REPUBLIC OF INDONESIA

MINISTRY OF PUBLIC WORKS (DPU)

DIRECTORATE GENERAL OF HOUSING, BUILDING,

PLANNING AND URBAN DEVELOPMENT (CIPTA KARYA)

JAKARTA WATER SUPPLY DEVELOPMENT PROJECT

VOLUME V

APPENDICES

FOR VOLUME III
FEASIBILITY STUDY REPORT

MARCH 1985

JAPAN INTERNATIONAL COOPERATION AGENCY

REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS (DPU) DIRECTORATE GENERAL OF HOUSING, BUILDING, PLANNING AND URBAN DEVELOPMENT (CIPTA KARYA)

JAKARTA WATER SUPPLY DEVELOPMENT PROJECT

VOLUME V

APPENDICES

FOR VOLUME III FEASIBILITY STUDY REPORT

MARCH 1985

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事	業団
党入 '85. G. 13	108
A All Aces	61.8
登録No. 11575	SDS

APPENDICES

<u>FOR</u>

FEASIBILITY STUDY

TABLE OF CONTENTS

F1.	APPENDIX FIV-1	DESIGN CRITERIA FOR PREDIMINARI DESIGN
F2.	APPENDIX FIV-2	ANALYSIS OF DISTRIBUTION NETWORK
F3.	APPENDIX FIV-3	DRAWINGS
F4.	APPENDIX FV-1	COST DATA
F5.	APPENDIX FVII-1	FINANCIAL AND ECONOMIC ANALYSIS
F6.	APPENDIX FVIII-1	SUGGESTED PERSONNEL TRAINING FOR PDAM STAFF

FEASIBILITY STUDY FOR
JAKARTA WATER SUPPLY DEVELOPMENT PROJECT

P1. APPENDIX FIV-1

DESIGN CRITERIA FOR PRELIMINARY DESIGN

Design Criteria for Preliminary Design

1. General Criteria

The design criteria for the preliminary design for the facilities are presented below. Consideration is given to the criteria on the basis of the present status of Jakarta water supply system.

1) Fluctuation in Water Demand

There are fluctuations in water demand seasonally and hourly.

Among these variations, the followings are used for the preliminary design considering past records of consumption pattern and scale of water supply system.

- Day Maximum Water Demand
- 1 115% of day average water demand
- Hourly Maximum Water Demand
- : 130% of day maximum water demand
- 2) Intake and Treatment Plant Capacity

Capacity of the intake and treatment plant is determined as 107% of production capacity considering water losses during treatment process. Water loss during raw water transmission is not considered.

3) Intake and Treatment Plant Facilities

Design criteria for major facilities of intake and treatment plant are presented in 2. Criteria for Intake and Treatment Plant, of this paper.

- 4) Distribution Facilities
 - a. Water Distribution

Water pressure at supply source is variable according to the consumption level and generally water pressure in service area raises in the night time when supply pressure at supply source is stable. The higher water pressure beyond required water pressure in service area causes higher leakage from the system.

As for the distribution of water, there are two methods, namely gravity supply and pumping supply methods. In case of Jakarta water supply system, the gravity supply method will not be practicable due to the flat geographical condition in service area and sizes of water supply quantity and service area from the economical point of view in spite of rather simple and easy operation and maintenance of the system. To distribute water by gravity, service area is necessary to be divided into many in numbers with many elevated reservoirs and long treated water transmission pipelines.

Therefore water distribution to service area is planned by pump. The followings are generally applied among others:

- 1) Valve control methods,
- 2) Unit control methods,
- 3) Combination of above two methods, and
- 4) Variable speed control method

As shown in the Table 1.1, Case 3 "Combination of valve control and unit control method" and case 4 "variable speed control method" are practicable for Jakarta water supply system. The former method has advantage in smaller initial cost than the latter case, but operation cost of the former is higher than the latter due to the higher power cost derived from energy loss in operation. When variation of water consumption is large, the latter method will have advantage in general.

Considering the relatively small variation of daily water consumption due to large amount of leakage of the system and high ratio of non-domestic consumption of a total, the present study applies the former control method giving advantage of smaller initial cost. However detailed study, during the detailed design stage, is recommendable to study the advantage and disadvantage of the above methods considering rather high portion of power cost of a total operation cost.

b. Operational Storage

- Effective Capacity : 3 hours' storage of Maximum
 Day Demand
- Number of Basin : More than 2 units

Operational storage is to reserve water which can be drawn upon during those hours of the day when distribution system demand is high and then replenished during the night when the system demand is low.

For determining the effective capacity, typical curves representing hourly consumption patterns is prepared and is shown in Fig. 1.

c. Water Pressure of Distribution Pipelines

Distribution pipelines will be classified into three categories by pipe sizes and purposes, namely, trunk main, secondary main and tertiary pipe.

The trunk main forms distribution network to distribute water to the whole supply area, and the sizes of trunk mains are \emptyset 300 mm in diameter and larger. The secondary mains, \emptyset 250 mm and \emptyset 200 mm in diameter, distribute water within a grid formed by the trunk mains. The tartiary pipes, \emptyset 150 mm in diameter and smaller, are for supplying water to consumers directly.

The minimum water pressure required at the end of the trunk mains is 1.7 kg/cm2. The secondary mains are designed with maximum head loss of 3.5 m on pipeline length of 2 km. Head loss of the tertiary pipes is 6 m with pipeline length of 750 m. The minimum water pressure at service connection is 0.75 kg/cm2 so as to supply water up to the second floor directly with flow rate of 0.15 1/sec.

The maximum water pressure proposed for the project is 7.5 kg/cm2 considering extent of service area and strength of pipe materials.

d. Hydraulic Calculation

> Hydraulic calculation of pipelines is made using Hazen-Williams formula for distribution pipelines and Weston formula for small size of service connections.

2. . Criteria for Intake and Treatment Plant

It is needed to determine numbers, capacities and dimensions of the proposed facilities for computing the construction costs. Thus, this design criteria are prepared for the preliminary design on the facilities for the feasibility study and subject to change considering the results of further raw water quality analysis in the detailed design stage.

- 1) The inflow rate at intake : approximately 0.5 m/sec
- 2) Grit Chamber
 - Retention Time а.
- : 10 minutes
- Number of Basin
- : 2 units (Divided by Partition Wall)
- Desludging Method : Travelling submersible pump

Grit chambers are provided to remove grit and sand flowing in with surface water which is taken by means of intake gate, intake tower and intake pumping system. The grit chamber will be provided for the water supply system of the Cisadane river source.

- 3) Receiving Well
 - Retention Time
- : 1.5 minutes

Receiving well is provided to stabilize the water level of raw water inflow. Flow measurement equipment will be furnished in the well or after the well.

- 4) Hixing Well
 - Retention Time Α.
- : 1 minute
- b. Mixing Method
- : Mixing by waterfall

Function of the mixing well is to flash-mix chemicals with water. According to practice and experience, one minute retention time is considered to be appropriate for flash-mixing. Mixing method by waterfall is employed considering simplicity and effectiveness without any mechanical equipment. This method is employed in the existing Pulogadung plant with satisfactory results. The height of water fall is desired to be more than one meter.

5) Flocculation basin

a. Retention Time

20 minutes

b. Flocculation Method

Paddle type flocculation

c. G.T. Value

23,000 - 210,000

Retention time is determined on the basis of present coagulating condition in the Pulogadung Treatment Plant. The paddle type flocculator is employed as it will be variable for the conditions of alterating treatment flow rate and fluctuating turbidity of raw water.

6) Sedimentation basin

a. Overflow Rate

: 1.2 m3/m2/hour

b. Retention Time

: 3 hours

c. Type

: Rectangular horizontal flow type

d. Mean velocity

: 40 cm/min

e. Desludge method

: Sludge scrapper

f. Effluent

Effluent launder at basin end

Horizontal flow type is employed to both WTC and Cisadane Systems. This type basin is easier in operation and more staple in function than the upflow type basin.

Three hours retention time is applied considering present treatment condition in the Pulogadung plant as well as comparatively heavy suspended solids of the raw water of the Cisadane system and settling velocity of the floc will be accelerated by applying polymer for the WTC system.

7) Rapid sand filter

a. Filtration Rate

: 6.25 m3/m2/hour (150 m/day)

b. Type

Conventional type with single media

c. Surface Wash

: Plow rate 0.20 m3/m2/min Pressure at nozzle 20 m d. Backwash

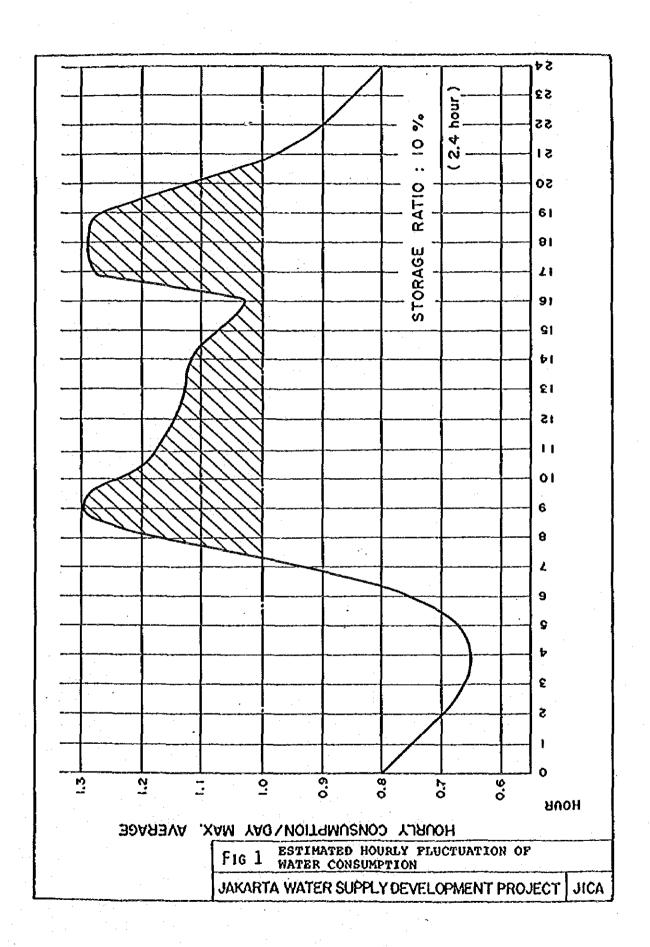
: Flow rate 0.7 m3/m2/min Pressure at underdrain 2.5 m

