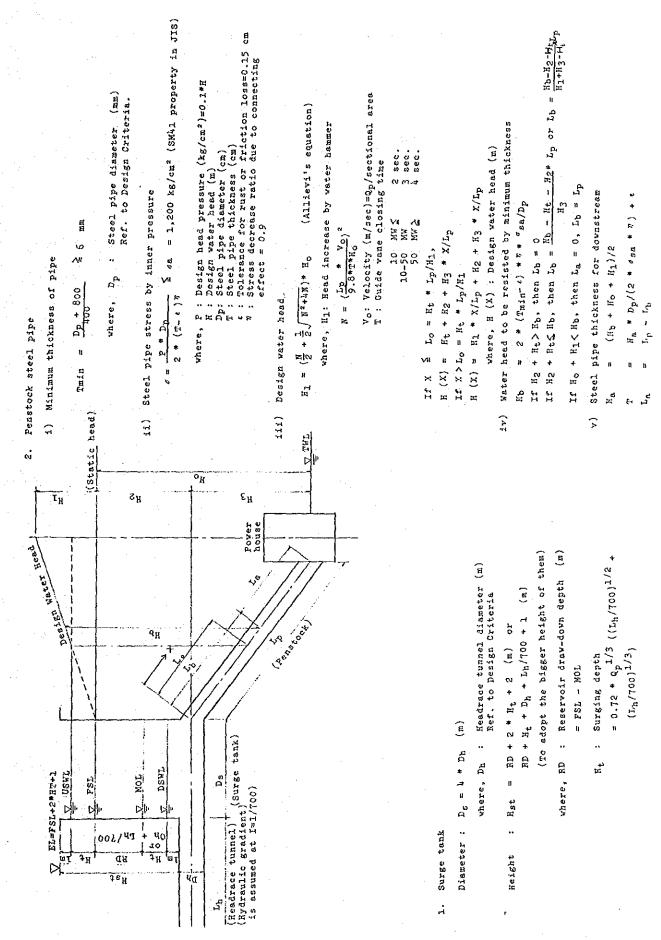
TABLE 11 WATERWAY MAJOR DIMENSION (1/2) (ROR. TYPE)


Un		m	

		•			(HOIL IIII)	
(Unit: m)		1				
	Headra	ace	Penst	ock		
Scheme Name	Length	Diameter	Length	Diameter	Water Transfer Tunnel (Length x Dia.)	Tailrace Width
Naguilian	9010	3.0	1190	1.9		46.2
Luya	6750	4.4	230	3.3		50.3
Bakum	4670	2.6	1000	1.5		57.8
Amburayan	9330	4.1	220	2.9	3800 x 2.7	50.3
Abra	6150	2.2	340	1.5		18.2
Apayao	8610	2.9	230	2.1		32.2
Chico-1R	2300	4.8	90	4.0		22.4
Chico-1R(+Sadanga)	2300	4.8	90	4.0		22.4
Chico-2R	5220	4.2	150	3.2		22.1
Chico-3R	3770	3.7	160	2.9		21.0
Chico-4R	7180	2.8	160	2.0		19.3
Saltan	7230	2.3	450	1.5	1670 x 2	18.5
Pasil	9800	2.3	610	1.4	600 x 2,700 x 2 600 x 2,600 x 2	19.0
Tanudan	8080	2.8	530	1.8		19.9
Ibulao	7890	2.4	450	1.5	1100 x 2	30.7
Casecnan	5470	3.0	130	2.3		31.7
Upper Casecnan	6720	2.9	150	2.1		31.7
Agno-2	5980	2.4	240	1.7	1900 x 2	41.5
Agno-3	5540	2.4	510	1.4	1060 x 2,200 x 2 300 x 2	40.1

TABLE 11 WATERWAY MAJOR DIMENSION (2/2) (RES. TYPE)

(Unit: m)

	T		Г					
·	Head	Headrace Penstock Surge Tank						
Scheme Name	Length	Tunnel No. * Dia.	Length	Line No. * Dia.	Height	Top Elevation	Tank No. * Dia.	Tailrace Width
Supo	537	1x7.4	108	1x6.3	58.3	328.1	1x29.6	31.1
Eteb	576	1x7.1	135	1x6.2	55.9	379.2	lx28.5	30.1
Supo (+Eteb)	1480	1x7.1	110	1x6.3	34.4	274.6	1x28.4	30.0
Sisiritan	750	4x7.3	168	4x6.4	53.1	109.2	4x29.2	86.7
Bulu	540	2x7.9	194	2x6.7	73.9	226.7	2x31.8	73.0
Nababarayan	470	2x7.1	251	2x5.9	68.5	247.6	2x28.4	68.7
Dibagat	7 88	2x6.4	244	2x5.0	96.0	349.4	2x25.5	65.9
Agbulu	_	-	216	3×3.9	-	-	- .	47.9
Sisiritan (+Agb.+Bulu)	528	2x8.3	133	2x8.0	34.4	77.2	2x33.4	46.2
Sisiritan (+Agbulu)	750	2x9.2	168	2x8.4	56.9	110.0	2x36.9	84.4
Bulu (+Agbulu)	540	2x8.6	125	2x7.7	53.4	184.3	2x34.5	79.1
Basao	650	lx6.7	378	1x5.4	24.0	674.1	1x26.8	29.4
Sadanga	1120	1x7.1	281	lx5.5	90.9	900.4	1x28.4	45.9
Sadanga (Alternative)	1640	lx7.1	570	1x5.4	102.7	902.1	1x28.6	62.5
Bantay			385	1x6.6		-	-	28.3
Maliano	650	1x7.4	235	1x6.1	76.8	300.8	1x29.5	31.2
Tabu	550	1x7.1	245	1x6.1	30.0	412.0	1x28.6	30.4
Kanan	872	1x7.1	334	1x5.6	81.9	303.5	1x28.3	46.1
Up. Agos 2	-	-	184	2x3.9	- <u>-</u>	-	_	28.8
Kanan (+Up. Agos 2)	. 	-	300	lx7.1	-	. -	. 🛥 i.	31.2
Wawa	_		144	2x3.1	***	-		24.4
Bosigon	585	1x6.3	60	1x5.8	38.2	87.5	1x25.3	27.2

TABLE 13 CALCULATION SHEET FOR PENSTOCK DIAMETER.

Economical penstock diameter equation:

$$D = \left\{ \frac{5 * 78.4 \text{ Tg} * C_1 * f * \pi * \psi * S_a}{A * C_2 * f * g * \pi^3 * p * (1+k_2)} \right\}^{1/7} *Q_p$$

where,

D: Economical penstock diameter (m)

Tg: Annual operational hour = 365 days * 12 hrs/day = 4,380 hrs. (Assuming 12 hrs peak operation)

C₁: Energy cost at power plant = 1.2 P/KWh = 0.0591 \$/KWh

f : Manning's roughness = 0.014

 η : Power plant efficiency = 0.84

\$\psi\$: Stress decrease ratio due to connecting effect = 0.9

A : Ratio of operation and maintenance cost, construction cost interest and so on, to construction cost = 0.1

Sa: Allowable stress of steel = 1,200 kg/cm² (SM⁴1 property in JIS)

Co : Steel penstock construction unit cost = 4,000 \$/ton

7 : Unit weigth of steel = 7.8 t/m^3

g : Gravity acceleration = 9.8 m/sec²

k2: Weight increase ratio due to accessories such as stiffner, flanges, rivets and so on = 0.2

The above variables are applied to the equation,

$$D = \left\{ \frac{5 * 78.4 * 4.380 * 0.0591 * 0.014 * 0.84 * 0.9 * 1.200}{0.1 * 4.000 * 7.8 * 9.8 * 3.1416^3 * p * (1+0.2)} \right\}^{1/7}$$

$$* Qp 3/7 = 1.018 Qp 0.429/p0.143$$

where,

p : Design water pressure (kg/cm²), assuming that total static head (m) (FSL - TWL) multiplied by 1.3

Qp : Peak discharge (m³/sec)

TABLE 14 WATERWAY COST COMPARISON (1/4) (Run-of -river type scheme, draw down=0 m)

C1 = Waterway cost with surge tank
C2 = Waterway cost without surge tank
Cd = C1 - C2

					Ud ≈	C7 ~ C2) 		
			L=100m	L=150	r=500	L=250	L=300	L=350	Γ=#00
	Q=5 m³/s	C ₁ C ₂ C _d	0.118 0.212 -0.094	0.247	0.282	0.270 0.317 -0.047		0.384	0.427 0.417 0.011
H=50m	Q=10	C1 Cd	0.221 0.348 -0.127	0.313 0.401 -0.088	0.451	0.505 0.500 0.004	0.602 0.551 0.051	0.700 0.601 0.099	0.798 0.651 0.147
	Q=15	C ₁ C ₂ C _d	0.307 0.468 -0.160	0.534	0.598	0.700 0.660 0.041	0.836 0.721 0.115	0.783	1.107 0.845 0.262
	G=50	C ₁ C ₂ C _d	0.384 0.580 -0.195	0.544 0.658 -0.115	0.733	0.876 0.806 0.070	1.046 0.878 0.168	1.215 0.949 0.267	1.386 1.022 0.364
	Q=5	Cq C5 C1	0.174 0.259 -0.084	0.222 0.302 -0.080	0.337	0.331 0.372 -0.041	0.389 0.409 -0.017		0.507 0.474 0.034
H=100m	Q=10	C1 C2 Cđ	0.303 0.425 -0.123	0.494	0.547	0.576 0.597 -0.021	0.677 0.647 0.030	0.779 0.697 0.082	0.882 0.747 0.135
	Q=15	Cq C1	0.408 0.569 -0.161			0.777 0.790 0.013	0.912 0.852 0.060	1.050 0.913 0.137	1.190 0.975 0.214
	Q=20	C1 C2 Cd	0.502 0.704 -0.202	0.814	0.893	0.956 0.968 -0.013	1.122 1.041 0.081		1.463 1.184 0.280
	Q=5	C4 C5 C1	0.240 0.360 -0.121		0.404	0.387 0.439 -0.051		0.508	0.568 0.542 0.026
H=150m	Q=10	69 65 61	0.413 0.596 -0.183	0.486 0.596 -0.110		0.717	0.768 0.768 0.000	0.817	
	Q=15	C ₁ C ₂ C _d	0.555 0.798 -0.243	0.654 0.798 -0.145	0.770 0.889 -0.119	0.898 0.956 -0.057	1.033 1.019 0.014		1.316 1.142 0.174
	Q=20	C ₁ C ₂ C ₄	0.683 0.985 -0.302	0.804 0.985 -0.182	0.947 1.096 -0.149	1.104 1.175 -0.070	1.271 1.249 0.021	1.442 1.322 0.120	1.681 1.394 0.224

TABLE 14 WATERWAY COST COMPARISON (2/4)

			L=100m	L=150	L=200	L=250	L=300	L=350	L=400
	Q=5	C1 C2 Cd	0.317 0.475 -0.158	0.354 0.475 -0.120	0.475	0.454 0.518 -0.065	0.511 0.553 -0.042	0.571 0.588 -0.017	0.634 0.622 0.011
H=200m	Q=10	C1 C2 Cd	0.547 0.791 -0.244	0.611 0.791 -0.180		0.783 0.860 -0.077	0.881 0.912 -0.031	0.985 0.963 0.023	1.093 1.012 0.081
	Q=15	CG CI	0.738 1.064 -0.326	0.825 1.064 -0.239	1.064	1.056 1.154 -0.098	1.190 1.221 -0.031	1.330 1.284 0.046	1.476 1.346 0.129
	Q=20	C ₁ C ₂ C _d	0.909 1.314 -0.404	1.017 1.314 -0.297		1.302 1.424 -0.122	1.466 1.503 -0.037	1.639 1.578 0.062	1.819 1.651 0.168

TABLE 14 WATERWAY COST COMPARISON (3/4) (Reservoir type scheme, Drawdown depth=20 m)

 C_1 = Waterway cost with surge tank C_2 = Waterway cost without surge tank C_d = C_1 - C_2

(Unit:	x10 ⁶ \$)	·					ay cost		surge to
			L=200m	L=300		L≈500		L=700	I,=800
	Q=50m³/s	C1 C2 Cd	1.365 2.619 -1.254	2.040 2.901 -0.861	3.175	3.429 3.452 -0.023	4.129 3.732 0.397	4.832 4.008 0.824	5.535 4.280 1.255
H=70m	Q=100	C1 C2 Cd	2.531 4.314 -1.783	3.783 4.754 -0.971	5.178	6.358 5.593 0.765			10.264 6.879 3.385
	Q=200	C1 C2 Cd	4.625 7.280 -2.656	7.998	8.685		10.015		18.753 11.414 7.339
	Q=300	C1 C2 Cd	9.979	9.788 10.941 -1.153	13.104 11.858 1.247	12.747	13.620	14.541	15.470
	Q=50	C1 C2 Cd	1.693 2.984 -1.291	3.273	3.550			5.403 4.381 1.021	6.175 4.655 1.519
H=120	Q=100	C1 C2 Cd	2.747 4.972 -2.224	5.426	5.856		6.694	8.769 7.129 1.640	10.022 7.557 2.466
	Q=200	C ₁ C ₂ C _d	4.855 8.454 -3.599		9.899		11.239	15.496 11.925 3.571	17.710 12.624 5.086
	Q=300	C1 C2 Cd	6.773 11.627 -4.855		13.566	14.468	15.348	16.232	
	Q=50	C ₁ C ₂ C _d	2.028 3.442 -1.413		4.026	4.300	4.577		
H=170	Q#100	C1 C2 Cd	3.345 5.801 -2.456	6.282	5.625 6.721 -1.096	7.145	7.560	7.991	10.787 8.422 2.364
	Q=200	C ₁ C ₂ C ₄	5.870 9.942 -4.072	7.766 10.739 -2.973	11.457	12.073 12.143 -0.070	12.812	16.619 13.474 3.145	18.928 14.180 4.748
	Q=300	C ₁ C ₂ C _d	8.165 13.721 -5.556	10.803 14.801 -3.999	15.764	16.680	17.569	18.442	19.363

TABLE 14 WATERWAY COST COMPARISON (4/4) (Reservoir type scheme, Drawdown depth=50 m)

