Danel	C1		Mineralization		Α	ssay	Re	sulta	}		
Depth (m)	Log.	Lithology	etc.	Sample No.	Depth (m)	Wd (cm)	Au g/t	Ag g/t	Cu %	Pb %	
-	4 2 4 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fit Br									
- 245 - 248 80	" " " " " " " " " " " " " " " " " " "	Sil Tf Sil Laptf	Epd V.								
248.80 249.50 -250 250.50		Py diss(Epd.Cal rock)	Diss. Siin							•	

Location : Pagar Gunung East Elevation

. l,268 m.s.l.

Coordinate Point: 130^m east of MJI-6

Inclination : -90°

Depth : 250.70^m

Core Recovery . 88.2 %

Drill Machine

0E - 8BL

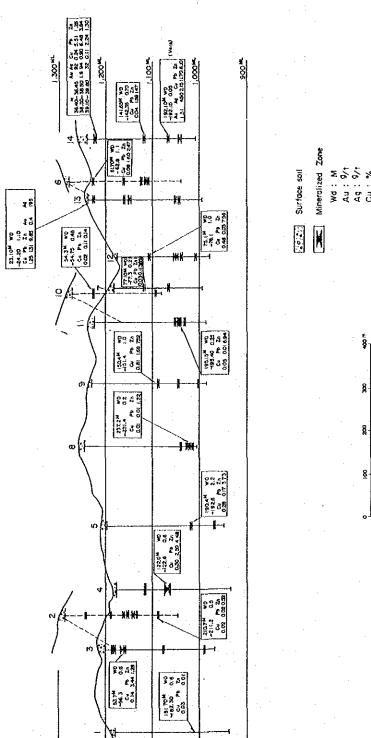
Term: JAN. 10, 1985 ~ JAN. 23, 1985

,	·		· · · · · · · · · · · · · · · · · · ·	·		·	<u> </u>	·			
Donth	Geol		Mineralization	·	Ass	ay	Res				·
	1	Lithology	etc.	Sample	1	₩d	Αυ	Ag		Pb	Zn
(m)	Log		erc.	No.	(m)	(cm)	g/t	g/t	%	%	%
	0 0								1.		
L	0 . 0										
	. 0	· !									
	0 ' . ' 0										
		Surface Soil									
5						٠					
	0.0										
_	0			j				-			
	. 0	•									
-10	- 0	l		}							
	0 0										
	0 0	Weathered Rock									
		· ·	•								
15	. 0										
	0.0										
	0 6										
	. 0										
20	0 0										
	0.0										
	∀ ∀										
	₩						-				
	₩ ₩								7		
– 25	* *	•									
-	¥	S-43									
	∀ ₩	BVR (Fractured)									
_	₹	DYN () Ideisied)					-				
	∀ ∀	•									
30	₩										
-	∀ ∀										
-	₹										
	₩ 🖔				 - 210 C	l 'aalaa	ioel '	I ^~	of N	[]]_1	<u>.</u>
_	~ 4~	•		111	g. 3-10 C	r Feorog	ical .	LOB	O) IV	121-T	-T
— 35	200	Ft cly (Black Sh)	1	<u> </u>	36 36 7		· ·	· · · ·	Γ	1	
_ '	~		Drag ore Soult	A14 -1	36.40 A 36.45	5	1.0	92.0	0.24	5.5 (1.26
-	20 A A A	Gol. Sph. Py ore AI4-I	Gol Sph Py	A14-2	38,30 ~	20	; 62	941	0 00	6.48	3.24
	~ 4 ~	Gal. Sph. Py ore A14-2	(Cp) ore		38.50		1.53		 	 	<u> </u>
_	$\widetilde{\lambda} \sim \widetilde{\Delta}$	A14-3 P-39 A14-3 Gal. Sph. Py ore (Slime) F		A14-3	39.10 %	70		32.0	0.11	2.24	1.30
40		Gal. Sph. Py ore (Slime) F	-40 L								

1	Depth	Geol	1 . 6 1 - 1 - 1	Mineralization		Ass		≀esu	_		1	
	(m)		Lithology	etc.	Sample	Depth	wd	Αυ	Ag	Cu	РЪ	
				· · · · · · · · · · · · · · · · · · ·	No.	(m)	(cm)	9/1	9/1	1 %	1 %	0
ļ	-			•								
1	-	<u> </u>	Ls									
. }	.		} 		1 1							
	_ [1							
	20 A											
()	-45											
N. A.	-		Cal (Mudy)	•								
	-					•	ŀ					
	-											
	- : [[[
	-50											
}												
]]							
			1 - Y									
ľ	_		S ₅		1 1	•	1					
ļ	55		1	•								
ł	-	· · · · · · · · · · · · · · · · · · ·	Ss									
	•		Css									
	-	~~~			1 1							
	-:		Black Sh									
ļ	- 60			T	, ,		}					
	.											
		iiiii	Qz V			÷				•		
31.			4. 4	1								
[-		.	Qiz V								
	•			(Segaegatal)	1							
	- 65			1								
ł	-				i					٠.		
ŀ	-											
	68.50	V V V		Т			1					
	69.60	$\widetilde{\mathbf{v}}_{\mathbf{v}}\widetilde{\mathbf{v}}$	And S-44	Py Diss								
	-7 0		<u> </u>	1								
						•						
∵ {			· .		1 1							
	•		Pobble Sh									
	-											
. }	-		1									
1	-75											
}	-											
<u>.</u> .	-											
	.				1 1							
	.		[1 1							
			·									
	– 8 0											
						•						
· · · · · · · · · · · · · · · · · · ·	-											
<i></i>	-]				1					
1	-					:						
1	-85			1] [
Ì	. ,		1	- *		•		-		:		
	_	~~~						٠.				
ſ			1		.							
	85.50			colv								
: †	- 1	~ 2 0		Q1z V	1 1							
, e e e e e e e e e e e e e e e e e e e	0e	-447.4÷	<u> </u>	Py Dias	<u>لـــــل</u>		<u> </u>	<u> </u>	·			

					Ass	ay	Res	ults			
Depth	Geol	Lithology	Mineralization	Sample		wd		Ag	Cu	РЬ	Zn
(m)	Log		etc.	Sampie No.	(m)	(cm)		9/1	%		
	1 3 5		<u> </u>	1101			13	[*.	1		L
	`0`.0`	Css	7 .								
	~ 4 ~	(siliceous fine rock)	7			-		•			
-	a ~ A				·						•
-	~ ^ ~	Fit br + cly	Foult -								, i
95	~4~		1		-						
96.90	~~~	(Sh)	<u>.</u>	:						٠.	
96.50			av@uss				-				ł
-		Css			,	·					
_		Black Sh									
-100		- Draw on									
		Altn Sh + Ss									
101.70	۵~۵										
_	~0~										. !
 	~~~										
-105	4~4										
	~~~	(Grading)									
<u> </u>	~~~										.
107.20			•						,		!
		Css									
-110		<del></del>									
											-
		Fss (Tf)									. !
		Alam Fac. Ob	٠					•			
	~~~	Altn Fss - Sh									
		Black Sh									
-115		Altn Fss-Sh		;	·						
1.16.20	11 1	7]							·
									1.7		
-i50	<i>ii</i> · <i>ii</i>		'								-
-	// //										
<u> </u>	iı ıı		<u>↓</u>								
<u> </u>	~~ ~		Fault								
F	" 4		不								
-125	4 . 4		'							* **	**
			1	l'							
-	4 2 4		4		-						
<u> </u>	~~~		Foult							•	;
-	~~		T								:
130	" , "	·									
-	u u	D A6:	:								
	"	Da_tf					-				
-	11 11				í						
134.34		;									
-135	Ċ.										j. j.
-	, c	(Cal pebble)									
-	[° , .]	Calcateous Rk							1	4 11	
-	اه م										
_	o C								. :		. K154
140	, c		<u> </u>	چنبا	<u> </u>						· · ·

, and


			<u> </u>	. 51 1	Ass	αV	Res	ults		· · · · · · · · · · · · · · · · · · ·	
Samp	Geol	Litho logy	M ineralization	Sample	Depth	wd	Λu	Ag	Cu	Pb	Zn
No.	Log		etc.	No.	(m)	(cm)	1		%	%	%
	71', 1' '1'. 1':31' '1'.	Siff		414	141.65 ~	35		110	0.05	148	LAA
141.65	XXXX	Cal Peb Sh A14-4,5 Gal-Sph-Py Diss	Gal- Sph	AH-4	142.00 V		ļ	ļ			
142.35		Gal-Sph-Py Diss Cal Sh P-41	Py Diss	AI4-5	142, 35	35	<0.1	13.0	0.02	1.72	1.35
-		Epd Ss		AVER	(141.65 W	(70)		(12.0)	(0.04)	(1,59)	(1.47)
145		S-45 (Peb. Slate) Epd V.(Epd Rich)	Epd				1	·			
-											
<u> </u>		Ss (Cal)									
		0.1.71.2.013									
-150	_c	Cal (Ls. Sh)									
	C C	•									
-	2										
-		Black Sh	下 Few Py								
-			Diss <u>¥</u>								
-155		(Elongafeo Pebble)							•		•
-	ν Δ Δ Δ Δ Δ		¥ Sheared								
			T 7								
			Epd (Spot)							:	٠.
160											
100											
-161.90			1 7						٠. ٠		
	200		T Fault						•		
-	~^~		¥	;.							•
165	$\frac{\sim \sim}{\sim}$.Y.						.*		
-		0			٠.						
-	· 1.43	Course Ss	• •								
100.00											
-168.80	= =====================================						11				
170									-		
			Epo		:	,		-			
-											
-			1 11				1.			1	
-175			т								
-			Epd Spot L Siln	-							
-	// //										
F	# # #	$\label{eq:continuous} \mathcal{L}(x,y) = \frac{1}{2} \left(\frac{1}{2} $	*		E ^T						
	"										
-180	" "							٠			
	11 11										
	?// *//* *// .								•		
ļ.	u. il	C.AC	1					•			
185	""	S-46	Τ			200	٠				
-	11 11	S tf		*.						:	
+			Epd 					٠.			
									.*		
+	: 4:						*				
190						L					

