TABLE 3.3-4 UNIT GRAPH AT TALAWAKELLE AND CALEDONIA

Unit Rainfall: 10mm

Time (hr)	Unit Graph at Talawakelle Qu (m3/s)	Unit Graph at Caledonia Qu (m ³ /s)	Time (hr)	Unit Graph at Talawakelle Qu (m3/s)	Unit Graph at Caledonia Qu (m ³ /s)
0	0.0	0.0	15	12.3	4.6
1	5.7	8.9	16	10.6	3.7
2	30.1	47.2	17	9.1	3.0
3	79.6	124.8	18	7.8	2.5
4	158.8	92.4	19	6.7	2.0
· 5	117.5	55.9	20	5.8	1.7
6	87.0	37.4	21	5.0	1.4
7	64.4	28.7	22	4.3	1.1
8	47.6	21.9	23	3.7	0.9
9	39.0	16.8	24	3.2	0.7
10	31.9	12.8	25	2.7	
11	26.1	10.2	26	2.3	
12	21.3	8.3	27	2.0	
13	17.5	6.8	28	1.7	
14	14.3	5.6	29		

II.9 Probable Flood Hydrograph

Design Rainfall

The hydrograph has been applied for estimation of the probable hydrograph. Probable Maximum Precipitation (PMP) was considered in obtaining Probable Maximum Flood at the proposed Caledonia reservoir.

Rainfall-depth-duration relationship for Nuwara Eliya is given as follows:

TABLE II.9-1 RAINFALL-DEPTH-DURATION RELATIONSHIP FOR NUWARA ELIYA

Duna	Return Period (Years)												
Dura- tion	Ē	50	1	00	2	200		500		1,000		10,0001/	
(hrs)	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	
1	1.3	33.0	1.4	35.6	1.6	40.6	1.7	43.2	1.9	48.3	2.3	58.4	
2	2.3	58.4	3.2	81.3	3.4	86.4	3.5	88.9	3.8	96.5	5.2	132.1	
4	4.4	111.8	4.8	121.9	5.4	137.2	6.3	160.0	6.8	172.7	8.9	226.1	
6	5.6	142.2	6.2	157.5	6.6	167.6	7.9	200.7	8.4	213.4	11.0	279.4	
8	6.5	165.1	7.2	182.9	7.9	200.7	9.1	231.1	9.7	246.4	12.5	317.5	
10	7.2	182.9	8.0	203.2	8.8	223.5	10.0	254.0	10.7	271.8	13.7	348.0	
12	7.7	195.6	8.6	218.4	9.6	243.8	10.8	274.3	11.6	294.6	15.0	381.0	
14	8.1	205.7	9.2	233.7	10.0	254.0	11.4	289.6	12.3	312.4	15.9	403.9	
16	8.5	215.9	9.4	238.8	10.5	266.7	12.0	304.8	12.9	327.7	16.9	429.3	
18	8.8	223.5	9.9	251.5	11.0	279.4	12.5	317.5	13.5	342.9	17.7	449.6	
20	9.2	233.7	10.3	261.6	11.4	289.6	13.0	330.2	14.1	358.1	18.5	469.9	
22	9.5	241.3	10.7	271.8	11.8	299.7	13.5	342.9	14.6	370.8	19.1	485.1	
24	9.9	251.5	11.0	279.4	12.3	312.4	14.0	355.6	15.1	383.5	19.9	505.5	

1/: Value estimated from the other data

Source: Development of Unit Hydrographs for Ungauged Catchments Using Snyders Technique; A.A.Jayaratna, Hydrology Division

Various studies were made for Probable Maximum Precipitation(PMP) in the upstream portion of Mahaweli Ganga basin. According to the study report for the existing Kotmale Dam, PMP for the Kotmale Dam catchment is estimated on the basis of the observed daily rainfall at Watawala.

Namely, PMP for the Kotmale Dam catchment was obtained at 711mm (28") based on a observed 1-day rainfall of 525mm (20.65") on October 5th, 1913, with application of a moisture maximization factor of 20% and a conversion factor of 13% to obtain 24-hour rainfall.

As mentioned earlier, Watawala is located in the South-western end of the Kotmale dam catchment where rainfall is abundant compared to the other areas. Annual average rainfall at Watawala is also high at 5,236mm compared to the catchment average of 2,847mm. 1000-year probable daily rainfalls at various stations are presented below; Watawala and Hatton have very high values compared to the other stations.

1000-YEAR PROBABLE DAILY RAINFALL

Unit: mm

Watawala	: 746	New Forest	: 406
Watagoda	: 426	Nuwara Eliya	: 371
Labookelle	: 428	Caledonia	: 358
Hatton	: 636		

Source: An Analysis of the Rainstorms in the Upper

Mahaweli Catchment; KDN Silva and P Sumanasekera; Journal of Sri Lanka Meteorological Society - April 1974.

Application of PMP obtained based on Watawala rainfall to the Caledonia dam catchment seems too conservative. In view of the many uncertainties in the hydrometeorological phenomena and behaviour, and particularly due to orographic influence, however, spillway discharge capacity will be checked against PMF. Area reduction factor in the case of PMP was set at 0.80.

Based on the above assumptions, probable floods have been developed as presented in FIG.II.9-1. The obtained peak discharges for various probability are presented below, while developed hydrographs are presented in TABLE II.9-2 and II.9-3.

PROBABLE FLOOD PEAK DISCHARGES AT CALEDONIA

Catchment Area: 175.2km2

Return Period (Year)	50	100	200	500	1,000	10,000	PMF
Peak Discharge (m3/s)	933	1,108	1,202	1,330	1,429	1,913	2,527
Specific Peak Discharge (m3/s/km ²)	5.3	6.3	6.9	7.6	8.2	10.9	14.4

Probable peak discharges at the Talawakelle diversion dam site have also been developed in the same manner, at $1,363\text{m}^3/\text{s}$ for 50-year return period probability and at $1,584\text{m}^3/\text{s}$ for 100-year return period.

Probable Flood Hydrograph at Caledonia

Un	it	:	m3/s

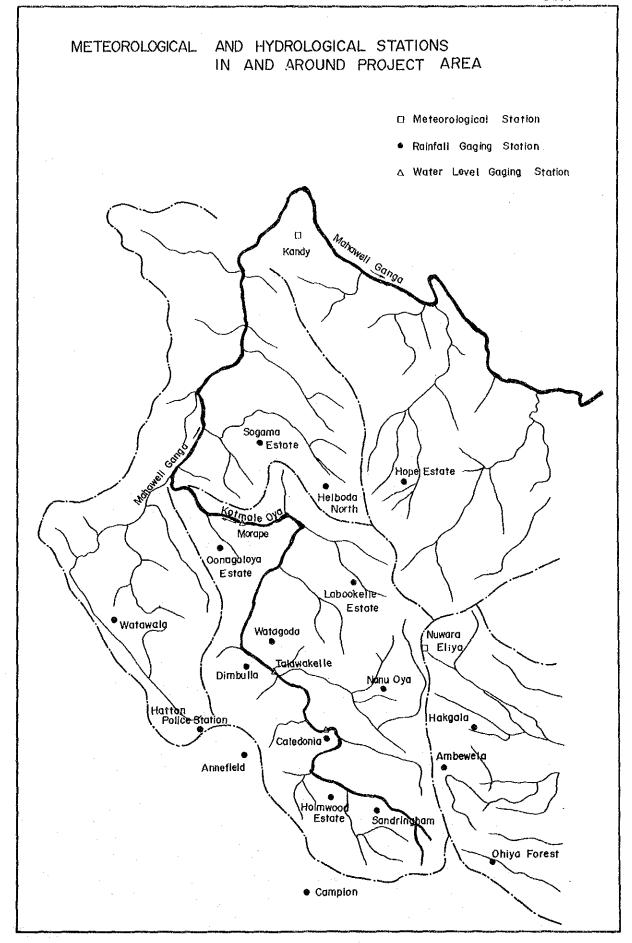
						Unit: m ³ /s				
U ~	Return Period (years)									
Hrs.	Unigraph	50	100	200	1,000	PMF				
1	0.890	14.875	13.967	15.858	16.842	19.565				
2	4.720	30.120	25.306	36.319	42.518	62.355				
3	12.480	71.414	58.685	90.420	111.317	182.595				
4	9.240	106.475	97.050	131.459	166.397	298.575				
5	5.590	138.321	133.603	160.907	209.612	375.056				
6	3.740	160.611	163.904	190.911	240.692	431.470				
7	2.870	177.042	198.918	216.437	269.773	493.746				
8	2.190	195.355	236.051	248.261	310.030	566,313				
9	1.680	229.740	273.752	307.676	366.606	653.306				
10	1.280	286.255	331.743	375.276	433.444	747.809				
11	1.020	367.359	413.128	462.182	536.202	895.324				
12	0.830	489.042	530.301	576.919	709.130	1183.170				
13	0.680	663.081	693.538	781.684	1003.520	1665.910				
14	0.560	814.583	941.223	1049.760	1286.520	2171.640				
15	0.460	932.966	1108.490	1201.900	1428.940	2527.440				
16	0.370	925.946	1009.770	1108.870	1376.680	2396.850				
17	0.300	812.537	883.150	955.853	1185.320	2035.320				
18	0.250	695.309	765.711	840.242	1013.220	1713.250				
19	0.200	595,112	664.741	737.265	874.865	1486.070				
20	0.170	506.061	575.915	643.477	764.160	1313.070				
21	0.140	434.476	508.870	549.510	664.310	1159.180				
22	0.110	385.176	449.267	481.996	584.068	1030.090				
23	0.090	350.177	396.003	432.668	526.496	927.422				
24	0.070	320.209	352.230	387.493	481.959	851.936				
25	0.000	284.492	304.950	349.062	434.328	776.766				
26	0.000	244.156	251.365	303.492	375.743	657.875				
27	0.000	185.800	192.106	230.152	283.365	491.108				
28	0.000	142.234	148.921	174.761	214.256	369.305				
29	0.000	113.168	119.330	138.358	168.785	289.258				
	·									

Probable Flood Hydrograph at Caledonia

Unit: m3/s

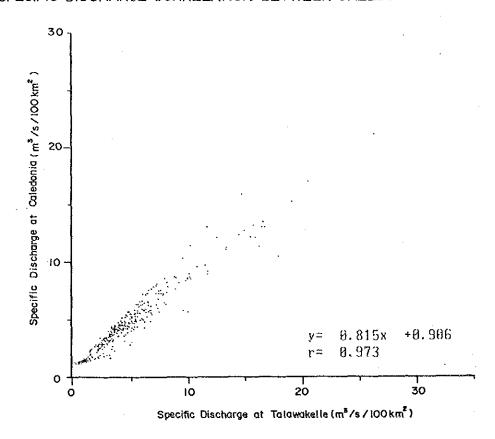
Hrs.						
nrs.	Unigraph	50	100	200	1,000	PMF
30	0.000	92.384	97.445	112,388	136.403	231.873
31	0.000	76.031	80.217	91.881	111.002	186.837
32	0.000	63.127	66.730	75.808	91.031	151.663
33	0.000	52.836	55.747	62.831	75.098	123.757
34	0.000	44.440	46.685	52.458	62.247	101.030
35	0.000	37.157	39.239	43.692	51.013	81.411
36	0.000	31.157	32.387	35.785	41.395	64.677

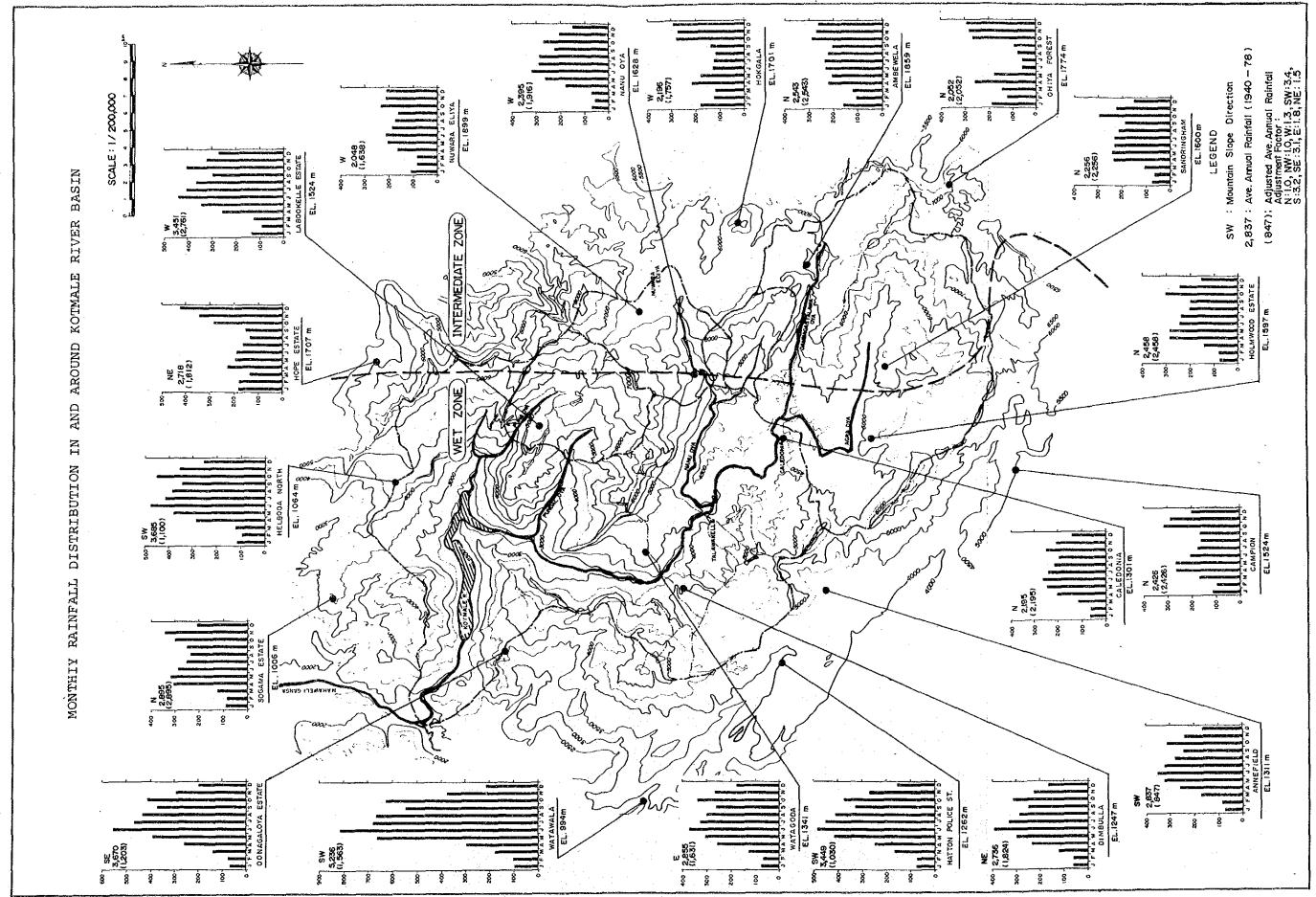
Probable Flood Hydrograph at Talawakelle

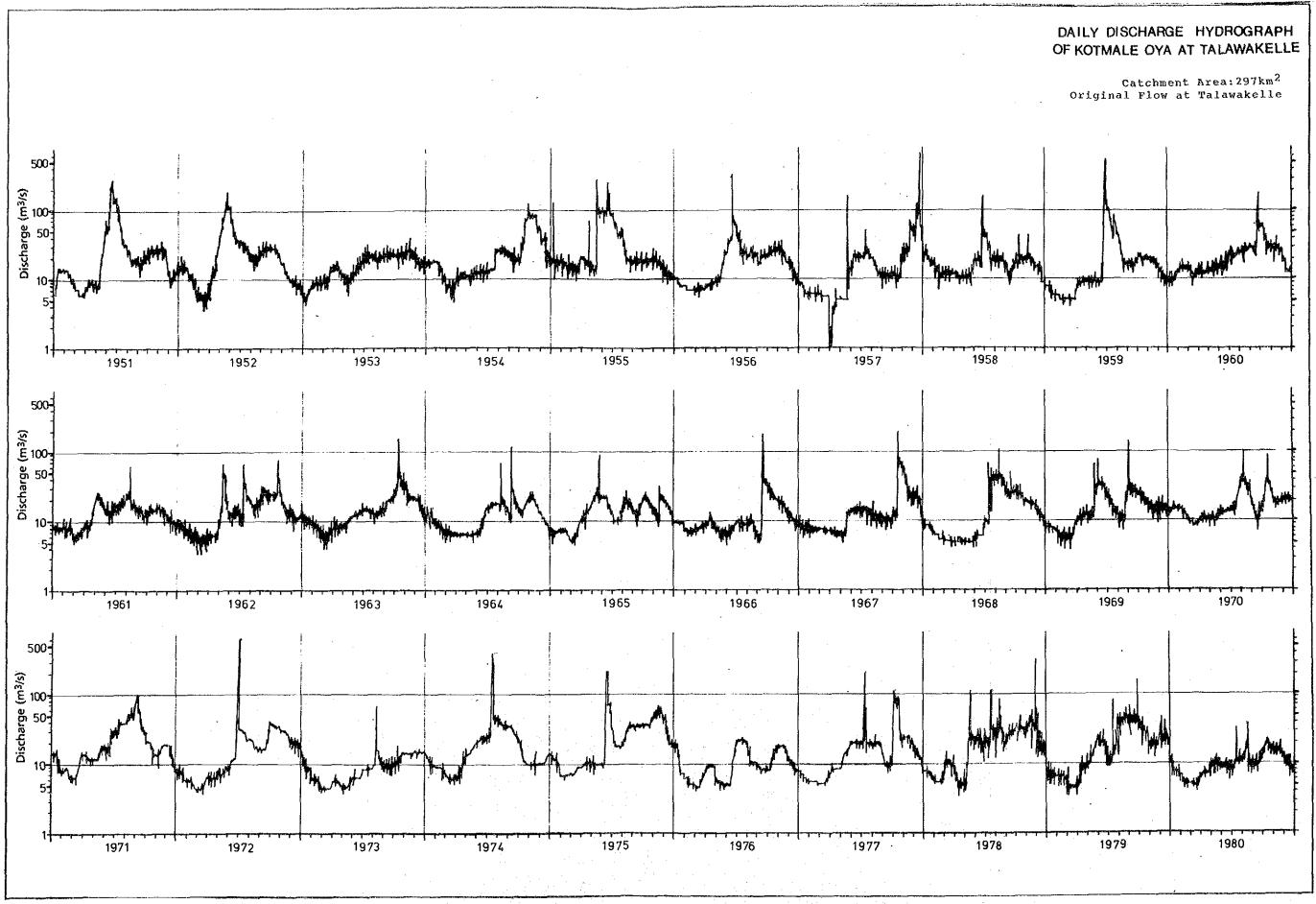

Unit: m3/s

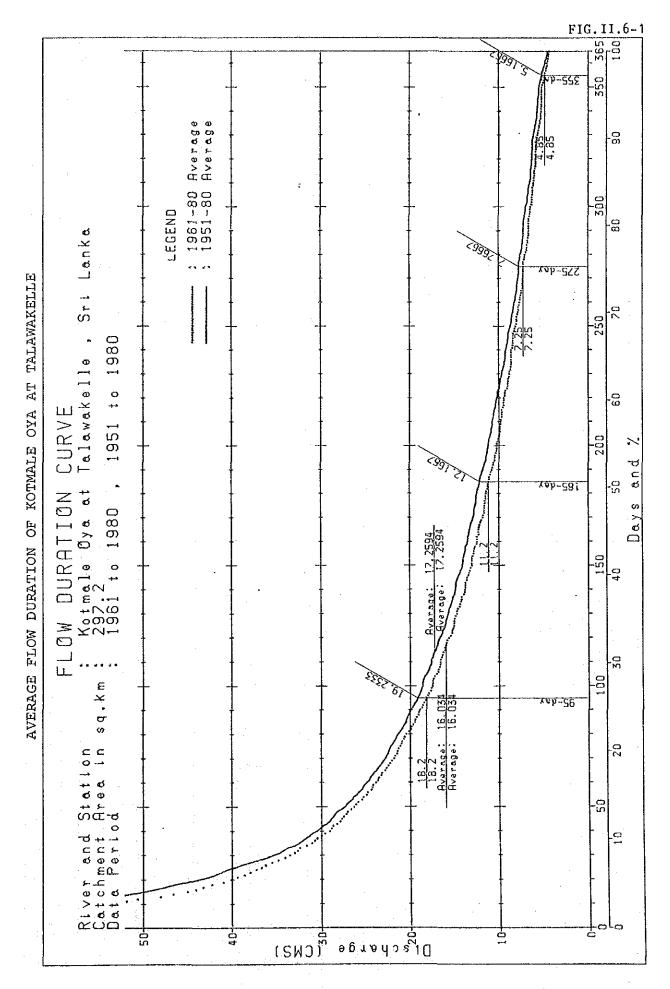
				<u> </u>	Return Period (years)			
Hrs.		n Period (years)		Hrs.				
	Unigraph	50	100		Unigraph	50	100	
1	0.570	21.841	21.260	19	0.670	1093.530	1208.040	
2	3.010	31.563	28.493	20	0.580	960.121	1071.380	
3	7.960	57.904	49.785	21	0.500	840.168	955.251	
4	15.880	112.522	96.325	55	0.430	743.670	859.842	
5	11.750	159.271	147.916	23	0.370	670.886	771.567	
6	8.700	204.919	200.583	24	0.320	612.571	690.104	
7	6.440	239.334	248.587	25	0.270	559.771	617.763	
8	4.760	268.860	302.423	26	0.230	499.458	539.891	
9	3.900	305.025	360.479	27	0.200	434.755	458.846	
10	3.190	363.495	425.497	28	0.170	353.176	374.783	
11.	2.610	454.964	520.737	29	0.000	290.649	310.018	
12	2.130	586.806	651.229	30	0.000	242.749	259.860	
13	1.750	772.248	843.114	31	0.000	205.254	220.402	
14	1.430	1013.890	1092.230	32	0.000	175.829	188.850	
15	1.230	1216.170	1399.950	33	0.000	151.290	162.394	
16	1.060	1363.370	1583.640	34	0.000	130.806	140.162	
17	0.910	1355.710	1481.800	35	0.000	113.486	121.523	
18	0.780	1230.550	1357.410	36	0.000	98.713	105.535	