150 m/day of filtration rate is employed by single media type because effective coagulation will be carried out at both systems, though its 120 m/day has been employed at the existing plants. Judging from the present raw water quality and optimum chemical applications to be employed to both systems, it can be expected that turbidity of the settled water is kept low comparing with those of the existing plants. Dual media type with high rate filtration is not recommended at this stage, since;

1) substantial difficulties with filter cleaning is anticipated due to deeper penetration of floc in the bed, and 2) highly educated or trained operator's attendance is necessary as a matter of course. Up to now single media system has been employed for the Jakarta water treatment system. Surface wash by jet water is employed considering its effective washing and easy control of its equipment.

8) Clear water reservoir

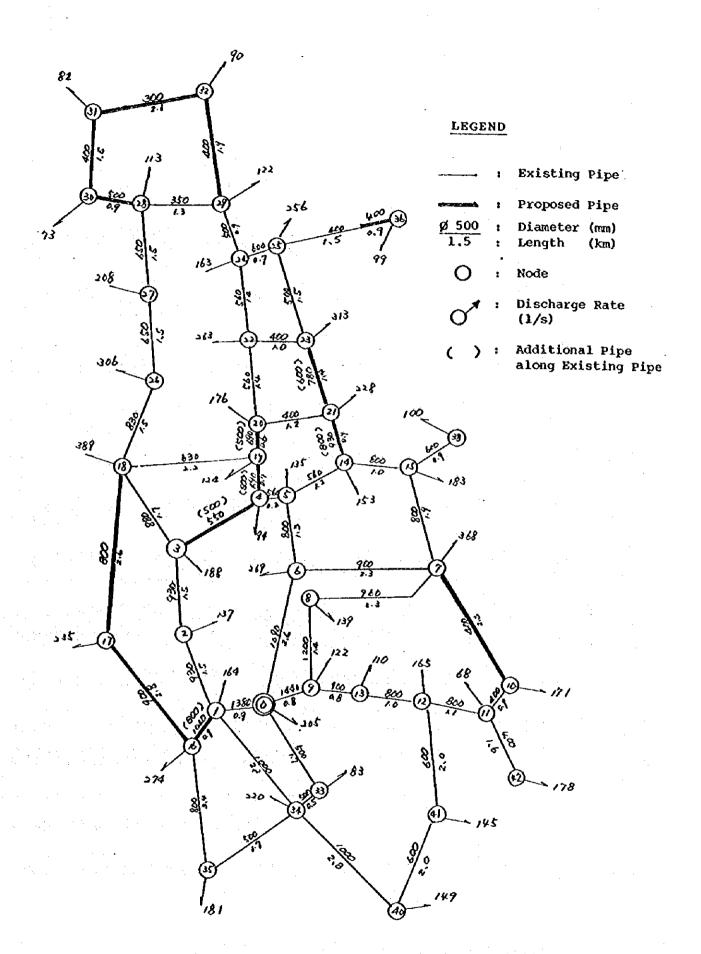
- a. Effective Capacity
- 1 hour's storage of plant production capacity
- b. Number of Basin
- More than 2 units


Function of clear water reservoir is to regulate the fluctuations occurring between the quantity of filtrate and that of delivery as well as at the time of power suspension or sudden change in supply.

- 9) Standby ratio of equipment
 - a. Raw water, transmission and distribution pumps
- 50% for pumps in operation
- b. Surface wash and backwash pump
- 100% for pumps in operation
- c. Chemical pumps, chlorinator and other equipment
- 100% for equipment in operation

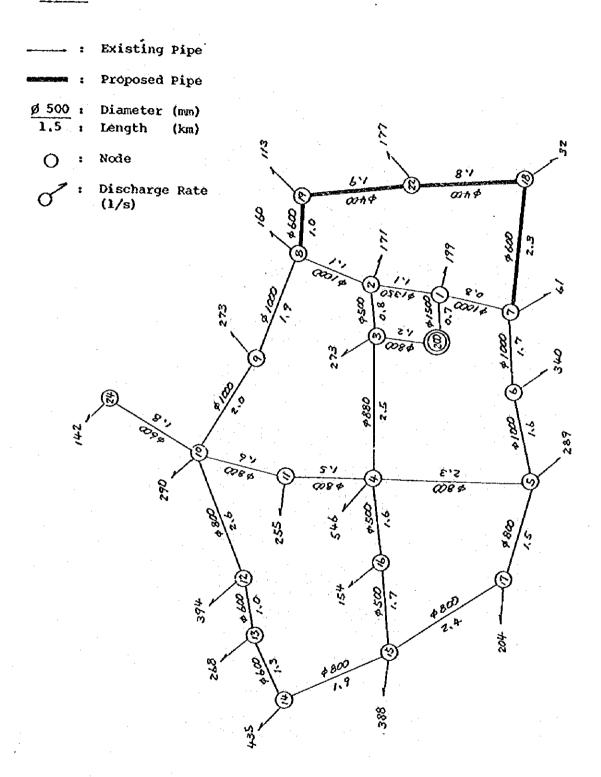
Considering time needed for overhaul, repair, and replacement of the pumping unit and equipment, and availability of materials, parts, and equipment which is required to be imported, the said ratio is applied.

Table 1.1 Distribution Method (Pump Supply)

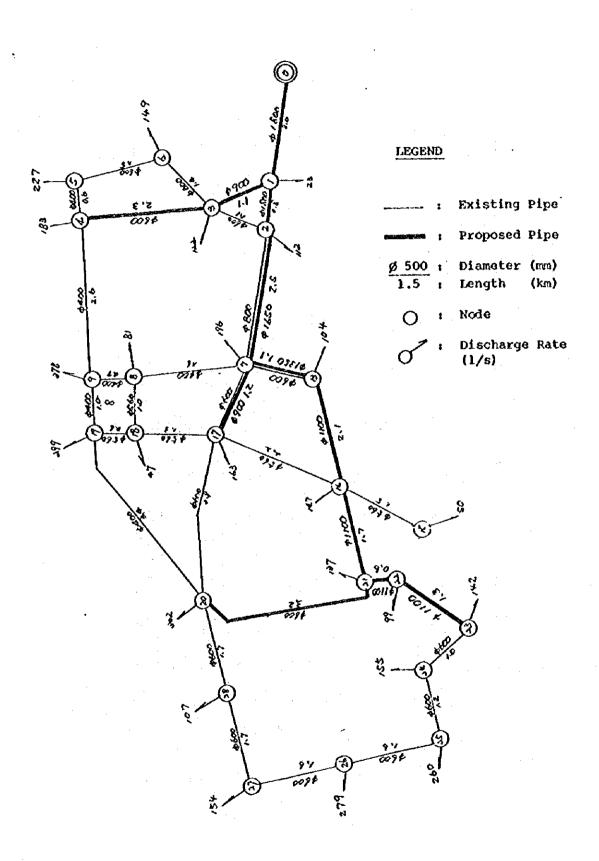

VARIABLE SPEED 4) CONTROL	control flow rate control flow rate by both unit of pumps by changing rotation and valve control speed of pump impeler H H O H N3 0	a. continuous flow and pressure control is possible b. high efficiency of pump operation	a. high initial cost
COMBINATION OF 3) 1) and 2)	control flow rate by both unit of pum and valve control	a. simple metod b. low initial cost c. continuous flow and pressure control is possible	a. Lower efficiency of pump operation
2) UNIT CONTROL	control flow rate by number of pumps in operation H H2 H2	a. simple method b. low initial cost	a. big variation of supply pressure b. continuous flow and pressure control is not possible
1) VALVE CONTROL	control flow rate by valve opening ratio H 50% 80% 100%	a. simple method b. low initial cost c. continuou flow and pressure control is possible	a. Low efficiency of operation (energy is lost by valve control)
МЕТНОВ	CONTROL METHOD	ADVANTAGE	DISADVANTAGE