 $\langle \rangle$

t }

Depth Geol Lithology Minercalization etc. Sample Depth wid Au Ag Qu Pb Zu Au Re Pb Zu Au Au Au Au Au Au Au	<u></u>				Ţ	Ass	av F	esul	ls			:
Can	Depth	Geol	Lithology	Mineralization	Sample			1		Cu:	Ръ	Zn
192.10 102.15 103.15 1	(m)	Log	Littorody	e tc.	1 .	l '	ĺ	1				%
192.15 Sil Gol Sph Py ore Gol Sph Py ore Py F Sil Rk Siln 18-5 182.15 Siln 18-5 S		5 1 7 (5 3 N		 	NO.	(1117	(Offin	1 4, 1	1 W '	70.	-/-	1.0
192.15 Sil Gol Sph Py ore Gol Sph Py ore Py F Sil Rk Siln 18-5 182.15 Siln 18-5 S	. .	1777		I	 	192 10 4			11			
192, 15 F SH Rk Silin	-192.10	la ha	∿ Sil		14-6		5	1.51	450.0	2.15	11.70	6.10
- 205			└Gol Sph Py ore	1 · 1				: :	1.11			
200					3.			V			14 2	
200	Lion				·	ř	1 1			٠.		
210	189	트			1						4.15	
200	r		' 			17.7		:				
200	-	ş 3		 			1 1					
200	r	-5-										
## F SH Rk (Siln) ## F SH Rk (S	-	_~~_ \		1	\ '					:		
F Sii Rk (Siin) Al4-7 218.50 0 50 5.5 0.11 0.05 0. Al4-8 216.00 0 50 5.5 0.11 0.05 0. Al4-9 217.00 50 3.5 0.11 0.05 0. Al4-10 217.00 50 4.4 0.10 0.01 0. Al4-10 217.00 50 6.5 0.04 0.09 0. Al4-10 218.50 50 50 3.3 0.06 0.05 0. Al4-10 218.50 50 50 6.5 0.04 0.09 0. Al4-10 218.50 50 50 3.3 0.09 0.01 0. Al4-10 218.50 50 50 3.3 0.09 0.01 0. Al4-10 218.50 50 50 3.3 0.09 0.01 0. Al4-10 220.50 50 50 50 50 50 50 50 0.0 0.0 0.0 0.	-500			<u> </u>								
F SH Rk (Siln) -205 -210 -2	<u> </u>	3 3										
F Sii Rk (Siin) 210 210 210 210 210 210 210 21	_	= '=			h .						:	
Column C	_	<u></u> 5										
Column C		5 3	F Gil Di									
Ai4-7 215.50 50 5.5 0.11 0.06 0. Ai4-8 216.60 50 50 3.9 0.06 0.08 0.08 0.08 0.08 0.08 0.08 0.08				SIIn								
Al4-7 216.00 50 5.6 0.11 0.06 0. Al4-8 216.60 50 3.9 0.06 0.08 0. Al4-9 217.00 50 3.9 0.14 0.01 0. Al4-10 217.00 50 4.4 0.10 0.01 0. Al4-10 217.00 50 4.4 0.10 0.01 0. Al4-10 218.00 50 6.5 0.04 0.09 0. Al4-10 219.00 50 3.9 0.09 0.01 0. Al4-10 219.00 50 3.9 0.09 0.01 0. Al4-12 220.00 50 3.3 0.09 0.01 0. Al4-13 220.00 50 3.3 0.09 0.01 0. Al4-19 220.00 50 3.3 0.09 0.01 0. Al4-19 220.00 50 3.9 0.18 0.01 0. Al4-19 222.00 50 4.4 0.18 0.01 0. Al4-20 222.00 50 4.4 0.18 0.01 0. Al4-20 222.00 50 6.0 0.1 3.9 0.18 0.01 0. Al4-22 223.00 50 50 5.0 0.18 0.01 0. Al4-22 223.00 50 50 5.0 0.01 3.9 0.18 0.01 0. Al4-23 224.50 50 50 5.5 0.11 0.01 0. Al4-24 222.50 50 6.0 0.12 0.01 0. Al4-25 223.00 50 50 5.5 0.11 0.01 0. Al4-26 222.50 50 6.0 0.12 0.01 0. Al4-27 224.50 50 50 6.0 0.12 0.01 0. Al4-28 223.00 50 50 6.0 0.12 0.01 0. Al4-29 224.50 50 6.0 0.12 0.01 0. Al4-29 224.50 50 6.0 0.12 0.01 0. Al4-20 222.50 50 6.0 0.12 0.01 0. Al4-22 223.00 50 6.0 0.12 0.01 0. Al4-28 223.00 50 6.0 0.12 0.01 0. Al4-29 224.50 50 6.0 0.12 0.01 0. Al4-29 224.50 50 6.0 0.12 0.01 0. Al4-29 224.50 50 6.0 0.12 0.01 0. Al4-20 224.50 50 6.0 0.12 0.01 0. Al4-29 224.50 50 6.0 0.12 0.01 0. Al4-29 224.50 50 6.0 0.12 0.01 0. Al4-20 224.50 50 6.0 0.12 0.01 0.	-208	5 5	101114		\							
Al4-15 218.50 50 50 3.9 0.06 0.04 0.0 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.1 0.2 0.0 0.1 0.2 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.1 0.2 0.0 0.1 0.2 0.1 0.2 0.1 0.2 0.0 0.1 0.2 0.1	r 1								. '.			
Al4-15 218.50 50 50 3.9 0.06 0.04 0.0 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.1 0.2 0.0 0.1 0.2 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.1 0.2 0.0 0.1 0.2 0.1 0.2 0.1 0.2 0.0 0.1 0.2 0.1	r	3 3		Ì								
A 4-18 2 1.50 50 3.9 0.06 0.08 0.1	-					215.50 ~	- <u>-</u>					l
Ald-16 216.00 50 50 5.9 0.08 0	-	<i>5</i> →	•	1	AI4- 7	216.00	50	ļ	5.5	0.11	0.06	0.04
Al4-9 215.00 50 3.5 0.14 0.01	-210	<u> </u>	•		A14-8		50		3.9	0.06	0.05	0.04
Epd Py Sil Rk Silicified Rk Py Diss Epd Py Sil Rk Silicified Rk Py Diss Epd Al4-12 218.00 50 6.5 0.04 0.09 0. Al4-12 218.00 50 6.5 0.04 0.09 0. Al4-12 218.00 50 6.5 0.04 0.09 0. Al4-13 218.00 50 6.5 0.04 0.09 0. Al4-14 218.00 50 60 2.8 0.16 0.04 0. Al4-15 219.50 50 50 3.3 0.09 0.01 0. Al4-16 220.00 50 3.3 0.07 0.01 0. Al4-17 221.00 50 3.3 0.07 0.01 0. Al4-18 220.00 50 3.3 0.00 0.01 0. Al4-19 221.00 50 3.3 0.00 0.01 0. Al4-19 221.00 50 3.9 0.18 0.01 0. Al4-19 221.00 50 3.9 0.18 0.01 0. Al4-20 222.50 50 3.9 0.18 0.01 0. Al4-20 222.50 50 50 3.9 0.18 0.01 0. Al4-20 222.50 50 50 3.9 0.18 0.01 0. Al4-21 222.50 50 50 3.9 0.18 0.01 0. Al4-22 223.50 50 50 50 5.5 0.11 0.01 0. Al4-23 224.50 50 50 5.5 0.11 0.01 0. Al4-24 224.50 50 50 5.5 0.11 0.01 0. Al4-28 224.50 50 50 5.5 0.11 0.01 0. Al4-28 224.50 50 50 5.5 0.11 0.01 0. Al4-29 224.50 50 50 50 5.5 0.11 0.01 0. Al4-29 224.50 50 50 50 5.5 0.11 0.01 0. Al4-29 224.50 50 50 50 5.5 0.11 0.01 0. Al4-29 224.50 50 50 50 50 5.5 0.11 0.01 0. Al4-29 224.50 50 50 50 50 5.5 0.11 0.01 0. Al4-29 224.50 50 50 50 50 5.5 0.11 0.01 0. Al4-29 224.50 50 50 50 50 5.5 0.11 0.01 0. Al4-29 224.50 50 50 50 50 5.5 0.11 0.01 0. Al4-29 224.50 50 50 50 50 5.5 0.11 0.01 0. Al4-29 224.50 50 50 50 50 50 5.5 0.11 0.01 0. Al4-29 224.50 50 50 50 50 50 50 50 50 50 50 50 50 5	- 1	<u> ₹</u> [3			<u> </u>			 				
Epd Py Sil Rk Sil Sil Sil Sil Sil Sil Sil Sil Sil Sil Sil Sil	<u> </u>	7 7		[[A14-9		50	1	3.9	0.14	0.01	0.01
Epd Py Sil Rk Silicified Rk Py Diss Epd Banded Py-Pyrrh Ore in Green Sk (Epd Garnet) A14-18 218.00 A14-18 219.50 Banded Py-Pyrrh Ore in Green Sk (Epd Garnet) A14-17 A14-7 ~14-24 P-42 P-42 Epd Cal. Rock Cal Rock Cal Rock Gray Sh Gray Sh Epd Epd A14-18 218.00 50 6.5 0.04 0.09 0.1 A14-18 218.00 50 6.5 0.04 0.09 0.1 A14-18 219.50 50 3.3 0.07 0.01 0. A14-18 220.50 50 3.3 0.07 0.01 0. A14-18 221.00 50 3.3 0.07 0.01 0. A14-18 221.00 50 3.9 0.15 0.01 0. A14-19 222.00 50 A14-19 222.00 50 A14-19 222.00 50 A14-20 222.50 A14-20 222.50 Banded Py-Sk A14-20 222.50 Banded Py-Sk A14-20	LI	~_~;		\	A14-10		50		4.4	0. 10	0.01	0.01
215. Si Si Silicified Rk Py Diss Fpd Al4-11 218.00 50 6.5 6.04 6.69 6.04 6.69 6.04 6.69 6.04 6.	[{		Epd Py Sil Rk	1		 		-				
Py Diss	· [Si Si	Silicified Rk		Al4~II		50		6.5	0.04	0.09	0.11
Epd A14-15 218.50	215.	SI Si	\ <u>\</u>	 			50	-01	3.3	0.13	<0.01	001
Banded Py-Pyrrh Ore in Green Sk (Epd Garnet) A14-17 220.00 50 5.3 0.09 0.01 0. A14-18 220.00 50 5.3 0.07 0.01 0. A14-18 220.00 50 5.3 0.07 0.01 0. A14-17 220.50 50 5.0 0.16 0.01 0. A14-17 221.00 50 5.0 0.16 0.01 0. A14-18 221.00 50 5.0 0.16 0.01 0. A14-19 221.00 50 5.0 0.13 0.01 0. A14-19 221.00 50 5.0 0.16 0.01 0. A14-19 222.00 50 50 5.0 0.16 0.01 0. A14-20 222.00 50 50 50 5.0 0.16 0.01 0. A14-22 223.00 50 50 50 5.0 0.16 0.01 0. A14-22 223.00 50 50 50 5.0 0.16 0.01 0. A14-24 222.00 50 50 50 5.0 0.18 0.01 0. A14-24 223.00 50 50 5.0 0.18 0.01 0. A14-24 224.00 50 50 5.0 0.18 0.01 0. A14-24 224.50 50 6.0 0.12 0.01 0.	}	$\times\!\!\times\!\!\!\times$	Py Diss	End	A14-12			70.1	J. J			
Bonded Py-Pyrrh Ore in Green Sk (Epd Garnet) A14-7 ~ 14-24 P-42 Epd Col. Rock Cal Rock Cal Rock Gray Sh Gray Sh Sh Py Epd Sk Aver. (213.50 \(\text{Sto} \) A14-14 \(\text{21.900} \) A14-15 \(\text{220.00} \) A14-16 \(\text{220.00} \) A14-17 \(\text{221.00} \) A14-18 \(\text{220.00} \) A14-19 \(\text{221.00} \) A14-19 \(\text{221.00} \) A14-19 \(\text{221.00} \) A14-19 \(\text{222.00} \) A14-20 \(\text{222.00} \) A14-20 \(\text{222.00} \) A14-20 \(\text{222.00} \) A14-21 \(\text{222.00} \) A14-22 \(\text{223.00} \) A14-23 \(\text{223.00} \) A14-24 \(\text{224.00} \) A14-24 \(\text{224.00} \) A14-24 \(\text{224.00} \) Sh Aver. \(\text{(215.50} \) Aver. \(\text{(215.50} \) Bonded Py-Sk Aver. \(\text{(215.50} \) Aver. \(\text{(215.50} \) Bonded Py-Sk Aver. \(\text{(215.50} \) Aver. \(\text{(215.50} \) Aver. \(\text{(224.50)} \) Aver. \(\text{(224.50)} \) Bonded Py-Sk	<u></u> ተ	\bowtie			A14-13		50		2.8	0.16	0.04	0.04
Banded Py-Pyrrh Ore in Green Sk (Epd Garnet) A14-16 220.00 50 3.3 0.07 0.01 0. A14-16 220.00 50 3.3 0.07 0.01 0. A14-16 220.00 50 50 3.3 0.06 0.01 0. A14-17 221.00 50 5.0 0.16 0.01 0. A14-18 221.00 50 50 5.0 0.16 0.01 0. A14-18 221.00 50 50 5.0 0.16 0.01 0. A14-19 221.50 50 50 5.0 0.18 0.01 0. A14-19 222.50 50 4.4 0.18 0.01 0. A14-20 222.00 50 4.4 0.18 0.01 0. A14-21 222.50 50 50 5.0 0.18 0.01 0. A14-22 223.00 50 50 5.0 0.18 0.01 0. A14-23 223.00 50 50 5.0 0.18 0.01 0. A14-24 224.00 50 50 5.5 0.11 0.01 0. A14-24 224.00 50 50 6.0 0.12 0.01 0. A14-25 224.00 50 50 6.0 0.12 0.01 0. A14-26 224.50 50 6.0 0.12 0.01 0. A14-27 224.50 50 6.0 0.12 0.01 0. A14-28 224.50 50 6.0 0.12 0.01 0. A14-29 224.50 50 6.0 0.12 0.01 0. A14-28 224.50 50 6.0 0.12 0.02 0. A14-28 224.50 50 6.0 0.12 0.02 0.	├ {	$\times\!\!\times\!\!\times$		Pyl-Py Sk			*.0					
Ore in Green Sk (Epd Garnet) A14-16 220.000 50 3.3 0.06 0.01 0.0 A14-17 221.000 50 5.0 0.16 0.01 0.0 A14-17 221.000 50 5.0 0.16 0.01 0.0 A14-18 221.000 50 3.9 0.15 0.01 0.0 A14-19 222.000 50 4.4 0.16 0.01 0.0 A14-19 222.000 50 4.4 0.16 0.01 0.0 A14-20 222.000 50 4.4 0.16 0.01 0.0 A14-21 222.000 50 50 5.0 0.1 3.9 0.14 0.01 0.0 A14-22 223.000 50 50 5.0 0.1 3.9 0.15 0.01 0.0 A14-23 223.000 50 50 5.5 0.11 0.01 0.0 A14-24 224.000 50 5.5 0.11 0.01 0.0 A14-25 224.000 50 5.5 0.11 0.01 0.0 A14-26 224.500 50 6.0 0.12 0.01 0.0 A14-27 224.500 50 6.0 0.12 0.01 0.0 A14-28 224.500 50 6.0 0.12 0.01 0.01 0.01 0.01 0.01 0.01 0.	ի ֈ	$K\!X\!X\!X$	B. I. I. D. Dough	Bond	A14-14		50	 	3.9	0.03	ומטו	0.01
Ore in Green Sk (Epd Garnet) A 14-7 ~ 14-24 P-42 Epd Col. Rock Cal Rock Cal Rock A14-19 220.50 A14-18 220.50 A14-18 221.50 50 3.3 0.06 0.01 Col. Rock A14-19 221.50 A14-18 221.50 A14-19 222.00 A14-20 222.00 A14-20 222.50 A14-20 224.50 A14-20 A14-20	-220	KXXX			AI4- 15	1	50		3.3	0.07	0.01	0.03
A 4-16 220.50 50 5.0 0.16 0.01	Ŀ	$\times\!\!\times\!\!\times\!\!\times$	Ore in Green Sk			220 004			l	0.00	0.0	
A 14-7 ~ 4-24 P-42 P-42 Epd Col. Rock Col Rock Epd Col. Rock Col Rock A 14-19 221.50 50 3.9 0.13 <0.01 <0.00 A 14-19 222.50 50 4.4 0.16 <0.01 <0.00 A 14-20 222.50 50 <0.11 3.9 0.14 <0.01 <0.00 A 14-21 222.50 50 50 5.0 0.18 <0.01 A 14-22 233.00 50 50 5.5 0.11 0.01 A 14-24 224.00 50 5.5 0.11 0.01 A 14-25 224.00 50 5.5 0.11 0.01 A 14-26 224.00 50 5.5 0.11 0.01 A 14-27 224.50 50 6.0 0.12 0.01 A 14-28 224.00 50 50 6.0 0.12 0.01 A 14-29 224.50 (900) <0.1 4.4 0.12 0.02 A 14-28 224.50 (900) <0.1 4.4 0.12 0.02 A 14-29 224.50	L 1	$\times\!\!\times\!\!\times$	(Epd Garnet)		A14-16		50	<u> </u>	3.3	0.06	ועיט	40.01
P-42 Epd Cal. Rock Cal Cal Cal Rock Cal Cal Cal Rock Cal	[]	XXX	ſ		A14-17	1	50	1 .	5.0	0.16	0.01	0.02
Epd Cal Rock Cal Rock Al4-19	ſŀ		P-42		<u></u>	221.00		-				
Cal Rock Al4-IP 222.00 50 4.4 0.16 <0.03 <0.03 <0.03		XXX	End Cal Rock	1	A14-18		50		3.9	0. 13	<0.01	< 0.01
A14-20 222.50 50 <0.1 3.9 0.14 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	225			<u> </u>	A14-10		50	1	4.4	0.16	<0.01	<0.01
Al4-20 222.50 50 <0.1 3.9 0.14 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	F	===					ļ	-		-		
Al4-21 230.00 50 3.9 0.18 <0.01 0 Al4-22 23.00 50 50 5.0 0.18 <0.01 0 Al4-28 223.50 50 50 5.5 0.11 0.01 0 Al4-24 224.00 50 6.0 0.12 0.01 0 Aver 224.50 50 6.0 0.12 0.01 0 Aver 224.50 50 6.0 0.12 0.01 0 Aver 224.50 50 6.0 0.12 0.02 0	-	===			A14-20	I .	.50	<0.I	3.9	0.14	<0.01	<0.01
A14-22 23.00 50 5.0 0.18 <0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	-	===		9	A14 - 21	222.50 W	80		2 0	O IR	<0.01	0.01
A14-22 230.50 50 5.5 0.11 0.01 0.01 0.01 0.01 0.0		===					-	1	J. 3	9.19		
Gray Sh A14-28 223.50 0 50 5.5 0.11 0.01 0. A14-24 224.00 50 6.0 0.12 0.01 0. A14-24 224.50 50 6.0 0.12 0.01 0. Aver (215.50 0 900) <0.1 4.4 0.12 0.02 0 Py Epd. Sk Aver 235 Sh SS SS Aver 356.70 236.75 Banded Py-Sk	230	===			A14-22		50		5.0	0. [8	<0.01	001
Company Comp		<u> </u>		· .		2 23.50 ^	50	1	R.K	0 11	0.01	0.01
A14-24 224.50 50 6.0 0.12 0.01 0. Aver (215.80		A	Gray Sh		A14-59	227.00	ļ	<u> </u>	J. 5	<u> </u>	ļ	17.45
Sh 235 Sh Aver (215.50 × 1900) < 0.1 4.4 0.12 0.02 0 Py Epd. Sk Aver (215.50 × 1900) < 0.1 4.4 0.12 0.02 0	l i	, ,	,		A14-24		50		6.0	0.12	0.01	0.12
235 Sh -235 Py Epd. Sk -236.70 ~ 236.75 Banded Py - Sk Ss		~~^					0.00	<u></u>				0.01
236.70 √236.75	<u> </u>		Sh		Aver		(300)	F0.1	4.4	0.12	0.02	0.01
236.70 ~ 236.75 Bonded Py - Sk Ss	- 235										٠	
Banded Py-Sk	<u> </u>	امممم			1 :						-	Wişt (
Se Se	-	XXXXX	236.70 v 236.75 Ronded Pv + Sk		'							
240 XXXXXX 239.20~239.40				1								
1 TY TAXABLE COS. CUV COS. TV	240		35	\ \ \	'		1				1	
「 (株存在)	-70	*XXXX	Py Diss	門帝 宋		<u> </u>	L					

C+0#	Cool	:	Adin a puti mutian	Assay Results							
Depth		Lithology	Mineralization	Sample	Depth	wd	Au	Ag	Cu	РЬ	Zn
(m)	Log		etc.	No.	(m)	(cm)	9/1	9/1	%	%	%
		Ss									
· .											
245			·	1							
						,					
		· · · · · · · · · · · · · · · · · · ·									
	ΞΞ-	Sil F Rk									
-250	===										i
i l		•	-								
250.70								:			
				1							. !

1,100

1,300 44

4000,

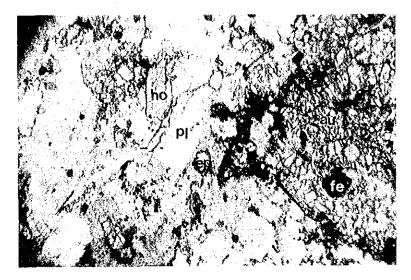

Fig. 3-11 Chemical Assay Result of Ore Sample of Drilling Core

Fig. 3-12 Microscopic Photograph of Rock Thin Section and Ore Polished Specimen

Abbreviation

q : Quartz : Plagioclase pl : Hornblende ho se : Sericite : Epidote ep : Garnet g : Muscovite mu : Calcite ca : Pyroxene рх : Chalcopyrite ср : Sphalerite sp : Galena ga : Pyrite ру : Pyrrhotite po

su : Sulphide Mineral

: S-43

Drill Hole

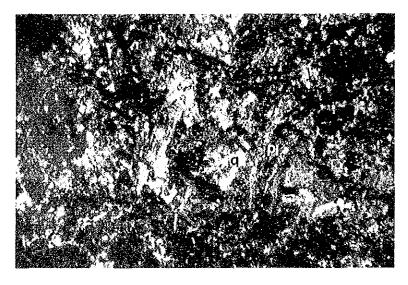
: MJI-14

0.5

(only lower polar)

1 mm

Depth


: 25.50 m

Rock Name

: Basalt

Formation

: Basic Volcanic Rock Member

Sample Number

: S-19

Drill Hole

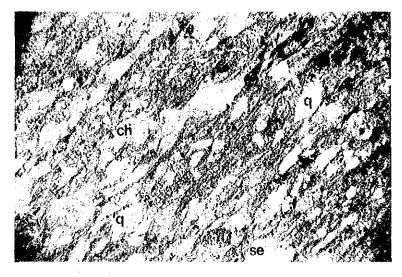
: MJI-9

1 mm

Depth

: 64.00 m

(cross polars)


0.5

Rock Name

: Andesite

Formation

: Basic Volcanic Rock Member

: S-14

Drill Hole

: MJI-7

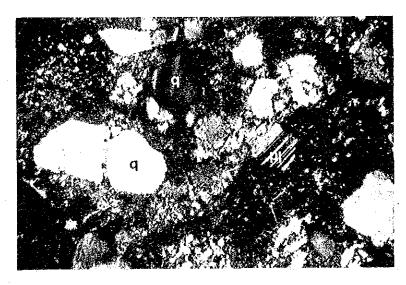
)

1 mm

Depth

: 68.25 m

(only lower polar)


0.5

Rock Name Formation

: Fine grained sandstone

: Shale-Tuff Facies,

Sedimentary Rock and Pyroclastic Rock Member

Sample Number

: S-27

Drill Hole

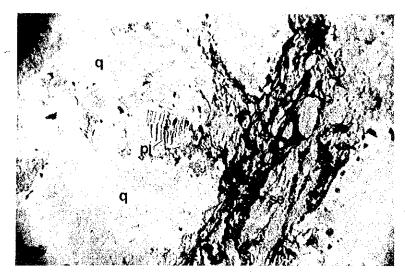
: MJI-11

0.5

1 mm

Depth

: 110.10 m


(cross polars)

Rock Name

: Tuffaceous sandstone

Formation

: Shale-Tuff Facies,

: S-28

Drill Hole

: MJI-11

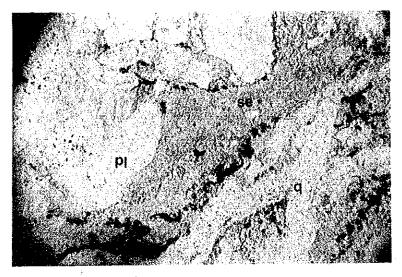
0.5

1 mm

(only lower polar)

Depth

: 154.00 m


Rock Name

Andesitic sandy tuff

Formation

: Calcareous Rock-Shale Facies,

Sedimentary Rock and Pyroclastic Rock Member

Sample Number

: S-20

Drill Hole

: MJI-9

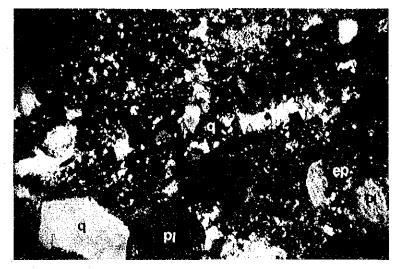
0

0.5

1 mm

Depth

131.80 m


(only lower polar)

Rock Name

: Sandy tuff

Formation

: Calcareous Rock-Shale Facies,

: S-16

Drill Hole

: MJI-8

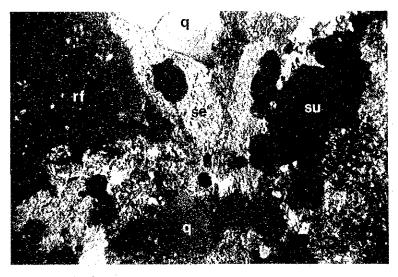
0,5

(cross polars)

1 mm

Depth

: 180.10 m


Rock Name

: Dacitic sandy tuff

Formation

: Siliceous Rock-Slate-Tuff Facies,

Sedimentary Rock and Pyroclastic Rock Member

Sample Number

: S-12

Drill Hole

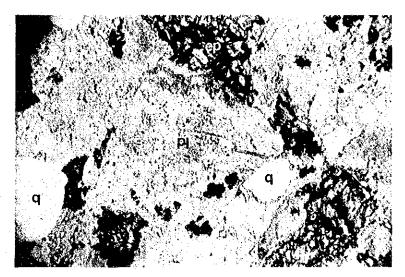
: MJI-6

ļ mm

0.5

Depth

: 200.19 m


(Cross Polars)

Rock Name

: Sandy tuff

Formation

: Siliceous Rock-Slate-Tuff Facies,

: S-46

Drill Hole

: MJI-14

0.5

1 mm

Depth

: 184.70 m

(only lower polar)

Rock Name

: Tuffaceous sandstone

Formation

: Siliceous Rock-Slate-Tuff Facies,

Sedimentary Rock and Pyroclastic Rock Facies

Sample Number

: S-11

Drill Hole

: MJI-6

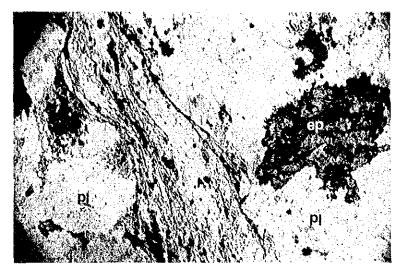
0.5

1 mm

()

Depth

200.10 m


(Only lower polar)

Rock Name

: Pebble slate

Formation

: Siliceous Rock-Slate-Tuff Facies,

S-40

Drill Hole

: MJI-12

Ü

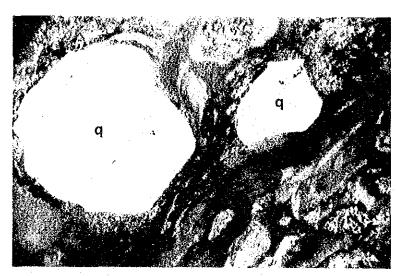
0,5

(only lower polar)

l mm

Depth

: 157.40 m


Rock Name

: Sandy tuff

Formation

: Siliceous Rock-Tuff Facies,

Sedimentary Rock and Pyroclastic Rock Member

Sample Number

: S-13

Drill Hole

: MJI-6

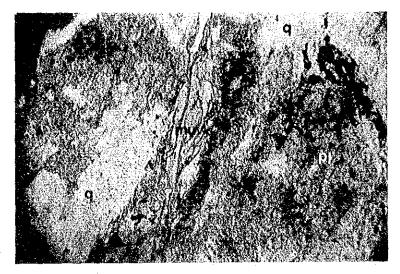
J

0.5

 $1 \, \mathrm{mm}$

Depth

: 212.30 m


(only lower polar)

