REPORT OF DISPATCHED SPECIALISTS FOR THE ENVIRONMENTAL MANAGEMENT AT CHINESE STEEL INDUSTRY (UNEP)

JUNE 1987

JAPAN INTERNATIONAL COOPERATION AGENCY

9	10.00	4.44	1	**************************************
d	444	. X	44.	140
i		-22 A	S	0.00
J	The state of	5146	24	2. 10.
		100		12.354
1		1.74	Sec 3	
d	2001 Se	909	1	
3	. 6	in the	32 X	¥ =
	2000	de despera	2.5	
3	87		18.3	
-	3:50	25 8 12	200	-4°8
ā	12 YEAR 18	36.54	1.0	11.56

REPORT OF DISPATCHED SPECIALISTS FOR THE ENVIRONMENTAL MANAGEMENT AT CHINESE STEEL INDUSTRY (UNEP)

JUNE 1987

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事	莆田
受入 '87.10.19 月日	105
登録 16907	69 EXM

INTRODUCTION

UNEP (UNITED NATIONS ENVIRONMENTAL PROJECT) requested Japanese Government as the follow-up project of WICEM (World Industrial Conference for Environmental Management) to send specialists to make diagnosis and recommendation in connection with the environmental issues of Chinese steel industry.

In response to the request, Japan International Cooperation Agency has dispatched three specialists to China for two weeks from November 1986.

The report herewith is summerized by their diagnoses and recommendations made in China with reference to the environmental problems of the steel industry.

We are extremely grateful to the many individuals and parties concerned for their various cooperations in dispatching our specialists.

JAPAN INTERNATIONAL COOPERATION AGENCY

YASUO KITANO

Manager

Dispatching Department

CONTENTS

en de la companya de la co

		PAGE
7	I GENERAL DESCRIPTION OF ASSIGNMENT	1
	II ITINERARY AND ASSIGNMENTS	1
	III NAME OF PERSONS INTERVIEWED BY SPECIALISTS	2
	IV STATUS OF EXECUTION OF ASSIGNMENTS	3
	V RESULTS	3
	VI SUMMARY	4
•	VII OTHERS	6
*	ATTACHED SHEET - 1 SUNHARY OF VISITED PLANTS	7
	ATTACHED SHEET - 2 INSPECTION AND DIAGNOSIS OF PLANTS	10
	ANSWERS TO QUESTIONS	
	1. REMOVAL METHOD OF ANNONIA IN COG	12
	2. COUNTERNEASURE FOR ZINC OF COLLECTED WATER OF BLAST FURNACE	14
÷	3. FLOW FOR FORMATION OF ZINC CARBONATE FROM	
	SLUDGE CONTAINED ZINC	16
	4. ENVIRONMENT MONITORING SYSTEM WITHIN STEEL MILL	18
	5. DUST COLLECTING HETHOD FOR ELECTRIC FURNACE	21
	6. SLAG OF ELECTRIC FURNACE TO BE USED FOR BASE HATERIAL OF ROAD	22
•	7. TREATMENT FOR ACID DRAIN WATER	24
	8. RECYCLING OF WATER	25
	9. BURNER WITH LOW NOX	28
	10. DISTRIBUTION DIAGRAM OF CYCLED WATER TREATMENT FOR	
	DUST COLLECTOR OF BLAST FURNACE	30
	11. DISTRIBUTION DIAGRAM OF CYCLED WATER TREATMENT FOR	
	DUST COLLECTOR OF GAS OF REVOLVING FURNACE	31
1	12. DISTRIBUTION OF WASTE WATER TREATMENT FOR	
	HOT ROLLING PROCESS	32
	13. OIL-WATER SEPARATOR	33
**	14. WASTE WATER TREATMENT FOR COLD ROLLING	34
	MATERIALS SUPPLIED TO CHINA	
to a second	1. POLLUTION CONTROL OF JAPAN	35
	2. ENVIRONMENTAL MANAGEMENT OF STEEL INDUSTRY	43
	FORMAT OF MATERIALS REQUESTED FROM CHINA	51
4	TORINE OF HELEMEND REGULDIED INON ONTHE	•
-		

I GENERAL DESCRIPTION OF ASSIGNMENT

At the request of UNEP, we have visited three (3) steel mills at HANGZHOU, WUXI, NANJING and Ministry of Metallurgical Industry of Chinese Government at Beijin to make diagnosis and recommendation on environmental management at Chinese steel industry.

II ITINERARY AND ASSIGNMENTS

Date Remarks

30 November - Travel from Tokyo - Shanghai - Hangzhou

1 December Hangzhou Iron and Steel Works

2 December Ditto

3 December Move to Wuxi

4 December Wuxi Iron and Steel Works

5 December Ditto

6 December Ditto and move to Nanjing

7 December Holiday

8 December Nanjing Iron and Steel Works

9 December Ditto

10 December Move Nanjing to Beijin

11 December Chinese Ministry of Metallugical Industry

12 December Ditto

13 December Return trip from Beijin to Osaka

III Name and title of persons interviewed by the specialists

Government of the people's republic of China

LI YOU HU

Vice Director, Engineer, Safety and environmental protection department,

The ministry of metallurgical industry. The people's Republic of China

HUANG DAN YING

Area Manager, International Cooperation department, China metallurgical

importd and export cooperation

HANGZHOU IRON AND STEEL WORKS

ZHANG SI MING

Director

YU YU RUA

Vice director

XU CHENG FANG

Chief engineer

WANG ZHI DE

HE WEN ZAN

ZHU YONG SHU

Translator

WUXI IRON AND STEEL WORKS

LI WEI

Vice director

YIN YONG XI

ZHANG JU XIA

WU QIA MEI

XIANG HING YUAN

WAN WEN HAO

MAO JIAN ZHUANG

PAN BAN XIN

JIANG HUAN JIAG

FAN XIAO BIN

YU LIANG KUN

NANJING IRON AND STEEL WORKS

LIU PEI ZHI

HU LI QUN

CHANG ZHONG

YUAN HONG JUN

WANG JIU XI

TAN MAO

FEI YUAN GAO

ZHENG DE SHENG

ZHANG RONG

YE PING

CHINESE GOVERNMENT, BEIJING

LIU PEI SHAN

Chief of environmental protection department, Ministry of metallurgical

industry

WANG YONG SHENG

Deputy manager, International cooperation division, foreign affairs

department

YE ZHOU ZHANG

LIU CHUN GUANG

LU CHUN

STATUS OF EXECUTION OF ASSIGNMENT

On first day, we have been explained with regard to general description of the plant and problems (what Chinese considered as their points of problem) of the Environmental, Protection.

On second day, we have introduced the current Japanese status of the environmental protection and followed by discussion of the problems raised on the first day in addition to the free talking over the issues pointed out by the dispatched specialists.

The discussions have been continued in the afternoon of the second day at Nanjing as well as in the morning of the third day at Wuxi.

RESULTS

In the execution of the assignment, the following restrictions we have been encountered which resulted an incompletion of the diagnosis and limited accomplishment of our recommendations for the improvement on the basis of our inspections and the discussions over the problems raised by Chinese part:

Insufficient time of stay for two days at respective works. Difficulty for overall undetstanding, since the sites we visited were pre-arranged by Chinese part at where have been concentrated on most of problem areas only.

With some exceptions, we could not inspect plants in operation.

Non-supply of drawings of location map of adjacent to the works and layout plan of the premises in addition to lack of information with reference to the monitoring points and conditions required to analize and understand data thereof. Lack of communication due to the inadequate interpreters.

Some of above restrictions and difficulties could have been overcome if sufficient time were given and spared.

We summarized the general description (production data, current level of environment and countermeasure) of respective works based on their lectures and data on our questionnaires of visited works, in Attached Sheet-1.

We also summarized our recommendations based on inspections and discussions, and questions raised by Chinese part and Itemized answers thereto, in Attached sheet-2, also answers have been prepared item by item in Appendix 1 through 14.

SUMMARY

Three (3) works we have visited were built in 1958 of medium size of the steel works which are designed through production of steel equipped with blast frunace except WUXI works.

The current status of pollution is similar level to that of Japan in early 1965. Air pollution resulting from dust, soot and sulfur oxides and polluted water are specially big problems.

In accordance with the extent of Chinese concerns, they have been paying more closer attention to the recycle of wastes generated from anti-pollution facilities such as sludge, and improvement for efficiency of recycling water in addition to the method for design of dust precipitator. We considered that their concerns were due to the primary factor of the guidances of central and local governments, and the works we visited were designated under the national 7th five-year project. And the works are located at famous sight-seeing district in China.

The environmental management system within the works is properly organized and enthusiastically operated, but the coordination between production departments and the environmental management is not adequately maintained and thereby high technology of each individual is not effectively and properly reflected overall function, we assume, due to less skill and experience.

We also have felt that behind or lack of systemized text for general issues of the environment, establishment of educational system and exchange of environmental information among the works.

The pollution as we have inspected at the sites was not appeared to be much serious, we however assumed that it was due to the present lower operating rate and rather smaller scale of production and an increasisng pollution at higher operational level expected in any future must be pointed out.

The quality of environment for Chinese steel works should be more higher standard because of their characteristics of walking distance between employee's residence and the works accompanied by boarding houses, schools and parks within same premises.

The education for safety and environmental problems at working place where generates the pollution is not considered to be sufficient and the strict attitude of management for obediance to required standard seems rather to be weak. Since it is so much important in view of not only environmental problems but also economic problems to observe rules for pollution control, we however considered that some of penalty measures against violation of the rules for standard are partly vague.

In consideration of Japanese operation only by self control system to set the target of management for not exceeding the standard level under any circumstances, we have found it so much difference in the standard level of both countries and it is unsensible to make comparison of both levels at this stage.

We also have found that facilities of coutermeasure for the environment are designed unbalance between actual generation and the capacity, and lower productivity resulting from inefficient rate of process due to manufacturing and operating facilities without porper understanding of the essence of the facilities. More serious consideration should specially be given to softwares for operation and maintenance.

Generally, we have been requested more of our instruction with regard to designing level of pollution control facilities, we however have found it rather necessary to train the workers the procedures of operation and maintenance to be skillful for full and efficient utilization of the facilities.

It is very possible to achieve a great improvement of the environment with steady and continous efforts to improve abovementioned points.

In future, it will be more effective to send personnel responsible for promoting environmental management and actual administration thereof in the works to be trained such management technique in environmentally advanced countries.

The following contents of training are desired to be preponderantly implemented:

Actual status of operation and software for practical maintenance of anti-pollution devices.

Method of measurement of point of origin, process facilities and water, and method of control and application of data.

Organization of anti-pollution, system and coordination with the site manager at the point of origin of pollution within the works.

Method of monitoring within the works and adjacent area, and method of utilization of data to be applied on establishment of priority for countermeasure. Safety management system at production site.

