The foregoing national organization for the advancement of foundry technology and management can be expected to bear fruit in further development of this industry in Thailand.

c) Malaysia

In 1976, Malaysia produced 30,000 tons/year of castings, from foundries numbering roughly 150, according to figures published by the Federal Industrial Development Agency.

Industrial estates have been created in various parts of the country, to promote spread of industry in outgoing regions. The establishment of modern foundries is being actively pursued by firms of foreign affiliation. These foundries produce 100 - 150 tons/month, and those equipped with high-performance centrifugal casting 300 - 350 tons/month. Many of them are also equipped with low-frequency induction furnace for melting. Other foundries, however, are generally of more modest size, with a work force of 30 or 40, and producing far less than 150 tons/month. Melting is by small eupola, and molding by hand.

The production figures published in 1981 (likely for 1980) were 86,000 tons/year, indicating a rate of development to rank with Thailand.

	1976	1980	
Produciton (tons/year)	30,000		86,000
Number of foundries	150	Iron	205
	·	Steel	6
		Nonferrous	. 12

Table 3.4-16 Malaysian Casting Production and Foundries

The branches of industry served by the foundries were those related to manufacture of equipment for tin mining/refining, palm oil processing, and other machinery; manhole covers were also manufactured.

The Malaysian Industrial Technology Center (MITEC) is playing a guiding role in the dissemination and enhancement of foundry techniques and skills.

Another notable characteristic of the Malaysian foundry industry is its effective dispersion in the regional industrial estates. Apart from the urbanized areas in Selangore around Kuala Lumpur and in Penang/Butterworth, a prominent number of foundries have been established in the Ipoh State in the north.

d) Singapore

Singapore manufactured 25,000 tons/year of foundry products in 1976. According to the journal "Modern Casting", the figure for 1978 was 40,000 tons/year, of which 21,000 tons/year of iron, 2,800 tons/year of steel, 8,000 tons/year of copper alloy, and 6,000 tons/year of aluminum alloy castings. The Japanese journal "SOGO IMONO" (All Castings) of August 1980 cites for 1979, 33,100 tons/year produced, of which 24,000 tons/year of iron, 6,000 tons/year of steel, and 3,100 tons/year of other castings, together with work force figures of 1,073 engaged in iron, 344 in steel, 120 in nonferrous, 200 in die casting and 40 in precision casting.

The figures reported in 1981 (likely for 1980) were 30,000 tons/year, from 42 foundries producing iron, 7 foundries for steel, 15 foundries for nonferrous, 7 foundries for die casting, and 2 foundries for precision castings.

	19	76	1979	1980	
Production (tons/j	vear) 25,	000	33,100	30,000	· · · · · · · · · · · · · · · · · · ·
Number of foundrie	98	ī	An the Ara	Iron	42
				Steel	7
	· ·		· .	Nonferrous	15
	· · · ·		:	Die cast	7
			 •	Precision	2

Table 3.4-18 Singaporean Casting Production and Foundries

Foundries in Singapore distinctly separate into those of foreign and domestic affiliation, the former mostly located in the Jurong District, and well equipped with modern facilities, in contrast to domestic foundries, scattered within the city, of small scale and modestly equipped. The products also serve different categories of market: The foreign foundries produce iron and steel castings for industries manufacturing household electric appliances, marine machinery, machine tools, industrial machinery, oil refinery, and mining equipment; the domestic foundries cater for local small industries, as well as produce manhole covers, piping and other simple iron castings.

e) Hong Kong

In 1978 Hong Kong produced 20,000 to 30,000 tons/year of castings in 270 very small foundries employing around 4,500 workers in all. The products served branches of industry associated with mechanical equipment, public works, building construction, shipbuilding and shiprepair, as well as toy makers and locksmiths, while die-cast precision products were supplied to the optical instrument manufacturers.

The Hong Kong Productivity Center reported in July 1978 that most Hong Kong foundries operated with cupola – in large part of 1 - 2 t/h capacity – which numbered in all 136. Other melting equipment included 4 low-frequency induction, 1 arc, and 3 rotary furnaces, while 144 crucible furnaces equipped the nonferrous foundries.

Die casting is active: There are almost 200 die-casting machines operating in Hong Kong, though mostly with machines of clamping force below 140t. For hand molding, most foundries use green sand. Molding with CO₂ and with self-hardening sand has been introduced in some of the advanced foundries.

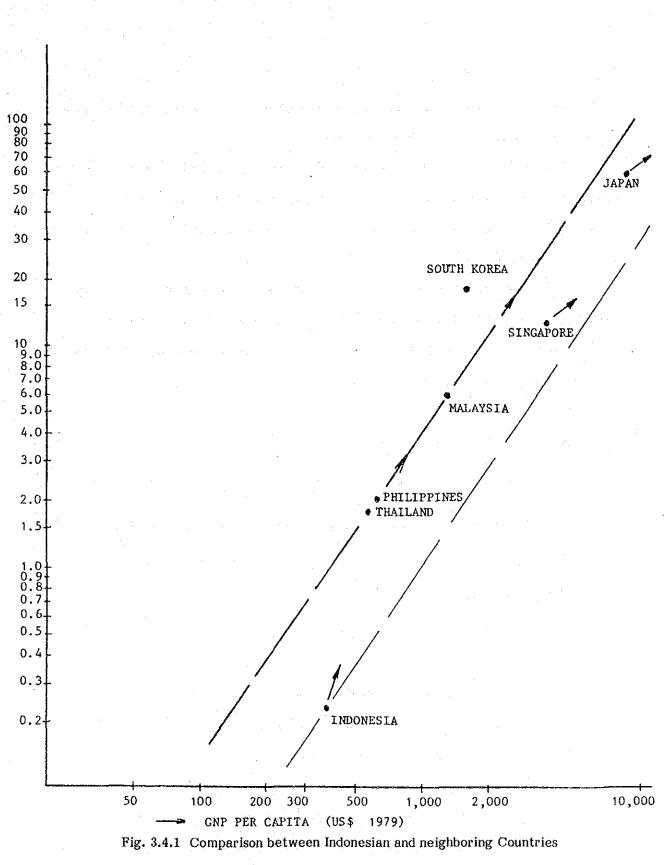
In 1980, aggregate production amounted to 51,000 tons/year. Statistics for 1978 count 134 foundries mainly operating in ferrous, 101 similarly in nonferrous, and 35 in die casting.

Hong Kong foundries are mostly located in the Kowloon Peninsula, and close to the Chinese border. Statistics on foundries classified by size are available for 1978, which is reproduced in Table 3.4-19.

PRODUCTS	FERROUS	NONFERROUS	DIE CASTING	TOTAL
WORK FORCE				
1 - 9	94	85	11	190
10 - 19	26	7	5	38
20 - 49	11	9	10	30
50 - 99	3		3	6
100 - 199	u 1 44 ➡	-	4	4
200 - 499	- -		2	2
Total	134	101	35	270
Aggregate work force	Approx.	4,500		
Aggregate production (t/year)	20,000	- 25,000		

Table 3.4-19 Hong Kong Foundry Statistics for 1978

NOTES: Source: Hong Kong Productivity Center, July 1978


Numbers of foundries:

Foundries are classified by main product, to avoid duplicate counting.

f) Comparison between Indonesian and neighboring countries in

respect of foundry industry

The per capita domestic production of castings and per capita GNP is correlated in Fig. 3.4.1 for Indonesia and neighboring countries. What is notable is that, comparing between Indonesia and Thailand, for instance, the ratio of per capita GNP is above 1 : 2, whereas that of per capita casting production is below 1 : 6. This disparity, even taking account of differences in various circumstances particular to each country, should still be considered to leave room for improvement in the case of Indonesia. The further fact that a considerable portion of the domestic demand for foundry products is being met by imports into Indonesia attests to the existence of a sizable potential domestic market for foundry products in this country.

in respect of foundry industry

These circumstances call for opportunate and apposite measures to be taken for promoting the development of Indonesian foundries.

A leading role could well be played by the Jakarta Foundry Center in enhancing the level of the Indonesian foundry industry, through improved product quality, lowered product price and shortened delivery, to gain on the rapid advances marked by the neighboring countries in this domain.

The Renovation Project should constitute an opportune occasion for enabling the Jakarta Foundry Center to equip itself for assuming the role of leading enterprise, through enhancement of its technical level and in meeting the challenge for producing components to replace imported products.

- 3.5 Future demand forecast from semi-individual approachOverview of REPELITA IV relevant to demand forecast for foundry products.
- 1) Government policy and administrative measures adopted in REPELITA IV

To summarize the Government policy adopted in REPELITA IV for promoting industrial development:

- To aim at developing the national economic structure in balanced progress of industrial and other sectors of economic activity
- To enhance the nation's industrial independence, for which purpose, to maintain the current rational protectionist system
- (3) To promote modernization of the smaller industries, to enhance employment opportunities
- (4) To promote enhancement of technical capability and development of industry, through encouragement of domestic technical consultants and through strengthening of their capabilities for development and planning

- (5) To enhance exportation of manufactured products, through powerful assistance provided for transportation, financing, productive capacity expansion
- (6) To convert the economy from one of agriculture-based to industry-based structure, while ensuring the realization of a progressive and equitable welfare society.

2) Economic sectors accorded priority

The development of manufacturing industries is accorded highest priority in REPELITA IV for enhancing the economic structure, with consequent benefits expected to ensue in such forms as increased employment opportunities, exportation of manufactured products and replacement of imported by domestically manufactured products.

The order of priority among the different types of manufacturing industries is: Machinery manufacture - heavy industries - light industries.

3) Branches of industry accorded priority within the manufacturing sector

Whereas the overall economic growth is envisaged in REPELITA IV to average 5%/year, a target of 9.5%/year is set for the manufacturing industries, among which the strategic branch of machinery manufacture is expected to mark 17%, and basic chemical production 17.2% annual growth, in contrast to the non-strategic branches that will average 6.5%/year. The market for the manufactured products is envisaged to grow at an average rate of 8.5%/year, and products manufactured in excess of demand are to be exported.

Priorities within the machinery manufacture and basic metal branches

The priority activities within the machinery manufacture and basic metal branches of industry envisaged in REPELITA IV are:

а)	Palm of	il/sugar/w	ood/food	proce	ssing,	textiles	, basic	chem	icals/basic	e metal
· .	a shqipint	la sere e		$T_{i}^{(1)} = -i$					•	
	process	ing								

- b) Machine tools for grinding, pressing, drilling, sawing, cutting, turning
- c) Agricultural/harvesting machinery
- d) Heavy construction equipment
- e) Heavy machinery
- f) Electric/electronic equipment including computers
- g) Automobiles
- h) Railroad equipment
- i) Aircraft
- j) Marine machinery/fittings
- k) Iron and steel manufacture, water supply facilities
- 1) Nonferrous (including copper, aluminum) materials.

NOTE: Priority is also accorded to industrial manufacture of equipment for

maintaining peace and order.

 Provisions in REPELITA IV for specific industries of relevance to foundry products

(1) Machinery manufacture

a) Products and production facilities

The products include equipment and machinery most commonly used in industry – boilers, heat exchangers, compressors/blowers/pumps, material handling equipment. In terms of specific industries, they are those associated with palm oil, sugar, rubber, coffee, tea, lumbering/plywood, cement, pulp/paper, fertilizer, metalworking.

Production facilities for industrial machinery manufacture are to be encouraged to establishment in East, Central and West Java, as well as around Jakarta and in north Sumatra. Facilities to serve maintenance of cement, fertilizer and liquefied natural gas plants will be established in the region. West Sumatra is designated for installing the maintenance facility for a cement plant, East Kalimantan for that of a fertilizer plant, and the Maruk region for a similar facility for plywood plant. These facilities will also undertake manufacture of certain replacement and spare parts for the relevant equipment.

In this connection, the nationalized P.T. Barata and P.T. Bomo Bisma Indra will be rehabilitated as a full-scale machinery factory, to produce in total 85,000 tons/year of machinery, employing a work force of 9,000.

Such developments will enhance the role to be played by the Bandung Metal and Machinery Manufacture Development Center.

b) Machine tool industry

Machine tools - typical capital goods - are demanded by key industries as welll as by small factories, and also used for training. Their importation will be reduced, to restructure the Indonesian industry.

Machine tool factories are currently located in East and West Java, as well as in Jakarta and in Chiregon.

REPELITA IV provides for increasing the aggregate production equipment from a capacity of 100 to 300 playner, from 300 to 1,000 lathes, from 250 to 1,000 milling machines, and from 1,000 to 1,500 drilling machines.

c) Agricultural machinery

Priority is accorded in REPELITA IV to realizing a target of 2,000 large trucks a year to be manufactured, together with increased production of rice mill units, as well as of small and hand tractors, tillers, irrigation pumps, and sprinklers.

East/Central Java and north Sumatra are to be the centers of rice mill and agricultural tractor manufacture.

d) Heavy/construction machinery

The use of domestically manufactured components is to be encouraged in the production of road rollers, bulldozers, stone crushers, concrete mixer trucks. Plans also envisage the manufacture of 50,000 diesel engines of up to 30 HP output. Heavy machinery manufacture is to be located in East/West Java and in Sumatra.

e) Electrical equipment

Electrical equipment manufacture will be developed to serve in extending the power supply network and industry in general. The demand for generators, transformers, circuit breakers and motors will increase, and will be manufactured in facilities to be established in West Java, Jakarta and North Sumatra.

f) Electronics

The electronics industry will support the development of the telecommunication network and of the radio/television broadcasting systems, as well as contribute to information processing and to educational aids. There is also a potential export market.

Centers of production are located in East/West Java, Jakarta and North Sumatra.

Products include telephone sets, telex/teleprinter sets, tranceivers, broadcasting installations, radars, micro-computers, radio/television sets, taperecorders. Most production is based on foreign design. Development efforts will be directed first at assimilation of assembly techniques.

g) Automobiles

The first measures adopted were for enhancing the portion of domestically manufactured components incorporated in the assembled vehicles. Manufacture with 100% domestic components is to be realized in 1986/87. Plans provide for engines (both gasoline and diesel) to be manufactured in domestic factories for 7 brands of automobiles. Paint shops and factories for automobile component manufacture are also planned.

These components are:

Cabin, Rea body, chassis, frame, fuel tank, wheel, muffler tail lamp radiater.

h) Railroad rolling stock

This industry is developing in the Madewin region.

Products cover passenger cars and steam/diesel/electric locomotives. Starting with maintenance/repair and assembly operations, productive capability is envisaged to be gradually extended to production of replacements for imported components, until the products come to be made largely of domestically manufactured components.

i) Aircraft

Efforts are concentrated in themanufacture of C-212 aircraft and BO-105, Puma and BK-117 helicopters. They are assembled in Bundung, with components manufactured in Jakarta, and in West Java.

License production is undertaken by a joint venture enterprise with Spanish partnership, and with technical assistance obtained from Germany, France and U.S. Components are 80% domestically manufactured in the case of the C-212 and BO-105, 50% for the CN-235, and 20% for the Puma.

j) Shipbuilding/shiprepairing

The policy is to enhance the shiprepairing capability, with ultimate aim of acquiring capability for constructing new ships. The newest dock has a capability of 10,000 tons.

Plans are for installing:

1 dock below 2,000t capacity

9 docks from 2,000 to 5,000t capacity

4 docks from 5,000 to 10,000t capacity

Repairs can be effected on ships up to 30,000 tons.

The shipyards are located in Wjumpandun Jakarta, Surabaya and Palembang.

(2) Basic metal industries

a) Iron and steel

The aim is to promote the development of a sound steel industry, that will satisfy the domestic demand for iron and steel, and lower the dependence on imports. To this end, new investment will be encouraged, to maximize the productive capacity. Plans provide for the installation of a 850,000 tons/year hot rolling mill, a 130,000 tons/year galvanizing line, and installations for producing 160,000 tons/year of transport piping, and 100,000 tons/year of section steel.

Production centers are projected in East/West Java, North/South Sumatra, and South Sulawesi.

b) Nonferrous metals

Meeting domestic demand, reducing imports, and improving the national industrial structure - similarly to the case of the steel industry - are the aims envisaged also for the nonferrous industries.

Priority is accorded to the project for an electrolytic copper plant to produce 100,000 tons/year of wire and billet. The targets for aluminum are 40,000 tons/year of raw aluminum, 15,000 tons/year of wire, 15,000 tons/year of billet, and 6,000 tons/year of casting.

Production will be centered in North Sumatra and Jakarta.

 Current status and forecasts of supply and demand of industries of relevance to foundry products

The Ministry of Industry has published the estimate for production capacity, actual production and demand for the years to come, of which those relevant to the machinery and basic metal industries are cited in Table 3.5-1.

The demands of interest to the Jakarta Foundry Center would be those of:-

- Metal processing/machinery
- Heavy equipment
- Diesel engines

- Agricultural engines

Table 3.5-1 Economic Indicators

1. Estimates of Capacity, Real Production and Market Demand in Basic Metal Industries, 1984/85 - 1987/88

19 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	tancasu:			· · · · · · · · · · · · · · · · · · ·	
Commodity	Unit	1984/85 Capacity Production Consumption	1985/86 Capacity Production Consumption	1986/87 Capacity Production Consumption	: 1987/88 Capacity Production
BASIC METAL SECTOR	: :				
-Pellet	1000	_		_	
	tons		-		
· ·		924	1,320	1,510	1,760
- Sponge iron	1000	2,200	2,200	2,200	2,200
	tons	912	1,200	1,400	1,600
- Steel slab	1000	1,100	1,100	1,100	1,100
	tons	342	460	5 60	620
		. 292	400	460	529
~ Ingot/Billet	1000	1,175	1,175	2,000	2,000
	tons	1,014	1,170	1,340	1,800
MELTING THEFT		1,130	1,360	1,500	1,800
MELTING INDUSTRY			and the second second		
- Iron melting	1000	71	71	260	260
	tons	71	71	150	200
		140	170	200	200
- Steel melting	1000	13	13	13	13
	tons	3.23	3.72	5.62	7.3
		4.25	5.3	6.62	7.3
ROLLING MILL	1. A.				
- Hot coil	1000	1,100	1,100	1,100	1,100
	tons	326	407	470	81.5
		356	7407	470	815
- Cold rolled sheet	'000	-	-	850	850
	tons	-		225	425
		912	1,000	1,157	1,248
- Tin plate	1000	-	130	1.30	130
	tons	-	-	78	86.8
	.	192	210	225	247.5
- Concrete rein-	1000	1,200	1,200	2,000	2,000
forcing bar	tons	832.9	958	1,200	1,350
111 m		832.9	958	1,200	1,350
- Wire rod	1000	416	416	416	600
· · ·	tons	340 353	384 384	416	450 477:4
	<u> </u>	L	304	434	4//+4

		1984/85	1985/86	1986/87	1987/88
	Unit	Capacity	Capacity	Capacity	Capacity
Commodity	OULC	Production	Production	Production	Production
		Consumption	Consumption		
- Galvanized steel	1000	490.8	490,8	650 .	650
sheet	tons	474	490.8	530	560
		474	535	60.4	664.4
NONFERROUS INDUSTRY					
Hold Ballood Tablotha					
- Aluminum ingot	1000	225	225	225	225
	tons	1.75	175	225	225
		20	30	36.5	45
- Copper rod	1000	51	51	51	51
	tons	33	40	47	51
	1	30	35	39	42
- Aluminum sheet	1000	34.3	34.3	36	38.2
	tons	17	21	36	38.2
	:	32.3	34	36	38.2
- Aluminum rod	1000	34.8	34.8	34.8	34.8
	tons	8.6	11	17	21
		8.6	9.2	17	21
BOLT & NUT INDUSTRY					
- Bolt & nut for	1000	1,500	1,500	2,500	2,500
steel contruction	tons	350	8 60	1,500	1,760
		4,700	5,600	6,300	6,400
STEEL WIRE					
- Welding wire	Tons	38,020	38,020	40,000	40,000
		14,000	25,000	37,000	38,000
		50,000	70,000	70,000	80,000
PIPE			10,000	101000	00,000
- Welding pipe	1000	407		407	207
- Hergrud bibe	1000 tons	216	497	407 311	407
and the second	μ μ	216	260		360
- Spiral unlike pins	1000		260	311	360
- Spiral welding pipe	1000	60 CO	60	100	120
	tons	60	60	90	120
		85	115	140	154
- Seamless pipe	1000	· · ·	-	160	160
	1000	150	176	53 200	160
OTHER METAL INDUSTRY			175	200	299
	· .			150.000	150.000
- Valves, Globes,		150,000	150,000	150,000	150,000
Gates, etc.	Unit	60,000 340,000	108,000 360,000	130,000 330,000	150,000 412,000
		1.340.000 [350,000	330.080 1	412,000

	escare:				
	:	1984/85	1985/86	1,986/87 ·	:1987/88
Comodity	Unit	Capacity	Capacity	Capaci ty	Capacity
COMODICY	UNIC	Production	Production	Production	Production
		Consumption	Consumption		Consumption
			· ·····		
- Water meters	Units	150,000	150,000	150,000	150,000
	v	63,000	85,000	150,000	250,000
	÷	300,000	410,000	460,000	500,000
ENGINES & TURBINES				400,000	5007000
- Water turbines		400	400	100	40.5
- Mater turbines	Tons	400	80	400	400
	10118	30	51	114 160	180
DIESEL ENGINE INDUSTRY		20	51	100	300
					and the second second
- Stationary diesel	**. * *	93,400	93,400	93,400	93,400
engines up to 30HP	Units	63,000	72,000	83,000	93,000
Debe		161,000	170,000	184,000	193,000
- Ditto		6,500	6,500	6,500	6,500
up to 500HP	Units	1,500	2,500	4,000	6,500
D:44-		14,000	18,000	25,000	27,000
- Ditto		-	- :	1.50	150
500 HP and abve	Units	-	-	125	1.50
		200	200	200	200
AGRICULTURAL ENGINES					
INDUSTRY					
- Mini tractors		200	200	200	200
(12 - 22.5 KW)	Units	125	150	175	200
		3,000	3,500	4,000	5,000
- Hand tractor		2,150	2,150	2,150	2,150
(3 up to 11 KW)	Units	1,500	1,700	1,900	2,150
4		8,000	15,000	20,000	33,000
- Large tractor	Units	5,250	5,250	5,250	5,250
		10	500	520	550
		2,000	2,200	2,500	2,900
- Thresher	Units	2,500	2,500	2,500	2,500
		1,500	1,700	2,000	2,500
		10,000	20,000	40,000	70,000
- Huller	Units	6,100	6;100	6,100	6,100
		2,000	3,000	4,000	6,000
		39,000	46,000	54,000	72,000
-Polisher	Units	.3,500	3,500	3,500	3,500
	· ·	1,000	1,500	2,500	3,500
		39,000	46,000	54,000	72,000
- Rice milling unit	Units	1,570	1,570	1,570	1,570
		1,000	1,250	1,500	1,570
		3,500	5,000	7,000	11,500
المراجع المراجع ويور ومراجع معرفين ورواحي ويروجون ومراجع والمراجع فرد المراجع والمراجع والمراجع				 	