Rock Name

: Tuffaceous sandstone

Formation

: Siliceous-Rock-Slate-Tuff Facies,

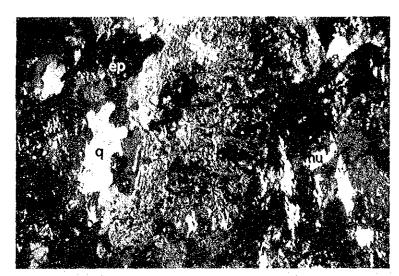
: S-24

Drill Hole

: MJI-10

0.5

1 mm


Depth

: 128.10 m

(only lower polar)

Rock Name

: Mylonite (Granodiorite)

Sample Number

S-26

Drill Hole

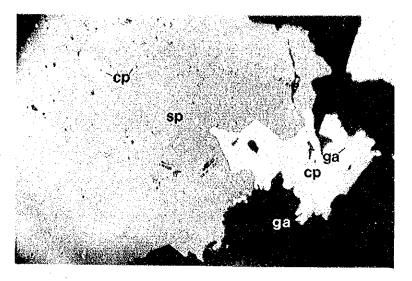
: MJI-10

Depth

11131 10

178.60

Ų


0.5

1 mm

Rock Name

: Quartz diorite

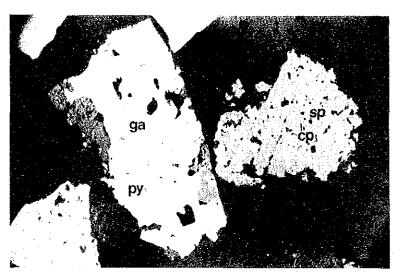
(cross polars)

: P-37

Drill Hole

Depth

: MJI-13


: 23.50 m

Ore Minerals

: Chalcopyrite-galena-pyrite-sphalerite

Ore Deposit

: Mineralized Zone I'

Sample Number

: P-40

Drill Hole

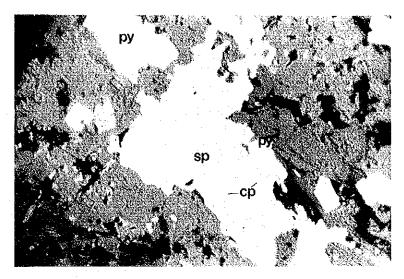
: MJI-14

0

0.5 mm

0.5 mm

Depth


: 39.50 m

Ore Minerals

: (slime ore) pyrrhotite-chalcopyrite-sphalerite-galena-pyrite

Ore deposit

: Mineralized Zone I'

: P-2

Drill Hole

: MJI-6

Depth

: 62.50 m

Ore Minerals

: Chalcopyrite-pyrite-sphalerite

Ore Deposit

: Mineralized Zone I

Sample Number

: S-2

Drill Hole

: MJI-6

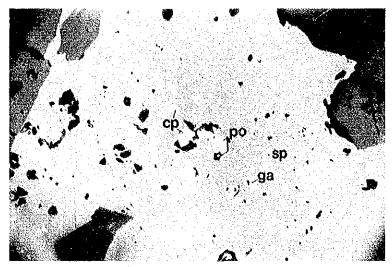
0.5 1 mm

0.5 mm

Depth

: 62.50 m

(only lower polar)


Rock Name

: Skarn

Ore Deposit

: Mineralized Zone I

.

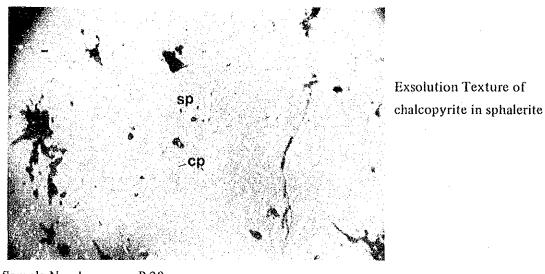
Exsolution Texture of chalcopyrite and pyrrhotite in Sphalerite

: P-14

Drill Hole

Depth

: MJI-9


: 149.50 m

Ore Minerals

: Pyrite-sphalerite

Ore Deposit

: Mineralized Zone I

Sample Number

: P-28

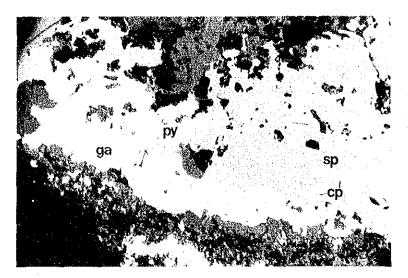
Drill Hole

: MJI-12

0.5 mm

0.5 mm

Depth


: 75.80 m

Ore Minerals

: Galena-chalcopyrite-pyrite-sphalerite

Ore Deposit

: Mineralized Zone I

Poor part of the Mineralized Zone I.

: P-41

Drill Hole

: MJI-14

Depth


: 141.80 m

Ore Minerals

: Chalcopyrite-sphalerite-galena-pyrite

Ore Deposit

: Mineralized Zone I

Country rock of poor part of the Mineralization Zone I

0.5 mm

Sample Number

: S-45

Drill Hole

: MJI-14

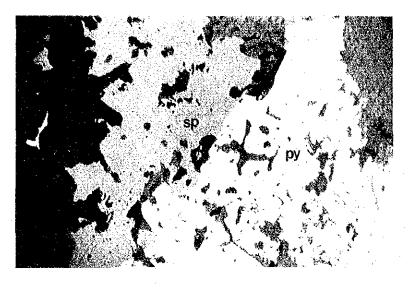
0

0.5

mm

Depth

: 142.00 m


(only lower polar)

Rock Name

: Pebble slate

Formation

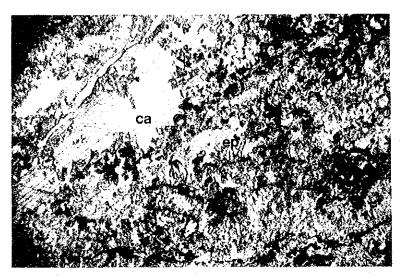
: Mineralized Zone I

: P-27

Drill Hole

: MJI-12

Depth


: 72.50 m

Ore Minerals

: Chalcopyrite-sphalerite-pyrite (disseminated ore)

Ore Deposit

: Mineralized Zone I

Sample Number

: S-37

Drill Hole

: MJI-12

•

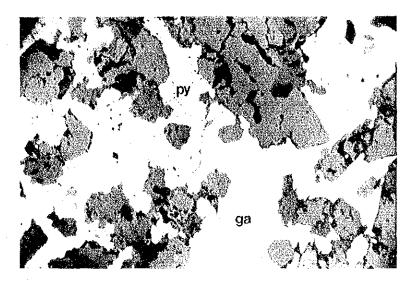
0.5

1 mm

 $0.5 \ mm$

Depth

: 72.40 m


(only lower polar)

Rock Name

: Skarn

Ore Deposit

: Mineralized Zone I

: P-29

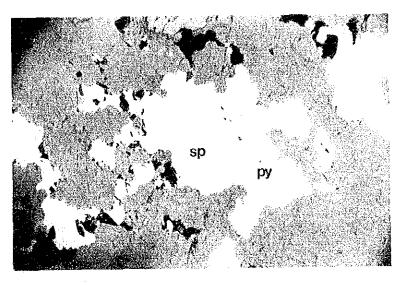
Drill Hole

: MJI-12

U

0.5 mm

Depth


: 120.60 m

Ore Minerals

: Galena-sphalerite-pyrite

Ore Deposit : Mineralized Zone II-2

(Sphalerite concentrated part of banded pyrite-pyrrhotite ore)

Sample Number

: P-29

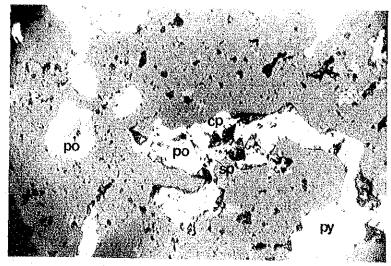
Drill Hole

: MJI-12

0

0.5 mm

Depth


: 120.60

Ore Minerals

: Galena-sphalerite-pyrite

Ore Deposit

: Mineralized Zone II-2

0.5 mm

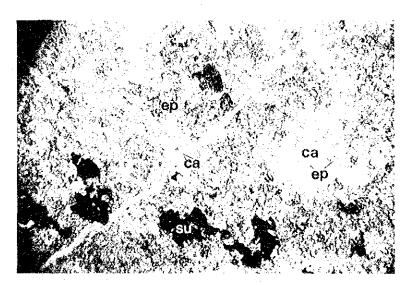
Sample Number

P-20

Drill Hole

: MJI-11

Depth


: 184.00 m

Ore Minerals

: Pyrite-sphalerite-pyrrhotite

Ore Deposit

: Mineralized Zone II-3

0.5

(only lower polar)

1 mm

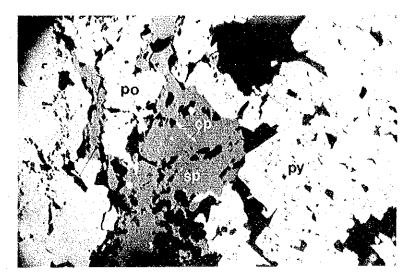
Sample Number

: S-32

Drill Hole

: MJI-11

Depth


: 183.60 m

Rock Name

: Skarn

Ore Deposit

: Mineralized II-3

: P-24

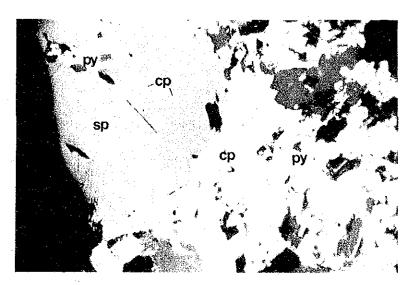
Drill Hole

: MJI-11

0.5 mm

0.5 mm

Depth


: 195.30 m

Ore Minerals

: Chalcopyrite-sphalerite-pyrite

Ore Deposit

: Mineralized Zone II-4

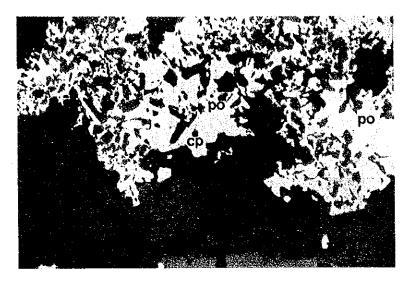
Sample Number

: P-3

Drill Hole

: MJI-6

Depth


: 127.50 m

Ore Minerla

: Chalcopyrite-galena-sphalerite-pyrite

Ore Deposit

: Mineralized Zone II-5

: P-5

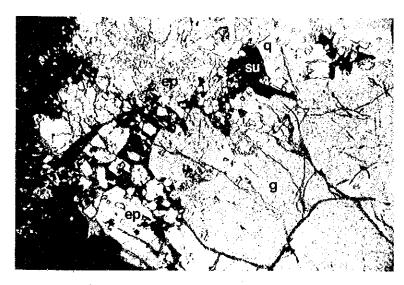
Drill Hole

: MJI-6

{

0.5 mm

Depth


: 170.00 m

Ore Minerals

: Chalcopyrite-pyrrhotite

Ore Deposit

: Mineralized Zone II-6

Sample Number

: S-9

Drill Hole

: MJI-6

0.5

1 mm

Depth

: 170.00 m

(only lower polar)

Rock Name

: Skarn (Epidote and Garnet)

Formation

: Mineralized Zone II-6

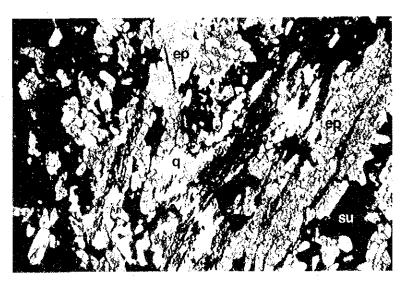
: P-7

Drill Hole

: MJI-6

0.5 mm

Depth


: 173.50 m

Ore Minerals

: Pyrrhotite-chalcopyrite-pyrite

Ore Deposit

: Mineralized Zone II-6

Sample Number

: S-10

Drill Hole

. MJI-6

0.5

1 mm

Depth

: 173.50 m

(only lower polar)

Rock Name

: Skarn

Ore Deposit

- Mineralized II-6

Table 3-1 Microscopic Observation of Rock Thin Section of Drilling Core

Sample	Hole	Depth	Horizone	Rock name			Phen			ck Fr		nţ			Gro	und	mass/	Mati	ix			Skarn, Altered Mineral						Remarks				
Number	Number	(m)			9	kf	pl	bi	mu	mf	fe	others	q	kſ	pl	bi	anı	mf	ça	cl	fe	9	ch	se	ca	еp	ga	am	срх	ру	su	1) common pyroxene
S-1	MJ 1- 4	26.50	BVR	Basaltic tuff							İ	ba pu	٥		0			0			0		o		ļ					-		r) common pyroxene
S-2	MJ1-6	62,50	IV	Skarn	†																		0			0					0	with banded ore
S-3	W11-6	73,54	V	Skarn														ļ				0	_			0	L		ļ	0 ?	1	
S-4	MJ1-6	127.50	VII	Sandy tuff	ļ								· .									0	_	٥	읬	•					0	with massive ore
S-5	MJ1-6	138,80	VII	Skarn		<u> </u>				ļ												1	0	-°-	0	~				-	1-	slightly acidic
S-6	MJ1-6	148.20	VII	Andesitic tuff			0	Ì]	0	an	0	•	0		٥	Ì	٥, ا	٥	•	0	?	Ì	٥	•		Ì			}	sugarity details
S-7	MJ1-6	152,40	Vil	Andesitic tuff	?	_	Ö					pu o	0		ō		_		0	0	0		?	0	0	٥		~				slightly acidic
S-8	MJ1-6	168.70	VII	(Medium) sandstone, slate	0	T	٥			?	٥		0		٥				٥	0	٥		0?	0	٥				·			barnded texture
S-9	MJ1-6	170.00	VII	Skarn	†		Г				_											ě			۰	0	0				0	with banded ore
S-10	MJ1-6	173,50	VII	Skarn																		0			•	0					0	
S-11	MJ1-6	200.10	VII	Pebble slate	0	ļ	?			ļ	_		0							0	0	0	۰7				<u> </u>			о?	4—	phyllitic
S-12	M11-6	200,19	VII	Sandy tuff	0						0	da o i pu o ms o	0					 		0	0	0		0				į			°	
\$13	MJ1-6	212,30	VII	Tuffaceous sand stone	0	0 ?	0			0	0	e ms • 22 • 2m	o		0				0	0	0	0	0	•	٥	•					-	phyllitic
S-14	MJ1-7	68,25	111	Fine sandstone	ि	09	0?		 	• ?	1	''''	0					?	0	0	0		0	0	0	0				1	1^{-}	banded & slaty texture
S-15	MJ1-7	193,00	VII	Silicified rock	1		Τ-		L													0			0	0		<u></u>			0	mozaic quartz
S-16	MJ1-8	180,10	V	Decitic sandy tuff	0		0			?			0		ò			?	٥	٥	0	ö		٥	0						۰	medium grain
S-17	MJ1-8	215.15	VII	Decitic sandy tuff]													0			•	0		<u> </u>		'	0	medium grain
S-18	MJ1-8	226.10	VII	Sandy tuff			0			0 ?		٥	0						0	0	0		٥	0	٥	٥	ļ	٥	<u> </u>		1_	slightly andesitic
S-19	MJI-9	64.00	BVR	Andesite	<u> </u>		0	• ?		0 ?	0		0		0	0	l	?	<u> </u>		o		의	0	Õ		<u>.</u>	<u> </u>	ļ	 	-	7.11 . 60
S-20	MJ1-9	131.80	IV	Sandy tuff	0	<u> </u>	0			 -	<u> </u>	pu o	0	ļ	0			?	_	0	-	0	-	0		0	-	-	0	0?	10	acidic tuff
S-21	MJ1-9	191.80	VII	Skarn	╁	<u> </u>	<u> </u>		}	 	├—	an •	_	<u> </u>		<u> </u>					}	-	-				 		1.0	-}	44	dacitic
S-22	MJ1-10	76.80	VII	Sandy tuff	0		·				0	da • pu •	0		٥			<u> </u>		0	0	0	٥	0		L		_	_		0.	
S-23	W11-10	124.20	Mylo	Mylonite (Granodiorite)	0	?	0		•	?	0											٥	٥	۰	o	0		<u> </u>				mylonitic, fine band
S-24	MJ1-10	128.10	Mylo	Mylonite (Granodiorite)	0	?	0		٥		0							· .						0	0						1	mylonitic, fine band
S-25	MJ1-10	174.20	Mylo	Mylonite (Granodiorite)	0	0	0		٥		0								-					o	0			[]				mylonitic coarse band
S-26	MJ1-10	178.60	QzDio	Quartz Diorite	0	• ?	O		0?	0	0										L		٥	0	0	٥		I		1		catacistized
S-27	MJ1-11	110.10	III	Tuff sandstone	0	0	0			ο?	0	an •	0		٥	<u> </u>			٥	0	a			۰	٥	٥					<u> </u>	
S-28	MJ1-11	154.00	IV	Andesitic sandy tuff			0			?	0	an	0		۰			?	۰	?		0			ö	0				0		catacrastized (skarn)
S-29	MJ1-11	154.00	IV	Tuff	0		0		1	0	0	da o	0		0			?	0	0	0		٥	0	٥	0		Ţ		٥		
S-30	MJ1-11	179.70	VII	Slate	0		v				0		0	1 -	?	_			0	0	°	0		0	0	0	 -	1	<u> </u>	-	+-	schistose banded
S-31	M31-11	182.50	VII	Skarn	╁	1_	ļ.,		 	ļ	<u> </u>	}			<u> </u>			-		-	-	O o	0?		0.	0	 	0?		+	10	banded texture
S-32	MJ1-11	183.60	VII	Skarn	\vdash	-	2		<u> </u>		-	 	6	-				 	-		0			-	0	0	-	 	-	0	_1	banded texture
S-33 S-34	MJI-11 MJI-11		VII	Slate & Tutt Skarn	-	 	?	-		 	+-	 	Ť		<u></u> -			-	\vdash	╁	0	o	•			0	 	0	 	0 1	<u> </u>	
S-35	MJI-II	215.30	VII	Slate & Skarn	-		• ?	-	f	1	0		0		?	-		┢╤	0	0	0	•		0	0	0	Ì	1_	1			
S-36	MJ1-11	215,40	VII	Skarn						<u> </u>												o			0	0	0	٥		Ţ	0	
S-37	MJ1-12	72.40	IV	Skarn			<u> </u>											L		_		0	٥	<u> </u>	0	0	1	1	ļ	\perp	٥	
S-38	MJ1-12	73.30	IV	Skarn						ļ	<u> </u>		L	<u> </u>		-		-	ļ		-	0			0	0	<u> </u>	1—	ļ	+-	·	<u> </u>
S-39 S-40	MJ1-12 MJ1-12	81.30 157.40	V	Andesitic tuff Sandy tuff	0	?	0	-		 	-	an o	©		0			?		0	0	$\mid \mid$	0	0 ?	0	0		1		\dagger	0 ?	
	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/0 00	3111	S-udu t-cc	1	i	<u> </u>	├-	 	?	0	da o	0		0		- 0	?	0	0	9.	0	0	 	O		-	-	1	+-	+	slightly skarnized
\$41	MJ1-12 MJ1-12	162.20 198.00	VII	Sandy tuff slate	0	-	0	-	 	 ' -	0		0		?	-		-	10	0	0	0		-	۲	0	+	 -	+	+	-	Birry straincon
S-42 S-43	MJ1-12 MJ1-14	25.50	BVR	basalt	Ė		Ö	-	<u> </u>	On		_	0		Ö			$O^{(2)}$			9	П			<u> </u>	0		1		1		
S-44	MJ1-14	69.40	And	Andesite			ŏ			0 ?			0		O			?			Ó		О		•					I	I	
					-t~		1	Γ_		T	T	1	0	1	,	1			10		1 0	0	?	0	O		1	1	1 .		To	3) sphalerite
S-45	MJ1-14	142.00	IV	Pebble slate Tuff sandstone	0	L	<u> </u>			<u> </u>		<u> </u>	0		<u> </u>			<u> </u>	ഥ	0	ļ	اٿا		\perp	-		+	ļ	+			unsorting

