ATTACHMENT

Tables and Figures

Table II. 2. 1 Major Cyclones

year	month	min. atmospheric pressure
1935	Feb.	-
1943	Dec.	984
1967	Dec.	975
1987	Jan.	967

Table II. 3. 1 Cook Island's Main Exports and Imports
(in \$000)

EXPORTS	(1981)	IMPORTS	(1980)
Banana	684	Foodstuffs	5270
Copra	348	Textiles	1580
Fresh citrus	40	Oil, petrol, etc	$\bigcirc 2428$
Pearl shell	323	Tabacco, cigarettes	259
Pineapple juice	8	Vehicle, parts	1293
Citrus juice	770	Timber, cement, etc.	481
Other juice	-		
Fruit, canned	42		
Clothing	2038		
Handerafts	-		
Footwear	47		
Pawpaw	378		
Fresh pineapple	42		

Source : Pacific Island Year Book (15th Edition, 1984).

Table II. 6. 1 Rainfall Record at Totokoitu

Date	Rainfall (mm)
28 December 1986	0.3
29 December 1986	2.9
30 December 1986	10.0
31 December 1986	10.1
1 January 1987	
2 January 1987	225.0
3 January 1987	6.5
4 January 1987	0.3

Source : Meteorological Office at Rarotonga International Airport.

Table II. 6. 1 Topography of Rarotonga Is. Seacoast and Width of Coral Reef

(Unit in Meter)					
No.	Name of Survey Point	Width of Coral Reef	Natural Ground Height	Road Surface Height	Wave Runup Height
1	Estuary of Tupapa Stream (TUPAPA)	20	5.6	4.8	5.6
2	Tamure Resort (KIIKII)	60	5.6	4.7	5.6
3	Health Department (VAIKAI)	90	4.5	6.1	4.5
4	Yankee (NGATIPA)	160	3.9	3.9	3.9
5	Petroleum Tanks (ATUPA)	50	5.2	5.4	5.2
6	Meteorological Station (NIKAO)	360	5.4	6.5	5.0
7	Black Rock (POKOINU)	630	5.7	6.3	5.0
8	Ministry of Works (TOKERAU)	850	4.0	*	4.0
9	Beach Hotel (TUPAPA)	250	3.3	-	3.3
10	Estuary of Muriavai Stream (VALAKURA)	430	3.6	4.6	2.1
11	West of Rarotongan Hotel (AROA)	360	3.4	3.4	3.4
12	Rutaki School (RUTAKI)	920	3.3	3.2	3.0
13	Estuary of Totokoitu Stream (TOTOKOITU)	730	2.7	-	2.7
14	R.C. (TIKIOKI)	620	4.1	4.1	3.0
15	Sailing Club	1,520	2.7	2.7	2.5
	Muri Beach (AREITI)				
16	Ngatangiia Harbour (AVANA)	400	1.8	1.7	1.5
17	Norrie Park (MATAVERA)	60	3.9	-	3.9

Table II. 7. 1. List of Damages in Harbour

1. Avatiu Harbour

Notes: Values for Avatiu Harbour are given by New Zealand and Australian Mission. Numbers marked by * are those told by Australian Mission. Those for Avarua Harbour are from the Cook Islands Government.

Table III. 1.1 Comparision of Sea Wall Pians.

Plan and Cost	Advantage	Disadvantage
1. Simple sea wall (Fig. III. 1. 2) NZ\$ 730,000	Cost : Low. Safety from storm surge, waves and coral debris: Secured. Scenery: Trees can be maintained.	Future expansion of road : Sea wall could become an obstacle.
2. Sea wall-cum-new road (Fig. III. 1. 3) NZ\$ 990,000	Safety from storm, waves and coral debris: Secured. Scenery : Some of the trees to be cut. Traffic conjection : Can be dissolved.	Cost : Relatively low.
3. Sea wall-cum-detached Breakwater (Fig. III. 1. 4) NZ\$ $1,280,000$	Safety from storm. Future development : Reclamntion is easy. Sedimentation : Expected.	Cost : Relatively high. Scenery: Affected.
4. Sea wall-cumreclamation. (Fig. III. 1. 5) NZ\$2,430,000	Safety from storm. Utilization of reclaimed land.	Cost : Expensive. Scenery: Affected.

Table III. 1. 2 Comparision of Breakwater Plans.

Plan and Cost	Advantages	Disadvantages
1. Extended Breakwaters (Fig. II. 1. 6) NZ\$ 5,850,000 without dredging	Waves in harbour : Small $(H<1$ m). Structure : Strong and safe. Wave setup in harbour : Small. Harbour area : Large. Future development: Allowed. Effect of breakwaters for reclamation on the reef could be expected.	Cost : Very expensive. Wave setup on lagoon : Enhanced. Construction :Difficult, long period. Work vessels and divers : Required. Cement and iron bars: To be imported. Dredging : Large volume required. Effect of return current on incident waves : Can not be expected.
2. Original Plan (Fig. II. 1. 7) NZ\$ 620,000 without dredging and training wall.	Waves in harbour : High $(\mathrm{H}<2.5$ m). Construction materials: Available. Wave setup in harbour : Small. Harbourarea: Large. Future development : Allowed. Effect of breakwaters for reclamation on the reef : Coud be expected.	Cost : Expensive. Wave setup on lagoon : Enhanced. Benefit of breakwaters : Small. Construction : Difficult at the head, large rock (11 tons with $1: 3$ slope) required. Dredging : Large volume required. Effect of return current on incident waves : Cannot be expected.