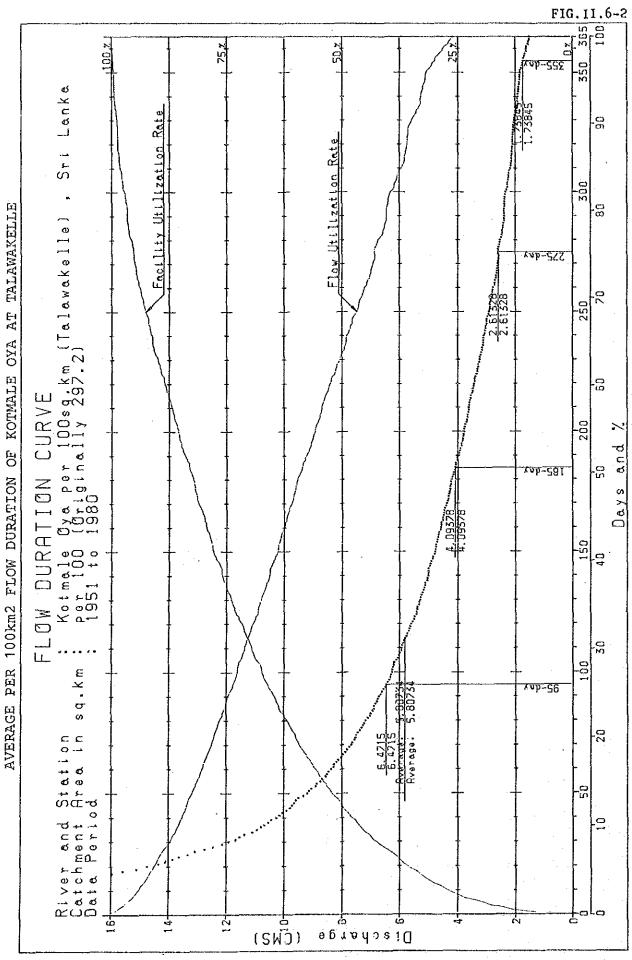
FIGURES

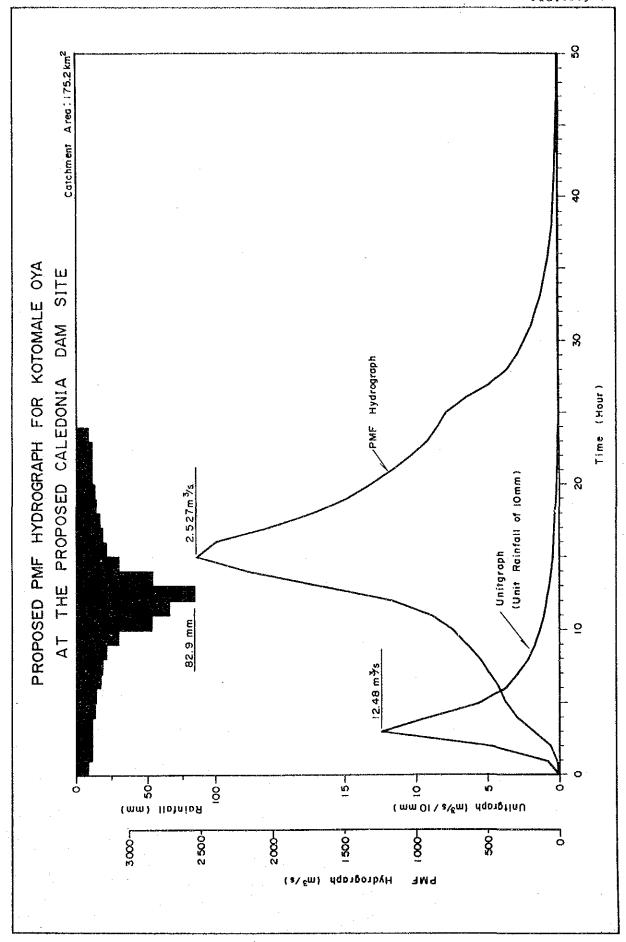

ILLUSTRATIONS


		Page
FIG. II.1-1	Meteorological and Hydrological stations in and around the Project Area	II-F-1
II.1-2	Collected Meteor-hydrological Data and Period	II-F-2
11.3-1	Specific Discharge Correlation between Caledonia and Talawakelle	11-F-3
11.3-2	Monthly Rainfall Distribution in and around Kotmale River Basin	II-F-4
II.5-1	Daily Discharge Hydrograph of Kotmale Oya at Talawakelle	II-F-5
11.6-1	Average Flow Duration of Kotmale Oya at Talawakelle	11-F-6
11.6-2	Average per 100km ² Flow Duration of Kotmale Oya at Talawakelle	11-F-7
II.9-1	Proposed PMF Flood Hydrograph for Kotmale Oya at the Proposed Caledonia Dam Site	II-F-8




		Lat : Tude	/C.A.(km ²)	1 1	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	11000	1001	1			T
Meteorology		<u> </u>	7 C.A.(KIII 7				1000	1303	1370	13/1	1912	1913	1314	1913	1370	1577	1370	1979	1980	1981	1982	1983	1984	198
Nuwara Eliya	on color !! A	'80°43'37"E	EI 1 900 m	1955 - 60														<u> </u>						00
Kendy	7° 20' N	I .	EL. 1, 099 III	ŀ																				
Kanay	1. 20 %	00 00 0		tt evar 4																				
Montly Rainfall							·	,																
Caledonia	6°54'00" N	80° 42'39"E	EL. 1,301	1940				 -																
Nuwara Eliya	6° 58' 25" N	80° 43' 37"E	EL. 1,899	1940					 			-						_		1				
Ambewelo	6°53'23" N	80° 48'02"E	EL. 1,859	1940		<u> </u>			<u> </u>	ļ							ļ			ļ		Aug.		
Compion	6°46'41" N	80° 42'00'E	EL.1,524	1940						ļ								<u> </u>		·			Feb.	
Sandringham	1	80° 45'02'E	ſ	1940					ļ										-	ļ	ļ!			
Annefield	6° 52' 23" N	80° 38'07"E	EL. I. 311	19.40					ļ									ļ		 			_Feb.	
Holmwood Estate	/ I	80° 42'52'E	-	1940														<u> </u>	<u> </u>				_Feb.	
Nonu Oya		80° 43'37'E	Į i	1940	·····													1		1 1				
Ohiya Forest		80° 50'37'E	7	1940				·												'				
Dimbulla	6° 56'48" N	£ .		1940					<u> </u>									_						
Hakgala	1	80° 49' 12"E		1940				-	<u> </u>											1 1				
Hatton Police Station		80° 36' 00"E		1940										<u> </u>						1 1				
. Helboda North		80° 39' 48"E		1940																				
Hope Estate		80° 43' 33'E		1940					<u> </u>				·							l '				
Labookelle Estate	7°01'23'N			1940					ļ											l '				
Donagaloya Estate	7°02'12"N			1940																i '	.			
Sogama Estate	7° 07'27"N			1940										·						į !				
Wajagoda		80° 39'08' E		1940											*.a			j		1 1				
Watawala	6° 57'33"N		-	1940]		1 !				
	0 0, 33 1	00 31 32 E	EL. 354				-						-	İ						'				
Daily Rainfall					• 1	1												8		1 - 1				
Nuwara Eliya	6°58'25"N	80°43'37"E	EL. 1.899	1955 - 60		ĺ														ļ				0
Ambewela Cattle Form	1	80°48'02"E			- 1	-					.								(May)	L			(Jan	<u>վ) s</u>
Campion State Plantation	1 1	80° 42' 00" E								·						-				<u> </u>			(Jar	<u>) s</u>
Sandringham Estate	6°50'54"N			1	Ì	į						ļ	l							(Ng	w.)		(Jan) s
Annefield	6°52'23" N				İ								i		j		÷						(Jon	F
Holmwood Estate	6°51'10"N	80°42'52'E	EL. 1,311										ŀ]			(Jan	
		50 %2 52 2	EE. 1, 091	1	İ		I						}	Ì	·				. 1	, ,				
Monthly Discharge					•				·		1									i !				
	6°56'25"N	B063014E11E		1954 Oct.	<u> </u>	<u> </u>		 									Jul.		Apr.	Jul.				
Talawakelle (Corrected)		80°39'45"E		· 1954. Jul					·····											ļ				
Morape (acc. I.D. records)		80°37'20"E		1949. Oct											1.5		Apr.			, ,				
		30 3. 20 2											1							, '				
Daily Discharge							l				1									į !				1
	6° 56' 25"N	80°39'45"E	EL. 1,219	1954 Jul.													i			Aug.		Aug	Aug.	
Morape (HCP-1-5)		80°37'20'E	EL. 762	1946 Nov										Sep.			1.1		Feb	Jun.				
			EL.1,372	1	-						. [·]	í.			'		Aug.	Sep	1
	f	80°39'45"E		1954. Oct.					***************************************								Jul.	<u> </u>	Apr.	A	or, May		-	.
Caledonia (Original)	11	E	- tu . 1,213		.										-		1			l '			Oct.	<u></u>
Ogledonia (Alignas)			.]	•				. •			· .	- 1		1		j	1.			i ' '			•	1


SPECIFIC DISCHARGE CORRELATION BETWEEN CALEDONIA AND TALAWAKELLE



APPENDIX III HYDROPOWER PLANNING

APPENDIX III HYDROPOWER PLANNING

		<u>Page</u>
III.1	Review of Long Range Generation Plan	111-3
•	III.1.1 Long Range Power Demand and Supply Plan	111-3
	III.1.2 Introduction of New Power Generating Facilities	III-4
	III.1.3 Fluctuation in Daily Demand	III-4
III.2	Determination of Development Mode	III-11
	III.2.1 Development Approach	III-11
	III.2.2 Description of Alternative Proposals	III-13
	III.2.3 Comparison of Development Proposals	III-14
111.3	Determination of Optimum Development Scale	111-23
	III.3.1 Basic Concept	111-23
	III.3.2 Simulation of Optimum Reservoir Operation	111-24
	III.3.3 Determination of Optimum Combination of Reservoir Scale and Installed Capacity	111-32
III.4	Determination of Power Station Site and Type, and Main Headrace Route	111-35
	III.4.1 Determination of Caledonia Tunnel Route	
	III.4.2 Determination of Talawakelle Tunnel Route	111-39
111.5	Optimization of Diversion From Tributaries	111-43
111.6	Required Capacity for Talawakelle Regulation Pond	- 111-48
TTT 77	Study for Staged Development	
111.8	Effect of Raising Kotmale Dam	111~53

List of Illustrations

			<u>Page</u>
FIG.	III.1-1	Peak Demand and Energy Demand	
		in Long Range Generation Plan of CEB	III-F-1
	III.1-2	Daily Load Curve for June 1985	III - F-2
	III.1~3	Energy Allocation (an example)	
		by Stations as of year 2000	III-F-3
	111.3-1	Reservoir Operation Simulation	III-F-4
į.	111.3-2	Optimization of Reservoir	·
		Scale and Installed Capacity	III-F-5
	III.5-1	Optimization of Maximum Diversion Discharge	
		from Tributaries	III-F-6
	III.6-1	Area Capacity Curve of Talawakelle Reservoir	III-F-7

APPENDIX III

HYDROPOWER PLANNING

III.1 Review of Long Range Generation Plan

III.1.1 Long Range Power Demand and Supply Plan

In January 1987, CEB announced its "Long Range Generation and Transmission Plan, 1986". According to this report, power demand growth is anticipated as follows:

1987: 16%

1988-2001: 97

2002-2006: 8%

The exceptionally high rate for 1987 is explained as due to consideration of recovery of lost loads.

Past power demand in Sri Lanka is shown in TABLE III.1-1. The average growth rate during the 20 year period 1965-1985 was 9.2% for both energy demand and peak demand. FIG. III.1-1 shows future trends for energy demand and peak demand based on past performance. As it is concluded that a reasonable long-term forecast can be made from this data, it has been used as a basis for the planning discussed below.

TABLE III.1-1 PAST POWER DEMAND

Period	Maximum Demand (MW)	Average Annual Growth Rate (%)	Generated Energy (GWh)	Average Annual Growth Rate (%)
1965	89		427.7	
1970	163	12.9	785.8	12.9
1975	219	6.1	1,078.8	6.5
1980	368.5	11.0	1,668.3	9.1
1985	514.9	6.9	2,464.1	8.1
Average	1 7 9	9.2		9.2

Long term energy demand is presented in TABLE III.1-2 and long term peak demand is shown in TABLE III.1-3. If no additional capacity is

出来。1994年,在1995年来,新成为4年。

realized beyond the power development projects already in progress, energy demand will exceed supply capacity from 1991, and peak demand will experience shortfall in supply from 1995. Consequently, there is obviously a need to expand power generating capacity.

III.1.2 Introduction of New Power Generating Facilities

The Long Range Generation and Transmission Plan, 1986, envisages operation of the Upper Kotmale power generating facilities from the year 2000. However, as study has revealed the extremely good economic viability of the Upper Kotmale Hydropower Project and its obvious advantageousness compared to planned introduction of oil-fired plants (2 units of 120MW and 4 units of 200MW) in 1993-2001, CEB and the Study Team agreed that the commencement of operation of the Project should be moved forward tentatively to January 1997. The Alternate Generation Expansion Planning to the year 2001 is presented in TABLE III.1-4.

In the year 2000, an installed capacity of 2,323MW is anticipated. Peak demand is estimated at 1,945MW. If both the largest hydropower facility (70MW) and largest thermal facility (200MW) were to simultaneously shut down, effective output would be 2,053MW, or 5% surplus over peak demand. If plant factors for thermal facilities are considered at 0.77 for diesel, 0.75 for 120MW oil steam, and 0.74 for 200MW oil steam total generated energy is 6,275GWh. On the other hand, considering firm energy plus 1/4 secondary energy, generated energy for hydropower is 3,956 GWh. The total for both thermal and hydropower is thus 10,231GWh, or a 9% surplus over demand of 9,375GWh.

III.1.3 Fluctuation in Daily Demand

Power generation performance from 18 June (Tuesday) to 24 June (Monday) 1985 is shown in TABLE III.1-5. As can be seen from the table, there exists a sharp fluctuation between weekdays and the weekend. If the peak generation of 510MW occurring on Tuesday is designated as 100%, average generation on Saturday is 53% and that on Sunday is 45%.

The one week peak value of 510MW and the annual energy $(6.822MWh\ x\ 365)$ derived from the daily average are similar to the 514.9MW and 2.464

GWh values for the same for annual data from 1985. This data can thus be considered as the annual mode.

FIG.III.1-2 shows load conditions for 18 June (Tuesday) when maximum power generation occurred, and average load conditions for the week. As can be seen from the figure, maximum peak occurs between 19:00 and 20:00, with generated energy sharply less both before and after this period. This is considered as due to concentrated power use for illumination during the said period. The load pattern depicted in the figure is anticipated to continue to prevail in Sri Lanka for the foreseeable future.

Available power stations as of 2000 are shown in TABLE III.1-6. Performance at hydropower stations by the year 2000 is presented in TABLE III.1-7. Facilities capable of responding to relatively short period peak load are few. Facilities which may be considered for peak load operation are Kotmale, Upper Kotmale and diesel plants.

In the case of the most typical week day load assumed for the year 2000, supply will be such as presented in FIG. III.1-3, if firm + $\frac{1}{4}$ secondary is counted for energy of hydropower stations. As can be seen from the figure, Kotmale and Upper Kotmale can be used effectively for peak generation. Development of Upper Kotmale as peak facilities is accordingly appropriate.

The figure further shows that energy demand and peak demand cannot be considered separately. As there is little surplus over demand in both cases, implementation of an appropriate power generating plan is important.

LONG RANGE ENERGY DEMAND FORECAST AND SUPPLY BALANCE BY STATIONS EITHER EXISTING OR UNDER CONSTRUCTION

Year	Peak Demand (MW)	available Hydro (MW)	available Thermal (MW)	Total available (MW)	Deficit (MW)
1987	635	715	200	915	-
88	692	946	200	1,146	
.89	754	946	250	1,196	-
90	822	995	250	1,245	 *
91	896	995	250	1,245	_
1992	976	1,115	250	1,365	-
93	1,064	1,115	250	1,365	_
94	1,160	1,115	250	1,365	-
95	1,265	11	11	11	. -
96	1,378	11	11	11	13
1997	1,502	11	11	11	137
98	1,637	11	11	in 2	272
99	1,785	и.	· : B	11	420
2000	1,945	H .	н	ı,	-580
1	2,121	11	11	H	756
2002	2,291	11	11	11	926
3	2,474	. 11	. 11	1.00	1,109
4	2,672	u · ·	н	11	1,307
5	2,886	п	11	11	1,521
6	3,116	19	н	<i>n</i>	1,751

Source: Long Range Generation and Transmission Plan, 1986, CEB

Note: 1. Peak Demand is at Generator Terminal

^{2.} The units of maximum capacity for both hydro and thermal are considered non-effective for Available Energy

LONG RANGE PEAK DEMAND FORECAST AND SUPPLY BALANCE BY STATIONS EITHER EXISTING OR UNDER CONSTRUCTION

Year	Peak Demand (MW)	available Hydro (MW)	available Thermal (MW)	Total available (MW)	Deficit (MW)
1987	3,058	2,267	1,050	3,317	•
88	3,333	2,537	1,050	3,587	-
89	3,633	2,537	1,230	3,787	_
90	3,960	2,711	1,250	3,961	
91	4,316	2,711	1,250	3,961	355
1992	4,705	3,161	1,250	4,411	294
93	5,128	3,161	1,250	4,411	717
94	5,590	3,161	1,250	4,411	1,179
95	6,093	it	H ,	n	1,682
96	6,641	Ħ	H .	. #	2,230
1997	7,239	3,161	1,250	4,411	2,828
98	7,890	88	u	!	3,479
99	8,600	tt .	11	li li	4,189
2000	9,375	n	n	11	4,964
1	10,218	Ħ	11	11	5,807
2002	11,035	3,161	1,250	4,411	6,624
3	11,918	11	11	l)	7,507
4	12,872	11	11 .	g g	8,461
5	13,901	l !	Ħ	(1	9,490
6	15,014	11	n	11 '	10,603

Source: Long Range Generation and Transmission Plan, 1986, CEB Note: Demand is at Generator Terminal

FUTURE ALTERNATE GENERATION EXPANSION PLAN TABLE III.1-4

, coy	Install	Installed Capacity (MW)	ty (MW)	Eff.	Peak	Reserve	Planned Projects	, DCI	Energy (GWh)	(h)
1cai	Hydro	Thermal	Total	(MW) 1/	(MW) 2/	(%) 3/	/ii (MM)	Demand	Hydro 5/	5/Thermal 6/
1987	715	200	915	825	635	29.9	Randenigala:122	3,058	2,497	561
1988	946	u	1,146	1,056	692	52.6	Kotmale:67×3, Canyon II:30	3,333	2,825	508
1989	E.	250	1,196	1,101	754	0.94	KPS oil steam:25×2	3,633	ı	808
1990	995	H	1,245	1,150	822	39.9	Rantambe:49	3,960	3,017	943
1991	;	290	1,285	1,190	968	32.8	Diesel:20×2	4,316	ı	1,299
1992	1,115	R	1,405	1,310	916	34.2	Samanalawewa:120	4,705	3,448	1,257
1993	н	410	1,525	1,335	1,064	25.5	Oil Steam I:120	5,128	n	1,680
1994	H.	11	u	ш	1,160	15.1		5,590	11	2,142
1995	μ	530	1,645	1,455	1,265	15.0	Oil Steam II:120	6,093	11	2,645
1996	Ξ	ų	#		1,378	5.6		6,641	=	3,193
1997	1,363		1,893	1,703	1,502	13.4	Upper Kotmale:248	7,239	3,956	3,283
1998	=	610	1,973	11	1,637	4.0	Oil Steam III:200, KPS Gas:-120	7,890	¥.	3,934
1999	.	760	2,123	1,853	1,785	3.8	Oil Steam IV:200, KPS Steam:-50	8,600	2	4,644
2000	=	960	2,323	2,053	1,945	5.6	0il Steam V:200	9,375	Ξ	5,419
2001	=	1,160	2,523	2,253	2,121	6.2	Oil Steam VI:200	10,218	=	6,262

Note: 1/ Effective Capacity : The units of maximum capacity for both hydro and thermal are considered as noneffective

2/ Peak Demand: Peak demand at generation site (capacities also at generation site)
3/ Reserve Margin: (Eff. Capacity - Peak Demand)/(Peak Demand)
4/ Minus values indicate obsolescence beginning in the designated year.
5/ Generated Energy: (Firm) + (1/4 Secondary)
6/ Obtained by subtracting Hydro from Demand, the value is required thermal generation.