Abbreviation

q: quartz
kf: kali feldspar
pl: plagioclase
bi: biotite
mu: muscovite
mf: mafic mineral

fe: iron mineral
am: amphibole
ca: calcite
cl: clay mineral
ch: chlorite
se: sericite

ep: epidote
cpx: clinopyroxene
ga: garnet
py: pyrite
su: sulpide mineral
pu: pumice

da: dacite
an: andesite
ba: basalt
ss: sandstone
ms: nudstone
Mylo: mylonite
QzDio: quartzdiorite

common hornblend, common pyroxene
 common pyroxene

tate
 swall amount
 common
 apnuqant

Table 3-2 Microscopic Observation of Ore Polished Specimen of Drilling Core

Sample	Hole	Depth	Ore	0				Ore	Miner	al			Gangue Mineral (Skarn)							Remarks
No.	No.	(m)	horizone	Ores	ср	ga	sp	te	po	ру	ma	others	q	ch	Se	ca	ep	g	am	Kennarks
P-1	MJ1-6	38.70	1	ср-да-эр-ру	٥	0	a		•	0	·									banded – massive ore
P-2	MJ1-6	62.50	I	cp-py-sp	٥	<u> </u>	0		• ?	0			0	0	ļ	0	0			banded (partly diss.)
P-3	MJ 1-6	127.50	I1-5	cp-ga-sp-py	0	٥	0		٥	0	· .		0		•	0				massive ore
P-4	MJ 1-6	165.50	11-6	ср-ру-ро	Q				0	0	·	asp •?			· 					banded ore
P-5	MJ1-6	170,0	11-6	ср-ро	o				0	Ī			•			0	0	0		banded ore
P-6	MJ 1-6	172.50	11-6	ср-ру-ро	0				0	0				[]	<u> </u>	<u> </u>		ļ		veinlet - net-work ore
P-7	MJ1-6	173.50	11-6	ро-ср-ру	0				0	0			_ 0			٠	0			massive-network ore
P-8	MJ1-7	77.20	l	ро-ср-да-аѕр-ру-ѕр	•		0		•	0		asp								diss. ore (partly massive)
P-9	MJ1-7	131.75	11-3	ср-ру-ро	0				0	0							L <u>.</u>			banded ore
P-10	MJ1-7	132.60	II-3	ср-ру-ро	0		Ī		0	٥	• ?			<u> </u>		<u> </u>				diss. ore
P-11	MJ1-7	140.50	11-4	cp-ga-po-sp-py	•	0	0		0	<u></u>	<u></u>					<u> </u>]	<u> </u>	massive ore
P-12	MJ 1-8	215.15	II-3	ср-ру-ѕр-ро	0		0.		0	0	0		0	<u> </u>		•	0	 		banded ore
P-13	MJ1-8	237,30	II-4	ср-ро-ру-ѕр	•		0		•	0			 	ļ		<u> </u>	ļ	ļ	L	massive ore (partly diss.)
P-14	MJ1-9	149.50	I	py-sp		•	0	<u> </u>	0	0	•				ļ	<u> </u>	L.,	L		massive ore
P-15	MJ1-9	150.60	I	py-ga-po-sp		0	0		0	0	0 -	1)								massive ore
P 16	MJ1-9	151.00	1	ga-py-po-cp-sp	0	•	0		0	0			L.	<u> </u>		ļ <u></u>	<u> </u>	<u> </u>	ļ	banded ore
P-17	MJ1-9	235.60	Vein	ga-cp-sp-py	•	•	0			0					ļ				<u> </u>	vein ore
2-18	M31-10	54.50	II-3	ру	•	•	•	<u> </u>	<u> </u>	0				<u> </u>	<u> </u>		 	ļ		diss. ore (low grade)
P-19	MJ1-10	190.00	111	ру				ļ		0						ļ	<u> </u>	<u> </u>	ļ	diss. – banded ore
2-20	MJ1-11	184.00	II-3	ру-ѕр-ро		ļ	0		0	0			٥	<u> </u>	<u> </u>	0	0	ļ	ļ	banded ore
2-21	M31-11	185.50	11-3	ср-ру-ѕр-ро		<u> </u>	0	<u> </u>	0	0.			L	<u> </u>	ļ		ļ	<u> </u>	<u> </u>	banded massive ore
2-22	MJ 1-11	186.50	II-3	cp-sp-po	0	<u> </u>	0	ļ .	0	0			0	↓	<u> </u>	0	0		<u> </u>	massive – veinlet ore
2-23	MJ1-11	194.65	II-4	ср-ру-ро	0	ļ	L	<u> </u>	0	0				ļ	<u> </u>	<u> </u>	ļ	ļ	<u> </u>	massive - network ore
P-24	MJ1-11	195.30	11-4	ср-ру-ро	0		0		0	0	<u> </u>		0				0	<u> </u>	<u> </u>	banded ore
P-25	M31-11	206.00	II-5	ga-sp-po-cp-py	0	•	ه.		0	0		ag.							<u>. </u>	banded ore
P-26	MJ1-12	49.80	I	cp-ga-sp	•	0	٥			L				<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	vein – diss ore
P-27	MJ1-12	72.50	I	ср-ру-ѕр	0		0	•	o	0		1)	٥			0	0			banded ore
P-28	MJ1-12	75.80	I	ga-cp-py-sp	0	0	0	<u> </u>	•	0			0			0	0			massive ore
-29	MJ1-12	120.60	11-2	ga-sp-py	•	0	0			0				L		ļ	ļ	<u> </u>		diss. ore
-30	MJ1-12	130.30	11-4	cp-ga-sp-py-po	0	٥	0		0	0		, 1)		<u> </u>	1	<u></u>	<u> </u>	Į	L	banded ore
-31	MJ1-12	138.65	II-5	sp-py	•	<u> </u>	•			0		•1)	<u> </u>	ļ	ļ	ļ	<u> </u>	<u> </u>	ļ	diss. ore
-32	MJ1-12	140-50	11-5	ср-ро-ру	•				0	0				I		ļ	<u> </u>		<u> </u>	massive-diss. ore
2-33	MJ1-12	141.50	11-5	ср-ру	•					0			<u></u>	<u> </u>	ļ	<u> </u>		ļ.,		massive - diss. ore
2-34	MJ1-12	172.50	II-6	ср-ру	•			ļ		0				ļ		<u> </u>	<u> </u>		<u> </u>	banded diss. ore
p-35	MJ1-12		11-6	ср-ру-ро	0			L	©	0			0	٥		0	•	ļ	0	banded - massive ore
P-36	MJ1-12	173.00	H-6	asp-cp-sp-po-py	0		0.		0	0		asp					<u> </u>]	banded ore
2-37	MJ1-13	23.50	I,	ср-да-ру-ѕр	0	0	0	L.,		0					ļ	<u> </u>			<u> </u>	diss. ore
P-38	MJ1-13	100.30	Ι.	cp-po-sp	0		0		0	1						<u> </u>			<u> </u>	banded ore
P-39	MJ1-14	38.30	l'	ср-да-ру	О	0				0						ļ		<u> </u>	ļ	massive (coarse) ore
P-40	MJ1-14	39.50	I,	po-p-sp-ga-py	•	0	0		•	0		ag								slime ore
241	MJ1-14	141.80	I	cp-sp-ga-py		0	0		•	0										banded ore
P-42	MJ1-14		II-6	ср-ро	0]	0											massive - network ore

Abbreviation

cp: chalcopyrite
ga: galena
sp: sphalerite
te: tetrahedrite
po: pyrrhotite

py: pyrite
ma: marcacite
q: quartz
ch: chlorite
se: sericite

ca: calcite
ep: epidote
g: garnet
am: amphibole
asp: arsenopyrite

ag: silver mineral

abandantcommonsmall amountrare

1) unidentified mineral

Table 3-3 Chemical Assay Result of Ore Samples of Drilling Core

																																			:		
C) and Co	ACHIAL NO	(gal-sph)-py banded ore in epd skarn	(gal-sph)-py banded ore in epd skam		sph-(py) veinlet in epd skarn	cp-gal-sph banded ore in green-cal skarn	cp-gal-sph banded ore in green-cal skarn		pyrrh banded ore in epd skarn (sph. gal)	py-sph-pyrrh ore (vein)		massive and diss py ore in epd skarn	massive and diss py ore in qtz rich ore		sph-pyrrh banded ore in epd skarn	(sph) pyrrh banded ore in epd skarn	(sph) pyrrh banded ore in epd skarn	pyrrh banded ore in epd skam		pyrrh banded ore in epd skarn	pyrrh banded ore in epd skarn	sph-pyrrh banded ore in epd skarn	pyrrh banded ore in epd skarn		pyrrh banded ore in epd skarn	pyrrh banded ore in epd skarn		pyrrh-py banded ore in epd skarn		py-gai-sph veinlet in epo skam	sph diss in epd skarn	sph diss in epd skarn	sph diss in green skarn				
oro.	Zone	£-13	4)E	H	—		11-3	Vein		11:3	III		H-3	113	£	133		Ħ 4	Ħ 4	<u>1</u>	7	11-5	15	11-5	11-5		-11-5	-13		11.5	• 1		p 4	<u> </u>	_
	% uZ	0.24	1.22		12.30	6.52	8.52	(7.52)	0.04	0.00		0,14	0.03		1.39	0.35	0.33	0,02	(0.23)	0.05	90.0	6 94	0.02	0.06	0.14	0.04	0.11	(0.09)	0.05	0.01	(0.03)	0.01	:	3.97	1,43	2.22	C, Y
	Pb.%	0.0	5		9.0	2.03	1.34	(69.1)	0.02	0.10		0.11	0:01		0.11	0.01	0.01	<0.01	<0.01)	0.01	<0.01	<0.01	0.01	<0.01	0.05	0.03	0.04	(0.04)	9.0	0.01	(0.02)	0.07	. :	3.02	0.90	1.20	0.0
Assay Result	Cu % .	0.01	70.01		0.10	0.63	00.1	(0.82)	0.02	0.03		0.02	<0.01		0.07	0.05			~						0.04	0.04	0.05	(0:04)	0,03	0.02	(0.03)	0.03		0.13	90.0	0.09	2.04
Assa	Ag g/t	ر وي د			7.0	193	136.0	_		6.5			> 5.0	.1	12.5	60	6.0	0.4	(0.7)	1.9	1.2	6.0	I I	6.0	8,0	3.2	0.4	4.4	5.5	8.0	(1.1)	0.7		34.0	20.0	27.0	
	Aug/t A					•	6.1								 8						٠	4 0.1															
	Dip A		2			30	8		30	80	ļ	-	-			1.5	÷.	23		30	20		04	01	2	2	0:		10	10		20					2
Core	Core Rec. %	100	001		100	100	100	100	100	100		100	100		001	100	100	100		100	100	100	100	100	100	00	100	٠.	100	100	e e	100		100	100	100	100
	Width (m)	5 52	07		20	20	20	(100)	\$5	5		45	09		01.	. 50	20	20	150	20	1.5	25	10	8	. 50	50	70	(120)	20	09	(110)	40					20
	Deptil (m)	$215.05 \sim 215.30$	237.20 ~ 237.40		149.40 ~ 149.60	$150.40 \sim 150.90$	150.90 ~ 151.40	150.40 ~ 151.40	191.50 ~ 192.05	235.60 ~ 235.65		54.30 ~ 54.75	$189.80 \sim 190.40$		$184.00 \sim 184.10$	185.20 ~ 185.70	185.70 ~ 186.20	$186.20 \sim 186.70$	$185.20 \sim 186.70$	$192.55 \sim 192.95$	194.60 ~ 194.75	$195.15 \sim 195.40$	195.70 ~ 195.80	$203.70 \sim 204.00$	205.35 ~ 205.85	205.85 ~ 206.35	206.35 ~ 206.55	205.35 ~ 206.55	207.50 ~ 208.00	$208.00 \sim 208.60$	207.50~ 208.60	$209.90 \sim 210.30$					$172.30 \sim 72.80$
Diil	hole No.			MJI-9	<u></u>	9-2		_		9-5	MJI-10	급	10-2	MJI-11			11.3	4	(Aver.)	11-5	11.6	11-7	11-8	11-9	01-11	17-11	11-12	(Aver.)	11-13	11-14	(Aver.)	11-15	MJI-12	12-1	13-2	12-3	5
mple	No	32	33		34	35	36		37	38		39	40		14	42	43	4		45	4	47	8	49	20	5.1	52	:	23	\$. 55		26	27	28	65

				·	,				,,, ,																								· · · · · ·				1	
Remarks		cp-gal-sph banded ore in green skam	cp-gal-sph banded ore in green skarn		(gai-sph) pyrrh banded ore in epd skarn	sph-gal-pyrrh banded ore in green skarn	(sph)-pyrrh-py ore in epd skam	(gal-sph) pyrrh ore in epd skarn	(sph) Syrrn ore in epd skarn	py diss in epd skarn	(pyrrh)-py diss in epd skarn	py diss and veinlet in epd skarn	py-pyrrh ore in epd skarn	py-(pyrrh) diss in epd skarn		py-(pyrrh) diss in epd skarn	py-(pyrrh) diss in epd skarn	py-(pyrrh) diss in epd skarn	py-(pyrrh) banded ore in epd skarn		py-(pyrrh) banded ore in epd skarn	py-(pyrrh) banded ore in epd skam	py-(pyrrh) banded ore in epd skarn (sph)		py-(pyrrh) banded ore in epd skarn	py-(pyrrh) massive, banded ore in epd skarn	ру-(рупh) massive, banded ore in epd skam	py-(pyrrh) massive, banded ore in epd skarn	py-(pyrrh) massive, banded ore in epd skarn	py-(pyrth) massive, banded ore in epd skarn	py nen diss ore in epo skarn	py rich diss ore in epd skarn		py-(gal-cp) rspn of in calcareous sit	py-(gal-cp/spii ole iii calcateous sii	and many comments from the American comments and the comments of the comments	co-sph veinlet and diss ore	py-pyrrh banded ore in epd cal skarn
o.	Zone.	بسو	>==		H	11-2	11-3	4	11-5	11-5	11-5	11-5	11-5	11-5	: '	11-5	11-5	11-5	11-5	* .	11.5	11-5	11-5		11-6	11.6	911	Ψ.	9	9:	9		ţ	New	* A	-	٠ -	5-ma
$\neg \vdash$	Zn %	7.68	4.7	(7.56)	0.58	0.78	0.12	0.17	0.01	0.03	0.01	0.01	0.01	0.03	(0.01)	0.03	90.0	0.02	0.03	(0.04)	9.0	0.02	0.47	(0.18)	10.00	0,01	10.00	0.07	0.01	~ ·	70.00	6.0		57.0	01.7		2 70	0.65
- 1	Pb %	0.03	0.02	(0.03)	0.20	96.0	0.01	0.07	<0.01	0.02	<0.01	<0.01	<0.01	0.01	(<0.01)	0.02	0.01	10.0	0.02	(0.01)	0.02	0.02	0.17	(0.07)	:0:01	<0.01	(0.0)	<0.03	V0.01	0.03	0.00	20.01		5.10	100	(10.1)	900	90.0
#	Cu %	0.31	0.65	(0.48)		0.03	0.08	0.03	·	0.01	0.01	> 50.0	0.05	0.03	(0.03)	0.02	0.04	0.05	0.02	(0.04)	0.01	0.01									v /o.o.	4.0	·	000			1.07	0.16
Assa	Agg/t (19.8	28.0	(53.9)						0.7	0.5	1.3	9.1	1.2	(1.1)	2.7	3.4	3.3	3.0	_		3.7		_	1.2	4.1	1.0	8.0	1.2	2.0	× .	1:2		715.0	0.671		040	15.5
	Aug/t A			S		0.10																											Ć		7		041	
+	Dip Au	50 0.1			<u>ي</u>	0 0			2		-	1		·	<u>. </u>		 1	A	 1		22	20	50		50	30	30	၉	000			-		. · ·		<u>:</u>		
	Core Rec. % D	100	100			100				100	001	100	00	100	100	100	100	100	100				100				100				001	AND LEVILLE AND A SPECIAL PROPERTY AND A MARKET PARTY AND A SECOND PROPERTY AND A SECOND		7 0		ç		
	Width (m)	20	50	(001)	9	35	64	50	20	. 51	50	20	20	20	170	50	50	50	15	(165)	20	90	20	150	. \$0	50	20	- 20	20	20	000	(330)	;	C 2	î Î	ć	1 4 5 M	20
Depth (m)		75.10 ~ 75.60	75.60 ~ 76.10	75.10~ 76.10	108.35 ~ 108.75	120.50 ~ 120.85	126.85 ~ 127.25	130,05 ~ 130,55	136.30 ~ 136.80	138.60 ~ 138.75	139.20 ~ 139.70	139.70 ~ 140.20	$140.20 \sim 140.70$	140.70 ~ 140.90	$(139.20 \sim 140.90)$	141.35 ~ 141.85	141.85 ~ 142.35	142.35 ~ 142.85	$142.85 \sim 143.00$	$(141.35 \sim 143.00)$	143.50 ~ 144.00	144.00 ~ 144.50	144.50 ~ 145.00	$(143.50 \sim 145.00)$	172.35 ~ 172.85	172.85 ~ 173.35	173.35 ~ 173.85	173.85 ~ 174.35	174.35 ~ 174.85	174.85 ~ 175.35	₹.	$(172.35 \sim 175.65)$		25,10 ~ 25,65				
Dirico	nole No.		12-7			12-9				12-13	12-14	12-15	12-16	12-17	(Aver.) (1	:	12-19	12-20	12-21	-	 -		12-24			الاست		,,,					MJF-13			· -	5 5	13-5
Sample	-	61	62		63	. 49	65	99		89	69	70	E	72		12	74	75	76		76	7.8	79		80	8	82	83	3 5	\$3	98			20 0	 8		6 8	7 15