OTHERS

We have prepared our questionnaire which handed over Chinese counterpart on the preceeding day to be filled out and followed by their lectures according to items listed thereon, due to the necessity of obtaining overall description effectively in limited period of time given.

For the reference, the format of the questionnaire is attached herewith.

We have explained them to understand collectively current status of countermeasures for environment in Japan with the presentation of the following materials and slides projection:

- 1. Pollution control in Japan (Material 1)
- 2. Environmental management in steel industry (Material 2)
- 3. Slides included panoramic view of Wakayama works of Sumitomo Metal Industries, overall view of Kashima works, Kainan works with cherry trees, outer-port of Wakayama and green belt, dust precipitators for coke oven, blast furnace and sintering machine, MOLETANA, SNT burner, present Yawata works and its in 30 years ago, birds-view of Hikari works, green plantation and forest development, water disposal facilities for materials, blast furnace, converter and hot rolling machine, improving effect of environment including graphs.
- 4. Brochure of Wakayama works, Yawata works and Hikari works, and Pollution Monitoring Center in Kita Kyushu city.

SUMMARY OF VISITED WORKS

Name of S	Steel Works	HANGZHOU	IXUW.	NANJIN
Number of employees		15000	7500	15000
(related to envi	conment)	(30)	(15)	(20)
Coke Oven	Scale	42 x 1		42 x 1
	Capacity (t/yr)	280000		270000
	C gas (Nm³/H)	13500		13300
Sintering Machine	Scale	24m²x2, Pellet 8m²x1		39m² x 2
	Capacity (t/yr)	300000		600000
	Exhaust Gas (Nm³/H)	100000 (pellet)	 ' : :	384000
Blast furnace	Scale	255m3 x 2		300m3 x 3
	Capacity (t/yr)	310000	- <u>-</u> -	550000
Converter	Scale	15T x 2	· :	15T x 1
	Capacity	240000		400000
Electric furnace	, Scale	51 x 3	5Tx3, 10Tx2	
	Capacity		150000	
Continous casting p	process	None	None	Equipped
Products and	Shape steel	60000	70000	90000
Capacity(t/yr)	Bar steel	180000	70000	115000
	Sheet steel, thin	18500		40000
	Pipe steel	18200	23000	
	Others		340000	
Remarks		Built in 1958	Built in 1958	
			Area 650000m3	
			Green area 5.9%	

(2) PRESENT ENTRONMENTAL LEVEL

Name of Works		HANGZHOU	3	KUXI	ti	NANJING	rn
		Standard	Actual	Standard	Actual	Standard	Actual
Air pollution	SO ₂	0.25	0.143	0.25	0.074	0,15	0.063 (armual average)
Environmental	ND2	0.15	0.045	0.15	0.042	0.10	MD-0.208 (spot)
concentration	Hids	0.25	0.22	0.25	3	0.15	0.04 - 4.358
	Dust fall (t/km²/k) 12 own target	12 own target	13		46.08 (In-Horks)	13.5(city target)	25
Exhaust volume	SOX (kg/H)	unit control	unknown	unit control	196 (amual average)	unit control	434 (annual average)
		of stack		of stack		of stack	
	NOX (kg/H)	No control	Unknown	No control	59 (annual average)	No control	Unknown
Water Pollution							
Concentration			-				
at drainage	COD (PPM)	100	83.3	100	5 - 63	100	4.9
	SS (PPPN)	500	128	300	50 - 400	500	273
	OII (Hed)	10	2.2	15	2 - 10	10	2.0
Volume of Effluent	(H/em)	ì	10000		1560		7020
Noise Pollution	(4B)	55 at night	61 - 58		-		

(3) CONTENTS OF ANTI-POLLUTION MEASURE

Name of Works			٠.			
	Air Pollutian	Water Pollution	Air Pollution	Water Pollution	Air Pollution	Water Pollution
Racilities						
Coke oven	Venturi scrubber	Activated mad treatment	•	•	Collector (unknown type)	Activated mud treatment
Sinter plant	Sinter plant Cyclone + EP				Cyclone	Natural sedimentation
Iron plant	Gravity sedimentation + EP	Cohesive precipitation		1	Flushing type	Unknown type
Steel plant	Revolving furnace (venturi) Borizontal current	Horizontal current	Electric furnace	J	Venturi scrubber	- Caragon Cara
		settling pand	(Bag filter)			
	Electric furrace	(Natural sediment)				
	(bag filter)					- A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A
Other plant	-		a a	Natural sediment	Į.	Matural sediment
Control system	Environmental SO2, MO2,	Volume of Effluent, SS,	Environmental SO2, MC2,	SS, COD, OIL, PH	Environment1 SOZ, NO2	डड, ठ००, म्स, ठार दम
Monitoring items	Monitoring items Dust fall. SO ₂ emission,	000, 100, S, CN, OIL, Zn,	Soot and dust	(3 times per month)	SPN (quarterly per year)	(3 times per month)
and frequency	soot and dust, exhaust gas Mn, Ph,	Mn, Pb, F, Cu, PH	(quarterly per year)		Soot and dust (once a	
	volume (quarterly per year) (3 times per month)	(3 times per month)		!	month)	

Name of Horks	HANGZHOU	HUXI	HANJIN
Inspected sites	1. Mater disposal facility for collected	1. Electric furnace and its dust collector.	1. Front side of blast furnace and relining blast furnace.
	water from blast furnace.	2. Constructon site of new electric furnace.	2. Facility for water sludge.
	2. Dust callector of pellet plant.	3. Acid pickling facility of steel pipe mill.	 Revolving furnace of steel mill, processes of contingus
	•		casting and ingot.
	3. Front side of coke furnace.	4. Roller of wire plant and surface treatment	4. Mater returning facility for continous casting and
	facility thereof.		it's operation room.
	4. Activated sludge treatment of coke oven.	5. Water disposal facility of wire plant.	5. Operation room for sintering plant and electric dust
******	5. Boiler.		precipitator.
************			Treatment facility of activated sludge for coke plant.
			7. Overflow opening of drainage and environmental analysis room
Recommendations	1. Recommended to prevent inflow of	1. Pointed out inadequate dust collector of	1. Recommended the need of dust collection as worse generation
based on	indirect cooling water and use of	electric furnace with reason of obscurity	of dust and soot was found from top and casting hearth of
diagnosis	high molecular coagulating agent.	and a lack of strictness for conditions and	blast furnace.
	2. Recomended remadel of valve and use of	control of hag filter and recommende the need	2. Noticed strong odor of hydrogen sulfide at front of the
	let bag for countermeasure of escape,	of control for temperature and loss of	furnace due to the use of high sulfur contained material.
-	since rescatter of dust as escape from	pressure.	3. Recommended to widen the open pit near mouth of the drainage
	cyclone of the pellet plant is ecxpected.	2. Presented calculation method of wind volume to	as emergency measure since the collected water has been
	3. Judged that activated sludge treatment	surpass the blowing speed for dust collector	discharged without proper treatment.
	was complied with the specification of	of a new electric furnace, and recommended	4. Pointed out that the surface area is not large enough in
	required production capacity.	the need of model experiment for effectiveness.	comparison with capacity of the thickener now under
	4. Explained the calculation method of	3. Recommended the method of adjusting PH and	construction.
5.4	diffusion of sulfate gas from	removal method of dissoluted iron by flocking	5. Recommended to modify materials for skimmer and oil
	chimney of the pellet plant.	settling for water disposal of pickling	recoverer of oil-water separator for water disposal facility
	5. Recommended the need of education of	facility of steel pipe mill.	of continous casting line.
·	safety and pollution for the employed.	4. Presented the most optimum PH condition of Pb	6. Recommended to modify the using form of recovery pit to use
		for water disposal of pickling facility of	1/2 to 2/2 for water disposal facility of steel bar plant.
		wire products line.	7. Recommend that continued visual surveillance of smoke and
		5. Recommended generally to identify targets for	dust should be maintained for priority of countermeasure
	-	production and anti-pollution in addition to	to be given.
		careful investigation as specification of	
		the facility is planned.	

INSPECTION AND DIAGNOSIS OF NORKS (2/2)

·	and delicing a meridian and an in the 19 and a marks a second	
NANJIN	1. Recycling method of collected water from blast oven. 2. Recycling method of collected water from revolving oven. 3. Reycling method of waste water from rolling mill. 4. Method of lowering NOX by improved burning.	1. Recycling flow of collected water from blast furnace. 2. Recycling flow of collected water from converter. 3. Recycling flow of drained water from rolling mill. 4. Concept for use of circulating water.
KUXI	1. Method of dust collection on electric furnace. 2. Effective use of dust from electric frumace. 3. Treatment method of drained pickling water.	1. Flow of collected dust of electric furnace. 2. Method of effective use of oxidizing slag. 3. Flow of treatment for water drained from acid pickling. 4. Concept for use of circulating water. 5. Concept for low NOx burner.
HANGZHOU	1. Production method of ammonium sulfate 1. by reaction of sulfurous acid gas from pellet plant and ammonia formed by CDG. 2. Recovery method of Zinc from dust sludge from the collected water of blast furnace. 3. 3. Measuring system of environment.	1. Production method of ammonium sulfate. 1. Flow of collected electric furnace. 2. Recovery method of ammonia from coke oven 2. Method of effective gas. 3. Removal method of zinc from collected 3. Flow of treatment water from blast furnace. Flow of zinc carbonate from dust contained 4. Concept for use of zinc. 4. General environmental monitoring system. 5. Concept for low NO.
Name of Horks	Questions raised by Chinese part	Answers and reported materials

1. REHOVAL HETHOD OF AHMONIA FROM COKE OVEN GAS

-	Nethod	Wash-off	Description	Characteristics	Ref.
1.	Recovery of ammonium sulfate	Diluted	10 YCCOAOT CONNICTION DONE	High removal rate of NH3	Fig-1
2.	Koppers	Water	In Dati arguitted appointed arrest arrest	NOx tends to be formed	
3.	Karlstill	Water	To burn resoluted H2 and N3 by catalyst after distilling NH3 scanveged by water.	Need of catalyst and fuel	Fig-2
4.	Phosam	1-phosphate ammonium	To produce pure ammonium sulfate by refined and distilled NH3 vaper of stripped NH3 scanveged by 1-phosphate ammonium.	High purity of NH3 is recovered.	Fig-3
5.	Nasco	1-phosphate armonium	To burn NH3 scanveged same as above.	NOx tends to be formed	-

