Table C-13 (4/5)

WATER BALANCE IN CASE OF 30 DAYS DELAY IN CROPPING SCHEDULE FOR CASE 1 IN 1981

1648 : 168100	RUNOFF	BLOCK 1	BLOCK 2	.DDY DLOCK 3	TOTAL	UPLAND	WATER	DIVERS'N REQM'T	HAINT. FLOW	DALÀNCE	DEFICIT	SURPLUS	FROM BRH	WATE
	((08/5)	(CUR/S)	11122153	([DN12]	. 1008753.	.(CU8/S).	((08/5)	((08/5)	(EDM/2)	1208/5)	(#CH)	{#(#}	(CUH/S)	(##
JAN 1-5 6-10 11-15 16-20 21-25 6-150	54.19 52.32 17.97 34.74 32.50 27.20	t 29 0 . 8 . 15 4 . 79 5 . 44 2 . 72	5.63 5.93 8.97 8.01 8.19 8.97	4.29 4.94 4.94 4.29 4.29 4.29	11.21 14.87 22.06 16.34 17.91 16.62	0. 0. 0.81 0.81 0.81 0.81	C.47 0.47 0.42 0.47 0.47 0.47	11.68 11.54 23.34 19.10 19.19 17.90	6.00 6.00 6.00 6.00 6.00 6.00	36.51 34.98 .8.63 9.64 7.31 3.30	0. 0. 0. 0. 0. 0.	15+77 15+11 - 3+73 4+16 3+16 1+71	62.51 40.98 14.63 15.64 13.31 9.30	100 100 100 100 100
FFH 1- 5 6-10 11-15 14-20 21-25 5-END	32,25 31,98 57,26 30,51 51,19	0.54 0. 0. 0. 0. 0.	5,75 8,57 5,93 5,93 2,81 2,97	4.94 4.94 4.94 2.34 4.94	10.58 13.50 10.87 10.87 10.87 5.15 7.90	0. 0.24 0. 0. 0.81 0. 0.	C ± 57 0 • 47 0 • 47 0 • 47 0 • 47 C • 47	11.05 14.21 11.34 12.15 5.62 8.37	6.00 6.00 6.00 6.00 6.00 6.00 6.00	22.65 12.04 14.64 33.61 18.69 36.82	0. 0. 0. 0. 0.	9,79 5,20 6,32 74,52 8,16 9,54	28.65 18.04 20.64 39.61 24.89 42.82	100 100 100 100 100
AR 1- 5 6-10 11-15 16-20 21-25 5-END	35.01 23.44 24.16 17.98 21.46 19.49	0. 0. 0. 7.51 4.08	C. 0. 0. 0. 0.	Ú. 4.29 1.69 3.29 4.69 0.02	U. 4.29 1.69 3.29 5.20 4.10	0. 0.61 0.81 0. 0. <u>81</u> 0.	0.47 0.47 0.47 0.47 0.47 0.47	0.47 5.57 2.97 3.76 9.68 4.57	6.00 6.00 6.00 5.00 5.00	28.54 11.87 15.19 10.22 6.98 9.92	0. 0. 0. 0. 0.	12.33 5.13 6.56 4.41 3.01 5.14	34.54 17.87 21.19 14.22 11.98 14.92	100 100 100 100 100
APR 1- 5 6-10 11-15 16-20 21-25 6-END	42.94 70.29 60.29 78.20 74.35 41.88	11.92 8.76 11.76 0. 9.98 9.98	C. C. O. 8.58 8.38	6.78 6. 6. 6. 0.	12.76 6.76 11.76 0. 18.36 18.36	0.75 0. 0. 0. 0.81 0.81	C.47 C.47 C.47 C.47 C.47 C.47 C.47	13.98 9.23 12.23 0.47 19.64 19.64	6.00 6.00 6.00 6.00 6.00 6.00 6.00	22.96 55.06 42.06 71.73 49.21 16.24	0. 0. 0. 0. 0.	9,92 23,79 18,17 30,99 21,26 7,02	28.96 61.06 48.06 77.73 55.21 22.24	100 100 100 100 100 100
HAY 1- 5 6-10 11-15 16-20 21-25 6- <i>END</i>	61.81 80.43 90.35 100.19 99.62 84.44	0, 0, 6,53 8,15 0,	6.25 10.11 16.63 13.95 9.40 C.	0, 0, 9, 0, 4,11 <i>0,72</i>	6,25 10,11 22,78 20,28 21,66 0,72	0. 0. 0.81 0. 0.81 0.	. 0.47 0.47 0.47 0.47 0.47 0.47 0.47	6+72 10-58 24-06 20-75 22+94 1,19	6.00 6.00 6.00 6.00 6.00 6.00 6.00	49.09 63.85 60.29 73.44 70.68 77.25	0. 0. 0. 0.	21.21 27.58 26.05 31.73 30.53 60.03	55.09 69.85 66.29 79.44 76.65 83.25	100 100 100 100 100 100
JUN 1- 5 6-10 11-15 16-20 21-25 6-END	26.32 40.98 34.21 27.04 24.75 37.26	8.15 7.62 8.15 8.15 8.15 8.15	8,97 8,77 8,97 8,97 8,19 8,19 8,97	7,29 7,29 8,94 8,39 6,64	24.41 23.68 26.06 26.06 21.73 25.16	0.81 D.52 0.81 0.81 0.81 0.81	C:47 0.47 0.47 0.47 0.47 C:47	25.69 24.67 27.34 27.34 23.01 24.64	6.00 6.00 6.00 6.00 6.00 6.00	34 +63 10 + 29 0 - 87 -6 + 30 -6 + 06 6 + 82	0. 0. -2.72 -1.53	14.96 4.44 0.37 0. 0. 0.		100 100 100 84 73 91
JUL 1- 5 6-10 11-15 16-20 27-25 6-END	23.90 19.46 24.19 19.88 19.88 19.74 22.47	8.15 4.93 2.50 2.72 0.	8.97 E.69 7.33 E.97 4.37 3.76	4.94 4.94 4.94 4.94 3.84 0.61	22.06 18.56 14.77 16.62 8.01 4.37	0.81 0.41 0. 0.81 0. 0.	0.47 0.47 0.47 0.47 0.47 0.47 0.47	23,34 19,44 15,24 17,90 8,48 5,65	6.00 5.00 5.00 5.00 5.00 6.00	-5.44 -4.98 2.95 -3.02 6.28 10.82	-3.88 -6.03 -4.76 -6.06 -3.35 0,	5.59 0. 0. 0.	6,00 5,00 5,00 5,00 10,36	77 59 68 52 74 100
AUG 1- 5 6-10 11-15 16-20 21-25 6-ENO	16.61 13.13 11.68 16.74 15.60 26.09	0. 0. 0. 0. 0.	£.97 5.43 5.43 0. 2.47 C.	5.94 4.94 4.94 6. 4.94 6.04	13.90 10.87 10.57 0. 7.90 0.06	G.21 0.81 0.81 0.30 0. 0.	6.67 0.47 0.47 0.47 0.47 0.47 0.47	15.18 12.15 12.15 0.77 8.37 0.53	4.00 4.00 4.00 4.00 4.00 6.00	-2.57 -3.04 -4.47 5.97 3.23 19.56	+1.11 -2.42 -4.36 -1.78 -0.38 0.	0. 0. 0. 0. 9.76	4.00 4.00 4.00 4.00 24.82	90 71 47 71 94 100
SEP 1- 5 6-10 11-15 16-20 21-25 6-END	24.25 89.18 69.00 54.32 40.02 27.58	U. D. 7.44 6.22 12.05 11.69	0. 0. 0. C.	4.29 6. 3.03 7.21 6. 6.	4.29 0, 10.47 7.44 - 12.05 11.69	4. 6. 0.70 5. 0.81 0.52	0.47 0.47 0.47 0.47 0.47 0.47 0.47	4.76 0.47 11.63 7.93 13.33 12.69	00.8 00.8 00.8 00.8 00.8 00.8	13,49 82,71 51,43 40,91 20,69 8,89	0. 0. 0. 0. 0.	5.83 35.73 22.22 17.68 8.94 3.84	19-49 88-71 57-43 46-91 26-69 14-89	100 100 100 100 100
OCT 1- 5 6-10 11-15 16-20 21-25 6-END	22.53 26.73 46.47 77.12 38.71 41.04	14.77 14.77 0. 0.50 8.15 6.99	G. D. 3.57 13.27 9.32	U. 0. 0. 0. U.	14.77 14.77 C. 4.37 21.42 16.31	0.81 0.81 0. 0. 0.81 0.81 0.97	C.47 O.47 C.47 C.47 O.47 C.47	16.05 16.05 0.47 4.84 22.70 16.85	6.00 5.00 6.00 6.06 6.00 6.00 6.00	0.48 6.68 40.00 86.28 10.01 18.19	0. 0. 0. 0. 0.	0,21 2,89 17,28 28,63 4,32 9,43	72.28	100 100 100 100 100 100
HQY 1- 5 6-10 11-15 16-20 21-25 6-END	30.96 32.74 64.02 65.31 108.05 72.27	6.44 1.39 8.15 0. 5.47 0.	3,96 10,55 10,62 5,62 5,62 4,85 1,69	4.29 3.96 5.56 4.61	10.39 11.95 72.46 9.78 15.88 5.70	0. 0. 0.81 0. 0.	0.47 0.47 0.47 0.47 0.47 0.47	10.86 12.42 23.74 10.25 14.35 6.17	5.00 5.00 5.00 5.00 5.00 5.00 5.00	14.10 14.32 34.28 49.06 85.70 60.10	8. 0. 0. 0. 0. 0.	6 - D9 6 - 19 16 - 81 21 - 19 37 - 02 25 - 96	20.32 40.28 55.06 91.70	100 100 100 100 100
DEC 1- 5 6-10 11-15 16-20 21-25 8-END	52,03 83,51 55,51 37,13 29,46 26,80	5,98 8,15 0, 8,15 8,15 8,15 8,15	8,13 8.65 6,97 8,97 3,33	8,94 8,68 0,69 6,04 6,74 2,77	22.97 25.49 0.89 23.16 22.06 6.10	0. 0.81 0. 0.81 0.81 0.81	C.47 0.47 0.47 0.47 0.47 0.47 0.47	23_44 26.77 1.36 24.44 23.34 6.57	00.8 00.8 00.8 00.8 00.8 00.8	22.59 50.74 48.15 6.69 0.32 14.23	0. 0. 0. 0. 0. 0.	9,76 21,92 20.80 2,89 D,14 7,38	28.59 56.74 54.15 12.69 6.32 20.23	100 100 100 100 100 100

.

Table C-13 (5/5) WATER BALANCE IN CASE OF 30 DAYS DELAY IN CROPPING SCHEDULE FOR CASE 1 IN 1983

er IDD	RUNCH	ntork 1	PA BLOCK 2 (CUM/S)	hinfr 1	TOTAL (CUR/S)	UPLAKO CROP (CUM/S)		D1VERS'N	MAINT.			SURFLUS	DOWRSTR. FROM BRH (CUM/S)	
JAN 1- 5 6-10 11-15 16-20 21-25 21-25 24-END	39.23 35.44 27.60 24.84 22.11 19.29	U. 7.40 5.44 5.44 2.72	C. 7.27 8.53 8.97 8.97 8.97	u. 4.21 4.21 4.94 4.94 4.94	0. 17.54 20.74 19.34 19.34 10.62	U. U. U.47 O.81 O.81 O.81 O.81	C.47 C.47 C.47 C.47 C.47 C.47 C.47	0.47 18.01 21.62 20.62 20.62 17.90	8.00 6.00 6.00 6.00 5.00	32,76 11,43 =0.02 -1,78 -4,51 -3,61	0. 0. -0.01 -0.78 -2.72 -4.60	14.15 4.94 0. 0. D.	38.76 17.43 6.00 6.00 6.00 5.00	100, 100, 100, 95, 82, 64,
FE8 1- 5 6-10 11-15 16-20 21-25 6-EN0	16,90 16,49 16,69 22,30 17,47 15,71	0. 0. 0. 0. 0. 0.	F.97 5.22 8.97 5.93 5.93 2.97	4,94 1,62 4,94 4,94 4,94 4,94	14.62 7.04 13.90 10.87 10.87 7.90	0.61 0.81 0.27 0.47 0.27 0.21	0.47 0.47 0.47 0.47 0.47 0.47 0.47	17.90 8.32 15.18 11.81 11.41 9.18	5.00 4.00 4.00 4.00 4.00 4.00	-4.00 4.17 -2.49 4.49 2.04 2.53	-6.32 -4.52 -5.60 -3.66 -2.77 -2.11	0. 0. 0. 0. 0.	5.00 4.00 4.00 4.00 4.00 4.00	50 57 47 56 67
MAR 1- 5 6-10 11-15 16-20 21-25 6-END	20.98 14.94 19.25 19.61 15.55 25.39	0, 0. 0. 7.51 6.26	2.97 D. Q. C. C.	4.54 4.16 1.65 3.29 t.65	7.90 4.16 4.68 1.65 10.20 7.90	0.81 0.81 0.87 0. 0.41 0.61	0.47 6.47 8.47 6.47 6.47 6.47 6.47	9.18 5.44 5.96 2.12 12.08 9.18	5.00 4.00 5.00 5.00 5.00 6.00	6.80 5.50 8.29 12.49 1.47 10.21	0. 0. 0. 0. 0.	0.82 2.38 3.58 5.40 0.63 5.29	6.91 9.50 13.29 17.49 6.47 16.21	100, 100, 100, 100, 100,
APR 5- 3 6-10 11-15 16-20 21-25 6-END	13.76 13.49 12.11 10.66 12.83 19.24	12.05 12.05 14.77 14.77 0.52 1.32	C. Q. Q. 4.23 4.79	1.65 U. U. U. U. D.	13.70 12.05 14.77 14.77 5.05 6.11	0.81 0.81 0.83 0.81 0.	0.47 0.47 0.47 0.47 0.47 0.47	14.98 13.33 16.05 16.05 5.52 8.58	4.00 4.00 4.00 4.00 4.00 5.00	-3,22 -3,84 -7,96 -9,39 3,31 7,66	-1.39 -3.05 -6.48 -10.53 -9.10 -5.80	0. 0. 0. 0. 0.	4.00 4.00 4.00 4.00 4.00 5.00	74 26 •4 •70 •7 •7
HAY 1- 5 6-10 11-15 16-20 21-25 6-FND	33-25 24.40 36.34 26.73 29.22 21.44	3.72 6.33 7.62 3.33 7.40 U,	7.14 12.28 15.99 14.39 7.17 6.32	0. 0. 0. 3.57 3.57	10.35 18.61 23.61 17.72 18.14 9.89	0. 0. 0.52 0.41 0.	0.47 0.47 0.47 0.47 0.47 0.47	10.82 19.08 24.60 18.19 19.02 10.36	& 400 6 ±00 8 ±00 8 ±00 8 ±00 8 ±00 5 ±00	16.43 ~0.18 ~0.21 2.54 4.20 8.08	0. -0.08 -0.17 0. 0. 0.	1.30 0. 0.93 1.81 3.15	6.00 6.00 8.15 10.20	100, 99, 99, 100, 100, 100,
JUN I- 5 6-10 11-15 16-20 21-25 6-END	24-40 14-35 26-44 34-06 19-74 15-07	8+15 7+19 2+79 5+47 8+15 8+15	8.97 8.14 4.32 3.25 6.97 8.97	7 . 29 7 . 03 6 . 73 5 . 64 6 . 04	24.41 22.36 13.64 14.66 23.16 23.16	6.81 0.30 0. 0.81 0.81	C.47 D.47 C.47 C.47 C.47 C.47 C.47	25.69 23.13 14.31 15.13 24.44 24.44	6.00 6.00 6.09 5.00 4.00	-7.69 -12.78 6.13 12.93 -9.70 -13.37	-3,32 -8,84 -6,20 -0,61 -4,80 -10,58	0. 0. 0. 0. 0.	6.00 6.00 6.00 5.00 4.00	79 63 96 71 37
JUL 1- 5 6-10 11-15 16-20 21-25 6-ENO	13.28 17.42 19.12 16.92 53.45 28.84	3,33 3,22 5,44 0, 2,72 0,	7.17 6.17 5.26 0. 8.97 7.01	4.94 3.64 6.34 6. 4.94 3.31	15,43 13,62 13,62 8, 16,62 10,33	ð. 0. 0.81 0. 81 0.81	6.47 9.47 0.47 0.47 0.47 0.47	15.90 13.49 14.90 0.47 17.90 11.51	4.00 4.00 5.00 6.00 6.00	-4.62 -0.07 -0.78 12.45 29.55 11.23	-12.57 -12.61 -12.94 -7.56 0. 0.	0. 0. 0. 5.20 5.82	4.00 5.00 4.00 18.04 17.23	25 14 12 40 100
AUG 1- 5 6-10 11-15 16-20 21-25 6-END	22,57 47.59 31.66 21.37 21.72 27.00	0. 0. 0. 0. 0.	8,29 4,37 11,47 2,47 2,58 8,	4,94 3,64 0,37 4,94 4,29 4,76	13.23 6.01 0.86 7.96 6.86 4.96	0, 0,81 0,75 0, 0,	6+47 0+47 6+47 6+47 6+47 0+47 0+47	13.70 9.29 1.33 9.33 7.33 5.41	6.00 6.00 6.00 5.00 5.00 6.03	42,87 32.30 24.33 16.24 9.39 15.59	0. 0. 0. 0. 0.	18.52 13.95 10.51 7.02 4.05 8.08	48.87 38.30 30.33 22.24 14.39 21.59	100. 100. 100. 100. 100. 100.
SEP 1- 5 6-10 11-15 14-20 21-25 6+END	45.75 84.46 82.61 \$26.57 73.63 45.13	0, 0, 5,36 1,07 12,05 5,19	6, C, 0, 0, C,	0x39 2x43 2x20 1x23 1x65 0x	U.39 2.43 8.22 2.29 13.70 5.19	0. 0. 0. 0. 0. 0. 0. 0.	0.47 0.47 0.47 0.47 0.47 0.47 0.47	0.86 2.90 8.69 2.76 16.98 5.66	6.00 6.00 6.00 6.00 6.00 6.00	38.89 55.50 67.92 117.75 52.65 33.47	0. 0. 0. 0. 0.	16.80 23.98 29.34 50.87 22.75 14.46	61.50 73.92 123,75	100, 100, 100, 100, 100, 100,
OCT 1-5 6-10 11-15 14-20 21-25 6-END	35,42 32,67 10,39 33,91 28,33 42,15	12,30 10,91 7,08 8,80 3,53 0,	0. 7.10 7.94 10.69 1.25	6. 8. 8. 6.	12.50 10.91 14.38 16.74 14.62 3.25	0, 0, 0, 18 0, 18 0,	C.47 C.47 C.47 C.47 C.47 C.47 C.47	12.77 11.38 14.85 17.39 14.49 3.72	6.80 6.00 6.00 6.00 6.00 6.00 6.00	16.65 15.29 9.54 10.52 17.84 32.43	0. 0. 0. 0. 0.	7,19 6,61 4,12 4,54 7,71 16,81	22.65 21.29 15.54 16.52 23.84 38.43	100 100 100 100 100
NOV 1- 5 6-10 11-15 18-20 21-25 6-END	40.41 50.62 46.93 45.67 35.64 34.57	3.75 8.15 8.15 8.15 7.63 3.86	16205 18,19 16,56 16,56 16,50 1,91	6. 4.55 4.55 6.00 4.26	14,40 24,34 23,66 23,66 20,33 10,03	0. 0.81 0.81 0.81 0.64 0.	0.47 C.47 C.47 C.47 C.47 C.47 C.47	14.87 25.62 24.94 24.94 21.44 10.50	5.00 5.00 5.06 5.06 5.00 6.00	19.54 24.40 17.99 14.73 8.20 18.07	0. 0. 0. 0. 0.	8.44 10.54 7.77 6.37 3.54 7.81	25.54 30.40 23.99 20.73 14.20 24.07	100, 100, 100, 100, 100,
DEC 1- 5 6-10 11-15 16-20 21-25 6-LND	31.84 28.40 40.40 31.67 27.54 25.90	8.15 3.54 0. 1.29 0. 7.80	2,97 4,91 3,59 2,53 1,25 8,63	c.94 6,99 4.09 7,79 1.06 4,94	20.00 15.44 7.68 0.59 2.29 21.57	U.81 U. Q. Q. Q. Q. 58	0.47 0.47 0.47 0.47 0.47 0.47 0.47	27.34 15.91 8.15 7.06 2.76 22,62	6.00 6.00 6.00 6.00 6.00 6.00	-1.50 6.49 26.25 18.41 18.78 -2.72	-0.65 0. 0. 0. 0. -1.41	0. 2.15 11.34 7.95 8.11 0.	6.00 10.98 32.25 24.41 24.76 6.00	96 108 100 100 100 92

Table C-14 (1/5)

WATER BALANCE IN CASE OF 30 DAYS DELAY IN CROPPING SCHEDULE FOR CASE 2 IN 1978

•ER100	RUNDFF (CUM/S)	0008 1	PA BLOCK 2 (CUM75)	DOY PLOCK 3 (CUM/S)	101AL (CUM/S)	UPLAND CROP (CUM/S)	0 8 1 WATER ((UH/S)	DIVERS*N .REGN!I (CUM/S)	BAINT. . FLOW (CUN/S)	BALANCE	DEFICIT CHCHS		DOWHSTR. IRON BBH (CUM/S)	WATE DEPT (HM

JAN 1- 5 6+10 11-15 16-20 21-25 6-END	17.68 18.58 18.77 24.80 18.05 14.22	8,15 0, 0,97 4,15 0, 2,72	8.97 - 2.58 0.36 7.47 4.45 8.97	6.93 3.01 0. 6.0? 5.70 8.93	24.45 5.59 1.32 17.44 9.65 18.62	0.81 0. 0. 0. 0.	0.60 0.60	25.46 .6.19 1.92 18.24 10.25 20.03	1.50 1.50 1.50 1.50 1.50 1.50	-9,28 10,89 15,35 5,06 6,30 -7,31	-4.01 .0. 0. 0. -3.79	6,63	6.56	78 100 100 100 100 73
FEB 1- 5 6-10 11-15 16-20 21-25 6-END	11.82 13.66 13.84 16.55 10.92 11.18	2.72 0. 0. 0. 0.	5.97 8.97 6.67 2.26 5.00	8,93 6,93 6,11 2,65 5,84 0,	\$8.62 15.90 12.78 4.91 10.83 0	0.81 0.21 0. 0.81 0.81 0.81	D.60 0.60 0.60 0.60 0.60 0.60 0.60	20.03 17.31 13.38 6.32 12.24 0.60	1.50 1.50 1.50 1.50 1.50 1.50	-9,71 -5,15 -1.04 8,73 -2.82 9,08	-7.98 -10.20 -10.65 -8.88 -8.10 -5.75	0. D. D.	1.50 1.50 1.50 1.50 1.50 1.50	44 16 12 38 17
HAR 1~ 5 6~10 11-15 16~20 21-25 6-END	10.46 11.40 13.83 13.61 16.36 15.86	ο.	1.52 D. O. D. D.	5.38	5.08 6.29 5.38 6.62 7.40 4.61	0. 9.8) 0. 0.8] 9. 0.	0.60 0.60 0.60 0.60 0.60 0.60	5.68 7.70 5.98 6.03 8,09 5.41	1.50 1.50 1.50 1.50 1.50 1.50	3.28 2.29 6.35 6.08 6.77 8.95	-4.33 -3.38 -6.64 -0. 0.	0. Ø. 0. 2.92 4.64	1.50 1.50 1.50 6.10 8.27 10.45	43 34 86 100 100
APR 1- 5 6-10 11-15 16-20 21-25 6-END	19.77 19.41 21.72 30.82 70.28 41.58	12.05 12.05 13.91 14.77 9.98 9.98	0. 0. 0. 8.3P 8.38	1.55 0 0. 0. 0. 0.	13.60 12.05 13.91 14.77 18.36 18.36	0.81 0.81 0.35 0.81 0.81 0.81	0.60 0.60 0.60 0.60 0.60 0.60	15.01 	1.50 1.50 1.50 1.50 1.50 1.50	3,26 5,36 13,14 49,01 20,23		1.41 2.31 5.68 21.17 8.74	4.76 5.95 6.86 14.64 50.51 21.73	100 100 100 100 100 100
HAY 1- 5 6-10 11-15 16-20 21-25 6-END	45,55 57,43 68,81 45,47 37,32 22,14	8.15 0, 8.05 8.15 8.15 8.15	13,15 5,15 16,15 16,19 10,96 10,13	0. 0. 5.38 5.32	21.30 5.15 24.20 24.34 25.50 23.61	0,81 0, 0,75 0,81 0,81 0,81	0.60 0.60 0.60 0.60 0.60 0.60 0.60	22,71 5,75 25,55 25,75 26,91 25,01	1.50 1.50 1.50 1.50 1.50 1.50 1.50	50.18 41.76 18.22 8.91	0, 0, 0, 0, 0, 0, -2,27	21.68 18.04 7.57 3.85	22,84 51,68 63,26 19,72 10,41 	100 100 100 100 100 89
JUN 1- 5 6-10 11-15 16-20 21-25 6-END	21,37 19,66 14,94 13,30 12,70 11,81	5,15 3,75 8,15 0, 8,15 0,	7.85 5.85 8.97 5.70 8.97 4.29	10.25 9,09 12.56 12.28 8.48 6.57	23.24 18.69 29.68 17.98 25.60 10.86	0. 0. 0.81 0.81 0.81 9.	04.0 04.0 04.0 04.0 04.0 04.0 04.0	23.84 19.29 31.09 18.58 27.01 11.56	1.50 1.50 1.50 1.50 1.50 1.50	~3.97 ~1.13 ~15.65 ~6.78 ~15.81 ~1.15	-3.99 -4.47 -11.23 -14.16 -20.99 -21.49	0. 0.	1.50 1.50 1.50 1.50 1.50 1.50	77 21 21 -11 -11
JUL 1- 5 6-10 13-15 16-20 21-25 6-END	10.75 16.04 13.28 12.25 16.29 12.04	8,15 4,29 5,44 2,72 2,72 0,	8.97 8.33 7.01 8.42 8.97 7.10	6.93 6.93 4.65 6.29 6.93 8.93	24.05 19.55 17.10 17.43 18.62 14.04	0.81 0. 0.83 0.81 0.81 9.	0.40 0.40 0.40 0.40 0.40 0.40 0.40	25.46 20.15 18.51 18.84 20.03 14.64	1.50 1.50 1.50 1.50 1.50 1.50	-16.21 -6.73 -8.09 -5.24 -6.10	-28.50 -30.92- -33.83 -37.32 -39.58 -41.71		1.50 1.50 1.50 1.50 1.50 1.50	-108
AUG 3-5 6-10 11-15 16-20 21-25 6-END	9,43 8,59 14,12 10,74 9,18 8,72	0. 0. 0. 0. 0.	8.69 5.93 0. 6. 2.97 D.	6,93 6,93 0, 6,93 1,31	15,62 12,87 0, 0, 9,90 1,21	0.41 0.58 0. 0.31 0.31 0.31	0.60 0.60 0.60 0.60 0.60 0.60 0.60	14.63 14.05 0.60 1.41 11.31 1.91	1.50 1.50 1.50 1.50 1.50 1.50	-8,70 -6.96 12.02 7,83 -3.63 5.31	-45.47 -48.47 -43.28 -39.90 -41.47 =38.71	0, 0, 0, 0, 0,	1.50 1.50 1.50 1.50 1.50 1.50	-450
SEP 1- 5 8-10 11-15 16-20 21-25 6-END	10.27 11.69 11.42 8.44 23.20 13.24	0. 0. 0. 2.04 12.05	0. 0. 0. 0. 0.	6.93 4.20 3.59 1.43 0.94 0.	6.93 4.20 9.67 1.43 2.98 12.05	0.24 D. 0. 0. 0. 0. 8.	0.40 0.40	7.77 4.80 10.27 2.03 3.58 13.46	1,30 1,50 1,50 1,50 1,50 1,50				1,50 1,50 1,50 1,50 1,50 1,50	
DC1 1- 5 6+10 11-15 16-20 21-25 6-END	12.15 9.79 13.05 15.77 28.97 58.70	14.77 9.08 9.98 0.61 0. 3.59	0. 8.38 3.99 8.43 8.43 8.43	0. 0. 0. 0. 0.	14.77 9.68 18.36 4.60 8.43 10.49	0.81 0. 0.23 0. 0. 0.	0.60 0.60 0.60 0.60 0.60 0.60 0.60	16.18 	1.50 1.50 1.50 1.50 1.50 1.50	-5.53 -1.39 -8.22 9.07 18.44 46.12	-29.28 -29.88 -33.43 -29.51 -21.55 0,	0. 0. 0. 0. 0. 0. 0.	1.50 1.50 1.50 1.50 1.50 1.50 6.05	-372 -381 -292 -246 -100 100
NOV 1- 5 6-10 11-15 16-20 21-25 6-END	62.77 53.95 67.91 82.64 77.43 43.46	0. 0. 6.27 8.15 8.15	7.46 2.42 0. 90.48 8.97 8.97	D, 0, 6,73 6,38 10,25 16,25	7.46 2.42 0.73 23.73 27.37 27.37	D. 0. 0.13 0.81 0.81	0.60 0.60 0.60 0.60 0.60 0.60	8.06 3.02 1.33 24.46 28.78 28.78	1.50 1.50 1.50 1.50 1.50 1.50	53.21 49.43 65.08 56.68 47.15 13.18	0. 0. 0. 0. 0. 0.	22,99 21.35 28.11 24.49 20.37 	54.71 50.93 66.58 58.18 48.65 14.68	100 100 100 100 100
DEC 1+ 5 6-3D 11-15 16-20 21-25 6-END	32,69 48.05 33.45 23.21 21.78 17.37	0. 8.15 6.33 9. 8.15	1.41 0. 3.50 6.73 5.15 8.97	7.27 2.58 2.10 6.68 6.02 6.93	8.67 2.58 13.75 19.71 11.17 24.05	0 0 0.81 0 0. 0.81	0.60 0.60 0.60 0.60 0.60 0.60 0.60	9,27 3,18 15,16 20,31 11,77 25,46	1.50 1.50 1.50 1.50 1.50 1.50	21,32 43,37 16,79 1440 8,51 -9,59	U. D. O. 	\$,21 18.73 7,25 0.60 3,67 0.	22.82 44.87 18.29 2.90 10.01 1.50	100 100 100 100 100 73

Table C-14 (2/5) WATER BALANCE IN CASE OF 30 DAYS DELAY IN CROPPING SCHEDULE FOR CASE 2 IN 1979

YEAR : 1979 PERIOD RUNDFF PADDY UPLAND & R 1 DIVERS'N MAINT, BALANCE DEFICIT SURPLUS DOWNSTR. WATER BLOCK 1 BLOCK 2 BLOCK 3 TOTAL CROP WATER REGN'S FLOW (CUM/S) JAN 1- 5 6-10 11-15 16-20 21-25 18.17 17.80 15.18 11.95 11.99 11.25 D. 4.40 8.15 5.44 4.65 2.72 (). 6.79 8.97 8.97 6.97 8.97 0. 8.93 6.93 5.11 6.93 0.60 17.81 25.46 22.74 17.51 20.03 0.60 0.60 0.60 0.60 0.60 0.60 1.50 1.50 1.50 1.50 1.50 1.50 Q. Ο. 6.06 1.50 1.50 1.50 16,07 ٥. 1.97 100. 0. 17.21 24.05 21.33 16.72 18.62 0.81 0.81 0.81 0.18 0.81 0. -D.65 -5.74 -11.05 -14.08 -19.41 -1,51 -11,78 -12,29 0. 0. 0. 96. 69. 32. -7.02 -10.28 0. 0. 1.50 13. 26-END fEB 1- 5 6-10 11-15 16-20 11.10 12.22 11.84 14.90 35.77 36.91 2,72 0, 0, 0, 0, 0, 8.97 5.36 4.20 0. 0. 2.97 18.02 8.65 5.66 0. 0. 9.90 6.93 3.28 1.46 0. 0. 6.93 0.81 0.13 0.70 0.18 20.03 9.37 6.96 0.78 0.60 11.31 -10.43 1.35 3.38 12.62 33.67 22.10 -23.91 -23.33 -21.87 -16.42 -1.87 1.50 1.50 1.50 1.50 1.50 0.60 0.60 а, 0. 1.50 - 69 - 93 0,40 0,60 0,60 0. 0. 1.50 -81 21-25 26-END 0. 0.21 1.50 81. 0.40 1.50 3.85 160. 0. . . 16.32 HAR 1- 5 6-10 11-15 16-20 21-25 26-END 0. 0. 0. 7.51 6,26 27.97 25.87 22.75 50.69 65.60 39.88 2.97 D. O. O. O. 6.93 6.93 4.20 4.50 2.19 0.03 11.31 8.34 5.47 5.91 11.11 7.70 6,55 6,92 6,76 18,70 22,89 15,91 9.90 0.81 0.81 0.81 1.50 1.50 1.50 1.50 1.50 1.50 0.40 A. 16.66 100. 15.16 16.03 15.64 43.28 52.99 30.68 0. 0. 0. 0. 0. 16.66 17.53 17.14 44.78 54.49 32.18 0.40 0.40 0.40 0.40 0.60 6.93 4.20 100. 4.50 9.70 6.29 0.81 0.81 0.81 100. 100. APR 1- 5 6-10 1t-15 16-20 15.77 13.46 16.18 16.18 0.60 6.86 51.33 ο. 12.05 2.31 14.36 6.81 0.50 1.50 34.04 ρ. 14.71 15.56 100. 51.53 42.36 33.29 28.31 35.43 45.29 0.81 0.81 0.81 0.91 0.91 0.60 0.60 0.60 0.60 0.60 0.60 1.50 1.50 1.50 1.50 1.50 1.50 34.08 27.40 15.61 10.63 33.33 36.93 14.71 11.84 6.74 4.59 14.40 15.95 12.05 0. 0. 0. 0. 0. 0. 12.05 28.90 100. 0. 0. 21-25 26-END n. 4.87 n. 1.39 a. 0. 0. 6.26 100. 0. 0. 34.83 38.43 HAY 1- 5 6-10 11-15 16-20 21-25 56.30 37.52 50.60 23.45 19.04 26.77 8.15 8.15 8.15 8.15 8.15 8.15 13.27 13.27 11.50 16.19 10,18 0. 0. 0. 0. 6.08 3.55 21.42 21.42 19.66 24.34 24:41 0,21 0.81 0.81 0.81 0.81 22.83 22.83 21.07 25.75 25.82 33.47 14.69 29.53 1.50 1.50 0.60 0.60 0.60 0.60 0.60 1.50 1.50 1.50 1.50 1.50 31.97 13.19 28.03 -3.80 -8.28 6. 0. 0. 100. 100. 100. 13,81 5.70 12.11 -1.64 -5.22 0. 0. 87. 65. 26-END ٥. 2.54 6.62 0. 0.60 6.69 1.50 18.58 0. 6.41. 10.01 100. JUN 1~ 5 6-30 31-15 26.00 12.81 7.14 22.11 27.01 27.01 0,90 22,73 25,32 3,00 6, 0, 7.41 3.59 0.46 5.79 8.97 8.97 24.59 12.03 6.54 21.51 25.60 25.6P 0.60 9.50 0.60 0.60 0.60 0.60 2.09 52.63 58.61 3.59 54.13 60.11 .8.45 1.50 1.50 1.50 1.50 1.50 1.50 29.55 8.15 9.03 0.81 Π. 100. D. 0. 65.74 67.75 30.56 23.12 20.28 0. 1.29 5.90 8.15 8.15 8.42 4.77 7.EZ 8.48 2.48 0. 0. 0. -2.33 100. 0. 0.21 0.21 . 6.95 -5.39 -8.23 16-20 100. 87. 68. 26-FND 1.50 -5,89 1.50 JUL 1- 5 6-10 11-15 16-20 21-25 26-EHD 8.15 2.50 5.08 1.57 0. 0. 24.05 18.77 20.78 16.20 0. 14.49 0,60 0.60 0.60 0.60 0.60 0.60 8.97 0.81 17.74 6.93 25-46 1.50 0.22 9.87 ο. 1.50 46. 17.74 15.61 22.67 24.02 73.93 49.59 25.46 17.37 21.90 16.80 0.60 15.90 6.93 6.93 6.93 6.93 0. 6.17 1.50 1.50 1.50 1.50 1.50 -9.22 -3.24 -0.73 -5.72 71.83 32.19 -9.87 -11.28 -9.12 0. 0. 10. 31. 29. 36. 7.33 8.77 7.69 1.50 0.... 0. 0. 5.32 21.91 74.69 52.22 100. 13.69 100. AUG 1- 5 6-10 11-15 16-20 21-25 9.90 7.38 6.56 10.35 16.94 27.60 13.92 14.28 10.89 10.50 10.01 1.50 1.50 1.50 1.50 1.50 1.50 8.40 5.88 5.06 8.85 15.44 0. 0. 0. 0. 3.63 2.54 2.19 3.82 6.67 13.53 100. 23.82 21.66 17.45 20.85 26.95 0. 8. 0. 0. 12.51 12.67 9.48 9.70 8.60 0.40 100. 5.93 4.37 2.97 2.58 6.93 5.11 6.95 6.82 0.81 0.60 0.60 0.60 0.60 Ú. Ú. či 100. 26.10 26-END 28.20 n. e. 0. 0. е. 0.40 0.60 D. . SEP 1- 5 8-10 11-15 16-20 23-25 26-END 39.19 51.75 63.13 72.59 26.81 29.75 100. 43.99 4.20 4.20 1.50 37,69 ο. n. ٥. 4.26 D. 6.60 43.99 55.35 76.67 80.10 42.58 37.1E 0. 7,51 6,72 12,05 6,83 0 0 0 0 0 2.19 4.62 0.18 2.31 0. 0.00 0.00 0.00 0.00 0.00 3.60 13.54 7.51 15.77 7.43 1.50 1.50 1.50 1.50 1.50 50.25 61.63 71.09 25.31 28.25 21.71 26.62 30.71 10.93 12.20 100. 100. 100. 100. 100. 0. 0. 0. 0. 2.19 0.81 6.91 14,36 6.83 0. 0.81 0. 0CT 3- 5 6-10 11-15 16-20 21-25 26-END 0, 0, 0, 7,26 2,51 5,59 25,41 27,75 37,89 40,53 46,27 79,24 14.77 5.97 0. 14.24 3.80 6.06 100. D. 0. 0. 0. 0. 0.21 0.60 16.18 1.50 7.73 ο. 15.18 6.57 6.60 14.84 4.40 6.66 0.21 0. 0. 0. 0. 0. 03.0 03.0 03.0 03.0 03.0 03.0 1.50 1.50 1.50 19.68 35.79 24.19 0. 0. 8.50 15.46 10.45 21.18 37.29 25.69 41.88 100. 100. 100. 5.97 0. 6.97 1.29 0.46 1.50 \$0.38 Ô. 17.44 100. 71.08 с. 72.58 106. HOV 1- 5 6-10 11-15 16-20 21-25 58,10 56,57 67,14 155,72 94,21 112,29 25,10 24,44 29,01 67,27 40,70 73.36 79.14 80.54 148.88 111.50 114.19 0.81 0.81 0. 0. 0. 0. 93.0 93.0 93.0 93.0 04.0 93.0 1.56 D, 59.60 58.07 100, ñ. 8.15 0.97 0. 3.33 13.16 19.66 11.30 11.06 15.19 13.16 11.50 5.16 5.58 4.05 0. 0. 5.17 5.47 7.81 13.76 21.07 11.90 11.66 15.79 0.60 D. 0. 0. 0. 1.50 1.50 1.50 1.50 1.50 109. 68.64 157.22 95.71 100. 100. 100. 100 26-END ٥. 0.60 DEC 1- 5 6-10 11-15 16-20 21-25 0. 25.87 0. 11.77 0. 5.81 0. 3.83 0. 2.77 -0.18 0. 61.39 28.74 14.95 10.36 7.92 1.50 12,56 12,56 8,48 8,48 6,62 6,62 18.40 29.68 24.57 23.69 22.36 24.05 0. 0.81 0.41 0.97 0.81 0.81 19.09 31.09 25.56 24.36 23.77 25.46 1 50 1 50 1 50 1 50 1 50 1 50 1 50 59.89 27.24 13.45 8.86 6.42 -0.35 100 0.60 0.60 0.60 100. n. 8.15 7.40 6.76 8.15 8.15 5 97 8 49 2 55 8 19 8 97 59.83 40.51 34.72 31.69 26.61 100. 0.60 0. -0.18 26-END