 C_1 = Waterway cost with surge tank C_2 = Waterway cost without surge tank C_d = C_1 - C_2

(Unit:	× 10 ⁶ \$)					Waterwa C ₁ - C ₂		without	surge	tan -
791111			L=200m	P=300	T=#00	L=500	L=600	L=700	L=800	
	Q=50m³/s	C1 C2 Cd	2.038 4.134 -2.097	3.196 4.413 -1.217	4.685	5.606 4.966 0.640	6.825 5.244 1.581	5.519	9.273 5.790 3.482	
H=70m	Q=100	CQ CS C1	4.008 6.577 -2.569	6.286 7.011 -0.725	7.431			8.711	18.239 9.134 9.105	
	Q=200	C ₁ C ₂ C _d	7.625 10.697 -3.072	11.959 11.403 0.556	12.083	12.748	13.425	30.115 14.126 15.988	14.816	1
	Q=300	C1 Cd	11.001 14.344 -3.343	15.289	16.196	30.267 17.080 13.187	36.848 17.948 18.900	18.891	19.815	31.1
	Q=50	C ₁ C ₂ C _d	1.881 4.547 -2.665		5.106	5.381	5.513 5.662 -0.149	5.938	7.439 6.211 1.228	
H=120	Q=100	C ₁ C ₂ C _d	3.070 7.319 -4.250	4.432 7.764 -3.332	8.190	8.607	9.033		9.891	.Į.,
	Q=200	C ₁ C ₂ C _d	5.490 12.022 -6.532	12.749	13.440	13.309 14.112 -0.803	16.087 14.771 1.316	15.472	16.167	
	Q=300	C ₁ C ₂ C ₄	7.704 16.204 -8.500	17.181	18.104	18.679 18.998 -0.319	19.873	26.511 20.700 5.731	21.713	
	Q=50	C ₁ C ₂ C _d	2.150 5.037 -2.887	5.331	5.609	5.881	6.162	6.441	6.715	;
H=170	Q=100	C ₁ C ₂ C _d	3.565 8.207 -4.642		9.103		9.937] 10.374	10.803	3]
	Q=200	C ₁ C ₂ C _d	6.294 13.613 -7.319	8.393 14.375 -5.981	15.081	15.761	16.426	17.103	17.805	5
	Q=300	C1 C2		11.712 19.473 -7.761	20.418	21.325	22.209	23.077	24.019)
			F							

1. Power House Length and Width

(Righ head power plant) = 1.5 * k

(Lover head power plant) (k is to be bigger dimension of the above) (W + 7)/2 : W = 14 * (Pe/Ha)0.5

: Power house length (m)

where,

Power house width (m) m m

Generator dia, (m) Generator nos.

Installed power capacity (MW) Turbine casing width

Design head

Power House Height ď

0.8367 * P. 0.1767 + 0.287 * P. 0.21 + 5

- 458.0 2419/H

where,

Super-structure height

Height from casing center to draft tube bottom (m) Height from casing center to floor (m) Installed power capacity (KW)

Runner outlet diameter. (m)

Runner inlet diameter (m)

Runner circumference speed coefficient

Revolution speed = 400 RPM Specific speed (m-kw)

Power House Section

ľ S Н Structure Structure granctnae gnp

४६'τ Generator 2x(n-1)*k Power House Plan Aux. Room W Casing 0.8k ing Bay Office Assembĸ SK

В2

TABLE 16 ROUGH ESTIMATION OF POWER HOUSE DIMENSION (1/2) (ROR. TYPE)

TABLE 16 ROUGH ESTIMATION OF POWER HOUSE DIMENSION (2/2) (RES. TYPE)

1								-			·														
	Renarks							•											:						
	ш	Î.	36.9	35.3	34.9	38.7	39.0	1	2 7 7	37.3	38.0	38.3	37.9	38.0	38.1	38.1	30.3	38.2	36.7	37.5	36.9	33.3	33.1	31.0	i I
	က်	(E)	28.9	28.3	28.2	35.1	30.0	0	0.00	28.2	40.0	34.3	32.3	28.5	27.9	27.2	26.6	29.2	28.6	27.6	28.1	28.7	25.7	26.4	
	ជ	¹ jj	53.0	51.9	51.6	111.2	95.0	6	1 0	70.6	73.2	108.6	102.2	52.3	69.8	86.2	48.9	53.5	52.5	69.3	51.5	52.6	47.1	48.4	
8,	ជ	¹ jj	15.4	14.8	14.7	16.3	16.3	ų	3 7	15.5	16.2	16.2	76.0	15.8	15.7	15.6	13.0	15.9	15.3	15.4	15.3	14.2	13.7	13.2	
	w	(m)	12.5	17.8	11.6	13.7	13.6	7	10.7	12.6	13.6	13.5	13.2	13.0	12.9	12.7	9.4	13.2	12.4	12.5	12.4	10.9	10.3	9.6	
	д,	Œ.	5.9	5.7	5.7	5.6	1.9	u u	1 9	6.2	5.2	9	5.7	6.3	6.6	6.8	4.9	6.1	5.9	6.5	6.2	5.2	0.9	5.2	
	ကို	' E	2.2	2.1	2.1	2.1	2.3		, 0	2.3	7.9	2.1	2.1	2.3	2.4	2.5	1.8	2.3	2.2	2.4	2,3	1.9	2.2	1.9	
	ດ້	(fi	1.7	1.5	1.5	1.5	1.8	, -	2 -	1 6	1.2	1.5	1.5	2.0	2.2	2.5	٥.٦	1.8	1.7	2.1	6	1.2	1.8	1.2	
	N S	ij	255	280	287	291	234,	237	202	219	355	291	279	211	188	169	426	229	251	197	223	352 :	243	357	
	А	(m-KW)	9.6	9.4	9.4	10.4	10.0	ø	0 0	9.4	10.6	10.3	10.1	9.5	9.3	٠. ۲.	8.9	9.7	9.5	9.5	4.6	9.4	8.6	8.8	
	×	(m)	11.8	11.3	11.2	16.4	13.0		7 - 6	10.2	19.6	15.9	14.5	10.4	9,2	8.0	10.6	11.8	11.3	9.1	10.1	12.1	7.3	9.6	
	Read	(E)	99.5	82.5	78.1	75.9	118.2	ď	156.4	135.3	50.7	75.9	82.8	148.5	186.1	232.0	34.9	123.9	1.501	168.5	131.0	51.5	109.9	47.3	
**************************************	Unit* Unit Cap.	(MM)	2×71.1	2x53.5	2x49.9	4×104.4	4×102.0	1 92.50	4×75.4	3×72.0	2x99.6	4x97.4	4x89.1	2x81.6	3x79.5	4×75.5	2×19.9	2x87.7	2x67.2	3×71.2	2x67.6	2x38.6	2x30.2	2×22.2	
	Pmax	(MM)	142.2	107.0	99.8	417.6	408.1	304.0	301.7	215.9	199.2	389.4	356.5	163.2	238.4	301.8	39.8	175.4	134.4	213.5	135.2	77.2	60.3	44.4	
	Pobriv.		SPo	ETO	ETO+SP1	550	вто	QXN	OIG	AGo	AGO+BL, + SS,	AGO+SSO	AGO+BL	SD, +BS,	SDo	sp ₁	вто	MIO	BGo+B1	XNo	UA20	UA20+KN	WAG	BSo	
	Scheme		odns	Eteb	Supo	Siriritan	Bulu	Nababa-	Dibagat	Agbulu	Sisiritan	Sisiritan	Bulu	Basao	Sadanga	Sadanga	Bantay	Maliano	nqeL	Kanan	Up. Agos 2	Kanan	Wawa	Bosigon	
				pra	4	<u> </u>				60 <u>1</u> 1	idA.			o	oţų;	0	Paret	Ilagan	Agno		soby	······	Mari- kina	Labo	

TABLE 17 CALCULATION SHEET FOR WORK QUANTITY (1/10)

SKETCH B REMARKS	Land Linner
SYMBOLS	V _{df} : Embankment volume, (m ³) i : Cross section no., i=1 to n, n≤15 A _i : Cross sectional area at section i, (m ²) 1 _i : Interval between cross section i=1 and H _i : Dam height at cross section i, (m) m: Upstream embankment slope n: Downstream embankment slope a: Crest width, (m) h _i : Coffer dam height at cross section i, (m) v _{dc} : Concrete volume, (m ³) i: Cross section no., i=1 to n, n≤15 A _i : Coss section no., i=1 to n, n≤15 A _i : Coffer dam height at cross section i, (m ²) 1; Interval between cross section i, (m ²) 1; Interval between cross section i, (m ²) 1; Interval between cross section i, (m) 1; Dam height from the top of filler to dam n: Upstream filler slope n: Downstream slope a: Crest width (m) L: Dam crest length (m) L: Dam crest length (m) d _i : Excavation volume, (m ³) d _i : Excavation depth at cross section i, (m) volume calculation. volume calculation. cher symbols are same as those for dam volume calculation. other symbols are same as those for dam volume calculation.
QUANTITY FORMULA	(1) Dam volume (1) Fill dam (Rockfill 6 earth-fill) $V_{df} = \sum (A_{i-1}A_{i})^{x_{1}}/2$ $A_{i} = \left[a^{i}(m^{t}h)^{x_{1}}/2\right]^{x_{1}} + 10^{t}h_{i}$ (ii) Concrete gravity dam $V_{dc} = \sum (A_{i-1}A_{i})^{x_{1}}/2 + (a^{2}x_{1})/(n^{x})$ $A_{i} = \left[(H_{i}-h_{i})^{2}m^{t}H_{i}^{2}x^{n}\right]/2, if$ $A_{i} = \left[(H_{i}-h_{i})^{2}m^{t}H_{i}^{2}x^{n}\right]/2, if$ (2) Dam excavation volume (3) Fill dam $V_{ef} = \sum (A_{i-1}A_{i})^{x_{1}}/2$ $A_{i} = \sum (A_{i-1}A_{i})^{x_{1}}/2$ $A_{i} = \sum (A_{i-1}A_{i})^{x_{1}}/2$ (4) Goncrete gravity dam $V_{ec} = \sum (A_{i-1}A_{i})^{x_{1}}/2$ $A_{i} = \sum (L_{i}A_{i})^{x_{1}}/2$ $A_$

TABLE 17 CALCULATION SHEET FOR WORK QUANTITY (2/10)

SKETCH & REMARKS	DAM OREST Z OUNTING COUNTING COUNT	BLANKET/C St. CURTAIN ST. CURTAIN OF.	FILL DAM GEV. AREA : 19 m. CONC. AREA : 19 m. 3.5 m.	LI Original ground I.n. Plunge pool (Fore say) CURTAIN GROUTING
SYMBOLS	CG : Total curtain grouting length (m) i : Cross section no., i=1 to n HL; Hole length at section i, (m) l : Drilling in dam body, assumed at 5m length g in : Fan grouting length = 10m N : Fan grouting nos. = 20 H; : Dam height at section i, (m) l; : Intervals between sections (m)	BG : Blanket/consolidation grouting length (m) Other symbols are same as those for currain grouting. n : Dam downstream slope Other symbols are same as those for curtain grouting.	Dii : Drainage holes length (m). Other symbols are same as those for curtain grouting. V : Concrete volume (m ³) W : Re-bar weight (ton) V : Trench exc. volume (m ³) L : Gallery length (m)	V : Excavation volume excepting plunge pool(m ³) L : Spillway length = L ₁ +L ₂ +L ₃ (L ₁ is to be representative length for forebay excavation volume). (m) d : Average excavation depth (m) W : Excavation width (Ref. to 2(2)(ii)), (m) B : Footing width of retaining wall (Ref. to 2.(2)(ii)), (m) V : Waterway width (m)
QUANTITY FORMULA	3) Crouting (i) Curtain grouting (@ 2m, 2 rows) (c) = ∑[HL ₁₋₁ +HL ₂)*1 ₄ /2]+1 _m *N HL ₁ = 0.4*H ₁₊₁ ≥ 15m, if H ₁₊ ≥ 15m (conc. dam) HL ₁ = 0.4*H ₁₊ ≥ 10m, if H ₂ < 15m, (conc. dam)	(ii) Blanket/consolidation grouting A - For filldam (@ 4m, d=5m) BG - ∑ (a+0.54m½,*1½/16*5) . For concrete dam (@ 4m, d=10m) BG - ∑ (n*4½,*1½/16*10)	(4) Drainage holes (Concrete dam) (@ 10m) DH = X(HL ₁ -1+HL ₁) *1 ₁ /20 (5) Inspection gallery (Fill dam) V = 14*L W = 0.1*V V = 19*L	(1) Excavation volume Ves = d* (W, +d*0.8)*L Wes = Wc+2*B-1 Solution volume V = W + 2*B-1 Solution volume V = W + 2*B-1

TABLE 17 CALCULATION SHEET FOR WORK QUANTITY (3/10)

SKETCH & REMARKS	In 10 10 10 10 10 10 10 1
SYMBOLS	Vor : Concrete volume for overflow weir etructure (m3) V1 : Weir concrete volume, (m3) V2 : Abutment concrete volume (m3) V3 : Pier concrete volume (m3) H : Flood water overflow depth (m) P : Height of weir (assumed at H/S) (m) F : Free board (1.5m) W : Weir width (m) N : Gate numbers V, Gate numbers V, Gate numbers V, Cate numbers V, Chuteway width (m) R : Total height = h _t +Hi+2*P (m) K : Chuteway vidth (m) V : Chuteway slope V : Readaining wall height (m) V : Re-bar weight for overflow weir (ton) V : Re-bar weight for chuteway slab (ton) V : Re-bar weight for chuteway slab (ton) V : Re-bar weight for chuteway wall (ton) V : Re-bar weight for chuteway wall (ton) V : Re-bar weight (m) V : Re-bar weight (m) V : Re-bar weight (m) V : Re-bar weight for chuteway wall (ton) V : Re-bar weight (m) V : Re-bar weight (m) V : Re-bar weight (m) V : Re-bar weight (m)
QUANTITY FORMULA	(2) Concrete volume & re-bar weight (1) Overflow weir concrete $V_{ov} = V_{1} + V_{2} + V_{3}$ $V_{1} = 2 *P*P*K_{3} / I_{1}$ $V_{2} = (A_{1} + A_{2}) * (10 + 3 * (1 + 1 + 1)) * (1 + 1 + 1) * (1 + 1 + 1) * (1 + 1 + 1) * (1 + 1 + 1) * (1 + 1 + 1) * (1 + 1 + 1) * (1 + 1 + 1) * (1 + 1 + 1) * (1 + 1 + 1) * (1 + 1 + 1 + 1) * (1 + 1 + 1 + 1) * (1 + 1 + 1 + 1) * (1 + 1 + 1 + 1) * (1 + 1 + 1 + 1 + 1) * (1 + 1 + 1 + 1 + 1 + 1) * (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) * (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $

