THE REPUBLIC OF INDONESIA

THE FEASIBILITY STUDY ON THE VOLCANIC DEBRIS CONTROL AND WATER CONSERVATION PROJECT IN THE SOUTHEASTERN SLOPE OF MT. SEMERU

MAIN REPORT

DECEMBER, 1984

JAPAN INTERNATIONAL COOPERATION AGENCY

THE REPUBLIC OF INDONESIA

THE FEASIBILITY STUDY ON THE VOLCANIC DEBRIS

CONTROL AND WATER CONSERVATION PROJECT

IN THE SOUTHEASTERN SLOPE OF MT. SEMERU

MAIN REPORT

DECEMBER, 1984

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事	下 業団
受入 月日 185.11.26	108
A A STAN	61.7
登録No. 12131	SDS

PREFACE

In response to the request of the Government of the Republic of Indonesia, the Japanese Government decided to conduct a feasibility study on the Volcanic Deblis Control and Water Conservation Project on the Southeastern Slope of Mt. SEMERU and entrusted the study to the Japan International Cooperation Agency (JICA).

The JICA sent to Indonesia a survey team headed by Mr. K. HIRAO, comprising experts of Yachiyo Engineering Co., Ltd., in March, 1982.

The team had discussions on the Project with the officials concerned of the Government of Indonesia and conducted a field survey on the south eastern slope of Mr. SEMERU. After the team returned to Japan, further studies were made and the present report has been prepared after studies extending for nearly three years.

I hope that this report will serve for the development of the Project and contribute to the promotion of friendly relations between our two countries.

I wish to express my deep appreciation to the officials concerned of the Government of the Republic of Indonesia for their close cooperation extended to the team.

December, 1984

Keisuke Arita

President

Japan International Cooperation Agency

A Distant View of Mt. Semeru

LIST OF VOLUMES

This main report is supported by the following reports:

- SUPPORTING REPORT (1)
 VOLCANIC DEBRIS CONTROL PLAN
- SUPPORTING REPORT (2) FIRST PRIORITY PROJECT
- SUPPORTING REPORT (3)
 SECOND PRIORITY PROJECT
- SUPPORTING REPORT (4)
 WATER CONSERVATION STUDY
- SUPPORTING REPORT (5)
 INVESTIGATION AND ANALYSIS

CONTENTS

	PAGE
LIST OF FIGURES	
LIST OF TABLES	
GLOSSARY	
SUMMARY	
GENERAL MAP	
1. INTRODUCTION	1
1.1 BACKGROUND OF THE STUDY	1
1.2 OUTLINE OF THE STUDY	3
2. CONDITIONS OF THE STUDY AREA	.9
2.1 NATURAL CONDITIONS	9
2.1.1 TOPOGRAPHY	9
2.1.2 GEOLOGY	12
2.1.3 CLIMATE	15
2.1.4 RIVERS	17
2.2 SOCIO-ECONOMIC CONDITIONS	25
2.2.1 ADMINISTRATIVE DIVISION AND POPULATION	25
2.2.2 AGRICULTURE	26
2.2.3 SOCIAL FACILITIES	27
2.3 SEDIMENT DISASTERS	30
2.3.1 VOLCANIC ACTIVITIES AND DISASTERS	30
2.3.2 DISASTER COUNTERMEASURES	31
3. VOLCANIC DEBRIS CONTROL PLAN	36
3.1 BACKGROUND	36
3.1.1 EXISTING MASTER PLAN	36
3.1.2 REVISION OF THE EXISTING MASTER PLAN	36
3.2 SEDIMENT CONTROL PLAN	39
3.2.1 BASIC ITEMS OF SEDIMENT CONTROL PLAN	39
3.2.2 SEDIMENT CONTROL FACILITY PLAN IN K. MUJUR .	42
3.2.3 SEDIMENT CONTROL FACILITY PLAN IN K. REJALI .	45
3.2.4 SEDIMENT CONTROL FACILITY PLAN IN K GLIDIK	48
3.2.5 CONSTRUCTION SCHEDULE	50
3.2.6 COST ESTIMATION	50

	PAGE
3.3 DEBRIS FLOW WARNING SYSTEM PLAN	51
3.3.1 PURPOSE OF THE PLAN	51
3.3.2 OUTLINE OF DEBRIS FLOW WARNING SYSTEM	51
3.3.3 DEBRIS FLOW EVACUATION SYSTEM	54
3.4 SELECTION OF PRIORITY PROJECTS	57
J.4 DILIBOTTOR OF THEORY THOUSAND	
4. THE FIRST PRIORITY PROJECT	58
4.1 SEDIMENT CONTROL FACILITY PROJECT	58
4.1.1 ALTERNATIVE PLANS	58
4.1.2 PROJECT COST	61
4.1.3 PROJECT BENEFIT	67
4.1.4 EVALUATION	80
4.1.5 IMPLEMENTATION PLAN OF FIRST PRIORITY	
FACILITY PROJECT	84
4.2 DEBRIS FLOW WARNING SYSTEM PROJECT	95
4.2.1 PROJECT FEATURE	95
4.2.2 MAIN EQUIPMENTS	99
4.2.3 MANAGEMENT OF THE SYSTEM	100
4.2.4 EVALUATION	100
4.2.5 IMPLEMENTATION PLAN OF DEBRIS FLOW	
WARNING SYSTEM PROJECT	102
4.2.6 PROJECT COST	104
4.2.7 PHASING PLAN OF DEBRIS FLOW WARNING	٠
SYSTEM PROJECT	105
4.3 TOTAL PROJECT COST OF THE FIRST PRIORITY PROJECT	108
	•
5. THE SECOND PRIORITY PROJECT	110
5.1 ALTERNATIVE PLANS	110
5.2 PROJECT COST	114
5.3 PROJECT BENEFIT	117
5.3.1 DISASTER MODEL	117
5.3.2 DIRECT DAMAGE	119
5.3.3 INDIRECT DAMAGE	119
5.3.4 ANNUAL DIRECT AND INDIRECT DAMAGE	120
5.3.5 DAMAGE MITIGATION EFFECT BY SEDIMENT CONTROL	
FACILITIES	120

	iv	
		PAGE
5 4 EVAL	NOITAL	121
5.4.1	ECONOMIC EVALUATION	121
5.4.2	SOCIAL EVALUATION	125
5.4.3	TOTAL EVALUATION	126
5.5 IMPI	EMENTATION PLAN OF SECOND PRIORITY PROJECT	126
5.5.1	OUTLINE OF PROJECT	126
5.5.2	CONSTRUCTION SCHEDULE	127
5.5.3	CONSTRUCTION METHOD AND EQUIPMENT	129
5.5.4	PROJECT COST	130
5.5.5	EVALUATION	131
6. WATER (CONSERVATION STUDY	135
6.1 GENI	BRAL	135
6.2 WATI	RESOURCES POTENTIAL	135
6.2.1	SURFACE BASE FLOW	135
6.2.2	GROUNDWATER	139
6.2.3	WATER QUALITY	139
6.3 WATE	ER CONSERVATION PLANS	142
6.3.1	GENERAL	142
6.3.2	FACILITY PLANS	144
6.3.3	EFFECT OF WATER CONSERVATION	148
6.3.4	ALTERNATIVE PLANS FOR WATER CONSERVATION	152
6.4 COM	SINED PROJECT PLAN	155
•		
7. CONCLUS	SION AND RECOMMENDATION	157

POPPUEMENT-I:	scope of work for the Study	+ 1	
SUPPLEMENT-2:	Members List		
SUPPLEMENT-3:	Minutes of Meeting	and the second of	
SUPPLEMENT-4:	Drawings of the First Priority Project		
SUPPLEMENT-5:	Drawings of the Second Priority Project		
to the			
		•	

LIST OF FIGURES

		PAGE
Fig1.1	Study Area	5
Fig1.2	Study Process	6
Fig1.3	Study Items and Study Flow	8
	and the second of the second o	
Fig2.1	Schematic Geomorphological Unit Map	
	of Tengger-Semeru Volcanic Row	9
Fig2.2	Outline of Topography	11
Fig2.3	Geological Map	13
Fig2.4	Schematic Geological Profile of the	
	Study Area	14
Fig2.5	Isohyetal Map (Mean Manual, 1951/52-1979/80) .	15
Fig2.6	Distribution of Monthly Rainfall	16
Fig2.7	Fluctuation of Annual Rainfall and	
	Maximum Daily Rainfall	- 16
Fig2.8	Meteorological Data at Gubung Domas Hilir	16
Fig2.9	River Systems of the Study Area	18
Fig2.10	Grain Size Distribution Curves	- 22
Fig2.11	Location of Kecamatans in Kab. Lumajang	25
Fig2.12	Typical Cropping Patterns in the Study Area	29
Fig2.13	Record of Disaster	33
Fig2.14	Disaster Area	34
Fig3.1	Sediment Control Function	37
Fig3.2	Result of Master Plan Review	40
Fig3.3	Schematic Drawing of Sediment Control	
	Facility in K. Mujur	43
Fig3.4	Schematic Drawing of the Plan of Sediment	
. 5	Control Facilities in K. Rejali	46
Fig3.5	Schematic Drawing of the Plan of Sediment	
	Control Facility in K. Glidik	48
Fig3.6	Structure of Debris Flow Warning System	54
.=.	Disaster Potential Map	56
-		

		PAGE
Fig4.1	Alternatives for First Priority Project	60
Fig4.2	Cross Section of Leprak Fan	63
Fig4.3	Consolidation Dam of Rock Basket	64
Fig4.4(1)	Flow Chart of Estimation of Direct Damage	4
119. 4.1(~)	Mitigation Amount	68
Fig4.4(2)	Flow Chart of Estimation of Indirect	
119. 11.(2)	Damage Mitigation Amount	69
Fig4.5	Sediment Flooding Model	72
Fig4.6	I.R.R. Total Benefit and Total Cost of	
1191	Alternatives for the First Priority Project.	81
Fig4.7	Method of Concrete Work for the	i.
* * 9 * * • ·	First Priority Project	88
Fig4.8	Diagram of Debris Flow Warning System	9.7
Fig4.9	Station Map of Debris Flow Warning System	98
Fig4.10	Flow Chart of Application for	
119. 2	Debris Flow Warning System	101
Fig5.1	Candidate Facilities of the Second Facility	
	Project	112
Fig5.2	I.R.R., N.P.V., Benefits and Costs	124
3		
Fig6.1	Flowchart of Water Conservation Study	136
Fig6.2	Result of Base Flow Simulation	138
Fig6.3	Schematic Geological Profile of K. Lengkong	
	Fan	140
Fig6.4	Counter Line of Surface of Tertiary	
	Basement of K. Lengkong Fan	141
Fig6.5	Study Flowchart of Water Conservation	
	Preliminary Plan	142
Fig6.6	Alternatives of Facilities for Water	
	Conservation	146
Fig6.7	Alternatives of Water Conservation	
	Facilities	:147
Fig6.8	Irrigation Area	149
-		

