- (6) Working expendables for gasification test
- (7) Maintenance tools and materials for general purpose

The details are shown in Fig. 4-4-1 and Table 4-4-1 to Table 4-4-6.

4-5 PLAN ON ERECTION WORK

.

,

The technical specification of erection work is studied as shown Appendix 6.

LIST of FIGURE and TABLE

•

Table.4-2-1	Design condition
Fig. 4-2-1	Main components of coal gasification test facilities
Fig. 4-2-2	Drawing of whole plan
Fig. 4-2-3	Drawing of front view
Fig. 4-2-4	Drawing of side view
Fig. 4-2-5	Assemble drawing of coal drying system
Fig. 4-2-6	Assemble drawing of coal pulverize and coal
	injection system
Fig. 4-2-7	Assemble drawing of melting furnace
Fig. 4-2-8	Assemble drawing of runner
Fig. 4-2-9	Assemble drawing of gasifier
Fig. 4-2-10	Assemble drawing of main lance and sub-lance
Fig. 4-2-11	Assemble drawing of produced gas filtration
	system(1)
Fig. 4-2-12	Assemble drawing of produced gas filtration
	system(2)
Fig. 4-2-13	Assemble drawing of Produced gas filtration
· · · · · · · · · · · · · · · · · · ·	system(3)
Fig. 4-2-14	Assemble ground flare burner
Fig. 4-2-15	Assemble drawing of slag treatment system
Fig. 4-2-16	Assemble drawing of partial dust collector
Fig. 4-2-17	Piping diagram (1)
Fig. 4-2-18	Piping diagram (2)
Fig. 4-2-19	Arrangement drawing of N2, O2, & LPG collected
116, 1010	equipment
Fig. 4-2-20	Anchor plan
Fig. $4-2-21$	System configuration
Fig. 4-2-21	Single line diagram
Fig. $4-2-23$	Piping & instrument diagram
Table.4-2-2	Principal specification
Table.4-2-3	Motor list
Table.4-2-4	Instrument list
	Engineering flow diagram
Fig. $4-2-24$	
Table. $4-2-5$	Utility balance
Table.4-3-1	Schedule for erection, trial run, commissioning & test
Table.4-3-3	a test Standard time schedule for a coal gasification
18010.4-3-5	test run
Table.4-3-2	Test items for erection, trial run, commissioning
14016.4-2-2	å test
Fig. 4-3-1	Organization for Counterpart team
Fig. 4-4-1	Drawing of battery limit
Table. $4-4-1$	List of materials and utilities supplied by
1001014-4-1	Counterpart
Table.4-4-2	List of equipments, tools and consumables for
10,010,11-1-4	chemical analysis supplied by Counterpart
Table.4-4-3	List of office furniture supplied by Counterpart
Table.4-4-4	
10016,4-4-4	List of working tools and working expendables supplied by Counterpart
Table.4-4-5	List of maintenance tools and maintenance
14016.4-4-0	materials supplied by Counterpart
Toble 1 1 6	Power source capacity in analysis room supplied
Table.4-4-6	
	by Counterpart

ITEM	DESIGN CONDITION			
1. Climate Data				
	Ambient Temperature			
	Daily maximum tempera	ture 33.0 °C		
	Yearly maximum temper			
	Daily minimum tempera			
	Yearly minimum temper			
	Daily normal/average			
		at 7:0		
	Daily normal/average			
		at 13:0		
	Daily normal/average			
	party normary avorage	at 18:0		
	Relative Humidity			
	Daily maximum humidit	y 96 %		
		24 °C at 7:		
	Daily minimum humidit			
		32 °C at 13:		
	Daily normal humidity			
	builty normal number of	at 7:0		
	Daily normal humidity			
	barry morman maminary	at 13:0		
	Daily normal humidity			
	party normal namearoy	at 18:0		
2. Materials				
(1) Coal	Moisture	Max. 35 %		
	Size	- 50 mm		
	• •			
(2) Calcined lime	Component	90 % Cao over		
		4-8 % CO2		
	Size	– 30 mm		
(3) Scrapped	Component	Fe 93-96 %		
iron		C 3-3.5 %		
		Si 1-2 %		
	Size	about 110 mm Dia.		
3. Utilities				
(1) Oxygen	as cylinders			
	Purity	99 % over		
	Temperature	ambient temperature		
	Pressure	10 kg/cm2G		
(2) Nitrogen	as cylinders			
	Purity	99 % over		
	Temperature	ambient temperature		
	Pressure	10 kg/cm2G		

Table.4-2-1.(1) Design Condition

•

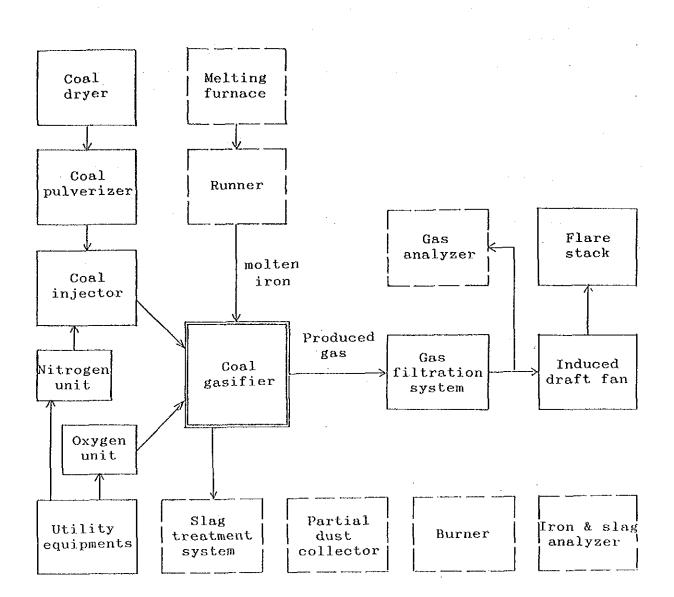
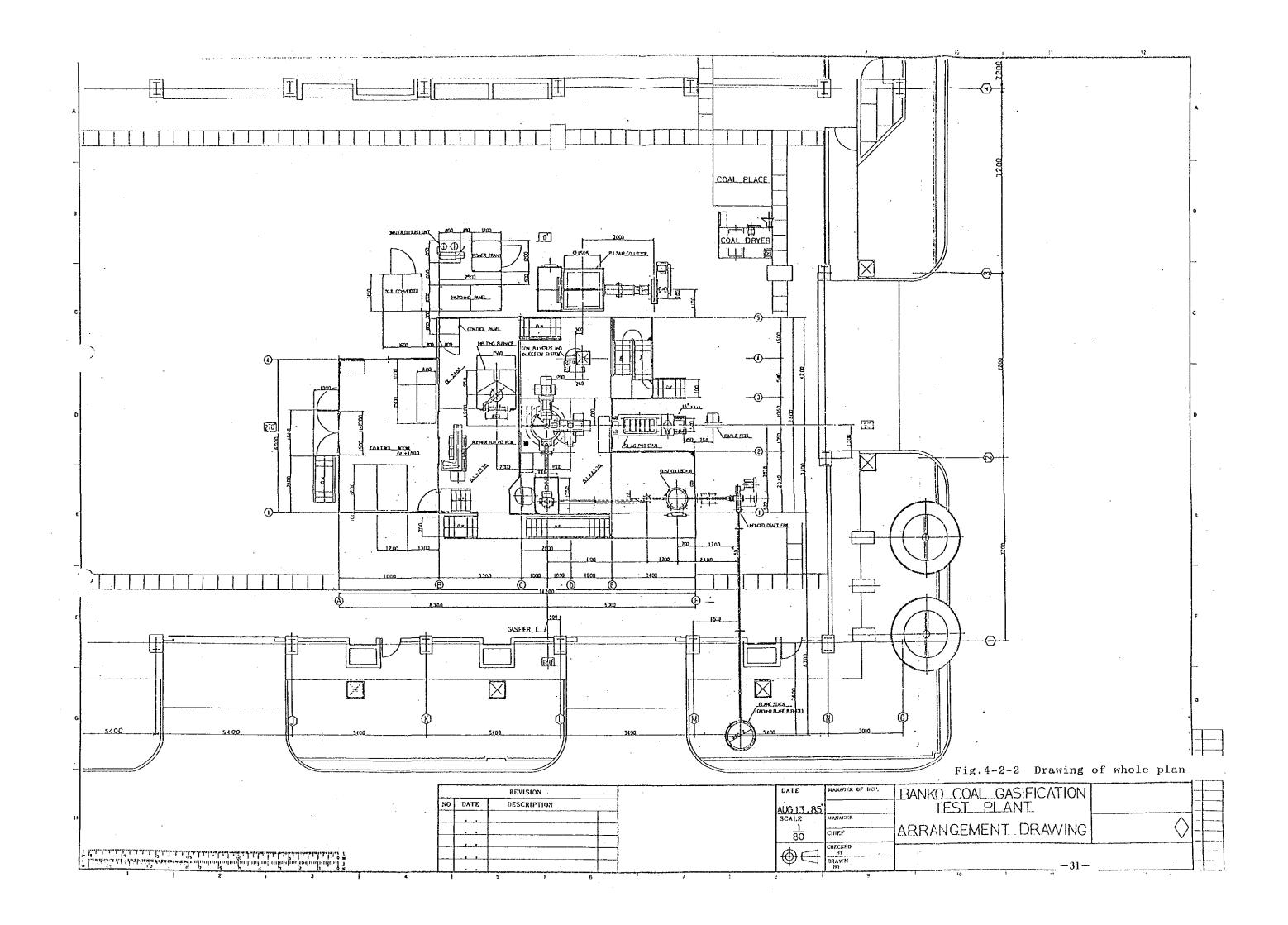
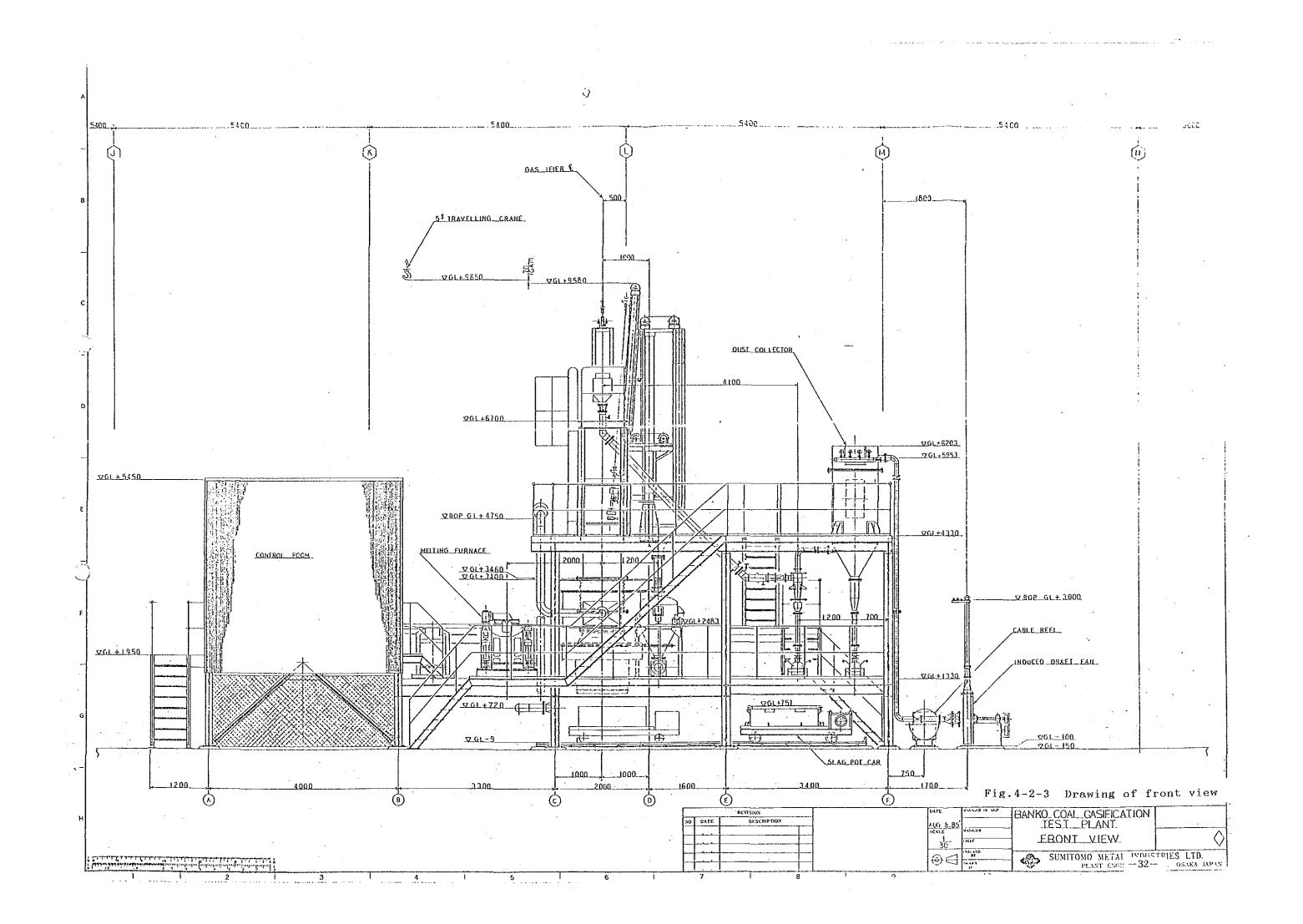
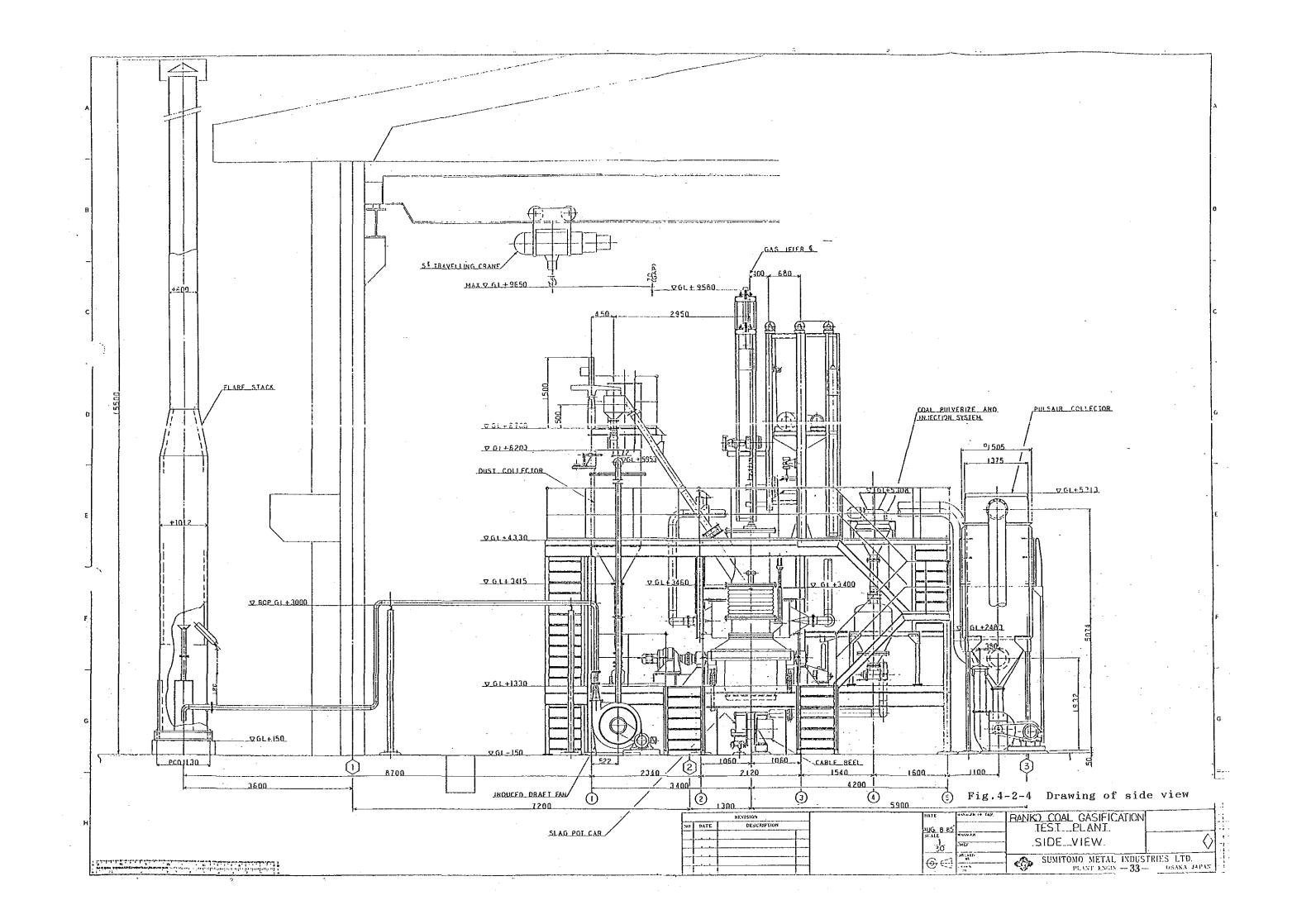
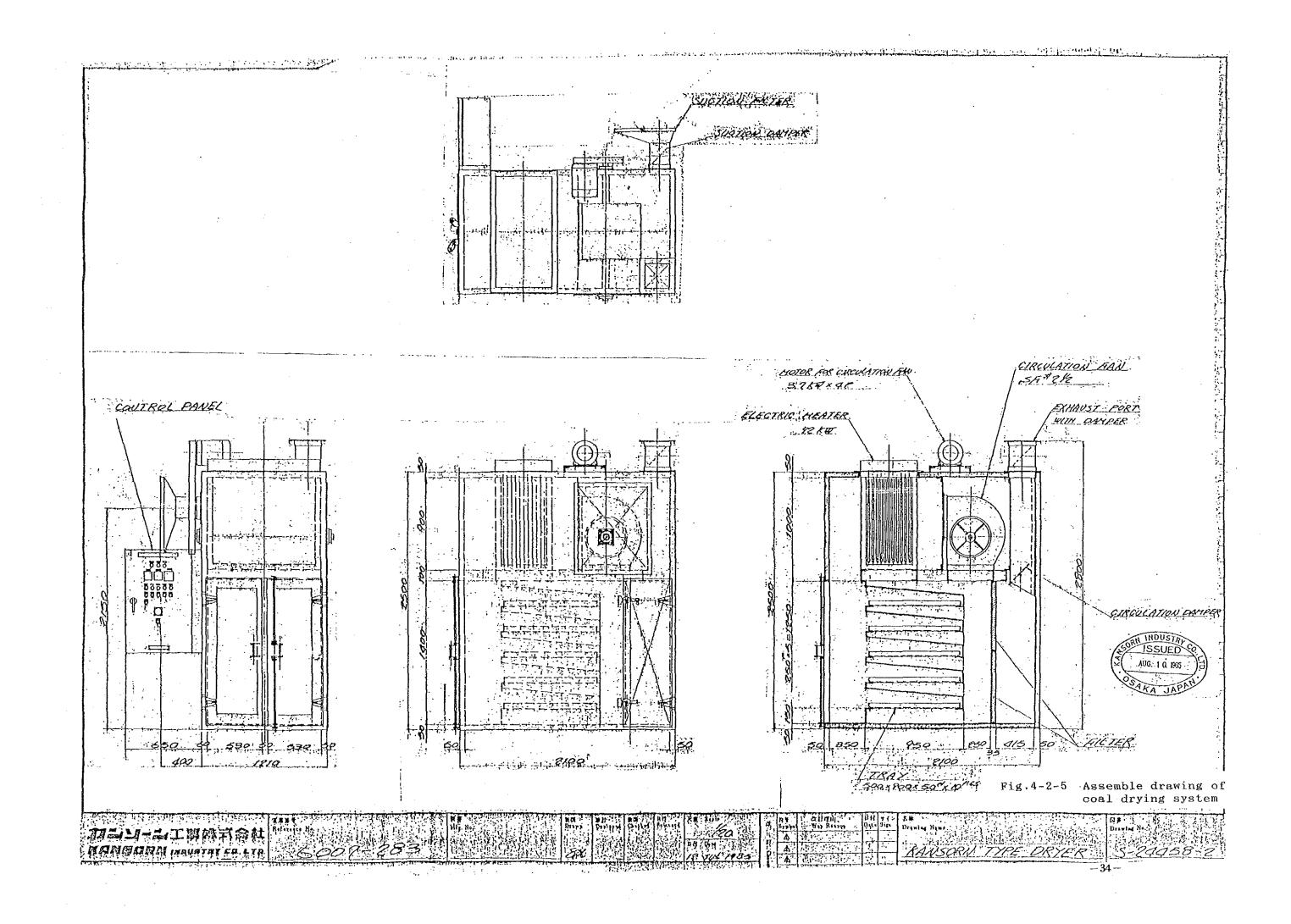

	ITEM	DESIGN CONDITION	
(3)	Electric Power	Frequency Phase Voltage Power	50 Hz 3 phase 380 V ± 10 % Max. 350 KVA
(4)	Compressed Air	Temperature Pressure	ambient temperature Min. 6 kg/cm2G
(5)	Compressed Air	for Instrumentation Temperature Pressure Dew point	ambient temperature Min. 6 kg/cm2G 0 °C
(6)	Cooling Water	Water analysis Color Turbidity Odor Taste PH Solid Content Conductivity Organic Content Free CO2 Content Alkalinity Phenol phtalein Methyl orange Carbonate Hydroxide Bicarbonate Hardness Calcium Magnesium Iron content Sulfate content Phosphate Ammonium content Nitrate content Silica content Residual chlorine Temperature Pressure	20 Pt.Co No No 6.5 4.1 ppm - 4.4 ppm KMnO4 No 0 ppm CaCO3 40.0 ppm CaCO3 0 ppm CaCO3 0 ppm CaCO3 4.28 ppm Ca++ 1.72 ppm Mg++ negative negativ
(7)	Liquefied Petro	oleum Gas as cylinder Calorific Value Temperature Pressure	24000 kcal/Nm3 over ambient temperature 2 kg/cm2G