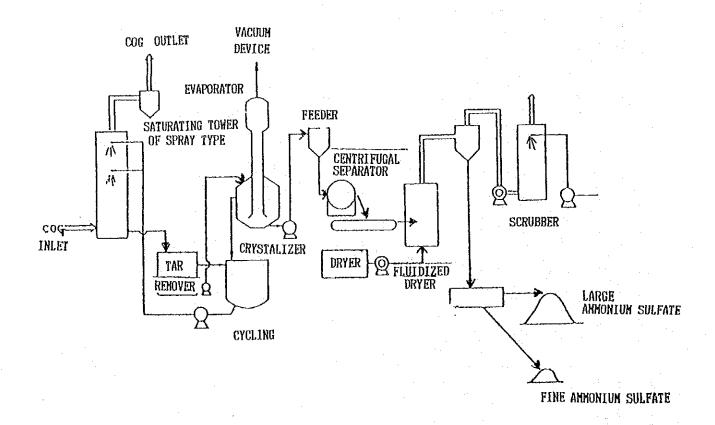
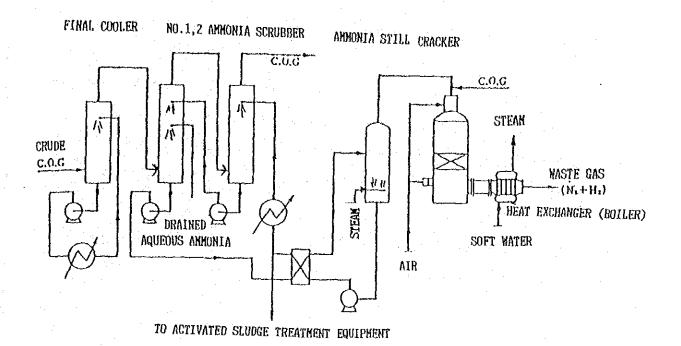



FIG-1 - PRODUCTION FLOW FOR PELLET OF AMMONIUM SULFATE

There is another production process of powder form of ammonium sulfate, but the process for pellet form of ammonium sulfate is dominated in the industry.

F1C-2 KARL STKLL NETHOD

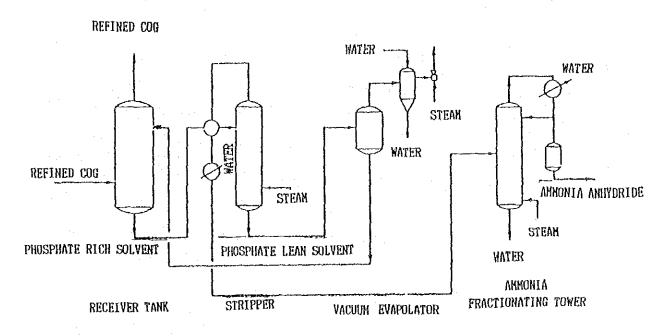


FIG-3 PHOSAN HETHOD

BILIOGRAPHY: HANDBOOK FOR AROMATIC AND TAR INDUSTRY (JAPAN AROMATIC INDUSTRIAL ASSOCIATION)

2. COUNTERNEASURE FOR ZINC OF COLLECTED WATER FROM BLAST FURNACE

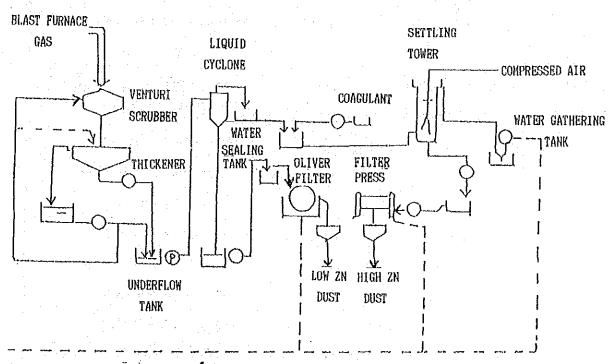
The collected water from blast furnace contains zinc. Most of zinc has been distributed to wet dust processed by the collected water.

In consideration of recovery of iron source, as the wet dust is recycled as pellet or sintering material, zinc contained in the collected water and zinc in the treating water therefor also will consequently be increased.

It therefore is the classification method of wet cyclon available to reduce zinc contained in the treating water and the wet dust, which is introduced as follows:

The principle of the method is simple and 60 to 80 % of zinc shall easily be removed at the point of efficient classification of approximately 15 μ m by the blast furnace wet dust to be passed through the wet cyclon which is capable of volume process.

The flow of process equipment is shown in Fig-1.

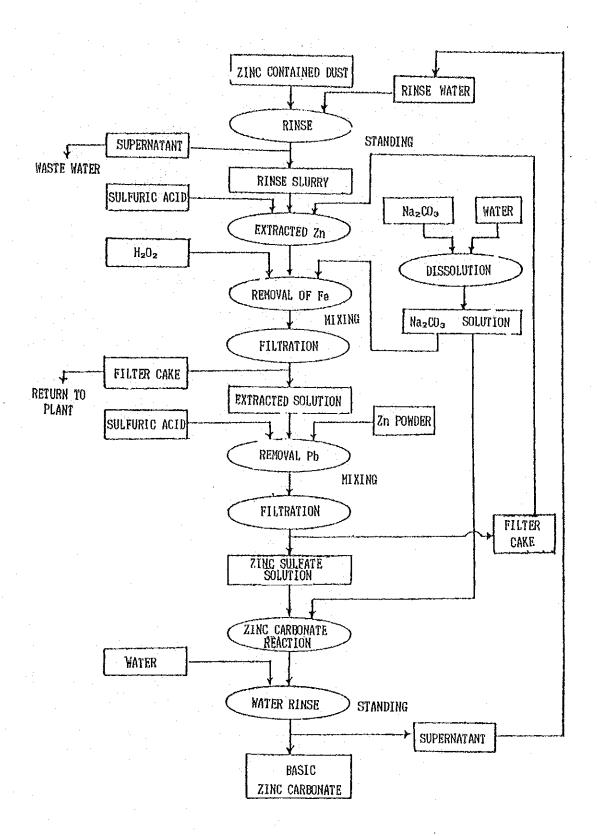

The underflow which is removed 60 - 80% of zinc can be used as materils for sinter or pellet after dehydration by the oliver filter, and the overlow will be placed in settling tank and the supernatant of which will be returned to the thickener, and the concentrated slurry at bottom containing high zinc will be dehydrated by the filter press, and the dust of which will either be reused as zinc source or disposed as waste.

ACTUAL OPERATIONAL DATA

FEED DUST 4-5% 2nOVERFLOW DUST 8-16% 2nUNDERFLOW DUST 1-3% 2n

Zinc concentration of disposed wated collected from blast furnace was 1 - 5 ppm.

Fig-1 Flow sheet of classification process facility

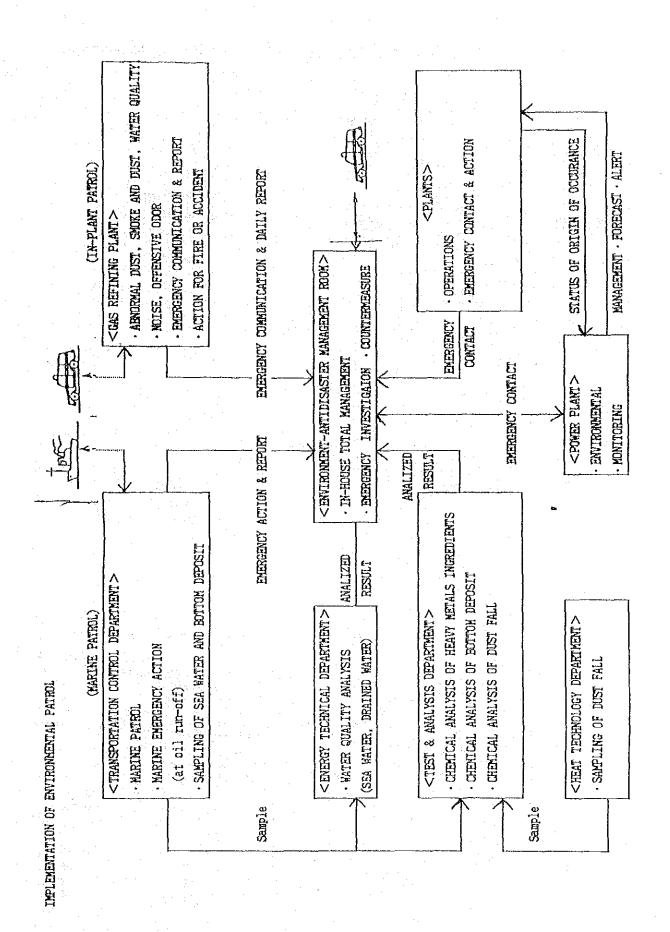

PURIFIED WATER

3. HETHOD OF FORMATION OF ZINC CARBONATE FROM SLUDGE CONTAINED ZINC

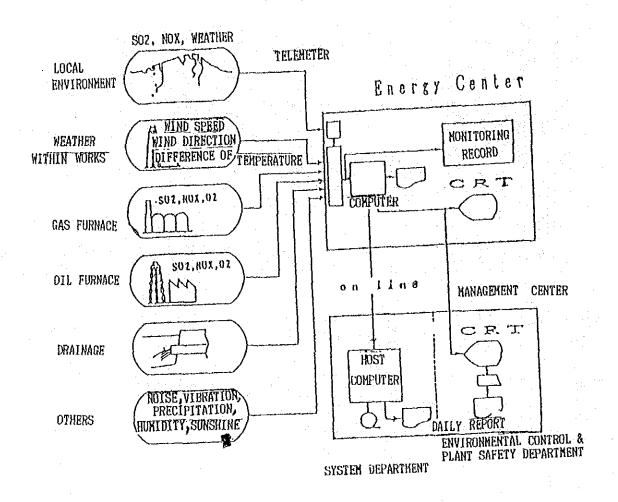
It is already practical to recover an iron by method of centrifugal separation and so on, in case of implementation for an effective utilization of the sludge generated from treatment equipment for waste of collected dust of blast furnace, but other method to form basic zinc carbonate from unrecovered zinc is shown hereunder. It is however noted that this method is still remained as the experimental level of laboratory, but not commercialized yet.