LIST OF TABLES

		PAGE
Table-2.1	Source Valleys of Sediment	21
Table-2.2	Specific Gravity and Field Density	22
Table-2.3	Debris Density of Flowing Lahar	23
Table-2.4	Main Observed Floods	24
Table-2.5	Production of Major Crops - 1980	28
Table-2.6	Livestock and Poultry in Kab. Lumajang (1980)	28
Table-2.7	The Victims and Casualties by Lahar in	
	May 1981	32
Table-3.1	Proposed Revisions for the Existing	
	Master Plans	38
Table-3.2	Kecamatan and Desas in the Disaster	
	Prevention Areas	39
Table-3.3	Properties in the Disaster Prevention Area	41
Table-3.4	Sediment Control Facility Plan for K. Mujur .	44
Table-3.5	Sediment Control Facility Plan for K. Rejali.	47
Table-3.6	Sediment Control Facility Plan for K. Glidik.	49
Table-3.7	Construction Schedule	50
Table-3.8	Cost of Sediment Control Plan	50
Table-4.1	Alternatives for First Priority Project	59
Table-4.2	Economic Cost of Sediment Control Facility	•
	for the First Priority Project	66
Table-4.3	Possible Disaster Area	70
Table-4.4	Desas in the Possible Disaster Area of	;
	K. Rejali	70
Table-4.5	Desas in the Possible Disaster Area of	
	K. Glidik	70
Table-4.6	Design Sediment Volume .for K. Rejali and	1
	K. Glidik	71
Table-4.7	Magnitude of Disaster	72
Table-4.8	Damage Ratio According to the Thickness	
	of Sediment Deposit	73
Table-4.9	Average Thickness of Sediment Deposit	73
Table-4.10	Estimated Potential Damage Value in	
	the Possible Disaster Area of K. Rejali	74

PAGE

Table-4.11	Estimated Potential Damage Value in	
	the Possible Disaster Area of K. Glidik	75
Table-4.12	Annual Rate of Increase of Damage Potential .	75
Table-4.13	Direct Damage of K. Rejali	.76
Table-4.14	Direct Damage of K. Glidik	76
Table-4.15	Sediment Control Volume in K. Rejali	78
Table-4.16	Sediment Control Volume in K. Glidik	78
Table-4.17	Annual Benefit at 1992	80
Table-4.18	Results of Economic Evaluation for	. **
	the First Priority Facility Project	81
Table-4.19	Properties in the Possible Disaster Area	
	of K. Mujur	82
Table-4.20	Outline of First Priority Facility Project	84
Table-4.21	Project Work Schedule for the First	
	Priority Facility Project	85
Table-4.22	Annual Construction Quantity for the	
	First Priority Facility Project	86
Table-4.23	Price List of Construction Equipment for	
	the First Priority Facility Project	90
Table-4.24	Financial Cost of the 1st Priority	
	Facility Project	91
Table-4.25	Annual Financial Cost of the First	
	Priority Project	92
Table-4.26	Annual Economic Cost of the First	
	Priority Project	93
Table-4.27	Economic Evaluation of the First	
	Priority Project	94
Table-4.28	Equipment of the Debris Flow Warning System .	99
Table-4.29	Properties in the Area Covered by	1 1 1
	the Debris Flow Warning System	100
Table-4.30	Project Work Schedule for Warning System	103
Table-4.31	Financial Cost of the Debris Flow Warning	
	System	104
Table-4.32	Phasing Plan of the Debris Flow Warning	14.14
	System Project	105
Table-4.33	Financial Cost of 1st Stage of the Warning	
	System Project	106

S. :		PAGE
Table-4.34	Financial Cost of 2nd Stage of the Warning	
	System Project	106
Table-4.35	Financial Cost of 3rd Stage of the Warning	
•	System Project	107
Table-4.36	Financial Cost of The First Priority Project	109
Table-5.1	Construction Order	111
Table-5.2	Alternatives for Second Priority Project	113
Table-5.3	Facilities for Second Priority Project	113
Table-5.4	Economic Cost of Sediment Control Facilities	
Table 3.4	for the Second Priority Project	114
Table-5.5	Possible Disaster Area of K. Mujur after	
Table-2.2	Urgent Rehabilitation Project	117
Table-5.6	Desas in Potential Disaster Area of	
Table-5.0	K. Mujur after Urgent Rehabilitation Project.	117
mahla 5 7	Design Sediment Volume (K. Mujur)	118
Table-5.7	Average Thickness of Sediment Deposit	118
Table-5.8	Estimated Damage Potential Value of	1.10
Table-5.9		119
	K. Mujur after Urgent Rehabilitation Project.	120
Table-5.10	Direct Damage of K. Mujur	122
Table-5.11	Sediment Control Effect in K. Mujur	122
Table-5.12		
	at 1992	121
Table-5.13		
4.1	the Second Priority Project	123
	Properties in the Possible Disaster Area of	
	K. Mujur	125
Table-5.15	Outline of Second Priority Project	126
Table-5.16	Project Work Schedule for Second	
	Priority Project	128
Table-5.17	Price List of Construction Equipment for	
	Second Priority Project	130
Table-5.18	Financial Cost of the Second Priority Project	
Table-5.19	Annual Financial Cost of the Second	
	Priority Project	131
Table-5.20	Annual Economic Cost of the Second	
The second second	Priority Project	132

		PAGE
Table-5.21	Economic Evaluation of the Second	
	Priority Project	134
Table-6.1	Simulated Base Flow	137
Table-6.2	Alternatives for Conservation Facilities	145
Table-6.3	Condition of Irrigation Area	150
Table-6.4	Unit Price	153
Table-6.5	Preliminary Economic Evaluation of Water	
	Conservation Project	1.54
Table-6.6	Economic Evaluation of Combined Project Plans	156

GLOSSARY

Debris flow: Mass movement of mixture of some 40% sediment and some 60% water. It flows down with stepped flow concentrated by boulders at the front.

Bed load flow: Individual movement of river bed materials by tractive force of running water

Mud flow : Intermediate flow between debris flow and bed load flow. It has not stepped flow and boulder concentration.

Lahar : Traditional alias for flow of mixture of sediment and water. It is corresponded to Debris flow and Mud flow.

Yield suppression sediment volume:

Effect of facilities to reduce the sediment production at the source.

Run-off regulation sediment volume:

Effect of facilities to deposit temporarily at big flood and then to flow them down gradually by force of the subsequent flood.

Run-off storage sediment volume:

Effect of facilities to catch the run-off sediment in its reservoir.

Sediment transport adjustment volume:

Effect of facilities to improve sediment discharge capacity.

Control sediment volume:

Combined concept of yield suppression sediment volume, run-off regulation sediment volume, run-off storage sediment volume and sediment transport adjustment volume.

Sediment discharge: Run-off sediment volume per second

Check dam : Sediment control facility which is constructed crossing the river and has

height of over 5m.

Consolidation dam: Sediment control facility which is

constructed crossing the river and has

height of under 5m.

Sand pocket : Sediment control facility composed of the

consolidation dams and dikes at the both

banks.

Sabo plan : Synthetic scheme to prevent the sediment

disaster.

Design reference point, Design supplementary reference point:

Points to decide design run-off sediment volume, design excess sediment volume and

design allowable sediment volume

K., BS., Curah : River or channel in Java Language

Desa : Samllest rural administrative subdivision

Kecamatan : Administrative division controlling

several Desas

Kabpaten : Administrative division controlling

several Desas, Prefecture

SUMMARY

1. REVIEW OF THE MASTER PLAN

The Existing Master Plans prepared by the Government of Indonesia were reviewed by the Study Team on the basis of new survey data including the disaster in May, 1981 for the main purpose of the selection of priority projects.

As a result of review, problems in the Existing Master Plans were identified, modification in the sediment control plan and the warning system plan was proposed as shown in Table-1. The principal revisions are as follows:

- Disaster prevention areas are newly established;
- Scale of plan is changed to 100 years, from 50 years (K. Mujur), 70 years (K. Rejali) and 2 years (K. Glidik);
- Design sediment volume on each river is settled on the basis of the result from the sediment runoff-control simulation instead of that in the existing master plan;
- As sediment control system, sediment yield suppression, sediment runoff regulation and sediment transport adjustment system are employed in addition to a sediment storage system which is only employed in the existing master plan;
- Some of locations and specifications of sediment control facilities in the existing master plan are changed, and some additional sediment control works are planned.
- Proposals for the reinforcement of warning system comprised of: i) information collection system, ii) information processing system and iii) public information system are offered.

Table-1 Proposed Revisions for the Existing Master Plans

	Item	Existing Master Plans	Proposed Revisions
Objective	3	To protect the disaster area from Lahar disaster and to improve the socio-economic condition.	No revision
	Disaster preven- tion area	Areas along the river channel.	Identify possible disaster areas. Areas are classified into 5 groups.
	Magnitude of plan	K. Mujur 50 years K. Rejali 70 years K. Glidik 2 years	100 years
	Design reference point	Not established	One sabo reference point and supplementary reference points are established.
	Sediment volume dealt with by the plan	K. Mujur 10,144,000 m ³ K. Rejali 8,500,000 m ³ K. Glidik 4,400,000 m ³	K. Mujur 5,040,000 m ³ 5,220,000 m ³ 4,500,000 m ³
Sediment control plan	Sediment control function Fl: Sediment Yield	K. Mujur F3 by check dam and sand pockets.	K. Mujur F1 and F2 by check dam F3 by sand pocket F4 by dike and etc.
	Suppression F2: Sediment Runoff Regulation F3: Sediment Runoff Storage F4: Sediment	F3 by check dam	 K. Rejali Fl and F2 by check dam F3 by sand pocket F4 by diversion channel and etc.
	Transport Adjustment	K. Glidik F4 by embankment	K. Glidik Fl and F2 by check dam F4 by dike
	Facility	K. Mujur K. Rejali K. Glidik	K. Mujur K. Rejali K. Glidik
	Check dam	24 units 5 units 0	11 units 9 units 9 units
. [Sand pocket	1 unit 0 0	3 unit 1 unit 0
	Consolidation dam	4 units 0 20 units	12 units 22 units 0
	Dike	5.0 km	8.8 km 9.5 km 9.6 km
	Spur dike	0 12 units 0	0 0 0
	Channel work	0 9.5 km 6 km	0 0 0
	River excavation	0.6 km 0 0	6.8 km 0 0
	Diversion channel	and the same of th	- l unit -
	Construction cost	K. Mujur K. Rejali K. Glidik	K. Mujur K. Rejali K. Glidik
	(Maintenance cost/year)	Rp10.9x10 ⁹ Rp10.9x10 ⁹ Rp8.9x10 ⁹ (0) (Rp0.05x10 ⁹) (Rp0.1x10 ⁹)	Rp32×10 ⁹ Rp33×10 ⁹ Rp23×10 ⁹ (Rp0.06×10 ⁹) (Rp0.04×10 ⁹) (0)
	Construction	K. Mujur K. Rejali K. Glidik	R. Mujur K. Rejali K. Glidik
	term	10 years 10 years 10 years	15 years 20 years 13 years
erning sy	rstem	Necessity for reinforcement of information collection system and telephone communication system is indicated.	Reinforcement of the following warning systems was proposed Information collection system Information processing system Public information system
ater cons	ervation	Not mentioned.	Preliminary water conservation pla in K. Rejali including the K Lengkong fan is proposed.

2. SELECTION OF PRIORITY PROJECTS

The urgent rehabilitation project loaned by OECF has recently started and will bring about substantial effect to the K. Mujur The K. Mujur basin will become more basin in the near future. safety than the other basin. Some 180,000 people and the area of 178km^2 would be secured properties in the be executed countermeasures should following recent sediment disaster successively. Moreover, the frequently being occurred in the K. Rejali basin than in the K. Considering above situations, the first priority should be given to the sediment control facility project in K. Rejali and the second priority to that in K. Mujur.

The debris flow warning system project around Mt. Semeru southeastern slope should be also recommended as the first priority project in combination with the sediment control facility project. Because, the sediment disaster in the Study area tends to cause a great loss of lives and it will take a long period to complete fully the sediment control facility project, however the warning system with main purpose of human lives conservation will soon take effect on the entire area.

3. THE FIRST PRIORITY PROJECT

The first priority project consists of hard and soft countermeasure:

- Sediment Control Facility Project for the K. Rejali basin.
- Debris Flow Warning System Project for the entire area.

3.1 FIRST PRIORITY SEDIMENT CONTROL FACILITY PROJECT

(1) Alternatives

The alternatives for the first priority sediment control facility project were drawn on the basis of the following considerations. Four alternatives were planned as shown in Table-2.