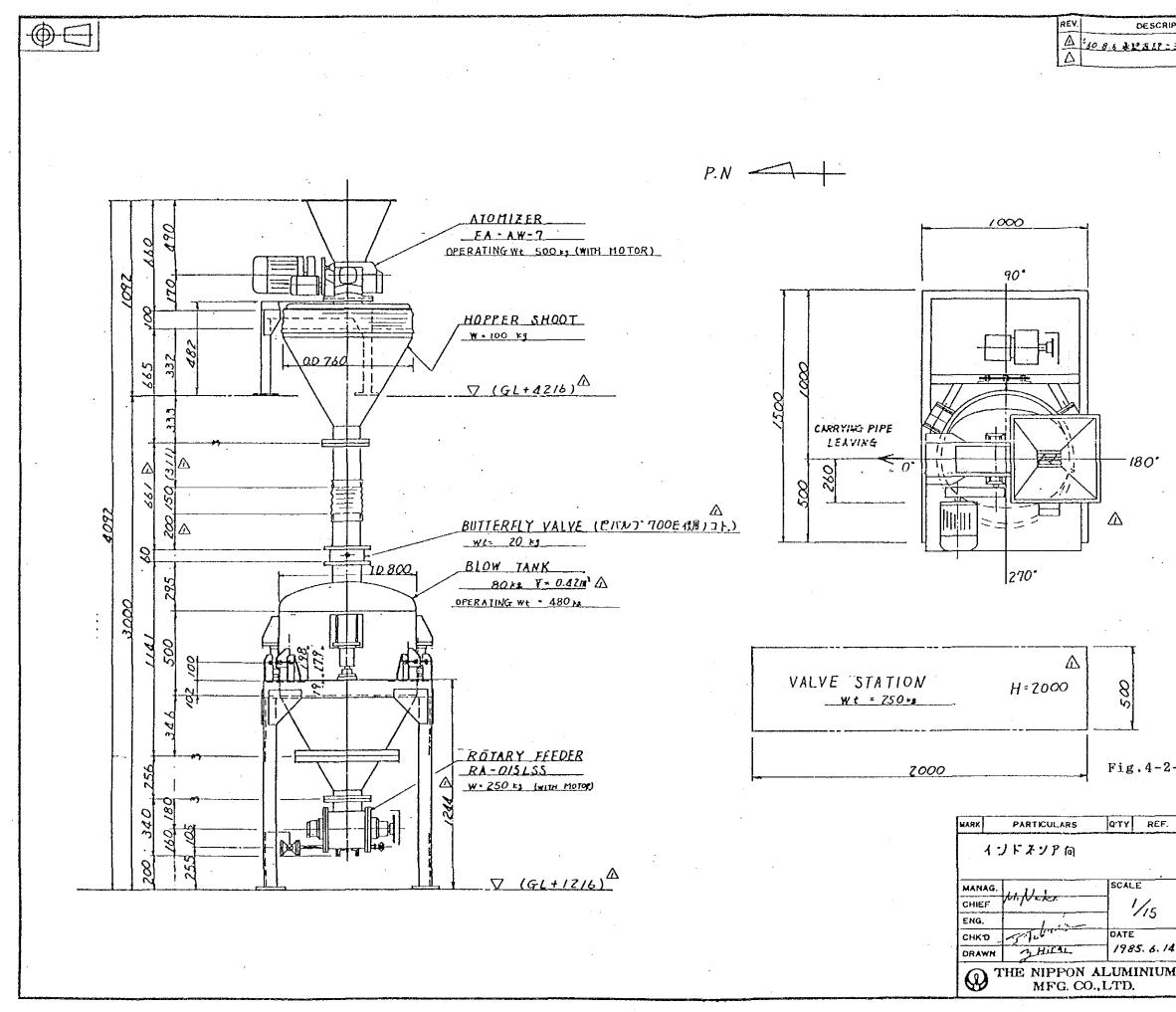
Table.4-2-1.(2) Design Condition

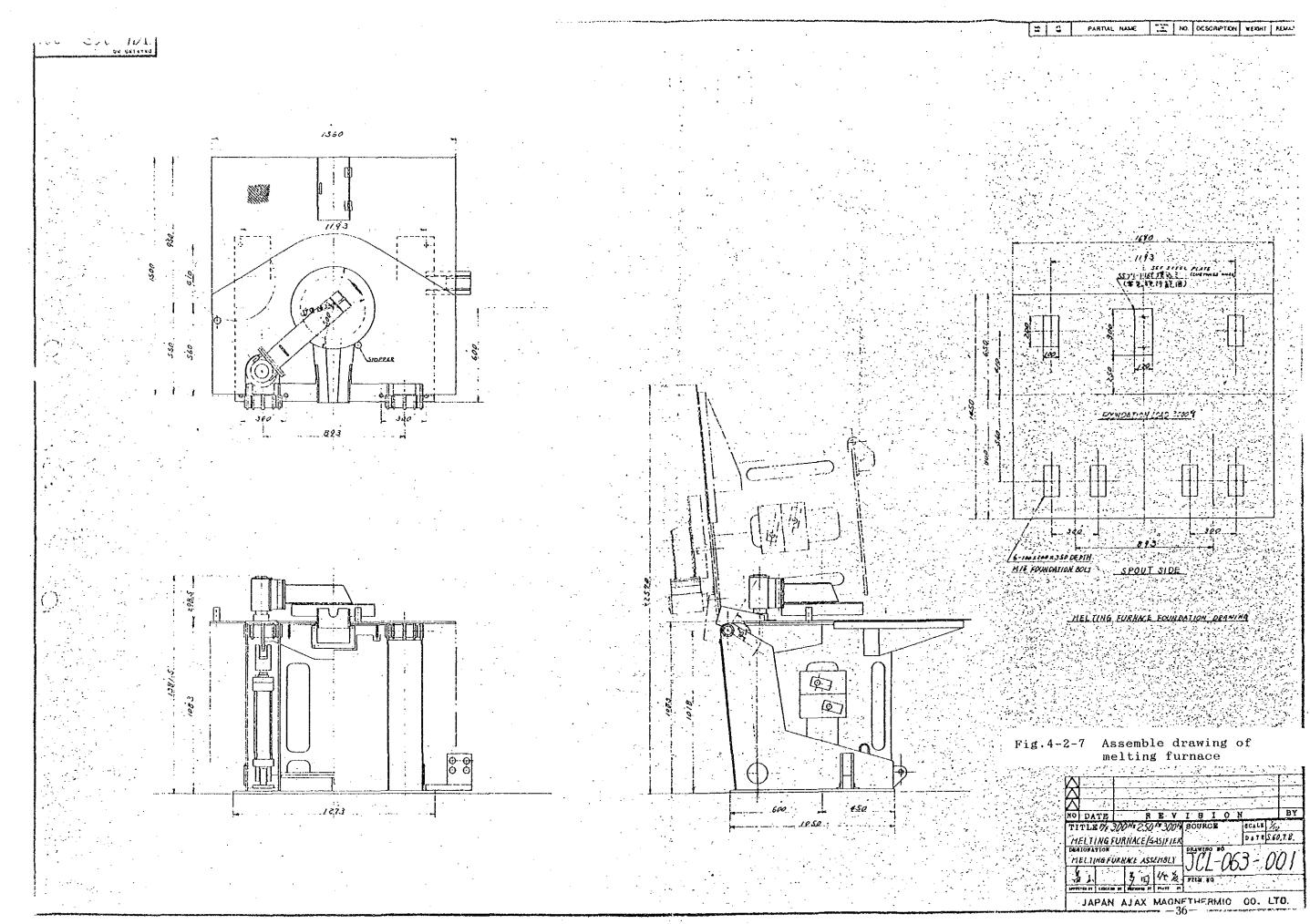

DESIGN CONDITION	
Temperature	inlet temperature + Max.10 °C
Component	Fe tot. 40-50 % C 10-25 %
Flow rate	3 kg/h
Basicity Flow rate	CaO/SiO2= 1.5 2.4 kg/h
Flow Rate	64.5 Nm3/h
	Temperature Component Flow rate Basicity Flow rate

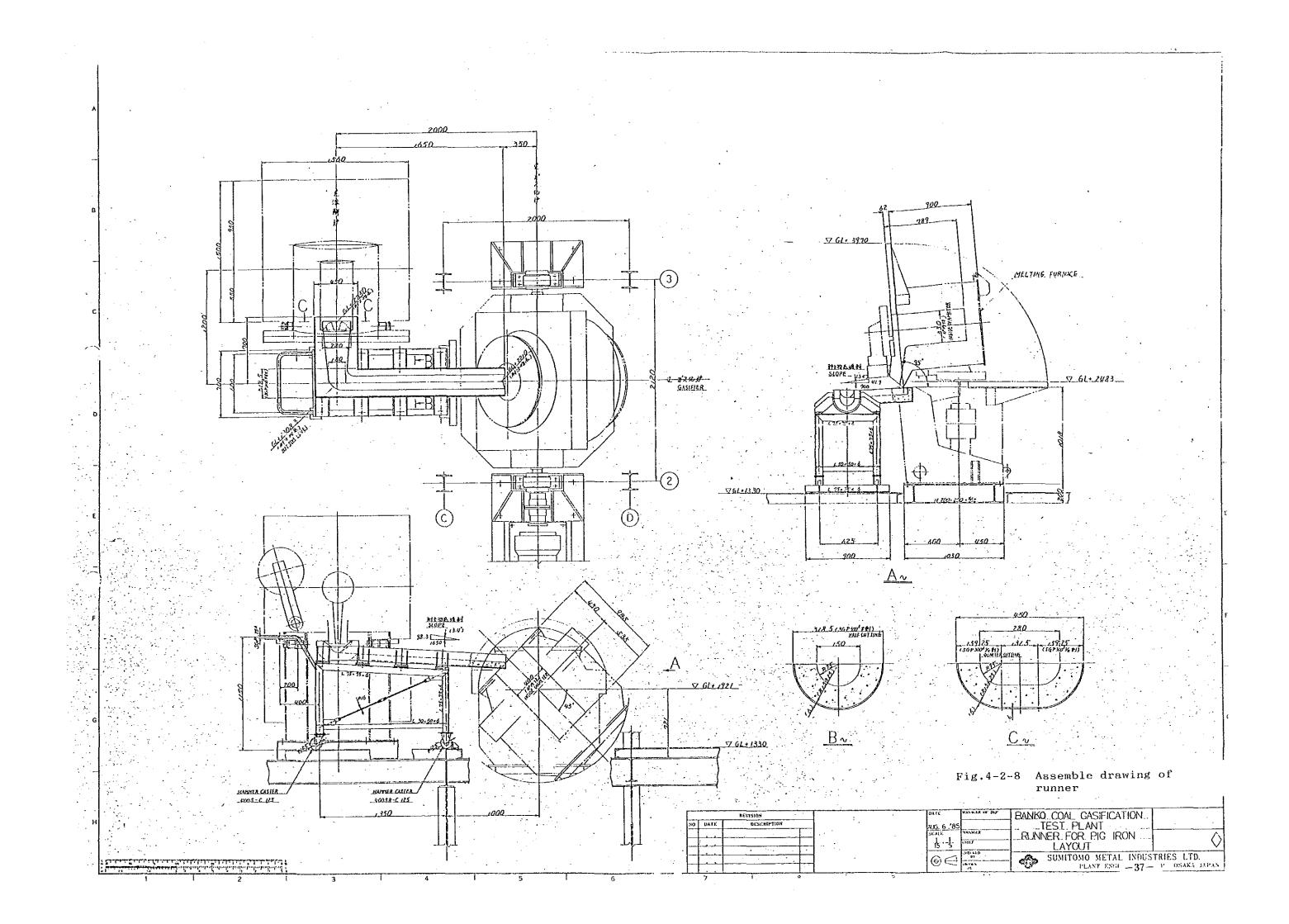

Table.4-2-1.(3) Design Condition

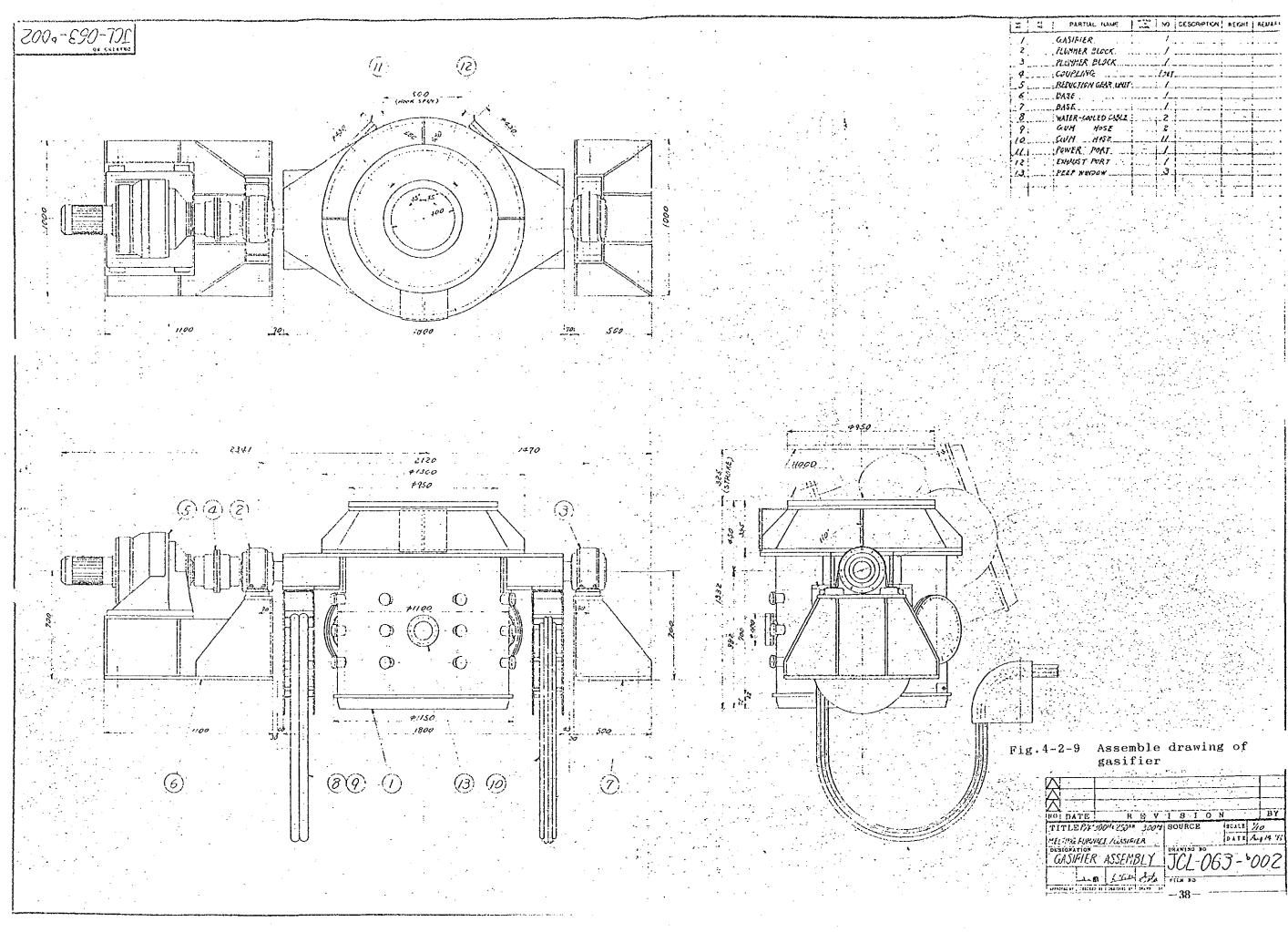

.



