V. INVESTIGATIONS

1. Investigation of several afforestation places and sand dune fixation projects in UAE (Theme A)

Several places of afforestation were observed. The list and location of observation sites are shown in Table 26 and Fig. 16.

There are some of afforestation areas and sand dune fixation project in UAE, but unfortunately, no numerical or statistical data is available concerning them. So it is important to determine the effect of afforestation and some mulching treatment on sand movement statisfically. This is one of the major objectives of Theme A.

And, in most of the afforestation areas in UAE, only trees, such as *Acacia tortilis* (Samar). *Prosopis spicigera* (Ghaff) and *Salvadora persica* (Arak), have been planted. But it is also interesting and necessary to discuss the utilization of natural vegetation, such as *Haloxylon salicornicum*, *Zygophyllum sp.* and *Cyperus conglomeratus*, for sand dune fixation.
 Table 26.
 Areas and tree species in the afforestation sites

Place	Date observed	Area(ha)	Tree species	Remarks
Bida Zayed	Sept.1985	-	Samar,Ghaff,Dates, Arak	Abu Dhabi Municipality
Buharma ^{*1}	Feb.1986	170	Markha,Alta,Samar, Ghaff,Arak	Al Ain Forestry Dep.
Qasimah ^{*1}	Apr.1986	300	1	1
Al Wagon	May 1986	300	Samar,Ghaff,Arak	1
Safran ^{*2}	June 1986	2,000	Samar,Ghaff,Arak Ghwaif, Tamarix	Abu Dhabi Municipality

Notes *1: Buharma and Qasimah are similar kind of project conducted by Al Ain Forestry Department. Several kinds of trees are planted in natural sand dune area of these places. In this project, some shrubs or grasses, such as Markha (Leptadenia pyrotechica) and Alta (Colligonum commosum), are planted in first stage to prevent shifting sand. And several kinds of trees, such as Samar, Ghaff, and Arak, are planted in second stage.

Notes *2: Safran is located near Bida Zayed. This project is conducted for sand dune fixation by planting tree with asphalt mulching conducted by Iranian company. Asphalt mulching was sprayed before tree planting. It seems like that this asphalt mulching is effective to prevent sand dune movement. But no numerical data is available.

-69-

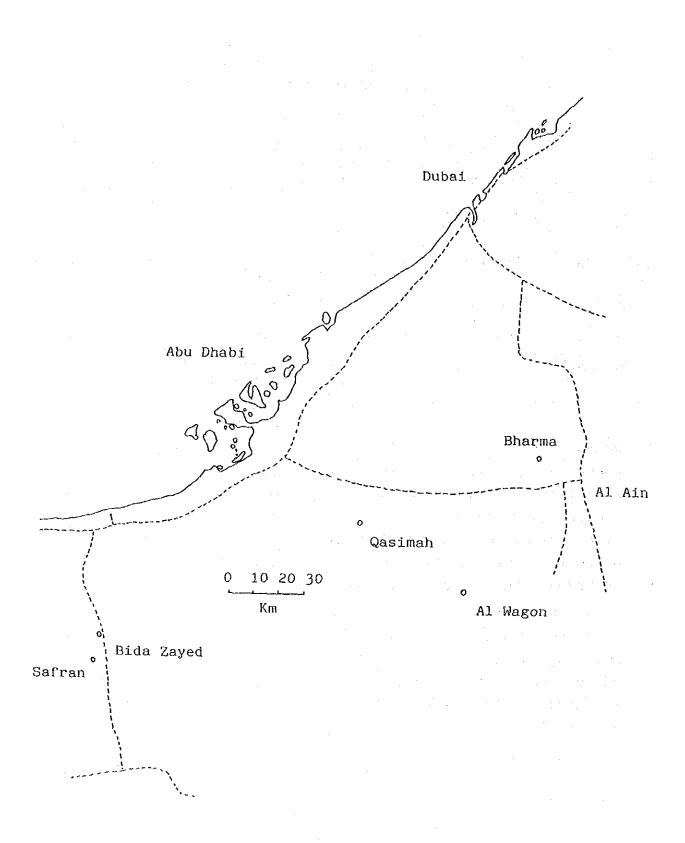


Fig. 16. Location of afforestation site observed

2. Studies on natural vegetation and soil in Al Ain area (Theme A)

Natural vegetation is largely influenced by the soil conditions such as soil moisture, soil salinity and pH and so on. It is, therefore, possible to know the soil conditions by investigation of natural vegetation, and it is also useful to clarify the relation between natural vegetation and soil conditions for deciding the afforestation method in desert area.

In the present paper, relation between Zygophyllum sp., Haloxylon salicornicum dominant in Al Ain area and soil conditions were mainly investigated. Proportions by covered plants including the others were determined in a square of $50m \times 50m$.

The results obtained are shown in Table 27 and 28. Zygophyllum sp. and Haloxylon salicornicum were dominant in points of 3, 5, 7, and in points of 4, 6, 8, respectively (Table 27). Values of moisture and EC from soil samples were relatively high in points of 3, 5, 7, and were low in points of 6, 8 (Table 28).

From these results, Zygophyllum sp. and Halogylon salicornicum tended to be dominant in soil conditions as high and low levels of both soil moisture and salinity, respectively.

Moistures, EC and pH in saturation extracts of soil samples from different layers in investigation points were measured. Location of investigation point is shown in Fig. 17.

Point	Species in Natural vegetation	· · · .	Proport plants		covered
· ·					
1.	Accasia arabica			4.0	
	Haloxylon salicornicum			1.0	
2,	Haloxylon salicornicum			0.4	
· · :	Cyperus conglomeratus		· · · ·	0.2	n an 1997 - Angelander 1997 - Angelander
3.	Zygophyllum sp.	· .		2.8	
4	Zygophyllum sp			2.9	
	Haloxylon salicornicum		· · · ·	6.7	
5.	Zygophyllum sp		. :	4.1	
6.	Zygophyllum sp	• * .		1.4	
	Haloxylon salicornicum		· .	6.8	
7.	Zygophyllum sp	• .		4.2	
8.	Haloxylon salicornicum			3.0	· .
	Zygophyllum sp			0.3	

.