- The construction of the sediment control facilities should, in principle, be executed according to the work order given in the Plans.
- The frequency of disasters in the K. Rejali basin has increased since 1942 when the upper stream of the BS. Semut was diverted to the K. Rejali river system. Because of this, it would be desirable to execute the diversion work designed to transform the present overfit situation back to the original state existing before 1942. The diversion work should take precedence.
- According to the empirical judgement, sediment flooding at the head of the fan will cease when a half of the sediment discharged into the fan has been successfully controlled. After that, the construction of the sediment control facilities planned in the fan area can be started.

Among the alternatives, from the socio-economic and technical view points, the alternative P1-3 is the most feasible and selected as the first priority sediment control facility project.

Table-2 Results of Economic Evaluation for the First Priority Sediment Control Facility Project

Alter- natives	Combination of Facilities	Design Scope (Probability Year)	Economic Cost 10 ⁶ Rp	Maintenance Cost 10 ⁶ Rp/Year	I.R.R.	Total Benefit 10 ⁹ Rp
p1-1	1,5,9	13	17,591	2	8.55	77.8
P1-2	1,2,3,4,5, 6,7,9	40	22,003	2	8.44	94.3
P1-3	1,5,8,9	50	20,681	38	8.92	93.5
P1-4	1,2,3,4,5, 6,7,8,9	90	25,093	38	7.58	96.6

Facility No.	Name of Facility	
1. 2.	Curah Kobo'an Check Dam	No.6 No.5 No.4
4. 5.	Diversion Work Channel	No.3
	K. Lengkong Check Dam	No.7
6. 7.	Curah Lengkong Check Dam	No.1 No.2
8. 9.	K. Leprak Sand Pocket Intake and Channel	

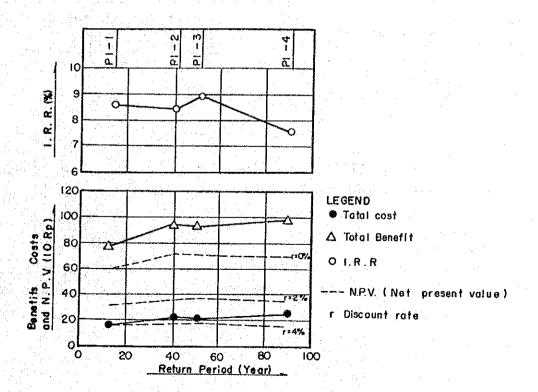


Fig.-1 I.R.R., Total Benefit and Total Cost of Alternatives for the First Priority Sediment Control Facility Project

(2) Outline of the First Priority Sediment Control Facility Project

Facilities to be constructed by the first priority sediment control facility project are summarized as shown in Table-3.

Table-3 Outline of First Priority Sediment Control Facility Project

Name of River	Name of Facility	Specifications							
	Curah Kobo'an CHD-6	H=23 m Vc=120,800m	L=438 m Vs=2,112,000m						
K. Rejali	Diversion channel	L=1,350m Ve=566,000m	B=30m Vg=7300m						
	K. Leprak Sand Pocket Intake and Channel	Consolidation Vc=14,300m Vem=155,000m L=430m	dam 3 Vs=4,300m Vg=15,000m						
K. Glidik	K. Lengkong CHD-3 (Pronojiwo Dam)	H=10m Vc=42,700m	L=2330 Ve=24,000m						
	K. Lengkong CHD-7	H=10m Vc=4,670m	L=145m Ve=4,000m						
Vc: Concrete	f channel v	L: Length of da s: Steel basket g: Gabion work	: volume						

(3) Project Work Schedule

The construction period of the first priority facility project is six years including surveying, detail designing and preparatory works. Refer to Table-4.

(4) Project Cost

According to the above-mentioned construction procedure, the project cost ammounts to be 29 billion Rp. and summarized as shown in Table-5.

Table-4 Work Schedule for the First Priority Sediment Control Facility Project

		181	:		2nd	3		3cd			4th	_	5	th	6	th
Piscal year		196	7		198	38	<u> </u>	198	9		1990		1	991	1	992
Description	4	9	3	4	9	3	4	9	3	4	9	3	4	9 3	4	9 ;
1. Enginearing Service																
(Design, Tender and Procurement Process)															ŀ	
	i .					•	l					ĺ				
(1) B. Kobo'an check dam No.6				þ												
(2) Diversion channel	-	-		þ						1						
(3) K. Lengkong check dam No.3			-							١.		=			1	
(4) ** No.7	-		=										1 1		·	
(5) Leprak sand pocket	_						╡			1		Ì				
(6) Intake and channel	=	==	::::	1			:			1		-			1	
(7) Construction equipment and spare parts	⊨	_		ļ	-		ļ. =	-		 -					4	
(8) Construction supervision				-	·		╄			-						· · · · ·
															1	
2. Civil Works														: :		
(1) B. Kobo'an check dam No.6	ĺ			=			-			-		==	-			
(2) Diversion channel				=			-		-	-	Y-142			3	İ	
(3) K. Lengkong check dam No.3								٠.		١.			=		-	
(4) No.7															==	
(5) Leprak sand pocket	ĺ		٠.				=			=		_	==		1	
(6) Intake and channel						٠.									Comme.	~~~
(7) Preparation work				=	-	<u> </u>	╡									

Table-5 Financial Cost of First Priority Sediment Control Facility Project

Item	Foreign Currency 10 ⁶ Yen	Local Currency 10 ⁶ Rp	Total 10 ⁶ Yen
1. Construction equipment	1,825	-	1,825
2. Spare parts and consumable			
materials	389	· · · · · · ·	389
3. Civil works	1,029	9,538	4,561
4. Land acquisition	near 1	370	137
5. Engineering services	932	909	1,269
6. Government administration		584	216
7. Contingency	723	4,462	2,376
10 ⁶ Yen Total 10 ⁶ Rp (%)	4,898 13,225 45.7%	5,876 15,864 54.7%	10,774 29,089 100%

(Based on the price level of fiscal year 1982)
Yen Evaluation: lUS\$ = \frac{1}{2}240 = \text{Rp650, 1 Yen} = 2.7 \text{ Rp}

(5) Project Evaluation

Economic benefit through execution of the first priority sediment control facility project consists of the direct damage mitigation effect, indirect damage mitigation effect and water conservation effect. As a result of the economic analysis using the refined plan, economic cost, economic benefit and I.R.R. (Internal Rate of Return) of the first priority sediment control facility project are concluded as follows;

Economic cost $20,525 \times 10^6 \text{ Rp}$ Economic benefit $90,760 \times 10^6 \text{ Rp}$ 1.R.R 8.8%

3.2 DEBRIS FLOW WARNING SYSTEM PROJECT

- (1) Outline of the Debris Flow Warning System Project
 The debris flow warning system project consists of the followings. Refer to Fig.-2.
- (1) Information collection system

The information collection system gathers data which is required to predict the occurrence of a debris flow and to give warning for danger, and sends these data to the information processing center. It consists of the followings:

- Rainfall Observation System
 - . 1 small radar raingauge station
 - . 8 telemeter rainfall stations
- Water Level Observation System
 - . 6 telemeter water level stations
- Debris Flow Observation System
 - . 4 debris flow sensing stations
 - . 2 debris flow visual measuring stations
- 1 repeater station
- (2) Information Processing System

The information processing system is to process and control the data and predict the occurence of debris flow and give the evacuation warning. It will be concentrated on a information processing center installed at the Mt. Semeru Project Office.

(3) Public Information System

The public information system is to address the evacuation warning by 11 speaker stations according to the judgement of the information processing center without delay to people living in the disaster areas.

(2) Project Work Schedule

The debris flow warning system project consists of the design & equipment procuration, civil work & installation and test operation. Execution of these works needs five years. The project work schedule is shown in Table-6.

(3) Project Cost

The project cost of the debris flow warning system amounts to be 5.7 billion Rp. and summarized in Table-7.

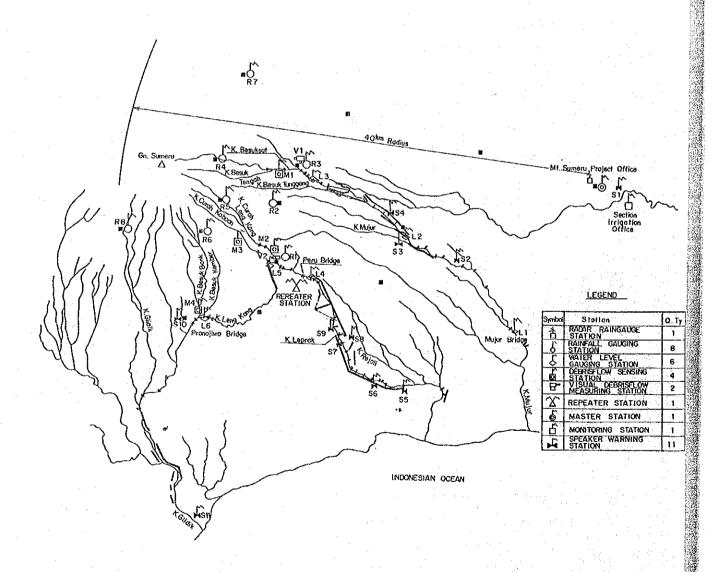


Fig.-2 Station Map of Debris Flow Warning System

Table-6 Work Schedule for Debris Flow Warning System Project

		lat	year						year						d yea						year		1				ear		
Item	L 2 3	4 5 6	7 8	9 101	112	1 2	3 4	5 6	7 8	9 10	1112	1 2	3 4	5 6	78	9 101	112	12	3 4 5	6	78	10111;	2 1	2 3	4 5	6	78	9 101	112
1. Besign & Procura- ment Process [1] Detail Design &																									٠		:		
Tender Documents			1		ļ	:				2													ı			-			
(2) Application for Approval of Tender Documents																													
(3) Tender Call						٠.																							
(4) Tender Evaluation		'		E	-							1																	
(5) Contract Award					=	===						Į																	
(6) Approval of Contract						===															,								
(7) L/C Opening									=	=													1						
(8) Hanufacture of Equipments						=			-	==						• .								•					
(9) Shipping & Inland Transportation		:					=			<u></u>			3 .			•													
2. Civil Work & Installation							•													٠.		-	١						
(1) Civil Horks		Politic							-			+-	3																
(2) Installation													_		-			1		٠.									
3. Operation																													
(1) Test Operation								:				1 .						=			 		=						
(2) Main Operation										4 %				٠.									ŀ				 		=
4. Engineering Service	-		-	<u> </u>		-						+-		********				-			-		=		-		-		
5. Techanical Guidanc	g			'. 	 									معسن							<u> </u>	-	=	T.T.	~		=		

Table-7 Financial Cost of the Debris Flow Warning System Project

Item	Foreign Currency 10 ⁶ yen	Local Currency 10 ⁶ Rp	Total 10 ⁶ yen
1. Equipment 1.1 Main equipment	905.8 747.2	0	905.8
1.2 Test equipment & mainte- nance tool	158.6		
2. Spare parts & Accessories	66.7	0	66.7
3. Construction & Installation 3.1 Construction	119.0 7.9	124.9 104.4	165.2
3.2 Installation 3.3 Inland transportation of	95.6	2.5	
equipments 3.4 Preparation work	0 15.5	1.7 16.3	
4. Land acquisition	0	0.2	0.1
5. Engineering service	519.7	422.3	676.1
6. Government administration	0	17.8	6.6
7. Contingency	230.8	122.3	276.1
106Yen Total 106Rp (%)	1,842.0 4,973.4 87.9%	254.6 687.5 12.1%	2,096.6 5,660.9 100%

(Based on the price level of fiscal year 1982) Yen Evaluation: lUS\$ = \(\frac{1}{2}\)240 = Rp650, lYen = 2.7Rp

(4) Project Evaluation

The sediment disaster around Mt. Semeru tends to cause a great loss of lives as seen in the past records.

