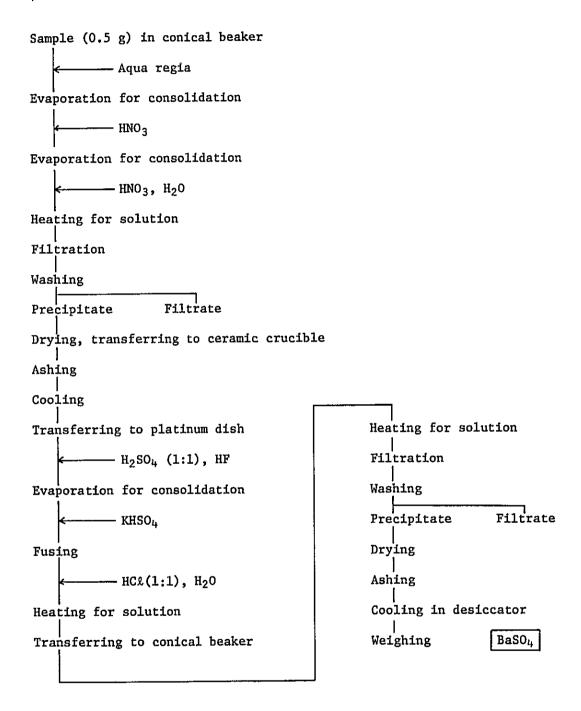

A. I-12 Flow sheets of chemical analysis.

(Cu, Pb, Zn) Sample (0.5 - 1.0 g) in platinum dish HNO3, HF, HCLO4 Heating for decomposition, volatilization of SiO_2 Consolidation —— HNO3, HCLO4 Evaporation for consolidation -- HCl (1:1) Heating for dissolution Filtration Filtrate Residue ---- Н2О Make up to volume


Atomic absorption

Atomic absorption

```
Sample (0.2 - 0.5 g) in platinum dish
           - HNO3, HF, HCLO4
Heating for decomposition
Consolidation
           - HCL (1:1)
Heating for dissolution
Cooling
Filtration
Make up to volume
           - HCl (1:1), H<sub>2</sub>O
           - Inhibitor (Sr solution for Mg ions; La solution for Sr ions)
```


(BaSO4)

A. I-13 Geochemical contents of 4 elements on rocks of the detailed survey area.

Geological Index

Sedimentary rocks	
Pucara Group	Dolostone
Igneous rocks	
Tertiary	Quartz porphyry & Granite porphyry MP
Location Index	
Gungapa	
Huarao Grande	
San Roque Tambo Maria Trench	
San Roque Trench	

Sample No	Location	Field No	Geological Index	Си (ррт)	Pto (ppm)	Zn (ppm)	Mg (%)	s
1	עד	A701	PLS	3	21	13	2.1	
2	TV	A702	PLS	3	18	8	2.1	
3	TV	A703	PDO	3	23	6	12.7	
4	TV	A704	PLS	3	24	10	4.8	1
5	TV	A705	PLS	3	31	10	0.5	1
6	TV	A707	PLS	2	18	9	0.7	1 1
7	TV	A708	PLS	2	18	6	0.2	
8	TV	A709	PLS	4	21	10	0.2	
9	GG	A723	PLS	3	20	20	0.2	
10	ec	A724	PLS	9	40	64	6.1	}
11	cc	A725	PLS	5	32	19	1.1	
12	CG	A726	PLS	4	25	18	10.8	}
13	CC	A727	PDO	3	21	19	10.7	
14	TV	A730	PLS	4	29	91	0.2	
15	TV	A732	PLS	6	21	19	10.8	
16	TV	A733	PLS	3	15	11	0.2	
17	TV	A734	PDO	3	21	12	11.5	
18	TV	A735	PDo	2	16	11	12.1	1
19	τv	A736	PDO	3	21	9	8.5	1 1
20	TV	A737	PLS	2	21	12	0.2	
21	TV	A738	PLS	4	20	6	1.5	
22	TV	A739	PLS	3	22	8	0.2	
23	TV	A741	PDO	4	21	В	12.0	
24	TV	A743	PDO	2	20	8	12.3	
25	TV	A746	PDO	3	23	47	12.4	
26	ΤV	A747	Pbo	5	42	В	11.3]]
27	ΤV	A748	PLS	3	34	10	0.2	
28	TV	A750	PLS	4	17	8	0.4	
29	ŢV	A751	PDO	24	28	11	10.6	
30	HG	A753	PDO	6	25	21	12.0	
31	HC	A754	PDO	5	23	11	12.4	
32	НG	A755	PDO	32	25	17	12.9	
33	HG	A756	PLS	6	24	56	2.4	
34	НG	A757	PLS	14	23	27	1.3	
35	HG	A758	PL5	6	27	18	0.2	
36	HG	A760	PDO	4	28	4	12.2	
37	HG	A761	PLS	10	25	20	0.9	
38	нс	A762	PDO	3	23	13	10.3	

	· · · · · ·				_ 		· ·
Sample No	Location	Field No	Geological Index	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mg (%)
39	нс	A763	PDO	5	22	6	12.8
40	HC	A764	PLS	3	25	В	0.5
41	HG	A765	PLS	4	24	4	11.6
42	HG	A766	PDO	12	31	12	12.4
43	HC	A767	PPO	5	25	8	11.4
44	SR	A768	PDO	5	166	120	11.1
45	SR	A771	PDO	6	67	55	10.9
46	SR	A772	PDO	4	1,120	6B	11.3
47	SR	A773	PDO	3	33	27	11.6
4B	SR	A774	PDO	3	37	97	11.2
49	SR	A775	PDO	7	78	91	9.4
50	SR	A776	PLS	3	101	90	0.3
51	SR	A777	PLS	10	504	495	8.9
52	SR	A778	PDO	5	123	248	9.5
53	SR	A779	PLS	23	415	895	8.5
54	SR	A780	PDO	5	47	103	11.5
55	SR	A781	P1,5	3	164	468	0.5
56	SR	A782	PLS	6	56	715	11.7
57	SR	A783	P1,5	, 3	415	930	0,2
58	SR	A784	PDO	10	117	735	10.0
59	5R	A785	PLS	7	533	413	3.4
60	SR	A786	PLS	9	227	1,420	9.2
61	SR	A787	PDO	2	29	277	11.4
62	SR	A788	P1.S	3	23	190	11.0
63	SR	A789	PLS	3	34	16	0.3
64	SR	A790	PDO	5	184	347	9.5
65	S.T-14	L702	PLS	9	238	510	0.2
66	S.T-14	L703	PLS	5	285	237	0.1
67	S.T-14	£706	PLS	8	852	163	1.7
68	5.T-13	L707	PLS	4	54	218	0.3
69	S.T-13	L708	PLS	4	47	152	0.3
70	S.T-13	L709	PDO	8	51	6,120	11.8
71	S.T-13	1710	PDO	7	37	866	9.6
72	S.T-13	L711	PDO	9	47	692	10.4
73	S.T~2	1712	PLS	3	37	342	0.6
74	S.T~2	L713	PLS	8	120	146	0.1
75	S.T-2	L715	PSS	3	150	80	0.1
76	S.T~2	1716	PDO	3	37	146	9.1
	' i	i 1	i	1			

Sample No	Location	Field No	Geological Index	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mg (%)
77	5.T-2	L718	PDO	19	118	1,240	9.1
78	S.T-2	L719	PDO	16	417	1,630	8.5
79	S.T-2	L720	PDO	12	265	496	10.1
80	S.T-2	1.721	PDO	12	211	733	10.1
81	S.T-2	L722	PDO	16	430	1,430	5.7
82	S.T-2	L723	PDO	6	60	738	7.3
83	S.T-2	L724	PDO	12	90	1,550	5.1
84	S.T-2	1.725	PLS	6	51	13	0.3
85	S.T-2	1.726	PDO	14	41	207	9.2
86	S.T-2	L727	PDO	7	45	195	8.6
87	S.T-2	L728	PDO	7	283	121	7.6
88	S.T-1	L732	PDO	7	36	54	9.2
89	S.T-1	1.733	PDO	5	29	267	8.4
90	\$.T-1	L734	PDO	5	31	410	8.6
91	S.T-1	L736	PSS	13 !	84	53	0.2
92	S.T-1	L737	PSS	6	61	143	0.4
93	S.T~5	1.741	PDO	24	24	45	0.3
94	\$.T-5	L742	PDO	, 9	150	690	11.7
95	S.T-5	L744	PDO	3	156	570	11.3
96	S.T-5	1.745	PDO	4	192	495	11.2
97	S.T-5	1746	PDO:	10	18	195	6.4
98	S.T-5	L747	PLS	4	53	253	0.4
99	S.T-12	1749	PLS	4	93	132	0.3
100	S.T-12	L750	PLS	4	36	631	12.2
101	S.T-12	1.751	PLS	В	50	1,651	8.3
102	S.T-12	L753	PLS	4	41	352	5.3
103	S.T-11	L754	PLS	6	1,070	30	0.3
104	S.T-11	1.755	PLS	4	39	62	0.3
105	S.T-11	L757	PLS	10	252	378	0.5
106	S.T-11	1.758	PLS	6	224	165	1.2
107	T.T-25	L759	i PDO	3	170	11	12.8
108	T.T-25	1760	PDO	3	1,500	15	11.7
109	T.T-25	L761	PD0	8	31	19	13.6
110	T.T-25	1.762	PDO	3	28	8	13.2
111	T.T-25	L763	PDO	3	25	9	12.9
112	T.T-25	1764	PDO	. 4	38	9	13.1
113	T.T-24	L766	PDO	6	52	16	23.9
114	T.T-24	L767	PDO	4	27	12	12.2
		ļ			l		

Sample No	Location	Field No	Geological Index	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mg (%)
115	T.T-24	1.768	PDO	3	166	11	11.6
116	T.T-22	1.769	PDO	3	27	6	12.5
117	1.1-22	L770	PDO	3	24	40	12.8
118	T.T-22	L772	PDO	6	27	53	13.1
119	T.T-22	L773	PDO	4	31	25	12.7
120	T.T-21	L774	PDO	4	26	13	11.8
121	T.T-21	L776	₽DO	4	34	11	12.6
122	T.T-21	L777	PDO	3	27	11	12.0
123	T.T-21	L778	PLS	4	34	70	0.6
124	T.T-21	L779	PDO	3	25	21	12.1
125	T.T-21	L780	PDO	4	85	14	11.5
126	T.T-27	L781	PDO	3	34	7	11.6
127	T.T-27	L782	PDO	3	21	9	12.1
128	S.T-28	L785	₽DO	4	257	1,370	12.3
129	\$.T-28	L786	PDO	3	78	257	6,8
130	S.T-28	L787	PDO	3	35	235	4.5
131	\$.1-28	1.789	PDO	4	107	760	11.4
132	S.T-28	1.789	PDO	3	19	191	5,4
133	S.T-28	L790	PDO	4	35	778	11.0
134	S.T-28	L791	PDO	, 5	71	928	8.9
135	S.T-28	1.793	PDO	2	47	187	10.2
136	S.T-28	1 L794	PDO	16	104	743	6.8
137	S.T-28	1.795	PDO	3	2,320	7,160	11.3
138	S.T-28	1.796	PDO	4	146	558	12.2
139	S.T-28	1.797	PDO	6	179	961	11.8
140	SR	L798	PDO	5	53	280	10.3
141	SR	L799	PDO	62	51	53	6.9
142	SR	1800	MP	7	35	18	0.1
143	SR	1801	МР	5	27	229	6.5
144	SR	1.802	MP	7	20	32	0.2
145	SR	L803	PLS	3	25	25	11.4
146	SR	1.804	PLS	4	60	299	11.6
147	SR	L805	PLS	8	95	274	0.3
148	SR	L806	HP	11	52	207	1.6
149	5R	L807	MP	4	33	27	0.1
150	SR	L808	MP	8	50	40	0.1
151	\$.T-29	L811	PDO	40	100	400	10.6
152	S.T-29	L812	PDO	6	100	300	9.1

Sample No	Location	Field No	Geological Index	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mg (%)
153	S.T-29	L814	PDO	5	200	500	7.0
154	TV	N701	PLS	3	23	7	2,1
155	TV	N702	PLS	3 ,	26	5	1.9
156	TV	N703	PDO	2	19	4	12.8
157	TV	N704	PDO	2	23	4	12.5
158	TV	N705	PDO	2	23	6	10.1
159	TV	N706	PDO	2	22	5	12.3
160	TV	N707	PDO	2	19	4	12.7
161	TV	N708	PDO	4	19	5	12.7
162	TV	N709	PDO	3	23	18	12.5
163	HG	N710	PSS	. 8	27	9	0.4
164	HG	N711	PSS	. 17	31	43	0.5
165	HC	N712	PDD	2	19	13	12.2
166	TV	N713	PLS	2	20	. 5	0.5
167	TV	N714	PDO	2	22	7	6.9
168	TV	N715	PDO	2	22	11	2.2
169	TV	N716	PDO	2	19	4	12.5
170		N717	PDO	6	23	31	12.4
171	77	N718	PDO	2	21	. 6	12.6
172	ΤV	N719	PDO	2	23	3	12.8
173	TV	N720	PLS	3	23	. 8	1.3
174	TV	N721	PLS	3	23	10	4.6
175	TV	N722	PDO	2	22	10	12.1
176	TV	N724	PLS	2	24	5	2.2
177	TV	N725	PDO	3	31	8	11.8
178	TV	N726	PDO	2	20	7	12.9
179	TV	N727	PDO	2	17	11	11.8
180	TV	N728	PDO	. 3	20	26	0.9
181	TV	N730	PDO	2	20	5	12.6
182	TV	N731	PDO	2	22	8	12.9
183	TV	N732	PDO	2	21	8	12.9
184	TV	N741	PDO	3	24	23	11.7
185	TV	N743	PDO	3	27	8	12.2
186	TV	N747	PDO	2	20	9 ,	5.7
187	TV	N748	PDO	2	20	11	12.5
188	TV	N749	PDO	2	21	5	12.7
189	TV	N752	PLS	. 3	21	15	0.5
190	TV	N754	PDO	2	22	14	12.3
				-			