TABLE III.1-5 HOURLY ENERGY FLUCTUATION

Date	Mon.,	Tue.,	Wed.,	Thu.,	Fri.,	Weekday	Sat.,	Sun.,	Weekly
Time	Jun. 24	Jun. 18	Jun. 19	Jun. 20	Jun. 21	mean	Jun 22	Jun 23	Mean
0	194	252	240	232	228	229	231	222	228
1	178	236	230	220	218	216	214	193	213
2	178	221	214	210	210	207	204	186	203
3	163	215	211	295	210	201	202	181	198
4	170	232	234	205	212	211	205	182	206
5	206	263	266	243	244	244	213	198	233
6	273	333	337	307	320	314	279	252	300
7	253	259	292	294	288	277	271	262	274
8	258	. 303	310	296	298	293	266	214	278
9	278	341	319	300	328	313	288	203	294
10	302	343	338	323	330	327	228	200	295
11	253	347	342	328	339	322	234	213	294
12	315	334	332	318	316	323	214	208	291
13	227	258	305	284	300	275	255	208	262
14	274	251	305	289	310	286	243	188	266
15	260	304	313	293	310	296	244	201	275
16	297	329	313	297	316	310	263	196	287
17	295	324	305	300	305	306	271	230	289
18	302	344	320	319	321	321	288	266	309
19	423	499	470	467	458	463	410	381	444
20	453	430	467	470	462	456	425	381	441
21	373	343	403	430	415	393	391	332	384
22	273	278	330	345	330	311	364	257	311
23	217	264	272	264	255	254	238	218	247
Total	6,415	7,303	7,468	7,239	7,323	7,150	6,441	5,562	6,822
Mean/ Peak	52%	60%	61%	59%	60%	58%	53%	45%	56%

Note: Peak = 510MW Source: CEB

TABLE III.1-6 POWER GENERATION STATIONS AS OF 2000 (PEAK BALANCE)

Category	Type	Installed Capacity (MW)
1. Peak Load	Diesel Hydro -Kotmale -Upper Kotmale	120 201 248
2. Middle Peak	Other Existing Hydro	825
3. Base Load	Thermal	840
Total		2,323

TABLE III.1-7 HYDROPOWER STATIONS AS OF 2000 (ENERGY BALANCE)

	Inst.	P4	E	Firm -	+ 1/4 Sec.
Station Name	Capa. (MW)	Firm (GWh)	Equiv. Peak Time (hr)	Energy (GWh)	Equiv.peak time (hr)
K-M Complex	335	1,304	10.7	1,371	11.2
Ukuwela & Bowatenna	78	213	7.5	217	7.6
Victoria	210	447	5.8	557	7.2
Kotmale	201	270	3.7	328	44.5
Randenigala	122	304	6.8	352	7.9
Rantambe	50	174	9.5	192	10.5
Samanalawewa	120	420	9.6	431	9.8
Upper Kotmale	248	407	4.5	508	5.6

Source: Long Range Generation & Transmission Plan, 1986 by CEB $\underline{1}/$

III.2 Determination of Development Mode

III.2.1 Development Approach

A number of proposals have been preliminarily formulated to the present for the Upper Kotmale Hydropower Development Project. Under the subject Study, these proposals were examined and used as reference in determining the optimum development project based on the fundamental approach set out as follows.

In general, once the catchment has been determined, development approach for a hydropower project is studied from the stand point of either large-scale development mode, or step-wise development mode.

In the case of large-scale development, the optimally costeffective canal connecting point of intake and tailrace outlet is designed, and generating facilites are minimized in number and maximized in scale. However, discharge from tributaries downstream of the intake site can be utilized only for independent small-medium scale hydropower development.

In step-wise development, discharge is maximally utilized, and total available head is divided into several steps, with each steps developed with separate power generating facilities. This approach has the advantage of utilizing almost all of the natural discharge of the main flow, as well as allowing phased development in response to demand growth. However, increase in number of steps results in increase in construction cost, and the optimum number of steps must be carefully selected,

In studying the best development mode for the Upper Kotmale, selection of dam site is extremely important. The optimum upstream dam site is considered to be the Caledonia site (maximum high water level: EL. 1,365m). As discussed in section 4.5.1 of the main report, the site is ideal for creating a reservior. Between the Caledonia site and existing Kotmale reservoir, there are good dam sites at Talawakelle, Lindura, Yoxford, and Wavahena. Talawakelle is appropriate for construction of a 20m high dam; however, the fact that highway A7 passes near the site as well as the site's proximity to the town of Talawakelle must be taken into consideration when determining high water level.

Topographically, large dam construction is also possible at Lindura, Yoxford, and Wavahena; however dam scale will be geologically limited for Lindura as discussed in the main report.

In order to conduct an overall evaluation of these cases, the development potential index was adopted. Under this method, the product of catchment area and total head is designated as the development potential index, and cases are evaluated on the basis of size of index value. In general, the said index value increases with stepped development; however, construction and O&M costs for facilities also increase as number of facilities is larger and canal length is greater. Potential indices of possible cases for power development of the area with the Caledonia and Talawakella schemes as main components are presented for comparison in TABLE III.2-1.

As shown in TABLE III.2-1, the development index for 2 stage development rises markedly over that for 1 stage, and the index for 3 stage development subsequently decreases. The reason for this is that diversion from the Pundal and Puna rivers can be performed comparatively easily in the case of 2 stage development; whereas in the case of 3-4 stage development, diversion from both rivers is not realistic due to extremely excessive canal length. Furthermore, as the facilities cost can naturally be expected to be greater in the case of 3-4 stage development, such was eliminated from consideration. Consequently, further comparative study focused on 1 stage and 2 stage developments only.

For 1-step development the Team compared five cases, three cases each with a daily regulation pond and two cases each with a reservoir. Of the three cases with a daily regulation pond, Case No.3 with the intake at Talawakelle presents the highest index value and the lowest cost with the shortest tunnel length. Accordingly, for 1-step development with a daily regulation pond, Case No.3 (referred to as the Talawakelle run-of-river scheme) is selected for further comparison.

Of the two cases with reservoir for 1-step development, case No.4 with a reservoir at Caledonia presents a higher development potential index. Construction costs for cases No.4 and No.5 are almost the same. In case No.5, a reservoir must be constructed around Lindula, although the site exhibits distinct lineaments identified by photogeological interpretation running along the Kotmale Oya and is not suited for dam

construction. Accordingly, Case No.4 referred to as the Upper Kotmale Power Station Scheme has been selected for detailed comparison.

Of the possible 1 stage development approaches, that proposed with the regulating pond is a run-of-river type with a firm discharge of 1.68m3/s/100km² which is 48% of the 3.52m3/s/100km² in the case with the reservoir. Consequently, both firm output and firm energy are less in the case of the former, although it has the advantage of more inexpensive dam construction.

III.2.2 Description of Alternative Proposals

Talawakelle Run-of-river Scheme

Canal is the same as for the Talawakelle power station under two stage development. Diversion points and discharges from tributaries (Puna, Pundal and Devon) are also the same.

Intake is from the right bank upstream of Talawakelle dam, and canal passes through the diversion point on the Pundal Oya. Power station is underground, and tailrace outlet is at the upstream extremity of the existing Kotmale dam. Discharge from the Puna Oya is diverted to the Pundal Oya. Full water level at the Talawakelle regulating pond is the same as that for the regulating pond under 2 stage development, in other words, EL. 1,200m. Maximum turbine discharge is $30m^3/s$.

Caledonia Single Step Scheme (with Reservoir)

Intake is from the right bank, roughly 1.5km above the Caledonia dam site. The shortest possible canal is designed to connect with the upstream extremity of the Kotmale reservoir. Diversion from the various tributaries along the route is performed to the degree economically viable, i.e. Nanu Oya No.1 (43.3km2; 8.5m3/s), No.2 (16.5km2; 3.4m3/s), Puna Oya (16.6km2; 3.4m3/s), and Pundal Oya (17.2km2; 3.4m3/s). Discharge from the Puna Oya is to be diverted to the Pundal Oya; while in the case of the other tributaries diversion to the headrace canal is to be direct by vertical shaft. When the power station is not operating, discharge is diverted to Calaedonia reservoir for storage.

The special feature of this proposal is that head is extremely high at over 600m (other examples of hydropower projects worldwide where head of this size is utilized are few, lists of existing high head power stations in the world are presented in TABLES III.2-2 and III.2-3). The envisaged canal tunnel route cuts across the mountain divide of the island, and features an extremely long 9,200m between work access shafts. By selecting a more round-about tunnel route, the distance between work shafts could be reduced to 7,100m, however tunnel length would increase by 920m.

Optimum full water level at the dam is determined at EL.1,360, which yields a turbine discharge of $40m^3/s$.

Caledonia/Talawakelle (Two Step) Scheme (Final Proposal)

Intake is from the right bank of the Kotmale Oya directly above Caledonia dam. The tunnel route from Caledonia reservoir to Talawakelle regulating pond is essentially straight. An underground power station is planned at Caledonia. The tailrace from Caledonia power station subsequently crosses the Kotmale Oya, and empties into the upstream portion of Talawakelle regulating pond. For the remaining portion of the scheme at Talawakelle, water is conveyed by headrace from the pond to the power station located at the same point as that for the described single step development.

The normal high water levels at Caledonia reservoir and Talawakelle regulating pond are determined at EL. 1360 and EL. 1200m respectively. Maximum turbine discharge are 35m3/s at the Caledonia power station, and 50m3/s at the downstream Talawakelle power station.

III.2.3 Comparison of Development Proposals

The above three alternative proposals are compared in TABLE III. 2-4.

The output and annual generated energy of the Talawakelle run-of-river scheme are small at 123MW and 610GWh, respectively compared to the other plans and hence not preferable from the viewpoint of effective utilization of water resources and hydropower potential. Accordingly, this scheme was eliminated from further study even though it presents better cost effectiveness than the other two plans.

Comparing the remaining two alternatives i.e. 1-step development (Caledonia Single Step Scheme) and 2-step development (Caledonia/Talawakelle Scheme), 2-step development presents higher

effectiveness in water resources utilization while economically the 1-step development is better as presented in TABLE III.2-2.

As a result of consultation and discussions with concerned agencies within the Sri Lankan government, it was determined that focus should be placed on effective maximum development of hydropower potential and consequently the 2 stage development mode was selected.

Detailed comparison of the two alternatives are presented hereafter, while determination of the optimum development scale for each schemes are presented in section III.3.3.

(1) With regard to effectiveness of water resources utilization and hydropower potential development, 2-step development is more advantageous than 1-step development.

	1-step Development	2-step Development
Output (MW)	214	248
Annual Firm Energy (GWh)	346	407
Annual Total Energy (GWh)	664	809

(2) 1-step development is more viable as follows:

	1-step Development	2-step Development
B/C	1.45	1.39
B-C	309	337
Energy Cost (RS/kWh)	1.22	1.24
Construction Cost (Rs million)	7,920	9,800

(3) Construction period is shorter in the case of 2-step development. In both cases, the construction of the headrace tunnel is the critical pass in overall construction works. The

construction period of the headrace tunnel in each case is as follows:

	1-step Development	2-step Development
Tunnel Length (m)	17,900	13,240
Longest Segment (m)	8,410	7,400
Construction Period for the Longest Segment Preparatory Works Excavation (from both sides with 110m/month)	6 months 38.2 months	6 months 33.6 months
Lining (from both sides with 200m/month)	21.0 months	18.5 months
Total	65 months (5 year 5 months)	58 mnnths (4 year 10 months)

As presented above, a difference of 7 months occurs in the construction period for the two cases. For reference, 8,409m of the longest interval of the tunnel for the 1-step development case can be shortened to 6,256m by bending the alignment and adding an approach tunnel but the total length will increase by 920m. Also in 2-step development, the longest interval of 7,380 can be shortened to 5,440m by adding a 200m deep vertical shaft.

(4) In the case of 2-step development, the staged implementation approach can be selected considering actual electric demand increase and also funding scale for implementation. In other words, in the case of 2-step development, both simultaneous development of the upper and lower schemes and stage development are applicable. On the other hand in the case of 1-step development, major facilities such as the dam, headrace tunnel, penstock and tailrace as well as the underground powerhouse must be constructed at the same time. Staged development is possible only by means of step-wise installation of turbines and generators. 1-step development gives only a small selection margin for staged development.

- (5) The Talawakelle regulation pond will not be required in the case of 1-step development. On the other hand, from the viewpoint of social impact, over 100 houses, temples, bus terminal, a bank, a school, etc. will be inundated by the Talawakelle regulation pond in the case of 2-step development, and compensation for the same is required.
- (6) Two major falls i.e. St. Clair Falls and Devon Falls exist in the Project area and provide tourism attraction. In the case of 1step development, diversion of water from the Devon Oya is not economical due to required long diversion facilities and hence the Devon Oya will not be included in the Project. Devon Falls remains In the case of 2-step development, diversion of in this case. water from the Devon Oya is very economical and 2/3 of the volume will be used for power generation while one third will be kept to maintain the falls. With regard to the St. Clair Falls, it will disappear in the case of 2-step development because water will be diverted by the Talawakelle diversion dam which is located just upstream of the Falls. In the case of 1-step development, however, the remaining catchment upstream of the falls and downstream of the Caledonia dam is approximately 120km². Although discharge will be 1/3 of that of the present, the falls will remain and in the rainy season, water supply to the falls will be ample. Thus from the viewpoint of tourism, 1-step development is superior to 2-step development.

TABLE III.2-1 COMPARISON OF DEVELOPMENT POTENTIAL INDEX

Kot Kot Kot Kot Kot Kot Kot Kot Kot Kot	2 00 00 0	Nam. 143 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4	Devon 16.3 16.3 16.3 16.3	Pundal 18.0 19.6 21.3 17.2 18.0 18.0	Puna 1 8.2 8.9 10.1 1 10.1	Puna 2 17.2 17.5 18.5 18.5	282.6 315.2 363.4 289.2 289.2 235.0 313.5 365.0 313.5 365.0	Intake W.L. 1,310 1,255 1,260 1,360 1,360 1,200 1,200 1,200 1,200 1,200		60.7 60.7 66.2 60.7 60.7 60.7 160 160 240 240 160 240	Development Potential Index (m·km2) 171,538 173,990 180,610 175,544 37,600 180,610 218,210 1/ 218,210 1/ 37,600 75,240 93,805 206,645 37,600 75,240 93,805 206,645	
Pond Cale	Type Type Type Type Type Type Type Type Type Type	Type Kotmale Manu P 175.2 64. P 190.0 79. R 175.2 16. R 175.2 16. R 175.2 16. R 175.2 16. P 297.2 - P 297.2 - P 365.0 - P 365.0 -	Type Kotmale Nanu 1 Nan	Type Kotmale Nanu 1 Nan	Type Kotmale Nanu 1 Nan	Type Kotmale Nanu 1 Nan	Type Kotmale Nanu 1 Nan	Type Kotmale Nanu 1 Nanu 2 Devon Pundal Puna 1 Puna 2 P 175.2 64.0 - 18.0 8.2 17.2 P 190.0 79.2 - 16.3 21.3 10.1 18.5 P 297.2 - 16.5 43.3 - 16.3 21.3 10.1 18.5 P 297.2 - 16.5 43.3 - 16.3 21.3 10.1 18.5 P 297.2 - 16.5 43.3 - 16.3 P 297.2 - 16.5 43.3 - 16.3 P 297.2 - 16.5 43.3 - 16.3 P 297.2 - 16.5 43.3 - 16.3 P 297.2 - 16.5 43.3 - 16.3 P 297.2 - 16.5 43.3 - 16.3 P 297.2 16.5 P 297.2 16.3 P 297.2 16.3 P 297.2 16.3 P 297.2 16.3 P 297.2 16.3 P 297.2 16.3 P 297.2 16.3 P 297.2 16.3 P 297.2 16.3 P 297.2 16.3 P 297.2 16.3 P 297.2	Type Kotmale Manu 1 Nanu 2 Devon Pundal Puna 1 Puna 2 Total Intake W.L. P 175.2 64.0 - 18.0 8.2 17.2 282.6 1,310 190.0 79.2 - 16.3 21.3 10.1 18.5 363.4 1,200 1,360 297.2 - 16.3 21.3 10.1 18.5 363.4 1,200	Type Kotmale Nanu 1 Nanu 2 Devon Pundal Puna 1 Puna 2 Total W.L. P 175.2 64.0 - 16.3 21.3 10.1 18.5 363.4 1,200 R 175.2 16.5 43.3 - 16.3 21.3 10.1 18.5 363.4 1,200 R 175.2 16.5 43.3 - 16.3 21.3 10.1 18.5 363.0 1,360 P 297.2 - 16.5 43.3 - 16.3 21.3 10.1 18.5 363.0 1,360 P 297.2 - 16.5 43.3 - 16.3 21.3 10.1 18.5 363.0 1,360 P 297.2 - 16.5 43.3 - 16.3 313.5 1,200 P 297.2 - 16.5 43.3 - 16.3 313.5 1,200 P 297.2 - 16.5 43.3 - 16.3 313.5 1,200 P 297.2 - 16.5 43.3 - 16.3 313.5 1,200 P 297.2 - 16.5 43.3 - 16.3 313.5 1,200 P 297.2 - 16.5 43.3 - 16.3 313.5 1,200 P 297.2 - 16.5 43.3 - 16.3 313.5 1,200 P 297.2 - 16.5 43.3 - 16.3 313.5 1,200 P 297.2 - 16.5 43.3 - 16.3 313.5 1,200	Type Kotmale Nanu 1 Nanu 2 Devon Pundal Puna 1 Puna 2 Total Intake Tailrace F 190.0 79.2 - 16.3 21.3 10.1 18.5 363.4 1,200 703 F 297.2 - 16.5 43.3 - 16.3 21.3 10.1 18.5 363.4 1,200 703 703 F 297.2 - 235.0 1,360 1,200 F 297.2 16.3 21.3 10.1 18.5 363.4 1,200 703 703 F 297.2 235.0 1,360 1,200 703 F 297.2 235.0 1,360 1,200 960 960 960 960 960 960 960 960 960 9	Type Kotmale Manu i Nanu 2 Devon Pundal Puna i Puna 2 Total W.L. Head (m) Devel Pote Pote Rotmale Manu i Nanu 2 Devon Pundal Puna i Puna 2 Total W.L. Head Index Pailrace G. Head Index Pote Pote Pote Pote Pote Pote Pote Pote

Note: R: Reservoir, P: Daily Regulation Pond

1/ Development Potential Index for 2-Step Development is the highest value

WORLD HIGH HEAD FRANCIS TURBINE

Plant	Country	Head (m)	Output (MW)	rpm.
Horn Bert	F.R. Germany	652	262	600
Hemsil I	Norway	543	- 37	
Murray I	Australia	521	119	
Kvilldal	Norway	520	350	333
Ferera	Switzerland	520	74	
Pracella	Switzerland	494	75	750
Oriichella	Italy	474	75	600
Mihoro II	Japan	465	66	600
Grimsel II		458	106	750
Fionnay	Switzerland	455	47	
Le Pouget	France	440	257	333
Limberg	Austria	436	58	
Oksla	Norway	435	206	375
Tonstad	Norway	430	165	
Arimine	Japan	411	266	300

FECTURES OF HIGH HEAD PUMP TURBINES MANUFACTURED IN JAPAN

Hydropower station	Country	Head (m)	Output (MW)
Chaira	Bulgaria	677	216
Bajinabasta	Yugoslavia	600	315
Honkawa	Japan	550	306
Tenzan	Japan	560	308
Imaichi	Japan	540	360
Helms	U. S. A.	532	414
Matanogawa	Japan	529	309
Oku-Yoshino	Japan	526	207
Tamahara	Japan	524	309
Oohira	Japan	512	256
Okumino	Japan	506	270
Numappara	Japan	500	230
Chompion	Korea	498	206
Okukiyotu	Japan	490	260
Drakensberg	South Africa	451	300

COMPARISON OF DEVELOPMENT SCHEMES 1/2: 1-STEP DEVELOPMENT

			·
Item	Unit	Talawa. Run-of River Scheme	Caledonia Single Step scheme
Catchment Area Total Main River Tributaries	km ² km ² km ²	363.4 297.2 66.2	235.8 175.2 59.8
Dam Type Height	m	C.Gravity 20	C.Gavity 70
Reservoir/Pond N.H.W.L. L.W.L. Storage Capacity -Gross -Effective	EL.m EL.m MCM MCM	1,200 1,193 2.6 2.0	1,360 1,341 45.1 30.0
Tunnel Headrace Branch Tailrace	m m m	13,066 9,420 406	17,860 3,200 770
Fower Generation Rated Head Max. Turbine Discharge Installed Capacity Annual Generated Energy 1/ -Firm Energy -Secondary Energy	m m3/s MW GWh GWh	468 30 123 610 207 403	614 40 214 664 346 318
Construction Cost 2/	Rs. 106	4,380	7,920
Evaluation B (Annual Benefit) 3/4/ C (Annual Cost) 3/ B/C B-C Construction Unit Cost Energy Cost	Rs.106 Rs.106 Rs.106 Rs./kWh Rs./kWh	762 382 1.99 380 7.18 0.74	999 690 1.45 309 11.93 1.22

Note: 1/ Effective value considering 5% of loss in generation

3/ Discount rate at 10%oil-thermal

^{2/} Construction cost is based on price levels as of December '86

^{4/} Benefit from Output and Firm Energy is based on diesel, the same from Secondary Energy is based on oil-thermal

COMPARISON OF DEVELOPMENT SCHEMES 2/2 : 2-STEP DEVELOPMENT

		Caledonia	/Talawakell	e Scheme
Item	Unit	Caledonia	Talawa- kelle	Total
Catchment Area Total Main River Tributaries	km ² km ² km ²	235.8 175.2 59.8	363.4 297.2 66.2	
Dam Type Height	m	C.Gravity 70	C.Gravity 20	
Reservoir/Pond N.H.W.L. L.W.L. Storage Capacity -Gross -Effective	EL.m EL.m MCM MCM	1,360 1,341 45.7 30.0	1,200 1,193 2.6 2.0	
Tunnel Headrace Branch Tailrace	m m m	2,982 4,130 3,168	13,066 9,420 406	
Power Generation Rated Head Max. Turbine Discharge Installed Capacity Annual Generated Energy 1/ -Firm Energy -Secondary Energy	m m3/s MW GWh GWh GWh	144 35 44 135 76 59	468 50 204 674 331 343	248 809 407 402
Construction Cost 2/	Rs. 106	4,160	5,640	9,800
Evaluation B (Annual Benefit) 3/ 4/ C (Annual Cost) 3/ B/C B-C Construction Unit Cost Energy Cost	Rs.106 Rs.106 Rs.106 Rs./kWh Rs./kWh			1,191 854 1.39 337 1.39 1.24

Note: 1/ Effective value considering 5% of loss in generation 2/ Construction cost is based on price levels as of December '86 3/ Discount rate at 10% Benefit from Output and Firm Energy is based on diesel, the

same from Secondary Energy is based on oil-thermal

III.3 Determination of Optimum Development Scale

III.3.1 Basic Concept

The Upper Kotmale Hydropower Development Project is formulated on the basic premise that river discharge is to be seasonally regulated at the Caledonia reservoir. As a result, the discharge regulating capacity at Caledonia reservoir will effect selection of power generating scale.

