3.3 Estimation of Cost

Two kinds of project costs are estimated, i.e., economic cost and financial cost. The economic cost is used for comparative studies of alternative schemes and evaluation of the project from an economic view point. The financial cost is devided into local and foreign currency portions. All of these costs shall be expressed in peso currency at the price level as of December 1985.

The project cost consists of those for channel works and dam works. Constitution of the project cost is as follows:

Channel Works

- 1) Main works cost
 - Preparatory works: Assumed to be 8 % of direct construction work cost
 - Direct construction works: Actual cost basis
 - Miscellaneous works: Assumed to be 15 % of preparatory and direct construction work costs
- 2) Compensation cost: Actual cost basis
- 3) Engineering and administration costs
 - Engineering: Assumed to be 10 % of main work cost
 - Administration: Assumed to be 5 % of main work cost
- 4) Contingency: Assumed to be 15 % of main work, compensation, engineering and administration costs

Dam Works

- 5) Main work cost
 - Preparatory works: Actual cost basis
 - River diversion works: Actual cost basis
 - Dam: Actual cost basis
 - Spilway: Actual cost basis
- 6) Compensation cost: Actual cost basis
- 7) Engineering and administration costs

- Engineering: Assumed to be 10 % of main work cost.
- Administration: Assumed to be 5 % of main work cost
- 8) Contingency: Assumed to be 20 % of main work, compensation, engineering and administration costs

The construction costs shall be estimated using standard unit construction costs. The standard unit construction costs for flood control facilities are shown in Table 3.1 on financial basis and Table 3.2 on economic basis. The unit construction costs for dam works are mentioned in ANNEX DA.

The financial unit costs were estimated based on those of the previous studies. Unit work costs of the similar projects by MPWH are also referred. The economic unit costs except land costs were estimated based on the financial costs deducting 18 % of local portions considering transfer costs and shadow rate. The economic unit land costs were evaluated based on the production foregone.

Principal figures used for or referred to cost estimates are as follows:

- Exchange rates among U.S. dollar, peso, and yen currencies:

(year)	(U.S.\$ 1 is equiva	lent to)
1980	₽ 7.51	¥ 228
1981	₽ 7.90	¥ 222
1982	₽ 8.54	¥ 250
1983	₽11.11	¥ 239
1984	₽16.70	¥ 239
1985	₽18.73	¥ 240
Dec. 1985	₽18.89(say ₽19)	¥ 203(say ¥200)

- Annual average escalation rate of labor cost: 8.4% during 5 years from 1981 to 1986.

- Annual average escalation rate of local construction materials: 12.6% during 5 years from 1981 to 1986.
- Price indexes of imported construction materials (Imat) and equipment (Ieq):

(Year)	(Imat:%)	(Ieq:%)	
1980	105.3	90.1	
1981	122.1	90.8	
1982	125.6	98.8	
1983	99.2	92.1	
1984	100.5	96.0	
1985	100.	100.	

Note: According to FOB prices in Japan

3.4 Assessment of Flood Damages

Flood damages are assessed for the evaluation of flood control benefit resulting from reduction in damages. The flood damages in the basin are classified into two flooding damages and bank erosion damages which are assessed in different methods. Constitution of these damages is shown in Table 3.3.

(1) Flooding Damages

Assessment method of the flooding damage is outlined as follows:

- 1) The flooding damages consist of direct and indirect damages.
- 2) Direct damages such as those to buildings and agricultural crops are estimated from damageable value of properties multiplied by damage ratio. The damage ratios depending on the flooding condition are shown in Table 3.4.

3) Unit damageable value of buildings: Average values of residential and non-residential buildings were estimated as shown below in consideration of their constitution. Unit value of each type of building was assessed by the sampling surveys of our economist.

- Building: P 31,000/bldg.

4) Unit damageable value of agricultural crops: Unit area damageable value of agricultural crop was sestimated by the unit value multiplied by the unit yield for each crop:

- Irrigated paddy: 2.70 ton/ha x \$10,300/ha

- Rainfed paddy : 2.40 ton/ha x ₽ 9,200/ha

- Upland crop : ₹ 4,200/ha

Corn : 1.10 ton/ha x $\frac{1}{2}$ 2,700/ton x 88 % = $\frac{1}{2}$ 2.600/ha Tabacco : 0.70 ton/ha x $\frac{1}{2}$ 18,100/ton x 12 % = $\frac{1}{2}$ 1,600/ha

- 5) Other direct damages such as those to livestocks and infrastructure are estimated by the constant ratios to other damages
 - Livestocks: Assumed at 12.6 % of damages to agricultural crops
 - Infrastructure: Assumed at 86 % of damages to buildings including movables according to the past flood damage records
- 6) Indrect damages including income loss and emergency costs due to flooding are estimated by the constant ratio to the total direct damages. The ratio is assumed at 5 %.

(2) Bank Erosion Damages

Regarding the bank erosion damages, standardized assessment method has not been developed yet, since the bank erosion phenomena are difficult to be treated statistically and the evaluation of damages in monetary term are difficult. In the present study, an attempt was made to assess the damages introducing some bold assumptions as follows:

- 1) The following damages due to bank erosion are considered for the properties in the possible damaged area:
 - Building damages
 - Agricultural damages
 - Highway damages
 - Loss of residential land
- The possible damaged area is defined as an area possibly subject to bank erosion damages during the project life under consideration if the bank protection works are not implemented (refer to Fig.3.4). Two types of bank erosion are considered, i.e., continuous bank erosion and river course change.
 - Continuous bank erosion: The possible damaged areas of this type are assumed based on the bank erosion rate in the past.
 - River course change: The possible damaged area of this type are assumed to be the areas enclosed by the existing river course and the possible river course. The possible river course is assumed based on topographic and geomorphological nature of the existing channels.
- 3) Average annual bank erosion damages are estimated by the following equations:

Annual damages (DAVE):

DAVE = (DB + DA + DH + DL)(1 + DI)/PL

DI - Indirect damage ratio (assumed to be 100 %)

PL = Project life (assumed to be 50 years)

Building damages (DB):

 $DB = VB \times (1.0 + OF)$

VB = Damageable value of buildings (excluding movables) in the possible damaged area

OF = Damage ratio for outdoor facilities, garden, tree, etc. (assumed to be 100 %)

Agricultural damages (DA):

 $DA = VA \times (RP + FF)$

VA = Damageable value of agricultural crops

RP = Recovery period of new agricultural lands which are
assumed to be created on the opposit side of the
eroded bank (assumed to be 5 years)

FF = Damage ratio for farm land facilities (assumed to be 100 %)

Highway damages (DH):

DH = CH x LR (1.0 + AP)

CH = Unit reconstruction cost of highway (₱2,260/m for 6.7 meter wide concrete paved road)

LR = Length of reconstruction

AP -= Cost ratio for appurtenant facilities of highway

Loss of residential land (DR):

 $DR = CR \times AR$

CR = Unit cost of residential land ($\frac{1}{2}30/m^2$)

AR = Area of residential land in the possible damaged area

4) Unit damageable value of building and agricultural crops are assumed to be same with those for the estimation of flooding damages.

(3) Intangible damages

Other than the flooding and bank protection damages mentioned above, the floods badly affect the people's social life and economic activities to a vast extent. Relationship between direct and indirect damages is shown in Fig.3.5. The indirect damages are in general hard to assess in monetary term and intangible. The following damages fall under this category:

- 1) Damages to people's livelifood
- 2) Damages to traffic and transportation
- Damages to business activities in commercial and industrial sectors
- 4) Loss of lifes and injury

3.5 Economic Evaluation

The benefit of flood control project is brought on by the reduction of damages due to flooding and bank erosion.

For the estimation of flood reduction benefit, probable flood damages for different return periods such as 2, 5, 10, 25, 50 and 100-years are calculated. The lowest flood magnitude which would cause substantial damages is assumed considering the existing channel capacity for each block of inundation.

The bank protection benefit is estimated separately from the flood reduction benefit based on the annual bank erosion damages.

The benefit is estimated under constant and variable property conditions of the basin.

- Constant property condition(CPC): The properties in the basin are assumed to be constant in future at the existing condition of the end of 1985.
- Variable property condition(VPC): The properties in the basin are assumed to vary year by year depending on the basin's development and enhancement of people's livelihood.

The following assumptions are introduced to estimate the properties in future:

 Damageable values of buildings including movables are assumed to increase at the same rate with the projected per capita GRDP (index) in Region II.

Year	1985	1995	2005	2020	2040
Index(%)	100	169	240	499	955

Damageable values of agricultural crops are assumed to increase linearly up to the year 2005 and keep constant level afterwards. The agricultural property in 2005 are estimated based on the proposed master plan for agricultural development in ANNEX IR.

IV. FRAMEWORK PLAN

4.1 Development of Alternative Plans

4.1.1 Diking System

Diking system is a fundamental component of the alternative flood control plans to complement other flood control measures such as narrow improvement and flood control dams. In order to grasp the hydrological effects of the diking system, runoff calculations for 100-year frequency flood were conducted under the existing basin condition with and without diking system. The process of the flood runoff analyses are presented in ANNEX HY. The results of calculation are shown below.

Reaches	Existing (m ³ /s)	W/dike (m ³ /s)	Ratio
	(1)	(2)	(2)/(1)
Mouth to Chico jct.	21,600	27,400	1.27
Chico jet. to Siffu jet.	26,600	28,800	1.08
Siffu jct. to Ilagan jct.	25,600	27,500	1.07
Ilagan jct. to Magat jct.	23,900	25,900	1.08
Magat jct. to Addalam jct.	16,000	16,300	1.02
Chico R.	8,700	8,700	1.00
Siffu R.	3,300	3,300	1.00
Ilagan R.	9,400	9,900	1.05
Magat R.	10,600	13,800	1.30
Addalam R.	4,800	4,800	1.00
Upper Cagayan R.	12,100	12,100	1.00

With the continuous diking system along the Cagayan river, the flood runoff was estimated to increase up to 127 % of the existing runoff. The flood runoff for the case with diking system would be a basic value for

planning flood control measures. The runoff is called as basic flood discharge.

4.1.2 Improvement of Magapit Narrows

The improvement of Magapit narrows by channel excavation were studied in the following procedures:

- 1) Establishment of narrow model for flow calculation
- 2) Study on complete narrow improvement scheme
- 3) Study on partial narrow improvement scheme

The narrow improvement schemes were studied based on the basic flood discharge, i.e., 100-year flood runoff with diking system.

(1) Establishment of Narrow Model

Surveyed sections of the Cagayan river are available at the intervals of about 5 km. Channel flow calculations with such a long interval were not able to simulate the flood water profile obtained by the flood mark survey in the narrow reaches. For the conveniences of flow calculation for the improvement of Magapit narrows, narrow model was established in the following manners:

- 1) Based on the river survey results and topographic maps (1/25,000), the existing river widths were measured along the stretches of gorge sections.
- 2) Existing average river bed elevation for the given river width were estimated by trial and error method so that the surface profile calculated by non-uniform flow may accord with the flood marks at 1980-flood for the channel roughness n=0.040.

(2) Complete Narrow Improvement Scheme

As an ideal scheme, channel excavation scheme for the entire stretch of narrows from $Sta.30\ km$ to $65\ km$ were studied so that the backwater

effects of narrows may be eliminated.

Excavation works by channel widening was studied on the sections of narrow model established in the above. Alignments for channel widening were designed on the topographic maps (scale: 1/25,000). The excavation depth was designed up to about average low water level considering the conveniences of excavation works in dry condition. Following water levels calculated for 75 % dependable discharge were adopted for the average low water level:

- El. 0.37 m for Magapit section
- El. 1.00 to 1.19 m for Nassiping section

According to the study excavation works were necessary at Magapit section (Site-M), Nassiping section (Site-N), and upstream channel from Nassiping (Site-UN). For the Nassiping section two alternative sites were considered, i.e., site along the existing river course (Site-N1) and site including cut-off channel at Nassiping (Site-N2).

Outline of these narrow improvement schemes and longitudinal profile for them are shown in Figs. 4.1 though 4.3 and Fig. 4.4. Quantities of excavation works are summarized as follows:

Site	Stretch	Excavation	
	(from - to)	volume (m ³)	
M	Sta.30.0 km - 33.3 km	68,228,000	
N	Sta.52.0 km - 59.0 km	43,194,000	
N2	Sta.52.0 km - 59.0 km	43,321,000	
UN	Sta.59.0 km - 66.0 km	32,718,000	

As seen in the above table, excavation volume of Site-N2 is larger than that of Site-N to lower the water level to the same level. Therefore, Site-N is taken up for the improvement of Nassiping section.

The total excavation volume for the complete narrow improvement amounts to $144,140,000 \text{ m}^3$.

(3) Partial Narrow Improvement Scheme

Since the excavation volume for the complete narrow improvement scheme was huge, partial improvement schemes were studied. For the partial improvement, the following alternative schemes were considered:

1) Alt. 1 : Sites-M + N + UN (Complete improvement)

2) Alt. 2: Sites-N + UN

3) Alt. 3 : Site-UN

4) Alt. 4: Site-N

For each scheme, flood water level was calculated based on 100-year basic flood discharge. Calculated surface profile is shown in Fig.4.4.

Taking a reference point at Sta.65 km near Alcala, effects of alternative schemes are compared as follows:

	, t			74
Scheme	Excavation $volume(m^3)$	WL at Sta.65 km	Reduction in WL(m)	Effect (cm/mil.m ³)
	(1)	(m,MSL)	(2)	(2)/(1)
Existing	<u>-</u>	23.02	<u> </u>	-
Alt. 1	144,140,000	18,33	4.69	3.3
Alt. 2	76,039,000	19,44	3.58	4.7
Alt. 3	32,718,000	22.43	0.59	1.8
Alt. 4	43,194,000	19.94	3.08	7.1
				er.

Channel excavation for Alt.4 is by far effective to lower the flood water level at Sta.65 km comparing to other schemes. The Alt.4, a scheme to improve only Nassiping section, was selected as a component of the alternative flood control plans.

4.1.3 Flood Control Dams

Fourteen potential dam sites have been selected for hydro-power, irrigation and flood control purposes through the screening works in the previous stage of the study. Out of the 14 dams, 8 dams at the lowest site of each tributaries were selected for the flood control study, since they were nearest to the areas to be protected and expected to have direct effects of flood peak reduction. They are Cagayan No.1, Mallig No.2, Siffu No.1(A), Ilagan No.1, Pinukpuk, Addalam (A), Chico No.4, and Disabungan dams (refer to Fig.3.1). According to the previous study, Cagayan No.1, Mallig No.2, Siffu No.1 (A) and Ilagan No.1 dams have been evaluated as class-A dams of higher efficiency for flood control.

The existing Magat dam situates at the suitable site for the flood control dam, although the reservoir has no flood control space. The dam is located at the outlet from the mountainous areas covering 81% of whole Magat river basin. It is worthy to study a scheme to provide flood control space for the existing Magat reservoir. In this scheme Alimit No.1(A) dam will be constructed in order to complement the water supply space of Magat reservoir ceded to the flood control purpose.

Therefore, 9 dams consisting of 8 selected dams and Magat dam with Alimit dam were taken in the alternative flood control plans.

For the Magat dam with flood control space, studies are carried out in combination with the existing Magat dam and Alimit No.1(A). According to the preliminary water balance study on the flow duration at Alimit No.1(A) site, the capacity of about 240 MCM of Magat reservoir could be replaced by Alimit No.1(A) dam. Therefore, Magat reservoir was assumed that to have 200 MCM of effective flood control space by constructing Alimit No.1(A) dam with storage capacity of 240 MCM.

Principal features of the flood control dams are shown in Table 4.1. The effective flood control space except for Cagayan No.1, Addalam (A) and Alimit No.1(A) in the table was calculated based on the flood runoff

hydrograph estimated for 100-year 4-day rainfall adopting the outflow ratio Rout = 0.1. The capacities of Cagayan No.1 and Addalam (A) dams were limited by the topographic site condition and Alimit No.1(A) dam by the possible replenishment for Magat dam. For these dams, outflow ratios corresponding to given capacities were calculated by trial and error method. Sediment space was estimated based on the sediment yield for 100 years. The sediment yield rate from the upper basin was assumed to be $1.500 \, \mathrm{m}^3/\mathrm{km}^2/\mathrm{year}$.

4.1.4 Alternative Plans

Among the flood control measures mentioned above, the diking systems, improvement of Magapit narrows and flood control dams are the alternative measures for the flood prevention. Two cases of Magapit narrows are conceivable i.e., existing and improved Magapit narrows. Three cases of dam schemes were also considered for the framework plan study, i.e., no dam scheme, 5-dam scheme consisting of 4 class-A dams and Magat dam with Alimit dam, and 9-dam scheme consisting of selected 8 dams and Magat dam with Alimit dam. Therefore, following alternative plans were set up for comparative studies of the framework plan putting together the above cases and diking system (Fig. 4.5).

- 1) Alternative plan-OD: A plan consisting of diking system only with existing Magapit narrows.
- 2) Alternative plan-5D: A plan consisting of 5 flood control dams and diking system with existing Magapit narrows. The 5-dams taken up are Cagayan No.1, Mallig No.2, Siffu No.1(A), and Ilagan No.1 dams and Magat dam with Alimit No.1(A) dam.
- 3) Alternative plan-9D: A plan consisting of 9 flood control dams and diking system with existing Magapit narrows. The 9-dams taken up are Pinukpuk, Addalam (A), Chico No.4 and Disabungan dams in addition to the above 5 dams.
- 4) Alternative plan-ODM: A plan consisting of diking system only with improved Magapit narrows.
- 5) Alternative plan-5DM: A plan consisting of 5 dams and diking system with improved Magapit narrows.

6) Alternative plan-9DM: A plan consiting of 9 dams and diking system with improved Magapit narrows.

4.2 Comparative Studies

4.2.1 Design Flood Discharges

Runoff analyses under the respective alternative schemes are discussed in ANNEX HY. According to the analyses, 100-year design discharge distribution for each alternative plan was determined as shown in Table 4.2.

4.2.2 Preliminary Design

The flood control framework plan includes the channel works and dam works as follows:

I. Channel Works

- 1) Dike embankment works
- 2) Revetment works
- 3) Narrow improvement works
- 4) Cut-off channel works
- 5) Bank protection works
- 6) Drainage sluice works
- 7) Appurtenant facility works

II. Dam Works

- 1) River diversion works
- 2) Dam works
- 3) Spillway works

Preliminary designs of these channel and dam works were carried out and economic project costs for respective alternative plans were estimated. The project costs for the channel works were shown in Table 4.3 and for dam works in Table 4.4. The project cost includes those of main works, compensation, engineering and administration, and contingency.

The preliminary design of channel works was carried out as presented in the ensuing paragraphs. The preliminary design of concrete dams for flood control purposes was carried out based on the structural design criteria mentioned in ANNEX DA.

(1) Dike Embankment Works

Design high water levels (DHWL) of alternative plans were decided based on the non-uniform flow calculation for design flood discharges. Design high water level at each point of surface slope change is summarized below comparing alternative plans one another.

		DHWL f	or alterr	ative pla	ns (m,MS	L)
Station	OD ·	5D	9D	ODM	5DM	9DM
1.0k	5,41	4.90	4.83	5.25	4.92	4.85
30.0k(L)	12.66	11.81	11.74	12.33	11.83	11.76
30.0k(U)	15.06	14.56	14.43	15.41	14.78	14.66
65.0k	23.08	22.01	21.88	20.56	19.78	19.66
160.0k+400m	-	_	29.93	-	i. • .	<u></u>
160.0k+1500m	-	30.26	-	-	-	-
160.0k+6000m	32,20		-	-	-	-
167.0k+3500m	. - '	-	~	-	-	32.02
170.6k+100m	-	-	-	-	32.17	_
170.6k+3600m	-	-	-	33,83	1	-
254,3k+700m	50.75	49.74	49.64	50.67	49.74	49.63

Diking systems along the main river and major tributaries were designed based on the design high water levels discussed above. Quantity of works were then estimated.

(2) Revetment Works

Revetment works for dikes were designed where the river course came closer to the dike. Proposed sites were selected on the topographic maps of scale 1/25,000.

(3) Narrow Excavation Works

Only the Nassiping section is subject to the excavation for the Magapit narrow improvement. According to the preliminary design in the preceeding section (4.1.2), excavation volume was estimated to be 43,194,000 m³ consisting of 21,970,000 m³ on the left side bank and 21,220,000 m³ on the right side bank (refer to Fig. 4.2). The excavated materials could be used to reclaim adjacent lowlying lands along the main Cagayan and the Chico rivers to create settlement areas or lands for public facilities free from floodings. Study for effective usage of the excavated materials should be included in the next stage works.

(4) Cut-off Channel Works

In order to accelerate the smooth flood flow and to economize the channel works, cut-off channel works were designed in the markedly meandering reaches as shown in Table 4.5.

Two cut-off channels extending over 7.50 km long in total were designed in the main Cagayan at Gabut and San Isidro. The 0.9 km long cut-off channel was designed for the Magat river near its junction to the main Cagayan.

The Siffu-Mallig river meanders significantly in the entire stretches in the plain area. The cut-off channel works in such a river may stabilize the river course by straightening and steepening the channel. Total length of about 14 km long cut-off channel in the Siffu river will reduce the existing channel length to about 49 %. Total length of about 12 km long cut-off channel will reduce the existing

Mallig river length to about 54 %.

(5) Bank Protection Works

Bank protection works were designed for stabilizing the river course and preventing the bank erosion. River training works in braided river were also included in these works.

The following sites were selected for bank protection works:

- Existing critical bank erosion sites and sites susceptible to bank erosion.
- 2) Sites necessary for channel normalization and river training.
- Sites near towns, village, highway and other important public facilities.

The proposed sites were selected based on the findings during site reconnaissance, results of river bank shifting survey, and topographic maps. The selected sites are listed in Table 4.6. Total length of bank protection works amounts to 112.3 km in total length. For the estimation of cost, assumed were two types of bank protection works, i.e., gabion revetment and wooden pile groyne. One third of total length of bank protection sites were assumed to be protected by the revetment and the remaining by the groyne.

(6) Drainage Sluice Works

Drainage sluice shall be provided for dikes for the interior drainage of the areas protected by dikes of the main Cagayan and major tributaries. In the present study it was assumed, as a rule of thumb, that one sluice of size $1.5~\rm m~x~1.5~m~x~2$ gates would be installed for $4~\rm km^2$ of drainage area, or $3~\rm sluices$ for $2~\rm km$ long of dike considering the average drainage basin width.

(7) Appurtenant Facility Works

Four bridges crossing over the main Cagayan river need compensation works for the project. They are Magapit, Buntun, Gamu and Naguilian bridges. Three bridges except Magapit bridge need reconstruction for all the alternatives because of the channel improvement by diking systems. Existing bridge conditions and their improvement works are summarized below.

Item	Magapit	Buntun	Gamu	Naguilian
a) Existing cond	lition			
Year built	1980	1968	1972	1953
Length(m)	376	1098	442	668
Width(m)	7.32	7.32	6.75	(6.75)
b) Improvement w	vorks			
Improvement	•	Reconst.	Reconst.	Reconst.
Length(m)	376	1,500	1,200	850
Work quantity	/(m ²) -	10,980	8,100	5,740

4.2.3 Selection of Optimum Plan

On the basis of the preliminary design including estimates of work quantity and costs in the previous sections, total costs of channel works and dam works are summarized below comparatively for respective schemes.

Alternative	Co	:		
scheme	Channel works	Dam works	Total	Order
				1 000
Alt. OD	35,688	0	35,688	2
Alt. 5D	30,268	6,198	36,466	3
Alt. 9D	28,162	17,634	45,796	6
Alt. ODM	38,278	0	38,278	. 4
Alt. 5DM	28,196	6,198	34,394	. 1
Alt. 9DM	27,969	17,634	45,603	. 5

As seen in the above table, alternative plan 5DM which consists of 5 flood control dams and Magapit narrow improvement is the lowest in its cost of all the alternatives. The second and third least cost plans, Alt. OD and Alt. 5D, include long high-dikes which may need more scrupulous maintenance works for their entire service period. The alternative plan 5DM was selected as the framework plan.

4.3 Principal Features of Framework Plan

According to the studies in the preceding sections, principal features of the flood control framework plan are summarized in Table 4.7, and economic project cost for the plan is shown in Table 4.8.

General location map and longitudinal profile of the flood control framework plan are shown in Figs. 4.6 and 4.7.

V. LONG-TERM PLAN

Flood control long-term plan is a basinwide flood control plan based on 25-year frequency flood scaled down from the framework plan. The plan is a target scheme for partial improvement plans such as master and short-term plans. The long-term plan is economically evaluated under two different property conditions of the basin, i.e., constant and variable property conditions.

Major sub-projects are picked up from those included in the longterm plan and priority ranks as candidate sub-projects for master plan are given based on their economic viabilities. Economic viability for priority ranking is assessed under the constant property condition as of 2005 just after the completion of the master plan project.

5.1 Preliminary Design

Design flood discharge was calculated based on 25-year flood under the condition with diking system, 5 flood control dams selected for the framework plan, and improved Magapit narrows. Dimensions and operation rules of the flood control dams are same with those of framework plan. The excavation volume of Magapit narrows and alignment of diking systems were also taken as in the framework plan.

The design discharge distribution for the long-term plan is shown in Fig.5.1. The design flood discharge at river mouth was estimated to be $17,900 \text{ m}^3/\text{s}$ which corresponded to 70.5 % of that of framework plan.

Longitudinal profile are shown in Fig. 5.2. The diking systems were designed based on it in the same manner as in the framework plan study.

Regarding the flood control measures of the major tributaries, following consideration was given:

- Chico and Ilagan rivers: Existing channel retardation function is to be maintained. In addition, bank protection works to prevent bank erosion and to stabilize river course should be executed.
- Siffu-Mallig river: Channel retardation function was not considered, since both the Siffu and Mallig rivers had proposed flood control dams in the upper watersheds. The remarkablly meandered river channels should be improved by the cut-off channels to accelerate flood drainage and to stabilize river channels.
- Magat river: There are two dams in the Magat river, proposed Matuno dam in the upper reaches and existing Magat dam in the middle reaches. The channel retardation function was not considered in the Magat river. Bank protection works to prevent bank erosion and to stabilize river course should be executed.

Quantities of major works such as dike embankment, revetment and land acquisition are shown in Table 5.1. Economic project costs were then estimated as shown in Table 5.2. The project cost for the long-term plan amounts to 27,543,000,000.

