(iii) Estimation of population (Java Island) for the 3 years of 1989, 1994 and 2002

With the Indonesian population forecast statistic from 1982 up to 1986 as the reference, the annual rate of increase was anticipated as 1.7%.

(iv) The rate of increase of the number of registered buses was estimated by the GDP per capita and the population increase rate against the year of 1981 for the 3 years of 1989, 1994 and 2002. Furthermore, this rate of increase was made the growth factor of the total transport demand of passengers. (See Table 2.3.3)

Table 2.3.3 Growth Factor of Total Traffic Demand

Cla	essification	1989	1994	2002
}	assenger?	2.00	2.89	4.27
	Rice	1.50	1.67	1.84
	Maize	1.33	1.36	1.40
:	Sugar	1.28	1.46	1.74
	Salt	1.16	1.25	1.40
Freight	Paper	1.94	2.53	3.48
표	Steel	3.80	5.55	8.35
	Petroleum products	1.40	- 1.65	2.05
	Fertilizer	2.00	2.48	3.24
	Cement	2.01	2.65	3.65

Note: Year of 1981 was considered as 1.0.

(2) Forecast of generated traffic volume by zone

Since it was supposed that there would not be a drastic change in the economic structure of each zone, the growth factor of generated traffic volume of each zone was made the same as the growth factor of the total traffic demand, by which the traffic volume

classified by zone of 1981 was multiplied, then the future generated traffic volume by zone of the above 3 years was forecast.

(3) Forecast of arrival traffic volume by zone

The arrival traffic volume by zone was also considered to be the same as the generated traffic volume and the growth factor of the arrival traffic volume by zone was made the same as the growth factor of the total traffic demand. The arrival traffic volume classified by zone of 1981 was multiplied by this, then future arrival traffic volume by zone of the above 3 years was forecast.

(4) Forecast of traffic demand between zones

As the method of forecasting the traffic demand between zones, on the basis of the forecast of the arriving and the departing traffic volume classified by zone which was gained by methods (2) and (3) as the formula of forecasting traffic demand between zones, the iteration by the Fratar Method could be considered. However, in this report, the traffic demand between zones was assumed to increase by the same ratio of the total traffic demand. Accordingly, it was by multiplying the traffic demand between zones of 1981 by the growth factor of the total transport demand, then the traffic demand between zones was forecast.

- (5) Model of diversion rate from road to railway
 - (1) Calculation of railway passenger share by distance zone (without project)

First of all, the railway passenger traffic volume by distance zone (100km space) was obtained by the weighted average from the actual results of 1981.

(2) Calculation of transportation time and transportation costs by distance zone (without project)

Then, the transportation time and transportation costs by transportation mode and by distance zone of railway and bus were estimated from the regression formula obtained from the actual results.

3 Calculation of transportation condition relative ratio by distance zone (without project)

The transporting condition relative ratio by distance zone

was obtained by using the transportation time and transportation costs by distance zone of railway and bus obtained in (2) above. The calculation formula is as follows:

$$V_0 = \frac{C_{Y0} - C_{b0}}{T_{b0} - T_{Y0}} \qquad (A)$$

Whereas, V_0 : Transporting condition relative ratio without project

Cro: Railway transportation costs without project

Cho: Bus transportation costs without project

Tro: Railway transportation time without project

Tho: Bus transportation time without project

(Note): On the transporting conditions of railway passengers, those of third class passengers occupying the large majority of the traffic volume was adopted.

When both the numerator and denominator of the aforementioned formula (A) are plus (+) or minus (-), it will mean the yardstick which the passenger will make selection between time and costs. When the plus and minus marks of the denominator and nominator differ, for example, when C_{T0} - C_{b0} > 0, and T_{b0} - T_{T0} < 0, it is likely that the railway with a higher costs and requiring more time is not used. In observing the actual data, however, there is a considerable volume of railway users (especially in long distance) despite the fact that railway is inferior to bus in both aspects of costs and time required. This is considered due to the difference of congestion degree, joggling and accommodation besides time and costs on the transportation conditions of railway and bus, and the degree of fatigue by the users of bus is greater than that of users of railway. In other words, this means that the bus is inferior to the railway in the qualitative aspect of service.

The quantitating of this problem is a difficult problem. However, as a fatigue degree durmy of the bus in the analysis process on distribution of V to be mentioned later, the value (time conversion) by the following formula will be added to the time of bus by simulation as the value which enables comprehension of the present situation.

 $T_{bo'} = 0.04d - 1$

Whereas, d: Distance (km)

(4) Determination of distribution of Vo

Since the distribution type of V₀ in passenger transport practically applies to the logarithmic normal distribution also seen in examples of analysis of other countries, it is recognized as a logarithmic normal distribution and the mean value of distribution μ_{logv_0} and the value of standard deviation σ_{logv_0} were obtained from the data of the V₀ value by distance zone and the share value of railway. These values are,

$$\mu_{\log_{10}v_0} = 1.6467$$

$$\sigma_{\log_{10}v_0} = 0.3172$$

(5) Estimation of theoretical value of railway passenger share by distance zone (without project)

The theoretical value ($S_{r(v_0)}$) of the railway passenger share by distance zone corresponding to the actual results V_0 was estimated by using the above-mentioned $\mu_{log_{10}V_0}$ and $\sigma_{log_{10}V_0}$.

6 Calculation of transporting condition relative ratio by distance zone (with project)

The transportation condition relative ratio by distance zone with project was obtained by the following formula.

$$V_{W} = \frac{C_{TW} - C_{bW}}{T_{bW} - T_{TW}}$$

Whereas, V_{ν} : Transportation condition relative ratio with project

Cru: Railway traffic costs with project

Cbu: Bus traffic costs with project

Tru: Railway transportation time with project

Tbw: Bus transportation time with project

The real price of the transportation costs in this survey has been recognized as fixed. Therefore, actual $C_{T0} = C_{TW}$ and $C_{D0} = C_{DW}$. Based on the estimated value of transportation time by

simulation for each link, T_{rw} has been calculated as 1/2.25 of T_{r_0} (when the maximum velocity of the passenger tain is 100 km/h). T_{bw} has been made the same as without project. In other words, $T_{bw} = T_{r_0}$.

② Estimation of the theoretical value of railway passenger share by distance zone (with project)

The theoretical value $(S_{r(v_w)})$ of railway passenger share by distance zone with project has been estimated by the same method as (5) when obtaining $S_{r(v_0)}$. (See Table 2.3.4.)

8 Yodel of diversion rate by distance zone

 $S_{r(v_0)}$, $S_{r(v_w)}$ and $S_{b(v_0)}$ have been obtained by undergoing steps (1) to (7), that is, the diversion rate by distance zone (R_d) has been obtained from the bus passenger share (1 - $S_{r(v_0)}$) without project. The calculation formula of R_d is as follows.

$$R_{d} = \frac{S_{r}(v_{\theta}) - S_{r}(v_{\theta})}{S_{b}(v_{\theta})}$$

Whereas, $Sb(v_0)$: Share of bus passenger transport without project

Next, the model obtaining $R_{\rm d}$ by distance was obtained by the polynominal expression. (See Table 2.3.5.)

The estimation method of the diversion rate is indicated by a flow chart, as shown in Fig. 2.3.2.

Since there are also sections (links) not electrified in some zonal pairs, the diversion rate estimated by the diversion rate model was modified by the electrification ratio. It becomes as follows when expressed by a formula. This is also the same as in case of freight.

$$R_d^* = R_d \times R_e$$

$$R_e = d_e/d_a$$

Whereas, Rd1: Modified value of Rd

Ra: Diversion rate

Re: Electification ratio

de: Distance of electrified section

da: Distance between zones

Table 2.3.4 Estimation of Share and Diversion Rate by Distance Zone

	Wi	thout		With (Max. speed 100 km/h)			
		Sr	(v ₀)	V.	Sr (v2)	Diversion rate b → r	
Distance	(8p./h)	Pesults	Theoretical value	(Fp./h)	Theoretical value	$R_{d} = \frac{S_{f}(v_{H}) - S_{f}(v_{I})}{S_{b}(v_{I})}$	
50	331.1	(1) 4.4	(%) 0,3	139.1	(1) 5.8	0.055	
150	121.5	3.7	8.4	57.8	35.9	0,300	
250	93.6	8.1	15.4	41.1	50.4	0.414	
350	78.6	15.4	21.8	37.5	59.2	0.478	
450	70.7	31.5	26.1	34.1	64.2	0.516	
550	65.8	17.8	23.4	31.9	67.4	0.538	
700	61.7	44.6	32.7	39.0	70.3	0.559	
950	57.5	32.0	36.3	28.0	73.6	0.586	

In actual calculation, 0.041-1 (d: distance, km) is added to To as Notes: 1. $V_{\phi} = \frac{C_{\Upsilon} - C_{D}}{T_{D} - Y_{\Upsilon}}$

V₀ = (r - v₀)/T_D = T_D actual calculation, 0.043-1 (d: distance, kg) is added to T_D as fatigue duriny for every distance zone.
 It is assumed that the theoretical values of S_r(v₀) are in the logarithmic normal distribution of plogv₀ = 1.6467 and Ologv₀ = 0.3172.
 When determining V₀ for with, 1/2.25 of without was used for T_r.
 Equations for estimating diversion rate:

 R₃ = -0.1388 + 4.5414 x 10⁻³d - 1.4249 x 10⁻⁵d² + 2.3822 x 10⁻⁸d³ - 2.0672 x 10⁻¹¹d³ + 7.3118 x 10⁻¹⁵d⁵

 V₀ and S_r(v₀) respectively read transportation condition relation within a significant condition and continues.

 *7.1118 × 10 ⁻¹d⁻
 V₀ and S_T(v₀) respectively mean transportation condition relative ratio and railway share in the case of Without. V₀ and S_T(v₀) respectively mean transportation condition relative ratio and railway share in the case of With. (Same as hereinafter.)

Table 2.3.5 Equations for Estimating Diversion Rates of Traffic Demand

			Guerra Commence of the contract of the contrac
Class	BLLICA	Classification of transportation	בישני ויייים בישני אוייים איני וייים איני וייים איני וייים אינים א
ē ⊖	Passonger	91.	Kd(p) = -0.13H8+4.5414710 ⁻³ d-1.4849×10 ⁻³ d ² +2.3822×10 ⁻⁸ d ³ +2.6672×10 ⁻¹¹ d"+7.1118×10 ⁺³ d ³
	0	Rice	RG(x) = -0.00491+1.5124X10"*d-8.3352X10" ⁷ d ² +1.7715×10" ⁸ d ³ +3.0724X10" ² d"-4.0676X10" ² d ³
	Θ	Mażze	λ _d (m) • ^κ d(r)
	•	1140	Rd(ssa) = Rd(x)
	0	מוספת	Rd(su) = 0.0016+3.1402x10 - 6q-6.7158x10 - 6q ² +6.6403x10 - 0.0739x10 - 13.41.6976x10 - 41.6976x10 - 40.00
342 isa	0	Pupar	Re(pa) - 0.0021-4.6558×10-34+5.1819×10-74²-1.8532×10-94 ⁴ +3.7424×10- ¹² d*-1.7574×10 ⁻¹³ d ⁵
3	0	Steol	
	•	Petroleum Producte	Rd(pet) - 0.7135-6.2128X10"*d-2.7739X10" ⁸ d ² +2.5376X10" ⁸ d ³ +2.9151X10" ² d ² -2.7997X10" ² d ³
	③	Fortilizor	Rd(f) = 0.6192+4.8412X10"34*3.1804X10"?42+6.3516X10"141.4082X10"34"-9.3523X10"74
	(3)	Coment	Ra(c) * Ra(s)

Equations for estimating diversion rates for freight reflect consideration of the factor of transport modernization involving electrification. Concretely, transport modernization takes the form of shortened transportation time. ä Noto#)

2. The estimating diversion rates for traffig demand shows passenger train maximum speed is 100 km/h. The freight train maximum speed is 80 km/h.

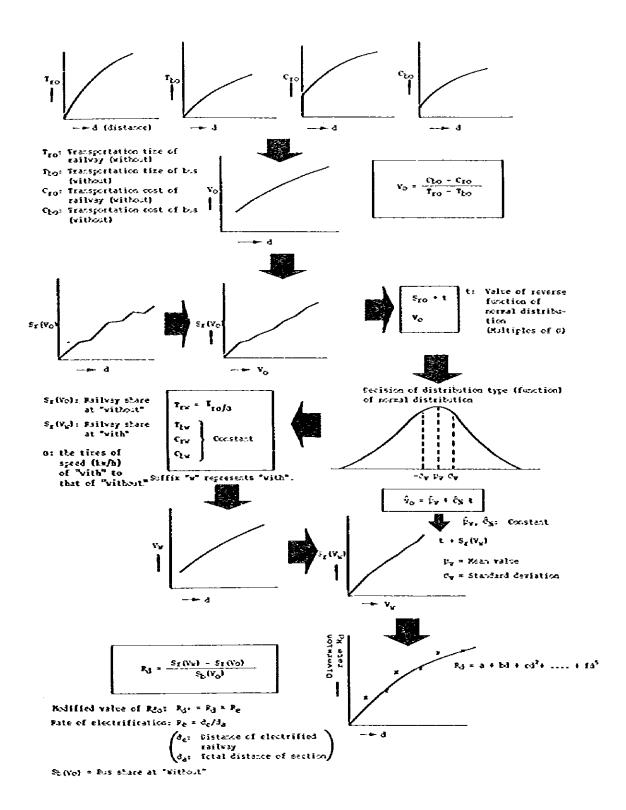


Fig. 2.3.2 Estimating of Diversion Rates

On the above premises, traffic demand of passengers between zones was forecast. However, in this report, the forecast of the intrazonal traffic demand (including the transport of commuters) is excluded from the objectives of analysis.

2.3.4 Forecast of Freight Traffic Demand

(1) Forecast of total demand

Here, total transport demand means the total transport tonnage for railways and roads by zonal pair. Here, too, we considered that the future industrial structure would be generally constant similarly to passenger transportation. So, we assumed that the rate of increase of the total traffic demand was the same as the rates of increase of the generating traffic volume by zone and the arrival traffic volume by zone. The actual calculation was made on forecasting following generated traffic volume and arriving traffic volume classified by zone. Therefore, no special calculation for the growth factor of the total traffic volume was made.

(2) Forecast of generated traffic volume by zone

Here, too, we estimated the increasing ratio of the generated. traffic volume classified by zone, and took it as its growth factor.

So, the future rate of increase of the economic index most deeply related to freight transport volume by article was used as the growth factor of the generating traffic volume by article and by zone. We selected production volume by article as this economic index and we used the Five and Ten Year Development Plan 1979 \$\square\$ 1989 of Indonesia as data. (Table 2.3.6.)

The estimating equation is based on a regressive equation using the year as an explanatory variable and production (or consumption) by article an explained variable. Namely,

(i) Rice: y = 10,825.63 + 324.1t

y: Rice production in Java (1,000t)

t: 2, 7, 12 (2 = Year 1980)

(Unit: 1000 ton) Table 2.3.6 Data for Estimating of Growth Factor of Freight Traffic

Cement	5,532	6,507	7,157	7,707	9,407	9,907	11,107						Planned produc- tion in Indonesia
Forti- lizer	2,333	2,481	3,359	4,217	4,380	4,491	4,595	4,595	4,595	4,595			Production in Indonesia
Potroleum Products	88,917	93,837	98,758	103,679	108,599	113,520	118,440	123,361	128,281	133,202			Produc- tion in Indonosia
Steel	760	227	326	560	675	765	944	1,140	1,270	1,270	-		Distribu- tions of produc- tion in Java
ಸಾಯಾದ	179	276	302	355	369	398	424	459	767	528			Production in Indonesia
Salt	258				279					305			Consump- tion in Java
zabns	1,342.2	1,439.1	1.559.1	1,646.3	1.713.2					1,848.6			Production in Java
Maizo	3,149	3,182	3,221	3,206	3,218	3,251	3,259	3,267	3,271	3,267			Production in Indonosia
Rico		11,385.7					13,270.2					14,627.4	Produc- tion in Java
Year	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	0661.	
42	н	"	6	4	v	ø		σ,	O	ន	ដ	ដ	

Data Source: Indonesian State Railways, "A Five And Ten Year Development Plan 1979v1989" Bandung, August 15, 1978. Note)

(ii) Maize:
$$y = 3,158.866 + 12.798t$$

y: Maize production in Indonesia (1,000t)

t: $1 \sim 10$ (1 = Year 1979: same hereinafter)

(iii) Sugar:
$$y = 1,365.705 + 54.1508t$$

y: Sugar production in Java (1,000t)

t: 1 \(^5\), 10

(iv) Salt: y = 252.8197 + 5.2213t

y: Salt consumption in Java (1,000t)

t: 1, 5, 10

(v) Paper: y = 188.8001 + 34.4727t

y: Paper production in Indonesia (1,000t)

t: 1 ~ 10

(vi) Steel: y = 19.7333 + 136.9879t

y: Distributions of steel production in Java (1,000t)

t: 1 ∿ 10

(vii) Petroleum products: y = 83,966.32 + 4920.558t

y: Production of petroleum products in Indonesia (1,000t)

t: 1 ∿ 10

(viii) Fertilizer: y = 2,544.734 + 258.0667t

y: Fertilizer production in Indonesia (1,000t)

t: 1 ∿ 10

(ix) Cement: y = 4,507.0 + 920.5357t

y: Production based on cement production plan in Indonesia (1,000t)

t: 1 ∿ 7

According to the above estimated equations, the production and consumption volume classified by article and zone was forecast, and

by calculating the increasing ratio for 1981 of these forecast ratios, further, multiplying the generated traffic volume classified by article and zone of 1981 by this increased ratio, the traffic volume classified by article and zone for the three years (1989, 1994 and 2002) was forecast.

(3) Forecast of arrival traffic volume by zone

The growth factor of the future arrival traffic volume by zone was supposed to be the same as that of the future generated traffic volume by zone. So, multiplying the arrival traffic volume classified by article and zone of 1981 by the increased ratio for the production and consumption volume classified by article and zone, that is, the increased ratio for the generated traffic volume classified by article and zone, the arrival traffic volume classified by article and zone for the three years (1989, 1994 and 2002) was forecast.

(4) The forecast of the traffic demand between zones

This forecast was conducted by a method similar to that for the passengers. That is, it was assumed that the traffic demand between zones classified by article will increase at the same ratio of that of the generated (arriving) traffic volume classified by article and zone. Therefore, the traffic demand between zones classified by article for the three years (1989, 1994 and 2002) was forecast by multiplying the traffic demand between zones classified by article for 1981 by the increased ratio (growth factor) of generated (arriving) traffic volume classified by zone and article.

- (5) Model of diversion rate from road to railway
 - (1) Calculation of railway freight share by distance zone and by article

Similarly to the case of passengers, the railway freight traffic volume by distance zone and by article was obtained from the results of 1981 by a weighted average.

(2) Calculation of transportation time and transportation costs by distance zone and by article (without project)

Then, estimation was made by a regressional equation based on the results of 1981 separately by mode of transportation which are railway and truck, and by distance zone and by article.

3 Calculation of transportation condition relative ratio by distance zone and by article (without project)

Using the transportation time and transportation costs of railways and trucks by distance zone and by article obtained by (2), the transportation condition relative ratio by distance zone and by article was determined by the following calculating equation.

$$V_0 = \frac{C_{t0} - C_{r0}}{T_{r0} - T_{t0}}$$

Whereas, Vo: Transportation condition relative ratio without project

Cto: Truck transportation costs without project

Cro: Railway transportation costs without project

Tro: Railway transportation time without project

Tto: Truck transportation time without project

(4) Determination of distribution of Vo

The distribution type of Vo for freight was found to be generally normal distribution by the study of data.

 V_0 value and V_0 's mean value μ_{V_0} , and value of standard deviation, σ_{V_0} obtained from the data on railway share by distance zone for each article are as shown in Table 2.3.7.

(5) Estimation of theoretical value of railway freight share by distance zone and by article (without project)

We estimated this theoretical value of railway freight share by distance zone and by article $(S_r(v_0))$.

Table 2.3.7 Distribution Type of Vo by Article

Article	livo	σ _{V0}
Rice	65.98	13.85
Maize	65.98	13.85
Sugar	103.93	32.99
Salt	65.98	13.85
Paper	63.56	12.38
Steel	267.25	74.16
Petroleum products	19.17	3.90
Fertilizer	32.81	7.83
Cement	32.81	7.83

6 Calculation of transportation condition relative ratio by distance zone (with project)

The transportation condition relative ratio by distance zone and by article with project was obtained by the following equation:

$$V_{W} = \frac{C_{tw} - C_{rw}}{T_{rw} - T_{tw}}$$

Whereas, $V_{\boldsymbol{W}}$: Transportation condition relative ratio with project

Ctw: Truck transportation costs with project

Crw: Railway transportation costs with project

Try: Railway transportation time with project

Ttw: Truck transportation time with project

As in the case of passengers, we assumed that the real price of freight transport costs was constant. So, $C_{T0} = C_{TW}$ and $C_{t0} = C_{tW}$. A half of T_{T0} was used as T_{TW} , railway transportation time (as in the case of passenger transportation), based on the value of transportation time forecasted by similation for each link. In freight transportation, it is believed that, besides the effect of the shortening

of transportation time resulting from electrification, considerable effects can be expected of the modernization of various facilities and measures which will be carried out at the same time. Though it is difficult to decide how far these modernizing efforts will affect railway traffic demand, the value of what is to deduce the time into which the element of modernization is converted, from the transportation of the railway in the case of "with project" was estimated at about 12 hours as the result of simulation in the light of other countries with modernized railways.

- (7) Estimation of the theoretical value of railway freight share by distance zone and by article (with project)

 We estimated the theoretical value (Sr(vw)) of railway
 freight share by distance and article "with project" in the same way
 (5) as we gained the theoretical value (Sr(vo)), the share of railway freight classified by distance and article on "without project."
 (See Tables 2.3.8 ∿ 13.)
- 8 Model of diversion rate by distance zone and by article $From S_{\Gamma}(v_0)$ and $S_{\Gamma}(v_0)$ obtained from steps (1) to (7) and $S_{\Gamma}(v_0)$, namely, the share of truck freight in "without project" (1 $S_{\Gamma}(v_0)$), diversion rate by distance zone and article (Rd) were obtained. And a model making Rd the function of distance was obtained by a polynomial. (See Table 2.3.5)

Furthermore, as mentioned above, the forecast of the freight traffic demand was conducted for 9 main articles. However, at present, the transport of iron ore, automobiles and containers is relatively small in volume, but expected to increase in future. Considering that, the fregith traffic demand for the railways will exceed our forecast. That is, our forecast value for the 9 articles is rather conservative.

Also, the forecast of freight traffic demand was limited to that between zones, as in the case of the passengers, and a forecast of intrazone of traffic demand was conducted, but is not shown in this report.

Table 2.3.8 Estimation of Share and Diversion Rate by Distance Zone

Items: (2) Rice, (3) Maize, (5) Salt

			1			with	h		
	With	out		Electrification (I)			Electrification + Normalization (II)		
	V _o		s _r (v _o)		s _r (v _w)	Diversion rate t→r	Vw	s _r (v _w)	Diversion rate t→r
Distance	(R _p /ክ)	Results	Theoretical value	(R _p /h)	Theoretical value	$R_{d} = \frac{s_r(v_w) - s_r(v_o)}{s_t(v_o)}$	(R _p ∕h)	Theoretical value	$R_{d} = \frac{S_{r}(V_{w}) - S_{r}(V_{o})}{S_{t}(V_{o})}$
50	21.18	0.2 (%)	0.1 (%)	21.56	0.1 (%)	0	26.16	0.2 (%)	0.001
150	25.63	0.3	0.2	26.74	0.2	0	32.50	0.8	0.006
250	29.90	0.6	0.5	31.97	0.6	0.001	38.91	2.5	0.020
350	34.02	0.6	1.0	37.27	1.9	0.009	45.43	6.9	0.060
450	38,00	4.0	2,2	42.63	4.6	0.025	52.04	15.6	0.137
550	41.84	1.6	4.1	48.08	9.9	0.060	58.78	30.2	0.272
700	47.75	15.0	9.0	56.37	24.5	0,170	69.07	58.7	0.546
950	55,98	6.5	23.6	70,57	62.9	0,514	86.80	93.3	0.912

- Notes) 1. Equation for estimating diversion rate for With (1): $R_d = -0.1372 + 1.2809 \times 10^{-3} d 4.2459 \times 10^{-6} d^2 + 5.8536 \times 10^{-9} d^3$ $-2.1515 \times 10^{-12} d^4$ If $R_d \le 0$, 0 used.
 - 2. Equation for estimating diversion rate for With (II): $R_d = -0.00491 + 1.52124 \times 10^{-9} d 8.3352 \times 10^{-7} d^2 + 1.7715 \times 10^{-9} d^3 + 3.8724 \times 10^{-12} d^5 4.0676 \times 10^{-15} d^5$
 - 3. T_r for With (I) is $\frac{1}{2}$ of T_r for Without. (Same as hereinafter.)
 - 4. T_{r} for With (II) is subtracted 12 hours from T_{r} for With (I). This is because of consideration for normalization attended by the normalization of freight transportation. (Same as hereinafter.)

Table 2.3.9 Estimation of Share and Diversion Rate by Distance Zone

Item: (4) Sugar

						Wit	h		
	With	out	!	Elec	Electrification (I) Electrification + Normalization				
	v _o s _r		s _r (v _o)		s _r (v _w)	Diversion rate t→r	Vw	s _r (v _w)	Diversion rate t→r
Distance	(Rp/h)	Results	Theoretical value	(R _p ∕h)	Theoretical value	$\frac{s_{\mathbf{d}} = s_{\mathbf{r}}(v_{\mathbf{w}}) - s_{\mathbf{r}}(v_{\mathbf{o}})}{s_{\mathbf{t}}(v_{\mathbf{o}})}$	(R _p /ክ)	Theoretical value	$R_{d} = \frac{S_{r}(v_{w}) - S_{r}(v_{o})}{S_{t}(v_{o})}$
50	21.62	0.5(%)	0.6 ^(%)	22.00	0.7(%)	0.001	26.70	0.9(%)	0.003
150	26.91	1.1	1.0	28.07	1.1	0.001	34.12	1.7	0.007
250	31.99	1.6	1.5	34.20	1.7	0.002	41.63	2.9	0.014
350	36.89	2.8	2.1	40.41	2.7	0.006	49.26	4.8	0.028
450	41.62	4.2	2.9	46.70	4.2	0.013	57.01	7.8	0.050
550	46.20	6.3	4.0	53.09	6.2	0.023	64.90	11.9	0.082
700	52.77	4.0	6.1	62.81	10.6	0.048	76.95	20.6	0.154
950	63,03	6.2	10.7	79.45	23.0	0.138	97.72	42.5	0.356

Notes) 1. Equation for estimating diversion rate for With (I): $R_d = 0.0013-2.3685 \times 10^{-6} d - 6.1334 \times 10^{-8} d^2 + 4.6816 \times 10^{-9} d^3 - 5.8857 \times 10^{-13} d^4 + 3.5198 \times 10^{-9} d^5$

2. Equation for estimating diversion rate for With (II): $R_{d} = 0.0016+3.1482\times10^{-5}d-6.7158\times10^{-8}d^{2}+6.6403$ $\times10^{-13}d^{3}-3.8739\times10^{-13}d^{4}+1.6976\times10^{-16}d^{5}$

Table 2.3.10 Estimation of Share and Diversion Rate by Distance Zone

Item: 6 Paper

				· · · · · · · · · · · · · · · · · · ·					
				With					
	With	out		Ele	ectrification	(1)	Electrific	ation + Norma	lization (II)
V _O Distance (R _p /h)	V _O	s _r (v _o)		v _w s _r (v _w)		Diversion rate t→r	V.,,	s _r (v _w)	Diversion rate t→r
	Results	Theoretical value	(R _p /h)	Theoretical value	$\frac{R_{d} = \frac{S_{r}(v_{w}) - S_{r}(v_{o})}{S_{t}(v_{o})}$	(R _p /h)	Theoretical value	$R_{d} = \frac{S_{r}(V_{w}) - S_{r}(V_{o})}{S_{t}(V_{o})}$	
50	20.32	0.0(%)	0.0(%)	20,68	0.0(%)	0.000	25.09	0.1(%)	0.001
150	23.08	0.0	0.1	24.08	0.1	0.000	29.27	0.3	0.002
250	25.73	0.0	0.1	27.51	0.2	0.001	33.48	0.8	0.007
350	28,28	0.2	0.2	30.98	0.4	0.002	37.77	1.9	0.017
450	30.75	0.4	0.4	34.50	0.9	0.005	42.11	4.2	0.038
550	33,13	1.0	0.7	38.07	2.0	0.013	46.54	8.5	0.079
700	36.55	1.2	1.5	43.50	5.3	0.039	53.30	20.3	0.191
950	41.89	3.8	4.0	52.81	19.2	0.158	64.95	54.4	0.525

Notes) 1. Equation for estimating diversion rate for With (1): $R_d = 0.0057-4.4429 \times 10^{-5} d+1.5591 \times 10^{-7} d^2-3.0811 \times 10^{-10} d^3+3.9039 \times 10^{-13} d^4$

2. Equation for estimating diversion rate for With (II): $R_d = 0.0021-4.6558\times10^{-5}d+5.1819\times10^{-7}d^2-1.8532\times10^{-9}d^3+3.7424\times10^{-12}d^4-1.7574\times10^{-15}d^5$

Table 2.3.11 Estimation of Share and Diversion Rate by Distance Zone

Item: ① Steel

						With	h		
	. Without			Ele	ectrification	(1)	Electrific	ation + Norma	lization (II)
		s,	s _r (v _o)		s _r (v _w)		:	s _r (v _w)	Diversion rate
Distance	y _o (R _p ∕h)	Results	Theoretical value	ν _ν (R _p /h)	Theoretical value	$t \rightarrow r$ $R_{d} = \frac{S_{r}(V_{w}) - S_{r}(V_{o})}{S_{t}(V_{o})}$	V _₩ (R _p /h)	Theoretical value	$ \begin{array}{c} t \rightarrow r \\ R_{d} = \\ \frac{S_{r}(V_{w}) - S_{r}(V_{o})}{S_{t}(V_{o})} \end{array} $
50	0.14	0.0(%)	0.0(%)	0.15	0.0 (%)	0.000	0.18	0.0 (%)	0.000
150	14.59	0.0	0.0	15.22	0.0	0.000	18.50	0.0	0.000
250	28.51	0.0	0.1	30.48	0.1	0.000	37.10	0.1	0.000
350	41.95	0.1	0.1	45.95	0.1	0.000	56.01	0.2	0.001
450	54.91	0.2	0.2	61.61	0.3	0.001	75.21	0.5	0.003
550	67.45	0.5	0.4	77.51	0.5	0.001	94.75	1.0	0.006
700	85,46	0.9	0.7	101.72	1.3	0.006	124.62	2.7	0.020
950	113.57	1.4	1.9	143,17	4.7	0,029	176.09	10.9	0.091

Notes) 1. Equation for estimating diversion rate for With (I): $R_{d} = 0.0330-1.1237\times10^{-1}d+9.4476\times10^{-8}d^{2}+2.3551\times10^{-11}d^{3}$

2. Equation for estimating diversion rate for With (II): $R_{d} = -0.0957646.8706 \times 10^{-4} d - 1.7280 \times 10^{-6} d^{2} + 1.7640 \times 10^{-9} d^{3} - 5.1426 \times 10^{-13} d^{4}$

Table 2.3.12 Estimation of Share and Diversion Rate by Distance Zone

Item: 8 Petroleum Products

						Wit	h		
Without			Ele	ectrification	(1)	Electrification + Normalization (II)			
V _o Distance (R _p /h)	V _O	s _r	s _r (v _o)		s _r (v _w)	Diversion rate	V _W (R _P ∕yr)	s _r (v _w)	Diversion rate
	Results	Theoretical value	 (Rp/h)	Theoretical value	$R_{d} = \frac{S_{r}(V_{w}) - S_{r}(V_{o})}{S_{t}(V_{o})}$	Theoretical value		$ \begin{array}{c} t \rightarrow r \\ R_{d} = \\ S_{r}(v_{w}) - S_{r}(v_{o}) \\ \hline S_{t}(v_{o}) \end{array} $	
50	18.58	39.9(%)	44.0 ^(%)	18.89	47.2 ^(%)	0.057	22,72	81.9(%)	0.676
150	16.78	8.9	27.1	17.47	33.0	0.081	21.04	68.4	0.567
250	15.02	1.0	14.5	16.01	20.9	0.075	19.31	51.6	0.434
350	13,32	1.0	6,7	14.54	11.7	0.054	17.56	34.1	0.294
450	11.68	2,5	2.7	13.04	5.8	0.032	15.77	19.2	0.170
550	10.09	1.6	1.0	11,53	2.5	0.015	13.96	9.0	0.081
700	7.81	2,6	0.2	9.23	0.5	0.003	11.19	2.0	0.018
950	4.23	2.1	0.0	5.28	0.0	0.000	6.43	0.1	0.001

Notes) 1. Equation for estimating diversion rate for With (I): $R_d = 0.0287 + 6.9498 \times 10^{-4} d - 2.7099 \times 10^{-6} d^2 + 2.5705 \times 10^{-9} d^3 + 8.1817 \times 10^{-13} d^4 - 1.5619 \times 10^{-15} d^5$

2. Equation for estimating diversion rate for With (II): $R_d = 0.7135-6.2128\times10^{-1}d-2.7739\times10^{-6}d^2+2.5346\times10^{-9}d^3+2.9151\times10^{-12}d^4-2.7997\times10^{-15}d^5$

Table 2.3.13 Estimation of Share and Diversion Rate by Distance Zone

Items: 9 Pertilizer, 10 Cement With Without Electrification (I) Electrification + Normalization (II) Diversion Diversion s_r(v_z) Sr(VW) s_r(v_o) ٧w rate V_{W} rate v_o t + r t -> r (R_p/h) (R_p/h) (R_p/h) $R_{d} =$ $R_{d} =$ Distance Theoretical Theoretical Theoretical $S_r(V_W) - S_r(V_O)$ $s_r(v_w) - s_r(v_o)$ Results value value value St (Vo) st(vo) 69.5^(%) 19.5 (%) 11.0(%) 22.1(%) 0.032 36.81 0.621 26.82 50 26.11 36.45 67.7 0.619 26.44 20.9 0.067 14.7 15.2 150 24.78 65.9 0.614 0.085 36.00 20.0 11.7 26.01 19.2 23.49 250 0.601 63.7 25.58 17.9 0.097 35.54 9.8 9.0 350 22.26 61.4 0.586 25,13 16.4 0.104 35.06 9.4 6.7 450 21.10 0.569 24.68 14.9 0.102 34.58 59.1 20.02 5.2 550 2.4 33.81 0.537 12.9 0.099 55.2 5.5 23.98 700 18.44 3.3 48.4 0.475 0.084 32.46 22.77 10.0 950 16.08 0.2 1.7

Notes) 1. Equation for estimating diversion rate for With (1): $R_d = 0.00811+5.4135\times10^{-4}d-1.2498\times10^{-6}d^2+1.6198$ $\times 10^{-9}d^3-1.2606\times10^{-12}d^4+4.2331\times10^{-16}d^5$

2. Equation for estimating diversion rate for With (II): $R_d = 0.6192 + 4.8412 \times 10^{-5} d - 3.1804 \times 10^{-7} d^2 + 6.3516 \times 10^{-11} d^3 + 1.4082 \times 10^{-13} d^4 - 9.3523 \times 10^{-17} d^5$

2.3.5 The Results of Demand Forecast

- (1) The share of railway traffic demand
 - (1) Passengers

The P.J.K.A.'s share in Java Island for the future passenger traffic demand is increased, before the restriction by railway capacity, from 18.0% (1989) to 39.4% (2002). After the restriction by railway capacity, it is increased from 15.8% to 21.2%. However, compared to the 21.6% of 1994, the share for 2002 is decreased by 0.4%, which means that, at the time of electrification, railway capacity increases, but afterwards, it does not increase. Accordingly, traffic demand does not increase, being restricted by railway capacity, but on the contrary the total demand is increasing independent of railway capacity. (See Table 2.3.14.)