Table C-14 (3/5) WATER BALANCE IN CASE OF 30 DAYS DELAY IN CROPPING SCHEDULE FOR CASE 2 IN 1980

FRIOD	RUNDEF	ULOCK 1	P/ ELOCK 2 ((UK/S)	. BLOCK 3. (CUH/S)	TOTAL (CUN/S)	UPLAND CROP (CUM/S)	D & I NATER (CUM/S)	DIVERSIN BEQMIT (CUM/S)	HAINT. FLOW	BALANCE	bEFICIT (HCH)	SURPLUS	DOWNSTR, FROM BRH (CUM/S)	WATER
I- 5	25.45	7.40	7.91	6.02	21, 53		0.60		1.50	1.61			2.69	100.
6-10 1-15 6-20 1-25 -END	22.79 18.04 15.61 14.56 19.16		3.84 7.41 5.93 8.97 8.97	- 1.56 5.11 6.93 6.93 6.93	12.28 20.67 12.87 21.33 18.62	0.18 0.81 0.81 0.81 0.81	0.60	13.06 22.08 13.47		-5.54 -5.54 0.64 -9.68 -2.37	-2.10		9.73 1.50 1.50 1.50 1.50	100 87 87 61 47
ED 1- 5 6-10 1-15 6+20 1-25 -END	14.68 12.03 10.19 9.13 12.87 28.10	2.72 0. 0. 0. 0. 0.	8.97 8.97 8.97 5.15 5.15 2.97	6,93 6,93 6,93 6,02 6,02 6,02 6,93	18.62 15.90 15.90 13.17 11.17 9.90	0 = 81 0 = 81 0 = 81 0 = 81 0 = 81 0 =	0.60 0.60 0.60	17.31 11.77 12.58	1.50	-6.85 -6.78 -8.62 -4.14 -1.21 16.10	-17,13 -18,92 -19,45	0. 0.	1.50	26 -11 -41 -93 -98 -84
AR 1- 5 6-10 1-15 6-20 1-25 -END	36.12 59.28 21.54 27.68 22.73 19.44	0. 0. 0. 6.90 5.75	0.23 0. 0. 0. 0. 0. 0.	0,55 2.37 3.28 4.01 4.62 0,	0.78 2.37 3.28 4.01 11.52 5.75	0. 0.58 0. 0.221 0. 0.	0.60 0.60 0.60 0.60 0.60 0.60 0.60	3,55 3,88	1.50 1.50 1.50 1.50 1.50 1.50	33,24 54,23 16,18 20,76. 9,11 11,59	8. 0. 0. 0. 0. 0. 0. 0.	23.43	2.61 55.73 17.68 22.26 10.61 13.09	100, 100, 100, 100, 100, 100,
PR 1- 5 6-10 1-15 6-20 1-25 -END	21.87 25.29 25.50 19.27 17.23 44.30	7.86 6.11 11.76 14.66 8. 9.87	0, 0, 0, 3,21 8,34		5.17 6.11 11.76 14.66 3.37 18.21	0. 0. 0.75 8. 0.75	0.00 92.0 03.0 03.0 03.0 03.0	5.77 6.71 12.36 16.01 3.91 19.56	1.50 1.50 1.50 1.50 1.50 1.50	14,55 17,68 11,64 1,76 12,32 23,24	0.	6.29 7.64 5.03 0.76 5.32 10.04	13.14	100 100 100 100 100
IAY 1~ 5 6~10 I1~15 I6~20 P1~25 5-END	46.47 71.65 68.50 57.41 33.02 37.61	0. 0. 9. 8.15 7.53	9.91 1.91 12.38 10.03 7.87 9.25	0. Q. 0. 5.17 5.07	9.91 1.95 12.38 10.03 21.16 21.84	0. 0. 0. 0.81 0.41	0.60 0.60 0.60 0.60 0.60 0.60 0.60	10.51 2.55 12.96 10.63 22.57 22.85	1.50 1.50 1.50 1.50 1.50 1.50	34,46 67,80 54,02 45,28 8,95 13,26	0. 0. 0. 0. 0.	14.88 29.29 23.34 19.50 3.87 6.87	35.98 87.30 55.52 46.78 10.45	100 100 100 100 100
1-5 6-10 1-15 6-20 21-25 5-660	32.27 36.61 25.20 39.07 24.57 23.90	n. 7.94 6.87 6.54 6.11 8.69	5, 15 7, 33 8, 49 6, 21 8, 21 8, 24	9.64 9.03 12.56 10.73 8.48 8.48	14.79 24.29 27.91 24.48 22.81 25.51	0, 0,70 0,13 0, 0, 0,78	0.20 0.40 0.40 0.40 0.40 0.40 0.40	15.39 25.59 28.64 24.68 23.41 26.89	7.50 1.50 1.50 1.50 1.50 7.50	15.88 9.52 -4.94 11.89 -0.38 -4.49	U. 0. ~2.13 0. ~0.16 ~2.10	6.86 4.11 0. 3.00 D. Ø.	1.50	100 100 88 100 99 89
101 1- 5 6-10 11-15 16-20 27-25 5-END	17.20 14.59 13.44 29.52 22.95 37.34	8.15 4.51 5.44 1.14 0. 0.	8.47 2.45 2.19 1,28 0, 4.55	6.93 6.93 6.02 0. 0. 0. 3.89	24.05 19.69 19.64 2.42 0. 8.39	0.81 0.81 0.81 0. 0. 0.	0.60 0.60 0.60 0.60 0.60 0.60 0.60	25.46 20.55 21.65 3.02 0.60 8,99	1.50 1.50 1.50 1.50 1.50 1.50	-9.76 -7.46 -9.11 25.00 20.85 26.85	-6.32 -9.54 -13.48 -2.68 0. 0.	0. 0. 0. 6.33 13.92	1.50 1.50 1.50 1.50 16.15 28.35	66. 41. 17. 81. 100. 100.
106 1- 5 4-70 11-15 16-20 21-25 5-END	38-32 26-12 25-35 21-11 84-01 43-59	0. 0. 0. 0. 0.	8.21 5.93 4.77 0.62 1.80 0.	6.93 6.93 5.11 1.44 6.20 6.93	15.14 12.87 9.48 2.08 5.99 6.93	0. 0. 0.81 0.81 0.81 0.	0.48 0.80 0.60 0.80 0.80 0.60	10.89 2.68 7.40	1.50 1.50 1.50	21.08 11.15 12.96 16.93 75.11 36.56	. U .	9.11 4.82 5.60 7.31 32.45 17.91	14.46 18.43 76.61	100 100 100 100 100 100
EP 1- 5 6-10 1-15 6-20 1-25 5-END	30,07 40.36 26.64 41.59 75.58 50.95	0, 0, 7,51 7,51 6,76 10,62	0, 0, 0, 0,	4.20 4.62 4.62 2.01 0. 0.	4.20 4.62 12.13 .9.52 6.76 10.62	0. 0. 0.81 0.81 0.	93.0 93.0 93.0 03.0 93.0 93.0	5.22	1.50	23,77 33.64 11.60 29.16 66.72 38,73	0. 0. 0. 0. 0. 9.	10.27 14.53 5.01 12.60 28.82 16.52	35.14	100 100 100
1 → 5 6-10 11-15 16-20 21-25 5-€N0	47.21 73.52 77.64 254.74 64.81 40.27	2.93 3.68 6.44 9.98 3.75 0.	0. 0. 7.07 8.38 13.67 5.83	0. 0. 0. 0. 0.	2.93 3.48 13.50 18.36 15.39 5.83	0. 0. 0. 0. 0. 0.	0.60 0.60 0.60 0.60 0.60 0.60	3.53 4.28 74.10 19.77 15.99 6.43	1,50 1,50 1,50 1,50 1,50 1,50	42.18 68.10 61.44 233.47 47.32 32.34	0. U. 0. 0. 0. 0.	18,22 29,42 26,54 100.86 20,44 16,77	43.68 69.60 62.96 234.97 48.8? 33.84	100, 100, 100, 100, 100, 100,
304 1- 5 6-10 11-15 16-20 21-25 5-END	35.41 33,36 36.21 49.29 76.87 80.97	0. 8.15 8.97 8.15 9. 6.87	-8,47 16,63 8,96 10,18 8, 6,52	0. 0. 5.78 6.08 2.95 7.21	8.47 22.78 21.71 24.41 2.95 15.66	0. 0.21 0.18 0.81 0. 0.13	0.60 0,60 0,60 0.60 0.61 0.61	9.07 24,19 22,49 25,82 3.55 19.38	1.50 1,50 1.50 1.50 1.50 1.50	24.84 7.67 12.22 21.97 65.82 40.09	0. 0. 0. 0. 0. 0.	10.73 3.31 5.28 9.49 28.43 25.96	26.34 9.17 13.72 23.47 67.32 61.59	100 100 100 100 100
0EC 1- 3 6-10 11-15 16-20 1-25 5-END	88.39 158.55 148.07 71.17 53.13 45.21	n. 2.79 8.15 7.08 0. 7.88	Г. 1.64 2.63 2.63 5.97 2.92	4.27 4.17 8.48 0. 6.93 0,	4.77 7.99 25.00 9.71 12.67 10.82	0. 0. 0.81 0.24 0. 0.64	0.40 0.40 0.40 0.40 0.40 0.40 0.40	5,37 8,59 27.01 16.55 13.47 12.06	1.50 1.50 1.50 1.50 1.50 1.50	81.52 148.46 119.57 59.12 38.16 31.65	0. 0. 0. 0. 0.	35,22 64,13 51,65 25,54 16,49 16,41	83.02 149.96 121.07 60.62 39.66 33.15	100 100 100 100 100 100

Table C-14 (4/5)

WATER BALANCE IN CASE OF 30 DAYS DELAY IN CROPPING SCHEDULE FOR CASE 2 IN 1981

PERIOD	RUNOFI (CUN/S)	ULOCK 1 (CUM/S)	49 ULOCX 2 (CUP/S)	004 000 000 000 000 000 000 000 000 000	TOTAL (CNH/S)			81914 860M-1 (CUM/2)	HAINT. FLOW (CUN/S)	BALANCE ((UM/S)	(H(H)	(HCH)	DOWNSTR. FROM BRH (CUM/S)	
JAN 1- 5 6-10 11-15 16-20 21-25 26-END	54.19 52.32 37.97 34.74 32.50 27.20	1.29 D. 8.15 4.79 5.44 2.72	5.63 5.93 8.97 8.61 8.19 8.97	6.02 6.93 6.93 6.93 6.02 6.02 6.73	12.94 12.27 24.05 24.05 19.64 18.62	0. 0. 0.81 0.30 0.81 0.81	0.60 0.60 8.60 0.60 0.60 0.68	13,54 13,67 25,46 21,23 21,05 20,03	1.50 1.50 1.50 1.50 1.50 1.50	39,15 37,35 11,01 12,01 9,95 5,67	0.	16.91	40,65 38,85 12,51 13,51 11,45 7,17	100 100 100 100 100 100
FEB 1- 5 6-10 11-15 16-20 21-25 26-END	39.70 32.25 31.98 51.76 30.51 51.19	0.54 0. 0. 0. 0.	5.75 8.57 5.93 5.97 2.81 2.97	8.02 6.93 6.95 6.93 3.28 6.93	12.31 15.50 12.87 12.87 6.09 9.90	0,24 0,24 0,21 0,21	0.80 0.60 0.80 0.80 0.80 0.80	12,91 16,34 13,47 14,28 6,69 10,50	1,50 1,50 1,50 1,50 1,50 1,50	25.29 14.41 17.01 35.98 22.32 39.19	0. 0. 0. 0. 0.	10.93 6.23 7.35 15.55 9.64 20.16	26.79 15.91 18.51 37.48 23.82 40.49	10 10 10 10 10 10
HAR 1- 5 6-10 11-15 16-20 21-25 26-END	35.61 23.44 24.16 17.92 21.46 19.49	0. 0. 0. 7.51 4.08	0. 0. 0. 0. 0.	0. 6.02 2.37 4.62 0.97 0.03	D. 6.02 2.37 4.62 5.48 4.11	0, 0,81 0,81 0,23 0,23	03.0 03.0 03.0 03.0 03.0 03.0 03.0	0,60 7,43 3,78 5,22 9,89 4,71	1.50 1.50 1.50 1.50 1.50 1.50	32.91 14.51 18.88 11.26 10.07 13.28	0. 0. 0. 0. 0.	14.22 6.27 8.16 4.86 4.35 6.88	20.38	10 10 10 10 10
APR 1- 5 6-10 11-15 36-20 21-25 26-END	\$2.94 70.29 60.29 78.20 74.85 \$1.85	11.98 3.76 11.76 0. 9.98 9.98	0 0 0 2 . 3 2 . 3 2 . 3	f.09 0. 0. 0. 0.	13.07 8.74 11.76 0. 15.36 12.38	0.75 0. 0. 0. 0. 0. 0. 0. 81	0 0 9 0 9 0 0 0 9 0 9 0	14.43 9.36 12.36 0.60 19.77 19.77	1.50 1.50 1.50 1.50 1.50 1.50	27.01 59.43 46.43 76.10 53.58 29.61	0. 0. 0. 9. 0.	11.67 25.67 20.06 32.88 23.15 8.91	47.93	10) 10) 10) 10) 10)
RAY 1- 5 6-10 31-15 16-20 21-25 26-END	61.81 80.43 90.35 100.19 99.62 85.44		6.75 16.11 14.63 13.95 9.40 0.	0. 0. 0. 5.78 1.01	6.25 10.11 22.78 20.28 23.33 1.01	0. 0. 0.81 0. 0. 0. 0.	0.60 0.60 0.60 0.60 0.60 0.68	6.85 10.71 24,19 20.88 24.74 1.61	1.50 1,50 1,50 1,50 1,50 1,50 1,50	53.46 68.22 64.66 77.81 73.38 61.33	0. 0. 0. U.	23.10 29.47 27.93 33.61 31.70 . 42.16	69.72 66.16 79.31 74.88	10 10 10 10 10
JUN 1- 5 6-10 11-15 16-20 21-25 26-1ND	66.32 40.96 34.21 27.04 74.95 37.26	2.15 7.62 3.15 8.15 8.15 8.15 8.15	8,57 8,77 8,97 8,97 8,19 8,97	18.25 10.25 12.56 12.56 7.57 2.48	27.37 26.63 29.63 29.63 29.63 23.91 25.60	0.81 0.52 0.81 0.81 0.81 0.81	83.0 63.0 83.0 83.0 83.0 03.0	28.76 27.75 31.09 31.09 25.32 27.01	1.50 1.50 1.50 1.50 1.50 1.50 1.50	36.04 11.71 1.62 -5.55 -1.87 8.75	0. 0. 0. -2.40 -3.20 0.	15.57 5.06 0.70 	13.21	10 10 10 8 8
JUL 1- 5 6-10 11-15 16-20 21-25 26-ENO	25.90 19.46 24.19 19.85 19.76 22.47	8.15 4.93 2.50 2.72 5.	2,97 2,29 7,37 2,97 4,57 3,76	6,93 6,93 6,93 6,93 6,93 5,11 0,85	24.05 20.55 16.77 18.62 9.48 4.61	0.51 0.41 0.51 0.51 0.51 0.51	0.60 0.60 0.60 0.60 0.60 0.60	25.46 21.56 17.37 20.03 10.08 6.02	1.50 1.50 1.50 1.50 1.50 1.50	-3.00 -3.60 5.32 -1.65 8.18 14.95	-1.37 -2.88 -0.58 -1.29 0. 0.	D. 0. 0. 2.24 7.75	1.50 1.50 1.50 1.50 6.69 16.45	9 8 9 9 10 10
AVG 1- 5 6-10 11-15 16-20 21-25 26-END	16.61 13.11 11.67 10.76 15.60 26.0?	0. 0. 0. 0. 0.	8,97 5,93 5,93 0, 2,97 0,	6.03 6.03 6.43 6.43 6.43 6.493 0.09	15.90 12.87 12.87 8. 9.90 0.09	0.81 0.81 0.81 9,30 0. 0.	03.0 040 040 040 040 040 040	17,31 14,28 14,28 0.90 10,50 0,69	1.50 1.50 1.50 1.50 1.50 1.50	-2.20 -2.67 -4.10 8.34 3.60 23.90	-0.95 -2.10 -3.87 -0.27 0.	0. 0. 0. 1.29 . 12.39	1,50 1,50 1,50 4,48 25,40	9 7 6 9 10 10
5EP 1- 5 6-10 11-15 16-20 21-25 26-FNP	24.25 89.18 69.16 54.62 40.02 27.58	0, 7,44 6,22 12,05 11,69	6. 0. 0. 0. 0.	6.442 0. 4.26 1.70 0.	8.62 0. 11.69 7.92 12.65 11.69	0. 0. 0.70 0.81 0.52	0.60 0.60 0.67 0.60 0.60 0.60	6.62 0.60 12.99 8.52 13.46 13.46	1.50 1.50 1.50 1.50 1.50 1.50	16.13 87.08 54.57 44.80 25.06 13.26	0. 0. 0. 0.	6.97 37.62 23.57 19.35 10.83 5.73	88.58 56.07 46.30 26.56	10 10 10 10 10 10
0C1 1- 5 6-10 11-15 16-20 21-25 26-END	22.53 28.71 46.47 77.12 38.73 41.04	14.77 14.77 0. 0.50 8.15 6.99	0, 0, 3,27 13,27 9,32	0. 0. 0. 0.	14,27 14,77 0, 4,37 21,42 16,31	0.21 0.81 0. 0.81 0.81	0.00 0.50 0.50 0.50 0.50 0.50	18.18 18.19 0.40 4.97 22.83 16.98	1.50 1.50 1.50 1.50 1.50 1.50	4-85 11.05 44.37 70.65 14.38 22.56	0, 0, 0, 0, 0, 0,	2.10 4.77 19.17 30.52 6.21 11.69	12.55 45.87 72.15	10) 10) 10) 10) 10) 10)
NOV 1- 5 6-10 11-15 16-20 21-25 26-END	30.96 32.74 64.82 65.31 108.65 72.27	6.44 1.39 8.15 0. 5.47 0.	3,96 10,55 10,62 5,82 4,85 1,09	0. 6.02 5.56 7.21 6.48	10.39 11.95 24.10 11.38 18.13 7.57	9. 0. 0.81 0. 0. 0.	0.60 0.60 0.60 0.60 0.60 0.60 0.60	10,09 12,55 25,60 11,98 18,73 8,17	3,50 1,50 1,50 1,50 1,50 1,50	18.47 18.69 36.92 51.83 87.82 62.60	0, 0, 0, 0, 0, 0, 0,	7,98 8.08 15.95 22.39 37,94 27.04	24.19 34.42	10 10 10 10 10 10
DEC 1- 5 6-10 11-15 16-20 21-25 20-END	52.03 83.51 55.51 37.12 29.66 26.80	5,90 8,15 0, 8,15 8,15 0,	E.17 8.65 0. E.97 E.97 Z.37	12,55 12,19 1,25 3,48 6,93 3,29	26.59 29-00 1.25 25.19 75.05 7.22	0. 0.21 0.21 0.21 0.21 0.21 0.21	0.60 0.00 0.60 0.60 0.60 0.60 0.60	27.19 30.41 1.F5 27.01 25.46 7.82	1.50 1.50 1.50 1.50 1.50 1.50 1.50	23.34 51.60 52.16 8.62 2.70 17.48		10.08 22;29 22;53 3.72 1,17 9,06	53.10 53.66 10.12 4.20	104 101 104 104 104

Table C-14 (5/5) WATER BALANCE IN CASE OF 30 DAYS DELAY IN CROPPING SCHEDULE FOR CASE 2 IN 1983

.

YEAR :						UPLAND		DIVERS*N			DEFICIT			
PE810D	RUNOFF (CUN/S)	BLOCK 1 (CU4/S)	ELOCK 2	007 8166K 3 (C04/S)	TOTAL (CUM/S)		VALER	REGMIT	FLOW	(CUN/S)			ERON BRH (CUN/S)	
JAN 1- 5 6-10 11-15 16-20 21-25 26-END	39.27 35.44 27.60 24.84 22.11 19.29	n. 6.11 7.40 5.44 5.44 2.72	0. 7.27 8.53 8.97 8.97 8.97 8.97	D. 5.84 6.75 6.93 6.93 6.93 6.93	0. 19.22 22.69 21.33 21.33 15.62	0. 0.41 0.81 0.81 0.81	00 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.60 19.82 23.69 22.74 22.74 20.03	1,50 1,50 1,50 1,50 1,50 1,50	37.13 14.12 2.41 0.60 -2.13 -2.24	0. 0. 0. -0.92 -2.08	16.84 6.10 1.04 0.26 0. 0.	38.63 15.62 3.91 2.10 1.50 1.50	100, 100, 100, 100, 94, 85,
FEB 1~ 5 6-10 11-15 16-20 21-25 26-END	18.90 16.49 16.69 22.30 17.47 15.71	2.72 0. 0. 0. 0. 0.	8,97 5,22 8,97 5,93 5,93 2,97	6.93 2.55 6.93 6.93 6.93	18.62 7.77 15.90 12.87 12.27 9.90	0.81 0.81 0.47 0.47 0.07 0.81	0.60 0360 04.0 0.20 03.0 93.0	20.03 9.18 17.31 13.93 13.53 11.31	1,50 1,50 1,50 1,50 1,50 1,50	-2.63 5.81 -2.12 6.87 2.44 2.90	-3.22 -0.71 -1.62 0. 0.	0. 0. 6. 1.34 1.05 0.75	1.50 1.50 1.50 4.61 3.94 4.40	77. 94. 87. 100. 100.
MAR 1- 5 6-10 11-15 16-20 21-25 26-END	20.98 14.94 19.25 19.61 18.55 25.39	n. 0. 0. 7.51 8.26	2,97 0. 0. 0. 0. 0.	6.93 5.84 6.57 2.31 4.62 2.31	9.90 5.54 6.57 2.31 12.13 8.57	0.81 0.81 0.21 0. 0. 0.81	0.40 08.0 03.0 03.0 93.0 03.0	11.31 7.25 7.98 2.91 13.54 9.98	1.50 1.50 1.50 1.50 1.50 1.50	8 • 17 6 • 19 9 • 77 15 • 20 3 • 51 13 • 91	0. 0. 0. 0. 0.	3.53 2.68 4.22 6.57 1.52 7.21	9.67 7.69 11.27 16.70 5.01 15.41	100. 100. 100. 100. 100. 100.
APR 1- 5 6-10 11-15 16-20 21-25 26-Ek0	15.76 13.49 12.11 10.66 12.87 19.24	12.05 12.05 14.77 14.77 0.82 1.32	(0. 0. 6.2 ³ 4.70	2.91 0. 0. 0. 0.	14.36 12.05 14.77 14.77 5.05 6.11	0.81 0.81 0.81 0.81 0.81 0.	0.5.0 05.0 05.0 0.5.0 0.5.0 0.5.0 0.5.0	15.77 13.46 16.18 16.18 5.65 6.71	1.50 1.50 1.50 1.50 1.50	-1.51 -1.47 -5.57 -7,02 5.68 11.03	-0.65 -1.29 -3.69 -6.72 -4.27 0.	0. 0. 0. 0.	7.50 1.50 1.50 1.50 1.50 1.50 2.64	89. 69. 41. -8. 50. 100.
HAY 1- 5 6-10 11-15 16-20 21-25 26-ΕΝΦ	33.25 24.90 30.39 26.73 29.27 21.44	3.22 6.33 7.67 3.33 7.40 0.	7.14 12.22 15.99 14. <u>19</u> 7.17 6.32	0. 0. 0. 8. 5.02 5.02	10.35 18.61 23.61 17.72 19.58 11.33	0. 0. 0.52 0. 0.41 0.	0.60 0.60 0.60 0.60 0.60 0.60 0.60	10.95 19.21 24.73 18.32 20.59 11.93	1.50 1.50 1.50 1.50 1.50	20.80 4.19 4.16 6.91 7.13 8.61	0. 0. 0. 0.	8.98 1.81 1.80 2.99 3.08 4.15	22.30 5.69 5.66 8.41 8.63 9.51	100. 100. 100. 100. 100. 100.
JUN 1- 5 6-10 11-15 16-20 21-25 26-END	24.00 14.35 26.44 34.06 19.74 15.07	8.15 7.19 7.79 5.47 8.15 8.15	8.97 8.14 4.32 3.75 8.97 8.97	10.25 9.88 9.46 7.63 8.48 8.48 8.48	27.37 25.21 16.56 16.66 25.60 75.60	0.21 0.30 0. 0. 0.81 0.81	0.00 0.00 0.00 0.00 0.00 0.00	28.78 26.10 17.16 17.46 27.01 27.01	1.50 1.50 1.50 1.50 1.50 1.50	-6.28 -13.25 7.78 15.10 -8.77 -13.44	-2.71 -8.44 -5.08 0. -3.79 -9.80	0. 0. 1.45 0. 0.	1.50 1.50 1.50 4.85 1.50 1.50	84. 49. 72. 160. 79. 48,
JUL 1- 5 6-10 11-15 16-20 27-25 26-ENO	15.28 17.42 19.12 16.92 53.45 28.84	3.33 3.22 5.44 0. 2.72 0.	7.17 6.17 5,84 0. 8.97 7.01	6.93 5.11 3.78 0. 6.93 4.65	17.43 14.49 14.56 0. 15.67 11.67	0. 0.81 0. 0.21 0.81	0.60 03.0 03.0 03.0 0.60 0.60 0.60	18.03 15.09 15.97 0.60 20.03 13.08	1.50 1.50 1.50 1.50 1.50	-4.25 0.83 1.65 14.82 33.92 14.26	-11.43 -11.08 -10.36 -3.96 0. 0.	0. 0. 0. 9.83 7.39	1.50 1.50 1.50 1.50 24.25 15.76	38. 32. 36. 72. 109. 100.
AUG 1- 5 6-10 11-15 16-20 21-25 26-END	62.57 47.59 31.64 31.37 21.72 27.60	0. 0. 0. 0. 0. 0.	8,29 4,37 0,47 2,97 2,58 U	6.93 5.11 0.55 6.93 6.02 6.93	15+22 9-48 1-02 9-90 3-60 6-93	0. U.81 0. 0.75 0.	0.40 0.80 0.60 0.60 0.60 0.60	15.82 10.89 1.62 11.25 9.20 7.53	1.50 1.50 1.50 1.50 1.50	45.25 35.20 28.54 18.62 11.02 17.97	0. 0. 0. 0. 0.	15.21 12.33 8.04 4.76	46.75 36.70 30.04 20.12 12.52 	160. 100. 100. 100. 100. 100.
SEP 1- 5 6-10 11-15 16-20 21-25 26-END	45.75 64,40 82,61 126.51 75,63 45.12	0. 0. 5.36 1.07 12.05 5.19	0, 0, 0, 0, 0,	0.55 3.41 4.67 3.70 2.31 0.	0,55 3,41 9,3% 2,73 14,36 5,19	0. 0. 0. 0. 0. 0.	0.60 0.60 0.60 0.60 0.60 0.60	1.15 4.01 9.98 3.38 15.77 5.79	1.50 1.50 1.50 1.50 1.50	43.10 58.29 71.33 121.63 56.36 37.84	0. 0. 0. 0.	18.62 25.44 30.73 52.55 24.35 16.35	44.60 60.39 72.63 123.13 57.86 39.34	100. 100. 100. 100. 100. 100.
007 1- 5 6-10 11-15 16-20 21-25 26-END	35.42 32.67 30.39 33.91 38.3* 42.15	12.30 19.91 7.08 8.80 3.35 0.	6. 2. 7.30 7.94 10.69 3.25	0, U. 0, 0, 0,	12.30 10.91 14.38 16.74 14.02 3.25	0. 0. 0. 0. 0. 0.	0,60 0,60 0,60 0,60 0,60 0,60	12.90 11.51 14.98 17.52 14.62 3.85	1.50 1.50 1.50 1.50 1.50 1.50	21.02 19.66 13.91 14.89 22.21 36.80	0. 0. 0. 0. 0.	9.08 5.49 6.01 6.43 9.60 19.08	22.52 21.16 15.41 16.39 23.71 38.30	100, 100, 100, 100, 100, 100,
NOV 1- 5 6-10 11-15 16-20 21-25 26-END	40.41 56.02 48.93 45.67 35.84 34.57	3.75 8.15 8.15 8.15 7.63 3.86	10,8* 16,19 10,96 10,96 6,50 1,91	р. 0, 6,38 6,78 8,42 5,99	14.40 24.34 25.50 25.50 22.76 11.76	0.81 0.81 0.83 0.84 0.64	0.60 0.60 0.60 0.60 0.60 0.60	15.90 25.75 26.91 26.91 24.00 12.36	1.50 1.50 1.50 1.50 1.50 1.50	23.91 28.77 20.52 17.26 10.14 20.71	0. 0. 0. 0. 0.	10,33 12,43 8,87 7,46 4,36 8,95	25.41 30.27 22.02 18.76 11.64 22.21	100. 100. 100. 100. 100.
DEC 1- 5 6-10 11-15 16-20 21-25 26-END	51.64 28.40 40.40 31.47 27.54 25.40	2.15 3.54 0. 1.29 0. 7.10	8.97 4.91 3.59 2.51 1.25 8.81	12,56 9,32 5,75 3,92 1,46 6,03	29.69 18.27 9.34 7.72 2.71 23,56	0,81 0. 0. 0. 0. 0.58	03.0 03.0 03.0 03.0 03.0 03.0 03.0	31.09 18.87 9.94 8.32 3.31 24.74	1,50 1,50 1,50 1,50 1,50 1,50 1,50	-0.75 8.03 28.96 21.65 22.73 -0.34	-0.32 0. 0. 0. 0. -0.18	0. 3.15 12.51 9.35 9.82 0.	1.50 8.78 30.46 23.15 24.23 1.50	98. 100. 100. 100. 100. 99.

Table C-15 (1/5) WATER BALANCE IN CASE OF 30 DAYS DELAY IN CROPPING SCHEDULE FOR CASE 3 IN 1978

ERIDD	RUNDEF (CUM/5)	DEDCK 1	PA RLQ(K 2 (CUM/S)	6) 6 F X	TOTAL (CUK/S)	UPLAND (ROP (CUH/S)	WATER.	ØIVERS'N REGM'T (CUH/S)	FLOW				DOWNSIR. From Dah (Cuh/S)	WATER DEPTH (HM)
JAN 1- 5 6-10 11-15 16-20 21-25 6-ENO	17.68 18.58 18.77 24.80 18.05 14.22	8.15 0. 0.97 4.15 6. 2.72	8.97 2.58 0.36 7.47 4.45 8.97	6.93 3.01 0. 5.02 5.20 6.93	24.05 5.39 1.32 17.04 9.65 18.62	0.81 0. 0. 0. 0. 0.	0.60 0.62 0.60 0.60 0.60 0.60	25.46 6.19 1.92 18.24 10.25 20.03	U. U. U. U. U.	-7.78 12.39 16.85 6.56 7.80 -5.81	-3.36 0. 0. 0. 0. -3.01	0. 1.92 7.28 2.84 3.37 0,	6.56	82. 100. 100. 100. 100. 79.
FEN 1- 5 6-10 11-15 16-20 21-25 6-END	11.82 13.66 13.84 16.55 10.92 11.18	2,72 0, 0, 0, 0, 0,	8,97 8,97 6,67 2,26 5,00	6.93 6.11 2.65 5.84	18.62 15.90 12.78 4.91 10.83	0.81 0.81 0. 0.81 0.81	0.60 0.60 0.60 0.60 0.60 0.60	20,03 17,31 13,38 6,32 12,24 0,60	0. 0. 0. 0. 0.	-8,21 -3,65 0,46 10,23 -1,32 10,58	-6.55 -8.13 -7.93 -3.51 -4.08 +1.34	0. 0. 0. 0. 0.	6. 0. 0. 0. 0.	54 33 35 64 58 82
HAR 1-:5 6-10 11-15 16-20 21-25 6-END	10.46 11.40 13.83 13.61 16.36 15.88	0. 0. 0. 6. 5.36 4.50	1.52 0. 0. 0. 0.	3-56 6-29 5-38 4-62 2-13 0-31	5.08 6.29 5.38 5.62 7.49 4.81	0. 0.81 0. 0.21 0. 0.	0.40 0340 0340 0346 0346 0340 0440	5.68 7.70 5.98 6.03 8.09 5.41	0. 0. 0. 0.	4.78 3.70 7.85 7.58 8.27 10.45	0. 0. 0. 0. 0.	0.72 1.60 3.39 3.27 3.57 5.42	3,70 7,85 7,58 8,27	100. 100. 100. 100. 100. 100.
APR 1- 5 6-10 11-15 16-20 21-25 6-END	19.77 19-41 21.72 30.52 70.28 41.50	12,05 12,05 13,91 14,77 9,98 9,98	0. 0. 0. 8,38 8,78	1,55 0, 0, 0, 0,	13.60 12.05 13.91 14.77 18.36 18.36	0,81 0,81 0.35 0.81 0.81 0.81	03.0 0240 0300 0300 0300 0300	15.01 13.46 14.86 16.18 19.77 19.77	0. 0. 0. 0. 0.	4.76 5.95 6.86 14.64 50.51 21.73	0. 0. 0. 0. 0.	2.06 2.57 2.96 6,33 21.82 9,39	5.95 6.86 14.64 50.51	100 100 100 100 100
HAY 1- 5 6-10 11-15 16-20 21-25 6-END	45.55 57.43 66.61 45.47 37.32 22.14	8.15 0. 8.05 8.15 6.15 8.15	13.15 5.15 16.15 18.19 10.96 10.13	0. 0. 0. 6.38	21.30 5.15 24.20 24.34 25.50 23.61	0.81 0. 0.75 0.81 0.81 0.31	03.0 03.0 04.0 03.0 03.0 03.0	22.71 5.75 25.55 25.75 26.91 25.01	0. 0. 0. 0. 0.	22,84 51,68 43,26 19,72 10,41 -2,87	D. 0. 0. 0. 0. -1,49	9.87 22.32 18.49 8.52 4.50 0.	51,68 43,26 19,72	100. 100. 100. 100. 100. 90.
JUN 1- 5 6-10 11-15 16-20 21-25 6+END	21.37 19.66 16.94 13.30 12.70 11.81	5.15 3.75 8.15 0. 8.15 0.	7.85 5.85 £.97 5.70 £.97 4,24	10.25 9.09 12.56 12.28 8.48 6.57	23,24 18,60 29,28 17,98 25,60 10,86	U. D. D.21 D.21 D.81 Q.	0.60 0.60 0.60 0.60 0.60 0.60	23.24 19.79 31,09 12,58 27.01 11,46	0. 0. 0. 0. 0.	-2,47 0,37 -14,15 -5,28 -14,31 0,35	-2,56 -2,40 -8,51 -10,79 -16,98 -16,83	0. 0. 0. 0. 0.	0. 0. 0. 0. 0.	85, 86, 54, 41, 7, 8,
JUL 1- 5 6-10 11-15 16-20 21-25 6-END	10.75 16.04 13.28 12.25 16.29 12.04	8.15 4.29 5.44 2.72 7.72 0.	8.97 5.33 7.61 8,42 8.97 7.10	6.93 6.93 4.65 6.93 6.93 6.93	24.05 19.55 17.10 17.43 18.62 14.04	0.81 0. 0.81 0.81 0.81 9.	0.60 0.60 0.60 0.60 0.60 0.60	25.46 20.15 18.51 18.94 20.03 14.64	0. 0. 0. 0. 0.	-14.71 -5.23 -6.59 -3.74 -2.60	-23,18 -24,96 -27,22 -31,68 -33,03	0. 0. 0. 0.	8. 9. 0. 0. 0.	-27 -54 -67 -112 -123 -173
AUG 1- 5 6-10 11-15 16-20 21-25 6-END	9.43 8.59 14.12 10.74 9.18 8.72	0. 0. 0. 0. 0.	8.69 5.93 0. 0. 2.97 0.	6.93 6.93 0, 6.93 1.31	15.62 12.27 0. 9.98 1.51	0.43 0.58 0.81 0.81 0.81	43.0 93.0 93.0 93.0 93.0 93.0 93.0	16.63 34.05 0.60 1.41 11.33 1.91	0. 0. 0. 0. 0.	-7,20 -5,46 13,52 9,33 -2,13 6,81	-36.14 -38.49 -32.65 -28.62 -29.54 -29.54	0.	0. 0. 0.	- 198, - 293, - 233, - 280, - 292, - 393,
SEP 1-5 0-10 11-15 16-20 21-25 6-END	10.27 11.69 11.42 8.44 23.20 13.24	0. 9. 6.08 9. 2.04 12.05	0. 6. 0. 0.	6.93 4,20 3,59 1.43 0.94 Ω.	6.93 4.20 9.67 1.43 2.98 12.05	0.24 0. 0. 0. 0. 0.81	0.60 13.0 13.0 13.3 13.0 0.60 0.60	7,77 4,80 10,27 2,03 3,58 13,46	0. 0. 0. 0. 0.	2,50 6,89 1,15 6,41 19,62 -0,22	-24,93 -21,95 -21,45 -10,45 -10,21 -10,30	0.	Ŭ, Q. D. D. D.	- 572 - 524 - 284 - 388 - 73 - 149
OCT 1- 5 6-10 11-15 16-20 21-25 6-END	12.15 9.79 13.05 15.77 28.97 58.70	16.77 9.08 9.98 0.61 0. 3.59	0. D. F.38 3.99 8.43 6.89	0. 0. 0. 0. 0.	14,77 9,08 18,36 4,60 8,43 10,48	0.81 D. 0.83 0. G.	03.0 93.0 93.0 93.0 93.0 93.0	16.18 9.68 19.77 5.20 9.03 11.08	0. 0. 0. 0. 0.	-4.03 0.11 -6.72 10.57 19.94 47.62	-12.04 -12.00 -14.90 -10.33 -1.72 0.		0. 0. 0.	-94, -93, -75, -21, 84, 100,
NO¥ 1- 5 6-10 11-15 16-20 21-25 6-END	62.77 53.95 67.91 82.64 77.43 43.46	0. 0. 6.27 8.15 8.15 8.15	7.46 2.42 0. 1(.46 8.97 8.97	0. 0.73 6.38 10.25 10.25	7.46 2,42 0.73 23.73 27.37 27.37	0. 0. 0.13 0.81 0.81	93.0 83.0 93.0 93.0 83.0 83.0 83.0	28.78	0. 0. 0.	54.71 50.93 66.58 58.18 48.65 14.68	0. 0.	23.64 22.00 28.76 25.14 21.02 6.39	66.58 58.18	100, 100, 100, 100, 100, 100,
DEC 1- 5 6-10 11-15 16-20 21-25 6-END	32.09 48.05 33.45 23.21 21.78 17.37	0. 8.15 6.33 0. *.15	1,41 0. 3.50 6.77 5.15 8.97	7.27 2,58 2.10 6.60 6.02 6.93	6,67 2,58 13,75 19,71 11,17 24,95	0. 0. 0.81 0. 0.21	0.40 0.40	9.27 3.18 15.16 20.31 11.77 25.46	0. 0. 0. 0. 0.	22.82 44.87 18.29 2.90 10.01 -8.09	0. 0.	9.88 19.38 7.90 1.25 4.32 0.	44 87 18 29 2 90	100 100 100 100 100 100 77

Table C-15 (2/5)WATER BALANCE IN CASE OF 30 DAYS DELAY
IN CROPPING SCHEDULE FOR CASE 3 IN 1979

PERTOD	RUNOFF	BLOCK 1 (CUM/S)	PA nlotk ? (cum/s)	HLOCK 3 HLOCK 3 (CUM/S)	TOTAL (CUH/S)	UPLAND CROP (CU4/S)	D R I WATER (CUM/S)	DIVERS'N REGM'T (CUM/S)	HAINT. FLOW (CUN75)	BALANCE (CUM/S)	PEFICIT (MCM)		DOWNSTR. FROM DRH (CUM/S)	
JAN 1- 5 6-10 11-15 16-20 21-25 26-END	18,17 17,80 15,18 11,95 11,99 11,25	0. 4.40 9.15 5.44 4.65 2.72	0, 6,79 8,97 8,97 6,97 8,97	0. 6.02 6.93 6.93 5.11 6.93	0. 17.21 24.05 21.33 16.72 18.62	0. 0. 0.81 0.81 0.18 0.81	0.60 0.60 0.60 0.60 0.60 0.60	0.60 17.81 25.46 22.74 17.51 20.03	0. 0. 0. 0. 0.	17.57 -0.01 -10.28 -10.79 -5.52 -8.78	0. -0.00 -4.44 -9.11 -11.49 ~16.04	3,40 0, 0, 0, 0, 0,	7.86 0. 0. 0. 0. 0.	100 100 76 44 29 ~13
FEB 1- 5 6-10 11-15 16-20 21-25 26-END	11.10 12.22 11.84 14.90 35.77 34.91	2.72 0. 0. 0. 0.	8,97 5,36 4,20 0, 0, 2,97	6.93 3.28 1.46 0. 0. 4.93	18.67 8.65 5.66 0. 0. 9.90	0.81 0.13 0.70 0.18 0.	0.60 0.60 0.60 0.60 0.60 0.60 0.60	9.37 6.96 0.78 0.60	0.	2,85 4.88 14,12 35,17	~19.90 ~18.67 ~16.56 ~10.46 0. 01	0. 0. 0. 4.74 5.12		-40 -54 -31 100 100
HAR 1- 5 6-10 11-15 16-20 21-25 26-END	27,97 25,87 22,75 \$0,69 65,60 39,88	0. 0. 0. 7.51 6.26	2,97 0, 0, 0, 0, 0,	6.93 6.93 4.20 4.50 2.19 0.03	9.90 6.91 4.20 4.50 9.70 6.29	0.81 0.81 0.81 0.81 0.81 0.81 0.81	0.60 0.60 0.60 0.60 0.60 0.60	11.31 8.34 5.61 5.91 11.11 7.70	0. 0. 0. 0. 0.	16.66 17.53 17.14 44.78 54.49 32.18	U. 0. 0. 0. 0. 0.	7,20 7,57 7,41 19,35 23,54 16,68	17,53 17,14 	100 100 100 100 100 100
APR 1- 5 6-10 11-15 16-20 21-25 26-END	51.33 42.36 33.29 28.31 35.43 45,29	12.05 12.05 14.77 14.77 0, 1,39	0. 0. 0. 0. 0. 4.87	2.31 0. 0. 0. 0. 0.	14.36 12.65 14.77 14.77 0. 4.28	0.81 0.81 0.81 0.81 0.81 0.	0.60 0.60 0.60 0.60 0.60 0.60 0.60	13.46	0. 0. 0. 0. 0.	35.56 	0. 0. 0. 0. 0.	15.36 7.39 5.24 15.05 16.60	28.20 17.11 12.13 34.83	100 100 100 100 100 100
HAY 1- 5 6-10 11-15 16-20 21-25 26-END	56.30 37.52 50.60 23.45 19.04 26.77	8,15 8,15 8,15 8,15 8,15 8,15 9,15	13.27 13.27 11.50 16.19 10.18 2,54	0. 0. 0. 6.08 	21.42 21.42 19.66 24.34 24.41 6.09	0.81 0.81 0.81 0.81 0.81 0.81	03.0 03.0 03.0 03.0 03.0 03.0	22.83 21.07 25.75 25.82	0. 0. 0.	29.53 -2.30 -6.78	0. 0. 0. -0.99 -3.92 0.	0.35 12.76 0. 0,	14.69 29.53 0, 0.	10 10 9 7
JUN 1- 5 6-10 11-15 16-20 21-25 26-END	29.59 66.74 67.25 30,56 23.12 20.28	8.15 0. 1.29 5.70 8.15 8.15	7.41 3.59 0.48 5.79 8.97 8.97	9.03 8.42 4.77 9.82 8.48 8.48 8.48	24.59 12.01 6.54 21.51 25.60 25.60	0.81 0. 0. 0. 0.81 0.81	0.60 0.60 0.60 0.60 0.60 0.60 0.60	26.00 12.61 7.14 22.11 27.01 27,01	0. 0. 0. 0. 0.	3.59 54.13 60.11 	0. 0. 0. -1.68 -4.59	1,55 23,38 25,97 3,62 0, 0,	54,13	10 10 10 10 10 7
JUL 1- 5 6-10 11-15 16-20 21-25 26-END	17.74 15.61 22.67 24.02 73.93 49.59	8.15 2.50 5.08 1.57 0.	8.97 7.33 8.77 7.69 8.32	6.93 6.93 6.93 6.93 0. 6.17	24.05 16.77 20.78 16.20 0. 14.49	D.81 Q 0.52 O. 0. 0.81	0.60 00.0 00.0 0.60 0.50 00.0 00.0	25.46 - 17.37 21.90 16.80 0.60 15.90	0. 0. 0. 0. 0.	-7.72 	-7.93 -8.68 -8.35 -5.23 D. D.	0. 0. 0. 26.45 17.47		5 4 6 10(10)
AUG 1- 5 6-10 11-15 16-20 21-25 26-END	23.82 21.66 17.45 20.85 26.95 28,20	0. 0. 0. 0. 0.	7.41 5.93 4.37 2.97 2.58 0,	5.11 6.93 5.11 6.93 6.02 0.	12,51 12,87 9,48 9,90 8,60 0,	0.81 0.81 0.81 0.81 0.81 0.81	03.0 03.0 03.0 03.0 03.0 03.0 03.0	14.28 10.89 10.50 10.01	0. 0. 0. 0. 0. 0.	9.90 7.38 6.56 10.35 16.94 27.60	0. 0. 0. 0. 0. 0.	4.28 3.19 2.83 4.47 7.32 14.31	7.38 6.56 10.35	10 10 10 10 10
SEP 1- 5 6-10 11-15 16-20 21-25 26-END	43.99 55,35 76.67 80,10 42,58 37,18	0. 0. 7.51 6,72 12,05 6,83	0. 0. 0. 0. 0.	4.20 2.19 4.62 0.18 2.31 0.	4.20 2.19 12.13 6.91 14.36 6.83	0.81 0.81 0.81 0.81 0.81 0.81		13.54		39.19 51.75 63.13 72.59 26.81 29.75	0. 0. 0. 0. 0.	16.93 22,36 27,27 31,36 11,58 12,85	51.75 63.13 72.59 26.81	104
GCT 1- 5 6-10 11-15 16-20 21-25 26-END	25.41 27.75 37.69 40.53 46.28 79.24	14,77 0, 6,97 1,29 0,46	0. 0. 7.26 2.51 3.59	0, 0, 0, 0, 0,	14.77 5.97 0. 14,24 3.80 6.05	0.81 0. 0. 0. 0.	0.60 0.60 0.60 0.60 0.60 0.60 0.60	6.52 0.60	0. 0. 0. 0. 0. 0.	9.23 21.18 37.29 25.69 41.88 72.58	0. 9. 0. 0. 0. 0.	3.99 2.15 16.11 11.10 18.09 37.63	21,16 37,29 25,69 41,88	
NOY 1- 5 6-10 11-15 16-20 21-25 26-E4D	73.36 79.14 80.54 168.88 111.50 114.39	0. 8.15 0.97 0. 1.33	13.16 11.50 5.16 5.58 4.05 0.	0. 0. 5.17 5.47 7.81 0.	13.16 19.66 11.30 11.06 15.19	0.81	0.60	13.76 21.07 11.90 11.66 15.79	0. 0. 0.	59.60 58.07 68.64 157.22 95.71	0. 0.	29.65 67.92 41.35	58.07 68.64 157.22	10 10 10
DEC 1- 5 6-10 11-15 16-20 21-25 26-END	80.42 59.83 40.53 34.72 31.62 26.61	0. 8.15 7.40 5.76 8.15 8.15	5.93 2.97 8.69 8.45 8.19 8.19 8.97	12.56 12.56 8.48 8.48 8.48 6.02 6.93	18,49 29,68 24,57 23,69 22,36 24,05	0. 0.81 0.41 0.07 0.81 0.81	03.0 03.0 03.0 03.0 03.0 13.0	23.77		61.39 28.76 16.95 10.36 7.92 1.15	0. 0. 0. 0. 0.	3,42	28.74 14.95 10.36 7.92	10 10 10 10