TABLE 17 CALCULATION SHEET FOR WORK QUANTITY (4/10)

SKETCH B REWARKS	(Raf. to 2.(2)(1)) Original standarding Sub-Dam	We STORIGHAL GROUND LINE	COFFER DAM COFFER DAM TO FEL TO FEL TO FEL TO FEESTURE T. NON-PRESSURE T. NON-PRESSURE T.
SYMBOLS	CG : Curtain grouting length (m) W _c : Spillway width (m) VCB : Stilling basin conc. vol. (m ³) W _c : Chuteway width (m) LB : Length of stilling basin (m) h ₂ : Flow depth after hydrsulic jump (m)	WS : Re-bar weight VR : Excavation volume (m ³) d : Average excavation depth (m) VE : Excavation volume VC : Concrete volume WS : Re-bar weight d : Average exc. depth L _B : Plunge pool length V _C : Chutevay width	VET : Tunnel excavation volume (m ³) ' VCT : Tunnel lining concrete volume (m ³) RST : Re-bar weight (ton) L : Tunnel length (m) N : T."nel nos. t _o Lining thickness (m) D : Tunnel diameter (m)
QUANTITY FORMULA	(4) Curtain grouting (@ 2m, 2 rows, 10m depth) CG = 10*(W_4:10) (5) Energy dissipator (1) Sub-dam type (Mainly for conc. dam) VCB = [2.04w_+(0.15*h_2+2.5)*(h_2+3.0)] *1B	WS = VCB*0.06 VE = d*W_c*LB (ii) Ski-jump type (Mainly for fill dam) VE = (W + 2*d)*l_B*d VC = V\s*W_c*d_1*2 VG = V\s*W_c*G_1*2 VG = V\s*W_c*G_1*2 VG = V\s*W_c*G_1*2 VG = V\s*W_c*G_1*2	(1) Diversion tunnel (1) Diversion tunnel (2) VET = (0.8*(D+2*t _o) ² *L/2)*N (Pressure t.) (3) (0.84*(D+2*t _o) ² *L/2)*N (Non-pressure t.) (4) VCT = VET - (0.84*D ² *L/2)*N (Non-pressure t.) (5) VET - (0.84*D ² *L/2)*N (Non-pressure t.) (6) 0.75-0.5/ √D/2 (Pressure t.) (7) 0.6-0.4/ √D/2 (Non-pressure t.) (8) 0.6-0.4/ √D/2 (Non-pressure t.) (8) 0.605*VCT (Non-pressure t.)

TABLE 17 CALCULATION SHEET FOR WORK QUANTITY (5/10)

ţ

SKETCH & REMARKS	COFFER DAM COFFER DAM COFFER DAM INTEGRATED C. DAM CREST WIDTH OF GRIDGE. AS PART OF MAIN DAM (REF. TO ILIS(1)) # (B. (B. H10) h	A= ((0+4xh+8)/2) nh = (2h+6) b	SACKFILL OR	SACKFILL SMOUT WILL SK AT 45"24 NOWS 7 MOS. MADE THROUGH WHOLE = 32 HOS. L'S DAN HEIGHT x 60% L'S DAN HEIGHT x 60%	ILL GROUT CURTAIN GROUT DRAINAGE HOLE	COMPUIT PIPE MOS. STEEL CONDUIT POSTERL P. O. O. I. Z. M. O. O. I. Z. M.
SYMBOLS	VCF : Cofferdam volume (m ³) independent in Cofferdam crest length (m) LCF : Cofferdam crest length (m) A.1012x	VCF : Cofferdam volume (m ³) VPB : Crib slope protection (m ³) VPC : Concrete slope protection (m ³) L : Slope length Other symbols are same as above	INJECTION PIPE.	LCG : Curtain grout length (m) H : Dam height (m) S : Tunnel nos. WADE THE	LDH : Drainage hole length (m) BACKFull	UCP : Conduit pipe weight (ton) t : Pipe thickness = (D+0.8)/400 (m) (tmin = 0.006m) D : Conduit pipe dia. = 0.5*Tunnel dia. (m) L : Tunnel length (m) n : Conduit pipe nos.
QUANTITY FORMULA	<pre>(2) Coffer dam (i) Independent coffer dam from fill type main dam VCF = (2.5*h+10)*h*LCF*T</pre>	(ii) For concrete dam VCF = (2*h+8)*h*LCF*3 VPB = $\frac{2}{3}$ *LCF*L WPC = $\frac{2}{3}$ *LCF*L*0.5 (3) Grouting	Cost will be computed by applying Cost will be computed by applying Cost per tunnel unit length	(ii) Curtain grout LCG == 16*H*N	(iii) Drainage hole LDH = 3.5*H*N	(4) River outlet facility WCP = 12.33*(D*t+t ²)*n*2

TABLE 17 CALCULATION SHEET FOR WORK QUANTITY (6/10)

SKETCH & REMARKS	(REF. To 3(1))	TEXACT OF SHEET PILE [LANE'S EG.]	UREET HAILO ANNUMEN OF D. (COURSE MANU) 1 a (C.K.I.) 2 81/2 2 2.6H-1.2 VH - 1
SYMBOLS	<pre>VP : Plug concrete volume (m³) WG : Gate weight (ton) D : Diversion tunnel diameter (m) H : Dam height N : Tunnel nos,</pre>		A : Excavation area mensured in drwg. (m)
QUANTITY FORMULA	(5) Tunnel plug & gates VP = 0.24*D ² *!!*N WG = (-0.47+0.13*D ² -7.3*10 ⁻⁴ *D ⁴)*!!*N S S S S S S S S S S S S S S S S S S S	(1) Non-gated weir VED = 0.285*(HDD#LDD) 1.57 VCD = 1.15*HDD*4LDD RSD = 0.01*VCD RSD = 0.01*VCD RSD = 0.01*VCD +(1+6) *B' or VEW = Aex*B' VCW = C_1+C_2+C_3+C_4 C_1 = (2*B+4.5)*tL C_2 = (0.5*H^2+12*H+54) *B' C_3 = [(H+3)(B+4)*C.5+2*(H+1)] *N C_4 = (B'-B)*L B = 10.6+0.3H B = 10.6+0.3H B = 10.6+0.3H C_4 = (B'-B)*L C_5 = (B'-B)*L C_6 = (B'-B)*L C_7 = (B'-B)*L C_8 = (H-1) C_9 = (H+3)(B+4)*C.5+2*(H+1)] *N C_9 = (H+3)(B+6)*C.5+2.2*(H+1)] *N C_9 = (H+3)(B+6)*C.5H-1.2*(H-1)*L C_9 = (H+6)*B*(2.5H-1.2*VH-1)*L C_9 = (H+6)*B*(2.5H-1.2*VH-1)*L	(3) River coffering River coffering cost is assumed at 20% of the above work.

TABLE 17 GALCULATION SHEET FOR WORK QUANTITY (7/10)

SKETCH B REMARKS	ORIGINAL GROUND LN. HWL (FSL) CHAMBER HA GATE BTRASH ACK OT LWL (MOL) INTAKE HEADRAGE T. / PENSTOCK	ORIGINAL GR.LM. PSL TRASH RACK OATE GATE WEADRACE T. GATE GA	TURNEL DIAMETER: D (MAMANINGS FORMULA) PRESSURE TURNEL (CIRCULAR SEC.) (HORSE SHOW SEC
SYMBOLS	VET : Excavation volume (m ³) VCI p : Concrete volume (m ³) RSI p : Re-bar veight (ton) WGI p : Gate weight (ton) WSI p : Trashrack weight (ton) H _d : Reservoir drawdown depth DT : Tunnel diameter Q _p : Max. plant discharge (m ³ /s) N : Intake nos.	VEIn: Excavation volume (m ³) VCIn: Concrete volume (m ³) RSIn: Re-bar weight (ton) WGIn: Gate weight (ton) WGS: Trash rack (ton) DI: Tunnel diameter (Equivalent diameter in case of open channel) (m) Qp: Max. plant discharge (m ³ /s) VEB: Excavation volume (m ³) WGB: Gate weight (ton) WGB: Gate weight (ton)	0.0
QUANTITY FORMULA	(1) Fressure type intake VEL = 250* [(ii +bT)*Q] 0.5*N1/3 VCI = 90* [(ii +bT)*Q] 0.5*N1/3 RSI = 0.04*VCI WGI = 0.9*(H +bT) 1/9*Q WSI = 0.5*(H +bT) 1/9*Q WSI = 0.5*(H d+DT) 1/9*Q WSI = 0.5*(H d+DT) 1/9*Q WSI = 0.5*(H d+DT) 1/9*Q CWhere inlet structure is constructed in concrete dam, WGI and WSI are counted.)	(2) Non-pressure type intake VEI = 200*(DT*Q /2)^0.83 VCI = 70*(DT*Q /2)^0.86 RSI = 0.04*VCI WGI = 3.4*(DT*Q /2)^1/2 WGS = 1.3*(DT*Q /2)^1/2 WGS = 1.3*(DT*Q /2)^1/2 WGB = 300*Q 3/4 RSB = 0.05*VCB WGB = 2.0*(DT*Q /2) 0.5	(1) Pressure/Non-pressure tunnel Same as diversion tunnel (Ref. to 3.(1)) (2) Open channel Excavation quentity shall be computed on a basis of cross section drawings. VCC = 0.25*(B+2.83*H)*LT RSC = 0.03*VCC
	INTAKE STRUCTURE	·s	ээдигий ээ

PILLOUT CONDUIT Bockfill grout will be made through whole tunnel length. (Ref. to 3.(3) (1)) TRASK RACK S REMARKS SKETCH (Ref. 10 3. (3) (III)) TABLE 17 CALCULATION SHEET FOR WORK QUANTITY (8/10) : Diameter of surge tank 4*headrace tunnal dia. (m) : Height of surge tank (Ref. to Design Criteria) (m) : Lining thickness " 1.2-0.8/ VDST : Max, plant discharge (m^3/s) : Shaft excavation depth (m). : Weight of conduit (ton) : Diameter of conduit (m) : Curtain grout length (m) : Trashrack weight (ton) : Excavation volume (m³) : Conduit thickness (m) : Excavation volume (m^3) : Excavation volume (m³) : Concrete volume (m³) : Re-bar weight (ton) : Concrete volume (m³) : Concrete volume (m³) : Re-bar weight (ton) : Re-bar weight (ton) : (FSL-MOL)*0.5 (m) : Conduit Length (m) : Gate weight (ton) SYMBOLS . Surge tank nos. : Tunnel nos. MC3 gga VCD RSD WSE RSH HCH 3 VCS RSS HST VEH VCH VES Cost will be computed by applying unit cost per tunnel unit length. (Ref. to). VCS = 3.44*(DST*to+to²)*HST*N QUALITY FORMULA VES = 0.86*(DST+2*t_o)²*H*N VCD = 3.6*DCD^{0.96}*LD = (DCD+0.8)/400 WCD = 12.3*DCD*t*LD DCD - (0,/5.05) 1/2 VED = 12*DCD^{1.5}*LD VEH = 1,200*Q_0.61 (ii) Spillout conduit RSD = 0.03*VCD RSH = 0,03*VCH (3) Grouting for tunnel VCH = 0.3*VER (i) Backfill grout WCH = 0.5±Q (ii) Curtain grout พรห = 0.2*0ุ้ LCG = 32*11*N RSS = 0.06*VCS (i) Headtank (1) Surge tank (2) Head tank SURGE TANK / HEAD TANK 6. HEADRACE

TABLE 17 CALCULATION SHEET FOR WORK QUANTITY (9/10)

SKETCH & REMARKS	Haddrace 1, Pensiock Control to the	Head tonk / Surge tonk Concrete block Concrete block Concrete block Concrete block	DIA P = 1.171 x Qp ³⁴⁷ p ¹¹⁷ Qp = Max. plant discharge (m ² x ₂) Qp = Max. plant discharge (m ² x ₂) (Ref. to Design Criteria) (t = Ref. to Design Criteria) " = 12.3 z Dia P = 1	Building height H = KVAC2(+5 (m)) noow noow noow noow noow noow noow no
SYMBOLS	VEP : Pressure shaft excavation volume (m ³) VCP : Backfill concrete volume (m ³) RSP : Re-bar weight (ton) LP : Penstock length (m) N : Penstock nos.	VEA : Open excavation volume (m³) VCA : Concrete volume (m³) RSA : Re-bar weight (ton)	WP : Steel pipe weight (ton) t ₁ : Steel pipe thickness (m) N _p : Steel pipe nos.	VB ₁ : Main building volume (m ³) VB ₂ : Appurtenant building volume (m ³) RB: Ratio of VB ₂ to VB ₁ P: Installed capacity (kW) He: Effective head (m) VEB: Excavation volume (m ³) VCB: Concrete volume (m ³) VCB: RsB: Re-bar weight (ton) Qp: Max. plant discharge (m ³ /s) N : No. of units H _B : Effective head (m)
QUANTITY FORMULA	(1) Tunel shaft VEP = 0.8*(DIAP+t _o) ² *LP*N VCP = VEP-0.8*DIAP ² *LP*N RSP = 0.012*VCP	(2) Open-air penstock LE VEA = 10.50*DIAP ^{1.16} *LP*N WCA = 3.40*DIAP ^{1.16} *LP*N RSA = 0.015*VCA	(3) Steel pipe WP = 12.3*DIAP*c ₁ *LP ₁ *N	(1) Superstructure VB_ = 23*(P/VR_c)^0.7 VB_ = 40.3*VB_1 Or volume measured in drug. C1) Substructure VEB = 540*Q_1/2*H_1/3 VEB = 200*Q_p/2*H_e^1/3 Or VEB = 200*Q_p/2*H_e^1/3

TABLE 17 CALCULATION SHEET FOR WORK QUANTITY (10/10)

SKETCH & REMARKS	2.5mm	W O THE DOCUMENT OF STREET	
SYMBOLS	VEV: Excavation volume (m ³) VCV: Concrete volume (m ³) RSV: Re-bar weight (ton) D _V : Diameter (width) of conduit (m) c: Wall thickness = D _V -9/7.5 (m) L _V : Tailrace length (m) N: Conduit nos. d: Excavation depth (m)	VCY: Concrete volume (m³) RSY: Re-bar weight (ton) b, : Wall height (m) W: Channel width = Generator interval* Generator LY: Channel length (m) LY: Channel length (m) Qp: Max. plant discharge (m³/s) H: Excavation depth (m) VEZ: Excavation volume (m³) VEZ: Concrete volume (m³) RSZ: Re-bar weight (ton) DIAR: Tailrace diameter (m) Qp: Max. plant discharge (m³/s)	
QUANTITY FORMULA	(i) Waterway (i) Pressure To adopt pressure (ii) Cur-and- VEV = [RSV = [RSV = (iii) Open ch	UCY = C ₁ +C ₂ C ₁ = 2.0*b, *LY, if b, <4m (6*h, -20)*LY, if b, ≥5m (6*h, -20)*LY, if b, ≥5m (2 w 0.7*M*LY h = 0p/w/0.5 h = 0p/w/0.5 h = 0p/w/0.5 h = +1.5 (2) Outlet (Applied for tunnel type) VEZ = 100*(DIAR*0p/2) 0.86 VEZ = 40*(DIAR*0p/2) 0.86 RSZ = 0.04*VCZ	(1) Water transfer facilities Work quantities of the structures such as sub-dam, connecting tunnel, intake, water transfer tunnel, etc. are to be computed by using applicable formula stated above. (2) After bay To apply the same formula as those for gated intake weir (Ref. to 4(2).