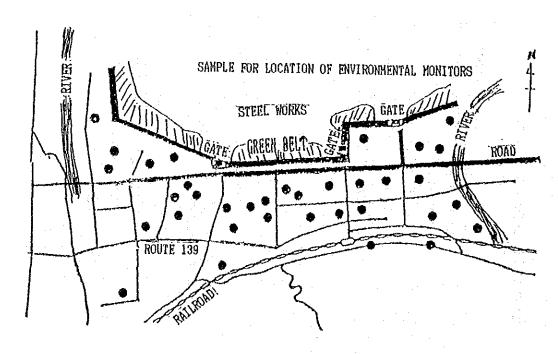
1. General process

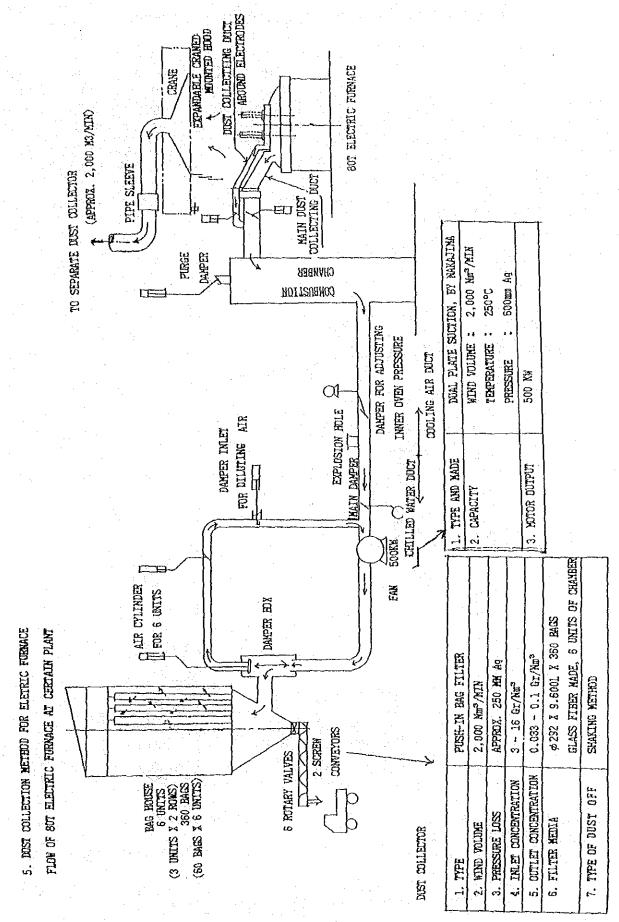
PROCESS	OBJECT	NETHOD
(1) Extraction	Extraction of Zn by adding	To extract Zn of sludge by adding
	sulfuric acid.	sulfuric acid into reacting tank
		$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$
(2) Removal of Iron	Removal of Iron by adding hydrogen	H ₂ O ₂ H ₂ O
	peroxide within proper pH range by	+ + + + + + + + + + + + + + + + + + +
	addition of sodium carbonate.	$Fe^{2+} \rightarrow Fe^{3+} \rightarrow Fe(0 1)_{3}$
		Precipitate above is to be
		separated by hydrator.
(3) Refining	Removal of Lead by addding Zn powder within	$Pb^{2+} + Zn \rightarrow Pb + Zn^{2+}$
·	proper pH range by adddion of sulfuric acid.	Precipitate of Pb is to be
		separated by hydrator.
(4) Formation	To form basic zinc carbonate within proper	$ZnSO_4 + Na_2CO_3 + 4H_2O \rightarrow$
e.	PH temperature range by addition of sodium	2ZnCO ₃ · 3Zn(OH) ₂ · H ₂ O + 3CO ₂ +
ž.	carbonate solution to zinc sulfate solution.	5Na ₂ SO ₄



4. ENVIRONMENTAL MONITORING SYSTEM


The monitoring of the environmental conditions of respective origins of generation and status around a steel works in an inevitable factor to develop rational and scientific countermeasure of environment.


Japanese steel works make assurance doubly sure that not only surveillance by telemetering monitors is maintained but also the patrol teams are assigned for the purpose.


While the local environmental monitoring system adopted by some of works has been very successful which keeps very active dialogue with the people of local communityin order to grasp the environmental conditions through human senses.

CENTRAL SURVEILLANCE SYSTEM BY AUTOMATIC MONITOR

6. USE OF ELECTRIC OVEN SLAG FOR BASE MATERIAL OF ROAD

The slag discharged from an electric furnace is transported to the crushing plant to scatter for cooling, in process of which the reducing slag is powdered, and an unpulverized portion of reducing slag and oxidation slag is crushed and screened after sorting out of a metal. The repeated process of crushing and screening to obtain required grain size which makes the crushed slag. A sample of standard flow of the process is shown as FIG-1. The granulated crushed slag is placed at an open yard for a certain period of time as an aging to stabilize unreacted lime contained in the crushed slag is allowed to react with water.

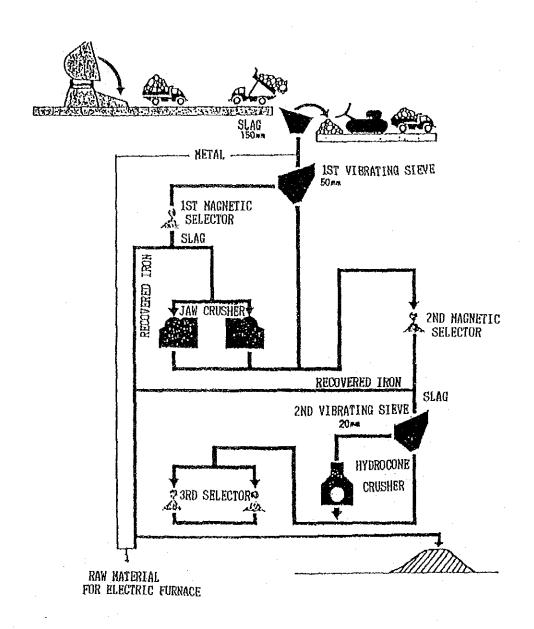


FIG-1 CRUSHING FLOW OF ELECTRIC FURNACE SLAG (EXAMPLE)

The quality of an electric furnace slag for base material of road is fully complied with the related specifications in their items as shown in TABLE-1.

TABLE-1 QUALITY OF AN ELECTRIC OVEN SLAG FOR BASE MATERIAL OF ROAD (EXAMPLE)

		tin to the same against the same and the same and the same and the same and the same against the same and the					
	JIS-A5015	GUIDANCE FOR DESIGN &	BASE	MATER	IAL OF		
		CONSTRUCTION OF BASE BY	ELEC	TRIC O	ven sl	AG	·
		STEEL SLAG (*)	M	ADE BY	FIRMS		
	NS-25 SPEC	MS-25 SPEC	A	В	С	D	REMARKS
1 .							
CRAIN SIZE	As per	attached Fig-2			ļ		JIS-A1102
MASS OF UNIT							
VOLUNE (kg/l)	Over 1.50	Over 1.50	1.96	2.01	1.96	2.12	JIS-A-1104
ADJUSTED CBR (%)	Over 80	Over 80	145	112	163	120	Asphalt Paving Guide
HOST OPTIMUM							
HOISTURE	·					,	
CONTENT (%)	-	-	8.0	7.3	8.3	7.3	JIS-A1210
MAXINUN DRIED						1	
DENSITY (g/cm³)	-	. 	2.54	2.63	2.51	2.61	JIS-A1210
EXPANSION)				
STABILITY (%)	_	Under 1.5	0.33	0.06	0.21	0.03	Guidance(*)
HOISTURE							
CONTENT (%)		_	4.8	5.6	5.3	5.3	JIS-A1203

Also the electric furnace slag for base material of road is properly mixed with the reducing slag of an electric furnace to improve the compactibility at the time of construction, as the result of which is shown in FIG -2 which is fully complied with above MS-25 specification.

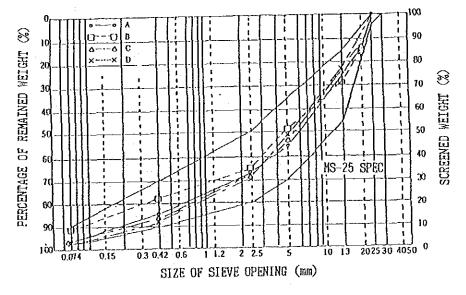
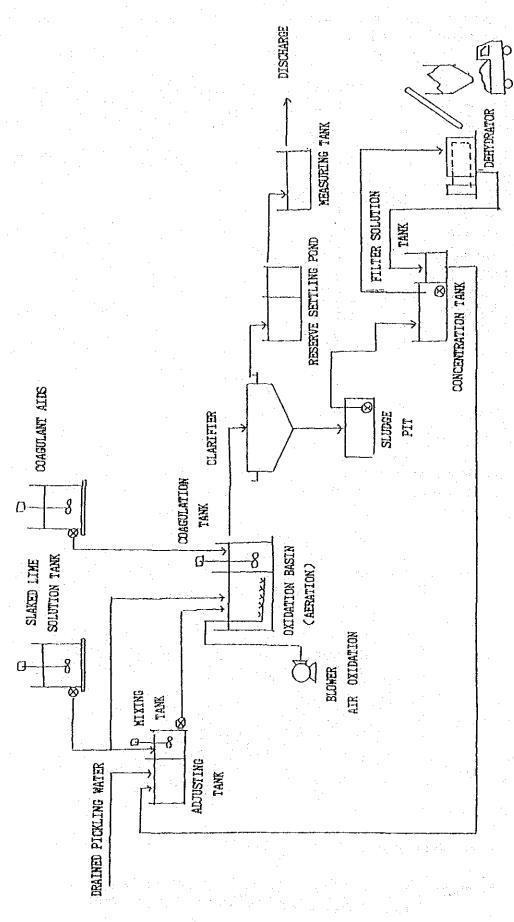



FIG-2 GRAIN SIZE OF ELECTRIC FURNACE SLAG FOR BASE MATERIAL OF ROAD

BIBLIOGRAPHY; TECHNICAL DATA OF FURNACE SLAG FOR BASE NATERIAL OF ROAD (APRIL 1985 STEEL SLAG ASSUCIATION WESTERN JAPAN BRANCH)

8. REUSE OF WATER (RECYCLE)

It is required to examine the current status of water usage prior to the implementation of recycle of water to conserve the water (rationized use of water) before the recycle of water is planned.

1) RATIONALIZATION PLAN OF WATER USAGE

The investigation of actual condition of water use (examination of changes of water amount and quality), specially dissolved salts should be checked in the water quality.

Flow sheet of supply and waste water, balance sheet of substances.

Definition for investigation of origin of prime generation, fractionation of drainage system, and reusable water.

2) SCHEMA OF REUSE AND RECYCLE

Reuse: fresh water → use 1 → treatment → use 11 → treatment → discharge Recycle: fresh water → use → treatment → partial discharge

↑ Recycle

Closed system:

Ideal form: use - treatment

Recycle evaporation evaporation

↑ ↑ ↑

Practical form: fresh water → use → → → → treatment → → → →

↑ ↓ ↓

↑ loss of water contaminant ↓

Recycle

The closed system is considered to be the final ideality, which however is inpractical to repeatedly recycle the water forever and is practically appeared to be without discharge resulting from the evaporation or loss of water.