With regard to topography at the dam site, the maximum full supply level will be at EL.1,365m which is determined from the shape of the valley and the left bank saddle topography.

Geological conditions at the site are explained in detail in the Main Report. Major geological characteristics concerning dam construction at the site are weathering conditions and existence of shear zone. The right bank at the site presents a relatively thick weathered zone of 20~30m depth and, in addition, existence of a relatively large shear zone is assumed. Accordingly, sufficient foundation treatment must be undertaken for the right bank. The saddle portion on the left bank, approximately 500m from the dam site, has an elevation of EL.1,350m at the lowest point and a highly weathered portion 20~30m deep.

Accordingly if the full supply level is determined above EL.1,350m, a saddle dam with foundation treatment is required. In addition two shear zones are confirmed from the investigations, and treatment will be required in the case of a higher full supply level.

From the above topographical and geological conditions, it is concluded that a dam with a full supply level of below EL.1,360m presents no major engineering problems; however, above this elevation, the main dam body as well as the saddle dam become much larger and foundation treatment is required in accordance with the increase in water pressure due to a higher full supply level.

Sedimentation volume is an important factor in determining the reservoir scale. The catchment upstream of the Caledonia reservoir consists of highland plains and mountains extend up to elevations of more than 7,700ft (EL.2,350m). Tea plantation fields are widely distributed in the basin up to an elevation of EL.5,500ft (EL.1,676m). These tea plantation lands are usually stable with a history of more than 50 years and in addition soil erosion prevension measures are relatively well

developed. Areas above elevations of 5,500ft are covered by dense forests.

In due consideration of the natural conditions of the catchment, sediment inflow to the Caledonia reservoir is assumed to be relatively low and a sediment inflow of $500\text{m}^3/\text{km}^2/\text{year}$ was conservatively adopted. The design sediment volume is thus determined at 8.75 million m³ $(500\text{m}^3/\text{km}^2/\text{year} \times 175\text{km}^2 \times 100 \text{ year})$ considering 100-year sedimentation.

On the basis of the sedimentation volume, Low Water Level of the Caledonia reservoir is set at EL.1,341m considering intake water depth. In this case the dead storage volume is 15.7MCM. The relation of Normal High Water Level to the effective storage capacity is as follows:

RELATION OF N.H.W.L. AND STORAGE CAPACITY OF CALEDONIA RESERVOIR

N.H.W.L. (EL.m)	Effective Storage Capacity (MCM)
1,350	11.0
1,355	18.0
1,360	30.0
1,365	44.5

Effective storage capacity varies depending on dam height. Maximum turbine discharge, in turn, fluctuates in response to effective storage capacity. Thus dam height controls scale of generating output.

Furthermore, as a large portion of the maximum turbine discharge at Talawakelle is composed of tailwater from the Caledonia power station, generating scale at Talawakelle as well is greatly dependent on Caledonia dam height.

III.3.2 Simulation of Optimum Reservoir Operation

Output and generated energy in the case of generation with a reservoir for each study case were calculated on the basis of differential mass curve and optimum reservoir operation for a 30 year simulation period from 1951~80. The procedures are as follows (refer to FIG.III.3-1):

- (1) Preparation of a daily discharge data file at the Caledonia dam site as presented in a monthly summary in TABLE III.3-1 for the 30-year period from 1951~80 based on the Talawakelle daily discharge data file considering diversion from tributaries.
- (2) Development of a differential mass curve from the daily discharge at the dam site obtained above as shown in FIG.III.3-1.
- (3) Fixation of Normal High Water Level of the reservoir and subsequent determination of effective storage volume for a calculation case.
- (4) Determination of an optimum release curve on the differential mass curve based on the given effective storage capacity.
- (5) Calculation of monthly average release value from the optimum release curve, an example of which is tabulated in TABLE III.3-2. From a monthly average release of 360 months (30 year \times 12 month), the value which is 8th from the smallest will be selected as a firm discharge with 98% dependability. In the case presented in TABLE III.3-2, the 8th (360 \times 2%) from the smallest is the value 8.2965m3/s of February, 1976. Thus firm discharge is obtained once storage capacity is fixed.
- (6) Assumption of maximum turbine discharge and determination of the release restricted by the same value. In other words, any release value of optimum operation exceeding the maximum turbine discharge will be amended to the maximum value and the exceeded values will be recorded as spillout discharges.
- (7) Based on the restricted release curve, calculation of the monthly average release value as presented in TABLE III.3-3. At the same time through this reservoir operation simulation, the monthly average reservoir water levels and spillout discharge volume will be recorded as presented in TABLE III.3-4 and III.3-5 respectively. Daily value of the release, reservoir water level and spillout discharge will be stored in the Data File Disk.
- (8) Calculation of generation for 30 years based on the daily value of the release and reservoir water level as follows:

 $Pmax = 9.8 \times \eta \times Qmax \times He$

He = HeadEL. - TailEL. - Hloss where,

Pmax: Maximum Output (kW)

η: Turbine and generator efficiency (0.89)

Qmax: Maximum turbine discharge (m3/sec)

He: Effective head (m)

Head EL.: Reservoir water level (EL.m)

TailEL: Tailrace water level (EL.703m for Upper Kotmale P/S, EL.1,193m for Caledonia P/S)

Hloss: Head loss (m)

 $Td = Qd/Qmax \times 24$

where,

Td: Daily operation time (hour)

Qd: Daily average release (m3/sec)

 $Ed = Pd \times Td$

where,

Pd: Daily Average Output (= Pmax) (kW)

Ed: Daily generated energy (kWh)

SONG **	** DMDS0024:1951-80 Kotmale	-80 Kotma	le Oya Daily	ily Q at	Discharge Data for Caledoina(175.2km2)	Data for (175.2km2	1951-198 () with Na	1951-1980) with Nanul/Nanu2(Total		59.8km2) for	r Caledon	Unit : Caledonia/Talawakel	t: m³/s kelle Sc
Main Main	Data Irom DMDS0024 1 Catchment:175.20kn	Catchment:175.20km2,	** m2, Trib.C	Trib.Catchment(t(km2)/Max.	.Div. (m3/8	59.800/	/ 6.400		· .			
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
1951	11.4184	9.5000	5.1269	7.4327	6.1217	64.5579	24.5692	14,1053	13.9926	19.4390	21.5222	8.1877	17.1210
1952	12.3081	7.4709	4.9228	10.5478	32.3712	26.3502	18.7454	14.9198	21.1411	19.9245	9.3831	7.0909	15.4593
1953	6.5298	3.7559	7.3970	13.1786	7.6266	12.9266	19.4168	15.5700	17.2510	17.4518	20.9593	13.9013	13.0401
1954	14.6410	11.6913	5.5860	8.7242	8.2565	9.7521	11.3929	21.8969	15.2384	24.7557	13.6003	18.3782	13.6957
1955	17.8883	13.5178	11.0700	13.6200	29.6083	52.0698	29:7824	15.7875	14.5535	15.2072	16.4818	9,6671	19.9441
1956	7.8561	5.8077	6,6573	6.3521	7.3205	35,4337	18.6521	17.4880	15.9550	18.6434	21.5876	12.1668	14.4825
1957	7.0399	5.4503	4.7188	3.6109	7.4257	16,0269	19.3271	10,1997	8.8560	8.6468	19.9915	46.7777	13.2476
1958	19.6824	7.9354	8.9529	7.8017	8,7999	14.5809	15.3804	15.2086	8.4343	18.2703	17.3452	9.7947	12.7283
1959	6.3512	4. 7443	3.8515	7.2219	7.8816	33,4329	29.1661	13.2381	11.8388	16.2777	15.1393	9.7946	13.2746
1960	7.9071	11.6528	7.0144	10,2767	9.9732	13.7539	17.7106	19.8611	29.1718	23.5351	24.6809	10,7129	15.4988
1961	6.8359	6.1280	5.0249	6.2730	16.3409	11.4494	12.2415	20.2745	10.9118	10.1007	11.7553	9.2590	10.5909
1962	6.7083	5.2808	4.4637	5.1133	15.3364	9.0669	16.7963	12.2421	20.2023	18.4013	11.8343	8.3663	11.1948
1963	9.1570	6.8905	4.9738	8.2498	6.8869	9.2812	11.0190	9.7691	11.4086	21.0112	15.9576	16.5212	10.9571
1964	10.1262	6.9256	5.7135	5.0079	4.9228	7	12.1699	16.6439	18.6961	9.9987	18.0569	8,1622	10.1325
1965	5.1779	5.5350	4.3617	10.0274	24.3493	16.1569	8.0857	14.7200	10.0858	15.8406	15.1737	12.9243	11.9111
1966	7.9824	5.2808	6.0451	7.5645	5.7646	5.7459	6.9379	7.7286	17.9562	20.0899	14.7694	.366	9.5323
1967	6.3257	5.9021	5.5095	5.4032	4.7188	7.3193	11,5979	8.5703	7.4327	22.8652	19.0763	16.9665	10.1791
1968	7.2695	4.7716	4.7188	4.3489	7.5013	9.6658	28.4069	25.9355	21.9368	19.9474	14.9119	9.5651	13.3004
1969	6.5808	4.7725	4.2342	7.8017	11.6842	19.7177	11.9117	8.0857	17.0270	16.9854	10.7801		11.1432
1970	12.4189	11,6233	6.5043	9.0141	8.2132	10.0684	12.0903	22.6475	9.9630	16.9733	13.8853	16.1004	12.4843
1971	11.0955	6.1563	5.1269	10.8887	9.1486	13,3386	18.7598	20.2840	32.9908	21.3137		15,1013	
1972	6.1727	4.4716	3.5710	5.2714	17.3985	6.2203	28.8129	17.0418	12,9610	•	25.8127	104	
1973	7.0144	4.9984	3.7240	4.5334	•	5.0342	6.6063	22.7357	7.6436	7.8051	•	•	•
1374	7.3460	5.5350	4.8208	6.3521	10.6092	17.1984	37.3971	31.0133	25.5147	18,1639	7.9335	8.0027	15.0764
1975	9.6404	5.1114	5.8103	8.3025	*1	39,4960	13.7482	23 3239	24.7823	26.8010	34.2987	14.9981	17.9073
1976	8.7999	4.6080	3.6475	7.4854	4.4127	3.8745	8.8635	8.4428	6.3521	9.2845	15.1817	8.0347	7.4221
1977	5.2034	4.4901	4.1321	6.8001	10.1517	16.0569	26.2788	15.1734	7.7490	27.0581	•		12.6373
1978	6.0196	4.6313	8.5674	3.8218	-	16.8418	27.5803	35,0937	16.0209	20.7124			18.1907
1979	5.6625	5.2244	3.6475		10.7274	15.5000	24.1459	•	•	27.2826	27.3982	.23	L)
1980	6.8359	4.0081	3.7240	5.2714	6.5808	7.3009	11.6653	13.8624	8,0389	15.5855	12.7305	8.8764	8.7364
Ave./T	8.7998	6.4600	5.4873	7.4577	11.2901	17.4461	17,9753	16,9501	15,5396	18.5922	17,5312	13.1251	13.0881

Unit: m³/s eff.Strg.C Optimum Water Release for 1951-1980

f.strg.C	Year	ω,	15.4058	12.9288	13.8512	19.7225	14.4718	13.2476	12.7331	13.4057	15.3985	10.5826	11.2743	10.8712	•	11.8705	9.5316	10.1779	13.3051	11.2513	12.4055	14.5921	14.5130	8.1146	15.2750	17.6758	7.4610	12,6117	18.1812	15.5539	8.7374	13.0883
e ** Ef	DEC	11.0354	8.9211	14.7230	17.1658	9.7923	12.1338	37.0598	9.8528	11.2724	11.0882	9.1576	9.2962	13.8690	8.6186	11.8168	8.3276	15.0592	9.1694	12.8701	13.8584	12.0840	16.1093	9.5799	9.1914	14.9900	7.9089	9.7254	14.4977	17.9273	8.6233	12.5242
lle Scheme	NOV	16.6371	9.1106	16.0946	17.1658	14.5195	17.9623	18.7248	13.7977	13.4573	22.5592	10.8095	11.7586	15.0341	12.1038	12.9883	14.4961	19.4640	14.6972	12.8954	13.9258	13.9242	21.3661	9.5799	9.1914	27.5986	7.9431	16.8956	24.7093	25.5331	10.4810	15.5141
Talawake.	OCT	17.3344	14.5206	.094	17.1658	15.1586	17.9623	12.6663	14.0424	14.3577	23.9292	10.8095	14.4656	14.5174	.282	12.9883	17.7825	14.2380	20.1678	13.1236	13.9258	20.9934	23.2143	9.5799	17.4951	27.8714	7.9431	17.6619	23.8437	25.5331	10.4810	16.4383
Caledonia/Talawakelle	SEP	17.3344	18.5705	16.0946	17.1658	15.1586	17.9623	12.6663	14.0424	14.3577	21.7573	11.4270	14.4656	11.7739	13.2827	12.9883	10.7948	9.2947	21.2973	13.1236	13.9258	27.0389	19.2624	9.8386	25.4255	24.1742	7.9431	16.8965	23.7404	21.1671	10.4810	16.1151
for	AUG	17.5588	18.5705	16.0946	17.0910	17.1495	17.9623	12.6663	14.0424	14.4731	18.7758	12.9447	14.4656	9.9224	13.2827	12.9883	•	9.2947	22.4300	13.1236	13.9258	18.8268	19,3970	11.7025	32.1090	21.5223	7.9431	16.8965	29.5608	18.9545	10.4810	16.0645
Curve DMAS0024) = 6.69606m3/	JUL	24.7137	21.7242	15.8898	12.4053	29.7828	20.4568	13.5717	14.0424	28.6209	16.9422	12.9447	14.2655	9.9224	12.3292	12.9883	•	9.2947	22.7275	7.	12.6998	18.2217	•	6.6757	29.9240	21.5624	7.0856	17.6553	24.9340	18.9545	9.6644	16.7321
ated on Mass Co Monthly Ave.)	JUN	52.9838	28.2652	13.6373	10.3936	47.3057	24.4472	14.1028	11.0137	22.7902	13.5999	12.9447	13.7765	9.5332	7.7642	14.5326	7.	7.9598	10.3700	13.1236	10.9213	12.2779	11,2014	6.5926	13.8178	28.2087	6.6961	13 8419	23.2041	15.5252	7.5247	15.2046
simulated obable Mont	MAY	9.7263	22.5695	9.7882	10.3936	25.2694	O;	7.6356	10.4080	8.2417	11.2586	10.5964	10.9362	9.1452	7.7642	14.8150	7.8	7.4744	7.6396	9.7474	10.9213	10.4073	11,1718	6.5621	10.7586	9.1914	6.6961	9.8231	18.5013	9.6413	.312	10.7046
Release s (98% Prob	APR	9.4443	11.5603	9.7015	10.3936	15.5195	8.9576	7.2396	10.4080	8 2417	11.2111	8.8880	7,9066	9.1452	7.7642	11.0585	7.7832	7.4744	7.6396	8.4234	10.9213	10.0426	7.7717	6.5621	8.5887	9.1914	6.6961	7.9916	8.6256	.282	7.3123	9.0249
	MAR	9.4443	10.1784	8.9211	10.3936	15.5028	8.9576	7.2396	10.4080	8.2417	11.2111	8.7838	7.9066	9.1452	7.7642	8.3578	7.7832	7.4744	7.6396	8.4234	10.9213	9.7236	7.7395	6.5621	8.5887	9.1914	6.6961	7.8874	8.6256	8.2289	7.3123	8.8418
-80 Optim	FEB	10.5049	10.1784	8.9211	12.0841	15.5028	8.9576	7.2396	10.5875	8.2417	11.2111	8.7838	7.9066	9.1452	7.7642	8.3578	7.7832	7.4744	7.6396	8.4234	10.9789	9.7236	7.7395	6.5621	8.5887	9.1914	6.6961	7.8874	8.6256	8.2289	7.3123	8.9366
** OPTQ0324:1951-80 Optimum Water apacity:30.00MCM , Firm Discharge	JAN	11.8427	10.5529	8.9211	14.2157	16.0393	8.9576	7.5684	19.8905	8.2417	11.2111	8.7838	7.9066	9.1991	9.9275	8.3578	8.4146	7.4830	7.9039	8.4234	11.8043	11,5285	7.7395	7.4310	8.8424	9.1914	9.2170	7.8874	8.6256	8.2289	7.7989	9.7379
** OPTQ(apacity;		1951	95	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	Ave./T

TABLE III.3-3

** DQWL2324 : 1951-80 Daily Release etc. calculated on OPTQ0324. Caled.Dam(175.2km2) with Nanul/Nanu2 for Caledonia/Talawak

و ال	Telle **		i				•						
	Data: B:O	Input Data: B: Orlq0324.DAI , Eff. Strg. Capacity: 30.00MCM	AI, CAIC MCM, Dea	Calc.Results; , Dead Strg.Ca	capacity: 15.70MCM		N.H.W.L.	6961m3/s	, Max. lur. .Om , L.W.	Max.lurbine Q: 35.00m3/s 1, L.W.L.:EL.1340.6m	5.00m3/s 0.6m	n	
	JAN	FEB	MAR	APR	MAY	IUN	JUL	AUG	SEP	CCT	NOV	DEC	Year
	11.8427	10.5049	9.4443	9.4443	9.7263	34.0296	24.7137	17.5588	17.3344	17.3344	16.6371	11.0354	15.8050
	10,5529	10.1784	10.1784	11.5603	21.2225	28.2652	21.7242	18.5705	18.5705	14.5206	9.1106	8.9210	15.2917
	8.9210	8.9210	8.9210	9.7015	9.7882	13.6373	15.8898	16.0946	16.0946	16.0946	16.0946	14.7230	12.9288
	14.2157	12.0841	10.3936	10.3936	10.3936	10.3936	12.4053	17.0910	17.1658	17.1658	17.1658	17.1658	13.8512
	16.0393	15.5028	15.5028	15.5195	25.2694	34.7257	29:7263	17.1495	15.1586	15.1586	14.5195	9.7923	18.6837
	8.9576	8.9576	8.9576	8.9576	8.9576	20.4621	20.4567	17.9623	17,9623	17.9623	17.9623	12.1338	14.1452
	7.5684	7.2396	7.2396	7.2396	7.6356	14.1028	13.5717	12.6663	12.6663	12.6663	18.7249	26.0056	12.3087
	19.4540	10.5875	10.4080	10.4080	10.4080	11.0137	14.0424	14.0424	14.0424	14.0424	13.7977	9.8528	12,6960
	8.2417	8.2417	8.2417	8.2417	8.2417	19.4517	28.6209	14.4731	14.3577	14.3577	13.4573	11.2723	13.1314
- 1	11.2111	11.2111	11.2111	11.2111	11,2585	13.5999	16.9422	18,7758	21.7573	23.9292	22.5592	11.0882	15.3985
	8.7838	8.7838	8.7838	8.8880	10.5964	12.9447	12.9447	12.9447	11.4270	10.8095	10.8095	9.1576	10.5826
	7.9066	7.9066	7.9066	7.9066	10.9362	13.7765	14.2655	14.4656	14.4656	14.4656	11.7586	9.2962	11.2743
	9.1991	9.1452	9.1452	9.1452	9.1452	9.5332	9.9224	9.9224	11.7740	14.5174	15.0341	13.8690	10.8712
	9.9275	7.7642	7.7642	7.7642	7.7642	7.7642	12.3292	13.2827	13.2827	13.2827	12.1038	8.6186	10.1493
	8.3578	8.3578	8.3578	11.0585	14.8150	14.5326	12,9883	12.9883	12.9883	12.9883	12,9883	11.8168	11.8705
	8.4146	7.7832	7.7832	7.7832	7.7832	7.7832	7.7832	7.7832	10.7948	17.7826	14.4961	8.3276	9.5316
	7.4830	7.4744	7.4744	7.4744	7.4744	7.9598	9.2947	9.2947	9.2947	14.2380	19.4640	15.0592	10.1779
	7.9040	7.6396	7.6396	7.6396	7.6396	10.3700	22.7275	22.4300	21.2973	20.1678	14.6972	9.1694	13.3051
	8.4234	8.4234	8.4234	8.4234	9.7474	13.1236	13.1236	13.1236	13.1236	13.1236	12.8954	•	٠
	11.8043	10,9789	10.9213	10.9213	10.9213	10.9213	12.6998	13,9258	13.9258	13.9258	13.9258	13.8584	12.4055
	11.5285	9.7236	9.7236	~1	10.4073	12.2779	18.2217	18.8268	24.7077	20.3728	13.9243	12.0840	
	7.7395	7.7395	7.7395	7.7717	11.1718	11.2014	17.5868	19 3970	19.2624	23.2143	21.3660	16.1093	14.2191
	7.4310	6.5621	6.5621	6.5621	6.5621	6.5926	6.6757	11.7025	9.8386	9.5799	9.5799	9.5799	8.1146
	8.8424	8.5887	8.5887	8.5887	10.7586	13.8179	18.8489	29.6200	25.4255	17.4951	•	9.1914	14.1230
	9,1914	9.1914	9,1914	9.1914	9.1914	23,4178	21.5624	21.5223	24.1742	27.8714	27.5986	14.9900	17.2820
	9.2170	6.6961	6.6961	6.6961	6.6961	6.6961	7.0856	7.9431	7.9431	7.9431	.943	7.9089	7.4610
	7.8874	7.8874	7.8874	7.9916	9.8231	13.8419	17.6553	16.8965	16.8965	17.6619	16.8956	9.7254	12.6117
	8,6256	8.6256	8.6256	8.6256	18.5014	23.2041	24.9341	29.5608	23.7403	23.8436	4	14.4977	•
	8.2289	8.2289	8.2289	8.2828	9.6413	15.5252	18.9545	18.9545	21.1671	25.5331	•	CD.	15.5539
ļ	7.7989	7.3123	7.3123	7.3123	7.3123	7.5247	9.6644	10.4810	10.4810	10.4810	10.4810	8.6233	8.7374
7.	9,7233	8,9366	8.8418	9.0249	10,6597	14,7497	16,2454	15.9817	16,0373	16.4176	15.5141	12,1557	12,8760