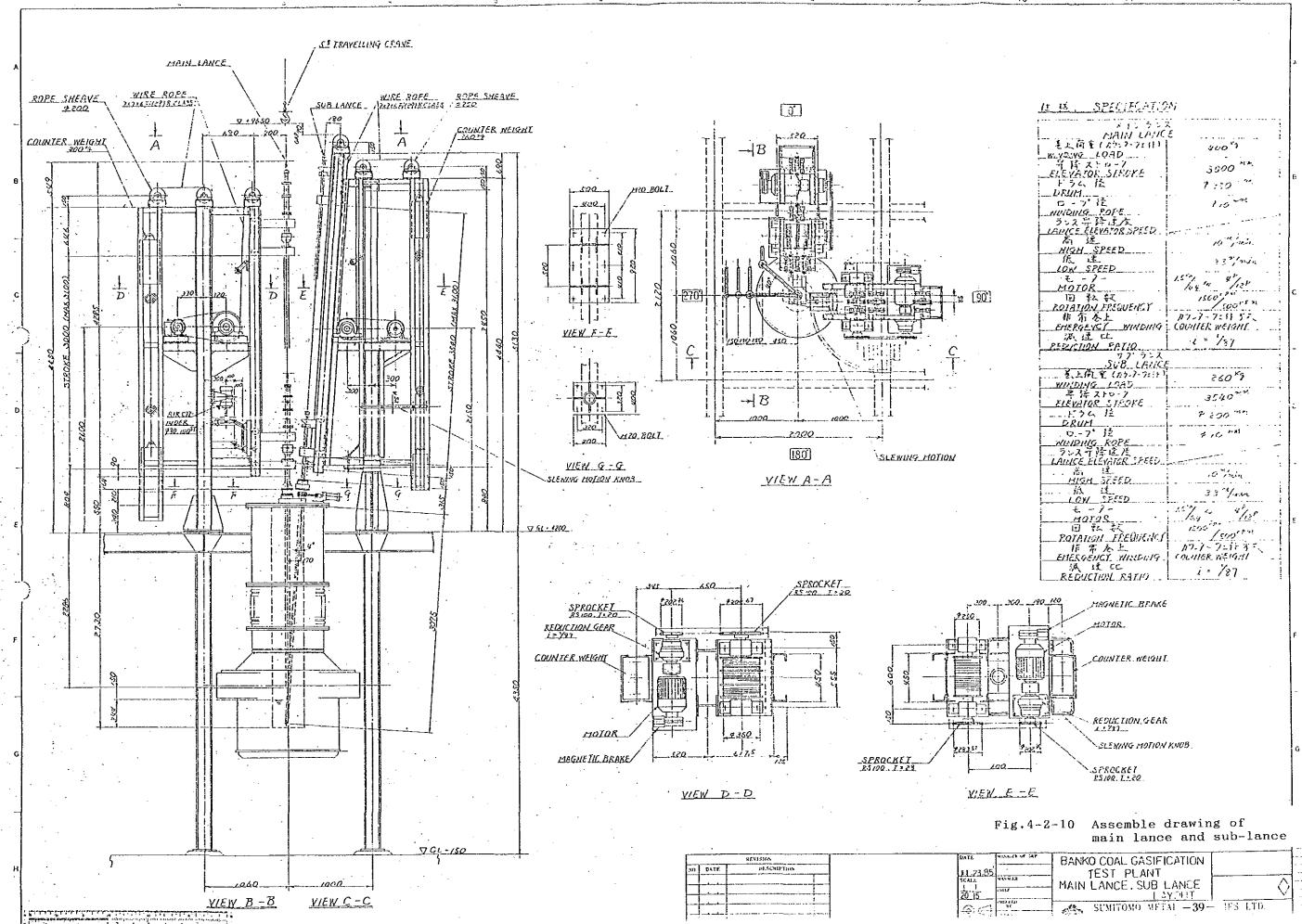

Fig.4-2-1 Main Components of Coal Gasification Test Facilities

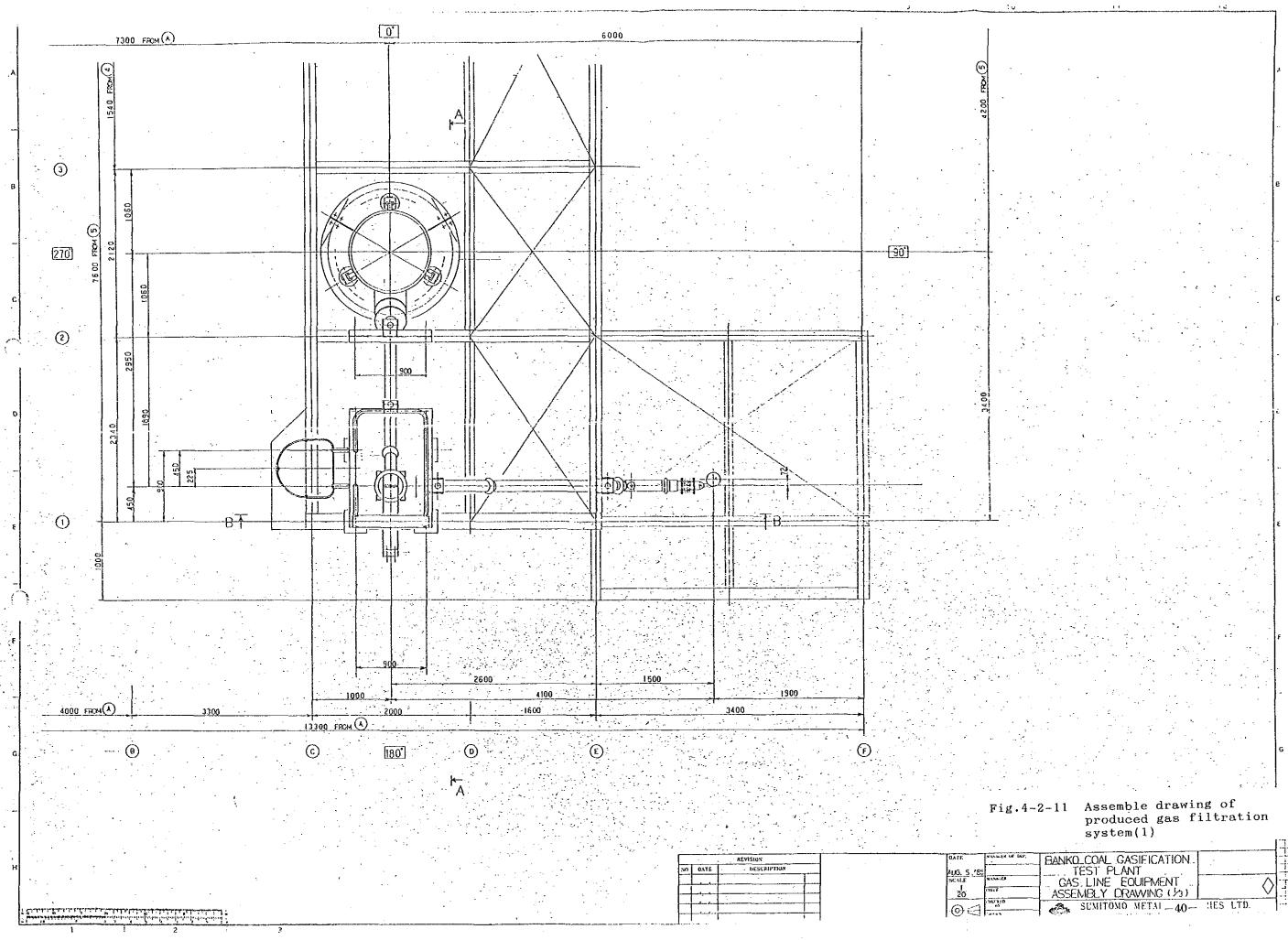


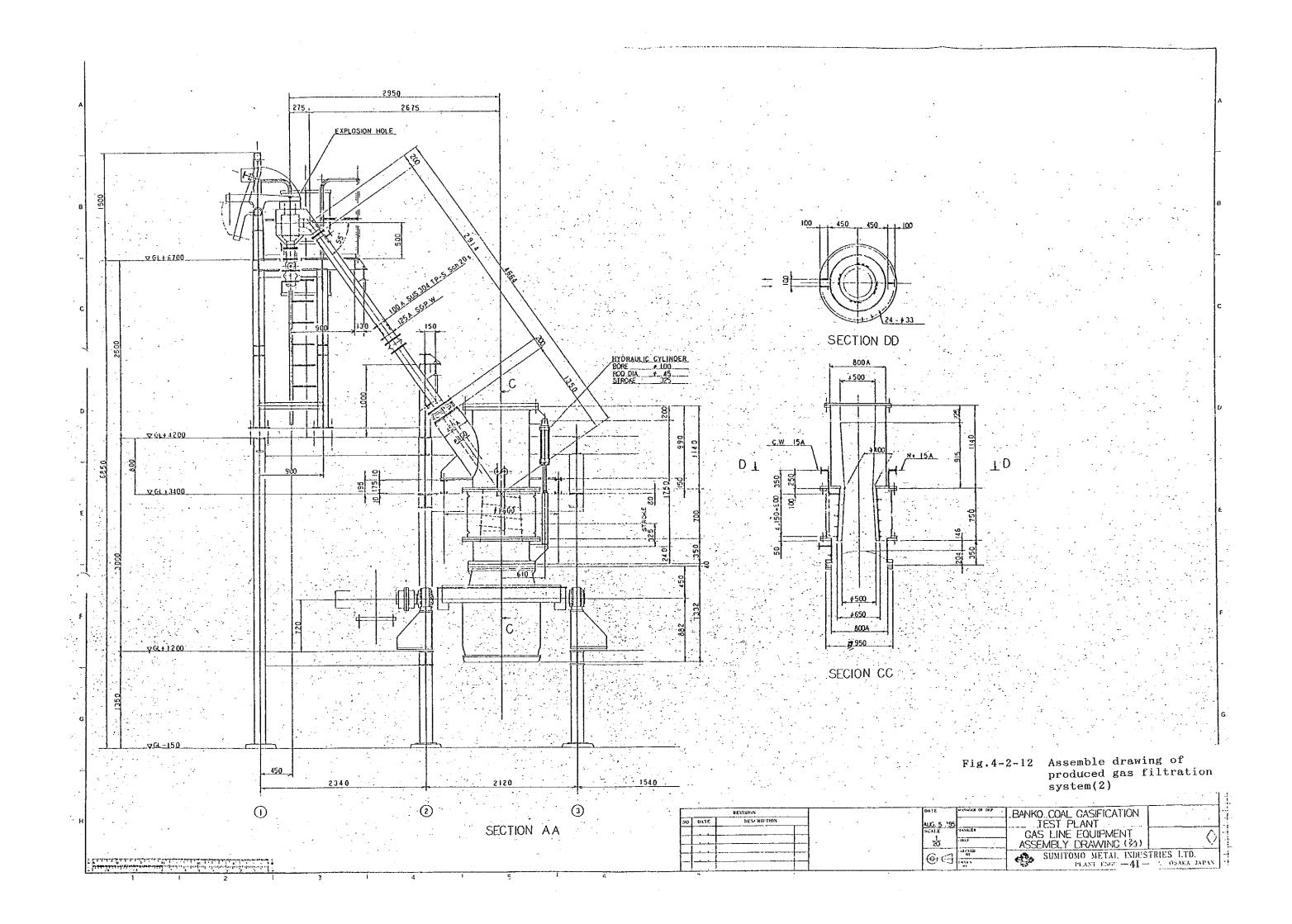


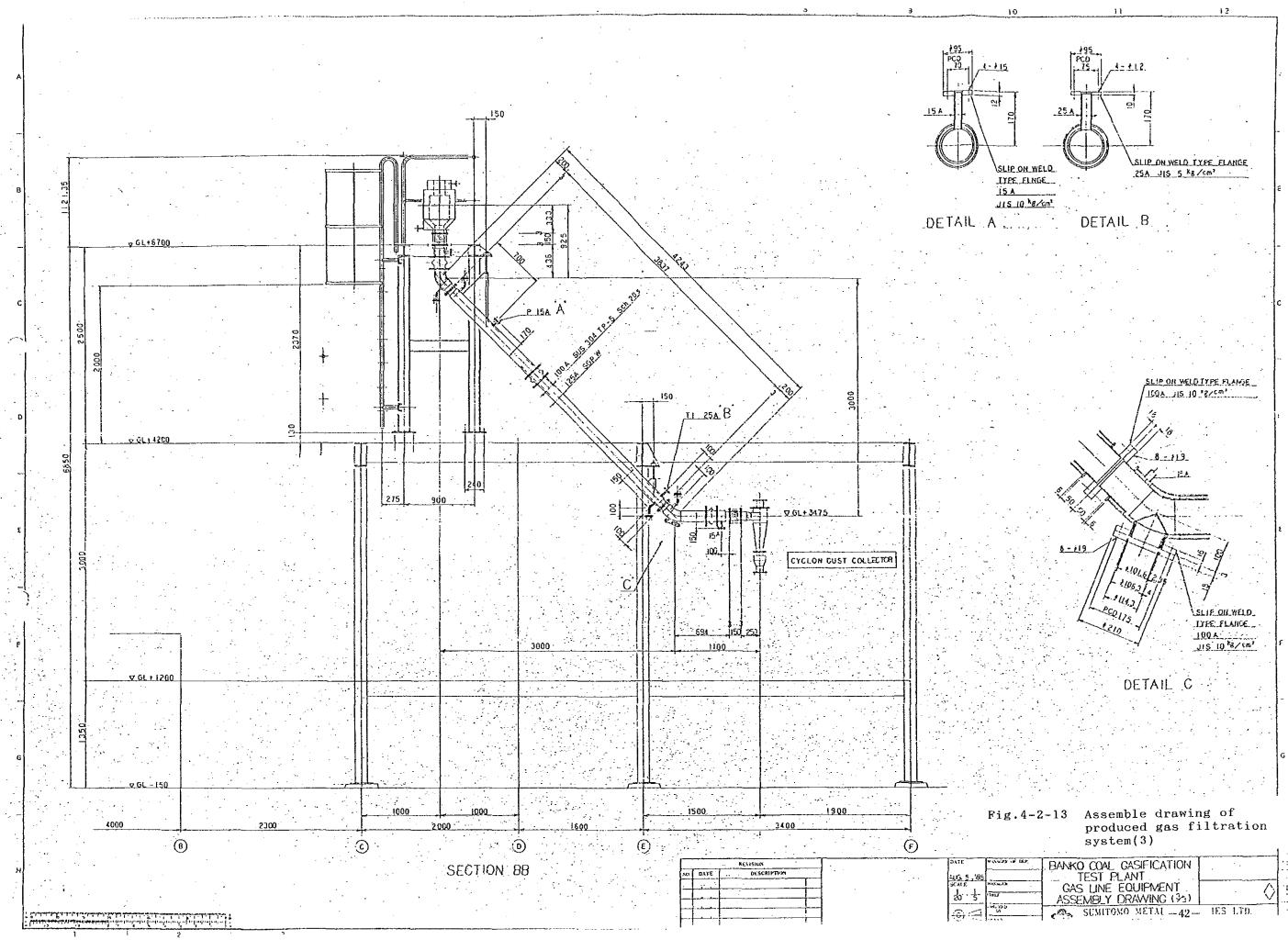


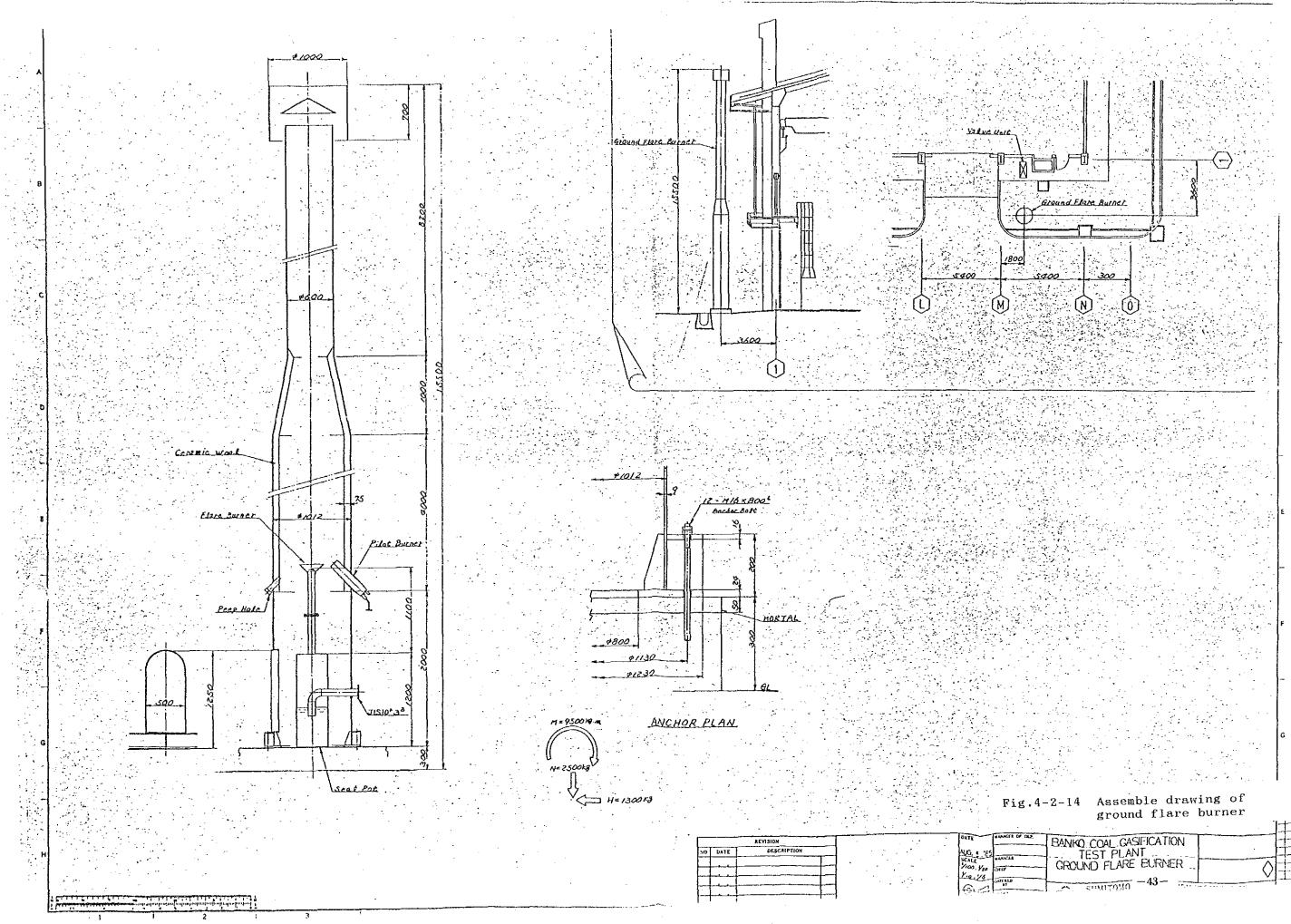
DESCRIPT	юN	DATE	BY	CHK'D
kP.8.1P = 20	632	10.P.17	2.1.1.1.	
		<u> </u>		
•				
				· ·
•				
180'				
•				
•	•			
		•		
F				1
}				
5				
1				
	a .	. .	_	
g.4-2-6	6 Asseml			
				d coal
	Tulec	tion s	ystem	
REF.	MATL	DIMENSK	N. R	EMARKS
		W	ORK NO.	
	住交全民工工	A A TILL	N/07	<u></u>
•				
ILE .	CÓAL PULVER	IZER LT	NJECTION	SYSTEM
1/15				
	(石座 村)	译 阶段	LIN THE PARTY	*)
E	ASSEME		RAWIN	G I
85.6.14				4
MINIUM	DWG. NO.	_ nor	A _ 1 -	\wedge
Э.	P	- 095	4 -12	
ومحجبة بالبالي مستجهدا المتحدان وجد		nan dia 4000 Metallia dia kaominina Ny INSEE dia mampikambana		ومزيا عالد المتبال التجريب والمرود


-35-

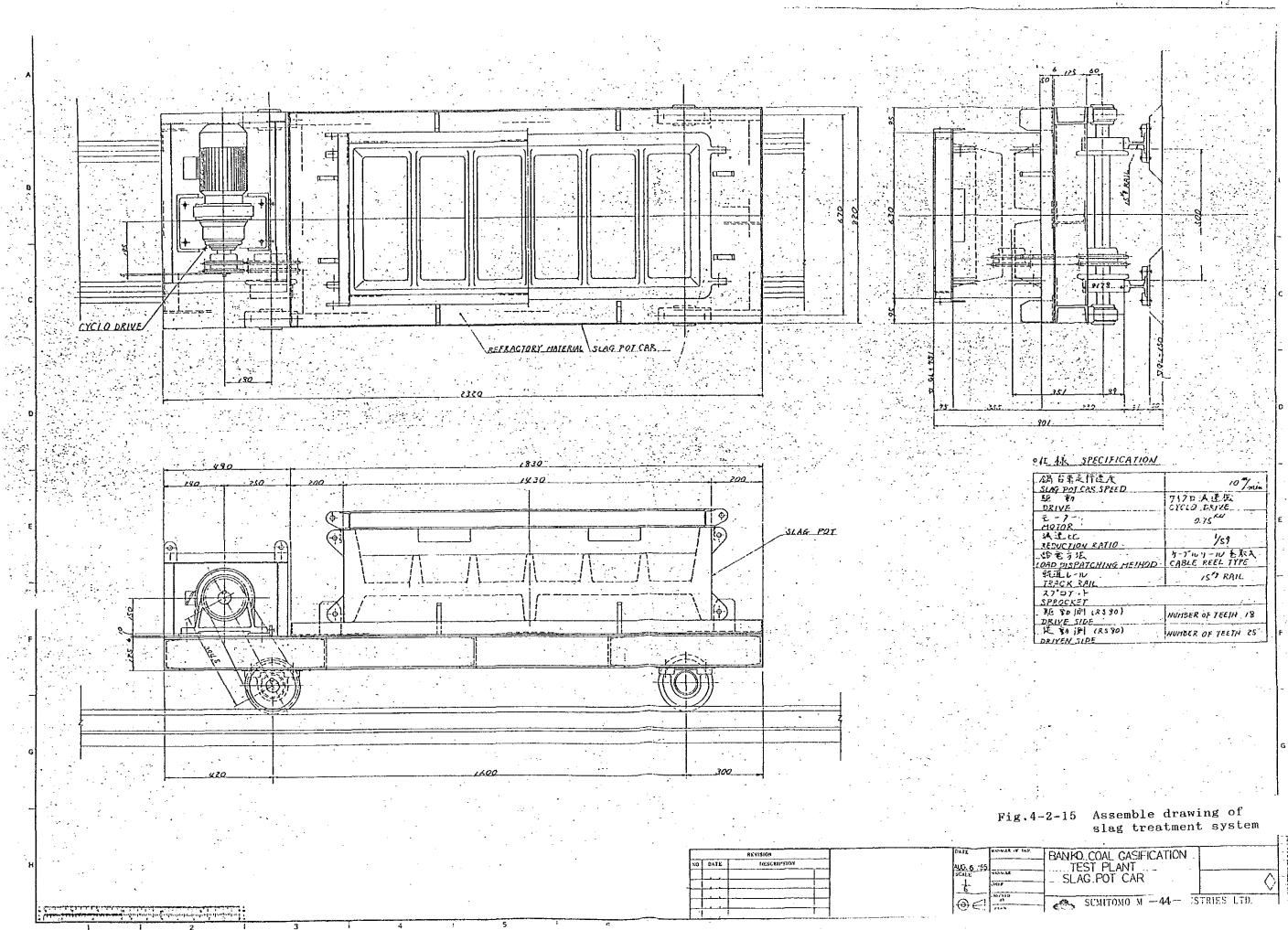


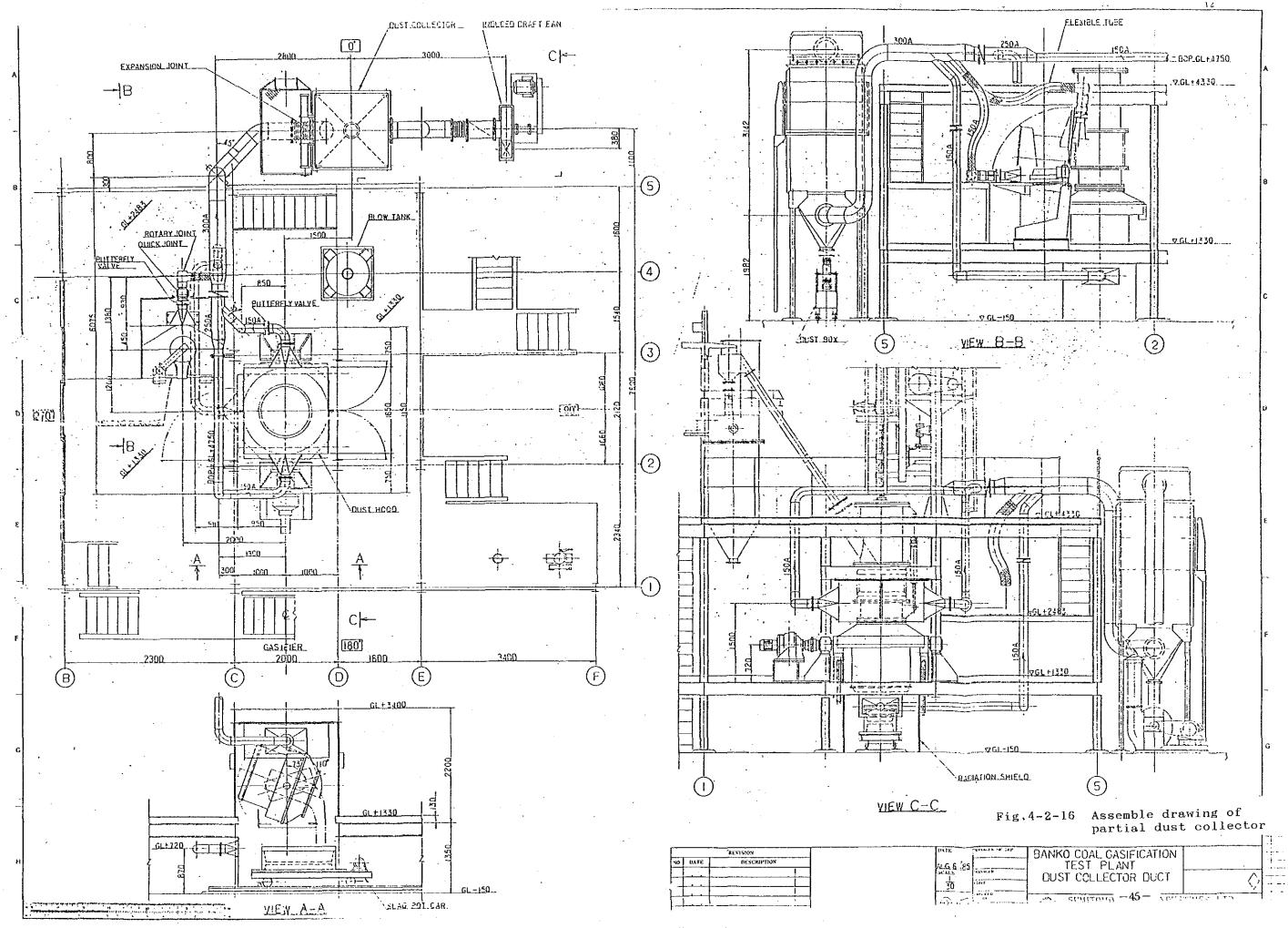


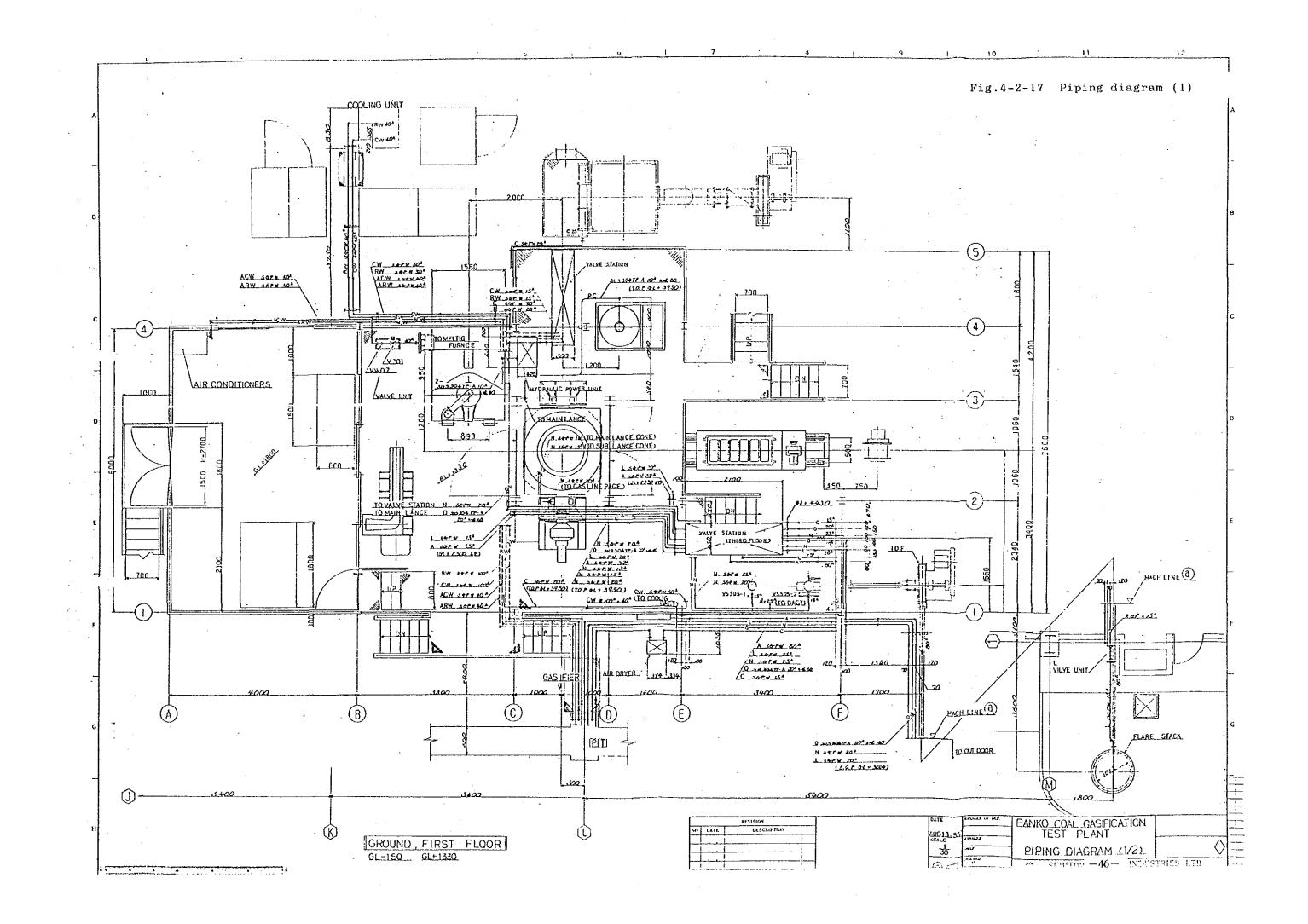

		· • · .	· · · .	·					· · · ·		
•	\wedge	•		-	• • • •						
	$\overline{\mathbf{N}}$			·	· · ·					_	
:	∇						•		· •_		L
•-	100	DAT	E	H	E	1.1	S I	0 1			BY
	TI	TLE	15:300	11.250	300	1 80	OURCE		ISCALZ	1	0
				lass	<u> </u>			• • •	DATE	A	14 15
	DUS	IGÁLTÍ	ON .				10110				
۰.	6	ASIH	EK .	ASSEM	BLY		01-	ŊĠ	ブー	٥O	07
-				Kili	121	.~	~_	~~~	<u> </u>		
	Ì			2429115			CH NO	· .			
	1000	1	K0241	2422115		<u> </u>	-38-				