Commodity	Unit	1984/85 Capacity Production	.1985/86 - Capacity Production	1986/87 Capacity Production	1987/88 Capacity
		Consumption		Consumption	Production Consumption
- Irrigatión pumps	Unit	7,200	7,200	7,200	7,200
		5,000	5,500	6,000	7,200
MACHINERY INDUSTRY		6,000	8,000	9,500	11,000
-Lathes	Unit	700	700	700	1,200
		250	300	450	700
		3,700	4,200	4,500	5,250
- Drilling machines	Unit	550	550	550	2,000
		225	350	550	1,500
		2,500	3,600	4,400	5,600
- Sawing machines	Unit	100	100	100	100
		50	75	100	100
		8,960	9,120	9,200	9,440
 Milling machines 	Unit	250	250	250	550
		50	100	250	400
	i	650	700	800	800
- Bending machines	Unit	100	100	100	100
		25 -	50	75	100
		700	1,000	1,500	2,000
- Scrapping machines	Unit	100	100	100	100
		20	40	60	75
		75	100	100	150
- Grinding machines	Unit	25	25	50	50
		25	25	50	50
		25	30	50	70
- Rolling machines	Unit	100	100	100	100
		25	35	50	75
		1,520	1,630	1,740	1,850
- Table drills	Unit	150	150	150	150
		50	75	100	150
		750	1,000	1,500	2,000
- Shearing machines	Unit	100	100	100	100
· · · · ·		50	60	75	100
		3 60	430	490	750
- Dies, Mold, Jigs		11,500	11,500	11,500	11,500
and Fixtures	Ton	1,000	3,000	4,500	6,500
		11,800	12,200	12,400	12,700
- Special machine	Unit	250	250	250	2.50
tools		20	60	80	135
		124	132	160	2.00

Cont'd table

		1984/1985 -Capacity	1985/1986 -Capacity	1986/1987 Capacity
Commodity	Unit	-Production -Demand	-Production -Demand	-Production -Demand
		-Demand		-Demand
Heavy equipment industry: - Road/vibro rollers	Unit	1,140 424 325	1,140 445 551	1,140 467 579
- Stone crushers	Unit	590 20 110	590 22 122	590 25 134
- Concrete mixers	Unit	2,000 1,300 1,650	2,000 1,430 1,800	2,000 1,570 1,900
- Compactor plates	Unit	500 440 550	500 480 600	500 520 660
- Wheel loaders	Unit	335 134 335	335 201 360	335 300 400
- Notor graders	Unit	265 106 188	265 159 234	265 239 293
- Excavators	Unit	450 180 579	450 279 683	450 405 806
- Buldozers	Unit	1,240 496 2,140	1,240 744 2,280	1,240 1,116 2,420

From Table 3.5-1, the data concerning products of direct interest to JFC are picked out in Table 3.5-2.

Table 3.5-2 Excerpts from Table 3.5-1 of Data on Branches of Direct Interest to JFC

	······			·····	
Commodity	Unit	1984/85 Capacity Production Consumption	1985/86 Capacity Production Consumption	1986/87 Capacity Production Consumption	1987/88 Capacity Production Consumption
MACHINERY INDUSTRY					
- Lathes	Units	700 250 3,700	700 300 4,200	700 450 4,500	1,200 700 5,250
- Milling machines	Units	250 50 650	250 100 700	250 250 800	550 400 800
AGRICULTURAL ENGINE INDUSTRY					
- Mini tractors (12 - 22.5 KW)	Units	200 125 3,000	200 150 3,500	200 175 4,000	200 200 5,000
- Hand tractors (3 up to 11 kW)	Units	2,150 1,500 8,000	2,150 1,700 15,000	2,150 1,900 20,000	2,150 2,150 33,000
- Large tractors	Units	5,250 10 2,000	5,250 500 2,200	5,250 520 2,500	5,250 550 2,900
DIESEL ENGINE INDUSRY					
- Stationary diesel engines up to 30HP	Units	93,400 63,000 161,000	93,400 72,000 170,000	93,400 83,000 184,000	93,400 93,000 193,000
- Ditto up to 500HP	Units	6,500 1,500 14,000	6,500 2,500 18,000	6,500 4,000 25,000	6,500 6,500 27,000
- Ditto of 500 and above	Units	200	200	150 125 200	150 150 200

		and the state of the state of the		
Commodity	Unit	1984/85 Capacity Production Consumption	1985/86 Capacity Production Consumption	1986/87 Capacity Production Consumption
Heavy equipment industry:				
- Wheel loaders	Units	335 134 335	335 201 360	335 300 400
- Motor graders	Units	265 106 188	265 159 234	265 239 293
- Excavators	Units	450 180 579	450 279 683	450 406 806
- Bulldozers	Units	1,240 496 2,140	1,240 744 2,280	1,240 1,116 2,420

3--58

Castings of importance in machine tools include:-

Lathe beds

Milling machine columns

In construction (heavy) equipment:-

Counterweights

for wheel loaders, motor graders, excavators and bulldozers, which are envisaged for replacement of imported with domestically manufactured components

In agricultural tractor engines:-

Cylinder blocks

Cylinder heads/liners

Pistons,

which constitute the principal engine components.

6) Current status and forecasts of supply and demand of mahcine tools

(1) Current status

Currently, 9 establishments produce machine tools, among which P.T. Industri Mesin Perkakas Indonesia (P.T. IMPI) is exceptionally well-equipped with the latest facilities. It was recently established by the Ministry of Industry, with the collaboration of a Belgian machine tool manufacturer. Current production capacity is for 300 lathes/year; extension is planned, which will bring the annual capacity to 650 lathes, 600 drilling machines and 600 milling machines.

Currently, however, the range of products is limited, and the only market served is restricted to the Department of Education and Culture, as well as other small customers. Sales in the open market is for the future.

Other machine tool manufacturers are as listed in Table 3.5-3.

Table 3.5-3 Indonesian Machine Tool Manufacturers and Their Production

Name of company	Type of product	Total production	Use of product
PT. I M P I	-Lathes		
PT. PIMSF	- Lathes	150	S 0 1 d
		2	For company's own us
	- Combination freis	100	Sold
	and drills		
· · · ·	- Grinding and cutting	1 1	Sold
	machines	l ·	For company's own us
	- Sea wasa ee kanaana	1. B. 1.	For company's own us
	~ Bending machines	-	and for sole
	- Rolling machines		Sold
	- Hydraulic presses	_	For company's own us
	- Hand presses		
	- Hand cutting machines	_	For company's own us
	and coccaring machines	-	For company's own us
	- Line drills	_	and for sole
PT. SUMBER		2	For company's own us
	- Simple lathes	1,2	For company's own us
BAHAGIA	- Simple freis	2	For company's own us
	- Table drills	25	sold
	- Bending machines	10	sold
· · · · ·	- Hand rolling machines	- .	Sold
	- Hydraulic presses	50	Sold
r	- Press brakes	1	For company's own us
T. EHOW GROUP	- Simple Lathes	3	For company's own us
·	- Flat grinders	3	For company's own us
			이 가지 않는 것 같은 지수는 것 같은 것 같이 있는 것이 없다.
PT. CANDI NAGA	- Universal lathes	250	Sold
	- Hand rolling machines	-	Sold
	- Mechanical presses	2	For company's own us
	- Hand cutting machines	15	Sold
PT. BINTANG MAS			
INDUSTRI	- Simple lathes machines	1	Prototype
	- Pipe-bending machines	1	Prototype
	- Hydraulic presses	60	Sold
	- Press brakes	1	Prototype
PT. TEXMACO	- Simple lathes	1	Prototype
	- Table drills	1	Prototype
	- Hand clamping machines	200	5010
YT. MEDAN GERAK			-
JAYA	- Freis machines	1 1	For company's own us
	- Mechanical presses	20	For company's own us
	- Hydraulic presses	1	For company's own us
	- Press brakes	1	For company's own us
CV. CIPTA KARYA	- Table drills	250	Sold
	- Hydraulic presses	10	Sold
	- Spindle lathes	7	For company's own us
	- Cutting machine	2	For company's own us
	- Threading machine	3	For company's own us

Source : Directorate-General of Basic Metal Industries

(2) Companies chosen by the Indonesian Government to produce machine tools

(a) The 11 companies listed in Table 3.5-3 have been chosen by the Indonesian Government to produce machine tools, by license issued with the Ministry of Industry Decree 1/SK/1/1985 of January 4, 1985. The companies include some that have been engaged in machine tool manufacture from the past, and others that have so far only served as importing agents.

0

o PT. Pindad

o PT. Impi

o PT. Pimsf

0

- o PT. Sarana Idea Utama
- o PT. Sumber Bahagia

PT. Cipta Karya

o PT. Bintang Mas Industri
o PT. Oyama
o PT. Tools Indonesia
o PT. Karya Prima

PT. Medan Gerak Jaya

(b) The companies chosen have been required to start production of the respectively prescribed machines by July 1985. In actuality, however, 3 to 4 years is expected to pass before full production is attained by all these companies, and in the mean time,

the balance of demand will have to be imported.

Table 3.5-4 List of	Companies Chose	n to Produce	Machine	tools
---------------------	-----------------	--------------	---------	-------

Name of concern		Charles and the second s	Total
Name of company	Type of machine	Specifications of maximum	production (Units)
	a aleman ang hanan san ana ang hanan gan gan gan gan gan gan gan gan gan		سيبلغ مختاط عته السلبيا البا غلابات ا
PT. (Persero) I M P I	~ Lathes	Centre span 1500 mm, centre height 200 mm	400
PT. PIMSF	- Freis combination drills	Size of table 240 x 600 mm diameter of drill 32 mm	500
	- Table drill	Diameter of drill 13 mm	2,100
	- Rolling machines	Plate dimen ion 2500 x 3 mm	500
	- Bending machines	Plate dimension 2500 x 2mm	400
	- Cutting machines	Plate dimension 1270 x 2mm	400
	- Punching machines	Pressure 3 ton, thickness of plate 3mm	200
	- Bending presses	Operational pressures 80 ton	100
	- Column-drilling machines	Diameter of drill Ø 30 mm	200
PT. SARANA IDEA UTAMA	- Lather machines	Centre span 1500 mun, centre height 180 mun	300
	- Cutting machines	Plate dimension 1270 x 2mm	400
	- Plate rolling machines	Plate dimension 2500 x 3mm	400
	- Bending machines	Plate dimension 2500 x 2mm	400
the state of the	- Pipe-bending machines	Pipe diameter 50 mm	400
PT. SUMBER BAHAGIA	- Lathes	Centre span 1500 mm, centre height 180 mm	
	- Table drills	Diameter of drill 13 mm	600
	- Presses	Operational pressure 30 ton	100
	- Punching	Operational pressure 3ton, thickness of plate 3mm	300
PT. CIPTA KARYA	- Table drills	Diameter of drill 13 mm	400
PT. MEDAN GERAK	- Presses	Operational managements	
JAYA	- Cutting machines	Operational pressure 250 tor Plate dimension 2500 x 5mm	
	- Table drills	Drill diameter 13 mm	150
	- Presses machines	Operational pressure 80 ton	500
	- Freise type knee	250 x 1200 mm	t
PT. BINTANG MAS	. Trerse cype kille	~JU X X200 AUA	100
INDUSTRI	- Presses	Operational pressure 250 ton	1,000
	-Lathes	Centre span 1500 mm, Centre height 180 mm	300

í

lame of comp	any Type of machine	Specifications of maximum	Total production (units)
РТ. ОУАМА	- Saws	Diameter 180 mm	7.50
•	- Surface grinding machines	Table dimension 220 x 500mm	50
· .	- Column drilling machines	Drill diameter Ø 30 mm	75
T. TOOL IND NESIA	0- Lathes	Centre span 150 mm, Centre height 180 mm	300
	- Cutting machines	Plate dimension 1270x2mm	300
	- Table drills	Drill diameter 13 mm	1,200
	- Bending machines	Plate dimensions 2500 x 2mm	
	- Rolling machines	Plate dimensions 2500 x 3mm	200
	- Freis type knee	Table dimension 250x1200mm	200
	- Surface grinding machines	Table dimension 220x500 mm	200
YT. KARYA PR	IMA - Sawing machines	Diameter 180 mm	100
	- Table drills	Drill diameter 13 mm	200
	- Presses	Operational pressure 150 ton	100
PT. (PERSERO			
PINDAD	- Lathes	Centre span 1500 mm; centre height 180 mm	.320
	- Freis type knee	Table dimensions 2500x120mm	250
	- Column drilling machines	Drill diameter 30 mm -	100
	- Presses	Operational pressure 150ton	200

Source : Department of Industry

.

Туре	Production capacit (Units)
- Lathes	1,920
- Freis machine	1,050
- Table drills machine	4,600
- Column drilling machines	375
- Rolling machine	1,100
- Bending machines	1,000
- Bending	250
- Pipe-bending machines	400
- Presses	1,550
- Cutting machines	1,250
- Punching machines	500
- Saws	850
-Grinders	250
Total	15,095

Table 3.5-5 Planned Machine Tool Production Capacity

e) Demand

Demand in the past (a)

Demand for machine tools have progressed during the past few years as given in Table 3.5-6.

Table 3.5-6 Average Demand for Machine Tools over 1981 - 1983

Гуре	Units	Tons
Lathes	2,133	2,444
· Freis machine	551	372
· Drills machine	4,829	717
·Saws	2,169	223
- Planing machine	163	82
- Gear cutting machine	59	42
- Tapping or screw cutting machine	229	79
- Sharpening, triming, trueling, grinding polishing, etc.	gas -	931
- Machine tools operating by electric, ultrasonic	1,053	758
- Other metal working presses, grinding, polishing machines		3,721
- Forging machines, stamping machines	-	36
 Bending, forming, folding or flattening machines 		833
- Shearing, punching, notching machines	-	644
- Other machine tools	-	5,783
T o t a l		16,664

Processed by Data Consult.

b) Demand forecast

The Directorate-General of Basic Metal Industries has published a forecast of demand for machine tools in 1989, which is cited in Table 3.5-7. It envisages for that year a demand for 5,950 lathes and 1,000 milling machines.

Type of machine	Size	Projected consumption (Units)
- Lathes	Total demand : - Measuring less than 1600mm/200mm	5,950 1,800
- Freis machine	Total demand : - Combination drill - Type knee	1,000 500 150
- Drills	Total demand : - Table drill Ø 13 mm - Column drill	6,250 1,000 300
- Pr.esses	Total demand : !leasuring less than 2500 x 2 mm	3 50 2 50
- Cutting machines	Total demand : - Measuring less than 1270 x 2 mm	500 265
- Hydraulic presses	Total demand : - Pressure of no less than 250 tons	2,500 200
- Rolling machines	Total demand : - No less than 2500 x 3 mm	450 250
-Saws	Total demand : - No less than Ø 180 mm	9,600 300
- Surface grinders polishes	Total demand : - No more than 220 x 500 mm	850 500
- Punching machines	Total demand : - Pressure and thickness of the plate no more than 3 tons	750 300
- Pipe-benders	and 3 mm Total demand	675
	- Ø no more than 50 mm	300
- Presses	Total demand : - Pressure no more than 80 tons	500 225

Table 3.5-7 Projected Demand for Machine Tools, 1989

Source : Directorate-General of Basic Metal Industries.

7) Heavy (construction) equipment

Government policy

The Indonesian Government is attaching importance to developing the heavy (construction) equipment industry, with highest priority accorded to domestic production of:-

- Crawler bulldozers (100 to 300 HP)

Hydraulic excavators (100 to 300 HP)

- Wheel loaders (60 to 150 HP)

- Motor graders (100 to 150 HP)

In 1982, tree(s) firms were authorized to establish their production facilities in Indonesia, and will be the subject of strong protective government measures to facilitate their operation.

a) past imports

The 4 types of equipment envisaged in the preceding Section constituted the bulk of the imports cited in Table 3.5-8.

Of the 4 types, crawler bulldozers are seen to have been by far the most important.

	1	981			
Туре	Units	and the second		<u> </u>	
Crawler bulldozers	961	55,393	1,068	an a	
Hyd. excavators	68.8	18,920	-655	61,020 19,103	
Wheel loaders	140	B,820	182	10,356	
Motor graders	183	10,162	182	7,299	
T o t a l	. 1,972	93,295	2,087	107,778	

Table 3.5-8 Imports of 4 Types of Heavy Equipment

Source : Survey on heavy equipment.

b) Current production

The current nominal production capacities of the existing facilities for manufacturing the 4 types of equipment in question are as given in Table 3.5-9.

Table 3.5-9 Production Capacity of the 4 Heavy Equipment Assembing Plants

уре	Caterpillar	Komatsu	Mitsubishi	Tota)
Crawler bulldozers	510	660		1,170
Wheel loaders	265	70	_	335
Motor graders	165	100	-	26
Hyd. Excavators		100	350	450
Total	940	930	3 50	2,22

Processed from BKPM '(Investment Coordinating Board) data.

however, have counted, as of March 1985, only 392 units in all, as cited in Table 3.5.3.2-3.

Table 3.5-10 Actual Production of the 4 Types of Heavy Equipment

уре	Caterpillar (4/84-3/85)	Komatsu (8/83-3/85)	Mitsubishi (1/84-3/85)	Total
Crawler bulldozers	103	119 *)	-	222
Wheel loaders	15	13	-	28
Motor graders	10	5	-	1.5
Hyd. Excavators		75	52	127
Total	128	212	52	392

*) Includes 6 units Dozel shovels

This poor performance is due mainly to shortage of components manufactured domestically – particularly those ordered out-house. This betokens the fact that the components envisaged for replacement of imported products are not being supplied in quality and in time to meet the requirements of the customers needing the product for their manufacturing operations.

c) Demand

(a) Current situation

The current worldwide slackness of demand and restriction of imports into Indonesia have generated a cut-throat competition for importation of construciton machinery: 25 sole agents from 9 countries such as Japan, USA, England, West Germany, Italy, Poland, France, Russia, Yugoslavia are promoting 38 brands of construction machinery. Among these 25, only 3 are considered to be viable in the future:-

(b) Expected trend of demand

The market demand is constituted of replacements and fresh purchases for new projects and extensions.

There should exist a sizable latent demand for replacements, considerring the fact that many existing units have served over 10 years, but owners are showing little interest in replacing their equipment: They are likely to retain their present equipment for further 2 or 3 years.

The existing fleet of these machines has been estimated by an Indonesian consultant to have counted in 1983:

10,849 crawler bulldozers

3,391 wheel loaders

1,845 motor graders

2,338 hydraulic excavators

The aggregate demand including both replacements and fresh purchases is estimated to be as given in Table 3.5-11.

Table 3.5-11 Demand Forecast for 4 Types of Heavy Equipment

(1984 - 1988)

Year	No. of units at beginning of year	Units bought to replace old units	New units bought	Total Market	Not. of units at end of year
1.984	18,423	1,105	250	1,355	18,673
1985	18,673	1,307	262	1,569	18,935
1986	18,935	1,514	275	1,789	19,210
1987	19,210	1,729	289	2,018	19,499
1988	19,499	1,950	30 4	2,253	19,803

Processed by Data Consult.

It is seen that the total demand in 1984 of 1,355 units, of which 1,105 replacements, will grow in 1988 to 2,253 units with 1,950 replacements.

c) Expected trend of supply

The three establishments authorized to manufature construction equipment have drawn up programs for future production as cited in Table 3.5.12.

Table 3.5-12	Planned Production of 4 Types of Heavy Equipment
	by 3 Assembling Companies

				•
- 1	Un	4 +	0	۱.
۰.	υn	±υ	· • •	

Type of heavy equipment	Year				
	I	II	III -	IV	V
A-company		·			
- Crawler bulldozers D. 60E (155 HP)	80	120	140	190	225
- Crawler bulldozers D85E (220 HP)	120	180	220	290	330
- Crawler buildozers D75S (200 HP)	20	30	35	50	57
- Motor graders GD 600 R (145 H)	30	45	55	72	82
- Hydraulic Excavators PC 120 (90 HP)	30	45	55	72	82
- Wheel loaders W70 (105 HP)	20	30	35	55	57
Total	300	450	540	724	833
· · ·			<u> </u>		
B-company		1990 B. 199		· .	
- Hydraulic Excavators MS 110	125	125	150	150	150
- Hydraulie Excavators MS 180	-	50	50	50	50
Total	125	175	200	200	200
	<u> </u>	·	<u> </u>	- 	
C-company	0.1	110	210	222	243
- Crawler bulldozer D7G (200 HP)	91	119 100	210	233	116
- Crawler bulldozers D6G (140 HP) - Wheel loaders 980C (270 HP)	25	52	57	59	62
	46	52 97	105	108	114
- wheel loaders 930 (100 HP) - Motor Graders 120 B (125 HP)	27	91 79	85	92	95
		17		<i>Jc</i>	
Total	246	447	563	604	630

Source: Department of Industry.