 Table 27.
 Species of Natural vegetation and proportions by covered plants

Point	Depth(cm)	Soil Moisture(%)	ECe(mS/cm)	pH
	0-24	1.20	4.27	7.81
1	24-50	3.14	10.61	8.19
	60-	6.11	6.81	8.27
	0-10	0.29	0.97	7.76
2	10-20	0.32	0.49	7.51
	20-30	0.43	0.24	7.46
	0-15	5.49	149.50	7.17
3	20-30	10.48	25.30	7.62
	30-50	24.38	41.10	7.60
	0-10	1.89	12.60	7.84
4	20-30	4.06	32.40	7.67
	40-50	11.19	22,60	7.66
	0-5	0.5	4.13	7.48
	5-12	3.0	5.08	7.61
5	12-20	5.7	4.38	7.69
	20-35	6.9	4.16	7.68
	0-10	0.5	0.56	7.85
	10-20	1.3	0.48	7.85
6	20-35	2.5	0.58	8.03
	35-50	2.6	3.29	7.80
	0-2	1.1	10.35	7.56
	2-14	0.8	8.91	7.80
7	14-26	4.7	14,40	7.71
	26-40	7.1	19.3	7.77
	40-50	5.0	20.4	7.64
	0-13	0.7	1.07	7.91
	13-30	2.2	0.90	7.92
8	30-35	1.5	1.60	7.60
	35-45	1.2	6.87	7.76

Table 28.Moisture, EC and pH in saturation extracts of soil samples from
different layers in investigation points

-73-

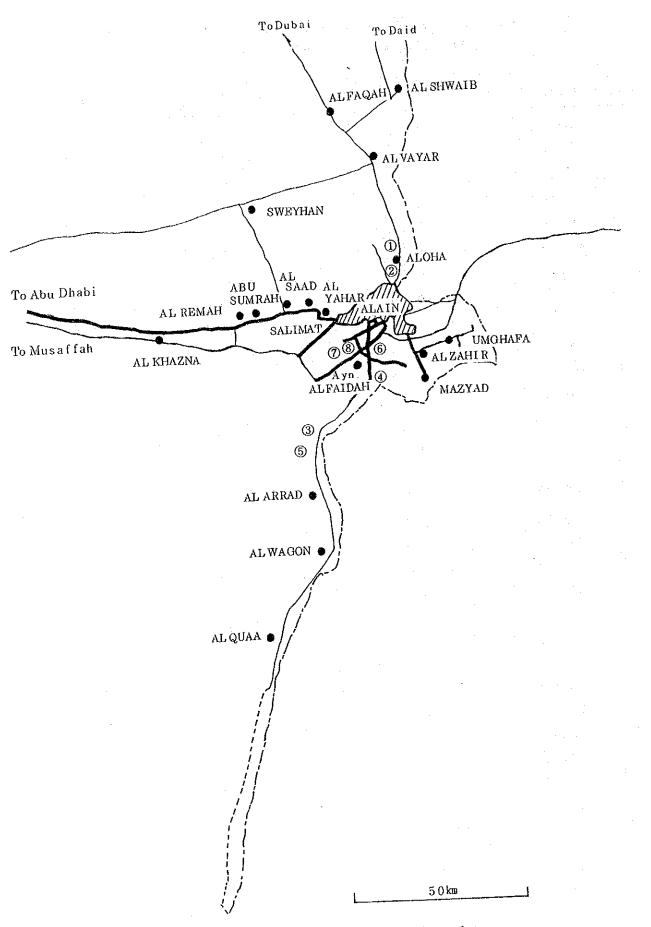


Fig. 17. Location of investigation point

3. Investigation of conventional cultivation methods of crops and vegetables (Theme B)

Coventional cultivation methods of crops in Al Ain area were investigated to determine the cultivation methods of crops on research theme of the Joint Study Project in the University Farm. Cultivation period of crops including wheat and alfalfa and conventional application amount of fertilizer are shown in Table 29 and Table 30, respectively.

Conventional cultivation methods of wheat and alfalfa as main crops in the research theme are as follows:

- (1) Wheat
 - 1) Variety: Mexi pac
 - 2) Cultivation period: middle of Nov. to April
 - 3) Amount of fertilizer applied:
 - i) Before planting organic compost 10t/ ha

(Al Ain compost)

super triphosphate 200 kg/ha

K₂ SO₄ 100–150 kg/ha

ii) In sowing time chemical fertilizer 100-250kg/ha

(N:P:K = 15:15:15)

iii) After 3 weeks from seedling : 100kg Urea/ha

after 10 days : 100kg Ammonium Nitrate/ha

4) Irrigation with sprinkler method

Amount of irrigation water

10mm x 45 times / one cropping season

5) Yield 2 - 2.5 ton/ha

(2) Alfalfa

1) Variety: Omani

 Sowing time: end of Oct. to first half of Feb. (best season: Nov. and Dec.)

3) Harvesting time: First time 60 days after sowing

Summer 25 days

Winter 30–35 days

Cultivation is continued for 7-10 years.

- 4) Amount of fertilizer applied:
 - organic compost (Al Ain compost)

Oct. – beginning of Nov.: 2 ton/donum

- or Oct.: 1 ton/donum, Feb. : 1 ton/donum
- chemical fertilizer (NPK = 18:19:5:1.5)
- i) winter 20-30 kg/donum
- ii) 7 times/year. Oct. April (after harvesting)
- 5) Irrigation with sprinkler method

summer: 2 hours each 24 hours (= 20mm?) winter: 1 hours each 48 hours

6) Yield each harvest ----- 1 ton/donum

6) Yield each harvest ----- 1 ton/donum

and the second second

species month	9	10	11	12	1	2	3	4	5	6	7	8	Note
wheat								-				· · ·	seeds
alfalfa									. U				seeds (perennial
tomato							. <u>.</u>						seedling
eggplant													seedling
pepper		+											seedling
broad bean													seeds
peas													seeds
cabbage													seedling
cauliflower						1							seedling
onion						:				r.			seedling
carrot								· · · · · · · · · · · · · · · · · · ·					seeds
turnip													seeds
beat													seeds
radish					• ••• •• ••								seeds
lettuce													seedling
spinach													seeds
egyptian mallow													seedling
garlic													bulbs
chard													seeds
parsley	<u>-</u> 			· · · · · · · · · · · · · · · · · · ·									seeds
celery		+											seeds
leek			· · · · · ·									_{^-}	seeds