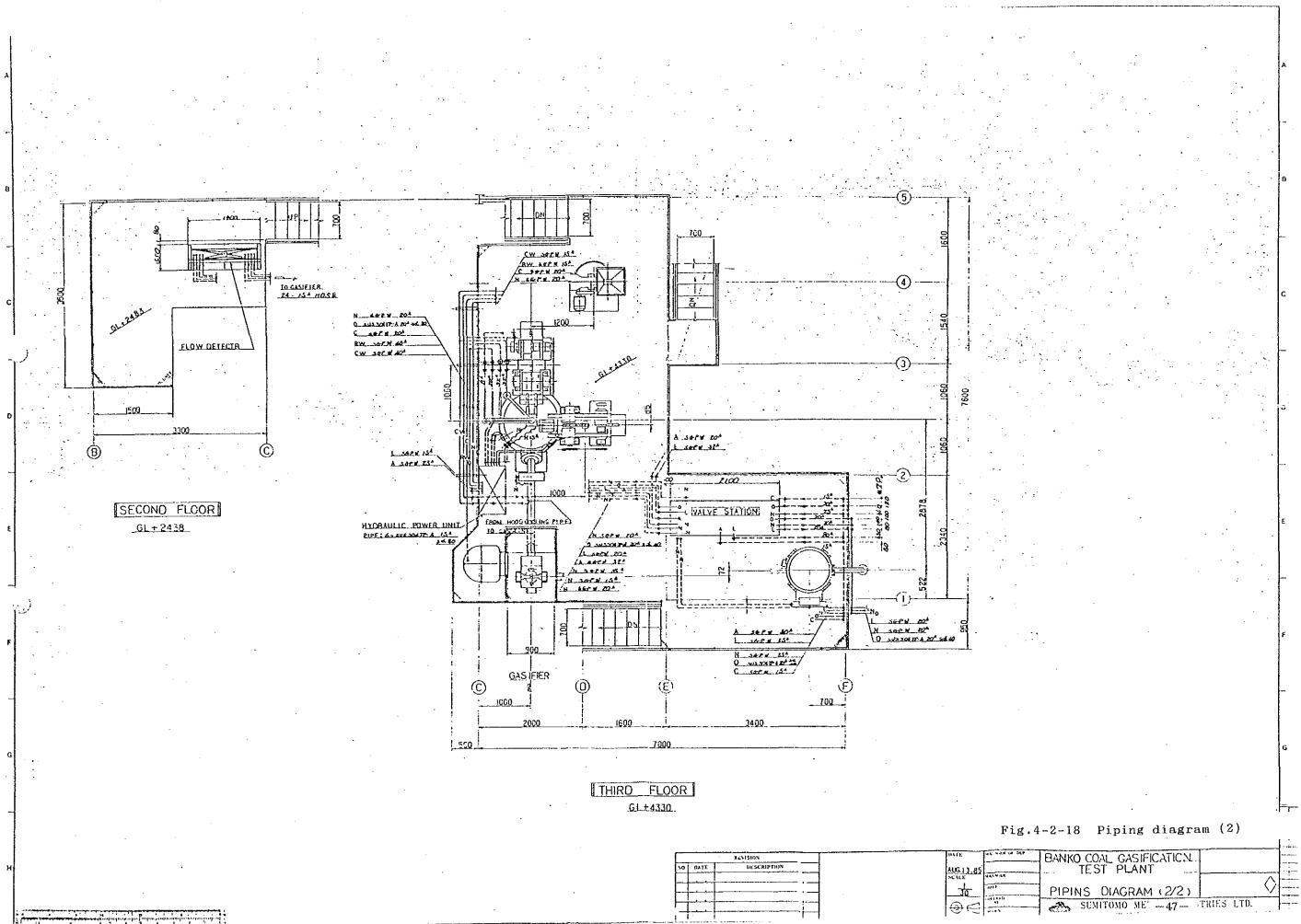


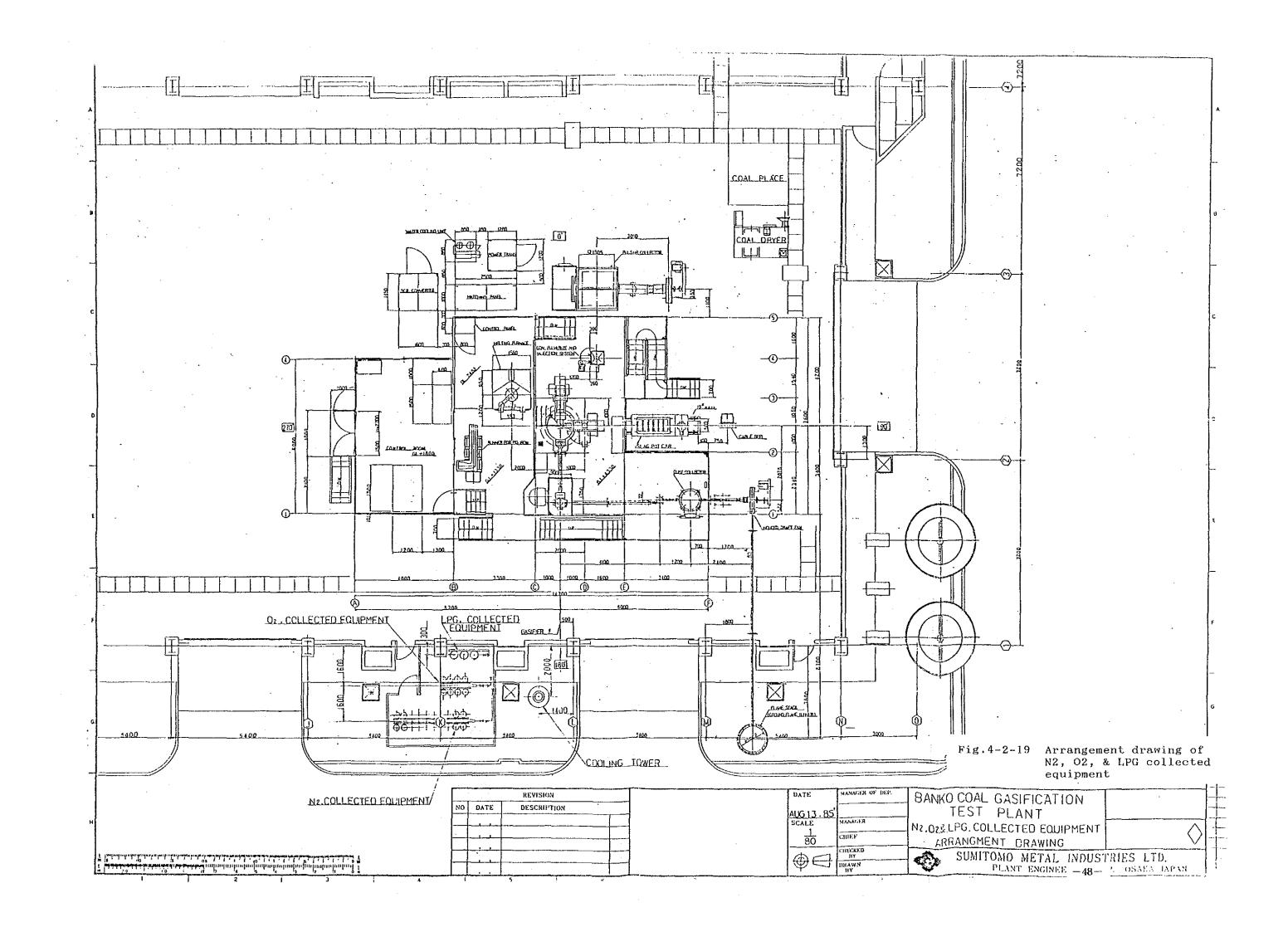
• •

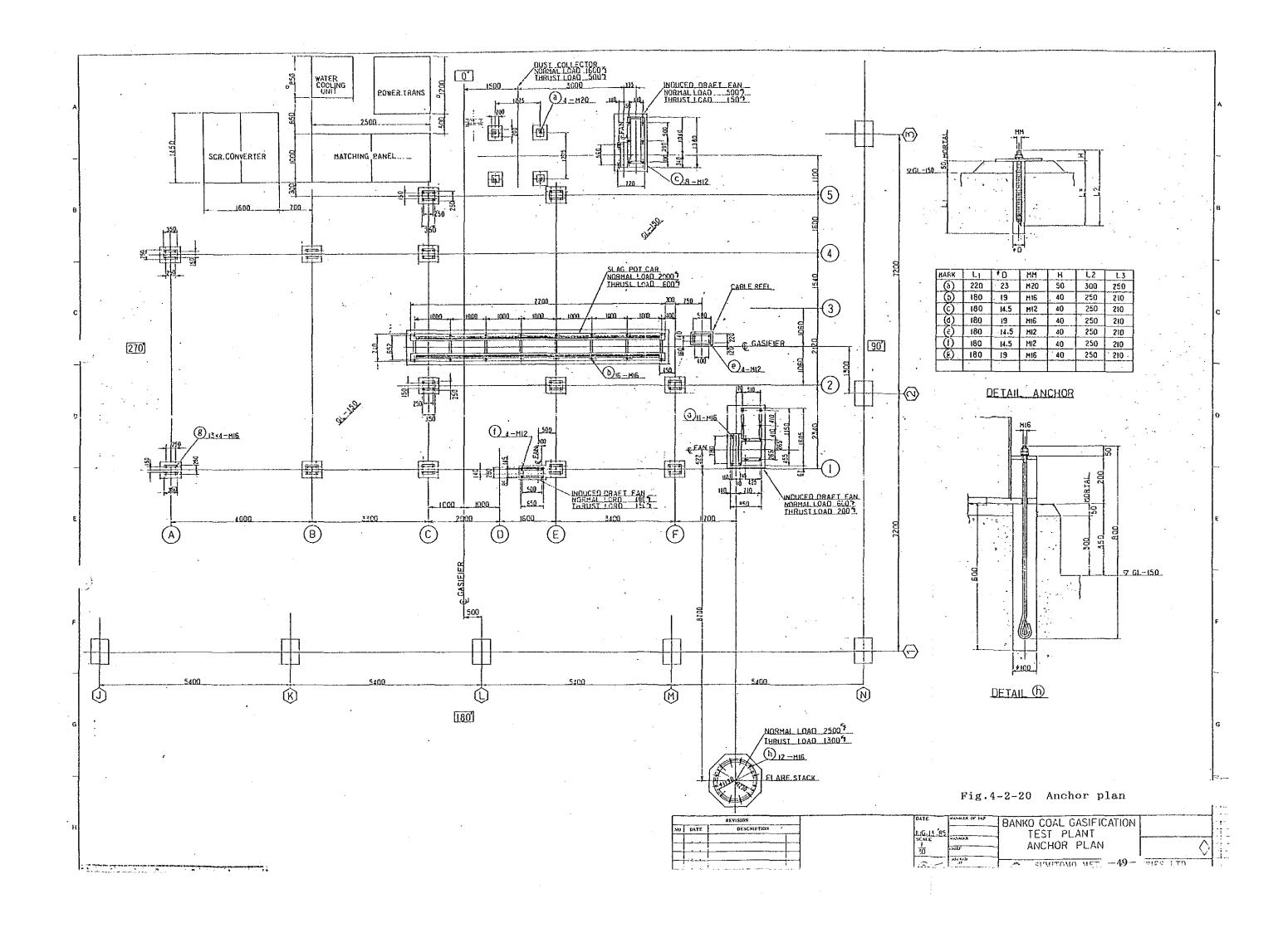


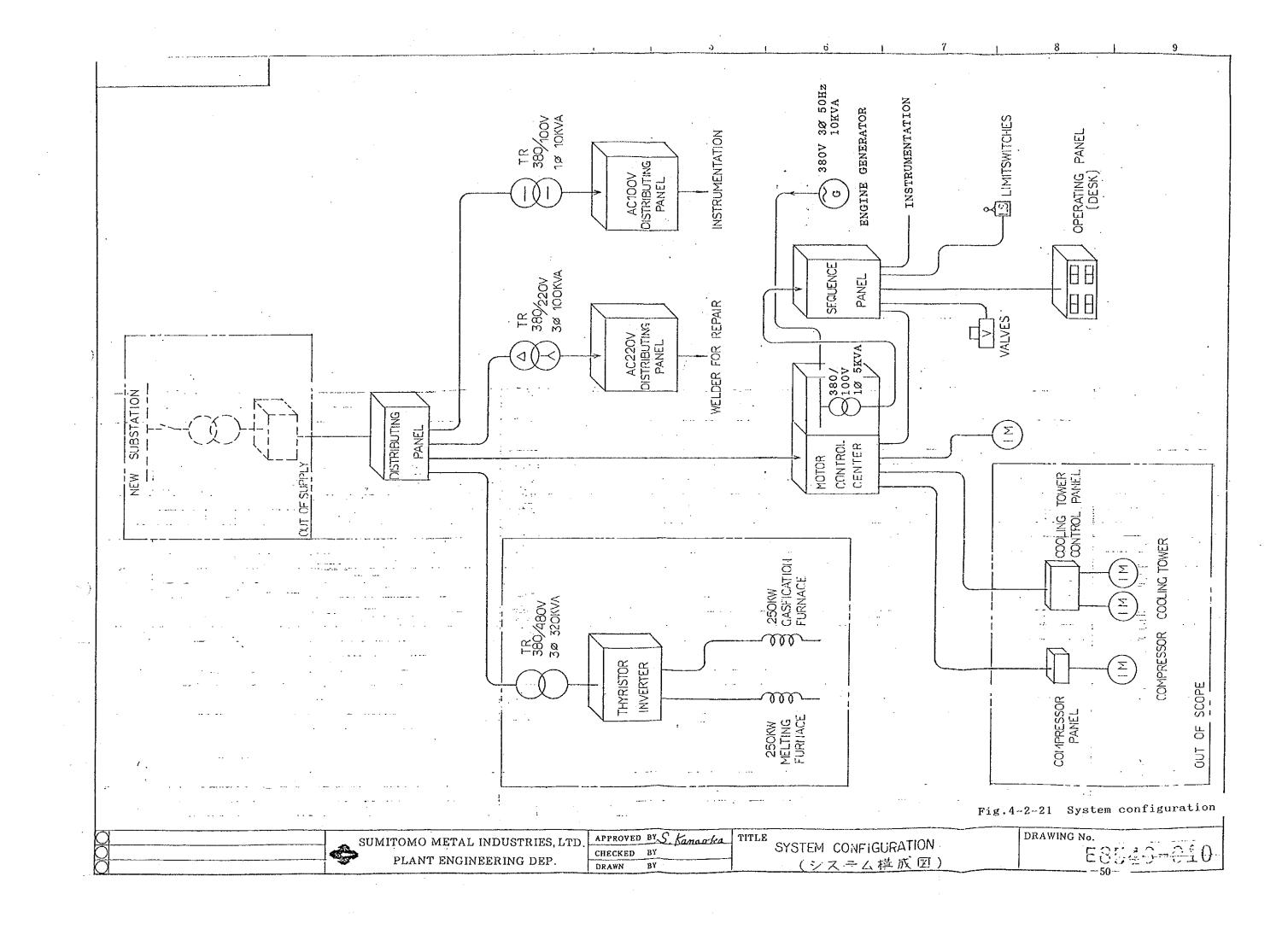




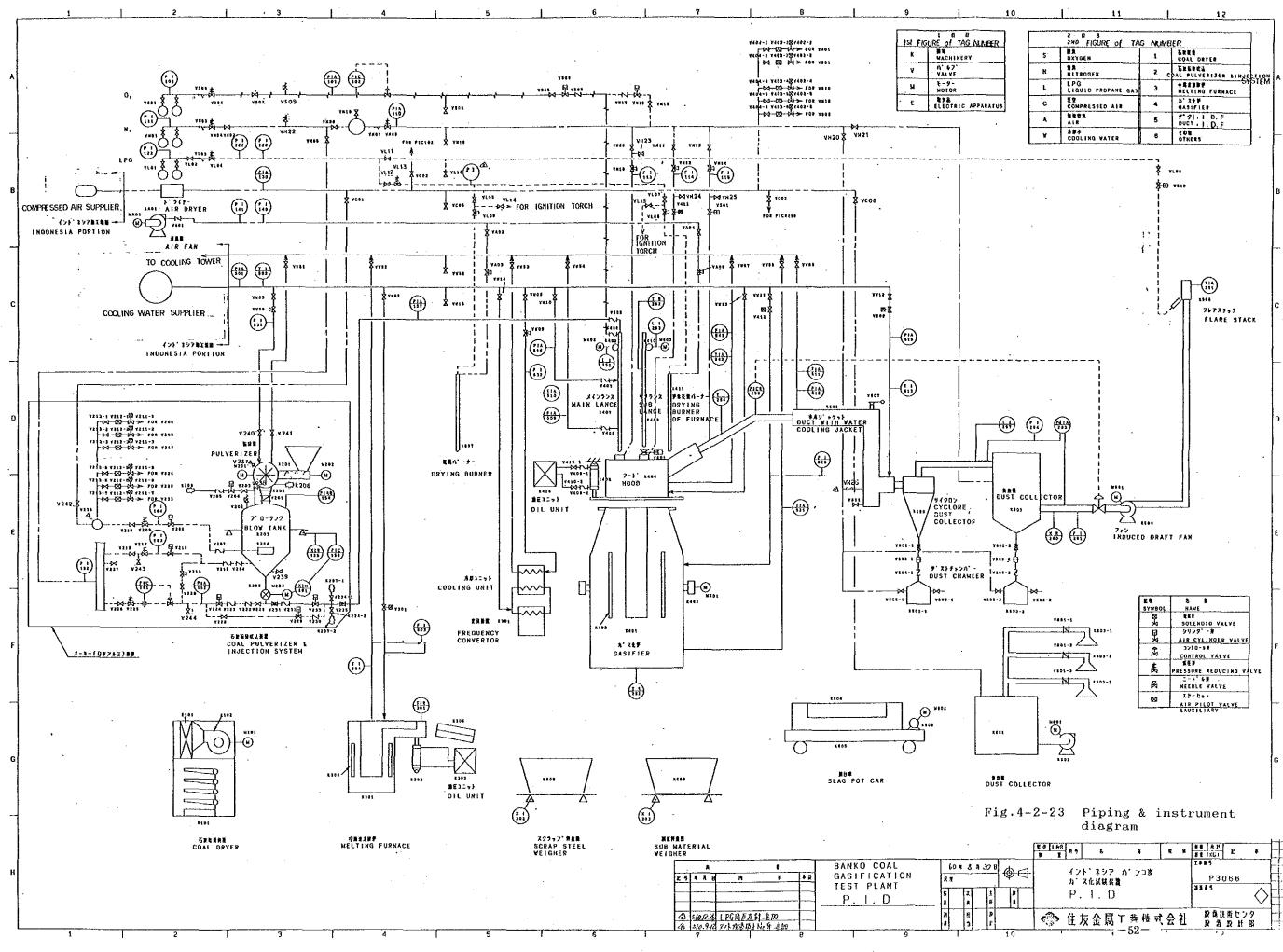



		1
042,	BANKO COAL GASIFICATION	-1-
	TEST PLANI	1
.	GROUND FLARE EURNER	-1-
·		1
	A CINITONO 40 INVITATION	









 ¥ 7 169	# 4	ŧ	4	R 8	11 8 1 8 1 (XG)	Ľ	ŧ	Ħ
	ታ ነ	ト*ネシア ス化試験装置 D			P3	066	\diamond	
 ্ট	住	反金属	T 黄桂 ▼ -52-	く会社		技術セン <u>設計</u>]

Table.4-2-2.(1)

Principle Specification of Coal Gasification Test Plant

DESCRIPTION	Q'TY	MAIN SPECIFICATION
1. Coal Drying System	1	Type:Chassis Type Heat Source:Electric Heater Moisture of Raw Materials: 35 % Moisture of product : 5 % Hot Air Temperature :100 °C Capacity:120 kg(wet)/Bach/1 h
2. Coal Pulverize & Injection System 2-1 Coal Pulverizer	1	Type: Special Hammer Mill Inlet Grain Size :-25 mm Outlet Grain Size:-0.074 mm>70 % Capacity:80 kg/h
2-2 Coal Injector	1	Blow Tank Capacity:80 kg Pressure:9.9 kg/cm2G Feeder Type:Rotary Feeder Capacity:20-40 kg/h
3. Melting Furnace 3-1 Melting furnace	. 1	Type:Medium Frequency Coreless Furnace Capability Materials:Cast Iron Melting Temperature:1700 °C Capacity :300 kg/120 min. Tilting Mechanism:Oil Hydraulic Tilting Oil Hydraulic Unit Capacity:12 1/min. Pressure :70 kg/cm2G Oil Tank:150 1 Hydraulic Fluids:Non Combustion Fluids
3-2 Power Transformer	1	Type:Indoor Oil Immersion Self Cooling Type Phase:3 Phase Cycle:50 Hz Voltage Primary 380 V Secondary 480 V

Table.4-2-2.(2)

Principle Specification of Coal Gasification Test Plant

	DESCRIPTION	Q'TY	MAIN SPECIFICATION
3-3	SCR Frequency Converter	1	Type: Indoor Crucible Type Input/Output Power Phase:3 Phase Voltage:480/1000 V Cycle : 50/300 Hz Power : Max.380 KVA/250 KW
3~4	Runner	1	Type:refractory Lining Type
1 0	asifier		
	Gasifier	1	Type:Medium Frequency Coreless Furnace Capability Materials:Cast Iron Melting Temperature:1650-1700 Capacity :300 kg/15 min. for boosting up the temp.
			Tilting Mechanism:Electric Tilting
4-2	Preheating Burner	1	Type:Nozzle-Mixed Type Fuel:LPG Capacity:70000 Kcal/h
5. La 5-1	ance Main Lance	1	Type:Water-Cooled Tetra Pipe Type Diameter 8 A for pulverized Coal 20 A for Oxygen 32 A for Cooling Water(Inlet) 50 A for Cooling Water(Outlet Pressure:10 kg/cm2G Driving Unit Type :Electric Motor Drive Speed: 10 m/min. 3 m/min.
5-2	Sub-Lance	1	Type:Non-Cooled Type Measurement Elements Sampling for Cast Iron Temperature of Cast Iron Carbon Content in Cast Iron Driving Unit Type: Electric Motor Drive Speed:10 m/min.