Sample No	Location	Field Na.	Geological Index	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mg (%)
191	īv	ห755	PDO	2	20	9	12.3
192	τv	N756	PDO	2	20	6	12.8
193	IIG	พ758	PLS	5	23	13	10.4
194	HG	N760	PDO	2	22	5	12.8
195	HG	N761	PDO	2	21	4	12.B
196	Я¢	N762	PDO	2	21	4	12.5
197	HG	H763	PDO	2	21	8	12.0
198	НG	N764	PDO	2	25	19	11.4
199	CG	N769	PLS	3	20	11	0.9
200	CC	N770	PLS	5	21	10	3.5
201	CC	พ771	PLS	3	19	11	3.8
202	TV	N774	PDO	2	20	5	12.7
203	τν	N781	PLS	2	21	6	0.3
204	TV	N789	PSS	6	23	8	0.4
205	HG	N790	PDO	2	21	48	12.7
206	HG	א791	PDO	2	24	53	12.6
207	CC	N795	PLS	3	27	25	0.3
208	CC	N796	PDO	2	24	9	12.8
209	GG	N797	PDO	2	23	B	12.5
210	GG	N798	PDO	2	23	13	12.2
211	T.T-16	N804	PLS	6	30	117	0.3
212	T.T-16	N811	PDO	4	27	6	10.9
213	T.T-16	N814	PDO	4	26	14	10.4
214	T.T-16	N815	PDO	2	25	9	12.0
215	T.T-16	พ816	PDO	2	24	24	12.1
216	T.T+19	N817	PDO	5	84	84	8.0
217	T.T-19	N820	PDO	3	28	14	11.7
218	T.T-19	N823	PDO	3	25	24	12.4
219	T.T-19	N826	PDO	2	17	9	12.1
220	T.T-20	พ827	PDO	3	24	16	12.3
221	T.T-20	N829	PDO	2	31	11	12.2
222	T.T-20	N830	PDO	2	52	39	11.9
223	T.T-20	N831	PDO	62	28	89	4.2
224	T.T-20	N833	PDO	4	51	20	21.4
225	T.T-20	N835	PDO	2	23	36	11.3
226	T.T-20	N837	PDO	2	26	30	12.1
227	T.T-15	N838	PDO	4	39	11	22,7
228	T.T-15	NB39	PDO	2	22	7	11.3
ļ							

Sampte No	Location	Field No	Geological Index	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mg (%)
229	T.T-15	N842	PDO	3	32	17	12.2
230	T.T-15	N843	PDO	2	191	275	12.2
231	T.T-15	N845	PDO	5	127	158	23.8
232	T.T-15	N846	PDO	2	110	148	11.9
233	T.T-15	N847	PDO	3	32	14	11.4
234	T.T-17	N849	PDO	3	30	6	10.1
235	T.T-17	N850	PDO	3	30	7	11.7
236	T.T-17	N851	PDO	2	23	10	11.9
237	T.T-17	N852	PDO	2	28	9	12.0
238	T.T-17	N853	PDO	2	33	11	11.8
239	т.т-18	N856	PDO	5	31	10	8.2
240	T.T-18	N85B	PDO	2	37	24	11.7
241	T.T-18	N861	PDO	2	24	8	12.3
242	T.T-18	N863	PDO	2	27	12	11.3
243	T.T-23	N864	PDQ	3	30	7	10.4
244	T.T-23	N865	PDO	2	20	8	10.3
245	T.T-23	N867	PDO	3	26	11	12.1
246	T.T-23	N868	PDO	2	21	8	11.9
247	SR	N869	PDO	7	749	744	9.6
248	SR	N871	PDO	4	27	213	11.8
249	SR	N873	PDO	3	26	64	11.3
250	SR	่ ห875	PDO	3	25	157	11.9
251	SR	N876	PDO	3	34	403	11.4
252	SR	N877	PLS	5	52	115	0.3
253	SR	N878	PLS	6	40	135	0.3
254	SR	พ879	PLS	6	62	143	0.2
255	SR	N88D	PLS	6	305	145	0.8
256	SR	N881	PLS	4	7.5	93	0.7
257	SR	N884	PLS	8	240	270	0.5
258	SR	N865	PLS	3	31	598	9.8
259	SR	N887	PLS	4	101	788	0.3
260	SR	к888	PDQ	4	167	430	11.1
261	SR	NB89	PDO	6	22	208	9.0
262	SR	и890	PLS	4	39	55	1.4
263	SR	N892	PDO	5	37	120	10.5
264	SR	N893	PDO	13	35	418	7.9
265	TV	P701	PLS	3	25	12	2.8
266	TV	P703	PDO	2	24	6	12.1
	j		1			Į	

Sampte No	Location	Field No	Geological Index	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mg (%)
267	TV	P705	PLS	3	26	7	0.4
268	TV	P706	PDO	3	25	7	12.2
269	TV	P707	PDO	2	25	10	12.5
270	TV	P710	PDO	4	25	17	12.0
271	TV	P713	PLS	3	26	11	0.2
272	TV	P714	PLS	3	24	14	1.4
273	TV	P717	PLS	3	23	6	1.4
274	TV	P719	PDO	2	24	9	12.3
275	TV	P72D	PLS	3	24	13	0.8
276	TV	P721	PDO .	4	23	12	11.9
277	TV	P722	PDO	3	23	6	12.5
278	TV	P723	PDO	2	23	13	12.3
279	ΤV	P725	PDO	2	23	6	12.5
280	ΤV	P727	PDO	4	23	8	12.1
281	TV	P728	PLS	3	26	51	0.6
282	TV	P729	PLS	. 3	26	10	0.8
283	TV ,	P730	POO	3	27	6	12.5
284	TV	P331	PDO	2	28	8	11.8
285	TV	P737	PDO	2 ,	26	6	11.7
286	TV	P738	PDO	2	25	13	11.7
287	TV	P739	PDO	3	26	12	11.4
288	GG	P750	PLS	3	209	398	1.9
289	GG	P752	PDO	2	42	125	11.0
290	GG	P753	PL5	3	82	530	0.2
291	GG	P754	PLS	5	222	648	0.3
292	GG	P756	PDO	2	28	6	12.0
293	CC	P758	PDO	2	23	7	12.6
294	CC	P762	PDO	3	27	17	1.7
295	GG .	P768	PDO	4	26	9	1.0
296	GC	P770	PDO	4	25	14	1.6
297	GC	P771	PLS	3	23	11	0.1
298	CC '	P772 3	PLS !	3	23 ,	13	5.2
299	GC .	P773	PLS '	3 '	24	52	2.4
300	CC	P775	PLS ;	3	24	57	0.5
301	GG	P777	PLS	4	25	25	0.1
302	GG (P778	PLS	4	32	29	1.2
303	CC	P779	PLS	4	23	33	0.1
304	GC	P780	PLS	4	25	16	0.1
	Ì	i	ł				