TABLE 18. CONSTRUCTION UNIT PRICES (1/5)

Unit-----US \$
Time estimated price----Late 1985
Exchange rate-----1 US \$ = 18.6 Peso

WORK ITEM	UNIT OF OTY	UNIT PRICE
1. GENERAL		
Re-bar installment	ton	1100.0
Gate installment	ton	7500.0
Trashrack installment	ton	3600.0
2. STORAGE DAM		
Dam embankment		
Rockfill dam	m ³	12.0
	m ³	and the second s
Earthfill dam	m ³	8.0
Excavation		
Filldam foundation	m ³	6.0
Trench exavation	m ³	12.0
Concrete dam foundation	m ³	8.0
Concrete	+ + + _	
Inspection gallery	m ³	100.0
Concrete dam	m ³	200V ^{-0.09} <110
		if $V<10^4$ m ³
		110V-0.03
		if $V > 10^4 \text{ m}^3$
		V:Volume
Curtain grouting	m	75.0
Blanket/Consoli. grouting	m	75.0
Dranage hole	m	75.0
Miscellaneous	%	5.0
2. SPILLWAY		
Exavation		
Forebay and chuteway	\mathbf{m}^3	6.0
Energy dissipator	m^3	8.0
Concrete	•	
Forebay and chuteway	m ³	90.0
Energy dissipator	m ³	100.0
Grouting	m	75.0
Miscellaneous	%	5.0

TABLE 18. CONSTRUCTION UNIT PRICES (2/5)

WORK ITEM	<u>UNIT OF QTY</u>	UNIT PRICE
3. RIVER DIVERSION WORKS		
Tunnel Excavation	m ³	80D-0.15
		D:Diameter
Cofferdam embankment	m ³	3.0
Tunnel lining concrete	m ³	125D-0.18
	- 	D:Diameter
Slope protection	m^3	90.0
Plug concrete	m^3	90.0
Fill grouting	m^3	17D+28
		D:Diameter
Curtain grouting	m	75.0
Drainage hole	m	75.0
Conduit steel pipe	ton	3000.0
Miscellaneous	%	5.0
4. RIVER INTAKE WEIR		
Foundation excavation	m3	6.0
Intake weir concrete	m ³	80.0
Sheet pile walling	m ²	300.0
Foundation piling	m	200.0
Miscellaneous	%	5.0
Diversion works	%	20.0
5, INTAKE STRUCTURE		
Foundation excavation	m 3	6.0
Concrete work	m^3	100.0
Miscellaneous	%	5.0
1711300114110040	,,	
6. HEADRACE WATERWAY		
Tunnel Excavation	m^3	80D-0.15
	•	D:Diameter
Open channel excavation	m3	6.0
Tunnel lining concrete	m^3	125D ^{-0.18}
		D:Diameter
Channel lining concrete	m ³	90.0
Fill grouting	m	17D+28
		D:Diameter

TABLE 18. CONSTRUCTION UNIT PRICES (3/5)

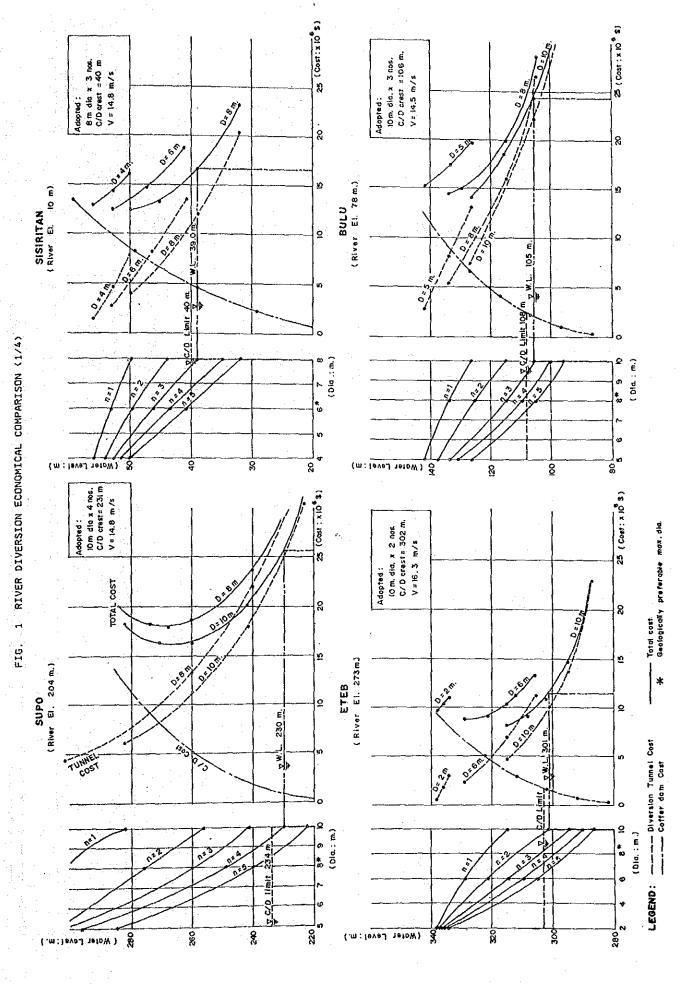
WORK ITEM U	NIT OF (YTY	UNIT PRICE
Curtain grouting	m	100	75.0
Miscellaneous	%		5.0
7. SURGE/HEAD TANK			
Tunnel shaft excavation	m ³		70.0
Open excavation for head tan	k m ³	•	6.0
Tunnel shaft lining concrete	m^3		90.0
Open concrete for head tank	m^3		90.0
Steel conduit pipe	ton	•	3000.0
Miscellaneous	%		5.0 .
	•		
8. PENSTOCK	,		
Pressure shaft excavation	m ³	·	210D-0.82
			D;Diameter
Open excavation	m^3		6.0
Backfill concrete	m ³		75.0
Conc. for open air penstock	m^3	٠.	90.0
Steel liner	ton		4000.0
Miscellaneous	%		5.0
9. POWER HOUSE			
Building super structure	m3		180.0
Excavation	m^3		12.0
Concrete	m3		365V-0.083
Concrete			V:Volume
Miscellaneous	%		5.0
Switch yard civil work	%		30.0
Switch faid of the work	,,	(Of sv	vitch yard equip. cost)
	•	(
10, TAILRACE			
Tunnel excavation	m^3		80D-0.15
Tunner executation			D:Diameter
Open excavation	m3		6.0
, *	m ³		125D-0.18
Tunnel concrete lining	III.	1	D:Diameter
0	m ³		160.0
Open concrete			17D+28
Fill grouting	m		D:Diameter
Common Aprilla Commonation	m ³		80.0
Surge tank excavation	m		00.0

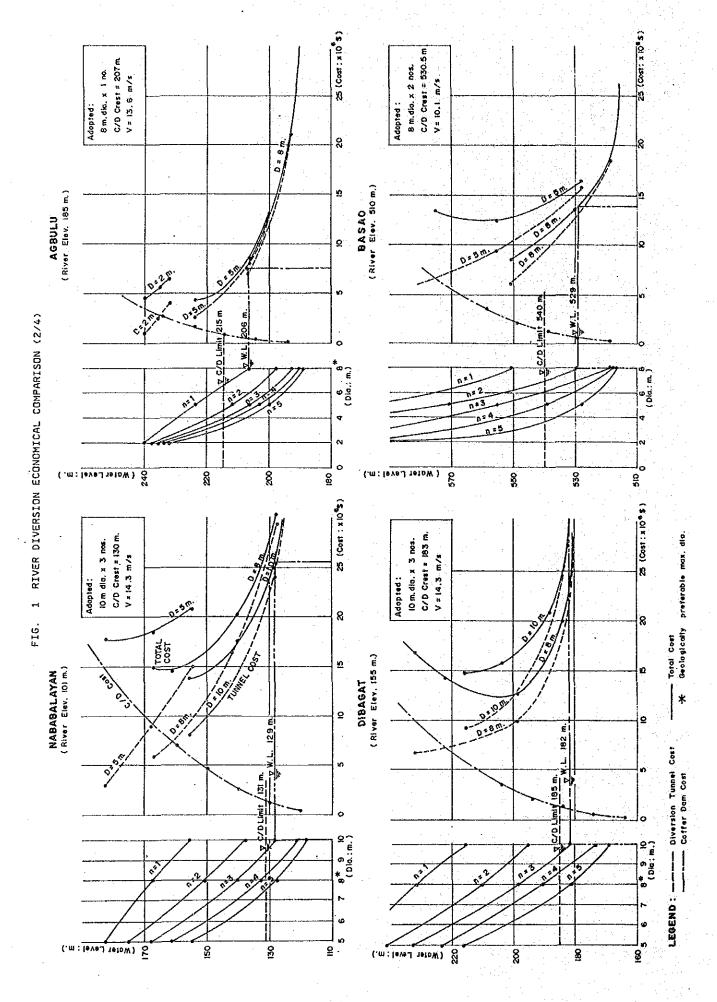
TABLE 18. CONSTRUCTION UNIT PRICES (4/5)

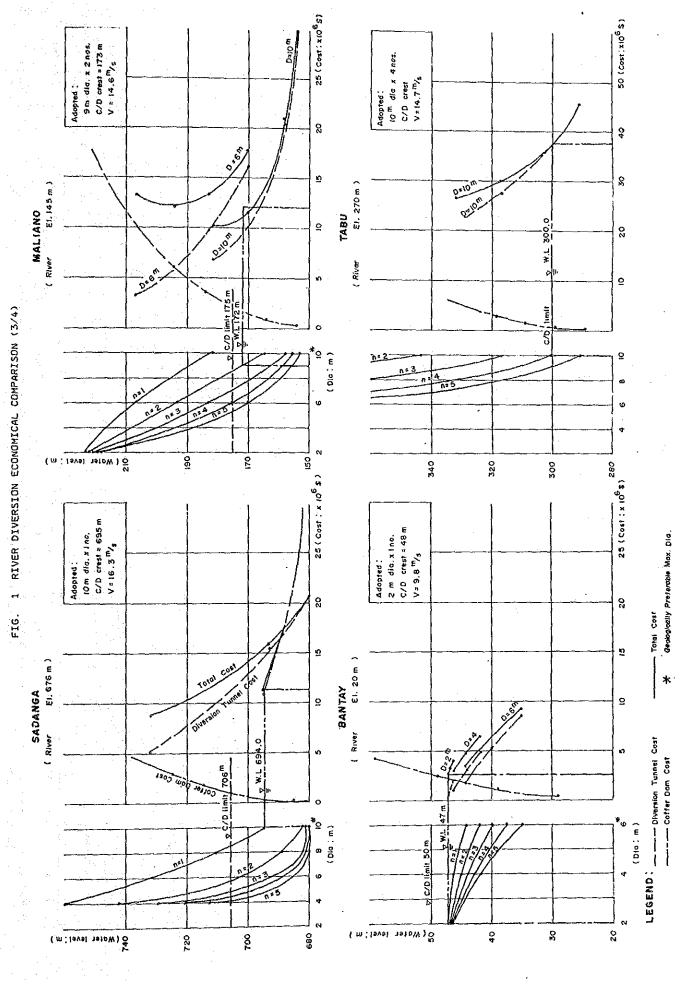
WORK ITEM	UNIT OF OTY	UNIT_PRICE
Surge tank concrete	m 3	180,0
Miscellaneous	%	5.0
11. TAILRACE OUTLET	*	
Excavation	m^3	6.0
Concrete	m^3	160.0
Miscellaneous	%	5.0
12. WATER TRANSFER FACILI	ITIES	
Inclined shaft excavation	m ³	210D-0.82
	•	D:Diameter
Shaft lining concrete	m ³	300D-0.5
		D:Diameter
Fill grouting	m	400.0
Consolidation grouting	m	800.0
Miscellaneous	%	5.0
13. MISCELLANEOUS CIVIL W	ORK %	5.0
		cost except access road)
		,
14. POWER EQUIPMENT		6500.0(P/He) ^{0.9}
	P	:Installed capacity (kw)
		He:Design head (m)
15. ACCESS ROAD		. *
Flat land	km	220000.0
Swampy land	km	220000.0
Rolling terrain	km	200000.0
Hilly land	km	250000.0
Improv. of existing road	km	90000.0
Bridge	m	5000.0
16. TRNSMISSION LINE		
69 kv single	km	23000.0
115 kv single	km	34000.0
230 kv double	km	111000.0
500 kv double	km	678000.0