Table C-15 (3/5)WATER BALANCE IN CASE OF 30 DAYS DELAY
IN CROPPING SCHEDULE FOR CASE 3 IN 1980

PERIOD	RUNDEE	BLOCK 1	PA HLOCK 2	DOY ILOCK 3	IQTAL	UPLAND CROP	0 8 1 WATER	DIVERS N REAM T (CUM/S)	NAIRT, FLOW	BALANCE	DEFICIT	SURPLUS	DOWNSTR, FROM DRH	WATE
	(EUM/S)	((04/5)	((UK/S)	((1)*/5)	1(0825)	{(14/5)	((11175)	(CUM/S)	((UK/S)	(CUM/S)	(#CH)	(אנא)	FRON DRH (CUM/S)	(44)
JAN 1- 5 6-10 11-15 16-20 21-25 26-END	25.45 22.72 18.04 15.61 14.56 19.16	7.40 6.97 8.15 0. 5.44 2.72	7,91 3,64 7,41 5,93 8,97 8,97	6.02 1.46 5.11 6.93 6.93 6.93	21.33 12.28 20.67 12.87 21.33 18.67	0,41 0,18 0,81 0,61 0,61 0,21	0.60 0.60 0.60 0.60 0.60	22.34 13.04 22.08 13.47 22.74 20.03	0. 0. 0. 0. 0.	3,11 9,73 -4.04 2,14 -8,18 -0.87	0. 0. -1.74 -0.82 -4.35 -4.80	1.34 5.20 0. 0. 0. 0.	3.11 9.73 0. 0. 0. 0.	100, 100, 90, 95, 73, 66,
f ξ θ 1- 5 6-10 11-15 16-20 21-25 26-END	14.68 17.03 10.19 9.13 12.87 28.10	2,72 0, 0, 0, 0, 0,	8,97 8,97 8,97 5,15 5,15 5,15 2,97	6,93 6,93 6,93 6,93 6,93 6,93	18.62 15.90 15.90 11.17 11.17 9.90	0.81 0.81 0.81 0.81 0.81	0.60 0.60 0.60 0.60 0.60	20.03 17.31 17.31 11.77 12.58 10.50	0. 9. 0. 0. 0.	-5.35 -5.28 -7.12 -2.64 0.29 17.60	-7.11 -9.39 -12.67 -13.61 -13.48 -7.40	6. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0.	50 22 -3 -39 -38 -38
NAR 1- 5 6-10 11-15 16-20 21-25 6-END	36.12 59,28 21.56 27,68 22,73 19,44	0. 0. 1. 0. 0. 0. 5.75	0,23 0, 0, 0, 0, 0,	0.55 2.37 3.28 4.62 0.	0.78 2.37 3.28 4.01 11.52 5.75	0, 0,58 0, 0,81 0,	0.60 0.61 0.61 0.60 0.60 0.60 0.60	1.38 3.55 3.88 5.42 12.12 6.35	0. 0. 0. 0. 0.	34.74 55.73 17.68 22.26 10.61 13.09	0. 0. 0. 0. 0.	7.61 24.07 7.64 	17.41 55.73 17.68 22.26 10.41 13.09	100, 100, 100, 100, 100, 100,
APR 1- 5 6-10 11-15 16-20 21-25 8-END	21.62 25.89 25.50 19.27 17.73 44.30	2.86 6.11 11.76 14.66 N. 9.87	0. 0. 0. 3.31 8.34	2,31 0. 0. 0. 0. 0.	5,17 6,11 11,76 14,66 3,31 18,21	D, 0, 0,75 0,75	0.60 0.60 0.60 0.60 0.60 0.60 0.68	5.77 6.71 12.36 16.01 3.91 19.56	0. 0. 0. 0.	16.05 19.18 13.14 3,26 13.82 24.74	0. 0. 0. 0. 0.	6.93 8.28 5.67 1.41 5.97 10.69	16.05 19.18 13.14 3.26 13.82 24.74	100- 100- 100- 100- 100- 100-
#4Y 6-10 11-15 16-20 21-25 6-END	46.47 71,85 68.50 57,41 33.02 37,61	0. 0. 0. 8.15 7.53	9,91 1,95 12,38 10,03 7,83 9,25	0. 0. 0. 5.17 5.97	9.91 1.95 12.38 10.03 21.16 21.54	6. 0. 0. 0.81 0.81	85.8 0.60 0.5.0 0.5.0 0.60 0.60	10.51 2.55 12.98 10.63 22.57 22.45	6, 0, 0, 0, 0,	35.96 69.30 55.52 46.78 10.45 14.76	0. 0. 0. 0. 0. 0.	15.53 29.94 23.99 20.21 4.52 <u>7.6</u> 5	35.96 69.30 55.52 46.78 10.45 14.76	100, 100, 100, 100, 100, 100,
JUN 1- 5 6-10 11-15 16-20 21-25 6-END	32.77 36.61 25.20 36.07 24.53 23.90	0. 7.94 6.87 6.54 6.11 8.09	5.15 7.33 8.49 6.81 8.21 8.94	9,64 9,03 12,56 10,73 8,48 8,48	14.70 24.20 27.91 24.0P 22.81 25.51	0. 0.70 0.13 0. 0. 0.78	0.60 16,0 10,0 10,0 10,0 10,0	15.39 25.59 28.64 24.68 23.41 26.85	0. 0. 0. 0. 0.	17.38 11.02 -3.44 13.39 1.12 -2.99	0, 0, -1,48 0, -1,29	7.51 4.76 0. 4.30 0.49 0.	17.38 11.02 0. 9.95 1.12 0.	100. 100. 92. 100. 100. 93.
JUL 1- 5 6-10 11-15 16-20 21-25 6-END	17.20 14.59 13.44 29.57 22.95 37.34	8.15 4.51 5.44 1.14 0. 0.	8,97 8,45 8,19 1,28 0, 4,50	6.93 6.93 6.02 0. 0. 0. 2.	24.U5 19.29 19.84 2.42 0. 2.39	9,81 9,07 9,61 9, 9, 9,	95.0 95.0 95.0 95.0 95.0 95.0	25,46 20,55 21,65 3,02 0,60 8,99	0. 0. 0. 0. 0.	-8.26 -5.96 -7.61 26.50 22.35 28.35	-4.86 -7.44 -18.72 0. 0. 0.	0. 0. 0.72 9.66 14.69	0. 0. 0. 1.67 22.35 28.35	73, 54, 34, 100, 100, 100,
AUG 1- 5 6-10 11-15 16-20 21-25 6-END	38.52 26.72 25.35 21.11 84.01 43.59	0. 0. 0. 0. 9.	8,21 3,93 4,37 0,62 1,80 6,	6.93 6.93 5.11 3.46 4.20 6.93	15,14 12.67 9.43 2.69 5.99 6,93	I), D, 0,81 8, 0,81 G,	0.60 83.0 84.0 14.0 14.0 9.60 9.40	15.74 13.67 10.89 2.68 7.46 7.53	0, 0, 0, 0, 0,	22.58 12.65 14.46 18.43 76.61 36.06	0. 0. 0. 0. 0. 0.	9.75 5.67 6.25 7.96 33.10 16.69	22.58 12.65 14.46 18.43 76.61 36.06	100 100 100 100 100 100
5EP 1- 3 6-10 11-15 16-20 21-25 6-END	30-07 40-36 26-64 43-59 75-58 50-95	D. 6. 7.51 7.51 6.76 10.62	0. C. C. C.	4,20 4,62 4,62 2,01 0, 0,	4,20 4,62 12,13 9,52 6,76 10,62	6, 0, 0,81 0,81 0,	6.60 6.60 6.60 6.60 8.60 8.60	4.80 5.22 13.54 10.93 7.46 11.72	0. 0. 0. 0. 0.	25.27 35.14 13.10 30.66 68.22 39.73	0. 0. 0. 0. 0. 0.	10.92 15.18 5.66 13.25 29.47 17.16	25.27 35.14 13.10 30.66 68.22 39.73	100, 100, 100, 100, 100, 100,
0CT 1- 5 &-10 11-15 16-20 21-25 6-END	47,21 73,88 77,04 254,74 64,61 40,27	2.93 3.48 6.44 9.98 3.75 0.	0. 0. 7.08 8.38 11.63 5.83	0. 0. 0. 0. 0. 0.	2.93 3.68 13.50 16.50 15.39 5.63	9. 9. 8. 6. 9.	03.0 03.0 85.0 75.0 75.0 75.0 75.0	3.53 4.28 14.10 19.77 15.99 6.43	0. 0. 0. 0.	43.68 69.60 62.94 234.97 48.82 33.84	0. 0. 0. 0.	18.87 30.07 27.19 101.51 21.09 17.54	43.68 69,60 62.94 234.97 48.82 33.84	100 100 100 100 100 100
hov 1- 5 6-10 11-15 16-20 21-25 6-END	35.41 33.36 36.21 49.29 70.87 80.97	0. 8.15 6.97 8.15 0. 6.87	F . 47 14 . 63 8 . 96 10 . 17 0 . 4 . 58	0. 5.78 6.08 2.95 7.21	8.47 22.78 21.71 24.41 2,95 16,06	0, N,81 0,18 0,81 0 0,13	9.60 9.60 9.60 9.60 9.60 9.60	9.07 24.19 25.82 3.55 19.38	0. 8. 0. 0. 0.	26,34 9,17 13,72 23,47 67,32 ¢1,59	0. 0. 0. 0. 9.	11.38 3.96 5.93 10.14 29.08 26.61	26.34 9.17 13.72 23.47 67.32 61,59	100 100 100 100 100 100
DEC 1- 5 1-15 11-15 16-20 21-25 6-150	88.39 158.53 148.01 71.17 53.13 45.21	0. 2.79 8.15 7.08 0. 7.88	0. 1.04 8.97 2.63 5.93 2.93	4.77 4.37 9.48 0. 6.93 0.	4,77 7,99 25.60 9,71 12.87 10,82	0. 0.81 0.24 0. 0.44	83.0 03.6 03.0 03.0 03.0 03.0 03.0	5.37 8.59 27.01 10.55 13.47 12.06	0. 0. 0. 0. 0.	83.02 149.96 121.07 60.62 39.66 33.15	0, 0, 0, 0, 0,	35.86 64.78 52.30 26.19 17.13 17.19	85.02 149.96 121.07 60.62 39.66 33.15	100 100 100 100 100 100

Table C-15 (4/5)WATER BALANCE IN CASE OF 30 DAYS DELAYIN CROPPING SCHEDULE FOR CASE 3 IN 1981

ERIOD	RUNOFF		PA	DDY		UPLAND		DIVERSIN	MALNT.		DEFICIT	SURPLUS		
	(CUR72)		CON(2)		CUM/S)	CROP (CUM/S)	WATER (CUM/S)	REGH'T (CU4/S)	(CUH/S)	(CUK/S)	(808)	(XCH)	FROM ORH (CUN/S)	0661) (NK)
JAN														
1-5 δ-10	54,19	1.29	5.63	6.02 6.93	12.94	0. Q.	0.60 0.60	13.54	U. Q.	40.65	0.	17.56 16.78	40.65	100
11-15	37,97	0. 8.15	F 97	A.93	24,05	0.81 0.30	0.60	25.46	Ŭ. 0.	12.51	ů. 0,	5.40	12.51	100
16-20 21-25	34.74	4.79	8.61	6.93	20.33	0,81	0.00 0.00	21.05	0.	11,45	0.	4,95	11.45	100.
- E N D	27.20	2.72	8.97	٤٠،3	18.62	0.81	0.00	20.03	۹.	7.17	0.	3.72	. 7.17	100
FE8 1- 5	39.70	0.54	5.75	6.02	12.31	٥.	0.60	12.91	ο.	26.79	Q.	11.57		100
6-10 11-15	32,25 31,98	о. 0.	8,57 5,93	6.93 6.93	15,50 12,87	0.24 0.	0.60 0.60	16.34	0,	15,91	0. 0.	6.87 8.00	15.91 18.51	100. 100.
6-20	51.76 30.51	с. О.	5.03	- 6.93 3.28	12.67 8.09	0.81 0.	0.00	14.28	0. 0.	37.48	0.	16.19 10,29	37.48 23.82	100 100
-[40	51.19	0.	2.97	6.93	9.90	0.	0.60	10.50	0.	40.69	Q.		40.09	. 100
AR 1∽ 5	35.01	٥.	с.	0.	٥.	0.	0.60	0.60	Ο,	34.41	0.	14.87	34.41	100
6~10	23.44	e. 0.	0. C	6.02	6.U2 2.37	0.81	0.60 0.0	7.43 3.78	0.	16.01	0. 0.	6,92 8,80	14.01	100
6-20	17.98	Q.	с.	4.62	4.62	Q. 0.81	0.00	5.22	0	12.76	0.	5.51	12.76	100
1-25 -EKD	21.46 19.49	7,51 4,08	с. с.	0.97 0.03	8,48 4,11	0.	0.00 0.00	4.71	0.	14.78	0.	7,66		100
PR 1-5	42.94		C.	1.09	13.47	0.75	0,60	14.43	Ο,	28.51	0.	12.32	28.51	100.
6-10	70.25	11.98	е.	е.	8.76	0.	0.69	9.36	D.	60.93. 47.93				100
1-15 6-20	60.29 78.20	11.76	0. 0.	0. 0.	11.76	0. 8.	0.60 9.60	12:36	D.	77.60	· 0.	33,52	77.60	100
1-25 -END	74.85 41.88	9.93 9.98	8.38 8.35	0. 0.	18,36 18,36	0.81 0.81	0.40 0,60	19.77 19.77	0. 0.	55.08 22.11	0. Q.	23.80 9.55	55.08 22.11	100
AY				_					· ·	54.96	Ċ.	23.74	54.96	100
1- 5 6-10	61.81 80.43	е. г.	6.25	0. 0.	6.25	0.	0.60 0.60	6.85 10.71	0.	69.72	0.	30.12	69.72	100
1-15 6-20	90.35	8.15 6.33	14.67	0. 0,	22,78 20,23	0.81 0.	0.60 0.60	24.19 20.88	0.	66.16 79.31	0. 0.	28.58 34.24	79.31	100
1-25 -END	99.62 84.44	8.15 0.	9.40 0.	5.78	23.33	0.81 0.	0.60 0.00	24.74	0.	74.88	с. С.	32.35	74.88	100
UN	•													
1- 5 6-10	66 32 40 96	8.15 7.62	8.97 8,77	10.25	27.37	0.81 0.52	0.60 0.60	28.78 27,75	0. 0.	37.54	0. 0.	16.22 5.70	13.21	100
1-15	34.21	8.15	8.97 8.97	12.56	29.68 29.65	0.81 0.81	0.60 0.60	31.09	0.	3.12 -4.05	0. =1.75	1,35		100
1-25 -END	24.95	8,15 8,15 8,15	8.19 8.97	7.57	23.91	0.81	0.60	25.32	Ŭ. 0.	-0.37	-1.91	0. 2.52	0.	90 100
-1 ND UL	21466	e.13	6.91	* = 46			4.00							
1- 5 6-10	23.90 19.46	°.15	8.97 8.69	6.93 6.93	24.45 28.55	0.81 0.41	0.00 0.00	25.46 21.56	0. 0.	-1.56	-0.67 -1.58	0. 0.	0. 0.	96 90
1-15	24.19	4.93 2.50	7.33	6.93	16.77	<i>c</i> .	0.60	12.37	0. 0.	6.82. -0.15		.1.30		100
6-20 1-25	19.88 19.76	2.72	8.97 4.37	6.93	18.62	0.81	0.60 0.60	20.03	0.	9.68	0.	4.12	9,53	100
• E N D	22,47	n.	5.76	0.85	4.61	0.81	0.40	6.02	0.	16.45	0.	8.53	16.45	100
UG 1- 5	16.61	Ω.	2.97	6.93	15.90	0.81	0.60	17.31	0.	-0.70	-0.30	0.	D. D.	98 92
6-10 1-15	13,11	С. D.	5.93 5.03	6.93 6.93	12.87	0.81 0.81	0.6D 0.6D	14.28	0. 0.	-1.17 -2.60	-1.93	0. 0.	0.	80
6-20	10.74 15.6P	0. D.	0 2.97	0. 6.93	9,90	0.30	0.60 0.60	0.90	0.	5.10	е. 0.	2,33	5,38 5,10	100
-END	26,00	n,	¢,	0.09	0.09	Q.	0,60	0.69.			Ø.		25.40	100
1- 5	24,25	ο.	ο.	6.02	6.02	G.	U. 60	6.62	0,	17.63	6.	7.62		100
6-10	89.18 69.06	0. 7.44	0.	0. 4.28	D. 11.69	0. 0.70	0.60	0.60 12.99	0.	88,58 56.07	0.	38,27 24,22	56.07	100
6-20	54,82	6.72	е,	1,70	7,92	0. 0.81	0,60	8,52	_ 0. 0.	46.30 26.56		20,00	26.56	100
1-25 -END	40.02 27.58	12.05	¢.	о. С.	11.69	0.52	0.60	12.82		14.76	Ċ.	6.38	14.76	100
cr 1- 5	22.53	14.77	e.	ο.	14,77	0.81	0,60	16.18	0.	6.35	0.	2.74	6,35	
6-10	28.73	14.77	<u>t</u> .	. 0.	14.77	0.81	0.60 0.60	16.16		45.87	0	19.82		100
1-15 6-20	46.47 77.12	0. A.50	0. 3.27	0. D.	0. 4.37	0.	0.60	4,97	0.	72.15	0. D.	31.17	. 72.15	
1-25 -640	38.71 41.64	8,15 6,99	13.27 9.37	0. 4.	21.42 16,31	0.81 0.07	0.60 0.60	22.83 14.98	0. 0.	15.88 24.06	ο.	32.47		
οv	30. 0		• • •		16 12	~	0 10	10.99	0.	19,97	0.	8.63	19.97	100
1- 5 6-10	30.96 32.74	6.44 1.39	3.98 10.55	n. 0.	10.39	0.	0.60 0.60	12,55	0,	20.19	0.	6.12	20.14	100
1-15 6-20	64.62 65.31	8.15 D.	10.02 5.82	6.02 5.56	24 19 11.38	0.81 0.	0.60 0.60	25.60	0. 0.	38.42	0.	16.60	53.33	100
1-25 -END	20, 301 72, 27	5.47	4,85	7.21	18,13 7,57	0. 0.	0.60 0.60	18.73 8.17	0. 0.	89.32	0. 0.	38.59		100
FC														
1-5	52.0* 83.51	5,90 5,15	8.13 8.65	12.56	26.59	0, 18,0	0.60 0.60	27.19 30.41	0.	24.84 53,10	0.	10.73	53,10	100
1-15	55.51 37.17	ñ.	0. 8.97	1.25	1.25	0. 0.81	0.40	1.85	0.	53.60	υ.	23,18		100
1-25	29.01	8,15 8,15	8.97	6.95	24.05	0.81	0.60 0.60	25.46	ů, 0.	4.20	0.	1.81	6,20	100
6-640	26.19	0.	3.31	3.29	7.27									

Table C-15 (5/5) WATER BALANCE IN CASE OF 30 DAYS DELAY IN CROPPING SCHEDULE FOR CASE 3 IN 1983

PERIOD	RUNOFT		61 BCK 2	PDY PLOCK 3		UPLAND CROP		DIVERS'N REGM'T		BALANCE	DEFICIT		DOWNSTR.	
	(CUN/S)	((04/5)	(CUP755	(curis)	(Cum/s)	(CUM/S)	((UH/S)	(CUP/S)	FLOV (CUH/S)	(CUR/S)	(#(8)		FROM BRH (CUH/S)	06930 (HK)
JAN 1- 5 6-10 11-15 16-20 21-25 26-END	39.23 35.44 27.60 24.84 22.11 19.29	0. 6.11 7.40 5.44 5.44 2.72	0. 7.27 8.53 8.97 8.97 8.97	0. 5.84 6.75 6.93 6.93 6.93	0. 19.22 22.68 21.33 21.33 18.62	0. 0.41 0.81 0.81 0.81	03.0 03.0 03.0 03.4 03.4 03.0 04.0	0.60 19.82 23.69 22.74 22.74 20.03	0. 0. 0. 0.	38.63 15.62 3.97 2.10 -0.63 -0.74	0. 0. 0. -0.27 ~0.66	16.69 6.75 1.69 0.91 0.	38.63 15.62 3.91 2.10 0. 0.	100, 100, 100, 100, 28, 95,
FEB 1~ 5 6~10 11-15 16~20 21-25 26-END	18,90 16,49 16,69 22,30 17,47 15,71	2,72 0, 0, 0, 0, 0,	8.97 5.22 8.97 5.93 5.93 2.93 2.93	6,93 2,55 6,93 6,93 6,93 6,93	16-62 7.77 15.90 12.67 12.87 9.90	0.81 0.81 0.81 0.47 0.47 0.07 0.81	0.60 03.0 0.60 0.60 0.60 0.60	20.03 9.18 17.31 13.93 13.53 11.31	0. 0. 0. 0. 0.	-1.13 7.31 -0.62 8.37 3.94 4.40	-1.14 0. -0.27 0. 0. 0.	0, 2,01 0, 3,35 1,70 1,15	0. 4.66 0. 7.75 3.94 4.50	92. 100. 98, 100, 100, 100.
HAR 1~.5 6~10 11~15 16~20 21~25 26-END	20,98 14,94 19,25 19,61 18,55 25,39	0. 0. 0. 7.51 4.26	2.97 0. 0. 0. 0. 0.	6.93 5.84 6.57 2.31 4.62 2.31	9.90 5.64 6.57 2.31 12.13 8.57	0.81 0.81 0.81 0. 0.81 0.81	0.40 0.40 0.40 0.40 0.40 0.40 0.40	11.31 7.25 7.98 2.91 13.54 9.98	0. 0. 0. 0. 0.	9.67 7.69 11.77 16.70 5.01 15.41	0. 0. 0. 0. 0.	4,18 3,52 4,87 7,71 2,16 7,99	9.67 7.69 11.27 16.70 5.01 15.41	100. 100. 100. 100. 100. 100.
APR 1- 5 6-10 11-15 16-20 21-25 26-END	15.76 13.40 12.11 10.66 12.83 18,24	12.05 12.05 14.77 14.77 14.77 1.32	0. 0. 4.23 4.79	2.31 0, 0. 0. 0. 0,	14.36 12.65 14.77 14.77 5.05 6,13	0.81 0.81 0.81 0.81 0.	03.0 03.0 03.0 03.0 03.0 93.0	15.77 13.46 16.18 16.18 5.63 8.71	0. 0. 0. 0. 0.	-0.61 0,03 -4.07 -5.52 7.18 12.53	~0.08 0. -1.76 -4.14 -1.04 0.	0 . 0 . D1 0 . 0 . 0 . 4 . 37	0. 0. 0. 0. 10.12	100. 100. 72. 33. 88. 100.
NAY 1- 5 6-10 11-15 16-20 21-25 26-640	33.25 24,90 30,39 26,73 29,22 21,44	3.22 6.33 7.62 3.33 7.40 0.	7.14 12.2P 15.00 14.30 7.17 0.22	0. 0. 5.02 5.02	10.35 18.61 23.61 17.72 19.53 11.33	0. 0.52 0. 0.41 0.	0.00 0.00 0.00 0.00 0.00 0.00	10,95 19,21 24,73 18,32 20,59 11,93	0. 0. 0. 0. 0.	22.30 5.69 5.66 8.43 8.63 9.51	0. 0. 0. 0. 0.	9,63 2,46 2,44 3,63 3,73 4,93	22.30 5.69 5.66 8.41 8.63 8.51	109. 100. 100. 100. 100. 100.
JUN 1- 5 6-10 11-15 16-20 21-25 26-ENP	24.00 14.35 26.44 34.06 19.74 15.07	5,15 7,19 7,79 5,47 8,15 8,15	8,97 8,14 4,32 3,75 8,97 8,97	10.25 9.28 9.46 7.63 8.48 5.48	27.37 25.61 16.36 16.36 25.60 25.60	0.81 9.30 0. 0.81 0.81	0.60 0.60 0.60 0.60 0.60 0.60	28.78 26.10 17.16 17.66 27.01 27.01	0. 0. 0. 0. 0.	-4.78 -11.75 9.28 16.60 -7.27 -11.94	-2.06 -7.14 -3.13 0. -3.14 -8.30	0, 0, 4,94 6, 0,	0. 0. 9.35 0. 0.	88. 57. 63. 100. 83. 55.
JUL 1- 5 6-10 11-15 16-20 21-25 26-END	15,28 17,42 14,12 16,97 53,45 28,84	3.33 3.22 5.44 0. 2.72 0.	7,17 6,17 5,84 0, 8,57 7,01	8.93 5.11 7.26 0. 6.93 4.65	17.43 14.49 14.56 0, 18.62 11.67	0, 0,81 0,81 0,81 0,81	0.60 0.60 0.60 0.60 0.60	18.03 15.09 15.97 0.60 20.03 13.08	6. 6. 0. 0. 0.	-2.75 2.33 3.15 16.32 33.42 15.76	-9.49 -8.48 -7.12 -8.07 U. 0.	0, 0, 0, 14,37 8,17	0. 0. 0. 33.25 15.76	48. 58. 56. 59, 100. 100.
AUG 1- 5 6-10 11-15 16-20 21-25 26-END	62.57 47.59 31.61 31.37 21.72 27.66	0. 0. 0. 0. 0. 9.	8,29 4,37 0,47 2,97 7,58 1,	6,93 5,11 0,55 6,93 6,93	15.22 9.44 1.02 9.50 8.00 6.95	0. 0.23 0. 0.75 0. 0.	03.0 03.0 93.0 93.0 93.0 93.0	15+82 10,29 1,62 11,25 9,20 7,53	0. 0. 0. 0.	46.75 36.70 30.04 20.12 12.52 19.47	0. 0. 0. 0. 0. 0.	20.20 15.85 12.98 8.69 5.47 10.09	46.75 36.70 30.04 20.12 12.52 19.47	100. 100. 100. 100. 100. 100.
SEP 1- 5 6-10 11-15 16-20 21-25 26-END	45.75 64.40 82.61 126.53 73.63 45.13	0. 5.36 1.07 12.05 5.19	U. C. C. C.	Ð, 55 3,41 4,81 1,70 2,31 0,	U.55 3,41 9.38 2.78 14.36 5.19	0, 8, 0, 0, 1,81 0,	0.40 0.40 0.40 0.40 0.40 0.40	1.15 4.01 9.98 3.38 15.77 5.79	0. 0. 0. 0. 0.	44.60 60.39 72.63 123.13 57.86 39.34	0. 8. 0. 0. 0.	19.27 26.09 31.58 53.19 25.00 17.00	44.60 60.39 72.63 123.13 57.86 39.34	100. 100. 100. 100. 100. 100.
067 1- 5 6-10 11-15 16-20 21-25 26-END	35.42 32.(7 30.39 33.91 38.33 42.15	17,50 10,91 7,08 8,80 3,33 0,	0, 7,30 7,94 10,69 3,25	8, 0, 0, 0, 0, 0,	12.50 10.91 14.39 16.74 14.02 3.65	0. 0. 0.18 0. 9.	0.00 0,60 0,60 0.60 0.60 0.60	12.90 11,51 14.98 17.52 14.62 3.85	0. 0. 0. 0.	22.52 21.16 15.41 16.39 23.71 38.30	9. 9. 0. 9.	9.73 9.14 6.66 7.08 10.24 19.85	22.52 21.16 15.41 16.39 23.71 38.30	100. 100. 100. 100. 100. 100.
NOV 1- 5 6-10 11-15 16-20 21-25 26-2ND	20.41 56.82 48.93 45.67 35.64 34.57	3_75 P.15 F.15 P.15 7.83 3.86	10.45 16.10 10.96 10.96 6.50 1.91	0 0 6,38 8,38 8,42 5,99	14.40 24.34 25.50 25.50 22.76 11.76	0. 0.81 9.81 8.81 6.64 0.	03.0 03.0 03.0 03.0 93.0 03.0 03.0	15.00 25.75 26.91 26.91 24.00 12.36	0. 0. 0. 0. 0.	25.41 30.27 22.02 18.76 11.64 22.21	0. 0. 0. 0. 0. 0.	10.98 13.08 9.51 8.71 5.03 9.60	25.41 30.27 22.02 18.74 11.64 22.21	100. 100. 100. 100. 100. 100.
DEC 1- 5 6-10 11-15 16-20 21-25 26-2NP	31,84 28,40 40,40 31,47 27,54 25,90	5.25 3.54 0. 1.29 0. 7.80	8.07 4.91 3.59 2.51 1.25 8.87	17,52 9,82 5,75 3,97 1,46 6,93	29.48 18.27 8.34 7.72 2.71 23.56	0.81 0. 0. 0. 0. 0.58	0.66 0.60 0.60 0.60 0.60 0.60	31.09 18.97 0,04 8.32 3.31 24.74	0. 0. 0. 0. 0.	0.75 9.53 30.46 23,15 24.23 1.16	6. 0. 0. 0. 0.	0.33 4.12 13.16 10.00 10.47 0.60	0.75 9.53 30.46 23.15 24.23 1.16	100, 100, 100, 100, 100,

Table C-16 (1/5)WATER BALANCE UNDER 64% OVERALL EFFICIENCYFOR CASE 2 IN 1978

PER 100		BLOCK 1	PA 81661 2	UDY PLOCK 3 (CUM/S)	TUTAL	UPLAND CROP	D & L Water	DIVERS'N REGM'T	HAINT. FLOR	BALANCE		SURPLUS (MCN)	DOWNSTR. FROM BAN (CUN/S)	WATE DEPTI (NH)
JAN 1- 5 6-10 11-15 16-20 21-25 26-END	t7.66 18.58 18.77 24.80 18.05 14.22	2.85 0. 0. 0. 0. 0.	9,39 2,72 0,37 5,43 4,69 3,13	7.26 3.15 6. 8.30 5.44 7.26	19.69 5.57 0.37 11.74 10.14 10.39	0.85 0. 0. 0. 0. 0. 0. 0. 0.	C.47 G.47 O.47 O.47 C.47 D.47	20.81 6.34 0.84 12.21 10.61 11.70	1.50 1.50 1.50 1.50 1.50 1.50	-4.63 10.74 16.43 11.09 5.94 1.02	-2.60 0. 0. 0. 0. 0.	0. 2.64 7.10 4.79 2.57 0.53	1.50 7.62 17.93 12.59 7.44	86 100 100 100 100 100
ff8 1- 5 8-10 11-15 16-20 21-25 26-END	11.32 13.66 13.84 16.55 10.92 11.18	0. 0. 0. 7.8c 3.87	3,13 0, 0, 0, 0, 6,	7,26 7,26 6,40 1,85 4,07 6,	14.39 7.26 6.40 1.85 11.94 3.87	0.85 0.85 0. 0.85 0.85 0.85	0.47 0.47 0.47 0.47 0.47 0.47 0.47	11.70 8.57 6.87 3.16 13.25 4.34	1.50 1.50 1.50 1.50 1.50 1.50	-1.38 3.59 5.47 11.89 -3.83 5.34	-0.60 0. 0. -1.66 ~0.27	0. 0.95 2.36 5.13 0. 0.	6.97	92 100 100 100 70 93
MAR 1- 5 6-10 11-15 16-20 21-25 6-END	10.46 11.40 13.83 13.61 16.36 15.86	5.88 12.62 12.54 15.46 3.71 4.13	L. G. G. 6.17 5.18	1.24 6. 6. 6. 6. 6. 6.	7.12 12.62 12.54 15.46 9.68 9.88 9.31	G. 0.25 0.85 0.85 0.	C.47 G.47 C.47 C.47 O.47 O.47 O.47	7.59 13.93 13.01 16.78 10.35 9.78	1.50 1.50 1.50 1.50 1.50 1.50	1,37 -4,03 -0.68 -4.67 4.51 4.58	0. -1.74 -2.04 ~4.05 -2.11 0.	0.32 0. 0. 0. 0. 2.	2.24 1.50 1.50 1.50 1.50 2.02	100 58 87 35 75 100
APR 1- 5 6-10 11-15 16-20 21-25 6-END	19.77 15.41 21.72 30.82 70.28 41.50	8.54 8.54 7.64 8.54 8.54 8.54 8.54	12,85 16,99 16,67 16,92 10,58 3,13	0. 4. 4. 5.53 2.84	21.38 19.53 24.31 25.46 25.45 14.31	0.85 0.85 0.37 0.85 0.85 0.85	6.47 C.47 C.47 C.47 C.47 G.47 G.47	22.70 20.85 25.15 26.77 26.77 15.62	1.50 1.50 1.50 1.50 1.50 1.50	-4.43 -2.94 -4.93 2.55 42.01 24.38	-1.91 -3.18 -5.31 -4.21 0. 0.	0. 0. 0. 13.94 10.53	1,50 1,50 1,50 1,50 33,76 25,88	82 70 59 68 100
NAY 1- 5 6-10 11-15 16-20 21-25 6-END	45.55 57.43 62.81 45.47 37.32 22.14	8.54 0. 8.54 8.54 8.54 8.54	9.14 0. 9.35 9.39 9.39 9.39	16.54 5.76 73.75 13.15 6.88 6.21	26.21 5.76 36.91 31.07 24.86 26.13	0.85 0. 0.79 0.85 0.85 0.85	0.47 0.47 0.47 0.47 0.47 0.47	29.53 6.23 32.17 32.39 28.12 27.45	1.50 1.50 1.50 1.50 1.50 1.50	14.52 49.70 35.14 11.58 7.70 -6.81	0. 0. 0. 0. -3.53	6.27 21.47 15.18 5.00 3.33 0.	16.02 51.20 36.64 13.08 9.20 1.50	109 100 100 100 100 109
JUN 1- 5 6-10 11-15 16-20 21-25 26-END	21,37 19,66 16,94 13,30 12,70 11,81	5.39 2.62 5.65 0. 2.25 0.	8.23 6.13 9.39 6.út 9,39 4,53	7.26 5.44 7.26 6.97 7.26 5.25	20.22 14.20 22.33 12.98 15.49 9.76	0. 6. 0.85 0. 0. 0. 0.	0.47 0.47 0.47 0.47 0.47 0.47 0.47	21.35 14.67 23.65 13.45 20.81 10.25	1.50 1.50 1.50 1.50 1.50 1.50 1.50	-1.48 3.49 -8.21 -1.65 -9.61 0.06	-4.17 -2.66 -6.21 -6.92 -11.07 -11.05	0. 0. 0. 0.	1.50 1.50 1.50 1.50 1.50 1.50	77 84 62 51 22 9
JUL 1- 5 6-10 11-15 16-20 21-25 6-END	16,75 16,04 13,28 12,25 16,29 12,04	0. 0. 0. 0. 0.	9,39 6.26 4.20 2.84 3.13 C.	7 . 7 6 7 . 2 6 4 . 8 7 6 . 5 9 7 . 2 6 7 . 2 6	16.64 13.51 9.67 9.43 10.39 7.26	0.85 0. 0.85 0.85 0.85 0.	C.47 E.47 C.42 D.47 C.47 C.47 O.47	17.96 13.98 10.39 10.75 11.70 7.73	1.50 1.50 1.50 1.50 1.50 1.50	-8.71 0.56 1.39 0.00 3.09 2.81	-14.81 -14.57 -13.97 -13.96 -12.63 -11.17	0, 0. 0,	1.50 5.50 1.50 5.50 5.50 1.50	-22 -48 -42 -85 -67 -112
AUG 1- 5 6-10 11-15 16-20 21-25 6-E40	9,43 8,59 14,12 10,74 9,18 8,72	0. 0. 5.39 7.80 12.62 7.77	0. 0. 0. 0. 0.	7.26 4.26 6. 6. 6. 6.	7.26 4.84 5.39 7.86 15.03 7.77	0,43 6,61 0, 0,85 0,85 0,	C.47 C.47 C.47 C.47 C.47 C.47 C.47	5.16 5.92 5.86 9.18 16.35 8.24	1.50 1.50 1.50 1.50 1.50 1.50	-0.23 1.17 6.76 0.06 -8.67 -1.02	-11.27 -10.76 -7.84 -7.82 -11.56 -12.09	0. 0. 0. 0.	1.50 1.50 1.50 1.50 1.50 1.50	-113 -206 -40 -104 -96 -192
SEP 1- 5 6-10 11-15 16-20 21-25 26-END	10,27 11,69 11,42 6,44 23,20 13,24	14.34 11.98 5.95 0. 0. 8.54	0. C. 7. Lî 6. 2. 70 13. E8	ί. Ů. ΰ. υ.	14.34 11.98 12.95 C. 2.76 22.41	0.25 0. 0. 0. 0. 0. 0. 55	C.47 C.47 C.47 C.47 C.47 C.47 C.47	15.06 12.45 13.42 0.47 7.26 23.73	1.50 1.50 1.50 1.50 1.50 1.50	-6.29 -2.26 -3,50 6.47 14,44 -11.99	-14.81 -15.78 -17.30 -14.50 -8.27 -13.45	0. 0. 0. 0. 0.	1.50 1.50 1.50 1.50 1.50 1.50	-138 -154 -104 -71 23 -25
0CT 1- 5 6-10 11-15 16-20 21-25 26-END	12,15 9,79 13,05 15,77 28,97 58,70	*.54 ?.58 *.54 0. 0. 3.76	17,00 8,23 11,49 8,36 2,96 2,42	0. 6. 6.68 8.18 4.91	25.54 10.62 26.71 15.04 11.14 11.09	0.85 0. 0.85 0. 0. 0.	C.47 C.47 C.47 C.47 C.47 C.47 C.47	26.56 11.29 28.02 15.51 11.61 11.56	1.50 1.50 1.50 1.50 1.50 1.50	-16,21 -3,00 -16,47 -1,24 15,86 45,64	-20.45 -21.74 -28.86 -29.39 -22.54 0.	0 - 0 - 0 - 0 - 0 - 1 - 1 2	1,50 1,50 1,50 1,50 1,50 3,45	-57 -67 -95 -99 -36 100
NOV 1- 5 6+10 11-15 16-20 21-25 26-END	62,77 53,95 67,91 F2,64 77,43 43,46	0. 0. 7.19 8.54 8.54	0.25 6. 8.89 9.59 9.39	6.17 1.97 6. 8.88 7.26 7.26	6.42 1.97 6. 24.96 25.18 25.18	0. 0. 0.13 0.25 0.85	(,47 0,47 0,47 0,47 0,47 0,47 0,47	6.59 2.46 0.47 25.56 26.50 26.50	1.50 1.50 1.50 1.50 1.50 1.50	54,38 50,01 65,94 55,58 49,43 15,46	0. 0. 0. 0. 0. 0.	23.49 21.60 28.49 24.01 21.36 6.68		100 100 100 100 100 100
DEC 1- 5 6-10 11-15 16-2C 21-25 26-END	32,09 48,05 33,45 23,21 21,78 17,37	6. 8.54 4.42 0. 2.85	1,46 6, 3,62 7,04 5,43 9,39	1.72 6. 6.57 5.35 6.30 7.26	3.20 5. 12.77 16.81 11.74 19.49	0. U. 0.25 U. 0. 0.85	C.47 5.47 C.47 C.47 C.47 C.47 C.47	3.67 0.47 14.05 17.28 12.21 20.81	1.50 1.50 1.50 1.50 1.50 1.50	26.92 46.08 17.90 4.43 8.07 -4.94	0. 0. 0. 0. -2.56	11.63 19.91 7.73 1.92 3.49 0,	28.42 47.58 19.40 5.93 9.57 1.50	100 100 100 100 100 82