FEASIBILITY STUDY FOR
JAKARTA WATER SUPPLY DEVELOPMENT PROJECT

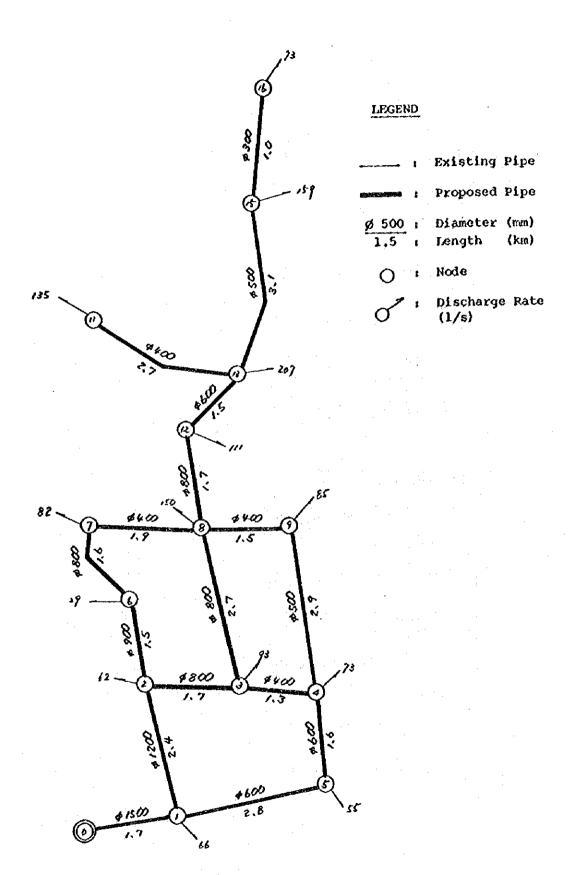
F2. APPENDIX FIV-2


ANALYSIS OF DISTRIBUTION NETWORK

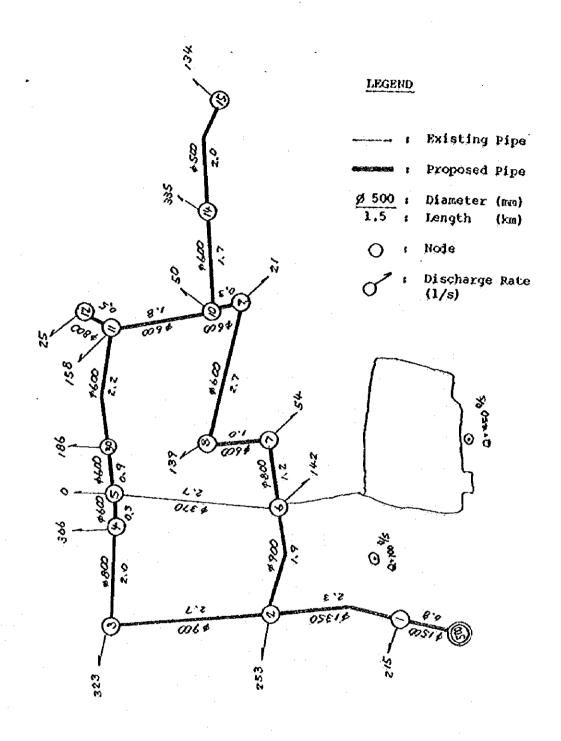
NETWORK DIAGRAM OF SUPPLY ZONE 1 (1990)


																																																	:												•								
H & (H	39.90	39.62	43,11	72,57	36.46	14 A		36	70.45	23,94	32.78	76 22		75.57	4.02	30.05		0	38,89	7. 76	1	77	43,84	41.59	0.0	0 0	000	30,06	8		1	31,03	32, 78	29.30	100	7 7 7 7	0.07	22.7.	19.32	20	200	, v.	14.94	74 45		22.53	19.24	20.79	77 7.7		21	7,33	31.63	31.63	, c	1		29.77	19,36	000	100	3	32,39	20 22	41	40.07	85°	25.59	
GL(m)	10.00	6.00	8.00	13,00	8.00				00.0	4	4.00	00.4	1 1	30.0	4.00	4 00	•	3	9	ο α		00.4	6.00	8.00	0	0 ())	4,00	00		20	12.00	4,00	7,00		2 0	7.00	2,00	1.00		7	0,40	00.1	00	9 6	0.40	0	0.40	40		2 0	0.40	13.00	13.00	000		0 1	3.00	00.		•	8,00	3,00	ic		11.00	15.00	19.00	
H(#)	49.90	45.62	51,11	45.57	44	47 45	24.4	36	200	27.94	36.78	40 77		70.00	29.41	74 OK		× 0 * 1 *	44,89	47.75		n -	49,84	49,59	0. 70	0	46.70	34,06	40		46.01	46,03	36,78	72. 70	100	7	78.07	24.71	20.33		70.07	17,04	13,94	A. A.	100	22.73	19.64	21.10	47		10.1	17.73	44.63	44.63	0 0 0 0	, le	0 1	32.77	20.36	9	7 1	43.73	35,39	7.0 7.0		37.33	44,85	44.59	
HD/ r(B)	0.00	00.0	00.0	90.0	00.0				00.0	00.0	00.00	2		^ ·	00.0	000	•	00.0	0,00	00.0			0°00	00.0		200	30,30	00.0	000		0	000	00.0	Č		7	0.0	00.0	00.00		3	30.0	00.0	000	2 4	00.0	00.0	00	6										0.00								0.0	00.0	
OH CH	2.10	88	0.89	4.4	4.4	r c	10	,,,	at i	9	3,24	1 44	7 1	9 N	6.2	*) (7	. 95		•	i i	1.27	N 1	0	0 1	20.7	2.39	176		2	1.62	N N	0.47	ò	0	. 50	3,40	2.69		†	0.77	4.38	77 7	9 6	N 20	3,11	, A.A.	S		2.2	0.67	46.0	1.40			2	7,62	4	0	\	2.43	1.39	7 7		υ.	2.11	0.26	
1(*10-3)	2,33	2,43	1.11	7. 78	100 N	, c	3 6	e è	2.7	30	1.90	4.	1	00.5	4.73	4 46		7.0	2.13	0.49		† † ·	76.0	1.91		7 (2.03	2.39	Ó			0.48	2.01	0	10	0 (203	30	M		000	6/.0		700		. 93	2,79	ï		•	2	0.32	88	8		• (c	ימ הח	4.36	2,11	o C	\ \ 1	2, 70	0.63	o o	, v	J. 40	1.06	0.13	
V(m/sec)	-	1.743					; (٠.		o	-	c		-:	ď	-	: .	5		C	٠.	₹.	-	_	Ċ	÷.	-	_		:.	.	ċ		c	V .	4	-	.:	-		<u>.</u>	<u>.</u>	ö		:.		Ó	•	c	•	·	ċ	ó	c	; (5 <	5	-			٠,	o	c	•	-	1.416	0.757	0.244	
Q(1/sec)	2942.554	1626,403	2202,950	264.093	1322 491	1457 070	200	707.7	11000 447	190,300	807, 191	A 4 4 4 7 7	200	604.752	1032.524	200 673	1	274.07	1084.692	AD 704		477.110	1223.692	847 758	270 204	0000	747.738	709, 776	044 440	0000	887.707	296,870	647,209	47 928	1200	77. Ott	760.576	136.317	211 250		* * * * * * * * * * * * * * * * * * * *	113,305	99,000	477 KOK	760.170	366,695	80,582		.00		100.115	18, 113	181.093	115 870		0 6	200,000	665.657	320.046		00000	122,205	184 705	000	220,040	178,000	214.054	69.054	
O																																																								**												22	
(E >)	006	2600	300	1200	200	000	000	, A	000	1600	1700	000	3 6	00/	1300	1000	4	4300	2300	2700	20	7.400	1400	800		0011	1000	1000		2	200	3400	2600	1200	96	7400	1400	1000	1500) (0	000	2400	4	2	1500	1300	000) (1000	2100	200	1700	0 0	0000	4.7	600	1400))	900	2200		1000	1600	2000	2000	
D(mm)	1380	1090	1440	300	0.20	1040) (9 6	つ う 入	ស ស ស	880	A.	9 4	690	800	440	3	つ つ 入	960	400	o d	9	1200	900	0	900	202	800	0 0 0	2 6	000	800	800	000		0	780	400	A. C.) (3	200	400	, to	2	650	350	, C	200	?	400	300	200	60			40	690	0	9 6	0	400	430	3 1	Q Q Q	400	909	009	
7 9 9	0	0	0	· c	· C	c	, c	>	>	0	0		,	0	0	~	> •	>	0	_	> <	>	O	C	• <	> •	>	0	• <	۰ د	0	0	0	•	> <	>	0	0	•	•	> (0	O	• <	> <	0	0	•	•	> 0	•	0	a	· c	> <	> 4	0	0	C	۰ د	Э.	0	c	•	>	0	٥	0	
Node		ø	٥	7.7	3	· *	7 6	Š	~ >	4	œ		•	_	V)	7.	1	`	~	9		n T	മ	-		-4 (-€ .	77	4	ć	1	-	Ŋ	89			77	23	22	Ķ	1	Q:	2	36	9 6	7	22)	2	2	3 6	, ,	7	33	7.4	, K	.	.	111	8	4	• 6	3	9	0	•	٥	4	4	.04	
Node	700	100 -	100 -	100	1		. (ا ⊶ د	N I) (*)	M	1 1))	4	1 *0	¥		0	ထ		۱ ۱	_	0	•	•	7) *)	1 1) <u><</u>	1	9	1 9	17	ç))) (ı ?	1 1	23	100	3 2	1 37	24 -	2	· ·	9	27	800	8	ę	7.7) 0)	ı Fi) (*)	Y.	3 4	*	100	6	2	11	1 ()	1 :::	α	2 ((20	ા ન ન	12 -	41 -	
																		-																																																			

