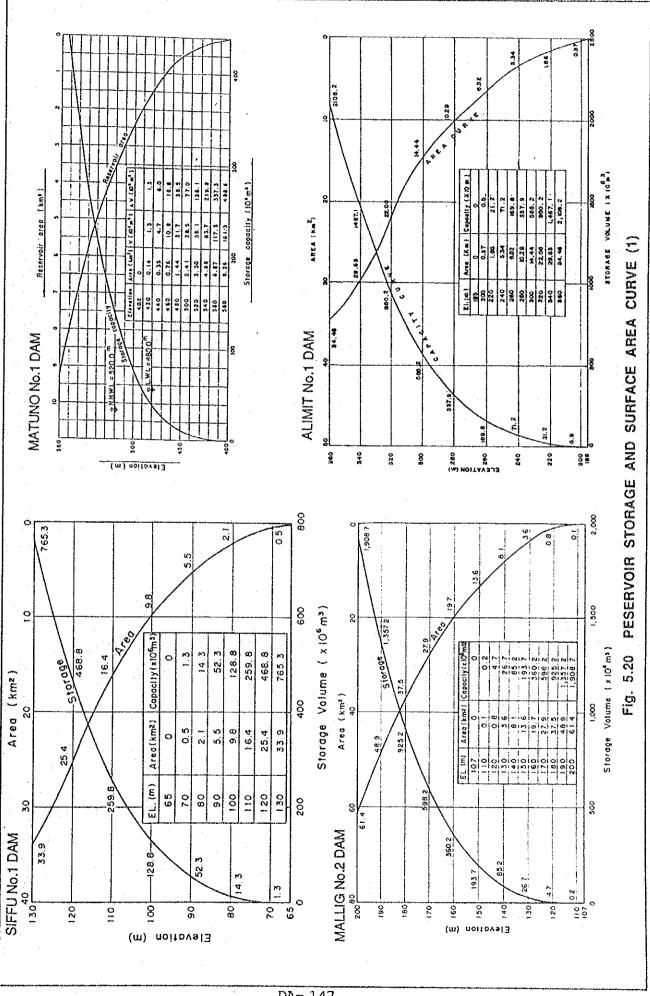


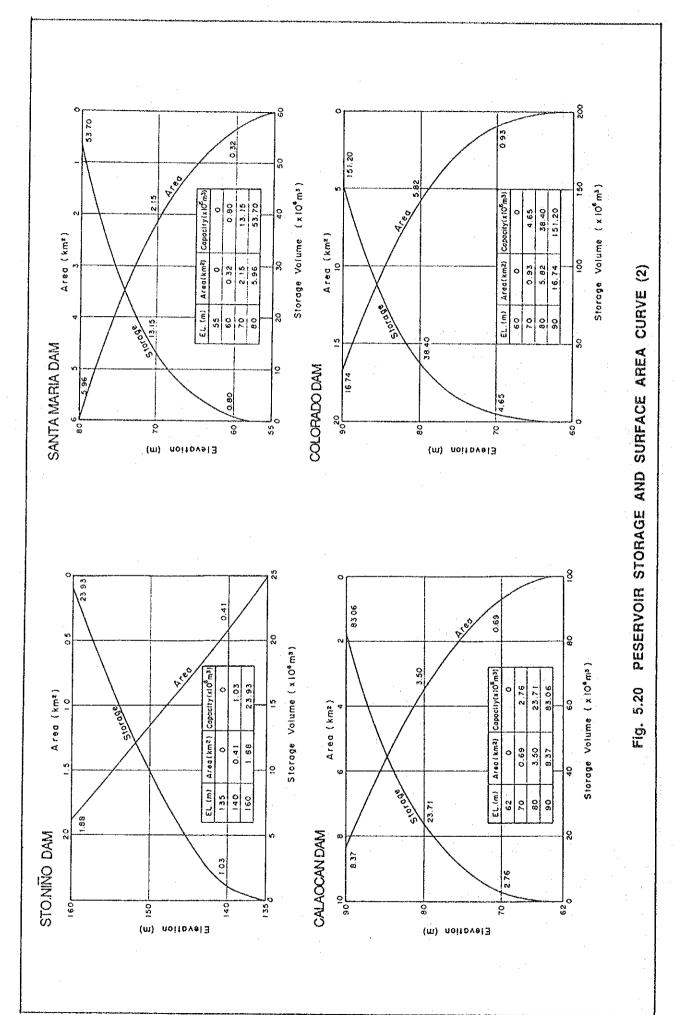