Table C-16 (2/5) WATER BALANCE UNDER 64% OVERALL EFFICIENCY FOR CASE 2 IN 1979

PERSOD	RUNDFF ((UR/S)	810CK 1	PA 610(K 2 ((01/5)	to other a	TOTAL (CUM/S)	UPLAND CROP (CUM/S)		DIVERS'N REQM'T (CUR/S)		BALANCE (CUH/S)	DEFICIT (HCH)		DOWNSTR. FROM DRH (CUM/S)	WATER DEPTI (NN)
JAN 1- 5 6-10 11-15 16-20 21-25 26-END	18.17 17.80 15.18 11.95 11.99 11.25	0. 0. 0. 0. 0.	6, 7,12 6,30 6,26 4,61 3,13	L. 6.30 7.26 5.35 7.26	U. 13.42 16.64 13.51 9.96 10.39	0. 0.85 0.85 0.19 0.85	G.47 G.47 C.47 G.47 G.47	0.47 13,89 17.96 14.83 10.62 11.70	1.50 1.50 1.50 1.50 1.50 1.50 1.50	16.20 2.41 -4.28 -4.38 -0.13 -1.95	0. D, -1.85 -3.74 -3.80 -4.81	4.44 1.04 0. 0. 0.	11.78 3.91 1.50 1.50 1.50 1.50	100 100 65 62 61 36
FE8 1- 5 11-15 16-20 21-25 26-END	11.10 12.22 11.84 14.90 35.77 34.91	0. 0. 0. 6.14 13.10	3.13 0. 0. 0. 0. 0.	7.26 3.44 1.53 6. U. 2.42	10.39 3.44 1.53 0. 6.14 15.52	0.85 0.13 0.73 0.19 0. 0.85	C.47 0.47 0.47 0.47 0.47 C.47	11.70 4.04 2.73 0.66 6.61 16.84	1.50 1.50 1.50 1.50 1.50 1.50	~2.10 6.68 7.61 12.74 27.66 16.57	-5.72 -2.83 0. 0. 0. 0.	0. 0.46 5.50 11_95 4.30	1 - 50 1 - 50 2 - 56 14 - 24 29 - 16 18 - 07	24. 46. 100. 100. 100. 100.
NAR 1- 5 4-10 11-15 16-20 21-25 26-END	27.97 25.87 22.75 50.69 65.60 39.86	12.62 12.62 15.46 15.46 10.44 9.65	C. D. O. 8.65 7.21	έ.42 Ο. Ο. Ο. Ο. Ο.	15.03 12.62 15.46 15.46 15.09 16.86	0.85 0.85 0.85 0.85 0.85 0.85	0.47 6.47 0.47 0.47 0.47 0.47	16.35 13.93 16,78 16.76 20.41 18.18	1,50 1,50 1,50 1,50 1,50 1,50	10.12 10.44 4.47 32.41 43.69 20.20	0. 0. 0. 0. 0.	4.37 4.51 1.93 14.00 18.87 10.47	11.62 11.94 5.97 33.91 45.19 21.70	100 100 100 100 100
APR 1- 5 6-10 11-15 16-20 21-25 26-END	51.33 42.30 33.20 28.31 35.43 43.29	8,54 8,54 8,54 0, 0,	13.88 12.44 3.95 17.60 0. 0.	6. 0. 0. 1.27 1.91	22.41 21.18 12.49 25.54 1.27 1.91	0.85 0.85 0.85 0.85 0. 0.	6.47 6.47 6.47 6.47 6.47 6.47	23.73 22,49 13.81 26.86 1.74 2.38	1.56 3.50 1.50 1.50 1.50 1.50	26,10 18,37 17,98 ~0,05 32,19 41,41	6, 0, -0,02 0, 0,	11.28 7.93 7.77 0. 13.89 17.89	27+60 19+87 19+87 1+50 33-64 42+91	100 100 100 100 100
НАУ. 1- 5 6-10 11-15 16-20 21-25 26-ЕНР	56.30 37.52 50.60 23.45 19.04 26,77	F.54 8.54 2.54 8.54 7.54 7.	5.39 5.39 4.45 9.39 8.56 1.45	10.73 10.73 7,42 13.15 7.93 2.24	22.65 28.65 20.40 31.07 25.02 4.09	0.25 0.85 0.85 0.85 0.85 9.	C.47 C.47 C.47 D.47 D.47 <i>D.47</i>	29,97 29,97 21,72 32,39 26,34 4,56	1.50 1.50 1.50 1.50 1.50 1.50	24.83 6.05 27.38 -10.44 -8.80 20.71	0. 0. -4.51 -8.31 9.	10.73 2.62 11.83 0. 0. 2.43	26.33 7.55 28.88 1.50 1.50 6.18	160 100 100 75 55
JUR 1- 5 6-10 11-15 16-20 21-25 6-END	29.59 66.74 67.25 30.56 23.12 20.28	8.54 0. 0.96 2.96 2.85 0.	7.74 3.79 0.49 8.05 9.39 9.39	5 - 35 6 - 39 6 - 39 7 - 26 7 - 26	21.62 8.18 1.39 12.50 19.49 16.64	0.85 0. 0. 0. 0. 0.85 0.85	C.47 D.47 G.47 C.47 G.47 C.47	22.94 8.65 1.86 12.97 20.81 17.96	1.50 1.50 1.50 1.50 1.50 1.50	5.15 56.59 63.89 16.09 0.81 0.82	0. 0. 0. 0. 0.	2.22 24.45 27.60 6.95 0.35 0.35	6.65 58.09 65.39 17.59 2.31 2.32	100, 100, 100, 100, 100,
JUL 1- 5 6-10 11-15 16-20 21-25 6-END	17+74 15-61 22-67 24-02 73-93 49-59	0. 0. 0. 0. 0.	9.39 6.25 8.26 3.13 8. 0,	7.26 7.26 7.26 7.26 U. 6.46	16.04 13,51 13.51 10.39 0. 6.46	0.85 D. 0.55 0. 0. 0. 0.	C.47 C.47 C.47 G.47 D.47 C.47	17.96 13.98 14.53 10.86 0.47 7.78	1.50 1.50 1.50 1.50 1.50 1.50	-1,72 D,13 6,64 11,66 71,96 40,31	-0.74 -0.69 0. 0. 0.	0. 0. 2.18 5.04 31.09 20.90	1-50 1+50 6+54 13+16 73+46 41+81	94, 93, 100, 100, 100, 100,
AUG 1- 5 6-10 11-15 16-20 21-25 6-END	23,82 21,66 17,45 20,85 26,95 28,20	0. 0. 7.6c 6.21 12.62 3.21	6. 6. 8. 0.	5.35 4.84 3.56 2.42 2.10 0.	5.5 4.84 11.43 6.63 14.72 3.21	6.85 0.83 0.85 0. 0.85 0. 0.85 0.	(.47 0.47 C.47 C.47 C.47 C.47 0.47	5.66 6.16 12.74 5.10 16.03 3.68	1.50 1.50 1.50 1.50 1.50 1.50	15.66 14.00 3.21 10.25 9.42 23.02	0. 0. 0. 0. 0.	6.76 6.05 1.39 4.43 4.07 11.93	17.16 15.50 4.71 11.75 10.92 24.52	100, 100, 100, 100, 100, 100,
SEP 1- 5 6-10 11-15 16-20 21-25 6-ENO	43,99 55,35 76,67 80,10 42,58 37,18	12.54 15.46 10.44 7.97 8.54 0.34	0. 0. 2.25 7.74 13.28 9.64	ΰ. Ο. ΰ. Γ.	12.55 15.46 19.69 15.72 22.41 9.97	0. 6.85 0.85 0. 0. 0. 0.	C.47 C.47 C.47 C.47 C.47 C.47	13.01 16,78 20.41 18.19 23.73 10.44	1.50 1.50 1.50 1.50 1.50 1.50	29.48 37.07 54.76 62.41 17.35 25.24	0. 0. 0. 0. 0.	12,74 16,02 23,66 26,96 7,50 10,90	30.98 38.57 56.26 63.91 18.85 26.74	100, 100, 100, 100, 100,
0CT 1- 5 6-10 11-15 16-20 21-25 86-END	25.41 27.75 37.89 40.53 46.28 79.24	8.54 0. 5.19 1.35 0.49	17.00 13.05 0. 9.51 0.49 0.95	6. 6. 1.19 6.37 6. 4.69	25.54 13.05 1.59 21.27 1.84 6.13	0.85 0. 0. 0. 0. 0.	C.47 5.47 0.47 0.47 E.47 G.47	26.866 13.52 2.06 21.74 7.31 6.60	1.50 1,50 1.50 1.50 1.50 1,50	-2,95 12,73 34,33 17,29 42,47 71,14	-1,27 0, 0, 0, 0, 0,	0. 4,23 14.83 7.47 18.35 36.88	1.50 11,28 35,83 18,79 43,97 72,64	90, 100, 100, 100, 100, 100,
NOV 1- 5 6-10 11-15 16-20 21-25 6-END	73.36 79.14 20.54 168.88 131.50 114.39	0. 8.54 1.01 0. 3.48 0.	6.26 4.45 3.33 3.79 4.24 0.	13.15 7.42 5.06 0.02 3.44 6.	19.40 26.40 9.41 9.80 11.16 6.	0. 0.25 0. 0. 0. 0. 0.	0.47 C.47 C.47 C.47 C.47 C.47 C.47	19.87 21.72 4.88 10.27 11.63 0.47	1.50 1.50 1.50 1.50 1.50 1.50	51.99 55.92 69.16 157.11 98.37 312.42	0. 0. 0. 0. 0.	22.46 24.16 29.88 67.87 42.50 48.57	53.49 57.42 70.66 158.61 99.87 113.92	100, 100, 100, 100, 100,
DEC 1- 5 6-10 11-15 16-20 21-25 6+END	86.48 59.83 46.53 34.69 31.69 26.61	0. 2.54 7.75 4.72 5.69 2.85	6.20 9.39 9.10 8.85 8.56 9.39	7.26 7.26 7.26 7.26 0.30 7.26	13.51 25.18 24.11 20.87 20.56 19.49	6. 0.85 0.43 0.07 6.85 0.85	C.47 C.47 C.47 C.47 C.47 C.47 C.47	13.98 26.50 25.00 21.37 21.87 20.81	1.50 1.50 1.50 1.50 1.50 1.50	65.00 31.83 14.03 53.85 8.32 4.30	0. 0. 0. 0. 0.	28.08 13.75 6.06 5.12 3.59 2.23	66.50 33.33 15.53 13.35 9.82 5.80	100, 100, 100, 100, 100, 100,

Table C-16 (3/5)WATER BALANCE UNDER 64% OVERALL EFFICIENCY
FOR CASE 2 IN 1980

PERIOD	RUNOFF	810(K 1	. РА 	DDY PLOCE 3	TOTAL (CUM/S)	ÚPLARD CROP	D 8 1 WATER - (CUM/S)	REOM'T	HAINT. FLOW	BALANCE	DEFICIT (NCN)	SURPLUS	BOWNSTR. FROM BRN	WATE DEPT (MP
JAN 1- 5 6-10 11-15 18-20 21-25 26-END	25.45 22.79 16.04 15.61 14.56 19.16	2.52 0, 0. 0. 0. 0.	8.28 3.59 7.74 6.26 6.26 3.13	6.30 1.53 5.35 7.26 7.26 7.26	12.16 5.52 13.09 13.51 13.51 10.39	0.43 0.19 0.65 0. 0.85 0.85	C.47 C.47 C.47 C.47 C.47 C.47 C.47	18.06 6.18 14.41 13.98 14.83 11.70	1,50	5=89 15.11 2.13 0.13 ~1.77 5.96	0 0 0 -0,77 0	2.34 6.53 0.95 0. 2.32	16,61 3,63 1,63 1,50	100 100 100 100 100 100
FEB 1- 5 8-10 11-15 16-28 21-25 26-END	14.68 12.03 10.19 9.13 12.87 26.10	t. 0. 0. 7.56 5.57	3.13 C. O. C. C.	7.26 7.26 7.26 4.20 4.20 2.42	16.39 7.26 7.26 4.20 12.06 7.99	0.85 0.85 0.85 0. 0.85 0.		11.70 8.57 8.57 4.67 13.38 8.46	1.50 1.50 1.50 1.50 1.50 1.50	1.48 1.96 0.12 2.96 ~2.01 18.14	0. 0. 0. -0.87 0,	0.64 0.84 0.05 1.28 0. 5.40	3.46 1.62 4.46 1.50	100 100 100 100 84 100
HAR 1- 5 6-10 11-15 16-20 21-25 6-END	30.12 59.28 21.58 27.68 22.73 19.44	3,71 12.32 11.64 15.46 8.54 F.06	U. G. D. 7.95 6.67	6.19 6. 6. 0. 6.	3.90 12.32 13.64 15.46 14.68 14.68	0. 0.61 0.25 0. 0.	C.47 C.47	4.37 13.39 12.11 16.78 16.95 15.15	1,50 1,50 1,50 1,50 1,50 1,50	30 - 23 44 - 39 7 - 95 9 - 40 4 - 28 2 - 79		13.07 19.17 3.43 4.06 1.85 1.44	45 89	100 100 100 100 100
APR 1- 5 6-1C 11-15 16-2C 21-25 26-END	21,82 25,89 25,50 19,27 17,73 44,30	0. 0. 5.39 8.42 0. 8.42	7.58	0. 0. 0. 0. 0. 0. 5.41	7.5E 7.37 25.35	0.79	C.47 G.47 G.47 C.47 C.47 C.47	9.12 8.05 7.84 26.64 15.51 23.24	1.5C 1.50 1.50	11.20 16.34 16.16 -8.87 0.72 19.56	0. 0. -3.83 -3.52 0.	4.84 7.06 6.98 0. 0. 4.93	17.84 17.65 1.50 1.50	100 100 71 70 100
MAY 1- 5 6-10 11-15 16-20 21-25 26-END	46.47 71.85 68.50 57.41 33.02 37.61	0. 0. 0. 8.54 7.88	6.20 0. 5.43 2.96 6.69 8.46	10.73 1.59 12.19 9.33 5.66 7.61	16.98 1.59 17.62 12.29 19.69 23.75	0. 0. 0. 0.25 0.43	U 47 D 47 C 47 C 47 C 47 C 47 C 47	17.45 2.06 18.09 12.76 21.01 24.65	1.50 1.50 1.50 1.50 1.50	27.52 68.29 48.91 43.15 10.51 11.46	0. 0. 0. 0. 0.	11.89 29.50 21.13 18.64 4.54 5.94	69.79 50.41 44.65 12.01	100 100 100 100 100 100
JUX 1- 5 6-10 11-15 16+20 21-25 26-END	32.77 36.61 25.20 38.07 24.53 23.90	6. 5.54 4.79 2.28 2.13 0.	5.43 7.66 8.89 7.32 8.60 9.36	6.30 5.35 7.26 5.35 7.26 7.26	11.74 18.55 20.94 14.75 18.00 16.62	G. 6.75 0.13 0. u. 0.81	0,47	12.21 19.74 21.54 15.22 18.47 17.90	1,50 1,50 1,50 1,50 1,50 1,50	19.06 15.37 2.18 21.35 4.56 4.50	0. 0. 0.	8.24 6.64 0.93 9.22 1.97 1.94	16.67 3.66 22.85 6.06	10(10(10) 10(10)
JUL 1- 5 6-10 11-15 16-20 21-25 26-END	17.20 14.59 13.44 29.52 22.95 37.34	0. 0. 0. 0.	9.39 6.26 5.43 0. 0. C.		12.04 13.51 11.74 0. 6. 4.67	U.85 U.07 U.85 O. D. G.	C.47 C.47 C.47 O.47 C.47 C.47	17.96 14.66 13.05 0.47 0.47 4.54	1.50 1.50 1.50 1.50 1.50 1.50	-2,26 -0.97 -1.11 27.55 20.98 31.30	-0.98 -1.39 -1.88 0. 0. 0.	0. 0. 10.03 9.06 16.22	1,50 24,71 22,48	92 81 101 100 100
AUG 1- 5 6-10 11-15 16-20 21-25 26-END	36.32 26.12 25.35 21.11 86.01 43.59	0. 7.56 3.42 12.62 7.71	0. C. C. C. C.	7.26 4.84 3.56 0.51 1.46 6.	7.26 4.04 11.43 3.99 14.08 7.71	0. 6. 6. 0.85 0.85 U.	0.47 0.47 0.47 0.47 0.47 0.47 0.47	7.73 5.31 12.74 4.46 15.40 8.18	1.50 1.50 1.50 1.50 1.50 1.50	29.09 19.31 11.11 15.15 67.11 33.91	0. 0. 0. 0.	12.57 8.34 4.80 6.54 28.99 17.58	20.81 12.61 16.65 68.61	100 100 100 100 100 100
SEP 1- 5 6-10 11-15 16-20 21-25 26-END	30.07 40.36 26.64 41.59 75.58 56.95	13.55 9.06 10.44 10.64 0.22 6.29	(). 0. 8.45 2.45 7.54 11.82	0. 6. 6. 6.	13.55 9.00 19.09 19.09 7.70 12.11	G. D. G.85 G.85 B. D.	C.47	20.41	1.50	14.55 29.33 4.73 19.68 85.85 30.87	0. 0. 0. 0.	6.28 12.67 2.04 8.50 28.45 13.34	30.83 6,23 21.18 67,35	100 100 100 100 100
0CT 1- 5 6-1C 11-15 16-20 21-25 26-EHD	47,21 73,58 77,04 254,74 64,81 40,27	0. 0. 4.2] 8.54 3.93 0.	13.67 13.87 9.30 16.66 7.70 3.51	6. 6. 6.37 16.73 16.22	13.87 13.87 20.50 25.50 22.36 10.33	0. 0. 0.85 0. 0.	0.47 C.47 0.47 C.47 C.47 C.47 C.47	14.34 14.34 20.97 26.88 22.83 10.80	1.50 1.50 1.50 1.50 1.50 1.50	31.37 58.04 54.57 226.36 40.48 27.97	0. 0. 0. 0. 0.	13,55 25,07 23,57 97,79 17,49 14,50	59,54 58,07 227,86 41,98	10(10(10(10(10(10(
NOV 1- 5 6-10 11-15 16-20 21-25 26-END	35,41 23,36 26,21 49,29 76,87 80,97	C, 8,54 7,30 8,54 0, 7,19	1.32 7.74 7.29 8.50 6. 4.78	7.42 11.24 6.97 7.93 0. 2.48	6.73 27.51 21.56 25.62 0. 14.45	Ú. 0.85 0.19 U.85 0. 5.13	C.47 C.47 C.47 C.47 C.47 C.47 C.47	9,20 26,83 22,22 26,34 0,47 15,05	1.50 1.50 1.50 1.50 1.50 1.50	24.71 3.03 12.49 21.45 68.90 64.42	.0.	10.67 1.31 5.40 9.27 29.76 27.83	13,99 22,95 70,40	10) 10) 10) 10) 10) 10)
DEC 1- 5 6-1C 11-15 16-2C 21-25 26-EHD	PE.39 158.55 146.08 71.17 53.13 45.21	6). 2.92 8.54 4.94 8. 2.75	C. 1.67 9.39 2.72 6.26 5.03	u. 4. 7.26 6. 7.26 6.	U. 3.99 25.17 7.68 13.51 5.77	0. 6. 0.85 0.25 0. 0.67	C.47 C.47 U.47 O.47 O.47 O.47	0.47 4.46 26.50 8.3ž 13.98 6.97	1.50 1.50 1.50 1.50 1.50 1.50	64.42 152.59 120.08 61.29 37.65 36.79	0. 0. 0. 0. 0.	37.33 65.92 51.88 26.48 16.26 19.07	154,09 121,58 82,79	100 100 100 100 100

Table C-16 (4/5) WATER BALANCE UNDER 64% OVERALL EFFICIENCY FOR CASE 2 IN 1981

YEAR : 1981

		BLUCK 1 (CUM/S)	41 DEX 2	BEETS 3	10141	UPL KAU	1	DIVERSIN REGRIX ((UR/S)	HAINT. (LON (CUH/S)	DALAHEE (CUM/S)	DEFICIT (MCH)	SURPLUS	¢OWNSTR, FROM BRH {(UM/S)	*****
JAN 1- 5 6-10 11-15 16-20 21-25 26-END	54,19 52,32 37,97 34,74 32,50 27,20	0.45 0. 0. 0. 0. 0.	5.93 £.26 5.30 £.28 5.43 3.13	6.30 7.26 7.26 7.26 6.50 7.28	12.08 13.51 10.04 13.51 11.74 10.39	0. 0. 0.25 0.31 0.E5 0.85	F.47 C.47 C.47 C.47 C.47 G.47 C.47	13.15 13.98 17.96 14.30 13.05 11.70	1.50 1.50 1.50 1.50 1.50 1.50 1.50	39.54 36.84 18.51 18.94 17.95 14.00	0. 0. 0. 0. 0. 0.	17.08 15.91 8.00 8.18 7.75 7.26	41.04 38.34 20.01 20.44 19.45 15.50	100, 100, 100, 100, 100, 100,
FEB 7- 5 8-10 11-15 16-20 21-25 26-END	39.76 32.25 31.98 51.76 36.51 51.19	0. C. 0. 7.11 9.92	2,72 6, C, C, 0,	05.2 85.7 85.7 85.5 95.5 85.5	9.07 7.26 7.26 4.24 9.46 12.34	0. 0.25 0. 0.65 0.	C.47 G.47 G.47 G.47 C.47 C.47	5.49 7.98 7.73 6.16 9.87 12.81	1.50 1.50 1.50 1.50 1.50 1.50	28.71 22.77 22.75 44.10 19.74 36.68	0. 0. 0. 0. 0.	12.40 9.84 9.83 19.05 8.27 9.56	30.21 24.27 24.25 45.60 20.64 38.38	100 100 100 100 100
HAR 1- 5 6-10 11-15 16-20 21-25 26-END	35.01 23.64 24.16 17.98 21.66 79.49	11.49 12.62 15.46 13.78 10.44 2.22	6. 0. 6. 5. 5. 5. 70	ί. ι. ι. ί.	11.49 12.62 15.46 13.78 19.09 7.52	0. 0.85 0.85 0. 0.85 0.	C.47 C.47 C.47 C.47 C.47 C.47	11.90 13.93 16.78 14.25 26.41 7.99	1.50 1.50 1.50 1.50 1.50 1.50	21.55 8.01 5.88 2.23 -0.45 10.00	0. 0. 0. -0.19 0.	9.31 3.46 2.54 0.97 0. 4.99	23.05 9.51 7.38 3.73 1.50 11,12	100, 100, 100, 100, 98, 100,
APR 1- 5 6-10 11-15 16-20 21-25 26-END	42.94 70.29 60.29 76.20 74.85 41.28	£+42 3+37 5+39 0+ 8+54 8+54	12,14 9,51 4,03 13,67 9,02 4,65	L. L. G. G. J.73 J.22	21.21 12.25 9.43 13.57 23.28 17.61	0.79 U. 0. 0.85 0.85	L.47 D.47 D.47 D.47 D.47 D.47	21.27 13.35 9,90 14.34 24.60 18.32	1.50 1.50 1.50 1.50 1.50	19.57 55.44 46.89 62.36 46.75 22.06	0. 0. 0. 0.	8.45 23.95 21.12 26.94 21.06 9.53	21.07 56.94 50.39 63.86 50.25 23.56	100 100 100 100 100
RAT 1~ 5 6~10 51~15 16~20 21~25 26-ERD	61.81 50.43 90.35 100.19 99.62 84.44	Г. Д. 2.54 2.54 2.54 С.	2.14 6.26 7.74 7.54 7.74 6.	7.54 10.73 11.24 11.24 6.97 6.	5.08 10.9F 27.51 24.90 25.25 0.	5. 0. 0.85 0. 0. 0. 0. 0.	C.47 0.47 C.47 C.47 C.47 C.47	16.15 17.45 28.63 25.37 24.56 6.47	1.56 1.50 1.50 1.50 1.50	50.16 61.48 60.02 75.32 73.56 62.47	0. 0. 0. 0. 0.	21.67 26.56 25.93 31.67 31.78 42.75	51.66 62.98 61.52 74.82 75.06 83.97	100 100 100 100 100
JUN 1- 5 6-10 11-15 16-20 21-25 26-END	66+32 46+96 34+21 27,04 24+95 37+26	8.54 5.32 5.69 2.85 2.85 0.	9,39 9,35 9,30 9,30 9,30 8,36 9,39	7.25 7.76 7.76 6.30 7.76	25.13 21.75 22.33 15.49 17.71 16.64	0.85 0.55 0.85 0.85 0.85 0.85 0.85	[.47 0.47 0.47 0.47 0.47 0.47	26.56 22.77 23.65 20.81 19.03 17.96	1.50 1.50 1.50 1.50 1.50 1.50	38.32 16.69 9.06 4.73 4.42 17.80	0. 0. 0. 0.	16,56 7,21 3,91 2,04 1,91 7,69	39.82 18.19 10.56 6.23 5.92 19.30	100. 100. 100. 100. 100. 100.
JUL 1- 5 6-10 11-15 16-20 21-25 26-END	23.9D 19.44 24.19 19.86 19.76 22.47	0. 0. 0. 0.	9,59 8,26 3,28 2,59 8,	7.25 7.26 7.26 7.26 7.25 1.75 0.29	16.64 13.51 15.51 16.35 7.65 0.89	0.85 0.43 0. 0.85 0. 0.85	(*.47 (*.47 (*.47 (*.47 (*.47 (*.47	17,96 16,41 15,98 15,70 .6,12 2,21	1,50 1,50 1,50 1,50 1,50 1,50	4.44 3.55 8.71 6.66 10.14 18.76	0. 0. 0. 0. 0.	1,92 1,53 3,76 2,68 4,38 9,73	5,94 5,05 10,21 8,18 11,64 20,26	100 100 100 100 100
AUG 1- 5 6-10 11-15 16-20 21-25 26-END	10.61 13.11 11.68 10.74 15.60 20.09	f** C* 7*52 7*39 E+49	0. 0. 0. 0.	76 4.84 6.84 6.42 U.	7.26 4.54 12.70 7.52 5.29 2.45	0.255 0.255 0.255 0.31 0. 0.	C.47 C.47 C.47 C.47 C.47 C.47	6,10 6,10 14,02 6,30 10,26 8,92	1.50 1.50 1.50 1.50 1.50 1.50	0.54 5.45 -3.84 0.94 3.84 15.67	0. 0. -1.66 -1.25 0. 0.	2.82 2.36 0. 0.40 8.12	8.04 6.95 1.50 1.50 2.63 17.17	100. 100. 70. 67. 100.
5EP 1+ 5 6-10 11-15 16-20 21-25 26-END	24.25 69.18 69.04 54.82 40.02 27.58	8.50 3.12 10.22 8.46 8.54 7.97	C. 6. 8.57 7.17 78.58 12.25	ι. ί. ί. ί.	L 50 5 18 18 78 13 57 19 12 20 82	0. 0.73 0. 0.25 0.55	C.47 C.47 C.47 C.47 C.47 C.47 C.47	8,97 3,65 19,96 14,04 20,44 21,84	7.50 1.50 1.50 1.50 1.50 1.50 1.50	85.75 84.03 47.58 39.28 18.08 4.24	0. 0. 0. 0.	5.95 34.30 20.55 16.97 7.81 1.83	15.28 85.53 49.08 40.78 15.58 5.74	100. 100. 100. 100. 100. 100.
0CT 1- 5 6-18 11-15 16-20 21-25 26-END	22.57 28.73 28.47 77.12 35.71 41.04	8.54 8.54 0. 8.54 7.32	17.20 15.69 6. 6.37 9.39 8.20	0. 10. 2.95 10.73 10.73 2.55	25.54 24.22 2.06 3.30 20.55 20.51	0,85 0,85 9, 0,85 0,85 0,67	L	20,90 25,54 1,11 3,77 29,97 20,87	1.50 1.50 1.50 1.50 1.50 1.50	-5.83 1.69 43.86 71.85 7.24 18.67	-2.52 -1.79 0. 0. 0. 0.	0. 0. 17.16 31.04 3.13 9.68	1.50 1.50 41.23 73.35 8.74 20.17	81. 86. 100. 100. 100. 100.
NOV 1- 5 6-10 11-15 16+20 21-25 26-244	10.96 52.74 64.02 65.31 108.05 72.27	6.74 1.46 8.54 0. 5.73 8.	2.67 3.50 4.03 3.06 1.15	1.27 9.33 7,73 6.30 3.44 1.54	16.42 14.20 24.67 10.34 14.23 2.49	0. 0.85 0. 0. 0.	C.447 C.447 C.447 C.447 C.447 E.447 E.447	10.95 14.70 25.99 16.81 14.70 2.90	1.50 1.50 1.50 1.50 1.50 1.50	18.51 16.48 36.53 53.00 91.85 67.81	0. 0. 0. 0.	8.00 7.12 15.28 22.90 39.68 29.29	20.01 17.95 38.03 54.50 93.35 69.31	100. 100. 100. 100. 100. 100.
ÞEC 1-5 6-30 11-15 16-20 21-25 26-EN\$	52 + 63 83 • 51 55 • 51 37 • 15 75 • 64 76 • 60	6.18 8.54 0. 5.60 5.60 5.69	8452 844 845 845 845 845 845 845 845 845 845	1.26 6.87 6. 7.26 7.26 4.67	21.96 24,47 6, 22,53 82,53 7,59	0. 0.75 0. 0.85 0.85 0.	£.47 6.47 6.47 6.47 6.47 6.47	22.43 25.79 6.47 23.65 23.65 23.65 23.65	1.50 1.50 1.50 1.50 1.50 1.50 1.50	28.10 56.22 53.54 11.98 4.51 17.24	0, 0, 0, 0, 0, 0, 0,	12.14 24.29 23.13 5.17 1.95 8.94	29.60 57.72 55.04 13.48 6.01 18.74	100 100 100 100 100

Table C-16 (5/5)WATER BALANCE UNDER 64% OVERALL EFFICIENCYFOR CASE 2 IN 1983

PER105	RUNGFE	ULOCK 1 (CUM/S)	PA NLGEK 2 ((UN/5)	FLUG 3	107AL (CUN/S)	UPLAND CROP (CUN/S)	WATER	SIVERS'R REGM'T (CUM/S)	HAINT. FLOG (CUR/S)	BALANCE (CUM/S)	DEFICIT (NCM)		DOWNSIR, FROM BRH (CUM/S)	WATER DEPTH (NM)
JAN 1- 5 6-10 11-15 16-20 21-25 26-END	39.23 35.44 27.60 24.84 26.11 19.29	0. 0. 0. 0. 0.	6. 7.62 8.93 6.26 6.26 3.13	6. 6.11 7.67 7.26 7.26 7.26	0. 13.75 12.00 13.51 13.51 10.39	0. 0. 0.43 0.25 0.25 0.85	0.67 G.47 G.47 G.47 C.47 C.47	6.47 14.20 14.90 14.83 14.83 14.83 11.70	1.50 1.50 1.50 1.50 1.50 1.50	37.26 19.74 9.20 8.51 5.78 6.09	0. 0. 0. 0. 0.	16.10 8.53 3.97 3.68 2.50 3.16	38.76 21.24 10.70 10.01 7.28 7.59	100. 100. 100. 100. 100. 100.
FE8 1- 5 6-10 11-15 16-20 27-25 26-END	12,90 16,69 16,69 22,30 17,42 15,71	6. 0. 0 7.77 13.16	5.15 8. 6. 8. 0.	7.26 2.67 7.26 4.84 4.84 2.42	16.39 2.67 7.26 4.84 12.21 15.52	0.25 0.85 0.49 0.49 0.27 0.85	C.47 G.47 G.47 C.47 C.47 O.47	11.76 3.99 8.57 5.80 12.75 16.84	1,50 1,50 1,50 1,50 1,50 1,50	5.70 11.00 6.62 15.00 3.22 -2.63	0. 0. 0. 0. 0. 0.	2.46 4.75 2.86 6.48 1.39 0.	7.20 12.50 8.12 16.50 4.72 1.50	100. 100. 100. 100. 100. 82.
MAR 1- 5 6-10 11-15 16-20 21-25 26-END	20.92 14,94 19,25 19,61 18,55 25,39	12.62 12.62 15.46 13.10 10.44 9.65	0, 6, 0, 6, 5,c% 7,21	2.42 0. 6. 6. 6. 6.	15.0? 12.62 15.46 13.10 19.69 16.56	0.25 6.85 0.85 0. 0.85 6.85	6.47 6.47 6.47 6.47 0.47 6.47	16.55 13.93 18.78 13.57 20.41 18.18	1.50 1.50 1.50 1.50 1.50 1.50	3.13 -0.49 0.97 4.54 -3.30 5.71	0. -0.21 0. -1.45 0.	0.67 6. 0.21 1.96 0. 1.51	3.05 1.50 1.98 6.04 1.50 4.42	100 95 100 10D 83 10D
APR 1- 5 6-10 11-15 16-20 21-25 26-END	15,76 13,49 12,11 16,66 12,83 15,24	8.54 8.54 8.54 8.54 0. 0.	13.75 13.25 17.60 17.00 2.10 6.	t t. t. t. t. t. t. 7	/2.41 22.41 25.54 6.36 0.57	0.85 0.85 0.85 0.85 0. 0.	(+47 6+47 6+47 6+47 6+47 6+47	23.73 23.73 26.86 26.83 6.53 1.04	1,50 1,50 1,50 1,50 1,50 1,50	-9.47 -11.74 -15.25 -17.70 4.50 16.70	-4.09 -9.16 -16.18 -23.82 -21.88 -14.67	0. 0. 0. 0.	1.50 1.50 1.50 1.50 1.50	62. 15. -24. -83. +48. 1.
MAY 1- 5 6-16 11-15 16-26 21-25 26-END	33+25 74-90 70-39 76-73 29-22 71-44	3.37 6.65 7.97 3.45 7.75 0.	1.24 8.23 9.18 7.53 5.20 5.43	3.72 10.22 13.15 13.15 13.15 4.58 7.25	5.33 24.67 36.30 24.16 17.77 12.69	0. 0.55 6. 0.23 6.	6.47 6.47 6.47 6.47 0.47 6.47	8.60 25.34 31.32 24.63 78.63 13.16	1.50 1.50 1.50 1.50 1.50 1.50	22.95 -1.94 -2.43 0.60 9.09 6.78	-4.75 -5.59 -6.64 -6.38 -2.46 0.	0. 0. 0. 0. 1.06	1.50 1.50 1.50 1.50 1.50 3.55	71. 66. 64. 65. 87. 100.
JUN 1- 5 6-10 11-15 16-20 21-25 26-END	24.00 14,55 26,44 34,06 19,74 15,07	8.54 5.02 1.95 1.91 2.85 0.	5.39 8.52 4.53 3.91 9.39 9.39	7.76 6.88 4.01 2.10 7.26 7.26	25.18 26.22 16.49 7.92 19.49 16.64	0.25 6.31 6. 0. 0.25 0.85	C.47 C.47 C.47 C.47 C.47 C.47	26.50 21.00 10.96 8.39 20.81 17.96	1.50 1.50 1.50 1.50 1.50 1.50	-4.00 -8.15 13.98 24.17 -2.57 -4.39	-1.73 -5.25 0. 0. -1.11 -3.01	0. 0.79 10.44 0.	1.50 7.50 3.33 25.67 1.50 1.50	91, 68, 100, 100, 92, 75,
JUL 1- 5 6-10 11-15 16-20 21-25 26-END	15.28 17.42 19.12 16.92 53.45 28.84	0. 0. 0. 0. 0.	7.53 4.61 2.96 0. 3.13 0,	7.26 5.35 5.44 6. 7.26 4.87	14.79 9.98 6.48 16.25 4.87	U. G. O.AS G.FS G.ES	C.47 C.47 Q.47 Q.47 C.47 C.47	15.26 10.43 7.72 0.47 11.70 6.19	1.50 1.50 1.50 1.50 1.50 1.50	-1.48 5.49 9.70 14.95 40.25 21.15	-3.65 -1.27 0. 0. 0. 0.	0. 0. 3.00 6.46 17.39 10.97	1.50 1.50 8.45 16.45 41.75 22.65	70, 87, 100, 100, 100, 100,
AUG 1- 5 6-10 11-15 16-20 21-25 26-END	62.57 47.59 31.66 31.37 21.72 27.00	N. N. S.≜y 7.82 €.35 2.7è	0. 6. 0. 0.	7.28 3.56 6.28 2.42 2.47 6.	2.26 5.56 5.77 10.24 10.45 2.78	0. 0.85 6. 0.79 8. 0.	{ .47 6.47 6.47 6.47 6.47 6.47 6.47	7.73 4.88 6.24 11.50 10.92 3.25	1.50 1.50 1.50 1.50 1.50 1.50	53.34 41.21 23.92 18.37 9.30 22.25	0. 0. 0. 0.	23.04 17.80 10.33 7.96 4.02 11.54	54.84 42.71 25.42 19.87 10.80 23.75	160. 100. 100. 100. 100. 100.
SEP 1+ 5 6+10 11-15 16-20 21-25 26-END	45.75 64.40 62.61 126.51 73.63 45.13	1.98 13.21 3.71 0. 8.54 0.	0. 6. 2.17 1.24 13.28 6.22	Մ․ Մ․ Մ․ Մ․	1.98 13.21 9.88 1.24 22.41 6.22	U. G. D. Q. S. S. G.	C.47 C.47 C.47 C.47 C.47 C.47 C.47	2.45 13.68 10.35 1.71 23.73 6,69	1.50 1.50 1.50 1.50 1.50	41.80 49.22 70.76 123.30 48.40 36.94	0. 0. 0. 0. 0.	18.06 27.26 30.57 53.27 20.91 15.96	43,30 50,72 72,26 124,80 49,90 38,44	100. 100. 100. 100. 100. 100.
0CT 1- 5 6-10 11-15 16-20 21-25 26-END	35.42 32.67 36.39 33.91 38.33 42.15	5.95 4.49 5.50 7.30 3.42 0.	7.77 13.67 7.90 11.03 5.29 0.	6. 6.28 9.43 3.10	15.77 16.37 19.14 25.62 16.82 3.10	6, 9, 0, 0,17 4, 0,	0.47 0.47 0.47 0.47 0.47 0.47 0.47	14.24 18.84 19.61 25.68 19.29 3.57	1.50 1.50 1.50 1.50 1.50 1.50	19.68 12.33 9.28 6.73 17.54 37.08	0. 0. 0. 0.	8.50 5.33 4.01 2.91 7.58 19.22		100. 100. 100. 100. 100.
NDV 1- 5 6-16 11-15 16-26 21-25 26-END	40.41 56.02 48.93 45.67 35.64 34.57	3,92 8,54 8,54 8,54 8,54 8,54 8,64	5.55 9.39 9.39 9.39 6.79 1.98	0.37 13.15 0.28 6.88 6.59 0.57	15.28 51.47 26.86 26.86 19.38 6.59	0, 0,85 0,85 0,85 0,67 0,67	0.47 0.47 0.47 0.47 0.47 0.47 0.47	16.35 32.39 28.12 28.12 20.52 7.06	1.50 1.50 1.50 1.50 1.50 1.50	22.56 22.13 19.31 16.05 13.62 26.01	0. 0. 0. 0. 0.	9.74 9.56 8.34 6.93 5.88 11.24	24.06 23.63 20.81 17.55 15.12 27.51	100. 100. 100. 100. 100.
DEC 1- 5 6-1C 11-15 16-20 21-25 26-END	21.84 28.40 40.40 31.47 27.54 25.90	£.54 3.71 0. 0.90 0.92 2.72	9.34 5.15 3.79 2.63 1.32 9.25	7.26 4.39 4.39 2.48 1.53 7.26	25,18 13,24 6,18 6,02 2,85 19,23	G.25 G. G. G. U. U. U.21	C.47 C.47 C.47 C.47 C.47 O.47	26.50 13.71 8.65 6.49 3.32 20.31	1.50 1.50 1.50 1.50 1.50 1.50	3.84 15.19 30.25 23.48 22.72 4.09	0. 0. 0. 0.	1.66 5.70 13.07 10.15 9.82 2.12	14.59	100. 100. 100. 100. 100.