TABLE III.3-4

Reservoir Water Level for 1951-1980

** DQWL2324: 1951-80 Daily Release etc. calculated on OPTQ0324. Caled.Dam(175.2km2) with Nanul/Nanu2 for Caledonia/Talawak elle Scheme **
Input Data:B:OPTQ0324.DAT, Calc.Results:B:DQWL2324.DAT, Firm Q: 6.6961m3/s, Max.Turbine Q: 35.00m3/s,

Eff.S	Input Data:B:OFTQ03Z4.DAT Eff.Strg.Capacity: 30.00MCM	PTQ0324.L	. •	Calc. Results:	s:B:DQWL2324.DAT , Capacity: 15.70MCM		Firm Q: 6.6961m3/s ,	6961m3/s:EL.1360.	, Max.Turi	Max.Turbine Q: 35.00m3/s	5.00m3/s 0.6m	•	
	JAN	TEB	MAR	APR	MAY	Min	JUL	AUG	SEP	SCI	NOV	DEC	Year
1951	1358.97	1359,58	1355.87	1349.75	1343.78	1355.68	1359.02	1358.69	1346.97	1354.98	1356.92	1358.66	1354.89
1952	1359.18	1357.77	1350.93	1342.91	1347.78	1357.25	1358.61	1349.26	1348.74	1358:35	1359.44	1359.08	1354.11
1953	1356.07	1349.36	1343.40	1343.81	1347.34	1343.68	1342.47	1351.43	1350.96	1351.77	1357.19	1359.33	1349.75
1954	1359.70	1359.78	1355.98	1351,85	1346.43	1345.24	1341.43	1347.57	1350.88	1349.44	1358.04	1356.63	1351.85
1955	1359,17	1358.58	1353.39	\sim	1349.92	1353,20	1358,63	1359.73	1356.89	1357.74	1359.72	1359.97	1356.00
1956	1359.64	1357.25	1353.45	1347.75	1342.98	1347.40	1359.63	1357.44	1357.08	1358.34	1355.88	1359.95	1354.75
1957	1359.86	1358.70	1356.49	1350.54	1343.75	1350.45	1357.79	1356.76	1354.49	1343.53	1341.91	1347.80	1351.81
1958	1359.91	1359.05	1355.78	1352.62	1348.98	1344.83	1358.06	1356.76	1353.71	1350.71	1358.54	1359.91	1354.90
1959	1359.27	1355.94	1349.05	1343.33	1342.62	1347.47	1358.46	1359.39	1356,53	1356,15	1359.40	1359.43	1353.93
1960	1356.39	1352.30	1351.52	1343.79	1341.87	1342.47	1341.52	1348.33	1344.49	1358.62	1359.22	1359.95	1350.06
1961	1358.82	1355.69	1350.39	1342.58	1343.13	1353.07	1348.35	1353.28	1359.90	1358.19	1359.06	1359.89	1353.51
1962	1359.08	1357.18	1352.53	1345.89	1345.48	1349.18	1346.30	1346.55	1353.36	1354.61	1359.91	1359.61	1352.44
1963	1359.40	1358.10	1352.67	1346.61	1344.15	1341.80	1342.89	1344.04	1342.21	1346.38	1355.31	1359.54	1349.39
1964	1359.93	1359.25	1358.26	1354.92	1350.27	1343.28	1341.54	1347.56	1352.17	1354.19	1358,55	1359.87	1353.30
1965	1358.03	1354.03	1346.75	1341.72	1345,45	1359,42	1357.55	1354.59	1352.70	1352,39	1358.06	1359.87	1353.38
1966	1359.84	1358.61	1356.05	1353.64	1353.43	1347.86	1345.63	1344.53	1343.60	1359.59	1359.80	1359.95	1353.53
1961	1359.55	1358.41	1355.84	1352.29	1347.97	1342.47	1346.93	1347.35	1344.17	1347.45	1358.69	1359.58	1351.70
1968	1359.90	1358.03	1353.96	1347.78	1346.92	1342.05	1346.91	1357.43	1358.55	1359.68	1359.91	1359.86	1354.25
1969	1359.14	1356.12	1348.98	1343.33	1342.58	1356.49	1357.83	1352.79	1356.12	1356.57	1359.33	1355.74	1353.73
1970	1359.82	1359,37	1357.30	1351.85	1348.95	1344.65	1341.82	1353.19	1355.73	1352.40	1356.06	1359.17	1353.32
1971	1359.77	1356.99	1351.25	1343.27	1346.84	1343.00	1348.35	1346.73	1349.59	1359,55	1359.11	1358.96	1351.95
1972	1359.33	1356.78	1350.32	1342.99	1349.37	1348.05	1351.18	1358.10	1345.52	1348.29	1358.94	1358.80	1352.32
1973	1359.93	1358.99	1356.44	1352.82	1347.07	1341.56	1341.01	1351.42	1359.25	1355.82	1357.17	1357.68	1353.22
1974	1359.52	1356.06	1350,58	1343.76	1340.92	1347.03	1346.79	1359.05	1356.76	1359,93	1359.46	1356.37	1353.01
1975	1358, 45	1355.26	1351.28	1344.59	1342.23	1350.46	1356.02	1350,03	1345.82	1351,52	1358.37	1359.85	1351.99
1976	1359.82	1358.71	1355.29	1353.99	1352.46	1346.54	1343.10	1345.74	1348.16	1346.45	1355.84	1359.83	1352.14
1977	1358.48	1354.44	1347.34	1342.03	1342.08	1343.92	1350.08	1358.10	1351.08	1349.72	1359.72	1359.93	1351.41
1978	1358.73	1354.65	1349.60	1345.69	1350.71	1352.74	1345.91	1355.10	1354.02	1346.93	1352.05	1359.89	1352.16
1979	1358.91	1355.32	1348.53	1341.79	1344.27	1342.92	1352.32	1356.85	1344.53	1352.86	1355.31	1359.75	1351.13
1980	1359.81	1357.54	1351.84	1345.60	1345.02	1341.72	1342.14	1348.30	1350,77	1353,21	1358.37	1359.97	1351.18
Ave./T	1359.15	1356.93	1352.37	1346.95	1346,16	1347.53	1349.61	1352.54	1351.49	1353.51	1357.51	1358.83	1352.70
Market Market Company	ſ				ı								

																												T	IBL	E	IJ	1.3	3-5
it: MCM /Talawak	· .	Year	49.1294	3.6078	0.0000	0.0000	32, 7588	10.3294	29.6077	1.1694	8.6533	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	7.7046	9.2927	0.0000	36.3300	12.4180	0.0000	0.000.0		•	0.000	6.7000
Unit : MCM Caledonia/Talawak		DEC	0.0000	0.000.0	0000.0	000000	0.0000	0.0000	29.6077	0.000.0	0.000.0	0.000	000000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.0000	0000.0	0.000	0.0000	000000	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.0000	•	0.0000	0.9869
for	35.00m3/s ,	NOV	0.000.0	0.000.0	0.0000	0.000.0	0.000	0.000.0	0.000	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000.0	0.000	0.000.0	0.000.0	0.000.0	0.0000	0.000	000000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	•	0.0000	0.0000
Nanu1/Na	ö	OCT	0.0000	0.0000	0.000.0	0.0000	0.000	0.0000	0.0000	0.000.0	0000.0	0.0000	00000:0	0000.0	0.0000	000000	0.0000	0.0000	0.000.0	0.000.0	0.0000	0.000	2.3382	0.000.0	0.000.0	0000.0	0.0000	0.000.0	0000.0	0.0000	•	0.0000	0.0779
1980 Caled.Dam(175.2km2) with Nanul/Nanu2	লু •	SEP	0.0000	0.000	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000	0.000.0	0,000	0.000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	5.3664	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	-	0.000	0.1789
Dam(175.2	961m3/s , N EL.1360.0m	AUG	0.0000	0.0000	0.0000	000000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.000	0,000	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	6.6664	0.000	0.0000	0.0000	0.0000	•	0.000	0.2222
51-1980 4. Caled.	Firm Q: 6.6961m3/s, N.H.W.L.:EL.1360	JUL	0.0000	0.000.0	0.000.0	0.0000	0:1514	0.000.0	0.000.0	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	9.2927	0.000.0	29.6636	0.0000	000000	0.000.0	0.000.0	0.000.0	0.000	1.3036
er for 19 n OPTQ032	E .	JUN	49.1294	0.0000	0.0000	0.000	32.6075	10.3294	0.000.0	0.000.0	8.6533	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	00000:0	0.000.0	0.000.0	12.4180	0000.0	0.000.0	0.000.0	0.0000	0.0000	3.7713
illed Water for 1951-1980 culated on OPFQ0324. Cale	:DQWL2324.DAT , acity: 15.70MCM	MAY	0.000.0	3.6078	0.0000	0.000.0	0.000	0.0000	0.000.0	0.000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000	0.0000	0.0000	0.0000	0.000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.0000	0.000	0,1203
Sp etc. cal	tesults:B	APR	0.000.0	0.0000	0.000.0	0.0000	0,000	0.0000	0.000.0	0.0000	0.000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	000000	0.000.0	0.0000	0.000	0.0000	0,000
y Release		MAR	0.0000	0.000.0	0.0000	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000	0.000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	000000	0.000.0	0.0000	0.000.0	0.000.0	.0000	0.0000	0,0000	0.0000
1951-80 Daily Release	TQ0324.DA	FEB	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000	0.000.0	0.000.0	0.000	0.000.0	0.0000	0000.0	0.000	0000.0	0.000.0	0.000	0,000	0.000	0.000.0	0.000.0	0.000	0.000.0	0.000.0	0.0000	0.000	0.000	0.0000
‡		JAN	0.0000	0.000	0.0000	0.000	0.0000	0.000.0	0.000.0	1.1694	0.0000	0.0000	0.000.0	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000.0	0.000	0.000.0	0.000.0	0.000	0.000.0	0.000.0	0.000.0	0.000	0.0000	0.000.0	0000.0	0.000.0	0,000	0,0390
** DQWL2324	Input Eff.Str		1921	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	Ave./T

III.3.3 <u>Determination of Optimum Combination of Reservoir Scale and</u> Installed Capacity

The three cases of water level at Caledonia reservoir of EL.1,365m, 1,360m and 1,355m (with subsequent maximum turbine discharges at Caledonia power station of 30, 35 and 40m3/s, respectively, and at Talawakelle power station of 45, 50, and 55m3/s, respectively) are comparatively studied in terms of output, generated energy, B-C, B/C, and construction unit cost (Rs./kWh) for Caledonia/Talawakelle Scheme in TABLE III.3-6. The same comparison for the Caledonia One Step Scheme is presented in TABLE III.3-7.

In this case, water level at Talawakelle pond is determined at EL 1,200, and effective storage capacity at 2.0MCM.

TABLE III.3-6 OPTIMUM COMBINATION FOR TWO - STEP DEVELOPMENT

	5	0†)	220	10 210	•	1,176	888	588	1.07		257		10,450	(1,220	2.6	N 0.	7.3	65		27.7	823	11,280		1,264	982	α	•	1.18
	HWL 1,36	35	000	250	10 010	•	1,162	874	588			251	821	10,290		1,207	970	5	33	9.		271	822	11,120		1,250	896	N.	1.29	٠
	1	30	C	272	0 0 0	•	1,147	865	782	1.04		544	819	10,180	•	1, 190	O	Υ)	1.34	• 1		564		11,010	· · · · · · · · · · · · · · · · · · ·	1,235	 	27	2,5	-
ದ	09	40		200	9 730	~	1,158	847	ന			254	812	9,980	(- 202, 205,	0 6	335	1.39	? [275	811	10,800		1,248	941	307	1.33	1.14
Caledonia	HWL 1,36	35	č	0 9 0	0 200	,	1,145	83	82	1.02		248	808	9,800	•	20.0	 00.0	Υ)	139	• 1		569		10,630	5	1,235	956	8	1.33	۲.
0		30	ć	7 2	0.00	- ~	1,130	823	307	1.07		242	80# 108	9,700	,	٩/٦ -	2 2 2 3 4 4 5 4	ζ.	1.39	?		262		10,520		1,220	917	(x)	1.33	•
	5	017	(720	σ		1,125	825	300	8.5		⇉	786	_	,	[<u> </u>	0 t 0	Ä	.38	?		569	7	10,540		1,216		3	ന	٠
	HWL 1,355	35		να	350	, ,	1,113	811	305	1.02		243	785	9,560	•	7,160	833	34/	1.39	70.		7. Set	<u></u>	10,390		1,205	905	300	1.33	1.12
		30		-α	0 70	i i	1,099	805	297.	1.02		237	782	9,450		, _ C+2,	823	322	1.39	7	·	258	186	10,280		1,190	895	295	1.33	1.12
	Item		ischarge of Tala	Max Timum Output	Construction Cost	Ą	B Rs.106	:	2 ·	8/C Construction Unit Cost Rs./KWh	Maximum Turbine Discharge of Talawakelle P/S: 50m3/s	MM			Economic Viability	KS. 100	· ·	ייי בייי		OSC RS./ KWD	Maximum Turbine Discharge of Talawakelle P/S: 55m3/s			Construction Cost Rs. 106	Economic Viability	B Rs.10b		3R	B/C "	Construction Unit Cost Rs./KWh
	•							•			III	: -	33	3																

TABLE III.3-7 OPTIMIZATION OF RESERVOIR SCALE
AND INSTALLED CAPACITY
FOR CALEDONIA ONE STEP DEVELOPMENT SCHEME

	Normal	High Water (EL.m)	r Level
	1,355	1,360	1,365
m3/s			
	.186	187	188
			684
			8,020
	,,,,,,,	. ,	
Rs. 106	903	941	963
11			697
n [266
U			1.38
Rs./KWh	1.02	0.99	1.00
)m3/s			
MW	213	214	215
GWh		664	688
Rs.106	7,660	7,920	8,350
Rs.106		999	1,023
11	668		728
n	295		295
19		_	1.40
Rs./KWh	1.05	1.02	1.04
im3/s			
WM	240	241	242
GWh	629	667	690
Rs.106	8,160	8,620	8,890
Rs.106	1,022	1,057	1,080
Ħ	712	752	775
n	310	305	305
11	1.43	1.44	1.39
Rs./KWh	1.11	1.08	1.10
	Rs./KWh M3/s MW GWh Rs.106 Rs.106 Rs./KWh MS GWh Rs.106 Rs.106 Rs.106	1,355 m3/s MW 186 GWh 618 Rs.106 7,320 Rs.106 903 " 638 " 265 " 1.42 Rs./KWh 1.02 m3/s MW 625 Rs.106 7,660 Rs.106 963 " 295 " 1.44 Rs./KWh 1.05 m3/s MW 629 Rs.106 8,160 Rs.106 1,022 " 712 " 310 " 1.43	1,355 1,360 m ³ /s MW 186 187 GWh 618 660 Rs.106 7,320 7,590 Rs.106 903 941 638 661 265 280 1.42 1.42 Rs./KWh 1.02 0.99 m ³ /s MW 213 214 GWh 625 664 Rs.106 7,660 7,920 Rs.106 963 999 " 668 690 295 369 " 1.44 1.45 Rs./KWh 1.05 1.02 m ³ /s MW 240 241 GWh 629 667 Rs.106 8,160 8,620 Rs.106 1,022 1,057 " 712 752 " 310 305 " 1.43 1.44

III.4 Determination of Power Station Site and Type, and Main Headrace Route

Following selection of the Caledonia reservoir, Talawakelle pond, and given the existing location of Kotmale reservoir, it was subsequently necessary to select the economically and technically optimum headrace - power staiton - tailrace routes to connect these points.

Features of intake at Caledonia and Talawakelle are as follows:

Item	Caledonia Scheme	Talawakelle Scheme
Normal H.W.L. of reservoir and pond	EL.1,360m	EL.1,200m
Usable Water Depth	19m	7m
Tailwater Level	EL.1,198m	EL.703m
Maximum Turbine Discharge	35m3/s	50m3/s
Maximum Intake from Tributaries	Nanu 6.4m3/s	Puna 4.5m3/s Pundal 3.6m3/s Devon 3.3m3/s

III.4.1 Determination of Caledonia Tunnel Route

The following three tunnel routes were proposed for the Caledonia power station and an outline of each alternative is presented hereunder.

Route C-1: Kotmale left bank intake, left bank route, surface power station

Route C-2: Kotmale right bank intake, straight route, underground power station

Route C-3: Kotmale right bank intake, right bank route, surface power station

Proposed routes are discussed below. Route locations are indicated in FIG.4.3-3 and comparative profiles are given in FIG.4.3-4 of the Main Report.

Route C-1 (Left bank intake, left bank route)

The intake will be located on the left bank of the Agra Oya 350m upstream from the confluence of the Agra and Dambagastalawa rivers and the power station will be a surface type on the left bank of the Kotmale Oya,

with tailwater discharge into the Talawakelle reservoir near the confluence of the Kotmale and Nanu rivers.

The tunnel route will make a wide detour to the left to bypass the lowland area where numerous affluents run into the left bank of the Kotmale Oya. A river which flows into the left bank of the Kotmale Oya about 2.2km upstream from Lindula has carved a steep valley. Where the canal route crosses this river, culvert instead of tunnel is planned.

The Kotmale Oya meanders widely to the right between the Caledonia and Talawakelle dams and tunnel length is rather large at 7,570m. Gradient at the power station site is gentle and penstock extension is long, resulting in a larger construction cost.

Route C-2 (Right bank intake, Straight route)

The proposed route almost directly joins the Caledonia reservoir and Talawakelle regulating pond, and with a total length of 5,150m for the headrace and tailrace tunnels, it is the shortest of the three proposed routes.

The intake is located directly upstream from the Caledonia Dam on the Kotmale right bank, and, as discharge will be at the upstream end of the Talawakelle regulating pond, the power station will be an underground type and the tailrace route will cross the Kotmale Oya. Rock outcrops occur in the riverbed where the proposed tailrace route crosses and overburden of about 40m is available. On the basis of field survey results, no difficulties are envisioned to arise with respect to either construction or operation and maintenance.

Route C-3 (right bank intake, right bank route)

Intake will be from the right bank directly upstream from the Caledonia dam. The proposed tunnel route runs along a ridge between the Kotmale and Nanu rivers and the power station site is located on the right bank at the upstream end of the Talawakelle regulating pond.

As the tunnel route is fairly circuitous, following the mountain ridge, tunnel is rather long at 5,870m. The penstock route is also rather long due to the gentle gradient at the site. A further disadvantage is that the tunnel route crosses a fractured zone. As the outlet is situated at the upstream end of the Talawakelle regulating pond, there is some

possibility that it may be affected by sedimentation, although the residual catchment area below Caledonia dam is small.

The above routes were compared as shown in the following table and on this basis, route C-2, the direct route with right bank intake and underground power station, is considered the optimum route.

TABLE III.4-1 COMPARISON FOR CALEDONIA SCHEME ALTERNATIVE ROUTES

Name of Route of P/S	Unit	C-1	C-2	C-3
Catchment Area Total Main River Tributaries	km2 km2 km2		235.0 175.2 59.8	
Dam Type Height	m		C.Grvty 70	
Reservoir/Pond N.H.W.L. L.W.L. Storage Capacity Gross Effective	EL.m EL.m MCM MCM		1,360 1,341 45.7 30.0	
Tunnel Headrace Branch Tailrace	m m m	7,570 4,130 0	2,980 4,130 2,170	5,870 4,130 0
Power Generation Rated Head Max. Turbine Discharge Installed Capacity Annual Generated Energy 1/ -Firm Energy -Secondary Energy	m m3/s MW GWh GWh	139 35 42 130 73 57	144 35 44 135 76 59	140 35 43 132 74 58
Construction Cost 2/	Rs.106	4,489	4,160	4,278
Evaluation B (Annual Benefit) 3/ 4/ C (Annual Cost) 3/ B/C B-C Construction Unit Cost Energy Cost	Rs. 106 Rs. 106 Rs. 106 Rs. /kWh	196 387 0.51 -191 34.53 3.50	204 359 0.57 -155 30.81 3.13	200 369 0.54 -169 32.41 3.29

Note: 1/ 2/ 3/ 4/ Effective value considering 5% of loss in generation

Discount rate at 10%

Construction cost is based on price levels as of December '86

Benefit from Output and Firm Energy is based on diesel, the same from Secondary Energy is based on oil-thermal

III.4.2 Determination of Talawakelle Tunnel Route

The following items were considered in determining the Talawakelle tunnel route which utilizes a total head of 499m from the normal H.W.L. of the Talawakelle regulating pond (1,200m) to the normal H.W.L. of the existing Kotmale reservoir (703m).

- (1) Tailwater level is to be between average water level in the reservoir (695.0m) and normal H.W.L. (703.0m) in consideration of present operation of the Kotmale reservoir.
- (2) Normal H.W.L. of the Kotmale reservoir will increase to 731.5m with raising of the dam. However, the present normal HWL of 703m will serve as the base for design output and generated energy.
- (3) Rising of the riverbed due to sediment flow from the existing Kotmale reservoir will begin from the upstream end of the reservoir. The tailrace outlet will be easily affected by sedimentation if it is located at the upstream end of the reservoir. Long term sedimentation conditions should particularly be taken into consideration for the case of normal H.W.L. increase to 731.5m. If the outlet is located in the steeper portion downstream of the confluence of the Kotmale and Puna rivers sedimentation is envisioned to be negligible.
- (4) Maximum intake from Devon Oya will be 3.3m3/s
- (5) Maximum intake diversion from tributaries will be $4.5\text{m}^3/\text{s}$ in the case of a straight tunnel route, and $8.1\text{m}^3/\text{s}$ for a detour route with the addition of maximum intake of $4.5\text{m}^3/\text{s}$ from Puna.
- (6) Intake from Pundal Oya will be stored at Talawakelle pond where the power station is not operating.