Table 29. Sowing periods and cultivation periods of crops and vegetables in Al Ain

Remarks; ---- sowing period

---- cultivation period

		T		r	····-		·						,	
species	month	9	J, O	11	12	. 1	2	3 .	4	5	6	7	8	
water	spring							be == -1	a ay ya an 4		n da Na			seeds
	autumn									 				seeds
sweet	spring		· ·											seeds
melon	autumn			: I								-		seeds
	spring		·											seeds
cucumber	autumn													seeds
potato	<u> </u>													tubers
squash	·								-			· · ·		seeds
	anning					:		e + + + e						seeds
okura	spring autumn													seeds
<u> </u>							ļ			 				
bean	spring													seeds
	autumn													seeds
maize										 	-			seeds
Jew's	spring					:								seeds
mallow	autumn										-			seeds
purslane														seeds

.

Table 30.

Conventional application amounts of fertilizers for vegetables in AI Aim

P	M A	lin		

species	Organic	fertilizer	(t/ha)	Chemical	fertilizer	(Kg/ha)
			• • · · · · · · · · · · · · · · · · · ·	N	P205	K ₂ O
tomato		10		50	40	30
eggplant		7.5		50	50	40
pepper		10	н н	40	40	40
cabbage		15		40	30	25
cauli flower		10		35	40	30
onion		5		30	37	30
carrot	· .	10	•	30	30	30
turnip		10		40	30	40
radish		10		40	40	40
lettuce		10		45	30	25
egyptian mallow		20		40	35	20
water melon		10		40-45	35	3.0
melon		10		40-45	35	30
squash	·	10		40	40	30
cucumber		10		40	40	30
potato		15		40	40	40
okura		10		40	50	40
Jewś mallow		20		40	30	20
bean		10		35	40	40

4. Meteorological data in the near the University Farm (Theme A, B and C)

In this paper, daily meteorological data were summarized as monthly meteorological tables. Contents of observation and instruments are as follows:

1)	Air temperature	Thermo-Hygrograph Maximum and minimum	set in shelter
÷		thermometer	and the second
2) .	Humidity	Thermo-Hygrograph	set in shelter
3)	Wind veolocity and wind direction	Mechanical wind recorder	height of 2m
4)	Evaporation	Evaporation gauge, Piche type	set in shelter

JUNE.	1986								· · · · ·	
Date	Tempe	erature	(°C)	R.	н. (%)	Evapo-		Wind	······································
	Max	Min	Ave	Max	Min	Ave	ration (mm)	Ave	Max	Direction
1 2 3 4 5	1	IO DATA			NO DATA		NO DATA	2.8 2.4 2.8 3.0 3.6	5.8 5.4 5.7 6.9. 7.2	NNW N NNW NW S
6 7 8 9 10	41.6 42.3 42.1 42.3 40.9	28.5 28.8 21.0 23.8 23.1	34.833.432.934.832.1				13.40 8.75 13.05 15.31 15.81	4.2 3.1 3.4 3.1 2.9	8.5 6.0 10.2 5.9 5.4	S S E S NW
11 12 13 14 15	43.0 39.4 40.7 41.9 41.8	21.3 27.5 26.9 26.9 27.0	32.3 33.5 33.9 34.1 30.7				16.90 13.60 12.60 11.02 6.95	3.2 5.0 3.7 3.2 2.8	7.7 8.1 6.6 6.5 9.4	SE E N E
16 17 18 19 20	40.8 41.7 42.3 42.2 41.7	24.5 23.8 26.0 25.5 23.6	31.8 32.7 33.9 33.8 31.9				12.00 13.97 10.80 12.60 11.75	2.5 2.7 2.8 2.3 3.1	4.9 5.9 7.0 6.0 6.0	NW NNW NNE NW WNW
21 22 23 24 25	40.0 38.6 38.6 41.5 43.2	22.523.122.422.425.2	30.8 29.6 29.4 31.3 33.5			•	12.88 9.67 7.60 9.76 11.01	3.2 3.0 2.3 3.0 3.0	6.5 5.8 5.3 5.1 5.0	WNW WNW WNW WNW
26 27 28 29 30	42.7 41.1 41.2 41.4 40.8	24.4 22.9 22.6 21.9 23.2	- 30.8 30.9 31.0				$ \begin{array}{r} 11.77\\12.65\\10.62\\9.34\\9.00\end{array} $	3.23.13.23.33.33.3	5.9 6.3 6.4 5.8 5.7	WNW WNW WNW WNW
Ave.	41.4	24.4	32.3				11.71	3.1	6.4	·

 Table 31.
 Meteorological data (June, 1986)