Table C-17 (1/5) WATER BALANCE UNDER 60% OVERALL EFFICIENCY FOR CASE 2 IN 1978

ERIOD	RUNOFF			601 PLDCK 7	**	UPLAND	D K 1	DIVERSIN	HAINI.	BALANCE	DEFICIT	SURPLUS	DOWNSTR.	WATER
	(CUR/S)	((08/5)	PA 510CK 2 (CUM/S)	((06/5)	((UN/S)	((UK/S)	WATER (CUM/S)	REQN'T (CUH/S)	FLOR (CUN/S)	(CUM/S)	(нся)	(ACM)	FRON BRH (CUM/S)	DEPTI (HM)
JAN 1- 5 6-10 11-15 16-20 21-25 6-END	17.68	3.03	16.01	7,74 3,36 6, 2,72 5,81 7,74	20.79 6.26 0.40 12.52 10.81 11.08	0.90 0. 0. 0. 0. 0.90	0.47 0.47 0.47 0.47 0.47 0.47	22.16 6.73 0.67 12.99 11.28 12.45	1.50 1.50 1.50 1.50 1.50 1.50	-5.98 10.35 16.40 10.31 5.27 0.37	-2.58 0. 0. 0. 0. 0.	0. 1.89 7.09 4.45 2.28 0.14	17.90 11.81 6.77	82, 100, 100, 100, 100, 100,
FEH 1- 5 6-10 11-15 16-20 21-25 6-END	11.82 13.66 13.84 16.55 10.92 11.18	0. 0. 8.39 4.15	3.34 0. 0. 0. 0.	7,74 7,74 6,52 1,97 4,35 6,	11.08 7.74 6.62 1.97 12.73 4.13	0.50 0.90 0. 0.90 0.90 0.90	0.47 0.47 0.47 0.47 0.47 0.47	12.45 9.11 7.29 3.34 14.11 4.60	1.50 1.50 1.50 1.50 1.50 1.50	-2.13 3.05 5.05 11.71 ~4.69 5.08	-0.92 0. 0. -2.02 -0.71	0.14 0.39 2.18 5.06 0. 0.		88 100 100 100 64 82
HAR 1- 5 6-10 11-15 16-20 21-25 6-END	10.46 11.40 13.83 13.61 16.36 15.86	6.27 13.46 13.38 16.49 3.95 4.41	0. 0. 0. 6.59 5.53	1,32 0, 0, 0, 0, 0,	7.59 13.42 13.38 16.49 10.54 9.93	0, 0,90 0,90 0,90 0,	0.47 0.47 0.47 0.47 0.47 0.47	8.06 14.83 13.85 17.87 11.01 16.40	1.50 1.50 1.50 1.50 1.50 1.50	0.90 -4.93 -1.52 -5.76 3.85 3.96	-C.32 -2.45 -3.10 -5.59 -3.93 -1.88	0, 0, 0, 0, 0,	1,50 1,50 1,50 1,50 1,50 1,50	95. 41. 50. 10. 54. 78.
APR 1-5 6-10 11-15 16-20 21-25 6-ERD	19.77 19.41 21.72 30.82 70.28 41.50	9.10 9.10 8.15 9.10 9.10 9.10 9.10	13.70 11.73 17.79 18.65 11.29 3.34	0. 0. 0. 6. 7. 2. 2. 2.	22.63 20.63 25.93 27.15 27.15 27.15	0.90 0.90 0.90 0.90 0.90 0.90	0.47 0.47 0.47 0.47 0.47 0.47	24.15 22.21 26.80 28.53 28.52 16.63	1.50 1.50 1.50 1.50 1.50 1.50	-5.91 -4.30 -6.58 0.79 40.26 23.37	-4.43 -6.29 -9.13 -8.78 0. 0.	0. 0. 0. 8.61 10.09	1.50 1.50 1.50 1.50 21.43 24.87	59, 42, 36, 33, 100, 100,
MAY 1- 5 6-10 11-15 16-20 21-25 6-END	45.55 57.43 68.81 45.47 37.32 22.14	9.10 0. 3.98 9.10 9.10 9.10	9.75 C. 9.97 10.01 10.01 10.01	11,24 6,15 14,62 14,62 9,47 8,75	30.69 6.15 32.98 33.14 25.59 27.87	0.90 0. 0.84 0.90 0.90 0.90	C.47 D.47 D.47 C.47 D.47 O.47	31.47 6.62 34.29 34.51 29.96 29.24	1.50 1.50 1.50 1.50 1.50 1.50	12,58 49,31 33,02 9,46 5,86 ~8,60	0. 0. 0. 0. 0. -4.46	5.44 21.30 34.27 4.09 2.53 0.	14.08 50.81 34.52 10.96 7.36 1.50	100, 100, 100, 100, 100, 76,
JUN 1- 5 6-10 11-15 16-20 21-25 6-END	21.37 19.66 16.94 13.30 12.70 11.81	5.75 2.80 8.07 0. 3.05 0.	8,78 6.54 10.01 6.41 10.01 4.83	7.74 5.81 7.74 7.44 7.74 5.68	22.27 15.14 23.52 13.45 20.79 10.43	0. 6. 0.90 0.90 0.90 0.90	C.47 O.47 G.47 C.47 O.47 G.47 G.47	22.74 15.61 25.20 14.32 22.16 10.90	1.50 1.50 1.50 1.50 1.50 1.50	-2.87 2.55 -9.76 -2.52 -10.96 -0.59	-5,70 -4,60 -8,82 -9,90 -14,64 -14,90	0. 0. 0. 0. 0.	1.50 1.50 1.50 1.50 1.50 1.50	69 72 46 30 -3 -23
JUL 1~ 5 6-10 11-15 16-20 21-25 6-END	10.75 16.04 13.28 12.25 16.29 12.04	0. D. 0. 0. 0.	18.01 6.67 4.48 3.03 3.34 C.	7,74 7,74 5,19 7,03 7,74 7,74	17.75 14,42 9,47 10,08 11,08 7,74	0,90 G. 0,90 0.90 0.90 0.	0.47 0.4? 0.47 0.47 0.47 0.47 0.47	19.13 14.89 11.05 11.43 12.45 8.21	1.50 1.50 1.50 1.50 1.50 1.50	-9.88 -0.35 0.73 -0.68 2.34 2.34 2.33	~19.16 -19.31 -19.00 -19.29 -18.28 -17.07	0. 0. 0. 0. 0.	1.50 1.50 1.50 1.50 1.50 1.50	-58, -96, -93, -155, -142, -223,
AUG 1-5 6-10 11-15 16-20 21-25 6-25	9.43 8.59 14.12 10,74 9.18 8,72	0. 0. 5.75 8.59 13.46 8.29	С. П. О. С. С.	7.74 5.16 6. 2.55 6.	7.74 5.16 5.75 8.39 16.04 8.29	C.46 U.65 O.90 O.90 U.	0.47	8.67 6.28 6.22 9.76 17.61 8.76	1.50 1.50 1.50 1.50 1.50 1.50	-0.74 0.81 6.40 -0.52 -9.73 -1.54	-17.39 -17.04 -14.28 -14.50 -18.71 -19.50	0. 0. 0. 0. 0.	1,50 1,50 1,50 1,50 1,50 1,50	~229 ~384 ~155 ~279 ~217 ~371
SEP 1- 5 6-10 11-15 16-20 21-25 6-END	16.27 11.69 11.42 8.44 23.20 13.24	15.29 12.78 6.35 0. 0. 9.10	0. 0. 7.47 0. 7.25 14.60	ს. ს. ს. ს.	15.x9 12.78 13.62 0. 7.25 23.91	U.27 Q. U. U. Q. Q. Q.	(; 47 () 47 () 47 () 47 () 47 () 47 () 47	16.03 13.25 14.29 0.47 7.72 25.28	1.50 1.50 1.50 1.50 1.50 1.50	-7,26 -3,06 -4,37 6,47 13,98 *13,54	-22.64 -23.96 -25.85 -23.05 -17.01 -22.86	0. 0. 0. 0. 0.	1,50 1,50 1,50 1,50 1,50 1,50	-265. -286. -205. -172. -58. -112,
0CT 1- 5 6-10 11-15 16-20 21-25 6~END	12.15 9.79 13.05 15.77 28.97 58.70	9+10 2+76 9+10 0+ 0+ 4+61	12.25 8.78 12.25 8.91 3.14 2.58	0. 0. 7.13 2.73 5.23	27.24 11.54 25.49 16.84 11.89 11.81	0.90 0.90 0.90 0. 0.	C.47 C.47 C.47 C.47 C.47 C.47	26.61 12.01 29.86 36.57 12.36 12.30	1.50 1.50 1.50 1.50 1.50 1.50	-17.96 -3,72 -18.31 -2.24 15.11 44.90	-30.62 -32.23 -40.14 -41.51 -34.58 -11.30	0, 0, 0, 0, 0,	1.50 1.50 1.50 1.50 1.50 1.50	-135, -147, -171, -178, -109, 32,
NGV 3- 5 6-10 11-15 16-20 21-25 6-END	62.77 53.95 67.91 82.64 77.43 43.46	0. 0. 7.67 9.10 9.10	6.00 0. 9.49 16.01 10.01	L.59 2.10 6. 9.47 7.74 7.74	6.25 2.10 6. 26.67 20.86 26.86	0. 0. 0.14 0.90 0.90	(.47 (.47 (.47 (.47 (.47 (.47	7.32 2.57 0.47 27.23 28.23 28.23	1.50 1.50 1.50 1.50 1.50 1.50	53.95 49.88 65.94 53.91 47.70 13.73	0. 0. 0. 0. 0.	12.01 21.55 28.49 23.29 20.61 5.93	29.29 51.38 67.44 55.41 49.20 15.23	100, 100, 100, 100, 100, 100,
DEC 1- 5 6-10 11+15 16-20 21+25 6-END	32.09 48.05 33.45 23.21 21.78 17.37	0, 0, 9,16 4,71 0, 3,63	1.5e 6. 3.a7 7.51 5.20 10.01	1.81 6.61 5.70 6.72 7.76	5.41 0. 13.58 17.93 12.52 20.79	0. 0. 0.90 0. 0. 0.90	C.47 C.47 O.47 6.47 G.47 G.47 C.47	5.08 0.47 14.95 18.40 12.59 22.16	1.50 1.50 1.50 1.50 1.50 1.50	26.71 46.08 17.00 3.31 7.29 -6.29	0. 0. 0. 0. 0. -3.26	11.54 19.91 7.34 1.43 3.15 0.	28.21 47.58 18.50 4.81 8.79 1.50	100, 100, 100, 100, 100, 77,

,

Table C-17 (2/5)WATER BALANCE UNDER 60% OVERALL EFFICIENCY
FOR CASE 2 IN 1979

YEAR : PERIOD	RUKUFF	BLOCK 1	LLOCK ?	007 PLC(k 3 (LUF/S)	TUTAL	UPLAND CROP	D N I WATER	DIVERS N REGNIT	MAINT. FLOW			SURPLUS	POWHSTA. FROM DRH (CUM/S)	WATER
JAN 1- 5 6-10 21-15 16-20 21-25 26-END	18.17 17.80 15.18 11.95 11.99 11.25	0, 0, 0, 0, 0, 0,	G. 7.60 16.01 6.67 4.92 3.34	6. 6.72 7.74 7.74 5.70 7.74	14.32 17.75 14.42 10.62 11.08	D. C. C.99 G.90 G.20 G.90	C.47 U.47 D.47 O.47 O.47 O.47 O.47	0.47 14.79 19,13 15.79 11.30 12.45	1.50 1.50 1.50 1.50 1.50 1.50 1.50	16.20 1.51 -5.45 -5.34 -0.81 -2.70	0. 0. -2.35 -4.66 -5.01 -6.41	3.74 0.65 0. 0. 0. 0.	10.15 3.01 1.50 1.50 1.50 1.50	100, 100, 87, 53, 49, 15,
FEB 1- 5 6-10 11-15 16-20 21-25 26-END	11.10 12.22 11.34 36.90 35.77 34.91	0. 0. 0. 0. 8.55 13.93	3,34 C, C, C, C, C,	7.74 3.67 1.63 6. 0. 2.58	11.08 3.07 1.63 0, 6.55 10.56	0.90 0.14 0.78 0.20 0. 0.90	C.47 C.47 C.47 O.47 C.47 C.47	12.45 4.28 2.68 0.67 7.02 17.93	1.50 1.50 1.50 1.50 1.50 1.50	-2.85 6.44 7.46 12.73 27.25 15.48	-7.64 -4.88 -1.63 0. 0.	0. 0. 3.87 11.77 4.01	1.50 1.50 1.50 10.65 28.75 16.98	-1. 8. 59. 100. 100.
HAR 1+ 5 6-10 11-15 16-20 21-25 26-EHD	27.97 25.87 22.75 50.69 65.60 39.88	13.44 13.46 16.49 16.49 11.14 10.30	U. D. O. 9.22 7.69	2,58 6. 8. 0. 6. 6.	16.64 13.46 16.49 16.49 26.36 17.98	6.90 0.90 0.90 0.90 0.90 0.90	U.47 C.47 O.47 O.47 C.47 C.47	17.41 14.83 17.87 17.87 21.74 19.36	1.50 1.50 1.50 1.50 1.50 1.50	9.06 9.54 3.38 31.32 42.36 19.02	0. 0. 0. 0. 0. 0.	3.91 4,12 1,46 13.53 18,30 9,86	4.88 32,82	100. 100. 100. 100. 100.
APR 1- 5 0-10 11-15 16-20 21-25 26-END	51.33 42.34 33.29 28.31 35.43 45.29	9.10 9.10 9.10 9.10 0.	14,26 13,48 4,22 18,14 8,	6. 6. 6. 1.30 2.64	23,91 22,59 13,32 27,24 1,36 2,04	6.90 0.90 6.90 0.90 0.	U.47 0.47 0.47 0.47 0.47 0.47 0.47	25.28 23.96 14.69 26.61 1.83 2.51	1.50 1.50 1.50 1.50 1.50 1.50	24.55 16.90 17.10 -1.80 32.10 41.28	0. 0. ~0.78 0. 0.	10.61 7.30 7.39 0. 13.09 17.83	18.40 18.60 1.50 31.80	100. 100. 100. 94. 100.
MAY 1- S 6-1C 11-15 16-2G 21-2S 26-END	56.30 37.52 50.60 23.45 19.04 26.77	9.16 9.10 9.10 9.10 9.10 8.	10.01 10.01 4.74 10.01 9.13 1.55	11.44 11.44 7.51 14.02 8.45 2.81	50.56 30.56 21.76 33.14 26.69 4.36	U.9C U.90 0.90 U.90 0.90 U.	0.47 0.47 0.47 0.47 0.47 0.47 0.47	31.93 31.93 23.13 34.51 28.07 4.83	1.50 1.50 1.50 1.50 1.50 1.50	22.87 4.09 25.97 -12.56 -10.53 20.44	0. 0. -5.43 -9.97 0.	9.88 1.77 11.22 0. 0. 0.62	5,59 27,47 1,50 1,50	100. 100. 100. 70. 46. 100.
JUN 1- S 6-10 11-15 16-20 21-25 26-END	29.59 66.74 67.25 36.56 23.12 20.28	9.10 0. 0.96 2.20 3.03 0.	2.26 4.04 0.53 6.46 10.01 10.01	5.70 4.69 0. 4.69 7.74 7.74	23.666 8.73 1.49 13.34 20.79 17.75	0.90 0. 0. 0.90 0.90	C.47 C.47 C.47 C.47 C.47 C.47 O.47	24.44 9.20 1.96 13.21 22.16 19.13	1.50 1.50 1.50 1.50 1.50 1.50	3.65 56.04 63.79 15.25 -0.54 -0.35	0, 0, 0, -0,23 -0,38	1.58 24.21 27.56 6.59 0. 0.		160, 160, 100, 100, 98, 97,
JUL 1- 5 6-10 11-15 16-20 21-25 26-ENP	17.74 15.61 22.67 24.02 73.93 49.59	0. 0. 0. 0. 0.	10.61 6.67 6.67 3.34 0. 6.	7.74 7.74 7.74 7.74 0. 6.59	17,75 14,42 14,42 11,08 6,69	0.90 0.59 0. 0. 0.90	0.47 6.47 6.47 0.47 0.47 0.47	19.13 14.89 15.47 11.55 0.47 8.27	1.50 1.50 1.50 1.50 1.50 1.50	~2.89 ~0.78 5.70 10.97 71.96 39,82	-1.63 -1,97 0, 0. 0.	0. 0.49 4.74 31.09 20.64	1.50 1.50 2.64 12.47 73.46 41.32	87, 80, 100, 100, 160, 100,
AUG 1+ 5 6+10 11+15 16-20 21-25 26-END	25.82 21.66 17.45 26.85 26.95 26.20	C. D. 8.59 6.63 13.46 3.43	C. 0. C. C.	5.70 5.16 3.60 2.58 2.24 6,	5.70 5.16 12.19 9.21 15,70 3.43	0.90 0.90 0.90 0.90 0.90 0.90	C.47 0.47 0.47 C.47 0.47 0.47	7.08 6.53 13.56 9.68 17.07 3.90	1.50 1.50 1.50 1.50 1.50 1.50	15,24 13,63 2,39 9,67 8,38 22,80	0. 0. 0. 0.	6.58 5.89 1.03 4.18 3.62 11.82	15.13 3.89 11.17 9.88	100. 100. 100. 100. 100.
58P 1~ 5 6~10 11-15 16-20 21-25 56-8ND	43.99 55.35 76.67 86.10 42.58 37.18	13.32 16.49 11.14 8.51 9.10 0.36	0. 9.22 8.26 14.60 10.28	ΰ. υ. ί. ΰ.	13,38 16,49 20,36 16,76 23,91 10,64	0. 0.90 0.90 0. 0.90 0.90 0.	C.47 O.47 C.47 O.47 C.47 O.47 O.47	13.85 17.87 21.74 17.23 25.28 11.11	1.50 1.50 1.50 1.50 1.50 1.50	28.64 35.98 53:43 61.37 15.80 24.57	0. 0. 0. 0. 0.	12,37 15,55 23.08 26.51 6,83 10,62	37,48 54,93 62,87 17,30	100. 100. 100. 100. 100. 100.
0C1 1-5 6+10 11-15 16-20 21-25 26-END	25.41 27.75 37.89 40.53 46.28 79.24	9.10 0. 0. 5.75 1.44 0.52	1E.14 13.92 C. 10.14 0.52 1.61	0. 6. 1.79 6.79 6. 5.61	27.24 13.92 1.70 22.68 1.96 6.54	0.90 0. 0. 0. 0.	G. 47 G. 47 G. 47 G. 47 G. 47 G. 47 D. 47	28.61 14.39 2.17 23.45 2.43 7.01	1,50 1,50 1,50 1,50 1,50 1,50	-4.70 11.66 34.22 15.88 42.35 70.73	-2.03 0. 0. 0. 0. 0.	0. 3.09 14.78 6.86 18.29 36.67	55+74	84. 100. 100. 100. 100. 100.
NOV 1- 5 6-10 11-15 16-20 21-25 26-END	73,36 79,14 20,54 168,85 111,50 114,39	0. 9.16 1.08 0. 3.71 0.	6.67 4.74 3.56 4.04 4.52 6.	14.62 7.91 5.40 6.42 5.67 6,	20,70 21,76 10,03 10,46 11,90 6,	0. 0.90 0. 0. 0. 0.	0,47 0,47 0,47 0,47 0,47 0,47	21,17 23,13 10,50 10,93 12,37 0,47	1,50 1,50 1,50 1,50 1,50 1,50	50,69 54,51 68,54 156,45 97,63 112,42	0. 0. 0. 0. 0.	21.90 23.55 29.61 67.59 42.17 48.57	56.01	100. 100. 100. 100. 100. 100.
DEC 1- 5 6-10 11-15 16-20 21-25 26-END	80.48 59.83 40.53 34.72 31,69 26.61	0. 9.16 8.27 5.03 6.07 3.03	6,67 10,61 9,71 9,44 9,13 10,61	7.74 7.74 7.74 1.74 6.72 7.74	14.42 26.66 25.71 22.21 21.95 26.79	0. 0.96 0.46 0.08 0.90 0.90	C.47 0.47 0.47 0.47 C.47 G.47	14.89 28.23 26.64 22.76 23.30 22.16	1.50 1.50 1.50 1.50 1.50 1.50 1.50	64.09 30.10 12.39 10.46 6.89 2.95	0. 0. 0. 0. 0.	27.69 13.00 5.35 4.52 2.98 1,53	31.60 13.89 11.96 6.39	100. 100. 100. 100. 100. 100.

Table C-17 (3/5) WATER BALANCE UNDER 60% OVERALL EFFICIENCY FOR CASE 2 IN 1980

ERIDD	RUNOFT	ULO(K 1 (CUP/S)	11014 2	B1067 1	1/12.0.1	VI 6 440	N 0 1	REGNIT (CUM/S)	FLOW (CUR/S)	CON/S)	0EF1C1T (NCM)	SURPLUS (NCA)	DOWNSTR, From Brn (CUM/S)	WATER DEPTH (BH)
JAN 1- 5 6-10 11-15 16-20 21-25 6-END	25.45 22.79 18.04 15.61 14.56 19.16	2.7¢ 0. 0. 0. 0. 0.	5.03 4.26 5.26 6.07 6.07 3.34	c.72 1.63 5.70 7.74 7.74 7.74	10.36 5.69 13.96 14.42 14.42 14.42 11.08	6.46 0.20 0.90 0. 0.90 6.90	0.47 0.47 0.47 0.47 0.47 0.47	19.23 6.56 15.33 14.89 15.79 12.45	1,50 1,50 1,50 1,50 1,50 1,50	4.72 14.73 1.21 -0.78 -2.73 5.21	0. 0. -0.34 -1.51 0.	2.04 6.36 0.52 9. 0. 1.19	6.22 16,23	100. 100. 100. 100. 97. 85. 100.
FEB 1- 5 6-10 11-15 16-20 21-25 6-END	14.66 12.03 10.19 9.13 12.87 28.10	6. 0. 0. 8.19 5.94	3,34 0. 0. 0. 0. 0.	7.74 7.74 4.48 4.48 2.59	11.08 7.74 7.74 4.48 12.57 8.52	0.90 0.90 0.90 0.90 0.90 6.	6.47 0.47 0.47 0.47 6.47 0.47	12.45 9.11 9.11 4.95 14.24 8.99	1.50 1.50 1.50 1.50 1.50 1.50	0.73 1.42 ~0.42 2.68 ~2.87 17.61	0. 0. ~0.18 0. -1.24 0.	0.31 0.61 0.97 0. 4.85		100. 100. 97. 100. 78.
HAR 1- 5 6-10 11-15 16-20 21-25 6-END	36.12 59.28 21.56 27.68 22.73 19.44	3.95 13.14 12.42 16.49 9.10 8.60	0. 6. 0. 8.4. 7.00	v.20 0. 0. 6. 6.	4.16 15.14 12.42 16.49 17.55 15.66	0.65 0.90 8. 0.	(.47 C.47 C.47 C.47 C.47 C.47 C.47	4.63 14.26 12.89 17.87 18.05 16.13	1.50 1.50 1.50 1.50 1.50 1.50	29.99 43.52 7.17 8.31 3.18 1.81	0. 0. 0. 0. 0.	12.96 18.80 3.10 3.59 1.37 0.94	31.49 45.02 8.67 9.81 4.68 3.31	100. 100. 100. 100. 100.
APR 1- 5 6-10 11-15 16-20 21-25 6-END	21.82 25.89 25.50 19.27 17.73 44.30	(), (), (), (), (), (), (), (), (), (),	9.22 ٤.08 2.11 18.09 5.51 2.70	L. G. U. 7.15 5.77	9.22 8.08 7.86 16.06 16.04 23.45	0. 0. 0.84 0. 6.84	0.47 0.47 0.47 0.47 0.47 0.47	9.69 5.55 28.33 16.51 24.76	1.50 1.50 1.50 1.50 1.50 1.50	10.63 15.84 15.67 - 10.62 - 0.28 18.04	0. 0. -4.59 -4.71 0.	4,59 6,84 6,77 0, 0, 3,08	12.13 17.34 17.17 1.50 1.50 8.64	100. 100. 100. 65. 88. 100.
HAY 1- 5 6-10 11-15 16-20 21-25 6-END	46.47 71.65 66.50 57.41 33.02 37.61	6. 0. 0. 9.15 8.41	6.67 6. 3.16 6.56 9.02	11.44 1,70 13.(D 9.95 5.40 7.56	14,12 1,70 12,50 13,11 21,60 21,34	0. 0. 0. 0.70 0.46	Ľ.47 G.47 G.47 C.47 C.47 G.47	12,59 2,17 19,27 13,58 22,38 26,26	1.50 1.50 1.50 1.50 1.50 1.50	26.38 68.18 47.73 42.33 9.14 9.85	0. 0. 0. 0. 0.	11.40 29.45 20,62 18.29 3.95 5.10	27.88 69.68 49.23 43.83 10.64 11.35	100. 100. 100. 100. 100.
JUN 1+ 5 6-10 11-15 16-20 21-25 6-END	12.77 36.61 75.20 38.07 24.53 73.90	0, 5,41 5,11 2,44 2,25 0,	5.20 5.17 9.49 7.44 9.18 9.99	6.72 5.70 2.74 5.70 7.74 7.74	12.52 19.78 28.34 15.74 19.20 17.73	6. 0.75 0.14 0. 0. 0.	6.47 6.47 0.47 6.47 6.47 6.47 4.47	12.99 21.03 22.95 16.21 19.67 19.66	1.50 1.50 1.50 1.50 1.50 1.50	18.28 14.08 0.75 20.36 3.36 3.34	0. 0. 0. 0. 0.	7.9D 6.08 0.32 8.80 1.45 1.44	15.58	100. 100. 100. 100. 100.
JUL 1- 5 6-10 11-15 16-20 21-25 6-END	17,20 14,59 13,44 29,52 22,95 37,34	0. 0. 0. 0. 0.	10.01 8.67 5.80 6. 6.	7.74 7.74 6. 0. 4.55	12.75 14.42 14.52 0. 4.35	9.90 0.02 0.90 6. 0.	6.47 0.47 0.47 0.47 6.47 6.47 6.47	19.13 16.96 13.69 0.47 0.47 6.82	1.50 1.50 1.50 1.50 1.50	-3.43 -1.87 -1.95 27.55 20.98 31.02	-1.48 +2.29 -3.13 0. 0.	0. 0. 8.77 9.06 16.08	1.50 1.50 21.80 22.48 32.52	88. 77. 68. 100. 100.
AUG 1- 5 6-16 11-15 18-20 21-25 6+END	36.32 26.12 25.35 21.11 84.01 43.59	0. 0. F.:9 3.71 13.46 8.22	6. 0. 0. 0. 0.	7.74 5.16 3.80 9.54 1.56 0,	7.74 5.16 12.19 4.26 15.02 8.22	0. 9.50 6. 5.90 8.	6.47 C.47 C.47 C.47 C.47 C.47 C.47	2.21 5.63 13.52 4.73 16.59 8.69	1.50 1.50 1.50 1.50 1.50 1.50	28.61 18.99 10.29 14.66 66.12 33.40	0. 0. 0. 0.	12 + 36 8 + 20 4 + 44 6 - 43 28 - 56 17 - 32	30.11 20.49 11.79 16.38 67.62 34.90	100. 100. 100. 100. 100.
SEP 1- 5 6-10 11-15 16-20 21-25 6-END	36.87 40.30 26.64 41.59 75.58 50.95	14.45 9.66 11.14 11.14 6.24 6.71	C. C. 9.22 8.22 8.22 8.22 12.01	ս. Ս. Մ. Մ.	14,45 5.66 20.36 2.28 19,31	ք, Օ․ Ե․ՉԵ Ե․ Ե․	6.47 6.47 6.47 6.47 6.47 6.47 0.47	14.92 10.13 21.74 21.74 2.75 19.78	1.50 1.50 1.50 1.50 1.50 1.50	13,65 28,73 3,40 18,35 65,33 29,67	C, Q. Q. Q. Q. Q.	5,89 12,41 1,47 7,93 28,22 12,82	15,15 30,23 4,90 19,85 66,83 31,17	100. 100. 100. 100. 100.
GCT 1- 5 6-10 11-15 16-20 21-25 6-ENO	47,21 73,88 77,04 254,74 64,61 40,27	C. 5.85 9.86 4.19 0.	14,26 14,26 5,92 11,17 8,21 3,75	U. U. U. 79 6.79 11.44 7.27	14.85 14.80 21.87 27.27 23.85 11.63	6. 8. 6.46 5. 0.	6.47 0.47 6.47 6.47 6.47 6.47	15.27 15.27 22.34 28.64 24.32 11.49	1.50 1.50 1.50 1.50 1.50 1.50	30.44 57.11 53.20 224.60 38.99 27.28	0. 0. 0. 0. 0.	13,15 24,67 22,98 97,03 16,85 14,14	31,94 58,61 54,70 226,10 40,49 28,78	100. 100. 100. 100. 100. 100.
NOV 1- 5 6-10 11-15 16-20 21-25 6-END	35.41 33.36 36.21 49.29 76.27 86.97	(9.16 9.16 9.16 9.27	1.41 8.26 7.77 9.13 0. 5.69	7.51 11.55 7.44 6.45 6.	7.37 29.35 23.00 26.69 3. 15.41	U. 0.95 0.20 0.90 U. 5.14	(.47 C.47 G.47 G.47 C.47 C.47 C.47	9.79 30.72 23.67 28.07 0.47 16.62	1,50 1,50 1,50 1,50 1,50 1,50	24.12 3.14 11.04 19.72 68.90 63.45	0. 0. 0. 0. 0.	10.42 0.49 4.77 8.52 29.76 27.41	25.62 2.64 12.54 21.22 70.40 64.95	100. 100. 100. 100. 100.
DEC 1- 5 6-16 11-15 16-26 21-25 6-END	22.34 156.55 148.08 71.17 53.13 45.21	L. 3.11 9.10 5.27 0. 2.93	L. 1.14 10.11 2.99 E.67 3.23	6. V. 7.74 6. 7.74	8, 4,26 2,26 2,17 14,42 2,16	ն. ն. Ս.ՉՆ Ս.27 Ն. Ս.71	0.47 U.47 0.47 C.47 0.47 U.47	0.47 4.73 28.23 8.91 14.69 7.35	1,50 1,50 1,50 1,50 1,50 1,50	66.42 152.32 118.35 40.76 36.74 36.36	0. 0. 0. 0. 0.	37.33 65.80 51.13 26.25 15.87 18.85	87.92 153,82 119,85 62,26 38,24 37,86	100. 100. 100. 100. 100. 100.

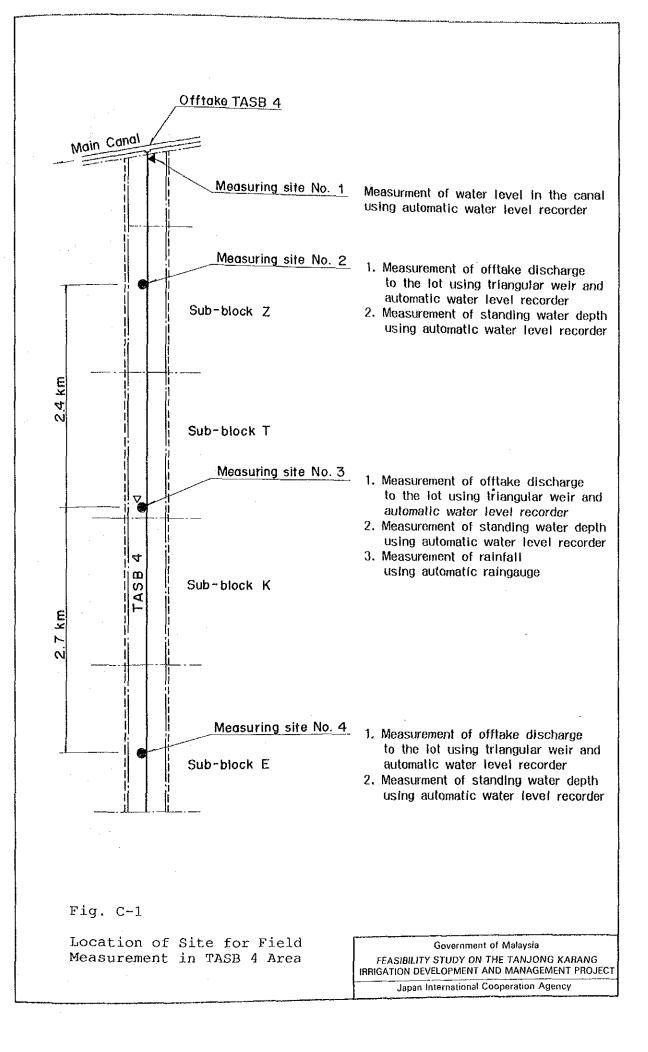
Table C-17 (4/5) WATER BALANCE UNDER 60% OVERALL EFFICIENCY FOR CASE 2 IN 1981

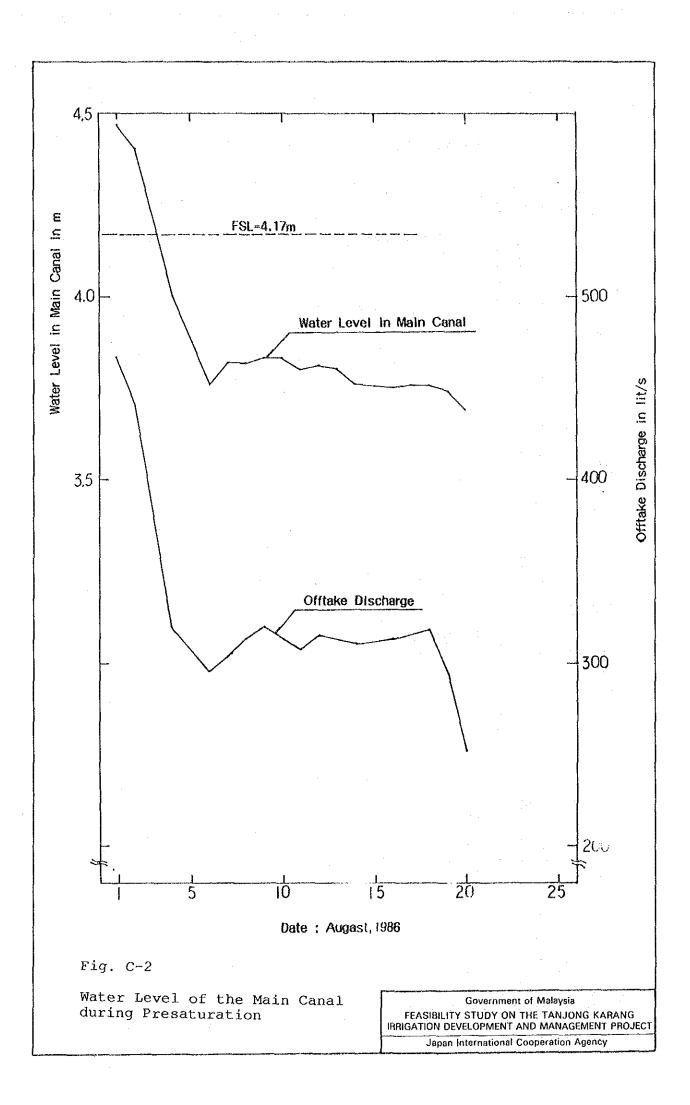
YEAR :	1981													
PERIOD	RUNOFF	8LU(K 1	PA 1100x 2	REGER 1	IUTAL	CKUP	K4 ((K	V L G L L L	1004		OEFICIT (HCM)		DOWNSTR. FROK BRH	02 * 16
	((08/5)					((u6/\$)					(818)	(A(A)	(CUM/S)	(86)
JAN 1- 5 6-10 11-15 16-20 21-25 26-END	54.19 52.32 37.97 34.74 32.50 27.20	0.4c 0. 0. 0. 0.	6. 12 6.67 10.61 6.47 5.80 3.34	6.72 7.74 7.74 7.74 9.74 6.72 7.74	13.53 14.42 17.75 14.42 12.52 11.68	0. 0.90 0.33 0.90 0.90	ť.47 C.47 C.47 <i>Ľ.</i> 47 C.47 G.47	14.00 14.69 19.13 15.22 13.89 12.45	1.50 1.50 1.50 1.50 1.50 1.50	38.69 35.93 17.34 18.02 17.11 13.25	0 • 0 • 0 • 0 • 0 •	16.72 15.52 7.49 7.79 7.39 6.87	40.19 37.43 18.84 19.52 18.61 14.75	100. 100. 100. 100. 100. 100.
FEB 1-5 6-10 11-15 16-20 21+25 26-END	19.20 32.25 31.98 51.76 36.51 51.19	6, 0, 0, 7,50 10,52	2.90 G. G. G. G.	6.72 7.74 7.74 5.16 2.44 2.58	5.02 7.74 7.74 5.16 10.03 13.16	0. 0.27 0. 0.90 0. 0.	6.47 6.47 6.47 6.47 6.47 6.47 6.47	10.09 8.48 8.21 6.53 10.50 13.63	1.50 1.50 1.50 1.50 1.50 1.50	28.11 22.27 22.27 43.73 18.51 36.06	0 - 0 - 0 - 0 - 0 -	12,14 9,62 9,62 18,89 8,00 9,35	29.61 23.77 23.77 45.23 20.01 37.56	100. 100. 100. 100. 100. 100.
HAR 1- 5 6-10 11-15 16-20 21-25 26-END	35.01 23.44 24.16 17.96 21.46 19.49	12.26 13.66 16.69 14.69 11.14 3.01	(* . 6 . 6 . 9 / 5 1	Ե. Ե. Ե. Ե.	12.26 13.46 16.49 14.69 20.36 2.07	6. 6.96 6.90 6. 6. 6.90 6.	0.47 0.47 0.47 0.47 0.47 0.47	12.73 14.83 17.87 15.16 21.74 8.49	1.50 1.50 1.50 1.50 1.50 1.50	20.78 7.11 4.79 1.32 -1.78 9.50	0. 0. 0. -6,77 0.	8.98 3.07 2.07 0.57 0. 4.16	22.26 8.61 6.29 2.82 1.50 9.52	100. 100. 100. 100. 91. 100.
APR 1- 5 6-10 11-15 16-20 21-25 26-END	42.94 70,29 60.29 76.20 74.85 41.85	5,9× 3,59 5,75 0, 9,10 9,10	15.00 16.15 4.50 16.00 9.62 4.96	ι. ι. υ. ε.11 4.07	28.90 13.74 10.05 14.80 24.83 18.14	0.84 0. 0. 0.90 0.90	(- 47 C - 47 C - 47 C - 47 8, 47 C - 47	23,36 14,21 10,52 15,27 26,21 19,51	1.50 1.50 1.50 1.50 1.50 1.50	18.14 54.58 48.27 61.43 47.14 20.87	0. 0. 0. 0. 0.	7.84 23.58 20.85 26.54 20.37 9.01		100. 100. 100. 100. 100.
HAT 3-5 6-10 11-15 16-20 21-25 26-END	41.8) 80.43 90.35 106.19 99.62 84.44	0. 8. 9.10 7.57 9.10 0.	2.28 6.67 8.26 7.51 8.26 0.	2.65 11.44 51.59 11.98 7.44 8.	16,33 15,12 29,35 26,56 24,26 0,	U. U.90 U.90 U.90	0.47 C.47 C.47 C.47 C.47 C.47	10.20 18,59 36,72 27,03 26,17 6,47	1.50 1.50 1.50 1.50 1.50 1.50	49.51 60.34 58.13 71.66 71.95 82.47	D = 0 + 0 + 0 + 0 +	21.39 26.07 25.11 30.96 31.08 42.75	51.01 61.84 59.63 73.16 73.45 83.97	100, 100. 100. 100. 100. 100.
JUN 1- 5 6-10 11-15 16-20 21-25 26-8ND	66.32 40.96 14.21 27.04 24.95 37.26	5.10 5.27 2.07 3.03 3.03 4.	16.01 9.79 10.01 10.01 9.1 ² 10.01	7,76 7,76 7,76 7,76 6,72 7,76	26.26 23.20 23.22 20.79 12.39 17.75	0.90 0.59 0.90 0.90 0.90 0.90	0.47 0.47 0.47 0.47 0.47 0.47 0.47	28,23 24,26 25,26 22,16 20,27 19,13	1.50 1.50 1.50 1.50 1.50 1.50	30.59 15.20 7.51 3.38 3.18 16.63	0. 0. 0. 0. 0.	15.81 6.57 3.25 1.46 1.38 7.19	38.09 16.70 9.01 4.88 4.68 38.13	100. 100. 100. 100. 100.
JUL 1- 5 6-10 11-15 16-20 21-25 26-ERD	23.90 19.46 24.19 15.88 15.76 22.47	Р. 0. 0. 0. С.	10.01 6.67 3.34 2.46 C.	7.74 7.74 7.74 7.74 5.70 6.95	17.75 14.42 14.42 11.08 3.16 6.95	5.98 J.46 5. 5.90 3. 6.50	0.47 0.47 0.47 0.47 0.47 0.47	19,13 15,34 14,89 12,45 8,63 2,32	1.50 1.50 1.50 1.50 1.50 1.50 1.50	3.27 2.62 7.80 5.93 9.63 18.65	0. 0. 0. 0.	1,41 1,13 3,37 2,56 4,16 9,67	4.77 4.12 9.30 7.43 11.13 20.15	100. 100. 100. 100. 100. 100.
AUG 1- 5 6-10 11-15 16-20 21-25 26-END	16.61 13.11 11.68 16.74 15.60 26.09	(), 8,19 8,63 7,57 9,02	Ե. Բ. Ե. Ե.	7,74 5,16 5,18 6, 2,53 6,	7.74 5.16 13.55 6.03 16.45 9.02	0,90 3,50 0,90 0,33 0, 0,	(.47 C.47 C.47 C.47 C.47 C.47 U.47	9.11 6.53 14.92 8.63 10.92 9.49	1.50 1.50 1.50 1.50 1.50	6.00 5,08 -4.74 0.41 3,18 15,10	0. 0. -2.05 -1.87 -0.49 0,	2,59 2,19 0, 0, 7,34		100. 100. 63. 51. 92. 100.
5EP 1- 5 6-10 11-15 16-20 21-25 26-85D	24,25 89,18 69,06 54,22 46,02 27,58	0,00 3,39 10,90 8,85 9,10 8,51	C. D. 9.14 7.64 11.76 13.76	ί, Γ, Γ, Γ, Γ,	5.02 3.39 21.04 14.47 20.39 22.21	U. U. U.78 U.78 U.90 U.59	6.47 0,47 6.47 6.47 0.47 0.47	5.53 3,86 21,28 14,94 21,77 23,27	1.50 1.50 1.50 1.50 1.50 1.50 1.50	13.22 83.82 46.28 38.38 16.75 2.81	0. 0. 0. 0. 0.	5.71 36.21 19.99 16.58 7.24 1.22	85.32 47.78 39.88	100, 100, 100, 100, 100, 100,
0CT 1-5 6-10 11-15 16-20 21-25 26-ENP	22.53 28.73 46.47 77.12 38.71 41.04	9.16 9.16 0. 1. 9.16 7.51	12,14 12,73 0. 5.40 10.01 6,61	U U 3.12 11.44 7.27	27.24 25.84 3.69 30.56 21.69	0,90 0,90 0, 0, 0,90 0,08	C.47 C.47 C.47 C.47 C.47 C.47 O.47	26 . 61 27 . 21 1. 15 3. 99 31 . 93 22 . 23	1.5C 1.50 1.50 1.50 1.50 1.50	-7.58 0.02 43.82 71.63 5.28 17.31	-3.28 -3.27 0. 0. 0.	0. 0. 15.66 30.94 2.28 8.97	1.50 1.50 37.76 73.13 6.78 18.81	75. 75. 100. 100. 100.
NOV 1-5 6-10 11-15 16-20 21-25 26-6ND	30.96 32.74 64.02 65.31 102.05 72.27	7.19 1.56 9.10 0. 6.11 C.	2,64 3,73 5,96 4,30 5,40 1,23	1.36 5.95 6.25 6.72 3.67 1.43	11.18 15.24 26.51 11.03 15.18 2.66	0. 0. 0. 0. 0. 0. 0.	0.47 0.47 0.47 0.47 0.47 0.47 0.47	11.65 15.71 27.69 11.50 15.65 3.13	1.50 1.50 1.50 1.50 1.50 1.50	17.81 15.53 34.83 52.31 50.90 67.64	0. 0. 0. 0. 0. 0.	7.69 17.6 15.05 22.60 39.22 29.22	19.31 17.03 36.33 53.81 92.40 69.14	100, 100, 100, 100, 100, 100,
DEC 1- 5 6-10 71-15 16-20 21-25 26-END	52.03 83.51 55.51 37.13 29.64 20.80	6.55 9.10 P. 6.07 6.	5.69 9.66 0. 16.61 10.01 7.75	7.74 7.33 6, 7.74 7.74 4.35	25.42 26.10 5. 23.82 23.82 23.57 2.69	u, U,96 Ø, U,90 U,90	C.47 D.47 C.47 C.47 C.47 C.47 C.47	25,29 27,47 0,47 25,20 25,20 8,56	1.50 1.50 1.50 1.50 1.50 1.50	26.64 54.54 53.54 10.43 2.96 16.74	0. 0. 0. 0. 0. 0.	11.51 23.56 23.13 6.51 1.28 8.68	28.14 56.04 55.04 11.93 4.66 18.24	100, 100, 100, 100, 100, 100,