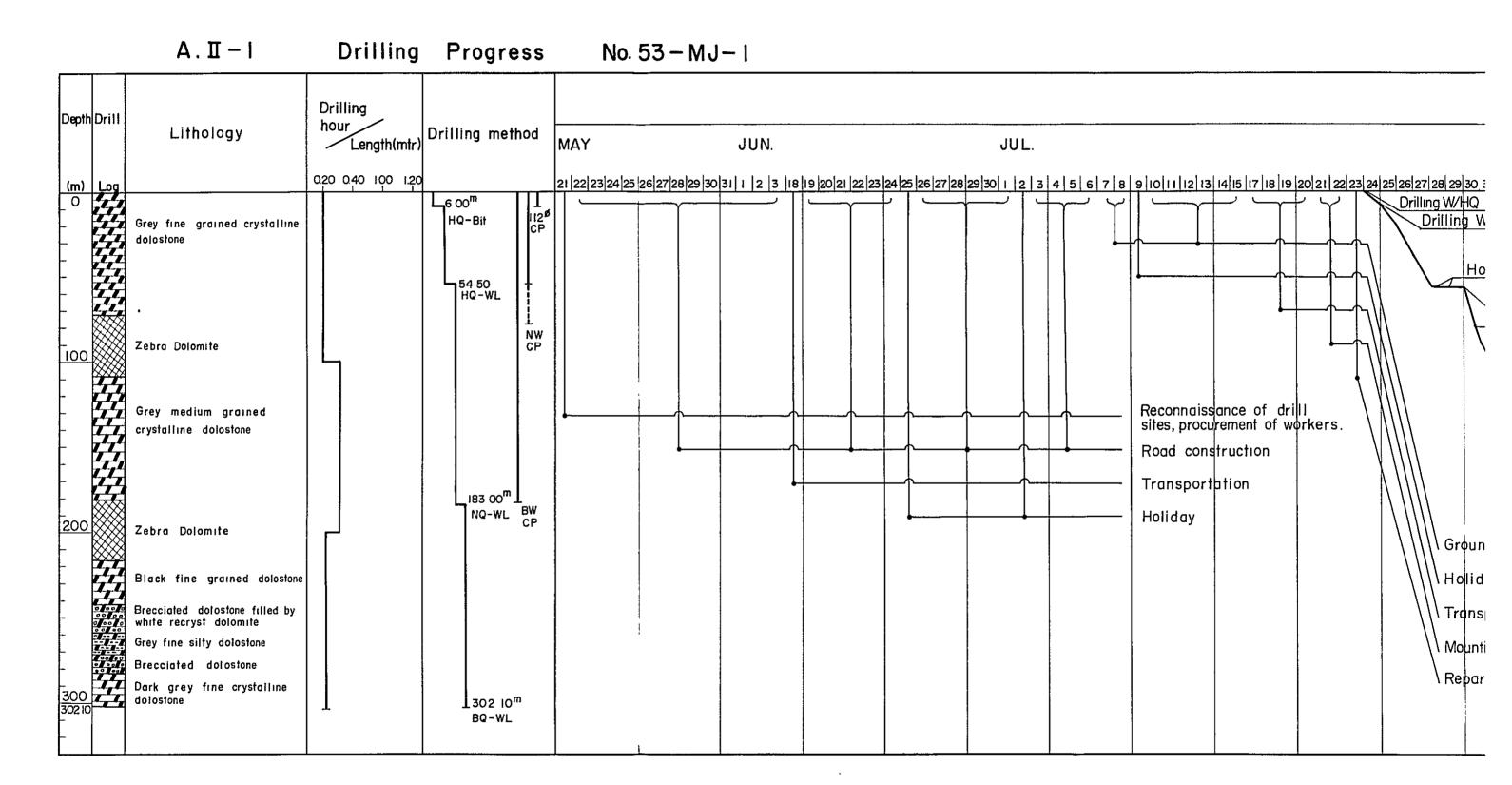
306 CC P784 PLS 3 24 6 0.1 307 HG P785 PLS 3 25 14 0.8 308 HG P786 PLS 5 41 12 0.8 309 HG P788 PLS 3 23 16 0.6 310 HG P790 PLS 2 23 16 0.6 311 HG P792 PLS 3 21 17 0.2 312 HG P794 PLS 2 24 7 0.1 312 HG P794 PLS 3 25 6 0.1 313 HG P795 PLS 3 25 6 0.1 315 HG P799 PDO 2 29 6 0.3 316 HG P799 PDO 2 26 6 6.3 317	Sample No	Location	Freld No	Geological Index	Cu (ppm)	Pa (ppm)	Zn (ppm)	Mg (%)
307 HG P785 PLS 3 25 14 0.8 308 HG P786 PLS 5 41 12 0.8 309 HG P788 PLS 3 23 16 0.6 310 HG P790 PLS 2 23 16 0.2 311 HG P792 PLS 3 21 17 0.2 312 HG P794 PLS 2 24 7 0.1 313 HG P795 PLS 3 25 6 0.1 315 HG P798 PLS 3 25 6 0.1 316 HG P799 PDO 2 29 6 0.3 317 HG P800 PLS 3 26 1,270 1.3 318 HG P801 PDO 2 24 22 6.2 319	305	CC	P782	PLS	3	24	6	0.1
308 HG P786 PLS 5 41 12 0.8 309 HG P788 PLS 3 23 16 0.6 310 HG P790 PLS 2 23 16 0.2 311 HG P792 PLS 3 21 17 0.2 312 HG P794 PLS 2 24 7 0.1 313 HG P795 PLS 3 25 6 0.1 314 HG P797 PLS 3 25 6 0.1 315 HG P798 PLS 3 20 5 0.3 316 HG P799 PDO 2 29 6 0.3 317 HG P800 PLS 3 26 1,270 1.3 318 HG P801 PDO 2 24 22 6.2 319	306	CG	P784	PLS	3	24	6	0.1
309 NG F788 PLS 3 23 16 0.6 310 HC P790 PLS 2 23 16 0.2 311 HG P792 PLS 3 21 17 0.2 312 HG P794 PLS 2 24 7 0.1 313 HG P795 PLS 4 26 19 2.2 314 HG P797 PLS 3 25 6 0.1 315 HG P798 PLS 3 20 5 0.3 316 HG P799 PDO 2 29 6 0.3 317 HG P800 PLS 3 26 1,270 1.3 318 HG P801 PDO 2 24 22 6.2 319 HG P803 PDO 3 25 14 6.3 320	307	HG	P785	PLS	3	25	14	0.8
310 HG P790 PLS 2 23 16 0.2 311 HG P792 PLS 3 21 17 0.2 312 HG P794 PLS 2 24 7 0.1 313 HG P795 PLS 4 26 19 2.2 314 HG P797 PLS 3 25 6 0.1 315 HG P798 PLS 3 20 5 0.3 316 HG P799 PDO 2 29 6 0.3 317 HG P800 PLS 3 26 1,270 1.3 318 HG P801 PDO 2 24 22 6.2 319 HG P803 PDO 2 26 6 6.3 319 HG P804 PDO 3 25 14 6.3 320 HG P804 PDO 3 25 14 6.3 321	308	HG	P786	PLS	5	41	12	0.8
311 HG P792 PLS 3 21 17 0.2 312 HG P794 PLS 2 24 7 0.1 313 HG P795 PLS 4 26 19 2.2 314 HG P797 PLS 3 25 6 0.1 315 HG P798 PLS 3 20 5 0.3 316 HG P799 PDO 2 29 6 0.3 317 HG P800 PLS 3 26 1,270 1.3 318 HG P801 PDO 2 24 22 6.2 319 HG P803 PDO 2 26 6 6.3 320 HG P804 PDO 3 25 14 6.3 321 SR P809 PLS 8 41 685 0.2 322	309	HG	P788	PLS	3	23	16	0.6
312 HG P794 PLS 2 24 7 0.1 313 HG P795 PLS 4 26 19 2.2 314 HG P797 PLS 3 25 6 0.1 315 HG P798 PLS 3 20 5 0.3 316 HG P799 PDO 2 29 6 0.3 317 HG P800 PLS 3 26 1,270 1.3 318 HG P801 PDO 2 24 22 6.2 319 HG P803 PDO 2 26 6 6.3 320 HG P804 PDO 3 25 14 6.3 321 SR P809 PLS 8 41 685 0.2 322 SR P810 PDO 6 57 623 11.6 322	310	HG	P790	PLS	2	23	16	0.2
313 HG P795 PLS 4 26 19 2.2 314 HG P797 PLS 3 25 6 0.1 315 HG P798 PLS 3 20 5 0.3 316 HG P799 PDO 2 29 6 0.3 317 HG P800 PLS 3 26 1,270 1.3 318 HG P801 PDO 2 24 22 6.2 319 HG P803 PDO 2 26 6 6.3 320 HG P804 PDO 3 25 14 6.3 321 SR P809 PLS 8 41 685 0.2 322 SR P810 PDO 6 57 623 11.6 322 SR P811 PDO 4 29 226 11.5 322 <td>311</td> <td>HG</td> <td>P792</td> <td>PLS</td> <td>3</td> <td>21</td> <td>17</td> <td>0.2</td>	311	HG	P792	PLS	3	21	17	0.2
314 HG P797 PLS 3 25 6 0.1 315 HG P798 PLS 3 20 5 0.3 316 HG P799 PDO 2 29 6 0.3 317 HG P800 PLS 3 26 1,270 1.3 318 HG P801 PDO 2 24 22 6.2 319 HG P803 PDO 2 26 6 6.3 320 HG P804 PDO 3 25 14 6.3 321 SR P809 PLS 8 41 685 0.2 322 SR P810 PDO 6 57 623 11.6 322 SR P813 PLS 3 111 577 9.8 324 SR P813 PLS 7 68 611 8.6 326 </td <td>312</td> <td>НG</td> <td>P794</td> <td>PLS</td> <td>2</td> <td>24</td> <td>7</td> <td>0,1</td>	312	НG	P794	PLS	2	24	7	0,1
315 HG P798 PLS 3 20 5 0.3 316 HG P799 PDO 2 29 6 0.3 317 HG P800 PLS 3 26 1,270 1.3 318 HG P801 PDO 2 24 22 6.2 319 HG P803 PDO 2 26 6 6.3 320 HG P804 PDO 3 25 14 6.3 321 SR P809 PLS 8 41 685 0.2 322 SR P810 PDO 6 57 623 11.6 322 SR P811 PDO 4 29 226 11.5 322 SR P813 PLS 7 68 611 8.6 325 SR P814 PLS 7 602 1,370 9.5	313	HG	P795	PLS	4	26	19	2,2
316 HG P799 PDO 2 29 6 0.3 317 HG P800 PLS 3 26 1,270 1.3 318 HG P801 PDO 2 24 22 6.2 319 HG P803 PDO 2 26 6 6.3 320 HG P804 PDO 3 25 14 6.3 321 SR P809 PLS 8 41 685 0.2 322 SR P810 PDO 6 57 623 11.6 323 SR P811 PDO 4 29 226 11.5 324 SR P813 PLS 3 111 577 9.8 324 SR P813 PLS 7 68 611 8.6 325 SR P814 PLS 7 68 611 8.6 326 SR P815 PDO 7 602 1,370 9.5 <	314	НG	P797	PLS	3	25	6	0.1
317 HG P800 PLS 3 26 1,270 1.3 318 HG P801 PD0 2 24 22 6.2 319 HG P803 PD0 2 26 6 6.3 320 HG P804 PD0 3 25 14 6.3 321 SR P809 PLS 8 41 685 0.2 322 SR P810 PD0 6 57 623 11.6 323 SR P811 PD0 4 29 226 11.5 323 SR P813 PLS 3 111 577 9.8 324 SR P813 PLS 7 68 611 8.6 325 SR P814 PLS 7 68 611 8.6 326 SR P815 PD0 7 602 1,370 9.5 327 SR P816 PLS 657 67 270 5.6	315	НG	P798	PLS	3	20	5	0.3
318 HG P801 PDO 2 24 22 6.2 319 HG P803 PDO 2 26 6 6.3 320 HG P804 PDO 3 25 14 6.3 321 SR P809 PLS 8 41 685 0.2 322 SR P810 PDO 6 57 623 11.6 323 SR P811 PDO 4 29 226 11.5 324 SR P813 PLS 3 111 577 9.8 325 SR P814 PLS 7 68 611 8.6 326 SR P815 PDO 7 602 1,370 9.5 327 SR P816 PLS 657 67 270 5.6 328 SR P817 PLS 26 94 130 5.9	316	HG	P799	PDO	2	29	6	0.3
319 HG P803 PD0 2 26 6 6.3 320 HG P804 PD0 3 25 14 6.3 321 SR P809 PLS 8 41 685 0.2 322 SR P810 Pb0 6 57 623 11.6 322 SR P811 Pb0 4 29 226 11.5 323 SR P811 Pb0 4 29 226 11.5 324 SR P813 PLS 3 111 577 9.8 325 SR P814 PLS 7 68 611 8.6 326 SR P815 Pb0 7 602 1,370 9.5 328 SR P817 PLS 26 94 130 5.5 329 SR P818 PLS 20 189 44 0.4	317	НG	P800	PLS	3	26	1,270	1.3
320 HG P804 PD0 3 25 14 6.3 321 SR P809 PLS 8 41 685 0.2 322 SR P810 PD0 6 57 623 11.6 323 SR P811 PD0 4 29 226 11.5 324 SR P813 PLS 3 111 577 9.8 325 SR P814 PLS 7 68 611 8.6 326 SR P815 PD0 7 602 1,370 9.5 327 SR P816 PLS 657 67 270 5.6 328 SR P817 PLS 26 94 130 5.9 329 SR P818 PLS 20 189 44 0.4 330 SR P819 PLS 5 81 125 0.3	318	HG	P801	PDO	2	24	22	6.2
321 SR P809 PLS 8 41 685 0.2 322 SR P810 PDO 6 57 623 11.6 323 SR P811 PDO 4 29 226 11.5 324 SR P813 PLS 3 111 577 9.8 325 SR P814 PLS 7 68 611 8.6 326 SR P815 PDO 7 602 1,370 9.5 327 SR P816 PLS 657 67 270 5.6 328 SR P817 PLS 26 94 130 5.9 329 SR P818 PLS 20 189 44 0.4 330 SR P819 PLS 5 81 125 0.3 331 SR P820 PLS 16 35 49 0.2	319	НG	P803	Ppo	2	26	6	6.3
322 SR P810 PD0 6 57 623 11.6 323 SR P811 PD0 4 29 226 11.5 324 SR P813 PLS 3 111 577 9.8 325 SR P814 PLS 7 68 611 8.6 326 SR P815 PD0 7 602 1,370 9.5 327 SR P816 PLS 657 67 270 5.6 328 SR P817 PLS 26 94 130 5.5 329 SR P818 PLS 20 189 44 0.4 330 SR P819 PLS 5 81 125 0.3 331 SR P820 PLS 16 35 49 0.2 332 SR P821 PD0 14 460 3,830 0.5 333 SR P822 PLS 13 96 763 10.5 334 SR P823 PLS 3 26 896 10.1 335 SR P824 PD0 2 24 164 11.5 336 SR P825 PLS 4 29 110 0.4 337 SR P826 PLS 4 36 91 0.3 338 SR P827 PLS 5 54 285 0.3 339 SR P828 PLS 6 133 572 0.3 340 SR P829 PLS 9 496 321 0.5	320	HG	P804	PDO	3	25	14	6.3
323 SR P811 PDO 4 29 226 11.5 324 SR P813 PLS 3 111 577 9.8 325 SR P814 PLS 7 68 611 8.6 326 SR P815 PDO 7 602 1,370 9.5 327 SR P816 PLS 657 67 270 5.6 328 SR P817 PLS 26 94 130 5.5 329 SR P818 PLS 20 189 44 0.4 330 SR P819 PLS 5 81 125 0.3 331 SR P820 PLS 16 35 49 0.2 331 SR P820 PLS 13 96 763 10.5 333 SR P822 PLS 13 96 763 10.5 <tr< td=""><td>321</td><td>SR</td><td>P809</td><td>PLS</td><td>8</td><td>41</td><td>685</td><td>0.2</td></tr<>	321	SR	P809	PLS	8	41	685	0.2
324 SR P813 PLS 3 111 577 9.8 325 SR P814 PLS 7 68 611 8.6 326 SR P815 PDO 7 602 1,370 9.5 327 SR P816 PLS 657 67 270 5.6 328 SR P817 PLS 26 94 130 5.5 329 SR P818 PLS 20 189 44 0.4 330 SR P819 PLS 5 81 125 0.3 331 SR P820 PLS 16 35 49 0.2 332 SR P821 PDO 14 460 3,830 0.5 333 SR P822 PLS 13 96 763 10.5 334 SR P823 PLS 3 26 896 10.3 <	322	SR	P810	PDO	6	57	623	11.6
325 SR P814 PLS 7 68 611 8.6 326 SR P815 PDO 7 602 1,370 9.5 327 SR P816 PLS 657 67 270 5.6 328 SR P817 PLS 26 94 130 5.5 329 SR P818 PLS 20 189 44 0.4 330 SR P819 PLS 5 81 125 0.3 331 SR P820 PLS 16 35 49 0.2 331 SR P821 PDO 14 460 3,830 0.5 332 SR P821 PDO 14 460 3,830 0.5 333 SR P822 PLS 13 96 763 10.5 334 SR P823 PLS 3 26 896 10.1	323	SR	P811	PDO	4	29	226	11.5
326 SR P815 PDO 7 602 1,370 9.5 327 SR P816 PLS 657 67 270 5.6 328 SR P817 PLS 26 94 130 5.5 329 SR P818 PLS 20 189 44 0.4 330 SR P819 PLS 5 81 125 0.3 331 SR P820 PLS 16 35 49 0.2 332 SR P821 PDO 14 460 3,830 0.5 333 SR P822 PLS 13 96 763 10.5 334 SR P823 PLS 3 26 896 10.1 335 SR P824 PDO 2 24 164 11.5 336 SR P825 PLS 4 29 110 0.4 <	324	SR	P813	PLS	3	111	577	9.8
327 SR P816 PLS 657 67 270 5.6 328 SR P817 PLS 26 94 130 5.6 329 SR P818 PLS 20 189 44 0.4 330 SR P819 PLS 5 81 125 0.3 331 SR P820 PLS 16 35 49 0.2 332 SR P821 PDO 14 460 3,830 0.5 333 SR P822 PLS 13 96 763 10.5 334 SR P823 PLS 3 26 896 10.1 335 SR P824 PDO 2 24 164 11.5 336 SR P825 PLS 4 29 110 0.4 337 SR P826 PLS 4 36 91 0.3	325	SR	P814	PLS	7	68	611	8.6
328 SR P817 PLS 26 94 130 5.9 329 SR P818 PLS 20 189 44 0.4 330 SR P819 PLS 5 81 125 0.3 331 SR P820 PLS 16 35 49 0.2 332 SR P821 PD0 14 460 3,830 0.5 333 SR P822 PLS 13 96 763 10.5 334 SR P823 PLS 3 26 896 10.1 335 SR P824 PD0 2 24 164 11.5 336 SR P825 PLS 4 29 110 0.4 337 SR P826 PLS 4 36 91 0.3 338 SR P827 PLS 5 54 285 0.3	326	SR	P815	PDO	7	602	1,370	9.9
329 SR P818 PLS 20 189 44 0.4 330 SR P819 PLS 5 81 125 0.3 331 SR P820 PLS 16 35 49 0.2 332 SR P821 PDO 14 460 3,830 0.5 333 SR P822 PLS 13 96 763 10.5 334 SR P823 PLS 3 26 896 10.1 335 SR P824 PDO 2 24 164 11.5 336 SR P825 PLS 4 29 110 0.4 337 SR P826 PLS 4 36 91 0.3 338 SR P827 PLS 5 54 283 0.3 339 SR P828 PLS 6 133 572 0.3	327	SR	P816	PLS	657	67	270	5.6
330 SR P819 PLS 5 81 125 0.3 331 SR P820 PLS 16 35 49 0.2 332 SR P821 PD0 14 460 3,830 0.5 333 SR P822 PLS 13 96 763 10.5 334 SR P823 PLS 3 26 896 10.1 335 SR P824 PD0 2 24 164 11.5 336 SR P825 PLS 4 29 110 0.4 337 SR P826 PLS 4 36 91 0.3 338 SR P827 PLS 5 54 285 0.3 339 SR P828 PLS 6 133 572 0.3 340 SR P829 PLS 9 496 321 0.5	328	SR	P817	PLS	26	94	130	5.9
331 SR P820 PLS 16 35 49 0.2 332 SR P821 PD0 14 460 3,830 0.5 333 SR P822 PLS 13 96 763 10.5 334 SR P823 PLS 3 26 896 10.1 335 SR P824 PD0 2 24 164 11.5 336 SR P825 PLS 4 29 110 0.4 337 SR P826 PLS 4 36 91 0.3 338 SR P827 PLS 5 54 285 0.3 339 SR P828 PLS 6 133 572 0.3 340 SR P829 PLS 9 496 321 0.5	329	SR	P818	PLS	20	189	44	0.4
332 SR P821 PDO 14 460 3,830 0.5 333 SR P822 PLS 13 96 763 10.5 334 SR P823 PLS 3 26 896 10.1 335 SR P824 PDO 2 24 164 11.5 336 SR P825 PLS 4 29 110 0.4 337 SR P826 PLS 4 36 91 0.3 338 SR P827 PLS 5 54 283 0.3 339 SR P828 PLS 6 133 572 0.3 340 SR P829 PLS 9 496 321 0.5	330	SR	P819	PLS	5	81	125	0.3
333 SR P822 PLS 13 96 763 10.5 334 SR P823 PLS 3 26 896 10.1 335 SR P824 PDO 2 24 164 11.5 336 SR P825 PLS 4 29 110 0.4 337 SR P826 PLS 4 36 91 0.3 338 SR P827 PLS 5 54 285 0.3 339 SR P828 PLS 6 133 572 0.3 340 SR P829 PLS 9 496 321 0.5	331	SR	P820	PLS	16	35	49	0.2
334 SR P823 PLS 3 26 896 10.1 335 SR P824 PDO 2 24 164 11.5 336 SR P825 PLS 4 29 110 0.4 337 SR P826 PLS 4 36 91 0.3 338 SR P827 PLS 5 54 285 0.3 339 SR P828 PLS 6 133 572 0.3 340 SR P829 PLS 9 496 321 0.5	332	SR	P821	PDO	14	460	3,830	0.5
335 SR P824 PDO 2 24 164 11.5 336 SR P825 PLS 4 29 110 0.4 337 SR P826 PLS 4 36 91 0.5 338 SR P827 PLS 5 54 285 0.5 339 SR P828 PLS 6 133 572 0.5 340 SR P829 PLS 9 496 321 0.5	333	SR	P822	PLS	13	96	763	10.5
336 SR P825 PLS 4 29 110 0.4 337 SR P826 PLS 4 36 91 0.3 338 SR P827 PLS 5 54 285 0.3 339 SR P828 PLS 6 133 572 0.3 340 SR P829 PLS 9 496 321 0.3	334	SR	P823	PLS	3	26	896	10.1
337 SR P826 PLS 4 36 91 0.3 338 SR P827 PLS 5 54 285 0.3 339 SR P828 PLS 6 133 572 0.3 340 SR P829 PLS 9 496 321 0.3	335	SR	P824	PDO	2	24	164	11.5
338 SR P827 PLS 5 54 285 0.3 339 SR P828 PLS 6 133 572 0.3 340 SR P829 PLS 9 496 321 0.3	336	SR	P825	PLS	4	29	110	0.4
339 SR P828 PLS 6 133 572 0.3 340 SR P829 PLS 9 496 321 0.5	337	SR	P826	PLS	4	36	91	0.3
340 SR P829 PLS 9 496 321 0.5	338	SR	P827	PLS	5	54	285	0.3
	339	SR	P828	PLS	6	133	572	0.3
341 SR P830 PLS 6 196 179 0.2	340	SR	P829	PLS	9	496	321	0.5
	341	SR	P830	PLS	6	196	179	0.2
342 SR P831 PLS 53 30 44 2.4	342	SR	P831	PLS	53	30	44	2.4