5.2 Economic Evaluation

The benefit of the flood control long-term plan is brought on by the reduction of damages due to flooding (flood reduction benefit) and bank erosion (bank protection benefit). The benefit is estimated under the constant and variable property conditions of the basin.

5.2.1 Benefit under Constant Property Condition

Probable flood discharges of the present river condition (without project) were calculated for the different magnitudes of rainfall. The results are shown in Table 5.3.

Damages without project were estimated for the respective floods and annual flood damages were then estimated deviding the inundated areas

into several blocks. The flood damages thus estimated are shown in Tables 5.4 and 5.5. Average annual flood without project were estimated at 23,793,000,000 over the basin based on the probable damages up to 100-year flood.

For the river condition with improved narrow and dams, probable flood discharges and their damages were also calculated. the results are shown in the said Tables 5.3 and 5.4.

The flood damages for the condition without project will be eliminated up to 25-year floods by the combined effect of Magapit narrow improvement, 5 flood control dams, and diking system. In addition to these, effects of narrow improvement and dam works are expected up to 100-year floods.

The residual damages after completion of the diking system along the main Cagayan river were assumed to be 20% of the damages without diking system. The effects of diking system are not extended to the river basins of upper Cagayan, upper Magat, Ilagan, Siffu, Mallig, Tuguegarao, and Chico. Flood reduction benefit of the long-term plan was estimated as shown in Table 5.6.

On the other hand, annual benefit of the bank protection was estimated as reduction in bank erosion damages mentioned in the section 3.4. Results are shown in Table 5.7. Total bank protection benefit was estimated to be \$73,000,000/year.

Accordingly, annual benefit under the constant property condition was estimated as follows including the flood reduction and bank protection benefits:

- Flood reduction benefit: ₽ 1,564 mil/yr.

- Bank protection benefit: \$\frac{1}{2}\$ 73 mil/yr.

Total: ₱ 1,637 mil/yr.

5.2.2 Benefit under Variable Property Condition

Under the variable property condition, hydrological condition was assumed to be same with that of constant property condition. However, the benefit was assumed to vary year by year depending upon the accumulation of properties in the basin.

Damages with and without project were estimated in the similar manner as in the constant property condition for six return periods of floods and for respective reference years.

The annual benefit for each reference year was estimated as shown in the said Table 5.6. The average annual benefits of the long-term plan are estimated under the variable property condition as shown below.

	Annual aver	age benefit (₽ mil./	yr)
Year	Flood reduction	Bank protection	Total
1985	1,564	73	1,637
1995	2,619	104	2,723
2005	3,699	135	3,834
2020	7,549	232	7,781
2040	14,328	400	14,728

5.2.3 Economic Evaluation

For the cost-benefit analysis, the following assumptions were introduced:

- 1) The main works will be carried out for 15 years from 1991 to 2005, the target year for the Master Plan.
- 2) The engineering and administration for the project will continue from the year 1990 until 2005.

- 3) The compensation will be carried out one year earlier than the main works, i.e., from 1990 to 2004.
- 4) The project costs are assumed to be disbursed uniformly whole through the work periods.
- 5) Project life is assumed to be 50 years from the beginning of works in 1991 to the year 2040.
- 6) Benefit by the project is assumed to be proportional to the cumulative construction cost disbursed by the year under consideration.
- 7) As an annual operation and maintenance cost, 0.5 percent of cumulative construction cost disbursed by the year under consideration is assumed.
- 8) Base year for the cost-benefit analysis is taken at the end of 1985.

Cost and benefit cash flows used for the economic evaluation are shown in Table 5.8. Internal rate of return (IRR) of the long-term plan was estimated for the both constant and variable property conditions as follows.

- Constant property condition : 4.8 %
- Variable property condition : 14.2 %

As a result of studies in the previous sections, general location map for the long-term plan is shown in Fig.5.3. The principal features of the long-term plan are summarized in Table 5.9.

5,3 Priority Ranking of Schemes

The execution of the long-term plan needs huge amount of fund and is deemed difficult to complete by the target year of the Master Plan, 2005. Therefore, several schemes included in the long-term plan are selected for the Master Plan based on the economic viability.

5.3.1 Selection of Candidate Schemes

(1) Dike Schemes

The continuous diking system will not be implemented at an early stage, since the system may induce concentration of flood runoff in the lower reaches and worsen the situation against flooding.

In order to nominate the promissing dike schemes among the diking system, quantities of dike works and properties to be protected by dike were compared. As indexes for the dike works and properties to be protected, used were dike embankment volume and number of inundated houses for 100-year flood under the existing basin and channel conditions. The screening of dike schemes is shown in Table 5.10.

Following two dikes were picked up through the screening works in consideration of properties to be protected by dikes.

- Tuguegarao dike
- Cabagan dike

The dikes are designed based on the high water level for 25-year flood under the present basin condition. Revetment works to strengthen the dikes were included in the candidate dike schemes mentioned above. Outline of these dike schmes are illustrated in Figs. 5.4 and 5.5. Project costs of these dike schmes are shown in Table 5.11.

(2) Narrow Improvement Schmes

The selected Nassiping site was devided into three work sites, i.e., left side bank of lower portion (Site-NLL), right side bank of lower portion (Site-NLR), and upper portion (Site-NUP) of Nassiping section as shown in Fig.4.2. These three sites were taken up as candidate schemes for the Master Plan. Surface profile for each excavation work is shown in Fig.5.6. The work quantites and hydraulic effects are summarized below.

•	xcavation olume(m ³)	WL at Sta.65km	Reduction in WL(m)	Effect (cm/mil.m ³)
	(1)	(m,MSL)	(2)	(2)/(1)
Site-N(whole)	43,194,000	19.94	3,08	7.1
Site-NLL	5,828,000	21.67	1.19	20.4
Site-NLR	17,624,000	20.92	2.10	11.9
Site-NUP	19,742,000	22.61	0.52	2.4

The project costs of these narrow improvement schmes are shown in Table 5.12.

(3) Flood Control Dam Scheme

All the dams included in the long-term plan were taken up. Costs of these dam projects are shown in Table 5.13.

- Cagayan No.1 dam
- Magat/Alimit No.1 dam
- Ilagan No.1 dam
- Siffu No.1(A) dam
- Mallig No.2 dam

(4) Bank Protection Schemes

All the bank protection schemes included in the long-term plan were taken up. Project cost of these bank protection works is shown in Table 5.14.

5.3.2 Priority Ranking

Priority ranks as candidate schemes for Master Plan were given to each of the selected schemes based on the economic viability. The economic viability were examined according to the following assumptions:

- 1) Project cost including main works, engineering and administration, and compensation is assumed to be disbursed uniformly for 5 years from 1991 to 1995 years except for dam works. As for the dam work disbursement schedule of project cost was assumed to be 3%, 15%, 25%, 32%, and 25% for respective years from 1991 to 1995.
- 2) Benefit is assessed independently for each candidate work comparing with the conditions with and without project. The benefit is estimated under the constant and variable property conditions of the basin.
- 3) Benefit by the dam works is assumed to be realized next year of the completion of the works, while the benefit of the channel works is in proportional to progress of the works.
- 4) Other conditions adopted for the study are same as in the evaluation of the long-term plan.

Result of study on the priority ranking of these candidate schemes is shown in Table 5.14, which is summarized below.

Rank	Candidate scheme	IRR.CPC	IRR.VPC
1	Tuguegarao dike	11.6%	23.1%
2	Narrow imp.(Site-NLL)	8.9	18.9
3	Bank protection	7.3	13.7
4	Cabagan dike	5,3	13.6
5	Narrow imp.(Site-NLR)	5.2	13.5
6	Magat/Alimit No.1 dam	5.1	13.1
7	Siffu No.1(A) dam	5.1	12.8
8	Cagayan No.1 dam	3.8	11.6
9	Mallig No.2 dam	2.2	9.3
10	Ilagan No.1 dam		5.4
11	Narrow imp.(Site-NUP)	-	- ·

Note 1. IRR.CPC: IRR under constant property condition

2. IRR. VPC: IRR under variable property condition

5.4 Intersectoral Adjustment

The priority ranks of the candidate schemes discussed in the previous section are adjusted from intersectoral viewpoint as multipurpose projects. Magat/Alimit No 1, Siffu No. 1 and Mallig No. 2 dam schemes were subject to the intersectoral adjustment using the allocated cost. The allocation of costs was presented in ANNEX DA.

(1) Magat/Alimit No.1 Dam Scheme

In consideration of a multipurpose project for irrigation and flood control, capacity and cost of Alimit No. 1 dam allocated for the flood component are as follows:

- 1) Effective flood control capacity: 116 MCM considering safety factor (20%) based on the allocated storage capacity of 139 MCM for Alimit No. 1 dam reservoir.
- 2) Allocated economic cost: #904.7 mil.
- 3) Allocated negative benefit: ₱0.02 mil./yr
- 4) Flood control benefit: Interporated from benefits for capacities of 100 MCM and 200 MCM as follows

Year 1985 1995 2005 2020 2040 Benefit(Pmil./yr) 55.33 92.51 128.42 263.36 500.92

(2) Siffu No. 1 Dam Scheme

Siffu No. 1 dam multipurpose project with irrigation and flood control purposes was considered. Full capacity required for the flood control was available. The allocated cost and other principal values are as follows:

- Effective flood control capacity: 96.1 MCM same as the longterm plan
- 2) Allocated economic cost: ₱279.3 mil.
- 3) Allocated negative benefit: \$0.71 mil./yr
- 4) Flood control benefit: Same as the long-term plan

Year 1985 1995 2005 2020 2040 Benefit(₱mil./yr) 32.28 53.43 72.66 146.85 277.47

(3) Mallig No. 2 Dam Scheme

Irrigation and flood control purposes were considered for Mallig No. 2 dam. Full capacity required for the flood control was available. The allocated cost and other principal values are as follows:

- 1) Effective flood control capacity: 93.4 MCM same as the longterm plan
- 2) Allocated economic cost: #343.4 mil.
- 3) Allocated negative benefit: \$0.46 mil./yr
- 4) Flood control benefit: Same as the long-term plan

 Year 1985 1995 2005 2020 2040

 Benefit(Pmil./yr) 16.71 27.64 37.39 75.65 143.02

(4) Adjustment of Project Ranking

Based on the allocated cost, economic viability of the dam schemes were restudied in the same way as in the previous section. Result of restudy is shown in Table 5.21, which is summarized as follows:

	· · · · · · · · · · · · · · · · · · ·		
Rank	Candidate scheme	IRR, CPC	IRR. VPC
1	Tuguegarao dike	11.6%	23.1%
2	Narrow imp.(Site-NLL)	8.9	18.9
3	Siffu No.1(A) dam	9.3	18.6(14.5)
4	Bank protection	7.3	13.7
5	Cabagan dike	5.3	13.6
6	Narrow imp.(Site-NLR)	5.2	13.5
7	Magat/Alimit No.1 dam	4.6	12.5(12.1)
8	Cagayan No.1 dam	3.8	11.6
9	Mallig No.2 dam	3.0	10.3(15.2)
10	Ilagan No.1 dam		5.4
11	Narrow imp.(Site-NUP)	· <u>-</u>	- · · · · · · · · · · · · · · · · · · ·

- Note 1. IRR.CPC: IRR under constant property condition
 - 2. IRR. VPC: IRR under variable property condition
 - 3. IRR.VPC in () shows the evaluation as multipurpose dam project.

Table 1.1 Present Basin Condition (RDP-II)

Item	Unit	Cagayan
1. Location	-	Northern Luzon Island
2. Basin area	km²	27,280
3. River length	km²	505
4. Flood prona area	ha	154,900
a. Affected river reach	km	234
b. River slope	-	1/9400 to 1/3200
c. Major land use	. -	Rice
d. Carrying capacity	m³/sec	5,000 (1,900 to 9,000)
e. Present 2-yr. runoff	m³/sec	5,400 to 6,300
5. Forest in mountainous area		Almost denuded
6. Geology		Tertiary sedimentary rocks, Alluvium
7. Population		
a. Basin total	pers.	2,194,300 ²
b. Flood prone area	pers.	469,000
8. GDP	₽ 10 ⁶ .	6,794
	₽/capita ^{∠l}	3,096
9. Annual flood damage	₽ 10 ⁶	883

Remarks: 1 : Five-Year Philippine Development Plan 1983 - 1987 values are changed into 1980 prices.

By average population density of Cagayan and Isabela provinces in 1980 (80.4 pers./km²). Philippine Statistiscal Year Book 1981.

Table 1.2 Summary of RDP-II Plans

I. Basic Plan : 100-year basinwide plan

•

III-1. Work Quantity

III. First Step Works

I-I. Work Quantity		And the second of the second o					
Item	Quantity	Item	Unit	Confining Cutoff dike channel	Cutoff channel	Bank protection	Total
Excavation, common	132,946,000 m³	Main Works					
Embankment	106,357,000 m ³	Excavation	E	14,043,000 6,840,000	6,840,000	1	20,883,000
Reverment (L.W.C)	1,844,000 m ²	Embankment	e E	16,706,000	1	ŀ	16,706,000
Revetment (H.W.C)	467,000 m²	Revetment (L.W.C)	점	476,700	1	157,300	634,000
Drainage sluice	173 units	Revetment (H.W.C)	E 2	257,540	1	ľ	257,540
Backwater levee	31,021,000 m³	Drainage sluice	sou	6	1	ı	
Bridge	15,209 m²	Backwater levee	e E	3,216,000	1	i	3,216,000
Compensation Land Building	15,515 ha 3,890 nos	Compensation Land Building	e e e	7,888,000	7,888,000 1,500,000 200	90,000	9,478,000

III-2. Project cost : F2,774 mil. (financial) in end 1981 price

II. First Phase Plan : 25-year basinwide plan

I-2. Project Cost: P8,098 mil. in end 1981 price (economic cost)

II-1. Work Quanticy

T + 0 m	***************************************
mant	daan cres
Excavation, common	112,125,000 m³
Embankment	89,703,000 m³
Revetment (H.W.C)	1,844,020 m ²
Revetment (L.W.C)	404,920 m²
Drainage sluice	173 units
Backwater levee	25,461,000 m³
Bridge	15,209 m²
Compensation Land Houses	15,345 ha

49,500

32,400

4.5

7,200

٠. ت

Village, houses and national highway

Gattaran

IV-2. Project Cost: #320.8 mil. (financial) in end 1981 price

Tuguegarao town National highway

Tuguegarao

Balug

60,600

43,200

0.0

Aparri cown

Village, houses and national highway

Catayuan

Aparı

Revetment (10³/m²) Wet masonry Gabion

Length (km)

Facilities to be protected

Site

VI-1. Work Quantity

VI. Urgent Works

II-2. Project Cost : \(\frac{2}{7}\)102 mil. (economic) or \(\frac{2}{9}\)99 mil. (financial)
in end 1981 price.

Table 2.1 Carrying Capacity of Existing Channels

341				
×	. * * * * * * * * * * * * * * * * * * *			
0.04 0.00 8 8 8		Tugues 25.0 x x x x x x x x x x x x x x x x x x x	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S.EFC River 1.00 K Mallie River 1.00 K S.EFC
0.4	0.52 0.62 0.62 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	25.0 25.0 26.1 26.1 26.1 26.1 20.0	15.0 15.0 16.0	15.0 15.0 16.0
6.73 6.73 8.86	59.43 73.50 12.53 5.73 6.60 6.60	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	24.00 25.00	10.00 10
- -		i i i i i i i i i i i i i i i i i i i	्राच्या स्थापना स्थापन स्थापना स्थापना स्थापन	्राच्या स्थापना क्षेत्र के के किया के किया के किया के किया किया किया किया किया किया किया किया
13,689 12,169 72,160 13,000 11,200	11,170	22,500 9,229 9,229 1,220 1,200	12,500 3,1290 3,1290 3,1290 3,1290 3,1200 5,1200 6,	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7, 500 2, 7, 500 2, 7, 500 2, 7, 500 2, 7, 500 2, 7, 500 3, 7, 500 4, 5, 500 4, 5, 500 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6		\$3,500 \$6,000 61,000 75,500 75,000 93,000 93,000 114,800 122,000 131,000	58, 580 61, 800 61, 800 75, 500 75, 500 75, 500 75, 500 71, 800 71, 80	\$3,500 \$6,100 \$7,500 \$7,500 \$7,000 \$7

Table 2.2 Flood Damages due to Typhoon in Region II

Kissing		# £	!			1					1 15 9	5 \		60	1 4	÷										
Casualties Injured											144 24 24	\$		•	1, 4	•		69			٠				:	
Dead	25	16 27	**			m					77.T	2	64	25	- ,			= m -			gent.					
Dumage (P1,000)	343,792	83,893	63,596	25,02	783	64,003	370	184	1 070	11,884	37,243	7/0.0	6,895 205 1,500 40	20,676	40,198	4,150	1,400	2,549	32	670 30	12,305		-			٠.
Affected Area	Cagayan	Isabela N-Viscaya	Quirino	Ifugao	M-Vizcaya Quirino	Cagayan X-Abayao	Quirino Isabela	N-Vizcaya Bacanes	Isabela	Quirino	Cagayan Isabela Katayan	o per la de la constante de la	Sta. Ana Gonzaga Aparri Lallo Isabela	Cagayan	Laworus Quirino K-Apayao Ifugao	Bacanes	Ifuguo Isabeta Quirino	K-Apayao N-Vizcaya Cagayan	K-Apayao	Quirino Ifuzzo	N-Viccaya Isabela		of Civil Defence.			
Name of Typhoon	Aring				Elang	Rubing			Anding		Weling		He muing	Maring		Kuring			Saling				Office of C		÷	
Date	Nov. 1- 7				Jul. 3- 5	Sep. 16-21			Nov. 22-27		Oct.12-15		Sep. 3- 8	Aug. 27-31		Jun. 20-24			Oct. 16-19		. '		on data from Office			
Year	1980				1981			•			1982		1983	1984		1985			Ū				- Based			
Missing	Х				•												vo 1		6	ដ្		, ,	• 1	1 5		
Lajured	ON.	164168			t											,		·	5	t j		,	ti	. 1		
Dead	ON	dead in Bo			ı					-									22	0	E ON MI	2-	ü			
(41,000)	373	n II except 1	111 4	data	195 . 4, 500 663	950 748	252	550 951	3,010	5,474	12,059	3,549	394 21, 997 8, 544 12, 851 492	2,710	3,850 878 813 813	3.5	5,310	1,128	3,656	3,623	525	1,418	٠,	200		3,980
	Nueva-Vizcaya	No effect in Region II except 1 dead in Batanes	No effect in Region II	No detailed damage data	Batanes Cagayon Isabela	K-Apayao N-Viscaya	Quirino N-Vizcaya	(Solano) (Eayombong)	Isabela	Cagayan X-Apayao	Isabela Isabela	Cagayan	Cagayan K-Apayao N-Viscaya Isebela Quirino	Sacanes	Batanes Ifugao N-Vizoaya	Antrino	Cagayan Isubela	Quirino M-Vizcaya	Cagayan	Quirino Isabela	K-Apayao Ifugao	N-Vizcaya	Cagayan Isabela	Batanes	Northern Luzon	Batanes, Cagayan & Isabela
Турьооп	Sening	Sisang	Konching	Openg	Luming		Barierg		Il iang	Susang	Tering		Wening Wening	Maneris	Buaning		Open8	Unding	Kading			-	Maneng		Luding	Ising
	065, 10-15	Jul. 22-26	J.m. 24-25	Nov. 23-26	Oct. 2- 9		Jan, 10-11		Jul.18-21	Oct. 8-12	000.14-17		Oct.28-Nov. 1	Oct. 9-13	Jun.22-Jul. 2		Sep.14-23	Nov. 10-17	Oct. 25-27				Aug. 9-15		Aug. 3- 6	Jul.29-Aug. 2
	1970 (1971	1972	1973	-		1974		•	~			_	1975 0	ت 6761		S 7761		1978 0				6.		≺	7

Table 2.3 Result of Flood Mark Survey

Location	Distance from mouth (km)	Station	Elevation of Flor Nov. 1973	od Marks (m. MSL) Nov. 1980
etails of Magapit narrow		· · · · · · · · · · · · · · · · · · ·		
Side of Rip-Rap Magapit	28.8		~	7.809
Magapit Bridge	29.0	30.0 K		9.095
Magapit	29.6			8.621
Aguigican	30.3		-	7,829
Magapit	30.5		-	9.677
Aguigican	30.8		12.390	11.187
Aguigican	31.2		12.480	11,230
Aguigican	31.7		- '	10.012
Aguigican	32.5		11.240	9.740
Casicalan Norte	33.6		-	10.871
Casicalan Norte	34.2		12.147	11.447
Casicalan Elem. School	35.3		12.811	11.071
Casicalan Sur	35.9		13.262	11.422
Orlando Jose	36.6		12.415	10.355
Gattaran Centro Nor.	37.3		11.509	9.855
Gattaran Centro	37.7		11.756	10.643
Gattaran Centro	38.1		12.693	- 40, 03/
Gattaran Centro Sur Gattaran Centro Sur	38.3 38.7		12.974	10.974
Gattaran Centro Sur	39.0	40 0 v	12 760	11.832 12.090
Dumnon	39.4	40.0 K	13.760 15.009	12.090
Dummon	39.7			10.396
Dumnon	39.7		11.996 12.505	10.396
Dumnon	40.3		13.964	12.014
Durmon	40.7		17.269	15.269
Sta. Maria	41.1		12.936	10.886
Sta. Maria	41.7		13.130	12,130
Sta. Maria	42.2		12.630	10.530
Guising	42.7		13.368	11.868
Guising	43,5		13.476	12,376
Guising	44.1		13.695	11.695
Guising	44.7		13.891	12,351
Lapogan	45.3		13.489	11.939
Lapogan	45.8		13.384	11.884
Lapogan	46.1		13.789	12.039
Lapogan	46.6		13.822	~
Lapogan	47.3		14.703	12.603
San Vicente	48.2		_	11.989
San Vicente	49.0	50.0 K		12.832
San Vicente	50.0		15.016	13.166
San Vicente	50.5		14.832	13,232
Nassipping	51.7		14.744	11.072
Nassipping	52.5		16.163	14.186
Nassipping	53.2		16.983	14.183
Maraburab	57.0		18.142	16.133
Maraburab	57.5	59.0 K	17.560 17.372	15.410
Maraburab	58.0 59.1	39.U K		
Maraburab			17.626	16.396
Tupang, Alcala	60.4 61.6		18.478 17.088	-
Tupang, Alcala Tupang, Alcala	62.4		18.495	16.495
Tupang, Alcala Tupang, Alcala	63.1		18.373	16.973
Tupang, Alcala	63.5		19.384	
Tupang, Alcala	63.9		18.986	_
Tupang, Kicara Tupang	64.0		19.715	-
gayan main stream				
Toran	5.0		-	2.4
Alilinu	8.5		-	3.9
Lal-lo	19.0	20.0 K	7.1	_
Bagumbayan	20.0		7.6	6.6
Magapit Br.	29.0	30.0 K	-	8.5
Magapit	30.5	•	=	9.7
Dummon Br.	41.0		13.7	13.2
Maraburab Br.	57.0		18.2	-
Pared Br.	65.5		19.7	18.3
Baculud	81.5			18.2
Minanga	107.0	108.0 K	-	19.2
Solana	129.5			21.1
Tuguegarao	137.5		_	23.2
San Pablo Br.	156.5		25.9	_
Cabagan	165.0			27,6
Balasig Br.	172.5	•		29,2
Tumauini	189.0		-	32.6
Arcon Br.	193.0		· ·	32.9
Malalam Br.	211.0			35.8