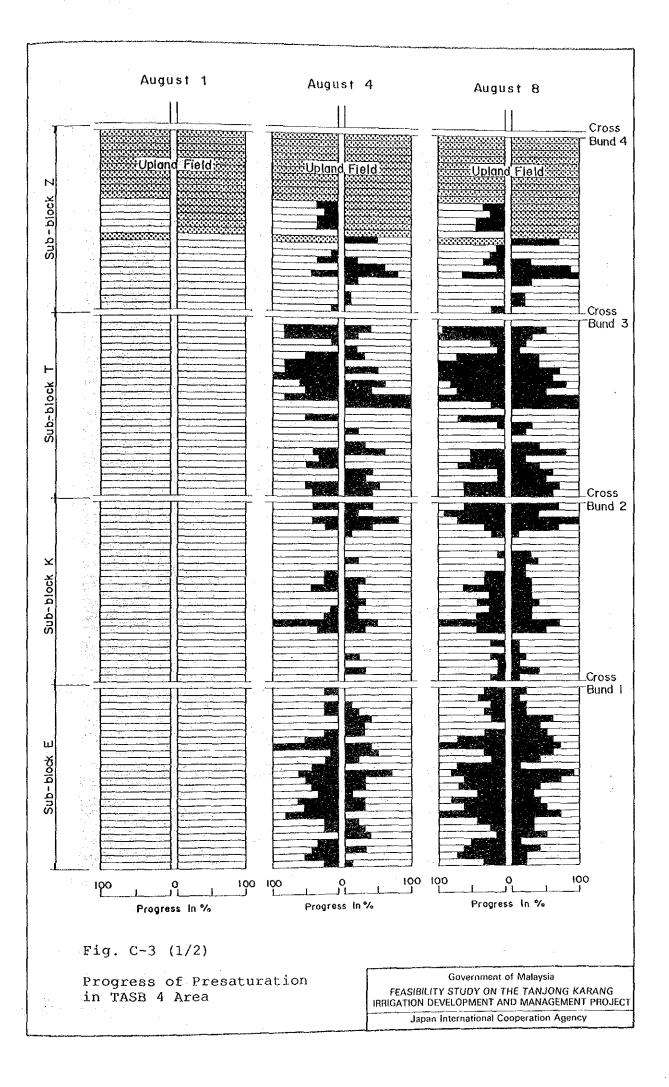
Table C-17 (5/5) WATER BALANCE UNDER 60% OVERALL EFFICIENCY FOR CASE 2 IN 1983

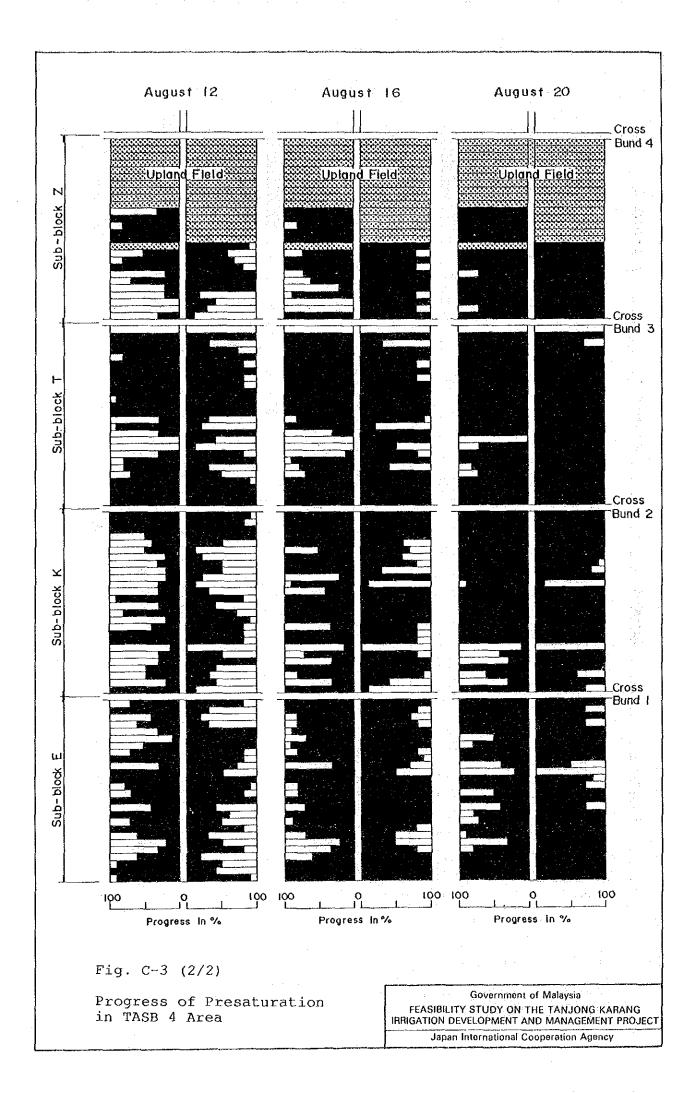
YEAR 2 1	983													
PERIOD		θεστκ 1	PA LLD(X 2 (CUX75).	BURLA 3	10141	UPLAND	D & 1	D1VERS'N	HAINT. FLOW (CUM/S)	BALANCE (CUM/S)	0EFICIT (HCH)	SURPLUS	DOWNSTR, FROM BRN (CUM/S)	WATER DEPTH (MH)
JAN 1- 5 6-10 11-15 16-20 21-25 26-END	39.23 35.44 27.60 24.84 22.11 19.29	0, 8, 0, 0, 0,	6. 8.12 9.53 6.67 3.34	8. 6.52 7.54 7.74 7.74 7.74 7.74	U. 14.64 17.07 14.62 14.62 14.62	6. 6.46 8.90 0.90 8.90 8.90	U.47 6.47 0.47 C.47 0.47 0.47 0.47	0.47 15.11 18.00 15.79 15.79 12.45	1.50 1.50 1.50 1.50 1.50 1.50	37.26 18.83 8.10 7.55 4.82 5.34	0. 0. 0. 0. 0.	16.10 8.13 3.50 3.26 2.08 2.77	38.76 20.33 9.60 9.05 6.32 6.84	100. 100. 100. 100. 100. 100.
FEB 1- 5 6-10 11-15 16-20 21-25 26-END	12,90 16,49 16,69 22,30 17,47 15,71	0. 0. 0. 7.87 13.95	3.34 0. 0. 0. 0.	7.74 2.85 7.74 5.16 5.16 2.58	11.08 2.65 7.74 5.16 13.03 16.56	0.90 0.90 0.52 0.52 0.55 0.55	0.47 0.47 0.47 0.47 0.47 0.47 0.47	12.45 4.23 9.11 6.15 13.57 17.93	1.50 1.50 1.50 1.50 1.50 1.50	4.95 10.76 6.08 14.65 2.40 -3.72	0. 0. 0. 0. 0.	2.14 4.65 2.62 6.33 1.04 0.	6.45 12.26 7,58	100. 100. 100. 100. 100. 75.
MAR 1- 5 6-10 11-15 16-20 21-25 28-END	20.98 14.94 19.25 19.61 18.55 25.39	13.4c 13.4c 16.49 13.92 11,14 10.30	6. 0. 0. 9.22 7.64	2.58 0. 0. 0. 0. 0.	16.04 13.46 16.49 13.98 20.36 17.98	0.90 6.90 6.90 6. 0.90 0.90	0.47 0.47 0.47 0.47 0.47 0.47 0.47	17.41 14.83 17.87 14.45 21.74 19.36	1.50 1.50 1.50 1.50 1.50 1.50	2.07 -1.39 -0.12 3.66 -4.69 4.53	-0.07 -0.67 -0.72 0. -2.0 <u>3</u> 0,	0. 0. 0.86 0. 0.32	1,50 1,50 1,50 3,50 1,50 2,13	99. 84. 88. 100. 76. 100.
APR 1- 5 6-10 11-15 16-20 21+25 26-END	15,76 13.49 12.11 10.66 12.83 19.24	9.10 9.11 9.16 9.10 0. 0.	14.80 14.80 18.14 18.14 2.24 G.	6. 6. 6. 4.55 6.61	23.91 23.91 27.24 27.24 27.24 6.79 0.61	6.90 6.90 0.90 0.90 0. 0.	0.47 0.47 0.47 0.47 0.47 0.47	25.28 25.28 26,61 28,61 7.26 1.08	1.50 1.50 1.50 1.50 1.50	-11.02 -13.29 -18.00 -19.45 4.07 16.66	-4.76 -10.50 -18.28 -26.68 -24.93 -17.73	0. 0. 0. 0. 0.	1.50 1.50 1.50 1.50 1.50 1.50	54. 2. -40. -105. -68. -20.
MAY 1- 5 6-10 11-15 16-20 21-25 26-END	33.25 24.90 30.39 26.73 29.22 21.44	3.59 7.07 8.51 3.71 8.27 0.	1.37 8.56 9.79 8.64 5.75 5.80	5.97 16.90 14.02 14.02 4.89 7.74	26,52 32,32 25,77 15,91 13,53	6. 0. 0.59 0. 0. 0. 6.	0.47 C.47 C.47 C.47 C.47 C.47	9,35 27.00 33.38 26.24 19.84 14.00	1.50 1.50 1.50 1.50 1.50 1.50	22.40 3.60 4.49 -1.01 7.88 5.94	-8.05 -9.61 -11.55 -11.98 -8.58 -5.50	0. 0. 0. 0. 0.	1.50 1.50 1.50 1.50 1.50	51. 42. 37. 35. 53. 70.
JUN 1- 5 8-10 11-15 16-20 21-25 26-EHD	24.00 14.35 20.44 34.04 19.74 15.07	9.10 5.35 2.98 2.04 3.03 0.	10.01 9.69 4.83 4.17 10.01 10.01	7.74 7.13 4.28 2.24 7.74 7.74	26.86 21.57 11.18 20.79 17.75	0,90 0.33 0. 0.90 0.90	C.47 C.47 C.47 C.47 C.47 C.47	26.23 22.37 11.65 8.92 22.16 19.13	1.50 1.50 1.50 1.50 1.50 1.50	-5.73 -9.52 13.29 23.64 -3.92 -5.56	-7.98 -12.09 -6.35 0. -1.69 -4.10	0. 0. 3.86 0. 0.	1.50 1.50 10.44 1,30 1.50	56. 26. 61. 100. 88. 66.
JUL 1- 5 6-1C 11-15 16-2C 21-25 26-END	15.28 17.42 19.12 16.92 53.45 28.84	0, 0, 0, 0,	8.04 4.92 3.10 0. 3.34 0.	7.74 5.70 5.67 6. 7.74 5.19	15.78 10.67 6.63 0. 11.08 5.19	6. 0.90 0.90 0.90 6.90	0.47 C.47 C.47 U.47 O.47 C.47	16.25 11.09 8.20 0.47 12.45 6.57	1.5D 3.50 1.50 1.50 1.50	-2.47 4.83 9.42 14.95 39.50 20.77	-5.16 -3.08 0. 0. 0. 0.	D. 0.99 6.46 17.06 10.77	1,50 1,50 3,80 16,45 41,00 22,27	57. 69. 100. 100. 100.
AUG 1- 5 6-10 11-15 16-20 21-25 26-END	(2.57 47.59 31.66 31.37 21.72 27.00	0. 5.75 8.35 8.90 2.96	6. C. G. D. Q.	7.74 5.80 0.41 2.58 2.28 0.	7.74 3.80 6.16 10.93 11.15 2.96	0.90 0.90 0.24 0.24 0.	(.47 C.47 C.47 C.47 C.47 C.47 0.47	8.21 5.13 6.63 12.24 11.62 3.43	1.50 1.50 1.50 1.50 1.50 1.50 1.50	52.86 40.91 23.53 17.63 8.60 22.07	0. 0. 0. 0.	22.84 17.67 10.17 7.62 3.72 11.44	54.36 42.41 25.03 19.13 10.10 23.57	100. 100. 100. 100. 100. 100.
SEP 1- 5 6-10 13+15 16-20 21-25 26-END	45.75 84.40 82.61 126.51 73.63 45.13	2.12 14.16 3.95 0. 9.10 0.	0+ 6+50 1+52 14+50 6+63	υ. ε. ε. ε.	2.12 14.10 10.54 1.32 23.91 8.62	6. 0. 0. 0.96 0.	0.47 0.47 0.47 0.47 0.47 0.47	2.59 14.57 11.01 1.79 25.28 7.10	1.50 1.50 1.50 1.50 1.50 1.50	41.66 48.33 70.10 123.22 46.85 36.53	0. 0. 0. 0. 0.	18.00 20.88 30.28 53.23 20.24 15.78	43.16 49.83 71.60 124.72 48.35 38.03	100. 100. 100. 100. 100. 100.
0CT 1- 5 6-10 11-15 16-20 21-25 26-END	75.42 12.67 36.39 33.91 18.33 42.15	8.35 4.79 5.27 7.79 3.71 0.	5.34 14,50 8.43 11.77 6.28 6,	L. 6.11 7.13 16.68 3.31	14.09 19.59 26.41 28.69 20.08 3.31	u. 0. 0. 0. 0. 0.	C.47 O.47 C.47 O.47 C.47 O.47	15.16 20.06 20.28 27.36 20.55 3.78	1.50 1.50 1.50 1.50 1.50	16.76 11.11 5.05 16.28 36.87	0. 0. 0. 0. 0.	8.10 4.80 3.46 2.18 7.03 19.11	12,61	100. 100. 100. 100. 100. 100.
HQV 1- 5 6-10 11-15 16-20 21-25 26-END	40.41 56.02 48.93 45.67 35.64 34.57	4.19 9.10 9.10 9.10 8.74 4.31	3.22 10.61 10.61 10.61 7.25 2.11	2,95 14,02 9,47 4,69 6,61	16.94 33.14 28.59 28.59 20.62 7.03	6. 0.96 0.90 0.90 0.71 0.	0.47 0.47 0.47 0.47 0.47 0.47	17.41 34.51 29.96 29.96 21.86 7.50	1.50 1.50 1.50 1.50 1.50 1.50	21.50 20.01 17.47 14.21 12.28 25.57	0. 0. 0. 0. 0.	9.29 8.64 7.55 6.14 5.31 11.05	23.00 21.51 18.97 15.71 13.78 27.67	100. 100. 100. 100. 100. 100.
DEC 1- 5 6-10 11-15 16-20 21-25 26-END	31.84 26.40 46.40 31.47 27.54 25,96	9.10 3.95 0.98 0.98 0.98	16.01 5.49 4.64 2.81 1.41 9.67	7.74 4.69 4.69 6.65 1.63 7.74	26.86 14.13 E.71 6.42 3.61 20.51	0.90 0. 0. 0. 0. 0. 0.65	6.47 6.47 6.47 6.47 6.47 6.47	28,23 14,60 5,20 6,89 3,50 21,63	1.50 1.50 1.50 1.50 1.50 1.50	2.11 12.30 29.70 23.08 72.54 2.77	0. 0. 0. 0. 0.	0.91 5.31 12.83 9.97 9.74 1.44	3.61 13.80 31.20 24,58 24.04 4.27	100. 100. 100. 100. 100. 100.

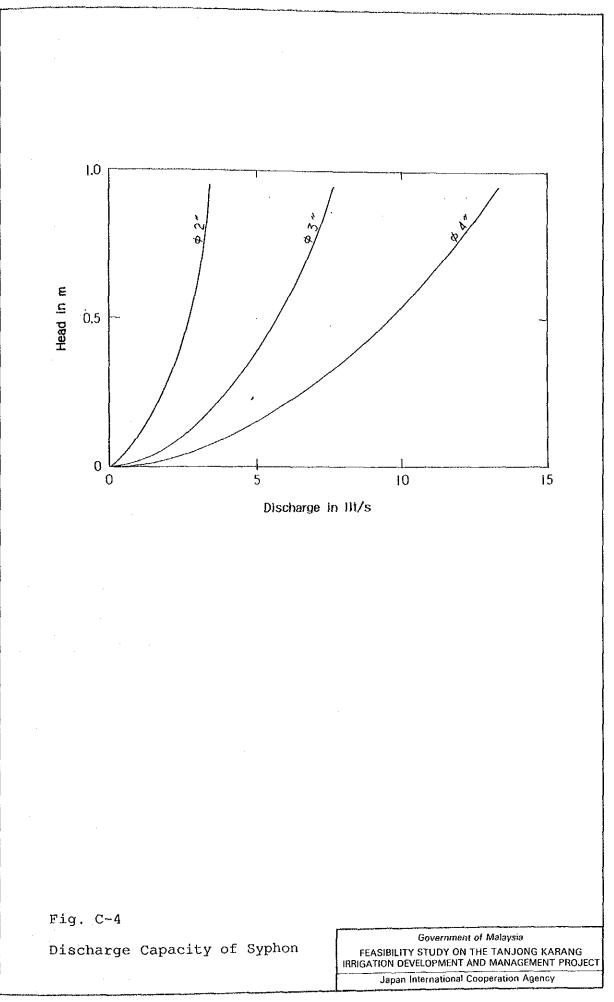
.


.


.


.


FIGURES


.

ANNEX D

Characteristics of Flow in Concrete Conduit

ANNEX D CHARACTERISTICS OF FLOW IN CONCRETE CONDUIT

CONTENTS

1.	TRI	AL OPERATION OF TERTIARY CANALS	D-1
	1.1	Introduction	D-1
	1.2	Procedures	D-1
	1.3	Results 1.3.1 Flow patterns under the design discharge 1.3.2 Flow patterns under the half of design discharge	D-2 D-2 D-4
	1.4	Findings	D-7
2.	HY	DRAULIC SIMULATION ANALYSIS	D-8
	2.1	Introduction	D-8
	2.2	Formula Applied for Simulation Analysis	D-8
	2.3	Result and Reliability of Simulation	D-10
	2.4	Procedures in Determining the Most Suitable Flow Pattern	D-11
	2.5	Application of Simulation Analysis	D-13
3.	INTF	RODUCTION OF ROTATIONAL IRRIGATION	D-16
	3.1	Introduction	D-16
	3.2	Flow Capacity of Tertriary Canal	D-16

3.3	Irrigation Demand during the Presaturation	D-16
3.4	Introduction of Rotational Irrigation	D-18

APPENDIX DA MANUAL FOR HYDRAULIC SIMULATION OF CONDUIT

LIST OF TABLES

D-1 Simulation Analysis of Flow in Tertiary CanalD-2 Result of Hydraulic Simulation Analysis

LIST OF FIGURES

D-1 Trial Water Management in TASB 3

D-2 Trial Water Management in TASB 4

D-3 Trial Water Management in TAS 1

D-4 Trial Water Management in TASL 1

D-5 Trial Water Management in TASL 2

D-6 Trial Water Management in TASL 8

D-7 Trial Water Management in TAPP 7

D-8 Trial Water Management in TAPB 1a

D-9 Trial Water Management in TAPB 2a

D-10 Simulation Analysis of Flow in TASL 2

D-11 Flow Chart of Simulation Programme

- D-12 Procedures in Determining the Most Suitable Flow Pattern
- D-13 Procedures to Determine the most Suitable Flow Pattern in Canal by Hydraulic Simulation
- D-14 Typical Tertiary Canal

1. TRIAL OPERATION OF TERTIARY CANALS

1.1 Introduction

It is planned in the present operation manual that when a compartment is under presaturation, all the tertiary canals in the compartment are filled with the full supply level (FSL) for 20 days. During normal irrigation, canals are also filled with FSL, but the offtake is opened only for 12 hours a day. It becomes necessary to repeat opening and closing of the offtake gate every 12 hours. This is impractical and nobody can comply. Water is supplied continuously even during the normal irrigation period. As a result, much water is wasted. It would be necessary to establish a more practical operation rule during normal irrigation.

In order to make clear the characteristics of flow in concrete conduit and to identify problems in distribution network, trial operation was carried out under both the design discharge and the half of design discharge. In the course of the trial, it was found that the top elevation of check gate was too high to properly control the water level in the conduit. The gates were removed and the same procedures were repeated.

1.2 Procedures

Nine canals were selected from five compartments for the trial operation. The main features of the selected canals are summarized below.

· · ·			<u>Design C</u>	2 <u>N</u>	os of	Nos of	lots
Compartment	Canal	Length	Paddy Ca	<u>pacity (</u>	<u>C/B</u>	<u>Paddy</u>	Total
	1 .	(km)	(lit/s) (l	it/s)			
Sg. Burong	TASB 3	7.3	524 0	676	4	182	235
	TASB 4	7.2	522	665	4	183	233
Sekinchan	TAS 1	6.2	422	567	3	149	202
Sg. Leman	TASL 1	5.6	339	506	3	120	179
	TASL 2	5.4	316	499	3	112	177
	TASL 8	4.5	310 4	431	3	110	152
P. Panjang	TAPP 7	3.4	257	299	2	93	108
P. Bedena	TAPB 1a	3.1	253 2	253	1	90	90
	TAPB 2a	3.1	252 2	252	1	90	90

The procedures of the trial operation are summarized below.

- a. Survey on the basic items such as top elevation of conduit and the number and location of field offtake pipes prior to the commencement of the trial operation.
- b. Examine kinds of cropping on each farm lot.
- c. Confirm no water leaks from the canal. If leakage is found, such leakage is stopped before the trial is commenced.
- d. Confirm that the main offtake gate is in good condition so that the diversion can be adjusted at the head of tertiary canal.
- e. Open check gates as much as possible.
- f. Remove weeds and debris from offtake pipes, to realize an ideal flow condition.
- g. Remove slots, if any.
- h. Adjust the constant head orifice gate and regulate the discharge at the head of canal to the design discharge. The discharge is confirmed by means of measurement by a current meter.
- i. Measure the height from the top of a conduit down to the water level in the conduit at the points selected beforehand every 10 to 20 minutes.
- j. Continue the measurement until the water level in the conduit becomes steady.
- k. After confirming that water level is no more changed, discharge in the conduit is measured at the upstream reach of each check gate.
- I. Decrease the discharge at the head of canal to the half of design discharge.
- m. Repeat the procedures i to k above.
- n. Remove all check gates and repeat the procedures h to m above.

1.3 Results

1.3.1 Flow patterns under the design discharge

(1) Before check gates are removed

Flow patterns under the design discharge are summarized in Figs. D-1 to D-9. The average water depth and mean discharge from offtake pipes in different reaches of the conduit are shown in tables below.

Water Depth above the Centre of Offtake Pipe (inch)

Name of Canal	<u>U/S</u>	<u>Middle</u>	<u>D/S</u>	
	<u>C/B4-C/B2</u>	<u>C/B2-C/B1</u>	<u>C/B1-END</u>	
	(cm) (inch)	(cm) (inch)	(cm) (inch)	
TASB 3 (91%)*	11.7(4.6)	14.0(5.5)	10.4(4.1)	
TASB 4 (98%)	19.3(7.6)	20.6(8.1)	16.7(6.6)	
TAPP 7 (109%)	22.1(8.7)	15.0(5.9)	10.2(4.0)	
TAPB 1a (104%)	25.7(10.1)	14.2(5.6)	8.1(3.2)	
TAPB 2a (95%)	21.1(8.3)	11.2(4.4)	10.4(4.1)	

Remarks : *;The figures in parentheses show the percentage of the discharge during the trial operation compared to the design discharge.

Mean Discharge from Offtake Pipe (lit/s)

Name of Canal	<u>U/S</u> <u>C/B4-C/B2</u>	<u>Middle</u> <u>C/B2-C/B1</u>	<u>D/S</u> C/B1-END
TASB 3	3.1 (1.2)*	1.9 (0.7)*	2.6 (1.0)*
TASB 4	3.3 (1.4)	2.5 (1.1)	2.3 (1.0)
TAPP 7	2.9 (1.5)	2.4 (1.2)	2.0 (1.0)
TAPB 1a	3.9 (1.8)	2.9 (1.3)	2.2 (1.0)
TAPB 2a	3.5 (1.5)	2.5 (1.0)	2.4 (1.0)

Remarks : *;The figure in parentheses is the ratio to the discharge in the downstream conduit.

The water depth above the centre of offtake pipes considerably varies between the upstream and the downstream reaches. The average water depth in the upstream reach is more than that in the downstream one. This makes it difficult to equitably distribute water to each farm lot. The discharge from each offtake pipe is calculated based on the above data. The discharge from offtake pipes in the upstream reach is 20% to 80% larger than that in the downstream one. This is because that the top elevation of the check gates are too high to properly control the water in the conduit. Under present conditions, the design discharge cannot be equally distributed to each farm lot.

D - 3

(2) After check gates are removed

The check gates were removed and trial operation was repeated in two canals. The results are summarized in Figs. D-6 and D-9. The mean water depth and discharge from an offtake pipe in different reaches of the conduit are summarized below. The flow pattern in the conduit is much improved and the water depth above the centre of offtake pipe becomes almost constant in all reaches of the conduit. Consequently, there is no difference in the discharge from offtake pipes.

Water Depth above the Centre of Offtake Pipe

Name of Canal	<u>U/S</u>	<u>Middle</u>	<u>D/S</u>
	<u>C/B4-C/B2</u>	<u>C/B2-C/B1</u>	<u>C/B1-END</u>
	(cm) (inch)	(cm) (inch)	(cm) (inch)
TASL 8 (89%)*	10.4(4.1)	9.4(3.7)	9.9(3.9)
TAPB 2a (103%)	15.0(5.9)	14.0(5.5)	14.2(5.6)

Remarks : *;The figures in parentheses show the percentage of the discharge during the trial operation compared to the design discharge.

Mean Discharges from Offtake Pipe (lit/s)

Name of Canal	<u>U/S</u>	<u>Middle</u>	<u>D/S</u>	
	C/B4-C/B2	<u>C/B2-C/B1</u>	C/B1-END	
TASL 8 (89%)	1.9 (0.7)*	2.2 (0.9)*	2.6 (1.0)*	
TAPB 2a (103%)	2.9 (1.0)	2.8 (1.0)	2.9 (1.0)	

Remarks : *;The figures in parentheses in the ratio to the discharge in the downstream conduit.

1.3.2 Flow patterns under the half of design discharge

(1) Before check gates are removed

Flow patterns obtained through the trials in seven canals are shown in Figs. D-1 to D-9. The discharge from each offtake pipe was also calculated. The average water depth and mean discharge from offtake pipe in different reaches of the conduit are shown below.

Water Depth above the Centre of Offtake Pipe

Name of Canal	<u>U/S</u> <u>C/B4-C/B2</u> (cm) (inch)	<u>Middle</u> <u>C/B2-C/B1</u> (cm) (inch)	<u>D/S</u> <u>C/B1-END</u> (cm) (inch)	
TASB 3 (53%)*	1.3(0.5)	8.1(3.2)	5.6(2.2)	
TASB 4 (54%)	8.6(3.4)	8.6(3.4)	5.1(2.0)	
TAS 1 (51%)	6.6(2.6)	6.9(2.7)	2.8(1.1)	
TASL 1 (55%)	1.3(0.5)	3.6(1.4)	7.1(2.8)	
TASL 2 (55%)	4.8(1.9)	5.6(2.2)	5.6(2.2)	
TAPP 7 (64%)	9.1(3.6)	14.7(5.8)	13.7(5.4)	
TAPB 2a(54%)	10.2(4.0)	3.8(1.5)	5.6(2.2)	

Remarks : *; The figures in parentheses show the percentage of the discharge during the trial operation compared to the design discharge.

Mean Discharge from Offtake Pipe (lit/s)

Name of Canal	<u>U/S</u> <u>C/B4-C/B2</u>	Middle C/B2-C/B1	<u>D/S</u> <u>C/B1-END</u>
TASB 3 (53%)	0.8 (0.4)*	2.2 (1.2)*	1.9 (1.0)*
TASB 4 (54%)	1.9 (1.7)	1.8 (1.6)	1.1 (1.0)
TAS 1 (51%)	1.0 (0.6)	2.0 (1.3)	1.6 (1.0)
TASL 1 (55%)	1.5 (1.2)	1.7 (1.3)	1.3 (1.0)
TASL 2 (55%)	1.6 (1.1)	1.5 (1.1)	1.4 (1.0)
TAPP 7 (64%)	1.5 (0.8)	1.9 (1.1)	1.8 (1.0)
TAPB 2a(54%)	2.1 (1.4)	1.2 (0.8)	1.5 (1.0)

Remarks : *;The figures in parentheses in the ratio to the discharge in the downstream conduit.

It is clear from the above tables that the check gates significantly affect the flow pattern in the conduit. In the cases where check gates are installed, the discharge from offtake pipes in the upstream reach fluctuate between the respective tertiary canals. When the check gate can be lowered till the designed position, considerable draw down occurs in the upstream reach and enough water cannot be distributed from offtake pipes. Contrary, if the gate cannot be lowered, the water level in the upstream reach is risen, and much water is taken from offtake pipes in the upstream reach.

(2) After check gates are removed

The trial water management was repeated after the check gates were removed. Data obtained through the trials in three canals are shown in Figs. D-2, D-6 and D-9. The water level in the upstream reach drops and that in the downstream reach raises. No significant change is found in the water level in the middle reach. In upstream reach of some tertiary canals, water level becomes below the offtake pipes. As a result, the distribution of water is more in the middle and downstream reaches than in the upstream reach. Mean discharge from offtake pipes in upstream reach is about half of that in the middle and downstream reaches.

Water Depth above the Centre of Offtake Pipe

Name of Canal	<u>U/S</u>	<u>Middle</u>	<u>D/S</u>	
	<u>C/B4-C/B2</u>	<u>C/B2-C/B1</u>	<u>C/B1-END</u>	
	(cm) (inch)	(cm) (inch)	(cm) (inch)	
TASB 4 (50%)*	6.6(2.6)	13.7(5.4)	18.0(7.1)	
TASL 8 (40%)	0.3(0.1)	4.8(1.9)	8.1(3.2)	
TAPB 2a(47%)	0.0(0.0)	4.3(1.7)	10.9(4.3)	

Remarks : *;The figures in parentheses show the percentage of the discharge during the trial operation compared to the design discharge.

Mean Discharge from Offtake Pipe (lit/s)

Name of Canal	U/S	Middle	<u>D/S</u>	
	<u>C/B4-C/B2</u>	<u>C/B2-C/B1</u>	C/B1-END	
TASB 4 (50%)	1.1 (0.6)*	1.4 (0.8)*	1.8(1.0)*	
TASL 8 (40%)	0.1 (0.0)	1.2 (0.7)	1.7(1.0)	
TAPB 2a(47%)	0.0 (0.0)	1.3 (0.6)	2.2(1.0)	

Remarks : *;The figures in parentheses in the ratio to the discharge in the downstream conduit.

1.4 Findings

Under present conditions, the design discharge is not equally distributed to each farm lot. Even if the check gates are fully opened, the upstream farm lots get more water than the downstream ones. If the check gates are removed, flow patterns in the conduits are much improved. This is because that the check gate cannot be lowered due to siltation in well chamber and the gate prevents the proper control of water level in the conduits.

At the half of design discharge, the distribution along the concrete conduit is unsatisfactory. Under the condition with check gates, the upstream farm lots get more water than the downstream ones. If the check gates are removed, considerable drawdown in water level occurs in the upstream reach and the water is supplied only in the middle and downstream reaches of the conduit.

With these facts, it can be concluded that a check gate has a great influence on the flow pattern in the conduit. The water depth in the conduit is adjustable, if the check gate is suitably installed and properly operated. Under the present condition, the check gate cannot be lowered due to siltation in well chamber.

2. HYDRAULIC SIMULATION ANALYSIS

2.1 Introduction

Each tertiary canal has different characteristics. Proper elevation of check gates and slots as well as the normal supply level (NSL) should be determined for each canal. There are numbers of tertiary canals in the project area. Thus, it takes long time to determine the above through the trial operation only. If a computer programme is developed to simulate the flow pattern in the concrete conduits, the programme could be used, prior to trial operations at the site, in determining proper height of check gates and location and height of slots in other tertiary canals and even the most suitable method of water management in tertiary canals.

2.2 Formula Applied for Simulation Analysis

The calculation formula applied for simulation analysis are expressed as follows:

(1) Energy continuity equation

In order to calculate the water level in a concrete conduit, energy continuity equation is applied between two sections. Bernoulli's energy continuity equation is expressed between two sections as follows:

 $EI(i) + H(i) + V(i)^{2} / 2g + hf = EI(i+1) + H(i+1) + V(i+1)^{2} / 2g$

where, EI: canal base elevation

- H: water depth
- V : Manning's mean velocity
- g : acceleration of gravity
- hf: head loss

(2) Discharge from an offtake pipe

Discharge from an offtake pipe is calculated as follows.

$q = c x a x (2 x g x h)^{1/2}$

where, q:discharge

c : discharge coefficient

a : flow area of offtake pipe

h : hydraulic head above offtake pipe

(3) Flow condition at slot

Flow conditions at slot are divided into two. One is the complete flow condition and the other is the submerged flow condition. In case of the complete flow condition, the discharge is calculated using following equation.

 $Q = k x b x h^{3/2}$

where, Q : discharge k : discharge coefficient (1.7) b : width of slot h : overflow depth

In case of submerged flow condition, the discharge is estimated by Villemonte's equation.

 $Qs = Q \times (1 - (h2/h1)^{1.5})^{0.385}$

where, Qs : discharge in case of submerged flow condition

- Q : discharge in case of complete overflow flow condition
- h1: overflow depth
- h2 : water depth above crest of slot in downstream

At the crest of check gate, the flow condition was complete flow. The water level in the downstream reach of the check gate never affect the discharge in the upstream reach. The simulation can be made separately between two check structures.

2.3 Result and Reliability of Simulation

The data obtained through the trial operations in the six tertiary canals were used for developing the computer programme. The hydraulic simulation was tried several times until the simulated flow pattern became similar to the observed flow pattern, by means of changing Manning's roughness coefficient of conduits and the coefficient of discharge from offtake pipes.

(1) Manning's roughness coefficient "n"

The designed value of "n" is 0.013. However, the actual value has been increased. The result of hydraulic simulation clearly shows the same tendency. The estimated coefficient is summarized below.

Manning's roughness coefficient, "n"

<u>Reach</u>	TASL1	TASL2	TASL8	TASB3	TASB4	TAPB2a	Average	
C/B3-C/B2	0.017	0.018	0.016	0.017	0.018	-	0.017	
C/B2-C/B1	0.018	0.019	0.016	0.018	0.017	0.018	0.018	
C/B1-END	0.018	0.024	0.020	0.018	0.018	0.020	0.019	

The Manning's roughness coefficient "n" of existing concrete conduit is apart from the designed one. The actual figure of "n" ranges from 0.016 to 0.024 as shown in the table. The averaged coefficient gradually increases toward the downstream. This is due to silt and rubbish deposited on the bottom of the canal. It can be regarded that the present conduit is made of concrete for side walls and of earth for the bottom. The coefficient "n" naturally increases and the flow capacity of the conduit becomes less. The present flow capacity is estimated at about half of the designed one.

n an the second seco

and the state of the second second

(2) Discharge coefficient "c"

Discharge coefficient of offtake pipe, "c", also affects the flow pattern in a conduit. Present "c" are ascertained through hydraulic simulation analysis. The result of analysis is shown below.

Coefficient of Discharge of Offtake Pipe

Reach	TASL1	TASL2	TASL8	TASB3	TASB4	TAPB2a	Average
C/B3-C/B2	0.6	0.6	0.7	0.7	0.7	· • 1	0.7
C/B2-C/B1	0.7	0.6	0.7	0.6	0.7	0.6	0.7
C/B1-END	0.6	0.6	0.8	0.8	0.6	0.6	0.7

There are a lot of weeds and rubbish in the canal. They, even though small in size, stick to the offtake pipes and the discharge from the pipes is significantly restrained. The averaged coefficient of discharge of offtake pipe used for the simulation analysis is 0.70. This is about 13 % smaller than the coefficient, 0.80, obtained through the trial operations. This indicates that some of offtake pipes was blocked by weeds or rubbish during the trial operations.

Results of simulation analysis are summarized in Table D-1 and illustrated in Fig. D-4 for TASL 1 and Fig. D-5 for TASL 2. The details of Fig. D-5 are shown in Fig. D-10. As seen in the figures, the simulated water level is quite similar to the observed one. It is evaluated that the result of simulation analysis is satisfactory. The computer programme developed for the simulation analysis and its explanation are summarized at the end of this Appendix. Flow chart of simulation programme is shown in Fig. D-11.

2.4 Procedures in Determining the Most Suitable Flow Pattern

After the presaturation period is over, the elevation of check gates and slots should be adjusted to the predetermined positions for the normal irrigation supply. The amount of water diverted into a tertiary canal should be regulated and controlled by the offtake gate, by adjusting the water level in the tertiary canal to NSL. These adjustments are to be made only once at the beginning of the normal irrigation period and water should be supplied continuously during the normal irrigation. Proper elevation of check gates and slots as well as NSL should be determined for each canal through hydraulic simulation analysis and trial operation at the site. Procedures required for determining the above are mentioned below. A general flow chart showing the procedures is shown in Fig. D-12. (1) Surveying

The following items should be surveyed.

- a. dimensions of concrete conduit (width, height, length)
- b. location of offtake pipes
- c. elevation of top of conduit at each offtake pipe
- d. distance from the top of conduit to the centre of each offtake pipe

(2) Preparation of input data

The surveyed data should be processed into input data for the simulation analysis. Except the surveyed data, the following assumptions are necessary for the simulation.

 a. boundary condition (water level in the upstream point of each check gate, which becomes the beginning point of the calculation)

b.	Manning's roughness coefficient					
	for upstream reach	: 0.017				
	for middle reach	: 0.018				
	for downstream reach	: 0.019				

- c. discharge coefficient of offtake pipe, c=0.7
- (3) Hydraulic simulation analysis

Water level in concrete conduit and discharge from offtake pipes are simulated by the computer programme. List of output is as follows:

- a. discharge, velocity, water depth, water level at each offtake pipe point in a conduit,
- b. discharge from an offtake pipe, and
- c. height of slot in case of necessary.

The most suitable flow pattern in canal reaches between two check gates should be determined with the following procedures.

- a. calculate the discharge during normal irrigation.
- b. assume the water level at the the beginning point of calculation.
- c. simulate the water level and discharge using the programme with a target to fulfill the the following conditions.

- the discharge from every offtake pipe becomes more than 1.068 lit/s, which is the water requirement by paddy for one farm lot during normal irrigation supply.
- the irrigation efficiency is more than 75%.
 - d. consider the installation of slot, if the conditions above cannot be satisfied.
 - e. relocate offtake pipes which are not properly installed, if the
 - conditions above cannot be satisfied even after the installation of slot.

The required procedures to determine the most suitable flow pattern in canal are illustrated in Fig. D-13.

(4) Trial operation at site

In order to confirm the results of hydraulic simulation analysis, trial operation should be executed following the procedures mentioned in Section 1.2 of this Annex. Thus, the proposed flow pattern is determined for each tertiary canal for the water management during normal irrigation period.

2.5 Application of Simulation Analysis

Simulation analyses were made following the procedures above for the seven tertiary canals selected for the trial operations, TASL 1, TASL 2, TASL 8, TASB 3, TASB 4, TAPB 1a and TAPB 2a. It becomes necessary to take the following measures to realize the most suitable flow pattern.

(1) Installation of slots

The canal section gradually decreases towards downstream. The sections are determined based on the presaturation water requirements. When the discharge is decreased for normal irrigation, the drawdown of water level is great in the upstream conduit and negligible in the downstream, while the offtake pipe is constantly installed 30 cm (12 inches) below the top of conduit. The need of slots is high in upstream reach. The required number of slots derived from the simulation analysis is shown in Table D-2 and summarized in the table below. It is known that

one or two slots will be necessary in the upstream reach of the cross bund 2. The water level in the downstream reach of the cross bund 2 can be kept about 4.3 cm (1.7 inch) above the offtake pipes without slots during the normal irrigation period. It becomes parallel to the top of conduit. The discharge of water from the offtake pipe is sufficient and the distribution to each lot becomes even. Installation of slots is not necessary in the downstream reach of the cross bund 2. On the other hand, the water level in the upstream reach of the cross bund 2 becomes below the offtake pipes, the installation of slots becomes imperative.

Required Number of Slots

<u>Reach</u>	TASL1	<u>TASL2</u>	<u>TASL8</u>	<u>TASB3</u>	<u>TASB4</u>	<u>ТАРВ1а</u>	<u>TAPB2a</u>
C/B3-C/B2	0	1	0	2	2	0	0
C/B2-C/B1 C/B1-END	0	0	0	0	0	0	0

(2) Offtake pipe to be re-located

The distribution efficiency in tertiary canals much depends on the location of field offtake pipes. The pipes are not always installed as designed. Pipes wrongly placed should be re-located. The more number of pipes re-located, the higher efficiency will be achieved. It is estimated that the distribution efficiency is as low as 60% if no pipes are re-located. To grasp the relationship between the number of field offtake pipes to be re-located and the distribution efficiency, hydraulic simulation analysis was made. The number of offtake pipe that should be re-located so as to attain the assumed irrigation efficiencies is summarized in the table below.