Based on the above considerations, three alternative routes were selected for the Talawakelle tunnel as follows:

- Route T-1: straight route, underground power station
- Route T-2: detour route via the Pundul river intake point, underground power station
- Route T-3: detour route via the Pundul river intake point, semi-surface power station

Route T-1 (direct route)

Intake will be from the right bank about 100m upstream from the Talawakelle Dam with construction of the tailrace outlet within the existing Kotmale reservoir area where no sedimentation will occur (about 3km downstream from the Puna River confluence). The power station is an underground type located 1.0km upstream from the confluence with the Pundal Oya on the right bank of the Kotmale.

As the tailwater level is set at the average water level in the Kotmale reservoir, head up to the normal highwater level can be effectively utilized untill the existing Kotmale dam is to be raised. Although the route is direct, tunnel length is almost the same as that for the detour route because the outlet elevation is set at EL.695m. Moreover, due to topographical restrictions the power station will be constructed 350m underground and consequently larger scale facilities such as access tunnels, cables and ventilating shafts will be required. Branch canal from the Pundal Oya is also quite long at 5,600m thereby further increasing construction costs. However, as the tunnel route is closer to the Kotmale Oya than that of other alternatives, facilitating construction of numerous working shafts, the construction period can be shortened.

Route T-2 (Detour route, underground power station)

Intake is located about 100m upstream of the Talawakelle dam on the right bank. The tunnel route runs via the Pundal intake site to the tailrace outlet at the upstream end of the existing Kotmale reservoir, and an underground power station is planned. Tunnel is rather long at 13.1km and it is impossible to avoid crossing supposed fracture zone. Moreover, construction of work shafts along the 8km stretch upstream of the Pundal Oya is envisioned to be difficult in view of topographical limitations.

Intake from the Puna Oya will be discharged into the Pundal Oya for intake of the combined flow of the two rivers. Intake discharge will pass through a desilting basin into a vertical shaft connected directly to the headrace. Tailrace outlet elevation is EL.703m as the outlet is located at the uppermost end of the existing Kotmale reservoir. Power station and tailrace design will take into consideration increased hydraulic pressure to result from future raising of Kotmale dam height.

Route T-3 (Detour route, semi-underground power station)

The tunnel route and facilities up to the surge tank are the same as those for route T-2. The major portion of the penstock will be surface type and the power station will be a semi-surface type as it is located close to the existing Kotmale reservoir. Construction cost increase for longer penstock is greater in this case than construction cost reductions from shorter tunnel route and semi-surface type power station. If raising of the Kotmale Dam is considered, the required distance of the site from the Kotmale reservoir will increase and consequently the construction cost will be almost the same as that for the route T-2 alternative.

The above routes were compared as shown in the following table and on this basis, Route T-2, the bypass route with underground power station, is considered as the optimum route.

COMPARISON FOR TALAWAKELLE SCHEME ALTERNATIVE ROUTES TABLE III.4-2

Item	Unit	T-1	T-2	T-3
Catchment Area Total Main River Tributaries	km ² km ² km ²		363.4 297.2 66.2	
Dam Type Height	m		C.Gravity 20	
Reservoir/Pond N.H.W.L. L.W.L. Storage Capacity -Gross -Effective	EL.m EL.m MCM MCM		1,200 1,193 2.6 2.0	
Tunnel Headrace Branch Tailrace	m m m	8,620 15,020 4,540	13,066 9,420 406	13,066 9,420 50
Power Generation Rated Head Max. Turbine Discharge Installed Capacity Annual Generated Energy 1/ -Firm Energy -Secondary Energy	m m3/s MW GWh GWh	477 50 208 675 331 344	468 50 204 674 331 343	468 50 204 673 331 342
Construction Cost 2/	Rs.106	5,826	5,640	5,704
Evaluation B (Annual Benefit) 3/4/ C (Annual Cost) 3/ B/C B-C Construction Unit Cost Energy Cost	Rs.106 Rs.106 Rs.106 Rs./kWh Rs./kWh	995 511 1.95 484 8.63 0.89	986 495 1.99 491 8.37 0.86	985 500 1.97 485 8.48 0.87

Note: 1/ Effective value considering 5% of loss in generation
2/ Construction cost is based on price levels as of December '86
3/ Discount rate at 10%
4/ Benefit from Output and Firm Energy is based on diesel, the same from Secondary Energy is based on oil-thermal

III.5 Optimization of Diversion From Tributaries

As intake from the Nanu, Pundal and Puna rivers is envisioned to have little adverse environmental effect on downstream water use, downstream maintenance flow is considered unnecessary and intake volume will be as much as economically feasible. Rivers from which intake is possible are outlined in the following table. However, for the subject project, 10km^2 catchment area was designated as the object of diversion.

Destination	River	No. of Intakes	Catchment Area (km²)	Intake Tunnel Length (km)	Intake Time(hr)
Caledonia Reservoir	Nanu Oya	2	59.8	4.1	24
	Devon Oya	1	24.5	4.2	16*
Talawakelle Regulating Pond	Pundal Oya Puna Oya	1 2	21.2 28.6	5.2	24 24

TABLE III.5-1 TRIBUTARIES TARGETTED FOR DEVELOPMENT

An intake dam, inlet, and desilting basin are planned at each intake site to divert discharge to the headrace canal.

Nanu Oya

There are two intake sites on the Nanu Oya with catchment areas of 43.3km² and 16.5km². An access road of about 0.7km must be constructed from the new Lindula-Nuwara Eliya road to intake No.1 through area occupied by tea estate. For intake No.2, however, construction of an access road is unnecessary as the intake river follows the bus road. Maximum intake is projected at 6.0m³/s. Major dimensions of the diversion dam are outlined as follows.

<u>Feature</u>	Intake No.1	Intake No.2	<u>Total</u>
Dam Height (m)	20	17	44
Dam Crest Length (m)	85	52.5	-
Maximum Intake (m3/s)	4.3	1.7	6.0

^{*}One third of daily discharge is planned not to be diverted from the Devon Oya in order to preserve Devon Falls. Diversion from the Devon oya is accordingly considered at 2/3 of daily inflow

Gradient between intakes No.1 and 2 is gentle, however topography is complex. One portion of the area is tea field.

Both a tunnel alternative and an open excavation alternative were comparatively studied for the canal between the two intakes. On the basis of this study, the tunnel alternative was adopted as the optimum.

	Tunnel Proposal	Open Canal Proposal
Length (m) Tunnel Open Canal Total	1,650 0 1,650	0 5,500 5,500
Const. Cost (Rs. 106)	25.6	71.0

As the canal route cuts across the catchment divide between the Kotmale and Nanu river between intake No. 2 and the Caledonia reservoir, the entire length of this segment (2,370m) is to be tunnel.

Devon Oya

Intake is at a point upstream of Devon Falls with a catchment area of 36.8km². Diverted discharge is conveyed by tunnel to the Talawakelle regulating pond.

There are numerous waterfalls in the Upper Kotmale river basin, of which St. Clair Falls and Devon Falls have abundant head and discharge, as well as scenic beauty. Moreover, both falls are situated close to major roads. With completion of the present Project however, flow to St. Clair Falls will be greatly reduced. To reduce the flow of both falls would adversely affect plans for development of tourism and accordingly, intake from Devon Falls is to be limited to 2/3 of daily discharge. Diversion will not be performed for 1/3 in order to preserve the falls for tourism development.

Intake point is 1.2km above the falls, and adjacent to highway A-7. An existing concrete weir at the site, constructed for irrigation but no longer in use, could have its crest raised and be utilized as the intake dam. The existing weir has a crest length of 70.0m and crest height of 10.0m.

Both a tunnel route and open canal route are possible for the intake canal. However, the tunnel route was selected as the open canal route has a segment which runs parallel to highway A-7, and would require partial reconstruction of both the highway as well as the railway. A detour route was selected for the tunnel as the directest route would make difficult a work access shaft for the upstream 3,400m tunnel segment. The maximum tunnel segment is 2,000m.

Feature

Dam height (m)	10.0
Dam crest length (m)	70.0
Max intake (m3/s)	3.3

Puna Oya

There are two intake sites for Puna Oya with catchment areas of 10.1km² and 18.5km² to divert discharge to directly upstream of the Pundal Oya intake dam. Intake site No.1 is accessible by a farm road which runs through a tea estate. This road is located entirely within the estate area and is passable; however, maintenance is poor. It must be repaired and widened in order to be used for construction purposes. Extension of the road which runs from Route A5 to the intake site is approximately 2.2km.

Intake site No.2 will require construction of an access road about 0.5km in length. As riverbed gradient at the site area is a steep 1:4, the intake structure is to be positioned at the upstream-most edge of this steep portion to minimize difficulties in design and construction. Discharge is to be diverted to the tunnel canal from intake No.1 by means of 120m long box culvert and 25m high vertical shaft. Outlet for the diversion tunnel is to be directly upstream of the Pundal Oya intake dam. Between intakes No.1 and 2, the 1,970m diversion canal route is to be tunnel where cliff is encountered and where the route intersects highway A-5.

<u>Feature</u>	Intake No.1	Intake No.2	<u>Total</u>
Dam Height (m)	10	10	
Dam Crest Length (m)	70	70	-
Maximum Intake (m3/s) 2.0	2.6	4.5

Pundal Oya

The maximum intake of 4.5m3/s for the Puna Oya (catchment area: 28.6km²) will be combined with the Pundal catchment area of 21.2km² (max. 3.6m3/s) for Pundal Oya intake, and the intake discharge will pass directly to a water tank via the settling tank. Widening of an existing road which extends 0.3km to the intake site is considered.

The intake site is located in the steep portion of the river where large boulders occur in the riverbed. Overburden is estimated to be shallow and rock outcrops are visible.

Intake at this point is to be directly into the headrace canal. In order to minimize air and silt inflow, a settling basin is to be constructed to prevent silting, and vertical and horizontal shafts to prevent air influx.

The vertical shaft is to also function as an auxiliary surge tank as it is positioned near the main surge tank and would be subject to the effects of surging. Vertical shaft would have an inner diameter of 10.0m to limit inflow velocity (10cm/s). The large portion of aeration created by roiling would be eliminated by the relatively slow flow velocity in the shaft. However, an 11m long horizontal shaft would be constructed inside the tunnel to surface and remove any remaining air. A distended wall would be included at the ceiling of the horizontal shaft connecting with the diversion shaft to capture released air and purge it from the tunnel by air pipe.

Dam Height (m) 16.0

Dam Crest Length (m) 70.0

Maximum Intake (m3/s) 8.1 (of which 4.5m3/s is diverted discharge from the Puna Oya)

Optimum Intake Discharge from Tributaries

The optimum maximum discharge for each tributary was determined on the basis of the difference (B-C) of annual costs (C) required by intake facility scale, and the benefit derived from the corresponding intake discharge (B).

Facility cost includes direct facility cost required for intake, and overall facility cost resulting from the scale of intake.

Capital recovery factor for calculation of annual costs, and for determining benefit are based on values presented in section 4.3 of the Main Report.

On this basis, optimum intake is as follows:

	Nanu	Devon	Puna	Pundal
	Oya	Oya	Oya	Oya
Maximum intake discharge (m3/s)	6.0	3.3	4.5	3.6*

^{*} With addition of the $4.5 \mathrm{m}^3/\mathrm{s}$ of riverbed discharge from the Puna Oya, facilities at Pundal Oya will be of a scale to intake $8.1 \mathrm{m}^3/\mathrm{s}$.

III.6 Required Capacity for Talawakelle Regulation Pond

Due to fluctuations in operating time at Caledonia power station and variations in discharge from the residual catchment between the Caledonia and Talawakelle dams, discharge entering the Talawakelle regulating pond is not constant. For the reason set out below, inflow to the pond will be regulated, and spill will not occur.

- a. In order to permit adjustment of operating time at Caledonia power station to conform to power supply and demand.
- b. In order to secure at all times necessary discharge for peak generation at Talawakelle power station.
- c. In order to minimize ineffective spill, thereby maximizing effective utilization of water resources.

In order to achieve the above, an effective regulating capacity of 1.08MCM is necessary. Effective water use depth was determined at 7.0m as overall ponding capacity is small at 2.55MCM and the effect of silting is great. A water utilization depth of 7.0m yields a storage capacity at the site of 1.95MCM.

Amount of lost effective storage capacity due to silting cannot be precisely forecasted at the present stage. However, if silting contour is assumed to change linearly from the upstream extreme of the pond to the dam crest, effective storage capacity would be 1.3MCM, which is a 20% surplus over required storage capacity.

On the basis of riverbed gradient and catchment area at the confluence of the Kotmale and Nanu rivers, silting at the vicinity of the confluence would be assumed to begin with sediment load from the Nanu Oya. In such case, upstream of the confluence point, storage capacity of the Kotmale Oya below the sediment plane would be dead water.

As pond length is great in comparison to usable water depth, removal of silt by actual flow would not be likely and silt removal operations would be necessary at some point in the future.

III.7 Study for Staged Development

From the standpoint of power supply and demand planning, complete development of the Project for start-up of operation by 1997 is at the present stage considered necessary. However, should power demand growth rate change, or unexpected difficulties in procuring funding, materials or equipment occur, it would be possible for partial project implementation as required.

The following three cases for partial development are considered:

Case 1: Development at Caledonia only

Case 2: Development at Talawakelle only

Case 3: Development at Talawakelle, incorporating Caledonia dam

The above three cases are premised on the assumption that the entire development plan would eventually be implemented. Partial implementation is thus considered as one step towards final Project completion.

The cost-effectiveness for each case is computed as follows:

TABLE III.7-1 CONSTRUCTION COST FOR VARIOUS STAGED DEVELOPMENT PLANS

	Caledonia	Talawakelle	Total
Caledonia only	4,160	0	4,160
Talawakell only	0	5,640	5,640
Talawakell with Caledonia dam & Intake	2,370	5,640	8,010

TABLE III.7-2 OUTPUT AND ENERGY FOR VARIOUS STAGED DEVELOPMENT PLANS

		Caledonia	3	1	alawakel	1
	Р	Farm E	E	P	Farm E	E
Proposed Project	44	73	135	204	327	673
Caledonia only	44	73	135	0	0	0
Talawakell only	0	0	0	204	207	637
Talawakell with Caledonia dam & Intake	0	0	0	204	327	673

TABLE III.7-3 BENEFIT-COST COMPARARISON FOR VARIOUS STAGED DEVELOPMENT PLANS

	P	Farm E	Ε	Cost	В	c	B-C	B/C	Rs./kWh
Proposed Project	248	407	809	9,800	1,191	854	337	1.39	1.24
Caledonia only	44	73	135	4,160	204	359	-155	0.57	2.64
Talawakelle only	204	207	637	5,640	953	495	458	1.93	0.76
Talawakelle with Caledonia dam & Intake	204	327	673	8,010	985	698	287	1.41	1.02

Each case is discussed below.

Development at Caledonia alone

Under this case, development of Caledonia dam and Caledonia power station alone are performed.

Comparing development of the proposed overall scheme, construction cost at Caledonia is Rs.1 billion less expensive than construction at Talawakelle; however, the former scheme is markedly less cost effective.

The advantage of development at Caledonia alone is that firm output and firm energy can be maintained at design levels even in drought years through regulation of river discharge.

However, as there is no re-regulating pond (Talawakelle dam), peak generation is a problem.

Development at Talawakelle alone

Under this case, development of Talawakelle dam and Talawakelle power station alone are performed. Of all the cases for partial Project implementation, this one is the most cost-effective.

Under the Project, 3 turbine/generator units are envisaged for Talawakelle, and these units could be installed phase-wise in response to power demand growth.

As discharge regulation is not performed at Caledonia under this case, firm discharge drops 46% from 9.29m3/s to 4.99m3/s. As a result both firm output and firm energy decrease.

Development at Talawakelle, incorporating Caledonia dam

Under this scheme, development at Talawakelle would also include construction of Caledonia dam for regulation of river discharge. Spill from Caledonia dam would exit by means of spillway pipe constructed in the dam body, and power generation would be performed at Talawakelle only. The advantage of this case is that power generating potential at Talawakelle is fully realized.

Caledonia power station would be constructed at the second stage of implementation. However, in order to avoid having to forceably lower the reservoir level at Caledonia dam and thereby limiting its storage capacity during subsequent Caledonia power station construction, the power station intake structure (including regulating gate) and one portion of the

headrace tunnel would have to be constructed during first stage implementation. In similar fashion, as usable water depth at Talawakelle pond is 7.0m, the segment of Caledonia power station tailrace from the tailrace gate to outlet should also be constructed during the first phase to avoid impairment of regulating function at the pond during second stage implementation. In such event, excavation of tailrace tunnel for Caledonia would be limited to proceeding from the power station side.

III.8 Effect of Raising Kotmale Dam

At present there exists a plan to raise Kotmale dam in order to increase full water level from EL.703.0m to a maximum EL.731.5m. As an operation plan for the reservoir following dam raising has not yet been formulated, average water level for the reservoir was estimated on the basis of the following:

- (1) If operation remains the same as at present, average water level would be EL.724.2m.
- (2) If the entire storage capacity is utilized yearly, water level would fluctuate from normal high water level of EL.731.5m to minimum water level of EL.655m, with average level of EL.712.5m.
- (3) Average water level was consequently assumed on the safe side at the average of the above two average levels in (1) and (2) at 718.0m, following dam raising.

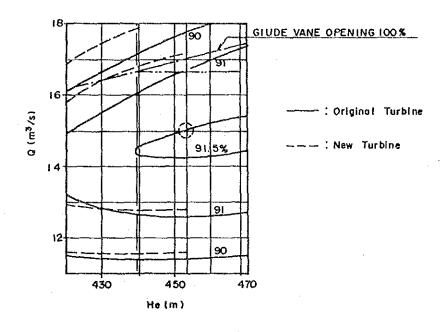
With raising of Kotmale reservoir level, firm output at Talawakelle power station would drop due to 28.5m loss of effective head (equivalent to the rise of tail water level from EL.703m to 731.5m) and efficiency loss of generating equipment.

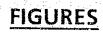
Generated energy likewise decreases as a result of 15m loss of effective head (equivalent to the rise of average tail water level from EL.703 to 718m) and drop in generating equipment efficiency.

However, Talawakelle is designed as a peak power station, and if design is such that maximum turbine discharge approximates that at which maximum turbine efficiency is achieved, it would still be possible to obtain the original design maximum turbine discharge of $50 \text{m}^3/\text{s}$ (total for three units) even with a loss of 28.5 m of effective head.

At present, turbines with rated effective head of 468m are planned. In the event that maximum turbine efficiency is desired after dam raising, it would be possible to replace runners with new ones rated for 15m less head; however, the merit of doing this is limited. It is therefore preferable to postpone new runner consideration until such time as the originally planned runners wear out from long term use and need to be replaced anyway.

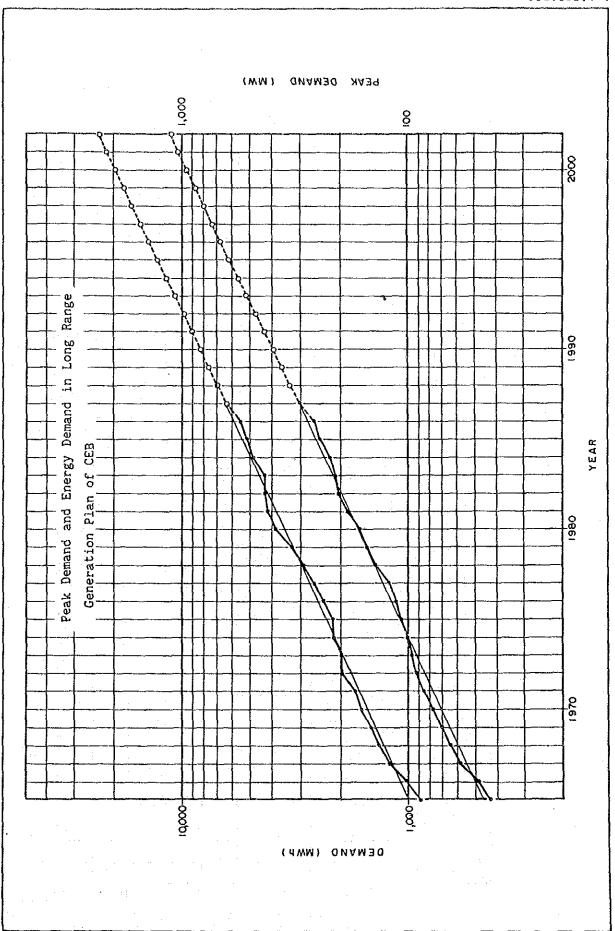
Efficiencies of original and new turbines are compared as follows:

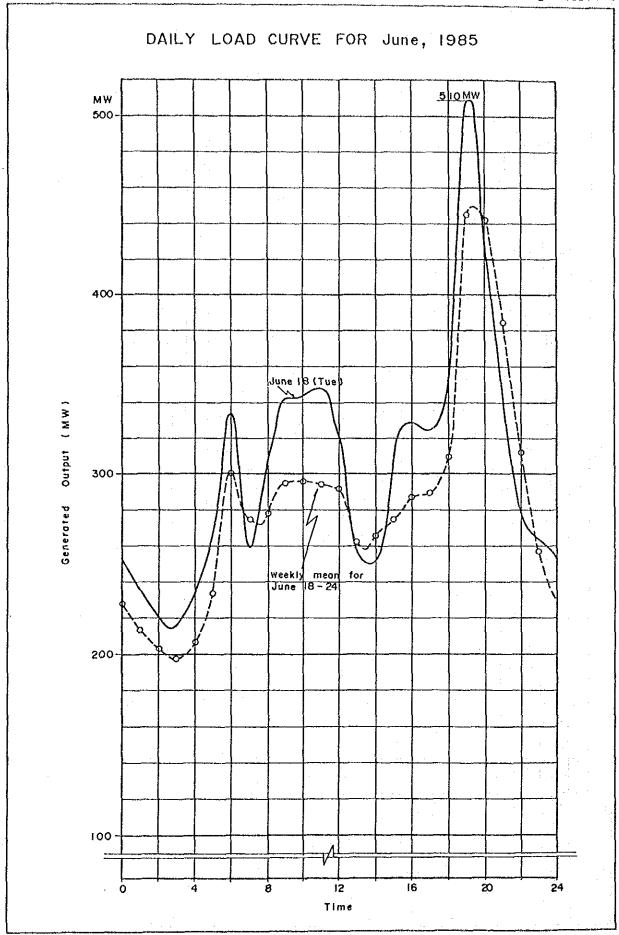

TABLE III.8-1 FIRM OUTPUT AND GENERATED ENERGY
BEFORE AND AFTER KOTMALE DAM RASING

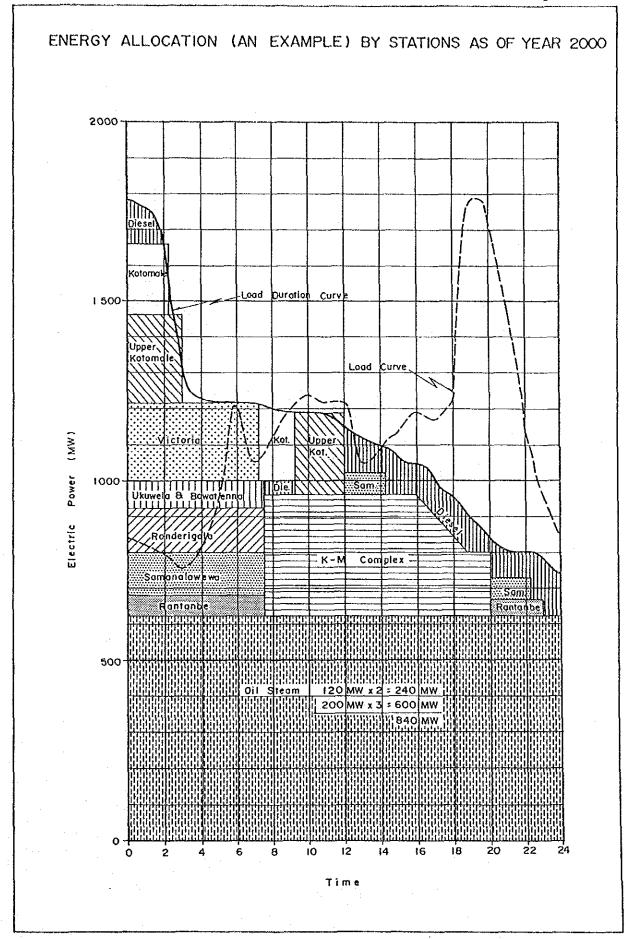

T.L	11m d de	Before Raising	After R	aising
Item	Unit	with Original	turbine wi	th New turbine
Tailrace Water Level	m	703	731	.5
Effective Head	m	468	439	.5
Maximum Turbine Q	m3/s	16.7	16	.7
Turbine Efficiency	76	91.2	90.5	95.0
Generator Efficiency	7/2	97.8	97.7	97.7
Firm Output	kW	68,200	63,400	63,800
Output Ratio	7,	100	93.0	93.5

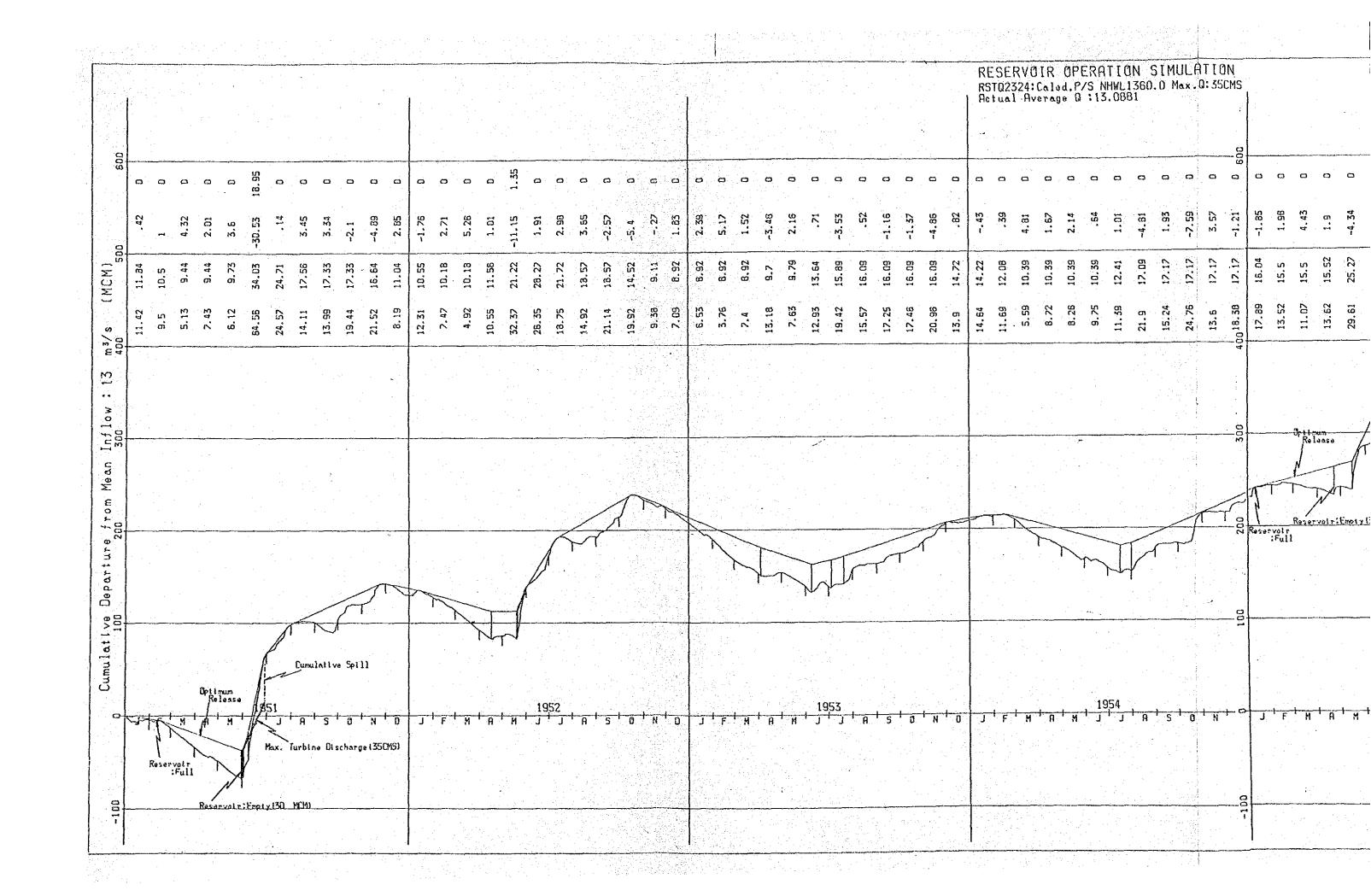
7.6	17 24-	Before Raising	Afte	r Raising
Item	Unit	with Original	turbine	with New turbine
Average Tailwater Level	: m	703		718
Effective head	m	468		453
Maximum Turbine Q	m3/s	16.7		16.7
Turbine Efficiency	%	91.2	91.0	91.1
Generator Efficiency	%	97.8	97.7	97.7
Average Output	kW	68,200	65,760	65,830
Generated Energy Ratio	76	100	96.4	96.5

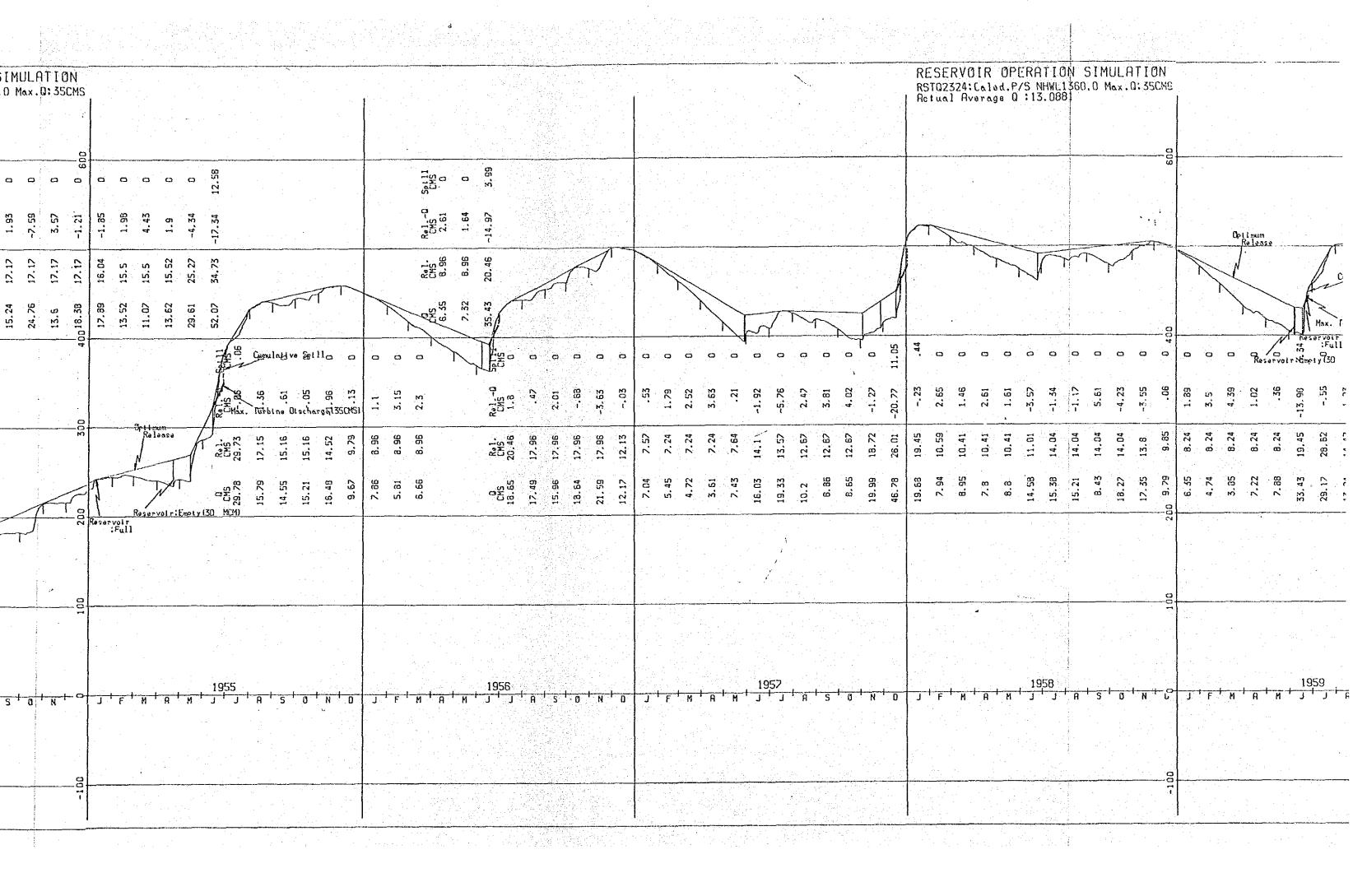
As shown in Table TABLE III.8-1, firm output following reservoir raising is 93% utilizing the original turbines. Replacement with new runners would increase firm output by only 0.5%.

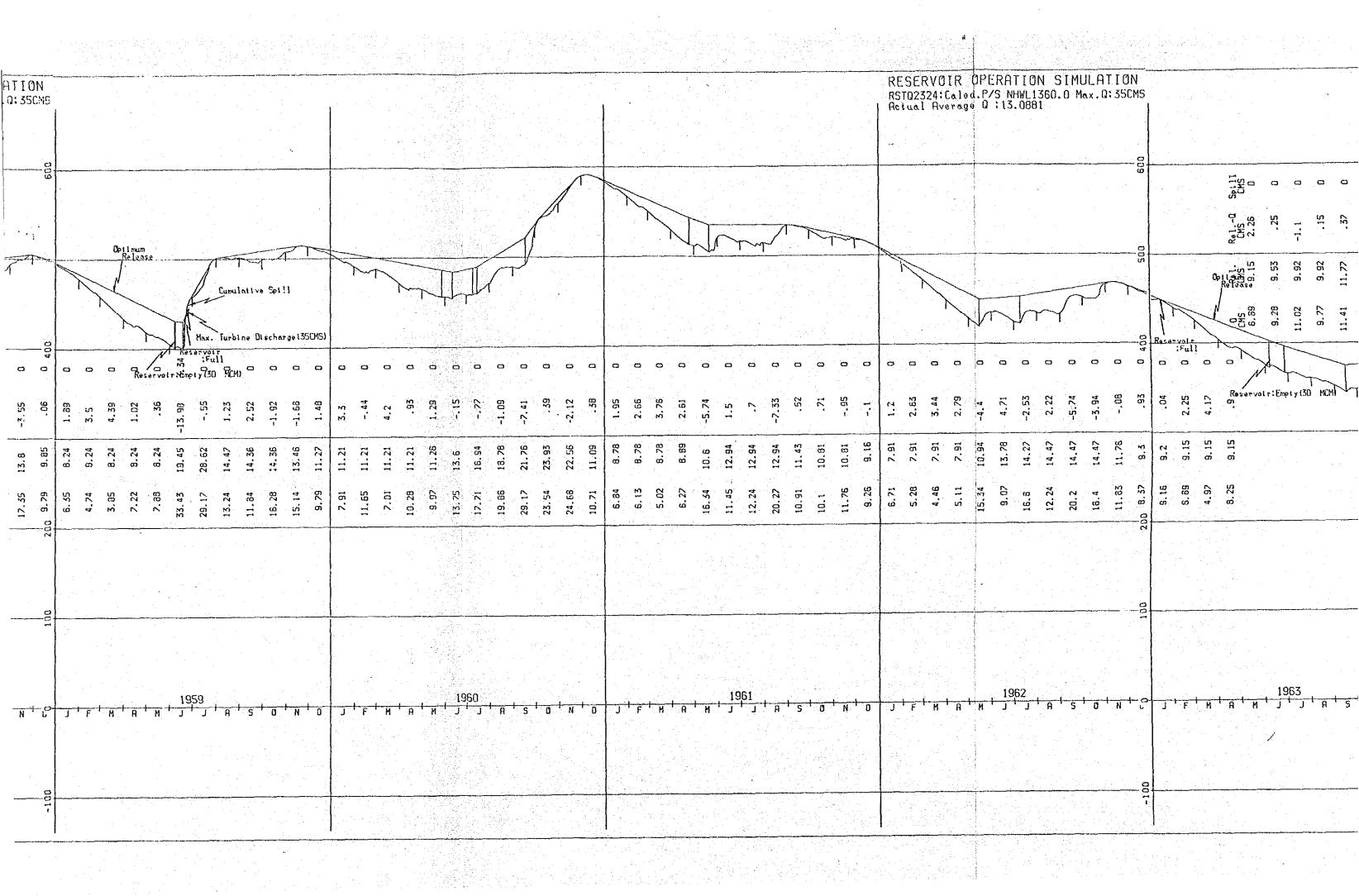

Generated energy after dam raising would be 96.4% with the original turbines. With new turbines, the value is essentially the same at 96.5%.