Table 2.4 Existing Flood Control Facilities

780 300 40 40 40 200 438 Amulung 188 Iguig P 45 on-goin 1,790 140 200 1,790 140 200 200 200 200 200 200 200 200 200 2	Location	Component	Length (m)	Renarks	Location	Component	Length (m)	Remarks
1.	Cagayan R.				Ilagan R.			
1, Cagayam reverement 136 sa corregaing 12 Sam Marco, Isabela sarch dike 8,6	1. Aparri, Cagayan	jetty reverment	300		21. Ilagan, Isabela	revetment	110	extention will be on-going
15th Cagayan reverant 358 extention of 28 m 22. San Marco, Tabela earth dike 5. San Marco, Tabela earth dike 5. San Marco, Tabela cont-off channel 21. Makate, M.V. coverant 22. May 24. Cabarcoguis, M.V. coverant 23. May 24. Cabarcoguis, M.V. coverant 24. Cabarcoguis, M.V. coverant 25. Makate, M.	2. Agusi, Cagayan	reverment	0,5		Magat R.	-		•
pit, Cagayan reverament 200 Amulung P/S. 22. Bayombong, N.V. cut-off channel 2.1 substant reverament 438 faulung P/S. 22. Bayombong, N.V. reverament 2.0 paper dike bblan, Cagayan reverament 4.5 on-going 24. Cabarroguis, N.V. reverament 19.90 paper dike Maria, Isabela reverament 1,790 is on-going 25. Bath N.V. reverament 140 reverament 140 reverament 26. Abian, N.V. reverament 140 reverament 140 almost filled up, re- 26. Abian, N.V. reverament 140 almost filled up, re- 26. Abian, N.V. reverament 140 almost filled up, re- 26. Abian, N.V. reverament 150 almost filled up, re- 26. Abian, N.V. reverament 170 almost filled up, re- 26. Abian, N.V. reverament 180 almost filled up, re- 27. Indiana, N.V. reverament 19. Abian, N.V. reverament 19. Abian, N.V. reverament 19. Abian, N.V. reverament 19. Abian, N.V. <td< td=""><td>3. Catayuan, Cagayan</td><td>revetment</td><td>358</td><td></td><td>22. San Mateo, Isabela</td><td>earth dike</td><td>8,850</td><td>middle portion of 1,400 m was broken,</td></td<>	3. Catayuan, Cagayan	revetment	358		22. San Mateo, Isabela	earth dike	8,850	middle portion of 1,400 m was broken,
184 Cagayan	4. Magapit, Cagayan	revetment	200		-	cut-off channel	2,540	partially filled up
1981 Cagayan reverment 1981 Equig P/S, on-going 24. Cabarreguis, N.V. reverment reverment 25. Sant Parts, N.V. reverment 27. Sant Parts, N.V. reverment 28. Sant Parts, N.V. reverment 29. N.V. reverment	5. Amulung, Cagayan	reverment	438	Amultang P/S.	23. Bayombong, N.V.	earth dike v/	2,000	
Haria, Cagayan reverment 45 on-going 24, Cabarroguis, N.V. reverment 1,790 is on-going 25, Batu Ferry, N.V. reverment 1,790 is on-going 25, Batu Ferry, N.V. reverment 1,790 is on-going. 25, Batu Ferry, N.V. reverment 1,790 is on-going. 27, Makate, N.V. reverment 1,990 is baing studied. 27, Makate, N.V. appr dike 1,81, Sabela reverment 200 alwoot filled up, re- 28, Bambang, N.V. reverment 200 is baing studied. 29, Indiana, N.V. reverment 200 Almaguer Mangayang, N.V. reverment 200 Al	6. Minanga, Cagayan	revetment	188	Iguig P/S, on-going		reverment sour dike	. 1	2 units
Maria, Isabela revetment 70 extention of 80 m 25. Batu Ferry, N.V. revetment 1,790 is on-going. 26. Abian, N.V. revetment 1,790 is on-going. 26. Abian, N.V. revetment 160 almost filled up, red 27. Makate, N.V. sput dike 160 cut-off channel 160 almost filled up, red 28. Bambang, N.V. revetment 160 almost filled up, red 29. Indiana, N.V. revetment 170 almost filled up 17. Indiana, N.V. revetment 170 almost filled up 18. Star Fe, N.V. revetment 170 almost filled up 18. Star Fe, N.V. revetment 170 almost filled up 18. Star Fe, N.V. revetment 170 almost filled up 18. Starbean, N.V. revetment 17	7, Namabbalan, Cagayan	revetment	4.5	on-going	24. Cabarroguis, N.V.	reverment	1	
gdn, Isabela reverment 1,790 26. Abian, N.V. Teverment ngir, Isabela reverment 140 21. Makate, N.V. spur dike ngir, Isabela reverment 20 almost filled up, re- 28. Bambang, N.V. earth dike sia, Isabela cut-off channel 60 almost filled up, re- 28. Bambang, N.V. reverment sla, Quirino earth dike 20 noits 29. Indians, N.V. reverment ob, K. Apayao reverment 20 noits 31. Indians, N.V. reverment ob, K. Apayao reverment 20 units 32. Pugung Banya, N.V. reverment ob, K. Apayao reverment 460 20. units 31. Indians, N.V. reverment ob, Mountain earth dike 460 20. Indians, N.V. reverment ob, Mountain cut-off channel 150 almost filled up, re- 35. Ran, N.V. reverment sylog, Cagayan reverment 150 partially damaged 39. Nabitangan, N.V. reverment sylogs	8. Sta. Maria, Isabela	revetment	70	83	25. Batu Ferry, N.V.	revetment	830	partially damaged
A percedae, Isabela reverment 140 almost filled up, re- inpir, Isabela reverment 200 almost filled up, re- inpir, Isabela reverment 200 almost filled up, re- inpir, Isabela reverment 200 almost filled up, re- is being studied, 200 the site 200 Almagua M.V. reverment 200 Almaguar Managuar Ma	9. Cabagan, Isabela	revetment	1,790)	26. Abian, N.V.	reverment	1	partially damaged
ngir, Isabela revetment 200 alwass filled up, re- inpair, Isabela cur-off channel 660 alwass filled up, re- location of the site sla, Quitino earth dike 200 location of the site sla, Quitino earth dike 200 location of the site spor R. Apyao revetment 827 units 32. Pugung Buaya, N.V. revetment spor R. Apyao revetment 827 units 32. Pugung Buaya, N.V. revetment co, Mountain cut-off channel 120 location of the site N.V. revetment 34. Balling, N.V. revetment so, Mountain cut-off channel 120 location of the site spor Gagayan revetment 150 location of the site sparao, Cagayan revetment 150 location of the site sparao, Cagayan revetment 150 location of the site sparao, Cagayan revetment 150 location of the site in site in so almost filled up Balling R. revetment 150 location of the site in s	10. Reina Mercedes, Isabela	revetment	140			spur dike	E	12 units, partially damaged
impit, lasbela cut-off channel 660 alwost filled up, relisted up, relisted up, relisted up, relisted up, relisted up, relisted up, religion of the site is being studied. 20. Indiana, N.V. 20. Indiana,	11. Baringin, Isabela	revetment	200		N N Sampan SC	earth dike	: 08	
ela, Quitino eatth dike 200 is being studied. 29. Indiana, N.V. reverment 30. Almaguer Mangayang, N.V. reverment 30. Almaguer Mangayang, N.V. reverment 31. Indiana, N.V. reverment 32. Pugung Busya, N.V. reverment 32. Pugung Busya, N.V. reverment 33. Magasanong Kahog, N.V. reverment 35. Sta. Fe, N.V. reverment 35. Sta. Fe, N.V. reverment 36. Mountain reverment 120 35. Sta. Fe, N.V. reverment 37. Dupax del Sur, N.V. reverment 38. Palabotan, N.V. reverment 38. Palabotan, N.V. reverment 38. Palabotan, N.V. reverment 39. Nabitangan, N.V. reverment 39. Nabitangan, N.V. reverment 39. Nabitangan, N.V. reverment 39. Nabitangan, N.V. reverment 39. Staling, N.V. reverment 40. Baliling R. reverment 39. Staling, N.V. reverment 39. Nabitangan, N.V. reverment 39. Staling, N.V. reverment 39. Staling, N.V. reverment 40. Baliling R. reverment 39. Mabitangan, N.V. reverment 39. Mabitangan 39. Mabitangan, N.V. reverment 39. Mabitangan	12. Dessimpit, Isabela	cut-off channel	999	almost filled up, re-	191000000000000000000000000000000000000	cut-off channel		
ela, Quitino earth dike 200 29. Indiana, N.V. revetment 30. Almeguer Mangayang, N.V. revetment 30. Almeguer Mangayang, N.V. revetment 31. Indiana, N.V. spur dike 320 2 units 32. Pugung Buaya, N.V. revetment 33. Magasavang Kahog, N.V. revetment 35. Baliling, N.V. revetment 35. Sta. Fe, N.V. revetment 35. Sta. Fe, N.V. revetment 35. Sta. Fe, N.V. revetment 35. Lamut, Ifugao revetment 35. Lamut, Ifugao revetment 36. Lamut, Ifugao revetment 36. Palabotan, N.V. revetment 37. Dupax del Sur, N.V. revetment 38. Palabotan, N.V. revetment 39. Nabitangan, N.V. revetment 39. Nabitangan, N.V. revetment 39. Nabitangan, N.V. revetment 40. Baliling N.V.			-	is being studied.	Sta. Fe R.			
bb, K. Apayao reverment 827 2 units 30. Almaguer Mangayang, N.V. reverment 31. Indiana, N.V. spur dike 200 2 units 32. Pugung Buaya, N.V. reverment 32. Magasawang Kahog, N.V. reverment 32. Magasawang Kahog, N.V. reverment 32. Magasawang Kahog, N.V. reverment 32. Star. Fe, N.V. reverment 32. Star. Fe, N.V. reverment 33. Magasawang Kahog, N.V. reverment 34. Balling, N.V. reverment 37. Dupax del Sur. N.V. reverment 38. Palabotan, N.V. reverment 38. Palabotan, N.V. reverment 38. Palabotan, N.V. reverment 38. Tabbela reverment 150 almost filled up Balling R. reverment 40. Balling R. reverment 40. Balling N.V. rev	13. Maddela, Quirino	earth dike	200		Indiana,	reverment	380	
b, K. Apayao reverment 827 200 2 units 31. Indiana, N.V. reverment 200 2 units 32. Pugung Buaya, N.V. reverment 32. Pugung Buaya, N.V. reverment 33. Magasawang Kahog, N.V. reverment 34. Baliling, N.V. reverment 35. Sta. Fe, N.V. reverment 35. Sta. Fe, N.V. reverment 36. Lamut, Ifugao reverment 37. Dupax del Sur, N.V. reverment 38. Palabotan, N.V. reverment 38. Palabotan, N.V. reverment 39. Nabitangan, N.V. reverment 39. Nabitangan, N.V. reverment 39. Nabitangan, N.V. reverment 40. Baliling R. reverment 40. Baliling R. reverment 40. Baliling R. reverment 40. Baliling N.V. reverment 40	Chico R.						475	
yo R. 20. Puging Buaya, N.V. reverment 33. Magasawang Kahog, N.V. reverment 34. Baliling, N.V. reverment 35. Sta. Fe, N.V. reverment 35. Sta. Fe, N.V. reverment 36. Lamut R. 37. Dupax del Sur, N.V. reverment 38. Palabotan, N.V. reverment 39. Nabitangan, N.V. reverment 39. Nabitangan, N.V. reverment 39. Nabitangan, N.V. reverment 39. Saliling, N.V. reverment 40. Baliling, N.V. reverment 40. Baliling, N.V. reverment 40. Baliling, N.V. reverment	14. Gobsob, K. Apayao	revetment	827			spur dike	1	4 unit
900 R. 20. Mountain earth dike 460 35. Mountain cut-off channel 120 35. Sta. Fe, N.V. revetment 120 36. Lamut R. 36. Lamut R. 36. Lamut R. 37. Dupax del Sur, N.V. revetment 150 38. Palabotan, N.V. revetment 150 39. Nabitangan, N.V. check dam 150 39. Nabitangan, N.V. revetment 150 40. Baliling, N.V. revetme		spur dike	200	2 units		revetment	•	
2c, Mountain earth dike 460 35. Sta. Fe, N.V. revetment 36. Lamut R. 36. Lamut R. 36. Lamut, Ifugao revetment 37. Dupax del Sur, N.V. revetment 38. Palabotan, N.V. revetment 38. Palabotan, N.V. revetment 39. Nabitangan, N.V. check dam 39. Nabitangan, N.V. revetment 40. Baliling, N.V. revetment 40. Baliling, N.V. revetment 40. Baliling, N.V. revetment 40. Baliling, N.V. revetment	Chico-Agoyo R.						1	
Abountain cut-off channel 120 Senay R. Benay R. Senay R. 37. Dupax del Sur, N.V. revetment Salatao, Cagayan r	15. Boncoc, Mountain	earth dike	7,60			revetment	ł	
Jamut R. 36. Lamut, Ifugao revetment 150 39. Lamut, Ifugao revetment 150 30. Lamut, Ifugao revetment 150 31. Dupax del Sur, N.V. revetment 150 32. Dupax del Sur, N.V. revetment 150 33. Palabotan, N.V. revetment 150 39. Nabitangan, N.V. check dam 150 40. Baliling N.V. revetment 150 40. Baliling, N.V. revetment 150 39. Nabitangan revetment 150 40. Baliling, N.V. revetm	a de la companya de l				35. Sta. Fe, N.V.	revetment	155	
ayog, Cagayan reverment 150 Benay R. 37. Dupax del Sur, N.V. revetment 37. Dupax del Sur, N.V. revetment 38. Palabotan, N.V. revetment 39. Nabitangan, N.V. check dam 39. Tabbela cut-off chanel 500 almost filled up Baliling R. 40. Baliling, N.V. revetment 40. Baliling, N.V. re	16. Bauko, Mountain	cut-off channel	120				:	
reverment 150 37. Dupax del Sur, N.V. reverment 37. Dupax del Sur, N.V. reverment 38. Palabotan, N.V. reverment 39. Nabitangan, N.V. check dam cut-off chanel 500 almost filled up reverment 150 Ballling R. teverment 40. Ballling, N.V. reverment 40. Ballling, N.V. reverment	Pared R.					revetment	700	
an revetment 83 partially damaged 39. Nabitangan, N.V. revetment 39. Nabitangan, N.V. check dam cut-off chanel 500 almost filled up Baliling R. 40. Baliling, N.V. revetment cut-off channel - almost filled up	17. Baybayog, Cagayan	revetment	150		Benay R.			
ryan revetment 83 partially damaged 39. Nabitangan, N.V. check dam cut-off chanel 500 almost filled up Baliling R. 40. Baliling, N.V. revetment - slmost filled up	S. I.				37. Dupax del Sur, N.V.	revetment	240	-
cut-off chanel 500 almost filled up Baliling R. 40. Baliling, N.V. revetment cut-off channel - almost filled up	inguegarao K. 18 Themsoarao Caostan	revetment	8	Cartinlly damaged	38. Palabotan, N.V.	revetment	340	
cut-off chanel 500 almost filled up Baliling R. 40. Baliling, N.V. revetment cut-off channel - slmost filled up	Siffu R.		3	110000000000000000000000000000000000000	39. Nabitangan, N.V.	check dam	102	earth fill dam of 12 m high w/ conc.
cut-off channel - slmost filled up	19. Roxas, Isabela	cut-off chanel revetment	SS 52	almost filled up	Baliling R.			
cut-off channel -	Mallis R.					revetment	248	
HOSCTA	20. Mallig, Isabela	cut-off channel revetment	1 1	almost filled up mostly damaged				

Table 2.5 Existing Drainage Systems

	Location	Length (m)	Structure
1.	Aparri, Cagayan	54	pipes
2.	Tuguegarao, Cagayan	1,690	pipes
3.	Cabagan, Isabela	300	CHB cells /1
4.	Naguilian, Isabela	400	CHB cells
5.	Santiago, Isabela	602	open channel box
6.	Bagabag, Nueva Vizcaya	1,110	open channel box

Note: /1: Concrete Hollow Blocks

Table 2.6 Flood Control Budget

					(P 10 ⁶)
Year	Infrastructure (Total)		control tal)	Flood o	
	(1)	Amount (2)	(2)/(1) (3)	Amount (4)	(4)/(2) (5)
1981	2,420.2	481.2	0.199	30.3	0.063
1982	7,027.5	675.0	0.096	16.3	0.024
1983	7,400.0	694.2	0.094	27.0	0.039
1984	4,292.5	301.0	0.070	5.1	0.017
1985	3,325.8	240.5	0.072	4.3	0.018
1986	3,819.2	484.0	0.127	8.2	0.017
Average	4,714.2	479.3	0.102	15.2	0.017

Remarks

- 1. Above amounts do not include budget Set-III for programs of attached corporations.
- 2. Source: MPW/HPWH Infrastructure programs for 1981 through 1986.

Table 2.7 Principal Features of Magat and Maris Dams

1.	Magat Dam	
	Location : Oscariz, Ramon, Isabela	
	Completion: October, 1982	
	1. Dam (1) Type (2) Height (3) Crest Elevation (4) Crest Length	Zoned Earth-Rock Fill Dam 114 m 200 El.m 4,160 m
	 Spillway (1) Width (2) Length (3) Radial Gate (4) Orifice Gate (5) Discharge Capacity 	164 m 500 m 7 sets 2 sets 30,600 m ³ /sec
	3. Diversion Tunnel(1) Number(2) Diameter(3) Average Length	2 units 12 m 630 m
* 4	4. Reservoir (1) Live Storage Capacity (FSL) (2) Area of FSL	1,250 x 10 ⁶ m ³ 45 km ²
	5. Power Facilities (1) Installed Capacity (2) Additional Capacity	360 MW 180 MW
II.	Maris Dam (Diversion Weir)	
	Location : Oscariz, Ramon, Isabela	
	Completion: August, 1982	
	1. Dam (1) Type (2) Height (3) Crest Elevation (4) Crest Length	Ogee Type Concrete Dam 10.5 m 102 El.m 215.25 m
	Scouring Sluice(1) Sluice Gate(2) Stoplog Gate	2 sets 16 sets
	3. Sluiceway (1) North Gate (2) South Gate	2 sets 2 sets

Table 2.8 Principal Features of Chico Diversion Weir

Completion: December, 1983 1. Weir (1) Туре Ogee Type Concerete Weir (2) 3.65 - 7.00 mHeight (3) 204.50 El.m Crest Elevation (4) Crest Length 759.34 m (5) Probable Afflux Elevation 207.55 El.m 2. Scouring Sluice 2 sets (1) Sluice Gate Sluice way

4. Siphon

(1) Length

(1) Left Sluiceway

(2) Right Sluiceway

(at weir site)

(downstream of weir)

732.84 m

(2) Diameter of Conduit

Location : Bo. Ngipen, Tabuk

3.0 - 3.8 m

4 Bays w/ 2 Steel Sluice Gates

1 Bay w/ Steel Sluice Gate

of 2.50 m x 3.80 m each

of 2057 mm \times 1315 mm

Note: Crest of weir will be raised by 4 m for stage II.

Table 2.9 Principal Features of Pumping Stations

						
Pumping Station	Magapit	An	nulung	Iguig	Solana	Tuguegarao
Completion	May '85	Ju	ne 182	Sept. '83		
Location	Magapit	Ва	culud	Minanga Sur	Solana	Tuguegarao
Irrigable area (ha)	11,457.27	(L)	1,370.89 801.19	775.61	:	-
Water requirement (m³/sec)	21.081	(H)	2.523 1.474		-	-
Water level (El.m)	•					
HHWL	11.00		20.00	20.00	4 · · · · · · · · · · · · · · · · · · ·	
MWL (Wet)	1.24		6.30	8.02		-
MWL (Dry)	0.46		4.52	7.08		-
LWL	0.00		1.40	4.00		-
Pumping plant			4	•	100	
Type of pump	Vertical	mixed	flow pun	p with volut	e casing	
No. of pump	4	(F) (H)	3 1	3		
Pump bore (mm)						
Suction	1,800	(H) (L)	700 800	600		_
Discharge	1,500	(H) (L)	600 800	500	_ ¹ ,	
Capacity (m³/min/unit)	340	(L)	70.5 80.0	37.60		
Suction level (El.m)	0.70	(H)	5.21 5.21	7.46	***	
Discharge level (El.m)	14.00	(H)	23.00 17.00	19.50	.	
Actual head (m)	13.30	(L) (H)	17.79 11.79	12.04	- :	-
Loss head (m)	1.30	(L)	2.71 1.81	1.66	· -	-
Total head (m)	14.60	(H)	20.50 13.60	13.70	- ·	· -
Pump Efficiency (%)	88.00	(H)	84.00 84.50	80.00		-

Note: (H): High Line (L): Low Line

Tuguegarao P/S has not been operated since 1983.

Table 2.10 Principal Features of Major Bridges

Name of bridge	River	Type of Structure	Year built	No. of span	Total Length (m)	Width (m)	Remarks
Magapit	Cagayan	Suspension RC-1-beam Truss RCDG	1980	1 1 2 2	376.00	7.32	
Buntun	Cagayan	Truss Comp. I-beam	1968	14 3	1,098.00	7.32	
Gamu	Cagayan	Truss Comp. I-beam	1972	3	442.00	6.75	
Naguilian	Cagayan	Truss Comp. I-beam	1953	8 5	668.26		•
Dalibubon	Cagayan	Pre-cast conc.	1975	30	210.00	5.60	Overflow type
Jones	Cagayan	Pre-cast conc.	1982	22	154.00	3.34	Overflow type Left bank is wash away.
Itawas	Chico	Pre-cast conc.	1984	_	-		Overflow type
	Chico	Pre-cast conc.	1984		-	-	Overflow type
Calanan	Chico	Truss	-	5			
Pinukput		Truss		-	-		
Dummon	Dummon	Truss RCDG	1945	1	97.20	6.30	
Pared	Pared	Truss RCDG	1946	3	254.02	7.45	
Pinacanauan	Tuguegarao	Truss Comp. I-beam		3	-	6.70	
San Pablo	Pinacanauan	Truss Comp. I-beam	1953	4 3	276.10	6.75	
Arcon	Tumavini	Truss	1948	3	121.14	6.75	
Minanga	Tumauini	RCDG :	1977	11	339.90	6.75	Piers are being scoured. Left bank is being eroded.
Siffu	Siffu	RCDG	1967	20	300.00	6.75	
Mallig	Mallig	RCDG *	1967	14	210.00	6.75	Right bank is eroded
Mallalam	Ilagan	Truss Comp. I-beam	1953	6 2	472.62	6.75	
Magat Construction	Magat	Truss	1978	-	274.00	12.00	Constructed by NIA.
Baretret	Magat	Truss	•••	18	483.90	6.20	New bridge is being constructed.
Batu	Magat	Truss		7	345.63	6.20	Piers are being scoured.
Abian	Abian	Comp. I-beam	,-	7	108.22	6.75	
Cupas	Sta. Fe	Truss	-	6	279.00	-	Partially damaged
Indiana	Sta. Fe	Truss RCDG		3 2	98.40	6.70	
Sta. Fe	Sta. Fe	RCDC	-	1	24.30	6.70	
Ganano	Ganano	Truss	1975	3	73,20	7.32	
Ipil .	Ganano	Truss	1975	3	72.00	7.32	
Baluarte	Ganano			-	-	-	
Calao	Diaddi	Truss	1975	1	130.00	7.32	

Table 3.1 Standard Unit Construction Costs for Flood Control Facilities (Financial)

Excavatic - do - - do - Dredging Embankmer - do - Revetment - do - - do - Wooden pi Boulder s Drainage	on (1) (common) (2) (coarse material) (3) (rock) (4) (rock 33 %, common 67 %) int (1) (borrowed materials) (2) (- do -) (2) (- do -) (2) (' n' ', h.w. chan.) (3) (gabion ', l.w. chan.) (4) ('' ', h.w. chan.)	25553333333333333333333333333333333333	F.C. 27 231 14 28 34 410 410 410	1. C. 22 24 44 44 44 16 29 29 29 29 29 29 29 29 29 29 29 29 29	Total 49 55 210 102 30 63 120 950 710	incl. spoil bank works - do - - do - Dredging + piping + spoil bank incl. exc., embank., sodding High dike (Hd > 10 m) incl. foot protection works - do - - do -
Excavatic - do - - do - - do - Dredging Embankmer - do - Revetment - do - - do - - do - Wooden pi Boulder s Drainage	on (1)(common) (2)(coarse material) (3)(rock) (4)(rock 33 %, common 67 nt (1)(borrowed materials) (2)(- do -) (2)(- do -) (2)(" , h.w. chan.) (3)(gabion , l.w. chan.) (4)(" , h.w. chan.)	25223333333333333333333333333333333333	27 31 20 120 58 14 65 65 410 410	22 24 44 16 29 23 230 230	49 210 210 102 30 63 120 950 710	spoil bank wor .ng + piping + exc., embank., like (Hd > 10 m foot protectio
- do do - Dredging Embankmer - do - Revetment - do do do do do do do do Drainage	(2) (coarse material) (3) (rock) (4) (rock 33 %, common 67 nt (1) (borrowed materials) (2) (- do -) t (1) (masonry, l.w. chan.) (2) (" , h.w. chan.) (3) (gabion , l.w. chan.) (4) (" , h.w. chan.)	25523333333333333333333333333333333333	200 200 31 200 34 41 65 70 65	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	25 210 102 30 63 120 710 640	ng + piping + exc., embank., like (Hd > 10 m foot protectio
- do - Dredging Embankmer - do - Revetment - do do do - Wooden pi Boulder s Drainage	(3) (rock) (4) (rock 33 %, common 67 nt (1) (borrowed materials) (2) (- do -) t (1) (masonry, 1.w. chan.) (2) (" , h.w. chan.) (3) (gabion , 1.w. chan.) (4) (" , h.w. chan.)	25 25 25 25 25 25 25 25 25 25 25 25 25 2	120 58 14 220 130 410	90 16 16 730 730 730 730	102 30 30 63 120 710 640	ng + piping + exc., embank., like (Hd > 10 m foot protectio
Dredging Embankmer - do - Revetment - do do do do do - Wooden pi Boulder s Drainage	(4) (rock 33 %, common 67 nt (1) (borrowed materials) (2) (- do -) t (1) (masonry, l.w. chan.) (2) (" , h.w. chan.) (3) (gabion , l.w. chan.) (4) (" , h.w. chan.)	B B B B B B B B B B B B B B B B B B B	58 14 220 65 410 410	44 16 29 730 55 230 230	102 30 63 120 950 710	ng + piping + exc., embank., like (Hd > 10 m foot protectio
Dredging Embankmer - do - Revetment - do - - do - - do - - do - Wooden pi Boulder s Drainage	nt (1) (borrowed materia (2) (- do - t (1) (masonry, 1.w. ch (2) (" , h.w. ch (3) (gabion , 1.w. ch (4) (" , h.w. ch	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	14 220 410 410	16 29 730 580 230	30 63 120 950 710 640	ng + piping + exc., embank., like (Hd > 10 m foot protectio
Embankner - do - Revetment - do do do do - Wooden pi Boulder & Drainage	t (1) (borrowed materia (2) (- do - t (1) (masonry, 1.w. ch (2) (" , h.w. ch (3) (gabion , 1.w. ch (4) (" , h.w. ch	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	34 65 130 410	29 580 230 230	63 120 950 710 640	exc., embank., like (Hd > 10 m foot protectio
Revetment - do do do do - Wooden pi Boulder s Drainage	2)(- do - 1)(masonry, 1.w. ch 2)(" , h.w. ch 3)(gabion , 1.w. ch 4)(" , h.w. ch	8 B B B B B B B B B B B B B B B B B B B	65 220 130 410	55 730 580 230	120 950 710 640	ike (Hd > 10 m) foot protection
Revetment - do do do - Wooden pi Boulder s Drainage	1) (masonry, 1.w. ch 2) (" , h.w. ch 3) (gabion , 1.w. ch 4) (" , h.w. ch	日 日 日 2 日 2	220 130 410	730 580 230	950 710 640	foot 10 - 10 -
do - do - do - do - do - do - Mooden pi Boulder s	2)(" , h.w. ch 3)(gabion , l.w. ch 4)(" , h.w. ch	用 日 2	130 410	230	710	
- do - - do - Wooden pi Boulder 9 Drainage	3)(gabion , 1.w. ch 4)(" , h.w. ch	ш2	410	230	940	
- do - Wooden pi Boulder s Drainage	4)(", h.w. ch		37.0	2,0		
Wooden pi Boulder s Drainage		ш2	ን ተ ገ	017	240	ו
Boulder s Drainage	ile groyne	unit	7,400	21,300	28,700	
Drainage	Boulder spur dike	m3	09	220	280	
	sluice (1)	unit	110,000	428,000	538,000	1.5 m x 1.5 m x 1 gate
	(2)	unit	146,000	585,000	731,000	1.5 m x 1.5 m x 2 gates
16 Bridge		ш2	1,390	5,560	6,950	
101 T 401		; L		0	C	
בן בן בן		<u>u</u>	: -	. 000	25,000	
•	(non-irrigated)	E C	l	0,000	10,000	
=	land crops)	р Ц	1	8,000	8,000	
=	(open land)	r. e	1	3,000	3,000	
105 " (res	(residential)	ш2	. 1	30	30	
106 Building		sou	ı	38,000	38,000	
107 Compensation	tion (average)	m2	ì	7.4	7.4	

Remarks: 1. Price level is at the end of December, 1985. 2. Exchange rates referred are US\$ 1 = \mathbb{P} 19 = \mathbb{Y} 200.