The establishment of the debris flow warning system will be able to protect human life from such disaster. Stabilization of inhabitant's livelihood also will be strengthened and social activity will be increased. People and properties in the area covered by the debris flow warning system are shown in Table-8.

Table-8 Property in the area covered by the Debris Flow Warning System

Item	Quantity	Item	Quantity
People	40,700 persons	School	32 houses
Mosque and church	82 houses	Hospital	l house
Factory	16 "	House and office	8,600 "
Store	110 "	Cultivated field	3,300 ha

(5) Phasing Plan

Executing of the debris flow warning system project can be phased at 4 stages classified functionally, as shown in Table-9.

Table-9 Phasing Plan of the Debris Flow warning System Project

Stage	Structure of Syst	eī	n .	Project Period (month)	Financial Cost (10 ⁶ Yen)
1	Rainfall gauging station	8	stations		
2	Debris flow sensing	4	stations		•
1	station			24	1,021
3	Telemetering repeater	9	stations		
	station			•	•
4	Supervisory equipment	1	set		
	Above-mentioned systems				
2 5	Small radar raingauge	1	set	29	1,408
	Above-mentioned systems				
6	Water level gauging	6	stations		
	station	:			
3 7	Warning control equipment	1	set	29	1,895
8	Warning repeater equipment	1.	set		
9	Personal computer	1	set		
10	Speaker warning station 1	.1	stations		
	Above-mentioned systems				
4 11	Debris flow visual	2	stations	29	2,097
	stations				
12	Monitoring station	1	station	Sur 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

4. SECOND PRIORITY PROJECT

(1) Alternatives

The facilities which have such functions as sediment yield suppression, sediment runoff regulation and sediment runoff storage are selected as a candidate for the second priority project among the Revised K. Mujur Master Plan. The construction order of the candidate facilities for the second priority project are decided on the basis of the following consideration.

- (1) Sediment control facilities function effectively as a whole system of them including the all facilities completed upon to then. Therefore all the existing facilities are included in each alternative.
- (2) The construction of the proposed facilities must be started with check dams situated at the upstream of the existing check dam. And the construction must be continued toward the upper stream.
- (3) After most of the check dams are completed, the construction of sandpockets situated in the fan area must be started from the top of the fan toward the down stream.

By dividing the construction order into some stages, six alternatives have been chosen as shown in Table-10.

Among the alternatives, from the socio-economic and technical view points, the alternative P2-3 is the most feasible and selected as the second priority project.

Table-10 Result of Economic Evaluation for the Second Priority Project

			Economic Cost			
Alter nativ Plan		Magnitude of Plan (year)	Capital Cost (106 Rp)	Maintenance Cost (10 ⁶ Rp/year)	1.R.R (%)	N.P.V.
P2~1	11, 12, 12, 3	10	5,339	0	6.48	12.1
22-2	11, 12, 13, 1, 2, 3	20	5,902	. 0	5.91	12.1
	11, 12, 13, 1, 2, 3, 4, 5, 6	40	7,059	0	5.29	12.7
P2-4	11, 12, 13, 1, 2, 3, 4, 5, 6, 7	55	13,057	0	2.54	10.3
P2-5	11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8	75	22,462	40	0.51	2.9
P2-6	11, 12, 13, 1, 2, 3,	90	23,786	107	. 0	- ,
	4, 5, 6, 7, 8, 9, 10					·
No.	Facility name		No.	Facility :	name	
1	BS. Sat check dam No.	. 5	8	Benda sandpocke	et	
2	* No.	. 6	9	Kertosari sandı	ocket	
3	n No.	. 7 .	10	Kloposawit sand	pocket	

11

12

13

No.

Sumbersari check dam

No. 10

BS. Sat check dam No. 2

No. 3

No. 4

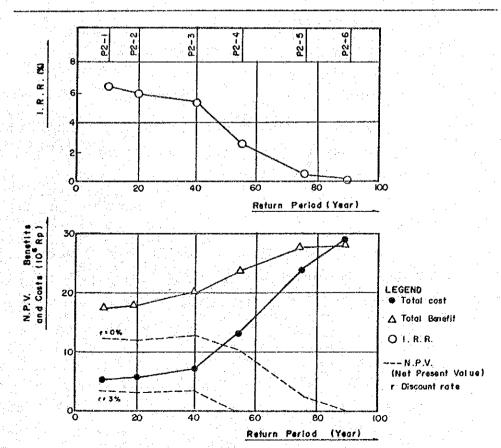


Fig.-3 I.R.R., Total Benefit and Total Cost of Alternatives for the Second Priority Project

(2) Outline of Project

Facilities to be constructed by the second priority project are shown in Table-11.

Table-11 Outline of Second Priority Project

No.		Facility			· .	Specifica	tion
1	BS.	Sat check	dam	5	H= 8m	L=190m	Vc= 7,800m ³
2	BS.	Sat check	dam	6	H= 8m	L=186m	Vc=10,000m ³
3	BS.	Sat check	dam	7	H=19m	L=320m	$Vc = 49,000 \text{ m}^3$
4	BS.	Sat check	dam	8	H=llm	L=102m	$Vc = 6,400 \text{m}^3$
5	BS.	Sat check	dam	9	H=17m	L=198m	Vc=18,000m ³
6	BS.	Sat check	dam	10	H=17.5m	L=72m	$Vc=12,000m^3$
11	BS.	Sat check	dam	2	H=11.0m	L=197m	$Vc=14,000m^3$
12	BS.	Sat check	dam	3	H= 9.0m	L=200m	Vc=13,000m ³
13	BS.	Sat check	dam	4	H=10.5m	L=203m	$Vc = 9,100m^3$

H : Dam height

L : Dam length

Vc: Volume of masonry concrete

No.11, No.12, No.13: existing facilities

(3) Construction Schedule

The construction period of the second priority project is six years including surveying, detail designing, tender and preparatory works. Refer to Table-12.

(4) Project Cost

According to the above-mentioned construction procedure, the project cost of the second priority project amounts to be 10.2 billion Rp. and summarized as shown in Table-13.

Table-12 Project Work Schedule for Second Priority Project

Fiscal year	L		lst			2nd			3rd	l		4t	h ·			5th			6th	
Description	4		9	3	4	9	3	4	9	3	4	9		3	4	9	3	4	9	
1. Engineering Service													and belong a late or			*****			Logista) vijesedi	
(1) Design	F			3														1		
(2) Tender		٠.		_										-						
(3) Procurement Process			===			, e													. 1	
(4) Construction Supervision							-				<u> </u>		ranopa,ca.				Salaman da			
	ĺ		•				٠.													
2. Civil Works	-															."				
(1) BS. Sat check dam 5	. 1				ĺ	-					<u>.</u>									
(2) BS. Sat check dam 6	٠		•					<u> </u>			<u> </u>	ī						1		
(3) BS. Sat check dam 7									,		<u> </u>									
(4) BS. Sat check dam 8																		1		
(5) BS. Sat check dam 9	- 1				l															
(6) BS. Sat check dam 10	1								٠.											
(7) Preparation work					<u></u>											:				
	1		1.7		100			1												

Table-13 Financial Cost of the Second Priority Project

Item	Foreign Currency 10 ⁶ yen	Local Currency 10 ⁶ Rp	Total 10 ⁶ yen
1. Construction equipment	1,010	459	1,010
2. Spare parts and consumable materials	227	# #	227
3. Civil works	224	3,169	1,398
4. Land acquisition	•••	26	10
5. Engineering services	233	232	319
6. Government administration	→	248	92
7. Contingency	220	1,365	726
10 ⁶ Yen Total 10 ⁶ Rp (%)	1,914 5,168 50.6%	1,867 5,040 39.4%	3,781 10,208 100%

Based on the price level of fiscal year 1982. Yen evaluation: US\$1 = \$240 = Rp650, 1 Yen = 2.7 Rp

(5) Project Evaluation

Economic cost, economic benefit and I.R.R. of the second priority project are concluded as follows;

Economic cost $7,059 \times 10^6 \text{ Rp}$ Economic benefit $19,740 \times 10^6 \text{ Rp}$

I.R.R 5.3%

5. PRELIMINARY PLAN FOR WATER CONSERVATION

- (1) Preconditions for Planning
- Prevention of disaster in the area where the developed water has a beneficial effect should be assured as the sediment control works progress to a certain degree.
- The Pronojiwo dam should be constructed according to the diversion plan, which is an integral part of the first priority project, to secure safe and easy intake of water at that point.
- (2) Water Resources Potential

Base flow of K. Glidik and K. Rejali

- Mean base flow discharge at the Pronojiwo dam of K. Glidik is $2.5 \text{ m}^3/\text{s}$.
- Mean base flow discharge at the K. Leprak No. 1 Dam of K. Rejali is 1.0 \mbox{m}^3/\mbox{s} .
- The total of the two points is $3.5 \text{ m}^3/\text{s}$.

Groundwater at K. Lengkong Fan area

The groundwater basin volume can be supposed to be some $100~\rm x$ $10^6 \rm m^3$ based on the above information, however the developable annual mean groundwater will be some 1.0 $\rm m^3/s$ at the maximum judging from the results of the groundwater simulation.

(3) Water Conservation Plan

The alternatives of water conservation project should include the following facilities:

Intake Facility

Able to take the base flow discharge of K. Lengkong and the exploited groundwater.

Groundwater Exploitation Facility at K. Lengkong Fan Pumping Well (Well and Pump)

Water Conveyance Facility (1)

Tunnel or Open Channel

Hydro-electric Power Station

Hydro-electric power generation at the end of the water conveyance facility (1).

Water Conveyance Facility (2)

Open channel from K. Rejali to the irrigation area.

Cultivated Paddy Field

To facilitate the land improvement programme for the irrigation area, certain wastelands are reclaimed to be paddy fields in the K. Rejali and K. Pancing basins.

This water conservation project will produce the following effect:

Irrigation

The devastated area extending from the K. Rejali basin to the K. Pancing basin and not exceeding EL. 500m where there is no irrigation at present is chosen to be the target area for the irrigation programme. According to the amount of annual mean developed water, 3.5 m $^3/s$, 4.0 m $^3/s$ and 4.5 m $^3/s$, areas of 3,500 ha, 4,000 ha and 4,500 ha will be irrigated through the year, respectively, as paddy fields.

Hydro-electric Power Generation

According to the amount of developed water, the electric-power shown in Table-14 will be generated.

Table-14 Hydro-electric Power Generation

Developed Water	3.5 m ³ /s/y	4.0 m ³ /s/y	4.5 m ³ /s/y
Maximum output (KW)	2,200	2,200	2,200
Annual output of electric energy (10 ⁹ KW)	16.7	18,5	19.5

(4) Alternatives of Water Conservation Plan

A number of possible water conservation plans can be developed based on a different combination of facilities.

Table-15 shows the alternative plans for water conservation and their respective economic evaluation. From the table the followings are summarized:

- 1) Among the alternative plans, the plan B in which there is no groundwater development with the open channel water conveyance system shows highest I.R.R. of 16.19%;
- 2 However, as the economic evaluation of each plan is carried out on the basis of the annual mean amount of the developed water, the stable water supply by the groundwater development during the dry seasons should be also evaluated reasonably in the next detailed study;
- 3 From the standpoint of maintaining the area's basis of livelihood as well as economic considerations, several of the water development plans examined are thought to be promising undertakings. Should it be judged desirable to execute such undertakings, it would be mandatory to confirm their feasibility by carrying out a more advanced study than the present one.