Table.4-2-2.(3)

Principle Specification of Coal Gasification Test Plant

DESCRIPTION	Q'TY	MAIN SPECIFICATION
6. Produced Gas Filtration System	- 	
6-1 Hood	1	Type:Refractory Lining & Water-Cooled Type Stroke:325 mm Driving Unit Type:Oil Hydraulic type Capacity:28 1/min. Pressure:80 kg/cm2G Hydraulic Fluids:Non Combustio Fluids
6-2 Duct	1	Type:Water-Cooling Type Cooling Capacity:1600°C-150 °C Gas Volume:Max. 135 Nm3/h
6-3 Cyclone Dust Collector	1	Type:Cyclone Type Inlet/Outlet Dust Content 50/25 g/Nm3 Produced Gas Temperature:150 °C
6-4 Dust Collector	1	Type:Bug Filter Inlet/Outlet Dust Content 25/0.05 g/Nm3 Produced Gas Temperature:150 °C
6-5 Induced Draft Fan	1	Type:Turbofan Type Capacity:135 Nm3/h Pressure:800 mm Aq Produced Gas Temperature:150 °C
6-6 Flare Stack	1	Type:Electric Spark Ignition Type Capacity:135 Nm3/h Ignition Fuel:LPG
7. Slag Treatment System 7-1 Slag Pot	1	Materials:Cast Steel Capacity :300 kg
7-2 Slag Pot car	1	Type :Electric motor driver car Speed:10 m/min.
7-3 Heating Burner	1	Type:Nozzle-mixed type Fuel:LPG Capacity:20000 Kcal/h

DESCRIPTION	Q'TY	MAIN SPECIFICATION
. Dust Collector	1	Type:Bug filter Capacity:2800 Nm3/min. Pressure:200 mm Aq Collected spot:Melting furnace Gasifier
		Slag pot car
. Utility System		
9-1 Oxygen, Nitrogen Collected Equipmer	i 1 nt	Oxygen cylinder Pressure:150 kg/cm2G Nitrogen cylinder
		Pressure:150 kg/cm2G Volume :46.7 l
• • • •		LPG cylinder Pressure:150 kg/cm2G
0.Gas Analyzer		
10-1 Gas Sampling Unit	: 1	Type:Pre-heated type Heating temperature:120 °C
10-2 CO & CO2 Analyzer	r 1	Type:Infrared gas analyzer Measurement range CO :0-70 %
		CO2:0-50 %
10-3 O2 Analyzer	1	Type:Magnetic gas analyzer Measurement range:0-2/0-10 %
10-4 H2 Analyzer	1	Type:Thermal conductivity type gas analyzer
		Measurement range:0-50 %
10-5 Gas Chromatograph	1	Measurement range N2 :0-100 % H2S:0-1000 ppm COS:0-1000 ppm
1.Slag & Iron Analyzer	•	
11-1 Slag Analyzer	1	Type:X-ray spectrometer Measurement elements CaO, SiO2, Al2O3,MgO,Fe2O3, Na2O
11-2 Iron Analyzer	1	Type:Non-dispersive infrared analyzer Measurement elements

.

Table.4-2-2.(4) Principle Specification of Coal Gasification Test Plant

-56-

Table.4-2-2.(5)

Principle Specification of Coal Gasification Test Plant

DESCRIPTION	Q'TY	MAIN SPECIFICATION
12.Electrical Equipment 12-1 Power Distributing Panel (380 V)	1	Type:Self-standing, indoor-use type Devices:Molded cased circuit breaker(MCCB) MCCB 600AF, MCCB 400AF, MCCB 225AF, MCCB 100AF
12-2 Power Distributing Panel (200 V)	1	Type:Wall-mount, indoor-use type Devices:Molded cased circuit breaker(MCCB) MCCB 225AF, MCCB 100AF
12-3 Power Distributing Panel (100 V)	1	Type:Wall-mount, indoor-use type Devices:Molded cased circuit breaker(MCCB) MCCB 100AF
12-4 Motor Control Center & Programmable Logic Control Panel	1	Type: Self-standing, indoor-use Devices: Molded cased circuit breaker(MCCB) MCCB 400AF, MCCB 225AF, MCCB 100AF, MCCB 50AF MCCB 30AF Earth leakage breaker(ELB) ELB 30AF
12-5 Transformers (100 KVA)	1	Type:Oil-immersed, self-cooled, indoor-use, continuous-rating type 380/220 V, 3 phase, 50 Hz, 100 KVA
12-6 Transformer (10 KVA)	1	Type:Indoor-use, continuous-rating dry type 380/100 V, single phase, 50 Hz, 10 KVA
12-7 Operation Console 12-7-1 Main Console	1	Type:Self-standing, indoor use type Devices:Push-button switches Indicating lamps Change-over switches etc.
12-7-2 Mimic Console	1	Type:Wall-mount,indoor-use type Devices:Indicating lamps
12-7-3 Local Operating Box	9	Type:Wall-mount, indoor-use type Devices:Push-button switches Lamps etc.

Table.4-2-2.(6) Principle Specification of Coal Gasification Test Plant

DESCRIPTION	Q'TY	MAIN SPECIFICATION
12-8 Instrument Panel	1	Type:Self-standing, indoor-use type Devices:Recorder Indicator Indicating controller Processor Announciator etc.
13.Generator	1	Type:Outdoor-use, oil engine type Capacity:380 V, 3 phase, 50 Hz, 10 KVA
14.Instrument Air Unit	1	Type: Indoor-use, cooling type Capacity:70 Nm3/h
15.Personal computer	1	Capacity:CPU 8MHz ROM 96 BYTE RAM 128 BYTE Devices :Printer CRT Floppy disk GPIB interface Data controller

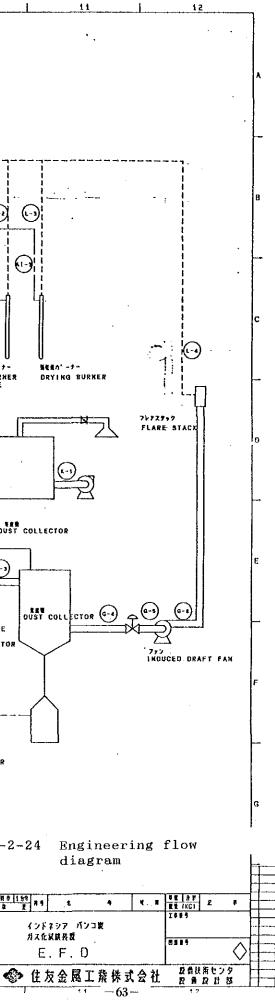
APPLICATION	Q'TY	OUTPUT	POLES	VOLTAGE	WINDING (CONTROL)	BRAKE	
х.		(KW)	(SPEED) (rpm)	(V)			
1. Fan	2	1.5	2 (3000)	380	CR (NR)		
2. De-ionized Water Pump	1	3.7	4 (1500)	380	CR (NR)		
3. Coal Dryer	1	5.5	4 (1500)	380	CR (NR)		
4. Coal Pulverizer	1	3.7	2 (3000)	380	CR (NR)		
5. Coal Screw Feeder	1	0.2	4 (1500)	380	CR (NR)		
6. Coal Rotary Feeder	1	0.4	4 (1500)	200	CR (VVVF)		
7. Melting Furnace Oil Pump	1	2.2	4 (1500)	380	CR (NR)		
8. Gasifier	1	1.5	4 (1500)	380	CR (R)	x	
9. Main Lance	1	1.5	4/12 (1500/ 500)	380	CR (R)	x	
10.Sub-lance	1	1.5	4/12 (1500/ 500)	380	CR (R)	x	
11.Hood Oil Pump	1	7.5	6 (1000)	380	CR (NR)		
12.Induced Draft Fan	1	18.5	4 (1500)	380	CR (NR)		
13.Dust Collector	1	11.0	4 (1500)	380	CR (NR)		
14.Slag Pot	1	0.75	4 (1500)	380	CR (NR)	x	
l5. Air Conditioner	1	3.5	4 (1500)	380	CR (NR)		
l6.Cooling Tower for (15)	1	0.15	6 (1000)	380	CR (NR)		

Table.4-2-3.(1) Motor List

APPLICATION	Q'TY	OUTPUT (KW)	POLES (SPEED) (rpm)	VOLTAGE (V)	WINDING (CONTROL)	BRAKE
17.Water Pump for (15)	1	0.75	4 (1500)	380	CR (NR)	

Table.4-2-3.(2) Motor List

CR :Cage rotor type induction motor NR :Non reversing type R :Reversing type VVVF:Variable voltage, variable frequency type


Table.4-2-4.(1) Instrument List

		· · · · · · · · · · · · · · · · · · ·	<u></u>
TAG.No	, Q,	ТҮ	INSTRUMENT
1. 02 Li	ne		
PIA	-101	1	O2 injection pressure
FIC	-102	1	O2 flow control for main lance
PI	-103	1	O2 bomb pressure
0 NO 11			
2. N2 Li		1	No sumply processing
	-110	1	N2 supply pressure
	~111	1 1	N2 bomb pressure N2 flow local indicator for main lance seal
	-113	1	N2 flow local indicator for sum-lance seal
	-11 <u>4</u> -115	1	N2 flow local indicator for gas duct purge
	-162	1	N2 pressure local indicator for pulverizer
	-162	1	N2 pressure local indicator for pulverizer
3. LPG L		Т	na pressure rocar finiteacor for purverizer
-	-120	1	LPG line local indicator
	-121	1	LPG line pressure indicator
	-122	1	LPG bomb pressure
· ·	100	•	
4. Air L	Ine		
PIA	-130	1	Compressed air supply pressure
PI	-164	1	Compressed air pressure for airration in
			blow tank
FI	-140	1	Air flow local indicator for burner
PI	-141	1	Air pressure local indicator for burner
E D	ninad	Cash	Line (PC Line)
	rizea ~151	1	PC carrier N2 flow
	-152	1 .	PC carrier N2 pressure
	-152	1	PC blow tank pressure
	-154	1	PC blow tank weight
	-155 -156	1	PC flow
	-157	1	PC injection pressure
	-161	1	Rotary rate for rotary feeder
6. Gasif			
			Main lance position indicator
	-252	1	CD & molten iron temperature by sub-lance
	-253	1	Local position indicator for sub-lance
	-254	1	Produced gas temperature at hood outlet
	-257	1	Inlet gas temperature for cyclone
	R-265	1	Gasifier pressure control
	-260	1	Gas analysis
	-000	1	Gas monitor
	-261	1	Produced gas flow
	-262	1	Gasifier refractory temperature
	A-263	1	Diff. pressure for dust collector
	-264	1	Produced gas pressure for dust collector
TIA	-271	1	Flare detector for flare stack

Table.4-2-4.(2) Instrument List

TAG. No	Q'TY	INSTRUMENT
7. Utility		
TR -301	. 1	Molten iron temperature in melting furnace
XI -302		Weight for scrapped iron
XI -302		Weight for sub-materials
XI -801		Analysis for slag
XI -802		Analysis for pig iron
XI ~803		Off-line analyzer for common equipment
IP -902		Trend recorder
	÷	
8. Water Lin	ne	
PIA-501	1	Cooling water supply pressure
TI -502	1	Cooling water supply temperature
F1A-503	3 1	Cooling water flow for melting furnace
TI -504	. 1	Cooling water temperature for melting furnace
FIA-509) 1	Cooling water flow for main lance
TIA-510) 1	Cooling water temperature for main lance
TIA-51]	1	Cooling water temperature for water cooling du
FIA-512	2 1	Cooling water flow for water cooling duct
TI -513	3 1	Cooling water temperature for water cooling du
PI -514	1	Cooling water pressure for main lance
PI -518	5 1	Cooling water pressure for water cooling duct
FIA-520) 1	Cooling water flow for gasifier
TIA-523	1	Cooling water temperature for gasifier
FI -531		Cooling water flow for pulverizer
FI -532		Cooling water flow for frequency converter
		panel for melting furnace & Gasifier
FIA-54J	1	Cooling water flow for hood
TIA-542	2 1	Cooling water temperature for hood

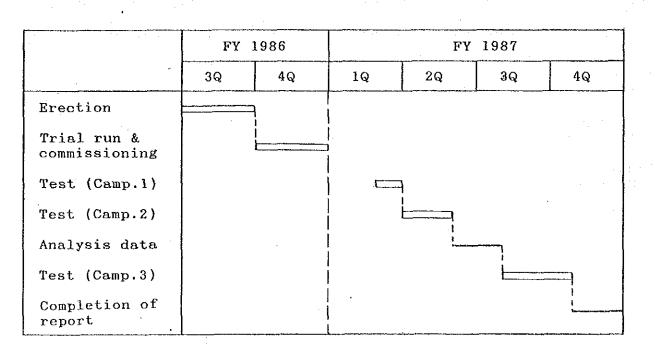
	TAO. NO	1 5	1 1	GREGEJOXO/H	SACENZOKO/	H GREERAOXO/H		
ANE	· · · ·	PHYSICAL PROPERTIES	aa aa	10-52	COAL BLOWIN	G COAL BLOVIKG		
OAL	10-1 1	44 VATER CONFERT	x	5 2				
····			11 ¹⁰	742 TONS	>	·····>		-
	F-1	AL TENPERATURE	10 10	1600-1700				
IG IRON	F-2	ER VEIRHT	K.e	300	>	>		
54		RE TEMPERATURE	۰c	1500-1550	<u> </u>			
UICK INE	C6-1	EN VERNT	Ka	1	1. 2	2.4	NI #27 NI GYLINDERS (L-1)	
	0-l	EA PRESSURE	Ke/ca G					
XYGEN	0-2	EA PROBURE	X¢/cm/Q N/N//N	4-8	12	24		
		EN PRESSURE	Xa/ck'O					
	I	RU PLOY RATE!	КФ. / Н. КФ/сп 0	65-75	>-		322" 1997 - 1- 717-	T
		EN PARSSUAE	K¢/cm'G	· · · · · · · · · · · · · · · · · · ·		-	AIR COMPRESSOR AIR DRYER (1-)	(
		EA "PRESSURE	Ka/cn/0	{				
TROBEN	1 8 - 8	EX PRESSURE .	Kg/cm/d 4a//H	4-6	7.1	14.2		
		EA PRESSURE	K¢/cm²0					(1-3)
	J	AR FLOW RATE	Xn /X	36				
	IN-7	EA PRESSURE	Kd/cm*G Km*/H	8-1 35-40	······».			
	K-4	EA PRESSURE	Kg/cm ¹ 0		>	>		
		RE FLOY RATE	Na 7H	28.8	```			1
	N+9	EX PRENSURE -	х4/слі На /Н	8-8	≯ 	· · · · · · · · · · · · · · · · · · ·	VATER COOLING VATER PUMP (V-2) (V-3) (V-9)	
		EA PAESSURE	Ka/ca*G	1-2				
	11-2 1	EX PRESSURE	A3A4 Na 12H	600	>			2462A
**		EA PRESSURE	01149	600		>-		DRYING E OF FURNA
10010 Ropane As	L-3	SE FLOY BATE	NO 7H	0.83	>			
	1-4	EA PRESSURE	Ka/en*a Ka/y	1.5		>-		L
	AD-1	EA PRESIVIE	Kg/cm²0	· · · · · · · · · · · · · · · · · · ·	\rightarrow			(Ah-s)
1		ES FLOY RATE	Kin 17K	61.2	<u> </u>			\sim 1
OVPRESSED IR -	IAD~2 1	EA PRESSURE IB FLOW RATE	ko/cało kał/H	53.7				
	AD-3	EA PRESSURE	Xq/cm'G		\rightarrow		ALOV TANK. (-2)	
		EA PRESSURE	Hrs. ² /H	13.5		> →	MAIN LANCE	
	AI-1	AR FLOY BATE	BRAQ NR ⁴ /B	500 100				L
11417- R	A1-2	EA PRESSURE .	9,4MR	500 - 600	>			
		RE PLOY RATE EX PRESSURE	8/8 ⁴ 78 0/940	73 500-500		> >		(x-3)
	×1-3	AL /LOY RATE	KD 78	21	>			<u> </u>
		ED PRESSURE	nama d	±100		>		
		TER FLOY BATE	אл•/א °С	64.5 1300-1500	43	58 >		
	0-1	co	×	51. 5	>	+		
£9, Y		COL	x -	7.1				$\left\{ _ \right\}$
RODUCEO As		N2	x	24.1				
		7' THE DUST CONTERT		50	>			
•	8-5	EA PRESSURE	nnAq 'C	-110120	>>			Y
	2-3	EA PRESSURE	алда	-220230				
		9' 114 DUST CONTEXT		25	<u>→</u>			
	Q-4	#5 PRESSURE #" X5 8 DUST CONTENT	2780	-420430				\wedge
	Q-5	EA PRESSUAE	nate	-480480	>			-]
۹		Eh PRESSURE	PAGE	50-60	····· >	```	GASIFIER	
ST SLLECTION	18-1	EA PRESSURE EE PLOY RATE	NUT NUT	-200				****** *****
		EX PRESSURE	Ko/cm ¹ G	10		>		OUST CHAM
	¥-1	AL FLOY BATE	п'/н 'с	59.9	>		FREQUENCY CONVERTOR	
	¥-2	II TEMPERATURE	л. гс	322 :	<u>></u>			
	¥-3	ES FLOW RATE	m*/H	20.4				
	¥-4	28 FLOW RATE SR TENPERATURE	л³/н 1 с	8.4			単分単 SLAG POT CAR	1
J# 00L1R0		EA PRESSURE	Ka/cn'a	55 <u>2</u> 3. 5				
ODLING Ater		E FLOY PATE	#"/H	12.0				Fig.
		ER FLOY RATE	n*/8 n*/8	8.4				:
	LY-7 I	IE TENPERATURE	· c	552				
	IV-8 1		a17K	1.7				•
		RE FLOW MATE	и, Л . С	40		>	A & BANKO COAL data a	• 10 0
	¥+0	28 TEMPERATURE	· c	64.4	>		ESTABLE & S AND GASIFICATION	<u>* 30 8</u> $\oplus \in$
1	IW-10 P	· · · · · · · · · · · · · · · · · · ·	љ*/K	7	>	>	TEST PLANT	
		R TEMPERATURE	'с л'/к	40	>			2 X 5 B
	Y-11 F	IN TEMPERATURE	1C	50		».		2
							▲ \$50,9,12 医防挛度能力 求思 【】 3】	1.01

EQUIPMENT	OXYGEN (Nm3/h)	NITROGEN (Nm3/h)	LPG (Nm3/h)	COMPRESSED AIR (Nm3/h)	COOLING WATER (m3/h)	AIR (Nm3/h)
1.Coal drying system					<u></u>	
2.Coal pulv.& Inject.sys.		10.6		53.7	(6.0)	
3.Melting Furnace					16.8	
4.Runner			(0.8)			(21.0)
5.Gasifier	18.0		(3.0)		3.6	(73.0)
6.Main lance					10.8	
7.Hood		56.0			1.7	
8.Water-cooling Duct	:	(29.0)			7.0	
9.Bug Filter		6.0				
10.IDF						
11.Flare Stack			1.5			
12.Dust Collector				13.5		
Total (1)	18.0	72.6	1.5	67.2	6.0	0
Total (2)	(0)	(29.0)	(3.8)	(0) (39.9)	(94.0

Table.4-2-5 Utility balance in standard test run

.