- 3) REMARKS FOR PLAN OF CLOSED SYSTEMAZATION OF WATER
 - (1) Balance sheet of water
 - (2) Removal of salts
 - 3 Overall consumption of energy
 - (4) Anti-pollution for air and solid wastes
- 4) REMARKS FOR RESUE AND RECYCLE OF WATER
 - (1) Object is not anti-pollution but rationalized use of water.
 - ② The rationezed use of water should be achieved with the minimum treatment (high level of the treatment costs a high energy).
 - (1) Origin of water must be selected only from distinctly known contaminants as much as possible but not to be mixed with waste water of differnt characteristics or of unknown contaminants.
- 5) TREATMENT HETHOD OF WATER FOR REUSE AND RECYCLE

Method by separation of contaminants in water as solid substances

Coagulating (chemical) Sedimentation

Biographical treatment

Filteration

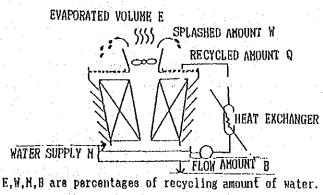
Method for removal of dissolving impurities

Absorption by active carbon

Ion exchange : concentration of contaminants

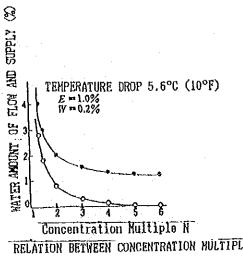
Separation process by membrane: concentration of contaminants

The water of cooling tower is concentrated by the evaporation.


As the result of increaed concentration of dissolved salt by the concentrated water, which is liable to form a metal corresion or deposit a scale, therefore discharge a portion of the recycling water as blow-water out of the system and in exchange therefor, the concentration of salts is controlled by supply of fresh water to the system.

The Water balance of recycle cooling water system is shown in FIG-1 and the relationship between the coefficient of concentration and amount of supply water and amount of blow water is shown in FIG-2.

The corrosion is greatly influenced by the concentration of chlorine ion.


The deposition of scale is often found in case of deposition of calcium carbonate as the result of concentration of calcium ion, and it is also required to be aware of the scale deposition of silicate compounds.

The countermeasure to prevent from such hindrance is shown in FIG-3.

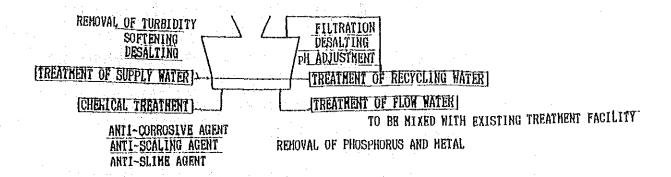
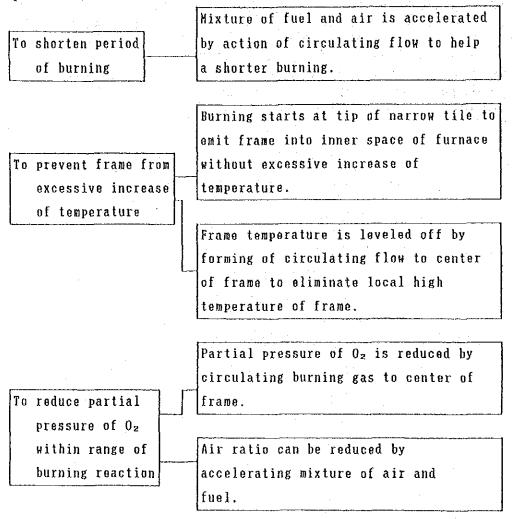

CONCENTRATION MULTIPLE N

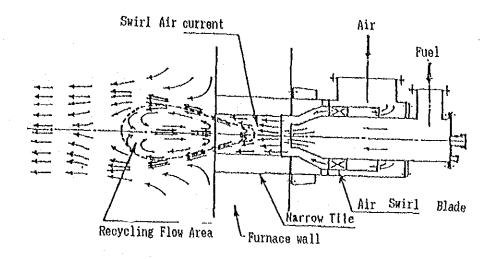
FIG-1 WATER BALANCE OF CYCLING WATER OF WOLING TOWER

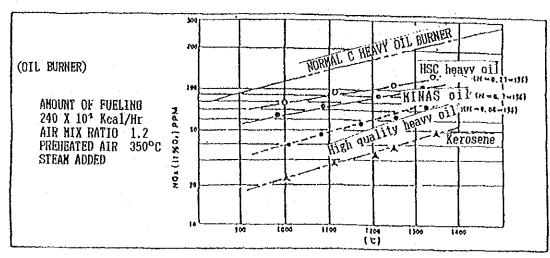
RELATION BETWEEN CONCENTRATION MULTIPLE AND WATER AMOUNT OF FLOW AND SUPPLY

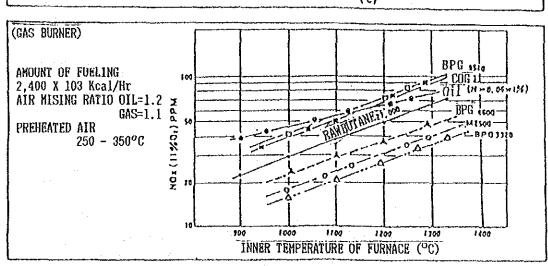

FIG-2

9. LOW NOX BURNER .

The low NOx burner of various kind of principle is introduced, a type of which is called 'Nixture accelerated self-recycling' of burner is shown hereunder.

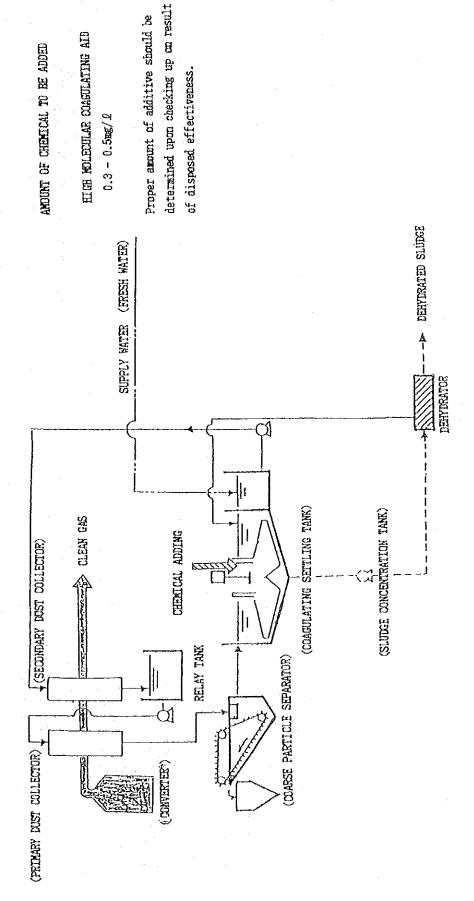

1. Principle of low NOx burner


This type of burner is charactristic of combustion inside of furnace to avoid combustion in burner title resulting from action of narrow tile which is accelerated air flow and air flow with a strong gyration.

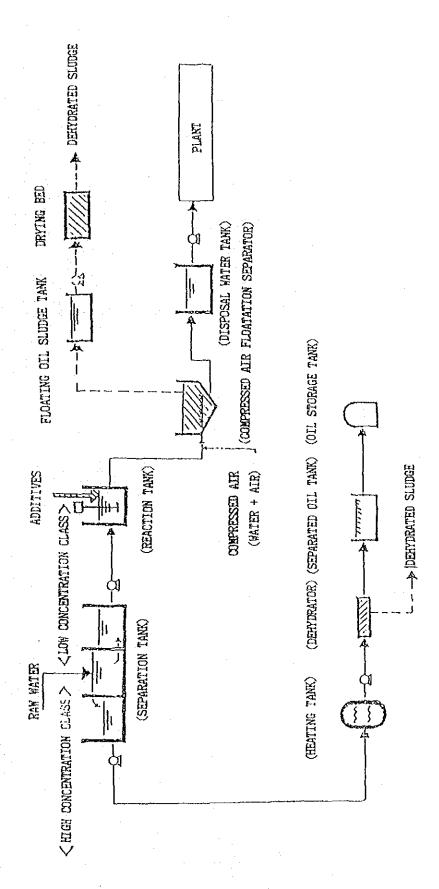

The gyration given to air forms self-circulating flow by pressure difference between positive pressurized part of outer circle and negative pressurized part at center part of air flow generated by the principle of vortex.

This circulation flow helps to accelerate the combustion and to homogenize the frame temperature for a perfect combustion at low air ratio and also to stabilize the frame which controls NOx.

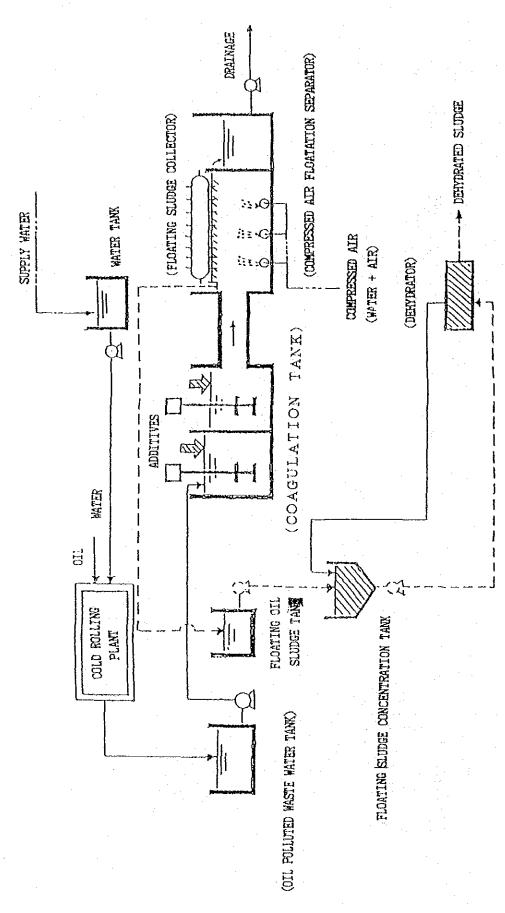
2. FORMING AMOUNT OF NOX (EXAMPLE)



10. DISTRIBUTION DIAGRAM FOR DISPOSAL OF RECYCLING WATER FOR DUST COLLECTOR OF BLAST FURMACE


VOLUME OF ADDED CHEMICALS

be decided upon cecking disposal effect. Most optimum amount of the agents to be used should HIGH MOLECULAR COAGULATING ASSISTANT 0.3 - 0.5 mg/l 1.5 - 2.0 mg/1 20 - 30 四77 INDREANIC COAGULANT (PAC) DISPERSANT SUPPLY WATER (FRESH WATER) ACCOUNTS TO THE PARTY OF THE BAS SECONDARY DUST COLLECTOR DISPERSANT COAGULATING SETTLING TANK (RELAY TANK) COAGULANT PRIMARY DUST COLLECTOR *vacanti*∑ DUST REMOVER BLAST FURNACE DERYDRATED SLUDGE 4: - -



CHESCOSAL MATER TARK) COOLING TOWER) HEALTING FURNACE - TO TREATHENT CENTER OF POLLUTED HATER - → DEHYDRATED SLUDG DEHYDRATOR (SLUDGE CONCENTRATION TANK) DISPOSI WATER TANK FOR SLUDGE CONCENTRATION)