Table-15 Preliminary Economic Evaluation of Water Conservation Project

Alter- native	Economic Cost (10 ⁶ Rp)	Maintenance Cost (10 ⁶ Rp/Y)	Developed Water (m ³ /s)	Power Generation (10 ⁶ KWH/Y)	Internal Rate of Return (I.R.R.) (%)
Α	23,832	155.4	3.5	16.747	10.41
В	14,482	99.4	3.5	16.747	16.19
С	25,416	718.4	4.0	18.500	9.56
D	16,064	662.4	4.0	18.500	14.61
E	26,998	1,282.0	4.5	19.473	8.65
F	17,646	1,226.0	4.5	19.473	12.97

6. CONCLUSION AND RECOMMENDATION

(1) Master Plans Review

As a result of the Master Plans review carried out based on the new survey data including the disaster of May, 1981, several problematic areas in the said plans were identified. Further, below-mentioned revisions and additions to cope with a number of problems found in the said plans are presented here.

- 1 Basic changes in the volcanic debris control plan as well as revisions in the facility plan.
- (2) Reinforcement of the current warning system.
- (3) Preliminary Plan for Water Development

We strongly believe that this plan would be embodied as part of the Master Plans finally authorized by Indonesian Government.

(2) First Priority Plan

The sediment control facility project for K. Rejali basin and the debris flow warning system project for the entire southeastern slope of Mt. Semeru has been chosen as the most feasible and recommendable first priority project.

(A) First Priority Sediment Control Facility Project

The project is composed of the following facilities and gives the beneficial economic effect of I.R.R. 8.8%.

- Three sabo dam (one at K. Rejali, two at K. Glidik)
- A set of diversion channel of 1.3km (Curah Kobo'an to K. Lengkong)
- One sand pocket at K. Rejali
- A set of water conservation facilities for paddy field irrigation of 1,000 ha.

This project to be completed in 6 years will cost as follows:

Financial cost:

 $29.1 \times 10^9 \text{ Rp}$

Foregin currency portion:

13.2 x 10⁹ Rp (45%) (4.90 x 10⁹ Yen)

Local currency portion:

 $15.9 \times 10^9 \text{ Rp } (55\%)$

After the completion of the project, the properties in the area Rejali $40\,\mathrm{km}^2$ Κ. 15,000 inhabitants of and protected.

(B) Debris Flow Warning System Project

systems and following This project composed of the facilities in the system.

- Information collection system
 - 1 small radar raingauge station
 - 8 telemeter rainfall stations
 - 4 debris flow sensing stations
 - 2 debris flow visual measuring stations
 - 6 telemeter water level stations
- Information processing system
 - . A set of information processing center at Mt. Semeru Project
 - . A set of monitoring station office
- Public information system
 - 11 speaker stations

This project to be completed in 5 years including the two year's test operation, will cost as follows:

Financial cost:

 $5.7 \times 10^9 \text{ Rp}$

Foreign currency portion: 5.0×10^9 Rp (88%)

 $(1.84 \times 10^9 \text{ Yen})$

Local currency portion: 0.7×10^9 Rp (12%)

This project would cover the entire southeastern slope of Mt. Semeru and protect 40,700 inhabitant's lives from the sediment disaster.

Execution of the debris flow warning system project can phased at 4 states classified functionally. The Project cost at each stage is 1,021 million yen, 1,408 million yen, 1895 million yen and 2,097 million respectively.

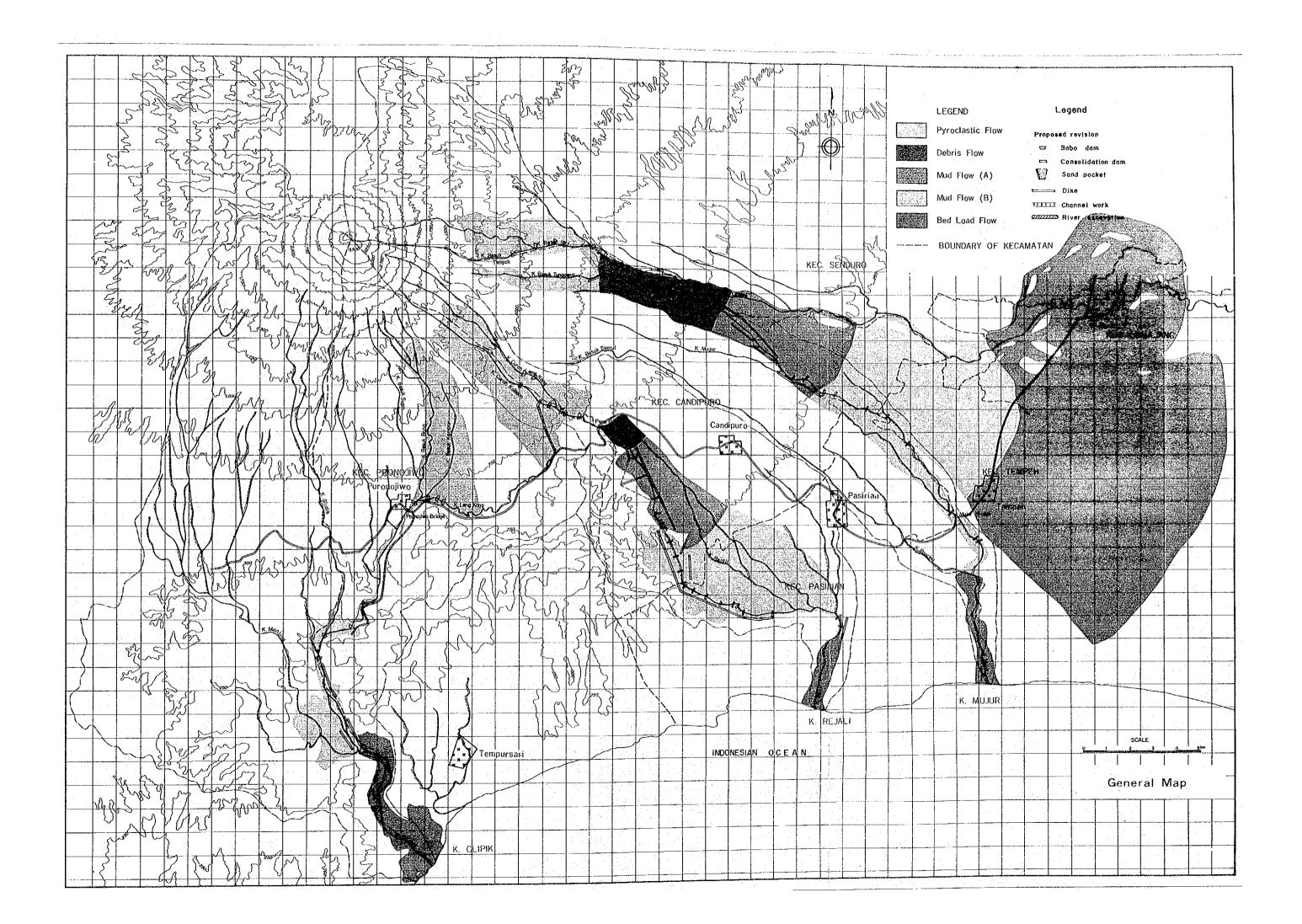
(3) Second Priority Project

The sediment control facility project for K. Mujur basin has been chosen as the recommendable second priority project. This project is composed of six check dams, and gives the beneficial economic effect of I.R.R. 5.3%. This project to be completed in 6 years will cost as follows:

Financial cost: 10.2×10^9 Rp Foreign currency portion: 5.2×10^9 Rp (51%) (1.91 x 10⁹ Yen) Local currency portion: 5.0×10^9 Rp (49%)

After the completion of the project, the properties in the area $28 \, \mathrm{km}^2$ and 19,000 inhabitants of K. Mujur basin would be protected.

(4) Water Conservation Plan


Assuming that the precondition of security against volcanic debris disaster in the target area has been guaranteed and further supposing water use of irrigation and production of electric power, I.R.R. of between 8.7% to 16.2% was obtained as a result of the preliminary economic evaluation for the six alternative preliminary plans.

standpoint of maintaining the area's livelihood as well as economic considerations, several of the water development plans examined are thought to be promising undertakings. Should it be judged desirable to execute such undertakings, it would be mandatory ξo confirm their feasibility by carrying out a more advanced study than the present one.

(5) Proposed Project

Sediment control facility project for K. Rejali basin is hereby recommended for immediate execution as an urgent project to preserve and maintain human lives and properties as well as for stability and security of the area's living environment and livelihood.

Moreover, it would be also recommendable to execute the debris flow warning system project, which would greatly contribute toward safeguarding human lives always threaten by sediment disaster in the entire southeastern slope of Mt. Semeru, in parallel with the above-mentioned sediment control facility project.

1. INTRODUCTION

1.1 BACKGROUND OF THE STUDY

(1) Positioning of Sabo Work

The Directorate General of Water Resources Development (DGWRD), Ministry of Public Works (MPW) of the Republic of Indonesia gives the following three points as major objectives for the achievement of the national development shown by the Third Five Year Plan (1979/80 - 1983/84), which is the national plan of Indonesia.

- (1) To maintain the safety of agricultural areas.
- (2) To secure the fairness among people by the maintenance of safety in local areas.
- (3) To secure the stability of production activities by protecting industrial areas from disasters.

With a view to achieving these objectives, such policies as river improvement work, sediment control work, the prediction of flood and sediment disasters, the construction of dams and reservoirs to regulate floods and the maintenance and control of river structures have been implemented.

The sabo work is carried out not only as a part of the general river work but also as a part of the special projects, where the prevention of disasters accompanying the eruption of an active volcano is the main objective. A total of four projects, including the Mt. Semeru Project, are currently in operation as special projects on the islands of Java and Bali.

(2) Mt. Semeru Project

The Mt. Semeru Project was founded in 1976 by MPW as the fourth sediment control project for active volcano, when the volcanic activities of Mt. Semeru became active and a number of debris flows frequently occurred. The Project took over the original work conducted by the Provincial Government of East Java.

MPW supervise the Mt. Semeru Project Office through the Directorate of Rivers of DGWRD. At the time of a disaster occurring in the area, MPW carries out measures to prevent the spread of the disaster around Mt. Semeru in cooperation with the Ministry of Social Affairs, the Ministry of Transmigration, the Ministry of Defence and the Ministry of Mining and Energy.

The Mt. Semeru Project Office was opened at Lumajang in 1977 and has been conducting a series of work such as the construction of sediment control facilities, disaster relief activities and research and planning in order to protect people's lives and assets from sediment disasters.

(3) Background of the Present Study

The debris flow which occurred in May, 1981 caused extensive damage to the area in the southeastern slope of Mt. Semeru. 369 people were either killed or reported missing, 127 people were injured, 535 houses were damaged and 539 ha of paddy fields were flooded, resulting in serious social and economic after-effects in the area.

Concerned about the possibility of another large disaster caused by flood, occurring due to the large volume of sediment which had accumulated along the river channel and being easily dislocated, the Government of Indonesia requested economic aid for urgent rehabilitation project mainly centered on the K. Mujur Basin and, as a result, the Japanese and Indonesian Governments agreed on a loan from the Overseas Economic Cooperation Fund (OECF) to be given for the said project. The actual start of the work is currently being prepared.

Hoping to implement systematic disaster prevention measures in order that a similar disaster should not take place again in the long-term perspective, the Government of Indonesia also

requested technical assistance in regard to this study - "The Feasibility Study on the Volcanic Debris Control and Water Conservation Project in the Southeastern Slope of Mt. Semeru" (the Study). Upon receipt of this request, the Japanese Government decided to carry out the study through the Japan International Cooperation Agency (JICA).

Prior to the Study, a preliminary study team was sent to Indonesia by JICA in December, 1981 and the "Scope of Work" (S/W) for the Study was prepared on the basis of the field survey. This S/W (refer to Supplement-1) was mutually agreed upon on December 18, 1981 between DGWRD of MPW and the preliminary study team.