Table 3.2 Standard Unit Construction Costs for Flood Control Facilities (Economic)

Remarks	incl. spoil bank works - do - - do - - do - Dredging + piping + spoil bank incl. exc., embank., sodding High dike (Hd > 10 m) incl. foot protection works - do - - for x 1.5 m x 1 gate 1.5 m x 1.5 m x 2 gates
F) Total	45 194 194 27 27 58 110 820 600 510 24,900 626,000 626,000 5,950 14,900 14,900 5,060 5,060 5,060 5,060 5,060
Cost (P)	18 20 74 36 13 24 45 600 480 170 170 170 170 170 170 170 170 180 351,000 4,560 4,560 2,800 2,800 31,000 31,000
F.C.	27 31 120 120 140 220 130 410 410 130 146,000 146,000
Unit	unit unit unit unit unit unit unit unit
Work	Excavation (1)(common) - do - (2)(coarse material) - do - (4)(rock) - do - (4)(rock) Bubankment (1)(borrowed materials) - do - (2)(- do -) Reverment (1)(masonry, l.w. chan.) - do - (2)(" , h.w. chan.) - do - (4)(" , h.w. chan.) Wooden pile groyne Boulder spur dike Drainage sluice (1) - do - (2) Wooden pile groyne Boulder spur dike Drainage sluice (1) - do - (2) Bridge Land (irrigated) " (upland crops) " (open land) " (residential) Building Compensation (average)
Item No.	- 4 5 4 5 6 7 8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Remarks: 1. Price level is at the end of December, 1985. 2. Exchange rates referred are US\$ 1 = P 19 = F 200.

Table 3.3 Constitution of Flood Damages

```
FLOOD DAMAGES
     Tangible damages
         Flooding damages
             Direct damages
                 Damages to buildings (DB): Actual damage basis
                     Residential buildings
                         House
                        L Household effects
                     Other buildings
                         Building structures
                         Movables
                 Damages to agricultural crops (DA): Actual damage basis
                     Irrigated paddy
                     Rainfed paddy
                     Corn
                     Other crops
                 Damages to livestocks (DL): 12.6 % of DA
                 Damages to infrastructure (DI): 86 % of DB
             Indirect damages: 5 % of direct damages
         Bank erosion damages
            Direct damages
               - Building damages
                - Agricultural damages
                 Highway damages
                 Loss of residential land
             Indirect damage: 100 % of direct damages
     Intangible damages
       - Damages to people's livelyhood
        Damages to traffic and transportation
        Damages to business activities
        Loss of lives and injury
        Losses for emergency activities for floods
```

Table 3.4 Damage Ratios

BUILDINGS

		Inundate	d depth ab	ove pround	1 level		
Properties	- 0.5 m	0.5 to	0.5 to 1.0 to 1.5 to 2.5 to 1.0 m 1.5 m 2.5 m 3.5 m	1.5 to 2.5 H	2.5 to 3.5 m	3.5 ш -	Constitution ratio
	0.030	0.053	0.072	0.109	0.152	0.220	1
				•	(0.534)	(0.5/1)	
Household	0.043	0.086	0.191	0.331	0.499	0.690	16.8 %
Non-residential	0.077	0.156	0.985	0.399	0.509	0.597	6.5 %
Farmer & fishery	0.089	0.178	0.304	0.394	0.471	0.571	76.7 %
Weighted mean	0.080	0.161	0.284	0.384	0.478	0.593	100.0 %
					(0.713)	(0.776)	

1. For inundated depth more than 2.5 m, 45 % of buildings are assumed to be completely razed (damage ratio = 1.0). Notes:

2. Some modifications to the Philippine conditions were made based on Technical Standard for River and Sabo Works, MOC, Japan.

AGRICULTURAL CROPS

ty): 1 t	Veptn (m) : - 0 **Nuration (day): 1 to 2 3 to 4	4 5 to 6 7 -	7 -	1 to 2	0.5 to 1 to 2 3 to 4 5 i	1 5 to 6 7 -	7 ==	1 to 2	- 1.0 1 to 2 3 to 4 5 to 6 7 -	5 to 6	- 1
00	0.21 0.30 0.27 0.42	0.36	0.50	0.24	0.44	0.50	0.71	0.37	0.54	0.64	0.74

Based on Technical Standard for River and Sabo Works, MOC, Japan. Note:

Table 4.1 Flood Control Dams

		1 1.1	ting discharge		Cap	Capacity (MCM)	()	Dam	E
Dam	Drainage area (km2)	Specific discharge (m3/s/km2)	Discharge	Out- flow rate	Effective flood con- trol space	Sediment	Gross storage capacity	Maximum W.L. (El.m)	Dam height (m)
Pinukpuk	856	0.23	200	0.10	196	128	363	115.7	52.7
Chico 4	1,410	0.23	320	0.10	299	211	570	437.5	144.5
Mallig 2	36.2	0.23	85	0.10	93.4	54	166	148.0	43.0
Siffu 1(A)	959	0.23	150	0.10	96.1	86	213	107.0	0.44
Disabangan	652	0.23	150	0.10	154	86	283	0.96	43.0
Ilagan 1	1,350	0.23	310	0.10	382	203	661	168.0	0.69
Magat	4,143	0.20	830	0.638	200	I,	1	i	ì
Alimit	559		ı	ì	, t	84	324	279.0	84.0
Addalam (A)	864	0.23	200	0.495	153	. 58	242	162.0	51.0
Cagayan 1	2,364	0.23	540	0.683	318	182	564	158.0	45.0

1. Specific discharge of 0.23 corresponds to average existing channel capacity in the reaches from Alcala to Tuguegarao. Remarks:

2. Gross storage capacity = 1.2 x (effective space) + sediment space

Table 4.2 Design Discharge Distributions for Alternative Framework Plans

Reaches	Existing	Alt.OD	Alt.5D	Alt.9D	Alt.ODM	Alt.5DM	Alt.9DM
Mouth to Chico jet.	21,600	27,400 (127)	25,300 (117)	25,000 (116)	27,600 (128)	25,400 (118)	25,100 (116)
Chico jct. to Siffu jct.	26,600	28,800 (108)	25,600	25,200 (95)	28,800 (108)	25,600 (96)	25,200 (95)
Siffu jct. to Ilagan jct.	25,600	27,500 (107)	24,600	24,300 (95)	27,500 (107)	24,600 (96)	24,300 (95)
Ilagan jet. to Magat jet.	23,900	25,900 (108)	23,100	22,800 (95)	25,900 (108)	23,100 (97)	22,800 (95)
Magat jct. to Addalam jct.	16,000	16,300 (102)	15,100 (94)	13,500 (84)	16,300 (102)	15,100 (94)	13,500 (84)
Chico R.	8,700	8,700 (100)	8,700 (100)	8,600 (99)	8,700 (100)	8,700 (100)	8,600 (99)
Siffu R.	3,300	3,300 (100)	3,200 (97)	3,200 (97)	3,300 (100)	3,200 (97)	3,200 (97)
Ilagan R.	9,400	9,900 (105)	8,200 (87)	8,000 (85)	9,900 (105)	8,200 (87)	8,000 (85)
Magat R.	10,600	13,800 (130)	9,700 (92)	9,700 (92)	13,800 (130)	9,700 (92)	9,700 (92)
Addalam R.	4,800	4,800 (100)	4,800 (100)	3,100 (65)	4,800 (100)	4,800 (100)	3,100 (65)
Upper Cagayan R.	12,100	12,100 (100)	9,100 (75)	9,100 (75)	12,100 (100)	9,100 (75)	9,100 (75)

Note: 1. Figures without () show design discharge in m3/s and those in () show percentage to the existing runoff.

^{2.} Discharge for Alt.OD with only diking system is called as basic flood discharge.

Table 4.3 Project Cost of Channel Works for Alternative Framework Plans (1/6)

Work item	Unit	Work quantity	Unit cost (₽)	Amount (P mil.)	Remarks
CHANNEL WORKS				recovers success (Miller Server) del de l'escale del Miller (Miller de describe	
1. Main Works			-	(26,765)	4 ***
Preparatory w.	1.s.		→	1,724	8 % of main w. excl. miscel. w.
Dike embankment w.	km	482		15,943	
Embankment (1)	m3	93,100,000	58	5,400	and the second second
Embankment (2)	m3	95,850,000		10,543	High dike
Revetment w.	km	45.1		972	
Reverment (1)	m2	739,000	820	606	for low w. chan
Revetment (2)	m2	600,000		366	for high w. char
Narrow excavation w	. m3	0		0	
Cut-off channel w.	km	34.5		3,487	
Excavation (1)	m3	52,800,000	45	2,376	for main Cagayar
Excavation (1)	m3	17,800,000		801	for tributarites
Revetment (3)	m2	516,000		310	
Bank protection w.	km	112.3		550	
Revetment (3)	m2	838,000	600	503	
Groyne	unit	1,880	24,900	47	unit in total groyne length
Drainage sluice w.	unit	720	626,000	451	
Bridge w.	m2	24,800	5,950	148	
Miscellaneous	1.s.	<u>-</u>	-	3,491	15 % of the above
2. Compensation	m2		-	(253)	
Dike	m2	29,000,000	5.7	165	
COC	m2	11,300,000		64	
Others	m2	4,030,000	5.7	24	10 % of other compensation
3. Engineering & Adm.	_			(4,015)	
Engineering	1.s.	242		2,676	10 % of (1)
Administration	1.s.	•••	_	1,338	5 % of (1)
4. Contingency	1.s.	· •••	· -	(4,655)	15 % of (1+2+3)
Total			- · · · · · · · · · · · · · · · · · · ·	35,688	

Table 4.3 Project Cost of Channel Works for Alternative Framework Plans (2/6)

(for Alternative: 5D)

	Work item	Unit	Work quantity	Unit cost (₽)	Amount (₱ mil.)	Remarks
CHANN	EL WORKS					
1.	Main Works	***	LOS	-	(22,685)	
•	Preparatory w.	1.s.	_	-	1,461	8 % of main w. excl. miscel. w.
	Dike embankment w.	km	482	_	12,705	
	Embankment (1)	m3	77,100,000	58	4,471	
	Embankment (2)	m3	74,850,000	110	8,234	High dike
	Revetment w.	km	45.1	-	925	
	Revetment (1)	m2	739,000	820	606	for low w. chan.
	Revetment (2)	m2	523,000	610	319	for high w. chan.
	Narrow excavation w		0	94	0	
	Cut-off channel w.	km	34.5	-	3,487	
	Excavation (1)	m3	52,800,000	45	2,376	for main Cagayan
	Excavation (1)	m3.	17,800,000	45	801	for tributarites
	Revetment (3)	m2	516,000	600	310	
,	Bank protection w.	km	112.3	-	550	
	Revetment (3)	m2	838,000	600	503	
	Groyne	unit	1,880	24,900	47	unit in total
	010)110	U	.,	,,500	• • •	groyne length
]	Drainage sluice w.	unit	720	626,000	451	grayina rangen
	Bridge w.	m2	24,800	5,950	148	
	Miscellaneous	1.s.		-	2,959	15 % of the above
2	Compensation	m2	-	***	(232)	
	Dike	m2	25,700,000	5.7	146	
	COC	m2	11,300,000	5.7	64	
	Others	m2	3,700,000	5.7	22	10 % of other
	o encis	1112.	5,700,000		<i>L. C.</i>	compensation
3. 1	Engineering & Adm.	_	·		(3,403)	
	Engineering	l.s.	· ·	_	2,268	10 % of (1)
	Administration	1.s.	RTS.		1,134	5 % of (1)
4. (Contingency	1.s.		-	(3,948)	15 % of (1+2+3)
Tota	al		_		30,268	

Table 4.3 Project Cost of Channel Works for Alternative Framework Plans (3/6)

Work item	Unit	Work quantity	Unit cost (₽)	Amount (P mil.)	Remarks
CHANNEL WORKS	· · · · · · · · · · · · · · · · · · ·				
1. Main Works		•	<u>.</u>	(21,096)	
Preparatory w.	1.s.			1,359	8 % of main w. excl. miscel. w.
Dike embankment w.	km	482	<u>-</u> -	11,440	
Embankment (1)	m3	84,300,000	58	4,889	
Embankment (2)	m3	59,550,000	110	6,551	High dike
Revetment w.	km	45.1		911	
Revetment (1)	m2	739,000	820	606	for low w. chan.
Revetment (2)	m2	500,000	610	305	for high w. chan.
Narrow excavation	w. m3		94	0	
Cut-off channel w.	km	34.5	-	3,487	
Excavation (1)	m3	52,800,000		2,376	for main Cagayan
Excavation (1)	m3	17,800,000	45	801	for tributarites
Revetment (3)	m2	516,000	600	310	
Bank protection w.	km	112.3		550	
Revetment (3)	m2	838,000	600	503	
Groyne	unit	1,880	24,900	47	unit in total
					groyne length
Drainage sluice w.	unit	720		451	
Bridge w.	m2	24,800	5,950	148	
Miscellaneous	l.s.		- · · · · · · · · · · · · · · · · · · ·	2,752	15 % of the above
2. Compensation	m2		-	(229)	
Dike	m2	25,300,000	5.7	144	i *
COC	m2	11,300,000	5.7	64	And the second of
Others	m2	3,600,000	5.7	21	10 % of other compensation
3. Engineering & Adm.	_	ay.		(3,164)	
Engineering & Adm.	1.s.		. <u>.</u>	2,110	10 % of (1)
Administration	l.s.	-	-	1,055	5 % of (1)
4. Contingency	1.s.	. 		(3,673)	15 % of (1+2+3)
Total	شيه		· -	28,162	

Table 4.3 Project Cost of Channel Works for Alternative Framework Plans (4/6)

٠	Work item	Unit	Work U quantity	nit cost (₽)	Amount (P mil.)	Remarks
AN	NEL WORKS					
1.	Main Works	_			(28,732)	
	Preparatory w.	1.s.		_	1,851	8 % of main w.
					.,	excl. miscel. w.
	Dike embankment w.	km	482		13,491	
	Embankment (1)	m3	89,800,000	58	5,208	
	Embankment (2)	m3	75,300,000	110	8,283	High dike
	Revetment w.	km	45.1	_	947:	
	Revetment (1)	m2	739,000	820	606	for low w. chan.
	Revetment (2)	m2	559,000	610	341	for high w. chan
	Narrow excavation w	7. m3	43,200,000	94	4,061	<u> </u>
	Cut-off channel w.	km	34.5		3,487	
	Excavation (1)	m3	52,800,000	45	2,376	for main Cagayan
	Excavation (1)	m3	17,800,000	45	801	for tributarites
	Revetment (3)	m2	516,000	600	310	
	Bank protection w.	km	112.3	· <u></u>	550	
	Revetment (3)	m2	838,000	600	503	
	Groyne	unit	1,880	24,900	47	unit in total
	223,112		,	,		groyne length
	Drainage sluice w.	unit	720	626,000	451	
	Bridge w.	m2	24,800	5,950	148	
	Miscellaneous	1.s.	· , · - · · -		3,748	15 % of the abov
2.	Compensation	m2	-	-	(243)	
•	Dike	m2	27,500,000	5.7	157	
	COC	m2	11,300,000	5.7	64	
	Others	m2	3,880,000	5.7	22	10 % of other
			,			compensation
						•
3.	Engineering & Adm.			_	(4,310)	
	Engineering	1.s.	-		2,873	10 % of (1)
	Administration	1.s.		_	1,437	5 % of (1)
	And designed and the first page and any one and				•	\$
4.	Contingency	1.s.			(4,993)	15 % of (1+2+3)
. •	· = · · · · · · · · · · · · · · · · · ·				•	
То	tal		_		38,278	

Table 4.3 Project Cost of Channel Works for Alternative Framework Plans (5/6)

	Work item	Unit	Work (quantity	Jnit cost (₽)	Amount (₱ mil.)	Remarks
CHAN	NNEL WORKS					
1	Main Works				(21,124)	
, .	Preparatory w.	l.s.			1,361	8 % of main w.
	reputatory w.	1.0.			1,501	excl. miscel. w.
	Dike embankment w.	km	482		7,409	excl. miscel. w.
	Embankment (1)	m3	102,900,000	58	5,968	and the second second
	Embankment (2)	m3	13,100,000	110	1,441	High dike
	Revetment w.	km	45.1		904	
-	Revetment (1)	m2	739,000	820	606	for low w. chan.
	Revetment (2)	m2	488,000	610	298	for high w. chan
	Narrow excavation w	. m3	43,200,000	94	4,061	
-	Cut-off channel w.	km	34.5	_	3,487	And the second second
	Excavation (1)	m3	52,800,000	45	2,376	for main Cagayar
	Excavation (1)	m3	17,800,000	45	801	for tributarites
	Revetment (3)	m2	516,000	600	310	
	Bank protection w.	km	112.3	***	550	4
	Revetment (3)	m2	838,000	600	503	
	Groyne	unit	1,880	24,900	47	unit in total
						groyne length
	Drainage sluice w.	unit	720	626,000	451	*.
	Bridge w.	m2	24,800	5,950	148	
	Miscellaneous	1.s.		· 	2,755	15 % of the abov
2.	Compensation	m2	-	-	(225)	
	Dike	m2	24,600,000	5.7	140	
	COC	m2	11,300,000	5.7	64	
	Others	m2	3,590,000	5.7	21	10 % of other compensation
3.	Engineering & Adm.	_			(3, 169)	
	Engineering	1.s.	-	_		10 % of (1)
	Administration	1.s.		-	1,056	5 % of (1)
4.	Contingency	1.s.	·	-	(3,678)	15 % of (1+2+3)
Tot	tal			_	28,196	

Project Cost of Channel Works for Table 4.3 Alternative Framework Plans (6/6)

(for Alternative: 9DM)

		1				
Work	item	Unit	Work	Unit cos	t Amount	Remarks
	•		quantity	(a) .	(₽ mil.)	
			quantity	(*)	(* mrr.)	

	Work item	Unit	Work U quantity	nit cost (P)	Amount (P mil.)	Remarks
CHANNEL	, WORKS					
1. Ma	in Works		****	_	(20,955)	
	eparatory w.	1.s.	_		1,350	8 % of main w.
						excl. miscel. w.
Di	ke embankment w.	km	482	_	7,278	:
	Embankment (1)	m3	101,200,000	58	5,870	
	Embankment (2)	m3	12,800,000	110	1,408	High dike
Re	evetment w.	km	45.1	. -	899	
	Revetment (1)	m2	739,000	820	606	for low w. chan.
	Revetment (2)	m2	480,000	610	293	for high w. chan.
Na	rrow excavation w	m3	43,200,000	94	4,061	4.
Cu	it-off channel w.	km		-	3,487	
	Excavation (1)	m3	52,800,000	45	2,376	for main Cagayan
	Excavation (1)	m3	17,800,000	45	801	for tributarites
	Revetment (3)	m2	516,000	600	310	
Ва	nk protection w.	km.	112.3		550	
-	Revetment (3)	m2	838,000	600	503	
	Groyne	unit	1,880	24,900	47	unit in total
•						groyne length
Dr	ainage sluice w.	unit	720	626,000	451	
Br	idge w.	m2	24,800	5,950	148	
Mi	scellaneous	1.s.	_	-	2,733	15 % of the above
2. Co	mpensation	m2	-	-	(223)	
	ke	m2	24,300,000	5.7	139	
CO		m2	11,300,000	5.7	64	
Ot	hers	m2	3,560,000	5.7	20	10 % of other
-			•			compensation
3. En	gineering & Adm.	_			(3,143)	
	gineering	1.s.	*·=	-	2,095	10 % of (1)
	ministration	1.s.		_	1,048	5 % of (1)
4. Co	ntingency	1.s.	-	_	(3,648)	15 % of (1+2+3)
Tota1	en e	-	-	-	27,969	

Table 4.4 Project Cost of Dam Works for Alternative Framework Plans (1/9)

Wor	k item	Unit	Work quantity	Unit cost (₽)	Amount (P mil.)	Remarks
1. Main	Works					
1) P	reparatory Works				(88.81)	
	ccess road (1)	km	12	1,379,000	16.55	New
	ccess road (2)	km	0	276,000	0.00	Improvement
	ridge	m	0	45,100	0.00	
0	ffice, etc.	1.s.		-	72.26	
2) R	iver Div. Works				(376.32)	
	xcavation (1)	m ³	28,000	60	1.68	Common
E	xcavation (2)	m ^З	205,300	190	39.01	Rock
E	xcavation (3)	m³	138,500	990 -	137.12	Tunnel
C	oncrete (1)	m ³	6,510	1,820	11.85	Inlet & outle
	oncrete (2)	m³	34,450	1,910	65.80	Tunnel lining
	oncrete (3)	m3	6,470	1,560	10.09	Plug
	teel support	ton	680	19,360	13.16	
	ainforcement bar	ton	1,980	14,350	28.41	
	onsolidation grout	m a	13,870	1,330	18.45	
	offer dam	m ³	91,900	180	16.54	
U	thers	l.s.			34.21	10 %
3) D	am				(364.12)	
	xcavation (1)	m³	52,200	60	3.13	Common
	xcavation (2)	m³	149,900	190	28.48	Rock
	oncrete	m ³	142,100	1,310	186.15	
	irtain grout	m	53,350	1,790	95.50	
	lanket grout	m	13,350	1,330	17.76	40 0
U	thers	1.s.		-	33.10	10 %
4) S _i	pilway			*	(161.28)	11 1 p
E	kcavation (1)	mЗ	68,800	60	4.13	Common
E	kcavation (2)	mЗ	171,500	190	32.59	Rock
	oncrete	m ³	57,030	1,640	93.53	
	ainforcement bar	ton	1,141	14,350	16.37	
01	thers	1.s.			14.66	10 %
5) Co	oyote Blasting	1.s.			(-)	
. Compe	ensation	1.s.			100.02	
3. Engir	neering & Adm.	1.s.		, · · · · · · · · · · · · · · · · · · ·	148.58	15 % of 1
. Conti	ngency	1.s.			247.83	20 % of (1-3)

Table 4.4 Project Cost of Dam Works for Alternative Framework Plans (2/9)

(Dam: Alimit No.1 (A))

	Work item	Unit	Work quantity	Unit cost	Amount (P mil.)	Remarks
1.	Main Works					
	1) Preparatory Works Access road (1) Access road (2) Bridge Office, etc.	km km m l.s.	30 0 50	1,379,000 276,000 45,100	(139.88) 41.37 0.00 2.26 96.25	New Improvement
	2) River Div. Works Excavation (1) Excavation (2) Excavation (3) Concrete (1) Concrete (2) Concrete (3) Steel support Rainforcement bar Consolidation grout Coffer dam Others	m ³ m ³ m ³ m ³ m ³ ton ton m m ³	2,400 6,600 23,900 310 8,930 1,410 176 459 4,350 314,500	60 190 990 1,820 1,910 1,560 19,360 14,350 1,330 180	(129.00) 0.14 1.25 23.66 0.56 17.06 2.20 3.41 6.59 5.79 56.61 11.73	Common Rock Tunnel Inlet & outlet Tunnel lining Plug
	3) Dam Excavation (1) Excavation (2) Concrete Curtain grout Blanket grout Others	m3 m3 m3 m m	20,400 61,500 646,800 26,300 5,300	60 190 1,310 1,790 1,330	1,005.79) 1.22 11.69 847.31 47.08 7.05 91.44	Common Rock
	4) Spilway Excavation (1) Excavation (2) Concrete Rainforcement bar Others	m ³ m ³ m ³ ton 1.s.	8,500 55,600 26,300 526	60 190 1,640 14,350	(67.93) 0.51 10.56 43.13 7.55 6.18	Common Rock
	5) Coyote Blasting	1.s.		-	(-)	
2.	Compensation	1.s.		_	0.04	
3.	Engineering & Adm.	l.s.		-	201.39	15 % of 1
4.	Contingency	l.s.			308.81	20 % of (1-3)
	Total				1,852.84	

Table 4.4 Project Cost of Dam Works for Alternative Framework Plans (3/9)

(Dam: Ilagan No.1) Unit Work item Work Unit cost Amount Remarks quantity (₽) (P mil.) 1. Main Works 1) Preparatory Works (122.51)Access road (1) 1,379,000 km 11 15.17 New Access road (2) 15 276,000 km 4.14 Improvement Bridge 0 45,100 0.00 m Office, etc. 1.s. 103.20 2) River Div. Works (184.66)Excavation (1) m³ 10,500 0.63 60 Common m³ Excavation (2) 46,600 190 8.85 Rock ${\bf m^3}$ Excavation (3) 51,800 990 51.28 Tunnel m³ Concrete (1) 3,020 1,820 5.50 Inlet & outlet m³ 13,100 Concrete (2) 1,910 25.02 Tunnel lining mЗ 4,260 1,560 Concrete (3) 6.65 Plug Steel support 260 19,360 ton 5.03 Rainforcement bar ton 776 14,350 11.14 1,330 Consolidation grout 5,290 m 7.04 mЗ Coffer dam 259,600 180 46.73 Others 10 % 1.s. 16.79 3) Dam (951.43)mЗ Excavation (1) 25,400 60 1.52 Common m³ Excavation (2) 81,500. : 190 15.49 Rock m³ 598,600 Concrete 1,310 784.17 28,300 Curtain grout m 1,790 50.66 Blanket grout 9,850 1,330 13.10 m Others 1.s. 86.49 10 % 4) Spilway (153.02)m³ Excavation (1) 23,700 60 1.42 Common m^3 Excavation (2) 136,400 190 25.92 Rock mЗ 58,000 Concrete 1,640 95.12 1,160 Rainforcement bar 14,350 ton 16.65 Others 13.91 10 % 1.s. 5) Coyote Blasting 1.s. 2. Compensation 14.01 1.s. 3. Engineering & Adm. 1.s. 211.74 15 % of 1 4. Contingency 20 % of (1-3) 1.s. 327.47 Total 1,964.84

Table 4.4 Project Cost of Dam Works for Alternative Framework Plans (4/9)

(Dam: Siffu No.1 (A)) Work item Unit Work Unit cost Amount Remarks (P) (₽ mil.) quantity 1. Main Works (29.00)1) Preparatory Works 1,379,000 1.38 Access road (1) 1 New km 276,000 Access road (2) 6 1.66 Improvement km 0.90 Bridge 20 45,100 m Office, etc. 1.s. 25.06 2) River Div. Works (70.70)m³ Excavation (1) 2,300 0.14 Common 60 mЗ Excavation (2) 9,400 1.79 Rock 190 m³ Excavation (3) 14,500 990 14.36 Tunne1 m³ Concrete (1) 370 1,820 0.67 Inlet & outlet m³ 5,250 1,910 10.03 Tunnel lining Concrete (2) mз 1,560 Concrete (3) 640 1.00 Plug 105 19,360 2.03 Steel support ton 14,350 277 3.97 Rainforcement bar ton 2,600 1,330 3.46 Consolidation grout m m³ Coffer dam 149,000 180 26.82 Others 6.43 10 % 1.s. (167.63)3) Dam m3 10,300 Excavation (1) 0.62 Common 60 mЗ 35,500 6.75 Excavation (2) 190 Rock $\mathbf{m}^{\mathbf{3}}$ 91,600 120.00 Concrete 1,310 Curtain grout m 11,600 1,790 20.76 3,200 1,330 4.26 Blanket grout m 10 % Others 15,24 1.s. (-75.15)4) Spilway mЗ Excavation (1) 12,500 60 0.75 Common $\mathbf{m}^{\,\mathbf{3}}$ 48,300 190 9.18 Excavation (2) Rock mЗ 30,300 1,640 49.69 Concrete 606 8.70 Rainforcement bar ton 14,350 6.83 10 % Others 1.s. 5) Coyote Blasting 1.s. 14.24 2. Compensation 1.s. 51.37 15 % of 1 3. Engineering & Adm. 1.s. 81.62 20 % of (1-3) 4. Contingency 1.s.