- 3.6 Future demand forecast from individual-level approach Market research based on the sample survey of users.
 - Before implementing a sample survey, the target market for JFC has been made clear. Taking account of the tentative plan (by the Ministry of Industry, P.T. Barata, JFC) presented to the first survey team of the Renovation, the JICA has narrowed down the target industries as follows:
 - a) Sugar industry

b) Cement industry

c) Agro-based machine and equipment

- d) Paper industry
- e) Steel making industry
- f) Transportation industry
- g) Electric equipments
- h) Civil and construction
- i) Machinery industry
- j) Mining and energy

2. Ranking of the target industries according to priority

Table 3.6-1 is the JFC's tentative plan (with additional product items envisaged by JICA). The Ministry of Industry (MOI), P.T. Barata, JFC and JICA reviewed this plan and ranked the above-mentioned target industries according to priority as follows:

Agro-based machine and equipment

The first group: 1.

- 2. Transportation
- 3. Civil and construction
- 4. Machinery industry
- 5. Mining and energy

The second group :

1.

1.

Steelmaking 2. **Electrical** equipments

The third group :

Sugar industry

2. Cement industry

3. Paper industry

The first group has already deals with JFC and is expected to grow further, thus increasing the demand of materials. Form this group JFC can select customers suitable to its capacity.

Since the second group includes the steelmaking industry which produces chilled rolls, the quantity of potential demand is fairly large. However, JFC might have a great deal of technical difficulties in this field, even if investment is made for appropriate equipment. In our opinion, it would be better to leave this group over until the second phase of the development and concentrate on other fields.

The third group comes at the end of the priority, not because they are unattractive to JFC, but because they belong to the domain of other national enterprises, Gresik and Surabaya Foundry Centers.

Table	3.6-1	Tentative	production	plan	by	JFC
-------	-------	-----------	------------	------	----	-----

				· ·		
			. ·			
Tabl	e 3.6-1 Tenta	tive productio	vd asla a	JFC		
\leq			<u> </u>	1		
Tar	Organization	Ministry of	P.T. Barata	JFC	JICA Additional	
	industry	Industry	(M.Q)		Products	
	Sugar			- <u></u>	Sugar roll	
1	Industry				(FC)	
					Press (FC)	. ·
2	Cement industry				Liner (FC) ball (FC)	· · · ·
	Agro-based	Cylinder			Pump (FC)	
3	machine and equipment	bead Gear box	÷ .		Valve (FC)	
J	equipment	Flywheel 120t/y		1		` .
4	Paper					
·***	industry	Chilled roll	(Demand	Chilled	Shoes for	
	Steelmaking	Coupling	of chil-	roll	drawing	
. 5	industry	Spindle 600t/y	led roll 10,000t)	2,000t Coupling	(FC)	
-		000079		200t		
		Shoulder Press die	(Shoul-	Shoulder	Cylinder head (FC)	
	Transpor-	Anchor	der; 1000 pcs		Gear box	
6	tation	500t/y	per year	300t/y	(FC)	
	industry		· .		Cylinder liner(FC)	
				· · ·	Flywheel	
	Electrical				Counter	
7	equipment			1.2	weight for	
			· ·		elevator	
		Counter	Manhole	Counter	(FC) Shoes for	
		weight	cover .	weight	constrac-	
8	civil and construction	Manhole cover		200t Manhole	tion ma- chine (FC)	
	CONSTRUCTION	COVEL		cover	Sprocket	
			· ·	300t	(SC) Guide rol-	
				• •	ler (SC)	
		Machine tool			Sheave (FC)	
		parts 100t/y		: :	Reduction gear (FC)	
	Machinery	1000/9			Wheel for	
9	industry				O.H.crane (FC)	
		-			Gear for	
					O.H.crane	
		Slurry pump		(Bubble	(FC)	
		Ingot mold		cap)		Ì
10	Mining and	400 t/y		(Wheel head)		
τŲ	energy			and	F.	
				Xmas		
	Total	2,420 tons	<u> </u>	<u>tree</u> 3,000 t	 	Į

- The JICA team carried out a sample survey of present and potential customers of P.T. Barata Jakarta Foundry Center. Moreover, to supplement this survey, Indonesian consultants were hired to conduct the survey based on a questionnaire
 - prepared by JICA. The number of the survey samples is as follows:

 - Answers to the questionnaire (sent to 33 companies) 20

Total 27

Altogether 27 answers were received out of 40 questionnaires. The results of this is shown in Table 3.6-2.

Surveyed companies are, as explained above, all present and future customers of JFC, which include:

Transportation industry

Agro-based machinery industry

Civil and construction industry

Machining industry

and others.

3.

a) Amount of foundry products purchased by the surveyed customers.

Out of 27 customers, 14 gave answers about the purchase of foundry, the total of which amounted to 1,546 tons in 1984. This means 110 tons per company and the simple addition shows there would be about 3,000 tons of demand from 27 companies.

b) Purchase plans by the surveyed customers.

It is difficult to analyze future plans of companies, because, in addition to the difficulty of forecasting future, companies are not willing to make their plans open. Nonetheless, general trend is promising, judging from the fact that the Indonesian government has an unambiguous plan for industrial development and some of the surveyed companies has not yet either purchased home-produced foundry products or are at the stage of trial manufacturing.

The promising fields include automobile, construction and transportation, agro-engine, diesel engine and machine tool industries, all of which but automobile industry could be JFC's customers. The estimated demand for some of the surveyed companies is as follows:

	1990	1995
Forklift (1 company)	1,000 units	1,600 units
Agro-Engine (ditto)	530 tons	570 tons
Diesel Engine (ditto)	6,000 units	6,000 units
Machine Tool (ditto)	130 units	150 units

This will be only tiny part of the whole demand. The amount of foundry necessary to meet above-mentioned demand is:

	1990	1995
Forklift (1 company)	1,600 tons	2,560 tons
Agro-Engine (ditto)	530 tons	570 tons
Diesel Engine (ditto)	2,256 tons	2,256 tons
Machine Tool (ditto)	130 tons	150 tons
Total	4,516 tons	5,536 tons

If JFC supplies 50% of this amount, it will be 2,216 tons. The total demand for foundry products will not be insufficient.

c) Possibility of ordering to JFC

Some of the survey companies which have had no contact with JFC are considering to purchase from JFC, if certain conditions are met. Out of the 27, 18 companies (67%) expressed their interest in buying from JFC. This fact shows that users are keen to find a manufacturer which can supply high quality foundry at reasonable prices without any delivery delays. The total of the demand for each type of foundry products is shown below.

	FC	FCD	SC	Others
	ton	ton	ton	ton
Transportation	871.5	320	320	
Agro-Machine	120			
Civil/Construction	96	11.5	5	
Machine-Tool	385			
Pump	24		0.2	
Ship	6.5		3	1
Steel	694			
	ton	ton	ton	ton
Total	2,197	331.5	328.2	1

Among these, the products dealt with by JFC are as follows:

Machine tool and parts	84	tons
Shield	300	tons
Lathe	60	tons
Pump (FC)	24	tons
Anchorage (FC)	69	tons
Flywheel (FC)	120	tons
Counter weight (FC)	522.5	tons

These figures make up a part of the whole market, and JFC could capture it with proper efforts. Furthermore, in addition to digging up existing demand, JFC should try to substitute import castings as well. Taking these potentialities into consideration, JFC's future is widely open. However, it is indispensable for JFC to acquire necessary

production/management technique in order to secure increasing demand.

Table 3.6-2 Sample Survey of Customers of Castings

	:			· .							
TOTAL	WEIGHT (T)			25.2TOM						120 TOH	
	L'ILINVID			4 1						6,000	
LIND	WEICHT (KC)	50	20.9 F	1,300	006 . 1	- 0 00				20	
	SIZE	41300×150	100×70×50 70×60×20 6350×20			300×400×				\$400x45	
	MATERIAL	24	FC23	2 2	EC.					FC	
	NAME OF CASTINC	D rum	Brocket Rear spring Stop: Sub spring Brake drum	Counter veight	Counter weight	Counter veight	Press die	Die wold	Dienel engine Farts	Fly wheel	Fly wheel
	(3661)		350							570	
CASTINGS	(0661)	288	FC: 300T SC: 300		760		······································			005	· · · · · · · · · · · · · · · · · · ·
		10				FC: 1				350	
CONSUMPTION OF	1983										
	- 1982									437	
PRIORITY OF	FROCURENENT	Quality	Quality price Delivery Material	Quality price Delivery			Quality Dimensions			Quality price Delivery	
	RP/KG	3,500		FC: 700		FC: 2500				1207/1/Finisted 2500	
POSSIB ULTIV	ORDER TO JFC	FC: 48 T/Y	FC: 300T/Y FCb: 300 SC: 300	FC: 601/Y FCD: 20 SC: 10 Atloy-SC: 10	FC: 462.5	FC: 11/Y		· · · · · · · · · · · · · · · · · · ·		FC: 1207/7	
EXPERIENCE	OF ORDER TO JFC ORDER TO JFC	Jon .	not		· · · · · · · · · · · · · · · · · · ·				5 2 2	liot	yes
KNOHING	JFC	tor	ycs	yca	ýes		r a		yea	пot	s sy
ENTER-	FRISE	<	BC	ບ ·	<u>م</u>	لمؤ		U	=	-	
				·	· · · ·	3_70		<u></u>	. <u> </u>		

						• .			1		
E	Kemarks		•								
1 and 1 and	6 J 200 J 6 3 3		SASAMI Sasami Gaura Intra Intor Caliata Surya Bali. Nobil Intan	FT. UNLTED TRACTORS						Formers Flahermen	
	(1995)		2, 200 2, 200 1, 500	1,600 2,000					6,000	30,000	
unts	(0661)	-	2,000 2,000 1,400	1,000 1,000					6,000	28,000	
Production Amounts	1904		283 311 676	50 26 21			600,04		1, 000	18,431	25,000
Produ	1983		3, 596 311 689	•						20, 872	35,000
	1982		4, 271 898							22,991	
	Fraducts of Enterprise	Automobile Comont Buik Carrier	KD51 Antemobile TLD56 JCR 360/420	Fark lift Farm Tractors Trailcrs/implements	Henvy Equipments Agri-Tractor Material Handling	Gemeral Steel Fabrication Component for Heavy Equip. Fressure Vessel	Automobile parts	Die Notd Jig	Dieset Engine (2 cyl - 12 cyl)	Diesel Engine	Diesel generator Tump Compressor
Νιωάετ οί	ENTERPRISE	150	283	25	00C	170	200	120	002	250	200
ENTER-	FRISE	¥	Ŧ	U	e	ω	μ	υ	ب		~
				· · ·	zəsubnl mož	Trangenear				ənid	oe#=018Å

Sample Survey of Custamers of Castings

					·	•					
	TOTAL WEICHT (T)	1.5T 1.5 2.0 0.5			3.5 3.4 1.0	24 ton			59 55		
	UTITNAUO					12					
	UNIT HEICHT (KC)		120 ks		20 17.5 25 8.5 03 2.5	2 ton	1 ton 2.5ton		119 111.5		
	SIZE		4315×380 115×110 ×260		270×270×290 210×210×1,5 160×160×103	му 2Нх 4М	200×300 ×400 205×00 205×00				
	MATERIAI.	FC20 FC25 FCD SC	FC FC/FCD		FC FC	FC	FC25 FC25		66-20 66-20		
	NAME OF CASTING	construction machine parts	canting coupling FUNDO FUNRUNC	Type V5L-19SC 12SC 7SC 4SC	Anchorage Guide 19K13 12K13 7K13	Various kinds of machinery and engine parts	Bed for Lathe Body for milling machine		Large shield AS BS	Le ch-leg	
	(5661)	r 8			30						
	(1990)	<u>م</u> بې			20		ő				
		2.5 3	40 8	ÿ	ę		20		300		0: 2 0. 22
	1983 1984	2.5	őn	64	n	222	5				0.2 0.22
	1982	FC: 1.5 SC: 2	FC: 35 SC: 5		: .	FC:155					FC:0.2T SC:0.22
	PROCUREMENT		Price Quality	Quality Frice	Price Quality	Quality		Delfvery			Quality
	rrice RP/KG	FC: 1501 FCD: 2501	FC: as-cast 600 Finisher FCD: 1200 SC- 1400	FC: 900	FC: 2004	FC: 900	FC: 1000	FC: 1600			
POSSIN ILLETY		FC: 2T/Y SC: 1.5E/Y	FC: 251/Y FCD: 10 SC: 5	FC: 61T/Y	FC: 8T/Y	FC: 24T/Y	FC: 601/Y	FC: 17/Y	SC FC FCD Alley-SC Alley-SC		A110Y-SC 0.21/Y
EXPERIENCE		yes	yes	u u u	not	L J	t C C	v. v.	ŋġt	yes	. E. G. J.
	0F JFC	E ök	i ca	t s	not	Jot	not	yes	not	ýe s	ь Х
	ENTER- PRISE	¥ .	ب	×	2	0	£	σ	ez -	N	F
:						0.01					

.

1

3--81

	7			(ri-		······		
Romarks		Competitor PT.BARATA PT.PUTRA KALIHANTAN KYC PRODNKT					PURCHASE from: PT.SIDE HAJU				
Customers		Conetal : 701 Public : 302				PT.TRLANTO DIESEL PT.YANHAR DIESEL PT.YANNAR DIESEL PT.YANNADO. HIRISTRY OF EDUCATION					
	(1995)						110				
ounts	(1990)						100 30				
Production Amounts	1984	68	99, 500 ^T	1,214 3,768 1,798			0 C		200		1,523,94113,464,3003,426,893 4,172,0554,617,5924,565,635
Prod	1983	9ty	84,500 ^T	Set 1,885 ' 3,083 1,677		347 25,358 34,621					3,464,300 4,617,592
	1982	134	81,000 ^T			170 19,753 28,245					1, 523, 9/11 W, 172, 055
	\$.	Road construction machine : Road Roller Ston-crushet, Asphalt mixing plant	Rutlaine, Nigh-way Bridge	Casting VSL - 19SC 12SC 75C	FRESTRESSED Concrete for Bridge, Buildings	Machinery parts Cear Spare parts	General machine Agricultural machine Lathe Milling machine	General machine	General machine Industrial machine Electro machinery Irou and Steel Making	Machine tool : Lathe	Cigaretle paper Writinga 6 printings
Number of Exterence	NU CHING	36	200	£1	. 5 1	350	\$2	300	20	20	1
ENTER-		×	. .	Ŧ	z	o	æ	c	×	v.	ĝ.a
_	Í		ROITOURTENOS	O ONY TIAIS)		75	ISUUNI YARA	IEDAM	2	83949

3-82

1600T 200-300 TOTAL UEICHT (T) 640 8.4 4.5 2.2T 0.5 6.25 55 QUANTIN = <u>:</u> : 2 1,680%//8%//8 640 2,200/535%5 5 1400 1,860/2,030 11400 UNIT UEICHT (XC) 22 4600×7.5 4 75×75 4100×75 321S MATERIAL FC15-20 FC20 FC20 ល ល ល ប NAME OF CASTING Discharge case Suction case impeller Pully & Block Rearing Roller wheel Solid Wheel Brake block Spike Shoulder Ingot case Pouring cap Canting bed ப்யப் (1995) <u>2</u>2 1600 200-300 (0661) CONSUMPTION OF CASTINGS νõ រូរ រូវ 1984 ŝ 694 3.4 21 1983 694 20 1982 л: ЗС: Э 8 969 FRIORITY OF Qualfty Price Delivery Quality Price Delivery Price Delivery **Price** C:1,800 FRICE RP/KG 1000 EXPERIENCE FOSSIBILITY OF FC: 6.5T/Y SC: 3 RC: 1 FC: 247/Y FC: 694 ц Ц yes 1°L yes not not KNOU LNC OF JFC yes not not yea ye: not FNTER-÷ Ν ⊳ 3 × ₽ ~ KER LIEY Eleccricicy dins Isso?acil denz

3-83

Sample Survey of Customers of Castings

									1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
	Remarka			Procurement from P.T. wajaco							
	Cua comers			General : 1001	Public : 75%. General : 25%	Public : 40% General : 60%	General : 100%				
	(1995)										
nts	(0661)										
Production Amounts	V861	400	100 200 600 150			85,000					
Produc	1983	480 684			23.4-2	95,000					
	1932	230			⊷ œ	98,000					
Products of Ruterovise		Centrifugal pump Naud pump	Turbine pump Centrilugal pump Sanitary pump Axial flou pump	Ship building & Ship Repairing	Ship building, Tongan Minyak Tag boat and Docon Repaire Kapal patroli	Iron and Steel making	Generator Veider	Rai luay			
Number of ENTERPRISE		34	67	864	1025	700	T.	50° 000			
ENTER- FRISE		2	>	3	×	~	2	A-1			
	j	do	ana	ړې 	us	Iro/Steel	leccricicy	3	<u></u>	· · · · · · · · · · · · · · · · · · ·	

8

3--84

4) Sample survey of foundry : Companies (foundries) outside JFC Survey of the foundry industry was carried out, taking samples from foundries which are similar to JFC in scale. The JICA team visited 7 foundries and sent questionnaires to 8 foundries.

a) Trend of product items

Main products (FC, SC, Malleable iron) of the surveyed foundries are:

-	Pipe fitting	(Malleable)
-	Flywheel	(FC)
	Brake drum	(FC)
-	Counter weight	(FC)
	Anchorage	(FC)
	Valve	(FC)
~	Pump	(FC)
	Gear for tea machine	(FC)
<u>-</u>	Frame of textile machine	(FC)
-	Rice mill parts	(FC)
-	Rice polisher parts	(FC)
-	Ingot	(FC)
-	Cylinder liner	(FC)
-	Sugar mill roll	(FC) (SC)
-	Sugar mill frame	(SC)
-	Bogie	(SC)
·	Side frame	(SC)
	Ball	(SC)

Among these products, flywheel, counter weights, anchorages, pumps and cylinder liners are produced also by JFC, thus competition being expected.

b) Productivity

It is through excellent technology and productivity that a company captures the large share of demand. The productivity of each surveyed foundry is shown below:

Compa-	Production			oductivity	
ny	(per year)	Employee	ton/manyear	ton/manmonth	
A.	2,502 tons	470	5.32	0.44	
В.	70	60	1.17	0.10	
с.	140	37	3.78	0.31	
D.	40	35	1.14	0.10.	
E.	120	85	1.14	0.12	
F.	21	40	0.52	0.04	
G.	324	74	4.38	0.36	
Н.	450	106	4.24	0.35	
I.	1,630	96	16.98	1.41	
J.	720	210	3.43	0.26	
к.	325	84	3.86	0.32	
L.	1,440	200	7.20	0.60	
м.	880	200	4.4	0.37	
Total	8,662	1,697	5.10	0.42	

Productivity of the surveyed foundries is rather low - less than one tenth of that in advanced countries. JFC's productivity is at present 4.45 tons/man-year, which is lower than the average of surveyed foundries. To compete with them effectively, JFC should improve its technology and productivity.

c) Price

Examples of prices below are taken from 10 surveyed foundries.

	* . *	FC	Product items
600	RP/kg	1 foundry	Sugar mill
950	RP/kg	2 foundries	Tea machine parts
1,000	RPkg	2 foundries	Flywheel, pump
1,200	RP/kg	1 foundry	Pipe fittings
· · · · ·	:	SC	Product items
1,500	RP/kg	1 foundry	Sugar roll

2,500 RP/kg Shoe of track To compete with them, the reasonable price for JFC castings will be about 950 to 1,000 RP/kg (FC). This range of grades being a base load, JFC should have its eye on more sophisticated products with greater added value.

d) Fraction defective of products

The following is the fraction defective of products in 9 surveyed foundries:

Foundry	Product defective rate
А	1%
В	2%
C	6 - 8%
D	11.4%
E	10 - 14%
F	10 - 15%
G	13 - 15%
Н	15 - 20%
I	20%

Almost all 9 foundries have high fraction defective of products. The average seems to be 10 to 15%. JFC's rate is 18%, which is fairly high even compared with surveyed ones.

Without lowering it down to 6%, JFC could not survive the competition. The products with greater added value will require more sophisticated specifications for product inspection and, if production control remains as it is, give rise to even higher fraction defective of products.

So, the first priority is to acquire basic technique. It is only through basic technique that the required product quality is satisfied and the fraction defective of products is decreaased.

e) Equipment

(1) Melting equipment

Electric furnaces - low frequency furnace (LF), high frequency furnace (HF), Heroult furnace (HEF) - are used by 7 foundries.

LF + HF	2 foundries
LF	2 foundires
HF	1 foundry

HEF + HF 1 foundry

The number of foundries which use cupolas is also 7. The table below shows the production amount and product items according to the type of melting furnaces.

Although the electric furnace group and cupola group have the same number of foundries, the former produces about three times as much as the latter. Moreover, the electric group produces higher grade products than the cupola group.

	Electric fur- nance group	Cupola group
Production amt	9,050 tons	2,410 tons
Product item	Pipe fittings Flywheel Brake drum Counter weight Cylinder liner Rice mill parts Ingot Bogie/frame Sugar mill roll	Anchorage Flywheel Dump Counter weight Tea machine gear .Textile machine frame Sugar mill roll

It is difficult to say which is better between electric furnace and cupola.