Fig. II. 1. 3 Avarua Town, Rarotonga

Fig. II.2.1 Typical Coastal Section Sohwing Geological Relationships

Fig. II. 2. 2 Monthly Distribution of Cyclones in the Past

Fig. II. 2. 3 Map of Average Annual
Rainfall in mm (1947 to 1983)

Fig. II. 2. 4 (2) Rassline of Lateral and Return Current (10 Mar. 1987)

Fig. II. 3. 2 Avarua Harbour

Fig. II. 6. 1 Rout of Cyclone Sally (Dec. 1986-Jan. 1987)
 TUESDAY OTAN

 H $1+\cdots-\square+\square$
 8
 1.
 1
1
1
1
1
1
1
1

201
$35 j_{d}^{0}=1$ $\frac{1}{20} 1$
$1010{ }^{2}$
$-=-$
$\square=-$
6
01
81
-1

-1 1	1	1
1	1	1011

$$
+119
$$

 $\frac{1}{1011} 1101010101010$ \qquad
0: ∞

 $\begin{array}{ccccccccccccccccc}-\infty & 03 & 06 & 09 & 12 & 15 & 18 & 21 & 00 & 03 & 06 & 08 & 12 & 15 & 18 & 21 & 0\end{array}$
Fig. II. 6. 2 Air Pressure of Cyclone Sally at Rarotonga

Fig. II. 6. 5 Predicted Tide at Avarua Port

Fig. II. 6. 6 Waves Observed off Avatiu
(Source) Central Laboratory, Ministry of Works and Development, N. Z.

Fig. II. 6. 7 Decrease of Wave Height on the Ragoon

Fig. II. 6. 8 Refraction and Breaking of Waves

Fig. II.6.9 Change of Wave Height
(Theoretical Calculation of Irregular Waves)

Fig. II. 6. 10 Wave Setup on Avarua Lagoon

Fig. II. 6. 11 Lateral and Return Current

Fig. II. 6. 13 (1) Inundated Area by Sea Water, Cyclone Sally

- Natural Ground Heght [M1]
\times Wave Run-up Hight (M]
Fig. II. 6. 14 Topography of Rarotonga Is. Seacoast and Width of Coral Reef
(

Fig. 11. 7. 1 (2) Lines of Sounding

Fig. II. 8. 1 Avatiu Harbour Development Plan (Eastern Side)

Fig. II. 8. 3 Planned Avarua Breakwater

SECTION Nol

SECTION No. 2

Fig. III. 1.1 (1) Cross Sections of Avarua Coast

SECTION No. 3

SECTION No. 4

SECTION No. 5
0.0 mRL (

Fig. III. 1.1 (2)

Fig. III. 1.1 (3)

Fig. II.1. 2 Seawall Plan

サリオオা／T existing

Fig．III．1． 2 Stone parapet profile（ $b^{\prime \prime}-b^{\prime \prime}$ section）

Fig. III. 1. 2 Stone parapet profile ($c-c$ section $)$

Fig. II. 1. 3 Seawall-cum-roads Plan
---- existing
planning

Fig. II. 1. 3 Seawall profile (a-a section)

Fig. II. 1. 3 Seawall profire ($b^{\prime}-b^{\prime}$ section) case -1

Fig. II. 1. 3 . Seawall profile (promenade type) ($\mathrm{b}^{\prime}-\mathrm{b}^{\prime}$ section) case -2

Fig. II. 1. 4 Detached Breakwater Plan
\ldots---- existing

$\mathrm{H}=1 / 400$
$\mathrm{~V}=1 / 200$
Fig. II. 1. 4 Seawall and Detached Breakwater profile (d-d section)

Fig. II. 1. 5 Reclamation profile ($\mathrm{b}-\mathrm{b}$ section) Case-1 High Land Level

Fig. II. 1. 5 Reclamation profile ($b-b$ section) Case-2 Low Land Level

Fig. II. 1. 6 Extensive Breakwater Plan

Fig. II. 1. 6 Cross Section of Deep-water Breakwater
Scale 1:200
Unit m

Fig. II. 1. 7 Planned Extensive Breakwater

Fig. II. 1. 8 Yacht Harbour Plan

Fig. II. 1. 8 Breakwater Cross Section for Yacht Harbour

Fig. II. 1. 9 Existing Breakwater

Fig. II. 1. 10 Comparison of Mouth Trainning

Fig. II. 2. 4 Proposed Sites for Coastal Profile Survey

Fig. U2. 5 Inundation Area

Fig. III. 3. 1 Flow Chart of Disaster Assessment