Remarks: Costs are on economic basis.

Total

489.71

Table 4.4 Project Cost of Dam Works for Alternative Framework Plans (5/9)

(Dam: Mallig No.2) Work item Unit Work Unit cost Amount Remarks quantity (₽) (P mil.) 1. Main Works 1) Preparatory Works (36.82)Access road (1) 1,379,000 km 11 15.17 New Access road (2) km 4 276,000 1.10 Improvement Bridge 20 45,100 0.90 m Office, etc. 1.s. 19.65 2) River Div. Works (40.15)m³ Excavation (1) 1,500 60 0.09 Common m^3 5,900 Excavation (2) 190 1.12 Rock mЗ Excavation (3) 8,300 990 8.22 Tunne1 m³ Concrete (1) 180 1,820 0.33 Inlet & outlet mз Concrete (2) 3,300 1,910 6.30 Tunnel lining m³ 1,560 19,360 Concrete (3) 390 0.61 Plug Steel support 64 ton 1.24 Rainforcement bar 14,350 .172 2.47 ton Consolidation grout 1,700 m 1,330 2.26 m³ Coffer dam 77,000 180 13.86 Others 1.s. 3.65 10 % 3) Dam (155.27) m^3 Excavation (1) 5,300 0.32 60 Common m³ 17,200 Excavation (2) 190 3.27 Rock m³ 88,900 Concrete 1,310 116.46 1,790 Curtain grout m 10,300 18.44 Blanket grout 2,000 m 1,330 2.66 Others 1.s. 14.12 10 % 4) Spilway (50.11)m³ Excavation (1) 9,300 0.56 60 Common m³ Excavation (2) 36,000 190 6.84 Rock m³ Concrete 19,800 1,640 32.47 5,68 Rainforcement bar ton 396 14,350 Others 1.s. 4.56 10 % -) 5) Coyote Blasting 1.s. 2. Compensation 1.s. 10.46 3. Engineering & Adm. 1.s. 42.35 15 % of 1. 4. Contingency 1.s. 67.03 20 % of (1-3) Total 402.19

Table 4.4 Project Cost of Dam Works for Alternative Framework Plans (6/9)

Work	item	Unit	Work quantity	Unit cost (₽)	Amount (₽ mil.)	Remarks
1. Main	Works					
1) Pr	eparatory Works				(83.36)	
	cess road (1)	km	. 4	1,379,000	5.52	New
	cess road (2)	km	0	276,000	0.00	Improvement
Br	idge	m	10	45,100	0.45	•
Of	fice, etc.	1.s.		-	77.39	
2) Ri	ver Div. Works				(110.28)	
Ex	cavation (1)	m ^З	3,900	60	0.23	Common
Ex	cavation (2)	mЗ	15,800	190	3.00	Rock
Ex	cavation (3)	m ³	19,500	990	19.31	Tunnel
Co	ncrete (1)	m ³	790	1,820	1.44	Inlet & outle
	ncrete (2)	m ³	6,250	1,910	11.94	Tunnel lining
Co	ncrete (3)	шз	1,240	1,560	1.93	Plug
	eel support	ton	126	19,360	2.44	
	inforcement bar	ton	344	14,350	4.94	
	nsolidation grout	m	2,800	1,330	3.72	
	ffer dam	m ₃	285,000	180	51.30	
Otl	hers	1.s.		~~	10.03	10 %
3) Dai	n				(725.78)	
Exe	cavation (1)	m^3	33,200	60	1.99	Common
Exe	cavation (2)	$m_{oldsymbol{eta}}$	73,700	190	14.00	Rock
Co	ncrete	m ³	444,500	1,310	582.30	
Çu	rtain grout	m	27,900	1,790	49.94	
B1:	inket grout	m	8,700	1,330	11.57	
Otl	hers	l.s.		_	65.98	10 %
4) Sp	i1way				(131.03)	
	cavation (1)	m ^З	22,300	60	1.34	Common
	cavation (2)	m ³	86,400	190	16.42	Rock
Cor	ncrete	. m ³	52,600	1,640	86.26	•
Ra	inforcement bar	ton	1,052	14,350	15.10	
0tl	ners	1.s.	•	, <u> </u>	11.91	10 %
5) Co	ote Blasting	1.s.			(-)	
2. Compe	nsation	1.s.		Mar-	0.70	
3. Engine	eering & Adm.	1.s.		. -	157.57	15 % of 1
. Conti	igency	l.s.		***	241.74	20 % of (1-3)

Table 4.4 Project Cost of Dam Works for Alternative Framework Plans (7/9)

Work item	Unit	Work quantity	Unit cost	Amount (₽ mil.)	Remarks
Main Works					
1) Preparatory Works				(95.55)	
Access road (1)	km	2	1,379,000	2.76	New
Access road (2)	km	2	276,000	0.55	Improvement
Bridge	m	300	45,100	13.53	
Office, etc.	1.s.			78.71	
2) River Div. Works				(110.24)	
Excavation (1)	mЗ	6,200	60	0.37	Common
Excavation (2)	m ^З	24,700	190	4.69	Rock
Excavation (3)	m ^З	29,100	990	28.81	Tunnel
Concrete (1)	m ³	1,560	1,820	2.84	Inlet & outle
Concrete (2)	m ^Э	8,280	1,910	15.81	Tunnel lining
Concrete (3)	m ³	1,640	1,560	2.56	Plug
Steel support	ton	167	19,360	3.23	
Rainforcement bar	ton	476	14,350	6.83	1
Consolidation grout	m a	3,500	1,330	4.66	
Coffer dam	m ³	169,000	180	30.42	46. %
Others	1.s.		-	10.02	10 %
3) Dam				(738.22)	•
Excavation (1)	m³	54,400	60	3.26	Common
Excavation (2)	m ³	182,200	190	34.62	Rock
Concrete	m³	424,400	1,310	555.96	
Curtain grout	m	34,400	1,790	61.58	
Blanket grout	m	11,800	1,330	15.69	
Others	l.s.			67.11	10 %
4) Spilway			٠.	(134.17)	4 - 2
Excavation (1)	m ³	24,400	60	1.46	Common
Excavation (2)	m ³	94,700	190	17.99	Rock
Concrete	m ³	53,200	1,640	87.25	41 - 4
Rainforcement bar	ton	1,064	14,350	15.27	
Others	1.s.		-	12.20	10 %
5) Coyote Blasting	l.s.		-	(-)	
Compensation	1.s.			21.45	
Engineering & Adm.	1.s.		. 	161.73	15 % of 1
Contingency	1.s.		_	252.27	20 % of (1-3)

Table 4.4 Project Cost of Dam Works for Alternative Framework Plans (8/9)

	Work item	Unit	Work quantity	Unit cost (₽)	Amount (P mil.)	Remarks
1.	Main Works					
	1) Preparatory Works				(385.05).	
	Access road (1)	km	0	1,379,000	0.00	New
	Access road (2)	km	0	276,000	0.00	Improvement
	Bridge	m	0	45,100	0.00	•
	Office, etc.	1.s.		<u> </u>	385.05	•
	2) River Div. Works				(142.86)	
	Excavation (1)	m ³	4,400	60	0.26	Common
	Excavation (2)	m ^З	17,500	190	3.33	Rock
	Excavation (3)	m ³	39,200	990	38.81	Tunnel
	Concrete (1)	m ³	930	1,820	1.69	Inlet & outle
	Concrete (2)	m ³	12,240	1,910	23.38	Tunnel lining
	Concrete (3)	m ³	3,760	1,560	5.87	Plug
	Steel support	ton	248	19,360	4.80	_
	Rainforcement bar	ton	649	14,350	9.31	
	Consolidation grout	m	5,500	1,330	7.32	
	Coffer dam	m ^З	195,000	180	35.10	
	Others	1.s.	:		12.99	10 %
	3) Dam			(4,277.94)	
	Excavation (1)	m ³	230,000	60	13.80	Common
	Excavation (2)	m ³	470,000	190	89.30	Rock
	Concrete	m ³	2,800,000	1,310	3,668.00	•
	Curtain grout	m	54,000	1,790	96.66	
	Blanket grout	m	16,000	1,330	21.28	
	Others	1.s.			388.90	10 %
	4) Spilway				(268.32)	
	Excavation (1)	m ³	27,800	60	1.67	Common
	Excavation (2)	m^3	107,850	190	20.49	Rock
	Concrete	m^3	115,100	1,640	188.76	
	Rainforcement bar	ton	2,300	14,350	33.01	
	Others	l.s.		<u></u>	24.39	10 %
	5) Coyote Blasting	1.s.			(116.49)	
2.	Compensation	1.s.			205.00	
3.	Engineering & Adm.	1.s.		-	778.60	15 % of 1
4.	Contingency	1.s.		· ·	1,234.85	20 % of (1-3)

Table 4.4 Project Cost of Dam Works for Alternative Framework Plans (9/9)

Work item	Unit	Work quantity	Unit cost (₽)	Amount (P mil.)	Remarks	
1. Main Works						
1) Preparatory Works				(55.38)		
Access road (1)	km	0	1,379,000	0.00	New	
Access road (2)	km	0	276,000	0.00	Improvement	
Bridge	m	. 0	45,100	0.00		
Office, etc.	1.s.			55.38		
2) River Div. Works				(79.89)		
Excavation (1)	\mathbf{m}^{3}	3,600	60	0.22	Common	
Excavation (2)	m ³	14,500	190	2.76	Rock	
Excavation (3)	m ³	18,200	990	18.02	Tunne1	
Concrete (1)	m ³	700	1,820	1.27	Inlet & outlet	
Concrete (2)	m ³	5,990	1,910	11.44	Tunnel lining	
Concrete (3)	m ³	1,180	1,560	1.84	Plug	
Steel support	ton	120	19,360	2.32	•	
Rainforcement bar	ton	328	14,350	4.71		
Consolidation gro	ut m	2,700	1,330	3.59		
Coffer dam	e _m 3	147,000	180	26.46	* · · · · · · · · · · · · · · · · · · ·	
Others	1.s.		<u> </u>	7.26	10 %	
3) Dam				(494.23)		
Excavation (1)	m ³	23,400	60	1.40	Common	
Excavation (2)	m ³	70,900	190	13.47	Rock	
Concrete	m ³	302,600	1,310	396.41		
Curtain grout	m	17,600	1,790	31.50		
Blanket grout	m	4,900	1,330	6.52		
Others	1.s.		_	44.93	10 %	
4) Spilway				(117.55)		
Excavation (1)	m ³	16,800	60	1.01	Common	
Excavation (2)	m³	65,200	190	12.39	Rock	
Concrete	mз	48,500	1,640	79.54		
Rainforcement bar	ton	970	14,350	13.92		
Others	1.s.		-	10.69	10 %	
5) Coyote Blasting	l.s.		-	(- ·)		
2. Compensation	1.s.		www.	27.53		
3. Engineering & Adm.	1.s.			112.06	15 % of 1	
4. Contingency	l.s.		77-	177.33	20 % of (1-3)	

Table 4.5 Sites for Cut-off Channel Works

River	Site	Stretc	h (Sta.)		ength (km)
		From	То	COC	Existing
Cagayan R.	Gabut	68.7	78.5	2.50	9.3
	San Isidro	88.4	105.6	5.00	17.2
Subtotal	Sau ISIGIO	-	105.0	(7.50)	(26.5)
Magat R.	Lenzon	1.4	4.4	0.90	3.0
Subtotal	Benzon	7 .4	4 • 4	(0.90)	(3.0)
Siffu R.		2.0	3.0	0.55	1.0
		3.2	7.3	0.90	4.1
		8.3	9.8	0.80	1.5
		10.5	11.4	0.45	0.9
		11.5	16.5	0.85	5.0
		16.5	17.3	0.40	0.8
		18.9	21.0	0.75	2.1
		22.2	24.5	0.92	2.3
		24.5	25.8	0.50	1.3
		26.5	27.3	0.30	0.8
		27.5	29.1	0.25	1.6
•	•	31.2	33.0	0.50	1.8
		35.4	36.7	0.40	1.3
		37.9	42.3	0.90	4.4
		44.0	48,0	1.00	4.0
		48.7	51.3	0.40	2.6
		51.5	53.3	0.40	1.8
		54.2	60.0	1.30	5.8
		61.2	62.8	0.50	1.6
		63.6	66.5	0.80	2.9
	•	67.3	68.5	0,60	1,2
		68.6	70.5	0.40	1.9
Subtotal		- .		(13.87)	(50.7)
Mallig R.		-1.4	0	0.60	1.4
		2.0	4.5	0.80	2.5
		5.1	6.3	0.40	1.2
		6.9	8.2	0.50	1.3
	•	8.2	9.3	0.25	1.1
		9.7	10.5	0.25	0.8
		11.3	12.7	0.80	1.4
		14.2	15.8	0.55	1.6
		16.2	21.7	0.75	5.5
		25.0	26.2	0,25	1.2
		27.0	29.7	0.75	2.7
	·	31,2	32.0	0.20	0.8
		33.9	34.7	0.45	0.8
•		35.8	40.2	0.95	4.4
		42.2 43.8	43.1	0.25	0.9
			44.5	0.30	0.7
		45.2 47.1	46.3 48.0	0.40	1.1
		48.9	50.6	0.35 0.30	1.7
		50.8	52.1	0.40	1.7
		52.8	53.7	0.40	0.9
		54.1	55.0	0.40	0.9
		55.0	56.1	0.40	1.1
		58.3	59.6	0.50	1.3
		61.2	62.1	0.15	0.9
		65.9	67.2	0.35	1.3
		68.6	70.5	0.33	1.9
Subtotal		- 00.0	70.3	(12.20)	(41.6)
				(34.47)	(92.3)
Total					

Remarks:

- Stretch is indicated by the Station No. along the existing channel.
 Channel length shows the length of cut-off channel and existing channel corresponding to it.

Table 4.6 Sites for Bank Protection Works

	T	•	•	.1 (2)		Kind	
River	Locat	Site	Leng From	th (Sta. To		of work	Object to be protected
NI VCI		. Site			Leng.	WOIR	
Cagayan	(R)	Aparri	1.6	2.3	0.7	R	Aparri, reclamation, dike
	(R)		10.0	12.8	2.8	R	Agusi, Camalaniugan, Hwy. No.5, dike
	(R)	Lal-lo	20.1	21.8	1.7	R	Lal-lo, dike
	(R)	Catayauan	24.3	30.0	5.7	R	Catayauan, Sta.Maria, dil
	-		30.0	31.3	1.3	T	Magapit, Hwy. No.5
	(R)	Gattaran	39.3	40.6	1.3	T	Gattaran, Hwy. No.5
	(R)		64.2	65.2	1.0	T	Tupang
	(R)		81.0	82.5	1.5	T	Alcala-Amulung P.S.
	(R)	Iguig	105.0	108.0	3.0	T	San Isidro, Sta. Rosa, Minanga
	(L)	Dassun	110.6	113.1	2.5	R	Dike
	(R)	Bayo	115.3	118.3	3.0	R	Dike
			118.3	119.0	0.7	T	
	(L)	Solana	123.0	126.5	3.5	T	Solana
	(L)	Enrile	131.5	133.8	2.3	T	
	(R)	Tuguegarao	135.0	138.5	4.5	R	Catagaman, Tuguegarao, dike
	(L)	Alibago	142.0	144.0	2.0	T	Alibago, prob. road
	(R)	Namabbalan	147.7	149.5	1.8	T	Hwy. No.5
	(R)	San Pablo Br.	~~		1.0	T	Hwy. No.5, Bridge, Calamagui
	(R)	Cabagan	164.5	167.3	2.8	T	Cabagan
	(R)	Balasig Br.	··· —	~-	1.3	${f T}$	Hwy. No.5, Bridge, Balas:
	(L)	Malapagay	175.9	178.6	2.7	R	Malapagay, dike
	4 X		178.6	180.0	1.4	T	
	(R)	Sinippil	182.0	184.0	2.0	R	Sinippil, dike
	(n)		184.0	185.7	1.7	T	- · ·
	(R)	Tumauini	190.8	192.2	1.4	T	Tumauini
	(R) (L)	Balug Sta. Isabel	193.8	195.0	1.2	T	Balug, Hwy. No.5
	(E) (R)	Naguilian	199.8 234.6	201.1 235.9	1.3	R T	Sta. Isabel, dike
	(R)	Minanga	240.0	242.0	1.3 2.0	T	Naguilian Ninanaa Can Luia
	(L)	Cauayan	243.7	246.2	2.5	R	Minanga, San Luis Dike
	(L)	Cauayan	246.2	248.6	2.4	T	Dike
	(L)	Baringin Norte	253.2		2.6	T	Baringin N., barangay roa
	(R)		273.2	275.0	1.8	· T	Paddy field
	(L)	Angadanan	277.7	278.9	1.2	T	Angadanan, paddy field
	(L)	Echague	302.3	307.2	4.9	Ť	Echague, paddy field
	(L)	Pangal Norte	316.2	317.9	1.7	T	Pangal N., paddy field
•	(R)	Jones	336.4	339.0	3.8	T	Prob. road, Jones,
							S. Vicente, Diarao
ico	(r)	Niug	13.9	16.2	2.3	T	Niug, rural road, paddy field
	(R)	Piat	38.0	40.9	2.9	Т	Piat
	(L)	Cagumitan	41.4	43.7	2.3	T	6 400 fc .
	(R)	Sto. Domingo	44.6	46.1	1.5	T	Ferry
	(R)	Pata	48.5	50.2	1.7	Ť	Pata
	(R)	Villa Laida	51.0	53.0	2.0	Ť	Villa Laida
	(L)	Lallayug	54.6	56.9	2.3	$\overline{\mathbf{T}}$	
	(r)	Camalog	72.5	74.2	1.7	T	Paddy field
	(R)	Magaogao	76.0	77.7	1.7	T	H
	(L)	Masablang	78.5	80.1	1.6	T	H
	(R)	Cabaruan	81.2	83.9	2.7	T	" , rural road
	(R)	Tabuk	87.8	90.6	2.8	T	" , Tabuk
	(R)	Bulanao	92.4	96.2	3.8	T	tt for the second second
	(L)	Gobgob	92.6	94.6	2.0	T	Rural road

10		
(Con	tinu	ation)

	Locati	ion	Lengt	h (Sta.	km)	Kind of	Object to be protected
River (R/I		Site	From	То	Leng.	work	object to be protected
Tuguegarao	(R)	Tanza	2,8	4.6	1.8	R	Tanza, Caggay, dike
- 0	(R)	Penablanca	10.3	11.7	1.4	T	Penablanca
	(L)	Aggugaddan	23.7	25.5	1.8	Т	
Ilagan	(R)	Bangag	0.8	2.1	1.3	T	
	(L)	Ilagan	2.2	3.7	1.5	T	Ilagan
	(L)	Malalam	5.0	6.0	1.0	T	Malalam, paddy field
	(R)	Alinguigan	8.0	10.0	2.0	T	Alinguigan
	(L)	San Antonio	16.5	18.5	2.0	R	Rural road, dike
Magat	(L)	Lenzon	-1.0	1.4	2.4	R	Dike
	(L)	Binarzang	12.5	14.0	1.5	R	Binarzang, dike
			14.0	15.0	1.0	T	
•	(R)	Pulay	19.6	20.6	1.0	R	Paddy field, dike
			20.6	21.7	1.1	T	•
	(L)	Kalabaza	27.0	28.5	1.5	R	Dike
	(L)	Macatal-1	29.6	30.2	0.6	T	Dike
	(L)	Macatal-2	32.0	32.7	0.7	T	Dike
	(L)	San Rafael	34.2	35.3	4.1	R	Dike
	(L)	San Juan	42.8	45.3	2.5	T	
	(R)	Sinaman Norte	48.6	51.0	2.4	R	Dike
	(L)	Bayombong		-	3.3	T	Bayonbong
	(r)	Batu Ferry		-	5.3	T	National road, bridge
;	(R)	Makati	-		5.0	T	National road, bridge
P.de Cabagan	(L)	Angancasilian	3.8	5.8	2.0	R	Dike
P.de Tumauir	ni(R)	Maligaya	2.3	3.9	1.6	T	Maligaya, rice field, Arcon Br.

Remarks: R and T in kind-of-work column denote dike revetment works, and other bank protection and river training works, respectively.

Table 4.7 Principal Features of Framework Plan

1)	Cha	annel Works		
	a)	Dike embankment works:		116,000,000 m3
	ь)	Revetment works (45.1 k	m long):	1,227,000 m2
	c)	Drainage sluice works:		720 units
	d)	Narrow excavation works	:	43,200,000 m3
	e)	Cut-off channel works (34.5 km long)	: 70,600,000 m3
	f)	Bank protection works:		112.3 km
	g)	Appurtenant facility wo	rks:	3 bridges
		- Buntun bridge:		Reconstruction
		- Gamu bridge:	•	Reconstruction
		- Naguilian bridge:		Reconstruction
2)	Flo	ood Control dam Works		
			(Dam height:	m) (F.C.: MCM)
		- Cagayan No.1	45.0	318
		- Alimit No.1(A)	84.0	200
		- Ilagan No.1	69.0	382
		- Siffu No.1(A)	44.0	96.1
		- Mallig No.2	43.0	93.4
3)	Corr	pensation		
	a)	Channel works:		39,490,000 m2
	b)	Dam works:		113,500,000 m2
	ŕ	- Cagayan No.1 dam		47,700,000 m2
		- Alimit No.1 dam		10,000,000 m2
		- Ilagan No.1 dam		29,100,000 m2
		- Siffu No.1(A) dam		14,400,000 m2
		- Mallig No.2 dam		12,300,000 m2
4)	Pro	ject Cost (Economic):		¥34,394,000,000
• •	a)	Channel works:	:	₽28,196,000,000
	b)	Dam works:		₽ 6,198,000,000

Table 4.8 Economic Project Cost for Framework Plan

	Work item	Unit	Work U	nit cost (¥)	Amount (P mil.)	Remarks
			quantity	(F)	(F MII.)	
I. CI	IANNEL WORKS					
1.	Main Works	_		_	(21,124)	
	Preparatory w.	1.s.	·	_	1,361	8 %
	Dike embankment w.	km	482	·	7,409	
	Embankment (1)	m3	102,900,000	58	5,968	
	Embankment (2)	m3	13,100,000	110	1,441	High dike
	Revetment w.	km	45.1	-	904	
	Revetment (1)	m2	739,000	820	606	for low w. chan.
	Revetment (2)	m2	488,000	610	298	for high w. chan.
	Narrow excavation w	. m3	43,200,000	94	4,061	
	Cut-off channel w.	km	34.5		3,487	4
	Excavation (1)	m3	52,800,000	45	2,376	for main Cagayan
	Excavation (1)	m3	17,800,000	45	801	for tributarites
	Revetment (3)	m2	516,000	600	310	
	Bank protection w.	km	112.3		550	
	Revetment (3)	m2	838,000	600	503	
	Groyne	unit	1,880	24,900	47	
	Drainage sluice w.	unit	720	626,000	451	
	Bridge w.	m2	24,800	5,950	148	
	Miscellaneous	1.s.	·	_	2,755	15% of the above
2.	Compensation	m2	_		(225)	
	Dike	m2	24,600,000	5.7	140	
	COC	m2	11,300,000	5.7	64	
	Others	m2	3,590,000	5.7	21	10 %
- 3.	Engineering & Adm.	·	-		(3,169)	
	Engineering	1.s.	_		2,112	10 % of (1)
	Administration	1.s.		_	1,056	5 % of (1)
4.	Contingency	1.s.	-	-	(3,678)	15 % of (1+2+3)
Tot	_	. -		-	28,196	
TT D/	M WORKS			•		
	Main Works	1.s.			(4,370)	
١.		1.s.	_		991	
	Cagayan No.1 Alimit No.1 (A)	1.s.	· _		1,343	
	Ilagan No.1	1.s.	_		1,412	
,	Siffu No.1 (A)	1.s.			342	
	Mallig No.2	l.s.			282	4
	Compensation	1.s.			(139)	
	Engineering & Adm.			_	(656)	
э.	Engineering & Aum.	1.s.	#1#P	_	437	10 % of (1)
	Administration	1.s.			219	5 % of (1)
			_	_	(1,033)	20 % of (1+2+3)
	Contingency	1.s.		-	6,198	20 % OF (11213)
Tot	-d I	-		_	0,170	
GRAND	TOTAL	· _ ·			34,394	