In general, electric furnaces are preferable for FCD, but in case of FC in large quantity, cupolas have an advantage. In deciding which to employ, various factors - costs of electricity and coke, characeristics of a foundry, etc. - should be taken into account.

(2) Molding equipment

Molding machines are used by 9 foundries out of 13.

Foundry	Number of molding machines
A	11 units
В	2 units
C	7 units
D	8 units
Е	2 units
P	15 units
G	17 units
Н	2 units
Ĭ	4 units
Total	68 units

The average is 5.2 units/foundry.

It seems that relatively small types of castings are being produced with these machines.

		· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••		· · · · · · · · · · · · · · · · · · ·			·	
	Building	7,300 =2			2,000	1,300		1,500	10,000
tes	Ochers	Shoc blase Shoc blase Cleaning Drum1 Leakage Tescer. 1	Emission spectrometer	Microscope Brinell	Shor blast Lathe10 Hardness 1				
Facilities	Molding	FDC-17 FDC-22 2MM-AR.1 2ML-AR.1	FD-33-2	FD-1 5 FD-4 2	F2A2 Snell,M2	MM450x 450 x501 TMM450x750	CO2 Greensand Handmolding	Hand Molding	Greensand CO2 Eand Molding
	Melting	27	LEF 21x1 LEF 21x1	LEF 1TX2	Cupola 11/XX2 CE-meter-1	Cupola 21/Mrc1 Crucible(01)	Cupola 21x1	CC: Cupola: 2000:500 21/Hx1 1501.5T Crucible: 11. 0.21/Hx2 2000:150kg 201200k 201200k	Cupola: 77/HA: Crucible: 0.57/Hx2
XER	Size/					FC: 600kg A1: 300		FC: 2000×500 ×1501.5T C ×1.5 ×1.5 ×2000:150kg EC1200×150.1150 ¢00×150.1150	FC: 2x0.5x0.4 2x0.5T BC: 1.2x0.5 1.2x0.5 A1: 650kg A1: 650kg
Unit	Weight				10-20 0.5-5	30 0.3 0.3 0.3 0.3 0.3 0.3		0000 1000 1000	50 55 50 55 53 50
	Size	1 /2"-3"				4" 600x400 x250		6150×100 6400×50 40×60×115 62000 8400	2:0.7:0.9: 63×0.1M 6200 6400 6500
	Nace- rial	FCMB28 FC25 FC20 FC20 FC20		0000 844 8400	FC25 FC20	FC20 FC20 FC20 Al Al	ں بند بند ا	BC FC20 FC A1 BC	FC20 FC20 BC BC
	Casting Name	Pipe fitting 3300T/Y [1/2"-3") (FC:455T/YFIY wheal (750T/Y Baaring housing F (750T/Y Baaring weighd F	Brake-Drum Track shoe Counter veight Jas crusher Gear	Ar present Grake-Drum Ar present Cylinder liner time. TrialFly Wheel 200 T/M Notor cover	- Anchorage - Fitting	Water Valve Furnace Cover Counter Weight Ornamental Stacket Tension Subrension	Pump Elywheel	Water meter Tea machinery gear Shaft blacker Cooler Fan Bearing Shaft	Texcile Kachine Frame Tea Factory Cear Water meter Bearing Geats
	Fucure	3300T/X (FC:455T/Y) (750T/Y	Brake Drum Brake-Drum 1000 piece/Track shoe M Jar crushe 5000 Gear	Ar present time. Trial 200 T/N	INDESTATINT RD500,000,000.	Water Valve (2"-8") ("Extile Farts			
	Reject (Z)	11.42			6-8 81		H	FC: 207 BC&AL: S7	FC: 10+14 BC: 15-5
	(32/Kg)	FC: 1,200	FC: 1700-2500 SC: 2500	Simple 1500-1700	FC:	FC: 950	1000		FC: 950 8C: 4500 Al: 2500
(%)	102	2,502	40	trial	140	FC: 20 Al-C:20	120	ភិពម	4 0 0 3 0 9
PRODUCTION (TON/Y)	6991	2,718						FC: 10 BC: 3 Al: 2	25.0
FRODUC	1001	1,884							FC: 200 BC: 10 Al: 1
	YEES	470	ę	45	37	35	82	40	74 (Total) (350)
-634743	TALES	4	рд	U	A	tي ب	j ze	ც	р

Table 3.6-3 Sample Survey of Foundry Shop

Sample Survey of Foundry Shop

•

		<u></u>	r	······································				I
	Zuîldîng	17,000	4,320	10,000		7,000	10,000	8,000
cies	Others	Laboratory Hardness.I Tensile Scrength				Lathe Radial boring Shaperi etc. 30		Spectrometer Shot blast. Hunger.1 Drum.2 Heat treatment
Facilities	Molding	EIA2 E242 KHF02 FD242 F0382 T31	F-14/2412 Shell M 5	Induction:1 Ingot mold 35		MM2	Fir Eand molding	uc4 2 Uc5 2
	Melcing	LFT1.5T1 2.0T2	eT 21×1			Cupola. 2	Lurola: 10T/Mr2 P 5T/Hz1 H 2T/Hz1 H Rotary 4Tz2 BC:Rotary 1Tz1 Tilting2Tz1	Electrić F: 61/B×1 HEF: 2T×2 0.5T×1
) Weight	600x400x 150 6450x70 +60kg	FC: 2.5x25x2x HET. 2.5x15x2x HET. 2.5x2 1.1x1x1 1.x1x1X 1.x1x1X	140x50x90 610x12,000			· · · · · · · · · · · · · · · · · · ·	
Unic	Weignt (Xg/piece)	115 95 93 60	: :	- 90 4.74 6.7 7.0		3 Ton	14 Ton	
	9 11 1 1 1	Ваг Ваг Ваг ф450x70		140:40:40 68x12,000 69x " 610x "		· ·		
Mater	rial	FC20 FC20 FC20 FC25		FC25 \$C				· · · · ·
	Cascing Name	Meter pumpunit Rice Milling unit Rice Polisher Fly wheel	lass production Steel Castings	Lugoc Round Bar	Fiscon ling Cylinder liner	Sugar mill spare parts	Sugar Roll aíll Cascings for Tín Mining	Sugar Koll mill Frame Bogey Side Frame
Fucure	Flan	· · ·	Mass production			1990 year Investment U\$1,250,000 FC:10007/Y SC:10007/Y		FCD:SOT/M
Reject	<u>E</u>	15-13%	FC: 2% SC: 3% Others: 2%			FC: 10-15Z 0thers: 7-10Z		1 5-20%
Price Price	(R?/Kg)	•		FC: 200 SC: 300		FC: 600		sc: 1500
a/r)	1984	450	FC: 324 5C: 960 0thers: 346	FC: 2000 FC: 200 SC:1500 SC: 300	720	300	FC 1440	Dg. SS SS
PRODUCTION (TOX/Y)	1983	270				300		
PRODUC	1982	500			· ·	FC: 300 Non- Ferrous 25		
6163	YEES	106 (Total) (650)	96		210		200	500
ENTER-		н		M	ъ	×	z	o

3.7 Sales strategy and production policy

1. Basic strategy

As a nationalized enterprise, JFC's target should be the following types of products:

- Some of the products that JFC is now manufacturing and could be JFC's base load.
- (2) Those products which are being tentatively manufactured under the home production plan.

(3) Those products which are to substitute imported ones in the long run. Through fair competition with the private enterprises, JFC should enhance its competitive position in the world market. On the other hand, JFC could give a positive impact on the private sector by acquiring high technology for home production.

2. Target market

At the present stage, it would not be wise for JFC to expand too rapidly even after the renovation. The first priority is to produce reliable products at low cost and go on step by step. Instead of putting a finger in every pie, the target fields should be narrowed down to a certain extent. From this point of view, special emphasis is put on the above-mentioned first group.

Accordingly, JFC's market consist of :

- (1) Agro-based machine and equipment
- (2) Transportation
- (3) Civil and construction
- (4) Machinery industry

- (5) Mining and energy
- (6) Others public sector
- 3. Criterion of production

Considering the characteristics of JFC, it should be decided what items of product in the target fields are suitable for it. From the managing point of view, producing a limited number of product in a large quantity is most effective, though the products sizes suitable to JFC's equipment should also be taken into account.

The types of castings should be narrowed down, too. If many types of castings such as FC, SC, BC, Al were all dealt with, technical and managerial losses would be significant.

In view of the products of other state foundry factories, FC and FCD are the most suitable types of castings for JFC.

Consequently, the products which satisfy the following conditions may be selected.

- (1) Possibility of mass-production for small number of product items.
- (2) FC and FCD
- (3) The sizes of products are:
 - a) 600 mm x 560 mm flask for machine molding
 - b) 1,500 mm x 1,500 mm flask for hand molding
 - c) Below 3 tons per product

Demand for each item of products

4.

JFC should, freed from the past manners, search customers through consultation with the private sector. Besides, JFC, a member of the state enterprise Barata group, has special duties to supply foundry products to the other members and to become a vehicle for realizing the home production program.

These considerations lead to the following estimation of demand for JFC with regard to each item of product (see Table 3.7-1):

an an an an taraan ar _a afaa a		Total	demand
Target industry	Target products		
		1st year	10th year
1. Agro-based	1) Flywheel	260t/y	814t/y
machine and	2) Cylinder block	455	1,432
equipment			
2. Transportation	1) Shoulder	250t/y	
2. Franklik and for	2) Press die	40	80t/y
r r	3) Flywheel	2.0	120
Diesel engine	4) Cylinder liner	16	96
for general	5) Cylinder head	40	240
use	6) Cylinder block	300	1,800
Г	7) Flywheel	_	240
Diesel engine	8) Cylinder liner		90
for generator	9) Cylinder head		144
use	10)Piston	-	45
3. Civil and construction	1) Counter weight	1,640t/y	4,100t/y
4. Machine industry	1) Lathe 2) Milling machine	2,133t/y 551t/y	5,960t/y 1,000t/y
	Total	6,505 ^T	17,371 ^T

Table 3.7-1 Estimation of demand for JFC (1)

		Total demand		
Target industry	Target products	1st year	10th year	
5. Mining and energy	1) Pump 2) Bubble cap	300t/y 300t/y	420t/y 600t/y	
6. Public sector	 Pipe fitting Manhole cover 	200t/y	200t/y	

Table 3.7-1 Estimation of demand for JFC (2)

5. Sales strategy - Customers

Present and future customers for JFC are as follows:

(1) Agro-based machinery and equipment

JFC has already manufactured agro-diesel engine-flywheel- for R.T. Yammar. Other customers include Kubota and Mitsubishi.

- (2) Transportation
 - a) The main customer for railway equipment would be the Ministry of Railway and Perusahan Jawatan Kereta Api. If quality, cost and delivery time are satisfied, the orders will be likely to come from them.
 - b) Automobile press die

This is used for the pressing of automobile sheet metal. Some dies have been already delivered to Mitsubishi, but complaints over the quality, cost and delivery time have been made. An order has also come from P.T. Materindo. Potential customers

are car makers such as Toyota, Daihatsu, Suzuki, Honda nad Isuzu.

(3) Diesel engine parts

Diesel engine parts either for general use or for generators. In both cases the main customer is BBI of Barata group. B.B.I should be a main target in the future, too.

(4) Civil and construction

In this field JFC produces only counter weights for construction machine/forklift. A present customer is P.T. Tractor Nusantara. Other potential customers are P.T. Trakindo Utama (Caterpillar), P.T. United Tractor (Komatsu), P.T. Triguna Utama (Mitsubishi) and so on.

(5) Machining industry

Some orders have been received from P.T. Industry Mesin Perkakas Indonesia. There are 11 companies having licences to manufacture machine tools. Among them, lathes and milling machines are produced by the following companies:

milling machine

milling machine

1)	IMPI	Lathe
2)	P.T. SARANA IDEA UTAMA	Lathe
3)	P.T. SUMBER BAHAGIA	Lathe
4)	P.T. BINTANG INDUSTRY	Lathe
5)	P.T. TOOL INDONESIA	Lathe and milling
6)	P.T. (PERSERO) PINDAD	Lathe and milling
7)	P.T. PIMSF	Milling machine
(8)	P.T. MEDAN GERAK JAYA	Milling machine

(6) Mining and energy

The orders of mining pumps have been received from the state tin mining corporation, P.T. Tambang Timar. This corporation and its 3 contractors (private companies) engage in the whole process of tin mining from exploration to refining. They will be the main customers in this field.

Bubble caps are used in petroleum refining. There are 9 major petroleum refineries in Indonesia. They are Calacap, Balikpapan, Putri, Tuguh, Sugai (Sei), Pakning, Plagn, Sugai and Gorong.

(7) Public sector

It is difficult to get constant orders from the public sector. However, Kubota, which supplies pipe fittings to the public sector, is intending to use JFC as a base for exporting and could be a stable customer.

- 6. The estimation of demand for JFC is based on the following calculations
 - (1) Agro-based machine and equipment

The Ministry of Industry estimates the demand of tractors as shown below:

	1984/85	85/86	86/87	87/88
	unit	unit	unit	unit
Mini tractor	3,000	3,500	4,000	5,000
Hand tractor	8,000	15,000	20,000	33,000
Large tractor	2,000	2,200	2,500	2,900
	13,000	20,700	26,500	40,900

From this estimation, the demand for flywheels and cylinder blocks is calculated in the following way (The first year is 1984/85 and 10th

year is 187/88) :

Flywheel	:	The weight is	supposed to be 20 l	kg/pe
		1st year	20 kg x 13,000 =	260t/yr
		10th year	20 kg x 40,900 =	818t/yr
Cylinder block	:	The weight is	supposed to be 35 l	kg/pe
		1st year	35 kg x 13,000 =	455t/yr
		10th year	35 kg x 40,900 = 1	,432t/yr

(2) Transportation

- 1) Shoulder

According to the field survey, the demand will continue for 5 years at the rate of 250 tons per year. The weight is supposed to be 1 kg per piece.

2) Press die

The estimation is based on the types that JFC can produce. For the first 3 years, the average weight is supposed to be 1.5 ton per unit. After 3 years, it is supposed to be 3 tons per unit. The demand is estimated to be 3 times as much as that of present orders to JFC.

1st year ... 8 set/yr x 100/30 x 1.5 ton/set = 40t/yr 10th year ... 8 set/yr x 100/30 x 3 tons/set = 80t/yr

(3) Diesel engine

As to diesel engines for general use, B.B.I plans to produce 1,000 units per year for 5 years, and 6,000 units per year after that. Products have a range of cylinders, from 2 to 12, 4-cylinder being taken at the average here. The supposed weight per piece is shown in each formulas below.

a) Flywheel

1st year ... 20 kg/pc x 1,000 = 20t/yr 10th year ... 20 kg/pc x 6,000 = 120t/yr

b) Cylinder (liner)

1st year ... 4 kg/pc x 4cyl x 1,000 = 16t/yr 10th year ... 4 kg/pc x 4cyl x 6,000 = 96t/yr

c) Cylinder head

1st year ... 10 kg/pc x 4cyl x 1,000 = 40t/yr 10th year ... 10 kg/pc x 4cyl x 6,000 = 240t/yr

d) Cylinder block

1st year ... 300 kg/unit x 1,000 = 300t/yr

10th year ... 300 kg/unit x 6,000 = 1,800t/yr

As to diesel engines for generator, it is planned to start manufacturing in 2 year's time by introducing foreign technology. Thus demand will occur in 3 years' time. The production amount will be 200 to 300 units per year (200 units for the 3rd year, 300 units for the 10th year)

- Flywheel

3rd year ... 800 kg/pc x 200 = 160t/yr

10th year ... 800 kg/pc x 300 = 240t/yr

- Cylinder liner

3rd year ... 50 kg/pc x 6cyl x 200 = 60t/yr
10th year ... 50 kg/pc x 6cyl x 300 = 90t/yr

- Cylinder head

3rd year ... 80 kg/pc x 6cyl x 200 = 96t/yr

10th year ... 80 kg/pc x 6cyl x 300 = 144t/yr

- Piston

3rd year	25 kg/pc x 6cyl x 200 = 30t/yr
10th year	25 kg/pc x 6cyl x 300 – 45t/yr

(3) Civil and construction

The demand for forklifts is estimated by United Tractors as in the table below :

	I		II		III		IV		V	
	unit	ton								
тоуота	350	462	380	508	450	605	520	698	570	760
United Tractor	675	1191	760	1341	850	1490	940	1640	1035	1803
Total	1025	1653	1140	1849	1300	2095	1460	2338	1605	2503

Phase I of this table is taken as the 1st year and Phase V is taken as the 10th year.

The weight is supposed to be 1.6 tons per piece.

1st year

 $1.6 \text{ t/pc} \ge 1,025 = 1,640 \text{ t/y}$

10th year

1.6 t/pe x 2,563 = 4,100 t/y

(4) Machinery industry

The demand estimation is :

	1983	1989
Lathe	2,133 units	5,950 units
Milling machine	551 units	1,000 units

The weight of lathe parts and milling machine parts are supposed to be 1 ton per unit. The 1st year is 1983 and the 10th year is 1989. a) Lathe

1st year ... 1t/unit x 2,133 = 2,133t/yr

10th year ... 1t/unit x 5,950 = 5,950t/yr

b) Milling machine

1st year ... 1t/unit x 551 = 551t/yr

10th year ... 1t/unit x 1,000 = 1,000t/yr

- (5) Mining and energy
 - a) Pump

The present demand for pumps is supposed to be 300 tons per year, which will rise by 40% in 5 years' time and then become stable.

1 st year ... 300t/yr 10th year ... 420t/yr

B) Public sector

The demand for pipe fittings is estimated to be 200 tons per year (domestic and abroad).

CHAPTER 4

BASIC PROGRAM FOR DEVELOPMENT

OF INDONESIAN FOUNDRY INDUSTRY

CHAPTER 4 BASIC PROGRAM FOR DEVELOPMENT OF INDONESIAN FOUNDRY INDUSTRY

4.1 present situation of Indonesian foundry industry

The demand for foundry products in Indonesia is said to be 70,000 to 100,000 tons a year. Among them, 30,000 to 35,000 tons are domestically produced and 40,000 to 65,000 tons are imported. At the Third Training Conference held by JICA in Bangkok in August 1981, the participant from the Indonesian Ministry of Industry informed that Indonesian foundry production amounted to about 35,000 tons a year with 157 iron casting factories and 218 nonferrous metal casting factories, most of which are concentrated in Java. Table 4.4-1 shows the data presented to this Conference by the various participants, including Asean countries.

At this Conference, the Indonesian delegate pointed out that their foundry industry was facing the quality problem caused by the shortage of skilled workers, inferior materials and poor technology, and thus in need of technical aides from the advanced countries.

Item	Type of	No. of	Prod'n	Type of	Pop.
Country	factory	fact y	Amt(t)	products (mil)
Nepal	Iron casting	6	500	Farming appliances,	14
				Machine repair tools	'
	Iron casting	36 -	. <u> </u>	Construction tools,	
Sri Lanka			10.000	Household utensils	15
Of I Land	Nonferrous metal	200	10,000	Machine repair tools	
	Foundry		÷	Sugar refining machine	
E: 11	(Iron & non-	3		Ship parts, Manhole,	ο.ε
Fiji	ferrous metal)	ر با در بد	· ·	Repairs tools	0.0
<u> </u>		210	25 000		04
Bangladesh	Iron casting	- 1 A. 1	25,000	Hand pumps, Motor dr.	86
· · · · · · · · · · · · · · · · · · · ·	Nonferrous metal	40 -		pumps, Repair tools	
	Iron casting	ך 157	an Aste	Pumps, Household	
Indonesia			35,000	utensils, Repair	148
	Nonferrous metal	218 -		tools	
	Iron casting	ר ²⁰⁵		Tin processing machine	s,
Malaysia 👘	Steel casting	6 -	80,000	Palm oil processing	13
	Nonferrous metal	12 -		machines, Manhole	
	and the second second			parts a second second	
	Iron casting	200 -		Tin mining machines	
	Steel casting	12 -	4	Sugar refining machine	s,
Thailand	Malleable iron	5 🕂	86,000	Automobile components	46
	casting			Construction machines	$\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}_{\mathcal{T}}}}}}}}}}$
	Die casting	30 J			
	Iron casting	85 -		Mining & earth-moving	
	0		· .	machines, Ship machine	•
Philippines	Steel casting	11 - 1	00,000	parts, Sugar refining	
	Ŭ			machines, Agricultural	
	Nonferrous metal	49 J		machines, Timbering	
				machines	
· ·	Iron casting	42 _–		Mining machines,	
	Steel casting	7 -		General machines,	
Singapore	Nonferrous metal	15 🕂	30,000	Ship machines,	2.3
	Die casting	7 -	-	Pumps	
	Precision			•	
	casting	2			
	Iron casting	278 _T		Automobile components,	
Korea	Malleable iron		700.000	General machines	38
nored	casting	15 -			
	Steel casting	51			
	Iron casting	392 -	·	General machines,	
	Steel casting	21 -		Automobile components,	
Taiwan	Malleable iron		50,000	-	17
TATUGI	casting	16 -			
	Nonferrous metal	32 -			
	Precision casting				
	Iron casting	134 ¬		Ship repair tools	
Vong Vong	Nonferrous metal	101	51,000	burb rebarr conta	6.
Hong Kong	Die casting	35 J	21,000		0.
	Die Cascille	CC			

Table 4.1-1 The present situation of the foundry industry in Asian Countries (As of August 1981)

4~2

Table 4.1-2 shows the present situation of small foundry factories in Indonesia. This is the result of the survey carried out by Japan External Trade Organization (JETRO) in August 1984, with the help of the Small Industry Dept. of the Indonesian Ministry of Industry.