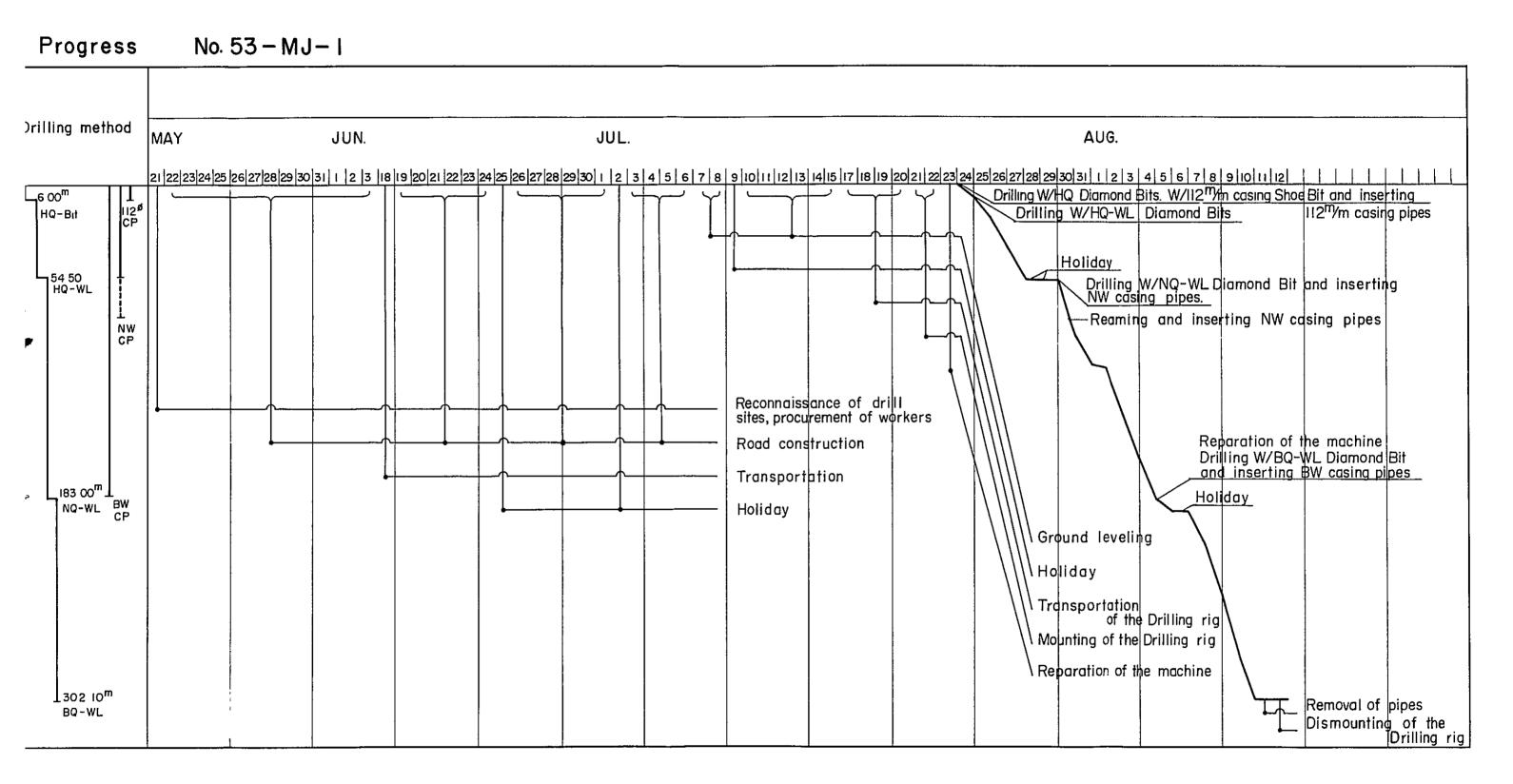
Sample No	Location	Field No	Geological Index	Cu (ppm)	Pb (opm)	Zn (opm)	Mg (%)
	,						
343	SR	P832	PLS	4	30	34	0.3
344	TV	S714	PLS	11	10	9	0.1
345	TV	S715	PLS	3	23	7	0.1
346	TV	5716	PDO	3	21	5	0.4
347	TV	S718	PLS	3	25	7	6.4
348	TV	S719	PLS	3	24	5	0.3
349	S.T-4	S721	PDO	9	49	220	12.5
350	S.T-4	5724	PDO	4	45	440	11.2
351	S.T-4	5727	PDO	4	38	319	11.2
352	S.T-4	\$728	PDO	3	23	172	7.2
353	S.T-4	S729	PDO	3	43	81	8.2
354	S.T-4	5730	PDO	4	43	231	10.0
355	S.T-4	S732	PDO	7	66	367	20.7
356	S.T-7	S737	PLS	3	25	459	1.7
357	S.T-7	5738	PLS	4	71	69	0.2
358	S.T-6	5742	PLS	6	209	132	0.3
359	5.T-6	S743	PLS	4	31	759	0.3
360	S.T-6	S746	PLS	7	187	153	10.7
361	S.T-6	\$747	PLS	16	32	108	8.8
362	S.T-6	5748	PLS	3	72	68	7.8
363	S.T-6	5749	PLS	3	26	78	9.4
364	S.T-8	S751	PLS	3	40	45	1.8
365	s.T-8	s753	PLS	5	66	1,320	1.1
366	S.T∽B	S754	PLS	4	27	96	0.3
367	S-T-8	S755	PLS	4	52	29	0.3
368	S.T-8	S756	PDO	4	36	23	10.1
369	S.T-8	S757	PDO	7	62	17,900	5.9
370	S.T-9	5759	PLS	8	51	520	0.3
371	S.T-9	S761	PLS	2	31	2,450	11.6
372	T .T- 27	5770	PDO	2	19	7	12.1
373	T.T-27	\$772	PDO	. 2	22	13	12.0
374	T.T-27	 S773	PDO	3	21	6	12.0
375	T.T-27	!		2	21	34	12.0
376	T.T-27			3	26	10	11.3
377	T.T-27	,	•	4	25	15	11.2
378	T.T-27	'		3	22	9	12.1
379	T.T-26	1	PDO	3	25	26	12.0
380	T.T-26	\$780	PDO	2	21	8	11.8
200		1 2.00		•	1	1 "	