(2) Freights

P.J.K.A.'s share in Java Island for future freight traffic demand is increased before being restricted by railway capacity, from 10.3% (1989) to 24.2% (2002). After the restriction by railway capacity, it is also slightly increased from 8.9% to 11.4%. In case of freight transport, compared to the 12.5% for 1994, the share for 2002 is decreased by 1.1%. This is due to the same reason as that for passenger transport.

(2) Traffic demand between zones

The retults of the forecast of traffic demand between zones for passengers and freight (the total of 9 articles) are seen in Table 2.3.15~17 and Tables 2.3.18~20. In addition, the results of forecast of the total of departures and arrivals classified by zone, passenger and freights and by article, is in Table 2.3.21~3.23).

The above forecast value was estimated on the premise that the maximum velocity was 100 km/h, and restricted by railway capacity.

Table 2.3.14 Future Share of Railway Traffic Demand

(Unit: 10,000 pass. or ton-km)

[]	H CCB		Year	1989	1994	2002
			Total demand	9,407,040	13,564,300	20,045,600
9	oill and		Before restriction by railway capacity	1,694,300	3,903,820	7,905,080
nSer	erT den	Reilway	After restriction by railway capacity	1,489,520	2,936,620	4,258,170
əsse		Before	ore restriction by railway capacity	18.0	28.8	39.4
đ	(%) Shar	After	er restriction by railway capacity	15.8	21.6	21.2
			Total demand	1,388,220	1,768,850	2,362,320
:	oill: band		Before restriction by railway capacity	142,642	302,607	572,506
s y q 8	-	Railway	After restriction by railway capacity	123,786	220,402	268,125
Etei		Before	ore restriction by railway capacity	10.3	17.1	27.3
	(X)	After	er restriction by railway capacity	6.8	12.5	11.4

From 1994 to 2002 the railway share after the restriction by railway capacity is decreased, which is caused by that the total demand increases every year irrespective of the railway capacity, on the other hand the railway capacity increases at the time of electrification. ᅻ Note:

Table 2.3.15 Railway Passenger Traffic Matrix (after Restriction by Railway Capacity; Maximum Speed 100 km/h)

Year 1989 (100 pass.)

																									1.01	****	(O pass.)
	Destination	3	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
Origin		HERAK	rankas Bitung	JAKA RTA	CIKAN PEK	SUKA BUWI	BAND UNG	CIRE BON	TASIKU KA LAYA	KROJA	PEKA LON GAN	KEBU NEN	SEMA RANG	PERKO DADI	YOGYA KARTA	\$OLO	MAINUN	BONO NECORO	SURA BAYA	KERTO SONO	TULUN GASANG	BANGR	KiTYAC	PROBO LINOCO	JEHBER	BANYU WANGI	TOTAL
1 ME	RAK		3,840	5,100	0	0	1,828	40	16	80	266	89	385	0	186	315	80	40	554	120	20	0	0	0	0	0	12,949
2 RA	NKASBITUNG			10,449	121	0	275	31	36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14,744
3 JA	CARTA				81,704	14,770	132,565	59,169	38,262	9,168	13,232	9,731	12,170	27	9,201	14,665	4,835	1,820	10,365	3,407	1,760	20	542	93	100	301	433,380
4 CIN	AMPEK					27	3,072	14,079	674	213	645	240	86	0	249	64	36	0	71	20	0	0	0	0	0	0	101,291
s su	KABUMI						4,840	29	140	0	23	20	7	0	20	0	0	0	0	0	0	0	0	0	0	0	19,806
6 BA	NDUNG							34,013	9,500	2,660	2,460	3,680	3,133	22	4,040	1,260	700	0	4,449	600	20	0	471	0	40	299	209,917
7 CH	REBON								0	380	240	420	689	0	1,220	490	120	100		220	49	0	0	0	0	0	112,082
8 TA	SIKUMALAYA									4,010	0	1,589	0	0	3,640	520	180	0	1,700	320	20	0	20	20	60	69	58,789
9 KR	OJA										0	1,220	0	0	1,500	800	240	0	1,420	490	69	20	20	20	60	20	
10 FE	KALONGAN	l				<u> </u>	ļ	<u> </u>			_	0	580	0	0	0	0	69	560	0	0	0	0	0		0	18,066
II KE	BUMEN	<u> </u>	L				<u> </u>		<u> </u>	<u> </u>			0	0	200	340	120		1,260	180	20	0	20	40	100	20	19,271
12 SE	MARANG	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>		7,560	0	1 -,,,,,		1		0	ļ	- ·	20	0	0	0	30,980
13 PU	RWODADI	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>				.		ļ		0	1,740	0	1,220	-			<u> </u>	0		0	0	11,289
14 YC	GYAKARTA	<u> </u>	<u> </u>	<u> </u>	<u></u>		.	 	ļ	ļ	<u> </u>	<u> </u>		ļ	ļ	300	!	·	7,000	}	₹	H		!	390	149	
15 SO	10	<u> </u>	ļ	ļ		ļ	<u> </u>	<u> </u>					ļ	ļ	<u> </u>		880	0	1	l	1		1	! -		20	
16 M.	ADIUN	<u> </u>		<u> </u>	<u> </u>			<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ		0	-,,,,,,		!	1	ļ			20	
17 BC	JONEGORO		<u> </u>	<u> </u>	<u> </u>		ļ	<u> </u>	ļ			ļ		ļ	<u> </u>	L		1	4,220				I	1			9,220
18 5€	RABAYA	L					<u> </u>			.	<u> </u>		<u> </u>			<u> </u>		ļ	<u> </u>	17,360		 		<u> </u>			
19 Ki	RTOSONO	<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>		<u> </u>	ļ	ļ	<u> </u>		ļ	ļ		ļ	ļ	1,329	1	ļ		 	ļ	
20 Tt	LUNGAGUNG		<u> </u>	<u> </u>	.]	ļ	ļ	<u> </u>		<u> </u>	<u> </u>	<u></u>	ļ			ļ	.		<u> </u>	ļ	ļ	460	1	1	1		13,720
21 B/	NGIL	<u> </u>		<u> </u>]	ļ	.			<u> </u>	 		ļ	ļ	ļ	ļ	 	ļ		<u> </u>	1,180	L		1 ——	
!	ALANG		<u> </u>		ļ	<u> </u>	-	1	_	 	 	ļ	ļ	_	_		.	<u> </u>	 	ļ	-	-	ļ	20	<u> </u>	ł	ļ
23 PF	OBOLINGGO	<u> </u>	.	<u> </u>	_	<u> </u>	ļ		_	1	1	ļ		ļ	1	<u> </u>		ļ	ļ	ļ	ļ	-	 	1	120	l	ļ
24 JE	MBER	 	ـــــــ	<u> </u>		1	ļ	.	<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	 	.	<u> </u>	.]	↓	ļ	<u> </u>		 		 	1,740	<u> </u>
25 B.	ANYUWANGI	<u> </u>	1	1	1	 	1	 		1	↓	<u> </u>	ļ		 	 	_	<u> </u>	!	ļ		 		-	.		8,000
L	TOTAL	J		<u></u>	.l		<u>.j</u>		1	J	<u>.j.</u>		1	<u> </u>	<u>l</u>	<u>L</u>	⊥	_L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>L</u>	1	<u> </u>	L	1,277,550

Note: 1) Intra zonal pairs are excluded.

2) The figures of column of righthand "TOTAL" are the total of arms and departure.

Table 2.3.16 Railway Passenger Traffic Matrix (after Restriction by Railway Capacity; Maximum Speed 100 km/h)

Year 1994 (100 pass.)

Destination	<u> </u>	ż	1	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
Designation				CIKAX	St'KA	BAND	CIRE	TASIKU		PEKA	KEBU	SEKA	FURNO	YOGYA	·	_							1		BANYU	
Origin	HERAK	BITUNG	JAKA RTA	PEK	BUMI	UNG	BON	JAA LAYA	KROJA	LON GAN		RANG	DADI	KARTA	soto	MADREN	NECOSO NECOSO	BAYA	5050	GVZNC	BANGIL	KALANG	PROSO LENGGO	JEMBER	WANGS	TOTAL
1 MERAK		20,221	127,038	0	47	4,366	58	19	116	299	116	473	0	335	679	116	58	656	173	29	0	0	0	0	0	154,796
2 RANKASBITUNG			25,123	204	60		31	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0	46,200
3 JAKARTA	ļ			118,062	21,241	169,468	54,758	27,194	12,317	13,190	14,048	11,968	33	14,386	24,180	7,229	2,630	14,973	4,971	2,543	29	649	115	145	423	666,712
4 CIKAMPEK		i	· · · · · · · ·		39		12,629	866	311	436	347	119	0	317	98	79	0	93	29	0	0	0	0	0	0	137,851
5 SUKABUMI			<u> </u>			6,994	21	202	0	13	29	4	0	31	0	0	0	0	0	0	0	0	0	0	0	28,690
6 BANDUNG	i	1					24,632	13,727	3,844	1,432	5,556	1,823	13	6,758	2,707	1,051	0	5,570	884	29	0	361	0	58	409	254,331
7 CIREBON	1							446	32,504	347	630	983	0	1,791	578	173	145	1,301	318	58	23	1	0	0	7	131,436
8 TASIKUMALAYA	 	1	1						5,838	213	2,556	2,119	0	2,737	751	260	0	2,563	535	2:3	0	1,647	29	87	87	61,940
9 KROJA		i				i			1	5,183	1,771	4,446	0	26,703	2,616	432	9	2,084	578	87	29	163	90	87	29	99,293
10 PEKALONGAN											3,799	838	0	184	0	0	87	809	0	132	0	10	0	0	0	26,926
11 KEBUMEN												7,200	0	19,861	2,9\$5	226	14	1,915	260	29	0	29	58	345	29	61,471
12 SEMARANG	1		1										10,924	16,531	3,352	1,059	2,543	3,295	963	412	26	1,458	0	70	65	70,700
13 PURWODADI												1	l	34	2,514	0	1,763	1,040	0	0	0	0	0	0	0	16,321
14 YOGYAKARTA															15,705	3,223	124	23,373	1,298	145	178	3,256	716	555	202	138,478
15 5010			Ī												1	13,749	0	70,189	5,658	66	260	1,090	393	260	2,361	150,20
16 MADIUN	i															<u> </u>	4,749	48,606	1,250	550	58	218	164	791	344	84,349
17 BOJONEGORO			1															6,698	244	147	74	477	0	87	0	19,239
18 SURABAYA	1										Ĭ		l				İ	1	46,474	42,886	3,352	8,923	19,195	33,737	34,092	371,22
19 KERTOSONO				1											1			l		1,618	786	549	366	207	85	67,24
20 TULUNGAGUNG	1															l			L		806	5,867	827	\$3	690	57,010
21 BANGIL			T																			1,705	1,601	664	3,251	12,84
22 MALANG																							6,412	2,521	155	35,55
23 PROBOLINGGO				1																				173	433	30,63
24 JEMBER																									2,514	42,18
25 BANYUWANGI									1		l															45,17
TOTAL																									,	2,810,82

Note: 1) Intra zonal pairs are excluded.

2) The figures of column of righthand "TOTAL" are the total of arrival and departure.

Table 2.3.17 Railway Passenger Traffic Matrix (after Restriction by Railway Capacity; Maximum Speed 100 km/h)

Year 2002 (100 pass.)

																									1001 200	2 (100 pass.
- Destination	1	2	3	4	5	6	7	8	9	10 PEKA	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
Origin	MERAK	RANKAS BITUNG	JAKA RTA	CIKAN PEK	SUKA BUWI	BAND UNG	CIRE BON	TAS!KU NA EAYA	KROJA	LON GAN	MEN	SEXA RANG	PURNO DADI	YOGYA KARTA	SOLO	MADRIN	SOXO NEGORO	SURA BAYA	XERTO SONO	CACURE	BANGIL	KATVAR	FY090	PEMBER	BANYU WANGE	TOTAL
1 MERAK		24,674	145,265	0	91	2,932	85	33	171	269	171	532	0	268	333	171	85	173	256	43	0	0	0	0	0	176,143
2 RANKASBITUNG		i	37,119	302	234	348	9	63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	62,749
3 JAKARTA				174,437	111,594	119,846	44,316	53,963	11,347	15,891	20,237	14,837	45	12,767	20,878	9,851	3,886	22,122	7,297	3,758	43	910	154	214	618	831,296
4 CIKAMPEK					135	4,289	9,476	1,400	399	509	512	174	0	512	131	57	0	139	43	0	0	0	0	0	0	192,515
5 SUKABUMI						40,429	9	487	0	10	43	3	0	54	0	0	0	0	o	0	0	0	0	0	0	153,088
6 BANDUNG							7,214	44,482	7,969	821	9,708	1,306	10	11,835	5,195	1,587	0	8,050	1,316	43	0	415	0	85	592	268,474
7 CIREBONG								1,091	43,304	7,290	927	5,329	0	2,634	854	256	214	3,349	470	85	1,658	50	0	0	79	128,699
8 TASIKUMALAYA	[22,797	2,635	4,895	4,869	0	4,242	1,110	384	0	3,727	786	43	0	3,099	43	128	128	150,495
9 KROJA								<u> </u>		44,261	2,616	7,139	0	28,584	3,280	600	0	3,054	854	128	43	252	73	128	43	177,042
10 PEKALONGAN	1										28,236	9,573	0	1,192	615	0	771	2,376	0	424	0	144	0	0	0	115,009
11 KEBUMEN												12,872	0	20,669	3,264	311	30	2,757	334	43	0	43	85	214	43	103,069
12 SEMARANG	1												29,291	69,964	41,295	3,472	34,189	32,134	2,371	1,232	263	16,939	0	169	182	288,121
13 PURWODADI														91	4,738	0	2,605	1,537	0	0	0	0	0	0	0	33,322
14 YOGYAKARTA	1					<u> </u>			<u> </u>	<u> </u>		<u> </u>			23,204	4,762	701	20,862	1,917	214	193	8,355	637	714	233	214,673
15 SOLO	1		<u> </u>]				<u> </u>	ļ	<u> </u>	<u> </u>	ļ <u> </u>	l	<u> </u>	<u> </u>	20,301	283	53,087	8,359	116	340	3,120	393	384	1,834	193,118
16 MADIUN						<u> </u>				<u> </u>					<u>L</u> .	<u> </u>	5,620	36,315	1,845	1,462	85	994	195	718	316	89,304
17 BOJONEGORO							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Į	i	l			1	<u> </u>		28,282	L	i		3,015		127	0	80,850
18 SURABAYA	1			T		T										<u> </u>		<u> </u>	45,682	53,491	4,953	13,261	10,649	34,814	49,566	431,980
19 KERTOSONO				<u></u>		1	<u> </u>	<u> </u>	<u> </u>	<u> </u>		l			<u> </u>				i	3,376	692	18,735	266	281	113	96,247
20 TULUNGAGUNG					1		<u> </u>		<u> </u>		<u>i</u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	1,126	55,714	534	112		123,073
21 BANGIL							<u></u>			<u> </u>		<u> </u>			<u> </u>	<u> </u>		.			1	5,297	874	922	Į	23,503
22 MALANG											<u> </u>	<u> </u>							<u> </u>	<u> </u>		<u> </u>	6,043		ļ	141,136
23 PROBOLINGGO								ļ	ļ		L			1	<u> </u>			ļ	ļ	ļ	<u> </u>	 	ļ	12,224	 	1
24 JEMBER				<u></u>						<u> </u>		<u> </u>		<u> </u>			<u> </u>		<u> </u>		<u> </u>	1	 		3,856	ļ <u>.</u>
25 BANYUWANGI				1					<u> </u>	1	<u> </u>				<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>		<u> </u>	L		66,709
TOTAL				<u> </u>			<u> </u>			<u>L</u>		<u> </u>	<u></u>	<u> </u>	<u> </u>	1		<u></u>	<u> </u>		<u> </u>	4,243,425				

Note: 1) Intra zonal pairs are excluded.

2) The figures of column of righthand "TOTAL" are the total of arrival and departure.

Table 2.3.18 Railway Freight Traffic Matrix (after Restriction by Railway Capacity; Maximum Speed 80 km/h)

Year 1989 (100 ton)

																										y (100 lost
Destination	1	2	3	4	5	6	7	8	9	10	14	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
Origin	MERAK	RANKAS BITUNG	JAKA RTA	FEK FEK	SUKA BUMI	BAND UNG	CIRE SON	TASIKU MA LAYA	KROJA	LON GAN	NEN	SEMA RANG	DADI	YOGYA KARTA	SOLO	KADIUN	OAOOEA OAOOEA	SURA BAYA	SONO	GASLNG	BANGIL	жахус	15/0000 15/03/0	JEKSER	YANGI YANGI	TOTAL
1 MERAK		0	316	179	1	4	6	4	15	4	3	12	2	8	12	6	4	51	5	9	2	8	7	21	11	691
2 RANKASBITUNG			5	339	0	5	2	3	17	3	2	17	1	5	4	3	14	61	4	5	2	5	6	15	15	532
3 JAKARTA				5,800	10	7,080	4,320	1,401	294	1,410	39	1,473	168	401	658	228	87	904	124	133	12	63	150	269	340	25,685
4 CIKAMPEK					584	1,337	1,581	416	15	22	2	26	101	4	4	3	32	49	4	6	2	6	7	20	33	10,569
5 SUKABUMI						0	16	0	0	5	0	13	3	0	1	0	7	84	1	0	3	9	10	28	22	193
6 BANDUNG							32	0	297	6	0	39	5	0	2	1	15	174	55	1	11	38	71	83	81	9,334
1 CIREBON								0	123	0	0	0	0	0	0	0	0	112	0	1	О	1	0	0	0	6,194
8 TASIKUMALAYA									53	0	0	4	0	0	0	0	1	27		0	1	0	8	4	0	1,926
9 KROJA								l		2	292	613	294	1,039	2,243	86	143	241	0	14	0	4	11	35	24	5,858
10 PEKALONGAN											0	1,867	0	0	0	0	0	67	0	0	0	8	1	0	5	3,399
11 KEBUMEN	İ											0	0	0	0	0	0	0	0	0	0	0	0	0	0	338
12 SEMARANG		Ĺ											0	1	16	9	300	1,035	13	0	0	0	0	0	0	5,506
13 PURWODADI														0	0	0	0	1.5	0	0	0	0	0	0	0	587
14 YOGYAXARTA															6	0	0	531	0	0	0	0	36	8	0	2,038
15 SOLO													Ì	1		72	0	903	0	0	0	0	0	0	1	3,922
16 MADIUN						1											0	2,649	0	0	0	0	0	2	5	3,063
17 BOJONEGORO													l	L			.	272	0	0	0	0	0	0	0	875
18 SURABAYA]																2,244	298	271	2,086	811	3,120	688	14,751
19 KERTOSONO		i	1	1		1	İ				l	<u> </u>								0	0	1 0	0	0	0	2,450
20 TULUNGAGUNG																					0	0	0	0	0	468
21 BANGIL											<u> </u>	.]	<u> </u>	<u> </u>	1	<u> </u>]	<u> </u>			<u> </u>	0	0	0	0	304
22 MALANG																			1		<u> </u>	<u> </u>	0	0	0	2,233
23 PROBOLINGGO				1		<u> </u>	1		<u>. </u>	<u> </u>	<u> </u>	<u></u>				1	<u> </u>	<u> </u>	<u> </u>	L.,	<u> </u>	_	<u> </u>	. 0	0	1,119
24 JEMBER												<u> </u>			1				<u> </u>			<u> </u>		<u> </u>	3	1,616
25 BANYUWANGI						<u> </u>		<u> </u>				<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u>L.</u> .	<u> </u>				1,227
25 TOTAL	<u> </u>	<u> </u>	<u></u>		<u></u>					<u> </u>		1	<u> </u>	<u> </u>	<u>L</u>				<u>L.</u>	<u> </u>	<u></u>	<u> </u>	1	<u> </u>		105,483

Note: 1) Traffic of intra zonal pairs are excluded.

2) Fach zonal pair is the total of main 9 articles.

3) The figures of column of righthand "TOTAL" are the total of anival and deputure.

Table 2.3.19 Railway Freight Traffic Matrix (after Restriction by Railway Capacity; Maximum Speed 80 km/h)

Year 1994 (100 ton)

Destination	1	2	3	4	5	6	7	8 TAS!XU	9	10 PEKA	31	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
Origin	MERAX	RANKAS BITUNG	JAKA RŤA	CIKAN FEK	SUXA BUNI	BAND UNG	CIRE BON	HA LAYA	KROJA	EON GAN	KEBU MEN	SEMA RANG	PURNO DADI,		soto	KADIUN	OROGEN	SURA BAYA	KER10 SONO	GYENZO LITEN	DANGIL	MALANG	FEACCO \$5020	JENBER	AYZEI	TOTAL
1 MERAK	1	2	3,706	454	4	7	6	4	21	3	5	11	2	16	23	15	3	61	14	23	2	8	7	22	13	4,432
2 RANKASBITUNG	†	i	3,040	835	2	1	2	3	21	2	3.	17	1	7	7	5	14	45	8	10	ī	4	4	12	13	4,060
3 JAKARTA				7,130	12	7,182	2,721	802	339	755	46	1,026	83	609	1,103	405	72	1,058	158	234	9	53	161	226	256	31,796
4 CIKAMPEK	1				723	1,503	1,861	420	18	21	3	29	124	7	8	7	38	50	11	16	1	4	5	15	24	13,306
5 SUKBUMI	1					0	9	0	0	2	0	6	1	1	3	2	3	51	4	4	2	4	6	18	13	875
6 BANDUNG							18	0	378	3	0	33	2	1	3	4	9	184	58	7	10	31	70	63	51	10,227
7 CIREBON	1							38	3,270	0	6	0	0	14	22	22	0	135	37	64	0	3	3	9	17	8,258
8 TASIKUMALAYA									68	2	1	21	3	4	5	7	10	525	9	13	9	19	36	105	199	2,303
9 KROJA	-1				Ī					113	4,303	2,092	635	6,599	5,313	632	225	455	90	169	6	37	34	83	112	25,014
10 PEKALONGAN	1	1		1							2	2,195	0	2	0	2	0	82	3	6	0	10	5	14	38	3,260
11 KEBUMEN		1										7	,	5	4	3	2	78	4	7	2	7	7	14	33	4,544
12 SEMARANG	1			1		ĺ							0	6	21	13	354	1,442	19	10	G	2	3	19	25	7,353
13 PURWODADI	1						1	<u> </u>						3	0	1	0	17	ī	2	0	0	1	2	5	859
14 YOGYAKARTA	1			1			1	l			1		1		16	5	2	2,734	4	8	3	9	43	45	101	10,247
15 SOLO																102	0	4,265	4	9	3	8	12	45	121	11,102
16 MADIUN	1																15	5,930	4	3	1	2	4	16	43	7,303
17 EOJONEGORO																		333	2	2	3	1	2	3	8	1,160
18 SURABAYA																			7,729	2,845	2,821	4,453	4,272	3,857	1,828	45,327
19 KERTOSONO					1															0	1	0	3	8	23	8,192
20 TULUNGAGUNG																				<u> </u>	3	0	3	9	25	3,473
21 BANGIL		7																				0	1	<u> </u>	3	2,877
22 MALANG	1		T -																				3	2	4	4,680
23 PROBOLINGGO												Ĭ												0	0	4,691
24 JEMBER													}		l		<u> </u>			<u> </u>	<u> </u>			<u> </u>	3	4,592
25 BUNYUWANGI																				L		1	<u> </u>			2,954
TOTAL				1				1			1	1	1	1				1		1		1	.	<u> </u>		222,855

Note: 1) Traffic of intra zonal pairs are excluded.

2) Each zonal pair is the total of main 9 articles.

3) The figures of column of righthand "TOTAL" are the total of arrival and departure.

Table 2.3.20 Railway Freight Traffic Matrix (after Restriction by Railway Capacity; Maximum Speed 180 km/h)

Year 2002 (100 ton)

Destination	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
Origin	MERAK	RANKAS BITUNG	JAKA RTA	CIKAN PÉK	SUKA BUNI	BAND UNG	CIRE BOX	TASIKU SIA EAYA	KROJA	PEKA LON GAN	KE8U KEN	SENA RANG	PURWO DADI	YOGYA KARTA	\$-	MADIUN	NEGORO NEGORO	SURA BAYA	KERTO SONO	TULUN GAGUNG	BANGIL	XALAX0	12050 LCVSGO	JEMBER	BANYU WANGI	TOYAL
1 MERAK		2	3,874	479	5	3	4	5	5	1	1	9	1	4	9	4	2	79	4	6	1	5	4	16	11	4,535
2 RANKASBITUNG	-		3,950	1,020	5	4	0	3	5	1	1	17	0	1	1	1	15	49	2	2	1	2	3	7	8	5,162
3 JAKARTA				9,240	8,372	4,971	713	1,498	267	435	20	954	66	178	337	175	75	1,328	135	116	8	53	185	216	243	37,414
4 CIKAMPEK					2,193	1,166	2,321	643	4	25	1	36	162	2	2	i	50	59	2	4	1	4	4	13	24	17,531
5 SUKABUMI		l				7	3	1	33	1	3	5	1	4	5	4	3	63	6	8	1	4	5	15	12	10,757
6 BANDUNG		ļ					4	2	614	1	2	34	1	4	5	6	9	214	69	31	10	33	71	56	42	7,328
7 CIREBON		1		1				69	3,759	14	6	14	5	11	17	17	14	3,110	28	55	17	67	18	67	144	8,435
8 TASIKUMALAYA		1		<u> </u>		İ			5,573	21	5	34	5	6	6	8	18	437	9	15	6	26	22	54	112	8,579
9 KROJA						1				807	5,598	2,882	783	6,554	5,876	619	303	515	78	181	4	45	27	82	85	34,705
10 PFKALONGAN	 										12	2,729	3	10	6	6	6	1,444	7	18	4	24	7	27	85	5,696
11 KEBUMEN												10	1	3	3	2	3	47	3	6	3	8	3	6	17	5,760
12 SEMARANG							l			l			6	16	43	20	444	5,725	26	22	3	16	4	28	51	13,133
13 PURWODADI						İ	Ì							2	1	1	2	1,289	2	5	1	3	1	3	10	2,356
14 YOGYAKARTA															20	5	. 7	2,210	5	12	2	1.7	47	25	54	9,193
15 SOLO			1			1		1					1			140	8	3,523	5	13	2	18	4	21	63	10,139
16 MADIUN	1	1										1					13	5,851	4	7	1	1 8	2	9	30	6,934
17 BOJONEGORO																		7,202	2	4	2	5	1	3	1)	8,205
18 SURABAYA	1																		6,564	3,078	3,663	8,450	2,693	3,835	2,360	61,780
19 KERTOSONO					1	1			1	1			1			1		1		5	1	1 8	1	. 4	17	6,979
20 TULUNGAGUNG	1	1											<u></u>								1	3		6	21	3,601
21 BANGIL			· [<u> </u>	1		1	2	3,737
22 MALANG															1			I		1]	2 3	9	8,816
23 PROBOLINGGO	T																							6	10	3,121
24 JEMBER			1	1																					13	4,517
25 BANYUWANGI					1		-							1					1					<u>.</u>		3,444
TOTAL															l]								291,909

Note: 1) Traffic of intra zonal pairs are excluded.

²⁾ Each zonal pair is the total of main 9 articles.

³⁾ The figures of column of righthand "TOTAL" are the total of arrival and departure.

Table 2.3.21 Total Arrival and Departure Traffic Volume Classified by Zone (With Project; after Restriction by Railway Capacity; Maximum Speed 100 km/h)

Tear: 1989) (Coit: 100 pass., 100 toos)

(Tear: 1	989)							(Ceit: 1	00 pass., 10) toss)	
Artt-							Frei	ights			
Zone Ko.	Passecger	Bice	Kaire	Sogar	Salt	Pa;er	Steel	Petroleum products	Fectilizer	Cezeat	Total
1	12,953	41	4)	62	6	e	82	2	190	259	691
2	15,745	45	50	6	31	0	0	4	393	0	532
3	£33,389	257	533	172	163	61	427	10,930	\$58	11,828	25,685
•	101,291	95	68	10	10	0	0	3,235	5,412	1,744	19,569
5	19,806	50	76	6	22	0	0	0	613	0	693
6	203,917	173	332	26	45	23	0	3,932	1,420	3,283	9,33%
,	112,C52	6.5	15	2	5	2	1	1,879	1,689	2,544	6,155
8	55,769	12	8	3	10	2	1	533	150	830	1,926
9	22,321	155	25	22	6	4	87	1,211	2,134	2,214	5,858
10	18,065	83	18	41	0	2	4	2,251	ಏ	925	3,399
11	19,271	8	5	2	0	2	4	16	255	8	338
12	30,950	165	33	58	121	3	4	2,450	195	2,535	5,506
13	11,269	12	3	1	0	1	2	19	463	142	587
24	24,558	24	6	2	۰	5	13	172	(65	1,291	2,038
15	27,484	102	,	33	0	8	16	934	750	2,060	3,922
16	9,751	60	,	17	0	4	20	2,724	540	692	3,063
17	9,220	25	35	2	45	1	3	368	374	21	815
15	72,459	144	431	33	93	3	219	6,656	4,336	3,431	15,751
19	20,547	25	13%	13	0	1	18	1,635	654	18	2,450
20	13,720	33	33	2	0	3	20	2	293	67	448
21	5,040	6	23	1	6	0	1	3	263	•	304
22	13,333	18	53	6	0	,	13	1,451	606	16	2,233
23	1,593	47	227	4	23	4	51	187	551	15	1,119
25	6,830	33	353	ю	0	3	35	550	554	317	1,616
25	8,000	35	321	32	٥	0	33	225	283	293	1,227

Table 2.3.22 Total Arrival and Departure Traffic Volume Classified by Zone (With Project; after Restriction by Railway Capacity; Maximum Speed 100 km/h)

(tuit: 100 pass., 100 teas) (Year: 1934) Freights Ertl-Passenger cles Petrole:3 fotal Festilises Cettet Steel Maire Sogar Salt Fa; et lice products 4,432 2,272 138 1,155 74 5 G 155,795 1 4,060 1,149 1,655 1,109 0 0 6 31 15,200 64 14,773 31,755 13,305 1,502 697 160 80 270 914 186 665,712 3 13,306 2,293 3,814 7,010 8 0 10 4 137,651 312 53 875 ø 16 0 165 28,653 33 50 5 3,845 19,727 1,610 4,197 156 71 49 3:2 254,331 1,983 8,258 2,595 1 1 3,362 79 19 131,435 221 2,303 907 537 3 315 37 39 3 197 2€6 61,940 8 3,612 8,131 25,014 12,411 129 93,793 321 92 81 27 10 3,763 2,434 55 504 0 26,926 113 43 65 10 1,411 4,544 956 2,019 14 7 4 61,471 90 37 11 2,954 7,353 243 3 3,703 2 16 130 70,769 631 51 12 **889** 153 506 ΝI 0 19 7 2 \$6,321 2,078 3,842 10,247 10 25 3,934 215 102 3) 135,478 11,102 4,277 2,459 3,830 31 9 16 243 118 150,203 15 7,303 1,712 2,059 3,229 ž 41 35 8 64,345 173 15 1,166 457 454 35 19,239 53 5 50 17 12,570 45,327 13,493 145 324 17,934 13 371,224 257 452 126 18 2,335 8,192 1,445 4,617 167 26 19 67,245 137 3,473 745 1,070 1 45 1,330 22 20 57,016 183 97 1,255 2,877 728 8.5 7 0 1 23 12,845 25 21 942 4,650 2,524 1,028 107 11 1 1 8 35,554 22 58 1,777 1,237 1,23 4,691 9 72 13 23 23 30,633 93 4,592 1,539 917 1,459 2 33 1 117 429 61 42,167 24 2,555 56.6 973 150 1 25 45,176 244 £26

Table 2.3.23 Total Arrival and Departure Traffic Volume Classified by Zone (With Project; after Restriction by Railway Capacity; Maximum Speed 100 km/h)

(Year: 2002)

(Unit: 100 pass., 100 tons)

(Year:	20,23							(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.co pass., 100		
Arti-							Fre	ights			
Zone So.	Passenger .	Bice	Kaire	Sugar	Salt	Pașer	Steel	Petroleum products	Fectilizer	Cesest	Tetal
1	176,153	39	23	73	4	0	112	1,319	છડ	2,499	4,535
2	62,749	34	22	4	33	0	0	2,054	3,427	1,587	5,162
3	831,275	253	876	210	175	54	761	16,445	2,491	16,157	37,414
•	192,515	85	33	8	9	1	0	4,727	9,455	3,176	17,531
5	153,683	67	51	8	18	1	O	4,293	2,845	3,459	10,757
6	268,474	245	335	22	43	22	0	2,793	1,316	2,645	7,328
7	128,639	351	247	63	9	3	,	2,853	4,023	932	8,435
8	150,403	245	169	31	33	3	•	3,359	3,000	1,721	8,579
9	733,043	303	52	69	15	4	180	16,527	6,853	10,692	31,705
10	315,009	232	85	115	12	3	4	3,762	1,100	350	5,695
11	193,660	77	20	11	4	2	3	2,482	1,223	1,939	5,762
12	288,121	277	??	110	358	4	3	5,719	2,956	3,830	13,133
13	33,322	€5	11	5	1	1	1	655	1,369	276	2,356
14	214,673	210	57	21	6	4	7	3,287	1,693	3,914	9,179
15	193,118	241	72	73	5	6	10	3,654	2,207	3,851	10,133
16	83,304	159	33	35	1	3	25	3,337	1,529	1,605	6,934
17	60,850	333	47	23	57	1	2	3,176	2,650	2,149	8,205
18	431,930	327	473	123	149	17	497	22,560	20,722	16,921	61,780
19	55,247	123	159	28	1	1	31	3,676	1,415	1,545	6,973
20	123,073	151	£ 2	23	1	3	22	1,299	878	1,693	3,601
71	23,503	35	26	3	,	o	1	1,595	951	1,113	3,732
22	141,136	151	150	27	1	1	9	4,128	3,720	2,628	8,815
23	33,353	92	245	10	25	10	105	918	1,148	546	3,121
24	59,555	100	376	60	1	3	32	1,514	1,555	877	4,517
25	€6,7€9	216	572	150	1	1.	34	528	1,165	742	3,414

(3) Link traffic volume

On the basis of the outcome of forecast traffic demand between zones, the traffic volume of railways and roads by each link was estimated. Tables 2.3.24 26 express the outcome of calculating the railway link traffic "with project." Each is for the number of passing trains (the total of passenger and freight) by link per day and the number of passing passengers as well as passing tonnage.

In these tables, "Actual Traffic of Railway" means "the traffic demand which may be realized after the restriction by railway capacity in the demand of railway transport," and it means the same as the above-mentioned traffic demand after restriction by railway capacity. Accordingly, in these tables, "Demand to Railway" means the traffic demand before restriction by railway capacity.