JETRO team surveyed altogether 7 factories, 2 (A, E in the Table) in Jakarta, 1 (B in the Table) in Bandung 3 (C and D in the table, and another) in Tegal and 1 in Semarang. They are all small factories employing less than 30 workers and producing around 20 tons a month.

A, B, D and E factories are manufacturing industrial products, while C factory is specialized in producing hand pumps. To be more precise, A's products are brake drums for automobiles (cast iron), B's are small road rollers and water gate parts (cast iron), D's are general machine parts (cast iron) and E's are liners for automobiles and bicycles, piston rings and brake drums (cast iron).

Their main equipment, molding methods, raw materials and problems are also shown in the Table.

A and E factories employ high frequency induction furnaces, while B and D use the normal type of cupola. On the other hand, C uses old-type tilting china furnace without wind box. Although induction furnaces can be recommended as far as the product quality is concerned, they tend to push up the production cost through high installation cost, large consumption and high contract cost of electricity. Owing to low installation and operation costs, cupolas are the most widely used furnaces in the world but the china furnaces are still used everywhere in this country. In Japan, too, cupolas dominate in pig casting factories.

As to molding equipment, only E factory has an old-type molding machine, the rest using a hand molding method. Most factories have sand mills, though not sand reclaiming equipment.

	 ш		20 Automobíle and motorcycle components,Liners,	brake drums Cast iron 25	High frequency furmance (1 t) Sand molding machine, 6 units Large molding	machine, 2 units Sand mill, 3 units	Machine molding (Synthetic sand, CO ₂ method, Green sand molding)	Lots of rust, Foreign substances	Quartz sand	Many flaws (Pin bole, Sand inclu- sion)
ug. 1984)	Ω		16 General machine parts	Cast iron 20	Cupola (2 t/h) Nil	Sand mill, 1 unit	<pre>Hand molding (Silica sand + molasses + starch CO1 method, Green sand molding)</pre>	Lirregular forms & dimensions, Foreign substances	Irregular lumps Quartz sand	Many flaws (blow hole, Misrun)
List of the surveyed factories (Aug.	U		15 Nand pumps	Cast iron 15	China furnance (0.5 t/h) Nil	liN	Hand molding (River sand + clay Green sand mold- ing)	Lot of rust and foreign substances	Iregular lumps River sand	Many flaws (blow, Sand inclusion, Misrun)
	2		16 Road rollers, Water gates	Cast iron 8	Cupola (1.5 t/h) Nil	Sand mill, 1 unit	Hond molding (Natural silica, Sand + clay, Dry sand molding)	Normal	Irregular lumps Natural quartz	Many flaws (Blow, Sand inclusion, Penetration)
Table 4.1-2	A		30 Construction ma- chines, Automobile components	Cast iron Cast steel 20	High frequency furnance (0.4 t) Nil	Sand mill, 1 unit	Hand molding (Co ₂ method)	Fine	Quartz sand	Inferior cast sur- faces
	Factory	+ cen	1. Employees 2. Type of products	3. Type of castings 4. Production amount	(ton/month) 5.Melting furnance 6.Molding equipment	7.Sand milling	equipment 8. Molding method	9.Raw materials ①Main mate- rials for melting	Coke ② Sand	10. Problems

A, D and E factories use silica sand for moulding. E is the only factory that uses synthetic sand - or semi-synthetic sand to be exact.

From the point of raw materials for melting, only A is up to the standard, C, D and E being blemish.

The main problem of these factories lies in faulty products. With the exception of A factory, all of them produce such flaws as blow holes, sand inclusions, penetrations, misruns and pin holes.

From this survey it is reasonable to conclude that most of the factories are facing rudimentary and un-solved problems.

Indoensian government has just set about the fourth 5 year plan "REPELITA IV" (1985 - 1989). In the second and third 5 year plans (REPELITA II, III: 1975 - 1979, 1980 -1984), the emphasis was put on the domestic manufacturing of car and diesel components. This policy has been carried over into the REPELITA IV, and it is expected that the industries encouraged in the plan (car, agriculture, oil, cement, construction, etc.) will need much more foundry products than the traditional ones (tin, palm oil, sugar, forestry etc.). That is the reason why officials of the Ministry of Industry are so eager to develop the foundry industry.

Unfortunately, notwithstanding their eagerness, the achievement has not been satisfactory so far. In other words, the Indonesian industrialists are facing lots of difficulties caused by the poor state of their management and technology.

The essential points in overcoming these difficulties are:

- On the manager's side, increase of experience and new attitudes toward production management.
- On the production side, improvement of skills and full installation of necessary equipment.

Most users we surveyed expressed strong complaints about the quality, delivery and price of foundry products.

For instance, a Japanese joint venture pointed out that the average rate of defective products from its subcontracted factory reached 15% even though the production process was very simple. In the worst case, one lot included 71% of defective products.

Those defective products should have been disposed of by proper check before delivery. Frequently quality specifications are not observed strictly.

Also, delivery dates are likely to be ignored, which may cause the suspension of assembly work.

As for the costs, the products of subcontracted factories are more expensive than those of a parent company. Taking account of transportation, quality check, travel expenses for technical guidance, the former would be three times as expensive as the latter.

These problems are not restricted to Indonesia alone, but common to most of the developing countries. To cope with this difficult situation, one need accumulate knowledge and experience about management, production control, manufacturing technique and the like. More specifically, the following points are essential to develop enterprises.

a. Deep knowledge about qualities.

b. Positive attitude toward quality control.

c. Acquirement of proper technique.

d. Establishment of material and operation standards.

e. Training of workers.

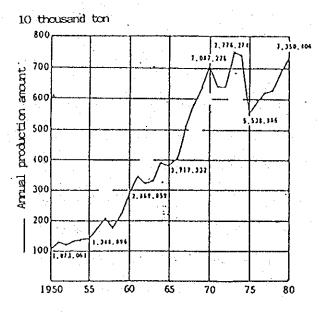
f. Managers' experience

g. Competitive spirit.

Above-mentioned points are very important for Indonesia, and there are a great deal of things to do, ranging from development of key industries and proper financial policies to the training of personnel for enterprises. Since all of these measures require lots of time and money, they should be implemented step by step according to plan.

In many cases, governmental aids is indispensable for solving the problems. Personnel training is a case in point. MIDC in Bandung should play a crucial role in this. Yet, it seems that MIDC's training does not work well on the production line. For example, the lathe legs, which are being manufactured experimentaly, are based on MIDC's method, but it is hard to keep dimensional precision by this method. We think the leaders of MIDC need much more understanding of production techniques than they have now.

It seems also important to set up vocational training institutions for metal work at the expense of the state. At present the skills of foundry workers are so poor that requirements of users can not be met without taking some measures to improve them.


In these training institutions, it would be most effective to teach basic knowledge and technique by practice. Although it is desirable to set up several of such institutions throughout Indonesia, there might a bottleneck in fund and instructors. Therefore, our opinion is that initially a training institution should be established within Jakarta Foundry Center to give opportunities of acquiring basic knowledge and skills for foundry and machine work.

4.2 Development of the Japanese foundry industry

The followings are the chronological outline of the development of the Japanese foundry industry.

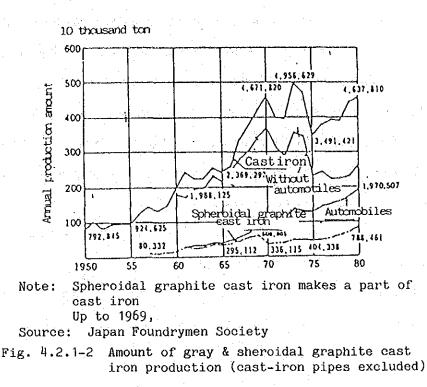

4.2.1 Production amount

Table 4.2.1-1 shows the chronological change of production amount of each casting since 1950. In Fig. 4.2.1-1 and -2, this change is shown in graphs.

Source: Japan Foundrymen Society

Fig. 4.2.1-1 Total Amount of Foundry Production in Japan

According to Table 4.2.1-1, the amount of foundry products in Japan was 7,776,274 tons in 1973, the year of the oil crisis. Since then the product amount, reflecting the world recession, had been continiously decreased until 1980, when the economic recovery caused its rapid increase up to 7,350,406 tons.

Let us see the production amount individually casting by casting.

The production of cast iron was 891,199 tons in 1950, 2,012,325 tons in 1960, 5,248,501 tons in 1970 and reached the peak, 5,765,271 tons, in 1973. The share of cast iron in the whole foundry demand is around 75%.

The production of malleable cast iron also reached the peak in 1973 with 486,495 tons. Since then it has gradualy decreased and 1983's production was only 280,122 tons -57.6% of that of 1973. This resulted from the fact that spheroidal graphite cast iron has replaced malleable cast iron as materials of pipe joints and car components which provided major demand for the latter.

The production of cast steel showed the same pattern, the peak being 907,222 tons in 1973, followed by the gradual decrease (518,815 tons in 1983 – 57.2% of that of 1973). This was also caused by the replacement of cast steel with spheroidal graphite cast iron in shipbuilding, steelmaking and power plants.

The production of light alloy castings and die castings has increased because of the boom in the car industry. In 1983, the amount was 268,620 tons for light alloy castings and 445,293 tons for die castings.

The production of copper alloy castings remains almost unchanged over the period - about 90,000 to 120,000 tons a year.

Precision castings are mainly used for car components, industrial machines and precision machines. The production amount was 6,124 tons in 1983, which was, however 25 billion yen, a big increase in terms of pecuniary amount.

Table 4.2.1-2 shows the chronological change of cast iron production classified by its uses.

According to this table, cast iron for car components amounted to 1,891,700 tons in 1983, occupying 40.1% of the whole. This was followed by cast iron pipes (915,100 tons, 19.4%) and industrial machines and tools (688,200 tons, 14.6%).

Table 4.2.1-3 shows the uses of castings for various types of industries. In 1983, almost half of foundry products (2,891,000 tons, 45.7%) were used for transporting equipment and machinery (automobiles, industrial vehicles, bicycles, harbor and railway, ships). General machinery (industrial, civil engineering and construction, mining, metal work, textile, agricultural, fishing, etc.) occupied the second position with 1,376,200 tons (21.5%), and electrical machinery (electronics, electric,communication, etc.) the third position with 190,600 tons (3.0%). "Others" in the table includes a wide variety of machines and tools, e.g. rolls, casting molds and

4 - 10

molding plates, pipe joints, valve and cocks, cast iron pipes and so on.

Production Amount of Each Type of Foundry

Table 4.2.1-1

3.717.332 7.423.099 1,073.061 1.348.898 2.859.859 7.0 8 7.2 2 6 5,538,886 5.979.710 6.8 5 2.6 0.4 7.77 6.274 6.241.557 6.5 1 0.5 9 2 6.3 2 4.8 4 9 (Unit: ton) 6968397 7,349,069 6.273591 Total 1.341 1.192 1.764 2262 2686 ĺ ł Ţ 1 · 1 1.727 22.5 4 2599 1611 8.1.6.1 6,1.2.4 Precision cestung . 6.137 8 8.5 7 9 309.215 286.821 252328 303818 351.530 1.224 4 0.308 220421 374,8.20 332251 4 3 3,9 1 0 4 5.0.2 1 2 4 2 8.7 3 0 4 4 5.2 9 3 Cest steel [Light alloy] Copper alloy 7 2.5 7 1 83226 117.005 1 7 2 7 4 31,014 35.802 122933 87.573 8 9.1 4 7 81.464 8 5.5 0 2 87.669 9 5,4 4 5 95.470 91.725 8 6.3 2 5 5,693 1 1.6 2 7 5 9,3 9 6 175.085 162281 172982 34.874 163.620 192510 206.147 229.102 243,555 269.980 277.087 264.341 268.620 352528 644.590 907.222 423,578 896771 890,380 144390 621,291 611.752 682296 682657 114.141 623087 732605 612931 518.815 58200 444945 28.785 129.053 200.895 126440 567981 323,489 331.352 345,015. 348.306 332249 299.299 280.122 353958 284.190 Malleable Cast iron 66 T 168 1.092742 5043385 2012325 5508933 4459865 4649593 5229065 2861,658 5248501 5765271 5,482,301 4719554 4060094 4823757 4641131 Wat. 1950 78 20 14 75 76 55 60 65 73 17 79 82 83 80 81 ž

Annual & monthly reports of machine statistics published by the Ministry of International Trade and Industry .. Source

Table 4.2.1-2 Chronological Change of the Use of Cast Iron'

(Unit: Thousand ton, %)

-

	Pct.	14.6	21	3.2	1.5	60	3.0	20	24	40.1	23	20	1.1	7 61	5.4	0.01
198	Volume	688.2	100.6	1 4 9. 5	127	4 1.6	1 4 0.0	96.2	115.4	1.891.7	107.5	96.7	5 1.4	915.1	2 5 3.0	4.719.6
	Pct.	15.3	1.5	3.2	1.5		80 0 ¹	1.7	42	0.5 C	2.7	12		15.4	5.5	100
19.80	Volume	836.8	113.4	1.7.7.6	83.2	620	534.8	93.7	132.7	1,970.5	146.3	116.1	69.8	84.8	3.00,8	5.4825
	Pct.	13.6	1.4	2.3	6		21.4	1.5	21	29.9	, s	3.0		1.1.1	4.6	100
19.75	Volume	554.0	5 5.9	92.6	7 6.3	4 5.8	8720	64.2	8 7.0	1,215.5	5 9.3	121.1	61.5	574.7	185.4	4.066.3
	Et.	223	1.0		2.3	2.5	2 6.0	L.3	2.9	17.1	1.3	23	1.8	1 1.0	3.8	100
1970	Volume	l. 1 6 8. 6	123	230.8	1226	129.4	1,365.6	67.8	1 5 0.5	898.0	70.5	121.6	928	576.7	200.6	5.248.6
5	Ret.	. 25.9	Q. 8	2.0	3.0	* ri	19.9	20	0.5	10.3	1.3	29	0 E	172	5.3	100
196	Volume	7.4.0.7	2 4.0	56.8	86.2	96.6	568.1	57.4	8 S. 4	2951	36.2	830	87.5	1924	1524	2851.8
Year	Use voi. At.	Indistrial machine & tool	Civil engineering	Metal.processing	LION	Textile machine & tool	Mold & molding plate	Agricultural &	Electrical & communication equipment	Automobile-	Industrial vebicle, bicycle & railway	Hartoor & ship	Ceneral goods	Cast iron pipe	Others	Total

Source : "Foundry Yearbook 1983" published by General Foundry Center

Uses of Foundry Products in the Major Machine Industries

Table 4.2.1-3

(Unit: Thousand ton, %)

Iype of Ind.	Year Mat.	Cast iron	Malleeble	Steel	coper alloy	alloy light alloy	Die æting	Precision casture	Total
	1981	1.2023	184 (6.2)	271.2 (39.7)	16.4 (17.2)	223 (8.1)	38.S (8.5)	1.3 (28.9)	1.570.4 (229)
General machine	83	(11275)	(4.8)	257.0	(16.3)	21.0	37.0 (8.6)	(28.6.)	(226)
	10 10	1.076.1 (228)	13.6	2121 (409)	(16.6)	20.6	38.2 (8.5)	(573) (573)	1.376.2 (21.8)
	1861	1274	. 33 (33)	2 1.7 (3.2)	(67)	(30) (30)	40.5 (9.0)	. (6.7)	2128 (31)
Electric machine	67 . 90	1 19.8	137 (4.8)	181 (31)	3.8 (1.1)	(30)	36.1 (8.4)	0.3	2002
	83	115.4	13.9	151 (29)	3.3 (3.8)	8.4 (3.1)	34.2 (7.7)	0.3 (4.9)	190.6
	1981	21626 (429)	(380)	1381 (20.2)	(1 9.0)	2327 (84.0)	3335	(313)	3.000.2 (43.8)
Transportation	82	04	1030	110.9 (18.1)	16.5 (180)	2228 (84.3)	318.4 (74.3)	(327)	2501.1
	ຕ ຄ	6 4	106.1	106.8 (20.6)	15.6 (18.1)	2 27.7 (84.8)	336.4 (75.4)	2.5	2891.0
•	1981	1 vm	157.2 (525)	251.7 (36.9)	5 6.3 (58.9)	117 (4.9)	37.7 (8.4)	(31.1)	2069.1
Others	4, 8	1.54	154.0	226.3 (36.9)	56.5 (61.6)	126 (4.8)	37.2 (8.7)	(327)	2036.8
	8	ri - mo	1465	134.9	5 3.1 (6 1.5)	(++)	37.5 (8.4)	(328)	1.868.1 (29.5)
	1981	5.043.4 (100)	2992)	6827 (100)	95.5 (100)	277.0	4 5 0.2 (1 0 0)	(100)	8 H
Total	82	4.823.8 (100)	284.2	6129	(0 0 1)	264.2 (100)	4 2 8.7 (100)	(100)	200
	ກ ຄ	4.719.6	2801	518.9	(100) (100)	2686 (100)	(100)	(100)	6.325.9

Source : Annual & monthly reports of machine & steel statistics published by the Ministry of InternationalTrade and Industry

۰.

4.2.2 Chronological change of the numbers of factories and employees in the foundry industry

Since the end of the World War II, Japanese foundry industry had grown rapidly until the oil crisis triggered production fall in 1973. The production has been declining since then and so has the numbers of factories and employees.

1) Number of factories

Table 4.2.2-1 and Fig. 4.2.2-1 show the change of the number of foundry

factories in Japan.

Table 4.2.2-1	Chronological Change of	the Number of Factories	Classified
	by the Type of Castings	(At the end of March)	- 1

Castings Year	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
Cast iron	1.198	1,174	1,146	1,018	1,045	1.013	1,003	971	905	922
Cast iron pipe	23	24	23	23	23	-25	24	25	25	25
Malleable cast iron	62	59	58	57	51	50	46	0	. 47	, <u>,</u> 41
Cast steel	178	175	174	174	161	157	152	152	150	148
Vonferrous metal casting	515	500	482	463	438	427	415	400	398	379
Die casting	146	149	140	152	153	હ્ય	154	152	154	154
Precision	23	24	22	19	19	19	19	29	29	29
Total	2.145	2,105	2,051	1,986	1.890	1.849	1,813	1.775	1.728	1.698

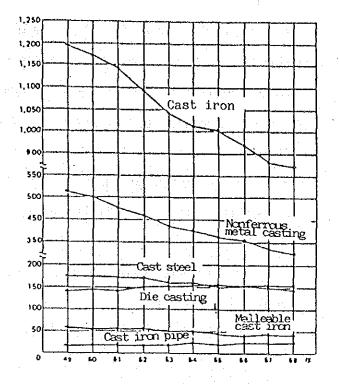


Fig. 4.2.2-1 Number of Factories Classified by the Type of Castings

In 1983, the number of factories was 1,198 - 30 less than the previous year. Compared to 1981 (38 less than 1980) and 1982 (47 less than 1981), this decrease appears to be relatively small. Considering the fact that the production had falled in three consecutive years, the efforts of the management seem to have been great. Over the period of 10 years since 1974, the factories has lowered its number from 2,145 down to 1,698 — a decrease of 447 (20.8%).

Let us see the change. Cast iron factories have reduced their number from 1,198 to 922 (decrease of 276, 23.0%) over past 10 years. The rate of decrease varies from year to year, being rather rapid in the years of recession. The number of cast iron pipe factories, although gradually increasing, remains unchanged at 25 in those 3 years. The fall of malleable cast iron factories is significant - from 62 to 41 (decrease of 21,

33.9%).

Needless to say, the decrease of demand is the most important cause of this fall. Cast steel factories have been reduced from 178 to 148 (decrease of 30, 16.8%) during these 10 years. The demand for cast steel falled greatly in 1983 and the management is facing the difficult situation. The number of nonferrous metal casting factories has decreased from 515 to 379 (decrease of 136, 26.4%), but that of die casting factories has increased from 146 to 154 (+8, 5.5%) over the same period.

In Table 4.2.2-2 each type of foundry is classified according to the number of employees.

From this Table it is clear that factories are generally small, nonferrous metal casting and cast iron factories being particularly so.

Table 4.2.2-3 shows the change of cast iron factories classified by the number of employees. Small factories with less than 29 employees have been reduced from 581 to 535 (-46, 7.9%) over 10 years, while factories of 30 to 49 employees have reduced their number from 295 to 195 (-97, 33.2%). For those of 50 to 99 employees, the reduction was from 187 to 115 (-72, 38.5%). Decrease of larger factories is as follows: For 100 to 299 employees, from 108 to 58 (-50, 46.3%); for 300 to 499 employees, from 15 to 10; for 500 to 999 employees, from 13 to 7. The number of factories of more than 1,000 employees have remained 2 without change. From these figures it can be concluded that on the whole Japanese foundry factories are getting smaller.