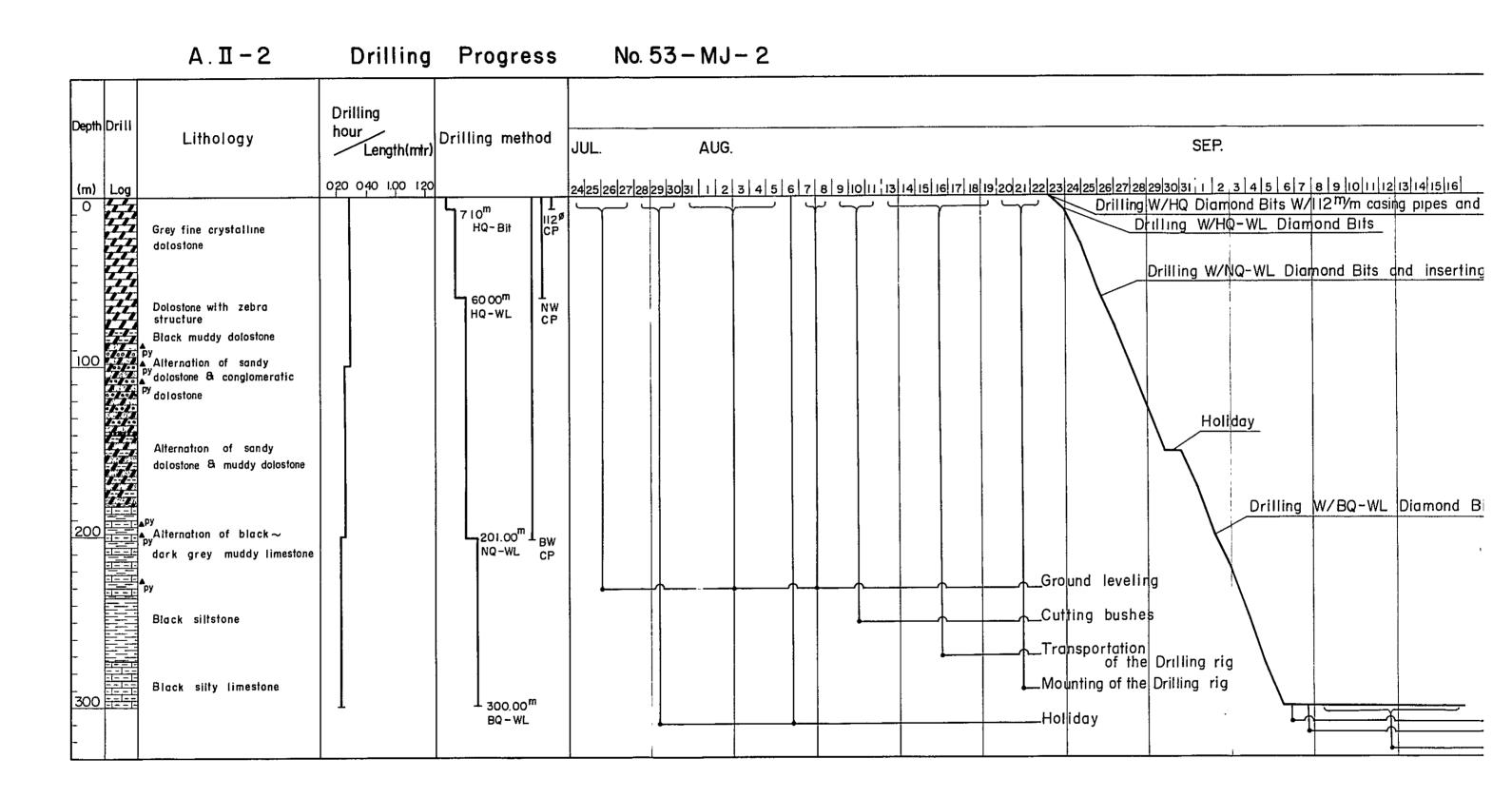
APPENDICES

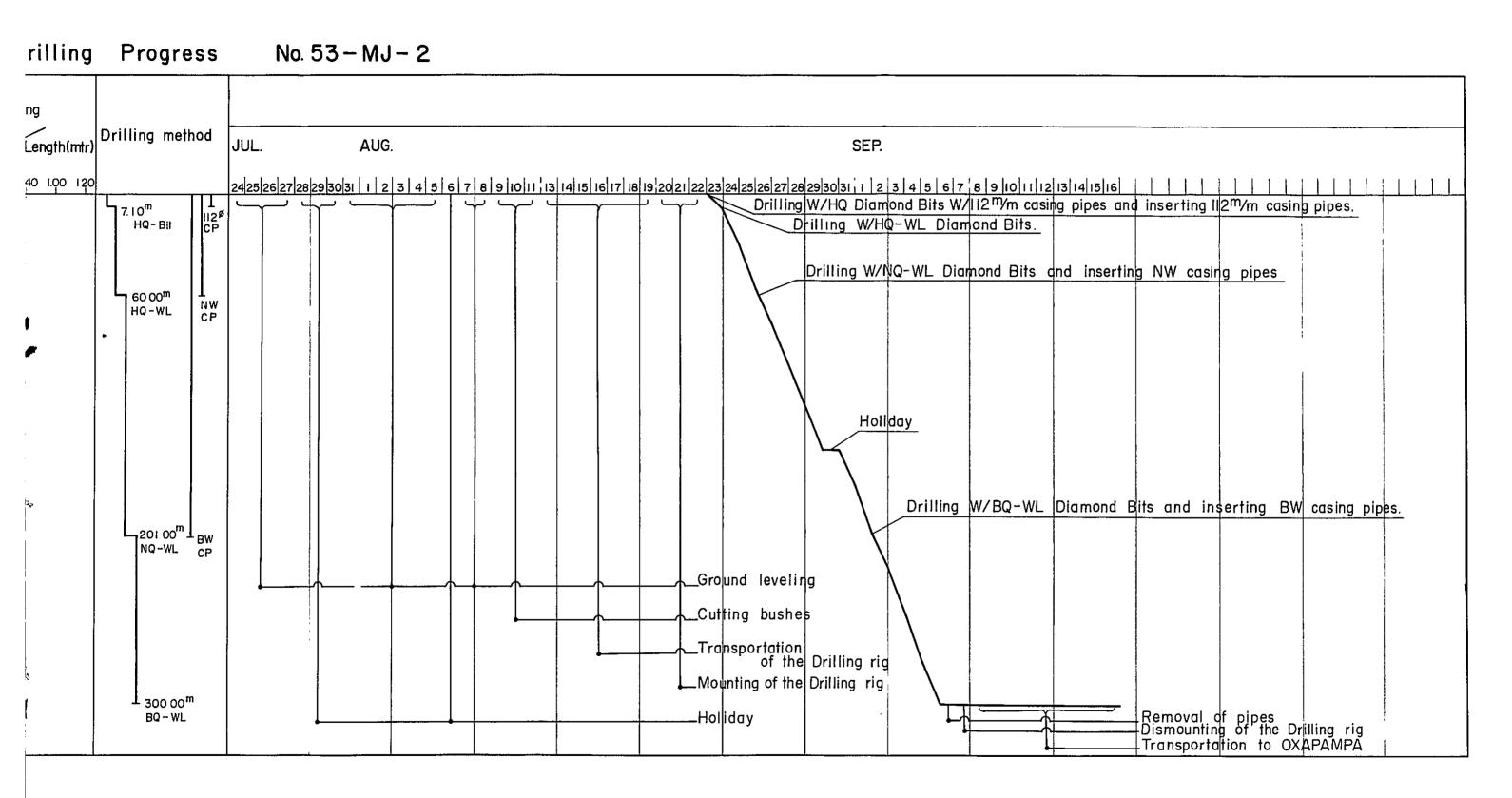
PART I

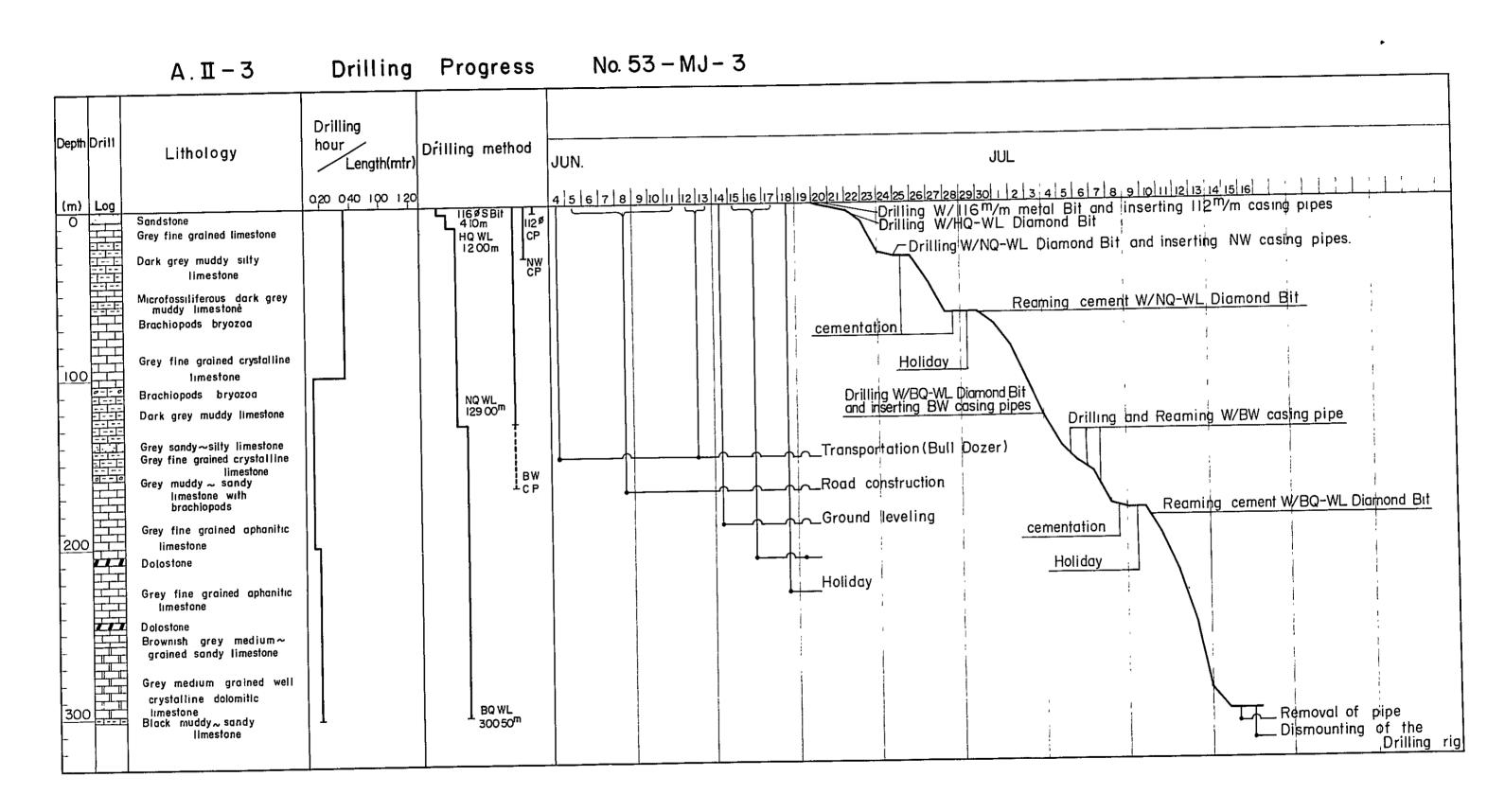
Diamond Drilling


Sample No	Location	Field No	Geological Index	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mg (%)
381	T.T-26	\$782	PDO	3	28	12	11.1
382	S.T-10	5785	PLS	4	75	161	0.3
383	S.T-10	S786	PLS	5	35	206	0.4
384	S.T-10	5788	PLS	4	44	18	0.3
385	S.T-10	S789	PDO	3	30	136	12.6
386	нc	Z2	PDO	3	20	22	10.0
387	HC	Z 3	PDO		20	41	6.4
388	нс	, Z4	PDO	. 2	21	9	13.0
389	HG	25	PLS	3	24	7	0.4
390	HC	26	PLS	4	25	6	03
391	HG	27	PDO	2	21	19	12.9
392	HC	28	PLS	3	23	39	0.9
1							
						:	
			'			,	
Ì			1	į			
İ		i		i	•	! ! !	
į					!)	
		[;				
		1	:			, ,	
	' 					: I	
			1				
			1	ļ			
						l	
ĺ			Ì				ļ
							'
- 1							


						-	,
Sample No	Location	Field No	Geological Index	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mg (%)
393	HC	211	PDO	4	24	13	10.4
394	KG	Z12	, PDO	2	21	7	10.9
395	HC	Z13		2	23	13	12.4
396	HG	214	PLS	44	22	9	0.2
397	НG	Z16	PLS	4	24	14	0.2
398	нс	Z17	PLS	7	25	6	2.5
399	HG	Z18	PLS	3	24	27	0.2
400	НG	Z19	PLS	4	25	26	0.3
401	HG	Z20	PLS	4	24	8	1.5
402	CG	Z22	PDO	2	21	10	12.3
403		223	PDO	2	23	21	11.0
404	CG	224	PLS	3	28	9	0.4
			i i	1]	
					ļ		
			I	ı	ĺ		!
				1			
			!		: ! '		
	İ					.	
					<u>}</u>		
:	ł			I	i		
i .	,				i '		
					: 		
					 :		
					! !	!	
		ı •	ı				
	İ	•			: : ! !	!	
	 		ı		ļ ļ		
	1			,			
		;		;	,		
		I			i i :		
		,	!		:		
		: ;		.			
		1		' i			
				!	! 		i




LIST OF APPENDICES


- A. II-1 Drilling progress No. 53-MJ1.
- A. II-2 Drilling progress No. 53-MJ2.
- A. II-3 Drilling progress No. 53-MJ3.
- A. II-4 List of rock samples (boring core).
- A. II-5 Microscopic observation of the thin section.
- A. II-6 Microscopic observation of the polished section.
- A. II-7 Fossils under microscopic observation.
- A. II-8 Photomicrographs of rocks, ores, and fossils.
- A. II-9 Chart of X-ray diffraction test.
- A. II-10 Results of X-ray diffraction test.
- A. II-11 Chemical analysis of boring core samples.