<u>-81</u>-

Table	3	2
-------	---	---

2. Meteorological data (August, 1986)

AUGUST	886، ۲											
	Tempe	erature	e (C)	R.1	4. (*)	%)	Evapo- ration		Wind			
Date	Max	Min	Ave	Max	Min	Ave	(mm)	Ave	Max	Direction		
1 2 3 4 5	44.0 45.5 45.1 45.2 44.4	28.627.629.932.527.0	34.9 36.3 37.3 37.8 35.9	88 87 74 70 81	35 30 30 31 31	63 56 49 47 53	$12.00 \\ 14.18 \\ 15.25 \\ 15.06 \\ 14.11 $	2.6 2.6 3.5 4.0 3.5	G.0 5.0 6.8 8.5 7.6	ENE S S S S		
6	45.6	27.5	36.4	87	25	54	16.80	2.8	6.4	SSE		
7	46.5	30.2	38.3	66	22	38	17.85	3.0	4.3	SE		
8	43.8	27.5	35.9	66	28	45	14.37	2.7	5.5	SSW		
9	42.7	28.0	34.9	60	30	48	12.34	3.4	5.4	NNW		
10	45.5	27.3	36.3	93	8	42	18.78	2.9	5.0	ESE		
11	43.6	25.4	35.5	40	11	21	$19.20 \\ 12.44 \\ 14.58 \\ 13.62 \\ 13.30 $	3.4	5.6	E		
12	40.8	30.8	35.4	50	27	35		3.2	5.2	NNE		
13	43.5	28.1	35.9	72	16	37		2.3	5.4	E		
14	42.7	22.9	33.3	68	21	37		2.6	5.6	S		
15	43.1	26.3	34.4	71	25	44		3.5	5.3	ENE		
16	40.2	25.2	32.9	82	28	51	12.22	4.0	6.2	S		
17	39.0	24.8	32.3	75	34	53	10.16	3.8	7.1	S		
18	40.7	26.9	33.9	69	29	46	11.43	3.5	6.8	S		
19	41.8	25.8	34.3	70	25	44	13.41	3.2	7.3	S		
20	43.5	26.0	34.9	61	23	38	16.31	3.8	7.6	S		
21	43.5	31.0	36.7	40	22	31	16.47	4.5	7.96.05.35.07.6	E		
22	42.2	26.3	34.9	54	23	37	12.47	3.3		S		
23	41.4	26.7	34.4	60	26	43	13.52	3.1		S		
24	42.6	25.2	35.4	68	23	36	16.39	3.0		S		
25	43.6	25.9	36.0	55	23	35	17.75	3.8		S		
26	41.2	29.3	35.2	50	28	38	17.14	5.74.93.13.43.43.1	8.5	S		
27	41.2	27.9	35.0	52	29	37	14.26		7.3	S		
28	41.5	27.0	32.8	85	30	45	8.53		5.8	ESE		
29	40.7	24.2	31.5	87	23	51	10.17		7.1	S		
30	40.5	25.6	33.1	73	25	43	11.79		6.8	ENE		
31	40.9	25.8	34.2	62	23	40	13.25		5.4	S		
Ave.	42.8	27.2	35.0	68	25	43	14.17	3.4	6.3	-		

JULY,	1986					·····				
Date	Tempe	erature	e (C)	R.1	1. (%)	Evapo-		Wind	
	Max	Min	Ave	Max	Min	Ave	ration (mm)	Ave	Max	Direction
1 2 3 4 5	41.5 42.5 43.3 43.3 44.2	22.6 26.7 30.2 31.6 27.2	31.8 33.8 36.7 37.2 36.3	86 77 70 62 64	22 31 23 24 19	54 52 43 39 38	11.21 14.10 15.08 14.51 15.53	3.1 3.6 2.6 3.3 3.0	$5.3 \\ 10.8 \\ 4.2 \\ 6.8 \\ 5.2$	WNW SSE SSE S S
6 7 8 9 10	45.2 45.6 45.9 45.1 45.1	24.1 24.9 29.1 26.6 24.4	36.3 35.8 37.8 36.2 35.8	62 59 57 57 60	18 19 18 20 21	36 34 34 38 37	16.14 17.67 16.67 16.17 16.01	3.3 3.2 4.4 2.8 3.3	7.6 8.0 8.8 6.4 7.2	S S SS₩ S
11 12 13 14 15	45.2 45.2 44.6 43.5 43.0	22.8 25.5 26.4 26.7 25.8	34.4 35.4 35.8 34.9 35.1	64 91 67 50 46	19 13 15 17 22	43 46 33 32 33	12.72 13.47 17.23 14.21 13.60	3.1 2.5 3.7 3.2 3.0	5.6 5.3 7.8 9.8 6.7	SSW SSW SE ENE SE
16 17 18 19 20	$\begin{array}{r} 43.6 \\ 43.9 \\ 44.7 \\ 45.5 \\ 46.4 \end{array}$	24.6 24.7 24.4 24.4 27.6	35.2 36.1 34.4 35.2 37.3	59 59 55 55 40	20 18 15 17 18	35 31 33 29 32	14.41 14.49 15.91 18.32 19.48	2.4 2.5 2.9 2.9 3.6	4.8 6.0 5.8 5.6 7.6	ESE NNW NNW SSW S
21 22 23 24 25	45.1 41.7 45.7 46.4 45.2	30.2 25.4 22.5 25.1 26.1	37.5 34.4 34.8 36.8 36.1	70 94 55 84 70	23 14 13 17 23	36 41 31 35 41	15.46 15.05 15.20 17.36 14.96	4.5 2.7 2.3 2.8 2.8	8.6 5.6 4.5 6.2 5.3	S NW NNW S WNW
26 27 28 29 30 31	$\begin{array}{r} 44.3\\ 46.0\\ 45.4\\ 43.9\\ 41.7\\ 43.0 \end{array}$	25.5 28.2 31.4 30.0 28.8 29.2	35.6 37.6 38.2 36.8 35.0 35.4	91 96 74 70 75 88	23 22 25 29 37 32	53 54 46 49 56 56	15.10 16.65 15.76 14.80 11.48 14.35	3.0 2.6 3.5 3.9 3.4 3.1	5.6 5.3 5.9 6.7 5.3 6.4	NW NNE SSW S S S S
Ave.	44.4	26.5	35.8	68	21	40	15.26	3.1	6.5	

 Table 33.
 Meteorological data (July, 1986)

¥.

...9

Т	็อไ	Ь	le	3	•
- A	"	~		~	

.