SEPARATOR FOR OIL AND WATER

1 4 DISTRIBUTION DIAGRAM FOR DISPOSAL OF WASTE WATER FOR COLD ROLLING PROCESS

1. ENVIRONMENT AND CONTROL

	ENATIANG	ENTIRONMENTAL PROBLEMS				CONTROL	CKATTONAL)			
	MOLIFICATION	ENTANABLY AL DESCENCY SENSITIVE	DERGENCY	SEKSITIVE	HESCRIPTION			TYPE OF CONTROL		
KINGS		DUALITY	SUSPER	POLLUTION		CONCENTRALION	K-VALUE	TOTAL	STANDARD FOR	BOUNDARY
OF POLLINION		STANDARD					(CONCENTRATION	ENTESTON	FACILITY	LEVEL
							ON GROOND LEVEL)			v :
	DUST FALL			0	SOOT AND DUST	0				
	SUSPENDED PARTICULATE MATTER	0	0	-	COARSE PARTICULATE				0	
HIR	50.2	0	0		ž		0	0		
	Ę	0	Ó		TO TO	0		0		
	PHOTOCHEMICAL OXIDANT	0	0							
	CARREDY MONDATOE	0	0							
					(CH, C12, HC1					
					F2, 暗	0				
					Si, (FF)z, Pb					
	TOXIC SURSTANCE	0			TOXIC SUBSTANCE	0				
	COH, CON, CREANITCS, Ph									
	Cr +6, As, Hg				{ SAME AS LEFT }					-
MATER -	VALENT Hg, PUB							OKLY ODD		t-ry tagrage
	LIVING ENTRANGENTAL ITEKS	0			LIVING ENTRONGENTAL ITERS	0		0		*********
	(Ha, com, (Hon))				IN ADDITION TO LEFT					*******
	SS, ID, COLLTIS GERM	····		OKLY SIL	PHENOL, Cu, Zn					-
	\one			0	Soluble Fe, Soluble In					
					, #					
NOISE.	SAME AS LEFT	0		0	SAME AS LEFT					0
VIBRATION	SAME AS LERT			0	SAME AS LEFT					0
9000	SAME AS LEFT			0	SAME AS LEFT		0			0

VALUE OF ENVIRONMENTAL QUALITY

(1) AIR

ITEK	ONE HOUR VALUE	8 HOURS VALUE	DAILY AVERAGE VALUE
S02	0.1ррт		0.04 ppm
NO2			0.04 - 0.06 or less than the range
æ	· · · · · · · · · · · · · · · · · · ·	20 ppm	10 ppm
SPM	0.20 mg/m3		0.10 mg/m3
PHOTOCHENICAL OXIDANT	0.06 ppm		

(2) QUALITY OF WATER

RELATED TO HUMAN I	IEALTH CARE
ITEN	LEVEL
Cd	0.01 ppm
CN	No trace
Organic phosphorus	No trace
Pb	0.1 ppm
Cr +6	0.05
As	0.05
Total Hg	0.0005
Alkyl Hg	No trace
PCB	No trace

			PROTECTION OF LIVING ENVIROHENT	OF LIVING E	NVIROHENT				
			RIVER					SEA AREA	
	АА	¥.	m	D	A	[x1	₹.	m	U
五	5.5 r 8.5	6.5 - 8.5	6.5 - 8.5	6.5 – 8.5 8.5	6.5 - 8.5		7.8 - 8.3	7.8 - 8.3	7.0 - 8.3
(CCD)(CED)	ndd I	2 ppm	3 ppm	5ppm	ಪ್ರದ್ಯಕ್ಷ	IOppm	2ppm	@ddg	8 ರಾಜ್
ន	25	52	52	50	100	ı	•	-	
8	7.5	7.5	ഹ	ம	2	2	7.5	r,	2
COLLTIS	50MPN/100ml	50MPN/100ml 1000MPN/100ml	5000MPN/100m1	1	l .	J	1000MFN/100m1	1	1
EERM									
N-HEXANE									
EXTRACTS	•	ì	· · · · · · · · · · · · · · · · · · ·	ı	,	. 1	No trace	No trace	ı

SEA AREA A: FISHERY IST CLASS/BATHING QUALIFIED

B: FISHERY 2ND CLASS/INDUSTRIAL CLASS
C: OTHER THAN LISTED ABOVE

C: FISHERY 3RD CLASS/INDUSTRIAL 1ST CLASS

B: POTTABLE 3RD CLASS/FISHERY 2ND CLASS

A: POTTABLE ZND CLASS/FISHERY 1ST CLASS

RIVER AA: POTTABLE 1ST CLASS

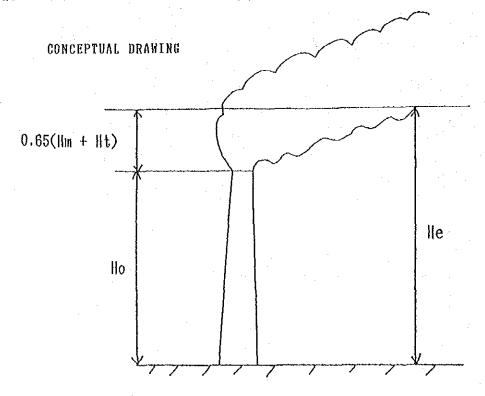
D: INDUSTRIAL ZND,

E: INDUSTRIAL 3RD CLASS.

H. NATIONAL CONTROL LEVEL

1. S0x

(1) K-VALUE CONTROL (CONTROL FOR CONCENTRATION ON GROUND OF RESPECTIVE ORIGIN OF SMOKE)


Q: SOX ALLOWABLE DISCHARGE ANOUNT

K: CONTROL VALUE (SUDJECT TO DIFFERENT AREA)

He: EFFECTIVE HEIGHT OF STACK (m)
Ho: ACTUAL HEIGHT OF STACK (m)

Hm: HEIGHT OF RISING BY MOVEMENT (m)

Ht: HEIGHT OF RISING BY HEAT (m)

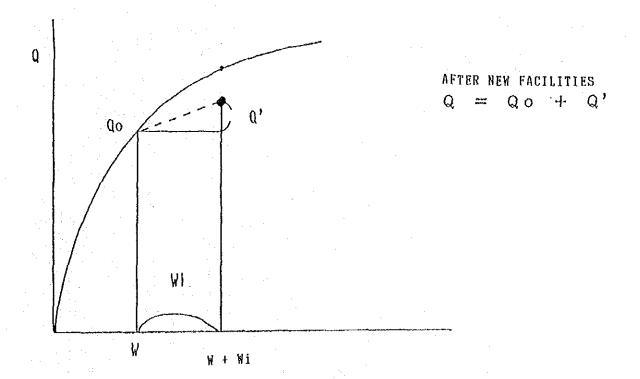
K=3.0 - 17.5 16 RANKS

	NORMAL K-VALUE	SPECIAL K-VALUE (NEW FACILITIES)
RANK 1	3.0	1.17
RANK 2	3.5	1.75
RANK 3	4.0	2.34

(3) REGULATION OF TATAL EMISSION (TOTAL EMISSION OF WORKS)

$$0 = aw^b + ra \{ (v + wi)^b - w^b \}$$

g : SOX ALLOWABLE AMOUNT OF DISCHARGE (Nm3/H)


* : AMOUNT OF FUEL USED EQUIVALENT TO HEAVY OIL (k Q/II)

Wi : SAME AS ABOVE FOR NEW FACILITIES (k Q/H)

a, b, r : CONSTANT

PREFECTURE	a	b	r
Tokyo	0.57	0.8	0.3
Kanagawa	1.5	0.865	1/3
Osaka	2.0	0.85	0.3
Wakayama	4.73	0.8	0.5

CONCEPTION OF CONTROL

2 NOX AND SOOT AND DUST

(1) REGULATION OF EMISSION (CONCENTRATION)

		SK .	HOS CONTROL VALUE			SOOT CONTROL VALUE	L VALUE
RECULTES	Discharged gas	Built before	Built 1975-1977	Based	Discharged gas	g/Nh ²	Based
	volume (Nm3/H)	1973 (ppm)	(mdd)	92 S	0z (%) volume (Nm³/H)		0 ^z
SISMTERING MACHINE	~000,001	260	220	15	40,000~	0.15	ີວ
OPEN-HEARTH FURNACE	ı	ı	ı	ı	40,000~	0.1	· ඨ්
CONVERTER	ı	ı	ı	ŧ	40,000~	0.13(a)	1 0
						0.1 (b)	ත් ප්
COKE OVEN	ı	,	200	7	l	0.15	~
HEATING FURNACE	100,000~	160	190	11	40,000~	0.1	П
BOILER (HEAVY OIL)	100,000-500,000	190	130	Æħ	~000,002	0.05	4,
BULLER (COAL)	200,000-250,000	450	400	u	200.000~	0.1	ເດ

(a)Burning type of exhaust gas

(b) Non-burning type of exhaust gas

	Standard of Areawide Total	eawide Total		Special Standard of Areavide	de
	Pollutant Load Control	Control		Total Pollutant Load Control	ol
AREA	SYSTEK	FACTOR a (K)	BACTOR a (k) FACTOR b (Q)	SYSTEK	FACTOR (±)
TOKYD	$t = k [\Sigma (c \cdot \Delta)]_T$	0.51	0.95	$Q = k \left[\sum (C \cdot V) + (Ci \cdot Vi) \right]^2$	
Kanagaha	A AKE II C	1.37	0.35	$Q = ay^b + r \cdot a [(y + y)] = y^b]$	0.7
CSAKA	$Q = K[\Sigma (C \cdot V)]^{2}$	0.5	0.85	$Q = K [\Sigma (C \cdot V) + (Ci \cdot Vi)]^{\perp}$	

Q : Standard of Areawide Total Pollutant Load Control on NDx (Nw3/H)

C : Facility Factor

V : Exhaust gas volume (10,000 Nm3/F)

名用

W: Amount of fuel used

Vi = Exhaust gas volume from new or

Ci = factor of new or additional facilities

addditional facilities

Wi = Amount of fuel used for new or additional

3. OTHER SUBSTANCES OF ALR

SUBSTANCES	CONTROL VALUE	COUNTERMEASURE FACILITIES
Cd and its compound	0.001 g/ba3	Ceramic products, Rosster furnace, Welting furnace
ប	0.ങ	Chlorine quick cooler, etc.
RCI	2.0	Maste incinerator
-	0.08	Chlorine quick cooler, etc.
下, 班.	0.01	Caramic products, Roaster furnace, Welting furnace, etc.
Sif4,	0.001	Aluminum electrolytic furnace
Sife	0.015	Reaction concentrator for production of Phosphorus and Phosphoric acid
	0.02	Open-bearth furnace for above
Po and its	0.02	Roaster furnace and Melting furnaces for production of glass
വരുത്തു	0.01	Reasting furnace for refining of Cu. Pb and Zn
	0.03	Roaster furnace and etc. for above