A. II-4 List of rock samples(boring core).

No. 53-MJ1

Sample	Depth	Chemical	Thin	Polished	X-ray Diffrac-	Rock Name
No.	(m)	Analysis	Section	Section	tion	
53101	14.80	0	0			Grey fine silty dolostone
53102	29.80	0				Grey fine crystalline dolostone
53103	44.80	0				Grey very fine aphanitic dolostone
53104	59.80	0	0			Grey aphanitic dolostone
53105	74.80	0	0	0		Breccia Dolomite
53106	89.80	0	0			Grey medium sandy dolostone
53107	104.80	0	0	0		Light grey medium dolostone
53108	119.80	0				Breccia Dolomite
53109	134.80	0				Grey medium crystalline dolostone
53110	149.80	0				Grey fine crystalline dolostone
53111	164.80	0				Dark grey medium crystalline dolostone
53112	179.80	0				Grey medium well-crystalline dolostone
53113	194.80	0	0	0	0	Zebra Dolomite
53114	209.80	0				Argillized Zebra Dolomite
53115	224.80	0				Breccia Dolomite
53116	239.80	0				Dark grey medium well-crystal- line dolostone
53117	254.80	0	0	0	0	Breccia Dolomite
53118	269.80	0				Grey fine crystalline dolostone
53119	284.80	0				Breccia Dolomite
53120	299.80	0				Grey fine crystalline dolostone

No. 53-MJ2

53201	14.80	0		 Grey medium crystalline dolostone

Sample	Depth	Chemical	Thin	Polished			
No.	(m)	Analysis	Section	Section	Diffrac- tion	Rock Name	
53202	29.80	0				Grey medium sandy dolostone	
53203	44.80	0				Sludge of dolostone	
53204	59.80	0		j		Grey fine dolostone	
53205	74.80	0				Fine banded Zebra Dolomite	
53206	89.80	0	0	0		Black silty dolostone with breccia	
53207	104.80	0				Grey fine-medium crystalline dolostone	
53208	119.80	0				Dark grey fine aphanitic dolostone	
53209	134.80	0				Dark grey fine silty dolostone	
53210	149.80	0	,	'		Dark grey fine muddy dolostone	
53211	164.80	0	0	0		Dark grey fine sandy dolostone	
53212	179.80	0				Dark grey fine silty calcareous dolostone	
53213	190.50	0	0	0		Black bituminous mudstone Pyrite concentrated	
53214	209.80					Black fine calcareous siltstone	
53215	224.80	0	0	0	0	Black calcareous siltstone	
53216	239.80	0				Black very fine calcareous sandstone	
53217	254.80	0		:		Black bituminous calcareous siltstone	
53218	269.80	0				Black calcareous siltstone	
53219	284.80	0				Black-dark grey sandy limestone	
53220	299.80	0	0	-		Black silty limestone	

No. 53-MJ3

53301	14.80	0		Grey fine crystalline limeston	e
53302	29.80	0		Black fine muddy limestone	

Sample	Depth	Chemical	Thin	Polished	X-ray	Rock Name
No.	(m)	Analysis	Section	Section	Diffrac- tion	NOCK NAME
53303	44.80	0	0			Dark grey fine crystalline limestone
53304	58.60	0	0	0		Dark grey fine limestone (Gn. imp.)
53305	71.00	0	0	0	0	Grey fine crystalline limestone (Gn. imp.)
53306	89.80	၁				Dark grey fine aphanitic lime- stone
53307	104.80	0	0			Grey fine aphanitic limestone
53308	123.00	0	0	0	0	Grey fine fossiliferous lime- stone (Gn. imp.)
53309	134.80	0				Grey medium sandy limestone
.53310	149.80	0	0		i	Dark grey muddy limestone
53311	164.80	0			:	Grey fine silty limestone
53312	179.80	0				Grey fine aphanitic limestone
53313	194.80	0		!		Dark grey fine aphanitic lime- stone
53314	209.80	0	0			Grey coarse sandy dolomitic limestone
53315	224.80	0		j	ļ	Grey fine aphanitic limestone
53316	239.80	0				Grey very fine aphanitic lime- stone
53317	254.80	0		ļ		Grey fine aphanitic limestone
53318	269.80	0				Grey medium dolomitic limestone
53319	284.80	0			ļ	Grey medium crystalline lime- stone
53320	299.80	0	0			Grey fine sandy limestone
						•
	}					
	<u> </u>	1	1	ł	}	

A. II-5 Microscopic observation of the thin section.

	Loca	Location			
Sample No.	Hole No.	Depth (m)	Group	Rock Name	Microscopic Observations
531.01	Мо. 53-И31	14.8	n.	Biodolosparite	The rock consists of sparry dolomite (>98%) and calcite (<1%). Sparry dolomite shows mosaic texture of anhedra to subhedra (20 to 100µ in size). The larger dolomite crystals constitute fossils i.e. echinoid spines or algal filaments up to 500µ in size. Very rarely calcite is observed in anhedral form up to 300µ in size. Opaque minerals are very scarcely observed in dolomite crystals or filling cavities of dolomite crystals.
53105	No.53-W1	74.8	n	Dolosparite (Well crystalline dolomite)	The rock consists of sparry dolomite (≥ 95%), chalcedonic quartz (≤ 5%), and calcite (<0.5%). Sparry dolomite shows mosaic texture of subhedra to euhedra. Megacrystals of dolomite up to 1.5 mm x 0.8 mm in size form so-called zebra structure with smaller crystals up to 300 in size. Rarely micritic dolomite (<5%) in size) fills pores or cavities of sparry dolomite with opaque minerals. Chalcedonic quartz aggregates in irregular shape filling open spaces of dolomite crystals. Calcite exists rarely of anhedra up to 100 u m size. Opaque minerals are recognized filling cavities or pores of dolomite crystals.
53107	No.53-M11	104.8	D.	Dolosparite (Well crystalline dolomite)	The rock consists of sparry dolomite (2 98%), opaque minerals, quartz, and calcite. Sparry dolomite shows mosaic texture of subhedra to anhedra (20u to 600u in size) and is rarely observed megacrystals (0.5 cm x 1 mm in size). Opaque minerals aggregate in veinlet or fill up boundaries between dolomite megacrystals and smaller crystals. Quartz is rarely recognized as chalcedony in irregular shape up to 150u in size.
53113	No.53-MJ1	194.8	na	Zebra Dolomite (Well recrystallized dolomite)	The rock consists of almost sparry or well recrystallized dolomite. Hegacrystals up to 0.6 mm x 1.8 mm in size shows mosaic texture and construct so-called zebra structure with the band of smaller crystals up to 200u in size. Chalcedonic quartz is rarely observed forming microspheroid-like or filling cavities of dolomite crystals (100 to 300µ in size). Opaque minerals up to 40µ are very rarely recognized in irregular shape or as microspheroid in the smaller crystals.
53117	No.53-HJ1	254.8	Da	Breccia Dolomite (Dolosparite)	The rock consists of sparry dolomite (>95%), calcite (≈2%), opaque minerals, and quartz (≈1%). Macroscopic observation of the piece sample apparently shows brecciated dolomite, but under the microscope this rock is composed of almost sparry dolomite. The sparry dolomite shows mosaic texture of subhedra to euhedra and may be classified into two parts i.e. megacrystals up to 500µ and smaller crystals (15 to 150µ). Galcite is recognized in anhedra to subhedra developed lamellar twinning up to 100µ. Opaque minerals are recognized as microspheroid or in irregular shape of aggregates up to 20µ in the smaller crystals of dolomite.

No Maria	Loc	Location		•	
į	Hole No.	Depth (m)	Group	Rock Name	Microscopic Observations
53206	No.53-MJ2	89.8 89.8	na	Silty dolostone (introdolosparite)	The rock consists of dolomite (<80%), amorphous material with opaque minerals (=15%), calcite (≈5%), and quartz (<1%). Dolomite is almost sparry but micritar dolomite is included in amorphous material. Sparry dolomite shows mosale texture of subhedra to euhedra up to 300µ in size. Amorphous material with opaque minerals formed impure mud shows very low interference color. Sparry calcite shows mosaic texture of anhedra to subhedra up to 100µ in size coexisting with sparry dolomite. Quartz is recognized as chalcedony and detritus. Chalcedonic quartz is composed of very fine grained aggregate up to 50µ in diameter and detrital quartz up to 50µ in size is scattered in the impure mud or in sparry dolomite.
53210	No.53-MJ2	149.8	PU.	Dolosparite with strongly disseminated pyrite	The rock consists of sparry dolomite (≈ 60 %), pyrite grains (≤ 40 %), and detrital quartz (≤ 0.5 %). Sparry dolomite shows mosaic texture of anhedra to subhedra. Pyrite spotted or interspersed among dolomite crystals shows cube, elongated cube or aggregate up to 200µ in size.
53211	No.53-M32	164.8	PU	Dolosparite (Dolarenite)	The rock consists of sparry dolomite (>901), opaque minerals (\approx 51), amorphous material (\approx 31), calcite (<111), and quartz (<111). Sparry dolomite shows mosaic texture of subhedra to enhedra up to 300 μ in size. Opaque minerals spotted in sparry dolomite or filled cavities of sparry dolomite shows in veinlet shape up to 50 μ in width. Amorphous materials are recognized among the smaller dolomite crystals up to 120 μ in size with opaque minerals.
53215	No.53-M2	224.8	P.O.	Biopelmicrite	The rock consists of calcite (≈85%), quartz (≈10%), and opaque minerals (<5%). Sparry calcite constitutes brachlopods shells, gastropods, ostracods and others up to 1.5mm in size. Micritic calcite formed matrix up to 5µ in size, partly constitutes pellet up to 450µ in diameter. Quartz, almost detritus, coexists with micrite forming matrix up to 50µ in size. Opaque minerals are recognized in the matrix in aggregate or veinlet shape up to 100µ in size and rarely exist at the inner part of brachiopods shells. Amorphous material may be identified as tlayey material but not exactly.

Depth (m) Sapropelic calcilu- tite (Bituminous (~20%), quartz (~5%), amorphous material (~20%), opaque (~20%), quartz (~5%), amorphous material (~20%), quartz (~5%), amorphous material (~20%), quartz (~5%), amorphous materials. Micritic calcite (~20%) cemented matrix with amorphous or bituminous material shows very fine anhedra up to 10µ in size. Amorphous material shows very dark greyish brown in color and very low interference color. It may be bituminous or saplopelic material. Opaque minerals are recognized in irregular shape partly cubic accompanied with amorphous material. Quartz, almost detrital quartz is rarely observed in the matrix up to 30µ in size. Plagioclase is also observed as fragment up to 20µ in size very rarely and shows albite twinning.	PU Detrital sparite (≈1%), opaque minerals (≤1%), detrital quartz (≈2%), chalcedonic quartz (≈1%), opaque minerals (≤1%), and amorphous aggregates (≈2%). Sparry calcite (≈40%) aggregates of 3 crystals or more in subhedra to anhedra. Micritic calcite (30%) formed matrix shows equigranular texture (2 to 5u in size). Detrital quartz is recognized within the matrix in angular or subangular shape up to 80u in size. Chalcedonic quartz fills up cavities or pores of calcite crystals up to 150u in size. Opaque minerals are very rare forming microspheroid or irregular shape. Amorphous aggregates form pellets with quartz fragments and calcite up to 1 mm x 2.5 mm in diameter.	Hociasparmicrite The rock consists of micritic calcite (~40%), sparry calcite (~30%), detrital quartz (~2%), chalcedonic quartz (~2%), and opaque minerals (~1%). Micritic calcite formed matrix shows very fine grained up to 5µ in size and partly constitutes algal pellets (30 to 80µ in diameter). Sparry calcite built up algal filaments, echinoid spines, fragments of bryozoan and unknown line clast, shows mosaic texture of anhedra up to 100µ in size. Detrital quartz sported in matrix (20 to 40µ in size) is angular or subangular fragment. Chalcedonic quartz radiated or shown wave extinction may be derived from fragment of radiolaria (30 to 50µ in size). Amorphous material formed pellet (30 to 60µ in diameter) shows very dark brown in color. Opaque minerals are rarely recognized in very fine grained up to 5µ in size and partly
No.53-MJ2 229.8	No.53-MJ3 58.6	No.53-MJ3 71.0