-

4. Wind velocity and wind direction (March to May, 1986)

		MARCH			APRIL			MAY		
Date	Ave	Max	Dir	Ave	Max	Dir	Ave	Max	Dir	
1 2 3 4 5	1	NO DAT <i>i</i>	A	4.3 5.3 4.7 3.2 2.7	9.7 10.3 9.1 5.9 7.0	S S S S S W N W	3.5 2.1 3.1 5.3 5.2	8.4 4.9 7.6 10.0 9.0	NW NNW S S S	
6 7 8 9 10	6.0 7.2 3.2 1.6	11.6 11.1 6.6 2.7	SSW S NW NNE	2.8 2.5 2.6 3.7 2.6	6.3 3.9 4.5 7.0 10.9	NNW N WNW SW WSW	2.6 2.6 2.5 2.8 2.7	5.2 5.2 5.8 5.7 6.5	NW NNW NW NW NW	
11 12 13 14 15	4.3 2.7 2.9 2.5 4.6	6.9 5.7 7.5 5.5 8.0	WSW WNW NW N SSW	2.5 3.1 3.1 2.9 2.6	4.8 7.7 6.8 7.3 5.2	NW NW WNW NW NW	3.0 3.2 3.6 3.2 3.0	5.2 6.1 8.2 6.2 4.6	NNW SSW SSW S	
16 17 18 19 20	7.3 2.6 2.3 3.8 3.1	$ \begin{array}{r} 11.5 \\ 5.0 \\ 4.6 \\ 7.2 \\ 6.3 \end{array} $	S NW N S WNW	2.4 2.8 3.3 2.5 2.8	6.7	NW NW NW NNW SW	3.7 2.4 2.9 2.8 2.2	7.2 5.4 5.6 4.9 4.0	SSW NNW N NNW NNW	
21 22 23 24 25	3.4 2.6 2.1 2.3 5.9	8.0 5.5 4.6 5.8 10.0	NW NW NNW S S	2.92.64.02.42.5	4.6 6.0 8.6 5.3 6.2	ENE W WSW NW NW	2.4 2.6 3.2 3.6 3.5	4.1 5.2 6.2 7.8 7.0	NNW NNW SSW S S	
26 27 28 29 30 31	8.8 2.5 2.8 2.9 2.3 4.1	$ \begin{array}{r} 14.0 \\ 4.5 \\ 7.1 \\ 5.6 \\ 5.4 \\ 9.1 \\ \end{array} $	S NW NNW NNW S S	3.0 2.1 2.5 3.4 3.3	5.6 4.8 6.2 6.0 6.5	NNW NW SW N NW -	3.2 2.7 2.7 3.7 3.1 2.7	6.4 5.6 6.7 7.8 6.1 4.8	WNW W WSW SSW SW NNW	
Ave.	3.8	7.2		3.0	6.6	-	3.1	6.2	-	

MARCH, 1	986				· .	
Wind Direction		Wind Vel	locity (m/sec)		Total
Direction	<1.0	1.0-4.0	4.0-8.0	8.0-12.0	12.0<	(%)
N NNE NE ENE ESE SSE SSE SSW SW WSW WSW WSW WSW WNW NW NW NNW Variable	11.7	$\begin{array}{r} 4.7\\ 3.7\\ 3.0\\ 3.3\\ 2.0\\ 1.0\\ 0.7\\ 2.0\\ 2.3\\ 0.3\\ 0.2\\ 1.5\\ 2.8\\ 6.0\\ 5.5\\ 9.2 \end{array}$	1.5 0.3 0.8 5.8 2.0 2.3 2.0 0.8 3.0 8.8 2.5	5.3 2.0 1.3 0.2 0.2	0.7 0.2	$\begin{array}{r} 6.2\\ 4.0\\ 3.0\\ 3.3\\ 2.0\\ 1.0\\ 0.7\\ 2.8\\ 14.1\\ 4.5\\ 3.9\\ 2.4\\ 2.3\\ 5.8\\ 15.0\\ 8.0\\ 20.9 \end{array}$
Total(%)	11.7	48.5	29.8	9.0	0.9	99.9

Table 35.Relation between wind velocity and wind direction in March1986

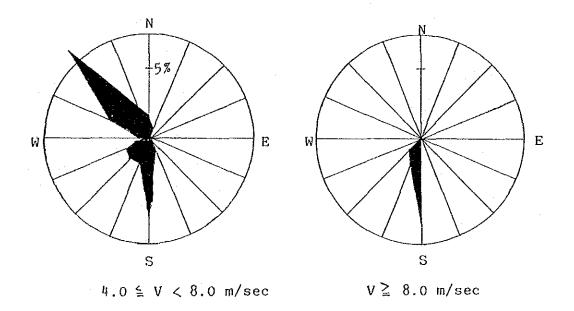
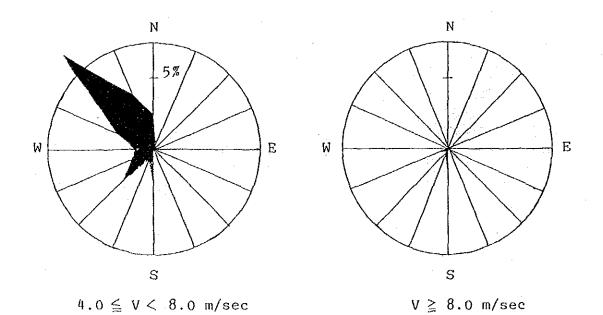



Fig. 18. Wind distribution diagram in March 1986

APRIL, 1	986				· ·	
Wind		Wind Vel	oci.ty (m/sec)	· · · · · · · · · · · · · · · · · · ·	Total
Direction	<1.0	1.0-4.0	4.0-8.0	8.0-12.0	12.0<	
N NNE NE ENE ESE SSE SSE SSW SW WSW WSW WSW WSW WSW	5.8	5.7 3.8 3.5 4.6 1.9 0.7 1.5 1.0 1.8 1.0 0.8 1.3 1.7 1.5 5.6 5.6 20.8	2.4 0.4 0.6 0.1 0.1 2.4 0.8 3.2 1.7 1.3 2.6 9.3 4.2	1.4 0.4 0.6 0.1		$\begin{array}{r} 8.1 \\ 4.2 \\ 4.1 \\ 4.7 \\ 2.0 \\ 0.7 \\ 1.5 \\ 1.0 \\ 5.6 \\ 2.2 \\ 4.0 \\ 3.6 \\ 3.0 \\ 4.1 \\ 14.9 \\ 9.9 \\ 26.6 \end{array}$
Total(%)	5.8	62.8	29.1	2.5		100.2