* Total (1) : Utility, consumed during coal gasification test Total (2) : Utility, consumed before or after the test



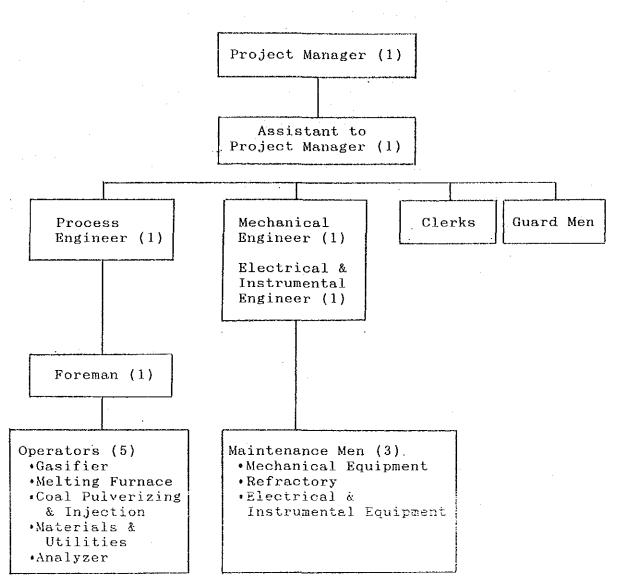
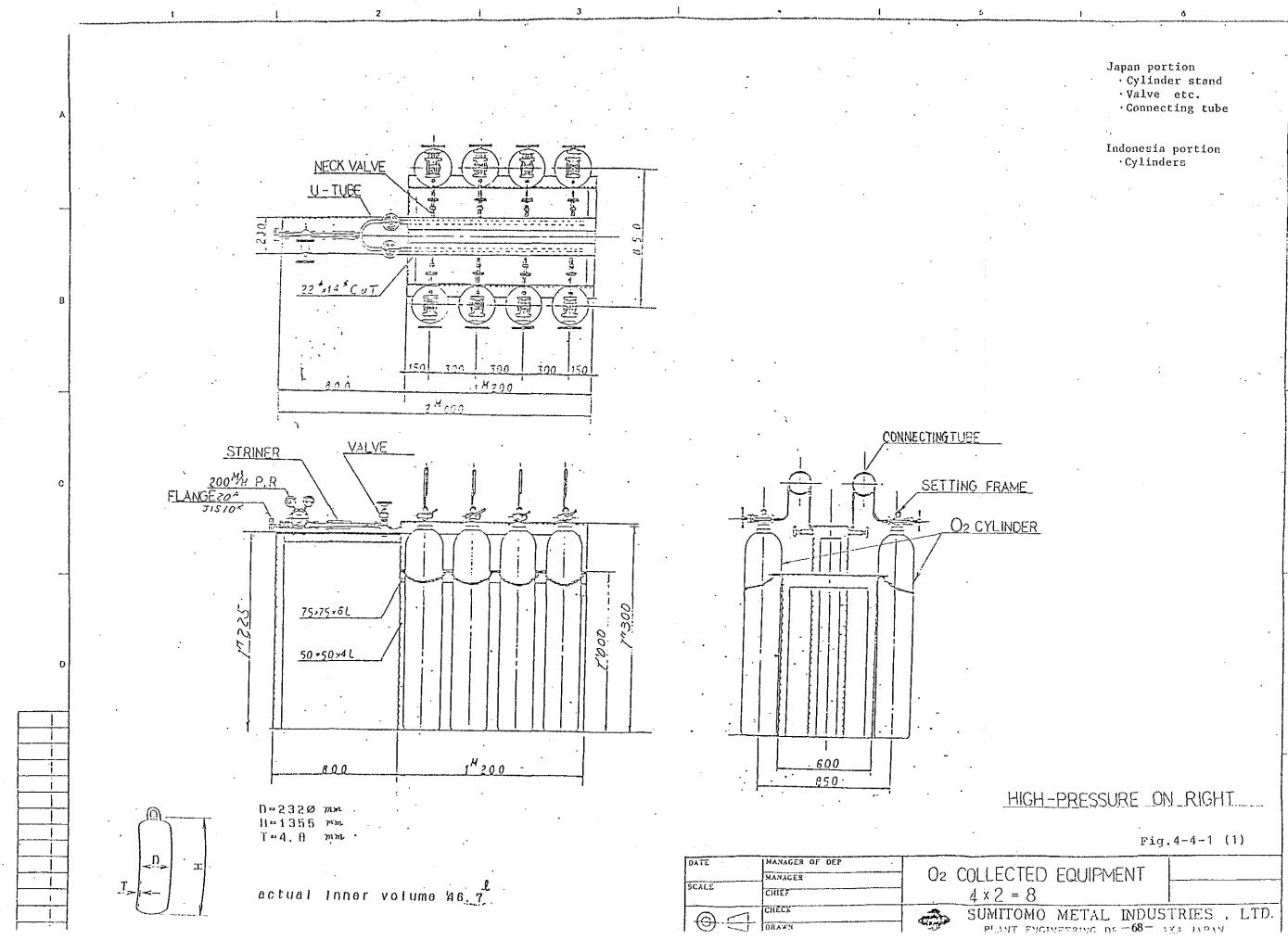

Table.4-3-1 Schedule for Erection, Trial Run & Commissioning and Coal Gasification Test

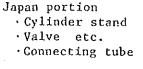
Table.4-3-3 Standard Time Schedule for a Coal Gasification Test Run

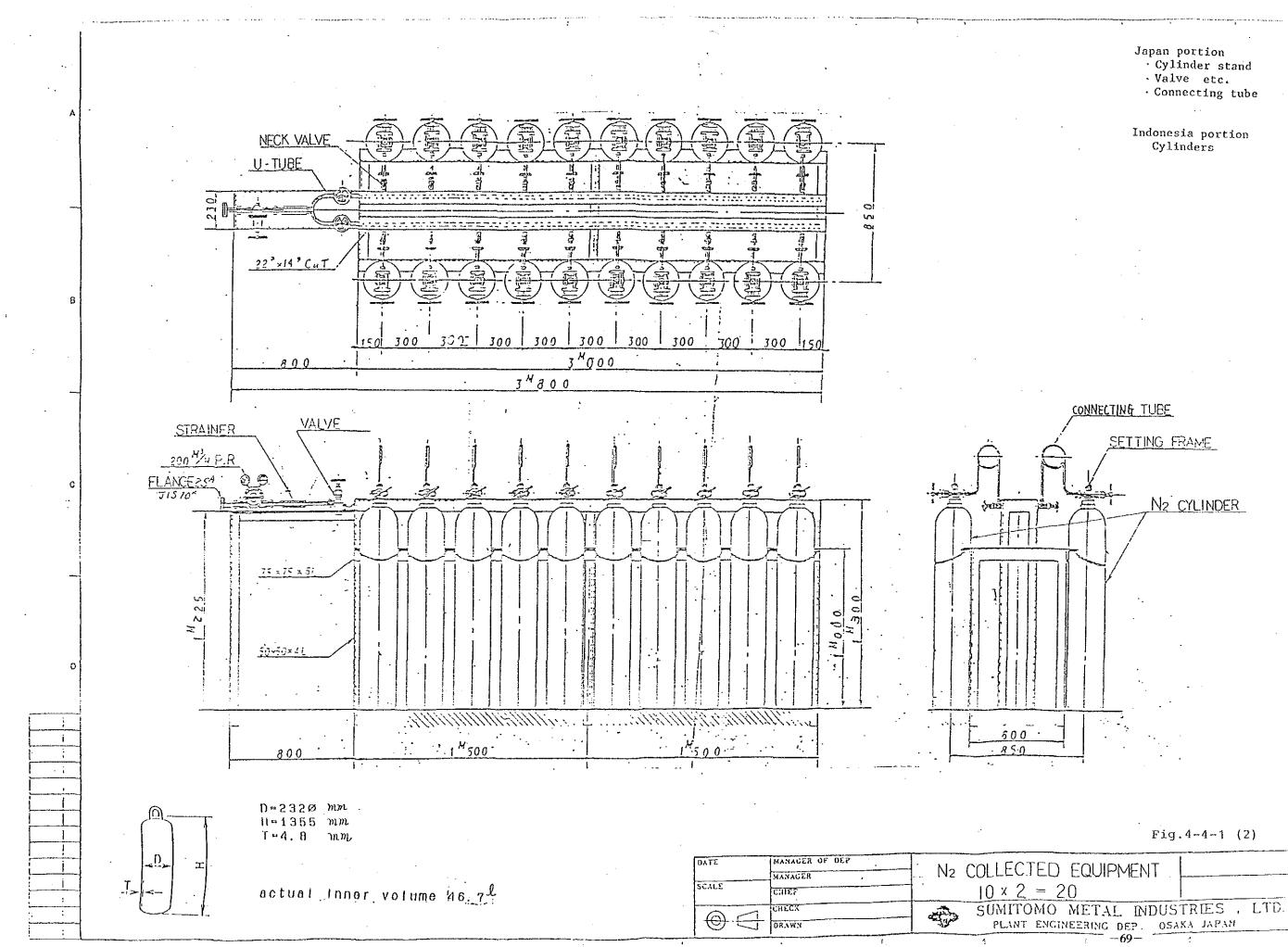
Hour	9	10	11	·12	13	14	15	16	17
Melting	1	en irc aratic		Tar	op- ing				
Turnace	Proh	eating	4		nrg-	Test	;	Finisl job	hing
Gasifier						1			
Coal system	Dryin Pulve	ng & erizin	1g '		- 11 				-

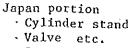
Table.4-3-2	Test Item for Trial Run, Commissioning
	and Coal Gasification Test

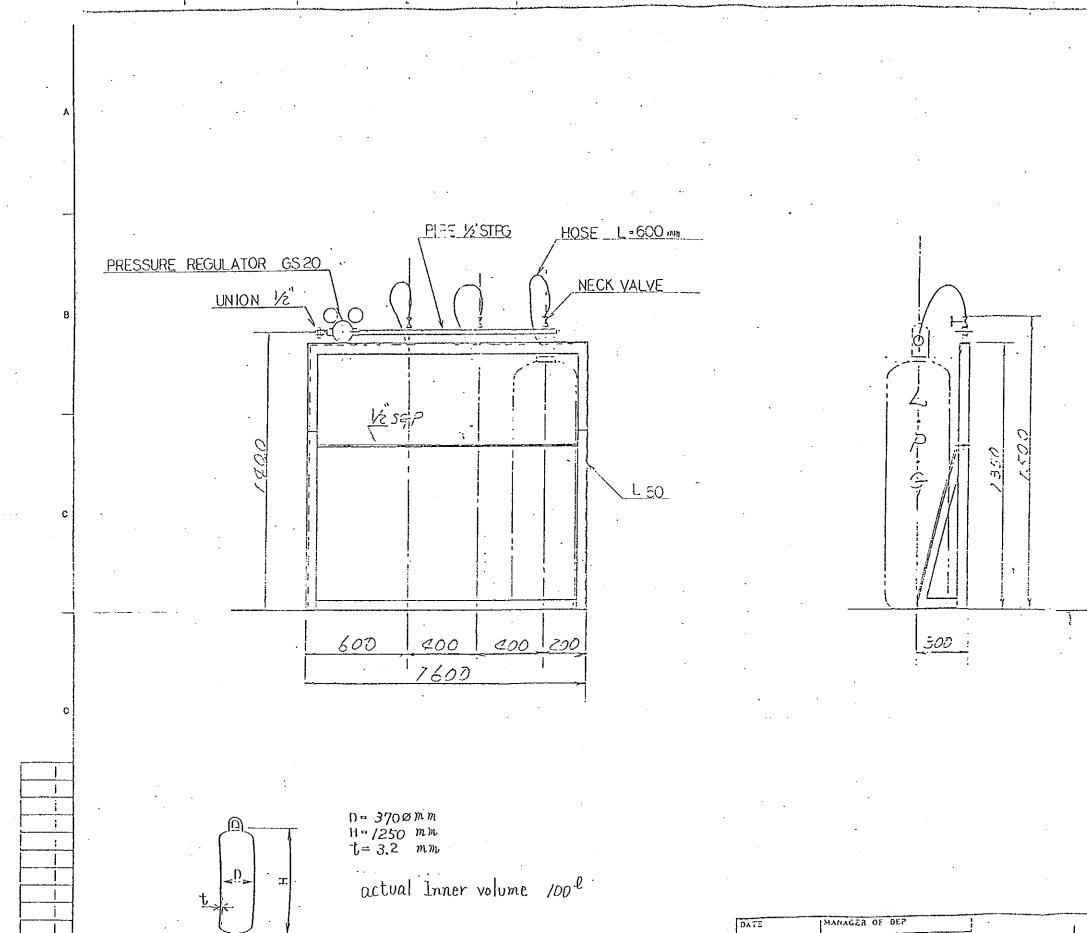
	CONTENT
1.Trial run & Commissioning	<pre>1.Non-load test of the facilities (1)Rotation direction check of motors (2)On-off check of solenoid valves for hydraulic actuator & air actuator</pre>
	2.On-load test of the facilities (1)Check of capacity for the facilities on load state
2.Gasification Test	
(1)Campaign.l	1.Experiments to understand the characteristics of the facilities (1)Heat loss of gasification (2)Tests of gasifier temperature holding condition (3)Study of furnaces repair intervals (4)Establishment of an optimum testing condition
(2)Campaign.2	1.Coal gasification tests for Banko Coal (1)Influence of moisture and ash (2)Influence of C,H,O and S contents
(3)Campaign.3	1.Supplement tests to the result of analyzed data collected during Campaign.2

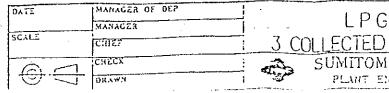



Fig.4-3-1 Organization Table for Counterpart


.


.

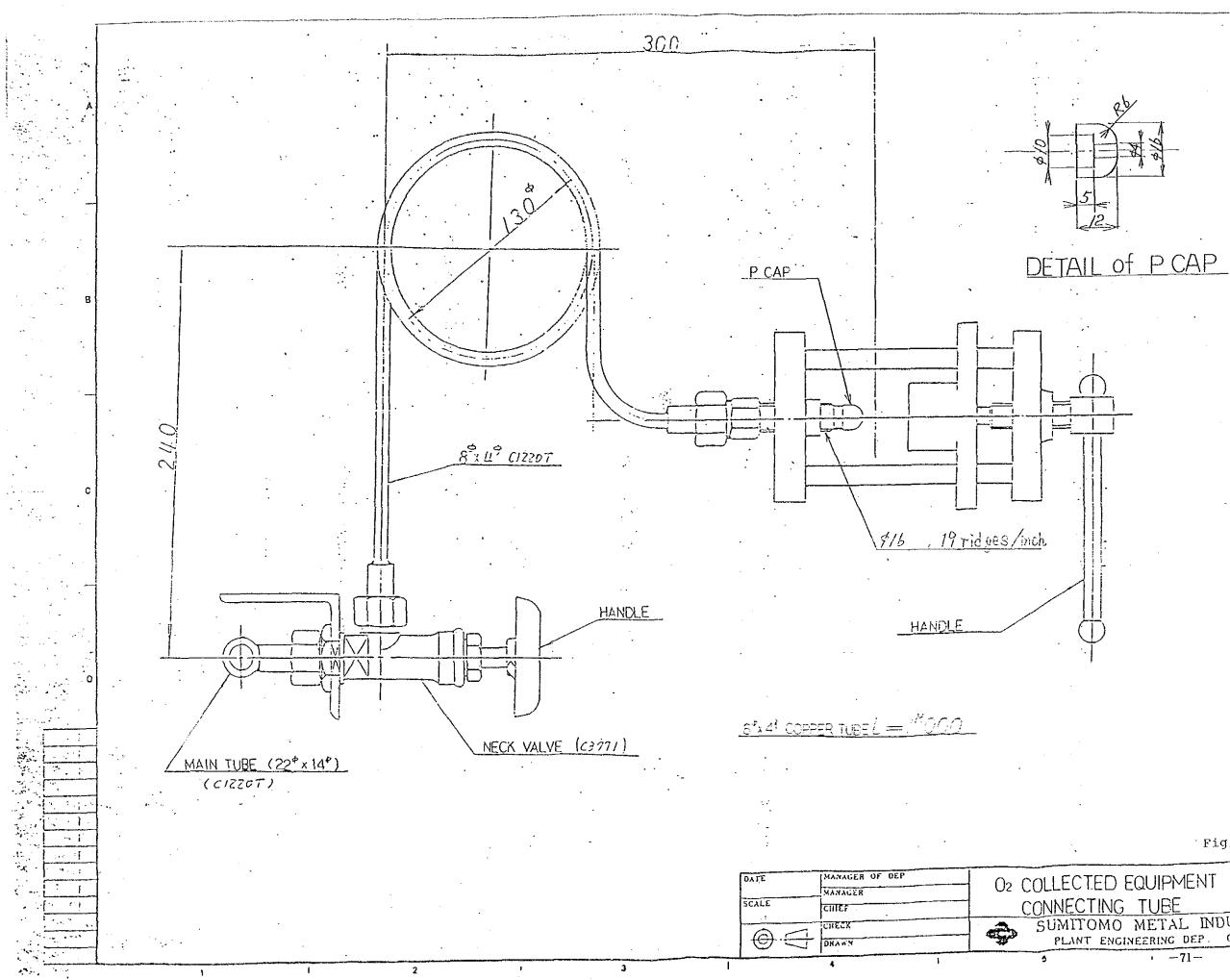

`



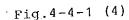
1

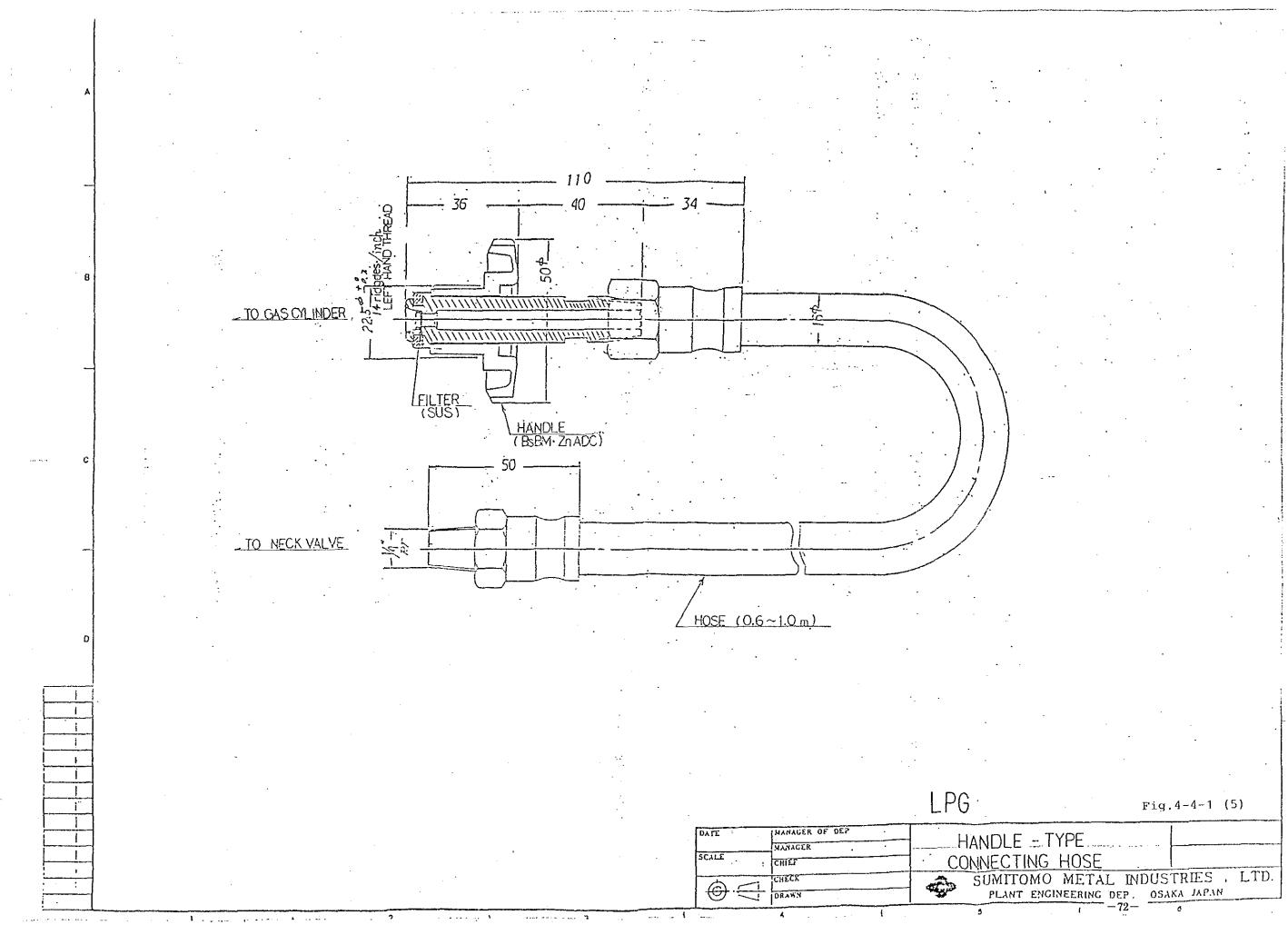
i

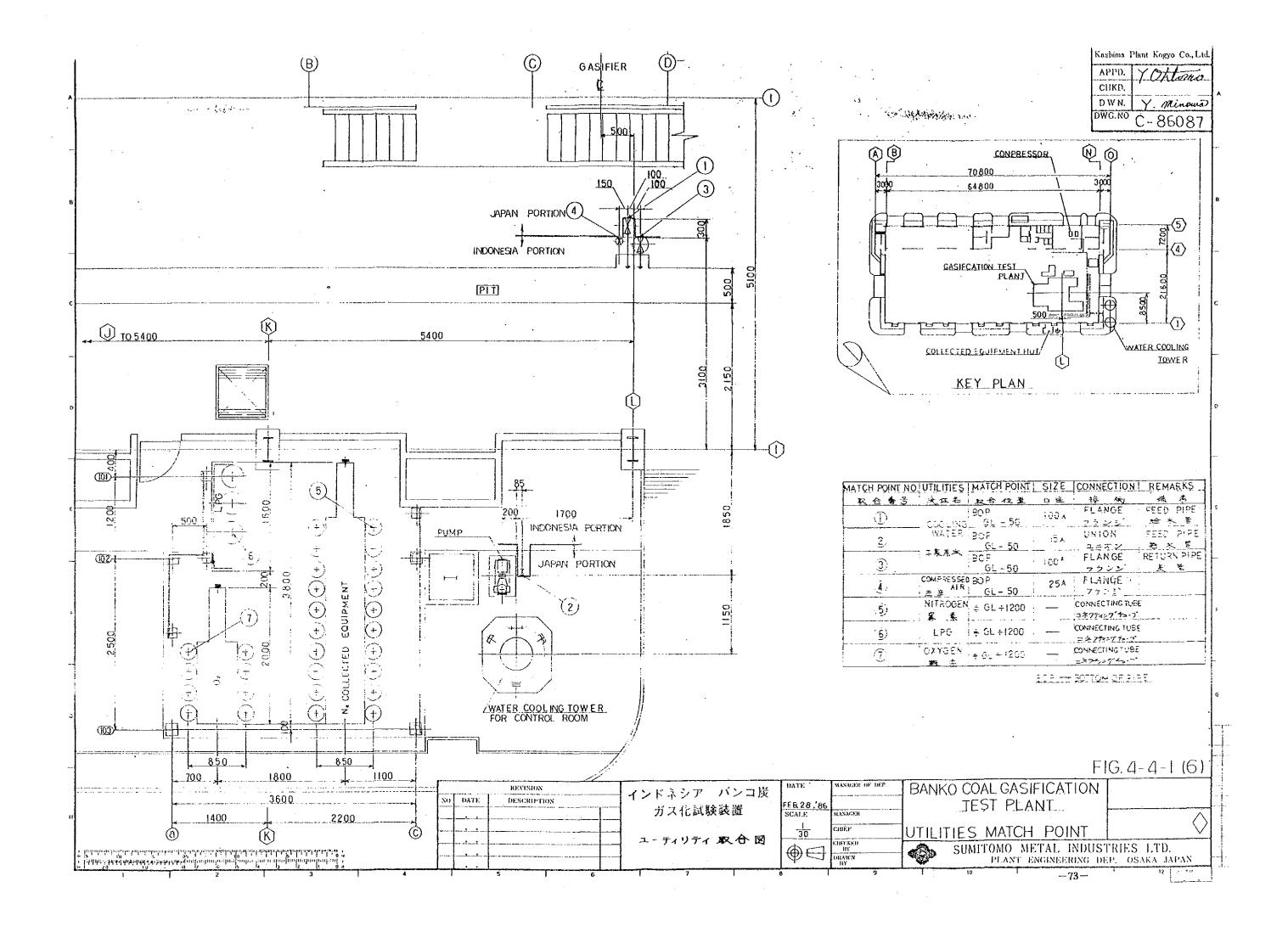
1

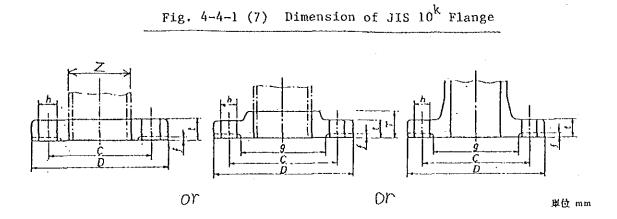

.