Number of pipe to be re-located

<u>Canal</u> Total nos. of pipe	<u>TASL1</u> 179	<u>TASL2</u> 177	<u>TASL8</u> 153	<u>TASB3</u> 235	<u>TASB4</u> 233	<u>TAPB1a</u> 90	<u>TAPB2a</u> 90	<u>101/</u> 1157	<u>а</u> ц. (%)
Efficiency 85%	24	32	36	49	50	22	18	231	(20)
80%	18	23	19	-37	42	15	12	166	(14)
75%	13	11-	. 9	29	19	6	4	91	(8)
70%	5	6	3	11	15	3	4	47	(4)
65%	. 3	2	· 3	8	13	3	3	35	(4)

D - 15

3 INTRODUCTION OF ROTATIONAL IRRIGATION

3.1 Introduction

The present capacity of tertiary canal is designed to cope with the peak demand for the traditional transplanting method. With the expansion of direct seeding practices in the project area, the peak water requirement has increased. If the presaturation is started for direct seeding simultaneously in all lots commanded by a tertiary canal, the peak water demand exceeds the present flow capacity of tertiary canal. In order to make best use of the present conduit, introduction of rotational irrigation should be envisaged during the presaturation period.

3.2 Flow Capacity of Tertiary Canal

In order to examine the flow capacity of tertiary canal, a tertiary canal, TASN 1, is selected as typical one. It is 3.75 km long and commands paddy fields of 150 ha. The canal is composed of six different types of conduit. FSL of the tertiary canal is set at 10 cm (4 inches) below the top of the conduit.

The flow capacity is calculated taking into account the use of the freeboard of 10 cm (4 inches). Flow capacities of eight sections of tertiary canal were calculated by applying Manning's formula as shown in Table D-3. It is recognized that the flow capacity is about 120% of the designed discharge on average. Since the designed unit discharge is 30 acres/cusec, which is equivalent to 2.33 lit/s/ha, the unit flow capacity of a conduit is 2.80 lit/s/ha.

3.3 Irrigation Demand during the Presaturation

Net amount of water supply under the dry direct seeding is 210 mm for the first presaturation, and 120 mm for the second presaturation. Net water requirement during the normal period is 7.6 mm/day. It is desirable to complete the first presaturation in the shortest period, possibly within 10 days, in order to control the growth of weeds. Assuming that the irrigation efficiency in the tertiary canal is 0.75, unit water requirement for each period is calculated as follows:

Period 1st Presaturation	Required depth 210 mm	Duration 10 days	Unit Requirement 3.24 lit/s/ha
2nd Presaturation	120 mm	10 days	1.85 lit/s/ha
Normal irrigation	7.6 mm/day	•	1.17 lit/s/ha

The unit water requirement for the first presaturation is 3.24 lit/s/ha, which is 1.16 times the present flow capacity of the conduit. If the presaturation is practiced simultaneously, the required discharge in the conduit for direct seeding is calculated as shown in the table below and Fig. D-14. The flow capacity of tertiary canal is insufficient in all the reaches of the conduit.

ltem	Unit Discharge (lit/s/ha)	Upstream Reach (lit/s)	Middle Reach (lit/s)	Downstream Reach (lit/s)
Command Area (ha)	-	150	100	50
Designed Discharge	2.33	350	233	117
Flow Capacity	2.80	420	280	140
Required Discharge				
for Direct Seeding	3.24	486	324	162

In order to make the best use of available water resources, it is proposed to divide the project area into three irrigation schedule areas, with 30 days allowance for staggering in each area. In one irrigation schedule area, the presaturation should be finished within 30 days. For the direct seeding, it is desirable to presaturate the farm lot in the shortest period, possibly within 10 days. It is, therefore, considered to divide the area commanded by a tertiary canal into three or more blocks and to presaturate each block in rotation. Conveniently, the area can be divided into three blocks with similar extent of area by the existing cross bunds. Thus, it is possible to establish three rotation blocks. Water is to Water demand during the be supplied from the upstream block. presaturation varies and gradually increases when the presaturation supply is shifted to the downstream block. The peak water demand of a tertiary canal occurs when water for the first presaturation is supplied into the most downstream block. It would be complex and difficult to precisely control the gate at the head of tertiary canal following the changes in the actual water demand. It is, therefore, proposed to supply

constantly the peak water demand for the whole presaturation period of 30 days. With these conditions, the unit water demand required during the presaturation period is decided at 2.091 lit/s/ha as shown below.

	= (21.)	1 + WR2 + WR3)/3 x 10000/86400/ 0 + 12.0 + 7.6)/3 x 10000/86400/ 1 lit/s/ha	0.75
		and the second second second second second second	a start and a start
where,	WR1 :	Unit diversion water requirement at offtake Water requirement for the 1st Presaturation Water requirement for the 2nd Presaturation	(lit/s/ha) 21.0 (mm/day)
	WR3 :	Water requirement of normal irrigation perio	12.0 (mm/day)

The required diversion discharge at the head of the tertiary canal is calculated multiplying the area commanded by the tertiary canal by the above unit diversion water requirement. In case of the typical tertiary canal, the area is 150 ha and the diversion water requirement becomes 314 lit/s as shown below.

Q	×	Qp	х	А
	=	2.091	х	150
		314		lit/s

where,	Q	:	Diversion water requirement at offtake		(lit/s)
	А	:	Command area of a tertiary canal	150	(ha)

3.4 Introduction of Rotational Irrigation

At the first rotation period, Rotation Block 1 (RB1) receives the first presaturation supply, while RB2 and RB3 don't get any supply. In the next rotation period, RB1 get the second presaturation supply, while the first presaturation supply is let into RB2. There is no supply to RB3. In the last rotation period, RB1 get the normal irrigation supply and RB2 get the second presaturation supply while RB3 get the first presaturation supply.

In case of the typical tertiary canal, each rotation period is calculated at four days, nine days and 11 days, respectively, as shown below.

Schedule	Diverted	Amount of W	later Requir	rement	Required
	Discharge	RB1(50ha)	RB2(50h)	a) RB3(50ha)	Period
•	(lit/s)	(mm)	(mm)	(mm)	(days)
1st rotation	314	280	-	-	3.8 (4)
2nd rotation	314	160	280	-	8.1 (9)
3rd rotation	314	111	160	280	10.2 (12)

In the above table, the third rotation period is set 12 days. This is because the required discharge exceeds the flow capacity of the conduit, if the period is set shorter than 12 days. It is clear from the table that the presaturation could be completed within 25 days.

From the above considerations, it is concluded that presaturation can be practiced so as to cope with the requirement for direct seeding without modifying the existing concrete conduit, if the rotational irrigation is applyed. Three rotation blocks are to be established on each tertiary canal dividing the area by the existing cross bunds. Presaturation is practiced from upstream to downstream block, in rotation, each for four days, nine days and 12 days, respectively. The presaturation for one tertiary canal can be completed within 25 days or at the least 30 days. Each tertiary canal has different command area. The period of rotation should be determined canal by canal.

Flow capacity of an offtake pipe will not cope with the water demand for presaturation. If the water level is at the top of conduit, the water depth at the centre of offtake pipe becomes 30 cm (12 inches). The discharge of water from the offtake pipe is 3.78 lit/s, while the maximum water demand for each lot is 3.92 lit/s. The use of syphon is imperative during the presaturation.

TABLES

.

[ertiary	Ίt	em	С/В З	C/B 2	C/B 2	C/B 1	C/B 1	END	
		n	0.017		0.	018	0.	018	
		с	0.	60	0.	. 70	0.	60	
TASL 1	A	Q h	186 22.05	143 27.09	143 24.96	53 14.17	53 14.76	0 8.98	
	В	Q h	183 22.07	143 27.09	133 25.24	53 14.18	55 14.68	0 9.01	
<u></u>		n	0.018		0.	.019	0.	024	
		с	0.	. 50	0.	.70	0.	. 58	
TASL 2 Case l	A	Q h	170 29.25	149 21.14	149 19.29	49 15.98	49 14.57	0 7.60	
	В	Q h	178 29.22	149 21.13	145 19.40	49 15 . 98	52 14.16	0 7.61	
		n	0	.018	0	.018	0	.024	
		с	0	.50	0	.60	0.60		
TASL 2 Case 2	A	Q h	168 28.62	136 22.87	136 18.19	56 15.75	56 14.17	0 7.60	
	В	Q h	168 28.63	136 22.86	134 18.33	56 15.76	57 14.94	0 7.61	
	•	n	0	.019	0	.019	0	.024	
		с	0	.70	0	.60	0	.55	
TASL 2 Case 3	A	Q h	169 28.78	111 24.49		41 17.01	41 13.15	0 7.68	
÷	B	Q h	160 28.94	111 24.50	114 17.26	41 17.01	44 12.95	0 7.61	

Table D-1 SIMULATION ANALYSIS OF FLOW IN TERTIARY CANAL

C/B : cross bund

A: result of observationn : Manning's roughness coefficientB: result of simulationc : discharge coefficient of offtake pipe Q : discharge in canal (lit/s) h : water depth in conduit (inch)

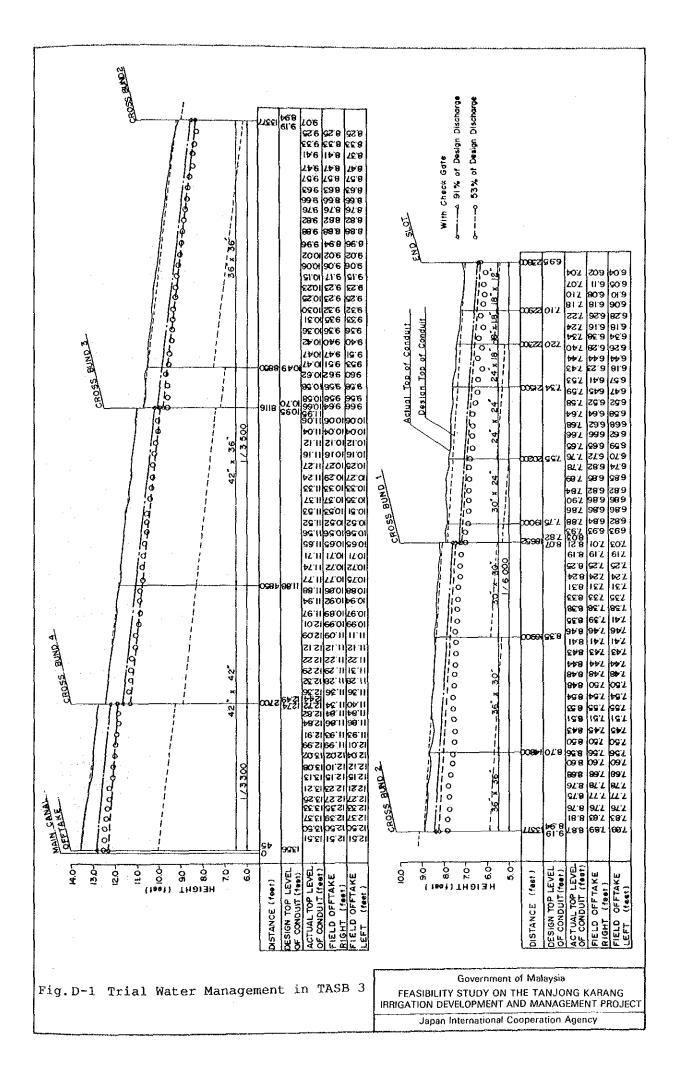
0		TASL	1			TASL2			TASL	8
Cross Bund		of lot Paddy	Q Case 1		of lot Paddy	Q Case 1	Q Case 2		of lot Paddy	
с/вз										
	12	-	_	12	-	-		10	~	
	10			10	-	-	-	10	2	1.08
	10	9	1.37	10	1	0.78*	1.65	8	8	1.15
	10	9	1.35	10	9	1.07	1.19	8	8	1.80
	10	10	1.72	10	10	1.75	1.74			
C/B2										
	12	12	1.24	12	12	1.32		12	12	1.41
	10	10	1.40	10	10	1.45		10	10	1.44
	10	10	1.55	10	10	1.77		10	10	1.41
	10	10	1.65	10	10	1.69		10	10	1.73
	10	10	1.18	10	10	1.26		10	10	1.55
C/Bl										
	10	10	1.48	10	10	1.59		10	10	1.46
	10	10	1.68	10	10	1.66		10	10	1.24
	10	10	1.44	10	10	1.38		10	10	1.53
	10	10	1.50	10	10	1.48		10	10	1.59
END										
Total	144	120	73	144	112	72	71	120	110	72

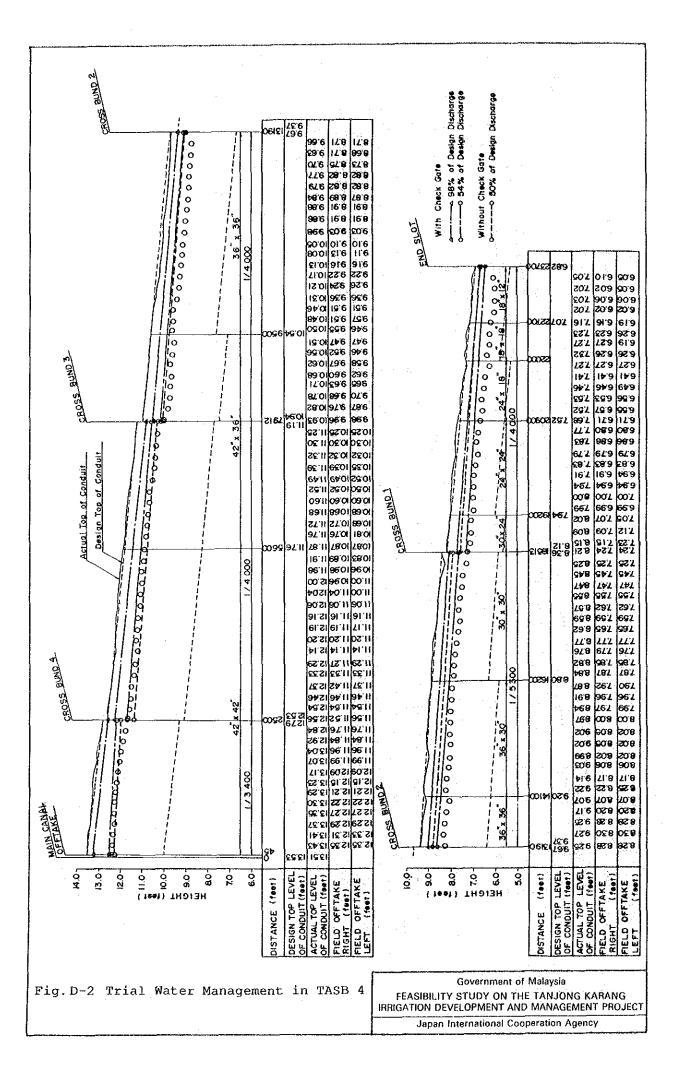
Table D-2 RESULT OF HYDRAULIC SIMULATION ANALYSIS (1/3)

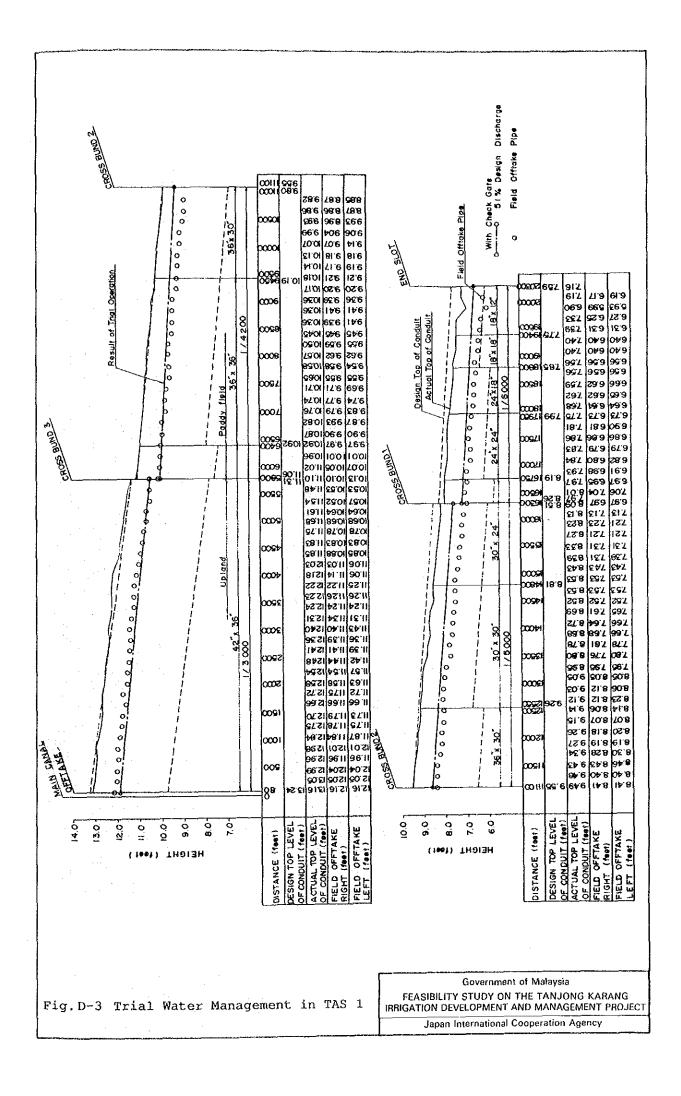
rks: Q = average discharge from offtake pipe (lit/s case 1 = in the case no slots are installed case 2 = in the case one slot is installed case 3 = in the case two slots are installed * = shortage of discharge from offtake pipe

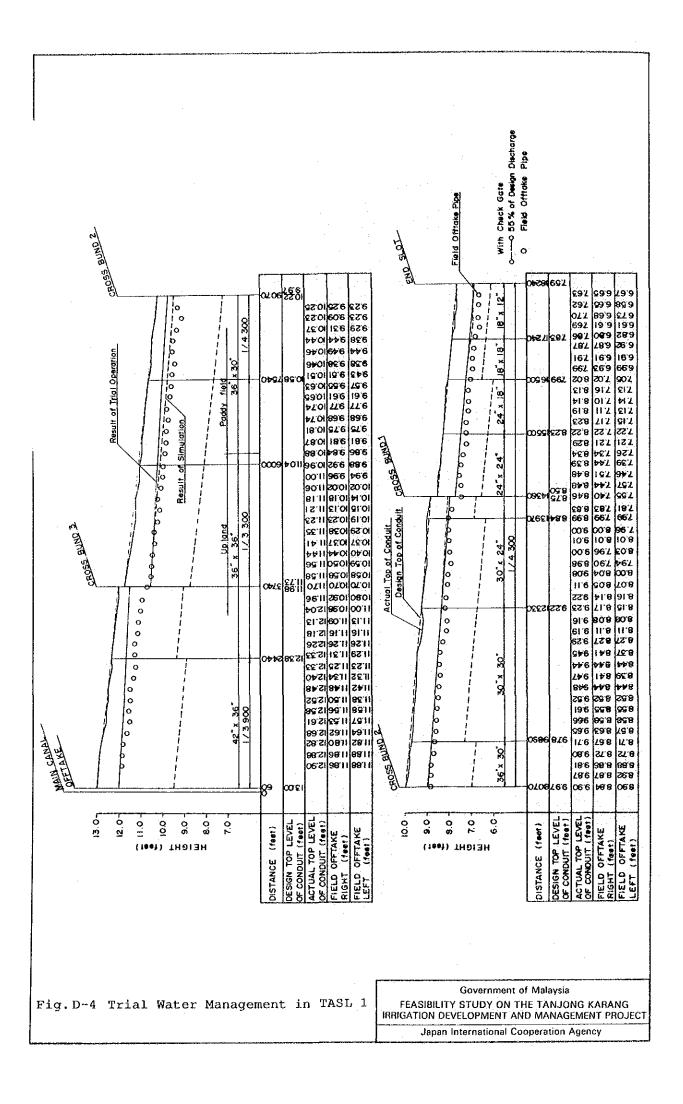
0.40.5.5			TASB	3		TASB4					
Cross Bund		of lot Paddy		Q(lit/s) Case 2			of lot Paddy		Q(lit/s) Case 2	Case 3	
С/В4						×					
07.04	12		_		_	12		<u>-</u>	-	-	
	10	_	-		-	10			_		
	10	7	0.59*	1.24		10	7	0.18*	1.35		
	10	9	1.28	1.23		10	10	1.21	1.54		
	10	10	1.82	1.48		10	10	1.89	1.59		
С/ВЗ											
-	12	12	0.90*	1.00*	1.71	12	12	0.48*	0.82*	1.49	
	10	10	0.91*	1.09	1.49	10	10	0.82*	1.21	1.63	
	10	10	1.11	1.23	1.19	10	10	1.07	1.54	1.40	
	10	10	1.91	1.57	1.17	10	10	1.76	1.09	1.45	
	10	10	2.65	2.40	1.48	10	10	2.60	1.61	1.20	
С/В2											
	12	12	1.07			12	12	1.31			
	10	10	1.80			10	10	1.38			
	10	10	1.40			10	10	1.31			
	10	10	1.28			10	10	1.50			
	10	10	1.37			10	10	1.97			
С/В1											
	12	12	1.42			12	12	1.41			
	10	10	1.41			10	10	1.23			
	10	10	1.37			10	10	1.30			
	10	10	1.63			10	10	1.66			
	10	10	1.55			10	10	1.54			
END											
Total	208	182	258	257	256	208	183	252	256	266	

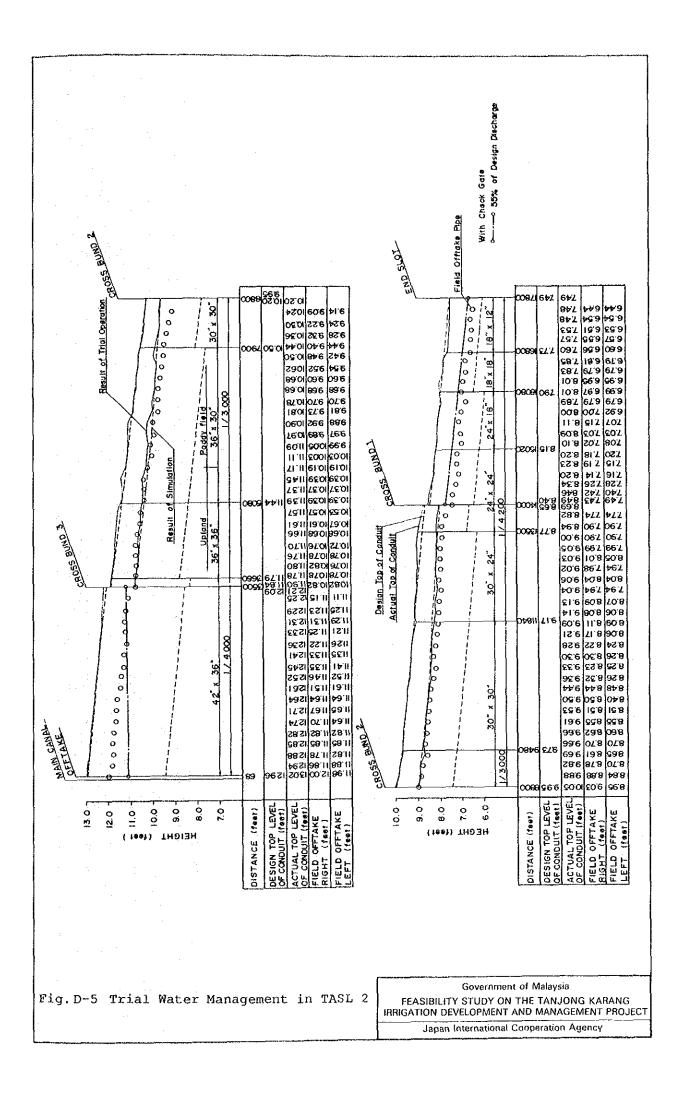
Table D-2 RESULT OF HYDRAULIC SIMULATION ANALYSIS (2/3)

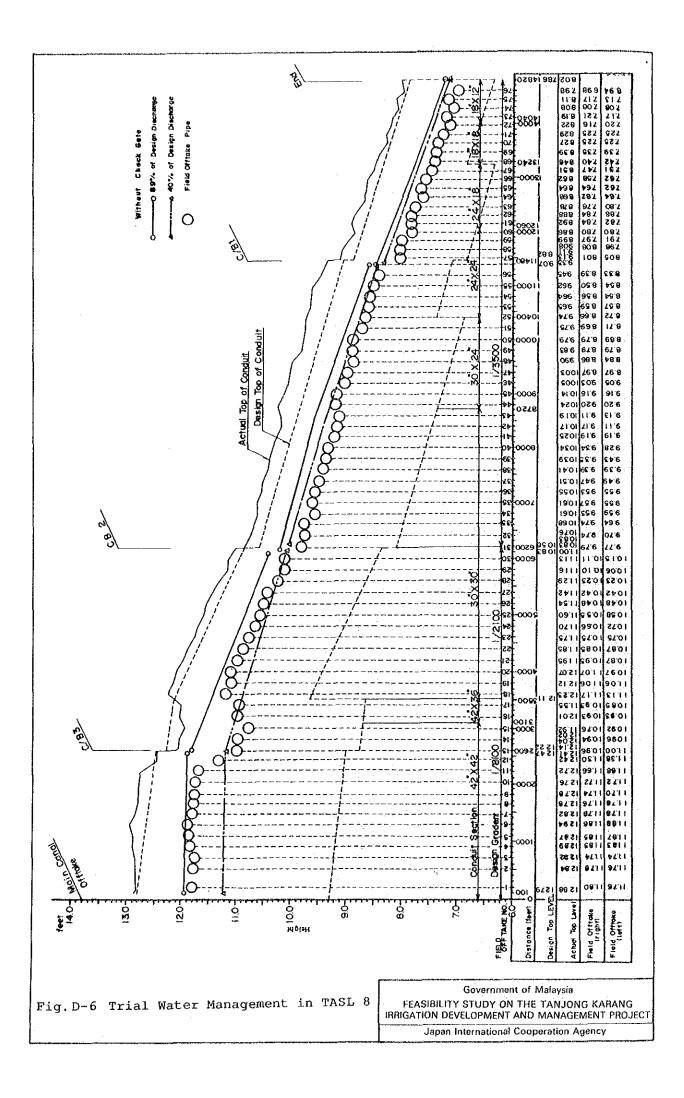

Remarks: Q = average discharge from offtake pipe case 1 = in the case no slots are installed case 2 = in the case one slot is installed case 3 = in the case two slots are installed * = shortage of discharge from offtake pipe

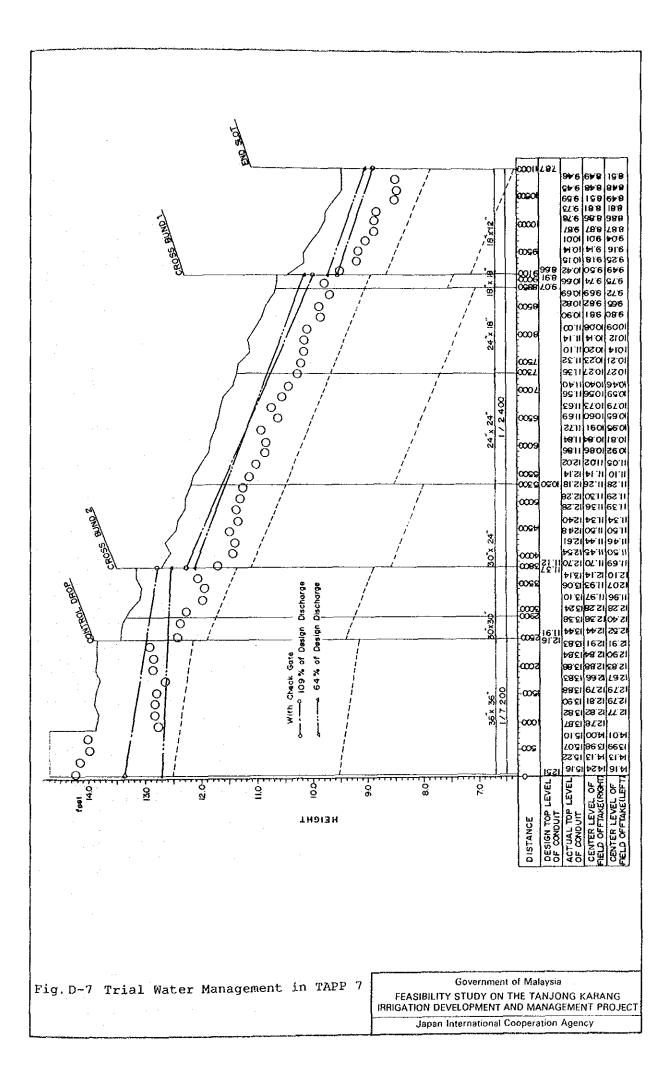

0		TAPB	la		TAPB	
Cross Bund		of lot Paddy	Q Case 1		of lot Paddy	Q Case l
MC						
	10	10	1.05	10	10	1.56
	8	10	1.58	10	10	1.53
С/В1						
	10	10	1.29	10	10	1.30
	10	10	1.32	10	10	1.42
	10	10	1.50	10	10	1.72
	10	10	1.65	10	10	1.65
	8	8	1.89	8	8	1.46
C/B2						
	8	8	1.70	8	8	1.58
	8	8	1.47	8	8	1.41
	8	8	1.53	8	8	1.61
END						
Total	90	90	133	90	90	137
Remarks:	0 =	average	e dischar	ge from	n offta	lke pipe (1
						re install
						is install
						ire install

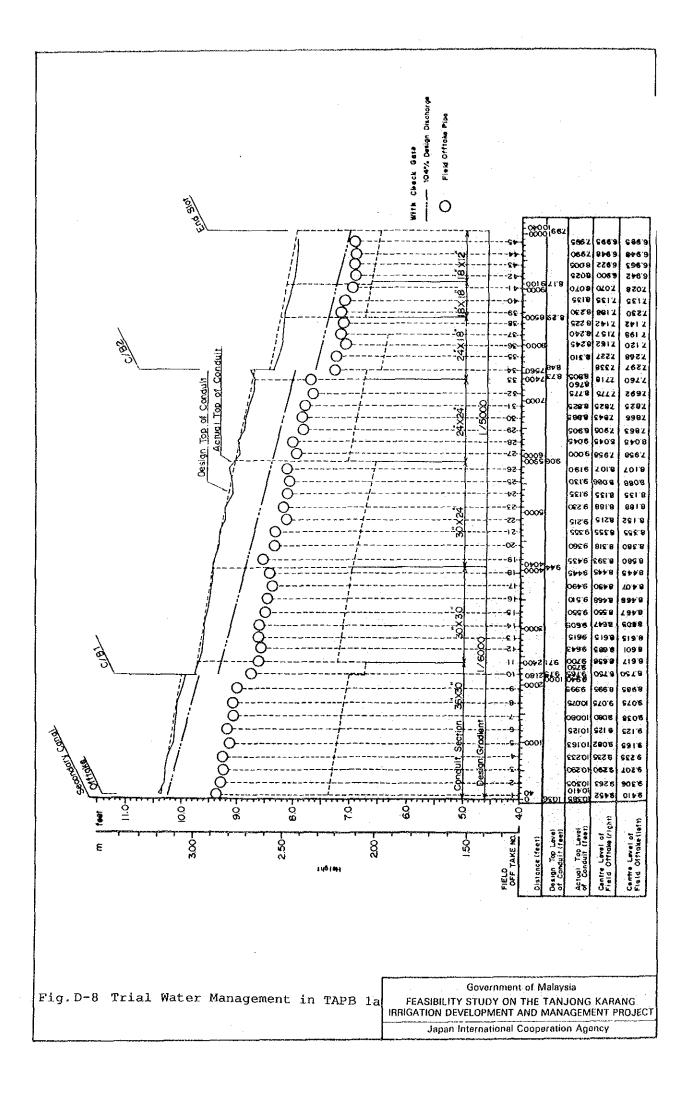

.

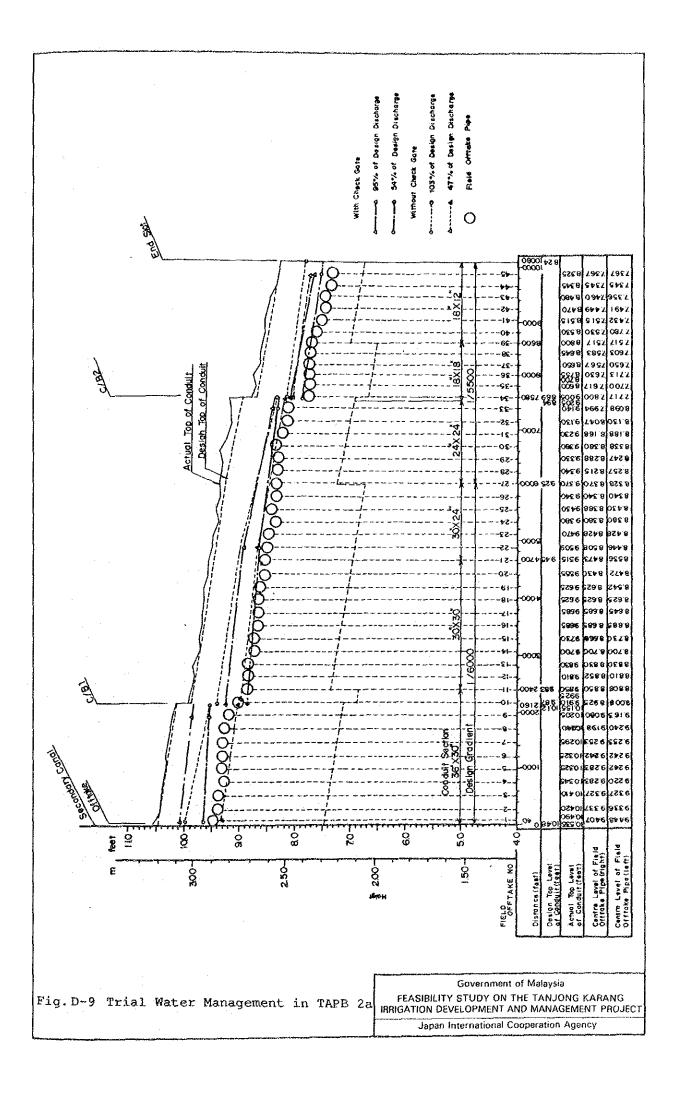

FIGURES

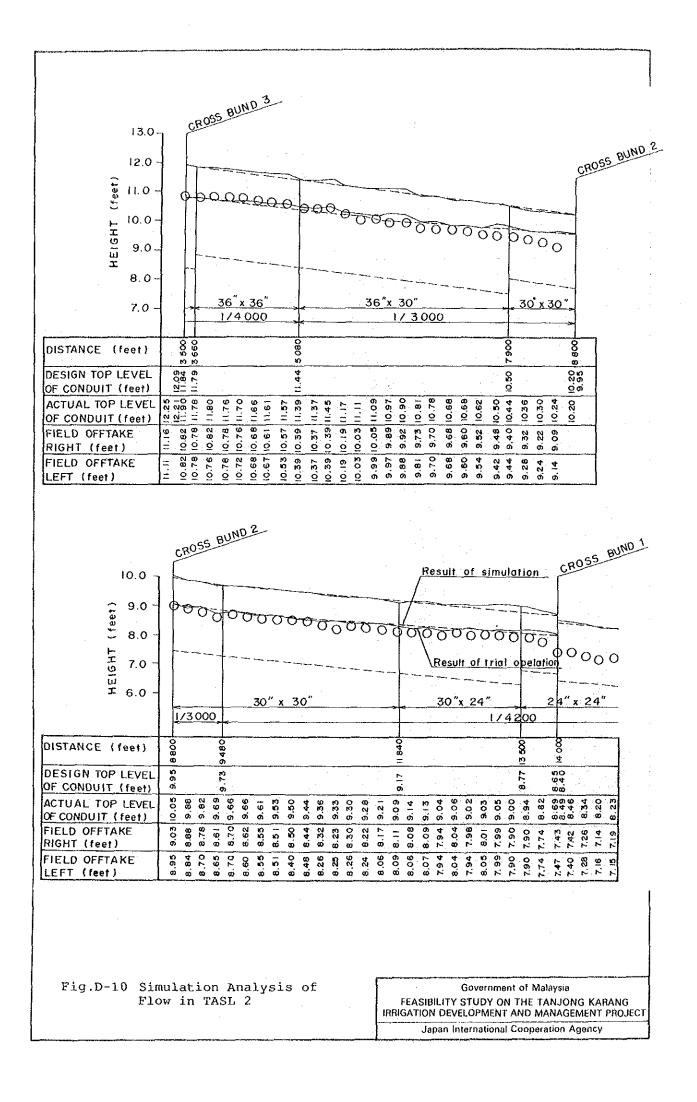

. .

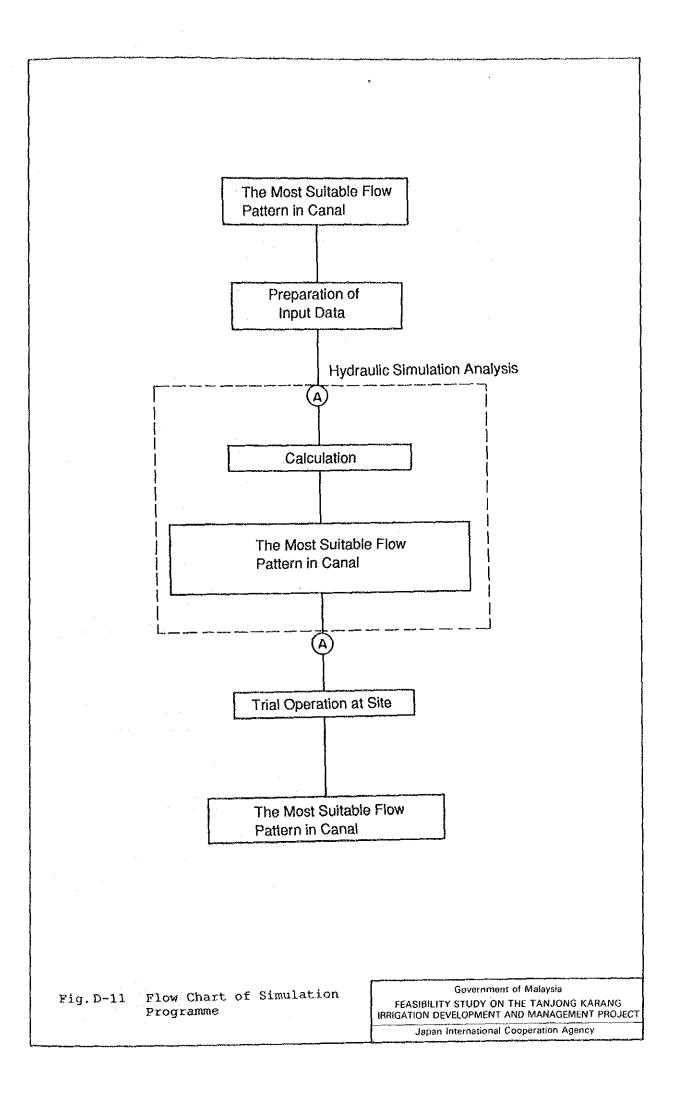


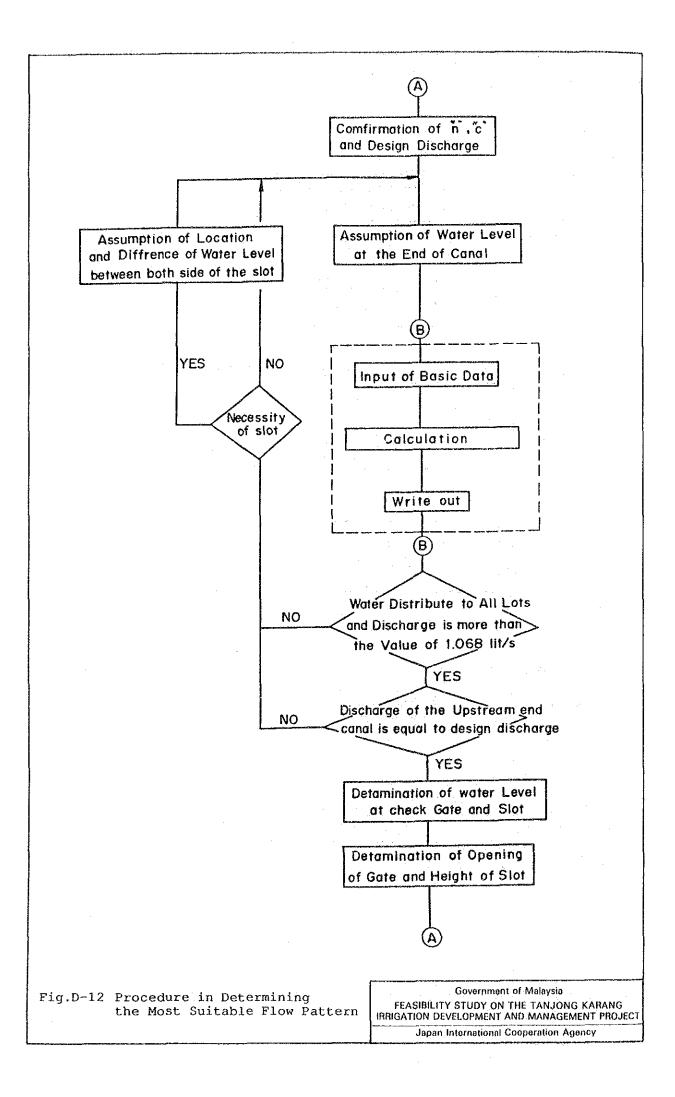


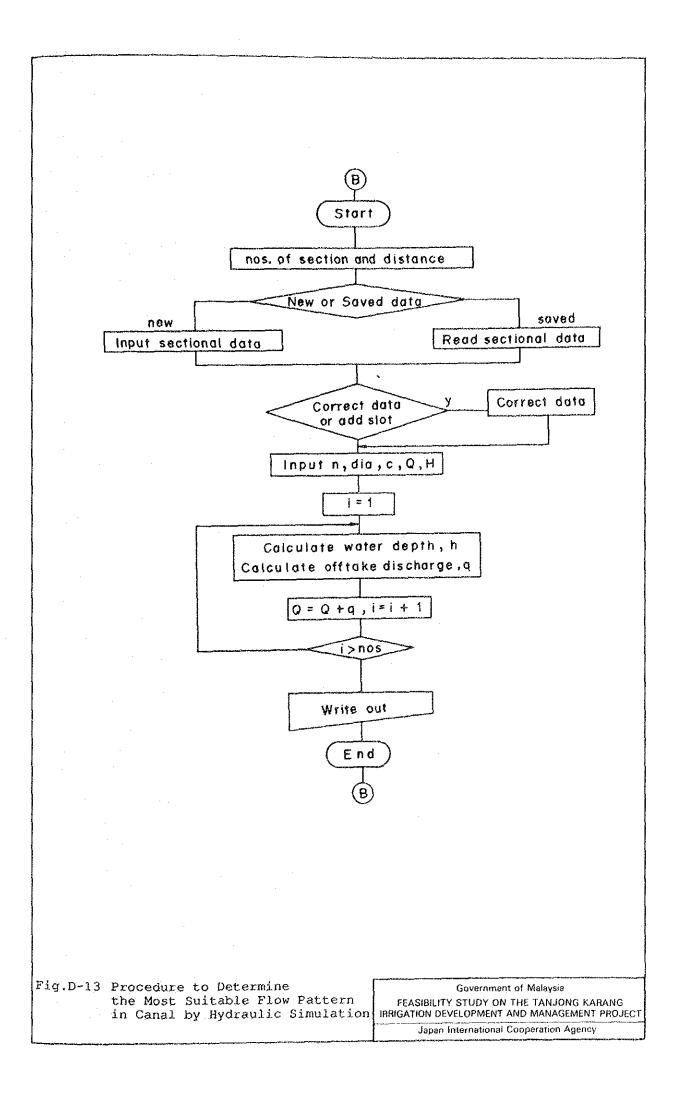


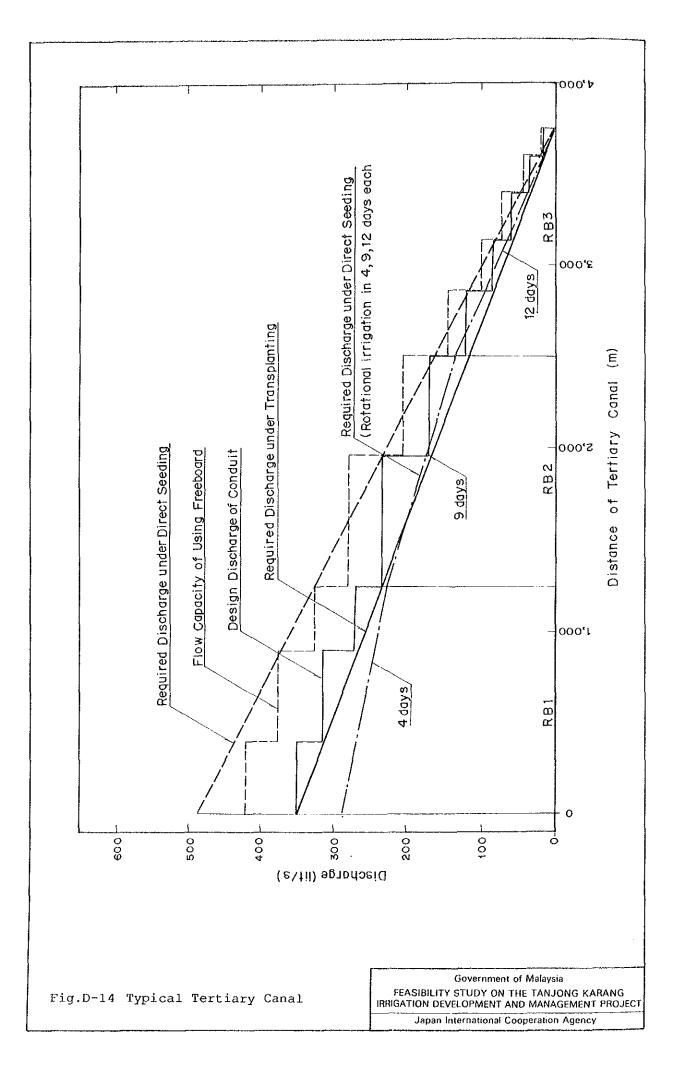












.