1.2 OUTLINE OF THE STUDY

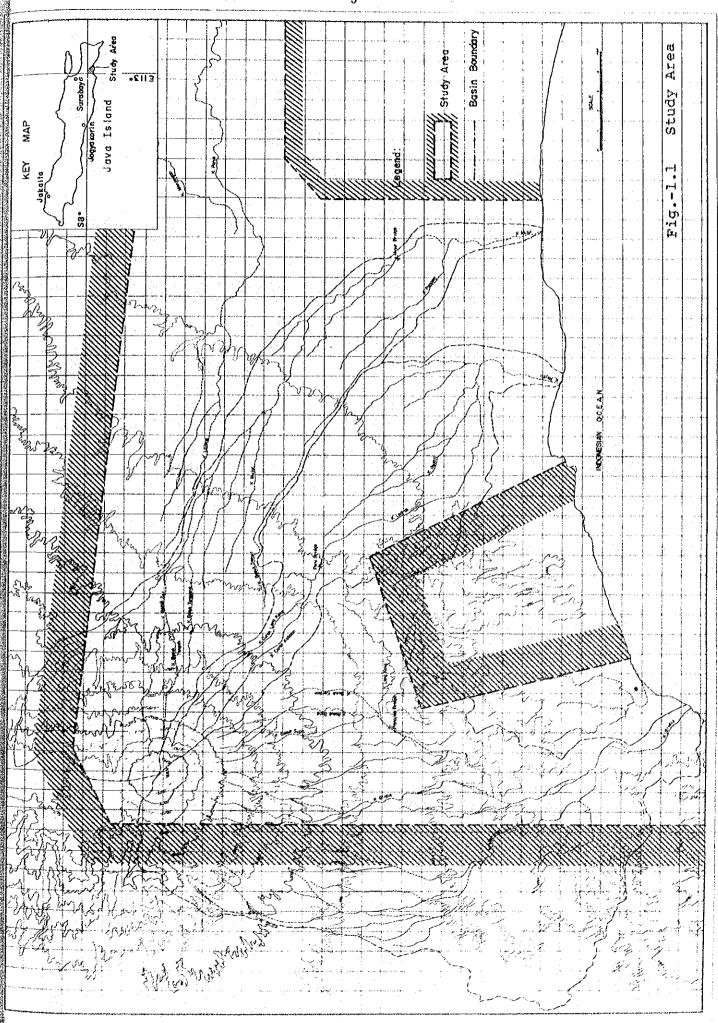
The Study was conducted for 31 months on aggregate, from the submission of the "Inception Report" in April, 1982 until the submission of the "Final Report" in December, 1984 by the study team headed by Dr. Koichi Hirao, organized by JICA (the Study Team) under the supervision of the Work Management Committee headed by Dr. Masayoshi Matsubayashi, in close cooperation with the Indonesian Government.

Names of the members of the Study Team and the Work Management Committee are listed in Supplement-2 and the minutes of major meetings are given in Supplement-3.

(1) Objectives of the Study

The objectives of the Study are to conduct a feasibility study on the project to prevent sediment disasters in the south-eastern slope of Mt. Semeru, and to assess the water resources potential to be developed in accordance with the actual implementation of the said project.

In addition, the transfer of planning and surveying technology to counter-parts of the Government of Indonesia through their direct participation in this Study should also be materialized.


(2) Study Area

The area to be studied (the Study Area) is the southeastern slope of Mt. Semeru, located in Kab. Lumajang, East Java Province and its area is approximately $730 \,\mathrm{km}^2$. The major river systems in the Study Area are the K. Mujur, K. Rejali and K. Glidik river systems. Refer to Fig.-1.1.

(3) Procedures and Items of Study

The Study can be divided into the following four stages. The basic concepts for each stage are described below. Refer to Fig.-1.2.

- (1) First Stage (March, 1982 May, 1982)
 - Draft the Inception Report and conceive a comprehensive plan for the Study.
- (2) Second Stage (June, 1982 May, 1983)
 - Obtain the necessary data for the Study through field investigations.
 - Review the existing Master Plan.
 - Select the priority projects.
 - Plan and design the First-Priority Project.
- (3) Third Stage (June, 1983 March, 1984)
 - Propose the Revised Master Plan.
 - Evaluate the feasibility of the First-Priority Project and prepare its implementation program.
 - Conduct a supplementary field survey for the evaluation of the Second Priority Project.
 - Prepare the Interim Report.
- 4) Fourth Stage (June, 1984 December, 1984)
 - Evaluate the feasibility of the Second-Priority Project.
 - Complete the Final Report on the Study.

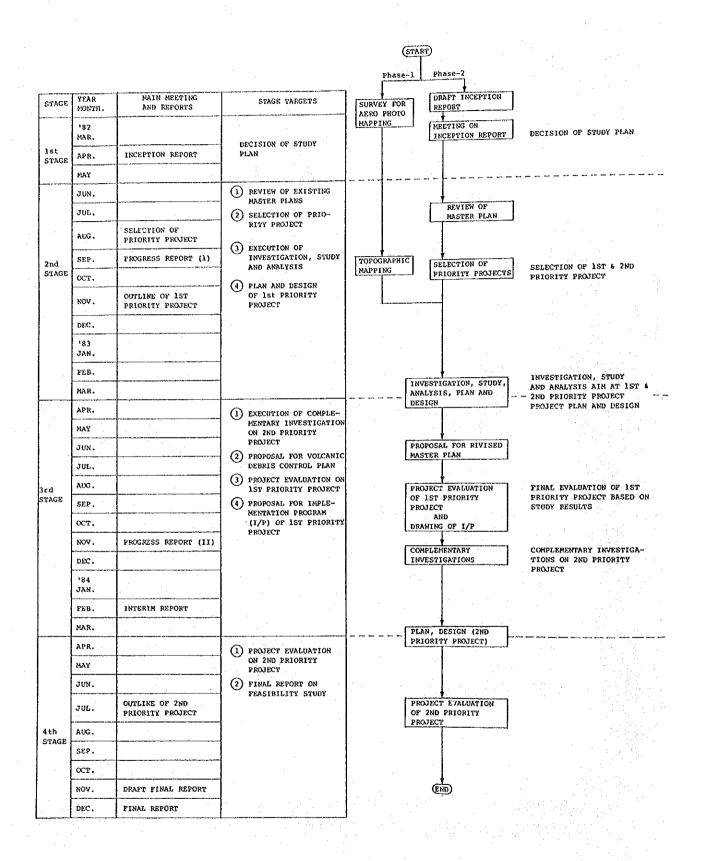


Fig.-1.2 Study Process

- (4) Contents of the Study
 The Study is divided into the following three phases.
- (1) Field Investigation (Mainly performed in the study area)
- 2 Analysis and Examination (Performed in Japan using the field survey data)
- (Make feasibility studies on the Priority projects)

The main study items in each phase and their study flows are shown in Fig.-1.3.

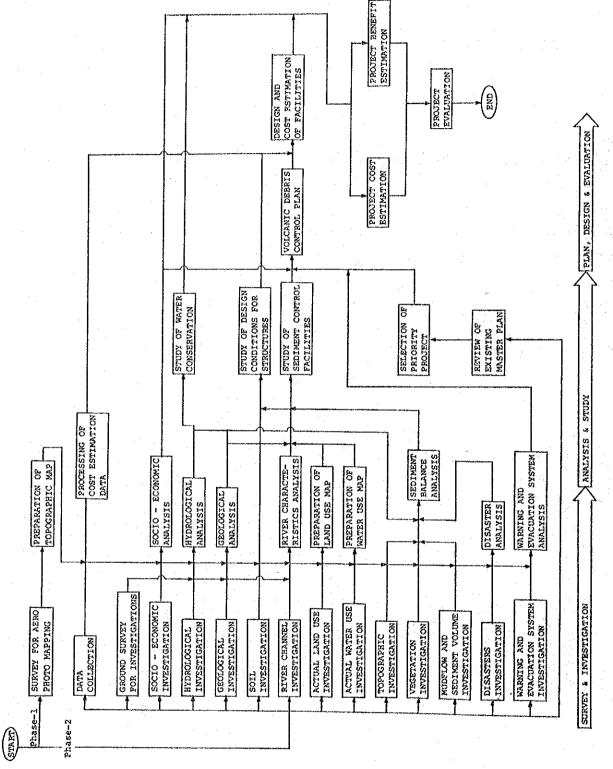


Fig.-1.3 Study Items and Study Flow

2. CONDITIONS OF THE STUDY AREA

2.1 NATURAL CONDITIONS

2.1.1 TOPOGRAPHY

Mt. Semeru, the highest mountain of EL. 3,767m in Java Island and an active stratovolcano, is located in the east of long and large Quaternary volcanic arc running from east to west in the center of Java Island called Solo Zone or Sunda Quaternary Volcanic Arc, and belongs to Tengger-Semeru Volcanic complex extending from north to south that is one of the volcanic complexes forming Solo Zone.

Tengger-Semeru volcanic complexes are morphologically classified into the following three units. (from A. SAKAI, I. SURYO, 1980) Refer to Fig.-2.1.

- Tengger mountain range
- Jambangan volcanic omplex
- Semeru volcano

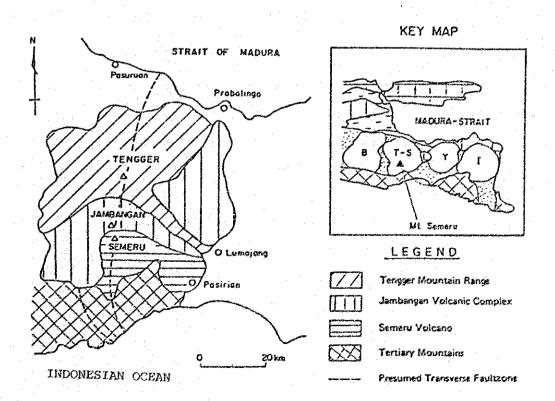
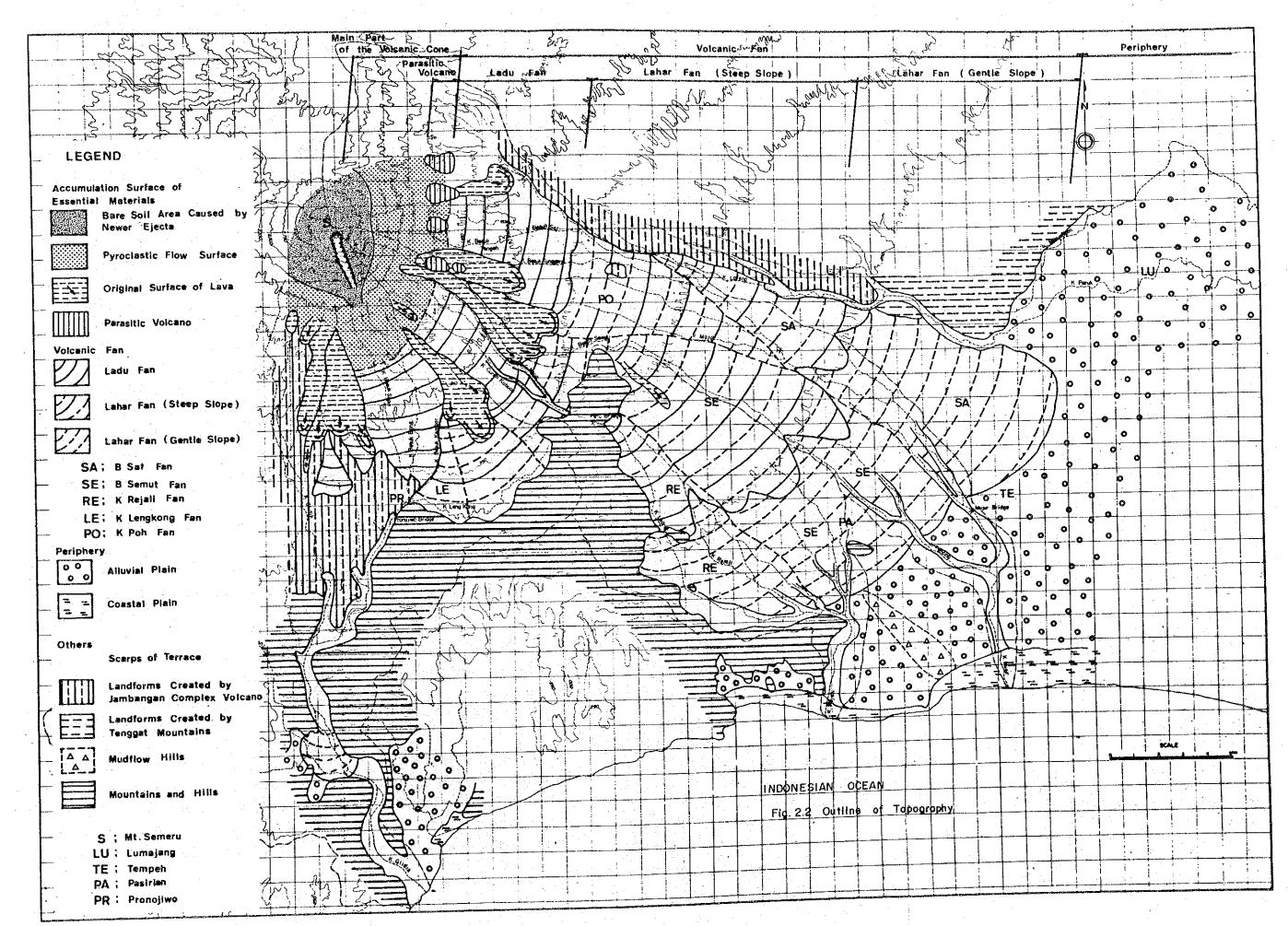