Next, Figs. 2.3.3 5 show the actual number of passing trains (the total number of passenger and freight trains) by each link. Also, Figs. 2.3.6 11 show the actual passing passenger between links per day, Figs. 2.3.12 17 similarly show the passing tonnage by each link per day.

Lastly, the estimated results for traffic volume (the number of passing buses and trucks) between road links are shown on Tables 2.3.27 \(^1\)29 (before restriction by railway capacity) and Tables 2.3.30 \(^1\)32(after restriction by railway capacity). In these tables, the traffic volume (the number of trains) between railway links is shown, calculated in accordance with the classification of "with project" and "without project."

2.3.6 Integrated Evaluation

In order to obtain an integrated evaluation for the outcome of the demand forecast, we estimated the saved time and railway passenger traffic volume (pass. km), railway freight traffic volume (ton·km) by electrification, and also the decrease of the traffic volume of buses (the number of buses·km) and the traffic volume of trucks (the number of trucks·km) caused by the diversion of traffic demand from roads to railways. The results of the calculation for these factors are shown in Table 2.3.33.

Table 2.3.24 RAILWAY LINK TRAFFIC

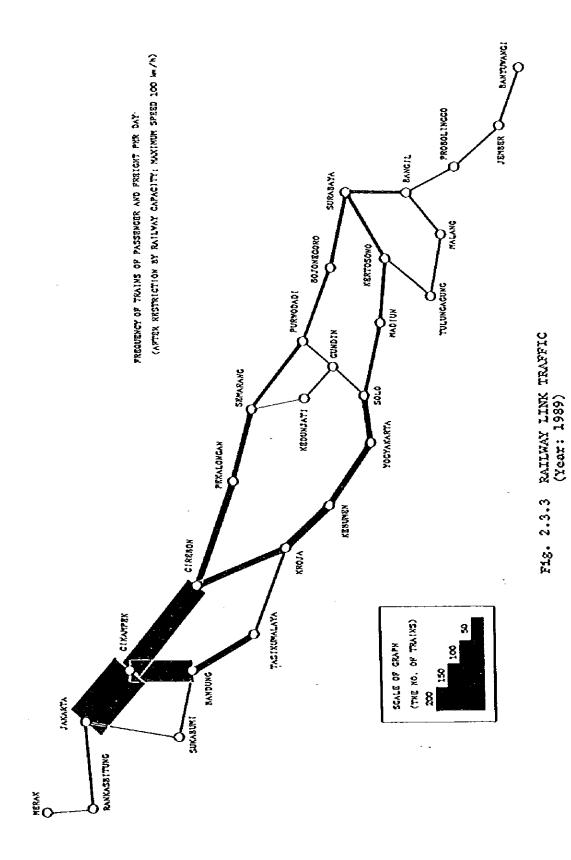
"WITH PROJECT"

YEAR: 1939

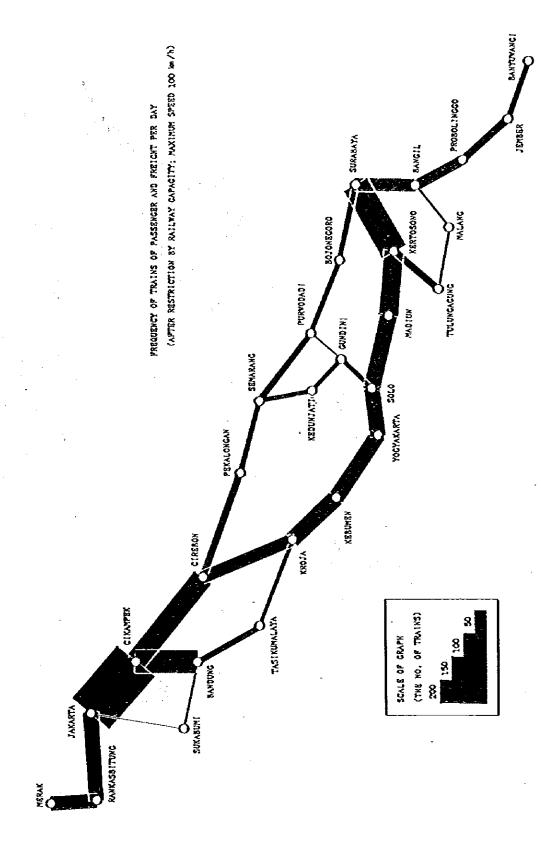
Note Color											12/2	: 1939
CAPACITY CAPACITY			BKK#	er op 19a	ins per d	AY					_)
2 2 2 3 49 159 9 8 1066 55 55 92 4 3 3 3 4 4 249 657 193 171 3344 1256 1117 524 87 74 4 3 4 5 60 89 6 6 6 511 41 41 41 65 2 2 5 5 4 6 42 36 2 7 2 245 14 115 7 0 0 6 4 7 7 99 314 111 90 1719 719 555 365 43 33 7 4 6 6 94 332 106 91 2149 712 607 155 33 39 8 6 8 8 25 209 34 25 1332 230 169 72 9 6 9 7 10 23 129 28 24 690 370 147 161 21 17 10 7 9 36 149 26 21 899 174 157 175 8 6 11 8 9 27 52 9 9 227 63 63 63 59 11 1 12 10 12 29 60 21 18 359 116 104 143 21 19 13 9 11 45 156 33 31 786 209 116 104 143 21 19 14 12 13 26 117 16 15 733 91 89 124 14 13 15 12 26 39 39 1 1 697 6 6 6 59 2 2 16 26 42 38 99 1 1 697 6 6 6 59 2 2 17 11 14 12 21 171 15 15 15 15 16 16 15 18 15 12 26 39 13 1 1 697 6 6 6 59 2 2 19 11 14 15 15 22 38 14 1 1 697 6 6 6 59 2 2 2 1 12 11 11 14 12 11 11 697 6 6 6 6 59 2 2 2 1 12 11 11 11 697 6 6 6 6 59 2 2 2 1 12 11 11 14 12 12 171 27 25 935 163 151 192 19 19 18 15 27 38 113 2 2 718 11 1 697 6 6 6 6 59 2 2 2 1 12 11 14 15 52 233 21 20 1133 125 113 166 16 15 29 12 27 38 113 2 2 718 11 1 697 6 6 6 6 59 2 2 2 1 12 11 14 12 2 171 27 25 935 163 151 192 19 18 18 15 27 38 113 2 2 718 11 1 697 6 7 6 7 1 120 19 19 18 15 27 38 113 2 2 718 11 1 697 6 7 6 7 1 120 19 19 18 15 27 38 113 2 2 718 11 1 697 6 7 6 7 1 120 19 19 18 15 27 38 113 2 2 718 11 11 697 7 6 7 6 7 1 120 15 11 19 19 14 15 52 233 21 20 1133 125 113 166 16 15 20 12 27 38 14 1 1 1 81 5 5 5 13 1 1 1 21 13 17 17 25 76 13 13 13 726 89 80 122 8 7 23 17 18 23 91 13 12 12 12 1934 61 60 237 19 18 24 15 24 15 29 31 13 12 12 12 1934 61 60 237 19 18 25 18 21 59 31 12 12 12 1934 61 60 237 19 18 26 18 21 59 36 94 4 4 5 52 28 28 28 69 11 1 21 13 23 22 6 60 2 2 2 425 13 13 13 7 0 0 0 21 22 15 23 49 125 7 7 1331 34 34 191 12 11 31 23 224 49 144 6 6 6 892 31 31 17 9 8	I K	\$00E	CYSYCITA	- BOIB) + YAY	30	Traffic Of	-8018) + YAX	70	17affic Of	C/AN3-1 -2018} + YAH	เง	Traffic Of
3 3 ~ 4 240 657 199 171 324 1255 1117 524 87 74 4 3 ~ 5 40 657 199 171 324 1255 1117 524 87 74 4 3 ~ 5 40 657 199 6 6 6 511 44 41 41 65 2 2 2 5 5 ~ 6 42 36 2 2 2 245 14 14 77 0 0 0 6 4 ~ 7 90 314 111 50 1719 719 555 365 49 37 7 4 ~ 6 94 322 106 91 2143 712 607 155 33 30 8 6 ~ 8 25 209 34 25 1722 239 169 72 9 6 9 7 ~ 10 23 129 28 24 650 170 147 161 21 17 10 7 ~ 9 36 143 26 23 829 174 157 175 8 6 11 8 ~ 9 27 52 9 9 221 18 859 174 157 175 8 6 11 8 ~ 9 27 52 9 9 221 18 859 116 104 140 21 19 13 9 ~ 11 46 156 33 31 785 209 19 127 20 19 14 12 ~ 13 26 177 16 15 57 733 91 89 174 14 13 15 12 ~ 26 30 99 1 1 6 677 6 6 6 59 2 2 7 16 16 ~ 6 ~ 27 38 99 1 1 6 677 6 6 6 59 2 2 7 16 16 ~ 6 ~ 27 38 99 1 1 6 677 6 6 6 59 2 2 7 16 16 ~ 6 ~ 27 38 99 1 1 6 677 6 6 6 59 2 2 7 16 16 ~ 27 38 13 14 1 1 8 8 5 5 11 19 19 19 18 18 15 ~ 27 38 113 2 2 718 11 11 637 6 6 6 6 59 2 2 7 16 16 ~ 6 ~ 27 38 99 1 1 6 677 6 6 6 59 2 2 7 16 16 ~ 6 ~ 27 38 99 1 1 6 81 5 733 91 89 174 14 15 12 12 12 12 12 12 12 12 12 12 12 12 12	1	1 ~ ?	28	179	6	5	3177	37	35	70	2	2
4 3 7 5 40 89 6 6 6 511 41 41 41 55 2 2 2 5 5 5 6 42 36 2 2 2 245 14 14 7 0 0 0 0 0 6 4 7 7 90 314 111 90 1719 719 565 365 49 39 39 7 4 6 6 94 392 106 91 2149 712 607 155 33 30 30 8 6 8 8 25 709 34 25 1792 299 169 72 9 6 6 9 7 7 10 22 122 28 24 630 170 147 161 21 17 10 7 9 36 143 26 23 802 114 157 135 8 6 11 8 8 9 27 52 9 9 9 297 63 63 50 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	2 ~ 3	49	159	9	8 -	1006	56	55	92	4_	3
5 5 \(\cdot \cdot 6 \) 42 36 2 2 245 14 14 7 0 0 6 4 \(\cdot 7 \) 90 314 111 50 1719 219 585 385 42 33 7 4 \(\cdot 6 \) 94 332 106 91 2143 712 607 155 33 30 8 6 \(\cdot 8 \) 25 293 34 25 1392 230 169 72 9 6 9 7 \(\cdot 10 \) 22 122 22 24 690 170 147 161 21 17 10 7 \(\cdot 9 \) 36 143 26 23 807 174 157 151 8 6 11 8 \(\cdot 9 \) 36 143 26 23 807 174 157 151 13 11 13 12 13 13 172 23	3	3 ~ 4	249	657	193	171	3244	1256	1317	524	87	74
6 4 ~ 7 93) 314 111 90 1719 719 555 365 42 33 17 4 ~ 6 94 332 106 91 2143 712 607 155 33 30 30 8 6 ~ 8 25 209 34 25 1332 229 169 22 9 6 6 9 7 ~ 10 29 129 28 24 690 170 147 161 21 17 10 7 ~ 9 36 143 26 23 859 174 157 175 8 6 6 11 8 ~ 9 27 52 9 9 9 237 63 63 63 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	3 % 5	49	89	6	6	541	41	41	65	2	2
7 4 4 6 94 332 106 91 2143 712 607 155 33 30 30 8 6 4 8 25 209 34 25 1392 219 169 72 9 6 6 97 7 10 23 123 28 24 690 170 147 161 21 17 10 7 4 9 36 143 26 23 609 170 147 151 215 8 6 6 11 8 4 9 27 52 9 9 9 237 63 63 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	5 2 6	42	36	2	2	245	14	14	7	0	0_
8 6 \(\) 8 25 203 34 25 1332 213 169 22 9 6 9 7 \(\) 10 23 123 228 24 690 170 147 161 21 17 10 7 \(\) 9 36 143 26 23 823 174 157 175 8 6 6 11 8 \(\) 9 27 52 9 9 9 237 63 63 50 1 1 1 1 12 10 \(\) 17 29 80 21 18 \(\) 52 116 104 143 21 19 13 9 \(\) 11 46 156 33 31 786 203 191 223 20 19 14 12 \(\) 12 \(\) 13 26 117 16 15 15 733 94 83 114 14 13 15 12 \(\) 15 12 \(\) 26 30 93 1 1 1 637 6 6 6 50 2 2 2 1 18 15 \(\) 15 12 \(\) 26 33 39 1 1 1 637 6 6 6 50 2 2 2 2 1 18 15 \(\) 15 12 \(\) 26 33 39 1 1 1 637 6 6 6 50 2 2 2 2 1 18 15 \(\) 15 12 \(\) 26 33 39 1 1 1 637 6 6 6 50 2 2 2 2 1 18 15 \(\) 15 12 \(\) 27 38 113 2 27 25 935 163 151 192 19 18 18 15 \(\) 27 38 113 2 2 2 718 11 11 63 3 3 3 1 14 1 1 1 81 5 5 5 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	4 ~ 7	90	314	111	50	1719	719	565	365	43	33
9 7 ~ 10 22 129 28 24 690 170 147 161 21 17 10 7 ~ 9 36 143 26 23 692 174 157 175 8 6 11 8 ~ 9 27 57 9 9 9 237 63 63 53 59 1 1 12 10 ~ 12 29 60 21 18 569 116 104 143 21 19 13 9 ~ 11 45 156 33 31 786 203 131 229 20 19 14 12 ~ 13 26 177 16 15 733 91 89 124 14 13 15 12 ~ 26 30 99 1 1 6 637 6 6 6 59 2 2 16 26 ~ 27 33 99 1 1 637 6 6 6 59 2 2 17 11 ~ 14 32 171 27 25 935 163 151 199 19 18 18 15 ~ 27 36 113 2 2 718 11 11 63 15 151 199 12 18 18 15 ~ 27 36 113 2 2 718 11 11 63 3 3 3 19 14 ~ 15 52 233 21 20 1633 125 118 186 16 15 20 13 ~ 27 38 14 1 1 81 5 5 5 10 1 1 1 21 10 ~ 17 25 76 13 13 13 22 7 76 73 120 15 11 22 15 ~ 16 22 128 13 13 13 726 69 80 129 8 7 23 17 ~ 18 28 91 13 12 431 74 21 156 13 13 25 18 ~ 27 59 331 12 431 74 21 156 13 13 26 18 ~ 19 36 154 12 12 893 64 64 16 16 15 13 27 19 ~ 20 36 94 4 4 578 28 28 28 68 1 1 1 28 11 ~ 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20	7	6 2 6	94	332	106	91	2143	712	€07	155	33	30
10 7 ~ 9 36 149 26 23 859 174 157 175 8 6 6 11 8 ~ 9 27 52 9 9 237 63 63 59 1 1 12 10 ~ 12 29 60 21 18 559 116 104 143 21 19 13 9 ~ 11 45 156 33 31 785 203 191 223 20 19 14 12 ~ 13 26 127 16 15 733 91 89 124 14 13 15 12 ~ 26 30 99 1 1 6 637 6 6 5 59 2 2 16 26 ~ 27 38 99 1 1 6 637 6 6 5 59 2 2 17 11 ~ 14 32 171 27 25 935 163 151 199 19 18 18 15 ~ 27 56 113 2 2 718 11 11 63 3 3 19 14 ~ 15 52 233 21 20 1433 125 118 186 16 15 20 13 ~ 27 38 14 1 1 8 1 5 5 5 13 1 1 21 13 ~ 17 25 76 13 13 32 76 76 73 120 15 13 22 15 ~ 16 22 128 13 13 13 726 89 80 129 8 7 23 17 ~ 18 28 91 13 12 431 74 73 156 13 122 24 16 ~ 19 36 154 12 12 12 893 64 64 165 13 13 25 18 ~ 21 59 311 12 12 12 1994 61 60 257 19 18 26 18 ~ 19 55 263 17 17 1597 93 93 19 19 19 27 19 ~ 20 35 94 4 4 5 128 28 28 69 1 1 1 28 21 ~ 20 ~ 22 43 13 13 13 726 89 80 129 18 26 18 ~ 19 55 263 17 17 1597 93 93 139 19 19 27 19 ~ 20 36 94 4 4 5 128 28 28 69 1 1 1 28 21 ~ 22 2 425 13 13 13 7 2 0 0 30 21 ~ 23 43 225 7 7 1331 34 34 191 12 11	8	6 ~ 8	25	203	34	25	1392	230	169	72	9	6
11 8 × 9 27 52 9 9 237 63 63 59 1 1 12 10 × 12 29 60 21 18 359 116 104 143 21 19 13 9 × 11 46 156 33 31 786 293 191 233 20 19 14 12 × 13 26 127 16 15 733 91 89 124 14 13 15 12 × 26 39 99 1 1 637 6 6 59 2 2 16 26 × 27 38 93 1 1 637 6 6 59 2 2 17 11 × 14 32 171 27 25 935 163 151 199 19 18 18 15 × 27 36 113 2 2 718 11 11 63 3 3 19 14 × 15 52 233 21	9	7 ~ 10	23	129	28	24	690	170	147	161	21	17
12 10 \cdots 12 29 60 21 18 369 116 104 143 21 19 13 9 \cdot 11 46 156 33 31 786 203 191 229 20 19 14 12 \cdot 13 26 127 16 15 733 91 89 124 14 13 15 12 \cdot 26 30 99 1 1 637 6 6 59 2 2 16 26 \cdot 27 38 99 1 1 637 6 6 59 2 2 17 11 \cdot 14 32 171 27 25 935 163 151 192 19 18 18 15 \cdot 27 36 113 2 2 718 11 11 63 3 3 3 18 19 19 18 16 15 15 13 11 11 18 16 15 15 13 11 11 <t< td=""><td>10</td><td>7 ~ 9</td><td>36</td><td>143</td><td>26</td><td>23</td><td>873</td><td>174</td><td>157</td><td>175</td><td>8</td><td>6</td></t<>	10	7 ~ 9	36	143	26	23	873	174	157	175	8	6
13 9 \cdot 11 45 156 33 31 786 203 191 229 20 19 14 12 \cdot 13 26 127 16 15 713 91 89 124 14 13 15 12 \cdot 26 30 93 1 1 637 6 6 59 2 2 16 26 \cdot 27 38 93 1 1 637 6 6 59 2 2 17 11 \cdot 14 32 171 27 25 935 163 151 193 19 18 18 15 \cdot 27 36 113 2 2 718 11 11 63 3 3 3 19 14 \cdot 15 52 233 21 20 1433 125 118 186 16 15 29 13 \cdot 27 38 14 1 1	11	8 2 9	27	52	9	g	237	63	63	50	1	1
14 12 \cdot 13 26 127 16 15 733 91 89 124 14 13 15 12 \cdot 76 30 93 1 1 637 6 6 50 2 2 16 26 \cdot 27 38 99 1 1 637 6 6 50 2 2 17 11 \cdot 14 32 171 27 25 935 163 151 190 19 18 18 15 \cdot 27 36 113 2 2 718 11 11 63 3 3 19 14 \cdot 15 52 233 21 20 1433 125 118 166 16 15 20 13 \cdot 27 38 14 1 1 81 5 5 13 1 1 21 13 \cdot 17 25 76 13 13 372 7	12	10 ~ 12	29	89	21	18	353	116	104	143	21	19
15	13	9 111	45	156	33	31	786	293	191	223	20	19
16 26 \times 27 38 93 1 1 637 6 6 50 2 2 17 11 \times 14 32 171 27 25 935 163 151 193 19 18 18 15 \times 27 36 113 2 2 718 11 11 63 3 3 19 14 \times 15 52 233 21 20 1433 125 118 186 16 15 20 13 \times 27 38 14 1 1 81 5 5 13 1 1 21 13 \times 17 25 76 13 13 392 76 73 120 15 13 22 15 \times 16 32 128 13 13 726 80 80 129 8 7 23 17 \times 18 28 91 13 12 431 74 71 156 13 12 24 16 \times 19 36 <td>14</td> <td>12 ~ 13</td> <td>26</td> <td>127</td> <td>16</td> <td>15</td> <td>733</td> <td>91</td> <td>89</td> <td>124</td> <td>14</td> <td>13</td>	14	12 ~ 13	26	127	16	15	733	91	89	124	14	13
17 11 14 32 171 27 25 935 163 151 199 19 18 18 15 15 27 36 113 2 2 718 11 11 63 3 3 19 14 15 52 233 21 20 1433 125 118 166 16 15 29 13 17 38 14 1 1 1 81 5 5 13 1 1 21 13 17 25 76 13 13 372 76 73 120 15 13 22 15 16 32 128 13 13 726 89 80 129 8 7 23 17 18 28 91 13 12 431 74 21 156 13 12 24 16 19 36 154 12 12 893 64 64 165 13 13 25 18 17 59 331 12 12 1994 61 60 257 19 18 26 18 19 55 263 37 17 1597 93 93 199 19 27 19 20 36 94 4 4 578 28 28 69 1 1 28 21 17 2 49 130 5 5 849 24 21 58 6 6 29 20 12 28 49 120 5 7 7 1331 34 24 191 12 11 31 23 12 23 49 225 7 7 1331 34 24 191 12 11	15	12 ~ 26	3:0	99	1	1	637	6	6	50	3	2
18 15 \cdot 27 36 113 2 7 718 11 11 63 3 3 19 14 \cdot 15 52 233 21 20 1433 125 118 186 16 15 29 13 \cdot 27 38 14 1 1 81 5 5 13 1 1 21 13 \cdot 17 25 76 13 13 372 76 73 120 15 11 22 15 \cdot 16 32 128 13 13 726 80 80 123 8 7 23 17 \cdot 10 28 91 13 12 431 74 71 156 13 12 24 16 \cdot 19 36 154 12 12 893 64 64 165 13 13 25 18 \cdot 21 59 331 12 12 1934 61 60 257 19 18 26 18 \cdot 19 55	16	26 2 27	13	99	1	1	637	6	6	50	2	2
19 14 \(\cdot 15 \) 52 233 21 20 1433 125 118 186 16 15 29 13 \(\cdot 27 \) 38 14 1 1 81 5 5 13 1 1 21 13 \(\cdot 17 \) 25 76 13 13 372 \) 76 73 129 15 13 22 15 \(\cdot 16 \) 32 128 13 13 726 89 80 129 8 7 23 17 \(\cdot 18 \) 28 91 13 12 431 74 71 156 13 12 24 16 \(\cdot 19 \) 36 154 12 12 893 64 64 146 13 13 25 18 \(\cdot 21 \) 59 331 12 12 1934 61 60 257 19 18 26 18 \(\cdot 19 \) 55 263 17 17 1597 93 93 159 19 19	17	11 ~ 14	32	171	27	25	935	163	151	193	19	18
29 13 \cdot 27 38 14 1 1 81 5 5 13 1 1 21 13 \cdot 17 25 76 13 13 372 76 73 120 15 13 22 15 \cdot 16 32 128 13 13 726 89 80 123 8 7 23 17 \cdot 18 28 91 13 12 431 74 73 156 13 12 24 16 \cdot 19 36 154 12 12 893 64 64 146 13 13 25 18 \cdot 21 59 331 12 12 1924 61 60 257 19 18 26 18 \cdot 19 55 263 37 17 1597 93 93 159 19 19 27 19 \cdot 20 36 94 4 4 578 28 28 68 1 1 28 21 \cdot 22 49	18	15 % 27	36	113	2	2	718	11	11	63	3	3
21 13 \(\) 17 25 76 13 13 372 76 73 120 15 13 22 15 \(\) 16 32 128 13 13 13 726 80 80 123 8 7 23 17 \(\) 18 28 91 13 12 431 74 71 156 13 12 24 16 \(\) 19 36 154 12 12 823 64 64 145 13 13 25 18 \(\) 21 59 331 12 12 12 1324 61 60 257 19 18 26 18 \(\) 19 55 263 12 17 1597 93 93 133 19 19 27 19 \(\) 20 36 94 4 4 578 28 28 69 1 1 28 21 \(\) 22 49 130 5 5 843 24 23 55 6 6 29 20 \(\) 22 26 61 2 2 425 13 13 77 0 0 30 21 \(\) 23 49 225 7 7 1331 34 34 191 12 11 31 23 \(\) 23 \(\) 24 49 16 66 6 66 962 31 31 147 9 8	19	14 ~ 15	52	233	21	20	1433	125	118	186	16	15
22 15 \(\) 16 32 128 13 13 726 80 129 8 7 23 17 \(\) 18 28 91 13 12 431 74 73 156 13 12 24 16 \(\) 19 36 154 12 12 823 64 64 145 13 13 25 18 \(\) 21 59 331 12 12 1924 61 60 257 19 18 26 18 \(\) 19 55 263 17 17 1597 93 93 199 19 19 27 19 \(\) 20 36 94 4 4 578 28 28 69 1 1 28 21 \(\) 22 43 130 5 5 843 24 23 58 6 6 23 20 \(\) 22 26 61 2 2 425 13 13 7 0 0 30 21 \(\) 23 43 225 7 7 1331 34 34 191 12 11 31 23 \(\) 24 43 164 6 6 <td>29</td> <td>13 ~ 27</td> <td>33</td> <td>14</td> <td>1</td> <td>ı</td> <td>81</td> <td>5</td> <td>5</td> <td>13</td> <td>1</td> <td>1</td>	29	13 ~ 27	33	14	1	ı	81	5	5	13	1	1
23 17 ~18 28 91 13 12 431 74 73 156 13 12 24 16 ~19 36 154 12 12 893 64 64 116 13 13 25 18 ~21 59 331 12 12 1934 61 60 257 19 18 26 18 ~19 55 263 17 17 1597 93 93 199 19 19 27 19 ~20 36 94 4 4 578 28 28 69 1 1 28 21 ~22 42 130 5 5 849 24 23 55 6 6 29 20 ~22 26 61 2 2 425 13 13 7 7 0 0 30 21 ~23 49 225 7 7 1331 34 34 191 12 11 31 23 ~24 43 164 6 6 962 31 31 147 9 8	21	13 ~ 17	25	76	13	13	372	76	- 73	150	15	13
24 16 \times 19 36 154 12 12 893 64 64 145 13 13 25 18 \times 21 59 331 12 12 1924 61 60 257 19 18 26 18 \times 19 55 263 17 17 1597 93 93 193 19 19 27 19 \times 20 36 94 4 4 578 28 28 69 1 1 28 21 \times 22 43 130 5 5 843 24 23 58 6 6 23 20 \times 22 26 61 2 2 425 13 13 7 0 0 30 21 \times 23 43 225 7 7 1331 34 34 191 12 11 31 23 \times 24 43 164 6 6 962 31 31 147 9 8	222	15 > 10	32	128	13	13	726	63	દગ	123	8	7
25 18 \(\cdot 21 \) 59 331 12 12 1924 61 60 257 19 18 26 18 \(\cdot 19 \) 55 263 12 17 1597 93 93 199 19 19 27 19 \(\cdot 20 \) 36 94 4 4 4 578 28 28 69 1 1 2 2 2425 13 13 7 0 0 0 30 21 \(\cdot 22 \) 49 120 5 7 7 1331 34 34 191 12 11 31 23 \(\cdot 24 \) 49 164 6 6 6 962 31 31 147 9 8	23	17 ~ 16	28	91	13	12	431	74	71	156	13	12
26 18 × 19 55 263 12 17 1597 93 93 193 19 19 27 19 × 20 36 94 4 4 573 28 28 69 1 1 23 21 × 22 43 130 5 5 843 24 23 55 6 6 23 20 × 22 26 61 2 2 425 13 13 7 0 0 30 21 × 23 43 225 7 7 1331 34 34 191 12 11 31 23 × 24 43 164 6 6 962 31 31 147 9 8	24	16 ~ 19	36	154	12	12	833	61	£1	145	13	13
27 19 \(20 \) 36 94 4 4 578 28 28 69 1 1 28 21 \(22 \) 49 130 5 5 843 24 21 58 6 6 23 20 \(\cdot \) 2 26 61 2 2 425 13 13 7 0 0 30 21 \(\cdot \) 23 43 225 7 7 1331 34 191 12 11 31 23 \(\cdot \) 24 43 164 6 6 962 31 31 147 9 8	25	18 ~ 2	59	331	12	12	1934	61	69	257	19	18
28 21 \(22 \) 49 130 5 5 849 24 23 58 6 6 29 20 \(\chi 2 \) 26 61 2 2 2 425 13 13 7 0 0 30 21 \(\chi 2 \) 3 225 7 7 1331 34 34 191 12 11 31 23 \(\chi 2 \) 49 164 6 6 6 962 31 31 147 9 8	26	18 ~ 1	55	263	12	17.	1597	. 93	93	193	19	13
23 20 \ \ 22 \ 26 \ 61 \ 2 \ 2 \ 425 \ 13 \ 13 \ 7 \ 0 \ 0 \ 0 \ 30 \ 21 \ \ \ 23 \ 43 \ 225 \ 7 \ 7 \ 1331 \ 34 \ 34 \ 191 \ 12 \ 11 \ 31 \ 23 \ \ \ 24 \ 43 \ 164 \ 6 \ 6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	27	19 ~ 2	36	94	4	4	578	28	28	6.8	1	1
39 21 ~23 43 225 7 7 1331 34 34 191 12 11 31 23 ~24 43 164 6 6 962 31 31 147 9 8	23	21 ~ 2	2 49	130	5	5	613	24	23	53	6	6
31 23 324 43 164 6 6 56 32 31 31 147 9 8	23	20 ~ 2	2 26	61	2	2	425	13	13	,	0	0
	30	21 ~ 2	3 49	225	7	7	1331	34	34	191	12	1 11
32 24 5 25 40 82 4 4 473 22 22 21 21 4 3	31	23 ~ 2	4 43	164	6	6	9€2	31	31	147	9	8
	35	24 ~ 2	5 40	85	4	4	473	22	155	23	1] ,

TABLE 2.3.25 RAILWAY LINK TRAFFIC

"WITH PROJECT"

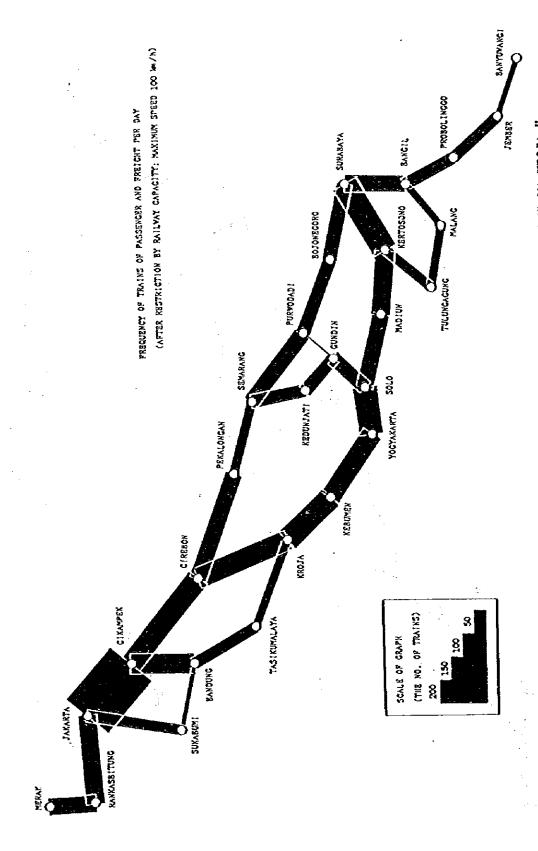

YEAR: 1994

		N.M.S	er of 18a	INS PER C	AY.		Passeyjer			Freight	1
\square							Passencer	(CAY)	(10	O TON/DAY)
L I N K	NOOE	CYBYCITY	DEMAND DEMAND (HICE- KAY + PAILKAY)	Demand To Pailway	Actual Traffic Op Pailway	PAHUKAY) PAHUKAY)	DEPARD OT YK#JIKA	Actual Traffic OP Failray	TATUAL CEXAND (SIGE- YAY + YAY +	CCANGO OT YANDIAR	actual Traffic Op Failway
•	1 2 2	74	257	63	62	1701	434	424	96	13	12
2	2 % 3	81	228	63	66	1453	450	440	151	25	23
3	3 ~ 4	240	937	231	203	5633	1944	1374	693	123	76
•	3 ∿ 5	49	126	9	9	781	59	59	83	3	2
5	5 % 6	42	51	3	3	354	20	20	8	0	0
6	127	90	444	178	35	2483	1161	632	493	76	34
7	4 2 6	94	475	153	93	3105	1037	660	201	40	3:3
8	6 % 8	25	360	52	25	2011	354	172	93	11	5
9	7 ~ 19	29	161	53	23	937	336	186	204	29	14
10	7 % 9	81	210	83	53	1179	546	351	232	32	18
11	8 % 9	27	72	19	17	429	179	1112	58	5	4
12	10 ~ 12	29	110	ю	21	534	172	124	177	28	18
13	9 ~ 11	110	218	93	70	1126	548	492	292	80	€.8
14	12 ~ 13	26	179	23	21	1059	133	129	253	20	14
15	12 ~ 26	30	141	15	15	920	100	100	61	6	6
16	26 % 27	3-3	161	15	15	920	100	190	61	6	6
17	11 ~ 14	66	240	£3	69	1352	530	4)2	255	€8	56
18	15 % 27	36	161	17	17	1033	107	107	76	8	8
19	14 ~ 15	116	337	76	€4	2071	457	392	233	54	45
20	13 ~ 27	33	19	2	2	118	7	7	15	2	2
51	13 ~ 17	25	105	20	18	\$33	116	107	147	19	14
22	15 ~ 16	77	179	69	67	1043	(49	435	161	35	31
23	17 ~ 18	28	125	55	19	622	129	119	191	18	13
24	16 ~ 19	87	517	85	81	1291	517	515	182	46	41
25	18 4 21	53	467	60	55	2882	342	314	318	61	54
26	18 ~ 13	165	373	112	312	2303	863	696	251	71	71
27	19 ~ 20	36	134	25	24	835	169	159	83	31	10
78	21 ~ 22	43	188	15	11	1551	83	62	72	1)	13
29	20 1 22	55	£3	5	5	614	35	35	8	0	٥
33	21 ~ 21	49	316	55	50	1923	335	306	232	49	34
31	23 ~ 24	49	233	40	36	1395	245	558	178	26	21.
35	24 % 25	13	114	21	19	693	334	124	86,	<u> 1 11 </u>	8 -


TABLE 2.3.26 RAILWAY LINK TRAFFIC

"WITH PROJECT"