4. WATER QUALITY (CONTROL AT DEALWARE OPENING TO BE DISCHARGED TO PUBLIC WATERS)

US DIXICE SIG	TOTIC SUBSTANCE	THE LIVING BUT LIVING BUTTERNAMENT	WIRDWENT
CONTROL SUBSTANCE	CONTROL VALUE	ITERS OF CONTROL SUBSTANCE	MAXIMIN CONTROL VALUE (DAILY AVERAGE)
Cd and its compound	0.1 ppm (as Cd)	15	5.0 - 9.0
Of compound	w-#	COE	160 ppin (120 ppm)
ORGANIC PROSPAIDE	7	COD	160 ppm (120 ppm)
Pb and its compound	1 (as Pb)	B	200 ppu (150 ppu)
Cr.es comboung	0.5 (as [276)	n-Raxane extracts (mineral oil)	ı,
As and its compound	0.5 (as As)	same as above (animal and plant oil)	30
Hg and Albryl Hg and			
other Ag compound	0.005 (as Hg)	Phenol kinds	5
Alkyl Rg compound	Not traced	ਲ	3
PCB	0.00	Zn	5
		Soluble Fe	10
		Soluble An	10
		-to	.2 ppm
		íe.	15
		Colifors group	(3,000 units/cm²)

STRUCT EFFUENT STANDARD

Strict Effluent Standard at merine area of Seto-Waikai

				Items and	substance (Items and substance with its allowable limits	owable limit	S			
		Biochemical Oxygen Demand	rgen Demand	Amount of suspended	spended	Amount of extract	extract	Amount of	Amount of contained	Cyanide	Arsenic and
		or Chemical Oxygen Demand	rgen Demand	solids		of normal bexane	. pexane	phera	phenol kinds		its compound
	Line of industry (facility)	(unit mg/1	(3)	(unit mg/8)	(8)	(mit	(unit 昭/4)	(unit	(unit mg/2)	(unit of	(mit of
				·		Amount of	Amount of			cyanide mg/4)	arsenic mg/0)
						animel and	mineral				
						plant oil	oi1				
		Daily average	Maximum	Daily average Maximum	Kaximm	Maximi	Maximum	Maximin	Naxigum	Kaximm	Kaximum
	Over 2000 m3 of normal daily	15	20	40	20	61	2	7	0.5	0.5	0.5
Steel	amount of drainage	:									
Industry	Industry Under 2000m3 of normal daily	09	8	70	8						
	amount of drainage										

Standard of Areawide Total Pollutant Load Control

Standard of Areawide Total Pollutant Load Control (L = C X Q X 10-3) is applied to the specified plants discharging daily average amount of water more than 50m2 in order to accomplish the targeted amount of reduction.

1: STANDARD OF AREANIDE TOTAL POLLUTANT LOAD CONTROL ON COD (Kg/day)

C: VALUE SHOWN IN ATTACHED TABLE-3 (ppm)

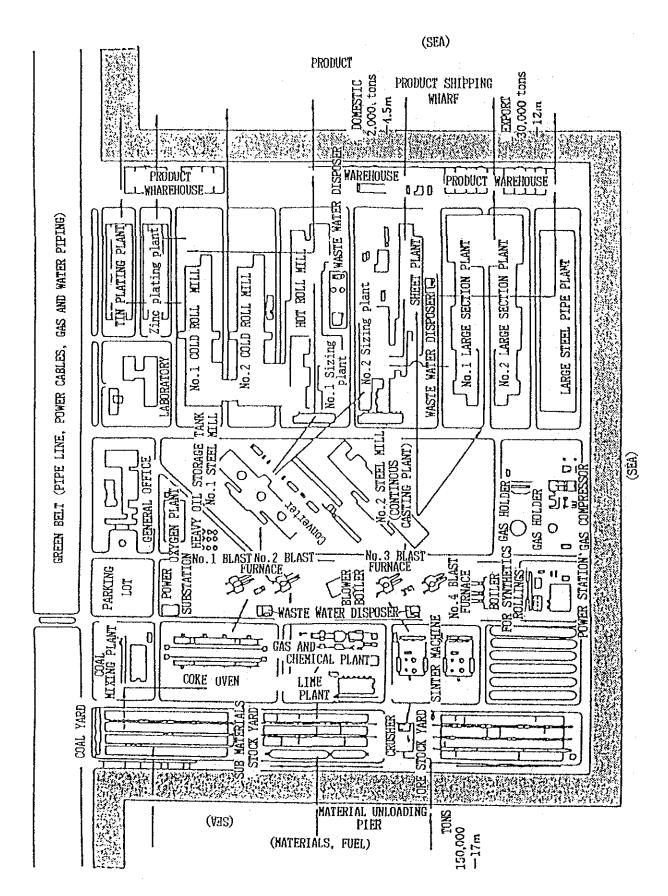
Q: MAXIMUM DISCHARGING ANOUNT OF SPECIFIED MASTE HATER (Mª/DAY)

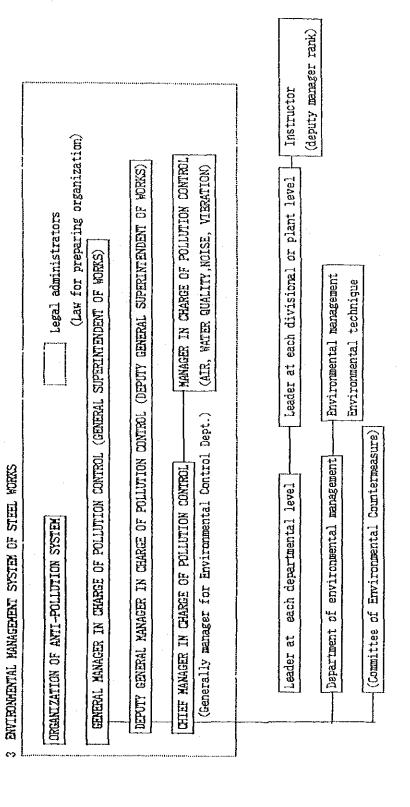
Effective date or effective period

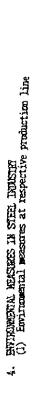
C-VALUE OF AREANIDE TOTAL POLLUTANT LOAD CONTROL

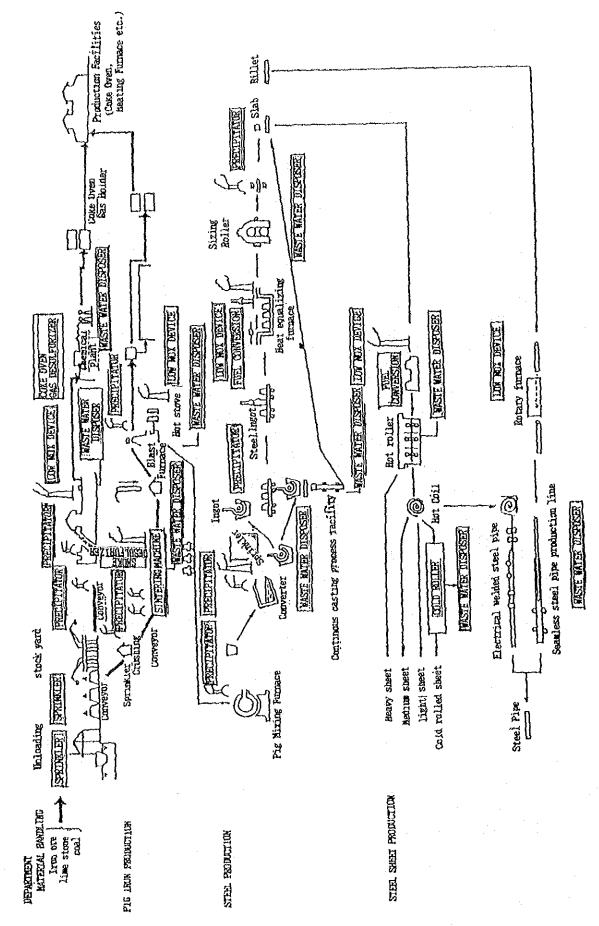
	AL REMARKS		With Coke oven, figures of 60, 70, 60	are respectively replaced in same order.
MAND (unit mg/E)	ARGET NEDIUM NEW AND ADDITION	BUILDING	20	
OXYGEN DE	KEDIDA	(1381)	R	
CHEMICAL	TARGET	(1984)	50	
CLASSIFICATION BY INDUSTRY OR OTHER CHEMICAL OXYGEN DEMAND (unit mg/E)			162 Steel works with blast furnace and	rolling mill
			162	

ENVIRONMENTAL MANAGEMENT IN STEEL INDUSTRY

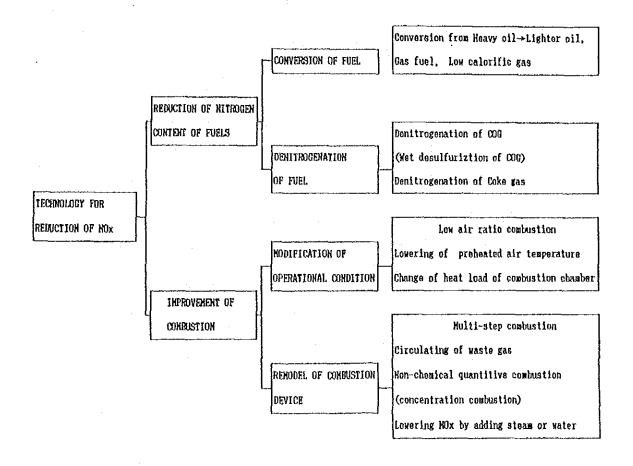

1. PREFACE


- (1) STRICT ENVIRONMENTAL LEVEL AND CONTROL OF DISCHARGE
- (2) ACTIVE COOPERATION TO ACCOMPLISH ENVIRONMENTAL LEVEL
 (CHANGES OF TOTAL INVENSIMENT FOR ENVIRONMENTAL PROTECTION AT STEEL INDUSTRY)


Tota	l investment	Total investment	(B/A)	Air	Effluent	Noise	Industrial	Others related to
\fai	cilities (A)	environmental	(X)	pollution	Control	control	wastes	environmental
	view in the second	protection (B)		control				protection
						1		
1971	7,749	690	8.9	351	178	6	10	145
1972	6,516	859	13.2	520	230	7	12	89
1973	5,928	1,030	17.4	627	215	20	55	113
1974	8,922	1,671	18.7	1,038	238	51	222	123
1975	11,474	2,091	18.2	1,526	301	63	84	119
1976	12,646	2,654	21.0	1,999	410	81	46	118
1977	6,841	812	11.9	520	150	35	45	63
1978	5,805	629	10.8	375	124	17	60	53
1979	6,183	680	11.1	452	172	13	19	25
1980	6,068	321	5.3	125	53	22	94	28
1981	7,922	464	5.9	169	120	14	136	25
1982	10,645	694	6.5	212	153	15	288	25
					-			
	96,699	12,595	13.0	7,914	2,344	344	1,071	926
Total		(100%)		(62.8%)	(18.6%)	(2.7%)	(8.5%)	(7.4%)


Notes (1) Estimated in 1982, (2) Investment amount is on basis of construction

- (3) Neither amount or total may be agreed due to the round off of each item.
- 2. CHARACTERISTICS OF IRON AND STEEL WORKS IN VIEW OF ENVIRONMENTAL HEASURE
 (Layout sample for continous production process of steel mill is shown in FIG-1)
 - (1) A long production line with various different kind of equipment and facilities.
 - (2) A large area.
 - (3) A critical criteria (*) for selection of site.
 - (*) is restrictions of land, harbor, transportation and industrial water which is required a special ingenious scheme.