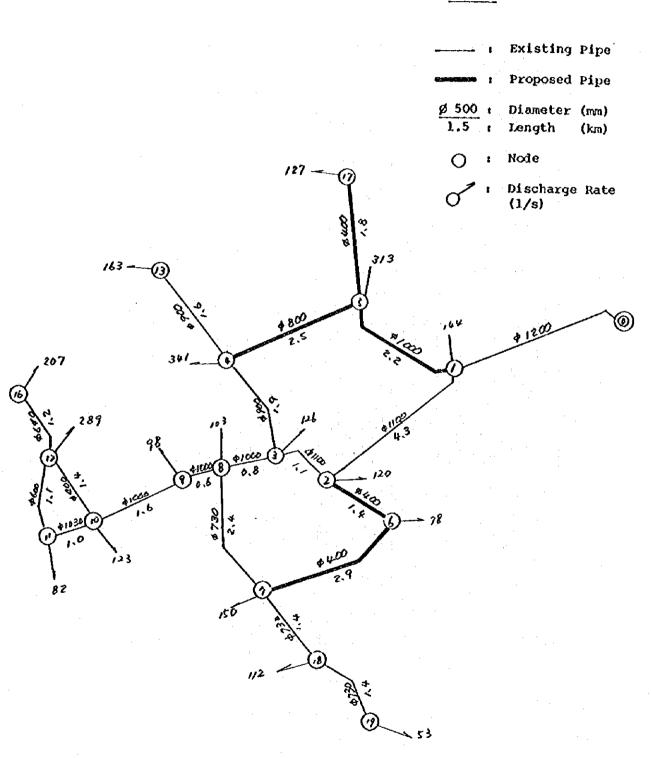
LEGEND


NETWORK DIAGRAM OF SUPPLY ZONE 2 (1990)

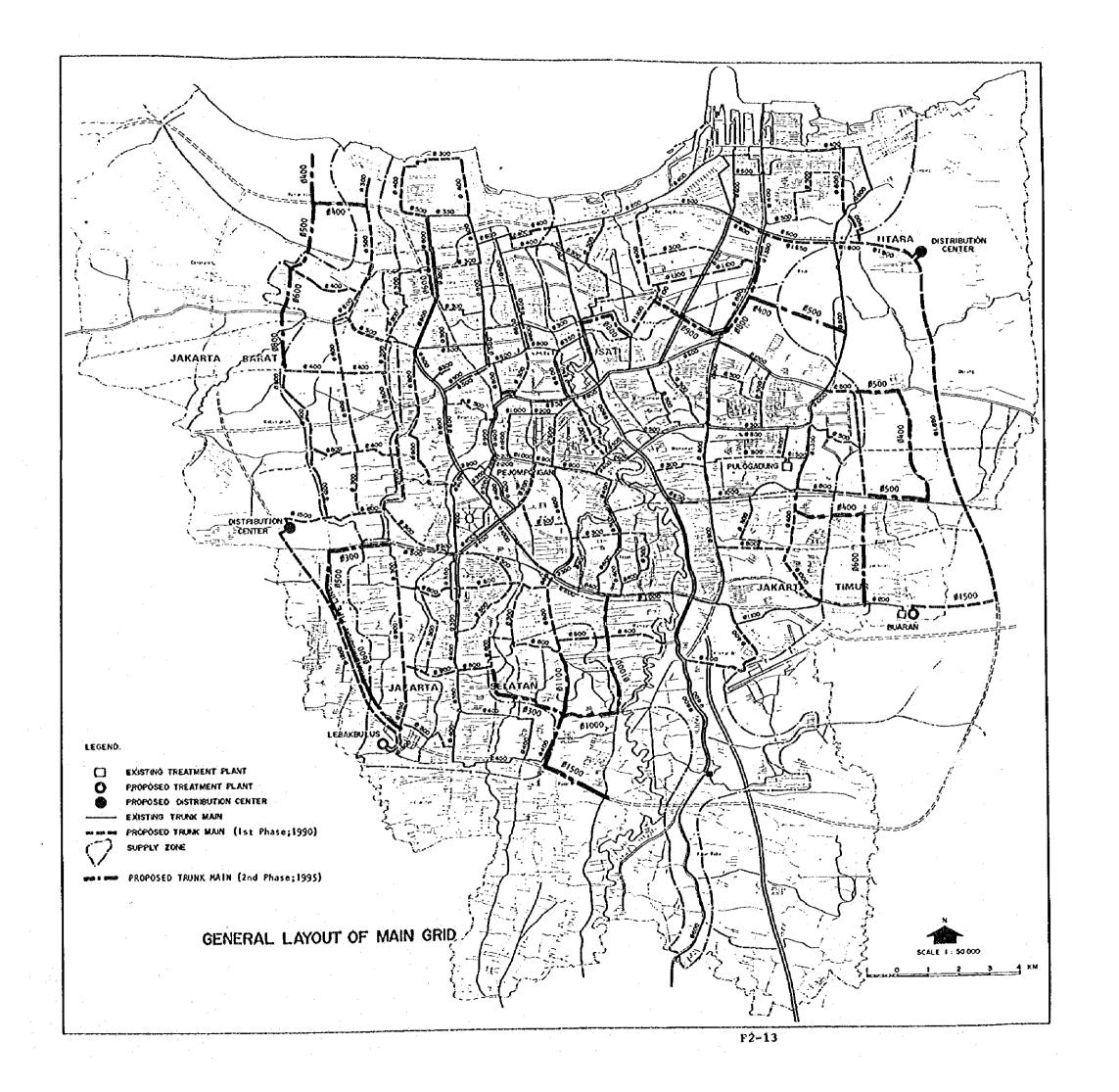
(E) 4H		43,03	41 40		111	\C • / •	41.49	41.130	7		100	200	7.0	24.27	80.00	X	10	11	10./0	40.40	34,46	34.46	27 70	200		24.78	24.78	74.11	70	* * * * * * * * * * * * * * * * * * *	76	70.10
(#) 15 6. (#)		7.00	4.00			2	4.00	3.00	4 00	4) (11	13.00	14.00	15,00	•	•	20.4	8.8	1.50	1.50	00.0	0		7.00	2,00	4.00	4) C) · · ·
- CEXI		20,03	45,49	Δ A	200	,	V4.04	44. 8	37. 11	77	7.7	900	~ * * * * * * * * * * * * * * * * * * *	17:10	32.56	40.75	07 57	0.0		46.40	35.96	35.96	29.39	3	200	0/107	20.78	28.11	78	61.4	100	11
ED/1(E)	30000000	2.00	0.00	00.0	6		0.0	00.0	00.0	00.0			•	3	00.0	00.0	00.0			00.0	0.0	00.00	00.0	0.00			00.0	00.0	0,00	0	200	•
QH(B)		/ * * 1		1,53	7.44))	4,31	38	, O	40.)	0	4.71	8.8 8	-	9		0	9.33	0.12	8	2,45	1	• •	77	1.86	4.45	Š 0	4	
(2-01+)1		7.0	5,42	1.39	7	7) (2	3,33	0.07	0.69	4 47	0	•	4	3,44	0.48	7.57		0	1.68	0.07	2, 52	2,45		11	2/•0	1.09	88	2.14	0.94	
V(B/860)		7.77	2.200	1.470	2.275	1 740		7.170	1.802	0.204	0.723	1.471	1 KAK	1	3	1.979	495	1.691	777		1.543	0.216	1.455	1-193	0.745	120	07/-0	0.687	1.231	0.859	0.549	4
0<1/sec>	4080 203	7	1105.707	2103.742	1755.551	263,020	100	77/	1095, 727	102.697	363, 501	288.922	1214 550		700 . 770	1554,559	139.993	1327,715	182 007		1004.710	108.201	731.216	337.216	69.216	745 704	2	134,922	618.862	107.993	69.007	000 67.
U	50.	4 6	DX.	120	120	120	0	7	120	120	120	120	120		9 6	120	120	120	120		777	120	120	120	120	100	, ,	RZ:	120	120	120	120
(m)	700		0077	1100	800	800	001	11	2000	2300	1500	1600	1600	4		00/1	2300	1900	1000			1600	2600	1000	1300	006		00/1	2400	1800	1900	000
D(mm)	1500	0	200	1350	1000	200	000	30	28	8008	800	200	1000	0		1000	800	1000	600	000		200	800	60 00	009	800		3	800	400	400	400
Τ φαγ φ	c		> (ь.	0	0	C	> <	> (0	0	Ò	0	c		.	0	0	0	٠ ح	> <	> <	.	0	0	0	• <	> (Ģ	0	0	o
Node	-	1.	o (N	7	14)	α	> <	*	4		9	រហ	,	•	0 (00	0	6	-	?	> (N I	5	4	7	<u> </u>	Ò	2	22	53	24
Node -	200 -	500))) ⊶r ,	ι 	, ,	0	! • •) ()	i n	! प	4	•	V	7 (; ~ r	· ·	; œ	ι დ	o	•	(i ⊃ (ı Ni	133	101	7	91	 - -	1 20	19	0.7