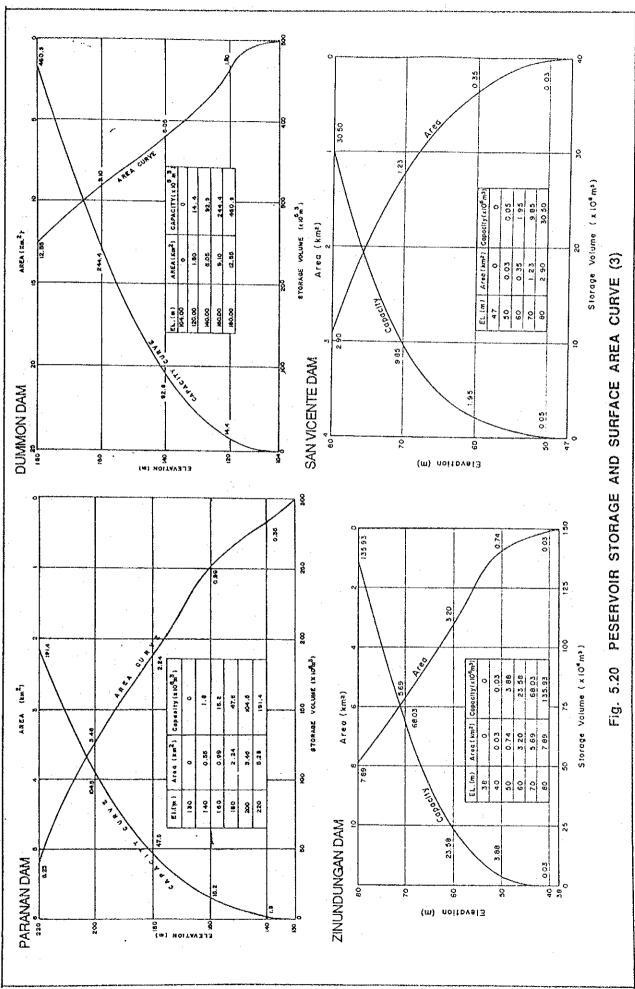


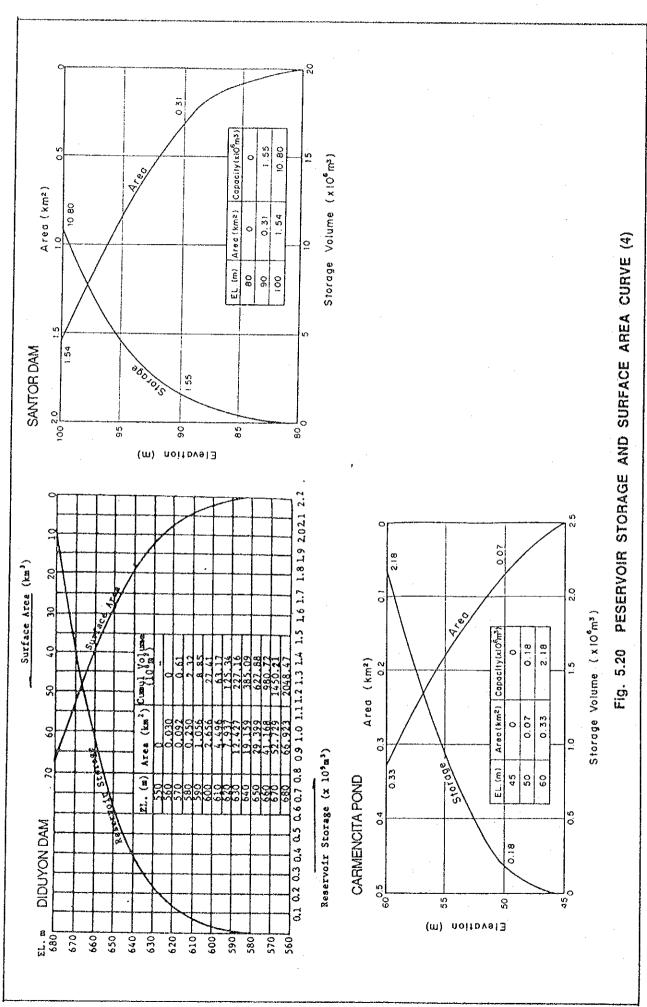











DA- 147

DA- 148

DA- 149