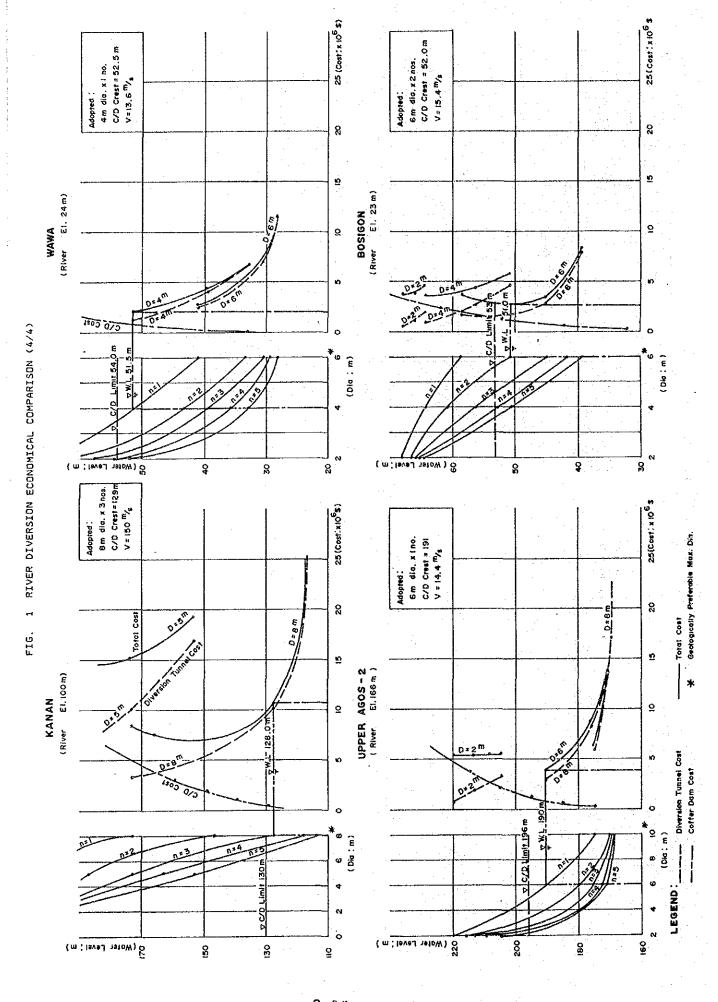
TABLE 18. CONSTRUCTION UNIT PRICES (5/5)

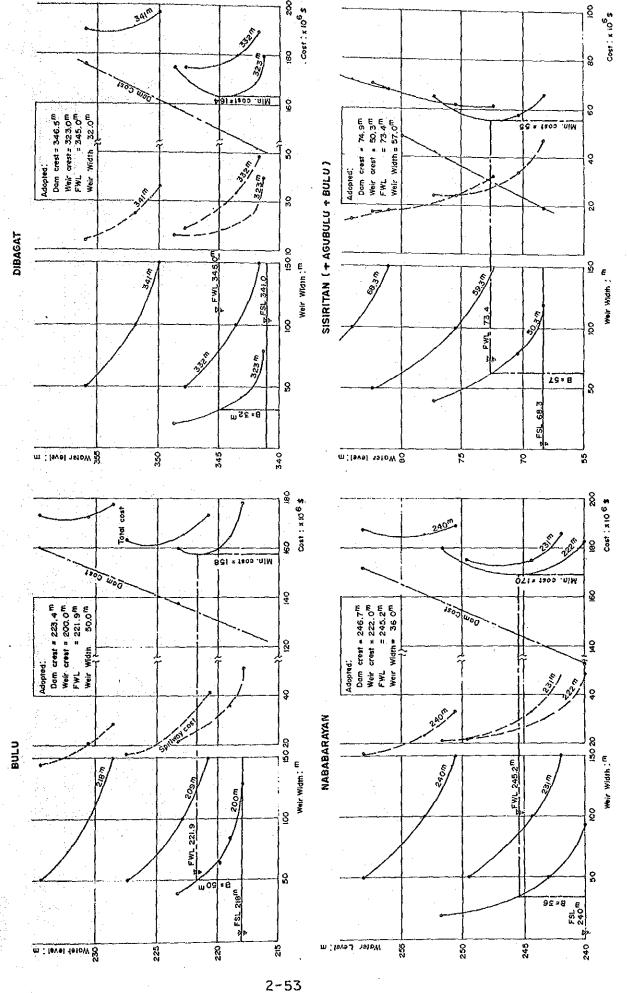
WORK ITEM	<u>UNIT OF OTY</u>	UNIT PRICE
17. SWITCH YARD AND SU	BSTATION	
69 kv	line	270000.0
115 kv	line	310000.0
230 kv	line	480000.0
500 kv	line	1860000.0
18. LAND PROCUREMENT A	ND RESETTLEMENT	en e
Caltivated land	ha rm, eggester in	700.0
Swamp	ha	500.0
Bushes and shrubs	ha	150.0
Forest	ha	50.0

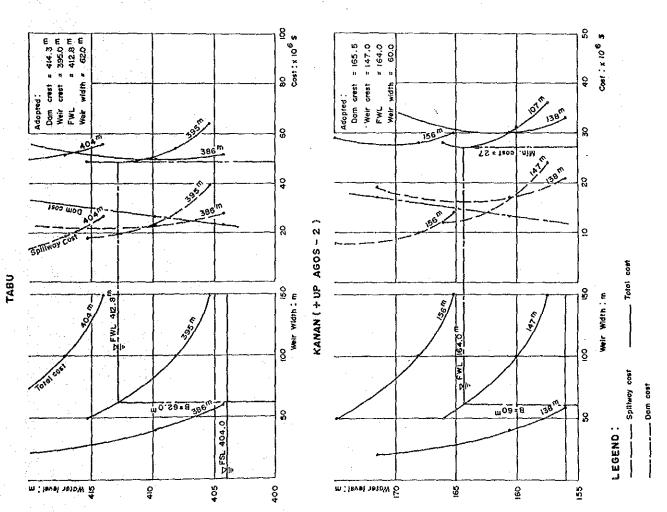

TABLE 19 COST ADJUSTMENT MULTIPLIER


Description	Application	Multiplie
1. Multiplier for site remoteness from port	Total cost	
- Distance less than 100 km		1.0
- Distance from 100 to 200 km		1.005
- Distance more than 200 km		1.01
2. Mutiplier for grouting quantity	Grouting q'ty	
- Geological class A (Very good)		0.7
- Geological class B (Good)		. 1.0
- Geological class C (Acceptable)		2.3
3. Multiplier for dam material cost	Unit price	
- Near material source (>5 km)		0.9
- Modelately near material source (>10 km)		1.0
- Far material source (<10 km)		1.15
4. Multiplier for tunnel excavation	Unit price	
- Geological class A (Very good)		0.8
- Geological class B (Good)		1.0
- Geological class C (Acceptable)		1.15
5. Multiplier for tunnel lining	Unit price	
- Geological class A (Very good)	•	0.9
- Geological class B (Good)		1.0
- Geological class C (Acceptable)		1.95
6. Multiplier for consolidation grouting	Unit price	,
- Geological class A (Very good)		0.25
- Geological class B (Good)		0.5
- Geological class C (Acceptable)		1.0
7. Multiolier for headrace channel	Excav, q'ty	-
or open air penstock excavation		
- Flat & uniform topography		1.0
- Undulating topography		1.5-2.0