(4)		, amorphous rizz (≈ 0.5%). . lime clast the matrix l debris matrix shows orted in t or micro in in color. partly rarely	e (=40X), ital quartz rmed megacrys- texture of texture of rpe (100 to files among 0p in size).	detrital s (20.5%). crospheroid ed pellets noid spine, halcedonic rely recognized minerals are 0 to 50µ in
	Microscopic Observations	The rock consists of calcite(5x), detrital quartz (<20%), amorphous material (<5%), opaque minerals (<1%), and chalcedonic quartz (≈ 0.5%). Calcite may be classified into 3 types i.e. sparry calcite, line clast and micrite. Sparry calcite aggregates of five or more in the matrix (50 to 600µ in size). Lime clast may be derived from algal debris or algal fragments (150 to 800µ). Micritic calcite formed matrix shows very fine grained up to 5µ in size. Detrical quartz is spotted in matrix up to 60µ in size. Amorphous material formed pellet or micro ellipsoid (50 to 200µ in dameter) shows brown to dark brown in color. Opaque minerals are very rare in tiny size (2µ to 40µ) and partly aggregated in irregular shape. Chalcedonic quartz is very rarely observed up to 150µ in size with fine grained opaque minerals.</td <td>The rock consists of sparry calcite (=55%), sparry dolomite (=40%), chalcedonic quartz (=3%), opaque minerals (=1%), and detrital quartz (=1%). Sparry calcite shows mosaic texture of anhedra formed megacrystal up to 600µ in size. Sparry dolomite shows also mosaic texture of subhedra to euhedra (50 to 100µ in size). Chalcedonic quartz filled open space of dolomite crystals aggregates in irregular shape (100 to 200µ in size). Opaque minerals are recognized filling cavities among dolomite crystals or gathering in irregular shape (5 to 150µ in size). Detrital quartz are rarely observed in dolomite crystals (10 to 30µ in size).</td> <td>The rock consists of pellets (>55%), sparry calcite (<35%), detrital quartz (<10%), potash felspar (<0.5%) and opaque minerals (<0.5%). Pellet is composed of micritic calcite (1-2µ) and shows microspheroid (30-12µ) in diameter). Sparry calcite filled up or cemented pellets shows mosaic texture of anhedra and rarely constructs echinoid spine, ostracods and bryozoan. Detrital quartz is often observed in sparry calcite with thalcedonic quartz (20 to 80µ in size). Detrital potash felspar is rarely recognized in pellet or sparry dolomite (20 to 50µ in size). Opaque minerals are rarely observed in irregular shape partially cubic form (20 to 50µ in size).</td>	The rock consists of sparry calcite (=55%), sparry dolomite (=40%), chalcedonic quartz (=3%), opaque minerals (=1%), and detrital quartz (=1%). Sparry calcite shows mosaic texture of anhedra formed megacrystal up to 600µ in size. Sparry dolomite shows also mosaic texture of subhedra to euhedra (50 to 100µ in size). Chalcedonic quartz filled open space of dolomite crystals aggregates in irregular shape (100 to 200µ in size). Opaque minerals are recognized filling cavities among dolomite crystals or gathering in irregular shape (5 to 150µ in size). Detrital quartz are rarely observed in dolomite crystals (10 to 30µ in size).	The rock consists of pellets (>55%), sparry calcite (<35%), detrital quartz (<10%), potash felspar (<0.5%) and opaque minerals (<0.5%). Pellet is composed of micritic calcite (1-2µ) and shows microspheroid (30-12µ) in diameter). Sparry calcite filled up or cemented pellets shows mosaic texture of anhedra and rarely constructs echinoid spine, ostracods and bryozoan. Detrital quartz is often observed in sparry calcite with thalcedonic quartz (20 to 80µ in size). Detrital potash felspar is rarely recognized in pellet or sparry dolomite (20 to 50µ in size). Opaque minerals are rarely observed in irregular shape partially cubic form (20 to 50µ in size).
	Rock Name	Bioclasparmicrite (Calcisiltite)	Dolomitic limestone (Dolomitic sparite)	Sandy limestone (Pelsparite)
	Group	DA .	PU	D.A.
tion	Depth (m)	123.0	209.8	299.8
Location	Hole No.	No.53-MJ3	No.53-MJ3	No.53-MJ3
	Sample No.	53308	53314	53320

A. II-6 Microscopic observation of the polished section.

A. II-6 Microscopic observation of the polished section.

	ALCTOSCOPIC UDSELVALIONS	The ore minerals are very few in this specimen. Goethite, pyrite, and sphalerite is observed. Goethite associated with lepidocrocite shows pseudomorph after pyrite in microsphere or frambold up to 10u in diameter. Pyrite shows framboldal form or microsphere up to 5u in diameter. Sphalerite is scarcaly recognized in irregular shape or blab-like up to 20u in 81ze, filling pores and cavities among dolomite crystals.	Cu Pb Zn 5 ppm, 27 ppm, 60 ppm	Galena mono crystal is observed in only the appointed specimen. The galena (600 x 800 u) is pure white in color observed characteristic triangle pits. Around the rim of galena, cerusalte is recognized in grey color and shows worm-caten-like form up to 20 u in size. Goethite replaced pyrite shows cubic or framboidal form up to 20 u in size in grey bluish tint color. Pyrite, creamy yellow in color, shows microsphere or framboidal form up to 20 u in diameter. Sphalerite is very rare and only recognized in irregular shape up to 30 u in size filling cavities among dolomite crystals.	Cu Pb Zn 3 ppm, 24 ppm, 19 ppm	The ore minerals are very few in this specimen. Pyrite associated with goethite shows framboldal form or microsphere up to 10 in diameter. Goethite shows pseudomorph after pyrite in cube and frambold (5-20 in size). Sphalerite is scarcely observed in frambold or microspheroid (5 to 20 in diameter).	Cu Pb Zn 4 ppm, 27 ppm, 26 ppm	The ore minerals are recognized as pyrite and magnetite. Pyrite is generally observed in cube or framboid up to 60u in size and is scattered as starflecked sky. Magnetite fragments up to 30u in size are scarcely observed in only the cavities among dolomite crystals.	Cu Pb Zn 5 ppm, 31 ppm, 14 ppm
Down Jane	MOUN Marie	Breccia Dolomite		Dolostone		Zebra Dolomíte		Breccia Dolomite	
lon	Depth (m)	74.8		104.8		194.8		254.8	
Location	Hole No.	No.53-MJ1		No.53-M1		No.53-M11		No.53-MJ	
1	Sample NO.	53105		53107		53113		53117	

Microscopic Observations	A few galena grains (1 mm x 1,5 mm - 2 mm x 3 mm) are observed in this specimen. Galena of subhedra is replaced by cerussite along cleavage oscillately and around the rim. Gerussite is recognized in lattice form or in worm-eaten-like up to 20u in width surrounding galena. Goethite shows pseudomorph after pyrite in cubes or in framboid up to 120u in diameter. Pyrite, the remnant of replacement in creamy yellow color, exists rarely in framboid up to 10u in diameter. Cu Pb Zn 3 ppm, 533 ppm, 299 ppm	grains (1 mm x 1 m pores of calcite irround the rim. m and lattice sha seudomorph of aft t, the relict of all to 20u in size.	Cu Pb Zn 4 ppm, 686 ppm, 299 ppm	The ore minerals are rare in this specimen. Pyrite spotted in the matrix of calcite crystals, shows in framboidal or cubic form up to 20µ in diameter. Goethite shows pseudomorph after pyrite of framboid or cube up to 50µ in size. Sphalerite is scarcely observed in irregular shape of anhedra up to 30µ in size.	Cu Pb Zn 6 ppm, 158 ppm, 277 ppm
Rock Name	Limestone	Limestone		Limestone	
tion Depth (m)	58 6m	71.0		123.0	
Location Hole No. De	No.53-MJ3	No.53-MJ3		No.53-MJ3	
Sample No.	53304	53305	E 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	53308	

A. II-7 Fossils under microscopic observation.

··· I				•	7
Estimated Age	Jurassic	Jurassic	Jurassic	Jurassic	Jurassic
Fossils	Shell fragments (not identified)	Not identified	Shell fragments (not identified)	Echinoid spine and shell	Shell fragments of gastropods and bivalves
Stratigraphical Units	Pucara Group	Pucara Group	Pucara Group	Pucara Group	Pucara Group
Hole No.	No.53-MJ1	No. 53-MJ1	No.53-MJ3	No.53-MJ3	No.53-MJ3
Sample No.	53104	53106	53303	53307	53310

A. II-8 Photomicrographs of rocks, ores, and fossils.

(1) Thin Section of Rocks

Sample No.	Hole No.	Rock Name
53105	53-MJ1	Breccia Dolomite
53107	53-MJ1	Dolostone
53117	53-MJ1	Breccia Dolomite
53210	53-MJ2	Muddy dolostone
53215	53-MJ2	Calcareous siltstone
53220	53-MJ2	Silty limestone
53304	53-MJ3	Limestone
53305	53-MJ3	Limestone with Echinoid
53308	53-MJ3	Limestone with Algal
53314	53-MJ3	Dolomitic limestone
53320	53-MJ3	Limestone

Abbreviations

Bit : Bituminous Brp : Brachiopod Al : Algal

cal: calcite

dol : dolomite

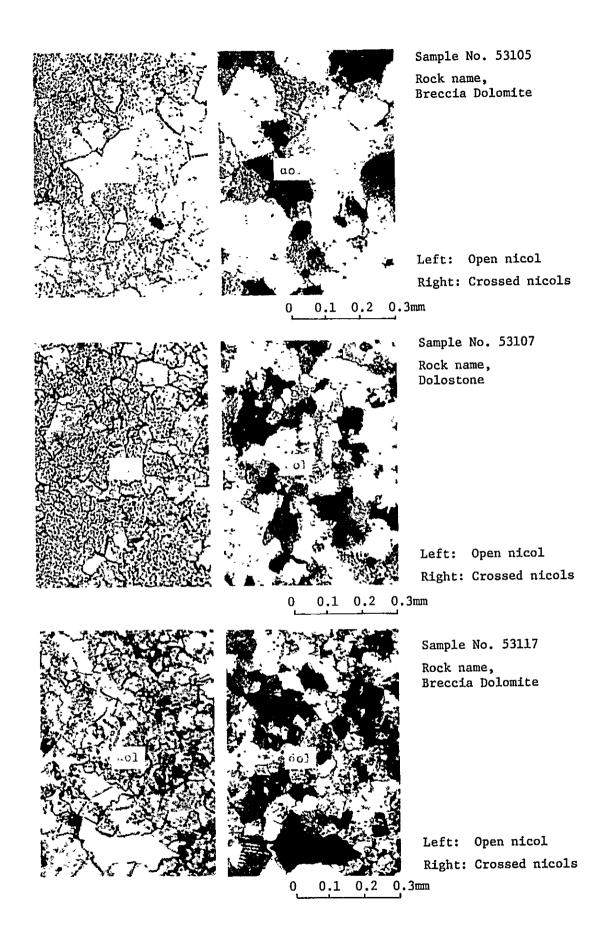
Pel : Pellet

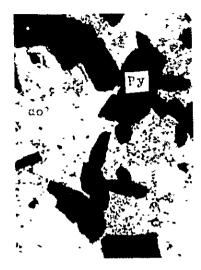
Py : Pyrite

qz : quartz

(2) Polished Section of Ores

Sample No.	Hole No.	Rock Name
53107	53-MJ1	Dolostone with galena
53206	53-MJ2	Silty dolostone
53211	53-MJ2	Dolostone with pyrite
53213	53-MJ2	Dolostone with ore
53304	53-MJ3	Limestone with ore
53305	53-MJ3	Limestone with ore
53308	53-MJ3	Limestone with pyrite

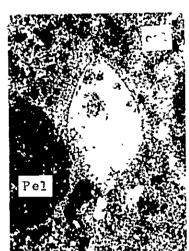

Abbreviations

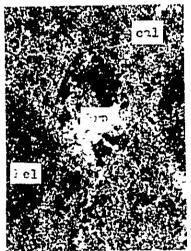

Gn : Galena Py : Pyrite Sp : Sphalerite

(3) Fossils

- Fig. 1. Slightly recrystallized colitic limestone with shell fragments, 53104.
- Fig. 2. Distinctly dolomitized limestone, 53106.
- Fig. 3. Slightly recrystallized muddy limestone with shell fragments, 53303.
- Fig. 4. Slightly dolomitized muddy limestone with echinoid spine and shell, 53307.
- Fig. 5. Slightly recrystallized muddy limestone with shell fragments of gastropods and bivalves, 53310.

All figs. x 5.