						_															_																			٦
																									:												٠	•		
Bamoste	Neilland	py-py banded ore in sil sh	(pyirh)-Py-sph ore in green skarn		(cp) Sph-pyrrh ore in (epd) calcareous rock	sph-py veinlets in green skarn	(py) Pyrrh banded ore in epd skarn	py massive ore	(py) pyrrh banded ore	(py) pyrrh banded ore	(py) pyrrh banded ore			fault drag ore, gal sph py massive ore	fault drag ore, gal sph py massive ore	fault drag ore, gal sph py massive ore (slime)	py sph gal diss in calcareous shale	py sph gal diss in calcareous shale			(pyrrh) Py massive ore in (epd) cal rock	py imp in epd skam	pyrrh massive ore in epd skarn	pyrrh massive-banded ore in epd skarn	pyrrh-py diss in epd skarn	pyrrh massive ore in epd skarn	py-pyrrh banded ore in epd skarn	py-pyrrh banded ore in epd skarn	py-pyrrh massive-banded ore in epd skarn	py-pyrrh massive-banded ore in epd skarn	(cp) Py-pyrrh massive-banded ore in epd skarn	(cp) Py-pyrrh massive-banded ore in epd skarn	(cp) Py-pyrrh massive-banded ore in epd skarn	pymrh-py banded ore in epd skarn	py diss ore in epd skarn					
O.	Zone	. ⊷	1		· 🛏		11		9-11	9-II	11.6			New	New	New	, 	_		Vein?	11-6	9-11	11-6	11-6	11-6	11.6	91	9711	9-11-	9-11-	9.	9	11-6	91	9-11	116	11-6	9-11		
	Zn %	0.72	0.63	0.68	1.74	0.08	0.17	0.01	0.01	0.02	0.01	(0.01)		1.26	3.84	1.30	1.58	1.35	(1.47)	6.10	0.04	0.04	0.01	0.01	0.11	0.03	0.04	0.01	0.03	V0.01	0.02	V0.01	<0.01	<0.01	0.01	0.01	0.01	0.0 0	(0.01)	
	Pb %	0.04	<0.01	0.02	<0.01	0.07	<0.01	0.01	40.01	0.01	0.01	(<0,01)		5.51	6.48	2.24	1.45	1.72	(1.59)	11.70	90.0	0.05	0.01	10.0	60.0	<0.01	0.04	0.07	0,01	0.01	0.01	10.0>	<0.01	<0.01	<0.01	<0.01	0.01	0.01	(0.02)	
Assay Result	℃n⊘	90.0	0.03		•	0.06	0.13			0.08	60.0	(0.08)		0.24	0.90	0.11	0.05	0.02	(0.04)	2.15	0.13	90.0	0.14	0.10	0.04	0.13	0.16	60.0	0.07	90.0	0.16	0.13	0.16	0.14	0.15	0.18	0.11	0.12	(0.12)	
Assa	Ag g/t	10.0	5.0	(7.5)	28.0	3.3	3.9	80 10	2.8	3.9	3.9	(3.5)		92.0	94.0	32.0	11.0	13.0	(12.0)	450.0	5.5	3.9	3.9	4	6.5	6.3	2.8	3.9	33	3,3	5.0	3.9	4.4	3.9	3.9	5.0	5.5	6.0	(4.4)	
	Au g/t 👍	1			<0.10			₹ 0.01		0.10					1.63			<0.1		1.51					٠.	10.0>			٠.					<0,10						
	Dip A	45	15		15	30			20	8	20		7				20	50 A		<u> </u>	6		35	30		30.	5	30		9		01	30	•	30	30	99	20		1
																																	-							
Core	Core Rec. %	100	100		9	100	100	100	100	100	100			100	100	Slime	100	9		100	100	100	100	9	100	100	100	100	100	100	100	100	202	100	100	100	100	100		
	Width (m)	20	35	85	35	20	30	10	50	. 50	30	(130)		5	20	70	35	35	(70)	S	20	20	20	. 20	20	20	20	50	20	20	20	50	20	50	20	20	50	50	006	
Ē		96.85	97.20	97.20)	00.45	02.40	14.40	184.70	98.90	96.40	02'96	(02.96)		36.45	38.50	39.80	142.00	142.35	142.35)	192.1	216.00	216.50	217.00	217.50	218.00	218.50	219.00	219.50	220.00	220.50	221.00	221,50	222.00	222.50	223.00	223.50	224.00	224.50	224.50)	
Denth (m)	index.	96.35 ∼		(96.35 ~	$100.10 \sim 100.45$	$102.20 \sim 102.40$	114.10 ~ 114.40	$184.60 \sim 184.70$	$195.40 \sim 195.90$	$195.90 \sim 196.40$	$196.40 \sim 196.70$	$(195.40 \sim 196.70)$		36.40 ~	38.30 ∼	39.10~	$141.65 \sim 142.00$	$142.00 \sim 142.35$	$(141.65 \sim 142.35)$	192.10 ~ 192.1	215.50 ~ 216.00	$216.00 \sim 216.50$	$216.50 \sim 217.00$	$217.00 \sim 217.50$	217.50~218.00	$218.00 \sim 218.50$	218.50 ~ 219.00	2 19.00 ~ 3	219.50 ~ 220.00	220.00 ~ 220.50	220.50 ~ 221.00	$ 221.00 \sim 221.50$	221.50~ 222.00	222.00 ~ 222.50	222.50~	223.00 ~ 223.50	223.50 ~ 224.00	224.00 ~ 224.50	(215.50~;	
Drill	hole No.	13-6	13-7	(Aver.)	13-8	13-9	13-10	13-11	13-12	13-13	13-14	(Aver.)	MJJ-14	14.1	14-2	14-3	44	14-5	(Aver.)	14-6	14-7	14-8	14-9	14-10	14-11	14-12	14-13	14-14	14-15	14-16	14-17	14-18	14-19	14-20	14-21	14-22	14-23	14-24	(Aver.)	
Sample	Š	92	93		8	95	96	6	86	66	001			101	102	103	201	105		106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124		
																		_							_												-			Ť

Table 3-4 Chemical Assay Summary on each individual Mineralization Zone

Dı	ritting	Depth (m)			Assary !	Result			Core	Remarks
Nu	imber		Wd cm	Au g/t	Ag g/t	Cu %	Pb %	Zn %	гесочегу %	IXVIRALES
Miner	alized Zor MJI-13	23.10 ~ 24.20	110	0.41	195	1.25	1.31	9.85	100	py-gal-ep spli ore in calcareous shale
	MJI-14	36.40 ~ 36.45	5		92	0.24	5,51	1.26	100	drag ore of cp-gal-sph-py in thrust fault
- 1		38.30 ~ 38.50	20	1.63	94	0,90	6.48	3.84	100	ditto
اا	l	39.10 ~ 39.80	70		32	0.11	2.24	1.30	(slime)	py-gal-sph-(cp) ore'in fault
Miner	alized Zor MJI-3	61. 53,70 ~ 54.30	60	<0.1	62,0	0.14	3.44	1.29	50	gal-sph-op ore in-shear zone
ł		59.50 ~ 60.00	50	<0.i	34.0	0.29	0.90	0.85	92	ditto
	мл-4	$116.50 \sim 118.40$	190	<0.1	4.5	0.93	0.71	1.50	68	gal-sph-cp massive ore in shear zone
- 1		$122.00 \sim 122.60$	60	<0.1	42.0	0.30	2.50	4.48	100	ditto
- 1		123,90 ~ 124,80	90	<0.1	47.0	0.21	0.80	1.53	78	ditto
- 1	MH-S MH-6	190.40 ~ 192.60 38.60 ~ 38.90	220 30	<0.1	27,7 6.2	0.28	0.17	3,73 0.77	95 100	ga-sph-cp banded, diss ore in calcarcous shale gal-sph-py diss with calcite veln-let. (calcarcous shale)
i		61.70 ~ 62.80	110		20.3	0.08	1.60	2.47	100	gal-sph-pyrth-py diss in weak skarn zone
ŀ		64.15 ~ 64.35	- 20		37.2	0.11	0.89	4.70	100	gal-sph-pyrth diss (cp veinlet)
	MJI-7	77.10 ~ 77.30	20	0.23	1.9	0.03	0.11	3.65	100	spli-py veinlets in epidote skarn
ı	1,000	88.70 ~ 88.80	10		28.0	0.01	1.42	1.44	100	ditto
ŀ	мл-9	149.40 ~ 149.60 150.40 ~ 151.40	20 100		7.0 164.6	0.10	0.04	12.30 7.52	100 100	sph veinlet in green skarn ep-gal-sph bended ore in green cal skarn
-	МЛ-12	49.60 ~ 49.90	30		34.0	0.13	3.02	3.97	100	py-sph veinlet in epidote skarn
		51.60 ~ 51.80	20		20.0	0.06	0.90	1.43	100	gal-sph-diss in epidote skarn
	1	52.10 ~ 52.60	50		27.0	0.09	1.20	2.22	100	gal-sph diss in epidote skarn
	1	72.30 ~ 73.30	100		1.2	0.04	<0.01	0.53	100	sph diss in green skarn
- 1		75.10 ~ 76.10	100		23.9	0.48	0.03	7.56	100	(gal)-cp-sph bended ore in green skarn
	MJI-13	66.80 ~ 67.00 86.30 ~ 86.75	20 45	0.41	8.5 94.0	1.07	0.02	0.11 2.70	100 100	py massive ore in calcareous shale cp-sph veinlet and diss in calcareous sh
- 1	- 1	95.10 ~ 95.30	20	0.41	. 15.5	0.16	0.06	0.65	100	py-pyrrh-sph banded ore in green skarn
	1	96.35 ~ 97.20	85		7,5	0.05	0.02	0.68	100	py-pyrth banded ore in sil shale
		$100.10 \sim 100.45$	35	<0.1	28.0	0.68	<0.01	1.74	100	cp-sph ore in (epd) calcareous
- 1	.	$102.20 \sim 102.40$	20		3.3	0.06	<0.01	0.08	100	sph-py veinlets in green skarn
1	<u>MII-14</u>	141.65 ~ 142.35	70		12.0	0.04	1.59	1.47	100	py-gal-sph diss in calcareous shale
	alized Zon		50			0.02	0.22	0.35	100	handed ou ora
11-1	MJI-6	77.80 ~ 78.30 98.15 ~ 98.95	80		5.6 8.1	0.02	0.22	0.35 0.49	100	banded py ore network of py-(gal-sph) veinlet in epido te sharn
- 1	MJI-12	108.35 ~ 108.75	40		4.0	0.03	0.20	0.58	100	(gal-sph) pyrrh banded ore in epidote skarn
- 1	MJI-13	114.10 ~ 114.40	30		3.9	0.13	<0.01	0.17	100	pyrrh-py banded ore in epidote skarn
11-2	MJ1-5	241.40 ~ 242.20	80	<0.1	13,0	0.05	0.60	2.03	100	gal-sph-
	MJ1-12	$120,50 \sim 120.85$	35	0.10	11.4	0.03	0.96	0.78	100	gal-sph-pyrrh banded ore in green skarn
11-3	МЛ-7	131.50 ~ 132.00	50		1.9	0.05	<0.01	0.04	100	py-pyrrh banded ore in epidote skarn
		132.45 ~ 132.85	40 25	ŀ	1.9	0.05 0.01	10.0>	0.21	100	py-pyrth banded ore in epidote skarn (gal-sph)-py banded ore in epidote skarn
	MJI-8 MJI-9	215,05 ~ 215.30 191.50 ~ 192.05	55		1.7	0.02	0.02	0.04	100	pyrrh-banded ore in epidote skarn
	MJI-10	54.30 ~ 54.75	45	ł	14.7	0.02	0.11	0.14	100	massive-diss py ore in epidote skarn
	MJI-11	184.00 ~ 184.10	10	<0.1	12.5	0.07	0.11	1.39	100	sph-pyrrh banded ore in epidote skarn
٠.		185.20 ~ 186.70	150	l	0.7	0.04	< 0.01	0.23	100	(sph)-pyrrt banded ore in epidote skarn
	MJ1-12	126.85 ~ 127.25	40	<0.I	2.6	0.08	0.01	0.12	100	(sph)-pytth-py ore in epidote skarn
11-4	MJ1-7	140,05 ~ 140,70	65	<0.1	3.1	0.05	0.14	0.24	100	py-pyrrh banded ore in epidote skarn
	M)1-11	237.20 ~ 237.40 192.55 ~ 192.95	20 40	ŀ	1.9 1.9	<0.01 0.05	0.01	0.05	100	sph)-py-banded ore in epidote skarn pyrth banded ore in epidote skarn
	13376.11	194.60 ~ 194.75	15	1	1.2	0.03	<0.01	0.05	100	pyrth banded ore in epidote skarn
ł		195.15 ~ 195.40	25	<0.1	0.9	0.05	<0.01	6.94	100	sph-pyrrh banded ore in epidote skarn
	-	195.70 ~ 195.80	10	l	- 1.1	0.05	0.01	0.02	100	pyrrh banded ore in epidote skarn
	MJ1-12	130.05 ~ 130.55	50	ļ	1.7	0.03	0.07	0.17	100	(gal-sph) pyrih ore in epidote skarn
11-5	MJI-6	127,20 ~ 127.80	60	l ·	16.4	0.06	0.23	0.34	100	(gal-sph) py-pyrrh banded ore in green skarn
	MH-11	203.70 ~ 204.00 205.35 ~ 206.55	30 120]	0.9 4.4	0.04	<0.01 0.04	0.06	100	pyrrh banded ore in epidote skarn pyrrh banded ore in epidote skarn
		207,50 ~ 208.60	110	1	1.1	0.03	0.04	0.03	100	pyrih banded ore in epidote skarn
	1	209.90 ~ 210.30	40	1	0.7	0.03	<0.01	0.01	100	pyrrh-py banded ore in epidote skarn
	M31-12	136.30 ~ 136.80	- 50	l	0.9	0.03	< 0.01	0.01	100	pyrth-py banded ore in (garnet) epidote skarn
		138.60 ~ 138.75	15	l	0.7	0.01	0.02	0.03	100	py diss in epidote skarn
		139.20 ~ 140.90	170	l	1.1	0.03	< 0.01	0.01	100	(pyrth) py diss in epidote skarn
		141.35 ~ 143.00 143.50 ~ 145.00	165 150	ļ.	3.1 5.5	0.04	0.01	0.04	100	(pyrrh)-py diss in epidote skarn (sph)-py-(pyrrh) bended ore in epidote skarn
1-6	MJ1-6	163.80 ~ 166.85	305		1.6	0.10	<0.01	0.01	100	pyrih-py massive ~ banded ore in epidote skarn
	"	169.70 ~ 175.70	600	[1.4	0.12	< 0.01	0.02	100	py-pyrth massive ~ banded ore in epidote skarn
	MJI-12	172.35 ~ 175.65	330	İ	1.2	0.14	<0.01	<0.01	100	py-pyrrh massive ~ banded ore in epidote skarn
. [MJI-13	195.40 ~ 196.70	130	1 .	3.5	0.08	< 0.01	10.0	100	py-pyrrh massive ~ banded ore in epidole skarn
لـنــ	MJI-14	<u>215,50 ~ 224.50</u>	900	<0.1	4.4	0.12	0.02	0.01	100	py-pyrrh massive ~ banded ore in epidote skarn
diner	alized Zon		- 60	1	۱	-0.01	0.01	0.03	100	and the second s
Vein,	MJ1-10 MJ1-9	189.80 ~ 190.40 235.60 ~ 235.65	60 5	ļ	0.5 6.5	<0.01 0.03	0.01	0.03	100	massive ~ diss py ore (sericitization)
· Calla	МЛ-14	192.10 ~ 192.15	5	1.51	450.0	2.15	11.70	6.10	100	spn-py-pyrrn ore cp-gal-sph ore (very coarse grain)
			1 -				1	1 5.10	1	-L o Lu ora (ini) course giani)

(Note, gal: galena Sph: sphalerite cp: chalcopyrite Pyrrh: Pyrrhotite diss: dissemination

CHAPTER 4 INTERPRETATION OF THE DRILLING RESULTS

4-1 Outline of Geology

The Patahajang Formation, distributed at the Pagar Gunung-Patahajang Area, is divided into seven Members as shown in Fig. 4-2 through a geological survey carried out in the second phase.

The Pagar Gunung Area of drilling survey consists of Sedimentary rock and Pyroclastic rock Member (previsouly called Alternate Member of clastic rock and volcanic rock) and Basic volcanic Member. (Fig. 4-1, Fig. 4-4)

The drilling survey performed in the second and third phases revealed that these Members consist of several facieses in detail, and are classified as Sedimentary Rock and Pyroclastic Rock Member into seven rock facieses as shown in Table 4-1 and Fig. 4-3.

Table 4-1 Rock Facies Classification of Sedimentary Rock and Pyroclastic Rock Member in Pagar Gunung Area

Basic Volcanic Rock Member	
Lower Limestone Member	(Thrust Fault)
Sedimentary Rock and Pyroclastic Roc	k Member
Shale-Calcareous Shale Facies Sandstone-shale Facies Shale-Tuff Facies	(I) (MZ I') (II) Argillaceous Rock Predominance Facies (II)
Calcareous Rock-Shale Facies	(IV) (MZI)
Siliceous Rock-Tuff Facies Banded Shale (slate) Facies Siliceous Rock-slate-Tuff Facies	(V) Siliceous Rock and Pyroclastic (VI) Predominance Facies (MZII) (VII) (MZII)

(MZ): Mineralized zone

The Sedimentary Rock and Volcanic Rock Member can be divided into two groups by the characteristics of these rock facies, namely Argiraceous Rock Predominance Facies and Siliceous Rock-Pyroclastic Rock Predominance Facies. The former is grouped at the upper part of the Calcareous Rock-Shale Facies (IV), and the latter is grouned at the lower part of the Siliceous-Tuff Facies (V). Mineralized Zones, found by a drilling survey, are also four zones based on the relationship of the emplacement position and facies classification, namely Mineralized Zone I', Nineralized Zone I, Mineralized Zone II, and Mineralized Zone III. The relation is shown in Table 4-1 and Fig. 4-5.

4-2 Stratigraphy

4-2-1 Basic Volcanic Rock Member

The rock is massive green rock, and pyroxene phenocryst is recognizable, Chlorite and some quartz lie in a ground mass of common pyroxene, plagioclase. Basaltic tuff having basaltic fragment and pumice, andesitic rock are recognised. They are members of the basic volcanic rock distributed extensively at the top of the Pagar Gunung Mountain. Shear zone (fault caly part usually exists at the boundary of the Basic Volcanic Rock Member and Sedimentary Rock and Pyroclastic Rock Member and it is infrered that the both Member made contact along the thrust fault.

Shale and siliceous shale (slate) intercalating in Basic Volcanic rock have usually a kink band texture (refer to MJI-5, MJI-8 and MJI-9).

4-2-2 Sedimentary Rock and Pyroclastic Rock Member

I Shale-Calcareous Shale Facies

The stratum consists of calcareous shale, black shale and limestone. MJI-13 drilling cut the stratum about 45 m, and most characteristic rock facies of the stratum is pebble shale accompanied with flat calcareous pebble or nodule. Mineralized zone I' consisting of lead and zinc minerals is embaded in the calcareous pebble shale. In the thrust fault between Basic Volcanic Rock Member and the stratum, there are many drag ores of Mineralized Zone I' in MJI-14.

II Sandstone-Shale Facies

Sandstone is arkose or graywacke having a very clear grade bedding. The sandstone shows a sedimentary cycle with an intercalation of black shale and siliceous shale.

III Shale-Tuff Facies

Dacitic tuff and shale are the main constitutional bed. Andesitic tuff, containing chlorite and epidote, is often intercalated.

IV Calcareous Rock-Shale Facies

The stratum consists mainly of calcareous shale, calcareous sandstone and limestone, intercalated with dacitic tuff. At the bottom of the stratum, tuff breccia containing calcareous rock and dacitic rock breccia or sub-breccia, and calcareous pebble shale is usually distributed. Among calcareous shale, pebble shale containing flat calcareous pebbles or nodules in found extensively, and it is very favourable for host rock of mineralized zone I. Namely, the rich ore found by MJI-9, MJI-12 are embedded in the rock. The ore is made up of banded galena-sphalerite with epidote and clinopyroxene skarn replacing the calcareous pebbles or nodules in the shale.

The stratum becomes thick in its thickness toward the east. Namely the stratum is 30 m - 40 m in thickness at the east extention part (MJI-6, 11 and 12 drill holes), while the west extention is only 5 m or so. The thickness may be reflects a mineralization condition, namely the east part is better than the western part.