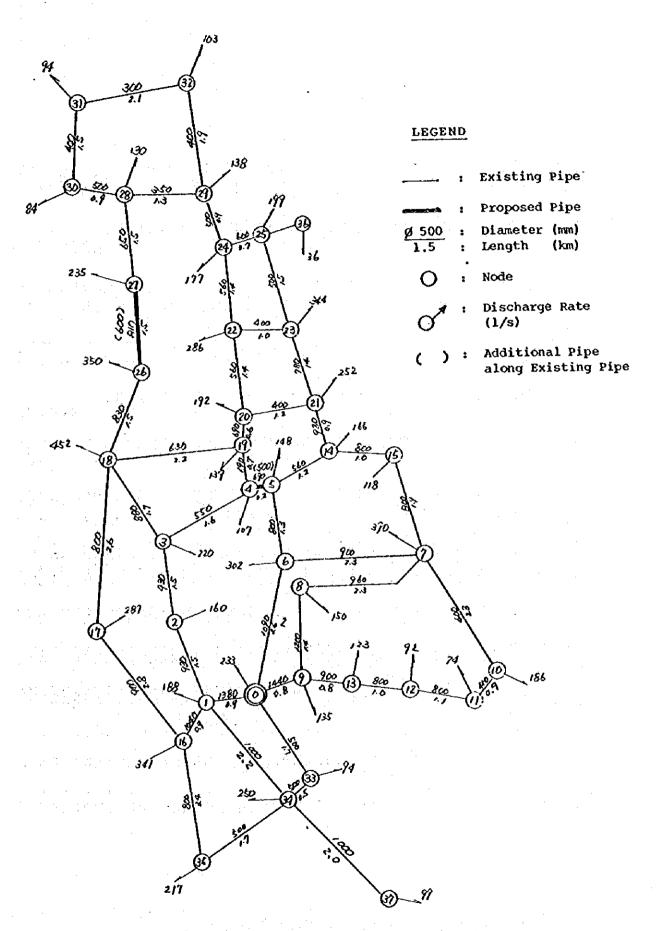

NETWORK DIAGRAM OF SUPPLY ZONE 3 (1990)

- epop	Node	Type	Δ (mm)	(m)	U	0(1/sec)	V(B/Sec)	1(+10-3)	GH(s)	HD/1(E)	\a E ¥	GL (*)	He (m)
300	₩	0	1800	2000	120		1.539	1.00	2, 17	00.0	52.67	4 00	70 00
i ~1	~	0	1800	800	20		1.770	3,4			36	4 (200
	M	C	000	1100	5		0 10	•			77.70	3 6	77.
?	, _	· c	o co	000	Ċ		, ,	10	1			3,4	40.04
i (*	1	•		9 6	10		707	0 !	7	00.0	15.00	2005	47.51
41 i	•	> (000	1100	3		0.570	0.62	69.0	000	ค. 4	2.00	49.54
) १	4	۰.	600	2300	170		1.183	2.41	ที่ เก	0.00	45.99	1.00	44.99
i M	•	0	800	1400	120		1,290	2.83	3.96	0.00	47.58	1.00	46.58
4	ษา	0	400	600	120		0.000	0.03	0.02	00.0	45,97	1.00	44.97
4	<u></u>	0	400	2600	120		1.117	2,48	9.06	00.00	36.93	00.1	X 0 . X
ı •◊	ın	0	909	2000	120		0.763	1.07	1.61	00.0	45.07		44.07
7	ω	0	400	1600	150		1,000	6.34	10.14	00.0	40.17	00-1	20 17
7	2	0	009	1100	120		0.827	0.54	9	0	40.73) C	24.10
7	17	0	909	1200	120		1.051	94	2 22	00.0	47.81	200	40
# \$\pi\$	٥	0	400	200	120		1 302	4 63	3,24	00.00	7. 97	00.1	74 07
1 00 17	∞	0	8	1000	120		0.206	0.10	0.10	00.00	40.17	0	707
167	σ,	0	400	1000	120		0.589	1.07	1.07	00.00	36.93	1,00	20.00
1	2	0	860	1500	120		0.203	0.10	0.13	00.00	46.29	M. 00	8
17.	16	0	2 60	2200	120		0.582	0.70	100	00.00	46,44	3,00	42.44
17	9	0	260	1300	120		1.843	8.0	7.72	00"0	40.28	1.00	8
17	ನ	0	909	2900	120		1.417	3,37	9.76	0.00	38, 23	1.00	27, 23
1 89	6	0	260	909	120		1.447	3.79	20	00.0	33,00	0011	37,00
ا 2	<u>\$</u>	0	400	3400	120		0.132	0.07	0.23	00.0	38,00	1,00	27.00
i 2	ន	0	909	3200	120	285,657	1.010	1.80	5.76	000	38.23	1,00	37,23
ا 20	8	0	600	1700	120		1.301	2.87	4.88	00.00	33,35	1.00	22,34
7 7	2	o	1100	00°	120		0.871	0.67	0 40	00.0	43,58	3,00	40.58
727	53	0	1100	1300	120		0.767	0.53	69.0	00.00	42.89	3.00	39.89
733 1	74	0	3	1000	120		2.077	28.9	6.83	00.00	36,07	3,00	33.07
25	ĸ	0	009 9	1200	120		1.529	3.87	\$	00.00	31.42	3,00	24.5
ا 89	23	0	909	1700	120		0.922	1.52	2.59	00.0	30.76	1,00	8
i Ki	8	0	600	1600	120		0.609	0.71	M	00.00	20.00	2.00	8
27 -	56	0	909	1600	120		0.378	0.29	0.47	00.0	20.79	2,00	200
,1 (1	7	0	1650	888	120		1.205	0.76	16.	0,00	50.73	00	47.7
7	M	0	1350	1100	120		083	0.54	3	00.0	49.72	7	44 73
۲,	.7	0	906	1200	120		1.358	1.94	2.32	00.0	47,59	2,00	40.04
i M	\$	ó	1100	2100	120		1.373	. 56	3.28	00.0	46.44	3,00	43.44
191	77	ó	1100	1700	120	1250.832	1.316	1.44	2.46	00.0	43.99	200	40.99
											1	•	

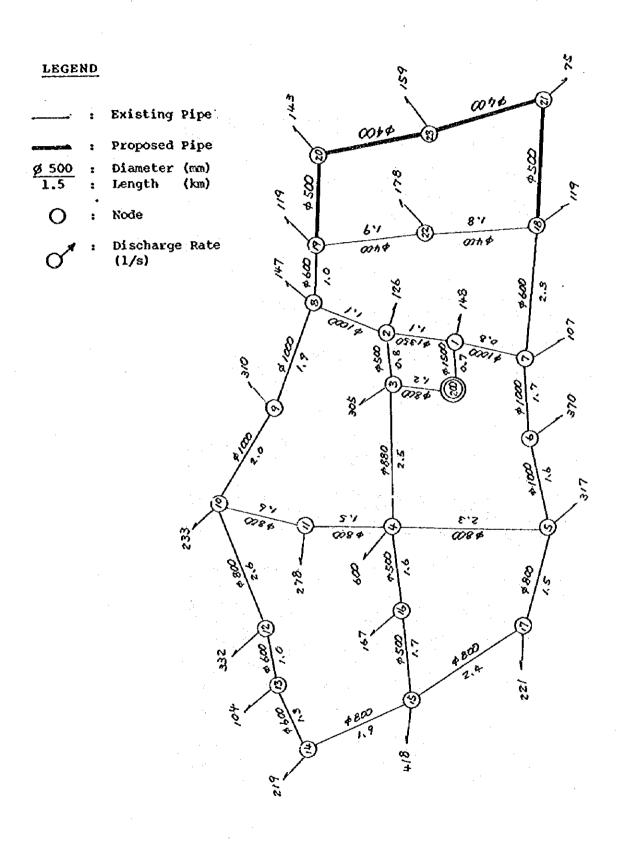

NETWORK DIAGRAM OF SUPPLY ZONE 4 (1990)

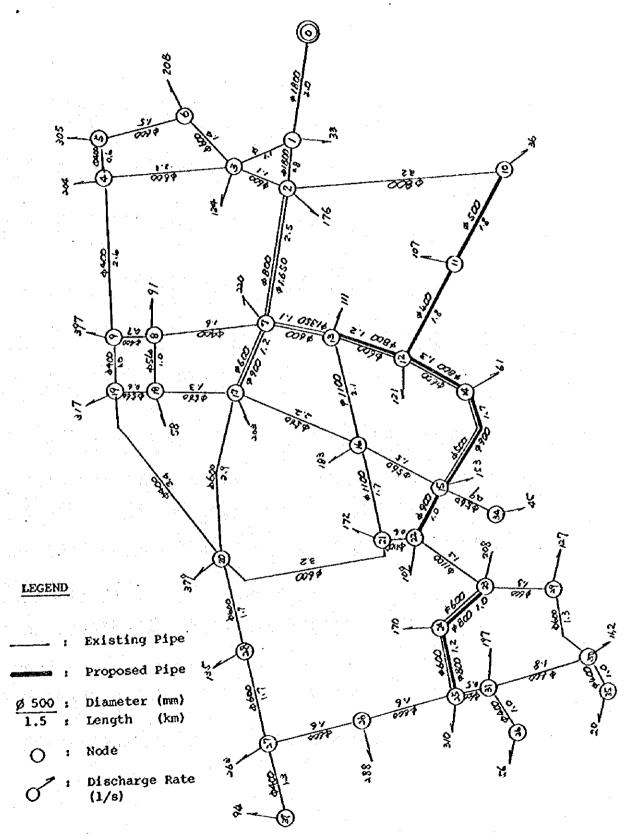
(E) et		7	34.06	77.70		17 27	,	\ (\ (\ (\ (\ (\ (\ (\ (\ (\ (70.0%	10.75	1	***	88.	0	, c		6.70	2 2	7.		?	7.00
3L(#)			_	_		00																
ij		÷ ≀	•	v	6	V		ė	'n	Ν		3	'n	eri	¥	5	4	-	4	ŀ.	4	C
Û,	A. 44) \ } }	0	53,70	49, 53	53, 37	40 47		¥ 4.0	45, 75	40 47		52.83	44.59	44 50		40.7	22. 22	70 07		*/**	17.52
TO TAKE	00 0		2	0.00	0.00	00.0	00.0	•	•	0.00	0		00.00	0.00			00.0	00.0	C		3	000
B.E.	, K.A. C	36	, Y ,	1,60	4.18	27	0.06	9	*	3.72	9		0.52	8.26	Y	,	9	0. 7.	60	0		4.22
1(+10-3)	82.0	, v	3 4	0.0	2.46	0.22	0.04	0	3	 8	0.99		0.52	4. W	0.77	ć	7.7	3,24	8,34	000		4.22
V(#/Sec)	0.781	8	11	050	1.434	0.423	0.105	202	1	0,750	0 772		D/4	1.260	0.495		0	1.074	2,030	8		350
Q(1/5ec)	1380.000	261 900		1032-010	720.730	269.280	13.234	414 49K		147.224	206.990	000	740.700	58. 280	62, 224	400		35.000	574,000	220 000		
U	120	120	Ċ	24	N N	120	120	120		120	170	Š	7	120	120	- 20	3 4	120	120	120	1	27
Ę	1700	2800	2400	11	1/00	1500	1300	2700		200	1600	907	200	1900	1500	1700		2/00	1500	3100		777
O(BE)	1500	600	000	200	S	906	400	800	1	2	009	à	3 6	400	400	800		204	009	800		9
Type	0	0	•	> <	٠ د	0	0	0	•	۰ د	0	C	> <	>	0	C	•	٠	0	0		>
Node		พ	c	4 1-	·)	•	4	œ	C	٠.	4	•	٠ ‹	X	ထ	<u>^</u>	!:	4 1	'n	ท	7	Q
1	ı	ŧ	1	(ı	1	1	1	•	ı	,	ŀ		1	į	j		ı	1	ı	ı	} -
Node	400	-1	•	• ¢	31	.N.1	M)	}	•	,	n	~	1 (` '	Ò	œ	.1.	4	71	M	ď)