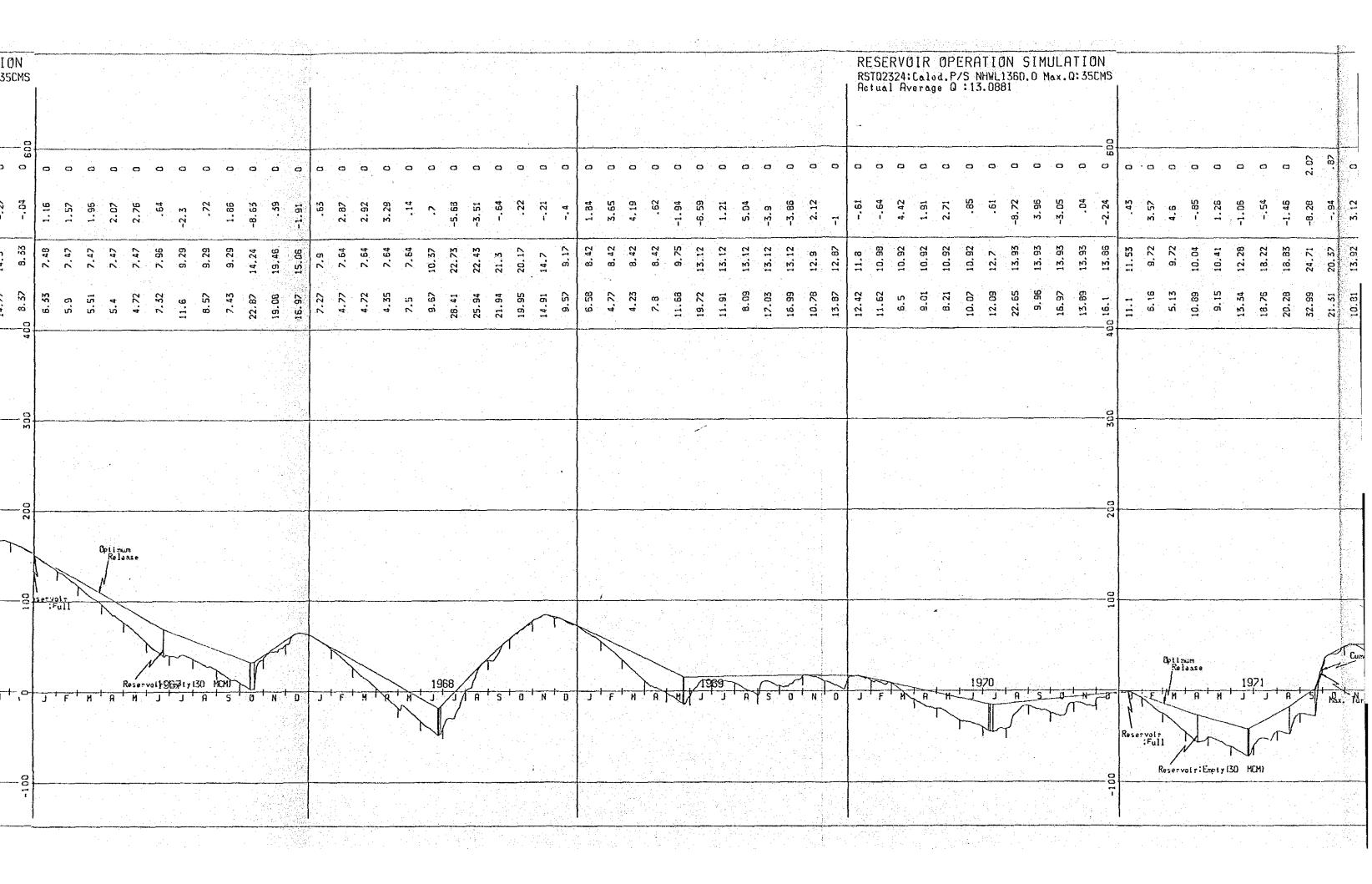


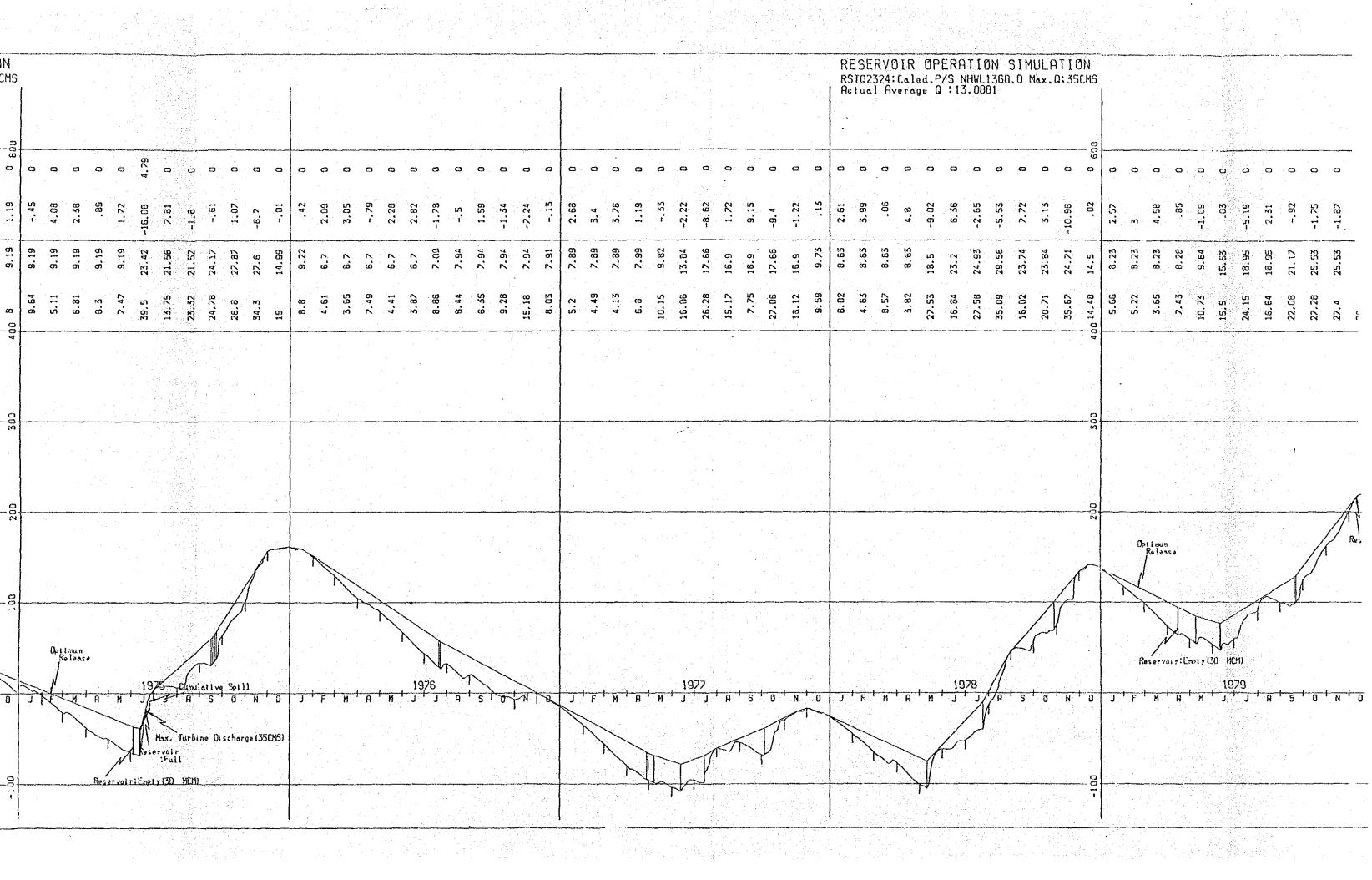


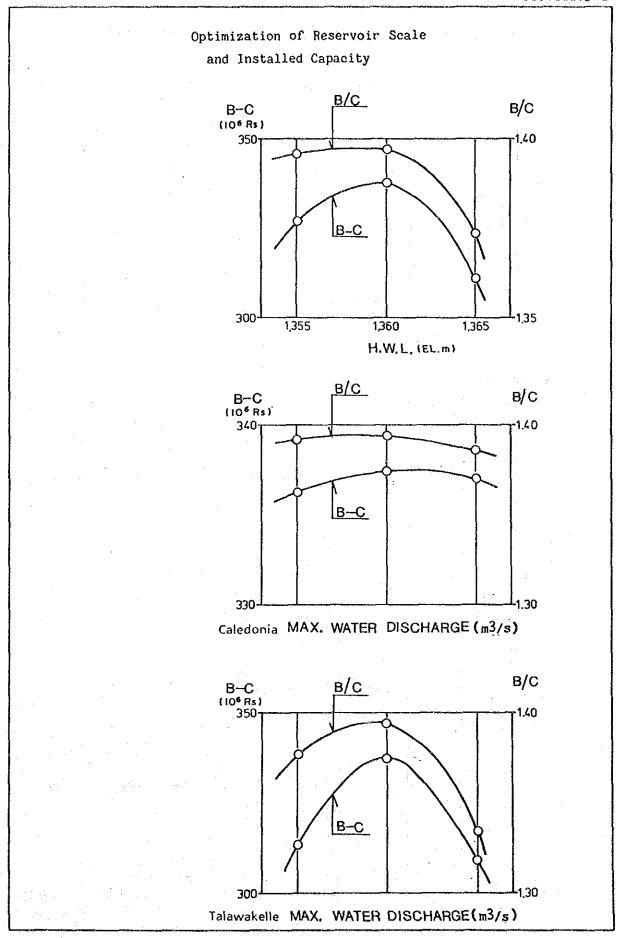

ILLUSTRATIONS

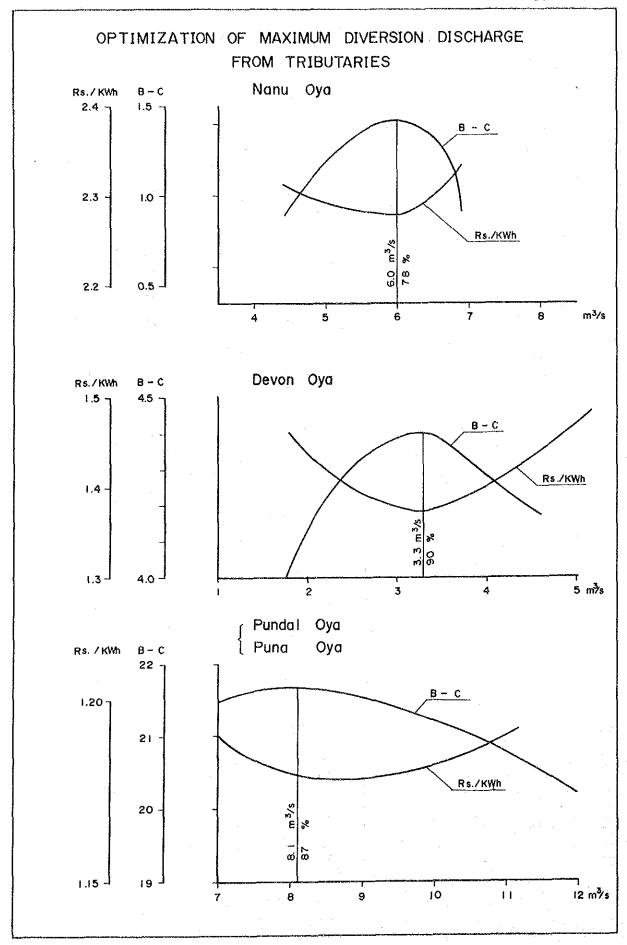

			<u>Page</u>
FIG.	III.1-1	Peak Demand and Energy Demand	
		in Long Range Generation Plan of CEB	III-F-1
	111.1-2	Daily Load Curve for June 1985	III-F-2
	111.1-3	Energy Allocation (an example)	
		by Stations as of year 2000	III-F-3
	111.3-1	Reservoir Operation Simulation	III-F-4
	111.3-2	Optimization of Reservoir	
		Scale and Installed Capacity	III-F-5
	III.5-1	Optimization of Maximum Diversion Discharge	
		from Tributaries	III-F-6
	III.6-1	Area Capacity Curve of Talawakelle Reservoir	III-F-7



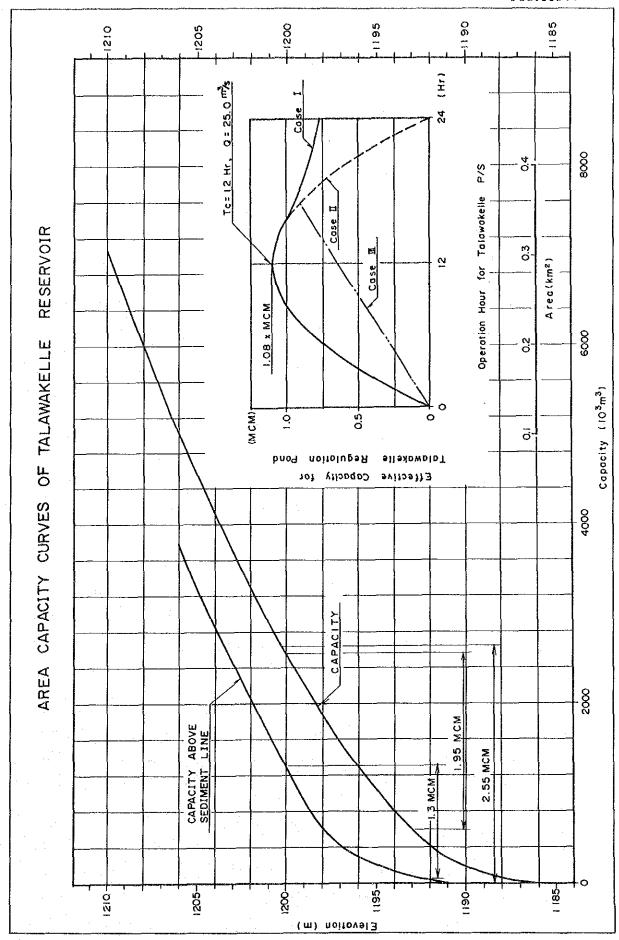





IMULATION 0 Max.Q:35CMS	<u> </u>		· · · · · · · · · · · · · · · · · · ·																						1	RES RSTO Actu	ERVC 2324: al Av)[R Caled erage	OPER LP/S	RATI S NHWL 13.08	ON 5 1360 381	SIMU 1.0 M	JLAT ax.0:	ION 35CMS	1			
				:										***												•								-		•		
309		8.13 0.00	a a	G G	0	O G	O	0 0	0	o G	G	6	a c	. .	o	.0	0 0	ງ ບ	0	a	a (o 0	C	6	0	c 0	CI	Ö	0 (_	, c i	O	0	0 0	C	0 0	٥	0
		Rel0 CMS 2.25	.25	.15	.6. 49	92	2	.34 2.05	2.76	2.84	ÇO.	-3.35	2.41	5.95	45	3, 18 8	2.82	1.03	-9.53	-1.62	4 , 6 ,	-1.73	-2.85	-2.19	-1.11	. 43 2.5	1.74	2 7	2.02	2.04 .85	50.	-7.16	-2.31	27	1.18	1.57	2.07	2.76
800		Children on	9,53	9.92	14.52	15.03	9.93	7,76	2.78	7.76	12.33	13.28	13,28	13.28	3.62	8.35	8 6	6.3b 11.06	14.82	14,53	12.99	12.99	12.99	12.99	11.82	8.41	7.78	7.78	7.78	7.78	7,78	10.79	17.78	14.5	7,48	7.47	7.47	7,47
	M	CMS 6. 89	9.28	9.77	21.01	15.96	10.13	5.93 5.71	5.01	4.92 5.17	12.17	15.64	18.7	18.06	8 15	5.18	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5	4.35	24.35	16.15	8,03	14.72	15.84	15.17	12.92	7.98 5.28	5.05	7.58	5.76	5.75	7.73	17.96	20.03	14.77 0 8.37	6.53	ຫ ທີ່ ທີ່ ທີ່	S.	4.72
	Gecerval: Full				Ta	7	7				**************************************																1.				:	**************************************		4				
-3.94	2,25	Reservois	:Empty (30	мсм	Τ)						}	 			7								* * * *															*
14.47	9.13	9.15									1	$\overline{\cap}$		7	+ >	1						· · · · · · · · · · · · · · · · · · ·												, k				
	9.16 6.69 4.97	8.25																J			7					M					· .		•	C.			· ·	
2201																												1	1	\ \ \			7				Spilmu Rela	m
0											•										19											J		C			Rela	rzę
																																		_	 servol Fu	il	1	
			1963							1!	964							4		1969	5			-			_4 =	 		1966	4	.					R	leser
ONC	J F M	[†] А [†] Н [†]	/ / /	A S	3	О , И	J	F M	ี ค ่	L' K	' ' '	Ŕ	5 (3 N	' 0	J '	F ' I	м ' А	М	· j ·	י. נ	A S	, 0	' N '	D	J , F	' X	' A '	н '	J . 1	, b	S	0'	N ' .) ,	F ' M	'n.	н '
C	· .																																	c				
																										The second secon							-	7				: .



II OT	ION		·																												· · · · · · · · · · · · · · · · · · ·		RF	SER	VAI	rR M	PF.E	TTO	ſΊΝ	SIMI	ПΩ	ፐኒስነ	 N		·				·	The state of the s
	35CMS]		•					Andrews and the second		1		÷					٠.															RS Ac	TO232	24: C Ave	alud	.P/S	NHWL 13.06	1360 381).0 M	ax.G	1: 35C	MS							
	S																			••••	· .												.,										ng		· · · · · · · · · · · · · · · · · · ·	· · · · · · ·				
c a (ლ ლ ლ	0 0		a	a	3 C)						a a					1			э c						တ	ø	0	၁ ၀	. 0	ရ				ē				2.49					a c					0 0	
-3.05	-2.24	3.57	, a,	- 85	1.26	5.5.4 42	-1.46	-8.28	ð.	3,12	-3.02	1.57	4.17	2.5	-6.23	4.98	-11.23	7 . S	n [\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	}	. 42	1.56	2.84	2.03	2.99		6	-11.US 2.19	1.77	-1.52	-2.18	1.5	3,05	3,77	2.24	นี้ ซู	-18.55	-1.39	£0.~	67	1.26	1.19	4. A. C. A.	2,38	8	1.72	~15.08	7, 91	-, 61
13,93	13.93	11.53	9.72	10.04	10,41	18.22	18.83	24.7:	20.37	13.92	12.08	7.74	7.74	7.77	11.17	11.2	17.59	# C	07.0	21.57	18.11	7.43	6, 56	8.56	6.56	6.56	6.59	6.63	9.84	9.58	9.58	9.58	8.84	8.53 8.53	8, 50 50	8.59	13 87	13.85	29.62	25.43	17.5	9.19	9, 19	ලා ල ල	i 6	9.19	9.19	23.42	21.56	24.17
16.97	15.89	11.1	5.13	10.89	9.15	18.75	20.28	32.99	21.51	10.01	15.1	6.17	3,57	5.27	12.4	6.22	28.81	7. 7. 8. 8.	9 1. 1. 0	25.81	15.	7.01	Ŋ	3.72	4, 53	3.57	5.03	0. 10.	7,54	7.81	11:1	11.76	7.35	5.53	4.82	6.35	10.01	37.4	31.01	25.51	18, 16	7.93	80	5.11	. 9. 15.	89	7.47	39.5	13.75	24.78
	4																																										40							
													:	. •							•																		÷						. %					
	300																																									2	20.				:			
	~						· .	-									. * -														· ·			·					,•		-		0			•				1000年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の
	201			·								** ;			 								:	· · · · · · · · · · · · · · · · · · ·																			200							the strong come
						• •	•									* :																							٠.		· · · · · · · · · · · · · · · · · · ·						- -			arm diener, samme der jedige ger speciele
						· · · · · · · · ·														1	√ √	*															· · ·						001					· · · · · · · · · · · · · · · · · · ·		1
			Option Rel	9328 Lim		971		1		Cumili	nlive	J. 11				197	2 1			7				1			\107	7 .										074		Á	<u> </u>			C)	Pilmun Relea	1 159		1078	/{	
	N To	THE	T/M	H +	, t	3/ · j	1 9	\f\	AL.	Norbi	ng dis	charge	1350 181	A	7	17/		A S	<u>}</u> (<mark>й (</mark>	† D	1	I F	l _M f	A	H.	1		A S	1 0	 N	1 0		F 1	н	A 1	4 1	13/4 1	† A	 // 	o	N I	D	गिर	\ \ \ \	+ A	H		F A	S
		Reservol :Fu	Reserve) dr:Enc	17 (30)	MCMI										\	j											Ψ			T	 >>	1							- : - : - :							M	Reser	ox. Tur voir Full	bline D
	001								Cly the distance of the second strategy in																										7			7					-100			Res	eszoli	Emply	130 <u>4</u> 0	M)
						<u></u>			especially and the second second																																						 -			
									And the second s																																				a Late September	i i				



R OPE led.P/S age O	RAT S NHI	ION VL136	SIMU 0.0 M	JLAT	I ON 35CMS																										RESEF	RVOIR	OPER	ATION	SIMU	. 111.3- JLATIO	\overline{N}
αâs ∩ i	. 13. l	noot									· ·								• .												RST023 Actual	24;Cale Averag	d.P/S e Q :1:	NHWL130 3.0881	60.0 Ma	ax.0:35C	MS
		· · ·			— es																								1 -								
- CO (⊃ c	o c.	Ö	a c	о С			G	ο .	0 0	O	0 0	0	0	c c) C)	C	В	0	0	. .) (2)) O	o,						· · · · · · · · · · · · · · · · · · ·			····				
-9.02	, 5, 55 55	-5.53	7.72	3,13 -10,96	. 62	2.57	က န	88	g (.03 -5.19	2.51	7.92	-1.67	-2.31	98. *	3,59	2.04	8.	.22	-2	-5, 58 2, 44	.5. 1	-2.25	25													
18.5	24.93	29.56	23,74	23.84									25.53										<u> </u>														
													27.4										12.73	. 8 8 8													
	4		. *		4													:																			
				٠																· .																	
					300							,							<u> </u>									·	· • • · · · · · · · · · · · · · · · · ·								
																											•										
	·		·		200						<u> </u>	<u></u>		\bigcap	1				· · · · · ·		<u> </u>					: 1- :				· · · · · · · · · · · · · · · · · · ·							
· .						i	Öptimum Reles	i se			•		Re	rsa-vo F	lr ill						• • •																
				1		1											J		1																		
•	•					. ,			$\stackrel{\sim}{\downarrow}$	1									- J.	<u>√</u>		7															
			- -1	•			Reservo	ir:Enot	}√ y(30 P																				· · ·								
19	178 1	/ 	s to	- N	<u> </u>	J F	 H 	A 1	19 H J	979 	A ! S	i 0	 N 1	0 .	J F	i _H i	l A l	н	1980	J A	- I - S	+-0	1 N 1	D						-							
[- 8	·																															
	o Thinks of Market Street, was as a				-																																
								1 1			******											-	<u> </u>				<u> </u>					· · · · · · · · · · · · · · · · · · ·					

III-F-6

111-F-7

APPENDIX IV

DAM ENGINEERING

APPENDIX IV DAM ENGINEERING

		Page
IV.1	Reservoir Routing for Determination	
	of Crest Level Elevation	IV-3
IV.2	Determination of Dam Section	1 V- 6
IV.3	Temporary Diversion Tunnel	11-8
IV.4	Spillway Type Determination	11-9
IV.5	Calculation for Stilling Basin	IV-13
IV:6	Calculation for Release Valve	IV-14
IV.7	Alternative Rockfill Type Dam	IV-15

List of Illustrations

		<u>Page</u>
FIG. IV. 7-1	General Plan of Alternative Rockfill Dam at Caledonia	IV-F-1
FIG.IV.7-2	Profile of Spillway, Typical Dam Section and Profile of Alternative Rockfill Dam at Caledonia	IV-F-2
FIG.IV.7-3	Envelop Curve for Peak Discharge - Drainage Area	IV-F-3

APPENDIX IV

DAM ENGINEERING

IV.1 Reservoir Routing for Determination of Crest Level Elevation

Results of reservoir routing for PMF and 1,000-year return period flood are presented in the following table. The conditions for calculation are as follows:

Spillway width: 180.0m

Discharge formula: $Q = CBH^2/3$

C: 1.7 to 2.15 (depending upon H)

B: overflow width (m)

H: overflow water depth (m)

TABLE IV.1-1 RESERVOIR ROUTING FOR PMF HYDROGRAPH

Time	Inflow (m3/s)	Reservoir Water Level (EL.m)	Outflow (m3/s)	Stored Volume (m3)
D A T E	(QI)	(H)	(QO)	(V)
	19.60	1360.01	2.87	45730100.
1 1	62.40	1360.04	14.93	45845650.
$\overline{1}$ $\overline{2}$	182.60	1360.14	48.74	46172040.
$\overline{1}$ $\overline{3}$	298.60	1360.32	108.95	46754370.
1 4	375.10	1360.53	180.75	47445580.
1 5	431.50	1360.73	250.73	48120800.
1 6	493.70	1360.93	317.36	48763610.
1 7	566.30	1361.12	419.38	49345480.
1 8	653.30	1361.28	529.35	49833040.
1 9	747.80	1361.42	628.18	50271460.
1 10	895.30	1361.59	739.75	50766770.
1 11	1183.20	1361.84	912.45	51534110.
1 12	1665.90	1362.26	1240.86	52786520.
1 13	2171.60	1362.80	1699.48	54401400.
1 14	2527.40	1363.35	2275.68	55704310.
1 15	2396.90	1363.52	2464.95	56034910.
1 16	2035.30	1363.30	2211.96	55594430.
1 17	1713.30	1363.00	1869.20	54995820.
1 18	1486.10	1362.78	1686.77	54353980.
1 19	1313.10	1362.56	1492.50	53669860.
1 20	1159.20	1362.35	1319.05	53059220.
1 21	1030.10	1362.17	1167.62	52523960.
1 22	927.40	1362.02	1039.76	52074170.
1 23	851.90	1361.90	949.73	51695840.
2 0	776.80	1361.78	871.59	51349120.
2 1	657.90	1361.65	782.60	50954040.
2 2	491.10	1361.47	662.57	50420920.
2 3	369.30	1361.28	528.50	49825720.
2 4	289.30	1361.11	413.49	49315610.
2 5	231.90	1360.97	332.89	48910290.
2 6	186.80	1360.86	294.06	48535440.
2 7	151.70	1360.74	254.82	48156750.
2 8	123.80	1360.64	218.00	47801580.
2 9	101.00	1360.54	184.78	47481220.
2 10	81.40	1360.45	155.34	47197330.
2 11	64.70	1360.38	129.45	46947700.

TABLE IV.1-2 RESERVOIR ROUTING FOR 1000-YEAR RETURN PERIOD FLOOD HYDROGRAPH

Time	Inflow (m3/s)	Reservoir Water Level (EL.m)	Outflow (m3/s)	Stored Volume (m3)
D A T E	(QI)	(H)	(ଢଠ)	(V)
	16.80	1360.01	2.46	45725810.
1 1	42.50	1360.03	10.95	45808400.
1 2	111.30	1360.09	31.69	46008480.
1 3	166.40	1360.19	65.47	46333460.
1 4	209.60	1360.30	103.97	46705260.
1 5	240.70	1360.42	142.08	47072910.
1 6	269.80	1360.52	177.67	47416260.
1 7	310.00	1360.62	212.96	47756750.
1 8	366.60	1360.74	252.36	48137060.
1 9	433.40	1360.87	298.75	48585070.
1 10	536.20	1361.04	370.01	49126590.
1 11	709.10	1361.26	515.84	49773600.
1 12	1003.50	1361.55	712.21	50645790.
1 13	1286.50	1361.92	962.27	51753730.
1 14	1428.90	1362.24	1220.14	52713110.
1 15	1376.70	1362.38	1343.53	53148580.
1 16	1185.30	1362.33	1301.82	52998560.
1 17	1013.20	1362.17	1165.11	52515390.
1 18	874.90	1362.00	1015.66	51988580.
1 19	764.20	1361.83	902.58	51486120.
1 20	664.30	1361.67	793.88	51003800.
1 21	584.10	1361.52	695.93	50569270.
1 22	526.50	1361.40	614.73	50209160.
1 23	482.00	1361.31	550.93	49926280.
2 0	434.30	1361.23	497.66	49688160. 49450860.
$\begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}$	375.70	1361.15	444.18	49450860.
2 2 2 3	283.40 214.30	1361.05 1360.94	377.76 321.02	48795780.
2 4	168.80	1360.82	280.34	48402910.
	136.40	1360.70	240.17	48015350.
2 5 2 6	111.00	1360.70	203.53	47662000.
2 7	91.00	1360.59	$\frac{203.33}{171.27}$	47350950.
2 8	75.10	1360.30	143.51	47083320.
2 9	62.20	1360.42	120.11	46855940.
2 10	51.00	1360.39	100.10	46663320.
2 10	41.40	1360.24	83.12	46499840.
- I.	73.70	100014	00.12	IOIOUUTOI