V Siliceous Rock-Tuff Facies

The facies consist of fine siliceous rock (siliceous shale) and dacitif tuff. Lapilli tuff is sometimes accompanied by tuff. Shale is semi-schist and tuff became catacrasite-like-rock, having a weak schistosity and catacrstic cleavage.

VI Banded Shale Facies

The rock has alternations with thin layers of sand-silt and mud, and mostly became semi-schist having weak schistosity. The average thickness of the banded shale is 10 m, but its distribution is very continuous, therefore, the rock can be used for a kie bed. Most ores of the mineralized zone II are embedded below the shale.

VII Siliceous Rock and Tuff Facies

Siliceous slate, slate, dacitif tuff (including dacitic lapilli tuff and dacitic sandy tuff) are main rocks of the facies. Andestic tuff is often intercalated with them. These rocks have schistosity or catacrastic cleavage, semischist or catacrasite like rock respectively.

Siliceous slate is accompanied by calcareous slate, sandstone, and the calcareous rocks have undergone skarnization. The skarn consists of epidote, calcite and garnet, and banded

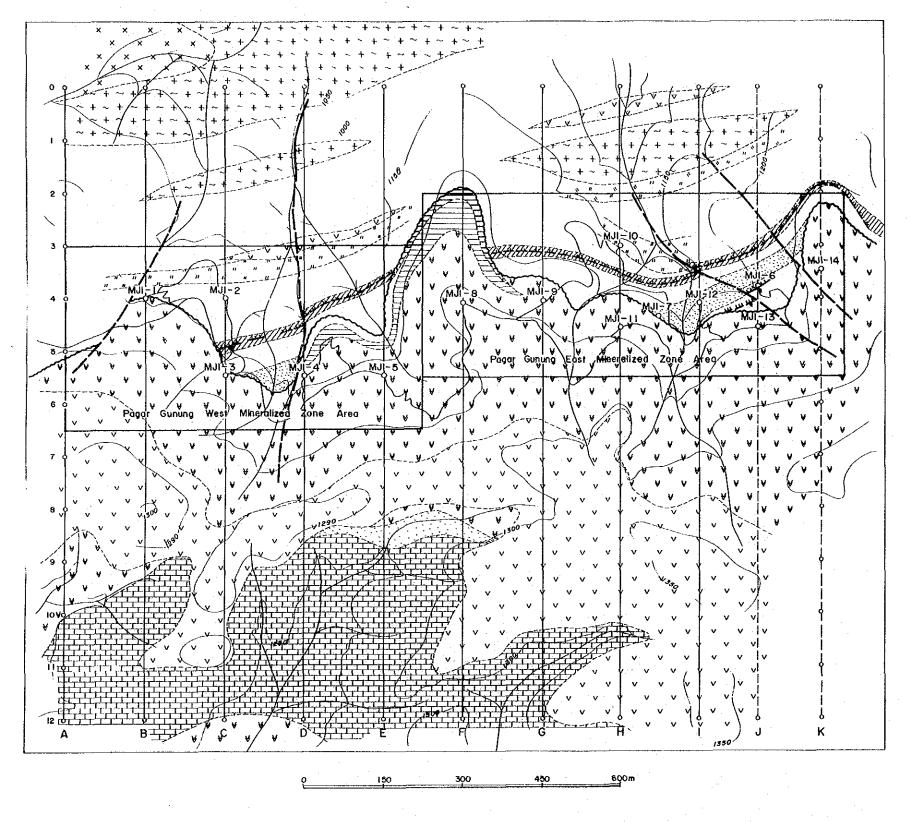
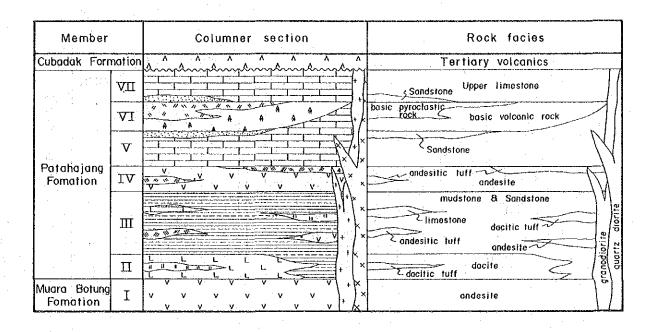



Fig. 4-1 Geological Map of Pagar Gunung Area

Geological	Age 8 Unit	Sedimentary Rock B. Volcanic Rock	Intrusive Rock
Tertiary Mesozoic		V V	v v v
Juras	,		X X X Tonorite
Trios	sic		+ ~ + Granodiorite
······································	Upper Limeston	shale, sandstone	
Paleozoic Permian	Member (VII)	Limestone	
Carboni — ferous (Patoha — jang	Basic Volcanic Rock Member (VI)	Basic Volcanic Rock sandstone, shale	
Format- ion)	Lower Limestone Member Andesite Member (IV)	Limestone	
·	Sedimentary Rock & Pyroclastic Rock Member (12)	Docite tuff Andesite tuff Limestone Sondstone & shale	V V Andesite

ţ	SIP S	urva v
Ļ		O Drill Hole
طنينا	Outcrop	(Ore) Foult
عد ال اسلا	Infered	Ore Zone Thrust faul
	Pagar	Gunung West Mineralized Zone
	- 1	Adit I
	2	Adit 2
	3	Adit 3
	e	Adit 6
	Pogar	Gunung East Mineralized Zone
	A	Outcrop A
	_	a B

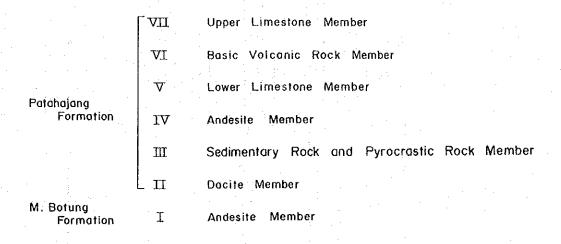


Fig. 4-2 Generalized Stratigraphy in Pagar Gunung-Patahajang Area

					Mylonite Dio Dio
Rock Facies	Basic Volcanic Rock Sandstone Shale Himestone Calcareous rock Shale	Sandstone & Shale Tuff & Shale, Sandstone	Shale & Calcareous rock Tuff breccia	Tuff Siliceous Tuff	Dacite Andesite
Geological Columner Section	***		+ 11 11 11 11 11 11 11 11 11 11 11 11 11	+ + x + x + x + x + x + x + x + x + x +	+ + + + + + + + + + + + + + + + + + +
ber	anic Shale-Calcareous Shale Facies	Sandstone-Shale Facies Shale-tuff Facies	Calcareous rock- Shale Facies Siliceos rock- Tuff Facies Banded Shale Facies	Siliceous Rock- Slate-Tuff Facies	
Member	Basic Volcanic Member Letmestone thrust Sh	Sedimentary	stic rock Member		Dacite Member Andesite Member (Muara Botung Formation)

Fig. 4-3 Generalized Stratigraphy in Pagar Gunung Area

- : Ore deposit Skarn

Qz Dio : Quartz Diorite

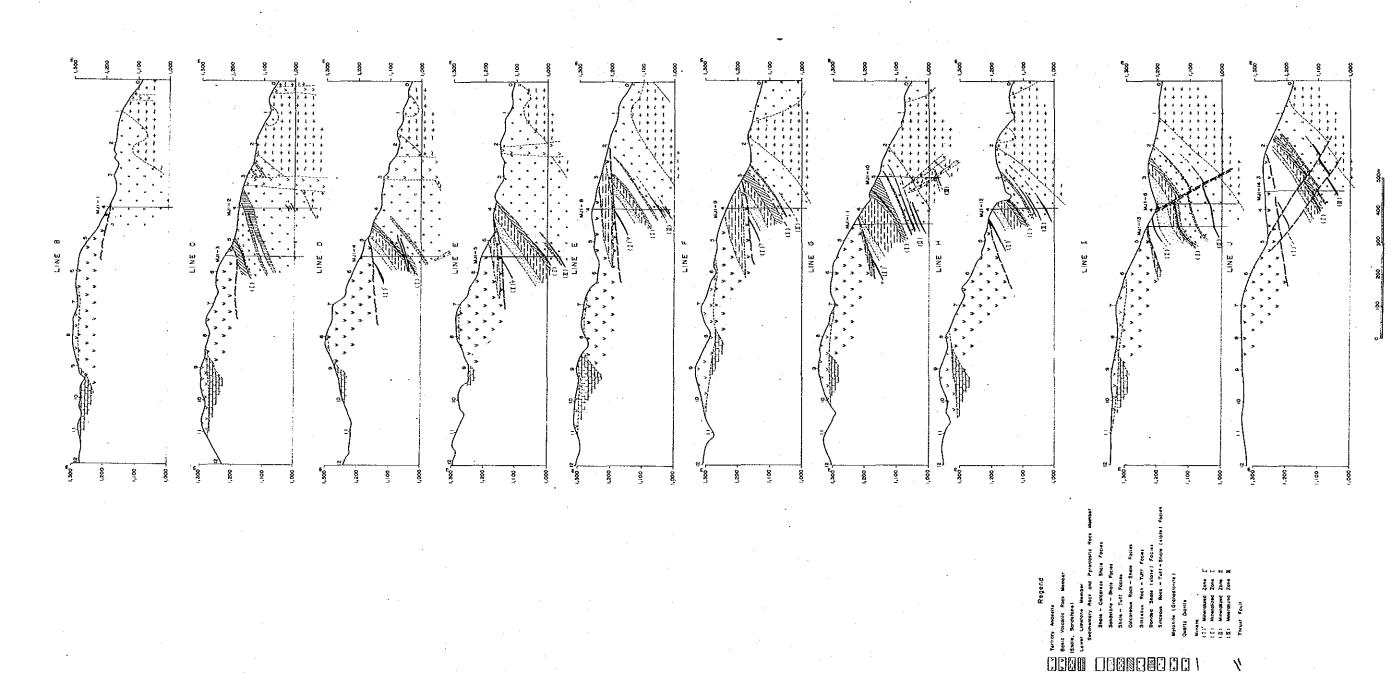


Fig. 4-4 Geological Profile of Pagar Gunung Area by Interpretation of Drilling geological Log

or disseminated pyrrhotite-pyrite ores are embaded in the skarn. Black slate increases toward the deeper part.

4-2-3 Intrusion Rock

Mylonite (granodiorite) is extensively distributed at the north part of the Pagar Gunung area, and quartz diorite/tonarite, member of Muara Sipongi granotoids, has intruded into the mylonite and Patahajang Formation. These rocks were found in only MJI-10 drilling cores through drilling survey of the third phase.

I Mylonite (granodiorite)

The rock is white massive rock distributed at 111.00 m— 182.80 m of MJI-10 drilling. Through microscopic observation, the rock is composed mainly of quartz, plagioclase and muscovite, with an association of sericite, chlorite, calcite as altered minerals. The rocks are strongly mylonitized, and it is very difficult to identify the original rock, but it is granodiorite, judging by the relict mineral and texture.

Il Quartz Diorite

The rock is distributed at 120.00 m - 127.50 m and 175.50 m - 180.00 m of MJI-10. It is porphyritic rock and is mainly composed of quartz, plagioclase, mafic mineral altered completely to chlorite (may be pyroxene in original mineral). Plagioclase has mostly undergone selicitization, and the rock has been weakly catacrastized. The quartz diorite is a member of the Muara Sipongi granitoid intruded during the Jurasic time.

4-3 Geological Structure

There is a fault clay zone of 10 m and so thickness at contact with Basic Volcanic Rock Member and Sedimentary Rock and Pyroclastic Member. Below 20 m - 30 m of the fault, rocks are usually fractured very much. The fault could be a thrust fault, and it is inferred that the basic volcanic rock is an allochthonous body.

Through geological survey of Phase second, it has been made clear that synclinal structure that trends N60°W at ridge of Pagar Gunung Mountain, and Pagar Gunung mineralization is situated at the north wing of the syncline.

Sedimentary Rock and Pyroclastic Rock Member embedde the mineralization is holocline structure striking N 80 - 90 E, dipping 30 S at Pagar Gunung Mineralization Area. The Member folds minorly by judging inclination of bedding on drilling cores varying 10° to 70° .

The drilling survey found many faults showing fault clay and fault breccia. Following faults are of a comparatively large scale:

MJI-7 from 70.50 m - 76.50 m MJI-6 from 36.00 m - 46.00 m

MJI-14 from 91.50 m - 106.00 m

from 161.00 m - 165.00 m

The fault cut mineralized zone, and displaced it. Faults strikes $N-S \sim N \, 45^{\circ} W$ judging correlation of geology of core and surface, and are normal fault dipping east.

4-4 Metamorphism and Alteration

Shale and siliceous shale distributing in Pagar Gunung area have schistosity and become hard rock at deep zone, but have not recrystalyzed. They can be called a semi-schist or slate/siliceous state. Massive siliceous rock (tuff and granodiorite) are catacratized or mylonitized and become catacrasite or mylonite. Rocks of the area have undergone regional metamorphysm under low temperature and low pressure, because of no recrystlization.

Slate and siliceous slate intercalating in Basic Volcanic rock have characteristically kink band texture. At Pasaman area, located at 20 km south from Pagar Gunung area, there are com-

monly many clear kink bands in slate of Woyla Croup. (report of first phase). This area is an ophyolite area, exposing ultrabasic rock (hartzburgite). It is necessary to study the comparison between Pagar Gunung Basic Volcanic Rock which is regarded as allochthonous body and Pasaman ultrabasic rock.

Alteration associating with mineralization is commonly called skarnization. But it is different in mineralization type, namely epidote-clinopyroxene skarn accompany by galena-sphalerite ore deposit and epidote-garnet skarn associated with pyrrhotite-pyrite ore deposit. Neighbouring rock of the latter ore or skarn has a broadly spoted epidote or epidote veinlet, and has undergone extensive silicification, while the adjacent rock of the former is not strongly alterated.

4-5 Mineralization

4-5-1 Outline of Mineralization

A drilling survey revealed the emplacement condition, grade, relationship of the geological condition and igneous activity on Pagar Gunungs silver bearing leadzinc and new deposits. These mineralizations are embeded in Sedimentary Rock and Pyroclastic Rock Member of Patahajang Formation, and are skarn type ore deposit replaced calcareous layer in the Member. These mineralizations are grouped in four mineralization zoned based on the geological horizon, namely Mineralized Zone I', Mineralized Zone I, Mineralized Zone III, from upper zone. (Fig. 4-5)

4-5-2 Mineralized Zone I'

The mineralization has been found when the drilling site of MJI-6 drilling was being constructed. Porous limonitized outcrop (strike N 90°E dip 40°S width 0.80 cm) exposes at upper-stream of Palelo River. Its position is located at 70 m upper of ready-known Pagar Gunung Mineralization (outcrop B). The mineralization is embeded in shale-calcareous shale facies (I), replacing a calcareous tayer.

MJI-14 drilling, locating at 130 m east from NJI-6 drilling site, detected the ore in the thrust fault between Basic Borcanic Rock Member and Sedimentary Rock and Pyroclastic Rock Member as drag ore.

MJI-13 drilling also found good ore consisting of chalcopyrite, galenas phalerite and pyrite from 23.10 m to 24.20 m. The ore is 80 m downwards extention of the outcrop.

Through microscopic observation, sphalerite is composed mainly of sphalerite, with subordinate amounts of galena, chalcopyrite and pyrite. Chalcopyrite is included as exsolution lamelaes or dots in sphalerite. The ore paragenesis is similar to ore of Mineralizes Zone I.

Content of gold grade in the ores are 0.4 g/t and 1.6 g/t, and this gold grade ore is higher than other mineralizations.

4-5-3 Mineralized Zone I

Mineralized Zone I is known Pagar Gunung West and East Mineralization and can be traced following outcrops and old adits. In has been found that the mineralized zone extended 1,200 m with thick and thin width, is good and poor in grade. Emplacement condition (thickness and grade) of the mineralizations changes very much along the west to east extention. Among the drillings, MJI-9, MJI-12 detected good ore. MJI-7, MJI-6 and MJI-14 found weak mineralization and MJI-8 failed to find any ore.

Fig. 4-6 ilustrates the emplacement condition of mineralization in the calcareous rock-shale.



Fig. 4-5 Correlation of Drilling Geology and Mineralized Zone

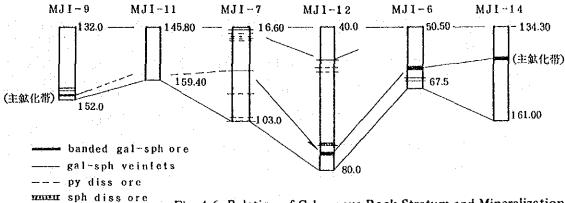


Fig. 4-6 Relation of Calcareous Rock Stratum and Mineralization of the Mineralization Zone I

Ore minerals containing in the main banded mineralization are sphalerite, galena, chalcopyrite, pyrite, pyrite, Exsolution dots and lamellas of pyrrhotite and chalcopyrite exist in sphalerite. Sphalerite and galena bearing veinlets and dissemination ores are emplaced at the upper part from main mineralization. Marcasite is observed as a secondary mineral altered from pyrite. Based on microscopic observation of ores, paragenesis of the ores is shown in Figure 4-7.

		Early stage		Later stage					
chalcopyrite galena sphalerite			-						_
pyrrhotite	-	-			1		S.,		
pyrite				-					_

Fig. 4-7 Paragenesis for Pagar Gunung Mineralization

Skarn mineral, epidote and clinopyroxene (hedenburgite) accompanies the rich part of the mineralization (example NJI-9 and MJI-12), but the poor part of the mineralization (example MJI-14), occurs as sericitization instead of skarn mineral. In 1,200 m extention of the mineralization zone, center part (MJI-7 and MUI-12) is higher than the end part, as shown in Table 4-2.

Table 4-2 Variation of the Ag, Cu, Pb, Zn Contents and Ratio of Cu/Pb+Zn and Zn/Pb

•	West MJI-3	MJ1-4	MJI-5	МЛ-9	МЈІ-7	МЛ-12	мл-6	East 1JI-14
Wd cm	50	100	220	100	20	100	100 7	0
Ag g/t	62.0	42.0	27.7	164.6	1.9	23.9	20.3 1	2.0
Cu %	0.14	0.30	0.44	0.82	0.03	0.48	80.0	0.04
Рь %	3.44	2.50	0.24	1.69	0.11	0.03	1.60	1.59
Zn %	1.29	4.48	4.02	7.52	3.65	7.56	2.50	1.47
Zn/Pb	0.38	. 1.80	4.17	4.45	33.18	146.30	1.56	0.92
Cu/Zn + Pb	0.03	0.04	0.13	0.09	0.01	0.06	0.02	0.01

4-5-4 Mineralized Zone II

A layer is situated just on the Banded shale facies (VI), but most mineralized layers are emplaced in Siliseous Rock-Tuff Facies (VII). MJI-12 drilling found many of the mineralized layers, acounting 13 layers, among 9 holes, and in detail Mineralization Zone II can be divided into 6 sub zones, standardizing layers of MJI-12, as shown in Fig. 4-8.