		6776									
		NAMER OF TRAINS FER DAY				FASSENGER (100 FASSENGER/DAY)			{100 len/dyl} Ereichl		
L H K NO.	жобе 	CARKITY	Total Ceand (Bigs- Kay + Pakeray)	Cexand Cexand	ACTUAL TRAFFIC OF PAILKAY	SYLLNYA) AYA + (BICS- CENAND JOLYT	DEMAND TO PAILWAY	ACTUAL TRAFFIC OP RAILHAY	TATOP CEANGO + YAV + YAV	Ceyand To Railbay	ACTUAL TRAFFIC OP PAILWAY
1	1 ~ 2	74	373	95	70	2513	650	493	136	19	12
2	2 ~ 3	81	334	102	78	2147	675	\$13	166	35	27
3	3 ~ 4	243	1374	(\$3	223	£421	3198	1491	973	201	70
4	3 ∼ 5	€9	184	50	49	3154	308	307	311	32	29
5	5 ~ 6	6)	75	16	16	523	114	112	9	1	0
6	4 ~ 3	90	643	291	90	3669	1883	610	670	131	25
3	4 ~ 6	95	697	268	82	4597	1822	552	273	63	24
8	6 ~ 8	54	441	163	55	2372	1126	373	127	25	8
9	7 ~19	63	261	128	67	1474	633	454	271	75	19
16,	7 2 9	81	306	136	85	1727	903	586	321	44	17
11	8 ~ 9	75	10)	53	33	635	344	249	69	24	20
15	10 ~12	71	156	74	37	723	428	271	230	71	28
13	9 ~11	110	313	153	95	1673	934	577	391	109	70
14	12 ~13	72	258	£ 2	€8	1564	436	433	196	€4	34
15	12 ~26	80	206	62	58	1359	428	338	78	11	9
16	26 ~27	90)	206	62	53	1359	423	333	78	11	9
17	11 414	85	349	141	82	1337	873	504	341	91	55
18	15 4 27	65	234	65	60	1533	444	415	96	14	12
19	14 4 15	316	430	140	93	3053	E34	645	306	75	43
20	13 ~ 27	90	28	3	3	174	16	16	27	4	3
21	13 ~ 17	67	149	23	60	795	429	372	189	65	3-8
22	15 ~ 16	77	259	106	73	1551	687	492	711	47	26
23	17 ~ 15	77	178	77	61	919	436	359	246	81	55
24	16 19	87	314	126	78	1907	613	433	236	62	33
25	18 ~ 21	106	678	157	70	4258	953	411	411	120	€4
26	18 ~ 19	195	544	165	164	3410	-1354	650	333	100	63
27	19 ~ 20	92	194	62	41	1234	414	513	106	21	10
28	57 ~ 55	77	273	36	24	1812	223	133	95	25	24
23	20 322	71	123	35	35	903	251	247	9	0	0
30	21 7-23	5%	457	154	54	2242	976	343	2%	84	30
31	23 ~24	27	333	135	50	2054	851	325	226	65	22
22	24 - 25	81	184	76	23	1023	493	183	106	32	9 -



- 142 -

Railway sections to be electrified are "WERAK-RANKASBITUNG-JAKARTA," and "CIREBON-KROJA-YOGYAKARTA-SOLO-MADIUN-KERIOSONO-SURABAYA-BANGIL-PROBOLINGGO." Fig. 2.3.4 RAILWAY LINK TRAFFIC (Year : 1994) Nore:

- 143 -

Railway sections to be electrified are "Jakaria—Sükabümi—BandünG—Iasikozalaya—Kroja," "Cirebon—SemaranG—Pürwodadi—BojoneCoro—Sürabaya," "SemaranG—Kedünjaii—Gündik—Solo," "Pürwodadi—Gündik," and "Keriosono—TülünGagünG—MalanG—Bangil—ProbolinGCO—Jember—Banyüwangi." Fig. 2.3.5 RAILWAY LINK TRAFFIC (Year : 2002) Note:

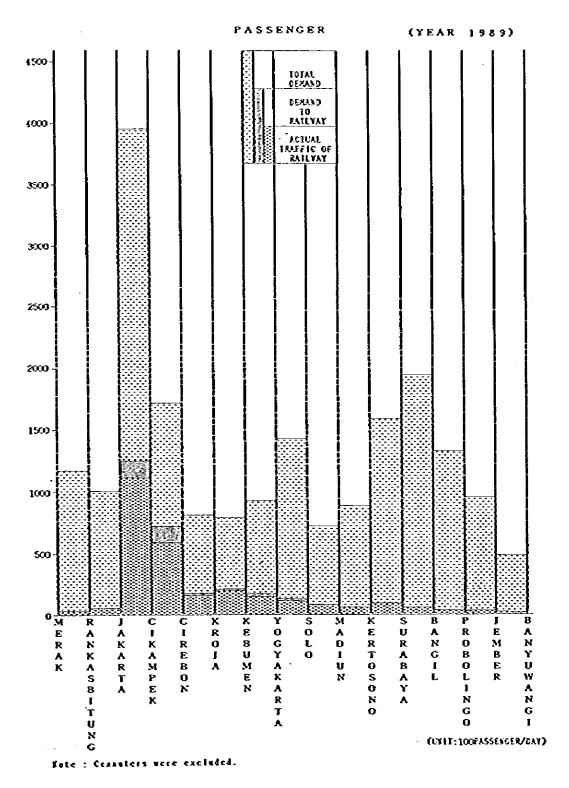


Fig. 2.3.6 RAILWAY LINK TRAFFIC

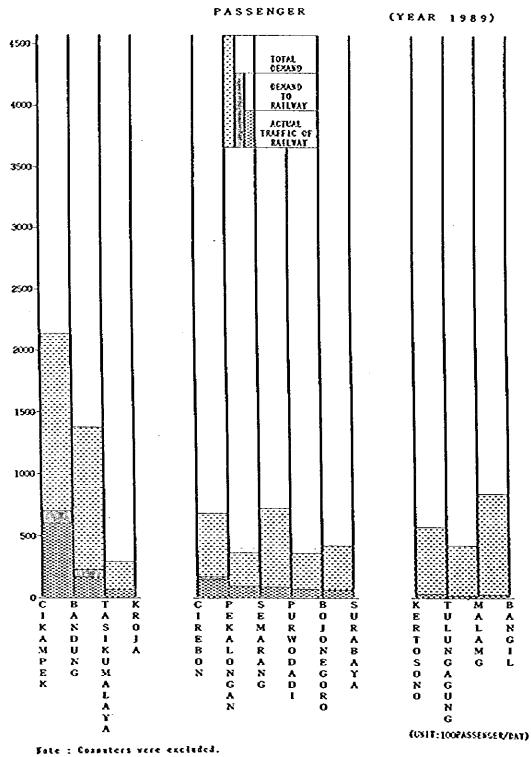


Fig. 2.3.7 RAILWAY LINK TRAFFIC

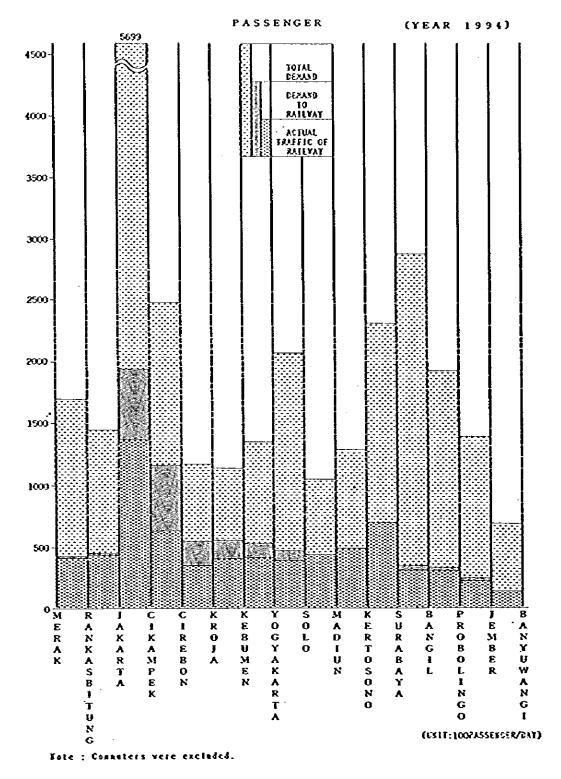


Fig. 2.3.8 RAILWAY LINK TRAFFIC

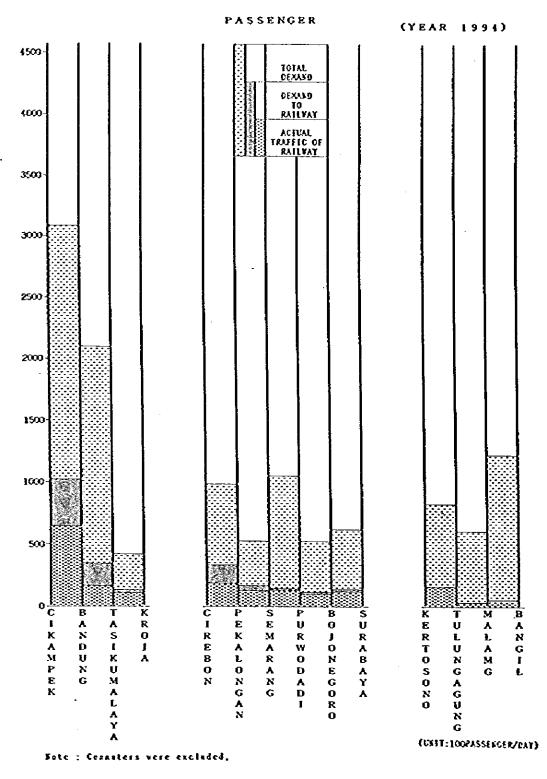


Fig. 2.3.9 RAILWAY LINK TRAFFIC

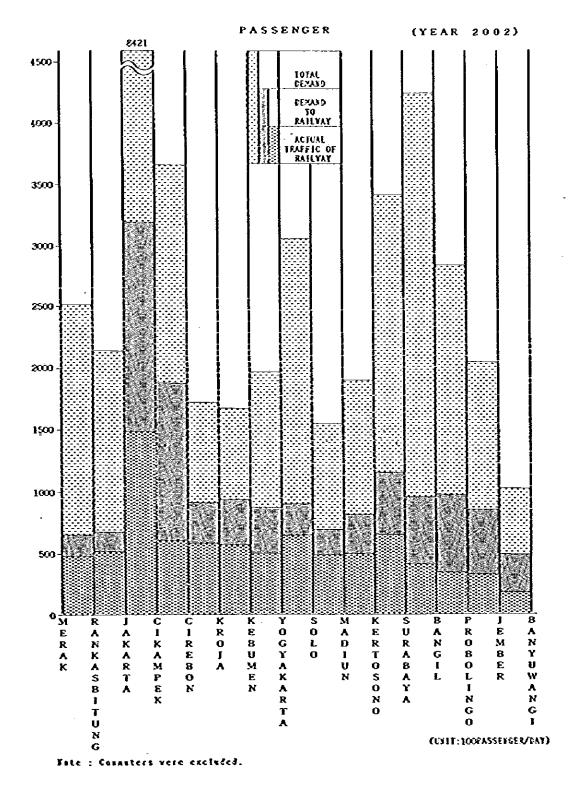


Fig. 2.3.10 RAILWAY LINK TRAFFIC

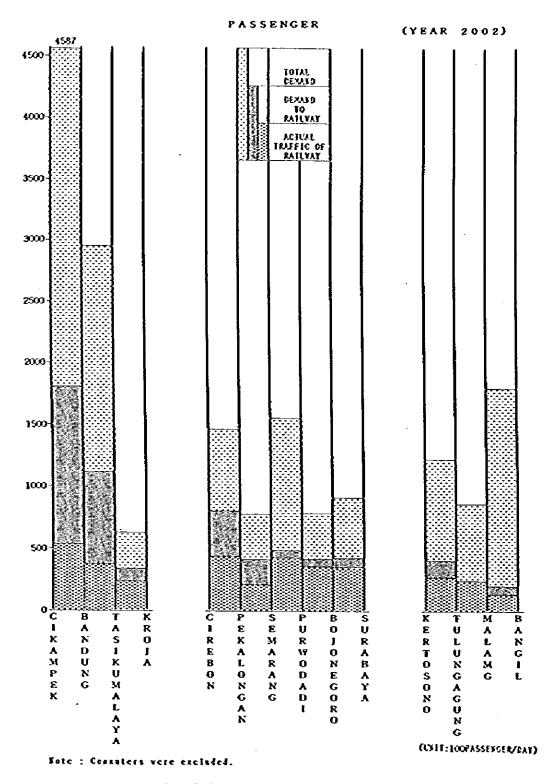
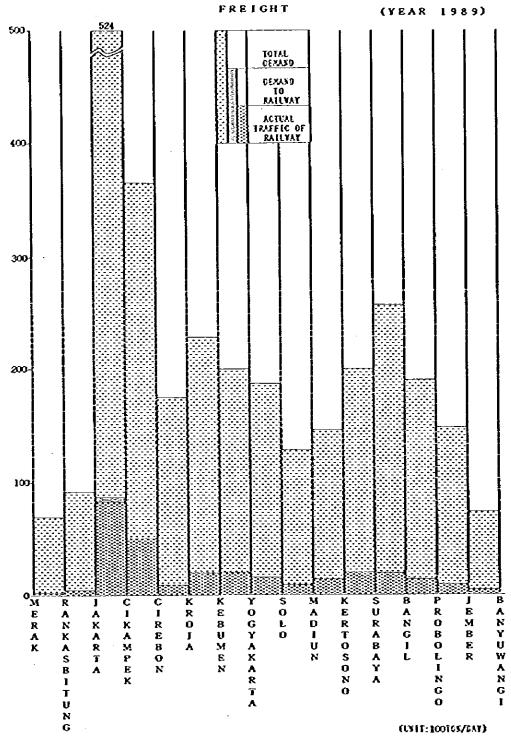



Fig. 2.3.11 RAILWAY LINK TRAFFIC

Tate : The desard of sais 9 articles were forecastes.

Fig. 2.3.12 RAILWAY LINK TRAFFIC

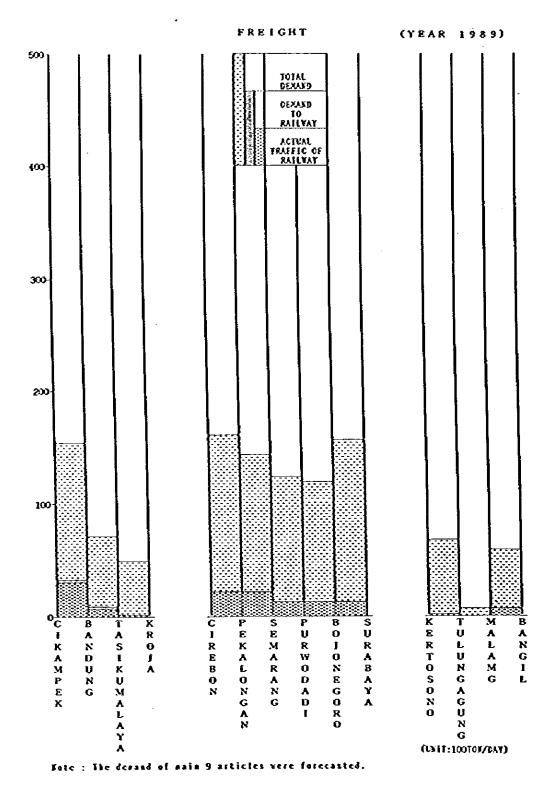
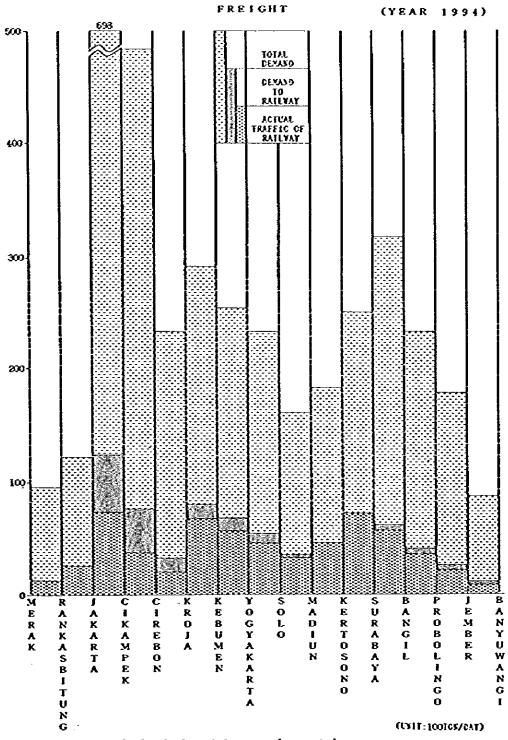



Fig. 2.3.13 RAILWAY LINK TRAFFIC

Fote : The densad of unin 9 articles vere forecasted.

Fig. 2.3.14 RAILWAY LINK TRAFFIC

Fig. 2.3.15 RAILWAY LINK TRAFFIC

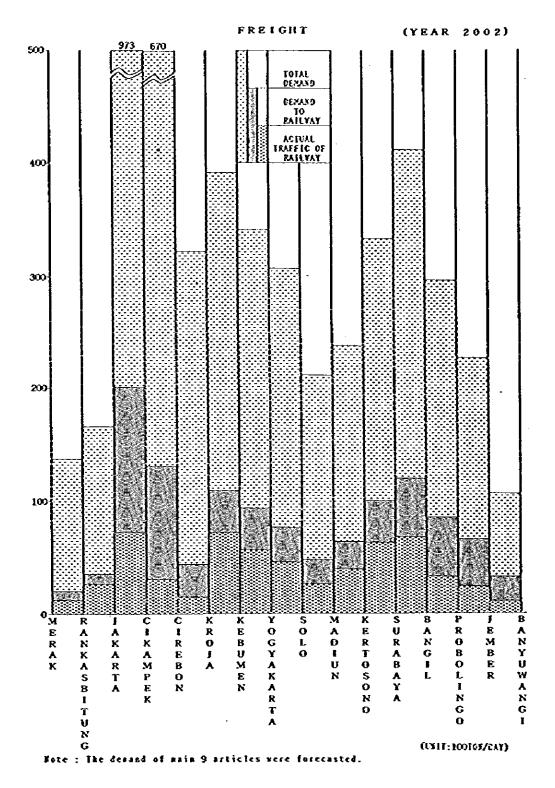


Fig. 2.3.16 RAILWAY LINK TRAFFIC

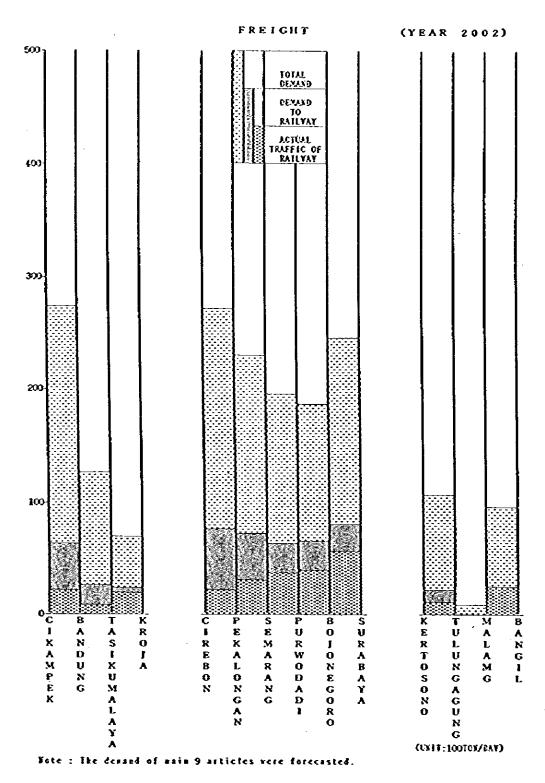


Fig. 2.3.17 Railway Link Traffic

TABLE 2.3.27 DAILY VEHICLE LINK TRAFFIC

(YEAR 1989)

	ı					(16vy 1909)				
i . I			PAILYAY	TRAINS			1	RICHYAY	VERICLES	
X [PASSE	NGE R	ERE1	CHT	101	ΛĹ	10	s	TRUCE	
1 N O	OUL ATIN	ALIM	COL	AIIX	A114	ATIA	COL ATTR	ALIA	OUI Alir	RIIK
1	3.7	5.1	9.2	9.4	4.1	5.5	1447	1447	144	[44
2	6.4	7.8	6.3	9.7	6.7	8.6	3381	3344	1129	1168
3 4	45.2 5.6	175.9 5.7	2.1 9.9	17.3 8.5	47.3 5.7	193.2 6.2	649 19176	615 7883	674 4849	659 4211
5	1.9	1.7	9.4	9.9	1.9	1.9	7737	6113	5942	4816
6	33.7	100.6	2.3	9 0	36.0	114.5	7168	5172	3551	2728
7	5.5	59.7	9.7	6.5	6.2	185.2	2176	2976	1668	1985
8		32.2	9.4	1.7	19.6	34.0		976	682	542
3	12.1	23.8	1.3	4.2	13.4	28.1	157	134	649	514
10	15.7 8.7	24.4 8.7	9.3 9.3	1.5	15. 9 9. t	25.9°	3818 1734	2615 1277	4959 761	4167 799
12	10.0	16, 3	2.4	9.3 4.2	12.3	20.5	5775	5187	2623	799 2485
13	22.2	28.5	3.9	4.9	25.2	32.5	45	45	179	17ê
14	11.7	12.7	1.9	2.9	13.5	15.6		1245	2278	2249
15	9.9	9.7	9.4	9.4	1.2	1.2	2857	23.24	4576	4141
16	2.9	9.9	9.4	g. 4	1.2	1.7	1486	1485	731	739
17	16.7	22.8	2.8	3.8	12.5	26.6	1615	1542	3213	3173
18 17	1.6	1.6 17.6	9.6 2.6	9.6	2.2 16.3	2.2 29.8	2273 766	1969. 765	4272 445	3949 445
29	4.7	9.7	e.2	3.3 9.2	9.9	9.9		3792	2526	2439
21	9.5	19.6		2.8	11.4	13.3	9	9	2010	9
22	11.0	11.2	1.3	1.5	12.3	12.7	6	ė	e	ú
23	7.2	19.3	1.7	2.6	19.9	12.8	1784	1869	1881	1786
24	7.0	9.9	2,6	2.7	11.6	11.7	1166	1165	268	268
25	8.1	8.5	3.1	3.7	11.2	12.2	2338	2279	2174	2137
26	13.0	13.0 3.9	3.9	3.7	16.8 4.1	16.8	3358 523	3359° 599	1918 1984	1918 1875
27	3.9	3.3		9.3 1.2	4.2	4.6	1957	1957	678	695
27		1.8		9.9	1.8	1.8	397	397	158	158
30	4.7	4.8	1.7	2.3	6.5	7. 1	3.27	397	158	158
31	4.3	4.4	1.2	1.7	5.5	6.1	1548	1548	1269	1267
32		3.1	9.4	9.8	3.5	3.8	928	322	841	872
33	9.9	9.9	6.9	2.9	8.9	9.3	596	476	872	875
34 35		9.9 9.9	9.0	9.9	9.9	9.8	494 1791	494 1791	341 1375	335 1375
36		6.6	9.9	9.9	0.0	9.0	1515	1514	947	744
37		9.9	9.9	9.0	9.4	9.9	38	38	125	186
38		9.9	6. ē	9.6	9.9	6.6	1725	1725	8 * 8	898
3.9		9.0	9.9	9.9	9.9	9.9	2132	2132	2279	2273
19		9.0	9.0	9.9	9.9	9. 9	12	12	33	33
1 11		ફે. ફે ફે. ફે	9.9	9.9	9.9	9.9 9.0	4463 342	4463 342	1965 288	1965 288
42 43				9.9	9.9	9.9	1796	1787	65a	642
44			9.0	9.0	6.0		2443	2443		874
45		9.0	0.9	3.3	9.9	9.8	4595	4594	3581	3494
46					ه د	9.4	942	942		787
47				9.9	9.4				ڊ	[e
48					9.2	9.9	4	3911	3459	3369
4·9 58					9.9		1922	1921	9 1851	1893
51								1741 9	100.	1873
52								152		196
53										

(BEFORE RESIRICTION BY FAILVAY CAPACITY)

Note : 1) Passenger railway trains for connuters were excluded.

2) Freight railway trains for intra zoral pairs were excluded and are only for sain 9 articles.

TABLE 2.3.28 DAILY VEHICLE LINK TRAFFIC

(YEAR 1994)

								1			
1	1			RATEYAY	TRAINS			1	regryay 1	ENICLES	1
L	上	PASSE	GER	FREIC	TE	TOT	NE.	80	s	TRUC	<u> </u>
EZ. R		eal Atir	KTIY	COL ALLH	AILE	CUI TITX	KIIK	CAL Alir	Alik	OUL ALLH	ALIR
	ī]-	5.6	69.8	9.3	2.7	5.7	63.4	2979	1722	187	187
	2	9.3	63.1	8.3	5.8	7.6	68.1	4886	3377	1473	1219 549
	3	65.3	272.1	2.5	24.7	67.7 8.2	276.8 8.8	938 14764	812 11928	827 6374	5288
	1	8. I 2. 8	8.3 2.8	9.9	9.6	2.8	2.8	11183	6543	7676	6228
1	5	48.7	162.5	2.7	15.2	51.4	177.7	19772	7224	4714	3836
1	7	7.9	145.2	9.9	8.1	8.8	153.3	3928	3927	1286	1286
l	g	14.7	47.6	9.4	2.2	15.2	51.8	1412	1410	686	697
ł	۶Į	17.5	47. 9	1.5	5.9	19.1	52.9	227	194	753	597
1	0	22.6	76.4	0.3	6.5	23.6	82.9	5517	3487	6454	5243
	11	12.8	18.9	9.3	9.9	13.1	18.9 29.7	2794	1892	837	742 3974
	2	14.4	24.1	2.8	5.6	17.2 35.8	72.7	8663 65	7225 51	3437 187	185
	13	32. l 16. 8	76.7	3.7 2.2	16.9	17.1	23.4			2879	2657
1 -	14	1.3	14.9	9.5	1.2	1.7	15.2		2719	5774	4887
	16	1.3	14.9	9.5	1.2	1.7	15.2		1455	833	672
	7	24.1	74.2	3.5	13.7	27.6	87.8		1628	3726	2852
	8	2.3	15.9	6.8	1.7	3.0	16.7			5287	4575
	17	17.7	65. €	3.2	19.7	23.9	76.1	1197	881	527	432
	20	1.6	1.9	6.3	6.5	1.3	1.5			3168	2714
	21	13.7	16.3	2.3	3.9	16.9	29.2 68.6		9 8	3	اة
	22	15.9	61.7	1.6	7. ė 3. 6	17.5 15.4	21.7				2843
	2.3 24	13.3 13.4	72.3	3.2	9.3		81.6			248	239
	25	11.7	47.9	3.7	12.1	15.4	69.9	3379		2652	1721
	26	18.8	97.7	4.7	14.2		111.9			2741	1765
1	27	5.7	22.3	9.2	2.2				1		2151
4	28	4.4	9.5	1.4	2.6		12.1				71e 175
	27	2.6	4.9	∂. ₹	9.9	3					175
	30	6.9		2.1	8. ¥ 5. L	7.6					1189
1	31 32	6.2 4.4				4.9					872
1	3.3 3.3	9.9				•					879
	34	9.4					9.6		714		493
ł	35	9.9									
i	36	6.6									
1	37	9.0									117 843
1	38	9.9		9.0							1
ı	39 40	ę. ę									9
1	41	9.6									1851
1	42	0.6							476	313	
1	43	9.6	9. 1	9.4							
ł	44	6.6									
ĺ	45	9.4									
1	45	8.9						1367	1173		1 -
i	47	. e. s			-						9
-	48								10.0	1 1	
1	29	e.							-		
j	51	a .) o.	à (}	
1	52										
1	5.3		9 9.1	9 9.4	9.	9 9.	<u>9</u> .	9] 1116	7 1919	<u>21 57₹</u> 1	4976

(BEFORE RESTRICTION BY RAILYAY CAPACITY)

Rote : 1) Passeager railvay trains for coaraters were excluded.

2) Freight railway trains for intra zonal pairs were excluded and are only for sain 9 articles.

TABLE 2.3.29 DAILY VEHICLE LINK TRAFFIC

(YEAR 2002)

			RATLYAY	TRATES			1	HICEAYA .	AERICFEZ	
i I X	PASSE	KGER	FREI	CST	TOT.	A.E.	80	s	TRU	. \$
KK K	ONI Allr	ALLR	OUT	Atin	STIK STIK	ALLR	OOI ATIR	ATIK	TITE TVQ	Alia
1	8.3	91.9	9.4	3.8	8.7	94.8	3987	2839	252	252
2	13.8	94.5	0.4	7.1	14.2	191.5	7218	4786	2661	1675
3	76.4 12.9	447.7 43.1	3.1 9.9	49.2 6.5	99.5 12.1	487.9 49.6	1386 21725	1197	1939 8792	636 6683
5	4.1	16.9	9.0	8. t	4.1	16.1	16518	12172	19465	7664
6	71.9	264.4	3.4	26.3	75.3	279.7		5738	6555	5241
7	11.7	255.1	1.1	12.6	12.8	267.7	4474	3547	1719	1205
8	21.8	157.6	9.6	5. 9	22.3	162.6	2987	1725	899	537
7	25.9	113.2	1.7	15.1	27.8		336	277	711	579
1,0	33.4	127.3	8.4	8.8	33.9	136. 1	8152	4701	8815	6471
13	17.6	48.1 59.9	9.4 3.4	4.8 14.1	19.4	52.9	4128 12899	2313 8218	936 4714	653 3996
12 13	21.3 47.4	139.8	4.8	21.9	52.3	74.1 152.7	76	48	297	291
1 13		67.4	2.7	12.7	27.8	82.1	2973	1637	3811	3193
lis	1.7		9.6	2, 1	2.5	62.9	6195	3457	7619	5467
16	1.2	59.9	0.6		2.5	62. 🕏	3001	1887	984	674
17	35.7	122.3	4.6	18.8	49.2	145.1	3448	2175	5316	3521
18	3.3	62.1	1.6	2.9	4.3	65.0	4853	2544	6854	4785
12	29.3	125.1	4.2			149.9	1635 8361	865 5198	659 4142	455 3427
29	1.4 29.3	2.2 69.1	9.4 2.9		23.2	3. € 23. l	8 0001	- 178 9	4142	3927
22		96.2			25.7	165.6		e i	ě	ě
23	19.6	61.9	2.7	16.3		77.3		2652	3197	2658
24	19.2	113.8	4.2		23.4	126.2	2498	1672	295	273
25	17.3	133.4	4.6	24.9	22.4	[57.4	4772	3571	3497	2497
26	27.7	161.6	6.2			181.5		6277	2797	2984
27	8.4	58.9	9.3		8.7 8.2	62.		565 3668	2926 937	1767
28	6.5 3.8					36.4 35.3	4179 655	642	193	814 191
29	10.1	136.6						642	193	171
31	2.2		1.8		11.9	132.2		1864	2927	1528
32	6.5					76.1	1989	1516	1275	1165
3.3	9.9	9.9				9.9		518	1227	955
34	9.9					9.6		678	516	493
3.5	9.9					9.0	3631	2348 2264	2157 1453	1654
37	9.9					9. 8 9. 9		57	1133	1173 127
37	6.6	•				9.9		2671	1281	945
3.3	9.6					9.9			3648	
40	0.0	9.9	0.0		9.0	8.9	25	16		49
45	9.0	9.9	3.0	9.0		9.9				2372
42		0.0			0.0	9.0		480		324
43		1				9.9		2766 5145		634
44	6.6					9.9		6393		1892 3744
45 46						8.0		1444		734
45				_		9.4		9	9	779
48		4				0.0	8352	5655		
43		9.6		9. 0	9.9			*	•	9
50										1757
51							_	9 184		1 127
52										127 5273
53	9.6		1. V.	W. C	J 4.2				RATEVAY	

| 9.0 | 16177 | 13461 | 7484 | 5273 | (BEFORE RESTRICTION BY RATUANY CAPACITY)

Nate : 1) Passeager railway trains for concuters were excluded.

2) freight railway trains for intra zonal pairs were excluded and are only for main 9 articles.

TABLE 2.3.30 DAILY VEHICLE LINK TRAFFIC

(YEAR 1989)

L			RAILYAY	RICHYAY YERICLES						
	PASSE	rGER .	FREI	CAL	TOT	A.L.	EUS	;	TRU	×
O IA R	COL ALLA	ATIK	OUL . Alia	YETA	ATT#	KIIK	COL ALLR	AILR	OUT ATTR	ALIS
\$	3.9	5.0	9.2	9.4	4.1	5.3	1447	1447	144	144
7	6.4	7.7	0.3	9.7	6.7	8.3	3381	3348	1127	1112
- 3	45.2	1.5.4	2.1	14.8	47.3	171.2	647	645	679	655
4	5.6	5.7	9.6	0.4	5.7	6.1	19176	8181 6 1 99	4849] 5992	4283 5030
5	1.9 33.7	1.9 81.9	9.9 2.3	6.6 7.7	1.9 36.0	1.9 89.6	7737 7468	5470	3551	3665
7	5.5	85. 9	9.7	5.9	6.2	93.9	2976	2976	1986	1996
8	10.2	23.6	0.4	1.2	16.6	24.8	977	976	692	548
9	12.1	29.5	1.3	3.4	13.4	24.9	157	135	649	528
10	15.7	27.0	9.3	1.2	15.9	23.1	3818	2452	4959	4389
11	8.9	8.9	0.3	9.3	9.1	9.1	1934	1461	761	717
12	10.8	14.5	2.4	3.7	12.3	18.2		5486	2623	2484
13	22.2	26.7	3.6	3.7		39.5		45	176	170
14	11.7	12.4	1.9	2.6		15.0		1286	2278 4576	2256
15	8.9	9.9	0.4	9.4	1.2	1.2 1.2		2524 1485	731	4268 730
16	8.9	21.1	6.4 2.8	0.4 3.6	1.2 19.5	24.6		1562	3213	3184
17 18	16.7		₹.6		2.2	2.2		2654	4272	4033
19	13.7	16.5	2.6	3.1	16.3	19.6		766	445	445
2₹		ē, 7	1 ē. 2	0.2		0.9		3827	2526	2457
21	9.5		1.7	2.5	11.4	12.8	8	9	e	ŧ
22			1.3	1.4		12.6		6	. 0	
23	9.2		1.7	2.3		12.3		1874	1881	
24			2.6	2.7	11.6	11.7		1166	280	200
25			3.1	3.6		3		2289	2174	2148
26			3.9			16.8		3350 506	1918 1984	1918
27						4.5		1957	628	611
27		1		9.5		1.8		397	158	158
36			Ĭ.Ž	2.2	1			307	158	158
31						•		1548	1269	1267
32					3.5	3.7	928	923	841	827
33						0.4		497	872	
34						0.0		474	341	337
35								1761 1514	1375 947	1375 915
36								38	106	
38								1725		
37						B -		2132	2270	
46								12	3.3	33
41	0.4	9.8			e.e	9.4		4463		
47								242		
4.								1767		
1 44										
1 43										
44				•				1 7 8		
1 1								1	345å	
1 3			9.					0		e e
5								1921	1851	1816
5						9.4		0		
5:	2 0.	e e	9.		6.4	0.4				
5	3 0.	a 0. 1	0.0	8.1	3 9.6				4	CAPACITY

Note: 1) Passeager railway trains for conguters were excluded.

2) ficisht railvay trains for intra zonal pairs vere excluded and are only for sain 9 articles.