Table 4.2.2-2	Classification	of Factories	by the	Number	of Employed	-8
	and Type of Cas	stings	- 	e de la composición d		

Table 4.2.2-2	Classification of Factories	by	the	Number	of	Employees
	and Type of Castings					

1	9	8	1	3.	3	

e <u>e substanta</u>					1999 B				лЦ .	1 A	15	983. 3
Casting	Cast	iron	Cas	t pice	Mal.	iron	Sta	æl	Nonf	metal	Di	le
Employees	Fac.	Pct.	Fac.	Pct.	Fac.	Pct:	Fac.	Pct.	Fac	Pct:	Fac.	Pct
29 or less 30 - 49	1''	58.0) 21.1	1.	\$6.0	16	39.0	61	43.2	274	72.3) 88	57.1
50 - 99	115	12.5	3	12.0	15	36.6	44	29.7	31	8.2	31	20.1
100 ~ 299	- 58	6.3	2	8.0	5	12.2	35	23.6	29	7.7	28	18.2
300 - 499	10	1.1	4	16.0	3	7.3	4	2.7	4	1.0	6	3.9
500 - 999	7	0.8	2	8.0	2	4.9	1	0.7	1	0.3	· _	***
1,000 or more	2	0.2	:	8.V	· •	.	·	-	· • •		- 1	0.7
Total	922	100	25	100	. 41	100	1 48	100	379	100	154	100

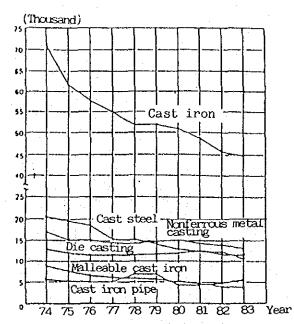
Table 4.2.2-3 Chronological Change of the Cast irong Factories Classifed by the Number of Employees

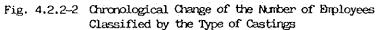
					- <u>-</u>					
Employees Year	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
29 or lėss	- 581	615	667	631	586	541	\$56	529	515	505
	(48.7)	(52.4)	(58,2)	(57.5)	(56.1)	{53.4}	(56.4)	(54.5)	(55.1)	(58.0)
30 - 49	292	246	217	214	221	233	222	219	210	195
	(24.1)	{21_0}	(18.9)	(19.5)	(21.2)	(23.0)	(22.1)	{ 22 G}	(22.5)	(21.1)
50 ~ 99	187	179	44	134	3	134	130	1.12	26	115
	(15.6)	(15.2)	(12,6)	(12.2)	(12.5)	(13.2)	(13.0)	(12.6)	(13.5)	(12.5)
100 ~ 299	108	106	96	100	ñy	Å4	75	7)	67	58
	(9.0)	(9.0)	(8.4)	(9.1)	(8.4)	(8.3)	(7,5)	(7.3)	(7.2)	(6.3)
300 ~ 499	15 (1.3)	16 (1.3)	12 (1.1)	9 (0.8)	8 (0.8)	9 (0.9)	ົກ (1,1)	$\frac{n}{\alpha n}$	9 (0.9)	10 (1.1)
500 ~ 999	(1.1)	y (0.8)	7 (0.6)	7 (0.6)	8 (0.8)	10 (1.0)	7 (0.7)	7 (0.7)	6 (0.6)	7 (0.8)
1,000 or more	2 (0.2)	3 (0.3)	3 (0.3)	3 (0.3)	(0.3)	2 (0.2)	(0.2)	2 (0.2)	2 (0.2)	2 (0.2)
Total	1,198	3.174	1,146	1,098	1,045	1,013	1.003	971	935	922
	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)

2) Number of employees

Table 4.2.2-4 and Fig. 4.2.2-2 show the change of the number of employees in Japanese foundry factories.

According to Table 4.2.2-4, the total employees in Japanese foundry factories were 93,579 in 1983, which is 2,170 (2.3%) less than the previous year. Over the period of 10 years, the total decrease is 44,793 (32.4%) from 138,172 in 1974. In cast iron factories, the number of employees fell from 46,032 to 44,457 (-1,573, 3.4%) in 1984. In cast iron pipe factories, it increased from 4,852 to 5.079 (+857). The total balance of both was a decrease of 718. In abovementioned tow types of factory, the employees have been reduced from 76,751 to 50,166 (-26,585, 34.6%) over these 10 years. Malleable cast iron factories have seen the biggest reduction of employees in the industry - from 4,555 to 4,225 (-330, 7.2%) in 1983 and from 8,946 to 4,225 (-4,721, 52.8%) over 10 years. Cast steel factories also reduced their employees from 12,038 to 11,791 (-247, 20%) in 1983 and from 20,856 to 11,791 (-9,065, 43.5%) over 10 years. For nonferrous metal casting factories, the reduction ws 731 in 1983 (5.2% as compared to the previous year) and 3,922 (22.6%) over 10 years. On the other hand, die casting factories had gradually increased their employees since 1981 thanks to the rise of demand, but have been sluggish recently. Over ten years it has reduced its employees from 13,099 to 12,042 (-1,057, 8.1%). Precision casting factories, although declined temporarily, has increased their employees from 1,151 to 1,708 (+551, 48.4%). Precision casting is enjoying brisk


Table	4.	2	.2	


-4 Chronological Change of the Number of Employees Classified by the Type of Castings

...

<u> </u>		······································				(At the end	of Decemb
Castings Year	Cast iron	Cast iron pipe	c. ^{Mal} .	Cast Steel	Metal	casting	Precision	Total
1974	71.111	5,640	8, 946	20, 856	17.369	13.099	1.151	138.172
1975	61 . 900	5, 301	7,836	19,825	15.414	12.124	1,013	123, 476
1976	57,745	t 5 158	6,830	18,968	15.369	11,983	973	117,026
1977	55,285	5,100	6.337	15,634	14.955	11,873	855	110.039
1978	51.884	6,990	6.096	15,267	14,443	11,589	919	107,191
1979	52.000	6,944	5.592	14,448	14,530	11,763	949	106,226
1980	51.060	4,588	5.081	13.238	15.019	12.107	1,431	102.524
1981	48.910	4.536	4.820	12,779	14.894	12.620	1.487	100.046
1982	46,032	4,852	4,555	12.038	14,178	12, 317	1,577	95,549
1983	44,457	5,709	4,225	11,791	13, 447	12,042	1,708	93,379

Source: Annual & monthly reports of machine statistics published by MITTI

3) Productivity and production amount per factory

Table 4.2.2-5 and Fig. 4.2.2-3 show annual production amount per employee since 1974.

According to Table 4.2.2-5, in 1983, the annual productions per employee were 85.6 tons for cast iron, 160.3 tons for cast iron pipes, 66.0 tons for malleable cast iron, 37.0 tons for die castings and 3.6 tons for precision castings. In spite of the recession, all castings except cast iron pipes and cast steel have raised their productivity, which is now much higher than the American foundry industry.

Table 4.2.2-5 Chronological Change of Productivity

(Unit: Ton, at the end of December) Castings Cast Malleable cast iron Precision casting iron pipe Die casting Cast steel Year iron 21.9 1,5 1974 146.3 49.7 42.7 65.2 1.2 1975 20.8 108.5 41.0 56,3 32.6 1976 1.8 126.9 48.5 65.5 32.8 1977 27.9 2.6 71.3 138.9 55.9 39.1 30.3 2.5 1978 109.5 16.6 74.7 40.8 2.8 31.9 1979 84.0 123.7 62.3 47.2 2.5 55.3 35.8 1990 184.1 65;4 90.8 3.0 35.7 53.4 175.5 G2.1 1981 86.8 85.3 187.7 G2.4 50,9 34.8 3.1 1982 66.3 J.6 160.3 1983 85.6 44.0 37.0

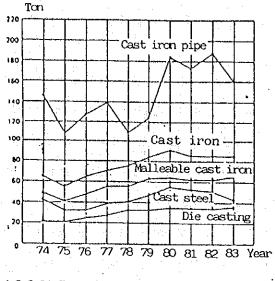


Fig. 4.2.2-3 Chronological Change of Productivity (per head/year)

Table 4.2.2-6 shows annual production amount per factory. In 1983, it decreased in cast iron and cast steel.

Over these 10 years, all but cast steel have increased the production per factory.

					a a a a a	(U	uit: Ton)
Year Cast	Cast iron	Casting	Mal.	Cast steel	Nonf. metal c.	Die casting	casting
1975	2, 974	23.945	5,483	3,683	502	1, 644	<u>5</u> U
1976	3, 303	28, 476	5.713	3,571	584	2.081	79
1977	3,589	30.813	6,210	3,516	630	2.186	119
1978	3,709	33,283	6,765	3,870	709	2.28	119
1979	4,014	34,364	6,966	4,346	776	2,418	. 340
1980	4,624	35,200	7,223	4,820	881	2.818	180
1981	4,374	31,874	7,300	á. 491	1120	2,962	155
1982	4,199	36, 134	6,047	4,086	918	2,784	169
1983	4,126	36,600	6.832	3.506	937	2,892	211

Table 4.2.2-6	Annual	Production	of	Castinos	per Faci	torv

4) Price of foundry products

Prices of foundry products in Japan are listed in Tables 4.2.2-7, 4.2.2-8 and 4.2.2-9.

Price of a foundry product is determined on the basis of its shape, size, difficulty in manufacturing, quantity, yield, quality of the material, production method and other factors. In setting up prices, therefore, certain profit should be added to the calculated costs. The constant efforts to make a certain profit should be made, even though it is not easy when we are competing with others. The lists below only indicate average prices for reference. Table 4.2.2-7 shows average prices of each type foundry products. Table 4.2.2-8 shows average prices of foundry products for industrial machines and tools. Table 4.2.2-9 shows average prices of automobile products. Products for industrial machines and tools in 4.2.2-8 are not mass-produced in most cases, whereas those for automobiles are usually mass-produced. Therefore the former is higher than the latter in prices.

Yen/kg is taken as the unit in these Tables.

In past years prices of foundry products have increased greatly. For example, the price of grey cast iron was 130.6 yen/kg in 1974, then it rose up to 184.6 yen/kg in 1984. The rate of increase was 141.3%. Among the various products, those for automobiles increased their price most rapidly. This can be seen in Tables 4.2.2-8 and 4.2.2-9.

The prices increases peaked in 1981 as can be seen in Table 4.2.2-7. Since then the price increase has lost its impetus because of the general recession. The fall of the process of non-mass-produced products for industrial machines and tools is especially significant. Therefore, foundries in this field are having a difficult time. The prices of nonferrous foundry products, that is, bronze castings, light alloy aluminum castings and die castings have changed drastically, depending on the change of material pieces.

•			0.			
	ntin in the state					(Unit: Yen)
Year year	Gray iron castings	Sohere, gra. Licon casting	Malleable iron cast.	Bronze castangs	Lt. allov alum. cast.	Alum die castings
1974	130.6	190.1	2 4 5. 6	886.0	657.1	593.3
75	1 3 7. 2	190.4	264.8	856.1	645.5	597.2
76	139.5	199.3	260.3	1 870.9	669.3	626.8
77	1437	209.2	269.6	872.0	718.0	666.8
78	1522	207.4	267.6	857.3	710.4	658.3
79	156.7	209.5	269.6	883.5	730.2	689.1
80	169.6	223.3	296.8	971.9	835.5	7521
81	179.8	229.7	307.8	924.3	860.1	7122
82	183.0	230.1	321.2	915.4	828.5	683.9
83	184.6	230.8	331.4	895.4	818.9	689.3

·

Table 4.2.2-7 Chronological Changes of Foundry Products Prices by Material (per kg)

Source: Annual report of machinery statistics by MITI

Naterial	Gray iron castings	Sphere.gra, iron casting	Malleable iron cast	Bronze castings	Lt.alloy alum. Ast	Alum.die castangs
1 9 7 4	178.6	2222	267.1	1,085.1	714.4	621.6
7 5	185.8	2 1 9. 3	285.6	9722	704.2	613.1
76	178.5	2 2 2, 6	274.7	938.7	-740.]	645.4
77	183.9	2 2 3. 4	288.4	973.6	839.8	703.0
78	184.8	219.5	2924	968.2	837.9	701.2
79	186.0	213.4	307.9	988.9	8429	729.2
80	201.9	233.0	342.5	1.149.1	1.005.1	850.9
81	207.2	245.0	373.2	1.1621	1.0123	860.5
8 2	206.4	240.5	384.6	1.088.9	992.9	819.5
83	2029	236.5	365.5	1.0029	983.8	850.2

Table 4.2.2-8 Chronological Changes of Foundry Products Prices for Industrial Machines and Equipment (per kg)

•.

(Unit: Yen)

Source: Annual report of machinery statistics by MITT

Table 4.2.2-9 Chronological Changes of Foundry Products Prices by Material for Automobiles (per kg)

			· ·		((Unit: Yen)
Material Year	Gray iron castings	iron casting	Malleeble iron cast.	Bronze castings'	Lt. alloy alum.cast.	Alum, die castings
1974	1217	173.0	2'2 3. 3	748.5	596.4	553.3
75	136.3	173.7	251.0	889.7	596.2	562.0
7 6	1 3 6. 9	186.5	240.1	926.6	604.4	583.6
77	138.1	204.5	241.3	976.0	6521	618.8
78	148.1	200.8	231.0	910.2	649.4	613.7
79	1 5 5, 4	202.9	231.9	938.6	6727	644.6
80	162.9	210.8	250.7	1,107.7	771.3	697.8
81	167.3	212.9	252.6	1, 1 1 4. 5	806.2	650.4
82	170.7	214.6	2 6 4. 1	1, 1 1 0, 4	775.4	635.2
83	170.5	216.7	264.9	1.006.5	7,67.3	631.1

Source: The same as Table 4.2.2-2

4.2.3 Present situation of small and medium-sized foundries in Japan

Table 4.2.3-1 shows samples from small and medium-sized foundries in Kawaguchi city. These listed employees, production volumes, monthly production, product items, materials (cast iron), melting equipment and molding sand for each of them.

From the Table, it is clear that there are big differences among foundries in production volume per worker, ranging from 2.0 tons to 10.0 tons per month. The same can be said in monthly production volume per worker. In the case of A factory which specializes in cast iron pipes of 100 - 250 kg class, hand molding is employed. Massproduction is not adopted. Its production efficiency is low, because of dry sand molding with clay. This dry sand molding method is seldom used in Japan nowadays. This factory is characterized by its manufacturing of spheroidal graphite cast iron in a small cupola.

B factory is a small foundry with only 10 employees. It mainly produces hydraulic parts and pipes. FC 35 and FCD (spheroidal graphite cast iron) are major materials. Its melting equipment is a 4.5 tons low frequency induction furnace. It adopts self-hardening molding which mixes resin binder with molding sand. Molding is done by hand.

C factory is an excellent foundry with 30 employees, manufacturing 300 tons/month of foundry products. The average weight of products is 3 kg. The products are mosty brake drums of small cars and motorcycles. Machine and green sand molding is employed. 4 units of high pressure high speed molding machines are used. The melting equipment is low frequency induction furnaces for 3.5 tons and 0.8 tons.

D factory enjoys the best productivity among the five. Its main products are for machine tools, the largest one weighing 5 tons and the average weight being 1.6 tons. The materials are cast irons only. The melting equipment is a low frequency induction furnace for 5 tons whose running water is 41 tons under 10 hour operation per day. It

consumes electric power of 56 kwh/ton. The self-hardening molding with furan resin is employed.

E factory produces machine tools and large-sized pumps. The materials are cast irons. The product weight ranges from 500 to 3,500 kg. The melting equipment is cupola of 5 tons/hour. 1 - 2% oxygen is mixed into the cupola during air blasting so that the temperature of molten metal can be kept high. Like other factories, selfhardening furan resin is used for foundry sand.

Table 4.2.3-1	An Example of Small-and Medium-sized Cast iron Foundries	3
• • •	in Kawaguchi City	

				<u> </u>	ter and a second
Foundry Item	A	В	С	D	E
Employee	25	10	30	55	21
Output(ton/month)	50	55	300	450	100
Production amount (Million yen/month)	21.3	8.6	44.4	94.5	22.5
Product	Cast ironpipe (bend pipe)	Valve hydral.parts	Auto-parts	Mach. tcol parts	Mach. tool pump, etc.
Material	FC10, FCD 90 %	FC35, FCD 65 %	FC50, FCD 50 %	FC100 %	FC100 %
Melting furnace	2 ton/hr. cupola	Low freg. furn. 4.5 ton	Low freg. fum.	Low freq. fim	4 ton/hr. cupola
Molding sand	Dry sand mold	Furan sand	Grn.sand mold high/pre.mold	Furan sand	Furan sand

Note: These figures are as of September 1983

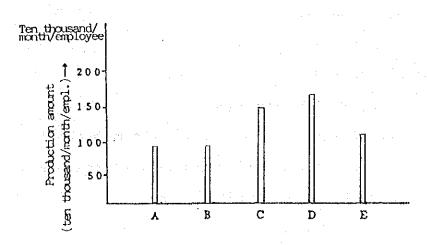


Fig. 4.2.3-1 Productivity value of each factory

All the floors of these 5 factories are concreted, and all have good working environment and their workers are well-trained. Since they receive regular check-ups by official casting instructors, they produce few defective products (unusable product) —the rate of defective products is about 2 - 3%.

These factories are imposed severe conditions over quality, delivery and prices by their users when receiving orders. The Table 4.2.3-2 shows an example of inspection standards of acceptance adopted by a certain user.

Table 4.2.3-2 An example of inspection standards of acceptance adopted by a machine tool maker

Foundry products are checked with regard to the following items.

- 1. Check items
- (1) General check items
- 1) Material
 - a. Appearance
 - b. Dimensional accuracy
 - c. Mechanical properties

- 2) In-process check item
 - a. Appearance

(2) Specified check items

1) Cast iron products with sliding faces

2) Cast iron products used after being quenched and hardened

3) Cast iron products used as hydraulic parts or air-pressure parts

4) Specified deformation tempering castings

5) Attaching of checking data

6) Cast emblem of manufacturers

(3) Reference standard

1) Chemical constituent

2) Particles and structure

3) Dealing with defective products

2. Checking standards

(1) General checking standards

1) Material

a. Appearance

 Appearance check at the delivery shall be done after shot or sandblasting.

b) Burrs and sand on castings shall be removed.

c) Scars of riser, ingate and so on shall be finished as cast surface or within 2/3 of finish allowance.

d) No defects such as cracks, drawhole, sand inclusion and pinhole should be on mill scale. However, on working surfaces, these are allowed in the limit of the finish allowance.

e) Roughness and unevenness of casting surfaces shall be mentioned in another specification.

- 2) Dimensional accuracy
 - a. Draft shall conform to JIS.
 - b. Tolerance of length shall conform to JIS.
 - c. Tolerance of thickness shall conform to JIS.
 - d. Tolerance of nonconformity due to the mold setting be within
 - 0.5 mm.
 - e. Finish allowances are as follows:

Foundry size Surface (top, bottom, side)

200 mm or less 3 mm

201 to 500 mm 4 mm

501 to 800 mm 5 mm

However, for upper molds, 2 mm of tolerance can be added.

- 3. Mechanical properties
 - (omitted)

However, only tensile strength and hardness are measured here.

4. Inspection after working

- (1) No defect on working surface is allowed.
- (2) No large particle due to the quality of material is allowed on working surface.
- (3) No chaptet on working surface is allowed.

(Other items are omitted)

For reference, we will mention below about the foundry in Kawaguchi, Japan.

Kawaguchi is located 25 km north of Tokyo. Its population is 400,000.

Kawaguchi has been well known as a city of foundry and also called the "City of Cupola". There are 270 small sized foundries in the city. As shown in Table 4.2.3-3, the average output of pig iron and castings of 27,000 to 28,000 tons per month and of 300,000 tons per year, being the largest foundry manufacturing city of Japan. It forms 6.0% of 4,719,600 tons, the total foundry output in Japan (Table 4.2.1-2) in 1983.

	(as of M	lay 190	547		(Unit: T	m, %)	
Use -		198	1. A.	1983			
	May		April		May		
Industrial machine&tcol	9,991	121	1 0,4 0 3	125	8.234	100	
Civil eng.&mining mach.	597	114	559	107	5 2 2	100	
Metal proc.machine	1,7.6.2	142	1,859	150	1,243	100	
Roll	19	.90	32	152	21	100	
Textile machine & tool	2 2	138	22	138	16	. 100	
Mold & molding plate	606	90	631	94	673	100	
Agriculture&fin.tcols	635	69	794	86	926	100	
Elec.&com. equipment	1,2 4 4	197	1,1 54	183	630	100	
Automobile	5,605	122	5.9 0 1	128	4.613	100	
Ind. vehicle, bicy&rlwy	2,388	201	2,196	185	1,190	100	
Harbor & ship	379	117	401	123	325	100	
General goods	377	93	439	108	405	100	
Others	3465	114	3,715	122	3.037	100	
Total	27,090	1.24	28106	129	21,836	100	
No. of surveyed fact.	271		273		285		

Table 4.2.3-3 Breakdown of Cast Iron and Its Amount of Production in Kawaguchi District (as of May 1984)

Note: Includes ductile cast iron. May 1983 represents 100% Source: Kawaguchi Foundry Association

The breakdown of cast iron and castings output in Kawaguchi is: 9,991 tons for industrial machines and tools forming 36.9% of the total; 5,605 tons for automobiles forming 20.7%, 2,388 tons for industrial vehicle; bicycle and railroad forming 8.9%, 1,762 tons for metal working machines forming 6.5%; and 3,465 tons for others forming 12.8%. The breakdown of these products classified by use is as follows. 10,870 tons for automobile, industrial vehicle, bicycle, railroad, agricultural machinery and implement, finishing implement, civil engineering and construction machine, mining machine, harbor and shipping, textile machine and implement, and electric and communication equipment. These are mass-produced forming 40.1% of the total. In addition, 16,220 tons for non-mass produced products such as industrial machine and tool, metal working machine, mold, mold stool, commodity, roller and other products forming 59.9% of the total. The foundries in Kawaguchi are characterized by manufacturing of non-mass produced products rather than mass-produced ones. Therefore, foundries for hand molding occupy the most part of all and those for machine molding comparatively a small portion. Every foundry in Kawaguchi, as exemplified by above mentioned 5 foundries, is mechanized with molding, melting and finishing equipments as well as working environment. The 1983's output of cast iron in Kawaguchi classified by use is shown in Table 4.2.3-4.