Table 5.1 Quantities of Dike Works for Long-Term Plan

Stretch	Dike le	ke length	Embar	Embankment	Revetment	evetment	Land acc	Land acquisition
	Left	Right	Left	Right	Left	Right	Left	Right
Main Cagayan R.								
Mouth - Alacala	31.4	51.3	4,528	4,731	ſ	284.6	1,265	1,574
Alcala - Tuguegarao	38.0	47.0	8,382	5,772	101.4	238.6	1,973	1,625
Tuguegarao - Siffu jet.	60.5	58.5	7,574	9,057	119.2	75.8	2,270	2,487
Siffu jct	33.4	33.6	2,463	3,510	98.6	ı	875	696
Subtotal (1)	163.3	190.4	22,947	23,070	319.2	599.0	6,382	6,654
Backwater levee (2)	19.0	21.7	2,932	2,547	· I	52.6	704	569
Subtotal (1)+(2)	182.3	212.1	25,879	25,617	319.2	651.6	7,087	7,224
Tributaries		:						e ser e e
Ilagan R.	11.0	7.9	1,010	889	39.4	I,	260	246
Magat R.	31.7	34.3	3,871	2,192	ı	f	1,142	728
Subtotal (3)	42.7	42.2	4,881	3,081	39.4	ľ	1,402	716
Total (1)+(2)+(3)	225.0	254.3	30,760	28,698	358.6	651.6	8,489	8,198
Total (Left + Right)	479.3	3.3	, ω,	59,458	1,0	,010.2	16,	16,687
	1						-	

Table 5.2 Economic Project Cost for Long-Term Plan

**************************************	Work item	Unit	Work U quantity	nit cost (₽)	Amount (P mil.)	Remarks
I. CI	HANNEL WORKS	Eir Um Ar ard water			rannika salama di redono e marendone Vinciliano e e le	
1.	Main Works	-	***	·	(15,987)	
	Preparatory w.	1.s.		-	1,030	8 %
	Dike embankment w.	km	480		3,451	
	Embankment (1)	m3	59,500,000	58	3,451	
	Revetment w.	km	45.1	**	770	
	Revetment (1)	m2	734,000	820	602	for low w. chan.
	Revetment (2)	m	276,000	610	168	for high w. chan.
	Narrow excavation w	m3	43,200,000	94	4,061	-
	Cut-off channel w.	km	34.5	· -	3,487	
	Excavation (1)	m3	52,800,000	45	2,376	for main Cagayan
	Excavation (1)	m3	17,800,000	45	801	for tributarites
	Revetment (3)	m2	516,000	600	310	
	Bank protection w.	km	112.3		550	
	Revetment (3)	m2	838,000	600	503	
	Groyne	unit	1,880	24,900	47	unit in total
,	Drainage sluice w.	unit	720	626,000	451	
•	Bridge w.	m2	17,300	5,950	103	
:	Miscellaneous	1.s.	-		2,085	15 % of the above
2.	Compensation	m2			(176)	
	Dike	m2	16,700,000	5.7	95	
	COC	m2	11,300,000	5.7	64	
	Others	m2	2,800,000	5.7	:16	10 %
3.	Engineering & Adm.		_	***	(2,398)	•
	Engineering	1.s.	luga	-	1,599	10 % of (1)
	Administration	1.s.	ç-±		799	5 % of (1)
	Contingency	1.s.	-	_		15 % of (1+2+3)
Tot	tal	-			21,345	
TT DA	AM WORKS					
	Main Works	1.s.		_	(4,370)	
· •	Cagayan No. 1	1.s.	New or	_	991	
	Alimit No.1 (A)	1.s.	_	_	1,343	
	Ilagan No.1	1.s.	***	_	1,412	
	Siffu No.1 (A)	1.s.	_		342	
	Mallig No.2	1.s.	_		282	
2	Compensation	1.s.	_	_	(139)	
	Engineering & Adm.	_	_	_	(656)	
٠.	Engineering	1.s.	-		437	10 % of (1)
	Administration	1.s.			219	5 % of (1)
4	Contingency	1.s.				20 % of (1+2+3)
	tal		News	_	6,198	· · · · · · · · · · · · · · · · · · ·
	· ··					
GRAND	TOTAL				27,543	

Table 5.3 Probable Flood Discharges (Long-term Plan)

Stretch		10	Return Peri	ad (a)		
orrecen _	2	5	10	.od (year) 25	50	100
			10	2.5	50	100
. 1	6,300	10,000	12,100	15,900	18,300	21,600
2	6,400	11,000	13,700	18,700	22,000	26,600
3	6,100	10,300	12,900	17,800	21,100	25,600
4	5,400	9,400	11,700	16,300	19,500	23,900
5	3,300	6,000	7,400	10,700	13,400	16,000
6	2,000	3,000	3,800	5,200	7,500	8,700
7	1,200	1,600	2,000	2,700	3,000	3,300
8	2,000	3,400	4,700	6,700	7,600	9,400
9	2,700	4,500	6,000	7,200	9,500	10,600

<u> </u>	oved Narrow		·			(m3/s)
Stretch		. F	leturn Peri	od (year)		18.1
_	2	5	10	25	50	100
1	6,200	9,700	11,600	15,100	17,500	20,700
2	6,500	10,400	12,700	17,100	20,200	24,500
3	6,100	9,800	12,000	16,300	19,400	23,700
4	5,400	8,900	11,000	15,100	18,100	22,200
5	3,100	5,500	6,700	9,800	12,300	14,700
6	2,000	3,000	3,800	5,200	7,500	8,700
7	1,200	1,600	2,000	2,700	3,000	3,200
8	1,800	2,800	3,700	5,700	6,500	8,200
9	2,500	4,000	5,300	6,400	8,300	9,300

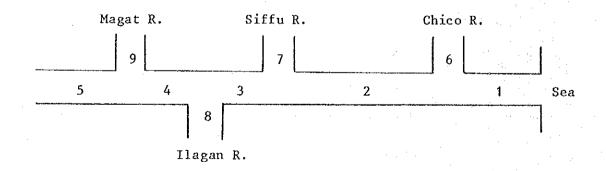


Table 5.4 Probable Flood Damage (Long-Term Plan)

					(Uni	t: P 10 ⁶)
Item	2 year	5 year	10 year	25 year	50 year	100 year
Without Project: Con	stant Pro	operty Co	ndition)	· · · · · · · · · · · · · · · · · · ·	<u></u>	
Buildings	1,754	3,000	3,863	5,161	5,809	6,402
Agricultural crops	130	231	286	347	380	424
Livestocks	16	29	36	44	48	53
Infrastructure	1,508	2,580	3,322	4,438	4,996	5,506
Sub-total	3,408	5,840	7,507	9,990	11,233	12,385
Indirect damages	170	292	375	500	562	619
Total damages	3,578	6,132	7,882	10,490	11,795	13,004
With Improved Narrow	s and Dat	ns: Const	ant Prope	rty Condi	tion)	
Buildings	1,529	2,542	3,176	4,264	5,063	5,785
Agricultural crops	99	192	242	305	341	384
Livestocks	12	24	30	38	43	48
Infrastructure	1,315	2,186	2,731	3,667	4,354	4,975
Sub-total	2,955	4,944	6,179	8,274	9,801	11,192
Indirect damages	148	247	309	414	490	560
Total damages	3,103	5,191	6,489	8,688	10,291	11,752

Table 5.5 Annual Flood Damages (Without Project)

Stretch	Return period of			Damages	Damages (# mil.)			Annual
	no-damage (year)	2-year	5-year	10-year	25-year	50-year	100-year	damages (P mil./yr)
Main Cagayan R.				·				
Mouth - Chico	2.56	ı	340.1	478.5	733.9	916.3	1,173.6	136.6
Chico - Tuguegarao	1.06	1,298.5	2,164.2	2,965.5	4,172.2	4,521.1	4,760.7	1,409.0
Tuguegarao - Siffu	1.05	689.3	1,498.3	1,935.4	2,377.1	2,524.4	2,681.2	859.3
Siffu - Ilagan	1.05	16.2	32.6	45.8	9.89	84.0	101.8	20.8
Ilagan - Magat	1.10	27.6	79.7	7.66	152.8	168.7	238.2	43.5
Magat - Upstream	1.35	118.6	291.4	389.7	720.1	1,018.1	1,256.6	171.8
Tributaries	÷							-
44.0		(•					
Siriu	0.82	34 4	63.4	ω ω	117.4	138.3	158.4	37.4
Mallig	1,75	40.7	52.6	73.0	94.0	107.3	6 6 6 6 6	29.8
Ilagan	1.04	33,1	115.9	144.5	201.3	222.3	311.8	60.3
Lower Magat	1.03	364.3	546.6	663.7	771.1	922.6	900.4	352.3
Upper Magat	1.03	872.5	945.4	1,002.9	1,079.8	1,175.8	1,218.4	672.2
Total	1	.1	1	2 + 32 32 1 3	ı	1	1	3,793.0
	- :		•			l	ı	•

Table 5.6 Estimation of Flood Reduction Benefit (Long-term Plan)

		Annual o	damages (mil./yr)		
Stretch	W/o pro.		25 yr	25 yr to		Benefit
	Up to	W/o pro	. W/pro.	W/o pro.	W/pro.	(₱ mil./yr)
	100 yr (1)	(2)	(3)	(4)	(5)	(6)
Main Cagayan R.						
Mouth-Chico	136.6	109.6	21.9	27.0	25.1	89.6
Chico-Tuguegarao	772.2	677.5	135.5	94.7	73.1	563.6
Tuguegarao-Siffu	799.9	733.2	146.6	66.7	63.8	589.5
Siffu-Ilagan	20.8	18,3	3.7	2.5	2.2	14.9
Ilagan-Magat	43.6	38.3	7.7	5.3	4.9	31.0
Magat-Upstream	171.7	143.1	143.1	28.8	25.4	3.4
Subtotal	1,945.0	1,720.0	458.5	225.0	194.5	1,292.0
Tributaries			•		÷	
Chico R.	636.8	598.2	598.2	38.6	38.6	0
Tuguegarao R.	59.4	51.1	51.1	8.3	8.3	0
Siffu R.	37.4	33.4	33.4	4.0	1.5	2.5
Mallig R.	29.8	26.7	26.7	3.1	2.1	1.0
Ilagan R.	60.3	53.4	53.4	6.9	5.0	1.9
Lower Magat R.	352.3	325.8	65.2	26.5	20.4	266.7
Upper Magat R.	672.1	637.6	637.6	34.5	34.5	0
Subtotal	1,848.1	1,726.2	1,465.6	121.9	110.4	272.1
Total	3,793.1	3,446.2	1,924.1	346.9	304.9	1,564.1

Notes: 1. (3) includes narrow imp., dam, and diking system works.

^{2. (5)} includes narrow imp. and dam works.

^{3.} Benefit = (2) - (3) + (4) - (5)

Table 5.7 Estimation of Bank Protection Benefit

Stretch		Bank eros	ion damage	es (₽ 1,000/	yr)	Benefit
			· · · · · · · · · · · · · · · · · · ·	Resi.land		and the second second
1. Main Cagayan R.	10,960	1,897	4,880	2,654	20,391	40,782
2. Chico R.	4,477	2,442	954	1,083	8,956	
3. Tuguegarao R.	1,374	124	572	332	2,402	4,804
4. P.D. Cabagan R.	49	38	0	12	99	198
5. P.D. Tumauini R.	41	28	175	10	254	508
6. Ilagan R.	705	132	330	170	1,337	2,674
7. Magat R.	1,499	609	714	215	3,037	6,074
Total	19,105	5,270	7,625	4,476	36,476	72,952

Table 5.8 Cost and Benefit Flow (Long-Term Plan)

IRR FOR LONG-TERM PLAN

INPUT: CH C.MAIN = 15,987.00 B.1985 = 1,637.00 C.COMP = 176.00 B.1995 = 2,723.20 DAM C.MAIN = 4,370.00 B.2005 = 3,834.10 C.COMP = 139.00 B.2020 = 7,780.90 B.2040 = 14,728.50

IRR.CPC = 0.0480 NPV-CPC = (24.0218) IRR.VPC = 0.1420 NPV-VPC = 15.0196

	IKK.VPC =	0.1420	NPV-VPC =	15.0196						
YEAR TOTAL	MAIN W. 20,357.0	COMPEN. 315.0	ENG.ADM. 3,053.6	CONTIN. 3,817.6	0 & M 4,275.0	T,COST 31,818.1	B.CPC 68,754.0	B.CPC-C 36,935.9	B.VPC 341,124.3	B.VPC-C 309,306.2
1985	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0
1986	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1987	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1988	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ŏ.ŏ	0.0
1989	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
. 1990	0.0	21.0	190.8	34.1	0.0	245.9	0.0	(245.9)	0.0	(245.9)
1991	1,357.1	21.0	190.8	252.5	0.0	1,821.4	0.0	(1,821.4)	0.0	(1,821.4)
1992	1,357.1	21.0	190.8	252.5	6.8	1,828.2	109.1	(1,719.1)	159.8	(1,668.4)
1993	1,357.1	21.0	190.8	252.5	13.6	1,835.0	218.3	(1,616.7)	334.1	(1,500.9)
1994	1,357.1	21.0	190.8	252.5	20.4	1,841.8	327.4	(1,514,4)	522.9	(1,318.9)
1995	1,357.1	21.0	190.8	252.5	27.1	1,848.6	436.5	(1,412.0)	726.2	(1,122.4)
1996	1,357.1	21.0	190.8	252.5	33.9	1,855.4	545.7	(1,309.7)	944.8	(910.6)
1997	1,357.1	21.0	190.B	252.5	40.7	1,862.2	654.8	(1,207.4)	1,178.2	(684.0)
1998	1,357.1	21.0	190.8	252.5	47.5	1,868.9	763.9	(1,105.0)	1,426.4	(442.6)
1999	1,357.1	21.0	190.8	252.5	54.3	1,875.7	873.1	(1,002.7)	1,689.4	(186.4)
2000	1,357.1	21.0	190.8	252.5	61.1	1,882.5	982,2	(900.3)	1,967.2	84.7
2001	1,357.1	21.0	190.8	252.5	67.9	1,889.3	1,091.3	(798.0)	2.259.8	370.5
2002	1,357.1	21.0	190.8	252.5	74.6	1,896.1	1,200.5	(695.6)	2,567.3	671,2
2003	1,357.1	21.0	190.8	252.5	81.4	1,902.9	1,309.6	(593.3)	2,889.5	986.7
2004	1,357.1	21.0	190.8	252.5	88.2	1,909.7	1,418.7	(490.9)	3,226.6	1,317.0
2005	1,357.1	0.0	190.8	249.1	95.0	1,892.1	1,527.9	(364.2)	3,578.5	1,686.4
2006	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	4,097.2	3,995.4
2007	0.0	0.0	0.0	.0.0	101.8	101.8	1,637.0	1,535.2	4,360.3	4,258.6
2008	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	4,623.5	4,521.7
2009	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	4,886.6	4,784.8
2010	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	5,149.7	5,047.9
2011	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	5,412.8	5,311.0
2012	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	5,675.9	5,574.2
2013	0.0	0.0	0 0	0.0	101.8	101.8	1,637.0	1,535.2	5,939.1	5,837.3
2014	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	6,202.2	6,100.4
2015	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	6,465.3	6,363.5
2016	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	6,728.4	6,626.6
2017	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	6,991.5	6,889.8
2018	0.0	. 0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	7,254.7	7,152.9
2019	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	7,517.8	7,416.0
2020	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	7,780.9	7,679.1
2021	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	8,128.3	8,026.5
2022	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	8,475.7	8,373.9
2023	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	8,823.0	8,721.3
2024	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	9,170.4	9,068.6
2025		0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	9,517.8	9,416.0
2026	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	9,865.2	9,763.4
2027	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	10,212.6	10,110.8
2028	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	10,559.9	10,458.2
2029	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	10,907.3	10,805.5
2030	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	11,254.7	11,152.9
2031	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	11,602.1	11,500.3
2032	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	11,949.5	11,847.7
2033	0.0	0.0	0.0	0.0	101.8	101.8	1,63710	1,535.2	12,296.8	12,195.1
2034	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	12,644.2	12,542.4
2035	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	12,991.6	12,889.8
2036	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	13,339.0	13,237.2
2037	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	13,686.4	13,584.6
2038	0.0	0.0	0.0	0.0		101.8	1,637.0	1,535.2	14,033.7	13,932.0
2039	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	14,381.1	14,279.3
2040	0.0	0.0	0.0	0.0	101.8	101.8	1,637.0	1,535.2	14,728.5	14,626.7

Remarks:

^{1.} Figures in () show negative values.

^{2.} All unit in million pesos

Table 5.9 Principal Features of Long-Term Plan

1)	Cha	nnel Works	
	a)	Dike embankment works:	59,500,000 m3
	b)	Revetment works (45.1 km long):	1,010,000 m2
	c)	Drainage sluice works:	720 units
	d)	Narrow excavation works:	43,200,000 m3
	e)	Cut-off channel works (34.5 km lo	ong): 70,600,000 m3
	f)	Bank protection works:	112.3 km
	g)	Appurtenant facility works:	3 bridges
		- Buntun bridge:	Reconstruction
		- Gamu bridge:	Extension
		- Naguilian bridge:	Extension
2)	F1o	od Control Dam Works (Dam heig	ght: m) (F.C.: MCM)
	٠	- Cagayan No.1 45.	0 318
		- Alimit No.1(A) 84.	0 200
		- Ilagan No.1 69.	0 382
		- Siffu No.1(A) 44.	0 96.1
		- Mallig No.2 43.	93.4
	_		•
3)	Com	pensation	
3)	Com a)	pensation Channel works:	30,800,000 m2
3)			30,800,000 m2 113,500,000 m2
3)	.a)	Channel works:	•
3)	.a)	Channel works: Dam works:	113,500,000 m2
3)	.a)	Channel works: Dam works: - Cagayan No.1 dam	113,500,000 m2 47,700,000 m2
3)	.a)	Channel works: Dam works: - Cagayan No.1 dam - Alimit No.1 dam	113,500,000 m2 47,700,000 m2 10,000,000 m2
3)	.a)	Channel works: Dam works: Cagayan No.1 dam Alimit No.1 dam Ilagan No.1 dam	113,500,000 m2 47,700,000 m2 10,000,000 m2 29,100,000 m2
3)4)	a) b)	Channel works: Dam works: Cagayan No.1 dam Alimit No.1 dam Ilagan No.1 dam Siffu No.1(A) dam	113,500,000 m2 47,700,000 m2 10,000,000 m2 29,100,000 m2 14,400,000 m2
	a) b)	Channel works: Dam works: Cagayan No.1 dam Alimit No.1 dam Ilagan No.1 dam Siffu No.1(A) dam Mallig No.2 dam	113,500,000 m2 47,700,000 m2 10,000,000 m2 29,100,000 m2 14,400,000 m2 12,300,000 m2
	a) b) Pro	Channel works: Dam works: Cagayan No.1 dam Alimit No.1 dam Ilagan No.1 dam Siffu No.1(A) dam Mallig No.2 dam ject Cost (Economic):	113,500,000 m2 47,700,000 m2 10,000,000 m2 29,100,000 m2 14,400,000 m2 12,300,000 m2 №27,543,000,000
	a) b) Pro a) b)	Channel works: Dam works: Cagayan No.1 dam Alimit No.1 dam Ilagan No.1 dam Siffu No.1(A) dam Mallig No.2 dam ject Cost (Economic): Channel works: Dam works:	113,500,000 m2 47,700,000 m2 10,000,000 m2 29,100,000 m2 14,400,000 m2 12,300,000 m2 \$\frac{1}{2}7,543,000,000 \$\frac{1}{2}1,345,000,000
4)	a) b) Pro a) b)	Channel works: Dam works: Cagayan No.1 dam Alimit No.1 dam Ilagan No.1 dam Siffu No.1(A) dam Mallig No.2 dam ject Cost (Economic): Channel works: Dam works:	113,500,000 m2 47,700,000 m2 10,000,000 m2 29,100,000 m2 14,400,000 m2 12,300,000 m2 \$\frac{27}{3},543,000,000 \$\frac{2}{3},345,000,000 \$\frac{2}{3},345,000,000
4)	a) b) Pro a) b) Eco	Channel works: Dam works: Cagayan No.1 dam Alimit No.1 dam Ilagan No.1 dam Siffu No.1(A) dam Mallig No.2 dam ject Cost (Economic): Channel works: Dam works: nomic Evaluation (Const. property	113,500,000 m2 47,700,000 m2 10,000,000 m2 29,100,000 m2 14,400,000 m2 12,300,000 m2 P27,543,000,000 P21,345,000,000 P6,198,000,000 cy) (Vari. property) 3,834.1 /1
4)	a) b) Pro a) b) Eco	Channel works: Dam works: Cagayan No.1 dam Alimit No.1 dam Ilagan No.1 dam Siffu No.1(A) dam Mallig No.2 dam ject Cost (Economic): Channel works: Dam works: momic Evaluation (Const. property Benefit (Pmil./yr) 1,637.0	113,500,000 m2 47,700,000 m2 10,000,000 m2 29,100,000 m2 14,400,000 m2 12,300,000 m2 P27,543,000,000 P21,345,000,000 P6,198,000,000 cy) (Vari. property) 3,834.1 /1
4)	a) b) Pro a) b) Eco	Channel works: Dam works: Cagayan No.1 dam Alimit No.1 dam Ilagan No.1 dam Siffu No.1(A) dam Mallig No.2 dam ject Cost (Economic): Channel works: Dam works: nomic Evaluation (Const. propert) Benefit (Pmil./yr) 1,637.0 Flood reduction 1,564.0	113,500,000 m2 47,700,000 m2 10,000,000 m2 29,100,000 m2 14,400,000 m2 12,300,000 m2 \$\frac{27}{12},543,000,000 \$\frac{21}{12},345,000,000 \$\frac{21}{12},34

Table 5.10 Screening of Dike Schemes

Dike	Locat From (km)	ion To (km)	Dike volume	Inundated building	Efficiency (1000 m3/b1dg	.) Remarks
÷.			(1000 m3) (1)	(nos) (2)	(1)/(2)	
MOUTH	ALCALA (LEFT)				······································	
MAL-1	1.0 - 2.590	10.0 + 1.540	1,962	733	2.7	
MAL-2	23.0 + 0.380	25.0 +2.000	557	245	2.3	
MAL-3	35.0 - 0.280	43.0 + 5.000	6,578	2,507	2.6	
ALCALA	.TUGUEGARAO (LEF	T)				
ATL-1	62.0 + 2.750	123.0 + 4.860	21,975	11,934	1.8	
	AOSIFFU R. JC					
TSL-1		160.0 + 0.370	9,509	5,609	1.7	
TSL-2	160.0 + 0.420	195.0 + 3,700	9,684	5,933	1.6	Incl. Siffu Left
	JCTUPSTREAM				_	
SUL-1	195.0 + 4.840	201.0 - 0.300	293	75		Incl. Siffu Right
SUL-2		221.0 + 1.770	3,681	619	5.9	•
SUL-3	221.0 + 3.550	233.5 - 0.700	8,714	3,964		Incl. Magat Left
SUL-4	233.5 + 1.280	244.0 - 6.650	4,214	2,296	1.8	Incl. Magat Right
	ALCALA (RIGHT)					
MAR~1	1.0	15.0 + 0.110	2,142	730	2.9	
MAR-2	15.0 + 2.030	30.0 + 0.140	1,554	726	2.1	
MAR-3	33.0 + 0.240	35.0 + 0.480	372	130	2.9	
MAR-4	40.0 + 0.570	54.0	4,764	2,995	1.6	
MAR-5	54.5 + 2.200	62.0 + 2.850	8,472	900	9.4	Incl. Pared Right
	.TUGUEGARAO (RIG				2.0	
ATR-1		115.8 ÷ 0.570	16,394	4,262		Incl. Pared Left
ATR-2	115.8 + 0.650	138.0 + 0.500	7,389	13,459	0.5	Incl. Tuguegarao Right
	AOSIFFU R. JC		. 2 .01	0.44	. 2 . 6	
TSR-1	138.0 + 0.500		7,581	2,114		Incl. Tuguegarao Left
TSR-2	149.5 + 3.030		3,456	1,187		Incl.Pinacanauan Right
TSR-3	154.5 + 3.800	167.0 + 2.750	3,887	3,908		Incl.Pinacanauan Left
TSR-4 TSR-5		192.0 + 1.300 201.0 + 3.550	7,212	4,551 347		Incl. Tumauiní Right Incl. Tumauni Left
121/-3	192,0 + 1,900	201.0 + 3.330	1,701	347	4.9	inci. Tumauni Leit
	JCTUPSTREAM		A: 100	1 257	2 /	Ingl Tlager Disks
SUR-1	206.3	211.0 + 1.020 215.0	4,199	1,254		Incl. Ilagan Right
SUR-2	211.0 + 1.870		2,740	1,364		Incl. Ilagan Left
SUR-3	217.0 + 3.200 228.0 + 2.100	226.5 + 0.530	838 1,297	47 815	17.9	
SUR-4 SUR-5	233.5 + 2.740	233.5 + 2.500 254.3	3.544	815 1,618	1.6 2.2	
		EJM + J	J.J44	1,010	2.4.2.	
ILAGAN (1	*	21.5 + 0.390	409	199	2.1	
IL -1	11.8 + 4.900	21.3 + 0.390	403	133	4.1	
MAGAT (R		46 6 7 070	2 770		۵ ۸	
MA -1	10.0 + 0.230	15.5 + 4.870	2,770	571 272	4.8	
MA -2	25.5 + 0.980	50.0 + 0.720	627	372	1.7	

Remarks: (1) Dike volume was estimated preliminarily based on 100-year flood without dam and narrow improvement.

without dam and narrow improvement.

(2) Number of inundated buildings was estimated for the condition without dike based on 100-year flood.

Table 5.11 Project Costs of Dike Schemes

Work item	Unit	Work quantity	Unit Cost (₽)	Amount (⊉ mil.)
TUGUEGARAO DIKE				
1. Main Works Preparatory w. Dike embankment w. Embankment Revetment w. Revetment (1) Revetment (2) Drainage sluice w. Miscellaneous 2. Compensation	1.s. km m3 km m2 m2 unit 1.s. m2	22.1 2,350,000 137,000 53,000 33	- - 58 - 820 610 626,000 - - 5.7	(374.7) 24.1 136.3 136.3 144.7 112.3 32.4 20.7 48.8 (4.6) 4.2
Dike Others	m2	73,600	5.7	0.4
Engineering & Adm.	1.s.		-	(56.1)
4. Contingency	1.s.	-	-	(65.2)
Total				500.6
CABAGAN DIKE				
1. Main Works Preparatory w. Dike embankment w. Embankment Revetment w. Revetment (1) Revetment (2) Drainage sluice w. Miscellaneous	1.s. km m3 km m2 unit 1.s.	15.4 1,240,000 62,700 19,500 23	58 - 820 610 626,000	(186.8 12.0 71.9 71.9 63.3 51.4 11.9 14.4 25.2
 Compensation Dike Others 	m2 m2 m2	415,000 41,500	- 5.7 5.7	(2.6) 2.4 0.2
3. Engineering & Adm.	1.s.	- .	-	(28.0)
4. Contingency	1.s.	-		(36.1)
Total				276.9

Remarks: Costs are on economic basis.