Ho(m)	42.19	40.02	80.04	8	42, 33	4 78	47.	38.72	41.15	39.07	\$	24.52	24.42	14.87	7	14.71	37.23
GL(m)	32,00	100	23.00	32.00	17.00	17.00	17.00	17.00	24.00	20,00	24,00	24,00	24.00	24,00	12.00	24.00	12.00
H(B)	74.19	70.97	63.88	67.28	59.33	58.38	800	53.88	65,15	59.07	49.49	48.52	500	40.87	49.25	38.7	49.25
Hb/r(m)	0.00	00	0.00	00	00.00	0.00	00.0	00.00	00.0	00.0	00.0	000	00.0	00.0	0	00.0	00.0
€ HS	0.81	3. 27	7.04	3.63	4.55	0.94	8,90	. 5	2.13	80.0	88	0.97	0 77	7.66	00	2.16	4.62
i(+10-3)	1.02	1.42	2.61	4	2.28	3.14	3,30	0	1.78	6.08	3.55	3.22	0.41	4.50	00	1.08	2.10
V(R/Sec)	1.325	1.485	1.595	1.349	1.376	1.364	1.032	1.757	1.204	1.950	1.458	1.384	0.451	1.659	0.050	0.682	1.099
0(1/sec) 4					691,693												
υ	120	120	120	120	120	120	120	120	120	120	120	120	22	120	120	120	120
(m)	800	2300	2700	1900	2000	300	2700	900	1200	1000	2700	300	1800	1700	00 00 00 00 00 00 00 00 00 00 00 00 00	2000	2200
D(mm)	1500	1350	900	900	800	600	370	600	800	\$00	909	909	909	600	800	200	909
Type e	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Node		N	M	v	4	Ŋ	ท	မ္	^	ထ	٥	0	01	14	2	ij	
Node -	200) 	। स	1 81	n M	1	9	เ เ	9	7	, Ι (Ο	i O	 	10 1	1	14	۱ ۵0


LEGEND

NETWORK DIAGRAM OF SUPPLY ZONE 6 (1990)

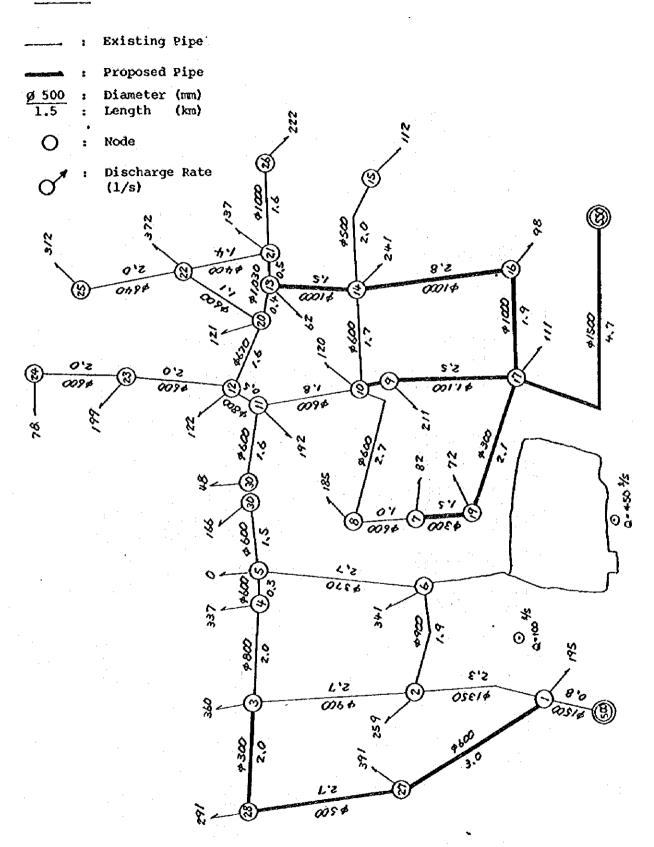

14	28.79	22.90	21.14	20.76	7.00	1,0	9	16.12	27.89	14.57		/0-+1	12.22	10.18	1	70.71	17.26	16.93	17 44		1/.04	16.77	200	7.4	27.67
GL < m >	20.00	12,00	20.00	19.00	5	200	7.4	22.00	12.00	2000	10	72.00	24.00	26.00		70.00	19.00	19.00	4	1	15.00	00		00.01	10.00
(#)	48.79	44,90	41.14	39.76	77	100	0/	38.12	39.89	7.4 67		26.5	38.22	74. 18	}	70.75	38.28	5.00	100	77	32.64	71 77	1 ((/ \	39.65
MD/1(m)	00.0	00.0	00.0	00.0		•	00.0	0.00	00.0			00.00	0.00	00		0.00	0.00	00.0)))	00.0	6	3 4	0.0	00.0
ê ê	11.21	89	7.65	82	}	9	0.13	1.64	0		70.	7	0.35	40	•	0.00	1.26	N C	,	10.5	M M	0	0	0.14	5.21
1(+10-3)	3.74	1.77	1,78	70		V. 04	0.07	2,05	00	1	0.0	4	0.25		•	1.00	0.79	, t	• (• (ģ N	3,00		7/17	0:00	2.89
V(#/Sec)	2,325	1.382	1.473	250	1111	0.942	0.223	1.498	284		0.522	0.656	794		77.0	1.017	7.68 U) C		0.950	332		9 do . D	0.256	1.011
0<1/5ec)	2629,000	1085 606	1700 704	670 671	704 707	1.8.431	141.606	1176.569	707 207	0.00	40.431	274 569	145 000		23.000	799,000	701 000	>> · · · · · · · · · · · · · · · · · ·	220.02	1.9.367	276. 633		207,000	163,000	127 000
O	120	2	96	4.	7	120	120	120	10	77	120	120	0	1	120	120	000	10	740	120	000		7.20	120	200
(#) 	2002	200	777	000	7	1400	1900	800	9 6	2007	2300	2400		2	1400.	800	7.00	000	000	1400	0	1	1200	1600	0
D(mm)	0000	200	3 6	200	2011	400	900	000		200	400	730	1	2	730	1000			1030	400	7007	2	640	000	200
1700) c	> (> •	>	o	•	• c	> 0	>	0		, c	•	0	-	•	.	0	c	• •	Э.	0	c	· c
Node	-	4 W	1 (4 6	٠,	•	۳,) (٠.	đ	^		٠ :	ŋ.	19	Ó	•	⊋ :		1.7	Ċ	Y	16) r
Node	1 000) ·	4 7	I → (1 N	2	1	! • • •) } 	n n	1 -0	t o	1 0	_	oi C	α	> 0	,	0	-		 	12	! ~	•


NETWORK DIAGRAM OF SUPPLY ZONE 1 (1995)