TABLE 2.3.31 DAILY VEHICLE LINK TRAFFIC

(YEAR 1994)

YIFR VIFR								(YEAR 1994)					
PASSENGER	\Box			RATLYAY	TRACKS				EIGHAAA A	VERICLES			
		DICCE	(CC)			TOT	,	845	<u> </u>	TRUC	_		
1		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VEA	1261	931								
1			Aile		Alta		VITE		ATER		ALIM		
192.4	1	5.6	57.4	9.3						187	187		
4 8.1 8.2 0.0 0.5 8.2 2.8 14764 12261 6374 5 2.8 2.8 0.0 0.9 2.8 2.8 11189 9577 7676 6 48.7 88.5 2.7 6.9 51.4 95.3 110792 8158 4714 7 7.9 92.4 0.9 6.0 8.8 98.4 3928 3927 1284 9 17.5 26.1 1.5 2.8 19.1 28.9 227 200 753 10 22.6 49.1 0.3 3.7 23.0 52.8 5517 4811 6454 11 12.8 15.6 9.3 0.8 13.1 16.5 2774 2452 333 13 32.1 16.6 2.2 2.8 19.1 20.8 2655 57 181 13 14.0 0.5 1.2 1.7 15.2 20.8 231											1245 523		
5 2,8 2,8 0.0 6.0 2,8 2.8 11180 9577 7676 6 48.7 88.5 2.7 6.9 51.4 95.3 19772 8158 4714 77.7 92.4 0.9 0.0 8.8 8.8 39.8 19772 8158 4714 682 122 121 1411 682 1277 209 753 121 1411 682 727 209 753 121 1411 682 727 209 753 121 1411 141 682 122 25.1 1411 682 727 209 753 1411 682 52.8 551.7 2413 6863 3236 1472 24.9 8663 8236 433 433 433 433 433 433 433 433 433 433 433 433 433 433 433 433 433 433 433 434 433 434 433											5588		
6 48.7 86.5 2.7 6.9 51.4 55.3 10772 8458 4714 7 7 7.9 92.4 0.9 6.0 8.8 98.4 3628 3927 1282 1412 1411 682 14.7 24.1 0.4 0.9 15.2 25.1 1412 1411 682 12.6 49.1 0.3 3.7 23.0 52.8 5517 4811 6454 12.8 15.6 9.3 0.8 13.1 16.5 2774 2452 833 12 14.4 17.3 2.8 3.6 17.2 20.9 8663 8236 3433 13 32.1 55.2 3.7 13.6 35.8 69.8 65 57 183 14 16.8 18.0 0.5 1.2 1.7 15.2 20.3 1603 833 17 15.1 14.0 0.5 1.2 1.7 15.2 20.3 1603 833 17 17 24.1 57.7 3.5 11.3 27.6 69.0 2333 1823 3727 18 2.3 15.0 0.8 1.7 2.0 0.3 1.0 1.0 0.5 1.2 1.7 15.2 20.3 1603 833 17 17 24.1 57.7 3.5 11.3 27.6 69.0 2333 1823 3722 17 18 2.3 15.0 0.8 1.7 2.0 0.5 1.2 1.7 15.2 20.3 1603 833 1923 3722 17 18 2.3 15.0 0.8 1.7 2.0 0.5 1.2 1.7 15.2 20.3 1603 833 3722 17 18 2.3 15.0 0.8 1.7 2.0 0.5 1.2 1.7 15.2 20.3 1603 833 3722 17 18 2.3 15.0 0.8 1.7 2.0 0.5 1.2 1.7 15.2 20.3 1603 833 3722 17 17 24.1 3.0 0.5 1.2 1.7 15.2 20.3 1603 3722 17 19.9 54.9 3.2 8.9 23.0 63.8 10.7 3285 2764 5266 11.7 14.9 2.3 2.8 16.0 17.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										7676	6826		
7 7.9 92.4 8.9 6.9 8.8 98.4 3928 3927 1286 686 14.7 24.1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1										4714	4151		
8 14.7 24.1 0.4 0.9 15.2 25.1 1412 1411 626 753 19.1 22.9 227 209 753 19.1 22.9 28.9 227 209 2452 833 3.7 23.0 55.2 8517 4811 6454 833 3.6 17.2 20.9 8663 8236 3433							98.4	3928	3927	1286	1286		
10				9.4						686	628		
11 12.8 15.6 9.3 0.8 13.1 16.5 2774 2452 83:6 12 14.4 17.3 2.8 3.6 17.2 20.9 8663 8236 54:1 13.6 35.8 69.8 65.5 57 18 18.8 2.2 2.8 19.1 29.8 2412 1791 28:7 18 15.1 14.0 0.5 1.2 1.7 15.2 24132 3747 57.7 16 1.3 14.0 9.5 1.2 1.7 15.2 2231 16.03 372 16.7 15.2 2231 16.03 372 16.7 15.2 2231 16.03 372 16.7 16.7 24.1 17.7 16.2 23.3 16.3 18.03 372 18.3 18.4 16.7 24.1 18.7 14.1 23.5 11.0 18.8 17.4 18.1 18.5 26.5 52.1 26.2 17.5 67.1 6 9 26.5 11.3 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>622</td>											622		
12 14.4 17.3 2.8 3.6 17.2 29.7 8663 8236 5436 13 32.1 56.2 3.7 13.6 35.8 69.8 65 57 18 17.1 18.8 29.8 29.8 29.12 1791 287 1791 287 1791 287 1791 287 191 1791 287 1791 287 1791 287 1791 287 1791 287 1791 287 1791 287 1791 287 1791 287 1791 287 1791 287 1791 287 181 2784 181 287 372 181 28.7 3.7 181 28.7 3.7 182 28.8 29.3 63.8 1107 795 5243 3164 41.7 3.6 16.7 28.9 182 5267 2645 424 23.1 1.6 17.5 17.5 17.5 17.5 17.5 17.5 1											6034		
13 32.1 55.2 3.7 43.6 35.8 69.8 2612 1791 2896 15 1.3 14.0 9.5 1.2 1.7 15.2 24132 3747 577 577 16.1 1.2 1.7 15.2 24132 3747 577 573 15.2 1.7 15.2 24132 3747 577 573 571 15.2 1.5 24132 3747 577 573 571 15.2 15.2 4132 3747 577 573 15.2 16.2 15.2 24132 3747 572 573 16.2 16.2 2333 1623 3747 572 183 16.2 36.2 16.2 36.8 1107 945 522 526 16.7 3285 5263 3163 16.7 36.8 1107 945 522 52.6 1.6 17.7 6.3 16.7 23.6 16.7 16.2 16.2 16.2 16.2 16.2											3324		
14 16.8 18.6 2.2 2.8 19.1 29.8 2912 1791 2875 15.7 15.2 4132 3747 837 727 15.2 2413 3747 837 727 15.2 2413 3747 837 727 15.2 2413 3747 837 727 15.2 2413 1693 837 727 15.2 2411 1693 837 728 16.7 269.8 2333 1823 3794 528 372 83 16.7 3285 2784 528 728 16.7 16.7 16.7 23.9 16.7 16.7 28.9 16.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 18.7 17.7 18.7 17.7 18.7 17.7 18.7 17.7 18.7 17.7 18.7 17.7 18.7 17.7 18.7 17.7 18.7 17.7 18.7 <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>187</td><td>185</td></t<>										187	185		
15 1.3 14.0 0.5 1.2 1.7 15.2 4132 3747 83.7 16.93 3.14.0 9.5 1.2 1.7 15.2 2031 16.93 3.72 83.5 11.3 27.6 69.8 2333 1823 3727 83.7 3.9 16.7 3.28 3.9 16.7 3.28 5784 5263 3728 5263 3727 3285 52784 5263 3728 52784 5263 3728 52784 5263 3728 52784 5263 3728 52784 5263 3728 52784 5263 3728 52843 3728 52643 3164 52784 5265 5243 3164 52784 5265 5243 3164 3285 5243 3164 3285 5243 3164 32867 5245 5246 5246 5246 5246 5246 5246 5246 5246 5246 5246 5246 5247 5247 5247 5247										2878	2763		
16 1.3 14.0 9.5 1.2 1.7 15.2 2231 1693 8.3 3726 69.0 2333 1823 3726 59.0 2333 1823 3726 59.0 16.7 3285 2784 5203 521 12.1 1.0									3747	5774	5186		
18 2.3 15.6 0.8 1.7 3.0 16.7 3285 2784 5267 19 19.9 54.9 3.2 8.9 23.0 63.8 1107 985 523 20 1.0 1.0 0.3 0.5 1.3 1.5 5859 5843 3164 21 13.7 14.9 2.3 2.8 16.9 17.5 67.1 0		1.3		9.5		1.7				833	641		
19 19.9 54.9 3.2 8.9 23.0 63.8 1107 705 523 3163 21 1.0 1.0 0.3 0.5 1.3 1.5 5659 5643 3163 21 13.7 14.9 2.3 2.8 16.0 17.7 0			57.7				1			3726	2736		
20 1.0 1.0 0.3 0.5 1.3 1.5 5659 5843 3164 21 13.7 14.9 2.3 2.8 16.0 17.7 0	-										5846		
21 13.7 14.9 2.3 2.8 16.8 17.7 9 9 9 21 2.8 16.9 17.5 67.1 9 9 24 23.3 16.7 2.1 2.6 15.4 19.3 2867 2645 240 240 240 241 <th></th> <td></td> <td>51.9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>432 2936</td>			51.9								432 2936		
22 15.9 6e.9 1.6 6.2 17.5 67.1 e e 0 2465 246				9.3						3.00	Z/,-O		
23 13.3 16.7 2.1 2.6 15.4 19.3 2867 2645 249 24 13.8 72.0 3.2 8.9 16.2 88.9 1685 1493 249 25 11.7 44.0 3.7 19.8 15.4 54.7 3377 2763 2667 26 18.8 97.4 4.7 14.1 23.5 111.6 4312 2242 2234 443 443 17 443 443 17 443 443 17 4443										i el	ě		
24 13.0 72.0 3.2 8.9 16.2 80.9 1685 1473 246 266 266 266 266 266 266 266 266 266 266 2763 4312 224 2763 4312 226 431 4312 224 2763 4312 224 2763 431 4312 224 2763 431 431 2763 232 443 431 2763 232 443 443 431 2763 232 443 443 443 443 443 443 443 443 177 331 66.9 42.9 2.1 6.7 8.9 49.6 443 443 177 343 178 443 443 177 443 443 178 1268 156 156 156 156 156 156 156 156 169 169 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2867</td> <td>2645</td> <td>2401</td> <td>2265</td>								2867	2645	2401	2265		
26 18.8 97.4 4.7 14.1 23.5 111.6 4841 4312 224 27 5.7 22.3 9.2 1.9 5.9 24.2 755 742 234 28 4.4 8.7 1.4 2.5 5.8 11.2 2828 2828 75 29 2.6 4.9 9.0 6.0 5.6 5.8 11.2 2828 2828 75 30 6.9 42.9 2.1 6.7 8.9 49.6 443 443 17 31 6.2 31.6 4.4 4.1 7.6 35.7 2237 1268 156 32 4.4 17.3 6.5 1.6 4.9 18.9 1340 1670 161 33 6.0 6.0 6.0 6.0 6.0 714 714 714 714 714 714 714 714 714 714 714 714 714 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>89. 9</td> <td></td> <td></td> <td></td> <td>239</td>							89. 9				239		
27 5.7 22.3 9.2 1.9 5.9 24.2 755 742 234 28 4.4 8.7 1.4 2.5 5.8 11.2 2828 2828 75 29 2.6 4.9 9.0 9.0 2.6 5.8 443 443 17 30 6.9 42.9 2.1 6.7 8.9 49.6 443 443 17 31 6.2 31.6 1.4 1.1 7.6 9.2 2237 1268 156 32 4.4 17.3 9.0 9.0 9.0 9.0 9.0 731 268 156 32 4.4 17.3 9.0 9.0 9.0 9.0 731 598 102 34 9.0 9.0 9.0 9.0 731 598 102 34 9.0 9.0 9.0 9.0 9.0 731 598 102 34 </td <th>25</th> <td></td> <td>44.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1999</td>	25		44.0								1999		
28 4.4 8.7 1.4 2.5 5.8 11.2 2828 2828 75 29 2.6 4.9 9.0 9.0 9.0 49.6 443 443 17 30 6.9 42.9 2.1 6.7 8.9 49.6 443 443 17 31 6.2 31.6 1.4 4.1 7.6 35.7 2237 1268 156 32 4.4 17.3 0.9 0.9 0.9 18.9 1349 1924 1934								1			1791 2284		
29 2.6 4.9 0.0 0.0 2.6 5.0 443 443 17 30 6.9 42.9 2.1 6.7 8.9 49.6 443 443 17 31 6.2 34.6 1.4 4.1 7.6 35.7 2237 1268 156 32 4.4 17.3 0.5 1.6 4.9 18.9 1340 1670 161 33 0.0 0.0 0.0 0.0 0.0 731 598 101 41			~~~								736		
30 6.9 42.9 2.1 6.7 8.9 49.6 443 443 17.3 17.6 35.7 2237 1268 156 156 156 18.9 1340 1670 161 163 163 164 18.9 1340 1670 161 163 164 1670 161 163 164 1670 161 163 164											175		
31 6.2 31.6 1.4 4.1 7.6 35.7 2237 1268 156 32 4.4 17.3 e.5 1.6 e.9 18.9 1340 1670 161 33 e.e e.e e.e e.e e.e 714 714 41 35 e.e e.e e.e e.e e.e 714 714 41 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>175</td>											175		
32 4.4 17.3 e.5 1.6 4.9 18.9 1348 1e7e 1e1 33 e.e e.e e.e e.e e.e e.e 731 598 1e2 34 e.e e.e e.e e.e e.e e.e 714 715 715 715 715 715 715 714 714 714 714 714 714 715						7.6	35.7				1189		
34 0.0	32	4.4			1.6						945		
35	3.3		9.6								915		
36 0.0											489 1396		
37 8.0 8.0 8.0 8.0 8.0 8.0 8.0 2473 2697 97 38 8.0 8.0 8.0 8.0 8.0 8.0 8.0 2473 2697 97 39 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0		1								3	958		
38 0.0											\$17		
39 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3881 2106 282 40 0.0 0.0 0.0 0.0 0.0 0.0 17 14 3 41 0.0 0.0 0.0 0.0 0.0 0.0 0.0 474 477 31 477 31 48 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2596 2451 72 44 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3531 3523 102 45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1362 1191 85											843		
40 0.0						0.0	9.0		2186		2459		
42	40	6.0							-	2	36		
43											1861		
44						•					305 648		
45 0.6 0.0 0.0 0.0 0.6 6516 5630 436 46 0.6 0.0 0.0 0.0 0.0 0.0 1362 1191 85		•									938		
46 0.0 0.0 0.0 0.0 0.0 1362 1191 85													
	47	9.0) e	_				
48 6.6 6.6 6.6 6.6 6.6 6.6 6.6 5653 4872 484		0.0	8.0		0.6						3698		
49 0.0 0.0 0.0 0.0 0.0 0.0 0											1 222		
1 20 0.01 0.01 0.01 0.01													
1 211 201 201 201 201 201 201 201 201						1		1 I			•		

(AFTER RESIRICITOR BY RAILVAY CAPACITY)

Note : 1) Passeager railway trains for conceters were excluded.

2) Freight railway trains for intra zonal pairs vere excluded and are only for main 9 articles.

TABLE 2.3.32 DAILY VEHICLE LINK TRAFFIC

(YEAR 2002)

	RAILYAY TRAIKS							IIGRYAY 1		1 20021
L I	PASSE	(GFR	£8E10	· · · · · · ·	101		803	1	TRUC	к
K O	ALLA	ALIK	MIIA	ALÍR	OUT ALLR	ALLR	oni Alla	AllK	ALER	Alla
1	8.3	67.6	0.4	2.5	8.7	70.9	3687	2877	252	252
2	13.8	72.7	6.4	5.3	14.2	78.9	7218	5629	2661	1818
3	96.4	298.8	3. I 6. 6	13.9 5.9	99.5 12.1	222.7 42.8	1385 21725	1297 18761	1939 87 7 2	797 7586
4 5	12.9	43.9 15.7	9. 9	3. 7	4.1	15.8	16518	15823	10465	9732
6	71.9	85.4	3.4	5, 0	75.3	99.4		14971	6555	6174
Ď	11.7	77.2	1.1	4.8	12.8	8Z. Ø	4474	3547	1719	1265
ક	21.8	53.8	9.6	1.6	22.3	54.6		1736		678
9	25.9	63.5	1.9	3.9	27.8		336	314	911	792
10	33.4	82.0	9.4	3.3	33.9	85.4	8152 4128	7916 3989	8815 936	2653 914
111	19.9 21.3	33.6	9.4 3.4	3.9 5.5	19.4 24.7	37.6 36.5		11818	4714	4582
12 13	47.4	89.8	4.8	14.1	52.3	21.9	96	53	297	292
14	24.9		2.9	6.9	27.8	68.2		2561	3811	3398
15	1.9	55.8	3.6	1.7	2.5	57.5		5224	7610	7321
16	1.9	55.8	0.6	1.7	2.5	57.5	3881	2682	984	728
17	35.7	70.6	4.6	11.9	49.2	81.6		2647	5916	4921
18	3.3	58.9	1.0	2.3	4.3	69.4		4161	6854	6534
19	27.3	70.4	4.2	8.7	33.5	99.6		1924 6141		521 3949
29	1.4	2.2	9.4 2.9	9.6 7.7	1.8	2.9 59.7		0131	4142	3747
21 22	20.3 23.5	52.1 67.5	2.2	5.1	25.7	72.6		Ì	Ä	á
23	19.6		2.7	ii.i	22.4	61.4		_	1	3135
24	19.2		4.2	7.8	23.4	77.5		1672		293
25	17.3		4.6	12.8		76.4	4992	43%6		2853
26	27.7		6.2	12.6				6583		2361
27			9.3	2.6	8.7				~	2433
28			1.8	4.8	8.2	24.3		3678 642		989 192
29		1	9.6 2.6	6.1	3.8 12.8	34.7 54.8		642		192
39 31			1.8	6. € 4. ₹	11.0	\$9.8				1785
32			8.7	1.9	7.2					1225
33			6.6	9.4	9.0		1	655		1145
34			8.8	0.9	0.0			678		436
35	8.9		9.4		9.0					1913
35			9.9		8.0					
37 38			0.0		0.0					1119
39	•		0.0							
16			0.0				•	21	49	46
41			9.0	8.9			9528			
4.2			6.6							
43			0.0							
54			8.6							
45										
4.5									,	
1 48			•					•		
4						•	9	é		
50	9.6	e. e. e		9.6	0.4					
5										
5.										
5	3 0.	9.4	0.0	9.6	9. 6. 6	ð.,	1047;	1.3241	7484	65-54

(AFTER RESIRICTION BY RAILYAY CAPACITY)

Fote : 1) Passenger railvay trains for cornuters were excluded.

2) Freight railway trains for intra zonal pairs were excluded and are only for main 9 articles.

TABLE 2.3.33 EVALUATION FACTORS

(YEAR 1989)

	TOTAL TIME	SAYING OF (UNIT 100025URS)	TOTAL RAILVAY PASSENCER (OR TON) EM OF (UNIT 10000PASSENCER OR TON EMS)		
ARTICLE	DIVERTED TRAFFIC	KORMAL TRAFFIC	"ATTECOL "	.Alls.	
PASSENCER	12797	45261	752585	1488977	
RICE	1 0	93	1955	4942	
3314%	0	542	7994	13305	
SUCAR	I 0	58	737	1469	
SALT	0	120	1283	1798	
PAPER	0	6	66	309	
STEEL	0	182	2240	3653	
PETROLEUM PROXOCIS	Ō	356_1	15661	32630	
\$ERTILIZER	0	1031	14835	19714	
CERENT	0	146	15757	46306	
TOTAL	12797	47806	60628	123486	

REPOCHER IN MIGHTAN TRUFFIC (10000 VEHICLE LYS) "RUS " = 28351.2 "TRUCK " = 15006.82

(YEAR 1994)

	TOTAL TIME	SAVING OF (UNIT 1000EOURS)	ASSESSA LVARIUM TVIOL So Ly (Kol Ro) (Gr 108) (Kol Ro)			
ARTICLE	DIVERTED TRAFFIC	BORNAL TRAFFIC	"NIESOUT "	'YITI'		
PASSENGER	49393	141247	1087486	2936067		
RICE	i	233	2176	8225		
MAIZE	0	763	8174	16294		
SUCAR	0	124	841	2773		
SALT	0	146	1382	1979		
FAPER	1 0	9	86 I	192		
STEEL	0	354	3272	\$315		
FETROLEUM PRODUCTS	0	2168	18458	59845		
FERTILIZER	0	2777	18396	41624		
CERT	0	2631	20774	71531		
TOTAL	49359	153507	73558	221035		

REDUCTION OF REGIVERY TRAFFIC (10000 VEHICLE DIS) "185" = 70111.06 "TRUCE" = 33594.04

(YEAR 2002)

	TOTAL TIME	(EXIX 100040E3S)	TOTAL RAILVAY PASSENSER (OR TOK) EN OF (UNIT 10000FASSENSER OR TOX EAS)			
ARTICLE	DIVERTED TRAFFIC	BORNAL TRAFFIC	"newt".	. Alex.		
PASSEDCER	55859	362184	1606770	425856\$		
RICE	0	470	2398	8356		
MAIZE	0	1597	8415	15430		
SCCAR	0 7	196	1002	306\$		
SALT	0	291	1548	2065		
PAPER	Ó	20	119	327		
STEEL	0	947	4922	6164		
PETROLEUM PRODUCTS	0	4027	22932	85036		
FERTILIZER	0	4982	24032	71770		
CEVENT	0	541	26692	76087		
TOTAL	55859	350155	94060	268373		

REDUCTION IN RIGHTANT TRAFFIC (10000 VEHICLE RAS) "888" = 58269.42 "TRCCL" = 39414.14

(AFTER RESTRICTION BY MAINTAN CAPACITY)

Fate: Total of the column *IDIAL MAILWAY PASSENGER (OR TOX) MY OF * is only the total of FREIGHT.

CHAPTER 3 TRAIN OPERATION PROGRAM

CHAPTER 3 TRAIN OPERATION PROGRAM

3.1 Present Status

3.1.1 Train Operation

(1) Train operation route

The present operation routes for express passenger trains and high-speed passenger trains (based on the train diagram revised on May 27, 1982) are shown in Fig. 3.1.1. The routes primarily set major trains connecting the 3 large cities of Jakarta, Bandung and Surabaya, as well as many trains connecting such cities as Semarang, Yogyakarta, Solo and Blitar, etc., with which the above 3 large cities are also connected.

Fig. 3.1.2 shows the operations routes of BT and TRS freight trains. The routes set four (4) express freight trains, namely BT 1 and 2 the connecting Jakarta and Surabaya and BT 3 and 4 running on the Merak line. Passenger trains connecting Jakarta and Surabaya primarily run on the south line, but freight trains are scheduled to run primarily on the north line. Major freight terminals are established at Cipinang, Semarang, Surabaya, Bandung, Cilacap, Solo and Merak.

(2) No. of trains

The number of trains classified by the Link No. set forth in the Forecast of Traffic Demand (based on the train diagram revised on Hay 27, 1982) is shown in Table 3.1.1.

While the number of passenger and freight trains, including nonregular trains, which run on the south line connecting Jakarta, Kroya and Surabaya is about 35, the number of trains running on the north line connecting Jakarta, Semarang and Surabaya is about 25. From this fact, it is known that passengers and goods are primarily transported on the south line. The line between Jakarta and Bandung has become an important transport section despite its steep slope, since about 30 trains are scheduled on it. In addition, those railway lines which have a relatively large number of trains, about 20

each, include the Jakarta and Rangkasbitung, Jakarta and Sukabumi and Surabaya and Jember lines.

Classified by type of trains, scheduled passenger trains are primarily composed of express and fast trains and the number of ordinary (non-express) trains is small. In the freight train category, only 4 express freight trains are scheduled. Many nonregular trains are scheduled and they comprise about 1/5 to 1/3 of the total number of passenger and freight trains.

Most ordinary trains are mixed trains.

(3) No. of cars of composed trains and traction weights

Table 3.1.2 shows the number of cars of trains and the traction weight of each train. The maximum number of cars of trains is 11 cars and the maximum train weight is 420t. The minimums are 4 cars and 140t. Most ordinary passenger trains have an operating distance of less than 150km and they are composed of a small number of cars, from 1 to 4.

The traction weight of freight trains is from 300 to 1,000 tons and many freight trains are about 500 tons. Since the power of a diesel locomotive is relatively small, some trains running on slopes tract half of the normal weight rated for that type of train.

(4) Running time and running speed

The maximum running speed of the current trains is limited to 40 to 80 km/h, depending on the section of track. For instance, in the case of the north line, the section between Jakarta and Pekalongan is 80 km/h, but the section between Semarang and Surabaya is limited to 60 km/h. The scheduled speeds of the current trains are likewise low because the maximum speed of trains is limited to a low speed, most lines are single track, stopping time is long, the power of the locomotives is small, etc.

Table 3.1.3 shows the scheduled running speeds of major express and fast passenger trains, express freight trains. The scheduled speed of one of the representative trains, Bina, is 50 km/h; other trains run at about 40 km/h. An express freight train, BT 1, runs at a speed of less than 30 km/h. Since express trains running between Jakarta and Surabaya or between Bandung and Surabaya take about 16 hours, it is

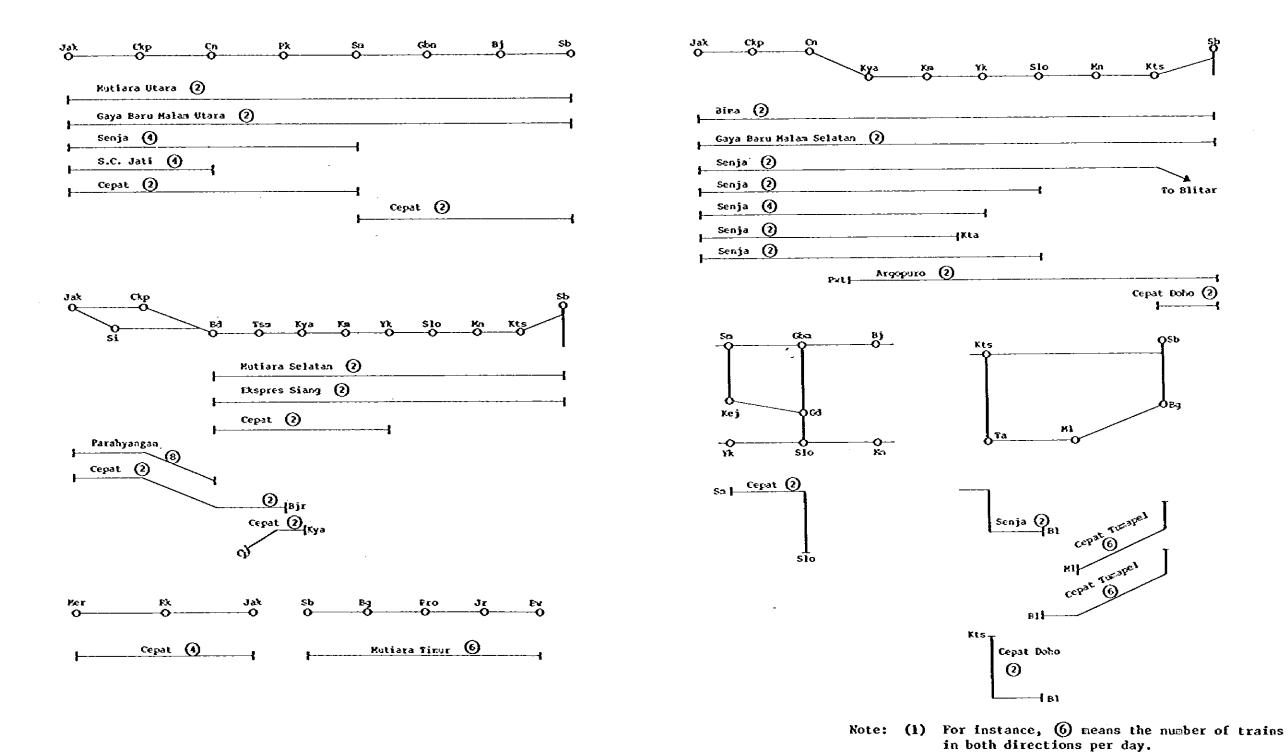


Fig. 3.1.1 Operation Routes of Express and Fast Passenger Trains

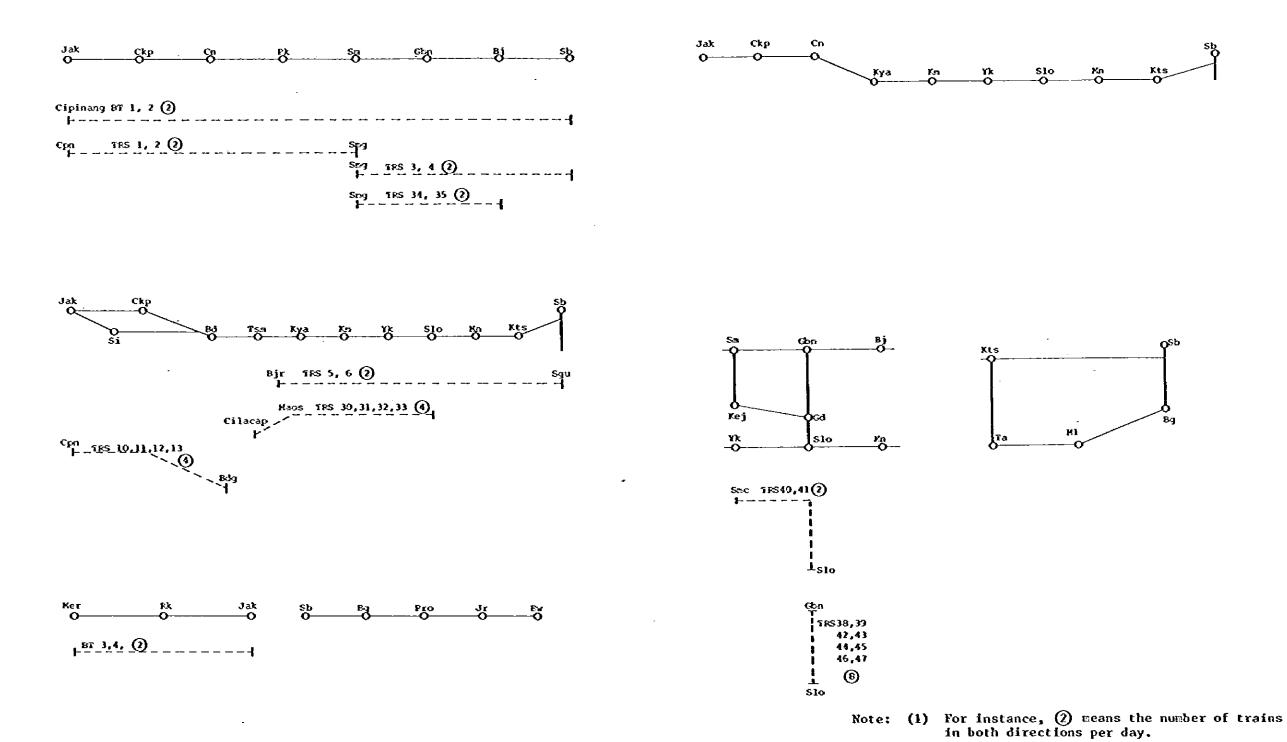


Fig. 3.1.2 Operation Routes of Freight Trains (BT, TRS train)

Table 3.1.1 Number of Trains by Section (May, 1982)

Remarks			(1) Each figure	shows the	craine in	tions per day.	_	or service (X)	show the	number of nonregular	trains	* nephrout																					
Toral		77	ខ្ល	300	20(2)	10(2)	(6)97	31(7)	18(%)	26(8)	32(8)	17	26(8)	39(7)	26(8)	4	-Jr	37(3)	14(3)	32(6)	12(4)	24(6)	33	20(6)	27(5)	£3	37(7)	14(2)	24(2)	20(2)	14(4)	22(2)	13(2)
Work	train	2	0	•	•	٥	٥	64	33	0	2	٥	0	0	٥	0	0	•	•	0	0	0	•	0	٥	٥	0	0	0	0	0	٥	0
E	Sub-cotal	7	80)	7	(2)	(2)	8(3)	√3	4	8(2)	6(2)	ç	8(2)	8(2)	8(2)	64	0	8(2)	ទ	ø	8(2)	(2)01	æ	8(2)	∞	11(3)	(2)21	4(2)	2	€,	8(4)	74(2)	5(3)
Presght crain	Ordinary	64	•	~2	4(2)	4(2)	6(3)	4	4	6(2)	6(2)	ŝ	6(2)	8(2)	6(2)	2	0	8(2)	or	•	8(2)	8(2)	20	6	20	11(5)	12(2)	7(2)	ន	(2)	8(4)	14(2)	5(3)
Ĭ.	Karpress	"		ы	•	0	2	٥	0	64	0	0	64	•	64	•	0	۰	•	٥	•	2	۰	'n	٥	٥	0	0	0	0	0		0
	Sub-cotal	l o	77	46(4)	97	ø	38(6)	83	12(2)	18(6)	(9)72	77	18(6)	31(3)	18(6)	F4	4)	29(5)	₹(3)	26(6)	7(2)	14(4)	21(5)	12(4)	19(3)	20(2)	25(5)	2	77(3)	ø	ø	20	20
er crain	Ordinary	,		ន	20	۰	2	3C	(2)	c.	0	,	п	61	7	21	7	cı	•	3(1)	0	,	-31	14	2	0	æ	•	0	0	o	2	7
Passenger	Ne of t	3	90	-3	a 0	٥	3	0	4	cł	-3	,	4	J	-3	٥	٥	•	ы	4	cı	۳.		81	14	16(2)	3	c+	14(2)	-∽	4	2	٥
	Express	·	0	30(4)		0	32(6)	17(7)	4	14(6)	20(6)	,	14(6)	23(5)	70(6)	0	0	27(3)	2(2)	19(3)	2(2)	8(4)	15(3)	(4) 8	33(3)	-3	13(3)	21	0	0	4	4	**
	section .	Merek A. Kangkasbicung	Sanskashteunen Jakeres	Jakarca's Cikamoek	Jakerta's Sukabumi	Sukabumit Sendong	C1knmosk ~ C1rebon	Cikampek v Dandung	Bandung & Teatkunalaya	Cirebon's Pekalongan	Carebon's Kroya	Tasikumalaya v Kroya	Pakalongan V Semerang	Kroya v Kabuman	Semarang & Cambringan	Semerang ~ Kedungjets	Kedunkingi N Gundih	Kebumen ~ Yogyakerce	Cundih & Solo	Youyakartan Solo	Cambringen & Gundin	Cambrangan & Bojonegoro	Solo ~ Madiun	Bojonegoro - Surebaya	Mediun's Kertosono	Surabaya & Bangill	Surabayan Kertosono	Kercosono ~ Tulungagung	Dangil v Malang	Melang C Tulungegung	Bangil ~ Probolinggo	Probolingko'v Jember	Jembert Benyuwangi
	Link No.	-	. ~		4	• •	ŀ	~	æ	^	A	គ	4	ជ	1	า	121	- 74	3	ñ	ដ	ផ	ä	53	7,	22	ຊ	23	£,	22	2	គ	ន

Table 3.1.2 No. of Cars of Major Trains and Passenger Car Depots

asserger train depot	Yme of train	Train operating section	Operating distance	Righter of coaposed trains used	Kimber of cars coaposed	Train velght	No. of cars of depot
			ł n			,, t	
	Blea	Sgu [®] Jak	825	2 2	9	355	
	Motfara Utala	Shin Jak	725 447	1	8	420 324	
stacca ota	Seoja Kta	Ktal-Tse	510	,	6	215	
	Sesja Ek Slo	SJon Cer	142	í	6	215	
	Cegat	125 Ver Jak Ver	152	1	6	215	
	Cegat	L	132	<u> </u>	l <u> </u>	1 117	
	Seb-t	f	ı	1		ı — —	122
freboa	Grang Jati	(a v Jak	219	5	7	252	
	1-3:2	otal					19
	Estiere S	SS V BI	659	2	•	36\$	
i	Ратабуардар	Bis Jak	173	. 2	,	265	
Bandung	Parahyangan	B4 V Cer	165	1	8	291	
	Facebyangan	BJV Jak	173	1	,	255	
	Cegat	Birlk	33.5	2	,	315	
	Cepst	2d = Bjr	321	2	8	635	
	5:2b-1	ctal					120
	Senja EK Set	Satufse	439	2	,	315	
	Seals II Set	Satu Ese	439	2	6	224	
Sezerang Tayang	Cezat	Tglay Sot V Fee	413	2	7	245	
2442.6	Ceçat	S215 S\$I	260	2	6	210	
	Facelaceran	The Slo⇒ Sec	173	3	.	149	
	\$-5-	tetal		~			86
- "	Senja Ek Ik	Yk's Car	512	2	n	420	
Tegyabarta	Senja ET 510	Sio \ Gar	571	2	,	620	
	Cepat	Tek's Sto	580	2	8	420	
	s ₋₂ ,-	tetal	· • · · · · · · · · · · · · · · · · · ·				89
	Tater	11 t Gar	829	2	11	394	
Kelius	((६१८४६१)	May H	163	1	4	143	
	S::&-	tetal					39
	GSX/Tratta	SS1 : Pre	719	2	11	394	
	68M/Selatab	Sga v Car	825	,	10	353	
	Ekszres Siarg	85.83	699	2	8	286	ļ
Siscreso	Mutiera 1	55.5%) :0	2	6	217	
	0500	B1 ~ Kts ~ Sb	180	1		144	
	Imagel	nvs	169	1	4	166	
	funașel	553-11	169	1	1 6	144	
	Iusajel	n's	55	1	4	166	
	\$43.	-tetal					132
	Argoputo	Pot > 50 + Jr	675	1	8	227	
Jester	Argeçato	Javsvan	675	1		287	
	8.2	-tetal	_4			<u></u>	23
			TOTA	I.			629

Table 3.1.3 Scheduled Running Speeds of Major Trains

Name of train	Operating section	Distance of Sec- tion (km)	Time required (hour, min)	Scheduled running Speed(km/h)
Bima	Jak ∿ Sgu	829.8	16 ^h 30 ^m	50.3
Mutiara II	Jak ∿ Sbi	725.6	15 30	46.8
Gaya Baru Malam Utara	Jak ∿ Sbi	725.6	15 30	46.8
Gaya Baru Malam Selatam I	Jak ∿ Sb	829.8	19 10	43.2
Cepat Semarang- tawang	Smt ∿ Sbi	280.0	7 20	38.2
Mutiara Selatan I	Bd ∿ Sb	699.5	16 20	42.8
Ekspres Siang Bandung II	Bd ∿ Sb	699.5	16 55	41.3
Ekspres Tatar Maja I	Gor ∿ Bg	835.2	19 45	42.3
Cepat Argopuro	pwt ∿ Jr	668.5	17 10	39.0
Cepat Doho	Sb ∿ BL	166.5	5 20	31.4
Ekspres Mutiara Timur Siang	Sb ∿ Bw	300.1	8 00	37.5
Tomapel	Sb ∿ B£	166.5	4 40	35.8
Parahyangan	Jak ∿ Bd	174.5	3 40	47.2
BT 1 (Freight train)	Sbi ∿ Cpn	711.5	26 00	27.4
TRS I (Freight train)	Smg ∿ Cpn	429.8	25 40	16.7

impossible to have them run daytime and they are composed as night trains.