Fig.-2.1 Schematic Geomorphological Unit Map of Tengger-Semeru Volcanic Row

Among them Mt. Semeru is the youngest and is formed on the southern slope of the Jambangan volcanic complex which is the oldest among the 3 units. To the south of Solo Zone in the study area, the mountain range called Southern Mountains comprising the Tertiary system runs from east to west in parallel with Solo Zone.

The Study Area covers both Solo Zone and Southern Mountains and is roughly classified into the following 4 areas according to the geomorphological characteristics. Refer to Fig.-2.2.

Semeru Volcano


- a. Main part of volcanic cone (EL. 1,500m to top)
- b. Volcanic fan
 (EL. 150 to 1,500m)
- c. Volcanic piedmont periphery
 (EL. 0 to 150m)

Southern Mountains

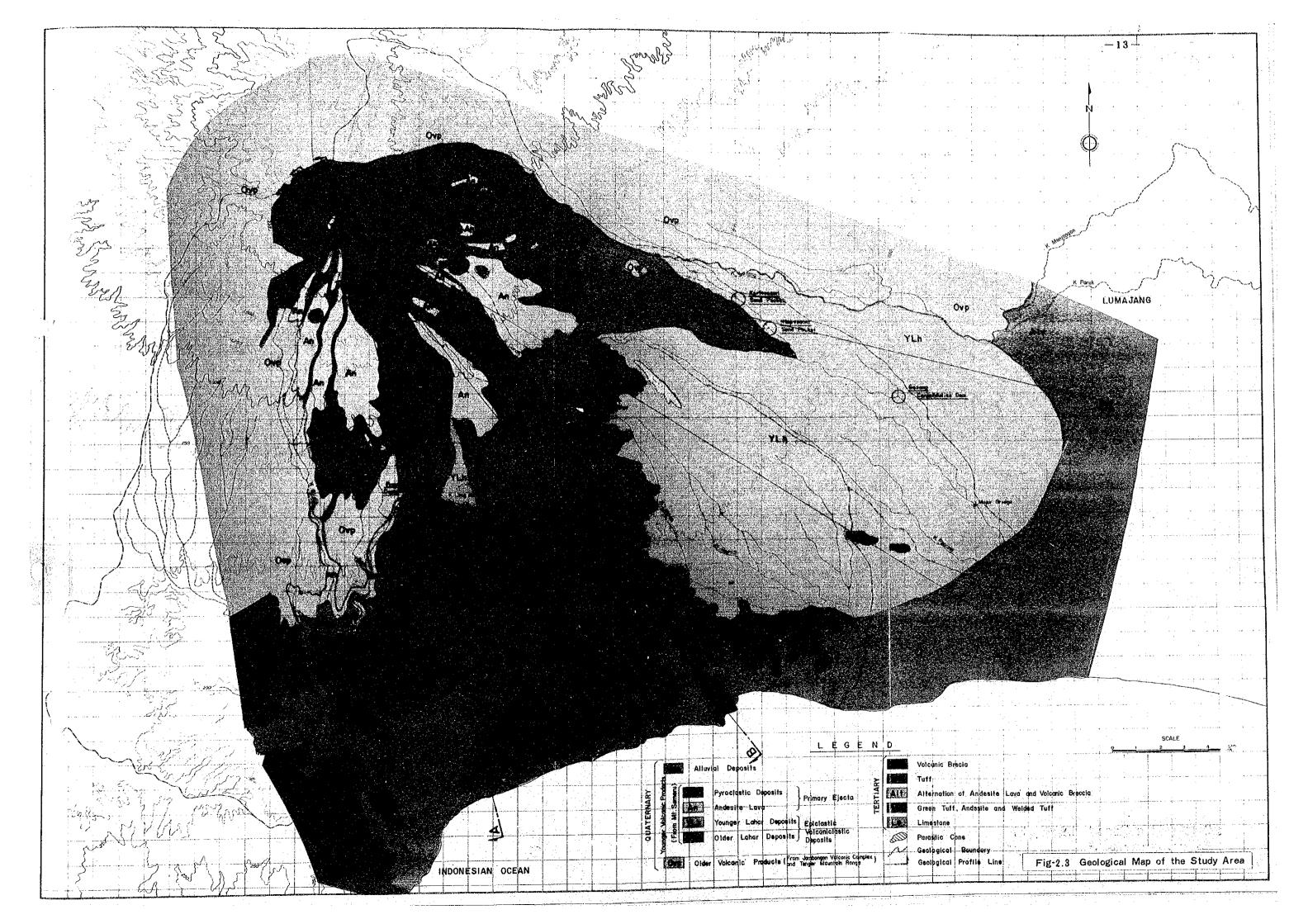
d. Mountains and hills

The volcanic activities of Mt. Semeru, which are the origin of the sediment disaster in the Study Area, are characterized as follows:

- Nuee Ardente and Lahar are concentrated on the southeastern and south slope.
- Judging from distribution of volcanic ejectaments (ex. ash falls, bomb, etc.), there seems to have been no large-scale eruptions in the past.
- Cycle of the active period and dormant period had been repeated many times.
- The crater is gradually shifting toward south.

2.1.2 GEOLOGY

Geology of the Study Area is largely divided into Tertiary system and Quaternary system. Quaternary system forms volcanic ranges including Mt. Semeru on the north side of the Study Area and Tertiary system forms steep mountains on the southwestern side of the Study Area. Refer to Fig.-2.3 and 2.4.


The Tertiary system comprises various volcanic rocks such as andesite, tuff and tuff breccia. The lowest layer is composed of the altered green tuff. There seems to be unconformity between these green tuff and the unaltered volcanic rocks lying over the former.

The Quaternary system is largely classified into older volcanic products, which are volcanic products of Jambangan volcanic complex, and younger volcanic products which are from Mt. Semeru. Most of the Study area is covered with younger volcanic products. The younger volcanic products can be also classified into the following types according to the composite material, mode of occurrence and compactness.

- a. Primary volcanic products
- b. Secondary volcanic products(Epiclastic volcaniclastic deposits):
 - bl. Younger Lahar deposits
 - b2. Older Lahar deposits
- c. Alluvium

Primary volcanic products are composed of those directly from the center crater or parasitic volcanoes. They have not moved from the original place in spite of rain, etc. Most of them are distributed over the area above EL. 800m of Mt. Semeru.

Secondary volcanic products (epiclastic volcaniclastic deposits in terms of volcanology) are those of the primary volcanic products which are moved with water and redeposited. They are collectively called Lahar deposits, and are distributed over the area from EL. 800 to 150m. Lahar deposit can be classified

into loose younger Lahar deposits and well compacted older Lahar deposits according to the degree of compactness. Older Lahar deposits form an old volcanic fan such as K. Poh Fan and younger Lahar deposits form a new volcanic fan covering the old volcanic fan.

The stratified alluvium is distributed in the Volcanic piedmont periphery which surrounds the Volcanic fan and comprises round pebbles, sub angular pebbles, sands, silt and clay.

a hydrogeological point of view, it appears that layer and the older volcanic products (Jambangan complex) volcanic form impermeable an. foundation in the piedmont of Mt. Semeru and loose volcanic products from accumulated on top of it forming a permeable The layer. general hydraulic structure of the aquifer considered to be a stratified structure which is regulated by the stratified structure of Mt. Semeru itself. Possible water veins there will be fragile lava, old valleys, a layer of lahar deposits with a large volume of pebbles.

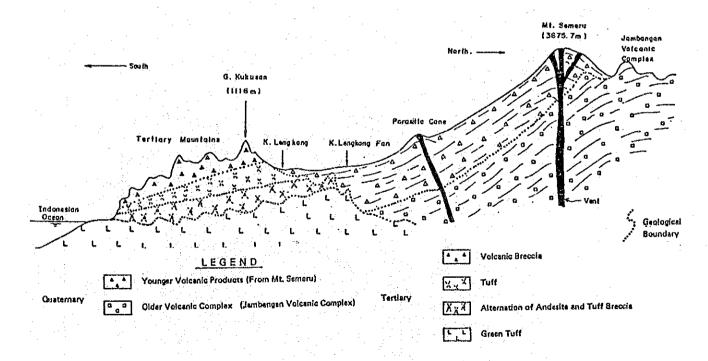


Fig. -2.4 Schematic Geological Profile of the Study Area

2.1.3 CLIMATE

The Study Area belongs to the Tropical Climate Zone and has distinctive rainy and dry seasons. The annual rainfall is from 1,500mm to over 4,000mm and the annual isohyetal lines shows a gradual increase almost parallel to the contour lines of Mt. Semeru (refer to Fig.-2.5).

The rainy season generally starts in November until April and the dry season extends from May until October. Although this distinction is clear at a low altitude, it gradually disappears in accordance with a higher altitude showing a lot of rainfall throughout the year (refer to Fig.-2.6). Daily rainfall of over 300mm has been observed at the Busk Sat Observation Station at EL. 795m (refer to Fig.-2.7).

According to the records of the Gunung Domas Hilir rological Station, which is located in the eastern part of the Study Area, the mean annual temperature is 25.1°C. monthly temperatures are between 23°C - 26°C, showing a narrow temperature range in this area. The annual mean humidity is as high as 90% with almost monthly no differentiation (refer to Fig.-2.8).