Table 36.Relation between wind velocity and wind direction in April1986

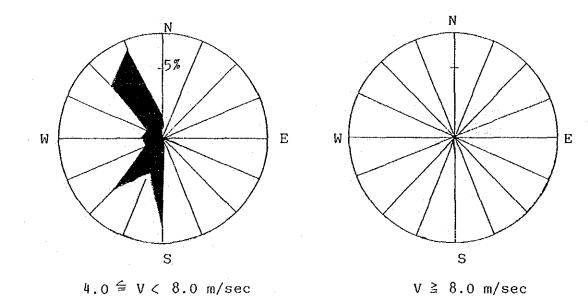
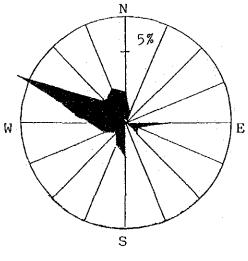
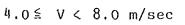
Fig. 19. Wind distribution diagram in April 1986

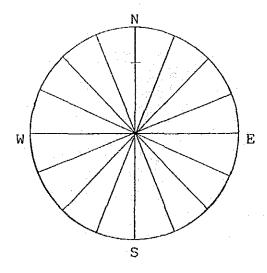
,

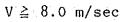
-86-

MAY, 198	36					
Wind Direction		Wind Ve	locity (m/sec)		Total
DITECTION	<1.0	1.0-4.0	4.0-8.0	8.0-12.0	12.0<	° (°%°°)≗ :
N NNE NE ENE ESE SSE SSW SW WSW WSW WSW WSW WSW WSW	5.0	7.1 2.7 3.9 3.9 1.6 0.5 1.5 4.0 2.7 0.7 2.4 0.8 1.1 2.6 3.9 7.0 15.5	$ \begin{array}{c} 1.5\\ 0.3\\ 6.2\\ 2.7\\ 5.0\\ 1.2\\ 1.5\\ 1.2\\ 5.2\\ 6.9\end{array} $	1.1 0.4 0.1		$\begin{array}{r} 8.6\\ 2.7\\ 3.9\\ -3.9\\ 1.6\\ 0.5\\ 1.5\\ 4.3\\ 10.0\\ 3.8\\ 7.4\\ 2.0\\ 2.6\\ 3.8\\ 9.2\\ 13.9\\ 20.5\end{array}$
Total(%)	5.0	61.9	31.7	1.6		100.2

Table 37.Relation between wind velocity and wind direction in May
1986


Fig. 20. Wind distribution diagram in May 1986


Table 38.	Relation	between	wind	velocity	and	wind direction in June
	1986					·

JUNE, 19	186	<u> </u>				
Wind		Wind Vel	ocity (m/sec)		Total (%)
Direction	<1.0	1.0-4.0	4.0-8.0	8.0-12.0	12.0<	
N NNE NE ENE E SSE SSE SSW SW WSW W WNW WNW NW NW NW NW NW Variable	6.3	5.8 2.8 1.7 2.4 1.4 1.1 2.6 2.2 3.6 2.9 4.6 3.2 6.4 5.8 2.9 6.3 6.0	$\begin{array}{c} 2.2\\ 0.8\\ 0.1\\ 3.1\\ 1.0\\ 1.1\\ 0.3\\ 2.5\\ 1.7\\ 1.0\\ 1.7\\ 2.5\\ 8.5\\ 2.2\\ 2.6\\ 0.3\end{array}$	0.4		$\begin{array}{c} 8.0\\ 3.6\\ 1.7\\ 2.5\\ 4.9\\ 2.1\\ 3.7\\ 2.5\\ 6.2\\ 4.6\\ 5.6\\ 4.9\\ 8.9\\ 14.3\\ 5.1\\ 8.9\\ 12.6\end{array}$
Total(%)	6.3	61.7	31.7	0.5		100.2

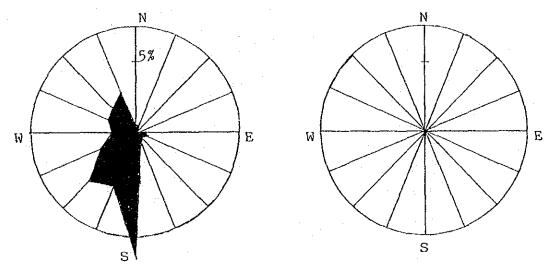


Fig. 21. Wind distribution diagram in June 1986

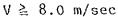
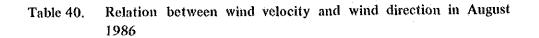

JULY, 19	986					
Wind Direction		Wind Vel	locity (m/sec)		Total
Direction	<1.0	1.0-4.0	4.0-8.0	8.0-12.0	12.0<	(~%)
N NNE NE ENE ESE SSE SSE SSW SW WSW WSW WSW WSW WSW	7.0	$\begin{array}{r} 4.8\\ 2.7\\ 3.4\\ 4.8\\ 4.6\\ 1.3\\ 3.4\\ 2.3\\ 6.0\\ 2.4\\ 3.6\\ 2.0\\ 2.6\\ 2.6\\ 3.4\\ 4.0\\ 3.4\end{array}$	$\begin{array}{c} 0.5\\ 0.4\\ 0.3\\ 0.1\\ 0.8\\ 0.9\\ 0.7\\ 0.7\\ 9.0\\ 4.2\\ 4.8\\ 2.6\\ 1.7\\ 2.3\\ 2.4\\ 3.1\\ 0.3\end{array}$	0.1 0.1 0.5 0.1		$5.3 \\ 3.1 \\ 3.7 \\ 5.0 \\ 5.4 \\ 2.2 \\ 4.1 \\ 3.1 \\ 15.5 \\ 6.7 \\ 8.4 \\ 4.6 \\ 4.3 \\ 4.9 \\ 5.8 \\ 7.1 \\ 10.7 \\ 1$
Total(%)	7.0	57.3	34.8	0.8		99.9

Table 39.Relation between wind velocity and wind direction in July1986

4.0 ≦ V < 8.0 m/sec

.



· .

.