Since freight cars to be used for ordinary freight trains are not equipped with pneumatic brakes, the maximum running speed of a freight train is limited to 45 km/h. One brake man assigned to every several cars operates a hand brake.

(5) Present situation of train operation

Since diesel locomotives are in short supply, the number of ordinary passenger trains which are cancelled is large. The number of cancelled freight trains is also large and only a small portion of the ordinary freight trains scheduled in the train diagram is operated.

The number of running delays of long-distance trains is very large and such delays are an everyday occurrence.

Table 3.1.4 shows the delayed arrival and departure times of major express trains recorded at Jakarta Station, and figures shown in the table indicate the average delay in minutes per day during such periods as January to March and April to June, 1982. As known from the table, a delay of more than 100 minutes is not rare. Since this chart shows the average delays during a 3 month period, a large number of delays depend on the day. It is considered that most delayed trains departing from Jakarta is due to their delay in arriving at the station. As an exception, the delays of Parahyangan, the express train between Jakarta and Bandung, are rare. A train arriving at Jakarta is normally delayed between Prupuk and Jakarta in about the same degree as its delay in passing Prupuk, which is the boundary of the south line of the Kestern Regional Office.

Table 3.1.5 shows delays of express trains which departed from and arrived at Jakarta, recorded before and after Lebaran on July 22 and 23, 1982. The delay of trains in one week before and after Lebaran is large.

(6) Operation accident

Table 3.1.6 shows accidents of train operations of the Central Office which occurred from 1974 to 1981 classified by year and type of accident. The number of serious train accidents (collisions, derailments and train fires) is almost the same for every year. The number

Table 3.1.4 (1) Delay Times at Arriving Terminals (Jakarta Kota Station)

	Tra	ains	ia)	se in Delay n/day)
No.	Name	Operating Section	Jan. ∿ Har. 1982	Apr. ∿ Jun. 1982
1	віна і	Sgu v Jak	71	70
3	KUT. UT. I	Sbi ∿ Jak	90	60
5	MUT. SEL. I	Sb ∿ Bđ	12	34
7	GBM. UT. I	Sbi ∿ Pse	166	150
9	GBM. SEL. I	Sb ∿ Gmr	170	154
11	Ekspress siang	Sb ∿ Bd	31	15
13	Senja	Bl ∿ Gmr	204	115
15	11	Slo ∿ G¤r	156	70
17	91	Slo ∿ Gmr	149	98
19	11	Yk ∿ Gor	132	115
21	gt.	Kta ∿ Pse .	148	95
23	••	Sat ∿ Pse	99	63
25	11	Smt ∿ Pse	141	149
27	S. G. Jatí I	Cn ∿ Jak	60	44
29	" 111	Cn ∿ Jak	30	18
31	Parahyangan I	Bd ∿ Jak	7	3
33	" 111	Bd ∿ Jak	7	6
35	и у	Bd ∿ Gmr	-8	3
37	n Ali	Bd ∿ Jak	10	9
103	Cepat	Sat ∿ Pse	201	74
121	••	Slo ∿ Pse	92	69
141	11	Yk ∿ Bd	12	14
209	11	Bjr ∿ Hri	31	40

Table 3.1.4 (2) Delay Times at Departing Terminals (Jakarta Kota Station)

	Tr	ains	im)	me in Delay n/day)
No.	Name	Operating Section	Jan, ∿ Mar, 1982	∿ Apr. ∿ Jun. 1982
2	BINA II	Jak ∿ Sgu	19	9
4	KUT. UT II	Jak ∿ Sbi	47	26
6	HUT. SEL II	Bd ∿ Sb	2	6
8	GBM. UT II	Pse ∿ Sbi	94	68
10	GBH. SEL II	Gmr ∿ Sb	75	50
12	Ekspres siang	Bđ ∿ Sb	1	7
14	Senja	Cnr ∿ Bl	102	54
16	11	Cmr ∿ Slo	78	47
18	19	Gar ∿ Slo	40	37
20	11	Gar ∿ Yk	102	57
22	11	Pse ∿ Kta	72	38
24	11	Pse ∿ Sat	50	46
26	II	Pse ∿ Sat	68	57
28	S.G. Jati II	Jak ∿ Cn	43	23
30	ii IV	Jak ∿ Cn	19	16
32	Parahyangan II	Jak ∿ Bd	2	4
34	" IV	Jak ∿ Bd	6	3
36	ı, AI	Jak ∿ Bđ	5	5
38	u VII	I Gar ∿ Bd	11	5
102	Cepat	Tpk ∿ Sat	131	79
120	*1	Tpk ∿ Slo	147	65
140	11	Bd ∿ Yk	5	10
206	10	Mri ∿Bjr	27	18

Table 3.1.5 (1) Delay Times at Arriving Terminals before and after Lebaran (Jakarta Kota Station)

	Trains		Average time in delay (min/day)					
		Operating	1∿14 Jul. 1982	15∿21 Jul. 1982	22,23 Jul. 1982	24v31 Jul. 1982		
No.	Name	section	Normal trans- portation	Pre- lebaran Trans- portation	Lebaran trans- portation	Aft- lebaran trans- portation		
1	BIMA I	Sgu ∿ Jak	70	94	200	143		
3	MUT.UT. I	Sbi ∿ Jak	49	58	63	62		
5	MUT.SEL. I	Sb ∿ Bd	40	70	108	11		
7	GBM.UT. I	Sbi ∿ Pse	143	132	103	192		
9	GBM.SEL. I	Sb ∿ Cmr	146	229	219	297		
11	Ekspress slang	Sb ∿ Bd	12	34	0	34		
13	Senja	Bl ∿ Gar	139	176	216	298		
15	11	Slo ∿ Gar	89	149	157	169		
17	11	Slo ∿ Gmr	148	243	299	269		
19	81	Yk ∿ Gar	136	220	155	191		
21	11	Kta ∿ Pse	78	170	83	214		
23	11	Sat v Pse	71	80	129	92		
25	‡ 4	Smt ∿ Pse	109	100	216	139		
. 27	S.G. Jati I	Cn v Jak	33	38	26	38		
29	" 111	Cn 1 Jak	13	50	104	57		
31	Parahyangan I	Bd ∿ Jak	6	20	-4	12		
33	¹¹ III	Bd ∿ Jak	6	3	9	14		
35	ι, Λ	Bd ∿ Gar	1	3	11	13		
37	" AII	Bd ∿ Jak	7	9	12	13		
103	Cepat	Smt ∿ Pse	24	115	96	89		
121	13	Slo ∿ Pse	68	165	136	132		
141	f:	Yk v Bd	17	18	13	82		
209	11	Bjr ∿ Xri	32	38	41	142		

Table 3.1.5 (2) Delay Times at Departing Terminals before and after Lebaran (Jakarta Kota Station)

	Trai	ns		Average tin	ie in delay	-
No.	Name	Operating	1∿14 Ju1. 1982	15 1 Jul. 1982		24∿31 Ju1 . 1982
ΝΟ.	изве	section	Normal trans- portation	Pre- lebaran trans- portation	Lebaran trans- portation	Aft- lebaran trans- portation
2	BIKA II	Jak ∿ Sgu	14	21	60	11
4	MUT.UF. II	Jak v Sbi	9	32	19	46
6	MUT.SEL. II	Bd ∿ Sb	11	12	14	16
8	II .TU.KAD	Pse ∿ Sb1	32	99	23	69
10	GBM.SEL. II	Cor∿ Sb	43	91	67	108
12	Ekspress siang	Bd ∿ Sb	6	18	14	8
14	Senja	Cmr ∿ B1	54	94	67	91
16	u)	Car ∿ Slo	13	37	13	49
18	11	Car ∿ Slo	31	116	149	57
20	98	Gar ∿ Yk	85	69	62	75
22	11	Pse ∿ Kta	35	95	104	120
24	18	Pse ∿ Smt	74	84	36	86
26	II.	Pse ∿ Snt	76	94	135	72
28	S.G.Jati II	Jak ∿ Cn	10	56	55	39
30	" 17	Jak ∿ Cn	5	20	26	29
32	Parahyangan II	Jak ∿ Bd	0	2	0	0
34	11 IV	Jak ∿ Bd	2	14	2	4
36	n AI	Jak ∿ Bd	2	14	0	14
38	" VIII	Gar ∿ Bd	5	15	1	21
102	Cepat	Tpk & Sut	66	108	65	128
120	п	Tpk ∿ Slo	73	181	150	140
140	"	Bd ∿ Yk	3	22	13	12
206	£1	Hri ∿ Bji	30	54	50	37

Table 3.1.6 Number of Train Operation Accidents by Year (Central Regional Office)

Code	Type of operation accident	Year							
		1974	1975	1976	1977	1978	1979	1980	1981
a	Train collisions (between stations)	1	2	0	1	0	0	1	. 1
ь	" (within station yard, excluding shunting)	4	3	1	1	2	0	0	2
c	Train derailment (vithin station)	10	35	15	28	26	28	14	13
đ	Train derailment (within station yard, excluding shouting)	4	10	7	12	8	5	14	7
e	Train fire	0	2	0	2	0	2	1	0
ſ	Vehicles collision during shunting	3	2	1	1	2	1	0	0
gl	Yebicle derailment (during shouting) passenger car	2	6	5	4	4	7	6	3
g2	Yebicle derailzeat freight car	24	27	55	25	34	33	13	22
83	Vehicle derailment locomotive	21	17	10	13	10	9	1	8
ь	Railway crossing accident	13	21_	30	29	38	34	26	16
i	Bodily injuty	100	86	98	86	96	85	85	46
j	Animal injury	4	7	4	2	5	2	5	0
kl	Broken vheel tire (loccootive)	0	0	1	0	0	0	1	0
k2	Broken wheel axle (locomotive)	0	0	0	2	0	0	0	0
k3	Brokea coupler (locomotive)	. 2	5	0	0	0	O	0	- 0
k 4	Broken spring (locomotive)	3	0	0	0	0	<u> </u>	0	0
1:5	Broken wheel tire (passenger and freight car)	5	0	0	0	1	0	1	°
16	Broken wheel axle (passenger and freight car)	1	0	0	0	1	0	0	0
k7	Broken coupler (passenger and freight car)	40	23	18	6	6	3	10	5
k8	Broken spring (passeager and freight car)	47	0	0	0	0	0	11	0
19	Other vehicle probles	98	74	67	67	33	12	55	6
ı	Steam of SL failed	45	30	16	3	12	2	1	3
*	Broken firing chamber of SL	45	31	62	19	1	0	9	2
ū	Trouble in electric system of DL	70	45	81	99	63	44	93	22
0	Trouble in nechanical system of DL	103	135	206	243	214	232	196	225
P	Frouble in motive power treas- mission of DL	31	17	37	39	4	7	12	9
4	Electric facilities (substation, transmission line, etc.)	1	5	1	4	0	0	11	G
τ	Trooble in signal facilities	1	1	0	0	0	0	0	0
\$	Broken rails or other structures	10	3	2	2	0	0	1	1 1
t	Landslide, flood, others	23	4	5	7	49	0	10	10
ט	Ignoring of signal	3	6	7	6	7	3	4	5
vì	Other problems attributable to PJFA employees	27	29	19	23	17	20	18	,
w2	Other problems attributable to persons other than PJKA employees	80	44	51	68	52	42	52	55
	Total	824	651	166	796	684	571	607	471

of vehicle problems from Code KI to P is very large and they comprise about 60% of all accidents, but the number of accidents in 1981 considerably decreases. In addition, the number of derailments of vehicles during shunting and cases of bodily injury is large.

3.1.2 Operation Center

The organization of the operation center is divided into 3 stages, namely Head Office, Regional Office and Inspection.

Fig. 3.1.3 shows the organizational chart of the operation center and Fig. 3.1.4 shows the range of responsibility of each inspection center.

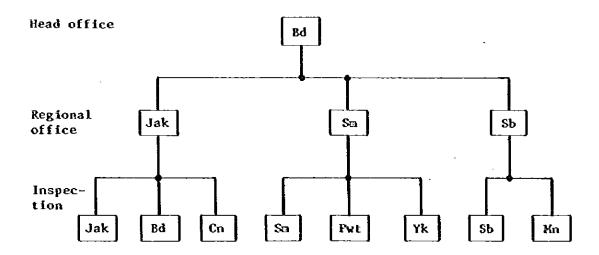


Fig. 3.1.3 Organization of Operation Center

Some section of railway lines to be electrified under this project are not covered by any operation center and a section between Bandung and Banjar is being planned.

The operation center of the Head Office consolidates reports (train delays, the number of locomotives, passenger and freight cars used, operating accidents, etc.) from all Regional Offices and reports the operating condition to the Director. The operation center of each Regional Office receives reports on the operating condition of trains and the number of cars used from major stations. The operation center

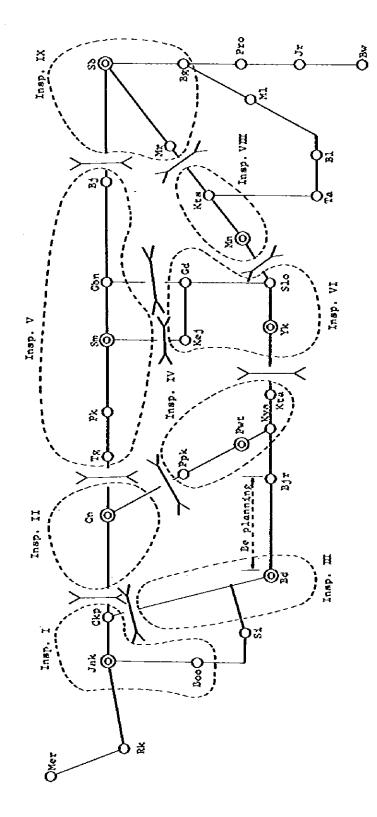


Fig. 3.1.4 Service Area of Train Dispatchers by Inspection

of each Inspection office monitors the operating condition of trains and takes necessary actions for the recovery of delayed trains and the adjustment of train operations.

3.1.3 Vehicles

Most locomotives are diesels. Some steam locomotives are also used, but they are mostly used for shunting. Electric locomotives were once used in the JABOTABEK area, but all of them are now discarded.

(1) Depot of diesel locomotives and No. of locomotives

Table 3.1.7 shows the number of diesel locomotives assigned to each depot and the number of vehicles used by each depot. Representative depots are Jatinegara, Bandung and Sidotopo and major locomotives are BB303, BB304 and CC201. The total number of these main locomotives is 68, and their rate of use (No. of vehicles used/No. of vehicles assigned) is about 90% which is considerably higher than that of other types of locomotives. Generally the number of days that a faulty locomotive stays in the workshop is large due to the shortage of parts, etc. For instance, the rate of use of a CC200 locomotive is only 55%.

(2) No. of km covered by diesel locomotives

Table 3.1.8 shows the average No. of kilometers per day covered by the main diesel locomotives. The average No. of km covered by the CC201 is about 450 km/day, that of the BB304 is about 400 km/day and that of the BB303 is about 290 km/day.

Table 3.1.9 shows the average No. of km covered by locomotives of representative depots by type of operation and the maximum No. of km is 725 km/day. The reserve rate of locomotives is about 20%.

(3) Running time of diesel locomotive

Table 3.1.10 shows the running times of the CC201 diesel locomotives classified by rostering No. An average running time of one vehicle per day is 13 to 14 hours.

Table 3.1.7 No. of Diesel Locomotive by Depot

Type	ccs00	B3200	BB201	BB301	BB303	BB304	CC 201	88300	C300	D300	0301
Depot	1600aP	875	1425	1500	1000	1500	1950	680	350	340	340
Cirebon	22									4	3
(Cn)	12				[_				3	3
Sezarang-		26						1		11	5
poncol (Sac)		21						0		9	5
Yogyaharta			11								8
(n)			8								6
Jatinagara				12			18				
(Jeg)				8]		17				
Basilian				4			18	4	!	11	
Baaduag (Bd)				3			16	0		10	<u> </u>
C. C. C. C. C. C. C. C. C. C. C. C. C. C			•	32	3	11	-				13
Sidotopo (Sdt)		1		17	3	10					9
		1		<u> </u>	8		-	3	20		
Tanahabang (Tbb)	1				,			3	17		<u> </u>
	-		1		10			1			. 8
Jeaber (Jr)					9	<u> </u>		0			6
Cilacap								2	•		
(Cp)	<u>. </u>		.	<u> </u>		<u> </u>	<u> </u>	2			ļ
Pursekerto (Pvt)										2	6
	1	-			1	-	1	-			5
Putvakarta (Pvk)											4
Surabaya-	1	1	+	- 	1		1	1			15
çəsərtori (Sbi)						1				<u> </u>	2
Reading											12
(15)			1						<u> </u>	<u> </u>	10
Kazel (Kal)							-				2
Total No. of locesotive assigned	22	26	11	43	21	11	36	11	20	29	15
Pate of use	54.	5 80.	.8 71.	7 58.	3 90.	4 90.	9 91.	45.0	85.0		76.9

Note: Figures to the upper column show the number of lococotive assigned and figures in the lower column show the number of lococotive used as of Mar. 19, 1982.

Table 3.1.8 Average Running km Covered by One Diesel Locomotive per Day

Type of	1	· · · · · · · · · · · · · · · · · · ·	No. of locomotives	omotives	Average	Average run-
locomotive	Jepor	Kunning Km	Assigned	Used	runding km assigned	ning km used
	Jacinegora	km/day 8,534	87	14	lon/day 474.1	km/day 609.6
00201	Bandung	7,588	18	15	422.0	506.0
	Sub-total (average)	16,122	36	29	447.8	555.9
7084	Sidoropo	4,384	# #	တ	398.0	548.0
	Tanah Abang	5,409	ഗ	9	301.1	401.5
	Jember	2,597	01	တ	259.3	324.6
88303	Sidotopo	1,014	ന		338.0	507.0
	Sub-total (average)	6,020	21	16	286.7	376.3

Table 3.1.9 Running km Covered by Diesel Locomotive

(Train diagram revised May 27, 1982)

	•		(Train di	agram revise		
Type of	_	No. of locome	at i voo	_		e running
DL	Depot	used and No.		Running km	km per	
	İ		10001700		l'sed	Assigned
				kra		
		Used	6	3,396	566	
		**	4	2,668	667	}
CC201	Jatinegara	14	4	2,470	617.5	ŀ
		- Reserved	4			
		Sub-total	18	8,534	609.6	474.1
		Used	3	1,540	513.3	
		11	1	486	486	
CC201	Bandung		6	2,850	475	
CC201	banddig		5	2,707	541.4	
		Reserved	3			
		Sub-total	18	7,583	505.5	421.3
		Used	3	1,286	428.7	
		ti	2	1,438	719	
2020A	Sidotopo	••	2	1,450	725	
BB304 Si	Stateopo	19	1	210	210	
		Reserved	3			
		Sub-total	IJ	4,384	548	- 398.5
	Total	Assigned	47	20,501	554.1	436.2
		Used	37			
		Reserved	10			
		Reserved rate	21.3%			

Table 3.1.10 Running Times of Diesel Locomotive (Train Diagram revised May 27, 1982)

(1) Jatinegara depot (CC201)

Rostering No.	Running time	Running km	Rostering No.	Running time	Running km
<u> </u>	hour	kn		hour	km
1	13.5	466	8	18.2	773
2	11.5	398	9	12.1	628
3	15.5	681	10	16.2	494
4	12.5	618	12	16.8	799
5	16.5	829	13	13.0	499
6	8.5	404	14	12.1	644
7	17.0	773	15	16.5	528
Total runn	ing time	199.9 hours	Average ru of one per	•	13.3 hours
Total runn	ing km	8,534 km	Average sp	eed	42.7 km/hr

(2) Bandung depot (CC201)

Rostering No.	Running time	Running km	Rostering No.	Running time	Running km
	hour	kn		hour	<u>km</u>
1	12.0	519	9	11.2	333
2	12.5	429	- 10	17.5	347
3	15.8	592	11	17.5	346
4	13.8	486	12	12.5	397
5	17.0	699	13	16.3	627
6	16.5	449	14	17.7	584
7	18.8	652	15	11.0	430
8	11.8	370	15A	7.5	328
Total runn	ing time	229.4 hours	Average re	unning time r day	e 14.3 hours
Total runn	ing ka	7,588 km	Average s	peed	33.1 km/hr

(4) Passenger cars and freight cars

Passenger car depots and the number of passenger cars for high class trains are shown in Table 3.1.2. The number of passenger cars in 1980 was 906, comprising 34 first class, 109 second class and 563 third class passenger cars. The number of passenger cars slightly increased in the past 5 years.

The number of freight cars in 1980 is 4115 and about a half of them are box cars. The number of freight cars decreased by half in the past 5 years.

3.1.4 Depot and Station

(1) Organization of depot

Fig. 3.1.5 shows the organizational chart of Purwokerto Locomotive Depot. Fig. 3.1.6 also shows the organization of Jakarta Kota Passenger Car Depot.

(2) Inspection of vehicle at depot

The items of inspection for diesel locomotives to be carried out at a depot, the number of inspection staff and the number of days required for inspections are shown in Table 3.1.11. The frequency of inspection varies for the electric and the mechanical diesel locomotive. A depot is able to carry out annual inspection of locomotives, and higher grade inspections and the repairing of locomotives are carried out at Yogyakarta workshop.

The daily, monthly, four monthly and yearly check of passenger cars are carried out at a depot, and high grade inspections such as two yearly and four yearly check is carried out at a workshop.

The inspection of freight cars is divided into 2 kinds, the daily check and two yearly overhaul to be carried out at a workshop. The daily check of freight cars is conducted by a supervisor of the depot and a brakeman who is assigned to the freight train. The inspection consists of the replacement of simple parts and oiling. When the brakeman finds a car that needs to be repaired, he reports it to the supervisor and sends the car to a workshop.

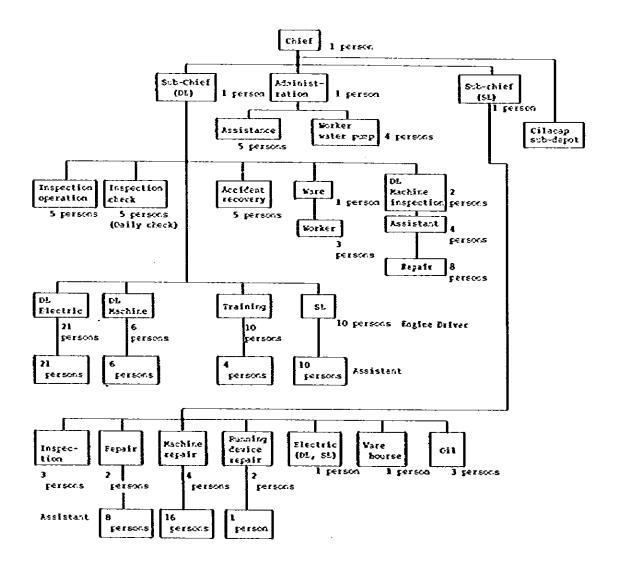


Fig. 3.1.5 Organization of Locomotive Depot (DL, SL) (Purwokerto Depot)

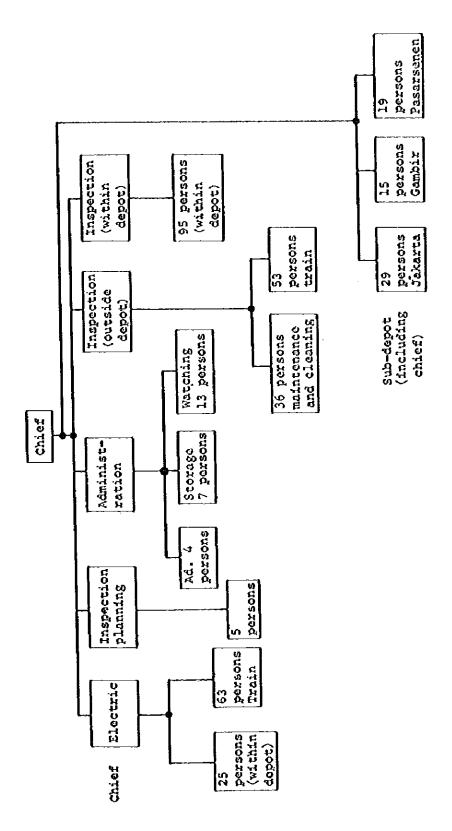


Fig. 3.1.6 Organization of Passenger Car Depot (Jakarta Kota Depot)

Table 3.1.11 Inspection of Diesel Locomotives at Depot

Type of DL	Type of inspection	Insp	ector	No. of days required
.,,,,	Type of Inspection	Chief	Staff	(approximate)
	Daily check	1	9	2 hours
Diesel	Konthly check	2	18	l day
electric	Three monthly check	3	17	2
locomotive	Six monthly check	3	17	5
	Yearly check	3	17	10∿15
	250 hour check	1	7	1
Diesel	500 11	1	7	1
rechanical	1,000 "	2	8	1
locomotive	2,000	2	13	3
	3,000	3	17	5

(3) Organization and staff of station

Fig. 3.1.7 shows the organization chart of Surabayapasarturi Station, a large station. Fig. 3.1.8 also shows the organization chart of the train operation staffs of the same station.

Table 3.1.12 shows the approximate number of employees of stations classified by rank, and the percentage of train operation staff to the total number of employees of each station.

Table 3.1.12 Rank of Station and Percentage of Train Operation Staff

Rank of station	Percentage of train operation staff	Total No. of station employee (approximate)
Big	% 40 ∿ 50	persons 160 ∿ 200
I	50 ∿ 60	70 ∿ 80
п	80	40
Ш	90	30
1V, V	100	6 ∿ 15

3.1.5 Duties of Locomotive Crews and Other Employees

(1) Locomotive crew

A locomotive is operated by a pair: an engine driver and an assistant. The conditions of their work are shown in Table 3.1.13. The number of working hours per week is 38 to 49 and the average working hours per one unit of duty is 5.5 to 7 hours.

(2) Conductor

Table 3.1.14 shows the duties of conductors. The number of working hours for one unit of duty is 5.5 to 11 hours.

(3) Brakeman and other workers

Table 3.1.15 shows the duties of electricity operators and brakemen. An electricity operator is assigned to ride on the train to service and maintain electrical devices on the train. A brakeman

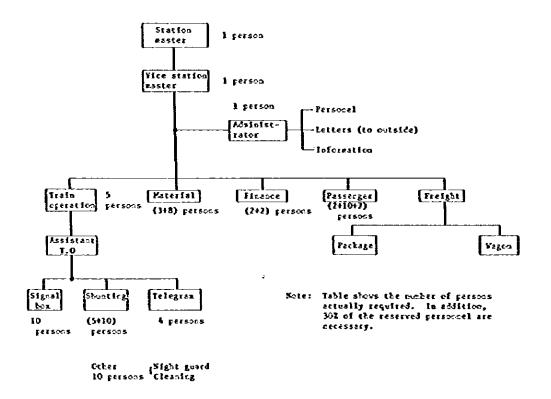


Fig. 3.1.7 Organization of a Large Station (Surabayapasarturi Station)

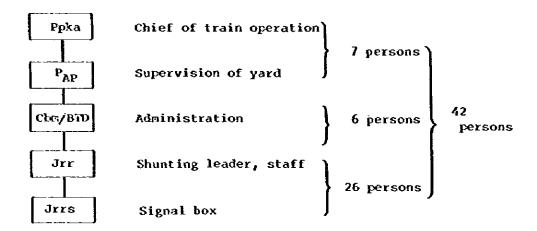


Fig. 3.1.8 Organization of Operation Staff of Station (Surabayapasarturi Station)

Duties of Locomotive Crew rabie 3.1.13

	7. 2.00 0.01	Workir	Working hours	Ne	No. of trains		No. of Kin	Average working bours for one
Depor	locomotive	Total	Hours per weck	On duty	Reserved	Total	running	unit of duty
Sidotopo	BB304	115.5	44.9	18	2	20	1,865	6.42 hr
Cirebon	CC201 Other BB304 Other	242	37.6	4.S	7	52	4,614	5.38
Malang	בצ'יזם	3.911	49.2	1.7	ហ	22	ı	7.03
Purwokerto	BB301 Other	113.5	39.7	20	ო	23	1,950	5.68
Purwokerto	Small size Di	53	46.3	ω	A	თ	\$	6.63
Purwokerto	īS	47	41.1	ω	Н	6	ı	5.88
Kroya	BBZO1 CC201, SL	118	48.6	74	m	90	ŧ	6.94
Cilacap	Small size Di. Si	144	43.5	23	ო	26	•	5.54
Kroya	sr, sazoı	76	41.0	าา	2	13	304	6.91

Working hours include preparation time. Preparation time is one bour before and after actual duty.
Reacryed rate is 15%.
An engine driver and an assistant form a pair. 3 Note:

⁹⁹

Table 3.1.14 (1) Duties of Conductor

	אמדטרב זס טעשע	Yk, Slo.Kts	Bl, Mn, Sdt	slo, Kts, Bl, Jg	Smt, Cu, Bj.	sb, Ml,	Sp, Psi, BS	Xts, Sb.	Kk, Jr, Såt, Sb	ರ್. ೫៦, ೫೬೫,	Sb, Bw, Ybz, Pnr	Jr, Bw	Jr, Kbr
hour	Average	8.57	8.21	7.92	6.52	7.25	6-42	9.19	7.47	96.9	8.70	7.58	5.25
Duty hour	Total	34 180.0	98.5	388.25	182.5	.36.25	83.5	119.5	59.75	48.75	139.25	22.75	10.5
duty	Total	28	3.6	64	36	6	1.7	1.7	7	on	27	5	3
units of	Off Guty	7	4	1.5	ω	2	4	4	ო	ю	ស	2	r-1
No. off	òn duty	27	7.7	64	28	v	en H	13	ω	7	91	m	8
	Name of conductor depot	Madiun	Kertesone	Surabaya .Kota	Sb pasarturi	Bangil	Malang	Blicar	Probolinggo	Klakah	Jember	Kalibaru	Bonvawanet
	theyeur then	ω	ω	o	6	01	વ	9	r.	ر ر	er e	Ħ	:

Table 3.1.14 (2)

, TT							
	3	No. of	No. of units of duty	duty	Duty	Duty hour	Vaus antitud do sens
Inspection	conductor depot	On duty	Off. Guty	rotal	Total	Average	o a some
ω	Ponorogo	o	64	တ	30.75	8.46	sih, Mn,
8	Parc	d	H	7	9.15	9.15	Kd,
	Babat	ហ	7	7	39.5	7.90	nn,
. 6	Wonokromokota	8		n	22.0	0.41	Kay, Be
. 6	Kamal	ო	а	4	18.5	6.17	BK1, BKP
6	Pamokasan	m		4	31.0	10.33	Xm1
ន	Malangjagalan	72	н	છ	19.5	9.75	Gal, Dæt, Mlj

Table 3.1.15 Duties of Electricity Operator and Brakeman

(1) Electricity operator

Danak	Total	Weekly average	No. of	operators	Average working hours for
Depot	working hours	working hours	On duty	Reserved	one unit of duty
Malang	35	49.0	5	2	7.0
Purwokerto	42.5	49.5	9	1	10.2
Purwokerto	69	44.5	11	1	6.3

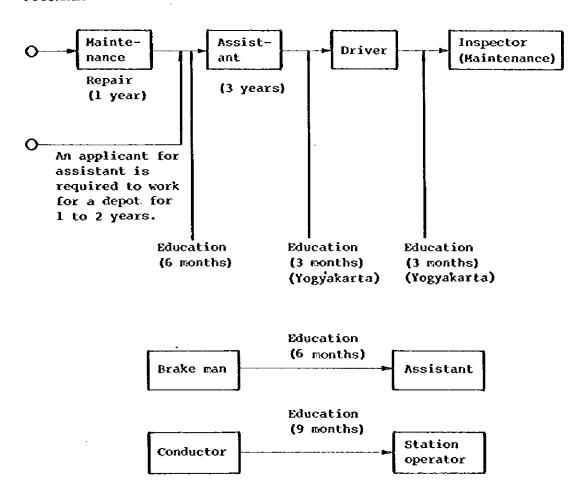
Break
maintenance
Air condition maintenance

(2) Duties of Brakeman

	Total	Keekly average	Ко. of	operators	Average working hours for	
Depot	working hours	working hours	On duty	Reserved	one unit of duty	
	21	49.0	3	1	7.0	
Malang	52	45.5	25	8	6.5	
Purwokerto	197	42.7	33	5	6.0	
Kroya	379.25	37.45	66	10	5.7	
Kutoarjo	168	40.0	30	5	5.6	
Cilacap	66	40.0	12	2	5.5	
1		T			•	

Note: 1. Brakemen belong to a passenger & freight car depot.