Japan portion •Cylinder stand •Valve etc. •Connecting tube

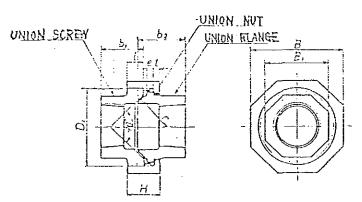

Indonesia portion •Cylinders

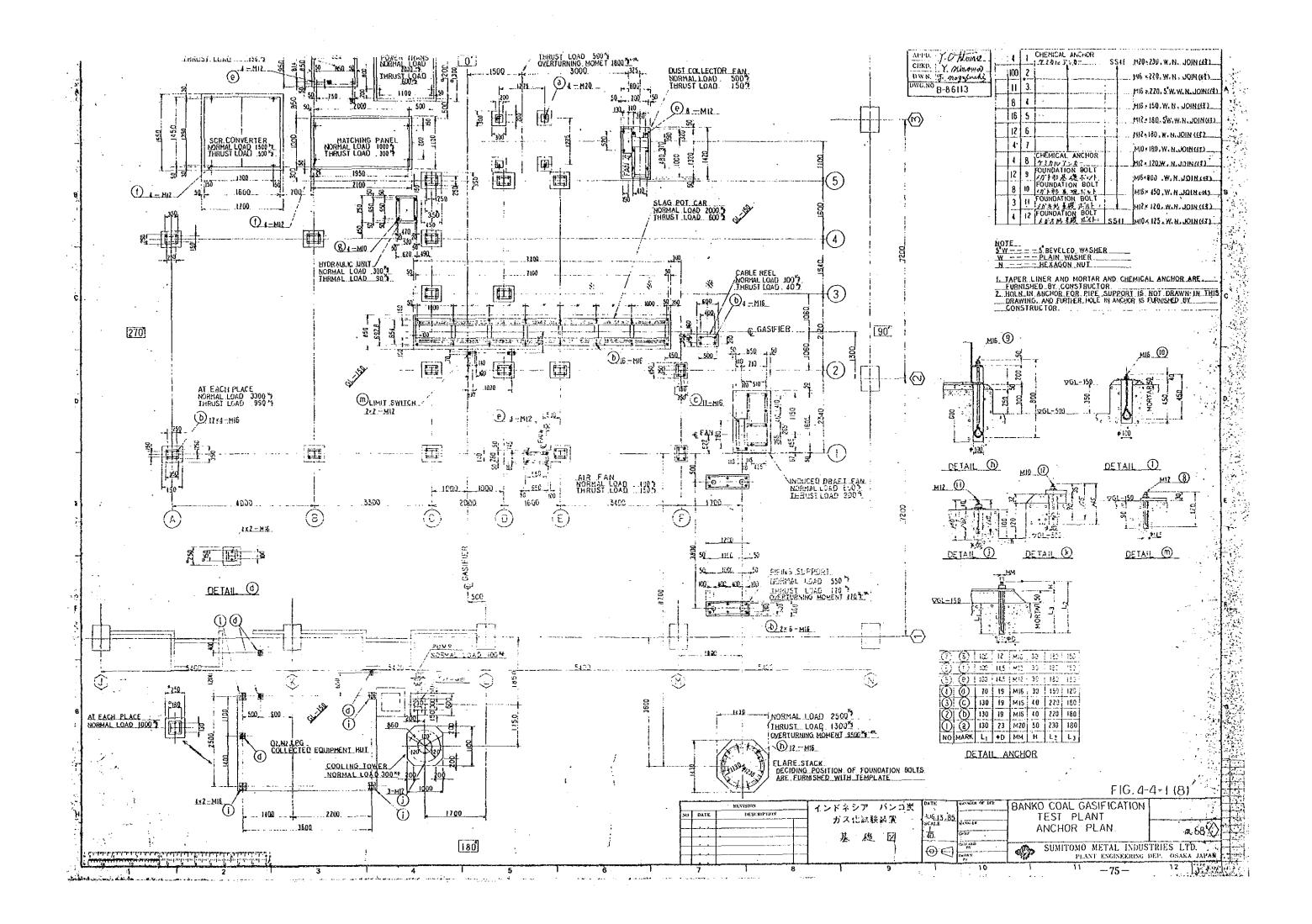

Fig.4-4-1 (3)

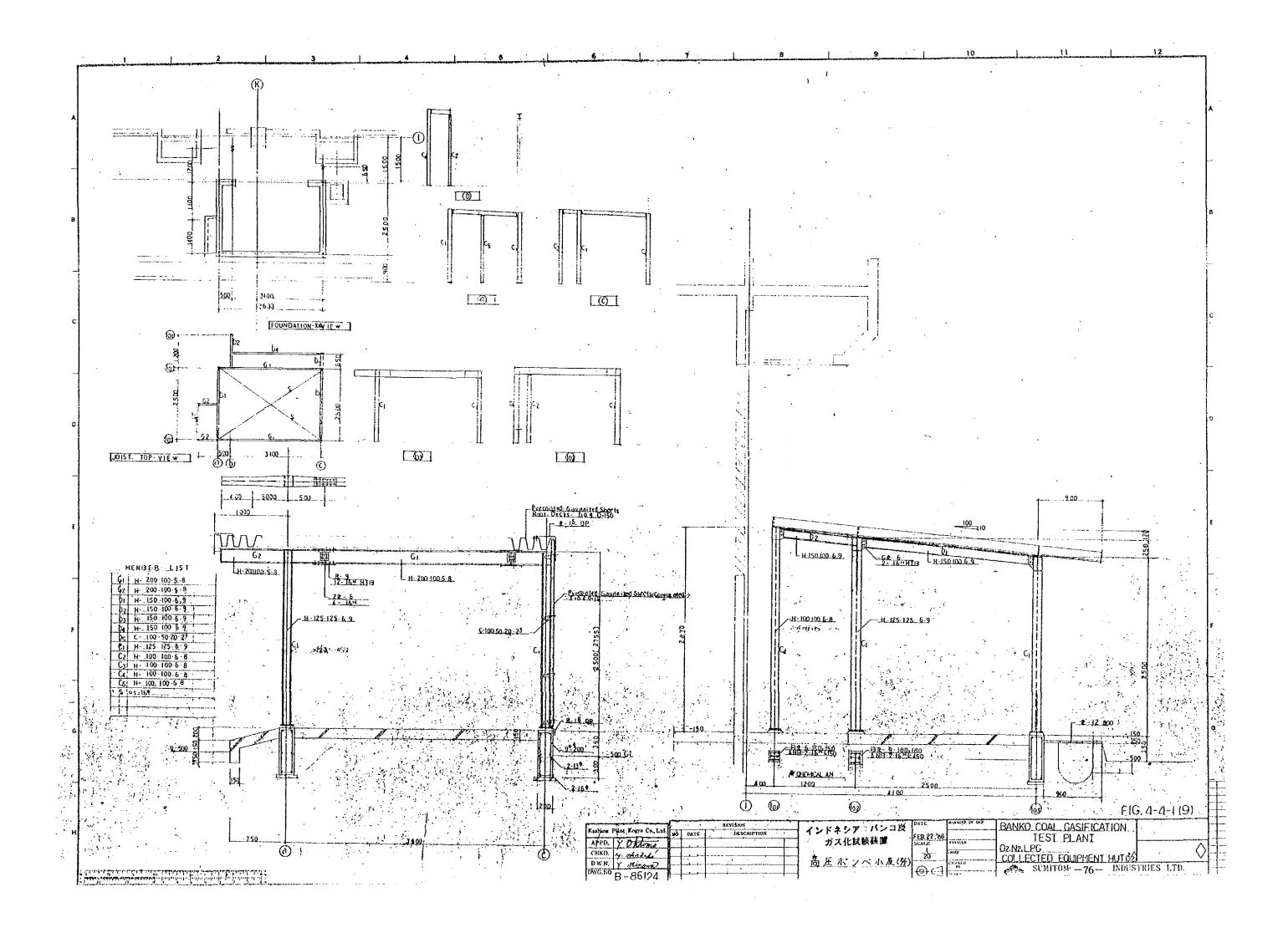

EQUIPMENT	
10 METAL INDUS	TRES , LTD.
MGINEERING -70- 05A	KA JAPAN

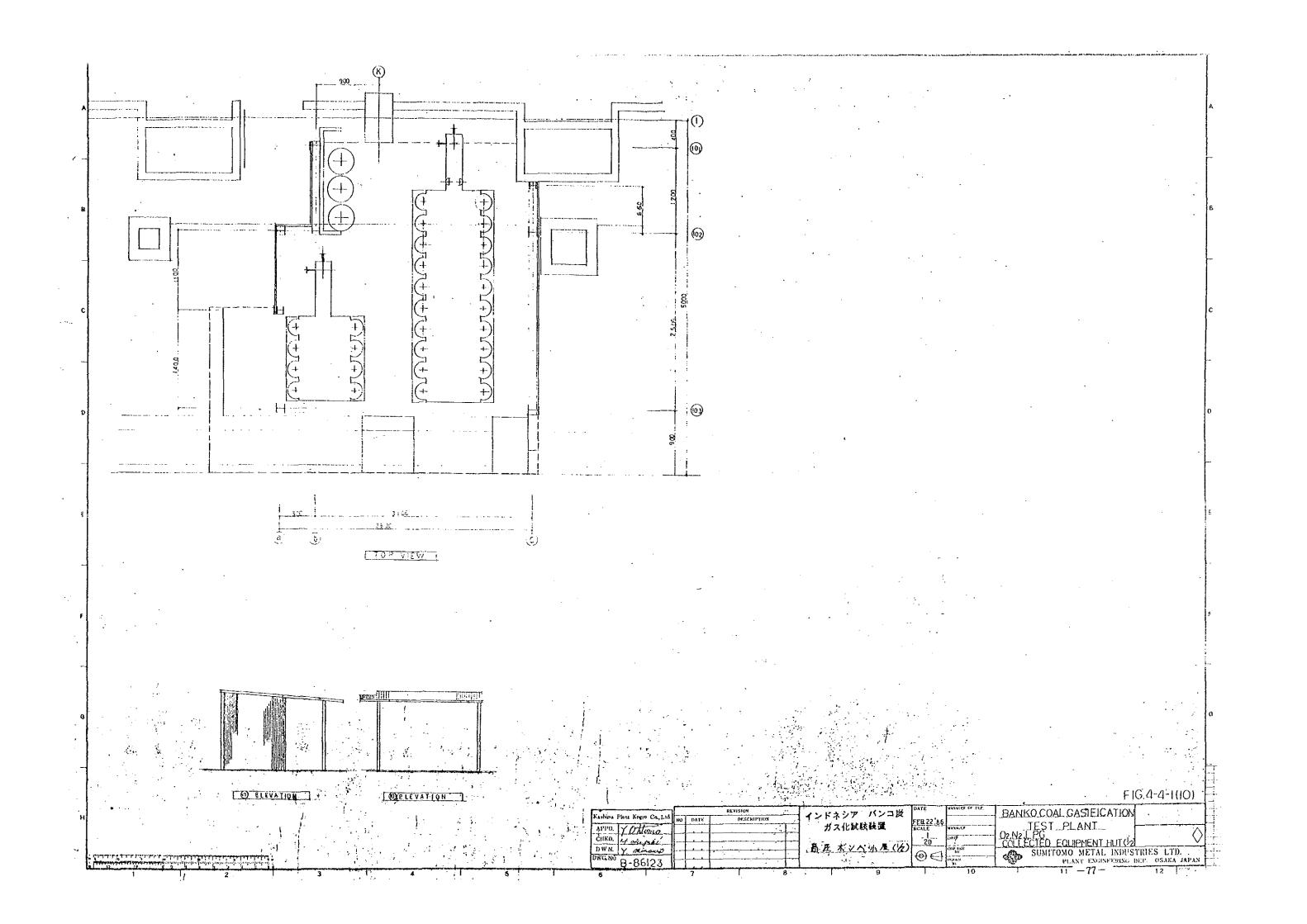


FT0.4-4-1 (1)	
TED EQUIPMENT	
TING TUBE	LTL
OMO METAL INDUSTRIES, T ENGINEERING DEP. OSAKA JAPAN	<i>ط</i> لمار
· -71- °	








					Но			
Utility	Diameter of pipe Z	Diameter of flange D ^(mm)	.(mm) t	(mm) g	C ^(mm)	Number of Holes	Diameter of Hole h	Note
Compressed Air	25A (1B)	125	14	70	90	4	19	Flat face
Cooling Water	100A (4B)	210	18	155	175	8	19	Flat face

	<u>,</u> ī	rion ser	ಲಸ ಕಿ ೮೯	tion flam	ge	Und	.cz zuz		
Utility	(mm) [b (mm)	e ^(mm)	b2 ^(mm)	B1 ^(mm)	H ^(mm)	t ⁽ⁿⁿ⁾	B ^(mm)	Note
Make up water for cooling tower of control room	9	21	3	21.5	27	17	3	42	

Table. 4-4-1. (1) List of materials & utilities supplied by counterpart

• .

ITEMS	Q'TY	SPECIFICATION
1. Oxygen	8 cylinders /charge	<pre>• purity 99% over 2 gas pres. 150 kg/cm²G at 35°C • actual inner vol. 46.7 lit. • available vol. 6.54 Nm³ • dimension</pre>
2. Nitrogen	20 cylinders /charge	<pre>purity 99% over 2 gas pres. 150 kg/cm²G at 35°C actval inner vol. 46.7 lit. available vol. 6.54 Nm³ dimension refer Fig. 4-4-1 (2) connecting tube refer Fig. 4-4-1 (4) location of cylinders refer Fig. 4-4-1 (6)</pre>
3. Liquefied petroleum gas	3 cylinders /charge	 calorific value 24,000 Kcal/Nm³ over gas pres. = 6 kg/cm²G at 15°C actual inner vol. 100 lit. available vol. 26 Nm³ dimension refer Fig. 4-4-1 (3) connecting tube refer Fig. 4-4-1 (5) location of cylinders refer Fig. 4-4-1 (6)

Table. 4-4-1 (1) $_{\rm B}$ List of materials & utilites supplied by counterpart

•

ITEM	Q'TY	SPECIFICATION
4. Compressed Air	67 Nm ³ /H	supply pres. min. 6 kg/cm ² G temp. ambient temp. connecting method refer Fig. 4-4-1 (7) connecting location refer Fig. 4-4-1 (6)
5. Ccoling water	39.9 TON/H	 water analysis see Table. 4-2-1 (2) supply pres. min. 10 kg/cm²G supply temp. max. 32°C NOR. 25 _ 27°C return temp. 46 _ 47°C (necessary capacity of cooling tower 150RT) connecting method refer Fig. 4-4-1 (7) connecting location refer Fig. 4-4-1 (6)
6. Make up water for cooling tower of control room	0.2 TCN/H	<pre>connecting method</pre>

-79-

-	·	· · · ·
ITEMS	Q'TY	SPECIFICATION
7. Coal		See Table. 4-2-1.(1)
Trial run	2 ton	
Test	8 ton	
8. Calcined Lime		See Table. 4-2-1.(1)
Trial run	150 kg	
Test	980 kg	
9. Silica sand		SiO ² 90% over ~5mm
Trial run	120 kg	
Test	780 kg	
10. Scrap iron		See Table. 4-2-1.(1)
Trial run	2 ton	
Test	10 ton	

Table. 4-4-1. (1) List of materials & utilities supplied by counterpart

Table. 4-4-1. (1) List of Utilities Supplied by counterpart

During the gasificasion test we need following cylinders

1. Oxygen

Trial run Test 80 cylinders 520 cylinders

2. Nitrogen

Trial run Test 370 cylinders 1300 cylinders

3. Liquefied petroleum gas

Trial run Test 55 cylinders 280 cylinders Table 4-4-1 (2) 011 11st

ſ	a service and the service				والمحافظ
No.	I tems	necessary volume	recommendation	properties	Note
t	Water-Glycol	540 lit.	NEW HILLAND FRG46	see oil list 2	Hydraulic working oil
5	Heatproof grease	20 kg	FILONOC GREASE2	see oil list 2	Butter state
en	Extreme-pressure grease	5 kg	EPNOC GREASE AP2	see catalogue	Butter state Soap type Li
·7	Extremc-pressure gear oil	30 lit.	BONNOC SP	sec catalogue	Non-lead type
Ś	Multi-purpose industrial grease	30 lit.	MULTINOC GREASE2	sce catalogue	Butter state
Ŷ	Lubricating of l	3 l.t.	S PLNOCS S	see oil list 2	
7	Turbine of L	30 lit.	FURBINE	sce catalogue	
ļ			والمستعد بيهويه الباري يتواريها التقريب ومستعلياتهم والمنابع والمنابع المنابع المنابع المستهيد والم	la series and the series of th	

Table. 4-4-1. (3)

Oil list 2

(specification of oil)

1.NEW HILAND FRG46	·
(1) ISO VG cSt	46
(2) Gravity (ton)	/m3) 1.05
(3) Pour point ("	
(4) PH	9
(5) Preparatory a	alkalinity 16
(0.1N Hcl r	
(6) Moisture (9	
2. PILONOC GREASE2	
(1) cSt (at 100	0°C) 10.3
(2) Mixture (at 2	
(3) Pour point (°	
(4) Amount of eva	
(% at99°C,2	
(5) Oxidation sta	
(kg/cm2 ats	
(6) Separation In	
(% at100°C,	
(7) Waterproof	1.8
(% at79°C,1	
(8) Ash (%)	0.022
3.SPINCCS S	
(1) ISO VG cSt	10
	(at 100°C) 2.6
(2) Viscosity Ind	
(3) Ignition poir	
(4) Dropping poir	
(5) Rust preventi	
	water,24hr)
(6) Corrosion tes	st,Cu-strip l

(6) Corrosion test, Cu-strip 1 (at 199°C, 3hr)
(7) Color ASTM IO.5

.

-83-

EPNOC GREASE AP

(EXTREME PRESSURE MULTI-PURPOSE INDUSTRIAL GREASE)

DESCRIPTION

Epnoc Grease AP is an extreme pressure multi-purpose industrial grease designed for applications where heavy loads, shock loads, or water contamination are present. It is a lithium soap grease incorporating extreme pressure additives and a well refined, high V. I. oil.

APPLICATION

Epnoc Greose AP is recommended for industrial grease applications where heavy or shock loads require the use of extreme pressure greases with good retention characteristics. In these applications it will resist squeeze-out and will provide good antiwear protection for heavily loaded bearing surfaces.

It is also applicable where there is water contamination in that it will resist the washing and leaching action of the water.

Typical applications of Epnoc Grease AP include plain and rolling element bearings in steel mills and other metal working applications, wet end bearings on paper machines, and bearings of heavy mining and construction machinery. It can be used in any type of bearings where EP multi-purpose greases are desired.

CHARACTERISTICS

1. Resists High Temperatures

Epnoc Grease AP is made from high melting soaps combined with selected oils to give product with good high temperature stability.

2. Resists Water Action

The combination of high quality soaps used in Epnoc Grease AP provides excellent resistance to water washing and leaching. The grease absorbs water without softening, so it will prevent moisture from reaching and damaging bearing surfaces. 3. Good Extreme Pressure Characteristics

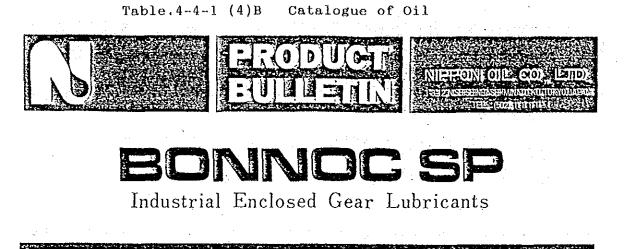
Epnoc Grease AP has good extreme pressure characteristics and provides adequate protection for bearings operating under excessively heavy loads or shock loads; or both.

4. Good Mechanical Stability

Epnoc Greose AP has excellent resistance to mechanical shear so it will not soften and leak from the bearings under severe operating conditions.

5. Oxidation And Rust Resistance

The combination of high quality oil and special soaps with effective oxidation and rust inhibitors gives Epnoc Grease AP excellent oxidation and rust resistance.


6. Good Pumpability

Ephoc Grease AP dispenses readily through hand and power guns at low temperatures. It can also be dispensed satisfactorily through centralized lubrication systems at normal ambient temperatures. 7. Minimizes Environmental Pollution

The "AF" in the Product name stands for "Antipollution". Ephoc Grease AP is free from lead and minimizes environmental pollution from used grease and from grease washed into drainage systems.

	l	INPICAL TESTS	\checkmark		
· · · · · · · · · · · · · · · · · · ·		0	1	2	
Penetration Worked	. @ 25°C	359	315	282	
Dropping Point	С	186	194	200	
Soap Type		Li	Li	Li	
Corrosion Test Cu-Stri	ip @70°C, 50h	Pass	Pass	· Pass	

TYPICAL TESTS

BONNOC SP are formulated from selected high VI base oils combined with a sulfur-phosphorus extreme pressure additive to provide good wear protection, excellent adhesion, and good cushioning of shock loads. Enclosed gears used in steel mills and other mills under severe conditions are most efficiently lubricated

by an extreme pressure type lubricant that will retain its stability in service and not thicken over a long period of time. BONNOC SP meet these requirements.

BONNOC SP is superior to lead type BONNOC in oxidation and thermal stability, and in ability to separate readily from water.

CHARACTERISTICS

1. High Load Carrying Capacity

BONNOC SP provide a tough film that with stands "shock loads" and heavy duty steady loads far in excess of manufactures' requirements for gear and bearings and reduce wear by addition of excellent extreme pressure additive.

2. Non-Corrosive to Metals

BONNOC SP are non-corrosive at gear case operating temperatures to all the usual metals that are used in gears or bearings such as steel, copper, bronze, babbit or cadmium nickel.

 Low Viscosity Change with temperature BONNOC SP have high viscosity index which means that the change in viscosity caused by change in temperature is relatively low. When equipment is cold, greater ease of starting, lower torgue and dependable circulation are assured.
 Oxidation stability

BONNOC SP are designed to resist the normal thickening induced by high temperature operation.

5. Water Separation

BONNOC SP have good water separation properties. And they can easily separate water in gear cases.

6. Resistance to Foaming By addition of anti foaming agent BONNOC SP have excellent foam resisting properties.

APPLICATION

J

50NNOC SP are recommended for lubrication of all kinds of enclosed gears in various industrial machines, such as :

Steel mill, Construction machinery, Mining machinery, Forging machinery, Machine tool, Chemical machinery, Rubber forming machinery, Material handling machinery.