THE SCHEME 1D. NO. 1-003-00-02-0-2 2.22 0.32 10.71 1.20 4.49 4.47 0.87 0.00 1.21 8.05 4.13 8.05 (ACCESSER ROAD) 1-003-00-02-0-2 2.22 0.32 10.71 1.20 4.49 4.47 0.87 0.00 1.21 8.05 4.13 8.05 (ACCESSER ROAD) 1-010-01-04-0-2 2.22 0.32 10.71 1.20 4.49 4.47 0.87 0.00 1.21 8.05 4.13 8.05 6.83 52.35 1-010-00-02-0-2 2.25 0.32 10.71 1.20 4.49 4.47 0.87 0.00 1.21 8.05 4.13 8.05 6.83 52.35 1-010-01-04-0-2 2.05 0.30 0.30 9.78 0.64 0.52 1.23 0.00 0.91 1.24 6.13 5.05 4.13 1.07 0.14 1.09 1.50 6.83 52.35 1-010-01-04-0-2 2.06-01-04-04-0-2 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.06-01-04-04-04 2.07-04-04-04-04 2.08-01-04-04-04 2.08-01-04-04-0						8	POWER DE	DEVELOPMENT		CONSTRUCTION		COST				•	Ŋ
1-003-00-02-0-2 2.22 0.32 10.71 1.20 4.49 4.47 0.87 0.00 1.21 8.05 4.19 5.66 43.38 1-010-00-01-1-2 4.67 0.85 14.06 1.25 1.10 5.43 0.78 0.00 1.41 10.91 5.06 6.83 52.35 1-010-00-02-0-2 4.57 0.22 4.38 1.01 2.66 4.07 0.31 0.00 0.86 6.37 3.06 4.13 31.67 1-010-01-04-0-2 4.67 0.73 19.89 0.89 1.01 5.86 0.34 4.25 1.89 12.47 6.52 8.81 67.53 1-010-01-04-0-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.86 4.42 2.80 3.78 28.97 1-022-00-10-0-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.86 4.42 2.80 3.78 28.97 1-022-00-10-0-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.86 4.42 2.80 3.78 28.97 1-022-00-10-0-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.86 4.42 2.80 3.78 28.97 1-022-00-10-0-2 2.07 0.10 2.48 4.29 0.22 0.00 0.98 10.10 3.84 5.19 39.77 1-022-00-0-2 2.07 0.78 11.4 0.48 4.29 0.22 0.00 0.98 10.10 3.84 5.19 39.77 1-0208-03-04-1-2 2.71 1.07 5.48 1.14 0.48 4.20 0.22 0.00 0.98 10.10 3.48 5.19 39.77 1-0208-03-04-1-2 2.71 1.07 5.48 1.14 0.48 4.20 0.22 0.00 0.99 10.07 3.66 4.94 37.88 2-008-03-04-1-2 2.71 1.07 5.48 1.14 0.48 4.20 0.22 0.00 0.99 10.07 3.66 4.94 37.88 2-008-03-04-2-2 2.72 0.77 0.54 0.33 2.68 0.18 0.00 0.78 6.25 2.94 3.84 2.94 2-008-03-04-2-2-2 2.70 0.17 5.57 0.52 0.73 2.46 0.13 2.68 0.18 0.00 0.78 6.25 2.94 3.84 2.94 2-008-02-2-0-2 2.70 0.17 5.57 0.52 0.73 2.46 0.13 0.00 0.94 5.03 2.93 3.93 2.93 3.93 2.93 3.94 2.00 0.94 5.03 2.93 3.93 2.93 3.93 2.93 3.94 2.00 0.94 5.03 2.93 3.94 2.90 3.04 0.20 0.94 5.03 2.93 3.94 2.93 3.94 2.90 3.94 2.00 0.94 5.03 2.93 3.94 2.90 3.94 2.90 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94	SCHEME	SCHEME ID. NO.		IMLAKE	неурвусе	HEAD TAUK	BENZLOCK	томей ноизе	EDARITAT			i .		CONTINGENCY	.IATOT-auz		TOTAL CONSTRUCTION
1-010-00-01-1-2 4.67 0.85 14.06 1.25 1.10 5.43 0.70 0.41 10.91 5.06 6.83 52.35 1-010-00-02-0-2 4.57 0.22 4.38 1.01 2.68 4.07 0.31 0.00 0.86 6.37 3.06 4.13 31.67 1-010-01-04-0-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.86 6.37 3.06 4.13 31.67 1-022-00-10-0-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.51 3.26 1.76 2.37 18.16 2-066-01-08-0-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.56 4.42 2.80 3.78 28.97	GUILIAN	1-003-00-02-0-2	2.22	0.32	10.71	1.20	4.49	4.47	0.87	0.00	1.21		4.19				48.5
1-010-00-02-0-2 4.57 0.22 4.38 1.01 2.68 4.07 0.31 0.00 0.86 6.37 3.06 4.13 31.67 1-010-01-04-0-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.51 3.24 7.25 1.89 16.75 1.022-00-10-0-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.51 3.24 1.247 6.52 8.81 67.53 1.022-00-10-0-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.51 3.26 1.76 2.37 18.16 0.22-00-0-0-2 2.00 0.30 9.78 0.64 0.52 3.25 0.32 0.00 0.98 10.10 3.84 5.19 39.77 1.18 (4580DANGA) 2-008-03-04-1-2 5.71 1.07 5.48 11.14 0.48 4.20 0.22 0.00 0.98 10.10 3.84 5.19 39.77 1.18 (4580DANGA) 2-008-03-04-1-2 5.71 1.07 5.48 11.14 0.48 4.20 0.22 0.00 0.98 10.10 3.84 5.19 39.77 1.18 (4580DANGA) 2-008-03-04-1-2 5.71 1.07 5.48 11.14 0.48 4.20 0.22 0.00 0.92 10.07 3.66 4.94 37.88 2-008-03-04-1-2 3.13 0.78 11.58 0.94 0.65 4.28 0.18 0.00 0.92 10.07 3.66 4.94 37.88 2-008-03-04-2 3.13 0.78 11.58 0.94 0.65 4.28 0.18 0.00 0.94 3.73 2.93 3.94 2.94 1.90 1.00 0.94 3.74 0.20 0.94 3.74 0.20 0.94 3.74 0.20 0.94 3.74 0.20 0.94 3.75 0.20 0.94 0.33 0.95 0.94 0.95 0.94 0.95 0.94 0.95 0.94 0.95 0.94 0.95 0.94 0.95 0.94 0.95 0.94 0.95 0.95 0.94 0.95 0.95 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	YA	1-010-00-01-1-2	4.67	0.85	14.06	1.25	1.10	5.43	0.78	0.00	1.41	10.91	5.06	6.83	C.	7.99	60.34
1-010-01-04-0-2 4.86 0.73 19.89 0.89 1.01 5.88 0.34 4.25 1.89 12.47 6.52 8.81 67.53 1-022-00-100-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.51 3.26 1.76 2.37 18.16 2-066-01-08-0-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.51 3.26 1.76 2.37 18.16 2-066-01-08-0-2 6.99 1.07 5.47 1.14 0.48 4.29 0.22 0.00 0.98 10.10 3.84 5.19 39.77 2-008-03-04-1-2 5.71 1.07 5.48 1.14 0.48 4.20 0.22 0.00 0.98 10.10 3.84 5.19 39.77 2-008-03-06-0-2 3.13 0.78 11.58 0.94 0.65 4.28 0.18 0.00 0.92 10.07 5.66 4.94 37.88 2-008-03-06-0-2 3.13 0.78 11.58 0.94 0.65 4.28 0.18 0.00 0.97 4.05 5.46 41.90 2-008-03-09-0-2 7.05 0.27 7.70 0.54 0.33 2.68 0.18 0.00 0.94 3.73 2.93 3.95 30.31 2-008-05-15-0-2 2.70 0.17 5.57 0.52 0.73 2.46 0.13 1.08 0.00 1.08 0.94 3.73 2.93 3.95 30.31 2-008-05-15-0-2 2.56 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 28.77 2.00 2.97 2.77 2-008-05-20-2 2.56 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 28.77 2-008-05-20-2 2.56 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 28.77 2-008-05-20-2 2.59 0.18 0.33 0.60 0.78 2.98 0.18 0.74 0.68 4.15 2.30 3.10 2.78 2-008-29-60-2 2.18 0.33 0.60 0.78 2.98 0.18 0.74 0.68 4.15 2.30 3.10 2.78 2-008-29-59-0-2 2.18 0.33 0.60 0.78 2.98 0.18 0.74 0.68 3.98 2.23 3.01 2.30 3.01 2.30 3.01 2.70 3-01 2.008-29-59-0-2 2.18 0.33 0.60 0.78 2.98 0.18 0.74 0.68 4.15 2.30 3.01 2.30 3.01 2.30 3.01 2.70 0.00 0.00 0.74 3.60 2.14 2.88 2.21 0.30 3.01 2.71 0.22 1.10 0.62 2.92 1.99 2.68 20.55 0.30 3.01 0.22 1.10 0.62 2.92 1.99 2.68 20.55 0.30 3.01 0.22 1.10 0.62 2.92 1.99 2.68 20.55 0.55 0.30 3.01 0.22 1.10 0.62 2.92 1.99 2.68 20.55 0.30 3.01 0.22 1.10 0.62 2.92 1.99 2.68 20.55 0.30 3.01 0.22 1.10 0.62 2.92 1.99 2.68 20.55 0.55 0.30 3.01 0.22 1.10 0.62 2.92 1.99 2.68 20.55 0.30 3.01 0.22 1.10 0.62 2.92 1.99 2.68 20.55 0.30 3.01 0.22 1.10 0.62 2.92 1.99 2.68 20.55 0.30 3.01 0.20 0.20 0.20 2.92 1.99 2.68 20.55 0.30 3.01 0.20 0.20 0.20 0.20 2.92 1.99 2.68 20.55 0.30 3.01 0.30 0.30 0.30 0.30 0.30 0.30	KUM	1-010-00-02-0-2	4.57	0.22	4.38	1.01	2.68	4.07	0.31	00.0	0.86	6.37	3.06	4.13	31.67	3.71	35.38
1-022-00-10-0-2 2.07 0.16 4.57 0.47 0.51 2.37 0.12 0.00 0.51 3.26 1.76 2.37 18.16 1.0 2.06e-01-08-0-2 2.30 0.30 9.78 0.64 0.52 3.25 0.32 0.00 0.86 4.42 2.80 3.78 28.97 1.18 (+SADANCA) 2-008e-03-04-1-2 5.71 1.07 5.48 1.14 0.48 4.29 0.22 0.00 0.98 10.10 3.84 5.19 39.77 2.008-03-04-1-2 5.71 1.07 5.48 1.14 0.48 4.29 0.22 0.00 0.98 10.10 3.86 4.94 37.88 2.008-03-04-1-2 3.13 0.78 11.58 0.94 0.65 4.28 0.18 0.00 0.96 10.07 3.66 4.94 37.88 2.008-03-04-1-2 3.13 0.78 11.58 0.94 0.65 4.28 0.18 0.00 0.96 5.25 2.84 3.84 29.41 2.008-03-09-0-2 2.008-03-09-0-2 2.009 0.55 6.19 0.99 0.54 3.44 0.21 0.00 0.78 6.25 2.84 3.84 29.41 2.008-03-09-0-2 2.009 0.27 7.70 0.54 0.43 2.48 0.00 0.94 3.73 2.93 3.95 30.31 2.008-05-15-0-2 2.56 0.17 7.61 0.63 1.12 2.80 0.18 0.00 0.94 3.73 2.93 3.95 30.31 2.008-05-15-0-2 2.56 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 2.02 2.92 3.009-05-20-2 2.59 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 2.02 2.92 3.009-05-20-2 2.59 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 2.82 3.01 2.308 2.008-05-20-2 2.59 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 2.82 3.03 3.00 2.90 0.94 5.03 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3	MURAYAN	1-010-01-04-0-2	4.86	0.73	19.89	0.89	1.01		0.34	4.25	1.89	12.47	6.52	8.81		7.91	75.4
2-066-01-08-0-2 2.30 0.30 9.78 0.64 0.52 3.25 0.32 0.00 0.86 4.42 2.80 3.78 28.97 1.18 (+SADANCR) 2-008-03-04-0-2 6.99 1.07 5.47 1.14 0.48 4.29 0.22 0.00 0.98 10.10 3.84 5.19 39.77 2.008-03-04-1-2 5.71 1.07 5.48 1.14 0.48 4.20 0.22 0.00 0.92 10.07 3.66 4.94 37.88 2.08-03-04-1-2 5.71 1.07 5.48 1.14 0.48 4.20 0.22 0.00 0.92 10.07 3.66 4.94 37.88 2.08-03-04-1-2 5.71 1.07 5.48 1.14 0.48 4.20 0.22 0.00 0.92 10.07 3.66 4.94 37.88 2.08-03-04-1-2 3.13 0.78 11.58 0.94 0.65 4.28 0.18 0.00 1.08 9.77 4.05 5.46 41.90 1.38 2.08-03-04-1-2 1.08 0.55 0.55 0.54 0.18 0.00 0.94 0.55 1.81 0.00 1.08 0.78 1.38 0.56 1.39 0.54 0.33 2.68 0.18 0.00 0.94 1.73 1.73 1.99 0.54 0.13 1.08 0.67 1.08 0.77 1.73 1.99 0.54 0.13 1.08 0.67 1.28 1.99 1.73 1.99 0.69 0.69 0.18 0.00 0.94 1.73 1.73 1.99 0.69 0.69 0.18 0.00 0.94 1.73 1.73 1.99 0.19 0.19 0.19 0.19 0.19 0.19 0.19	зка	1-022-00-10-0-2	2.07	0.16	4.57	0.47	0.51		0.12	0.00	0.51	3.26	1.76	•	18.16	3.33	21.4
1.R (+SADANGA) 2-008-03-04-0-2 6.99 1.07 5.47 1.14 0.48 4.29 0.22 0.00 0.98 10.10 3.84 5.19 39.77 2-008-03-04-1-2 5.71 1.07 5.48 1.14 0.49 4.20 0.22 0.00 0.92 10.07 3.66 4.94 37.88 2-008-03-06-0-2 3.13 0.78 11.58 0.94 0.65 4.28 0.18 0.00 1.08 9.77 4.05 5.46 41.90 2-008-03-06-0-2 3.85 0.56 6.19 0.90 0.54 3.44 0.21 0.00 0.78 6.25 2.84 3.84 29.41 2-008-03-09-0-2 7.05 0.27 7.70 0.54 0.33 2.68 0.18 0.00 0.94 3.73 2.93 3.95 30.31 4 2-008-05-15-0-2 2.70 0.17 5.57 0.52 0.73 2.46 0.13 1.08 0.67 3.57 2.20 2.97 2.75 2-008-06-23-0-2 2.70 0.17 5.57 0.52 0.73 2.46 0.13 1.08 0.67 3.57 2.20 2.97 2.75 2-008-06-23-0-2 2.70 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 28.77 2-008-06-23-0-2 2.79 0.26 8.34 0.62 1.28 3.19 0.27 0.00 0.84 5.03 2.83 3.82 29.28 3-007-00-06-0-2 2.92 0.28 7.34 0.49 0.31 3.03 0.66 3.98 2.23 3.01 23.08 3-077-00-06-0-2 2.11 0.19 5.09 0.49 0.40 2.95 0.31 1.30 0.64 3.60 2.44 2.88 22.10 3-077-00-06-0-2 2.11 0.19 5.09 0.43 0.80 2.71 0.22 1.10 0.62 2.92 1.99 2.68 20.56	PAYAO	2-066-01-08-0-2	2.30	0.30	9.78	0.64	0.52	3.25	0.32	00.00	0.86	4.43	2.80	3.78	•	10.40	39.37
TR (+SADANGA) 2-008-03-04-1-2 5.71 1.07 5.48 1.14 0.48 4.20 0.22 0.00 0.92 10.07 3.66 4.94 37.88 2-008-03-06-0-2 3.13 0.78 11.58 0.94 0.65 4.28 0.18 0.00 1.08 9.77 4.05 5.46 41.90 3.8 2-008-03-06-0-2 3.13 0.78 11.58 0.94 0.54 3.44 0.21 0.00 0.78 6.25 2.84 3.84 29.41 2-008-03-09-0-2 7.05 0.27 7.70 0.54 0.33 2.68 0.18 0.00 0.78 6.25 2.84 3.84 29.41 2-008-06-15-0-2 2.70 0.17 5.57 0.52 0.73 2.46 0.13 1.08 0.67 3.57 2.20 2.97 22.75 2-008-06-22-0-2 2.56 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 28.77 2-008-06-23-0-2 2.79 0.26 8.34 0.62 1.28 3.19 0.27 0.00 0.84 5.03 2.83 3.82 29.28 0.008-06-29-58-0-2 2.18 0.33 6.52 0.56 0.30 3.04 0.26 0.00 0.66 3.98 2.23 3.01 23.08 2.008-29-58-0-2 2.18 0.33 6.52 0.56 0.30 3.04 0.26 0.00 0.65 3.98 2.23 3.01 23.08 2.008-06-09-2 2.11 0.19 5.09 0.49 0.40 0.21 0.22 1.10 0.62 2.92 1.99 2.68 20.56 2.92 1.10 0.00 0.00 2.00 0.00 2.00 0.00 0.0	fico-1R	2-008-03-04-0-2	66.9	1.07	5.47	1.14	0.48	4.29	0.22	0.0	0.98	10.10	3.84	5.19	39.77	0.96	40.73
2-008-03-06-0-2 3.13 0.78 11.58 0.94 0.65 4.28 0.18 0.00 1.08 9.77 4.05 5.46 41.90 3R 2-008-03-07-0-2 3.85 0.56 6.19 0.90 0.54 3.44 0.21 0.00 0.78 6.25 2.84 3.84 29.41 2-008-03-15-0-2 2.70 0.17 5.57 0.52 0.73 2.46 0.13 1.08 0.67 3.57 2.93 3.95 30.31 2-008-05-15-0-2 2.70 0.17 5.57 0.52 0.73 2.46 0.13 1.08 0.67 3.57 2.20 2.97 22.75 2-008-06-22-0-2 2.56 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 28.77 2-008-06-23-0-2 2.79 0.26 8.34 0.62 1.28 3.19 0.27 0.00 0.84 5.03 2.83 3.82 29.28 3-008-20-6-0-2 1.78 0.18 6.33 0.60 0.78 2.98 0.18 0.74 0.68 4.15 2.30 3.10 23.78 2-008-29-58-0-2 2.18 0.33 6.52 0.56 0.30 3.04 0.26 0.00 0.65 3.98 2.23 3.01 23.06 3-077-00-06-0-2 2.11 0.19 5.09 0.49 0.40 2.95 0.31 1.30 0.64 3.60 2.44 2.88 22.10 3-077-00-06-0-2 2.11 0.19 5.09 0.43 0.80 2.71 0.22 1.10 0.62 2.92 1.99 2.68 20.56	HCO-1R (+SADANGA)	2-008-03-04-1-2	5.71	1.07	5.48	1.14	0.48	4.20	0.22	0.00	0.92	10.01	3.66	4.94		96.0	38.84
3R 2-008-03-07-0-2 3.85 0.56 6.19 0.90 0.54 3.44 0.21 0.00 0.78 6.25 2.84 3.84 29.41 2-008-03-09-0-2 7.05 0.27 7.70 0.54 0.33 2.68 0.18 0.00 0.94 3.73 2.93 3.95 30.31 2-008-05-15-0-2 2.70 0.17 5.57 0.52 0.73 2.46 0.13 1.08 0.67 3.57 2.20 2.97 22.75 2-008-06-22-0-2 2.56 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 28.77 2-008-06-23-0-2 2.79 0.26 8.34 0.62 1.28 3.19 0.27 0.00 0.84 5.03 2.83 3.82 29.28 3-008-20-46-0-2 2.18 0.33 6.52 0.56 0.30 3.04 0.26 0.00 0.66 3.98 2.23 3.01 23.78 3-008-29-59-0-2 2.18 0.33 6.52 0.56 0.30 3.04 0.26 0.00 0.73 3.84 2.40 3.24 24.85 3-077-00-06-0-2 2.11 0.19 5.09 0.49 0.40 2.95 0.31 1.30 0.64 3.60 2.14 2.88 22.10 3-077-00-06-0-2 3.08 0.14 3.86 0.43 0.80 2.71 0.22 1.10 0.62 2.92 1.99 2.68 20.56	II-00-2R	2008-03-06-0-2	3.13	0.78	11.58	0.94	0.65		0.18	0.0	1.08	•	4.05	5.46	41.90	1.44	43.34
4R 2-008-03-09-0-2 7.05 0.27 7.70 0.54 0.33 2.68 0.18 0.00 0.94 3.73 2.93 3.95 30.31 2-008-05-15-0-2 2.70 0.17 5.57 0.52 0.73 2.46 0.13 1.08 0.67 3.57 2.20 2.97 22.75 2-008-06-23-0-2 2.56 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 28.77 2-008-06-23-0-2 2.79 0.26 8.34 0.62 1.28 3.19 0.27 0.00 0.84 5.03 2.83 3.82 29.28 3-008-29-58-0-2 2.18 0.33 6.52 0.56 0.30 3.04 0.26 0.00 0.66 3.98 2.23 3.01 23.78 3-007-00-6-0-2 2.11 0.19 5.09 0.49 0.40 2.95 0.31 1.30 0.64 3.60 2.14 2.88 22.10 3-077-00-06-0-2 2.11 0.19 5.09 0.43 0.80 2.71 0.22 1.10 0.62 2.92 1.99 2.68 20.56 3-077-00-07-0-2 3.08 0.14 3.86 0.43 0.80 2.71 0.22 1.10 0.62 2.92 1.99 2.68 20.55	1100-3R	2-008-03-07-0-2	3.85	0.56	6.19	0.30	0.54	3.44	0.21	9.0	0.78		2.84			0.54	29.95
2-008-05-15-0-2 2.70 0.17 5.57 0.52 0.73 2.46 0.13 1.08 0.67 3.57 2.20 2.97 22.75 2-008-06-22-0-2 2.56 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 28.77 2-008-06-23-0-2 2.79 0.26 8.34 0.62 1.28 3.19 0.27 0.00 0.84 5.03 2.83 3.82 29.28 3-008-20-46-0-2 1.78 0.18 6.33 0.60 0.78 2.98 0.18 0.74 0.68 4.15 2.30 3.10 23.78 2-008-20-58-0-2 2.18 0.33 6.52 0.56 0.30 3.04 0.26 0.00 0.66 3.98 2.23 3.01 23.06 3-077-00-06-0-2 2.11 0.19 5.09 0.49 0.40 2.95 0.31 1.30 0.64 3.60 2.14 2.88 22.10 3-077-00-07-0-2 3.08 0.14 3.86 0.43 0.80 2.71 0.22 1.10 0.62 2.92 1.99 2.68 20.56	IICO-4R	2-008-03-09-0-2	7.05	0.27	7.70		0.33	2.68	0.18	0.00	0.94		2.93	•		0.38	30.69
2-008-06-22-0-2 2.56 0.17 7.61 0.63 1.12 2.80 0.25 1.81 0.85 4.44 2.78 3.75 28.77 2-008-06-23-0-2 2.79 0.26 8.34 0.62 1.28 3.19 0.27 0.00 0.84 5.03 2.83 3.82 29.28 3.80 0.84 5.03 20-46-0-2 1.78 0.18 6.33 0.60 0.78 2.98 0.18 0.74 0.68 4.15 2.30 3.10 23.78 2-008-29-58-0-2 2.18 0.33 6.52 0.56 0.30 3.04 0.26 0.00 0.66 3.98 2.23 3.01 23.06 3.90 2-008-29-59-0-2 2.11 0.19 5.09 0.49 0.40 2.95 0.31 1.30 0.64 3.60 2.14 2.88 22.10 3 3-077-00-06-0-2 3.08 0.14 3.86 0.43 0.80 2.71 0.22 1.10 0.62 2.92 1.99 2.68 20.55	LTAN	2-008-05-15-0-2	2.70	0.17	5.57		0.73	2.46	0.13	1.88	0.67	3.57	2.20		22.75	2.44	25.19
2-008-06-23-0-2 2.79 0.26 8.34 0.62 1.28 3.19 0.27 0.00 0.84 5.03 2.83 3.82 29.28 2-008-20-46-0-2 1.78 0.18 6.30 0.74 0.66 4.15 2.30 3.10 23.78 2-008-29-59-0-2 2.18 0.33 6.52 0.56 0.30 3.04 0.26 0.00 0.66 3.98 2.23 3.01 23.06 2-008-29-59-0-2 2.92 0.28 7.34 0.49 0.31 3.03 0.26 0.00 0.73 3.84 2.40 3.24 24.85 3-077-00-06-0-2 2.11 0.19 5.09 0.49 0.31 1.39 0.64 3.60 2.14 2.88 22.10 3-077-00-06-0-2 3.08 0.14 3.86 0.43 0.80 2.71 0.62 1.90 1.99 2.68 20.56	SIL	2-008-06-22-0-2	2.56	0.17	7.61	0.63	1.12	2.80	0.25	1.81	0.85	4.44	2.78	3.75	28.77	1.18	29.95
2-008-20-46-0-2 1.78 0.18 6.33 0.60 0.78 2.98 0.18 0.74 0.68 4.15 2.30 3.10 23.78 5. 2-008-29-58-0-2 2.18 0.33 6.52 0.56 0.30 3.04 0.26 0.00 0.66 3.98 2.23 3.01 23.06 5. 2-008-29-59-0-2 2.92 0.28 7.34 0.49 0.31 3.03 0.26 0.00 0.73 3.84 2.40 3.24 24.85 6. 3-077-00-06-0-2 2.11 0.19 5.09 0.49 0.40 2.95 0.31 1.30 0.64 3.60 2.14 2.88 22.10 2. 3-077-00-07-0-2 3.08 0.14 3.86 0.43 0.80 2.71 0.62 2.92 1.99 2.68 20.56 1.	ANUDAN	2-008-06-23-0-2	2.79	0.26	8.34	0.62	1.28	3.19	0.27	0.00	0.84	5.03	2.83	3.82	29.28	4.68	33.96
2-008-29-58-0-2 2.18 0.33 6.52 0.56 0.30 3.04 0.26 0.00 0.66 3.98 2.23 3.01 23.06 5.0 5.00 2-008-29-59-0-2 2.92 0.28 7.34 0.49 0.31 3.03 0.26 0.00 0.73 3.84 2.40 3.24 24.85 6. 3-077-00-06-0-2 2.11 0.19 5.09 0.49 0.40 2.95 0.31 1.30 0.64 3.60 2.14 2.88 22.10 2. 3-077-00-07-0-2 3.08 0.14 3.86 0.43 0.80 2.71 0.22 1.10 0.62 2.92 1.99 2.68 20.55 1.	SULAO	2-008-20-46-0-2	1.78	0.13	6.33	09.0	0.78		0.18	0.74	0.68	4,15	2.30	3.10	23.78	5.49	29.27
2-008-29-59-0-2 2.92 0.28 '7.34 0.49 0.31 3.03 0.26 0.00 0.73 3.84 2.40 3.24 24.85 6. 3-077-00-06-0-2 2.11 0.19 5.09 0.49 0.40 2.95 0.31 1.30 0.64 3.60 2.14 2.88 22.10 2. 3-077-00-07-0-2 3.08 0.14 3.86 0.43 0.80 2.71 0.22 1.10 0.62 2.92 1.99 2.68 20.56 1.	SECNAN	2-008-29-58-0-2	2.38	0.33	6.52	0.56	0.30		0:26	0.00	0.66	3.98	2.23	3.01	23.06	5.06	28.12
3-077-00-06-0-2 2.11 0.19 5.09 0.49 0.40 2.95 0.31 1.30 0.64 3.60 2.14 2.88 22.10 2.9 3-077-00-07-0-2 3.08 0.14 3.86 0.43 0.80 2.71 0.22 1.10 0.62 2.92 1.99 2.68 20.56 1.	P. CASECNAN	2-008-29-59-0-2	2.92	0.28	7.34	0.49	0.31	3.03	0.26	0.00	0.73	3.84	2.40	•	24.85	6.72	31.57
3-077-00-07-0-2 3.08 0.14 3.86 0.43 0.80 2.71 0.22 1.10 0.62 2.92 1.99 2.68 20.56 1.	SNO-2	3-077-00-06-0-2	2.11	0.19	5.09	0.49	0.40	4	0.31	1.30	0.64	3.60	2.14		7	-	24.45
	3 - ONS	3-077-00-07-0-2	3.08	0.14	3.86	0.43	0.80	•	•	1.10	0.62	2.92	1.99			1.30	21.86
	AGNO-3	3-077-00-07-0-2	3.08 	0.14	3.86	0.43	0.80	•	•	1.10	0.62	. •	76	1.9	1.99 2.	1.99 2.68 20.	1.59 2.68 20.56