Note: [indicates a kind of environmental measures

(2) ANTI AIR POLLUTION HEASURES

A. SULFUR OXIDE

- a. Lower suifur of fuel
- b. Desulfurization of sintering exhaust gas
- c. Desulfurization of coke oven gas

B. NITROGEN OXIDE

C SOOT AND DUST

PROCESS	ORIGIN OF DISCHARGE	COUNTERNEASURES
MATRIAL UNLOADING	Vessel's Hatch	Sprinkler
	Unloader Hopper	
MATERIAL STOCK YARD	Storage Yard	Sprinkler,
	Stacker	Spray of surface,
		Solidifying agent
NATERIAL PREPARATION	Crusher, Sizing, Conveyor,	Dust collection
·	Conveyor transfer, Hopper	Conveyor cover
COKE OVEN	Coal crusher, Coal mixer,	Dust collection
	Storage tank, Coal tower,	Smokeless devices
	Coal cart, Guide car,	
	Hydrant tower, Coke cutter	
LINE FURNACE	Main exhaust gas, Screen,	Dust collection
	Hopper	
SINTERING MACHINE	Main exhaust gas, Cooler	Dust collection
	exhaust air, Conveyor,	`.
	Hopper, Crusher, Screen	
BLAST FURNACE	Storage tanks for ore and	Dust collection
	Coke, Casting hearth,	Dust collection also inside
	Top of blast furnace	of plant building
CONVERTER	Top of converter,	Dust collection
	Circumference of converter	Dust collection also inside
	(Melting pots for pig and	of building
	steel, Sub materials),	
	Main exhaust gas	
ELECTRIC FURNACE	Top of furnace,	Dust collection
	Circumference of furnace	Dust collection also inside
		of building
ROLLING FACILITY	Preparation of steel,	Dust collection
	rolling	

(3) COUNTERNEASURE FOR EFFLUENT

A WASTE WATER DISCHARGED FROM MAIN PROCESS

PROCESS	WASTE WATER DISCHARGED FROM	HAIN POLLUTION ITEM	REMARKS
RAN KATERIALS	MIARE, YARD	SS	Dirty water of rain
COKE	WASHING COME	SS	Maste water of Hydrant tower, Precipitator
	GAS LIQUID (AQUEOUS AMMONIA)	PHENOL (COD), ANNONIA, CYAN	Cooler, Tar cottrell, piping drain, etc.
PIO IRON	HASHING CAS	SS	Naste water from gas washing, precipitator
STEEL	WASHING GAS	SS	Waste water from gas washing, precipitator
SIZINO	ROLLING	SS, OIL	Waste water form roll cooling, scale washing
OT ROLLING	ROLLING	SS, OIL	Waste water from roll cooling, scale washing
COLD ROLLING	ROLLING	SS, OIL	Waste water from rolling oil
5	ACID PICKLING	pH, SS, DIL	Waste water from pickling process
	WASHING ELECTROLYSIS	pH, SS, OIL	Waste water from electrolytic process
	PLATINO	pll, SS, COD, Cr	Waste water from pre-treatment process
STEEL PIPE	COOLING AND WASHING	SS, OIL	Cooler, scale washing
	ENULSION	OIL	Emulsified oil and cooling water of equipment
	ACID PICKLING	pH, SS, OIL, COD	Various pickling water, cooling water
THERS	FIAIHG	COD, BOD, OIL	Waste water from office subsistence

B PRINCIPAL ORIGIN OF POLLUTANTS AND DESCRIPTION OF COUNTERMEASURES

POLLUTANTS	KAIH ORIGIN	COUNTERNEASURE TECHNICS			
000	WASTE LIQUID OF COKE OVEN DAS	BIOLOGICAL TREATMENT + COAGULATING SEDIMENTATION + (COMPLETE			
		TREATHERT)			
	WASTE WATER FROM ROLLING PROCESS	SETTLING SEPARATION, FLOATING SEPARATION			
	MASTE WATER FROM PICKLING OF COLD ROLL	COACULATING SEDIMENTATION + NEUTRALIZITION			
OIL	WASTE WATER FROM HOT ROLL PROCESS	NATURAL FLOATING SEPARATION			
-	WASTE WATER FROM COLD ROLL PROCESS	COMPRESSED-AIR FLOATATION SEPARATION			

(4) COUNTERNEASURE FOR WASTES

A TYPICAL WASTES

CLASSIFICATION	TYPICAL EXAMPLE	PRINCIPAL DISCHARGING PROCESS		
SLAG	BLAST FURNACE SLAG, CONVERTER SLAG, ELECTRIC FURNACE SLAG	BLAST FURNACE, CONVERTER, ELECTRIC FURNACE		
DUST	BLAST FURNACE DUST, CONVERTER OVEN DUST,	BLAST FURNACE, CONVEXTER, ELECTRIC FURNACE		
	COLLECTED DUST OF SINTERING AND OTHER ROLLINGS, ETC.	SINTERING PLANT AND ROLLING MILL		
SLUDGE	SLUDGE FROM RETURN MATER OF ROLLING, ETC.	ROLLING HILL		
WASTE OIL	WASTE OIL FROM ROLLING MILL, ETC.	ROLLING MILL		

B STATUS OF WASTES

KIND	DISCHARGED AMOUNT		RECYCLED A	MOUNT	DISPOSED AMOUNT	
	10° t	z	10° t	X	10°t	Z.
SLAG	36,769.6	100	33,581.5	91.3	3,188.1	8.7
DUST	4,357.1	100	4,154.8	95.4	202.3	4.6
SLUDGE	461.8	100	276.4	59.9	185.4	40.1
WASTE OIL	43.6	100	26.7	61.2	16.9	38.8
OILY SCUN	39.6	100	6.7	16.9	32.9	83.1
TOTAL	41,671.7	100	38,046.1	91.3	3,625.6	8.7

(5) COUNTERNEASURE FOR NOISE POLLUTION

- A NOISE PREVENTIVE COVER
- B SILENCER
- C SOUND-PROOF WALL

(6) COUNTERMEASURE FOR GREEN

QUESTIONNAIRE PRIOR TO DIACHOSIS OF PLANT DESCRIPTION OF PLANT (1) GEOGRAPHICAL CONDITION AREA KAP FOR B

AREA MAP FOR RELATED LOCATION OF ADJACENT HOUSES LAYOUT PLAN OF PLANT FLOW SHEET OF PRODUCTION PROCESS

PROCESS	FACILITY	QUANTITY	ANNUAL CAPACITY	CURRENT HONTHLY	REMARKS		
<u> </u>		l	(ton)	PRODUCTION (ton)			
PIG IRON	COKE OVEN		9 9 9		GENERATED VOLUME OF CO	KE GAS	Hα ³ /H
	SINTERING OVEN				DISCHARGED WASTE GAS		H\€aN
	LINE XILH	1.0					
	BLAST OVEN				INNER CAPACITY	Ka	
TEEL.	REVOLVING OVEN				UNIT CAPACITY	Ion	
	ELECTRIC OVEN		1		UNIT CAPACITY		
10 m	OTHERS						
CUONITIONS	CASTING		1		NAME OF PRODUCTS		****

(3) NAME AND VOLUME OF PRODUCT	QUANTITY O	F FACILITY	ANNUAL C	APACITY (Ton)	CURRENT HON	THLY PRODUCTION	VOLUME (Ton)
SHAPE STEEL							
STEEL BAR							
HEAVY SHEET							
LIGHT SHEET							
COLD ROLLED SHEET					·		
SURFACE TREATED STEEL SHEET	1 .						
STEEL PIPE							
OTHERS							

2. DESCRIPTION OF COUNTERNEASURE FOR POLLUTION

A	POLIUTI	

	KIII	SOx	Юx	SUSPENDED DUST	FALL-OUT	OTHERS
LEVEL	ENVIRONHENTAL LEVEL	ppm	Ppm	E/N ³	T/km²/month	
	DISCHARGE LEVEL	Nu³/H	H\°aH			
	CURRENT TARGET	ppm				
		Nu³/1 (
CURRENT	OUTSIDE OF	ppm	ppm .	mg/m³	T/km²/month	
CONDITION	PREXISES			1 1		1
	AHOUNT OF DISCHARGE	H/€mK	Nm³/N			

8 WATER POLLUTION

	1163	800	COD	SUSPENDED NATTERS	110	OTHERS
LEVEL	ENVIROHNENTU Level	ppa	ppa	ppm	bba	
	DISCHARGE LEVEL	ррш	ppm	650	ppm	
	CURRENT TARGET OF DISCHARGE	ppa	ppn	ррш	ppm	
CURRENT CONDITION	CONCENTRATION OF DISCHARGE	PPM	ppm	ppa	bbu	
L	VOLUME OF DISCHARGE					

C OTHERS			· · · · · · · · · · · · · · · · · · ·	
IIDI	ENVIRONNEMTAL LEVEL	DISCHARGE LEVEL	CURRENT TARGET	CURRENT STATUS
]				
		. 1		·

(2)	COUNTERHEASURE	FOR	FACILITIES
-----	----------------	-----	------------

PLANTS	AIR PULLU	AIR PULLUTION		WATER POLLUTION		OTHERS			
HATERIALS			:						
COKE									
SINTERING									
PIG IRON									
STEEL									
OTHERS									

(3) MANAGEMENT SYSTEM

ORGANIZATION					
		•			
KONITORING SYSTEM	(EXAMPLE) ITEMS OF MEASUREMENT,	FREQUENCY,	PATROL, ETC.		
				- {	
	50				

3. PROBLEMS, ETC.

CURRENT PROBLEMS

STUDY AND DETAILED HEASURES FOR PROBLEMS

CUIDE THENE TO THE DISPATCHED SPECIALIST UNDER THE UNEP

(EXAMPLE) TECHNICS FOR FACILITY, HEASUREMENT AND HANAGEMENT;

ASSESSMENT OF INFLUENCES, OTHERS