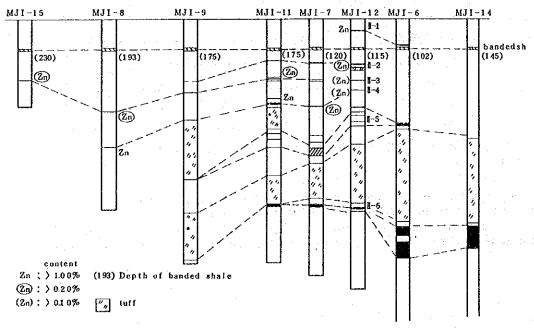


Fig. 4-8 Horizone of the Mineralization Zone II

These mineralizations consist of mainly pyrite and pyrrhotite, and have a banded ore dissemination texture. Mineralization is embeded in calcareous layers intercalating in siliceous slate or sandstone as skarn type ore deposits. Skarn minerals are epidote, calcite and grnet (grandite). The mineralization contains often some sphalerite. For example, ore at 195.15 m - 195.40 m (II-4 sub zone) of MJI-11 contains 6.94% of Zn, and ore at 184.00 m - 184.10 m (II-3 sub zone) of MJI-11 contains 1.39% of Zn, but zinc content grade is generally very low ranging 0.90% to

0.20%. Very wide mineralization layers of sub zone II-5 and sub-zone II-6 were detected by MJI-11, MJI-7, MJI-12, MJI-13 and MJI-14 (Maximum width; $9.00~\mathrm{m}-\mathrm{MJI-14}$), but they have very low zinc content, less than 0.10%.

Mineralization sub zone II-5 and II-6 consist of more pyrite than pyrrhotite, comparing it with the upper sub-zone. Then Mineralization Zone II has a tendency to increase sphalerite and pyrrhotite in its upper sub-zone, on the contrary pyrite increases at the lower sub-zone.

At 54.30 m - 54.75 m of MJI-10, targeting the mineralized zone, massive-banded pyrite ore has been detected. The ore is correlative with outcrop A of Palelo River, and also Mineralized sub zone II-2 - 4. Difference of composition of ore, namely pyrrhotite and pyrite ratio, is changed not only in a deep direction but also in a horizontal direction, considering differences of skarnization.

4-5-5 Mineralized Zone III

Massive pyrite ore is emplaced at 189.80 m - 190.40 m of MJI-10. The ore is situated at 100 m below from Mineralization zone II. There are few epidote skarns, but mineralization part has undergone white argillization (sericite and so on). Only pyrite is the main constituent ore mineral, and no other mineral is observed through a microscopic test.

4-5-6 Summary of Mineralization

Elucidation points on the Pagar Gunung Mineralization by a drilling survey are summarized as follows:

- (a) Pagar Gunung Mineralization is skarn type ore deposit which selectively replaced calcareous shale or calcareous sandstone layer in Sedimentary rock and Pyroclastic rock Member, Patahajang Formation.
- (b) It has been made clear by the drilling survey that there have been several mineralized zones in Pagar Gunung Area. These mineralized Zones are grouped in to four mineralized zones, namely Mineralized Zone I', Mineralized Zone I, Mineralized Zone II and Mineralized Zone III, Mineralized Zone II consists of six sub-zones.
- (c) Mineralized Zone I' and I are silver bearing lead-zinc mineralization, and they are accompanied by epidote-clynopyroxene skarn.
- (d) Mineralized Zone I' was newly found by the drilling survey (MJI-13 and MJI-14), and is situated at 70 m upper horizon of Mineralized Zone I. The ore encountered at 23.10 m 24.20 m of MJI-13 has grade of Au 0.4 g/t, Ag 195.0 g/t, Cu 1.25%, Pb 1.31% and Zn p.85%. Drag ore in thrust fault at 36 m ~ 40 m of MJI-14 has grade of Au 1.60 g/t. These gold grades are higher than Mineralized Zone I which has a grade of gold less than 0.1 g/t.
- (e) Mineralized Zone I extends 1,200 m in an east-west direction, forming alternately rich zones and poor zones. Richest part of the zone at 141.65 m 142.35 m of MJI-9 has 136 g/t of Ag, C.82% of Cu, 1.69% of Pb and 7.52% of Zn, and poorest part at 141.65 m 142.35 m of MJI-14 has grade of Ag 12.0 g/t, Cu 0.04% Pb 1.59% and Zn 1.47%.
- (f) Mineralized Zone II consists of six mineralised sub-zones. Upper sub-zone contains some zinc, but its grade is not exciting in value ranging from 1.00% to 0.20%. The sub-zone of lower horizon is oppositely sulphide iron mineralized zone without copper, lead and zinc. Epidote skarn contains garnet (grandite) at sub-zone II-5 or II-6. In the horizon there is strong barren epidote zone, in contrast to mineralized zone I. Namely the zone I has not skarn minerals at poor mineralized zones, while the zone II has still strong skarn at poor mineralized zones.
- (g) Mineralized Zone III

 Massive pyrite ore is embedded in sericitized tuffaceous rock without skarn minerals. The mineralized zone was detected by only MJI-10 drilling.

4-6 Correlation of Geochemical Survey Results and Drilling Survey Results

A geochemical survey which was carried out along the survey line of geophysical survey in

the second phase and obtained good anomalous area indicating by grade of Cu 91 ppm, Pb 120 ppm and Zn 360 ppm. The anomalous area coincides with mineralized-zone infered by the results of the drilling survey. Geochemical survey results showed that discontinuity of anomalous zones of a geochemical survey exists at conected points of West and East mineralized zones, namely F $2 \sim 5$ (geophysical survey line and MJI-8 drilling site). The part is covered by a basic volcanic rock which is no a mineralized body, and also proved no mineralized part by drilling of MJI-8. It is very clear that the both geochemical results and the drilling results coincide on the discontinuity of Mineralized zones. (Fig. 4-9)

4-7 Interpretation of SIP and Drilling Results

Drilling survey targeted Spectral I P anomalies on the survey lines (F, G, H, I,) in the third phase, and reinterpretation of relation between SIP and drilling survey results was done. (Fig. 4-10)

Fig. 4-12 shows frequency effect (P.F.E. 0.125 - 1.0 hz) of F.G.H.I. survey lines, and Fig.

4-13 shows apparent Registivity (0.125 hz) of F.G.H.I. survey lines.

Frequency Effects on G.H.I. lines show that anomaly pattern is derived from origin distributing at No. 3 point – No. 4 point, and anomaly pattern on F line at No. 1 point – No. 2 point.

These anomalies coincide with mineralization, showing in Fig. 4-11.

Low apparent resistivity area coincides with the anomaly of Frequency Effect, and also ore area/ore disseminated area shows low apperent registivity. For example, Frequency Effect anomaly and 60-80 ohm-m of apparent registivity of MJI-10 (H line) are considered to be the reflection of pyrite dissemination zone, and Frequency Effect anomaly and low apparent registivity of 20-40 ohm-m on MJI-12 (I line) also coincide with dissemination zone and banded sulphide ore part.

Following three types of phase spectrum were observed by the geophysical survey

- (1) phase difference is large at low frequency range (higher harmonics of 0.125 Hz), and almost constant when frequency varies.
- (2) phase difference is large at low frequency range higher harmonics of 0.125 Hz, and it decreases when frequency increases.
- (3) phase difference is small at low frequency range higher harmonics of 0.125 Hz case 1 and 2 show anomaly of phase difference, but their spectral shape are slightly different.

Physical property measurement of sample revealed that phase spectrum of ore sample and pyrite disseminated sample has a tendency to decrease when frequency increases. It was interesting that if the phenomenon would be observed at field survey. At F survey line, large phase difference is shown at low frequency range, and the phase decreases when frequency increases. It is inferred that it is reflected strong pyrite dissemination in MJI-8 drilling. On the other hand, at H survey line, phase difference is larger than the case of F survey line, and phase spectrum is flat and weak pyritization difference. But at I survey line, there is massive banded ore zone (MJI-12) and phase is large, and resistivity is small, but phase spectrum shows flat shape. Fowever between No. 3 and No. 4 (only one point) at I line, there is a very sharp decrease of phase difference. It may be the reflection of local low resistivity anomaly and strong mineralized zone.

4-8 Evaluation of Mineralized Zone

4-8-1 Ore Reserve

The drilling survey in the second and third phases found two type mineralized zones, namely silver bearing lead-zinc ore deposit (Mineralized Zone I' and Mineralized Zone I) and (sphalerite) phrrhotite-pyrite ore deposit (Mineralized Zone II and Mineralized Zone III).

Control of the Contro

Pyrrhotite-pyrite ore deposit has many mineralized sub-zones ranging 0.10 m to 9.00 m in their thickness, but they are generally very low grade ores of less than 1.00% of Zn. Accordingly,

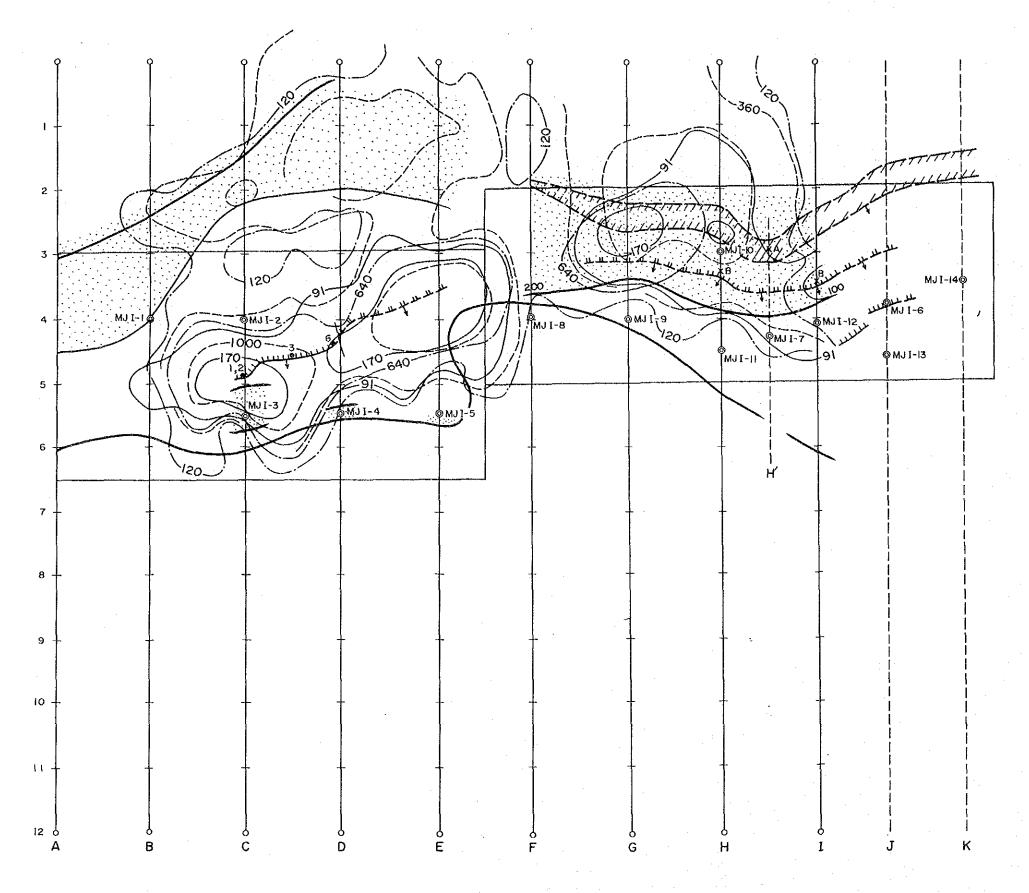


Fig. 4-9 Generalized Map of Geochemical Anomalies, Geophysical Anomalies and Drilling Result

LEGEND

Adit X Outcrop

Ore zone I

Ore zone traced adit-outcrop

Ore zone inferred by drilling result

Ore zone II

ZZZZZZ Ore zone traced outcrop

TOTAL Ore zone inferred by drilling result

Spectoral IP anomaly

IP anomalous zone

(100: Depth to top of the surface)

Low Resistivity zone in meter (less than IOOm)

Geochemical Anomaly

Cu o

Pb ppm (م

ر_{جم}ي Zn ppr

 Θ Hole drilled (MJI - I \sim MJI - 5 ; second phase)

(MJI-6 ~ MJI-14 : third phase)

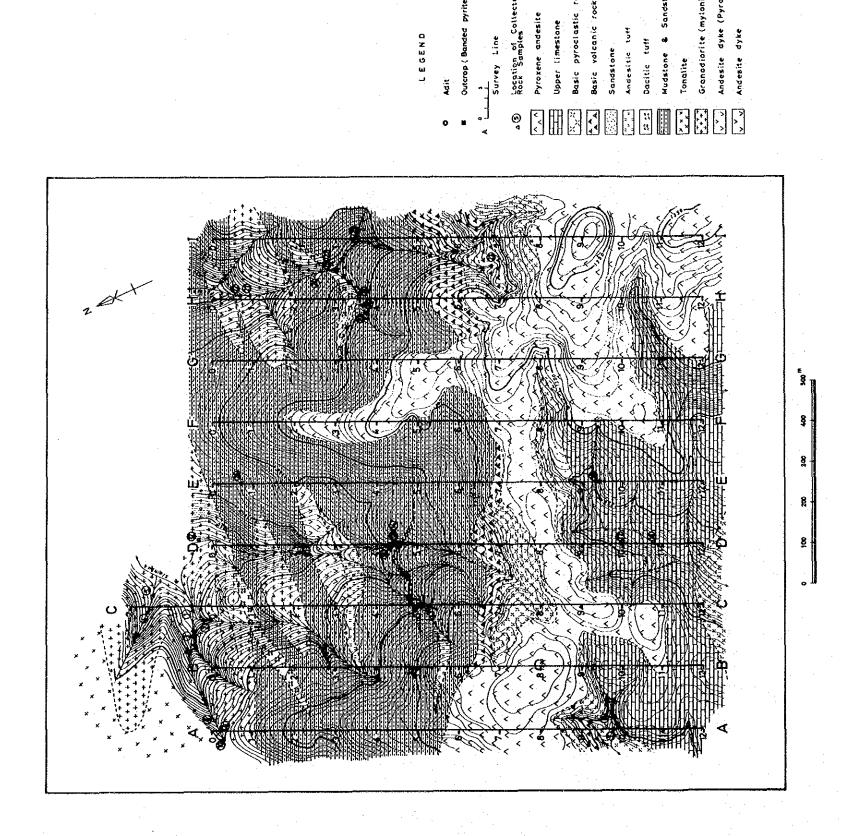


Fig. 4-10 Location Map of Spectral IP Survey Lines

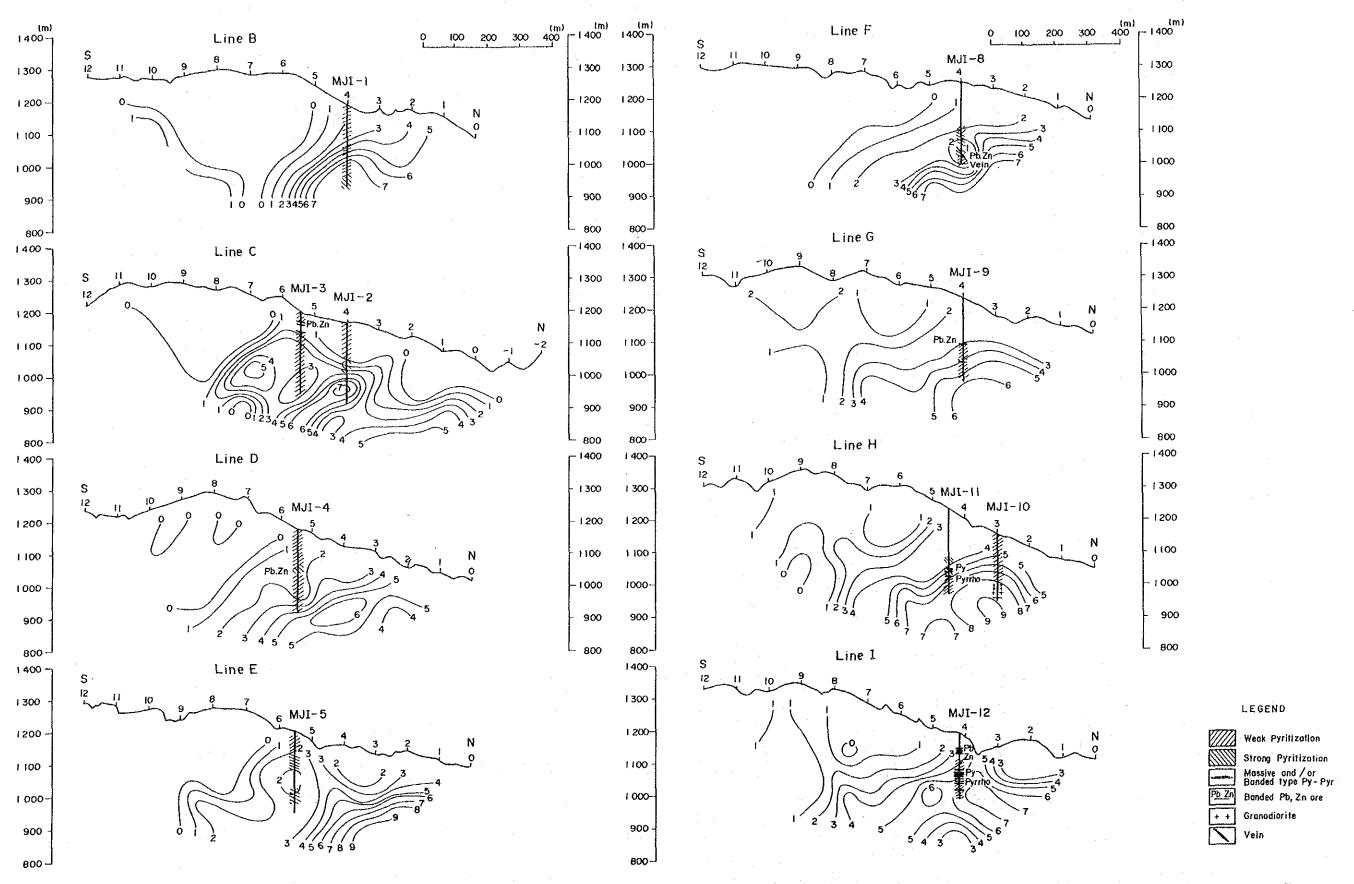


Fig. 4-11 Spectral IP Pseudo-Section Percent Frequency Effect (0.125 - 1.0 Hz) (Line F, G, H, I)