												(Unit:	10, 02\$)	
			X ·	POWER DE	DEVELOPMENT		CONSTRUCTION	COST						
SCHEME	SCHEME ID. NO.	DIVERSION	IMLYKE	неурвуск	PENSTOCK	FOWER HOUSE	TALLRACE	CIAIT MOBK	POWER EQUIPMENT	ENCINEERING &	CONTINGENCY	OTHER COST (LAND ACQUISITION)	TOTAL CONSTRUCTION	
SUPO	1-22-0-5-0-1	77.58 19.85 32.38	3.80	3,05	2.83 1.5	53 8.23	3 0.80	7.50	36.74	24.19 33	32.77 25j.24	4 6.78	258.00	
SUPO (+ETEE)	1-22-0-5-4-1	20.79 16.33 24.01	2.73	7.87	1.75 1.	32 7.36	5 1.17	5.28	29.80	17.59 23	1.74 182.03	3 6.65	188.68	
ETEB	1-22-0-6-0-1	72.60 23.16 15.14	3.48	3.11	3.21 1.	1.77 7.50	0 1.68	6.58	31.09	21.17 28	1.57 219.06	5 6.71	.225.77	
SISIRITAN	2-6-0-1-0-1	218.35 32.05 20.86 13.1	₹	16.68 13	1.77 9.	9.31 25.92	2 3.94	17.60	109.85	39.02 7	77.77 596.27	7 14.26	610.53	
SISIRITAN (+AGBULU)	2-6-0-1-1-1	218.35 32.05 20.86	12.06	14.08 10	0.19 8.	8.24 22.57	3.79	17.11	103.09	38.28 75	.10 575.77	7 14.27	590.04	
SISIRITAN (+AG. + BULU)	2-6-0-1-2-1	93.71 29.47 19.17	8.41	8.56	6.97 4.	.94 15.29	3 4.01	9,53	67.92	28.68 44	44.50 341.15	5 7.83	348.98	
BULU	2-6-0-3-0-1	220.33 30.22 37.55	9.13	6.83	9.44 5.	58 17.87	3.78	17.09	87.94	37.54 72	72.49 555:75	21.51	577.26	
BUIN (+AGBUIN)	2-6-0-3-1-1	106.65 32.49 35.38	10,36.	9.23 10	0.80 5.	25 19.95	2.00	11.60	91.53	32.29 55	55.13 422.64	21.27	443.91	
nababarayan	2-6-1-4-0-1	209.89 27.32 36.61	7.03	5.07	8.19 5.	90 14.14	1.91	15.80	67.33	35.41 65	.19 499.78	24.45	524.23	
DIBAGAT	2-6-1-5-0-1	249.83 20.35 43.75	6.16	7.29	9.25 4.	.92 13.08	1.00	17.78	59.00	36.94 70	70.40 539.74	23.96	563.70	
AGBULU	2-6-1-6-0-1	198.17 20.94 10.74	3.21	0.00	0.00 2.	.86 10.15	1.81	12.39	46.76	30.82 50	50.68 388.53	14.48	403.01	
BASAO (+SADANGA)	2-8-3-3-1-1	353.41 29.99 20.10	2.28	3.19	1.20 4.	.93 8.10	0.52	21,19	34.93	39.03 77	77.83 596.68	4.20	600.88	
SADANGA	2-8-3-5-0-1	319.77 30.10 15.19	3.92	5.13	5.36 3.	3.69 10.22	0.72	19.70	44-13 3	38.08 74	74,40 570.41	9.31	579.72	
SADANGA (+CHICO-IR)	2-8-3-5-1-1	91.21 01.02 77.918	4.09	7.56 5	.47 10.90	90 11.62	0.59	20.26	49.34 3	38.82 77	77.06 590.78	9.31	60.009	
BANTAY	2-8-7-24-0-1	28.46 23.77 0.51	2,82	0.00	0.00 4.	.91 5.70	2.56	3,44	20.38 1	31.57 15	15.62 119.74	13.61	133.35	
MALIANO	2-8-14-34-0-1	250.42 28.58 17.00	4.09	3.69 5	5.20 3.	3.00 8.67	2.31	16.15	40.29 3	34.47 62	62.08 475.96	22.06	498.02	
TABU (+BINGA)	3-77-0-4-1-1	86.49 42.87 43.69	2.87	2,96 2	2.26 3.	.29 7.96	0.59	9.65	34.95 2	26.91 39	.67 304.16	B.61	312.77	
XANAN	4-7-0-1-0-1	430.85 23.75 32.68	3.79	4.65 4	4.81 4.	.45 9.87	1.42	25.81	41.81 4	43.31 94.	.08 721.28	8.32	729.60	
KANAN (+UP. AGOS 2)	4-7-0-1-1	20.48 38.82 10.55	2.95	0.00	0.00 3.24	24 7.29	1.67	4.25	28.85 1	14.76 19	.93 152.78	7.79	160.57	•
UPPER AGOS 2	4-7-0-5-0-1	136.94 16.92 7.58	2.03	0.00	0.00 1.56	56 7.59	1.43	8.70	31.15 2	25.45 35	.90 275.24	9.93	285.17	
Wawa	4-115-1-1-0-1	83.18 13.46 4.56	1.11	0.00	0.00 0.	65 5.45	1.04	5.47	16.44 1	16.42 22.	.17 169.95	5.25	175.20	
BOSIGON	5-14-1-1-0-1	31.04 24.71 5.27	2.39	2.66	.79 0.	58 5.66	0.74	3.74	19.68 1	12.28 16	.58 127.12	5.04	132.16	
			-										مون مالد	


FIGURES


Total cost

Spillway cost

Dam cost

LEGEND:

2-54

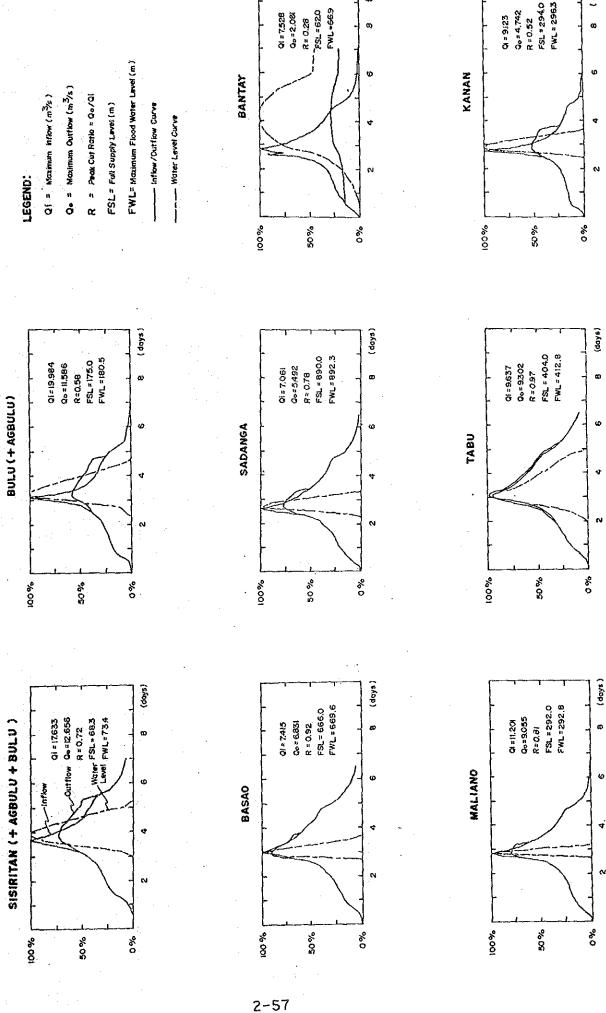

Qo= 7.103 R = 0.61 FSL*346.0 FWL348.2 04-19384 04-10224 R = 051 FSL-218.0 FWL-2219 01 = 11.640 FWL** Maximum Flood Water Level (m) AGBULU Qe = Maximum Outtlow (m3/s) R = Peak Cut Ratio = Go/Oi Qi * Maximum Inflow (m3/s) FSL* Full Supply Level (m) BULU --- Inflow / Outflow Curve --- Water Level Curve LEGEND: 20% % 001 % % 00 % % % (skop) (doys) (days) 01 = 8,637 00=6,232 R = 0.72 FSL=371.0 FWL=373.3 0°-6612 R = 052 FSL-3410 FWL-3450 01 • 71,633 00 • 11,178 R* 0.63 FSU-1052 FWU-1052 01-12,510 ω φ SISIRITAN DIBAGAT ETES 50% % % 001 20 % % 0 20% **%** О % 001 % 00I (days) (days) (days) 0) = 11265 00 = 7674 R = 0.68 FSL=3200 FWL=3249 Fs. = 2630 Fw. = 2724 FSL-2400 FWL-2452 01 • 14.664 0. • 8044 R*0.55 Co = 9.493 R = 0.97 Q = 9.739 SUPO (+ETEB) NABABARAYAN SUPO 8 000 % %0 %0% % 20% % % 001 % 0% 8

FIG. 3 SPILLWAY FLOOD ROUTING RESULT (1/3)

(days)

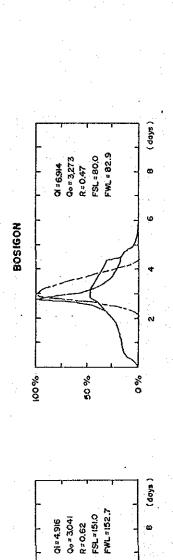
8 (doys)

3 SPILLWAY FLOOD ROUTING RESULT (2/3) FIG.

(doys)

(days)

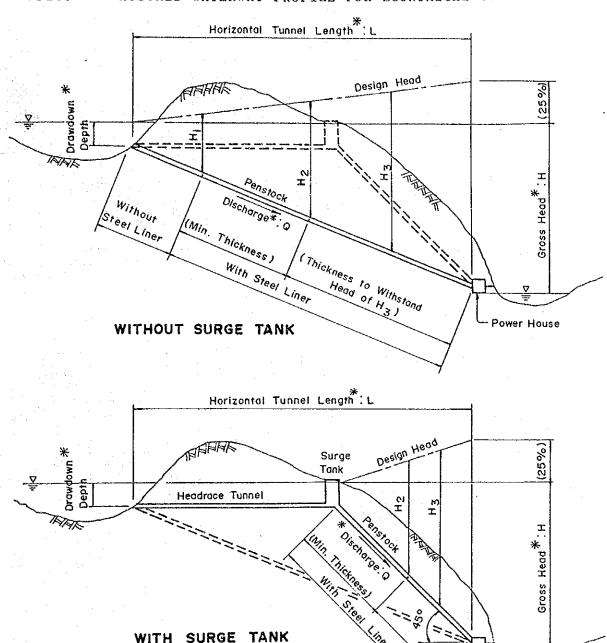
FIG. 3 SPILLWAY FLOOD ROUTING RESULT (3/3) (days) FSL=156.0 FWL=164.0 Oi = 9,123 Qo = 8,383 R=092 KANAN (+ UP. AGOS 2) % %00 %0% (days) Qf = 10.834 Qe = 5.733 FSL = 316.0 FWL = 317 R = 0.53 UPPER AGOS 2 % 00; 20% %


FWL* Maximum Flood Water Level (m)

- Inflow/Outflow Curve

Q1 = Maximum inflow (m²/s) Qe = Maximum Outflow (m /s)

LEGEND:


R = Peak Cut Ratio = Qo/Qi FSL* Full Supply Level (m)

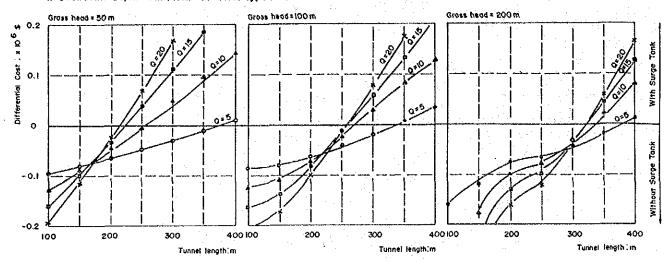
20%

WAWA

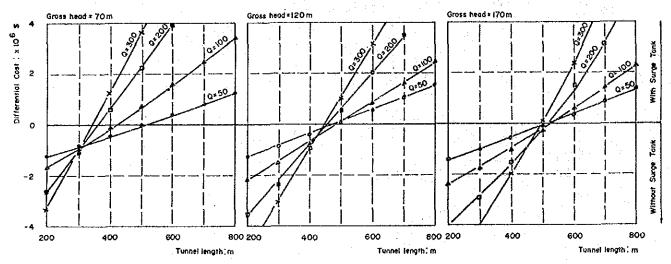
FIG. 4 ASSUMED WATERWAY PROFILE FOR ECONOMICAL COMPARISON

Power House

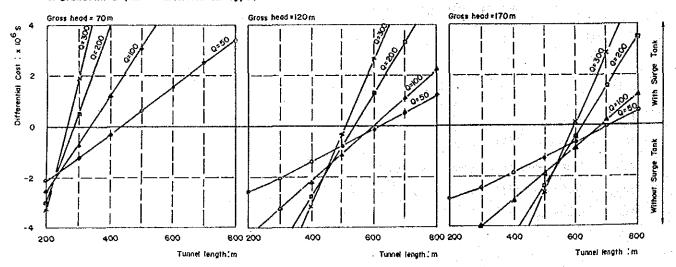
NOTES:

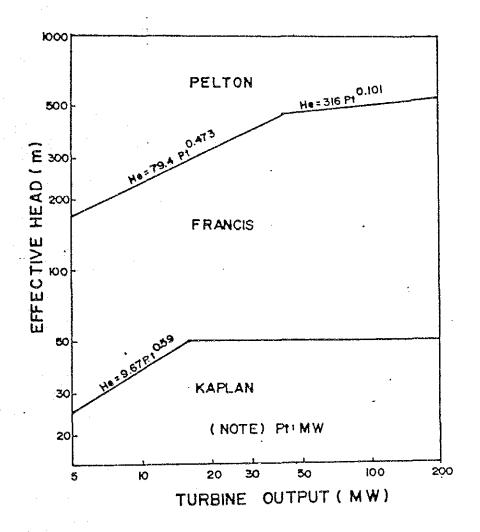

X : Variables for cost comparison

H₁ : Water head to be withstanded by concrete lining


H2: Water head to be withstanded by min. thickness of steel liner

H3 : Design head for lower part of penstock


I. Drawdown Depth = om (Run - of - river type)


2. Drawdown Depth = 20 m (Reservoir Type)

3. Drawdown Depth = 50m (Reservoir Type)

NOTE: Differential Cost = (Const. cost without S. tonk) - (Const. cost with S. tank)

는 하다는 다른 사람이 되었다. 스피어 나는 사람들이 되었다. 그들은 사람들이 하는 것은 사람들이 사용하는 사람들이 되었다. 그는 그 사람들이 되었다.
그는 무슨 사람들은 사람들은 이번 사용하는 사람들이 되는 사람들은 사람들이 가는 사람들이 되었다.
는 사용 회사회에 되었다. 그 사용을 통해 가는 하는 것 같은 것이 되었다. 그는 학생들은 사용하는 것 같은 사용하는 것이 되었다. 그는 것 같은 것이 없는 것이 없는 것이 없는 것이 없는 것이 되
도 있는 사람들은 이렇게 되는 것을 하는 사람들이 되는 것을 하는데 되었다. 그렇게 되는 사람들이 되었다는 것을 하는데 되었다는데 되었다. 그런데 그렇게 되었다는데 그렇게 되었다는데 그렇게 되었다.
는 사용하게 되는 것 같은 아이들의 발생하게 되었다. 분들에 되었는 사람들은 사람들이 가능한 사용을 하게 되었다. 그는 것은 사람들이 되었다. 그는 사람들이 되었다.
는 말이 있는 경기 여러워 그는 왕생는 왕들이는 이번에 보고 이 생기는 경실 양양화 회장 왕석, 양분 환경 동물 보고함이 확여 휴가되는 말이 하고 있는다.
는 사람들이 한 경로 마음이 하고 하루는 한 소리를 보고 있다. 그 전에 가는 사람들이 하는 것을 받고 있다는 수 있을 때 하는 것을 하는데 보고 하는데 보고 있다. - 사용물 및 등의 수이 하는 경로 보고 있는데 보고 있는데 보고 있는데 보고 있는데 하는데 되었다. 경우를 하는데 되었다. 프로그램 등을 하고 있는데 보고 있는데 보고 있다. 그 보고 있는데 보고
는 사람들이 되어 있다. 경기를 가는 것이 되었습니다. 사람들이 가는 사람들이 되었습니다. 그는 사람들이 가는 것이 되었습니다. 그는 사람들이 되었습니다.
는 사람이에 하는 이 이 회에서에 이 생각이다. 그는 사람들이 되는 것은 이 생각을 받아 있는 것이 되었다. 하는 것이 되었다. 그는 것을 살아보고 있는데, 이 보고 있는데, 그는 것이 없는데, 그 - 그들은 사람들이 사람들이 있다. 이 작은 사람들이 되었다. 그는 것이 되었다. 하는 것이 나를 하는데, 하는데, 이 사람들이 사람들이 되었다. 그는 것을 하는데, 그는 것이 되었다. 그는 것이 사
는 이번 등에 마르지 않아 있다. 이번 보험을 받는 것은 사람들이 되었다. 그들이 가는 경우를 받는 것을 위한 사람들이 되었다. 그는 경우를 받는 것을 보고 있다.
는 사용한 경험을 하는 것 같은 학교 전에 대한 항상 학생들은 이 경험에 되었다. 그런 이 사용을 하는 경험을 받는 것 같은 학생들은 학생으로 하는 것이다. 그런 그런 그런 그는 그는 그를 가장 하는
는 사용하는 사람들은 사용자를 가는 하는 하는 하는 하는 하는 하는 하는 사람들은 하는 사람들은 함께 보고 있는 것을 다고 하는 것이다. 그런 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은
그는 물에게 만든 얼굴은 물로 모르다면 나는데 그렇게 되었다. 그렇게 되는데 이번에 하는데 말하는데 말을 모르게 되었다.
그림도 하는 수 있다면 한 경우 아들이 있다면 하는 것이 되었다면 하는 것이 없는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하
- 프랑이스 보고 하는 것들은 마음을 보세요요요요요요요요요요요요요요요요요요요요요요요요요요요요요요요요요요요요
그 병원에 되어 같다. 그렇게 방반장이를 만할 만들어 병원이 발표한 음반 그활 충행하는 사람들이 되었다. 그 모모 하는
이 보고 있다는 것이 되는 것이 되는 것을 보고 있다. 그는 사람이 있는 것이 되었는데 사람이 되는 것을 받는 것이 되는 것이 되었다. 그는 것이 되었다. - 사람이 되는 사람이 되었는데 하면 사람이 되었다. 그 사람이 되었는데 하는 것이 되었다. 그리고 있는데 하는 것이 되었다. 그리고 있는데 하는 것이 되었다.
그는 독교 방문적 작은 역사 하는 그 회사는 하는 사람들은 사람들이 가고 있다. 그는 아니는
는 이 사람들에 마음을 하는 것이 하는데 이 사람이 되는 것이 되었다. 그런데 함께 하는데 사람들이 다른데 함께 발표되었다. 이 사람들이 가고 있는데 그는데 그는데 그는데 그를 하는데 하는데 하는데
으로 보는 사람들이 되었다. 그는 사람들이 되었다. 그는 사용을 보고 있는 것이 되었다. 그는 사람들이 가는 사람들이 되었다. 그는 사람들이 되었다.
는 이번 발표를 받는 사람들은 경험을 하는 것이다. 전한 경험 보는 이 기술에게 하는 것이 모르는 것을 받고 말이 가입니다. 그리고 있는 것이다.
그 이렇는 말 그리를 하는 것을 보면 하는 것 같아. 그리는 얼마를 살아 있는 것 같아. 그리고 살아 먹는 것 같아.
는 사람들이 되었다. 그는 사람들은 사람들은 사람들이 되었다. 그는 사람들에게 되었다는 것이라는 사람들은 사람들은 사람들이 가득하게 되었다. - 사람들은 사람들은 사람들이 자동하는 사람들이 되었다. 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다. 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은