Breakdown of Cast Iron and Casings Production in Kawaguchi District (1983) Table 4.2.3-4

						: :::	•			÷				Compared	to 1982 080	2	. • :
te de									4			<u>.</u>	i. See	Com	to 19		
(Unit: Tan)	Total	106.759	6.5 2 1	1 6.5 5 3	267	195	7.2 2 1	8.092	1 1.4 0 0	5 9.6 5 1	1 6.7 0 9	43.24	5.050	10.108	283.250	3.398	
4ŋ)	Dec.	10.108	562	1.662	21	15	6 6 2	161	1.084	5.046	1.77.4	4 2 8	4.27	3752	26.332	276	•
	Nov	9.8.3.4	533	1.679	- 21	7	77.5	787	5 5 5	5.124	1.581	8 7 7	4 3.5	3.593	25.807	276	
	Oct.	9.709	. 538	1.702	29		648	764	1.035	5.310	1.661	354	374	3.484	25.619	278	
	Sep.	1 1 0.6	548	1.470 3	3 1		465	708	E 1 6	5.3 2 2	1.5 9 3	340	9 6 E	3,1 2 1	23.8 5.4	281	
	Aug.	8.309	130	t.290	23	21	50 7	627	1.049	4.5 4 3	1.2 4 6	335	424	2976	21.673	282	:
	ીપી.	6.807	. 568	1.403	36	5 I	530	622	8.76	5.215	l.621	371	4 2 9	3.3.1.8	23.811	283	
	Jun.	9,257	598	E405	22	15	533	615	699	5.1.4.2	1.301	383	425	3.3 4 7	24.036	284	
	Way	8.2.34	522	1,243	21	16	673	926	630	4,613	1.190	3 2 5	406	3.0.37	21.836	285	
1000	Apr.	8.8 1 2	622	1.3 4 1	16		648	626	10.71	5.208	1.328	344	428	3.416	23.874	286	
	Nar.	8.716	604	1.2.33	22	4.3	517	5 S 6	1,024	5.071	825	0 9 9	430	3,381	22791	289	
2	Feb.	8,361	540	1,197	1.25	20	134	545	6 F 8	4,659	1,486	357	484	3.6 6 7	22914	289	iation
	Jan.	7,601	. 456	1.095	01	5	627	525	693	4.398	1.103	280	390	3.3.16	20.703	289	ry Assoc
	sg	Industrial machine&tool	Civil eng. & mining mach	Metal proc. machine	Roll	Textile machine & tool	Mold & molding plate	Agriculturectin.tools	Elec.&com. equipment	Automobile	Ind. vehicle, bicy&rlwy	Harbor & ship	General goods	others	Total	No. of surveyed fac.	Source: Kawaguchi Foundry Association

ſ

4.3 Measure for Radical Reform of Indonesian Foundry Industry

To succeed in manufacturing modern industrial products such as automobile, farm machine and implement, home electric appliance, first of all, Indonesia could produce quality castings as a basic material for them, especially cast iron products. This has already been pointed out by local Japanese copmanies. It has also been mentioned that customers' requirements should be fully satisfied, such as delivery time and prices.

To realize them, the production system for castings should be modernized, that is, the existing foundry technique should be replaced with a modern one. To be concrete, the manufacturing of products should be done sufficiently taking into consideration and understanding the conditions of customer's order. Consequently, "Plan, Do, See" activity should be, first at all, done repeatedly, carefully and enthusiastically.

In advanced countries, the modernization of management and technology is commonly considered as a key method to succeed in production, in detail later. The management, including president, department manager, section chief, supervisor should bear it in mind. Measures to succeed in implementing actions of "Plan, Do, See", the basics of production management for foundry will be mentioned below.

4.3.1 Review of production process

Table 4.3.1-1 indicates typical production processes of castings. These processes, essential to manufacture castings, include pattern making, sand preparation, molding, core making, mold setting, melting, pouring, shakeout, fettling and testing and inspection.

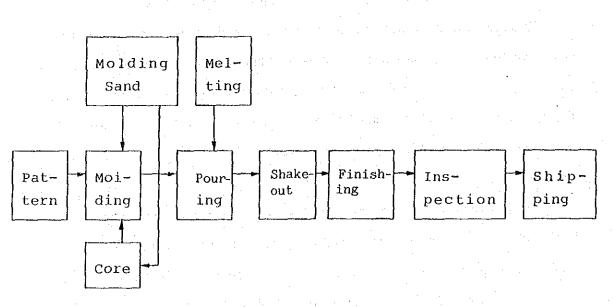
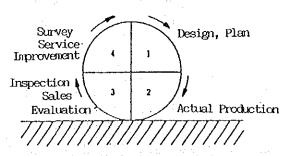


Fig. 4.3.1-1 Production process for castings


These processes are commonly adopted in Japan and Indonesia. However there is a big difference between these two countries in product quality and accuracy. This difference is caused by different levels of technique, material, equipment and so forth in each process. In addition to these differences in production process, the ability or skill of the workers also makes a remarkable difference in results. Therefore, management and control plays an important role.

Without improvement, any company will not be able to compete with other companies due to a lot of loss works. In every Indonesian foundries, it shall be pointed out that there are a number of defects on products.

Table 4.3.1-1 shows the defects in each process. This Table clearly indicate the mutual relation of process and defect. The reduction of these defects depends on the ability of personnel to casting, and the responsibility of it shall be beared by upperclass managers. These shall be well understood. Above mentioned activities, "Plan, Do, See" shall be adopted as a management and control method against those defects. This method shall be applied to all operations such as order receiving, material preparation, personnel administration, production, finance, costing, etc.

-1 Production process and appeared process of castings
Appeared defects
dimensional deviation, deformation, wall thickness inequality, burr
sand inclusion, scab, blow hole, penetration, sand drop, etc.
sand inclusion, scab, blow, misrun, push up, mismatch, run-out, rough surface, etc.
blow, shrink, crack, chill, misrun, lack of strength, lack of hardness, coarse grain, kish graphite, slag inclusion
misrun, blow, slag inclusion
crack, deformation, change of hardness
breakage, defective finishing
(Visual observation and using apparatus, inspect so as to meet the user's specification.)

The activity program of "Plan, Do, See" (which is called Deming Circle in Japan) shall be conducted as indicated in Table 4.3.1-2. Then it becomes the activity called "Plan, Do, See, Replan" which will produce good results.

Concept of attaching importance to quality control Sense of responsibility in quality control

Fig. 4.3.1-2 Principle of quality control (Deming Circle)

4.3.2 Standardization

The production activity can be enhanced effectively by standardizing in-house operations. The standardization plays an important role in "Plan, Do, See" activity.

Here the standardization in casting technique is described as an example.

Melting, sand preparation and molding processes were found as factors which influence the product quality. Therefore once these three processes are standardized and employees have learned and understood the standards, the casting operation can be greatly improved.

To define technical standards, following items shall be included: design, operation, material, equipment, and in process inspection. Design standard here corresponds to the basic design concerning the selection of casting molds, in other words, that of: green sand mold or dry mold, resin self-hardening molding or CO₂ molding and so forth. In these standards, each property value shall be listed as mentioned in basic measures in Chapter 4. This property value is also called control property. Based upon this control property value, operation, material, equipment, and in-process inspection standards shall be decided. This is also called the decision of work property value.

In the tour of foundries in Indonesia, it can be pointed out that many defects as follows are seen.

(1) Blow

(2) Sand inclusion

(3) Misrun

(4) Rough surface of casting surface due to sand penetration

(5) Low quality of material

The processes through which defects appear and measures against defects are as follows:

Melting operation

1)

Present condition:

Low temperature melting of 1,350 - 1,400C and oxide melting cause such defects as blow hole, misrun, shrinkage, lack of hardness, coarse grain, and so on. Since castings of below FC20 are manufactured, there are relatively fewer troubles, however, in cases of FC25, FC30, the manufacturing might be almost impossible with the present melting technique.

Countermeasures:

The selection and use of materials shall be standardized. The equipment shall be improved, a high temperature melting shall be introduced, and clean and quality melting water with good circulation shall be obtained. Then almost all defects due to melting will disappear.

2) Molding sand

a) Green sand mold or floor mold

Present condition:

Since river sand and natural sand are used for green sand mold and floor mold, many defects such as, sand inclusion, penetration, blow, and improper dimensions appear on casting.

Countermeasures:

River sand and natural sand shall not be used as molding sand. Because these are main causes of above-mentioned defects. These sands are not fire-resistant enough to be used as molding sand, and difficult to handle requiring many experiences. The molding sand now used shall be replaced by silica, binding agent, bentonite, dextrin, coal powder and proper amount of water (3.5 - 4.5%) shall be well mixed in a sandmill and then used. Molding sand shall have following properties.

- (1) Compression strength (in molding)
- (2) Moldability (in molding)
- (3) Toughness (in molding)
- (4) Flowability (in molding)
- (5) Permeability (in pouring)
- (6) Collapsibility (after pouring)
- (7) Easy shakeout (after pouring)

These shall be taken into consideration to define the mixture standard of synthetic sand.

b) CO₂ mold

Present condition:

During the instruction tour in Indonesia, it was found out that CO_2 molding method has been used without correct understanding. In general the amount of sodium silicate mixed with silica (river sand) shall be 5-6% of the whole sand, however, some foundries are still using 8-9% of it, and reversely some are using only 3-4%. The reason for this excessive amount or deficient amount is not clear. Due to this improper quantity of sodium silicate, mold surface after casting tend to be rough enhancing the penetration of sand into the surface.

Countermeasures:

The average grain size of river sand or silica shall be of 40-50 mesh. And this sand and sodium silicate which are 5-6% of the total sand shall be mixed for 3-5 minutes in the mixer. In this process a clean sand mixer shall be used. It is important to select the proper sand and mixer, and them to standardize the operation. And if pebble pitch which forms 0.5-1.0% of the total sand is added to the mixed sand, sand shakeout will be improved, easy to remove sand from castings.

3) Molding

Present condition:

In the present molding with natural sand or river sand, molding sand is apt to be less strength. The operators, therefore, are using excessive amount of water to enhance their workability and to prevent a lot of breakage of molds. Since in most cases floor molds are used there, therefore moisture of drag mold is increased, causing such defects as blow, sand inclusion, mold drop, penetration. This type of molding is less efficient and an urgent improvement required.

Countermeasures:

First molding sand used shall be replaced by synthetic sand. Then instead of floor mold, metal flask and wooden flask shall be used. For synthetic sand, the specified molding sand mixer shall be used, and it is necessary to take care that strength, permeability and moisture of molding sand could meet the definite standard. This controlled sand shall be carefully molded, and especially molding for sprue, runner bar and ingate and also around pattern shall be rammed hard. If the pouring speed is too slow, such defects as seab, blow casting and sand inclusion will appear. Therefore, in case of products with weight less than 30 kg, a proper dimension of sprue shall be decided to finish the pouring within 15 seconds. Molding operation and pouring speed shall be standardized and a ratio in each size of sprue, runner bar and ingate shall be determined at 1:09:08. Such standardization in molding will contribute to reduce casting defects as mentioned above. Operation standards of melting, molding sand and molding practice are listed in Tables 4.3.2-1, 4.3.2-2 and 4.3.2-3.

Table 4.3.2-1 List of Operation Control of Cupola Melting

! : :					
Standard Process	Operation Design	Operation Method	Materials	Equitipmenc	In-Process Inspection
1. furnace Repair	1-1 Designed dimension of furnace	1-1 Procedure of dimen- sion measuring	1-1 Quality of moctar 1-2 Quality of fire	1-1 Procedure of repair tools	l-i Examinacion of in- side shape of fur-
	1-2 Selection of repair	1-2 Procedure of repair		1-2 Procedure of parch-	
-	1-3 Hixcure tacio of	1-3 Procedure of mixing		tion the second	
2 Pie Tres Beturn	2-1 Selection of metal-	2-1 Procedure of metals	1-1 Oumlity of metals	2-1 Procedure of exam-	2-! Framfoarfon of rusty
Scrap, Steel Scrap	lic material:	measuring	Quality of		or mixed materials
	2-2 Mixture ratio of		alloys	measuring equipment	
J. Coke	3-1 Selection of coke	3-1 Procedure of coke	3-1 Quality of coke	3-1 Dicco	3-1 Examination of coke
]]-2 Coke ratio	Beasuring Decession	. •		size
		J-1 FIGCEGUIE OF COME			
4. Lime Stone	4-1 Selection of 11me	4-1 Procedure of lime	4-1 Quality of lime	4-1 Ditto	4-1 Examination of itme
		stone measuring	scone		SLORE SLIE
			:		
J. FUTURGE OPERACION	2-1 Decision of height				tuver condition
	5-2 Pressure & volume			Ing machine	5-2 Examination of
	of blast				[]ame color at
	5-3 Instruction of			· · · ·	
· .)+) Exactnation of slag
	5-4 Chemical Composition of melicin mersi	•			100702
6. Tapping-out	6-1 Instruction of	6-1 Procedure of add1-	6-1 Quality of Cast	6-1 Procedure of C5-	6-1 Examination of CE-
	addicton of CaSi	tion of CaSI	6-2 Quality of chill		value
	6-2 Instruction of	5-2 Procedure of fur-	test saterial	6-7 Procedure of pre-	6-2 Examination of
-	furnard	6-1 Procedure of opti-	•	peraction of uptite Cal pyrometer	6-3 Examination of
	6-3 Decision of tapp-			6-3 Procedure of prepa-	chill value
		operacion		ration of chill	6-4 Examinacion of pres-
				Cesc	sure volume of blast
/. Ladle	7-1 Dectsion of designed	7-2 Procedure of reader	/-1 quality of fife brick	fination of ladies	
	7-2 Selection of repair	dperation	7-2 Quality of mortar	condition	
	waterlais				
	7-3 Mixture tatio of	of Tepakr			•
	repair materials	7-4 Procedure of pre-			
	1-4 Instruction of pre-	7-5 Procedure of drying			
	7-5 Drying of ladie				

Table 4.3.2-2 List of Operation Control of Molding Sand Mixture

	lon			
	ln-Process Inspection	in of it cloa sand ,	Examination of quality character- istic of mixed sand	α. σί είσα οί
	cess I	Examination of Examination of quality of neu reclaimed sand	Examination of quality charac istic of mixed sand	Examinarion of cransportation condition of sand
	0-4-u		2-1 Examination of quality charac istic of mixed sand	3-1 Examination of transportation condition of sand
			2-1	
		<pre>1-1 Procedure of managr ing of mixers a 5 inpson cype b. Screv type b. Screv type c. Other type fing of measuring apparatus</pre>		Frocedure of exam- Ination of trans- portation equipment
	Equîpment	Procedure of man Ing of mixers a. Simpson type b. Screu type c. Other type c. Other type fng of measuring apparatus	· · ·	Fracedure of exam- inacion of trans- portation equipmen
ĺ	Equ	Procedure Las for strate Softere Procedure Prature Prature		ocede actor
		น้ จึง มามี เกิด 2 มามีก นี้ นี้ น้ามี นี้ น้ามี น้ามี น้ามี น้ามี น้ามี น้าม		
		<pre>1-1 Quality of new sand 1-2 Quality of reclaimed aand 1-3 guality of binders autity of binders b. Benfonite c. Sodium silicate d. Organic chemical d. Organic chemical l-4 Quality of ingre- a. Cereal b. Sea coal, Pitch c. Dextrin d. Starch</pre>		
	tels	Quality of new sand Quality of reclaime Quality of binders Quality of binders Quality of binders a. Clay B. Benconite c. Sodium silicate d. Organic chemical d. Organic chemical d. Organic chemical d. Organic chemical d. Starch d. Starch		
	Macetials	<pre>wality of m uality of m uality of bi uality of bi sentonice . Seafum sil . Organic ch resin vality of ir tencs . Sea coal, . Sea coal, . Starch</pre>		
		<pre>1-1 Quality of new sand 1-2 Quality of reclaimed a sand 1-3 Quality of binders aClay b. Benfonite c. Sodium silicate d. Organic chemical resin 1-4 Quality of ingre- dients a. Cereal b. Sea coal, Pitch c. Dextfin d. Starch</pre>	. ·	
			6¢	
			čn	
	e chođ		R R R R R R R R R R R R R R R R R R R	trans
	lon Kethod	ure of meas of marerial.	ure of mixin lon of sends her ingre-	ure of trans ion of mould nd
	Operation Hethod	Procedure of measuring of marerial.	Procedure of mixin operation of sands and other ingre- dients	rocedure of trans portation of mould ing sand
	Operation Hechod	I-l Procedure of measuring of mass-	2-1 Procedure of mixing operation of sands and-other ingre- dients	<pre>3-1 Procedure of trans- portation of mould- ing sand</pre>
		<u>и</u>		
		<u>и</u>		
		<u>и</u>		
	Operation Design Operation Method	<u>и</u>		
	Operation Design	Ing I-1 Selection of wixer I-2 Selection of sadd I-3 Selection of bluders I-4 Selection of wolse- ure L-5 Selection of wolse- ure ratio of waterials	<pre>2-1 Decision of quality characteristic of mixed sand 2-2 Decision of mixing condition 6 method</pre>	1 43
		Ing I-1 Selection of wixer I-2 Selection of sadd I-3 Selection of bluders I-4 Selection of wolse- ure L-5 Selection of wolse- ure ratio of waterials	<pre>2-1 Decision of quality characteristic of mixed sand 2-2 Decision of mixing condition 6 method</pre>]-1 Decision of trans- portation condi- tion & method
	Standard Operation Design	Ing I-1 Selection of wixer I-2 Selection of sadd I-3 Selection of bluders I-4 Selection of wolse- ure L-5 Selection of wolse- ure ratio of waterials	<pre>2-1 Decision of quality characteristic of mixed sand 2-2 Decision of mixing condition 6 method</pre>]-1 Decision of trans- portation condi- tion & method
	Operation Design	<u>и</u>		

Table 4.3.2-3 List of Operation Control of Molding

						,
Process Scandard	Operacion Design	Operation Method	Hacerials	Equipmenc	In-Process Inspection	
1. Moulding	1-1 Seleccion of mould- ing flask	<pre>1-1 Procedure of mould- ing operation</pre>		<pre>1-1 Procedure of manag- ing of moulding machine</pre>	1-1 Check of air pres- sure of moulding	
	ing sand	b. Hand Boulding		1-2 Procedure of manag-	1-2 Check of accuracy	
	b. Dry sand	d. No-flask mould-			1-3 Check of mould	
	c. Organic & inor- eanic sand	lag • Pir souldine		1-3 Procedure of manage for of drvine over	hardness 1-6 Check of rough	
	1-3 Selection of mould-	(incl. green,		1-4 Procedure of hard-		
	fog fore	dry, arganic,		hess tester 1.5 Procedure of meser	sand by grasping	
	b. Hand goulding	moulding)		uring of surf	1-5 Check of surface	
	c. Flask moulding d. No-flask mould-	· · · · · · · · · · · · · · · · · · ·	•	scabilized index (SSI)	stabilized index (SSI)	
	Ing					
	L-4 Decision of dimen-					~
	sions of gating &	-	•			
		•				
Z. Core Haking	2-1 Decision of items	Z-1 Procedure of core	<u>ک</u>		2-1 Check of taking	
	of vent process	Baking	2-2 Quality of core		1-3 Chart of and	
	2-3 Selection of core					
1	pasce 1. for the arterial	T-1 Decredure of cour-	1-1 Austiry of costine		1.1 Chark of condition	
	4. Ustrat		materials		of mould & core	
	b. Flash-off	a. Watery coat			"Baume" (specific	
					gravity of coating)	
4. Assembling	4-1 Decision of vent-	4-1 Procedure of Venca	4-1 Quality of mould	· · ·	4-1 Check of condicion	
	ing method from	Ing Itos souls +	vents 4-2 Duality of mould		4-2 Check of venus	
	4-2 Selection of mould	4-2 Procedure of mould		· · · · · · · · · · · · · · · · · · ·	clear	
	scals		4-3 Quality of chiller		4-3 Check of mould seal	
	4-3 Seleccion of venc chiller & chapler	4-3 Procedure of chiller & chaplers	6 chapler			
		•				

4-42

ſ

l

4.4 Practical Program for Development of Indonesian Foundry Industry

4.4.1 Personnel Training and Establishment of Training Center

Appropriate production facilities and excellent technology are required in any production activity. And these two factors can be well utilized only by human beings to attain a certain goal.

That is, the Education/Training of personnel will play a vital role in the industrialization in Indonesia.

This is a reason why personnel training is included in this program. One of main causes by which Indonesia is late in industrialization lies in the inefficiency in production line. It is due to the lack of awareness about production and that of responsibility of persons concerned as already stated. That is, the education/training is urgently required.

To improve this situation, their attitude should be changed.

To satisfy user's wishes in this competitive society, the education/training of personnel is the most important aspect so that they are able to grasp and deal with users' wishes.

The proper training center for such qualified personnel should by all means be established. It should have two objects, one for managers and engineers, another for technicians. For the former, as the most typical training center, there is the Metal Industry Development Center (MIDC) in Bandung. It is necessary to review the roles and functions which MIDC has played up to now in terms of the results, especially in the practical aspect. The roles and functions of MIDC should be extended and strengthened. Then to solve the problems in workshops, experienced personnel who are versed in production technology should be assigned there. Naturally, it is necessary to conduct the personnel training at specified institutions on the basis of prescribed training procedure, system, curriculum for a certain period.

4.4.2 Introduction of TQC concept and its system

The management of business always requires results which have great influences on the evaluation on quality, prices and product accuracy. Results will also decide the fate of the company.

The business activity should be conducted under well thought program covering all aspects of business always having an advantage over competitors. That is, in every field such as finance, material, sale, production, equipment and personnel, a well considered plan and control should be practiced. And the results of practical activities should be quickly estimated and reflected in the next plan as much as possible.