																																									:	:		
10(1)	39.56	39,17	43,34	30.80	35,63	35.80	29.60	32.91	32.86	31.61	32.86	30.70	900	74.07	100	100.74	1000	07.70	40.0	41.80	42.20	29.37	28.31	32.68	29.54	20-15	20.00	25.07	21.93	19.83	6/ 6/	74.0	26, 10	23.06	19.42	21.08.	16.85	17.58	36.85	0 V	4 C	29.82	23,16	
GL (m)		0	0	0	8	0	M	0	.,	o,	⊶ (Э,	~ •		"		- 4	_ ~	<i>,</i>	, –	•	_	•	တ	~ `	~ ~		_	2.00	_	_	-		٠.			-	4	12	_				
I(=)	49.5%	45, 17	51.34	43.80	43.63	46.80	42.60	38.91	36 - 35 36 - 36	25.61	36.86	25	10,400	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	44.74	44.74	100	000	40.00	49.80	50.20	33, 37	31.31	40.68	44.04	20.61	710	27.07	23.93	20.83	20-79	17.82	27.10	23.46	19.82	21.48	17.25	17.00	17-25	00.00	4 4 0 8 0 8	49.52	31.16	
HD/r(m)	1 0	0	О	0	O	0	0	0	0	0	0	٠,	-	Э (3 ¢	, ·	., .) C	, .	• •	, 0		ب	~		٠,٠	٠.		00.0	٠.	~ `	٠, -			٠.	~	~	٦.	•		•		_	
Ğ.	2,44	6.83	8	8.20	5.92	7,7	96.9	4.72	200	8	S S S	, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	200	÷ 0		10	- u	2 2) (0	49	3.33	2.08	6.12	2.28	0.0) t	7	3.15	6.24	9 0	, , , , , , , , , , , , , , , , , , ,	3 6	3.64	3.64	36.1	2.58	ا ا ا	0.73	70	0	2.40	2.03	
1(*10-3)	ir	v	œ	∞	Ó٠	0	-		C) (ь.	 .	- F	•	۰.	• •	40	<u>ن</u> د	10					G		À,	` '	7.	. ~	3,13	7	٠,	٠,٠	•		Ψ.	•		• ; ;			: -	•	٠.	
V(m/sec)		-		-;	ч	÷	ö	-;	o.	<u>.</u>	.;	.i 6	i.		š -		- c	-	·c	c	0	-		<u></u>	o.	H C	š -	: :	1.057	r-4	0.0	⊙ •	š -		ó	÷	o	o ·	0	-i C	j c	-		
Q(1/sec)	3195, 637	1687.013	1874.236	301.114	1384,790	1619.381	3,466	1224.790	188,983	815.807	647.089	5/0.6/	1141.	1/0.040	740.70	700 2	000	707. 107	471 004	256,004	348,004	849,490	1030,160	922.960	355,421	030.760	780 107	754.949	132,843	278,107	43,107	154.755	449.767	414.767	87,812	196,955	64,045	112,955	18.955	411.707	172.007	233,000	590,073	
U	120	120	120	120	120	120	120	120	0 2 2 3	120	077	22.	22.	2	36	2 6	2 6	25.	200	120	120	120	120	120	22	27.	96	120	120	120	120	200	200	202	120	120	120	120	22	÷	9 6	120	120	
(■)	000	2600	800	1700	1500	200	2200	1500	1600	1700	200	700	0001	200	2000	200	96	200	000	1100	1000	1000	900	2800	3400	200	200	1400	1000	1500	200		1500	1500	1300	900	1900	1500	2100	96	3 6	1034	800	
D(mm)	1380	1090	1440	200	930	1040	100	930	200	88	069	000	2 C	0 0	> C	0 6 N 5	200	000	200	90	000	800	930	906	800	000	2 4	288	400	200	009	900	6	8	Š	200	400	400	300	0 0		4 0 4 0 4 0 4	690	
1 Vpe	0	0	c	o	0	0	0	0	0		9 (5 0	> 0	,	⇒¢) (3 6	5 <	2 C	0	0	0	0	0	0	3 6	> C		0	0	0	-	9 6	9 0	0	ø	0	0	00	5	> C	00	0	•
Node	-	v	Φ	M M	۲,	16	4	64	ব (œ ·	4.0	<u>ب</u>	۰,	†	~ r) W	ņα	, ,) -	12	4	7	17	S.	m e	38	M	R	X,	4.5	Ç,	\$?	ž	8	B	K	H	M M	4	\$ [3 =	8	
•	100	100	100	00																									23														0	

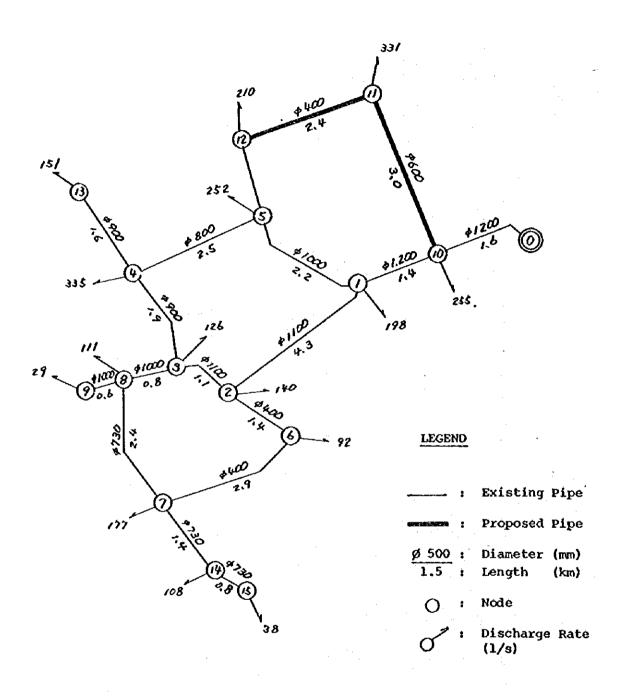
NETWORK DIAGRAM OF SUPPLY ZONE 2 (1995)

Ç≣. He Ç≣.	42.98		10.1	44.46	37.06	41.81	40.92	34.51	2	35.06	29.44	25.55	27.32	26.17	28.59	38.24	37.10	36.59	35.06	32.33	31,14	30.71	30.71	28,82	28.85	26.49	27.06	32.85	27.06	23.54
@ \ (₩)	7.00		3	4.00	9.00	4.00	3.00	4.00	4.00	3,00	00.4	13.00	14.00	15.00	11.00	2.00	3.00	1.50	8.8	2.00	2.00	2.00	2.00	4.00	4.00	10.00	10.00	, 00 100	10.00	10.00
Ύ≡`	49.98		To or	48,46	46.06	45.81	43.92	38.51	38.51	38.06	33,44	38,55	35.32	41.17	39.59	40.24	40.10	38.09	38.06	34.22	33.14	32.71	32.7:	32.85	32.85	36.49	37.06	35,85	37.06	33,54
#b/r(#)	00.0		0.0	0.00	00.0	000	00.0	00.0	00.0	00 0	00	00.0	00.00	0.00	00.00	0.0	00.0	00-0	00.0	00.0	00.0	0.00	00.0	00.0	00.0	0.00	0.00	00	00-0	0.00
GHC#	2.02		×1.0	ij	3.92	2.65	4.54	7.30	0.03	0.4 N	5.07	2.62	3,23	4.89	6.47	3.68	3.82	2.15	0.03	3.87	1.09	0.42	21.0	0.39	2.47	N. 10	2,53	27	3.04	2.31
1(*10-3)	8.7	i k	07.0	.38	4.89	3.3	4.13	2.92	0,02	0.30	3, 17	1.64	2,16	2.87	2.81	1.94	3.82	1.08	0.02	1.49	1.09	0.33	0.07	0.35	1.03	1.48	1.40	2.66	1.60	1.10
V(#/S@C)	2.331		7 + 7 - 7	1.459	2.397	1.252	2.186	1.672	0.105	0.458	22	1.326	1.336	1.797	1.286	1.452	1.518	1.057	0.095	1.093	0.769	0.401	0.210	0.371	0.897	608.0	0.683	1111	0.733	0.599
Q(1/5ec)	4118.802	00. 700	061.011	2088, 535	1882,267	245,887	1716.648	1017,085	52.946	230,103	239.928	1041,589	671.643	1411.589	363.678	1140.327	429.322	830,326	47.897	549,430	217.430	113,430	105,570	72.928	450.643	158,788	85.890	218, 212	92.110	75.212
o									120						-															
() ()	700	200	777	1100	800	800	1100	2500	2300	1500	1600	1600	1500	1700	2300	1900	1000	2000	1600	2600	1000	1300	1900	1700	2400	2100	1800	1600	1900	2100
D(mm)	1500	0	0	320	1000	500	1000	88	800	800	200	1000	800	1000	009	1000	600	1000	80	800	600	600	800	200	800	200	400	200	400	400
77.00	٥	· c	Э.	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ò	0	0	o	0	0	0	0
Node	-		9	N	~	ሎን	œ	4	4	=	9	ท	17	0	8	۰	6	2	ij	걸	Ŕ	4	4	n	Ŋ	ដ	2	2	2	33
	200 -	•	ا پ	•	۱ ۱	•	ı	t M	1	1	; t	1	1	,	1	i m	ı Ø	1	1	į	ر ا در	I M	1	ı	1	1 00	။ တ	ı	1	्र श


NETWORK DIAGRAM OF SUPPLY ZONE 3 (1995)

T (#)	4114111421188114488484848484848444884444884444884444884444	50 100 100 100 100 100 100 100 100 100 1
GL (#)	######################################	38888888888888888888888888888888888888
I (B)	8 4 4 4 4 4 4 4 6 8 4 8 4 8 4 8 8 8 8 8	20000000000000000000000000000000000000
エント(日)		
CE YES	4.44w0@30-1441-ww00-4444444444444444444444444444	8 4 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
1(*10-3)	71111014.04.14.17.17.00.09.11.14.10.11.4.4.0.11.09.09.09.09.09.09.09.09.09.09.09.09.09.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
V(#/Sec)	10111011011011011011011011011	
0(1/sec)	2843,000 840,408 840,408 840,408 841,776 841,776 841,776 85,539 87,114 87,114 87,1130 84,112 177,125 177,130 84,012 198,408 198,408 198,408 198,408 198,408 198,408 198,408 198,408 198,408 198,408 197,135 197,135 197,135 197,135 197,136 835 197,136	255.060 229.966 279.966 27.966 26.000 28.000 23829.857 2304.859 2304.859 2504.859 2504.859 2504.859
O	222222222222222222222222222222222222222	
(E)	2000 2000 2000 2000 2000 2000 2000 200	100000000000000000000000000000000000000
(ME) ()	888 888 888 888 888 888 888 888 888 88	00000000000000000000000000000000000000
\$ \frac{2}{2}	000000000000000000000000000000000000000	000000000000000
NO C	-นพบอัน จนอนตมีปัจตอ วีนีนีสีวีมีมีนี้วีนีลีชีวูชีชีชีนนีชุชนูชุนชุน	
Node	0	82888888844774488 11111111111