3. The maximum speed of a train is 45 km/h.


One brakeman is assigned to every 6 cars, in other words, one man works on a 120 ton train and 5 men work on a 600 ton train.

is assigned to every 6 freight cars of a train and he operates the hand brakes of those cars when the train makes a stop, because freight cars are not equipped with pneumatic brakes.

(4) Education of locomotive operator

Fig. 3.1.9 shows the courses of training of locomotive crews. A trainee is required to receive training for 6 months to become an assistant and an assistant is further required to receive training for a period of 3 months to become an engine driver.

Freshman

Pig. 3.1.9 Education of Locomotive Crew

3.1.6 Problems Regarding the Operation of Trains

The present condition of train operations and their problems stated above can be summarized as follows:

(1) The running speed is low

The maximum running speed of a train is determined by the section. The best section is rated at 80 km/h but sections of 40 km/h are common. The maximum scheduled running speed is 50 km/h and many trains, even if they are high grade, run at a speed less than 45 km/h. Such low running speeds are attributable to the following reasons:

- 1) The maintenance condition of tracks is very poor and the vibration of a train (especially vertical motion) is great.
 - 2) The limited passing speed of a turnout is low.
- 3) Slow-moving sections are numerous and these restriction last for a long time. Slow moving speeds are also low.
- 4) Most freight trains are not equipped with pneumatic brakes and the maximum running speed of such trains is limited to 45 km/h.
- 5) Since a engine driver relies on the head light to confirm signals at night, the distance of signal confirmation is short and the speed of a train is thus limited.

(2) The trains delays are large

The delays of long distance passenger trains and freight trains are large, and a delay of more than 100 min is common. It is considered that such large delays are attributable to the following reasons:

- 1) The number of diesel locomotive problems (especially mechanical trouble) is large.
- 2) Due to the shortage of vehicles, the congestion of ordinary trains is severe, and the stopping time of such trains becomes longer than scheduled as passengers normally carry much luggage.
- 3) Sometimes the signal handling at a station may be delayed, a train is forced to stop outside the station and the delay of the train becomes larger.

4) The functions of a train operation center are not fully organized and maintained yet; therefore, effective countermeasures for the recovery of delays are not taken.

5) Since most of major lines are single track, the delay of a train causes other trains to be further delayed.

6) Some intermediate stations have rail tracks which cannot be used and some turnouts are also cannot be used. Due to this, surplus shunting operations are required to change trains and the delay of trains thereby increases.

7) Due to the shortage of facilities, pass-by trains cannot enter a station at the same time.

8) Nost speedmeters of locomotives are broken, therefore engine drivers control the speed of their trains by their senses.

9) It seems that employees who are engaged in the operation of trains are hardly aware of the importance of guaranteed of scheduling of trains.

(3) The number of passenger trains is low

Compared to the number of passengers, the number of passenger trains and train cars is very small. Due to this, the congestion of a train is severe, caused by the shortage of vehicles. Especially because of the shortage of diesel locomotives, many passenger trains and freight trains are forced to cancel their operation.

(4) Safety of train operation is low

Under the block system which is being used at present, especially due to the communication system, there is a strong possibility of train accidents when employees handle of control devices incorrectly. In fact, there are many train accidents, and derailments of train and cars.

The problems and defects we have pointed out above have considerably weakened the competitive force of the present railway service against road and air traffic services.

In order to expand the share of the railway service in transporting passengers and cargos, it is necessary to solve those problems stated above and also take the following countermeasures:

(1) Enhancement of image of railway

1) It is necessary to prohibit ordinary people from entering the railway lines and rail tracks inside station compounds. This is absolutely necessary to secure the safe operation of trains and prevent bodily accidents.

2) We notice that many unused rails, warehouses, steam locomotive water tanks, water supply poles, old freight cars, scrap bridges, etc. are discarded in the compounds of many stations, and abandoned steam locomotives, other vehicles, turnouts, water supply tanks, etc. are also simply left in vehicles depots. Since these abandoned vehicles, facilities and other materials considerably mar the image of the railway service, they should be put in order and cleared up. This will also enhance the morale railway employees.

(2) Regular operation of trains

The regular operation of trains is one of fundamentals for gaining the confidence of passengers and shippers and improving the efficiency of railway service. They will trust the railway all related work in connection with the operation of trains can be carried out as scheduled. It is recommended that every effort be made to solve those problems stated in the section of "Delay of train", to reinforce the system of train operations and to secure the regular operation of trains by reeducating locomotive crews, conductors and station employees.

(3) Shortening of running time of trains

It is very important to shorten the running time of a train to reinforce the competitive power of the railway service. It is necessary to shorten the running time of the present trains by taking such countermeasures as the improvement of rail tracks and line configurations, raise of average speed by the introduction of high grade vehicles, etc., shortening of blocking time of trains by the

introduction of modernized blocking systems, realization of simultaneous entry of pass-by trains into station yard, shortening of rehabilitation period of slow-moving section and setting up of a multi stage system for slow-moving speed, etc.

(4) Stepped-up operation of trains

It is necessary to increase the number of trains, even if on local lines, to expand the share of the railway service. Under present conditions, it is possible to increase the number of passengers by simply increasing the number of trains.

One of the serious problems which hampers the stepped-up operation of trains is the grave shortage of vehicles and especially the shortage of diesel locomotives. Except for a certain limited section, the line capacity of the present facilities still has some room, therefore it is necessary to make efforts to reduce the number of vehicles which are inspected or repaired by procuring parts of vehicles timely and efficiently, and to reduce the number of days required for inspection and repair of vehicles.

(5) Securing safe operation of trains

The securing of safety is a basis for gaining the confidence of passengers and shippers for the railway service. Fortunately the evaluation of railway service safety is higher than that of route bus service. However, there is a problem in securing the safe operation of trains under the present signal facilities if the number of trains is increased in the future. Therefore, it is necessary to introduce modernized blocking systems.

(6) Others

It is important to take the following counterneasures for improving passenger services:

 Reinforcement of connection with road traffic Securing and maintaining a square in front of a station; extension of bus lines into station squares.

- 2) Improvement of customer reception facility Ticket window, ticket gate facilities, maintenance of waiting rooms, of platforms of large stations and of railway bridges.
 - 3) Mechanization of cargo handling
- 4) Execution of land container transport (Marine container transport is being planned)

3.1.7 Problems of Locomotive and Car Depot

The present condition and problems of locomotive and car depots are as follows:

- (1) Since the number of diesel locomotives which are kept in a repair plant is large, the number of locomotives which can be actually used is limited. In the case of a large, old diesel locomotives, 20% to 50% of all these vehicles are kept in a workshop for repairing at any one time. This is because the number of days required for repairing is very large.
- (2) Since the shortage of parts is serious, the efficiency of inspection and repairing is poor.
- (3) Scrapped locomotives and passenger cars are abandoned in inspection shed of depots and station yards.
- (4) The maintenance and cleaning of the floor of a inspection shed in a depot, inspecting and repairing machines and inspection pits are poor.

3.2 Train Operation Program After Electrification

3.2.1 Flowchart of operation program

Fig. 3.2.1 shows the procedures for preparing a train operation program and its relation with other programs. The preparation of a program is roughly divided into the following steps:

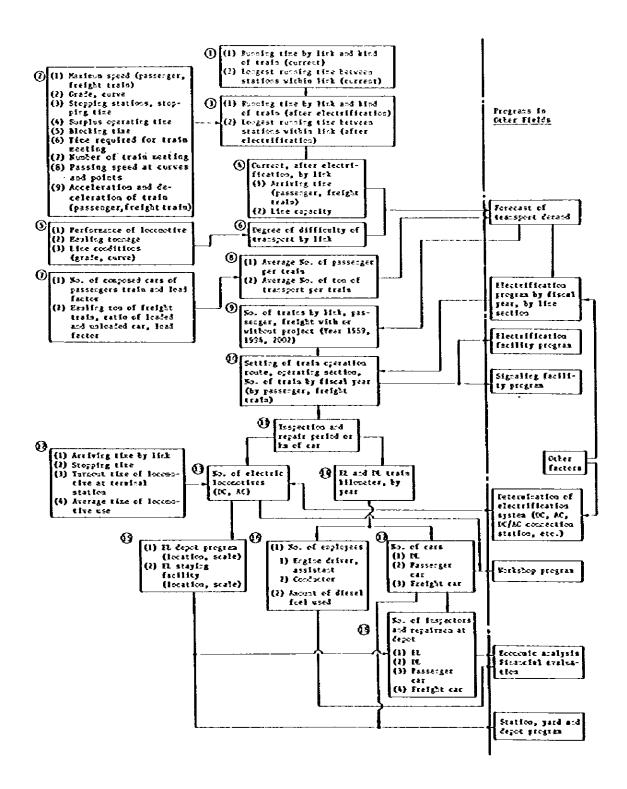


Fig. 3.2.1 Flow Chart for Preparing Train Operation Program

(1) Preparation of materials related to necessary operations for forecast of transport demand

The running time of link and the line capacity of the present system and that of a new system after electrification are to be obtained. The present data can be obtained from the train diagram, but data concerning a new system after electrification must be obtained by calculations based on maximum speed, line conditions, operating conditions, etc. as shown in the figure. An average number of passengers per train is to be obtained from the number of composed cars and average load factor. The average number of tons of transport is to be obtained from the traction weight of the freight train, the ratio of loaded and unloaded cars in a train and load factor.

(2) Establishing trains

The number of trains by link, whether or not the project is implemented can be obtained from the forecast of transport demand, and the running section of a train and the number of trains to be operated are determined based on this. The yearly electrification projects should be taken into consideration in preparing this program.

(3) Calculation of number of cars and personnel

As the number of trains to be operated is determined, so the number of electric locomotives (DC, AC), diesel locomotives, passenger cars and freight cars can be obtained. Based on this, the number of engine drivers, assistants, conductors, inspectors and repairemen for each type of car can be obtained. These data are used in preparing station, yard and depot programs, workshop programs and economic analysis, etc.

3.2.2 Train Operation

- (1) Prerequisites for preparation of train operation program In preparing a train operation program after electrification, we considered the following prerequisites:
 - 1) Electrification system
- a) JABOTABEK area uses DC system, and Merak line is to be permanently electrified by DC system in view of its location and distance.

b) Krawang Station will be used as a DC/AC connecting station until end of 1993. Long distance trains will be hauled by AC electric locomotives east of Krawang station and by DC electric locomotives west of the station.

c) Since a new double track line becomes necessary for long distance trains in 1994, a new double track line will be constructed between Krawang and Manggarai and electrified by AC system. Consequently, a long distance train will be hauled by an AC electric locomotive until Manggarai and the necessity for changing the locomotive at Krawang station will be eliminated. In the same period, a new Cibinong freight line will be constructed and electrified by AC system. Freight trains will enter the new freight line at Cakung station and be started from and terminated at Tanjungpriuk station. Those DC electric locomotives which will be used by Bekasi line until 1993 will be transferred to the Merak line, which will be electrified at that time.

2) All lines will be single-track electrified except the section between Jakarta and Cikampek which has been converted to double track line.

3) The maximum operating speed will be 100 km/h. The maximum passing speed on curved sections will be as follows:

$$V = 4.3\sqrt{R}$$

Where V = Maximum passing speed (km/h), and R = Radius of curvature (m)

4) The block system will be the tokenless block system and signals will be the color lamp system.

(2) Running time and running speed

A train operation curve (i.e., a chart showing how the running speed, running time and other changing operating conditions of a train in conjunction with the progression of the train) is normally prepared to accurately obtain the running time of a train. However, in preparing the master plan of this project, a train operation curve was not

prepared, and approximate running time was obtained by the following calculation:

1) Acceleration and deceleration of train

The average acceleration and average deceleration of trains on a level section are determined as follows:

Kind of train	Average acceleration	Average deceleration
Passenger train	1.0 ka/h/s	1.5 km/h/s
Freight train	0.5	0.75

2) Haximum running speed

The maximum running speed of a passenger train is set at 100 km/h and that of a freight train at 85 km/h. In calculating the running time of a train, the maximum speed was reduced by 5km to 95 and 80 km/h respectively.

3) Curve

The passing speed of a curve was set as $V=4.3\sqrt{R}$. According to this equation, the maximum passing speed of curves will be as shown in the following table:

Radius of curvature (a)	Passing speed (kn/h)
150	50
200	60
250	65
300	70
350	80
400	85
450	90
500	95
550	100
600	105

The above was calculated by assuming the existence of curves (location, radius, length) by section based on the results of the field survey.

4) Grade

Where grades are steep, approximate size and distance of the grade were obtained, based on the results of the field survey. Running time and speed were calculated on the assumption that a train is to be operated at a balanced grade speed to be determined by the performance of an electric locomotive.

5) By the above methods, an approximate estimated running time of a train can be obtained, but actual trains are normally required to run at slower speeds, due to maintenance work on rail tracks, etc., and thus a margin of 5% is added to the estimated running time of a train as surplus time.

6) Stopping time

The stations where express trains stop were determined, and the stopping time of a train was set 5 minutes at a major station, 3 min at a medium station and 1 min. at an intermediate station. A freight train will stop at such stations where an express train stops and its stopping time was set 30 min. In addition to the time of deceleration and acceleration for making a stop at a station, a stopping time of 2 min is added to its stopping time for passing-by another train. An express train has priority and it passes another train about every 6 stations and an ordinary train passes by about every 3 stations.

Based on the above prerequisites, acceleration time for leaving a station, deceleration time for stopping at a station, deceleration time for stopping at a station, deceleration time, acceleration time and passing time for curves, running time of a grade, and running time at a maximum speed are separately calculated. The running time of a train can be obtained by adding a surplus time, stopping time and passing-by time to a total time calculated as stated above.

Running times of trains by section thus obtained are shown in Table 3.2.1. The running time of a train includes the stopping time at midway stations within a section, but it does not include the stopping time at terminal stations of the section. An ordinary passenger train is assumed to stop at all stations.

The running time of a train after electrification is shown in Table 3.2.2. The running speed is represented by an average speed. The average speed is obtained as follows:

The tables can be further classified by line conditions as shown below:

	Line condition	Average spe passenger t	
		Express	Ordinary
(1)	Section where grade is small, radius of curvature is large	83 ~90	62∿ 76
(2)	Section where grade is small, radius of curvature is small	71∿90	60 ∿ 74
(3)	Section of where grade is large	55∿88	50 ∿ 69

(3) Train program classified by electrification stage

1) Stages of electrification

The stages of electrification (section to be electrified and year of starting operation) are determined as follows:

Year of opening clectrified section	New electrified section
1988	Manggarai∿Cikampek Cikampek∿Cirebon
1989	Cikampek∿Kiaracondong
1991	Cirebon∿Yogyakarta
1992	Yogyakarta∿Solojebres
1994	Manggarai∿Krawang AC dual tracks installed Serpong∿Herak

Year of opening electrified section	New electrified section
1995	Solojebres∿Surabayakota
1996	Surabayakota∿Probolinggo
2003	Cirebon∿ Surabayapasarturi Bandung∿Kroya Probolinggo∿ Jember Semaranggudang∿ Kedungjati ∿ Solobalapan Gambringan∿ Gundih Bogor∿ Sukabumi
2008	Jember∿Banyuwangi Kertosono∿Malang∿Bangil Sukabumi∿Padalarang

2) Transport demand of electrified year

The forecast of transport demand was calculated by using 'maximum speed of 100 km/h after capacity check' and by assuming that electrification would be concentrated in the 3 years of 1989, 1994 and 2002, and that electrified sections would not be opened in those years shown in the preceding table. Consequently, in devising a train program for each stage of electrification, we must consider how to handle transport demand during the intermediate years. In this plan, we treated the problem as follows:

- a) As for the number of trains of sections already electrified, the figure for intermediate years was obtained by connecting the number of trains of 1994 and that of 1989, or that of 2002 and that of 1994 with a straight line.
- b) If the method of a) above is used for a section which is not electrified yet, the number of trains would become excessively large. Therefore it was assumed that the number of trains in 1989 would be shifted to 1993 and that in 1994 would be shifted to 2002.

Table 3.2.1 (1) Running Time of Train by Section After Electrification (max. speed 100 km/h)

Node	Santin-	Ra	ilway 1	Ine		Running
No.	Section	Distance	Grade	Radius of curvature	Kind of train	time (min)
1) 5	Merak ∂ Rangkasbitung	68,625 Inter- mediate station (7)	6%	300m	Express Ordinary Freight	50 69 62
② 3	Rangkasbitung	83,097 (12)	8	200	Express Ordinary Freight	67 108 112
(3) (4)	Jakarta ∂ Cikampek	84,746 (20)	5	540	Express Ordinary Freight	74 120 144
(3) (5)	Jakarta ∂ Sukabumi	111,844 (17)	25	150	Express Ordinary Freight	130 167 175
@ 6	Cikampek ¿ Bandung	89,727 (16)	16	200	Express Ordinary Freight	88 126 96
(S) (6)	Sukabumi	97,961 (16)	33	150	Express Ordinary Freight	108 146 128
(4) (7)	Cikampek ≥ Cirebon	135,161	3	500	Express Ordinary Freight	97 146 121
(1) (2) (3)	Cirebon ≥ Kroya	157,954 (20)	14	300	Express Ordinary Freight	117 179 204
⑦ • • • • • • • • • • • • • • • • • • •	Cirebon ¿ Pekalongan	135,993 (15)	5	300	Express Ordinary Freight	105 142 149

Table 3.2.1 (2)

		R	ailway	line		Running
Node No.	Section	Distance	Grade	Radius of curvature	Kind of train	time (min)
6	Bandung				Express	116
@ @ @	2	115,059	25	150	Ordinary	147
(8)	Tasikmalaya	(15)			Freight	173
ര	Tasikmalaya				Express	100
(B)	2	132,583	10	150	Ordinary	147
(9)	Kroya	(18)		:	Freight	151
	Pekalongan				Express	66
(1) (2)	2	87,980	7	400	Ordinary	92
(13)	Semarangponcol	(11)			Freight	80
<u> </u>	Kroya				Express	34
(i) (i)	2	47,956	5	450	Ordinary	59
(ii)	Kebunen	(8)			Freight	44
	Kebumen				Express	72
(1) (2)	2	91,762	5	300	Ordinary	105
(14)	Yogyakarta	(13)			Freight	113
62	Separang	36,750			Express	31
(1) (6)	2	Inter- mediate	9	400	Ordinary	43
69	Keđungjati	station (4)			Freight	50
62	Segarang		1		Express	43
(i)	2	60,309	5	300	Ordinary	62
(13)	Gambringan	(7)			Freight	53
13	Gambringan				Express	7
	2	9,915	5	400	Ordinary	8
Ø	Gund1h	(0)			Freight	8
60	Kedungjati				Express	21
(A)	>	31,726	9	400	Ordinary	32
W	Gundih	(3)			Freight	27

Table 3.2.1 (3)

		R	ailway	line	Kind of	Running
Node No.	Section	Distance	Grade	Radius of curvature	train	time (min)
(13)	Gundih	41,957 Inter-			Express	29
(C)	Salahalanan	nediate station	9	400	Ordinary	41
49	Solobalapan	(4)			Freight	36
(14)	Yogyakarta				Express	46
(4) (3)	2	59,238	11	-	Ordinary	77
(13)	Solobalapan	(11)			Freight	61
	Solobalapan				Express	70
(B)	2	96,937	5	900	Ordinary	102
(P)	Madium	(12)			Freight	87
(13)	Gambringun				Express	87
(1) (1)	2	114,856	5	300	Ordinary	116
(A)	Bojonegoro	(11)			Freight	133
(17)	Bojonegoro				Express	84
(I) (i)	2	104,802	6	300	Ordinary	123
(fig.	Surabaya Pasarturi	(15)			Freight	130
10	Kadium				Express	49
(B)	₹	68,895	7	500	Ordinary	72
L (LY)	Kertosono	(8)			Freight	62
68)	Surabayakota				Express	36
(B)	2	46,739	5	700	Ordinary	59
(J)	Bangil	(8)			Freight	46
(13)	Kertosono	-			Express	66
(1) (1) (1)	2	87,109	5	800	Ordinary	101
	Surabaya	(13)			Freight	78
(13)	Kertosono				Express	42
(1) (2) (3)	2	58,659	5	400	Ordinary	66
	Tulungaggung	(8)			Freight	54

Table 3.2.1 (4)

		R	ailway	line	Kind of	Running
Node No.	Section	Distance	Grade	Radius of curvature	train	time (min)
@ @	Tulungaggung ¿ Kalang	104,426 Inter- mediate station (14)	16	200	Express Ordinary Freight	88 127 139
1 2 2 3 3 3 3 3 3 3 3 3 3	Bangil ₹ Walang	49,234 (6)	21	300	Express Ordinary Freight	45 61 55
0	Bangil ∂ Probolinggo	54,413 (4)	6	600	Express Ordinary Freight	37 49 46
(3) (4)	Probolinggo ∂ Jember	95,834 (11)	15	200	Express Ordinary Freight	80 109 127
(4) (3)	Jember	103,141	18	300	Express Ordinary Freight	89 126 141

Table 3.2.2 (1) Comparison of Running Time (Maximum speed of 120 km/h and 100 km/h)

Node Section S	Section		Ties condition	40,		Nec running cime (min)	ng cime	(min)			AVOTAR	Average speed (km/h)	(km/h)		BVerege	peede
व है है है	section	;[15		Ordinary	7.47		Trpr	#80.	Ordinary	harry		(100/120)	20 >
P-0 0-0 0		Distance (im)	Krade (%)	tedium (m)	Xaximum 120km/h	Maximum Haximum 120km/h 100km/h	120	300	Fraight	Maximum Max 120km/h 1001	Maximum 100km/h	120	100	Freight	Express	Ordinary
~ Colo Colo (Colo	170	474 7H	,	075	53	99	ž.	78	72	93.9	84.7	62.3	\$0.5	9.02	88.0	0.99
	nodu:	2.00														
	ampe's.	118.161	-	200	7.7	16	101	116	100	105.3	89.1	75.8	6.64	74.4	0.83	0.92
ý X ©	notic	***************************************														
	7.5	950 47	<u>-</u> -	057		 K	7,	5,7	3,6	106.6	6.68	20.00	63.9	75.7	78.0	0.93
Kehumen (men	2	•													
Sotos (C	Solohalapan	04 047		900	5	**	5	4 2 €	۶	105.7	88.1	77.5	70.9	73.6	0.83	0.91
(A) Madtun	unt	ice on	`													
Mad tun	lun.	YON HY		ş	ç	4,7	\$	\$	Š	103.3	0.88	78.0	22.3	73.8	0.83	16.0
×	Kertomono	220.00	•													
Sura	Surabayakota	00 F 77		200	ός	*	C.	3	9,	93.5	82.5	65,2	62.3	70.1	0.88	0.96
3 Bankil	177	60 A 00 A	,	3												
(j.	Кетсомопо	90. 64		9	6	5	22	Ş	5	98.6	84.3	69.7	65,3	74.7	0.85	76.0
Sura	Surabayakota	,04°/0	,													
C) Bangti	13,		,	99	F	S	80	24	73	105.3	88.2	85.9	75.9	74.2	78.0	0.88
⊘	Probolinggo		,		i											

The above (iguram were calculated by using maximum running speed of 115 and 95 km/h for passenger train and 80 km/h for freight train Net running time is obtained by adding 5% of surplus to a calculated time. Unit he minute and frantions of 5 and over was counted as a unit and the rest was cut eway. Note: (1) 3

Table 3.2.2 (2)

\$-4 ·	apı	3 '	4	((1	-	C [[cms	րոց ա	radius	чн О	curvature	ure is	s sma.	smull (less	e 88 T	than 400m)	(祖)
``	2. Section	ö	which	ST ST ST ST ST ST ST ST ST ST ST ST ST S	?]	4							3		Ratio of average mpsed	1
		<u>:</u>	Line condition	100		Net runns	Net running time (min)	(utu)		No.	AVECAK	Average speed (Amin)	1		(100/)	30)
N N N	Mention	Distands	Nanama Erade	MARTANA TACKUM	Maximum Maximum	Kax Smush	120 1	700	Freskhe	120km/h 130km/h	Maximum 100km/h	120	8	Yresight	Engrana	Ordinery
				Ē	1. Ordal n	700						-				5
9	Mersk	68,625	•	ğ	Ç	***	*	5.	£	98.0	85.88	76.3	6 7	0.47	90.0	3
၁	Manghambitons		_					-				-			;	6
6	Manukasbitung	43.097	*0	200	2,	8	5.	ş	74	87.5	45.2	63.1	62.3	4.7.6	6	66.0
⊙ —	Jakarta		_ _					1							-	
6	Ctrebon	135,993	^	92	2	\$	107	a	109	47.1	6.5	76.3	0.7	 		26.0
3	Pekalangan												 			
3~	ļ	87,9NO		007	\$	ş	\$	2	22	201.5	AH.O	77.6	2.2	73.3	ZX.0	*
3	Memoracignoses.												•	;	4	8
g.v		93,762		86	2	\$	2	2	22	6.68	84.7	90.9	67.1	3.67		
3	YORYANETER												:	-	78.0	6.92
G~		36,730	_	8	<u>۾</u>	ផ	Ā	2	3	¥.,¥	۲ ۲	6.76	0.40	4313	5	
3) Kedungjati															å
G.	Nemarana	60,309	_	8	<u>۾</u>	7	8 7	ន	9	103.4	î.	45.4	71.0	73.R	9.5	¥ 15
<u>.</u>	Cambringen		_		_											4
€~	Gembringen	616,4	^	007	•		~	æ	*	40.3	5.0	0.	4,4	4. 4.	£ .	,
<u> ৩</u>	Gundih		_			_										
€	Kudunklati	31.726	-	0	5	ส	2	23	2	105.4	\$	1,6			e k	6
~;)	S Gundsh		_ _				_ -									
\$	S cunash	41,957	-	007	ล 	£	ន	2	Ā	1001	#. 90	78.7	۲. ه	0,4,	£	16.0
∵	(C) Rolobalapan	_	_	_]_					_			
6	Combetnyon	114,856		900	<u>و</u>	ę	29	8	\$	98.4	10.1	Ç.	72.5	2.5	ž •	76.00
6) hojonekoro				_	_									 	
0	O) hajanekara	104,402		- S	2	22	*	*	E	104,4	A3.B	2.3	\$9.0 -	\$; *	*	? •
'	Surabaya-				_	_									<u> </u>	
	S Kertosom		•	904	*	\$	67	2	£.	103.5	88.0	73.8	67.7	73.3	0,83	0,93
· 6'	Tulungagung	£		:			_	-		[Average	0.47	6,9
_	_	-							ĺ	1						

Table 3.2.2 (3) 3. Section of which grade is large

		1 2	· T				T		Т		7				T		7		T		Т		Т		Γ
į.	Desch ラグビルキンチ	Ordinary		0.93		0.99		7.00		96.0		2.8		0.93		0.97		96.0		0.98		0.95		0.98	0.97
MATTO OF	#V6TAX	Express		0.93		0.95		66.0		96.0		96.0		98.0		0.88		0.0		0.93		0.89		0.91	20.0
		Freight		50.5		62.6		8.67		59.2		51.9		73.0		67.1		63.3		57.9		9.70		61.3	Average
(w/w)		200		49.7		55.5		50.2	1	68.7		57.5		69.2		61.3		63.3	1	57.9		1.99		62.5	L
(A) was produced to		120 100		33.3		53.8		50.2		70.3		57.5		76.3		63,5		0.99		59.1		69.3		63.8	
the Manual A	AVELAK	Tach Maximum	100km/h	55.3		63.7	- -	39.4		87.8		64.5		87.4		84.6		77.4		68.7		78.8		75.5	_
		Max Imum	120km/h	59.9		0.69		0.00		91.1		67.0		102.0		1.96		85.8		73.9		88.5	_	82.5	
		Freight		133		86		£ 17		160		133		100		ន		66		ភ		88		tot	
	(min)	7.00	201	223		101		117		138		130	_	211		85		\$		Z,		83		8	-
	ባኢ ርኒመፅ	Ordinary	170	126		200	_	117		133		120		107		ซึ		5		S		5		- 26	:
	Nec running time (min)	MAXIMUM	100km/h	121		쓡		66		108		, 0,		91		42		#	!			27		85	;
		Kartmum Xax	120km/h	112		7.8		86		701		103		7.8	:	37		73		0,1		85		2	
	ditton	Minimum	(m)	150		82		150		300		150		150				200		90.		82		900	;
	Line condit	Maximum	(3)	33	:	16		ដ		71		25		ő	:	11		91	:	12	1	1.5	:	8	9
	1.11		(kg)	111.864		89.727		196,76		157,954		115.040		583 565		X1.0 04	200	927 701		766 07		27.8.20		171 101	4 4 4 3 3 7
	_	Section		Jakarta	Sukabuma	Cikampek	Bandung	Sukabumi	Bandung	Ctrebon	Keroye	Bundung	Tanlkmaluya	Tasikmelaya	Kroya	Yogyakarca	Solobalapan	Tullengangung	Yalang	Bangsl	Malang	Probolingso	Company	Jember	
		Node.	_	- ⊙-	 ⊙	⊙	. <u>.</u> •©	<u>ه</u>	- •©	©~	O	©-		©	<u>*</u> গু	8	~ •©	8	~ @	- (9	- <u>-</u> -	0		<u>-</u>	
•	_					1		•		-															_

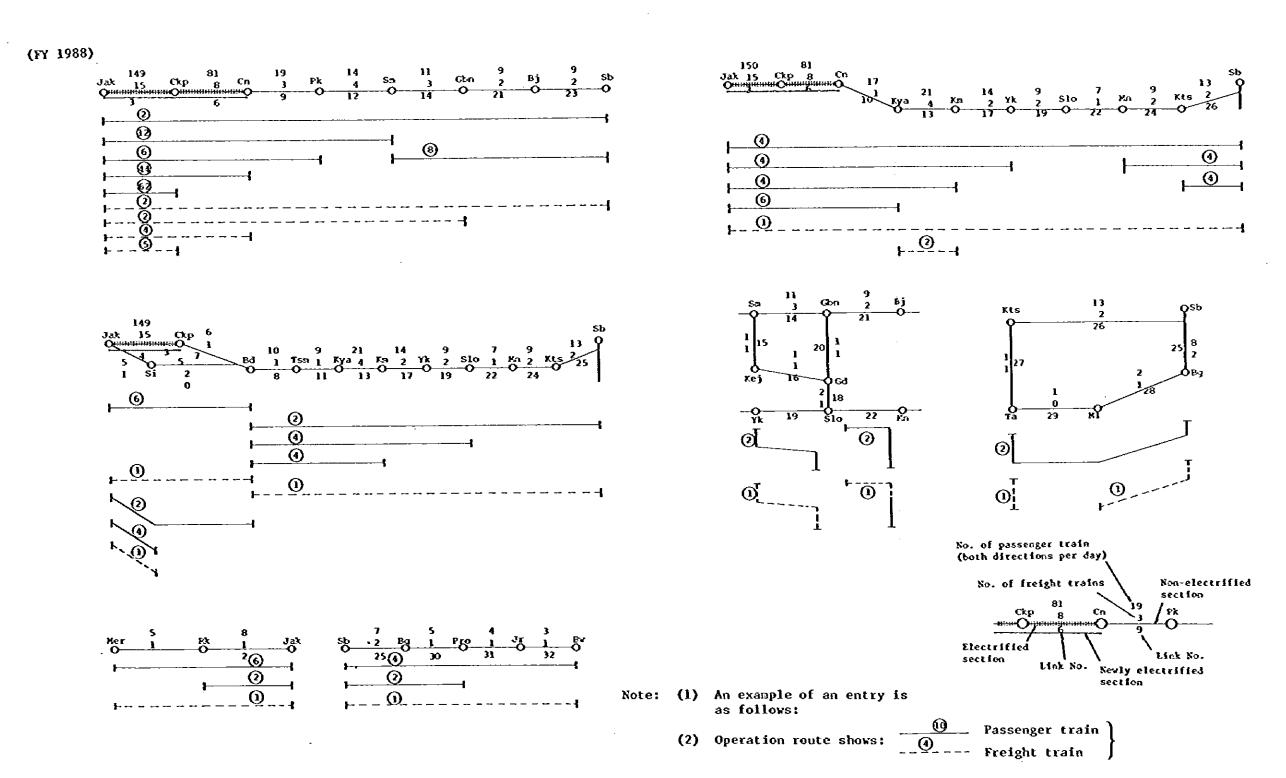
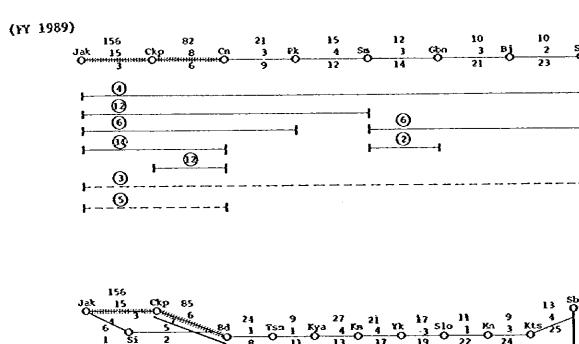
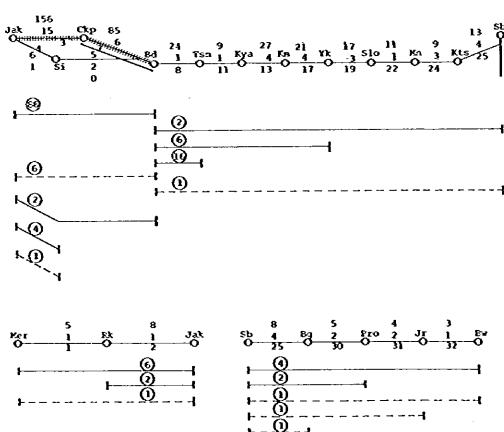
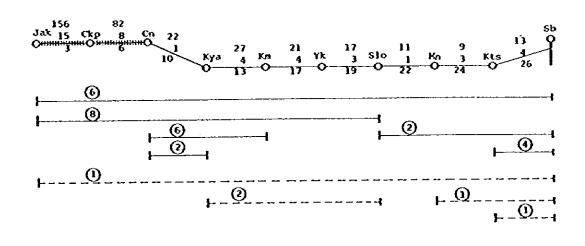





Fig. 3.2.2 (1) Train Operation Route and Number of Trains (Maximum speed 100 km/h, after capacity check)