Table 5.12 Project Costs of Narrow Improvement Schemes

Work item	Unit	Work quantity	Unit cost (P)	Amount (₽ mil.)
NARROW IMP. (SITE-NLL)				
1. Main Works		_		(679.7)
Preparatory w.	l.s.		~	43.8
Narrow excavation w.	m3	5,830,000	94	548.0
Miscellaneous	1.s.	-	_	87.9
2. Compensation	m2	184,000	5.7	(1.0)
3. Engineering & Adm.	1.s.	.	_	(102.0)
4. Contingency	1.s.	~	<u></u>	(117.4)
Total	* •			900.1
NARROW IMP. (SITE -NLR)				
1. Main Works	-		wa	(2,049.9)
Preparatory w.	1.s.	_	· -	132.5
Narrow excavation w.	m3	17,620,000	94	1,656.3
Miscellaneous	l.s.		-	261.1
2. Compensation	m2	985,000	5.7	(5.6)
3. Engineering & Adm.	1.s.			(307.5)
4. Contingency	1.s.	. -		(354.4)
Total				2,717.4
NARROW IMP. (SITE-NUP)				
1. Main Works	-	·	-	(2,319.1)
Preparatory w.	l.s.			148.4
Narrow excavation w.	m3	19,740,000	94	1,855.6
Miscellaneous	1.s.			315.1
2. Compensation	m2	839,000	5.7	(4.8)
3. Engineering & Adm.	1.s.			(347.9)
4. Contingency	l.s.	~	· ~	(400.7)
Total				3,072.5

Remarks: Costs are on economic basis.

Table 5.13 Project Costs of Flood Control Dams

					(Unit: P mil.)	mil.)
1	Dam scheme	Main works	Compensation	Eng. & adm.	Contingency	Total
	Cagayan No.1	990.53	100.02	148.58	247.83	1,486.96
2.	Alimit No.1 (A)	1,342.60	70°0	201,39	308.81	1,852.84
m)	Ilagan No.1	1,411.62	14.01	211.74	327.47	1,964.84
4.	Siffu No.1 (A)	342,48	14.24	51.37	81.62	489.71
5.	5. Mallig No.2	282.35	10.46	42.35	67.03	402.19

Table 5.14 Project Cost of Bank Protection Works

	Work item	Unit	Work quantity	Unit cost (P)	Amount (P mil.)
	Main Works	Κ'n	112.3	1	683
	Preparatory		,	I	77
	Revetment	m2	838,000	009	503
	Groyne	unit	1,880	24,900	7.7
	Miscellaneous	1.8.	;	1	68
7	Eng. & adm.	S	1	, : 1	102
က်	Contingency	. S.	i	į	118
	Total				903

Table 5.15 Design Discharge for Candidate Schemes

	-					-	(Uni	(Unit: m3/s)
	•		Magapit		÷	Dam		
Stretch	Existing	Dike	improve.	Cagayan No.1	Magat /Alimit	Ilagan No.1	Siffu No.1 (A)	Mallig No.2
·-	21,600	15,900	22,000	21,300	21,500	21,100	21,600	21,600
2	26,600	18,700	26,600	25,800	26,000	26,000	26,600	26,600
m	25,600	17,800	25,600	24,800	25,000	25,000	25,600	25,600
4	23,900	16,300	23,900	23,100	23,400	23,900	23,900	23,900
Ś	16,000	10,700	16,000	14,700	16,000	16,000	16,000	16,000
9	8,700	5,200	8,700	8,700	8,700	8,700	8,700	8,700
7	3,300	2,700	3,300	3,300	3,300	3,300	3,200	3,200
∞	6,400	6,700	6,400	9,400	9,400	8,200	005,6	9,400
σ	10,600	7,200	10,600	10,600	9,300	10,600	10,600	10,600
Return period of flood	100 yr	25 yr	100 yr	100 yr	100 yr	100 yr	100 yr	100 yr
	Magat R.		Siffu	fu R.		Chico R.		
	on			7		9		
5		7	m		2			Sea
		∞						
		l Ilagan	1 R.					

Table 5.16 Annual Flood Damages with Narrow Improvement Schemes

		Damages	(₽ mi1./y	·r)	
Stretch	W/O Project			Site-NLR	Site-NUP
Main Cagayan R.				:	
Mouth - Chico	136.6	139.7	139.7	139.7	139.7
Chico - Tuguegarao	1,409.0	1,209.4	1,319.4	1,237.3	1,401.0
Tuguegarao - Siffu	859.3	859.3	859.3	859.3	859.3
Siffu - Ilagan	20.8	20.8	20.8	20.8	20.8
Ilagan - Magat	43.5	43.5	43.5	43.5	43.5
Magat - Upstream	171.8	171.8	171.8	171.8	171.8
Subtotal	2,641.0	2,444.5	2,544.5	2,472.4	2,636.1
Tributaries					
Siffu	37.4	37.4	37.4	37.4	37.4
Mallig	29.8	29.8	29.8	29.8	29.8
Ilagan	60.3	60.3	60.3	60.3	60.3
Lower Magat	352.3	352.3	352.3	352.3	352.3
Upper Magat	672.2	672.2	672.2	672.2	672.2
Subtotal	1,152.0	1,152.0	1,152.0	1,152.0	1,152.0
Total	3,793.0	3,596.5	3,706.5	3,624.4	3,788.1

Remarks:

^{1.} Chico river is included in the stretch Chico - Tuguegarao.

^{2.} Tuguegarao river is included in the stretch Tuguegarao - Siffu.

Table 5.17 Annual Flood Damages with Magat Dam Schemes

Stretch	W/O Project	Damages	(P mil./y	Alimit dam	·····
	W.O. I. I.O. J. C. C.	100 mcm	200 mcm	300 mcm	400 mcm
	· · · · · · · · · · · · · · · · · · ·				
Main Cagayan R.					
Mouth - Chico	136.6	136.6	133.8	124.9	112.1
Chico - Tuguegarao	1,409.0	1,404.6	1,403.0	1,323.7	1,237.5
Tuguegarao - Siffu	859.3	857.1	854.8	810.8	759.2
Siffu - Ilagan	20.8	20.7	20.6	19.3	17.8
Ilagan - Magat	43.5	43.5	43.5	40.8	37.4
Magat - Upstream	171.8	171.8	171.8	171.8	160.1
Subtotal	2,641.0	2,634.3	2,627.5	2,491.3	2,324.1
Fributaries					
Siffu	37.4	37.4	37.4	. 37.4	37.4
Mallig	29.8	29.8	29.8	29.8	29.8
Ilagan	60.3	60.3	60.3	60.3	60.3
Lower Magat	352.3	316.2	243,4	199.0	153.1
Upper Magat	672.2	672.2	672.2	672.2	672.2
Subtotal	1,152.0	1,115.9	1,043.1	998.7	952.8
Total	3,793.0	3,750.2	3,670.6	3,490.0	3,276.9

Remarks:

^{1.} Chico river is included in the stretch Chico - Tuguegarao.

^{2.} Tuguegarao river is included in the stretch Tuguegarao - Siffu.

Table 5.18 Annual Flood Damages with Dam Schemes

	Damages (P mil./yr)					
Stretch	W/O Project	Cagayan	Ilagan	Siffu No.1(A) dam	Mallig No.2 dam	
Main Cagayan R.						
Mouth - Chico	136.6	130.6	130.1	136.6	136.6	
Chico - Tuguegarao	1,409.0	1,380.4	1,402.3	1,409.0	1,409.0	
Tuguegarao - Siffu	859.3	839.1	854.9	859.3	859.3	
Siffu - Ilagan	20.8	19.9	20.6	20.8	20.8	
Ilagan - Magat	43.5	41.4	43.5	43.5	43.5	
Magat - Upstream	171.8	149.2	171.8	171.8	171.8	
Subtotal	2,641.0	2,560.6	2,623.2	2,641.0	2,641.0	
Tributaries						
Siffu	37.4	37.4	37.4	5,2	37.4	
Mallig	29.8	29.8	29.8	29.8	13.1	
Ilagan	60.3	60.3	39.0	60.3	60.3	
Lower Magat	352.3	352.3	352.3	352.3	352.3	
Upper Magat	672.2	672.2	672.2	672.2	672.2	
Subtotal .	1,152.0	1,152.0	1,130.7	1,119.8	1,135.2	
Total	3,793.0	3,712.6	3,753,9	3,760.8	3,776.3	

Remarks:

- 1. Chico river is included in the stretch Chico Tuguegarao.
- 2. Tuguegarao river is included in the stretch Tuguegarao Siffu.

Table 5.19 Benefits of Candidate Schemes

Scheme				enefit (Pr		
		1985	1995	2005	2020	2040
Existing	D	3,793.1	6,361.0	8,998.4	18,410.4	34,981.4
Narrow imp.	D	3,706.6	6,216.1	8,793.4	17,992.4	34,188.2
(Site-NLL)	В	86.5	144.9	205.0	418.0	793.2
- do -	D	3,624.5	6,048.4	8,597.7	17,592.1	33,427.8
(Site-NLR)	В	168.6	282.6	400.7	818.3	1,553.6
- do -	D	3,788.2	6,352.8	8,986.8	18,386.6	34,936.
(Site-NUP)	B	4.9	8.2	11.6	23.8	45.
Cagayan No.1	D	3,712.7	6,226.1	8,807.3	18,019.0	34,237.5
dam	В	80.4	134.9	191.1	391.4	743.9
Magat/Alimit dam	D	3,750.3	6,289.5	8,899.3	18,207.3	34,595.2
(100 MCM)	В	42.8	71.5	99.1	203.1	386.2
- do -	D	3,670.7	6,156.2	8,713.5	17,825.9	33,869.2
(200 MCM)	В	122.4	204.8	284.9	584.5	1,112.2
- do -	D	3,490.1	5,853.6	8,287.2	16,952.9	32,209.9
(300 MCM)	В	303.0	507.4	711.2	1,457.5	2,771.5
- do -	D	3,277.0	5,496.2	7,783.6	15,921.3	30,248.6
(400 MCM)	В	516.1	864.8	1,214.8	2,489.1	4,732.8
Ilagan No.1	D.	3,753.9	6,295.3	8,904.7	18,218.9	34,617.
dam	В	39.2	65.7	93.7	191.5	363.
Siffu No.1 (A)	D	3,760.8	6,307.5	8,925.7	18,263.6	34,703.
dam	В	32.3	53.5	72.7	146.8	277.5
Mallig No.2	D	3,776.4	6,333.3	8,961.0	18,334.7	34,838.4
dam	В	16.7	27.7	37.4	75.7	143.

Remarks D: Damages

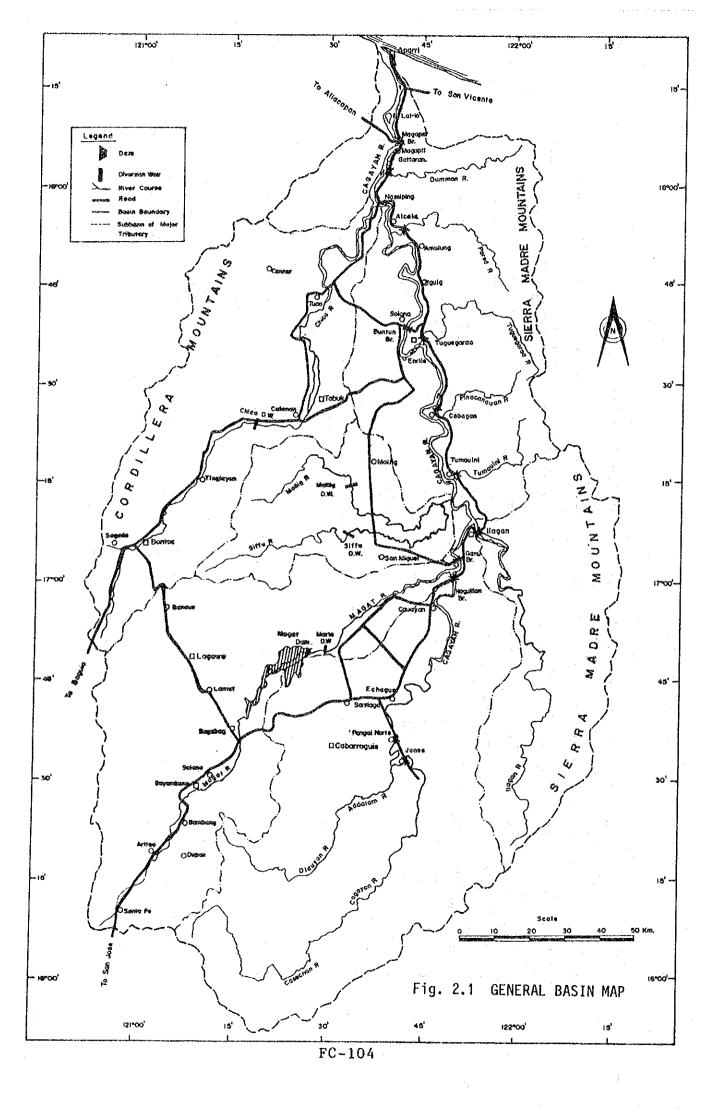
B: Benefit as decrease in damages with and without project

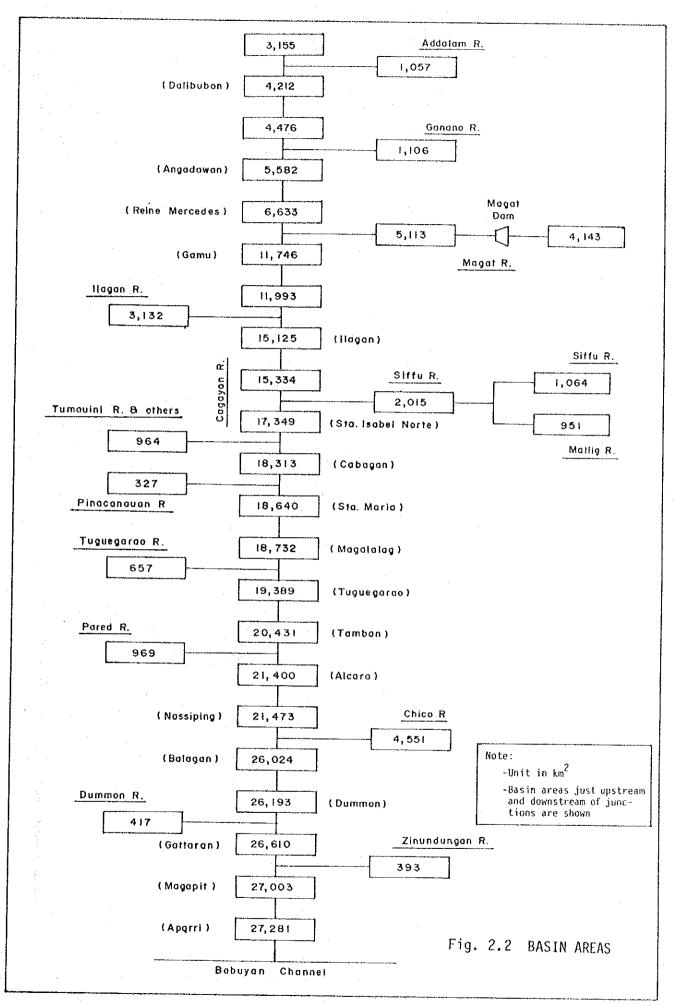
Economic Viability of Candidate Schemes for Master Plan Table 5.20

Sub-project	Cost Const. T	(Pmil.) Total O & M	Constant Prop. C. Total B (mil.) IRR	p. C. IRR (%)	Variable Prop. C. Total B (mil.) IRR	o. C. IRR (%)	Rank
Tuguegarao dike	9.005	117.5	2,867.0	11.6	13,718.2	23.1	,
Cabagan dike	276.9	65.1	817.8	5.3	3,865.1	13.6	4
Narrow imp. (Site-NLL)	900.1	211.5	4,065.5	8	19,135.6	18.9	7
- do - (Site-NLR)	2,717.4	638.6	7,919.5	5.2	37,453.6	13.5	70
- do - (Site-NUP)	3,072.5	722.0	230.3	. 1 .	1,089.8	1	der-
Cagayan No.1 dam	1,487.0	334.6	3,616.7	3.8	17,655.8	1.0	∞
Magat/Alimit dam	1,852.8	416.9	5,507.6	5.1	26,389.5	£.	9
Ilagan No.1 dam	1,964.8	442.1	1,760.9	1	8,636.8	2.4	10
Siffu No.1 (A) dam	489.7	110.2	1,452.6	5.1	6,632.0	12.8	~
Mallig No.2 dam	402.2	90.5	752.0	2.2	3,417.3	წ ი	Q
Bank protection	903.4	212.3	3.431.0	7.3	10 620 5	, r	.

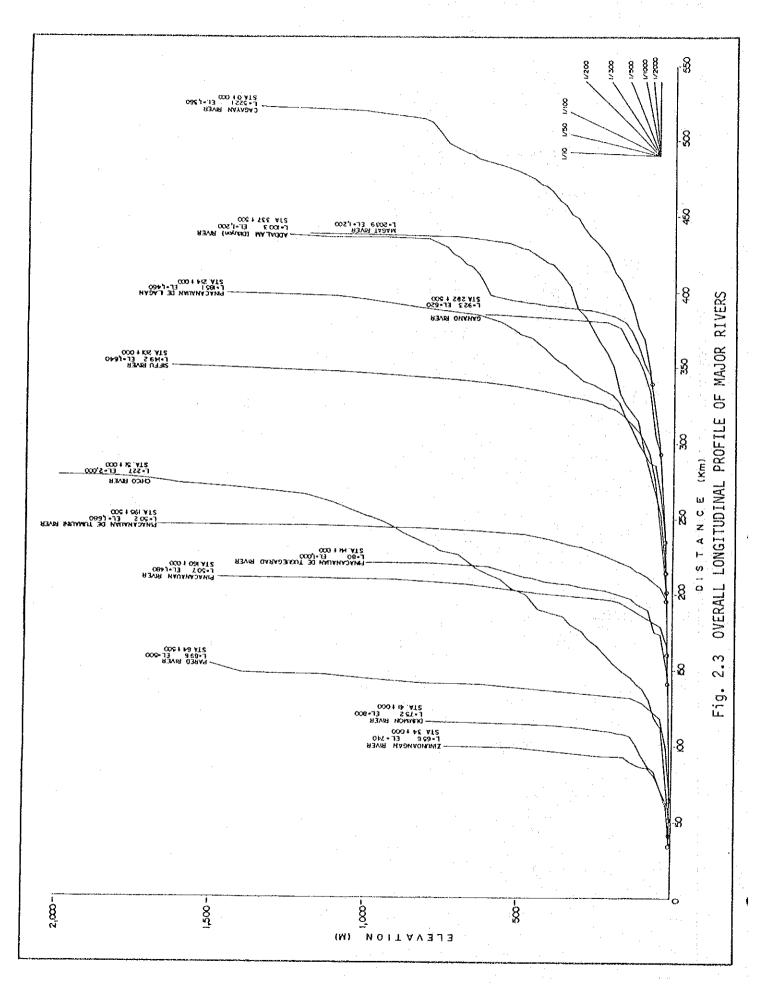
1. Constant and variable Prop. C. denote total benefit and IRR under the constant and variable property conditions of basin during project life of 50 years.

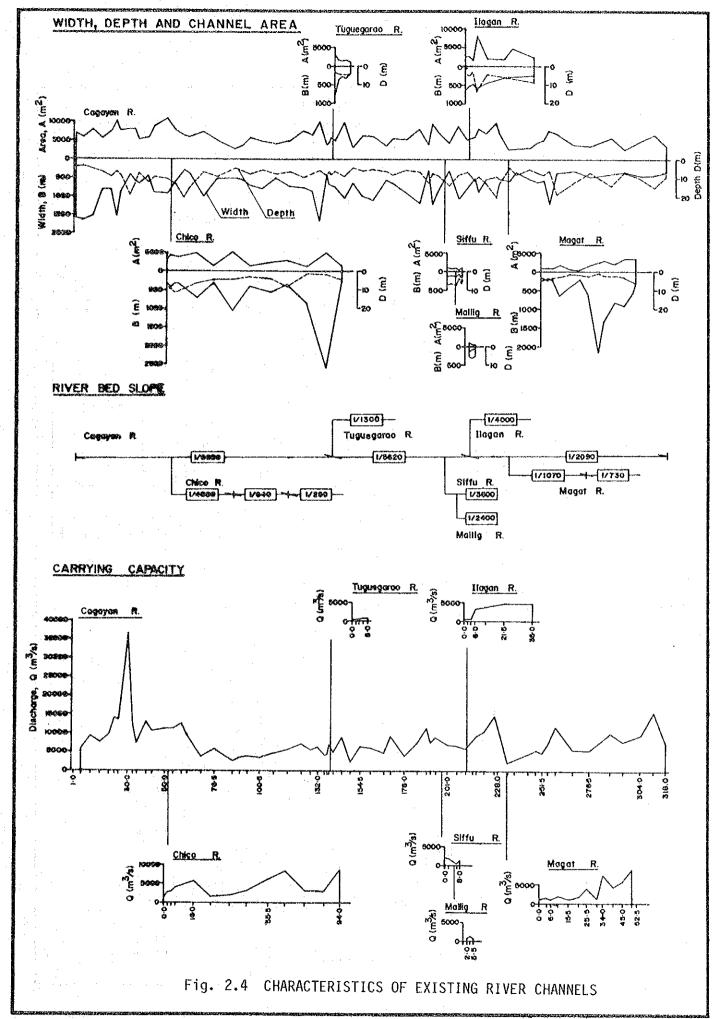
2. Regarding dam projects, single purpose for flood control is assumed. Note:

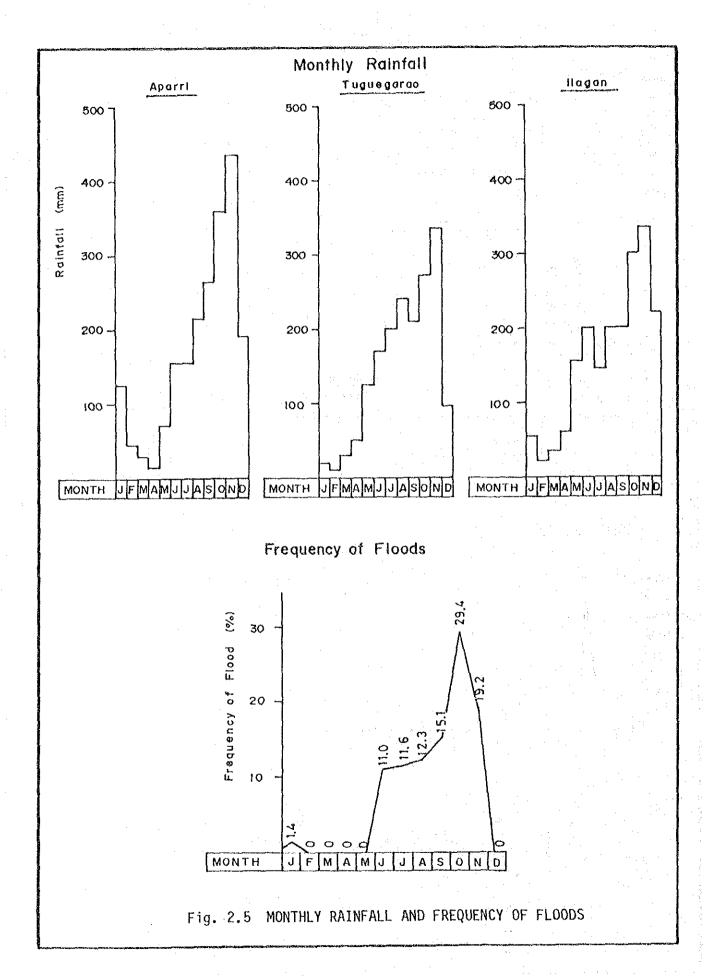

Priority Ranks after Intersectoral Adjustment Table 5.21

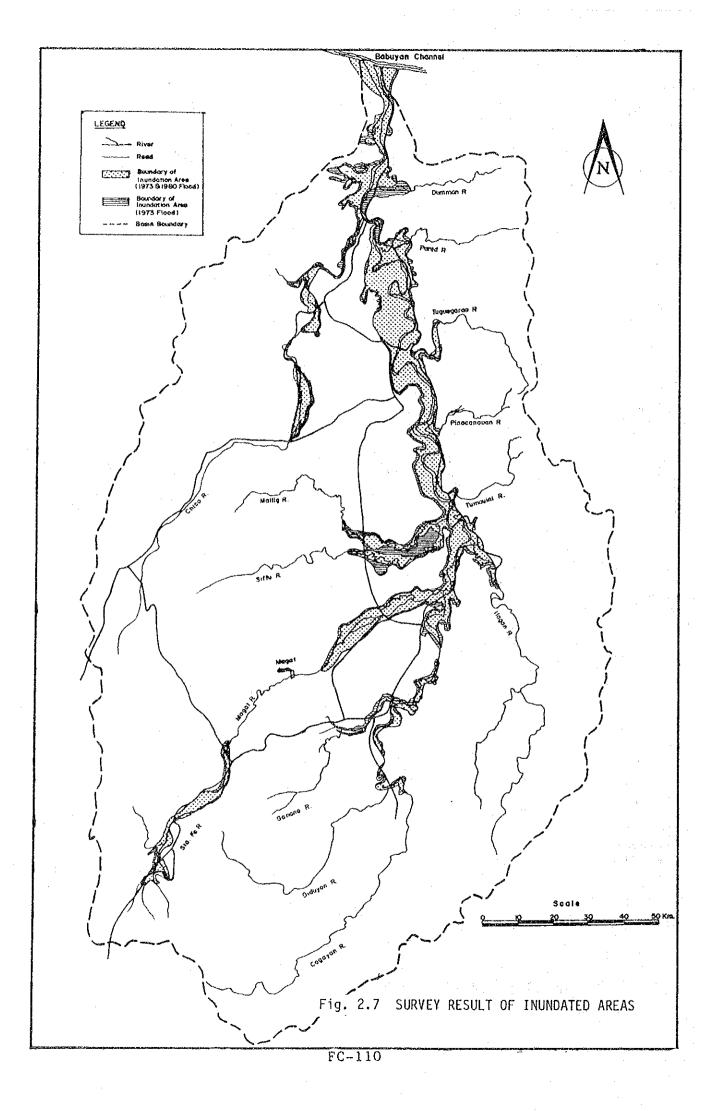

Sub-project	Cost Const. 7	Cost (F mil.) st. Total O & M	Constant Prop. C. Total B (mil.) IRR	. C. IRR (%)	Variable Prop. C. Total B (mil.) IRR	. C. IRR (Z)	Rank
Tuguegarao dike	500.6	117.5	2,867.0	11.6	13,718.2	23.1	
Narrow imp. (Site-NLL)	900.1	211.5	4,065.5	8 0.0	19,135.6	18.9	2
Siffu No.1 (A) dam	279.3	8.46	1,453.5	ر. س س	6,631.8	18.6	m
Bank protection	903.4	212.3	3,431.0	7.3	10,620.5	13.7	4
Cabagan dike	276.9	65.1	817.8	5. 	3,865.1	13.6	ī
Narrow imp. (Site-NLR)	2,717.4	638.6	7,919.5	5.2	37,453.6	ب س ب	9
Magat/Alimit dam	904.7	204.5	2,491.0	4.6	11,890.1	12.5	<u>,</u>
Cagayan No.1 dam	1,487.0	334.6	3,616.7	8.8	17,655.8	5	∞
Mallig No.2 dam	343.4	0.86	751.5	3.0	3,418.0	10.3	6
Ilagan No.1 dam	1,964.8	442.1	1,759.5		8,637.0	5.4	5
Narrow imp. (Site-NUP)	3,072.5	722.0	230.3	i	1,089.8	l	ferre ferre

1. Constant and variable Prop. C. denote total benefit and IRR under the constant and variable property conditions of basin during project life of 50 years.