NETWORK DIAGRAM SUPPLY ZONE 4 (1995)


		100				(168/170	(168/8)0	(2-01-);	i (i	L777(=)		() ()	He (#)
) 		i	Ì										
400		0	1500	1700	120	2523,000	1.428	1.17	1.99	00.0	54.01	7.00	47.01
, ·		0	800	2800	120	368.604	1.304	2.88	8,08	00.0	45.94	7.00	38.94
-4	. 1	0	1200	2400	120	1975, 396	1.747	2.20	2	00.0	48.73	9.00	42.73
N	1	2	800	1700	120	811.321	1.614	3.06	5,20	00.0	43,53	6.00	37,53
N		•	900	1500	120	988,076	1.553	2,48	7	00.0	43.01	0	40.01
M	1	0	400	1300	120	7.860	0.063	0.02	0.02	00.0	43.51	6.00	37.51
M	1	0	800	2700	120	675,460	1.344	2.18	88	00.0	37.65	3.00	32.65
4		0	200	2900	120	169,464	0.863	. 66	83.	0.00	38.68	3.00	33.68
'n		0	909	1600	120	260.604	0.922	1.52	2.43	0.0	43,51	6.00	37.51
Ó	,,	0	8008	1600	120	863.076	1,717	3.43	5.49	00.0	39.52	5.00	34,52
	1	0	8008	1900	120	606, 115	1.206	1.78	3,39	00.00	36, 13	3.00	33, 13
^			400	1900	120	70.961	5,55	8	.83	000	37.65	00°0	32.65
٥	1	0	400	1500	120	58.464	0.465	0.69	1.03	0.00	37,65	60°	32,65
00	- 12	0	800	1700	120	600,885	1.195	5.73	2,38	00.0	34.66	4.00	30.66
01	1	0	909	1700	120	461-115	1.631	4.36	7. 42	0.0	28.71	1.00	27.71
	1	۰ بر	400	2700	120	22,934	0.183	0.12	3	00.00	28,38	4.00	24, 38
-4	7,7	0	200	2700	120	250, 181	1.274	3.42	9.24	00.0	19.47	1.00	18.47
7	1	۰ بر	600	1300	120	450.885	1.595	4.19	6.28	0.00	28,38	4.00	24 38
M	=======================================	0	200	3100	120	227.819	1.160	2.88	8,92	00.0	19.46	1.00	18.46
4	1	0	400	2100	120	4.181	0.033	0.01	0.0	00.00	19.46	1.00	18.46
4	1	0	400	1900	120	67,000	0.533	0.89	. 68	0.00	17.79	0.50	2.3
n	1	0	300	1000	120	47,000	0.665	1.87	.87	00.0	17.59	0.30	17.09

NETWORK DIAGRAM OF SUPPLY ZONE 5 (1995)

Node	Sode	Type	D(mm)	L(#)	ပ	Q(1/sec)	\(#\sec)	1(+10-3)	GH (₩	H5/r(m)	H(H)	GL (m)	₩\ ₩
500	~	٥	1500	800	120	2340,000		1.02	0.81	0.00	74,19	32,00	42,19
	~	0	1350	2300	120	1571.307		0.81	1.87	0.00	72.32	30.00	42.32
₹	М	0	900	2700	120	880.194		2,00	5,41	00.0	66.91	23,00	43.91
'n		0	300	200v	120	108.307		8.75	17.50	0.00	49.41	20.00	28.41
	27	0	600	3000	120	573.693	2.029	6.34	19.62	0.00	54,57	24.00	30.57
27 -		0	200	2700	129	182.693	_	1.91	5.17	0.00	49.41	20.00	29.41
7		0	900	1900	120	432,113	7	0.54	1,02	00.00	71,30	32.00	29.30
) (*)	4	0	800	2000	120	411.887		0.87	.73	00.0	65.16	17,00	48.16
4	S)	0	600	300	120	74.887	-	0.15	0.00	00.0	65.12	17.00	48.12
٠ د	Ŋ	0	370	2700	120	91.113	_	82.73	6.18	0.0	65.12	17.00	48.12
(Vi	20	0	800	1500	120	166,000		0.66	8	00.00	64.13	17,00	47, 13

Te(m)	24.98	17.81 23.20	24.94	17.16	18.29	15.62	17.16	24-71	70.07	000	004	0 0 0 0	, o	0 0	000	000	0.0	9 K	0 0 0 0 0 1 0 1 0 1	NO 00	
GL (m)	28.00	30.00	12.00	24.00	19.00	24.00	24.00	12-00	00.01)))	200	000	0.0	200	7		26-92	24.00	24.00	200	→
(# \ T	52.98 47.69	47.81	36.94	41.16	37.29	39.62	41.16	36.71	33,31	86. 86. 86.	37.09	30.03	50.83	50.4	27.80	52.98	42.99	42.93	42.93	43,09	\$6.84
エワイヤ(馬)	00	000	000	0000	200	00 0	00.0	0.00	00-0	00-0	00	0.00	0.00	0.00	0.0	00	00.0	0.00	00.0	0-00	0.0
GE SE	8.02 5.29	S. 17	10.26	6.04	27.0	1.55	6.64	0.27	3.40	0.31	0.20	60.9	6 20	0.15	0	9	0 0 0	90.0	0.16	4.12	0.11
1(*10-3)	1.71	2.72	5.70	3.55	ος 4 κ 6 α	0.77	2.37	0-17	1.70	0.78	0.39	S. 53	4.43	0.09	1.55	0.16	4.75	0.04	0.16	1.52	0.07
V(m/sec)	1.753	1.745	1.884	1.459	0.582	0.070	1.620	0.301	0.980	0.902	0.623	1.854	1.272	0.283	0.970	0.276	1.102	0.033	0.269	0.924	0.170
Q(I/sec)	3097.000	1370.644	1326.472	412.609	292.747	112,000	1272.644	106,253	277,000	751.413	518.840	524.160	159.840	222.000	312,000	78.000	77.884	5.864	76.116	261.116	48.000
U	120	120	120	120	120	26	200	120	120	120	120	120	120	120	120	120	150	120	120	120	120
(¥)	4700	1900	300	1700	0 0 0 0	1000	7000	1600	2000	400	000	1100	1400	1600	2000	2000	2100	1000	1.000	2700	1600
D(mm)	1500	1000	1100	900	008			229	909	1030	1030	800	400	1000	640	80,0) C	0 C	200	909	909
77	00	5 0	00	0	0	00) (> C	ò	• c	Ģ	• •	c	· C) C	• c	, c	> <) C) C	
- Node Type	71	15	2:	- t	N.	M 4	() <	† (^ 	4 Ç) ç	36		10	14	1 C	10	10	1	. 1	×ά	0 M
000 000 000 000 000	i i	17.	ነ ው ዓ	30	1	4:	1 5 .	0 6) () () (1 4 kg - 1	۱ ۲	1 0 0	· .		٠,	4 C	j į	1 0 1	٠ó) [1 2 2

Te (#)	34,34	37.24	27.90	28, 33	25.21	25, 10	35.31	23.13	23.13	20.85	20.84	27.10	31.43	35.02	31.65	31.65	37.19	58.71	38.31
GL(m)	20.00	12.00	20.00	19.00	20,00	22.00	12.00	22.00	22.00	24.00	24.00	8	20.00	10-00	12.00	12,00	10.00	00.0	12.00
H(S)	54.34	49.24	47.90	47.38	45.21	47,10	47.31	45.13	45,13	44,85	44.84	47.10	51,43	45,02	43,65	43.65	47.19	58.71	47.31
HD/1(B)	00.0	000	00.0	00.00	00-0	0.00	00.0	0.00	0.00	0.00	0.00	00.0	0.00	0.00	00.00	00.0	0.00	0.00	0.00
ČĘ,	5.66	2.18	33 53 53	0.51	2.69	9.28	1.93	0.07	1.97	0.28	0.01	0.0	2.91	9.32	1.36	5.59	0.12	1.29	0.07
1(+10-3)	3.54	66.0	0.82	0.47	1.92	0.35	0.1	0.03	0.82	0.20	0.02	00-0	2.08	3,11	0.57	4,30	80.0	1.29	0.04
V(m/sec)	2,257	1.012	0.970	0.715	0.810	0.577	0.767	0.078	0.748	0.349	0.091	0.037	1.693	1.357	0.419	1.252	0.237	0.568	0.158
Q(1/Sec)	2553,000	794.711	921.601	679.783	101.819	453, 181	385,399	9.819	313,181	146.000	38,000	29,000	1914.312	383,688	52,688	157,312	151.000	46, 900	100-601
ن	120	120	120	120	120	120	120	120	120	120	120	120	120	120	200	120	120	120	120
L(#)	1600	2200	4300	1100	1400	800	2500	2900	2400	1400	800	009	1400	3000	2400	1300	1,600	1000	1900
D(mm)	1200	1000	1100	1100	400	1000	800	004	730	730	730	1000	1200	909	4	400	000	3	900
Type	0	o	0	0	0	0	0	a	Ö	0	c	0	0	d	• =	C	· C	·c	0
900 No	1.0	K	N	M	**0	α	4	1	۸.	4	V	•		r-1	1	į		8	₹ 4
Node -	- 009	•	1	1	1	i M	I	1	000	7	1	00	100	1		ا د د	4	400	M M