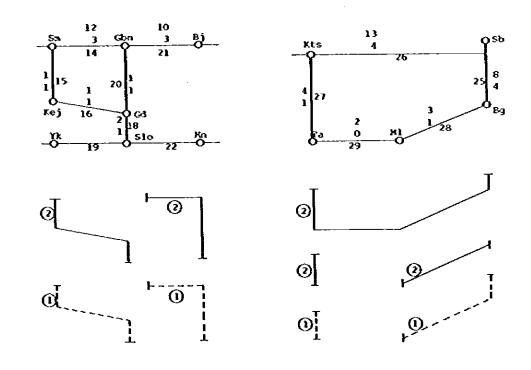
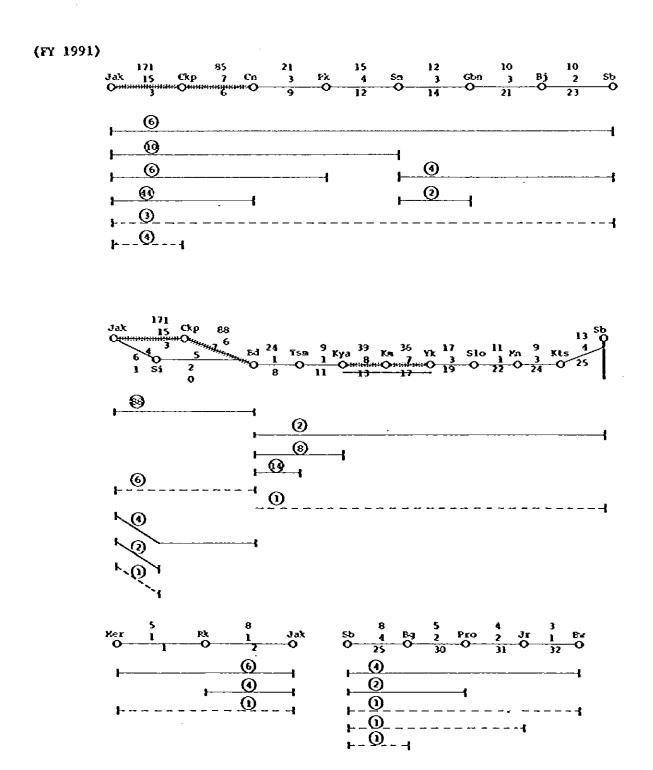



Fig. 3.2.2 (2)

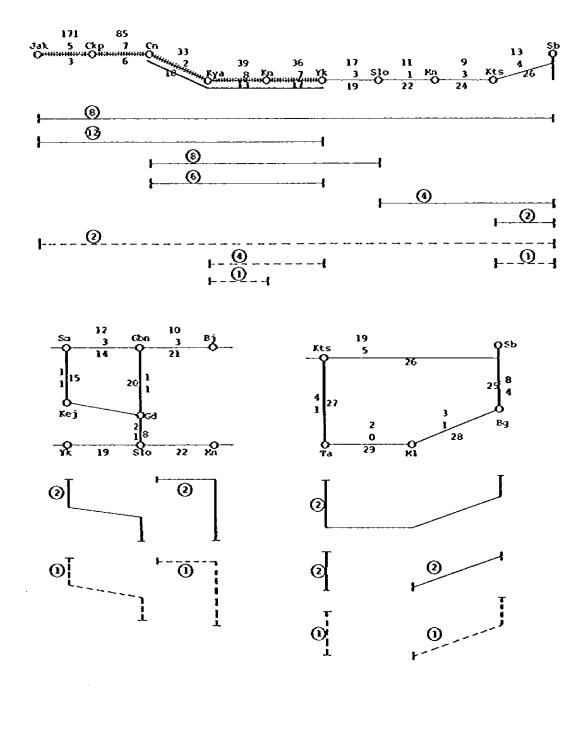
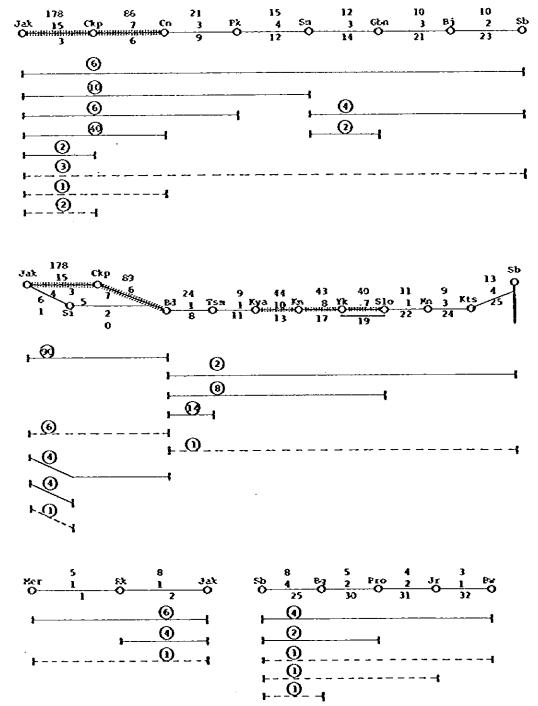



Fig. 3.2.2 (3)

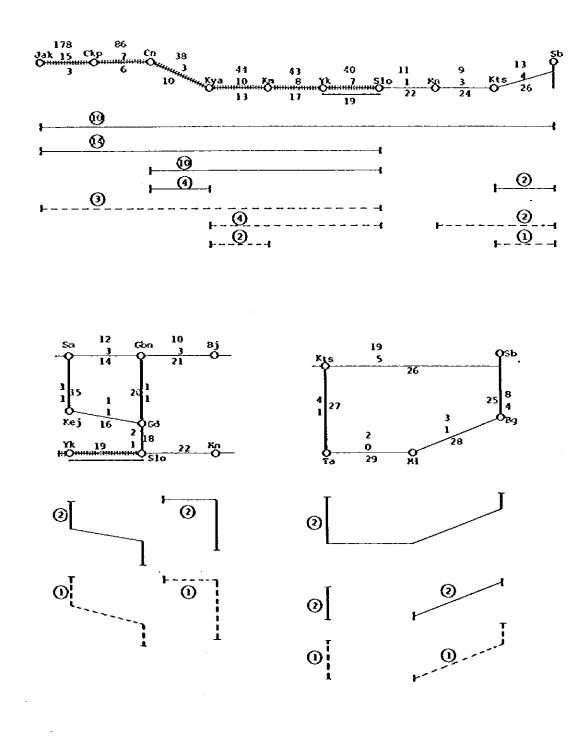


Fig. 3.2.2 (4)

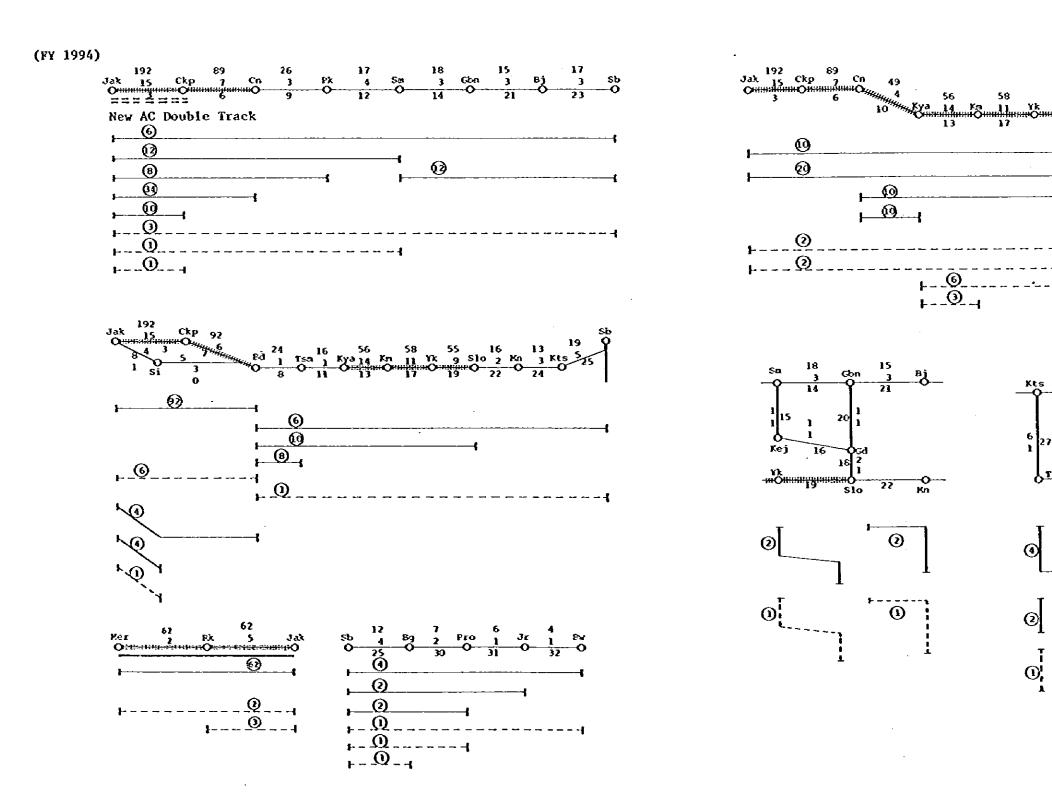
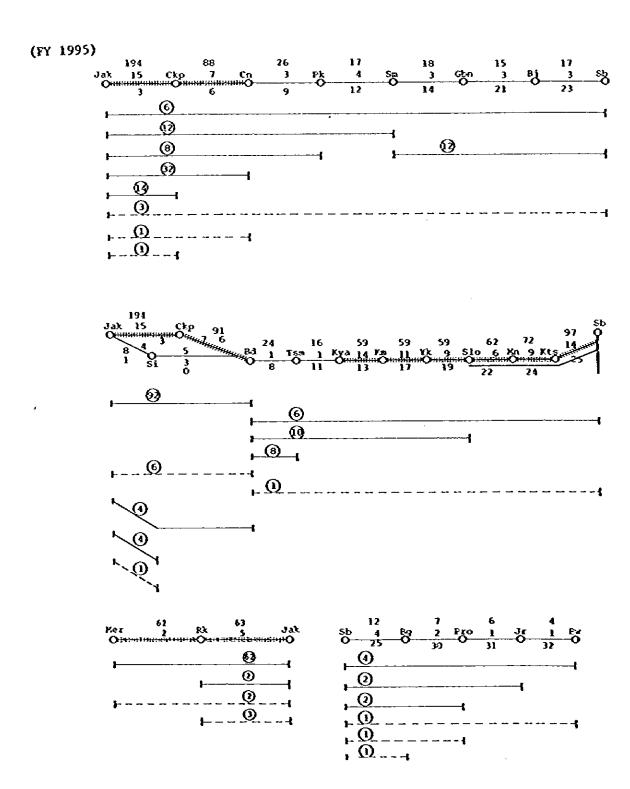



Fig. 3.2.2 (5)

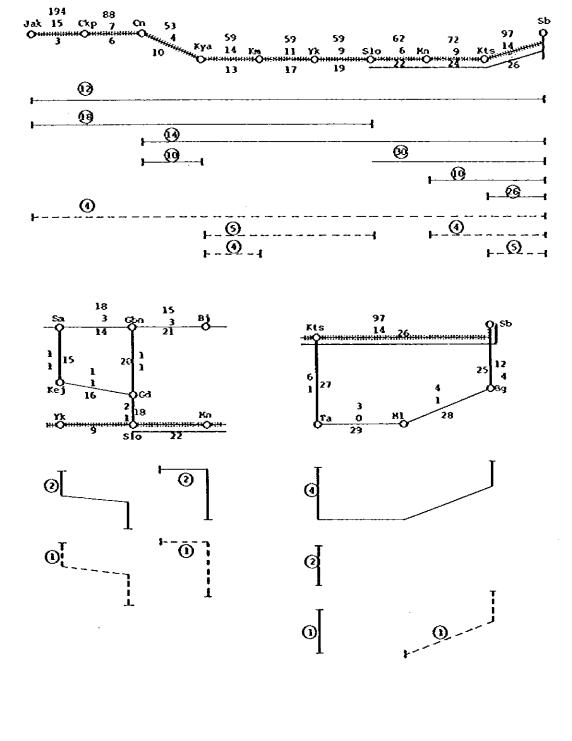
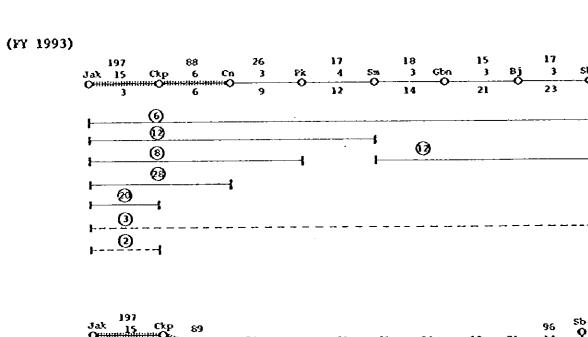
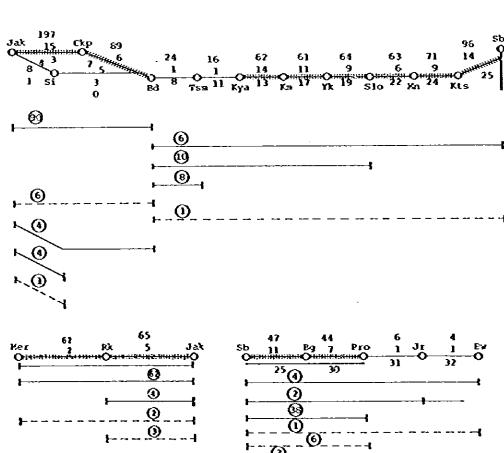




Fig. 3.2.2 (6)

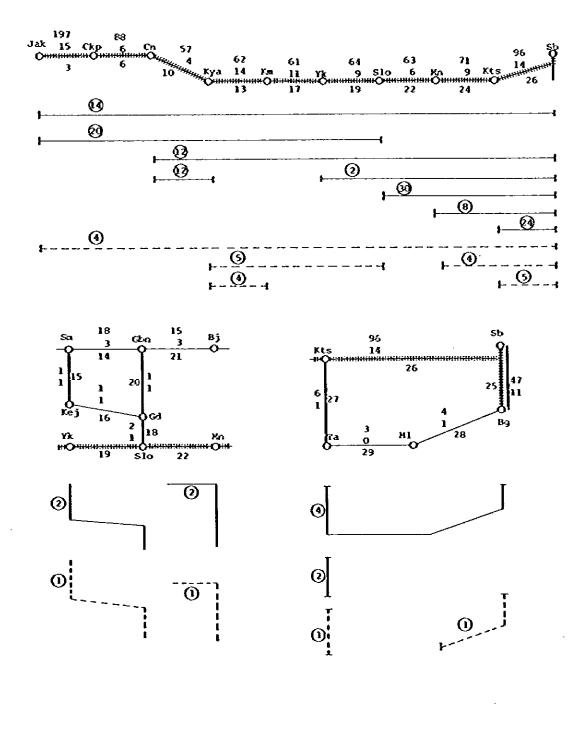


Fig. 3.2.2 (7)

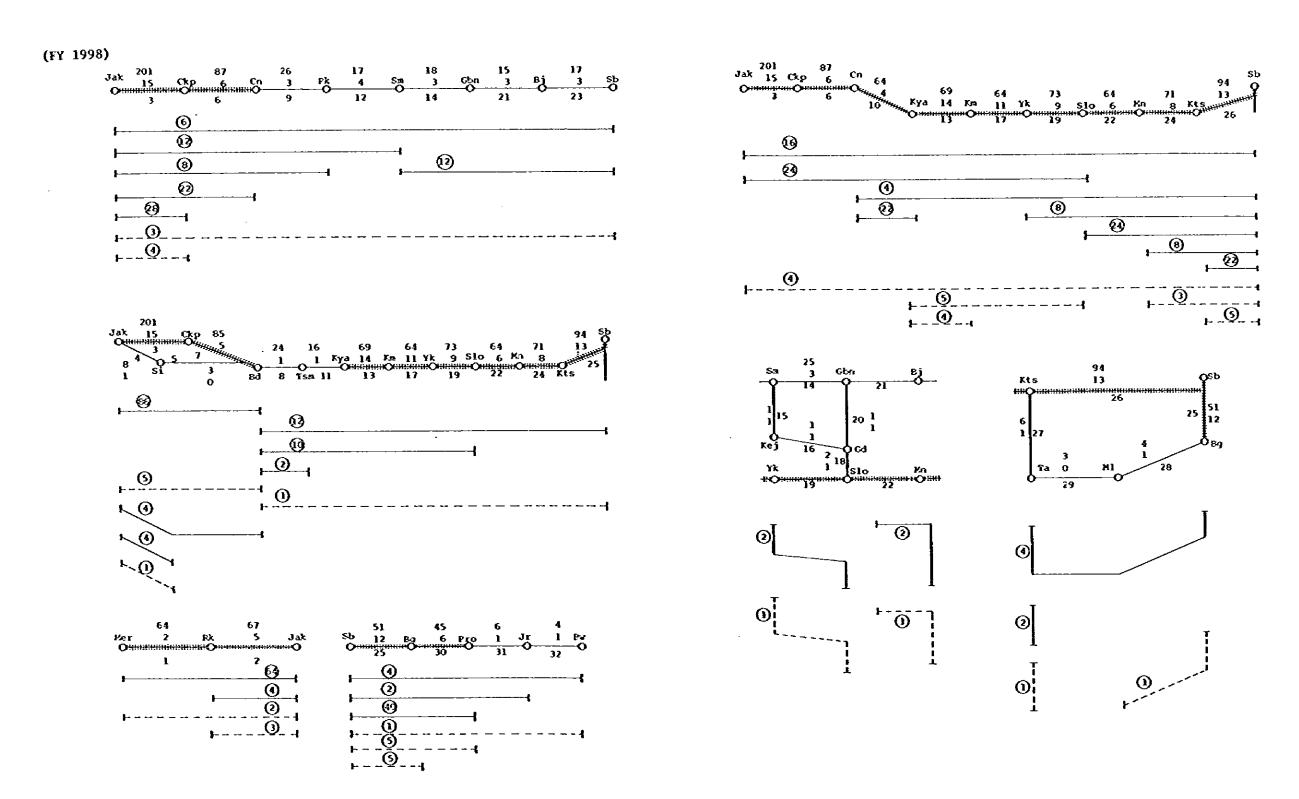


Fig. 3.2.2 (8)

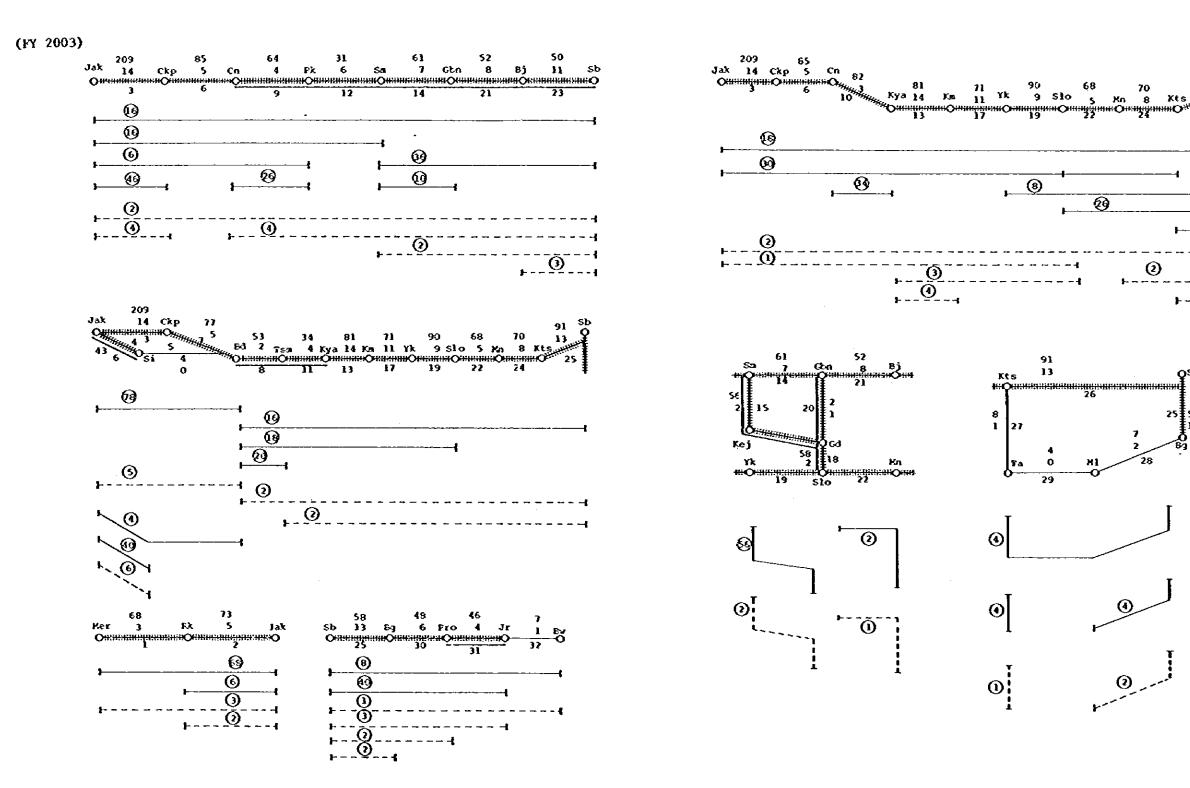
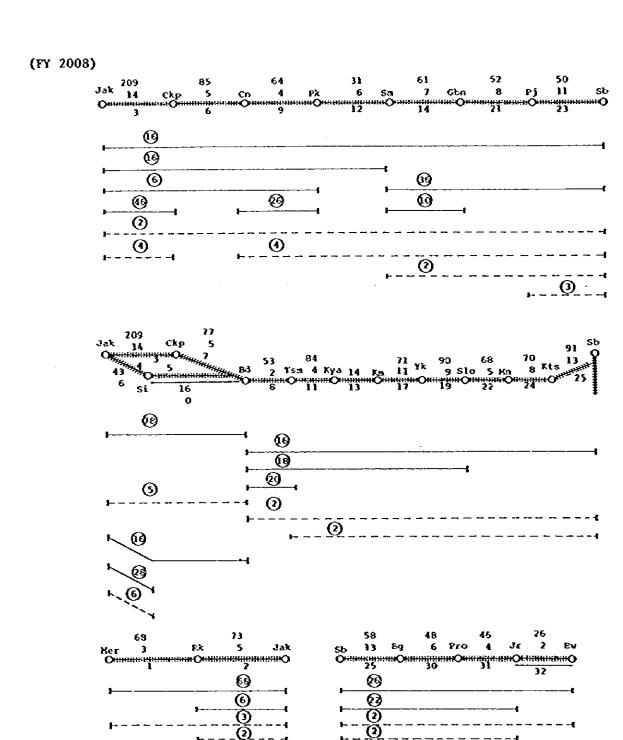



Fig. 3.2.2 (9)

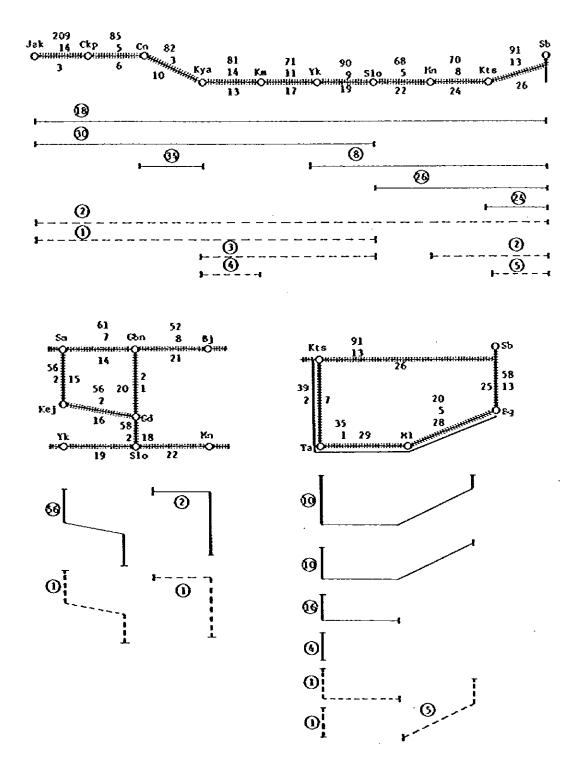


Fig.3.2.2.(10)

3) Train operation route and number of trains

Fig. 3.2.2 (1) through Fig. 3.2.2 (10) show the train operation route and the number of trains for each year when electrified sections are opened.

The number of trains between cities was determined based on the transport demand of each section (the number of trains required) and the OD table. In the forecast of transport demand, some sections have odd numbered trains, but in this program, all trains were set as an even number. However, since freight trains, may be operated every other day, some groups of freight trains were also set as an odd number.

Since trains were scheduled by strictly adhering to the forecast of transport demand, it is seen that some trains are to be operated for only one section, but it is expected that in actual operation such trains would be operated for longer sections in consideration of the passenger trends and the operation of cars, even if riding efficiency would fall.

The train operation route after electrification places an emphasis on those major cities of Jakarta, Surabaya, Bandung and Semarang, as does the current route.

4) Unit of train

It was decided to compose a passenger train with 9 cars in consideration of the effective length of railway track within a station yard. A freight train was decided to haul 1,000 tons by assuming the ratio between loaded cars and unloaded cars (actual record of 1981, PJKA) to be 0.633: 0.367. The number of cars of a freight train is 52 with 15-ton freight cars.

5) Train kilometer

Table 3.2.3 shows train kilometers by stage of electrification. The total train kilometers of passenger and freight trains in 2008 is about 178,000km, 3.5 times larger that of 1988. The train kilometers for freight is about 8% of the total.

The train kilometers for freight is about 8% of the total. The train kirometers of the electrified section were completely calculated by assuming that all trains would be hauled by electric locomotives. However, it is expected that some trains of electric railcars would be operated but some would be hauled by diesel locomotives.

(4) Arriving time after electrification

To accurately calculate the arriving time of a train, it is normally necessary to calculate the standard running time of the train by preparing a train operation curve and a train diagram which is prepared based on the standard running time thus calculated. Arriving times of trains between major stations obtained by approximate calculation are compared with those of the current trains as shown in Table 3.2.4.

The shrinkage arriving times after electrification can become as high as 36% to 48%. However, stopping times of the present trains are very long; for instance, the total stopping time at Bima is 65 min, Kutara Utara is 67 min and Kutiara Timur is 44 min. Stopping times of trains after electrification are set at 5 min for a major station and 3 min for a medium station. If the stopping time is made longer, the arrival time shrinkage falls slightly.

Since the Parahyangan train is operated nonstop between Gambir and Bandung (Bd-Jak train makes a stop at Jatinegara), its shortening rate is 26% which is considerably lower than that of other trains. The arriving time of a train after electrification includes some stopping time for passing by in single track sections, therefore such arriving time would be further shortened if the train is operated by nonstop system like Parahyangan train.

Table 3.2.3 Train Kilometer by Stage of Electrification

	7	e e	10 100000000000000000000000000000000000	manage of the managed	LEGY.		Preight train kilometer	ain kilom	atex			Total	-1
Year	spectal sed	おりな	H OV	ដ	Sub-cotal	N E	AC EL	ĭ	Sub-cotal	מב בעד	AC EL	Zi.	Sub-total
1988	Mri ~ Ckp Ckp ~ Cn	8,040.0	14,281.1	22,431.4	44,752.5	0.666	1.404.1	3,612.0	6,012.1	9,039.0	15,682.2	26.043.4	50,764.6
1989	Ckp ~ Bd (Kac)	8,361.6	22,123.4	26,664.9	57,149.9	0.666	1,939.3	4,408.7	7,347.0	9,360.6	24,062.7	31.073.6	6.967.79
1991	Cn ~ Yk	9,326.4	33,823.8	33,823.8 19,825.3	62,975.5	0.666	3,146.7	3,691.5	7,837.2	10,325.4	36,970.5	23,516.8	70,812.7
1992	Yk^ 520	8.075.6	38,014.8	18,759.7	66,315.3	0.666	3,906.9	3.513.9	8,419.8	10,539.8	41,921.7	22,273.6	74,735.1
1994	Mrimke AG duel crecks SerponguMar	9,622.0	54,028.8	23,641.9	67,292.7	\$75.7	5,531.2	3,550.6	9,657.5	10,197.7	39,560.0	27,192.5	96,950.2
1995	Slo v Sb	9778.3	74,657.0	19,384.9	19,384.9 103,820.2	575.7	7,952,1	2,714.6	11,242.4	10,354.0	82,609.1	22,099.5	115,062.6
1996	Sb~ Pro	9,953.7	80,580.4	18,389.3	108,923.4	575.7	8,711.4	2,419.0	11,206.1	10,529.4	89,291.8	20,808.3	120,629.5
2003	Cn v Sm v Sb Bd v Kya. Prov Jr Sm v Kej v Slo Obn v Cd	11.154.6 1	140,315.8	2,497.6	2,497.6 153,968.0	644.3	13,588.0	260.2	14,492.5 11,798.9 153.903.8	11,798.9	153,903.8	2,757.8	2,757.8 168,460.5
2008	Je V Bu Kem V MJ V BK	11,154.6	11,154.6 151,654.8	B	162,809.4	644,3	14,262.0	•	14,906.3	11,798.9	11,798.9 165,916.8	1	127,715.7

Table 3.2.4 Shortening of Arriving Time by Electrification

Operating section	After electrification	Prese	et	Difference	Shorten rate
Operating section	Arriving tize (A)	Name of train	Areiving time (B)	(A-8)	\$ 1007 × 1007
Jakarta∿ ∿ Sorabaya Guteng	10hr 34min	Bima	16hr 30min	Shr Séele	35.0
Ja¥arta ∿ Surabaya Pasar Turi	9hr 28ain	Mutiera Utera	155r 30afa	6hr 02min	33.9
Separangtawang ~ Surabaya Pasar Turi	3br 50min	Cepat Sezarang- tayang	7hr 20min	36r 309ia	47.7
Bandung % Surabaya Fota	Sbr 28mln	Mutiera Seletan	16hr 20ain	3hr 52min	42.0
Banyuwangi N Surabaya Kota	thr Osain	Mutiera Tizue	Shr 00min	3hr 52min	48.3
Jakarta P Bandung	2hr 47min	Parabyangan	3hr 49ala	58ain	25.4

3.2.3 Line Capacity

Formula for calculating line capacity of single track section:

$$N = \frac{1,440}{(t+c)} \times f$$

Where N: Line capacity

t: Average running time between stations per train (min)

c: Blocking time (Tokenless block section) 1.5 min

f: Utilization rate of line 0.6

Tables 3.2.5 (1) through Table 3.2.5 (3) show the line capacities of sections after electrification.

The line capacities of sections when the maximum speed is set at 120 km/h and those of present sections are also listed, and the line capacity after electrification will be about 2 times larger at present. There is little difference in capacity between 100 km/h and 120 km/h of maximum speed.

This calculation formula is designed to obtain the number of trains when a net diagram is composed in a section, and consideration is not given to the connection with adjoining sections and passing by priority trains. If it is desired to set many passing priority trains, the number of trains will be lower than those calculated by this formula; therefore, the line capacity obtained by this formula should be considered only as a guideline.

Table 3.2.5 Line Capacity by Section (1)

Renatka			(1) Line capacity is indicated by the	number of trains in both directions which can be	operated per day on a single track	(2) The utilitaction rate of the line is 0.6.	(3) Assuming that tokenless block	system is introduced At the time of electrification,	Line capacities are shown for both cases whorein	maximum speed of 100 km/h and 120 km/h ere used	respectively.							
track)	Present	- -	28	6.7	Dual crack (111)	9,	0,	4.2	777	96	62	n	27	29	97	32	30	26
Line capacity (mingle track)	After slacetification	T C ACED III	7.8	H2	(240)	69	\$6	61	46	C 20	7.2	ž	82	22	511	86	82	2
Line cap	After slee	TO KHY D	7,7	T.R	Dual crack (240)	69	76	19	, 06	듔	69	35	5	7.1	110	98	ο υ	22
capacity of	Minimum radius	of curvature	•	300m	240	130	200	150	900	360	007	150	300	400	430	300	00%	300
Distance between stations whereby Line capacity of	Maximum grade		6 %00	15	c	17	φr	07	r	14	'n	25	٠	ŝ	ç	3	æ	S
en stations	-		km 12.666	9.H\$9	066.8	9,718	7,235	10,825	10,185	10,772	14,231	13,59¢	12,808	12,200	7,329	10,145	11,602	13,080
Distance betwe	Name of scatton Distrace		Karangantu h Cilegon	Ciceran A Kangkanhicung	Tambum N Cikatang	Datutulia A Maseng	Ciganes o Sukaceni	Cipacat v Yagogapu	Teriac ^ Telegameni	Presput of	Warudumur v Babakan	Cipeundeuy n Clawi	Kawunganten v Jeruklegi	Ujunknekoro ~ Kuripen	Combong A Karanganyar	Wates ~ Sentalo	Students of Tanggung	Gubug n Karangjati
5	DIATANCA		km 64,625	N3.097	84,746	111,864	19,727	97,961	135.161	157,954	135,993	115,039	332,583	87,980	956127	91,762	36,750	900.00
Nection	Contraction of another		Merek N Kangkashitung	Kengkusticung v Jakarta	Jakarta V Çikampek	Jakarca ^ Sukabum.c	Cikainpek ∿ Bandung	Seriabumi A Bandung	CAMBROWN CAREBON	Cirebon ~ Kreya	Cirebon ∿ Pekalongan	handung v Taaikmalaya	Tamikmalaya ^ Kroya	Pekelongan ^ Semarang	Kroya v Kabuman	Kebuman ∿ Yogyakarta	Semarang N Xedungjati	Semerang n Gembringen
	Node No.		⊙⊙	⊚ ⊚	(O)	⊙ ⊙	⊙ ⊙	⊚ ⊙	⊙ ⊙	Θ Θ	(9) (0)	②	(O)	(3) (3)	③ •	③ ④	(§) (B)	(3) (3)

Table 3.2.5 Line Capacity by Section (2)

Remarks		-															
track)	Present	38	38	8	z z	22	ສ	28	ន	2	35	20	92	67	6.7	67	0,
Line depactry (single track) After electrification	120 km/h	8	%	980	123	86	72	980	96	11.5	108	101	7.8	7d 2C	79	2%	82
	100 km/h	8	8	88	116		63	7.7	87	106	105	92	1,1	77	32	12	81
Distance between stations whereby line capacity of section is determined	Minismum raditum	400m	007	400	1	006	300	300	700	800	7,000	200	200	300	800	300	300
	Maximum grade	s γ'α		•	7	'n	2	•	•	\$	۶	°	70	12	c	13	18
	Distance Maximus	9.915	9.688	10.623	6.639	12.295	14.461	12,223	10,635	7.430	8.034	9.535	13.060	9.877	18.851	11.306	6,609
	Name of station	Cambringen v Cundih	Jembesn 2 Gundah	Kaliose ∿ Solobalapan	Gawok v. Purvosarii	Kedungbanong ~ Walikukun	Kalitidu ~ Bojonegoro	Lenongen ^ Duduk	Sukemere ~ Daren	Cedangan A Sidoarjo	Curahmalang ~ Mojokerto	Kedari o Ngadiluweh	Rejotangan N Blitar	Lavang n Sengon	Rajoso v Pasuruan	Randuagung n Klakah	Mrawan c Garahan
northes	Distance	9.925	32,726	41.957	59.238	96.937	114.856	104,802	68,895	46.739	67.109	58.659	104.426	49.234	54.413	95.834	103.141
	Name of station	Combringen of Condith	Xadungjati ∿ Gundih	Cundih ^ Solobalapan	Yogyakarta ~ Solobalapan	Solobalapan ~ Madiun	Cambringan A Bojonegoro	Bojonegovo v Surabaya- pasarturi	Madiun ~ Kartosono	Surabayakota N Dangsi	Kercowono ^ Surabayakota	Kertosono v Tulungaggung	Tulungangung n Malang	Huntan V Trynan	Dangil ~ Probolinggo	Probolinggo ~ Jember	Jenher A Benywengi
7	No.	(S)	(a) (a)	(a)	(3)	(3)	(3) (9)	(3) (3)	(3) (3)	(S)	(3) (3)	(3) (3)	(§) (§)	(S) (E)	(3) (3)	(3) (8)	(3) (3)