Fig. 22. Wind distribution diagram in July 1986

AUGUST.	1986					
Wind		Wind Vel	locity (m/sec)		Total (%)
Direction	<1.0	1.0-4.0	4.0-8.0	8.0-12.0	12.0<	
N NNE NE ENE ESE SSE SSW SW WSW WSW WSW WNW NW NW NW NW NW NW	4.3	$\begin{array}{c} 4.8\\ 3.1\\ 1.7\\ 2.2\\ 3.1\\ 1.6\\ 3.6\\ 6.3\\ 7.5\\ 1.7\\ 2.3\\ 2.3\\ 2.3\\ 2.8\\ 3.5\\ 4.6\\ 5.4\end{array}$	$ \begin{array}{c} 1.5\\ 0.4\\ 0.4\\ 2.0\\ 1.9\\ 1.5\\ 0.8\\ 2.4\\ 15.3\\ 3.1\\ 3.0\\ 1.7\\ 0.4\\ 0.8\\ 1.3\\ \end{array} $	0.3		$\begin{array}{c} 6.3\\ 3.5\\ 2.1\\ 4.2\\ 5.0\\ 3.1\\ 4.4\\ 8.7\\ 23.1\\ 4.8\\ 5.3\\ 4.0\\ 2.7\\ 2.8\\ 4.3\\ 5.9\\ 9.7\end{array}$
Total(%)	4.3	58.8	36.5	0.3		99.9

.

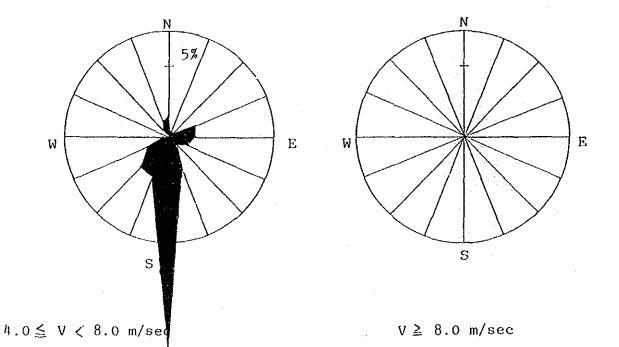


Fig. 23. Wind distribution diagram in August 1986

VI. LIST OF COLLECTED SEEDS OF CROPS AND TREES FOR THEME C

۰.	Crops		

. . . .

1.	Cro	ps			
		Species	Number of Varieties	3	Remarks
	1.	Sorghum	50]	ICRISAT
	2.	Chick pea	50		CRISAT
	3,	Pigeon pea	50	J	ICRISAT
	4.	Pearl millet	50	J	ICRISAT
	5.	Ground nut	50	,	ICRISAT
	6.	White cabbage	4	J	Europe
	7.	Cauriflower	1	J	Europe
	8.	Leek	1	J	Europe
	9.	Carrots	2	J	Europe
	10.	Red garden beet	1	.]	Europe
	11.	Wheat	2		Japan
	12.	Alfalfa	2	Ţ	U.S.A.
	13.	Spinach	3		Japan
	14.	Radish	3	1	Japan
	15.	Tomato	3		Japan
	16.	Cucumber	2		Japan -
2.	Tree	ae -			
<i>4</i> 2.	1100				. .
		Species		· · ·	Remarks
	1.	Allepo pine			
	2.	Jojoba (Simmondsia chine	nsis (Link Schneider)	. 1	U.S.A.
	3.	Yamamomo (Myrica rubra	Sieb. et Zucc.)		Japan
	4	Ubamegashi (Quercus phil	lyraeoidas A. Gray)		Japan
	5.	Niseakashia (Robinia pseu	do-acacia L.)		U.S.A.
	6.	Akigumi (<i>Elaeagnus umbe</i>	<i>llata</i> Thumb.)	J	Japan
	7.	Yamahagi (Lespedeza bico	lor Turczf. actifolia Matsumu)	: .	Japan
	8.	Itachihagi (Amorpha fruti	cosa L.)		U.S.A.
	9.	Medohagi (Lespedeza cuno	eata G. Don)	J	Japan
	10.	(Hedysarum mongolicum	Turcz)	(China
	.11.	(Hedysarum mongoricum	Fish et Mey)	(China
	12.	(Haloxylon ammodendron	n)	(China
	13.	(Calligonus leucocladum (Schrenk) Bge.)	(China

VII. LIST OF EQUIPMENTS PROVIDED BY JAPANESE GOVERNMENT

Equipments and materials that is needed for Theme A, B, and C were provided by Japanese government as followed:

			· · · · · · · · · · · · · · · · · · ·
مربع به در	Item	Quantity	Price (Yen)
Sept. 1985	Camera	1 pc	70,500
	Lens 35mm F2.8	1 pc	24,500
to tage of a state	Lens 55mm F2.8	1 pc	41,400
·	Lens 70–210mm F4	1 pc	64,000
1942 - A.	Camera case	l pc	3,800
ž i s	Speed light	1 pc	18,500
	Tripod	1 pc	12,600
	Film	40 pcs	33,800
	Video camera	1 pc	273,000
	AC adaptor	1 pc	23,700
	Battery pack	5 pcs	35,500
·	Video tape	10 pcs	18,000
	Portable wind vane and anemometer	2 sets	57,000
·	Plastic pipe	100 pcs	34,000
•	Auto level	1 set	180,000
	Aluminium staff	3 pcs	36,900
	Eslon pole	10 sets	24,700
	Measuring tape	l pc	11,000
	Electric typewriter	1 set	190,000
	1) Typewriter stand	1 set	22,000
	2) Correction tape	1 Box	4,700
	3) Ribbon casette	1 Box	6,800
	4) Daisy wheel	3 pcs	14,400
	Assman psychrometer	l pc	. 79,000
	Surveying compass	1 pc	77,000
	L-tube thermometer	2 sets	89,000
:	Conductivity meter	1 pc	450,000
	Automatic recording tensio meter	1 set	1,787,000
		ана стала стала. Спорта стала ста Стала стала стал	3,682,800
		(1 DH	=56 Yen, 8,357 DH).
Dec. 1985	Leaf puncher	1 set	51,800
	Boring shovel	1 set	13,200
	Soil sampling bottle	10 sets	72,000
	Soil sampler	1 set	54,500
	Measuring pile	150 pcs	60,000
	Three phase meter	1 set	463,000
	Combination anemometer	6 sets	166,800
	Tree seed	1 Box	10,000
		-	891,300