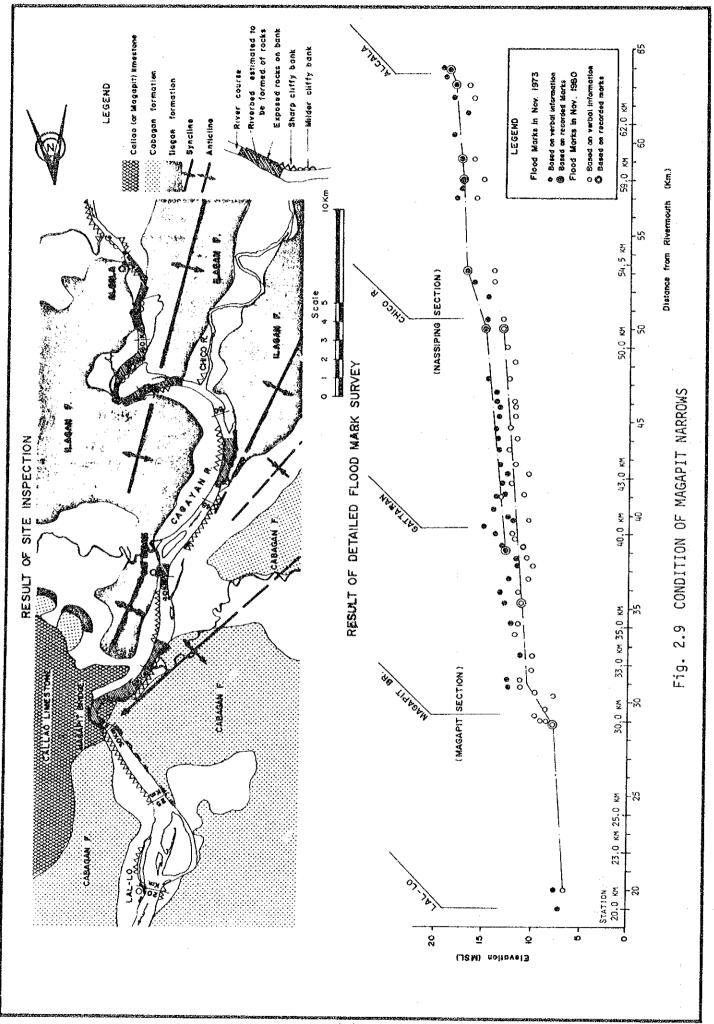

2. Regarding dam projects, multipurpose dams are assumed. Note:

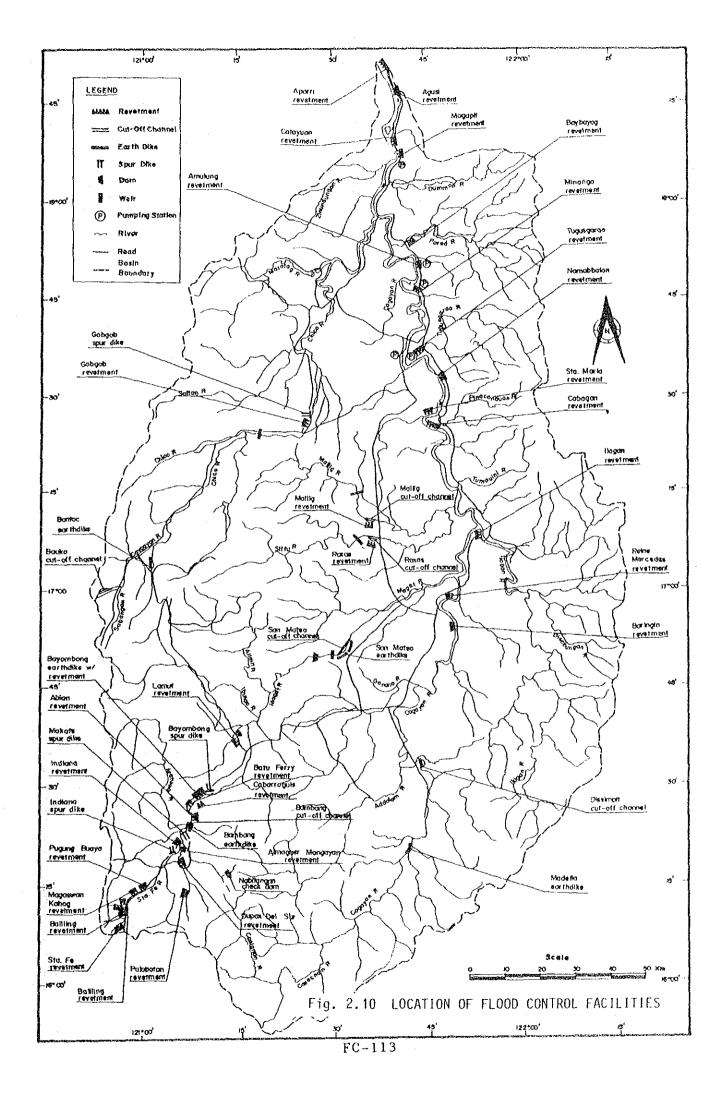

FC-103




FC-105




FC-107



FC-111

FC-112

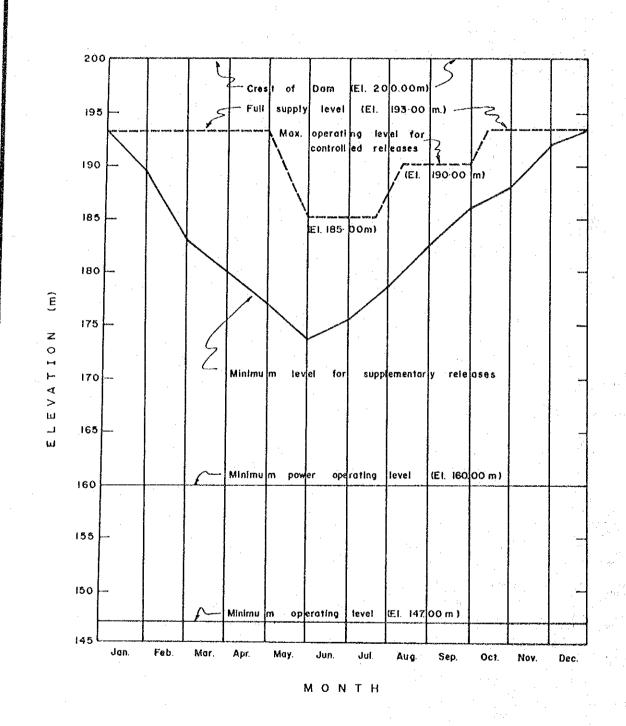
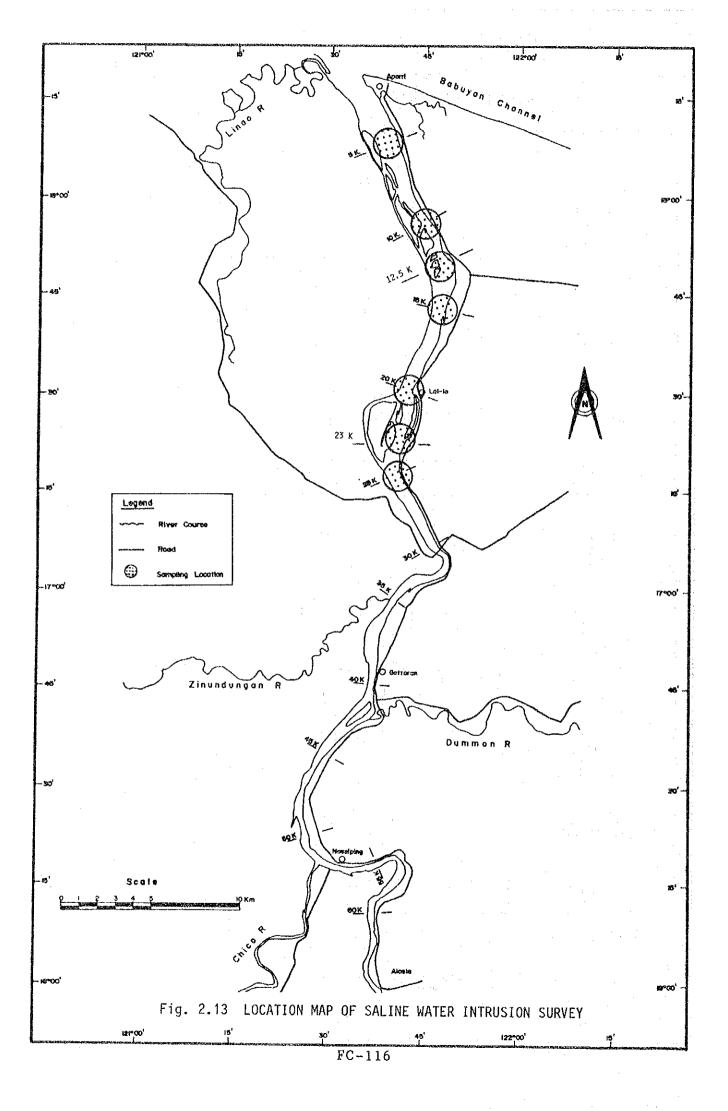
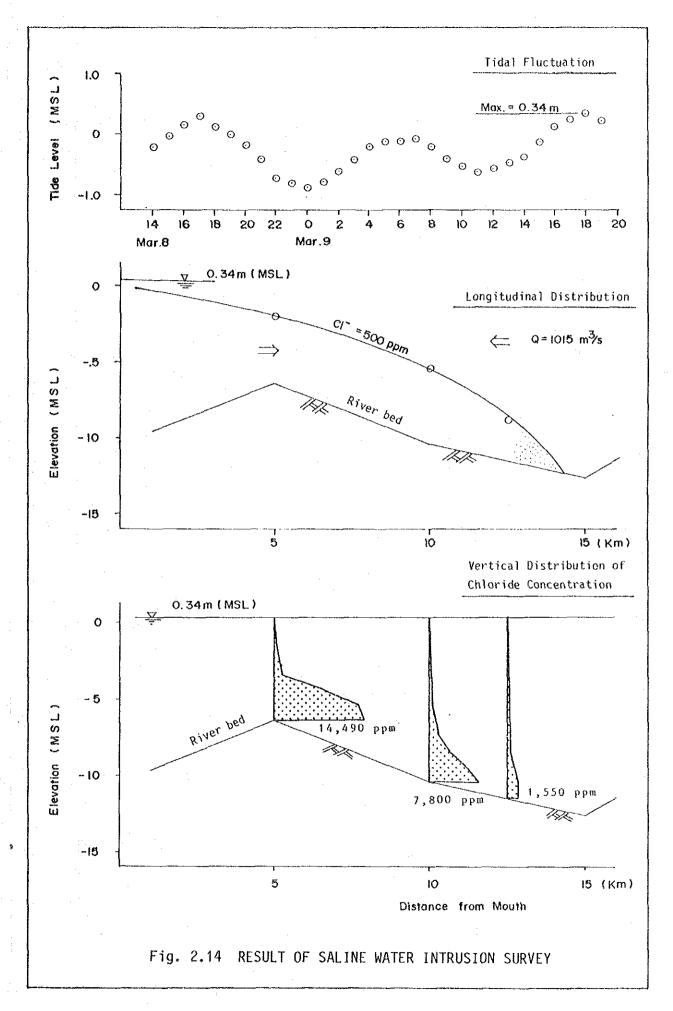
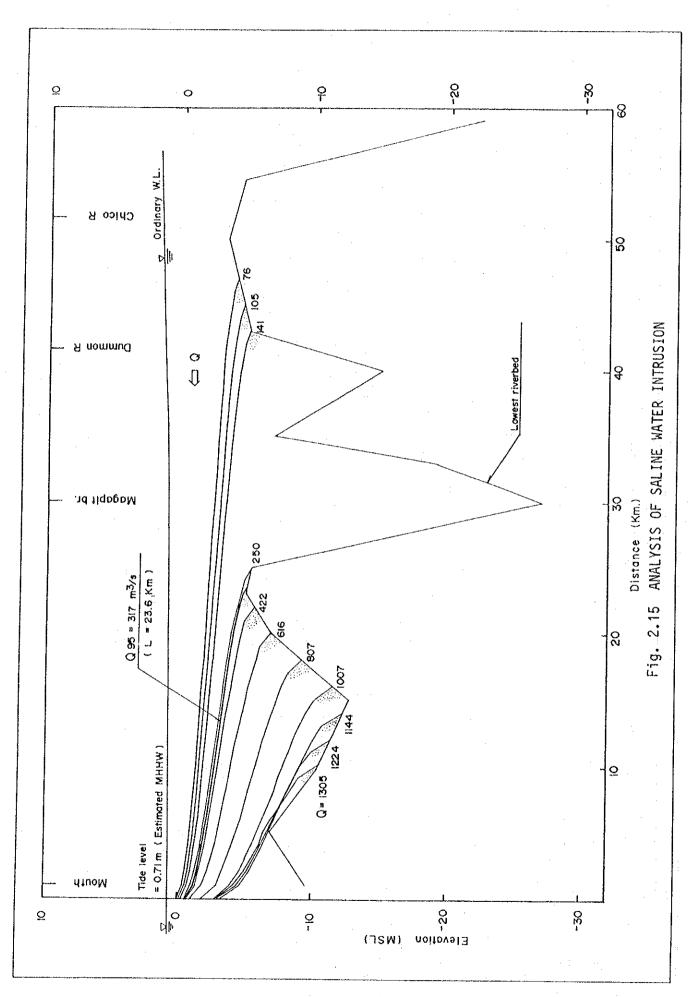
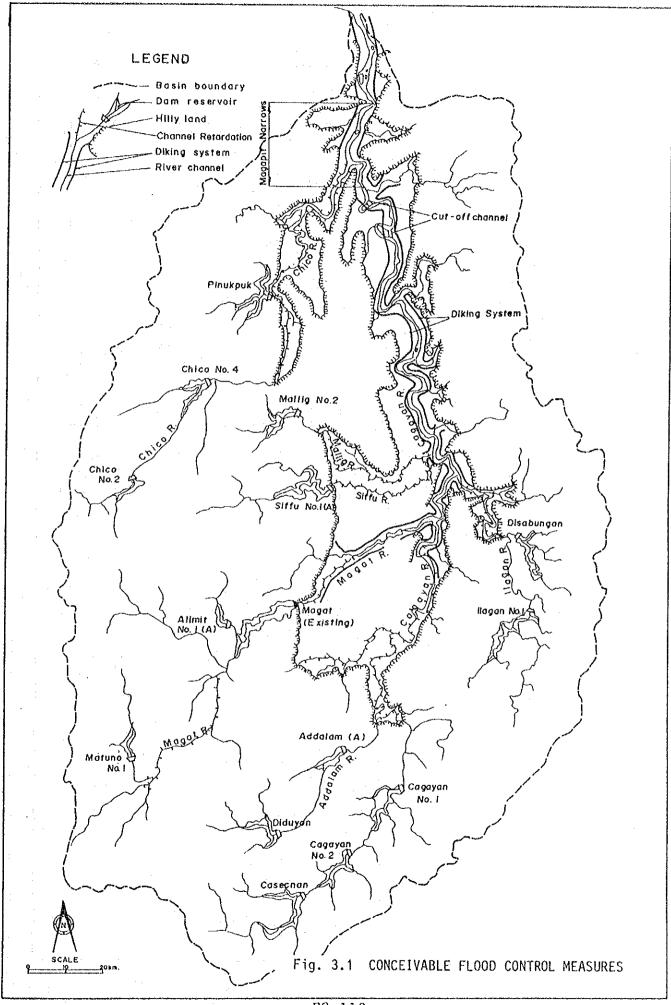





Fig. 2.11 MAGAT RESERVOIR OPERATION RULE CURVE


FC-115

FC-118

FC-119

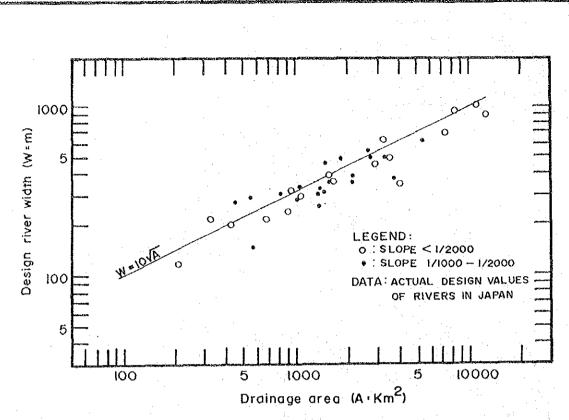
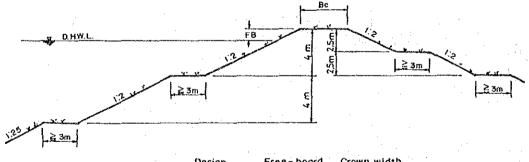
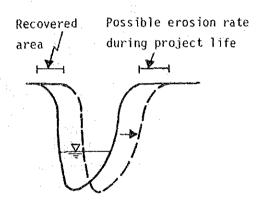
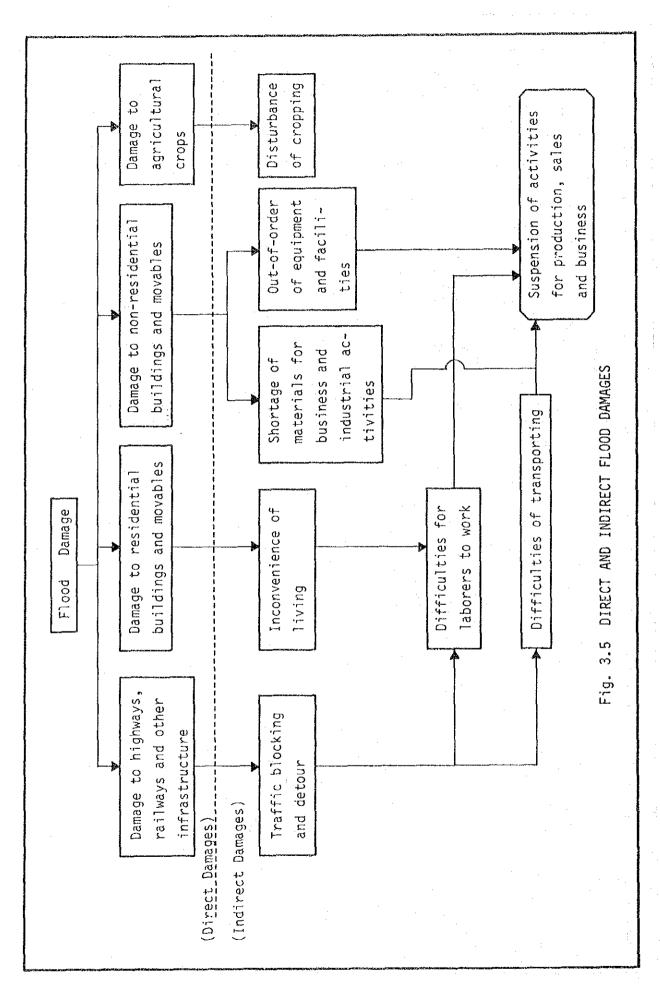



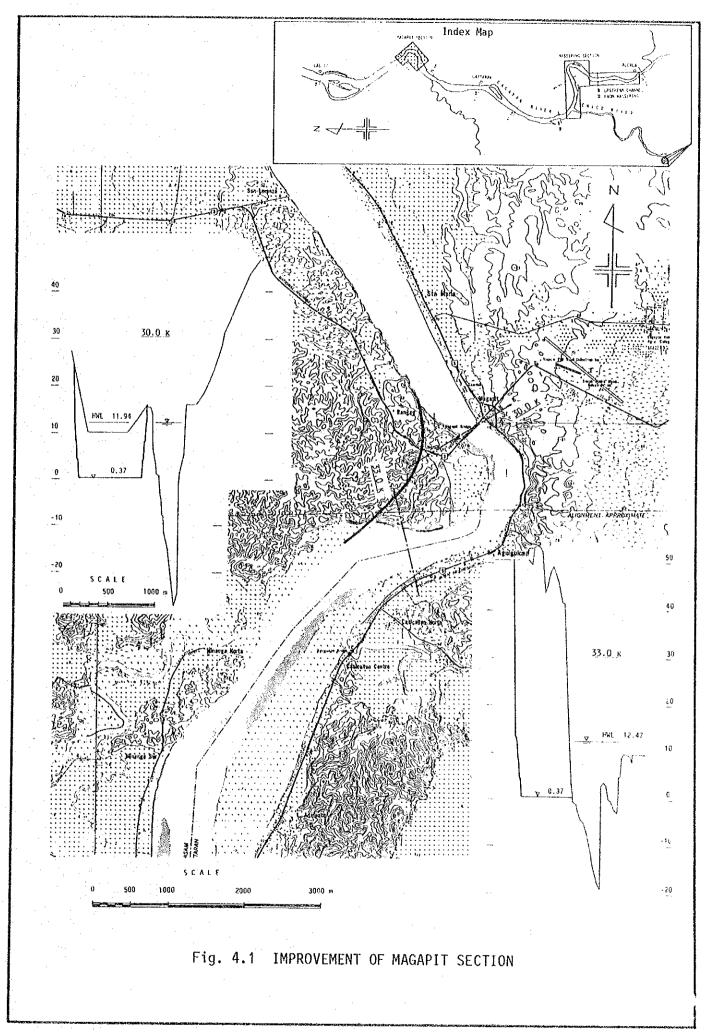
Fig. 3.2 RELATIONSHIP BETWEEN DESIGN RIVER WIDTH AND DRAINAGE AREA



FB (m) not less than	Bc (m)
0.6	3
0.8	3
1.0	4
1.2	5
1:5	6
2.0	7
	FB (m) not less than 0.6 0.8 1.0 1.2 1.5

Fig. 3.3 STANDARD DIKE SECTION


Conseptual Explanation of Terms for the Assessment of Bank Erosion Damages


(River course change) (Continuous bank erosion) Possible damaged area Reconstruction length Possible during project life of highway (LR) erosion area Highway Possible erosion rate Highway during project life Reconstruction length of highway (LR) Protection length

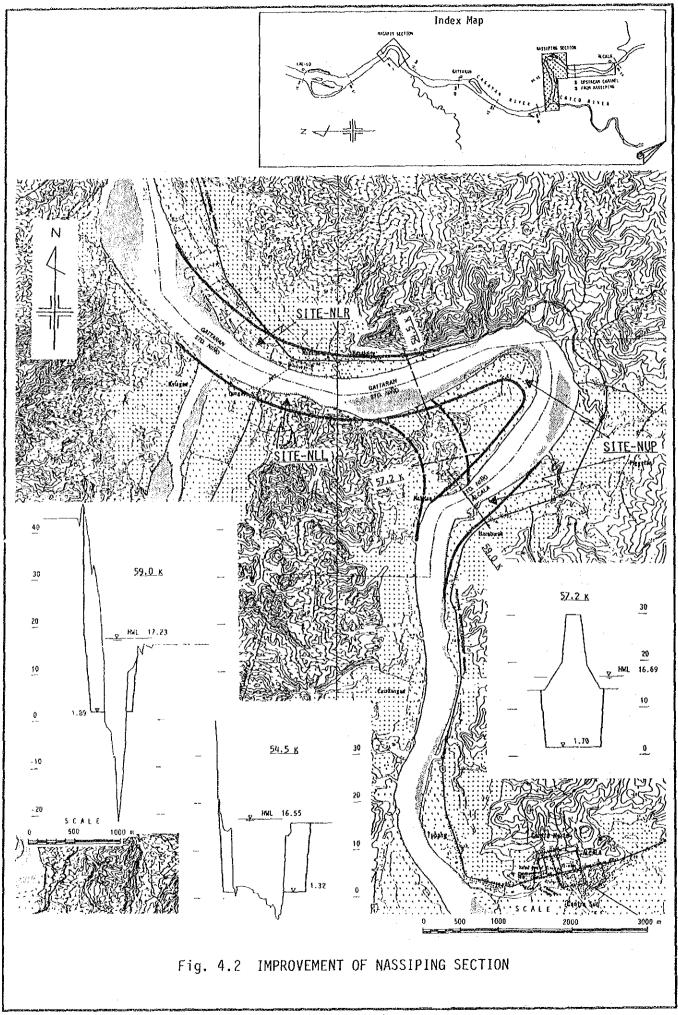

Bank erosion damages
- Building damages
- Agricultural damages
- Highway damages
Loss of residential land

Fig. 3.4 BANK EROSION DAMAGES

FC-123

FC-124