								¥					
Product Desi	gned Gr	ade	68	100	150	220	260	320	460	560	680	1800	3800
Viscosity	cSt	@ 40°C	61	102	154	228	254	346	456	\$66	694	1,756	3.620
	cSt	@100°C	8.4	11.3	14.7	19.4	20.7	25.4	30.4	35.0	39.8	70.2	99.5
Viscosity Index			103	97	95	95	96	96	96	96	96	96	87
Flash Point	.с		206	216	226	230	234	238	238	242	242	286	270
Pour Point	۰c		- 25	- 25	~20	-12.5	-12.5	~12.5	- 12.5	-12.5	-12.5	0	÷2.5
Corrosion Test	@ 100)°C, 3h]			· ·
Copper strip			Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Timken OK.	16		40	45	45	50	55	55	55	55	60	50	50
AGMA	Grade		2 E P	3EP	4EP		SEP	6EP	7EP	8EP	8EP	-	_

TYPICAL TEST DATA

Table.4-4-1 (4)C Catalogue of Oil

MULTINOC GREASE (MULTI-PURPOSE INDUSTRIAL GREASES)

PRODUCT DESCRIPTION

MULTINOC GREASES are high quality multi-purpose industrial grease suitable for a wide variety of applications.

It is formulated with a lithium soap and a selected oil having a viscosity of about 360 SSU @ 100°F. An oxidation inhibitor and rust preventive additive are included to provide improved service and storage life.

MULTINOC GREASES have a high melting point. excellent shear resistance, good water resistance and satisfactory low temperature properties. It is suitable for bearing lubrication operating temperatures ranging from about $-22^{\circ}F(-30^{\circ}C)$ to $257^{\circ}F(125^{\circ}C)$.

APPLICATION

MULTINOC GREASES are recommended for general industrial usage where a single, high quality grease is required for several different applications. It can be used for the lubrication of both plain and rolling element bearings, as well as grease lubricated gears and sliding elements.

It is outstanding for the lubrication of electric motor bearings.

CHARACTERISTICS

1. GOOD MECHANICAL STABILITY

MULTINOC GREASES soften less than 50 points after 100,000 strokes in the ASTM grease worker. This indicates that the grease has excellent resistance to mechanical shear so it will not soften and leak from the bearings under severe operating conditions.

2. RESISTS WATER AND WATER WASHING MULTINOC GREASES will absorb approximately an equal amount of water without softening excessively or losing its grease-like consistency. In service the grease will remain in bearings and provide effective lubrication in moist atomospheres or where water is present.

3. OXIDATION AND RUST RESISTANT

- The combination of high quality oil and special soaps with effective oxidation and rust inhibitors gives MULTINOC GREASE excellent oxidation and rust resistance.
- 4. GOOD FOR LOW-HIGH TEMPERATURES MULTINOC GREASES can be used at operating temperatures ranging from about $-22^{\circ} F(-30^{\circ} C)$ to 257°F(125°C), and will perform satisfactorily in bearings which may occasionally reach temperature as high as 300°F(149°C) for short periods of time. At these higher operating temperatures relubrication should be more frequent.
- 5. LONG STRAGE LIFE

MULTINOC GREASES do not harden and cake. or soften and bleed oil excessively during extended periods of storage.

Л.

		¥
	1	2
@ 25°C	313	278
Ċ	204	208
	Lithium	Lithium
@100°C. 24h	Pass	Pass ·
7. 100h. press. drop	0.20	0.20
	c	°C 204 Lithium @ 100°C. 24h Pass 0.20

TYPICAL TEST DATA

Table.4-4-1 (4)D Catalogue of Oil

FBK TURBINE

(TURBINE & HYDRAULIC OILS) PRODUCT DESCRIPTION en al registra demonistrativa para en analisada a construinte a ser a construinte de la construinte de la const

FBK TURBINE series are high quality inhibited turbine oils. These oils were first developed in 1951 and since then the quality of the oils has been improved together with the development of turbine generators. Presently FBK TURBINE series are being employed in more than 600 units of turbines. Particularly as examples to show their reliability and high quality, FBK TURBINE 32 has been employed in 600 MW Super Critical GE Turbine Generator of No. 1 unit of the Anegasaki Thermal Power Plant of Tokyo Electric Power Co. which was put into operation in September 1967, and FBK TURBINE 83 in IHI Reduction Geared Marine Turbine of 40,000 PS installed in T/V Nisseki-Maru, 372,698 DWT Tanker, owners Tokyo Tanker Co., Ltd.

FBK TURBINE series are premium grade rust and oxidation inhibited oils, designed for use in those applications requiring a high quality inhibited oil. They provide outstanding performance in steam and hydraulic turbines. hydraulic systems, air compressors, circulating systems and a wide variety of industrial applications.

Their superior quality has earned the approval of leading manufacturers of turbines, hydraulic equipment, and machine tools.

FBK TURBINE series are formulated to give protection against foaming, corrosion or rusting, and gumming or sludging of the oil: Some of their more important characteristics are as follows.

CHARACTERISTICS

1. Highly resistant to Oxidation

These oils contain extremely effective inhibitors which make them highly resistant to oxidation. Experience with FBK TURBINE series has shown that intervals between drain periods may be extended. In addition, the possibility of gum or sludge formation during the service life of these oils is minimized.

For modern steam turbines operated at high temperature and high pressure, a long life turbine oil which withstands severe operating conditions is required. FBK TURBINE series have excellent oxidation stability and are in good condition after use more than 100,000 hours.

2. Protest against Rust

FBK TURBINE series prevent rusting even under severe service conditions. This series of oils contains a rust inhibitor which "plates out"

on metal surfaces in the presence of water under dynamic conditions, forming a tenacious film that is impervious to moisture. As even small particles of rust can cause considerable damage to precision made parts, rust prevention properties of FBK TURBINE series are of prime importance. 3. Resistant to Foaming

These oils are so processed that they are highly resistant to foaming.

4. Separate quickly from Water

These oils have excellent demulsibility.

RECOMMENDED USES

Typical application where FBK TURSINE series are recommended include; direct connected and geared steam turbines, hydraulic turbines, gas turbines, generators, electric motors, air compressors, machine tools, speed reducers, hydraulic systems and circulating systems.

	•	<u> </u>					
GRAI	DE	32	46	56	68	83	100
Viscosity,	cSt @40"C	31.5	44.1	53.8	70.1	78.3	100.5
	@ 50°C	21.3	28.9	34.4	45.0	49.2	ļ
	@ 100°C	5.4	6.7	7.6	9.1	9.7	11.4
Viscosity Index		104	106	104	103	102	99
Flash Point. COC 'C		210	224	230	238	242	250
Pour Point.	•C	-12.5	-12.5	-12.5	-12.5	-12.5	-12.5
Neutralization Value, mg KOH/g		0.14	0.14	0.12	0,10	0.10	0.13
Corrosion, Copper Strip @ 100°C, 3h		1 a	1 a	1 a	1 a	1 a	la
Rust Prevention Test in Synthetic Salt Water		Pass	Pass	Pass	Pass	Pass	Pass
Oxidation Test, Hours		1500*	1500⁺	1500*	1500+	1500-	1500-
SAE Grade (Motor Oil)		(10W)	20	20	20	30	30

.

TYPICAL TEST RESULTS ON FBK TURBINE

Table.4-4-1 (5)List of Utilities & Facilities suppliedby Counterpart for Construction

. · · · · .

1.Utilities

- (1) Electric Power
 - (2) Industrial Water
 - (3) Drinking Water
 - (4) Compressed Air
 - (5) Oils

2. Facilities

- (1) Overhead Crane
- (2) Lighting Apparatus
- (3) Lavatory
- (4) Water Service

1		Charge			
	No. Items	Japan	Indonesia	Note	
dation	Making holes for chemical anchor	0		We think 15 cm thickness of precast concrete	
uno _z r	2 Mortar work	0		is already worked in the building.	
Indoor	3 Setting of base plate and chemical anchor	0			
цо	4 Ground concrete work		0		
oundatí	Making anchor holes 5 for anchor bolts		Ο		
007 F(6 Mortar work	0			
Outde	7 Setting of base 7 plate and anchor bolts	0			

.

.

Table.4-4-1 (6) List of Fundation Work

Table.4-4-1 (7) List of Holes for Pipes through the Wall of the Building

(1)	Exhaust gas duct	300A	(environmental ga	ıs)
(2)	Exhaust gas duct	80A	(CGS gas)	
(3)	Exhaust gas duct - for safety valve e	20A xhaust	X3 (O2,N2,LPG) gas -	
(4)	Entrance of utilities		X2 (N2,LPG) (02)	

	ITEMS	Q'TY	SPECIFICATION
	uipment & Tools	1	Standard anositisation
1-1	Refrigerator	1 .	Standard specification
1-2	Vacuum cleaner	1	Standard specification
1-3	Gas pressure regulator	. 1	Type:Two-stage type pressure:Max. 3 kg/cm2
1-4		1.	Capacity:1000 kw
1-5	Insulated pot	1	Standard specification
1-6	Kettle	1	Capacity:2 1
1-7	Gas cylinder support	1	with 1 m-chain and 2 hooks
. Ge	neral Consumables	(1)	
2-1	Spoon		Stainless steel
		5	15 cm (Micro)
		5	15 cm
		5	18 cm
		3	24 cm
		2	Scoop (large)
2-2	Beaker		Polyethylene
		10	100 ml
		5	200 ml
		5	500 ml
2-3	Pan		Aluminum
		4	290 x 200 x 65
		4	$320 \times 230 \times 65$
		4	$355 \times 255 \times 65$
2-4	Sample plate	1	Aluminum 90 mm
2-4 2-5	Sample plate Wasted cloth	1 1	Aluminum 90 mm 7 kg
		1	7 kg Polyethylene
2-5	Wasted cloth	1 100	7 kg Polyethylene 100 x 200
2-5	Wasted cloth	1 100 100	7 kg Polyethylene 100 x 200 200 x 300
2-5	Wasted cloth	1 100	7 kg Polyethylene 100 x 200
2-5 2-6	Wasted cloth	1 100 100	7 kg Polyethylene 100 x 200 200 x 300

Table.4-4-2.(1) List of Equipments, Tools and Consumables for Chemical Analysis supplied by Counterpart Table.4-4-2.(2)

List of Equipments, Tools and Consumables for Chemical Analysis supplied by Counterpart

	ITEMS	Q'TY	SPECIFICATION
2-8	Brush	8 4 8 6	Type-2 (No.2) Type-4 (No.4) 2-9 Washer for Test tube 1000 ml
2-10	Silica Gel	1	12.5 kg
2-11	desiccater	1	240 mm inside diameter
3. Sta 3-1	andard Gas & Utilit Oxygen for combustion gas		Proximate analysis of coal Purity:greater than 99.5 % Pressure:2.8 kg/cm2 Consumption:9 1/min. Gas bomb:7 m3
3-2	Nitrogen for operation gas		Proximate analysis of coal Purity:greater than 99.5 % Pressure:2.8 kg/cm2 Consumption:9 1/min. Gas bomb:7 m3
3-3	Oxygen for combustion gas	B	Ultimate analysis of coal Purity:greater than 99.99 % Pressure:2.8 kg/cm2 Consumption:7 1/1 analysis Gas bomb:7 m3
3-4	Helium for operation gas		Ultimate analysis of coal Purity:greater than 99.99 % Pressure:2.8 kg/cm2 Consumption:250 cc/1 analysis Gas bomb:7 m3
3-5	Nitrogen for operation gas		Ultimate analysis of coal Purity:greater than 99.50 % Pressure:2.8 kg/cm2 Consumption:a little Gas bomb:7 m3
3-6	CO2 for dosing gas		Ultimate analysis of coal Purity:greater than 99.50 % Pressure:2.8 kg/cm2 Consumption:6 1/1 analysis Gas bomb:30 kg
3-6	PR for operation gas		Slag analysis Content:oxygen 90.0 % + metan 10.0

Table.4-4-2.(3) List of Equipments, Tools and Consumables for Chemical Analysis supplied by Counterpart

-	ITEMS	Q'TY	SPECIFICATION
3-7	Oxygen for combustion gas	S	Pig iron analysis Purity:greater than 99.5 % Pressure:2.6 kg/cm2 Consumption:4 1/1 analysis Gas bomb:7 m3
3-8	Nitrogen for operation gas		Pig iron analysis Purity:greater than 99.5 % Pressure:2.6 kg/cm2 Consumption:4 1/1 analysis Gas bomb:7 m3
3-9	Standard gas		Gas analysis (CO,CO2,H2,O2) Content:CO2 5.0 % + N2 95.0 %
3-10	Span gas		O2 analysis Content:O2 2.0 % + CO2 5.0 % + N2 95.0 %
3-11	Span gas		H2 analysis Content:H2 49.0 % + CO2 5.0 % + N2 46.0 %
3-12	Span gas		CO analysis Content:CO 99.0 % + N2 1.0 %
3-12	Span gas		CO2 analysis Content:CO2 5.0 % + N2 95.0 %
3-13	Helium for carrier gas		Gas analysis (H2S, COS, N2) Purity:greater than 99.99 %
3-14	Standard gas		Gas analysis (H2S, COS, N2) Content:H2S 0.02 % + N2 99.98 COS 0.02 % + N2 99.98

Table.4-4-3 List of Office Furniture supplied by Counterpart

ITEMS	Q'TY
. Desk & chair	5 sets
. Meeting table	4 pieces
. Meeting chair	16 pieces
. White board with white board pen	
& eraser	l set
. First-aid medicine & box	l set
5. Stretcher	l set
. Helmet rack	l set
. Wear cabinet	10 sets
. Book shelf	2 sets
0.Waste basket	10 pieces
1.Xerox (rental)	l set
2.Paper for Xerox	l set
3.Vacuum cleaner	1 set
4.Broom	3 pieces
5.Hot water supplier (electric heater)	1 set
6.Hot water supplier (vacuum bottle)	l piece
7.Coffee cup & spoon	15 sets
8.Kitchen cabinet (small)	l set
9.Sink (small)	1 set
0.Electric refrigerator	l set
1.Telephone	l set

* The specification of office furniture are appended the report presented on December in 1985.

.

.

.

-95-

Table.4-4-4.(1)	List of Working Tools & Expendables for
	Gasification Test supplied by Counterpart

ITEMS	Q	'TY
. Working tool		
1-1 Scoop	3	pieces
1-2 Light with cable	4	pieces
1-3 Electric cord with reel	2	sets
1-4 Portable light with dry battery	5	sets
1-5 Trestle	1	set
1-6 Electric solding tool with solder	1	set
1-7 Tool box	2	set
1-8 Tool cabinet	1	set
1-9 Brick cutter	1	set
1-10 Chain block	1	set
1-11 Grease gun	2	set
1-12 Bomb carrier for gas cylinder	1	set
1-13 Hand track	1	set
1-14 Oil hydraulic jack (oil pump)	1	pieces
1-15 Oil hydraulic jack (jack)	1	pieces
1-16 Scale	1	set
1-17 Air hammer	1	set
1-18 Ladder	1	set
1-19 Case for granulated carbon		pieces
1-20 Case for silica sand		pieces
1-21 Case for calcined lime		pieces
1-22 Bucket	2	pieces
1-23 Sample sorting case	6	pieces
1-24 Cabinet for sample sorting case	1	set
1-25 General tools (pipe wrench)		sets
1-26 General tools (hammer)		sets
1-27 General tools (screw driver)		sets
1-28 General tools (insulated driver)		sets
1-29 General tools (socket wrench)	2	sets
1-30 General tools		
(socket wrench for air hammer)	_	sets
1-31 General tools (insulated pincers)		sets
1-32 General tools (double-ended wrench)		sets
1-33 General tools (round file, pillar file)		sets
1-34 General tools (double-ended spanner)		sets
1-35 General tools (nipper)		sets
1-36 General tools (plier)		sets
1-37 General tools (compasses)		sets
1-38 General tools (race knife)	2	sets

Table.4-4-4.(2) List of Working Tools & Expendables for Gasification Test supplied by Counterpart

ITEMS	Q'TY
. Working expendables	
2-1 Grease oil	18 1
2-2 Machine oil	36 1
2-3 Cylinder oil	36 1
2-4 Motor oil	36 1
2-5 Insulating oil	36 1
2-6 Lubricating oil	36 1
2-7 Waste cloth	100 g
2-8 Compressed air hose	50 m
2-9 Water hose	50 m
2-10 Hose coupling	10 pieces
2-11 Hose clip	20 pieces
2-12 Two colored rope	100 m
2-13 Plastic sheet	
2-14 Insulating tape	20 pieces
2-15 Silica sand	150 g
2-16 Molding sand	54 tons
2-17 Sealing tape	10 pieces

* The specification of working tools, etc. are appended the report presented on December in 1985.

Supplied by Cour	nterpart
ITEMS	Q'TY
1.Maintenance materials	
1-1 Steel plate	1 set
1-2 Steel pipe	l set
1-3 Angle steel	l set
1-4 Band steel	l set
1-5 Channel steel	l set
1-6 Valve (globe valve)	1 set
1-7 Valve (sluice valve)	1 set
1-8 Valve (check valve)	l set
1-9 Valve (needle valve)	l set
1-10 Flange	1 set
1-11 Bolt, nut & washer (hexagon)	l set
1-12 Bolt, nut & washer (U- type)	l set
1-13 Reducer	l set
t to meadoor	

1-14 Packing

1-17 Cloth tape

1-18 Steel tape

1-16 Elbow

1-15 Plug, tie & cap

1-19 Asbestos cloth

1-20 Asbestos plate

1-21 Asbestos yarn

2. Maintenance tools

2-3 Polishing machine

2-8 Oxy-acetylene cutter

2-9 Oxy-acetylene torch

2-15 Electrode Arc weld

2-17 Electric hand drill

2-16 Electrode holder

2-6 Pipe threading machine

2-2 Grind stone

2-4 Pipe bender

2-5 Pipe cutter

2-10 Oxygen gas

2-13 Bomb hose

2-7 Scaling hammer

2-11 Acetylene gas

2-14 Bomb packing

2-18 Monky wrench

2-20 Maule hammer

2-21 Chipping hammer

2-19 Pipe wrench

2-23 Anvil block

2-24 Box hammer

2-25 Calipers

2-22 Pincers

2-12 Reducing valve

2-1 Grinder

1 set

1 set

1 set

1 set 1 set

1 set

1 set

1 set

1 set

1 set

1 set

1 set

1 set

 $1 \, \text{set}$

1 set

l set

1 set

l set

1 set

1 set

l set

1 set

1 set

1 set

l set

1 set 1 set

.

Table.4-4-5.(1) List of Maintenance Tools & Materials Supplied by Counterpart

--98--

Table.4-4-5.(2) List of Maintenance Tools & Materials Supplied by Counterpart

ITEMS	Q'TY
2-26 Punch	1 set
2-27 Clearance gauge	1 set
2-28 Dial gauge	l set
2-29 Dividers	1 set
2~30 Flat gauge	1 set
2-31 Plate gauge	1 set
2-32 Ruler	1 set
2-33 Vice	1 set
2-34 Key drift	1 set
2-35 Rubber cap	1 set
2-36 Coupling	1 set
2-37 Hose clamp	1 set
2-38 Wire clip	l set
2-39 Bend	l set
2-40 Bib	l set
2-41 Blank flange	1 set
2-42 Chock plug	$1 \mathrm{set}$
2-43 Chock union	l set
2-44 Nail	l set
2-45 Table tap	1 set
2-46 Bayonet socket	l set
2-47 Electric cable	1 set
2-48 Turnbuckle	$1 \mathrm{set}$
2-49 Plusthread	1 set
2-50 Screw cap	l set

* The specification of maintenance tools, etc. are appended the report presented on December in 1985.

ITEM	CAPACITY (AC		PHASE
l. Coal analyzer (Ash)	4.5 kw	220 V	3
2. Coal analyzer (C,H2,N2)	1.8 kw	220 V	3
3. Coal analyzer (S)	3.5 kw	230 V	1
4. Slag analyzer	30 A 30 A	100 V 200 V	1 1
5. Iron analyzer	3.0 KVA	220 V	
S. Pulverizer	0.4 kw	200 V	1
7. Automatic motor	0.4 kw	200 V	1
3. Sieve shaker	0.4 kw	200 V	1
. Drying oven	1.2 KVA	200 V	1
l0.Press	2.0 kw	220 V	3
1.Crusher	1.0 kw	200 V	3
12.Jaw crasher	0.75 kw	200 V	3

Table.4-4-6 Power source Capacity in Analysis Room supplied by Counterpart

* Slag analyzer needs ground resistance under 10 ohm and 50 litters of distilled water.

.

5. SURVEY ON COAL QUALITY

PART SUMMARY

1. The objectives of the survey on coal quality in FY 1985 are as follows:

- 1) To find out the outcrop lines in North West Banko and West Banko
- 2) To grasp coal quality in above areas
- To study coal sampling method and places for 200 kg/sample to be tested in coal gasification test facilities
- 2. For above objectives, the following studies were successfully carried out in NW Banko and West Banko (partially).

reconnaissance topographic survey shallow holes drilling deep hole drilling

- 3. 28 of deep boring data in NW Banko and West Banko (partilly) were provided by the Counterpart, including coal analysis data. Also additional data and information such as topographic maps, geological maps and outcrop/sub-outcrop maps were provided by the Counterpart.
- 4. All of the data and information, including these of FY 1984, were analyzed and integrated as follows:
 - The outcrop lines and coal seam structure in depth 250 m were clarified in NW Banko and West Banko (partially): see page 5-30
 - 2) Sodium content in ash (consequently in coal) is
 - i) increased in proportion to vertical depth from the surface: see page 5-50
 - ii) increased in inverse proportion to total ash in coal, resulting maximum sodium content in coal is 6,000 ppm (0.6% in coal): see page 5-49
 - iii) however sodium content in ash is in the range of 0-40%.

3) Bulk coal sampling method using large diameter core drilling machine is most economical and reliable. 10 samples of 200 kg/sample of coal samples will be taken from NW Banko in FY 1986, according to the following sampling plan.

Boring machines	:	1 unit (core diameter 101 mmø)
max depth of boreholes	:	20.0 m
total drilling length	:	359 m
sampling places	:	10 places
total weight of samples	:	2 tons (200 kg x 10 samples)
working system	:	three shifts/day
working period	:	3 months

- 5. As far as NW Banko, all geological data which are needed to review the result of the preliminary mining cost estimation are obtained by the study in FY 1985. Therefore it is recommended to study the mining cost of NW Banko coal in FY 1986.
- 6. It is recommended that the coal sampling study in FY 1986 will be carried out in accordance with the following plan.
 - i) Coal sampling work at NW Banko (200 kg/sample, 10 samples)
 - ii) Reconnaissance and topographic survey in West Banko (partially), North Suban Jeriji, and others.