(1 DH=56 Yen, 15,916 DH)

			· .	
Jan. 1986	Fly sand catch system	1 set	468,000	
		(1 DH = 56)	Yen, 8,357 DH)	
June 1986	Float type water level meter	1 set	480,500	
	Er-186 recorder	2 sets	971,400	
	Single beam spectrophotometer	l set	555,085	
	Hand drive asphalt emulsion sprayer	l set	373,000	
	Insecticide	120 pcs	416,500	
	Fertilizer	30 pcs	82,500	
	Compost	10 pcs	10,000	
	Creosote	12 cans	98,400	
	Tube evaflow type A	10 pcs	75,000	
		. "	3,062,385	
		(1 DH = 47)	Yen, 65,157 DH)	
Int. 1007				
July 1986	Automatic recording tension meter	3 sets	5,374,000	
· .	Soil tensio meter	20 pcs	243,000	
	Agricultural meterological IPC system		2 500 000	
	1. Computer system	1 set	3,500,000	
	1) personal computer			
	2) Display 3) Printer			
	4) I/O unit			
	2. Sensor			
	1) Anemo Scap and Anemo meter	1 set	280,000	
	2) Air temperature	l set	20,000	
	3) Soil temperature	3 sets	60,000	
· · ·	4) Dew point (humidity)	1 set	120,000	
· · ·	5) Solar radiation	1 set	250,000	
	6) Leaf wetness	1 set	50,000	
	7) Evaporation	1 set	400,000	
	3. Cord	1 set	200,000	
	4. Environs machine parts			
	1) Pole (6 m)	1 set	180,000	
	2) Instrument shelter	l set	170,000	
÷.,	3) Battery power supply	l set	750,000	
	5. Observation house	l set	350,000	
	Persoanl computer	• •	110.000	
	1) PC8001 MK2SR	l pc	110,000	
	2) Color display	l pc	95,000	
	3) Printer	1 pc	121,000 110,000	
	4) Mini floppydisk unit 5) System desk	1 pc	7,000	
	6) Mini floppydisk	l pc	18,000	
	7) Paper	I pc	4,000	
	8) Transformer	1 pc	150,000	
	Clean bench	1 set	639,000	
		- ~ - •		
	-93-			

	Clean bench		1 set	639,000
	Auto clave		1 set	281,000
	Zoom stereo microscope		1 set	230,000
	Soil test refrigerated centrifuge	· .	1 set	3,100,000
	Refrigerator		1 set	245,000
	Plant moisture tensio meter	<i>:</i> .	1 set	760,000
	Compressor		1 set	790,000
	pF meter, suction plate method		1 set	1,600,000
	Boring stick		l set	35,000
	Post hole auger		1 set	81,000
	Soil shaker		1 set	394,000
	Auto still with transformer		1 set	285,000
	Handy aspirator		2 sets	158,000
	Graviry convection oven		l set	180,000
				21,340,000
			(1 DH = 4	44 Yen, 485,00 DH)
Aug. 1986	Tractor with spare parts	•	1 set	637,500
	Carriage with tent		1 set	571,100
	Asphalt emulsion		1000 L	609,000
	Synthetic emulsion		108 kg	67,500
	Compost		500 packs	1,020,000
				2,905,100
			(1 DH = 4	42 Yen, 69,169 DH)

Total

~

31,349,585 Yen (699,399 DH)

.

.

VIII, DISPATCH OF EXPERTS

Short-term Experts			
Name	Speciality	Position	Duration of Dispatch
Dr. Kaiichiro Matsuda	Team Leader Soil Science and Plant Nutrition	Professor, Faculty of Agriculture Shizuoka Univ.	12 Sept. 1985–29 Sept. 1985 15 Dec. 1985–28 Dec. 1985 2 Sept. 1986–20 Sept. 1986
Dr. Mamoru Nagai	Crop Science	Professor, Faculty of Agriculture Shizuoka Univ.	12 Sept. 1985–29 Sept. 1985 15 Dec. 1985–28 Dec. 1985
Dr. Hiroshi Murai	Forest Hydrology	Professor, Faculty of Agriculture Shizuoka Univ.	12 Sept. 1985–29 Sept. 1985 15 June 1986–26 June 1986 2 Sept. 1986–20 Sept. 1986
Mr. Yasuo Yuasa	Sirviculture	Research Associate, Faculty of Agriculture Shizuoka Univ.	15 Dec. 1985–28 Dec. 1985
Dr. Hitoshi Sawada	Crop Science	Research Associate, Faculty of Agriculture Shizuoka Univ.	2 Sept. 1986–20 Sept. 1986
Long-term Experts			
Name	Speciality	Position	Duration of Dispatch
Mr. Hiromi Yokota	Plant nutrition	Research Associate, Faculty of Agriculture Shizuoka Univ.	20 Aug. 1985-up to now
Mr. Akira Koto	Soil Science Soil Conservation	Agricultural Expert, JICA	20 Aug. 1985— up to now

IX. ACKNOWLEDGEMENT

The Joint Study Project Team between UAE University and Shizuoka University is indebted to Dr. Nuri Shafiq, Vice Chancellor of UAE University, Dr. Nizar Hamadmad, previous Dean of Faculty of Agriculture, and staff members of Faculty of Agriculture, UAE University during implementation of the above mentioned Project. We also would like to thank the staff members of Al Ain Agriculture Department, Al Ain Forestry Department, Abu Dhabi municipality and Central Laboratory of Ministry of Agriculture and Fishery for their kind arrangement to our studies. We also would like to thank the staff members of Embassy of Japan in Abu Dhabi, Japan International Cooperation Agency and Faculty of Agriculture, Shizuoka University for their counsel and advice during the implementation of the above mentioned Project.