Thus, the management of business should be conducted in all departments and sections within the company in plan, practice and estimation to improve the results. What is most important here is the attitude of the management. They have to understand that the business activity is conducted by all employees participation. Based upon this idea, the TQC activity, "Total Quality Control" has been implemented in Japanese enterprises up to now. This activity includes SQC (Statistical Quality Control) which had already been used for many years.

The TQC covers all aspects of a company. The management policy taken up by the top management is transferred to each department and section in charge. Given this policy, all personnel will do their best on their own will to achieve the result. Morale of the employees are enhanced in this way to produce the improvement of results. Those are the purposes of the TQC activity.

To achieve good results in the TQC activity, a department in charge of the planning and promotion of this activity shall be established. Then it is important that in regular meetings of each group these results shall be made public.

4.4.3 Establishment of Foundry Technology

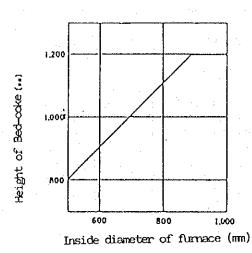
We have often stated that Indonesian foundries have low quality products problems and also pointed out the causes in detail in 4.1 "The Present Situation of Indonesian Foundry Industry".

Here, we describe about the establishment of foundry technology. Why have foundry defects been left unsolved? Especially a lack of management ability to solve the problems is in question.

In general, the production technology is categorized into two, one belonging to engineers and other to technicians. Cooperation of both is necessary to have good results. There are two kinds of technologies. One consists of basic knowledge and technique. The other is composed of highly advanced applied knowledge and technique. Foundry technology rather belongs to the former category. Thus it is important to establish the foundry technology by a complete acquirement of the former technology. This means that basic technique and basic knowledge shall be mastered and then put into practice in each process of foundry manufacturing, especially in such processes as melting. Production of molding sand and molding, as described in 4.3.2 "Standardization".

As shown in Table 4.3.2-1, Table 4.3.2-2, Table 4.3.2-3, operation standards consist of the contents of Table 4.4.3-1.

Among standardization, items in Table 4.4.3-1, operation standards shall be determined by laying stress on basic quality characteristics and those of other operation, materials, facilities and in-process inspection, shall be defined by laying importance on characteristics of production control. Examples of these values are shown in this table. It is recommended that each value shall be standardized by referring to Fig. 4.4.3-1, Fig. 4.4.3-2 and Table 4.4.3-2 to Table 4.4.3-7.


Standardization of operation shall be initiated by grasping correctly what the present operation is, and taking its factors for a temporary standard. Persons in charge of standardization shall be those who know the present situation best. First of all, first edition of standard shall be made, and observed in operation, then sequently revised.

4-46

This operation standard book shall be kept in a secured place.

Name of	Detail	of Operation	Standard
Operation Standard	Process	Standardized Item	Ex.of property values for production control
Operation Standard for Melting	1.Furnace repair 2.Main materials 3.Sub materials 4.Operation 5.Tapping-out 6.Ladles	a.Operation Design b.Operation c.Materials d.Equipment e.In-process Inspection	*Bed coke height see Fig.4.4.3-1 *Coke ratio: see Table 4.4.3-2 *Charged metal size: 1/3 of cupola diameter *Coke size: 1/6-1/10 of cupola diameter
Operation Standard for Producing Molding Sand	<pre>1.Mixer 2.Materials 3.Mixing 4.Transportation & storing of molding sand</pre>	Ditto	*Purity of raw material sand: see Table 4.4.3-3 *Type of Bentonite see Table 4.4.3-4 *Mixing of molding sand:see Table4.4. 3-5 for green sand and Table 4.4.3-6 for CO ₂ sand
Operation Standard for Molding	1.Molding 2.Core making 3.Coating 4.Sealing	Ditto	*Spine diameter see Table 4.4.3-7 *Pouring time: see Fig.4.4.3-2

Table 4.4.3-1 Operation Standard

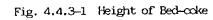


Table 4.4.3-2 Standard Value of Coke Ratio

Class	Exp. tap temp.	Steelscrap comp.ratio(%)	Coke ash cont.	Coke ratio. (%)
FC15	1.440 ~ 1.470	0	≒10	9 ~ 11
F C 20	1,460 ~ 1,490	15 - 30	< 10	11 ~ 13
F C 25	1,480 ~ 1.510	30 ~ 50	< 10	13 ~ 15
FC 30	1,510 - 1,540	40 ~ 60	< 8	14 ~ 16
F C 35	1.520 ~ 1.550	50 ~ 60	< \8	15 ~ 18

Grade	SiO,	F90,	A1,0,	GaO+MgO
1	9 8.0 <	¥.5>	1.0>	1.0>
2	96-98	1.0>	2.0 >	1.5>
3	93-96	1.5>	4.5>	20>
4	90~93	2.0 >	6.0>	2.5>
S	85-90	3.0>	8.0>	3.0>
G	-70~85	5.0>	1 5.0>	5.0>

Table 4.4.3-3 Purity of Molding Sand (JIS G 5901-1974)

"Casting Iron Melting Handbook" Source: by Japan Foundrymen Society

Table 4.4.3-4 Chemical Composition and Property of Bentonite

Class	sio,	A1203	Fe 203	C 2 G	MgO	Ignition loss
1	7 9.3 0	1 1.2 5	1.61	0.73	0.60	5.76
2	7 5.0 0	1 3.6 2	2.02	0.96	211	5.41
3	6 0. 1 8	1291	6.09 丶	4.1 6	2 3 9	1 1.2 6

Properties:

Particle-size mainly composed of montmorillonite shall be below 200 mesh.
 Na ion system is resistant to high-temperature, and. Ca ion system accelerate the breaking of sand.

Table 4.4.3-5 Mixture and Physical Property of Synthetic Sand

Unit: weight %

Mixture of sy	nthet	ic sand	Physical	property
New silica sand	(%)	5-20	Compression strength of green sand mold	: 0.7-1.20 kg/cm ²
Reclaimed sand	(%)	80-95	Permeability	: 80-150
Bentonite	(%)	1.0-5.0	Active clay (%)	: 7-8
Dextrin	(%)	0.3-1.5	Volatile matter (%)	: 2-3
Coal powder	(%)	0.5-0.8	Ignition loss(%)	: 6-9
Moisture	(%)	3.5-4.5	P.H. value	: 8-10

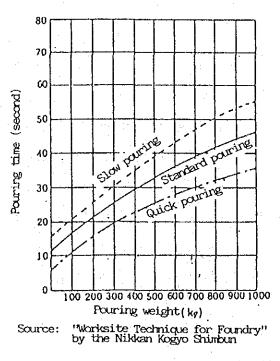
Remarks:

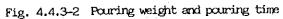
1.

Bentonite 2. Dextrin

: below 200 mesh and Na system is better. : 80% of it is below 250 mesh, and it's -grade shall be more than 90%.

Table 4.4.3-6 Example of Mixture and Compression Strength of CO2 Sand


Mixtu	re (%)	Compressi	on strength	(kg/cm ²)
Shore sand	100	Just after Mix	ing 1.17	
Water glass	5-6	1 hour "	1.73	an a
Pitch particle	1.0-2.0	2 hours "	2.70	
Wood flour	0.1-0.5	3 hours "	5.64	an an Article An Article Antonio Antonio Antonio Antonio
		24 hours "	21.4	


Note: Composition is percentage of weight.

) Pouring sprue dia.	(ømm)
2 5 × 1	
35×1	
4 5 × 1	
5 5 × 1	
6 0 × 1	
5 0 × 2	
5 5 × 2	
6 0 × 2	
	$2 5 \times 1$ $3 5 \times 1$ $4 5 \times 1$ $5 5 \times 1$ $6 0 \times 1$ $5 0 \times 2$ $5 5 \times 2$

Tble 4.4.3-7 Pouring Weight and Pouring Sprue Diameter

Note: For castings of complicated shape and under low pouring temperature, pouring sprue diameter shall be a little larger.

4.4.4 Foundry equipment

Generally speaking, the foundry equipment in Indonesia are old, and it is necessary to replaced them with new ones for the development of the foundry industry in Indonesia.

It is necessary that the Indonesian foundries are to manufacture wide ranging products for limited mass production such as compact car, agricultural machinery, small size marine machine and household appliances which may be the future leading industries of Indonesia, as well as for non-mass production such as tin mining pump, sugar refining machine, machine tool, general industrial machine and so on. If the domestic production is promoted instead of the importation of such products, the amount of demand will be enormous.

In this sense, the modernizations of foundry is essential. That is, the modernization of production measures must be urgently carried out to lower the cost through stabilizating the quality.

1) Building structure and floor

Considering ventilation, natural lighting and draft, the building height shall be 7,000 mm under the runway guarder if overhead travelling cranes are installed. Natural lighting from every direction shall be considered.

The floor surface shall be finished with concrete.

Molding sand is the most important material requiring floor surface to be kept always clean. For this reason, floor surface shall be finished with concrete, and to do so, the working environment can be remarkably improved.

2) Equipment

As shown in Table 4.1-2, the modernization of foundry equipment in Indonesia is lagging. Therefore, we will refer to the main equipment to be modernized for

each process.

- (1) Melting equipment
 - As existing china furnaces are unsuitable, these shall be replaced with generally used cupolas. Proper design of cupolas are recommended because improper designs are often seen.

b) Induction furnace

The melting operation of this furnace is simple requiring a small number of operators. It can be recommended for these reasons, however, as its installation cost and power (contract) fee may put the pressure on the price of castings, the furnace shall be fully operated under a production plan with 2 or 3 shifts.

c) CE meter

This is essential for quality inspection and shall be equipped without fail.

d) Ladles

Each ladle, especially with about 200 kg capacity shall be mounted with a cover.

e) Thermometer

An emission pyrometer to measure tapping-out and pouring temperatures shall be equipped.

(2) Green sand molding equipment

Green sand reclaiming system:

In order to stabilize, as much as possible, the physical property of the molding sand for greens sand molding, this system shall be operated. This system is composed of sand mill, belt conveyor, bucket elevator, sand chute hopper, molding machine, roller conveyor, shakeout machine, sand return conveyor, sand blender, magnetic separator, sand cooler, sand storage and so on.

This equipment is used for manufacturing of small size and mass-produced parts, and for green sand molding.

(3) CO_2 equipment

This shall be prepared to be used for core making of green sand mold.

(4) Shell molding equipment

This is used for core making of green sand mold, mainly for cylinder liner, automobile, motorcycle, agricultural machinery and marine engine.

(5) Equipment for organic chemical binder system (no-brake)

For every product of more than 50 kg of weight, which can not be casted, the organic chemical binder process shall be adopted. The equipment for this process system is required.

This equipment is composed of organic chemical binder mixer and binder, sand reclaimer, sand crusher, bucket elevator and sand cooler.

(6) Finishing equipment

a) Shot blasting machine

Either table type or tumbling type, which is suitable for your own products, shall be installed.

b) Grinder

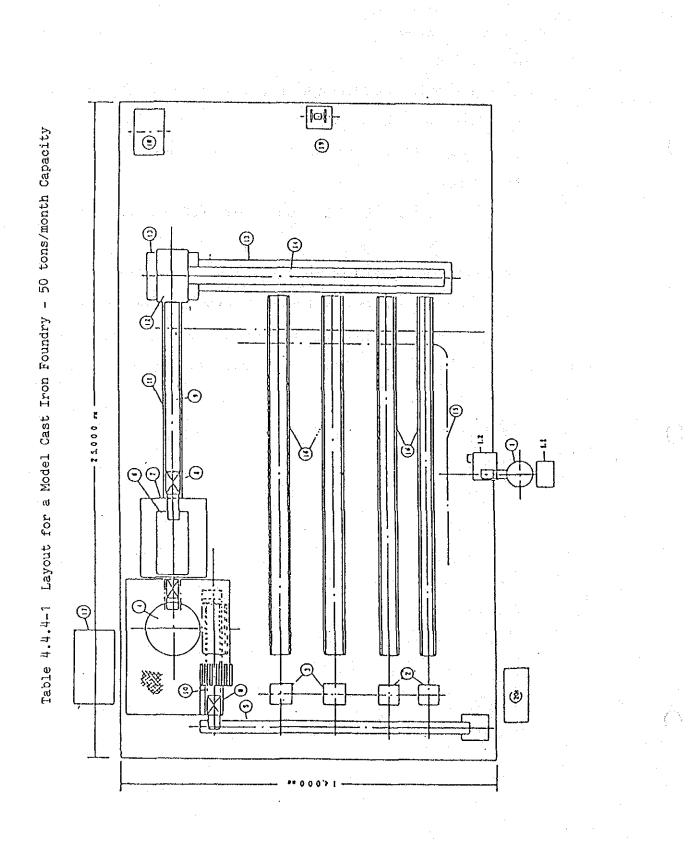
Among various types of grinders such as hand, table, bench and hanger grinders, the most suitable one for your own products shall be equipped.

- c) Inspection equipment
 - i) Sand tester

This tester is used to check strength, permeability and grain size.

ii) Board and tools for inspection

These tools are used to measure dimensions of castings.


iii) Metallurgical microscope

This microscope is used to examine the metallic structure of castings.

iv) Materials for liquid penetrant inspection

These materials are used to inspect surface flaws and their sizes. The above mentioned equipments are the minimum requirement. Fig. 4.4.4-1 shows an example of layout for a model cast iron foundry of 50 tons/month capacity and duty list of employees is as follows;

Management	:	1
Engineer	:	1
Technician	:	1
Clerk	:	1
Melting	: ,	2
Sand	:	1
Moulding		6
Coremaking	ŧ	2
Finishing	;	3
Inspection		1
Total	:	19

Main Equipments of Foundry Model Shop

(Monthly production 50 ton)

1. 2 ton/hour Cupola

- 1.1 Skip hoist
- 1.2 Rotary front hearth
- 2. Moulding machines FD-2 2
- 3. Moulding machines FD-3B 2
- 4. Sand mill 200 kg/batch
- 5. Belt conveyor 400 mm width 10,000 mm length
- 6. Rotary braker screen 40 m³/hour
- 7. Sand bin 20 m³ with cooler
- 8. Bucket elevator
- 9. Belt conveyor 400 mm x 8,500 mm
- 10. Belt conveyor
- 11. Pit for belt conveyor
- 12. Shaker max. load 700 kg
- 13. Pit for oscillating conveyor
- 14. Oscillating conveyor 500 mm x 10,500 mm
- 15. Monorail hoist capacity 1 ton 15,000 mm rail length
- 16. Angle rail for mould traverser 60 mm angle x 14,000 mm x 4
- 17. Dust collector 150 m³/hour
- 18. Shot tumblast 200 kg/batch 15 min. (max.)
- 19. Table grinder
- 20. Air compressor 22 kW

4.5 Roles and functions of JFC

1) Historical Verification and Scenario for the Future

(1) Verification of the Past

In 1971, the project was started under the yen loan from the Japanese Government. And in 1975, JFC started its operations as the first modern foundry in Indonesia. Since then, JFC has been playing a leading role in the Indonesian casting industry as its founder. Those foundries under a traditional technical system existed like specialized villages at Ceper, Tegar, etc. in Central Java. And they met the demand for castings in Indonesia for a long time.

It was difficult, however, for the traditional casting industry to meet the currently enlarged demand of substantial consumption type. This was the significant motive to establish JFC.

JFC burdened with the role as a technical leader has been continuously striving to meet a wide variety of demand and an excessive level of expectation. Until it has satisfactorily met every customer's demand and expectation, however, JFC is not in a position to reach an international level in implanting the technology and in self-supporting. In the meantime, the existing foundry companies have used exertions to modernize their facilities in the private sector, too. More recently, an epoch-making increase in effective demand has been expected, being backed up with the domestic production promoting policy taken by the Indonesian Government, in particular. And modern private foundry companies have been really founded. As a result, the market is now entering into those environments under which the market competition may be changed from the orderly one to a fair market. At Gresik, moreover, a new cast steel works has been additionally founded under an aid of West Germany. Under the wing of P.T. Barata, a government-owned company, three foundries have been operating together with Surabaya Foundry having the longest history.

Under the circumstances so changed, JFC is expected to review its new roles and functions. Over the 15 years' history of JFC, it has been passing a long time of pregnancy to be technically independent. These facts permit us to expect that JFC will not fail to achieve its technical and managerial independency in the near future while contributing not only to P.T. Barata as a whole but also increasingly to the entire Indonesian economy.

(2) Verification of the Present

With the above-mentioned flow in the past, JFC is now being asked "What is your new function and role?" At present or in 1985, JFC is proceeding with the JFC Renovation Plan decided of its own will. From the viewpoint of compatibility with the entirety, the plan may be deemed operating in a desirable direction, considering that it has been taken as JFC's role and function in the entire Barata Renovation Project.

Coupled with the new participation of the private sector into this filed, on the other hand, JFC is inevitably increasing the importance of its role as a manpower source. For competition in the market under the present circumstances, JFC is tending to compete with the private sector in an increasingly collaborative manner from now on. As compared with the role and function of the private sector, JFC's roles and functions are likely to be more and more ambiguous in the future. With these trends taken into

4~59

consideration, the current roles and functions of JFC should be positioned as the starting line of a renovated JFC so that it can take off for a new development, outlooking a change or changes over a long period of 10 thru 20 years to come. The present is a transition period to that end. Now, it is important to accumulate energies in terms of both management/technology and facilities/equipment for the new development.

(3) Scenario for the Future

Based on the results of verifying the JFC's roles and functions in the past and at present as referred to above, a scenario for the future of JFC is to be discussed below.

For the future, 10 years are to be taken as a delimit, which is in turn divided into the following three stages:

Short term (1 thru 3 years) Medium term (4 thru 6 year) Long term (7 thru 10 years)

And how JFC should exist for each term would like to be discussed below.

As already referred to, JFC has been assuming heavy responsibilities as a leading company in the Indonesian modern casting industry. From now on, these roles and functions would never be lightened but enhanced, to the contrary.

To cope with the rapidly increasing demand, however, JFC is inevitably introducing the principle of collaborative competition with the private sector. There has been a difference in product price and quality levels between the castings offered by private foundry companies and by JFC in the past. This difference, however, has now almost disappeared or could be supported by no means with the mere founder's way of thinking and pride as a government-owned company. As a leading company in the past, the JFC's roles and functions of:

- o Maintaining a high level of technical capabilities,
- o Producing qualified castings with high efficiency and
- o Transferring accumulated production technology to the private sector

were permitted at the level within the territory of Indonesia. From now on, however, it is necessary to heighten the level to that internationally comparable. To this end, the first step is:

<u>Short Term (1 thru 3 years)</u> during which JFC should carry out all preparations and implementations, recognizing that JFC is to accumulate the energies enough to achieve an independence of technological capabilities so that JFC may technologically lead the private sector to the international level.

<u>Medium Term (4 thru 6 years)</u> during which castings at a high level of technology internationally comparable can be offered to users. This term should be positioned as a period in preparation for a subsequent growth.

Long Term (7 thru 10 years) during which JFC should make inroads into a new high added-value market and establish a stable supply system. In addition, JFC should secure the allowance enough to meet the needs of the times and should use that allowance to plan and prepare for the new growth plan. Such a way of heightening stages step by step as mentioned above is an approach to which patience is essential in contradiction to the pursuit for a rapid development. To foster such a skill incentive industry as foundries, however, the objective could not be achieved without growing and storing competent labor. These facts have been best understood by those concerned whom JFC has brought up so far. Over an outlook of the coming ten years, therefore, the subjects for JFC to tackle with are to reach a time of its take-off for independence and an international level of its medium-class product manufacturing system and to establish a higher added-value production setup.

Objective-oriented Roles and Functions

2)

From an objective-oriented point of view, JFC's functions and roles may be summarized into the following three:

(1) Social roles as a government-owned company,

(2) Function of establishing a healthy management as an enterprise and

(3) Function of forming a market of fair competition collaborative with the private sector.

From an achievement priority point of view, (2) should be given priority in terms of urgent necessity under the present circumstances, followed by (1) and (3).

As far as (2) "Function of Establishing a Healthy Management" is concerned, in particular, the basic trends of deficit have continued, arising from a certain viscious circle of failure to sufficiently pick up the potential demand as the result of not fully satisfying the expectations of customers in terms of quality, price and delivery period. To turn the viscious circle over to a favorable one, it is necessary that the proposed Renovation Project be used as an opportunity to steadily advance the exertions to improve operations in a combination of management and labor and that the technological potential available in JFC be made to satisfy customers within the territory of Indonesia as soon as possible. To this end, concrete improvement measures involved should be implemented steadily one by one.

For the social role referred to in (1), Indonesia will continue on having a potential demand for castings in far excess of the supply capacity for the time being from a macroscopic point of view. Despite the political incentives taken by the Government, it is necessary to fully recognize that a significant time will be required to foster and strengthen foundries as one of the skill-incentive industries.

While such circumstances are continuing for a while, JFC's roles, especially in the field of cast iron, will be:

- o To absorb, implant, improve and popularize the advanced technologies available overseas,
- o To rationally link with the policies taken by the Government (to promote an import substitute policy),
- To serve as a leading arranger among other casting firms and demonstrate its operations on a show-window basis as a model shop or leading enterprise and
- To constantly foster and supply the manpower as a solution to the increasing difficulties for the private sector to secure the manpower.

These roles and functions of JFC will be in higher need than ever in the future. For the necessity of introducing the principle of collaborative competition with the private sector as referred to in (3), JFC has conventionally had a monopolic constitution under the protection by the Government against the competition with the private sector while establishing a government-led market order. From now on, however, this constitution should be internally renovated into the form in which emphasis is placed to the principle of collaborative competition with the private sector. To strengthen its own entrepreneurial constitution further, JFC should start to renovate itself to perfectly overcome the competition in the international market near at hand.