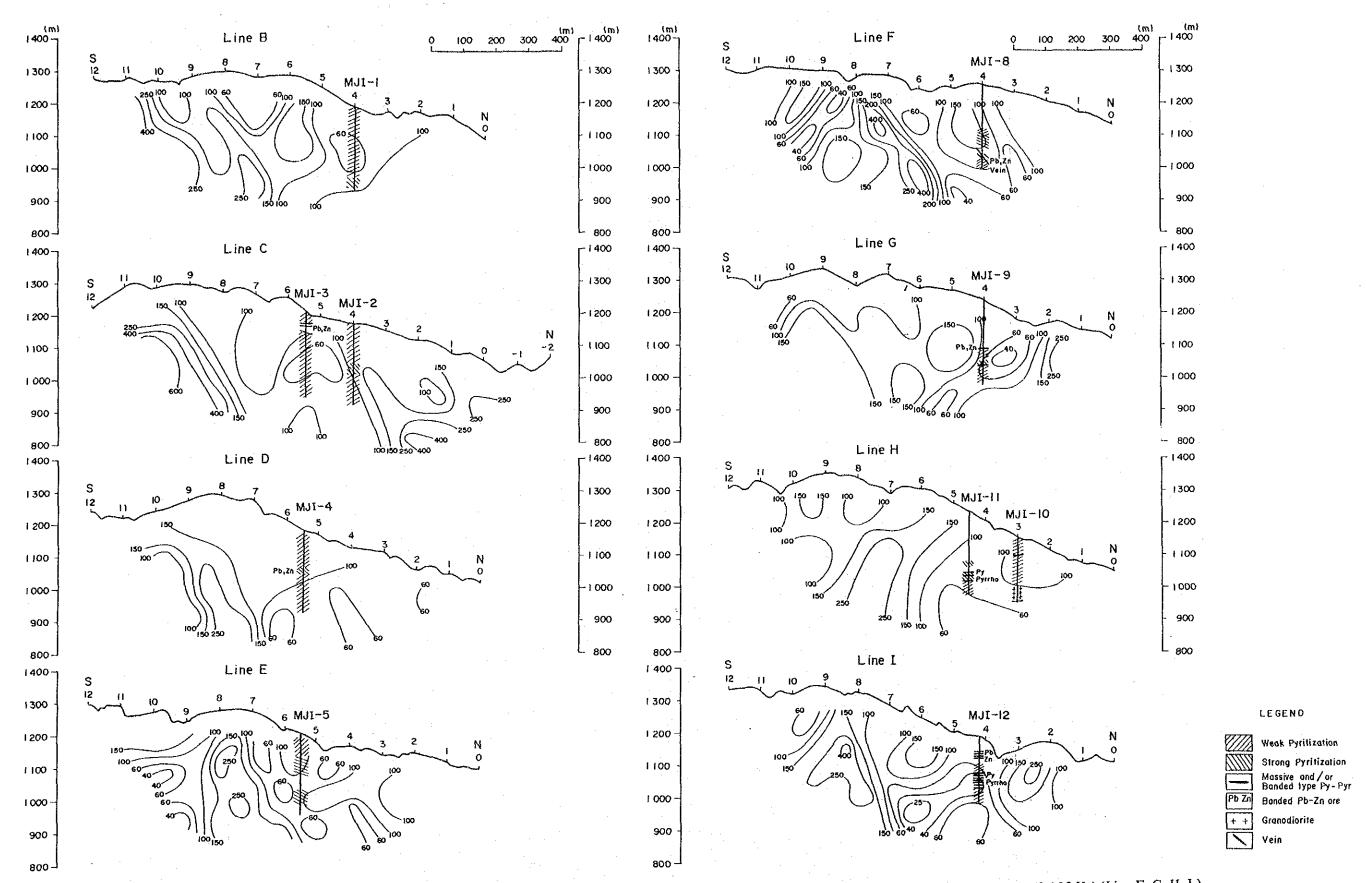


Fig. 4-12 Spectral IP Pseudo-Section Apparent Resistivity (0.125 Hz) (Line F, G, H, I,)

a possible ore reserve is calculated on Mineralized Zone I' and Mineralized Zone I, based on the following conditions:

- (1) In consideration of relation with outcrop and ores of the drilling survey as shown in Fig. 4-13, it is inferred that ore shoot plunges 45° toward east, and ore block is drawn.
- (2) Boundary of ore block is at the settled center point of the neighboring drill hole's ores.
- (3) Width, grade of ore block is based on sampled ore's data from the drilling core.
- (4) Bottom of ore block is limited at 1,000 m s,l..
- (5) Mineralized zones change alternately with the rich part and the poor part along to their extention; then the probability of their existence of ore is estimated a 80%.
- (6) True width of ore and true square of ore block are calculated based on that of the mineralized zone generally inclined 30°S.
- (7) Specific gravity of ore is estimated at 3.5.

Possible ore reserve is calculated 800,000 t, mean width 0.88 m, silver 68 g/t, copper 0.45% lead 1.20% and zinc 4.5%. (Table 4-3)

4-8-2 The point Aimed at A Future Survey

Pagar Gunung ore deposit is skarn type deposit which has selectively replaced calcareous shale bed. But calcareous bed of Argillanceous Rock Predominance facies is found to the embeded lead-zinc ore rather than Siliceous Rock and Pyroclastic Rock Facies. When the survey targets lead-zinc ore deposit at an area from Pagar Gunung to Patahajang, it is recommended that the survey traces calcareous beds in Argillaceous Rock Predominance Facies.

Fig. 4-13 Possible Ore Reserve of Pagar Gunung Mineralization Zone

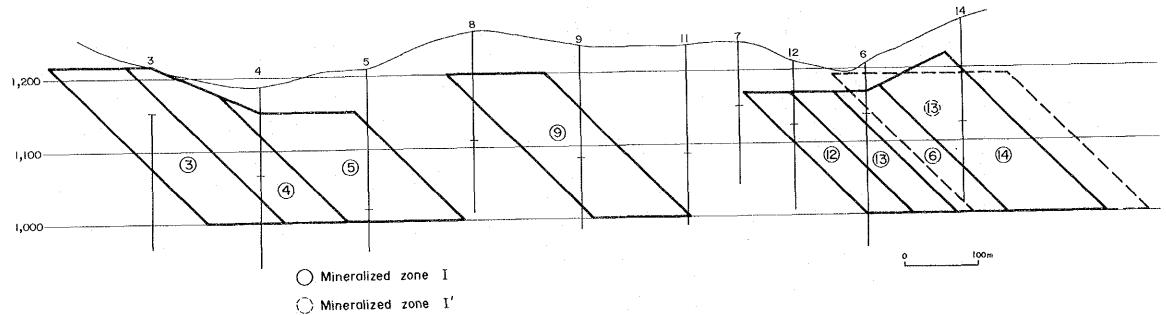


Table 4-3 Calculation of Possible Ore Reserve of Pagar Gunung Mineralization Zone

Square	(M ²)	Thickness (M)		Volume M ³	en or	Ore Tons (t)	Ag		Cu		Pb		, Zn		
Drill No.	projected	real (x2)	drilled	true (x0.87)	VOIGING M	sp. gr.	sp. gr. Ore Tons (t)	g/t	kg	%	t	%	t	%	ţ.
3	22,575	45,150	0.60	0.52	23,478	3.5	82,173	62.0	5,094,726	0.14	115,042	3.44	2,826,751	1.29	1,060,032
4	17,275	34,550	0.60	0.52	17,966	3.5	62,881	42.0	2,641,002	0.30	188,643	2.50	1,572,025	4.48	2,817,069
5	25,000	50,000	2.20	1.91	95,500	3.5	334,250	27.7	9,258,725	0.28	935,900	0.17	568,225	3.73	12,467,525
9	26,000	52,000	1.00	0.87	45,240	3.5	158,340	164.6	26,062,764	0.82	1,298,388	1.69	2,675,946	7.52	11,907,168
12	10,496	20,992	1.00	0.87	18,263	3.5	63,921	23.9	1,527,712	0.48	306,821	0.03	19,176	7.56	4,832,428
13	9,840	19,680	0.45	0.39	7,675	3.5	26,863	94.0	2,525,122	1.07	287,434	0.39	104,766	2.70	725,301
6	10,904	21,808	1.10	0.96	20,936	3.5	73,276	20.4	1,494,830	0.08	58,621	1.60	1,172,416	2.47	1,809,917
14	28,560	57,120	0.70	0.61	34,843	3.5	121,951	12.0	1,463,412	0.04	48,780	1.59	1,939,021	1 47	1,792,680
13 (1')	15,000	30,000	1.10	0.96	28,800	3.5	100,800	195.0	19,656,000	1.25	1,260,000	1.31	1,320,480	9.85	9,928,800
<u> </u>	<u></u>		I ,	<u> </u>	Total		1,024,455	68.1	69,724,293	0.44	4,499,629	1.19	12,198,806	4.62	47,340,920

Possible Ore Reserve = 1,024,455 $^{\rm t}$ x 80% (Existent Ratio) = 819,564 $^{\rm t}$ (Mean Thickness 0.88 m)

CHAPTER 5 CONCLUSION AND RECOMMENDATION FOR THE FUTURE

5-1 Conclusion

The results of the Drilling survey in exploring east mineralized zones of Pagar Gunung area are concluded as follows;

- 1. Geology of Pagar Gunung area consists of Sedimentary Rock and Pyroclastic Rock Member, belonging to the Patahajang Formation of the Permian and the Carboniferous. Drilling survey has elucidated rock facies of the Member in detail. The Member is divided into Argillaceous Rock Predominance Facies and Siliceous Rock-Pyroclastic Rock Predominance Facies.
- 2. Many mineralized zones where found through the drilling survey, and are grouped in the following mineralized zones;

Mineralized Zone	Emplacement Horizon	Ore Mineral and Skarn Mineral			
Mineralized Zone I'	Argillaceous Rock Predominance Facies (20 m)	gold and silver bearing chalcopyrite-galena-sphalerite-ore epidote (clinopyroxene)			
Mineralized Zone I	ditto (10 m ~ 30 m)	silver bearing (chalcopyrite)- galena-sphalerite ore epidote, clinopyloxene			
Mineralized Zone II (consisting of 6 sub-Zones)	Siliceous Rock-Pyro- clastic Rock Predominance facies (30 m ~ 60 m)	(sphalerite) pyrrhotite-pyrite ore. upper sub-Zone contains sphalerite, spidote, garnet (clinopyroxene)			
Mineralized Zone III	ditto (10 m)	pyrite, sericitization, (weak skarnization)			

): Thickness of Emplacement Horizone.

- 3. Mineralized Zone I'. was newly found through drilling survey, and is situated at 70 m upper horizon of Fineralized Zone I. Ore grade at Mji-13 is of width 11C cm, Au 0.4 g/t, Ag 195.0 g/t, Cu 1.25%, Pb 1.31% and 9.98%.
- 4. Mineralized Zone I is ready-known as Pagar Gunung Mineralized Zone having outcrop and old adits. The silver bearing lead-zinc mineralized zone will extend were east-west direction with 1,200 m extention, becoming alternately a rich and a poor part. The ore grades of the East Mineralization Zone detected by a drilling survey of the year are as follows;

The zone is accompanies by an epidote-clinopyroxene skarn with ore minerals at rich mineralized parts, but has undergone sericitization instead of skarnization at poor mineralized parts.

Drilling Hole	Depth (m)	Width (m)	Ag g/t	Cu %	Pb %	Zn %
МЈ1-9	150.40 — 151.40	1.00	164.6	0.82	1.69	9.52
MJI-12	75.10 76.10	1.00	23.9	0.48	0.02	7.56
МЈІ-6	61.70 - 62.70	1.00	20.3	0.08	1.60	2.67
МЛ-14	141.65 - 142.35	0.70	12.0	0.04	1.59	1.47

- 5. Mineralized Zone II is embeded in Siliceous Rock-Pyroclastic Rock Predominance Facies, and is grouped in six sub Zones. The mineralized Zones consist mainly of pyrrhotite, pyrite, associating with epidote-garnet skarn. Upper sub-zones contain often sphalerite, but its grade ranges 1.00% to 0.20%.
- 6. Based on the chemical analysis of ores, a possible ore reserve is expected 800,000 t, mean thickness 0.88 m Ag 68 g/t, Cu 0.45%, Pb 1.20% and Zn 4.60%.
- 7. Pagar Gunung Mineralized Zone are of a skarn ore deposit, but they have replaced a selectively calcareous shale bed and are under structural control like stratabound.

5-2 Recommendation for the Future

Cooperative Mineral Exploration Survey in Northern Sumatra was completed in this year. Concerning the Pagar Gunung area, the following survey is recommendable for the future based on the results of the drilling surveys on Pagar Gunung Area;

- 1. Continuation of a drilling survey to explare east and west extention of Pagar Gunung silver bearing lead-zinc ore deposit, especially on Mineralized Zone I'.
- 2. For the area between Pagar Gunung mineralized zone to Patahajang area (6 km extention) execution of geophysical, geochemical and a drilling survey are recommendable, especially the tracing calcareous shale beds in Argilaceous Rock-pyroclastic Rock facies.

REFERENCE

Geology and Geochemistry

- 1. Aoki K. (1978); Petrology of Upper Mantle, Igneous Rock and its Genesis, Chikyu Kagaku (Geoscience) Vol. 3 41 86 (Iwanami Shoten) (in Japanese)
- 2. Aramaki S. et al (1972); Chemical Composition of Japanese Granites Part 2 Variation Trends and Average Composition. Jour. Gel. Soc. of Japan Vol. 78, No. 1, p.39 – 49
- 3. Aramaki S. (1978); Origine of Felsic Magma Igneous and its Genesis, Chikyu Kagaku (Geoscience) Vol. 3 138 150 (Iwanami Shoten) (in Japanese)
- 4. Bemmelen R. W. (1970); Geology of Indonesia 2 vols, Martinus Nijinhoff The Hague (2nd ed.)
- 5. Ben-Avraham, Z. (1978); The Evolution of Marginal Basin and Adjacent Shelves in East and South Asia, Tectonophysics 45, p.269 288
- 6. Cameron N. R. et al (1980; The Geological Evolution of Northern Sumatra, Ninth Indonesian Petroleum Association Convention
- 7. Clark M. C. G. et al (1982); Geological Map of the Pematangsiantar Quadrangle Sumatra (1/250,000)

 Geological Research and Development Center, Indonesia
- 8. Clark M. C. G. & Surjono (1982); Primary Tungsten Occurences in Sumatra and the Indonesian Tin Islands, Bull. Directorate of Mineral Resources Indonesia No. 5 bul. Vol. 1
- 9. Coleman R. L. (1977); Ophiolite, Springer Verlag, Berlin
- 10. Dickey J. S. Jr. (1975); A Hypothesis of Origin for Podiform Chromite Deposits, Geoch. et Cosmochim. Vol. 39 1061 1074
- 11. Finaudi M.T. and Burt D.M. (1982); Introduction-Terminology, Classification and Composition of Skarn Deposits (A Special Issue Devoted to Skarn Deposits), Econ. Geol. vol. 77 No. 4, 745 754
- 12. Geochemical Study Group (1975); Hand Book of Geochemical Exploration (in Japanese)
 Mining and Metallugical Institute of Japan
- Haan W. De (1921); Herinneringen aan mijnbouwkundig exploratiewerk in het Zuiden der Residentie Tapanoeli.
 Geol. Mijinb. Gen., Mijinb. Serie, Vol. I 1912 – 1221, 229 – 296.
- 14. Hamilton W. (1978); Tectonic Map of the Indonesian Region United State Geological Survey
- 15. Hamilton W, (1979); Tectonics of the Indonesia Region, USGS Prof. Rep. 1078
- Hoskins K. F. G (1979); Tin Distribution Patterns, Geol. Soc. Malaysia, Bull. Vol. 11 Dec. 1 – 70
- 17. Hutchison C. S. (1973); Tectonic Evolution of Sundaland: A Phanerozoic Synthesis Geol. Soc. Malaysia, Bulletin 6, July, p.61 86
- 18. Hutchison C. S. (1975); Ophiolite in South Asia, Bulletin of Geological Society of America, Vol. 86, 797 806
- 19. Ishihara, S. (1977); The Magnetite-series and Ilmenite-series Granitic Rocks, Mining Geology 27, No. 145, p.293 305
- Ishihara S. et al (1979); The Magnetite-series and Ilmenite-series Granitoids and Their Bearing of Tin Mineralization Particularly of the Malay Peninsular region, Geol. Soc. Malaysia Bull. Vol. 11, Dec. 103 — 110
- 21. Ishihara, S. et al (1980); grainites and Sn-W Deposites of Peninsular Thailand, Mining Geology Special Issue No. 8
- 22. IUGS (1973); Plutonic Rocks, Classification and Nomenclature Recommended by the

- IUGS, Subcommission on the Systematics of Igneous Rocks. Geotimes Oct. 1973.
- 23. Katili J.A. (1967); On the Occurrence of Large Transcurrent Fault in Sumatra, Indonesia, Jour. of Geoscience, Osaka City University Vol. 10 Art 1 15 17
- 24. Katili J.A. (1969); Permian Volcanism and its Relation to the Tectonic Development of Sumatra, Bull. Volcanologique XXXIII-2, p.530 540
- 25. Katili J.A. (1970); Naplet Structure and Transcurrent Faults in Sumatra, Bull. National Institute of Geology and Mining Bandung vol. 3 No. 1 11 28
- 26. Katili J.A. (1973); Geochronology of West Indonesia and its Implication on Late Techtonics Tectonophysics 19, p.195 212
- 27. Katili, J.A. (1973); Plate Tectonics and its Significance in the Search Mineral Deposits in Western Indonesia, CCOP Technical Bulletin Vol. 7
- 28. Katili, J.A. and Hartono, H. M. S. (1979); Van Bemmelen Contributions to the Growth of Geotechnics and the Present State of Earth-Science Research in Indonesia, Geologie Mijinbouw Vol. 58 (2), p.107 116
- 29. Katili, J.A. (1981); Geology of South Asia with Paticular Reference to the South China Sea, Bull. of the Geological Research and Development Center of Indonesia No. 4, March 1981, p.1 12
- Klompe H.F., Katili J.A., Johannas and Soekendar (1961); Late Paleozoic Volcanic Activity in The Sunda Land Area, Pacific Sci. Cong. 9th Bangkok 1975 Proc. v 12 204 – 216
- 31. Mitchell A. H. G. (1979); Rift-Subduction-and Collision-Related Tin Belts, Geol. Soc. Malaysia, Bull. Vol. 11, Dec. p.81 102
- 32. Mori T. and Banno S. (1973); Petrology of Periodotite and Garnet Clinopyroxenite of Mt. Higashi Akaishi Mass, Central Shikoku, Japan (Subsolidus Relation of Anhydrous Phase, Contr. Mineral & Petrol. 41 301 323
- 33. OMRDC (1971); Summary Report on the Survey of Sumatra No. 5 Block (unpublished).
- 34. Page B. G. N. (1981); The Serpentinites of Northern Sumatra, Bull. Directorate of Mineral Resources Indonesia No. 3 Vol. 1 103 113
- 35. Prime, H. N. A. et al (1975); Isotope Geochronology in the Indonesian Tin Belt, Geol. Mijinbouw 54, p.61 70
- 36. Rock N. M. S., A. Djunuddin and et al (1980); Geology of the Natal Teluk Dalam (Part) Ouadrangles, DMR/IGS Northern Sumatra Project (unpublish)
- Rocksalagora, W. and Djumhani (1971); Metallic Mineral Deposits of Indonesia, XII Pacific Science Congress
- 38. Silitonga P. H., Kastowo (1975); Geological Map of Solok Quadrangle, Sumatra Direktorat Geologi, Indonesia
- Takahashi, M. and et el (1980); Magnetite Series/Ilmenite Series vs I-Type/S-Type
 Granitoids,
 Mining Geology Special Issue No. 8
- 40. Taylor D. and Hutchison C. C. (1978); Pattern of Mineralization in Sourth Asia. Their Relationship to Broad Scale Geological Features and the Relevance of Plate Tectonics Concepts to their Understanding. Eleventh Commonwealth Mining and Metallurgical Congress
- 41. Tsusue, A. and Ishihara, S. (1974); The Iron-Titanium Oxide in the Granitic Rocks of Southwest Japan
 Mining Geology, Vol. 24, p.13 30

Geophysical Survey

42. J.S. Summer (1976); Principles of Induced Polarization for Geophysical Exploration

- 43. Kaku H. (1966); On the Coupling Effect in the Induced Poralization Method, Butsuri Tanko, 19 (405)
- 44. Wait J. R. (1958); Discussions on a Theoretical Study of Induced Electrical Polarization, Geophysics, 23
- 45. Hallof P. C. (1964, 1967); A Comparison of the Various Parameter Employed in the Variable Frequency Induced Polarization Method,
- 46. Pelton W.H., Ward S.H. Hallof P.G., Sill W.R. and Nelson P.H. (1977); Mineral Discrimination and Removal of Induced Coupling with Multi-frequency IP, Metal Mining Agency of Japan, 1980 1982

 Report on Research and Development Survey for Mineral Resources Spectral IP

Drilling Survey

1. Cumming J.D. (1975); Diamond Drilling Handbook J.K. Smit & Sons Diamond Products Ltd. Toront