APPENDIX

.

. .

.

APPENDIX DA

MANUAL FOR HYDRAULIC SIMULATION OF CONDUIT BY MACINTOSH PLUS COMPUTER

1. Introduction

A computer programme for hydraulic simulation of concrete conduit was developed aiming to examine the flow characteristics and to establish a basic method of equitable distribution of water during normal irrigation period. The programme was prepared based on "Basic" language applicable for "Macintosh Plus Computer" which was provided to DID by JICA. This Appendix presents the programme and an operation procedure of hydraulic simulation for concrete conduit in the Tanjong Karang Irrigation Project using Macintosh computer.

2. Input Data and Output Forms

Input data required for the calculation and output obtained are as follows:

- (1) Input data required
 - a. dimension of conduit
 - inside width
 - inside height (from bottom to top)
 - elevation of top of conduit
 - location of offtake pipes
 - (measured from top of the conduit),
 - b. horizontal distance between offtake pipes
 - c. inside diameter of offtake pipes
 - d. water depth at downstream end of conduit

(2) Output obtained

- a. water level at each offtake pipe
- b. discharge from offtake pipes

c. discharge in a conduit

d. height of required slot

3. **Procedure of Operation**

Operation of Macintosh computer should be made in accordance with the following procedure.

a. Instruction

٣

- Prior to the calculation, an instruction for preparation of data appears on the screen.
- Click "OK" button for proceeding. -

\$ 699	Edit	Seates	តិមព	Windows					
				TrialOperatio	n 🔤 🚃				
			<u>IN</u>	STRUCTION				:	
conduit	and dis	scharge (r	iom an	l to calculate i offtake pipe. pstream.					
		offtake pi i the crest	• •	t,RL) is the dep induit.	oth of pi	pe centi	-8		
				ind, a message ck sectional d					
						· .		•.	
						•			

b. Select output device

🖌 📽 File Edit Search Bun Windows	٢
Clean Control	
<u>Select output device.</u>	
🔿 Screen only.	
Imagewriter printer.	
() Daisy wheel printer.	
🔿 Clip board.	
OK .	
► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►	

c. Input of canal data

Input following data.

- (1) Name of canal
- (2) Nos of section to be calculated
- (3) Distance between each offtake pipe (m)

d. Selection of data to be used

Specify sectional data to be used.

- (1) Start with NEW data, or
- (2) Use SAVED data.

If you select (1), proceed to item "f".

e. Selection of data file name

Select name of data file and proceed to item "g".

f. Input dimension of conduit

Sectional data at each offtake pipe should be prepared from downstream to upstream. Kind and nos of data are;

- (1) Elevation of top of concrete conduit (feet),
- (2) Height of conduit (inch),
- (3) Width of conduit (inch), and
- (4) Location of center of offtake pipe measured from top of the conduit (inch)

(if pipe is closed or there is no offtake pipe, input "0")

Example

🖸 😥 Edit Soarch Run Windows

			TrialOperatio	n 		
NO	(1) Top El,		t size, inch (3) B	Offtake f (4) HR(rig		
1	? 9.62	7 36	7 36	2.0	7 0	
2	? 9.66	? 36	? 36	2,12	? 12	
3	7 9.63	? 36	7 36	7 12	7 12	
4	7 9.7	7 36	7 36	7 12	? 12	
5	? 9.8	7 36	? 36	7 11	? 12	
			· ·			
	lf pipe is	closed, inp	ut O as HR or		. : :	

g. Data correction

- (1) Correct section data (proceed to item "h")
- (2) Place a slot (proceed to item "j")
- (3) Proceed to calculation (proceed to item "k")

h. Correct section data

Specify section number to be corrected and input new data. After correction of sectional data, input "0" as a section No.

Example

🖌 📫 💱o Edit Search Run Windows

			TrialOperation			
ND	(1) Top E1,				rom top, inch ht) (5) HL(left)	
	? 12.5 ? 12.8	? 36 ? 42	? 36 ? 36	? 12 ? 12		
	Îf no mo	re correctio	n, input 0° fo	 r proceeding	k	<u> </u>

i. Input name of data file to be saved

j. Input required condition of slots

Input nos of slot required, and specify section No upstream of the slot and heightening of water level (inch) at slot.

k. Input discharge coefficients

- (1) Manning's coefficient of roughness, "n"
- (2) Inside diameter of offtake pipe (inch)
- (3) Discharge coefficient of offtake pipe

I. Initial condition

- (1) Specify calculation case for your reference
- (2) Discharge at downstream end (lit/sec)
- (3) Water depth at downstream end (inch)

m. Select next action

- (1) Change discharge condition (return to item "I")
- (2) Change coefficients n and c (return to item "k")
- (3) Change data file (return to item "c")
- (4) Bye forever (end of calculation)

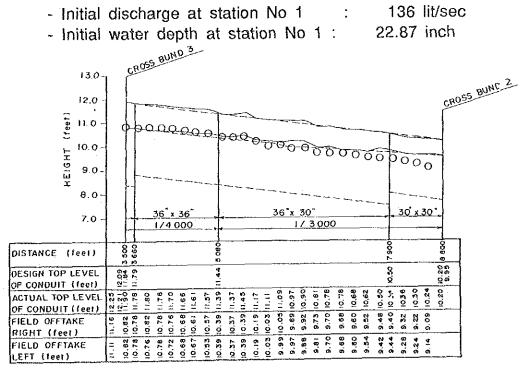
4. Example of Calculation

Sample calculations for hydraulic simulation of a concrete conduit are presented in different cases as follows:

Case 1: sample calculation without slot condition

Case 2: sample calculation with slot condition

Assumptions, procedure and results of the sample calculation are summarized below.

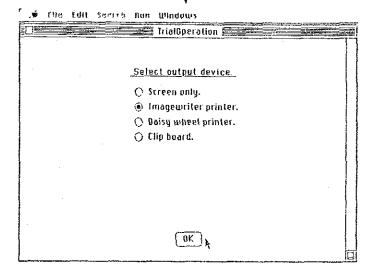

Case 1: without slot condition

(1) Input data

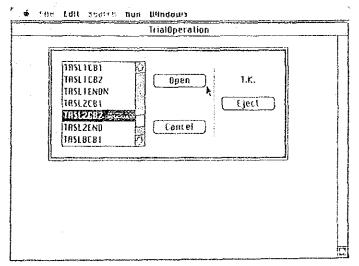
Design conditions and results of survey of a concrete conduit are shown in figure below. List of input data are shown in Table 1.

- Nos of s	ection :	27	
- Total lei	ngth:	5300	ft
- Distance)	62.13	m

Initial conditions of the calculation are as follows:

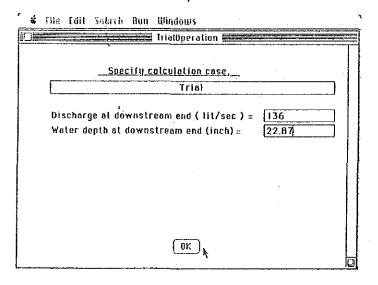


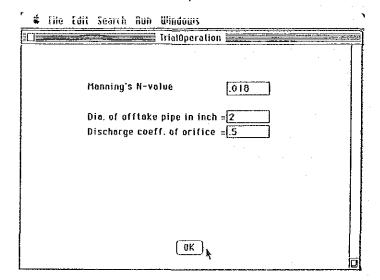
		==	= SECTI	onal data ==	a		
NO	Top EL	Condu	it HxB 1	ocation of	offtake pipe		
	(feet)	(inch)	(inch)	Right(inch)	Left(inch)		
	10.200	30	30	0.00	0.00		
1 2	10.200	30	30	13.75	13.25	· ·	
2 3	10.240	30	30	13.00	12.75		
ی 4	10.360	30	30	12.50	13.00		
5	10.500	36	30	12.25	13.00		
6	10.500	36	30	12,25	13,00		
7	10.520	36	30	13,25	13.00		
8	10.680	36	30 30	13.00	13.00		
0 9	10.000	36	30	13.00	13.00		
7 10	10.780	36	30	13.00	13.00		
		00 36	30 30	0.00	12:00		
11	10.810		30	0.00	0.00		
iZ	10,900	35	30	13.00	0.00		
13	10.970	36	30	0.00	0.00		
14	11.090	35 57	30	0.00	0.00	· · ·	
15	11,110	36			0.00		
16	11,170	36	30 Do	0.00	0.00		
17	11.450	36	30 20	0.00			
18	11.370	36	30 30	0.00	0.00		
19	11.390	36	30	0.00	0.00		
20	11.570	36	36	0.00	0.00		
21	11.610	36	36	0.00	0.00		
22	11.660	36	36	0.00	0.00		
23	11.700	36	36	0.00	0.00		
24	11.760	36	36	0.00	0.00		
25	11.800	36	36	0.00	0.00		
25	11.780	36	35	0.00	0.00		
27	11,900	42	36	0.00	0.00		


Hie Edit Search Run Windows Specify canal name below, TASL2/CB2-3 Nos of section = [27] Distance of each section = [62,13] m OK

Procedure of operation

(2)





⁷ 6	filo	Edit	searth	Run	Windows
		•	lienii i	i	TriolOperation
				Sele	cl your preference.
				ΟC	orrect section data.
				O P	lace a slot.
				@ PI	roceed to calculation !!!
			•		
					OK

¥

ŧ

(3) Result of calculation (Output form)

== Vesion Conditions ==

Discharge (lit./s)	136.00
Distance of each section L (m)	62,130
Manning's roughness coefficient, n	0.018
Dia. of offtake pipe (inch)	2,00
Discharge coefficient of offtake pipe	0.50

I Back Water Calculation of Tertiary Canal I

Location	TASL2/CB2-3
Case	Trial

Water depth at downstream end 22.870 inch

			Water	Base	Water	Offtake	discharge	H abo	ove pipe	Slot
No	Discharge	Velocity	Depth	EL	(FAA)	Right	Left	Right	Left	Height
	(a**3/s)	(m/s)	(inch)	(feet)	(feet)	(1/5)	(1/5)	(inch)	(inch)	(inch)
	0,136	0.307	22.870	7.700	9.606	0.000	0.000	0.000	0.000	
	2 0.136	0.307	22.922	7,740	9.650	1.847	1.776	6.672	6.172	
;	3 0.140	0.317	22.763	7.800	9.697	1.716	1.679	5,763	5.513	
	4 0.143	0,326	22,641	7,860	9.747	1.621	1.698	5.141	5.641	
:	5 0,146	0.275	27.539	7.500	9,795	1.392	1.523	3.789	4.539	
(5 0.149	0,276	27.941	7.500	9.828	1.464	i.587	4.191	4,941	
	7 0.152	0,292	26.909	7.620	9.862	1.458	1.414	4.159	3,909	
4	3 0.155	0,301	26.650	7.680	9.901	1.366	1.366	3,650	3.650	
•	9 0.158	0.314	25.944	7,780	9,942	1.227	1,227	2,944	2.944	
11	0.160	0.313	26.476	7.760	9.986	1.333	1.333	3.476	3.476	
1	0.163	0,316	26.643	7.810	10.030	0.000	1,162	0.000	2.643	
12	2 0.164	0.325	26.096	7,900	10.075	0.000	0.000	0,000	0,000	
1	3 0.164	0.329	25.815	7.970	10.121	1.200	0,000	2,815	0.000	
1	4 0.165	0.342	24.965	8.090	10.170	0.000	0.000	0.000	0.000	
- 1	5 0.165	0,337	25.352	8.110	10.223	0,000	0.000	0.000	0,000	
1	5 0.165	0.339	25.238	8,170	10.273	0.000	0.000	0.000	0.000	
i	7 0.165	0.379	22,535	8,450	10.328	0.000	0.000	0.000	0.000	
1	9 0.165	0.352	24.281	8.370	10.393	0.000	0,000	0.000	0.000	
1	9 0.165	0.346	24.706	8.390	10.449	0.000	0.000	0.000	0,000	
2	0.165	0,308	23.150	8.570	10.499	0.000	0.000	0,000	0.000	
2	1 0.165	0,308	23,127	8.610	10,537	0.000	0.000	0.000	0,000	
2	2 0.165	0,310	22,990	8,660	10.576	0.000	0.000	0.000	0.000	
23	3 0.165	0,310	22.975	8.700	10.615	0,000	0.000	0.000	0,000	
2.	4 0,165	0.313	22.725	8,760	10.654	0.000	0,000	0.000	0.000	
2			22.725	8,800	10.694	0.000	0.000	0.000	0.000	
2	5 0.165	0.304	23.438	8,780	10.733	0.000	0.000	0.000	0.000	
2	7 0.165 0.165	0.251	28,412	8,400	10.768	0.000	0.000	0.000	0.000	

Remark : * means that submerged flow occurred at slot

Case 2: with slot condition

(1) Setting of initial condition

Under the same conduit conditions as Case 1, sample calculation is made in the case of using slots in a conduit. Input conditions are assumed as follws:

- Location of slot: Between Sections No. 9 and 10
- Required back-up height of water level at the slot : 3 inches

(2) Procedure of operation

Nos of Slot ? 1	TrialOperation 🗮	· · · · ·	
NO H	eightening of water le	evel in inch	
1=? 10	2 3		
	A .		

(3) Result of calculation (Output form)

=≠ Design Conditions ==

Discharge ()it./s)	136.00
Distance of each section L (m)	62.130
Manning's roughness coefficient, n	0.018
Dia. of offtake pipe (inch)	2.00
Discharge coefficient of offtake pipe	0.50

f-----t I Back Water Calculation of Tertiary Canal I t-----t

TASL2/CB2-3

Trial

Location Case

Water depth at downstream end 22,870 inch

			Water	Base	Water	Offtake	discharge	H abo	ve pipe	Slot
No Di	ischarge V	elocity	Depth	EL	Level	Rìght	Left	Right	Left	Height
((n##3/5)	(m/s)	(inch)	(feet)	(feet)	(1/5)	(1/5)	(inch)	(inch)	(inch)
	a 101	A 007	22 830	7 700	B (0)	0.000	0,000	0.000	0,000	
1	0.136	0.307	22.870	7.700	9.606	1.810	1.738	6.405	5.906	
2	0.136	0.310	22.656	7,740	9.628		1.640	5.512	5.262	
3	0.140	0.320	22.512	7.800	9.676	1.679		4.905	5.405	
4	0.143	0.329	22.405	7.860	9.727	1.584	1.662	4.908	4.319	
5	0,146	0.276	27.319	7.500	9.777	1.351	1.486	3,007	4.317	
6	0.149	0,278	27,721	7.500	9,810	1.425	1.554	3.971	4.721	
7	0.152	0.294	26.696	7.620	9.845	1.420	1.375	3.946	3.696	
8	0.155	0.302	26.445	7.680	9,884	1.327	1.327	3.445	3.445	
9	0.157	0.316	25.747	7.780	9.926	1.185	1.185	2.747	2.747	
•		0.317	26,020		9,948					
		0.284	29.020		10.198					16.01*
10	0.160	0.282	29.224	7,780	10.215	1.784	1.784	6.224	6.224	
							1 (07	0.000	5.179	
11	0.163	0.289	29.179	7.810		0.000	1.627		0.000	
-12	0.165	0.299	28,526	7,900	10.277	0,000	0,000	0.000	0.000	
13	0.165	0.303	28.139	7.970	10.315	1.621	0.000	5.139 0.000	0.000	
14	0.167	0.317	27.182	8.090	10,355	0.000	0.000		0.000	
15	0.167	0.313	27.455	8,110	10,378	0.000	0.000	0.000	0.000	
16	0.167	0.316	27,243	8,170	10.440	0,000	0,000	0.000	0.000	
17	0.167	0,352	24.426	8,450	10,485	0.000	0.000	0.000	0.000	
18	0.167	0.330	26.043	8.370	10.540	0.000	0.000	0.000	0.000	
19	0.167	0.326	26.377	8.390	10.588	0,000	0.000	0.000	0.000	
20	0.167	0.290	24,737	8,570	10.631	0,000	0.000	0.000	0.000	
20	v									
21	0.167	0.291	24.646	8.610	10.664	0.000	0,000	0.000	0.000	
22	0.167	0.293	24.441	8.669	10,697	0.000	0.000	0.000	0,000	
23	0.167	0.294	24.365	8,700	10.730	0.000	0.000	0.000	0.000	
24	0.167	0.298	24.053	8.760	10.764	0.000	0.000	0.000	0.000	
25	0.157	0,299	23,993	8.800	10.799	0.000	0.000	0.000	0.000	
20	¥44MI									
26	0.167	0.271	24,653	8.780	10.834	0.000	0.000	0.000	0.000	
27	0,167	0.242	29.589	8,400	10.866	0.000	0.000	0.000	0.000	
ب ا	0.167	, -								
	¥11.91									

Remark : * means that submerged flow occurred at slot

5. List of Programme

```
trial operation of concrete conduit(1/'87) Tanjong Karang
DIM e1(50),w(50),HR(50),HL(50),hh(50),vv(50),qq(50),F$(50),BL(50)
DIM w1(50),QO(50,2),ch(50),bb(50),dr(50),d1(50),DV$(3),msg$(4)
DIM SILL(50),pp(50,2),TL(50),h1ow(50),hup(50),v1ow(50),vup(50)
DIM wlup(50), wlow(50), Ntype(50), dw(50)
 msg$(1)=" ** Iteration Limit Exceeded at"
msg$(2)=" ** Abnormal H ; Overflow at"
 msg$(3)=" ** lteration Limit Exceeded at slot"
msg$(4)=" ** Woten limit Exceeded at slot"
 msq$(4)=" ** Water level lower than canal base at"
 FOR im%=0 TO 3:READ DV$(im%):NEXT
 DATA"SCRN:","LPT1:DIRECT","COM1:9600","CLIP:"
 GOSUB GeneralNote
  TEXTFACE 5:MOVETO 165,50:PRINT" Select output device. ":TEXTFACE 1
  BUTTON 1,1," Screen only.",(170,65)-(275,80),3
  BUTTON 2,2," Imagewriter printer.",(170,85)-(330,100),3
  BUTTON 3,1," Daisy wheel printer.",(170,105)-(325,120),3
  BUTTON 4,1," Clip board ",(170,125)-(265,140),3
  BUTTON 5,1,"OK",(235,260)-(275,280),1:b%=2:BEEP
10 Press%=DIALOG(0):D%=DIALOG(1):ButtonChange b%,1,4
  IF Press%=6 OR (Press%=1 AND D%=5) THEN DV%=b%-1:Hapus 5,0 ELSE 10
  OPEN DV$(DV%) FOR OUTPUT AS#1:WIDTH#1,110
  IF DV%=1 THEN PRINT #1, CHR$(27);"e";:LF$=CHR$(12) ELSE IF DV%=2 THEN LF$=CHR$(10)
100 MOVETO 120,40 TEXTFACE 5:PRINT" Specify canal name below, ":TEXTFACE 1
 EDIT FIELD 1,NM$,(50,50)-(420,65),,2
 MOVETO 120,100:PRINT"Nos of section"SPC(9)"="
 EDIT FIELD 2,STR$(nn),(310,88)-(370,102)
 MOVETO 120,120:PRINT"Distance of each section"SPC(1)"="SPC(9)"m"
 EDIT FIELD 3,STR$(LL),(310,108)-(370,122)
 E%=1:EDIT FIELD 1
 BUTTON 1,1,"0K" (235,260)-(275,280),1:BEEP
 WaitValueInput E%, 3, 1
 NM$=EDIT$(1):nn=VAL(EDIT$(2)):LL=VAL(EDIT$(3)):Hapus 1,3
110 MOVETO 130,50:TEXTFACE 5:PRINT" Specify your data entry mode. ":TEXTFACE 1
  BUTTON 1,2," Start with NEW data ",(170,80)-(330,95),3
  BUTTON 2,1," Use SAVED data.",(170,105)-(300,120),3
  BUTTON 3,1,"OK",(235,260)-(275,280),1:b%=1:BEEP
120 Press%=DIALOG(0):D%=DIALOG(1):ButtonChange b%,1,2
  IF Press%=6 OR (Press%=1 AND D%=3) THEN Hapus 3,0 ELSE 120
  IF b%=1 THEN IE%=0:GOTO 200
  DFN$=FILES$(1,"TEXT"):IF DFN$="" THEN 110
 Sectionaldata
 OPEN DFN$ FOR INPUT AS#2
 FOR i=1 TO nn: INPUT #2,a1,a2,a3,a4,a5:TL(i)=a1:ch(i)=a2:bb(i)=a3:dr(i)=a4:dl(i)=a5: NEXT i
 CLOSE #2:GOSUB Cvtmet
 GOTO 240
200 1=1:TEXTFACE 0
 GOSUB Idtsheet
```

210 j=j+1

```
LOCATE J, 5: PRINT 1
 LOCATE J, 10:INPUT ;TE(1)
 LOCATE j,20:INPUT ;ch(i)
 LOCATE j,30:INPUT ;bb(i)
 LOCATE j,40:INPUT ;dr(i)
 LOCATE j,50:INPUT ;dl(i)
 i=i+1: IF INT(i/10)=i/10 THEN GOSUB Idtsheet
 IF ik =nn THEN 210
 CLS:GOSUB Cytmet
230 MOVETO 70,50:TEXTFACE 5:PRINT" Specify the output file name to save your data. ":TEXTFAC
E 1
  MOVETO 50,110:PRINT"File name is": IF DFN$="" THEN DFN$="NUF-Data"
  EDIT FIELD 1, DFN$, (145, 98)-(450, 112)
  BUTTON 1,1,"OK",(235,260)-(275,280),1:BEEP
  CALL WaitAction:DFN$=EDIT$(1):Hapus 1,1
240 FOR i=1 TO nn:Ntype(i)=0:NEXT:Ntype(nn+1)=0
  MOVETO 155,40:TEXTFACE 5:PRINT" Select your preference. ":TEXTFACE I
  BUTTON 1,1," Correct section data.",(170,58)-(400,72),3
  BUTTON 2,1," Place a slot.",(170,78)-(400,92),3
BUTTON 3,2," Proceed to calculation !!!",(170,108)-(400,122),3
BUTTON 4,1,"OK",(235,260)-(275,280),1:1V%=3:BEEP
245 Press%=DIALOG(0):D%=DIALOG(1):ButtonChange IV%.1.3
  IF Press%=1 AND D%=4 THEN Hapus 4,0 ELSE 245
  IF 1V%=3 THEN 259
  ON IV% GOTO 250,255
250 GOSUB CheckData
  MOVETO 70,50:TEXTFACE 5:PRINT" Specify the output file name to save your data. ":TEXTFACE
1
  MOVETO 50,110:PRINT"File name is":IF DFN$="" THEN DFN$="NUF-Data"
  EDIT FIELD 1, DFN$, (145, 98)-(450, 112)
  BUTTON 1,1,"OK",(235,260)~(275,280),1:BEEP
  CALL WaitAction:DFN$=EDIT$(1):Hapus 1,1
Datasaving
  OPEN DFN$ FOR OUTPUT AS#2
 FOR i=1 T0 nn: a1=TL(i):a2=ch(i):a3=bb(i):a4=dr(i):a5=dl(i):WRITE#2,a1,a2,a3,a4,a5: NEXT i
 CLOSE #2
 GOTO 259
255 GOSUB SlotNos
259 TEXTFACE 0:GOSUB Insat
  PRINT#1.LFS:TEXTFACE 1
260 CLS: MOVETO 100,60 :PRINT"Manning's N-value"SPC(10)"="
 EDIT FIELD 1,STR$(N),(310,50)-(370,65)
 MOVETO 100,100:PRINT"Dia. of offtake pipe in inch"SPC(1)"="
 EDIT FIELD 2, STR$(DIA), (310,88)-(370,102)
 MOVETO 100,120:PRINT*Discharge coeff. of orifice*SPC(1)*=*SPC(9)
 EDIT FIELD 3,STR$(c),(310,108)-(370,122)
  E%=1:EDIT FIELD 1
  BUTTON 1,1,"OK",(235,260)-(275,280),1:BEEP
  Wait ValueInput E%,3,1
  N=VAL(EDIT$(1)):DIA=VAL(EDIT$(2)):c=VAL(EDIT$(3)):Hapus 1,3
270 MOVETO 120,40:TEXTFACE 5:PRINT" Specify calculation case, ":TEXTFACE 1
 EDIT FIELD 1,CASE$,(50,50)-(470,65),,2
 MOVETO 50,100:PRINT"Discharge at downstream end ( lit/sec )"SPC(1)"="
 EDIT FIELD 2,STR$(QI),(370,88)-(470,102)
 MOVETO 50,120:PRINT"Water depth at downstream end (inch)"SPC(1)"="SPC(9)
  EDIT FIELD 3,STR$(HSTAT),(370,108)-(470,122)
  E%=1:EDIT FIELD 1
  BUTTON 1,1,"OK",(235,260)-(275,280),1:BEEP
  WaitValueInput E%,3,1
  CASE$=EDIT$(1):QI=VAL(EDIT$(2)):HSTAT=VAL(EDIT$(3)):Hapus 1,3
  TEXTFACE 0
```

```
Initial condition
 TEXTFACE 1:MOVETO 190,100:PRINT*Calculating III*:TEXTFACE 0
 dd=DIA*.0254:AREA=dd*dd*c*3.141593/4
 hh(1)=HSTAT*.0254
 i=1:pp(1,1)=0:pp(1,2)=0
 IF QI=0 THEN 300
 w](1)=e](1)+hh(1);V=QI/hh(1)/w(1)/1000
 R=hh(1)*w(1)/(w(1)+2*hh(1)):E1=hh(1)+V*V/19.6
  IF Ntype(2)=90 THEN L=LL/2
 qq(1)=QI/1000;qq(2)=QI/1000;F1=.5*V*V*N*N*L/R^1.33333;vv(1)=V
 GOTO 350
300 qq(1)=0:qq(2)=0:vv(1)=0:F1=0
 w1(1)=hh(1)+e1(1):E1=hh(1)
350 IF hh(1)>ch(1)*.0254 THEN PRINT*1,msg$(2),i
 QO(1,1)=0:QO(1,2)=0
360 i=i+1:L=LL
 IF Ntype(i)=90 THEN 400
 GOTO 500
400 L=L1/2:b=w(i):Q=aa(i)
 DH=(el(i)-el(i-1))/2
 IF Q=0 THEN 420
 GOSUB Bisection
 h=y:hlow(i)=h:vlow(i)=Q/b/h:wlow(i)=el(i-1)+h+DH
 GOTO 440
420 wlow(i)=wl(i-1):h=hh(i-1)-DH:hlow(i)=h:vlow(i)=0
 wlup(i)=wlow(i):vup(i)=0:hup(i)=hlow(i)
 SILL(i)=0:w1(i)=w1(i-1):vv(i)=0:hh(i)=w1(i)-e1(i)
 GOTO 480
440 GOSUB slot
 GOSUB Bisection
 h=y
 IF h<=0 THEN PRINT#1,msg$(4),i:GOTO 810
 hh(i)=h:vv(i)=Q/b/h:wl(i)=el(i)+h
480 GOSUB Orifice
 60T0 600
500 b=w(i):Q=qq(i):DH=el(i)-el(i-1)
 IF Q=0 THEN 550
 GOSUB Bisection
 h=y
 IF h<=0 THEN PRINT#1,msg$(4),i:GOTO 810
 hh(i)=h:vv(i)=Q/b/h:wl(i)=el(i)+h
 GOTO 570
550 w1(i)=w1(i-1):vv(i)=0:hh(i)=w1(i)-e1(i):h=hh(i)
 IF h∢≖0 THEN PRINT#1,msg$(4),i:60T0 810
570 GOSUB Orifice
600 IF hh(i)>ch(i)*.0254 THEN PRINT #1,msg$(2),i
 IF i>=nn THEN 610
 GOTO 360
610 qsum=qq(i+1)
 GOSUB Cvtft
 PRINT#1,
 PRINT#1,TAB(5)"== Design Conditions ==":PRINT#1,
 PRINT#1,USING" Discharge (lit./s) ######";QI
 PRINT#1,USING" Distance of each section L (m) ######";LL
PRINT#1,USING" Manning's roughness coefficient, n ######";N
 PRINT#1,USING" Dia of offtake pipe (inch) ###.##";DIA
 PRINT#1,USING" Discharge coefficient of offtake pipe#####;c
  PRINT#1, PRINT#1,
  PRINT # 1, TAB(30)"+-----+
  PRINT#1,TAB(30)"I Back Water Calculation of Tertiary Canal I"
  PRINT#1,TAB(30)"+-----+"
  PRINT#1,:PRINT#1,
                                   ";NM$
  PRINT#1,TAB(5)"Location
PRINT#1,TAB(5)"Case
                                   ";CASE$:PRINT#1,
```

PRINT#1,TAB(5)USING"Water depth at downstream end###.### inch";hh(1) PRINT#1, PRINT#1." Water Base Water Offtake discharge H above pipe Slot" PRINT#1," No Discharge Velocity Depth EL Level Right Left Right Left Height" PRINT#1," (m**3/s) (m/s) (inch) (feet) (feet) (1/s) (1/s) (inch) (inch)" i=0:PRINT#1, 630 1=1+1 IF Ntype(i) >90 THEN 650 PRINT#1,SPC(13)USING" ## ### ##### ##.###";vlow(i),hlow(i),wlow(i) PRINT#1,SPC(13)USING" ##.### ##.### ###,##":vup(** *** i),hup(i),wlup(i),SILL(i); PRINT#1,F\$(i) ### ## ###";i,qq(i),vv(i),hh(i),BL(i),w1(i),QO(i,1),QO(i,2),pp(i,1),pp(i,2) IF i>=nn THEN 800 IF INT(1/5)=1/5 THEN PRINT # 1, GOTO 630 800 PRINT#1,USING" ## ###";qsum PRINT#1,:PRINT#1," Remark : * means that submerged flow occurred at slot" PRINT#1,LF\$ 810 CLS:PRINT MOVETO 155,40:TEXTFACE 5:PRINT" Select your preference. ":TEXTFACE 1 BUTTON 1,1," Change discharge condition.",(170,58)-(400,72),3 BUTTON 2, 1," Change coefficients n and c.",(170,78)-(400,92),3 BUTTON 3,1," Change data file.".(170,108)-(400,122).3 BUTTON 4,2," Bye forever III",(170,128)-(400,142),3 BUTTON 5,1,"OK",(235,260)-(275,280),1:1V%=4:BEEP 820 Press%=DIALOG(0):D%=DIALOG(1):ButtonChange IV%,1,4 IF Press%=1 AND D%=5 THEN Hapus 5,0 ELSE 820 IF 1V%=4 THEN MOVETO 240,100:PRINT"END":LINE(230,85)-STEP(45,20), b:SYSTEM ON IV% GOTO 270,260,100 1000 CLOSE#1 END CheckData: TEXTFACE 0:GOSUB Idtsheet LOCATE 18,10:PRINT" If no more correction, input 0 for proceeding" nos=12028 j=j+1 LOCATE j,3:INPUT"I=";k IF k=0 THEN 2100 LOCATE j,10 INPUT;q1 LOCATE j,20:INPUT;q2 LOCATE j,30:INPUT;q3 LOCATE 1,40:INPUT;q4 LOCATE [,50:INPUT;05 TL(k)=q1:ch(k)=q2:bb(k)=q3 dr(k)=q4:d1(k)=q5:w(k)=q3*.0254 ei(k)=q1*.3048-q2*.0254:HR(k)=(q2-q4)*.0254:HL(k)=(q2-q5)*.0254 nos=nos+1 IF INT(nos/10)=nos/10 THEN GOSUB Idtsheet GOTO 2028 2100 TEXTFACE 1:CLS RETURN Idtsheet: CLS: |=4:PRINT TEXTFACE 1:MOVETO 160,20:PRINT"Conduit size, inch Offtake from top, inch":TEXTFACE 0 PRINT" NO (1) TOP E1, ft (2) H (3) B (4) HR(right) (5) HL(left)" LOCATE 18,10:PRINT"If pipe is closed, input ";:TEXTFACE 1:PRINT"0"; TEXTFACE OPRINT" as HR or HL." BEEP:CLS RETURN Cvtmet: 1-1 4010 w(i)=bb(i)*.0254:e1(i)=TL(i)*.3048-ch(i)*.0254

HR(i)=(ch(i)-dr(i))*.0254:HL(i)=(ch(i)-dl(i))*.0254

```
IF HR(1)<0 THEN HR(1)=0
 IF HL(I) O THEN HL(I)=0
 í=i+1
 IF i>nn THEN 4020
 GOTO 4010
4020 RETURN
Bisection:
 ICOUNT=0
 X=.02:Z=1.6
 V=Q/b/X:R=b*X/(b+2*X)
 FA=DH-E1-F1-.5*N*N*V*V*L/R^1.33333+X+V*V/19.6
5150 ICOUNT=ICOUNT+1
 y=(X+Z)/2:V=Q/b/y:R=b*y/(b+2*y)
 FC=DH-E1-F1-,5*N*N*V*V*L/R*1.33333+y+V*V/19.6
 IF ABS(FC)<.0001 THEN GOTO 5200
 IF FA*FC<0 THEN Z=y
 IF FA*FC>0 THEN X=y:FA=FC
 IF ICOUNT<100 THEN 5150
 PRINT#1,msg$(1);i
5200 RETURN
slot:
 F$(i)=" ":h1=(Q/1.7/b).6667:hd=h+dw(i)-h1
 h2=h1-dw(1)
 IF (h2/h1)<=.6667 THEN 6200
 X=.005:Z=hd: H0=h+dw(1):h1=H0-X
 Q0=1.7*b*h1~1.5:h2=h~X:FA=Q~Q0*(1-(h2/h1)^1.5)^.385
 ICOUNT=0
6010 ICOUNT=ICOUNT+1
 v=(X+Z)/2:h1=H0-v: h2=h-v
 Q0=1.7*b*h1^1.5:FC=Q-Q0*(1-(h2/h1)^1.5)~.385
 IF ABS(FC)<0001 THEN 6100
 IF FA*FC<0 THEN Z=y
 IF FA*FC>0 THEN X=y:FA=FC
 IF ICOUNT<100 THEN 6010
 PRINT # 1,msq$(3);1
6100 hd=y:F$(i)="*"
6200 hup(i)=h+dw(i):wlup(i)=wlow(i)+dw(i):vup(i)=Q/b/hup(i)
 SILL(i)=hd:VNEW=vup(i)
 R=b*hup(i)/(b+2*hup(i))
 E1=hup(i)+VNEW*VNEW/19.6
 F1=.5*N*N*VNEW*VNEW*L/R*1.33333
6300 RETURN
Orifice:
 h1=h-HR(i):h2=h-HL(i)
 IF h!<=0 THEN h1=0
 IF h2<=0 THEN h2=0
 QF1=AREA*SQR(19.6*h1):QF2=AREA*SQR(19.6*h2):QO(i,1)=QF1:QO(i,2)=QF2
 pp(i,1)=h1:pp(i,2)=h2
 QNEW=qq(i)+QF1+QF2:VNEW=QNEW/b/h
 E1=h+VNEW*VNEW/19.6:R=b*h/(b+2*h)
 IF Ntype(i+1)=90 THEN L=LL/2
 F1=.5*N*N*VNEW*VNEW*L/R^1.33333
 qq(i+1)=QNEW
RETURN
Cvtft:
 i=0
8010 i=i+l
 hh(i)=hh(i)/.0254;BL(i)=e1(i)/.3048;w1(i)=w1(i)/.3048
 QO(i,1)=QO(i,1)*1000:QO(i,2)=QO(i,2)*1000
 pp(i,1)=pp(i,1)/.0254:pp(i,2)=pp(i,2)/.0254
 IF Ntype(i)≠90 THEN 8020
 GOTO 8030
8020 hlow(i)=hlow(i)/.0254;hup(i)=hup(i)/.0254;SILL(i)=SILL(i)/.0254
 w \log(i) = w \log(i)/.3048: w \log(i) = w \log(i)/.3048
8030 IF iknn THEN 8010
 CLS
RETURN
SlotNos:
```

```
INPUT" Nos of Slot "inslot
  1=4
  TEXTFACE 1:MOVETO 90,40:PRINT"NO
                                          Heightening of water level in inch":TEXTFACE O
  BEEP:1=1
9010 j=j+1
  LOCATE J, 10: INPUT" I=",k
  LOCATE J,30:INPUT height
  Ntype(k)=90:dw(k)=height*.0254
  i=i+1
  IF it=nslot THEN 9010
  CLS.TEXTFACE 1
RETURN
SUB WaitValueInput(E%,Emax%,OK%) STATIC
LOOD:
  Press%=DIALOG(0):CheckEditField Press%,E%,Emax%
  IF Press%=1 AND DIALOG(1)=OK% THEN EXIT SUB ELSE Loop
END SUB
SUB CheckEditField(P%,E%,Emax%) STATIC
  IF P%=2 THEN E%=DIALOG(2) EXIT SUB
  IF P% 06 THEN EXIT SUB
  E%=E%+1:1F E%>Emax% THEN E%=1
  EDIT FIELD E%
END SUB
SUB ButtonChange(b%,Bmin%,Bmax%) STATIC
  SHARED Press%,D%
  IF Press% I THEN EXIT SUB
  IF Bmin%=<D% AND D%<=Bmax% THEN BUTTON b%, 1:b%=D%:BUTTON b%,2
END SUB
SUB Hapus(b%,E%) STATIC
  FOR 1%=1 TO b%:BUTTON CLOSE 1%:NEXT
  FOR 1%=1 TO E%:EDIT FIELD CLOSE 1%:NEXT
 CLS
END SUB
SUB WaitAction STATIC
  Press%=DIALOG(0)
 WHILE Press% I AND Press% 06
   Press%=DIALOG(0)
 WEND
END SUB
GeneralNote:
 MOVETO 190,20:TEXTFACE 5:PRINT"INSTRUCTION":TEXTFACE 0:PRINT
 PRINT TAB(3)"1. This programme is prepared to calculate the water level in a concrete ";
 PRINT TAB(3)" conduit and discharge from an offtake pipe. Sectional data should be ";
 PRINT TAB(3)"made from ";:TEXTFACE 1:PRINT"downstream to upstream.":PRINT:TEXTFACE 0
  PRINT TAB(3)"2. Location of offtake pipe (HR,HL) is the depth of pipe centre";
  PRINT TAB(3)"measured from the crest of conduit." :PRINT
 PRINT TAB(3)"3. If water depth could not found, a message 'Iteration Limit Exceeded";
  PRINT TAB(3)" is write out. In this case, check sectional data and discharge condition."
 BUTTON 1,1,"OK",(235,260)-(275,280),1:BEEP:CALL WaitAction:Hapus 1,0
RETURN
losat:
                         === SECTIONAL DATA ==="PRINT#1,
  PRINT#1,"
  i=0
                         Conduit HxB Location of offtake pipe"
  PRINT#1," No Top EL
              (feet) (inch) (inch) Right(inch) Left(inch)"
  PRINT#1,"
  PRINT#1,
9900 i=i+1
                                                           ###.##";i,TL(i),ch(i),bb(i),dr(i),d
  #####
                                          *****
                                                   ***
1(1)
  IF IKIN THEN 9900
RETURN
```