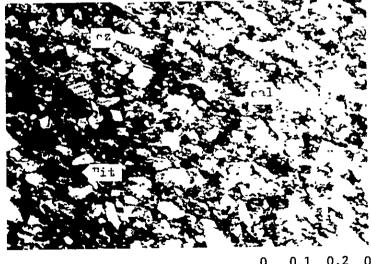




Sample No. 53210 Rock name, Muddy dolostone

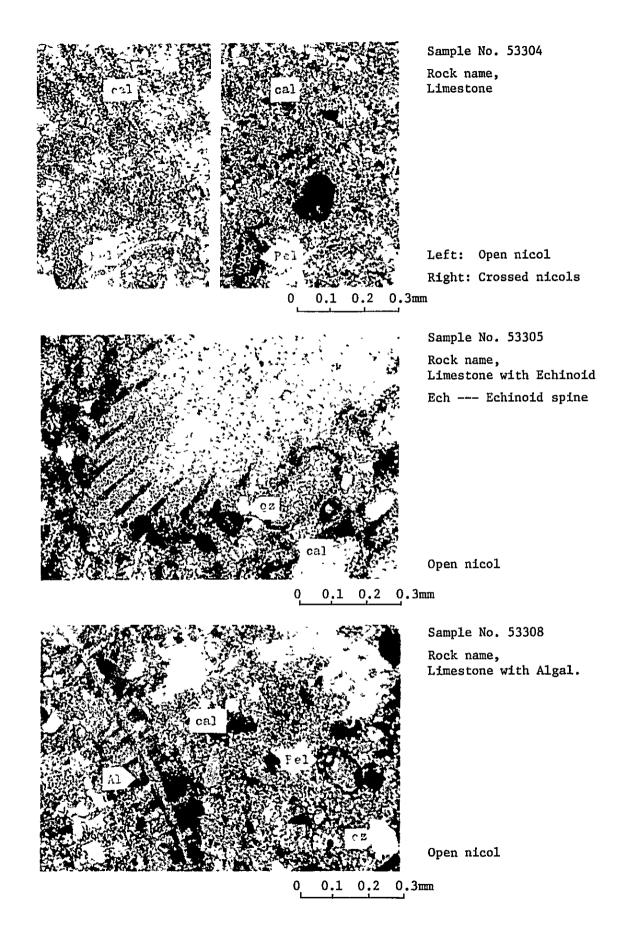
Left: Open nicol
Right: Crossed nicols

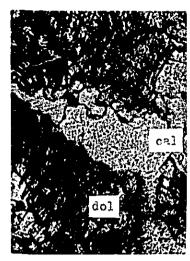
0 0.1 0.2 0.3mm

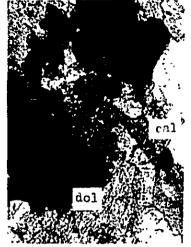


Sample No. 53215 Rock name, Calcareous siltstone

Left: Open nicol
Right: Crossed nicols

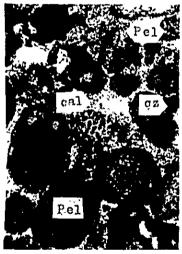

0 0.1 0.2 0.3mm




Sample No. 53220 Rock name, Silty limestone

Open nicol

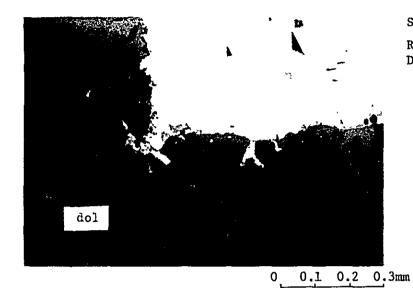
0 0.1 0.2 0.3mm

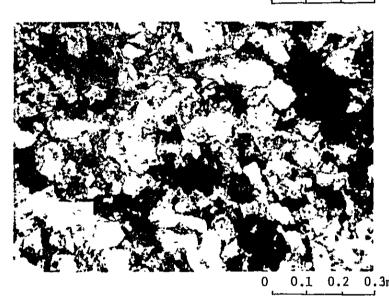


Sample No. 53314
Rock name,
Dolomitic Limestone

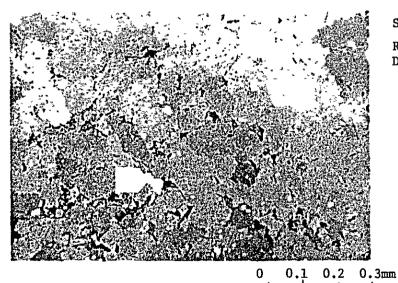
Left: Open nicol
Right: Crossed nicols

 $0 \quad 0.1 \quad 0.2 \quad 0.3 mm$

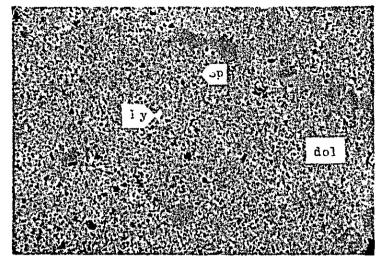



Sample No. 53320 Rock name, Limestone

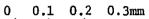
Left: Open nicol
Right: Crossed nicols

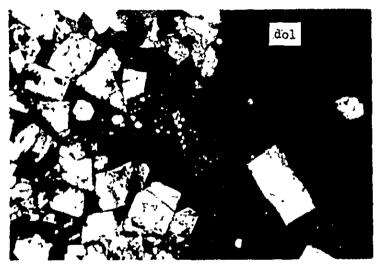

0 0.1 0.2 0.3mm

Sample No. 53107 Rock name, Dolostone with galena

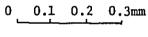


Sample No. 53206 Rock name, Silty dolostone

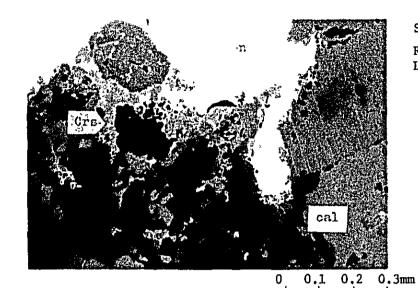


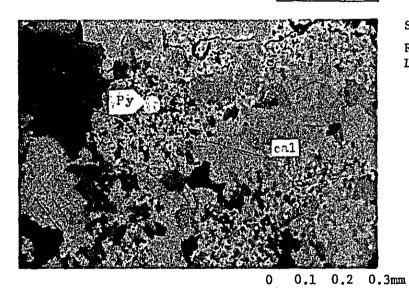

Sample No. 53211
Rock name,
Dolostone with pyrite.

A - 125

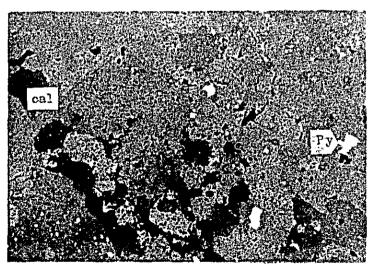


Sample No. 53213 Rock name, Dolostone with ore.

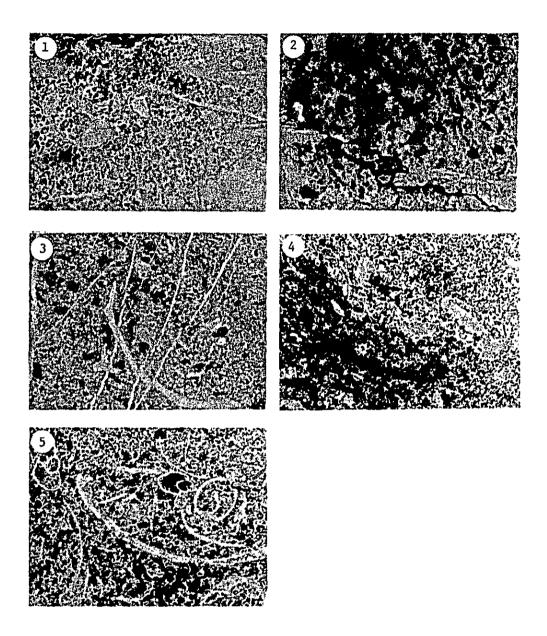

Sample No. 53213
Rock name,
Dolostone with pyrite.



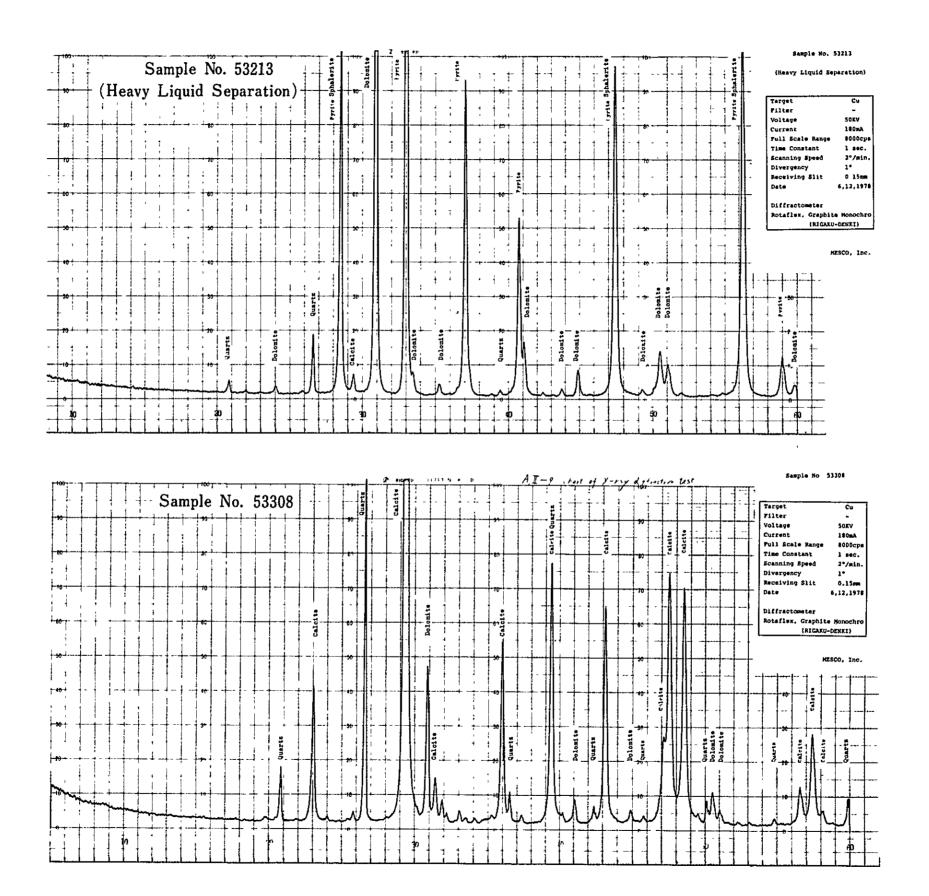
Sample No. 53304 Rock name, Limestone with ore.


0 0.1 0.2 0.3mm

Sample No. 53305 Rock name, Limestone with ore.



Sample No. 53305
Rock name,
Limestone with pyrite.


Sample No. 53308
Rock name,
Limestone with pyrite.

0 0.1 0.2 0.3mm

A. II-9 Chart of X-ray diffraction test.

A. II-10 Results of X-ray diffraction test.

Sample No. Minerals	Quartz	Calcite	Dolomite	Sericite	Sphalerite	Pyrite
53113	•	•	0			
53117	٥	0	0			•
*53213	0	•	0		0	0
*53215	0	0	0		0	0
53305	0	0	•	•		
53308	0	0	0			

* Heavy liquid separation

A. II-II Chemical analysis of boring core samples.

No. 53-MJ1

53204

Sample No.	Depth (m)	Assay				
		Cu (ppm)	Pb (ppm)	Zn (ppm)	Mg (%)	
53101	14.80 ∿ 15.00	6	36	31	11.6	
53102	29.80 ∿ 30.00	6	28	22	12.2	
53103	44.80 ∿ 45.00	17	27	328	12.0	
53104	59.80 ∿ 60.00	4	24	13	10.7	
53105	74.80 ∿ 75.00	5	27	60	11.8	
53106	89.80 ∿ 90.00	3	26	8	12.5	
53107	104.80 ∿ 105.00	3	24	19	12.4	
53108	119.80 ∿ 120.00	3	25	10	12.6	
53109	134.80 ∿ 135.00	2	25	10	12.4	
53110	149.80 ∿ 150.00	3	27	28	12.3	
53111	164.80 ∿ 165.00	3	24	20	12.9	
53112	179.80 ∿ 180.00	3	24	19	13.0	
53113	194.80 ∿ 195.00	4	27	26	12.7	
53114	209.80 ∿ 210.00	8	30	122	11.1	
53115	224.80 ∿ 225.00	4	24	54	11.2	
53116	239.80 ∿ 240.00	5	31	1.5	11.3	
53117	254.80 ∿ 255.00	5	31	14	11.6	
53118	269.80 ∿ 270.00	4	26	1.3	12.1	
53119	284.80 ~ 285.00	4	27	10	11.6	
53120	299.80 ∿ 300.00	3	24	12	11.9	
No. 53-MJ2						
53201	14.80 ∿ 15.00	4	27	42	12.7	
53202	29.80 ∿ 30.00	3	27	15	13.1	
53203	44.80 ∿ 45.00	4	28	41	12.6	

3

24

59.80 ∿ 60.00

12.7

12

Sample No.	Depth (m)	Assay				
		Cu (ppm)	Pb (ppm)	Zn (ppm)	Mg (%)	
53205	74.80 ∿ 75.00	3	21	11	11.2	
53206	89.80 ~ 90.00	12	69	29	9.7	
53207	104.80 ∿ 105.00	30	56	36	9.1	
53208	119.80 ∿ 120.00	4	27	12	12.7	
53209	134.80 ∿ 135.00	8	40	22	8.3	
53210	149.80 ∿ 150.00	17	87	71	11.0	
53211	164.80 ∿ 165.00	7	42	29	10.5	
53212	179.80 ∿ 180.00	8	42	20	10.6	
53213	190.50 ∿ 190.70	6	110	19,080	5.2	
53214	209.80 ~ 210.00	18	33	23	1.8	
53215	224.80 ~ 225.00	22	27	128	0.8	
53216	239.80 ~ 240.00	19	27	29	0.9	
53217	254.80 ∿ 255.00	36	30	57	1.4	
53218	269.80 ∿ 270.00	14	27	320	0.7	
53219	284.80 ∿ 285.00	16	25	243	1.4	
53220	299.80 ∿ 300.00	16	26	70	0.7	
No. 53-MJ3						
53301	14.80 ∿ 15.00	4	77	120	2.1	
53302	29.80 ∿ 30.00	5	50	165	0.2	
53303	44.80 ∿ 45.00	5	283	384	5.0	
53304	58.60 ∿ 58.80	3	533	299	0.4	
53305	71.00 ∿ 71.20	4	686	299	0.3	
53306	89.80 ∿ 90.00	8	178	291	0.2	
53307	104.80 ~ 105.00	16	59	507	1.8	
53308	123.00 ~ 123.20	6	158	277	0.8	
53309	134.80 ~ 135.00	11	600	643	2.7	

Sample No.	Depth (m)	Assay				
		Cu (ppm)	Pb (ppm)	Zn (ppm)	Mg (%)	
53310	149.80 ∿ 150.00	12	50	560	1.7	
53311	164.80 ∿ 165.00	7	34	205	0.4	
53312	179.80 ∿ 180.00	5	32	107	0.3	
53313	194.80 ∿ 195.00	5	40	157	0.3	
53314	209.80 ~ 210.00	3	27	451	10.0	
53315	224.80 ~ 225.00	6	38	160	0.2	
53316	239.80 ∿ 240.00	6	41	275	0.4	
53317	254.80 ∿ 255.00	39	390	883	6.2	
53318	269.80 ∿ 270.00	10	44	2,210	9.6	
53319	284.80 ∿ 285.00	4	30	453	10.9	
53320	299.80 ∿ 300.00	8	55	259	0.3	
) }	
!						
			ļ			
			ļ			