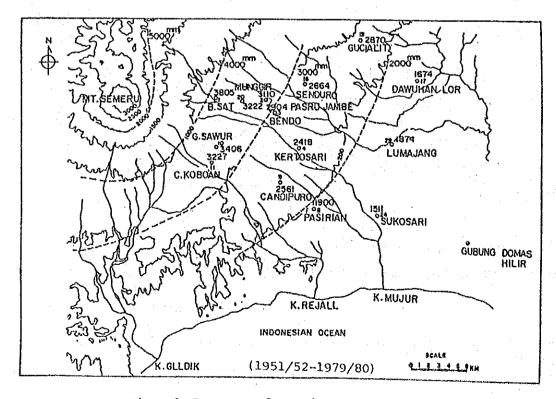


Fig.-2.5 Annual Isohyetal Map

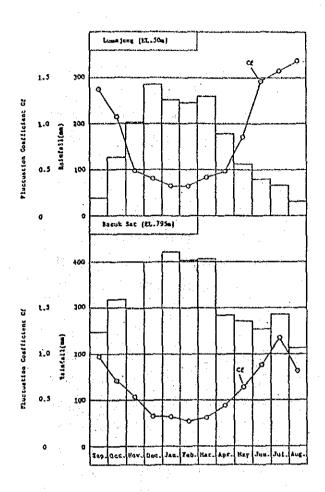


Fig.-2.6 Distribution of Monthly Rainfall

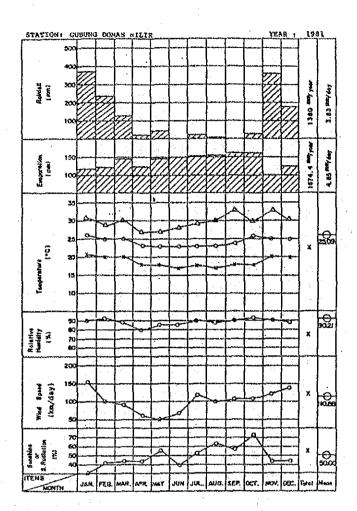


Fig.-2.8 Meteorological Data at Gubung Domas Hilir

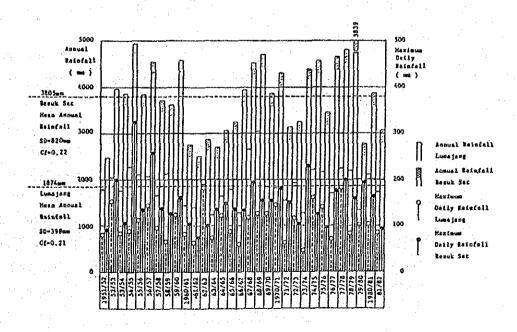


Fig.-2.7 Fluctuation of Annual Rainfall and Maximum Daily Rainfall

2.1.4 RIVERS

(1) River Channel Systems

The rain in the southeastern slope of Mt. Semeru radially cuts valleys into the mountainside, forming the K. Mujur, K. Rejali and K. Glidik river systems, located in this order from east to west in the Study Area. These rivers eventually pour into the Indonesian Sea (refer to Fig.-2.9).

K. Mujur river system

The K. Mujur, located in the eastern part of the Study Area, has the following main tributaries: B. Sat, B. Tompe, B. Tungeng, K. Poh, B. Semut and K. Pancing, forming the Poh fan, Sat fan and Semut fan.

Before the 1909 disaster, the B. Sat flowed into the B. Sat Rama (the old B. Sat) which ran almost at the center of the Sat fan. After the disaster, however, the K. Sat was artificially diverted to the K. Tsungen near the Keruto Sali village, located at the fan top of the Sat fan in order to prevent floods from advancing to the Lumajang area. As a result, the K. Mujur became a river with a large sediment flow as it incorporated the catchment areas for the B. Sat and the B. Tompe which had extensive sources of sediment yield upstream.

In the 1981 disaster, lahar destroyed the Leches dike at the diverting point of the channel, causing extensive damage to a wide area.

In 1941 and 1942, the lava flow from Mt. Semeru came down to EL. 800m of the B. Semut and completely buried the valley. As a result, the B. Semut and the K. Pancin, which were tributaries of the K. Mujur, lost the upper stream of the K. Cura Lengkong, which is now a tributary of the K. Rejali system, thus becoming underfit rivers. They are currently quite stable, however waste land, due to past disasters, spreads over the Semut fan.

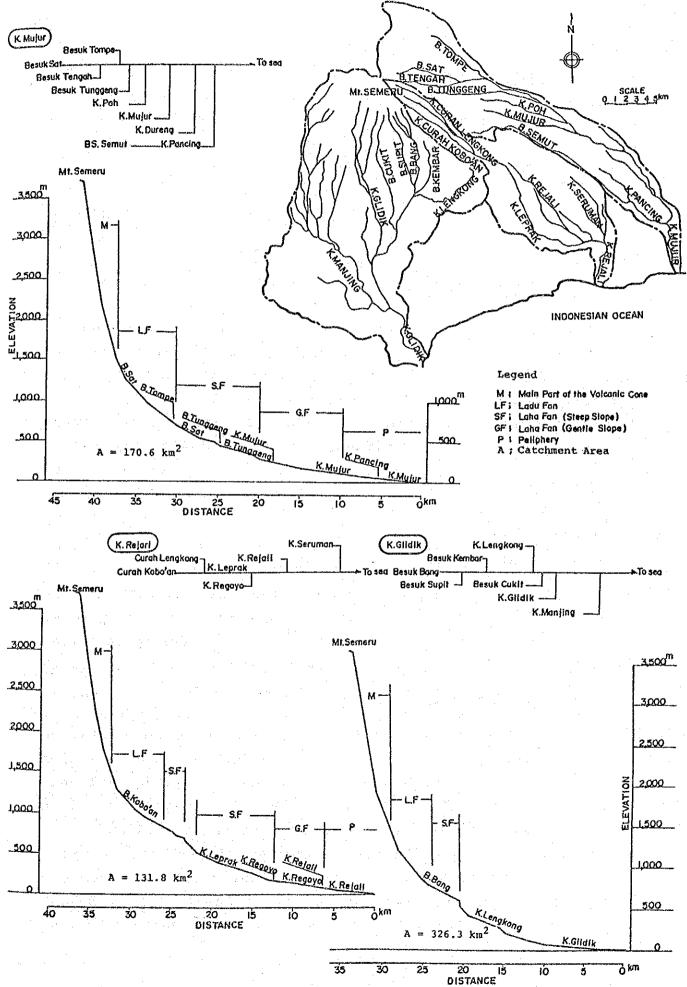


Fig.-2.9 River Systems of the Study Area

K. Rejali river system

The K. Rejali, located at the center of the Study Area, has tributaries with large sediment production, namely the C. Lengkong and the C. Kobo'an upstream. It runs through the Kobo'an valley, which is created in a tertiary mountain mass, forming the Rejali fan downstream.

Because of the large volume of sediment flow, the main stream which formally ran into the K. Rejali until 1976 changed its direction at the fan top and currently runs into the K. Leprak and the K. Regoyo which are located to the west of the fan.

The frequent occurrences of lahar disasters recently seen in the Rejali Fan are possibly explained by the following two reasons. Firstly, it has the C. Kobo'an, which gets a direct supply of sediment from craters at its head. Secondly, due to the change over of the upper river basin of the B. Semut to the C. Lengkong as a result of the eruptions in 1941/1942, the K. Rejali has become an overfit river where the increased flow of water and sediment exceeds the transportation capacity of the river channel.

K. Glidik river system

The K. Glidik, which is located in the western part of the Study Area, has the largest basin of the three river systems. It incorporates the K. Lengkong which runs east along the tertiary mountain mass into the main channel which runs south in accordance with the natural incline of the area.

The K. Lengkong currently produces the largest sediment flow as it incorporates the B. Supit, B. Bang and B. Kembar, which erode the pyroclastic deposits which are formed by volcanic ejecta daily produced by craters. The K. Lengkong shows a feature of an alluvial river upstream from the Pronojiwo Falls, as it meanders due to the gentle incline of the ground. Part of the river has become a lake as pyroclastic products from the 1976 eruption have blocked part of its channel. The Lengkong fan is formed to the north of channel and downstream of the

falls, a deep V shape valley has developed as far as the confluence point with the main river.

At the middle and downstream of the K. Glidik, a narrow valley bottom plain, where the difference in relative height with the present riverbed is small, has been formed providing a vulnerable situation for the occurrence of sediment flow.

Downstream, to the west of the Tenpulu Sali Plain, has become a raised bed river, where the difference in relative height is some 30m, suggesting a current conspicuous rise of the riverbed when taking into account the almost non-existant river terraces.

(2) Supply Sources of Sediment

A direct supply of sediment into the channel system comes from valleys which are well developed at the main part of the volcanic cone. The characteristics of these valleys as supply sources of sediment can be classified as follows (refer to Table-2.1).

Volcanic Valleys

Those valleys where volcanic ejecta from craters can easily find a way to flow in, thus making a source of a large volume of sediment.

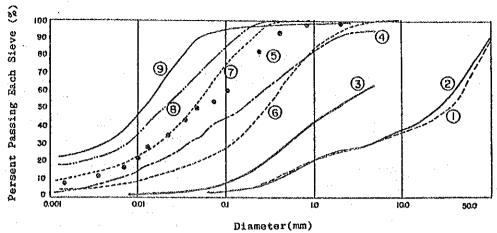
Degrading Valleys

Those valleys which have become the source of a large volume of sediment as they are situated next to a large area of degrading land at the river heads.

Stable Valleys

Those valleys which produce only a small volume of sediment as they have neither a direct inflow of pyroclastic products nor a large area of degrading land.

Table-2.1 Source Valleys of Sediment


Channel System Category	K. Mujur	K. Rejali	K. Glidik
Volcanic Valley	u-	C.Kobo'an	B.Bang B.Kembar B.Sarat
Degrading Valley	B.Sat B.Tengah B.Tunggeng	C.Lengkong	B.Spit B.Cukit B.Glidik
Stable Valley	B.Tompe K.Poh K.Mujur (upstream) K.Pancing B.Semut	- - -	K.Bening K.Lengkong

(3) Riverbed Materials

As shown by the grain size distribution of the riverbed materials for the three river systems (Fig.-2.10), the conditions are disadvantageous in view of the stable riverbeds since armouring coat has not been formed due to the extremely wrong distribution.

The grain size distributions of deposit at K. Lengkong fan and hill side of breaking zone are very similar to that of transport sediment as it contains a fair amount of fine sand. The floating sediment has a silt content of 70-90%.

The density of the riverbed materials and the results of the spot density tests are shown in Table-2.2. The vacancy rate at the river bed is found to be 40-50%.

Legend:

- (1) Riverbed Deposit of K. Mujur
- (2) Riverbed Deposit of K. Rejali
- (3) Riverbed Deposit of K. Glidik (Pronojiwo)
- (4) Deposit of K. Lengkong Fan
- (5) Erosion Sediment at the Upper Stream of BS. Tunggeng
- 6 Flowing Lahar Materials (At 11:20 on Feb. 9, 1983)
- (At 14:00 on Feb. 9, 1983)
- (8) Suspended Sediment of K. Mujur at the Mujur Bridge (At 17:25 on May 1, 1983)
- Suspended Sediment of K. Lengkong (Pronojiwo) (At 14:00 on Feb. 15, 1983)

Fig.-2.10 Grain Size Distribution Curves

Table-2.2 Specific Gravity and Field Density

		•			
Classifi- cation	Location	Position No.	Specific Gravity	Field Density	Volumetric Density
		R-2	2,777	1,535	0.55
Riverbed Materials	K. Rejali	R-4	2,793	1,675	0.60
		R-12	2,824	1,435	0.51
	K. Lengkond 11:20 Feb.		2,751	-	
	K. Lengkond 14:40 Feb.		2,739	_	
	Suspended Materials K. Lenkgong 14:00 Feb. 15, 1983		2,718	<u>.</u>	
K. Mujur 17:25 May 1, 1983		L, 1983	2,806	-	
	Landslide i BS. Tungger		2,727	-	

^{*} Given from specific gravity and field density.

(4) Record of Floods and Density of Runoff Sediment

Table-2.4 gives a list of floods where the discharge was over $200\text{m}^3/\text{s}$, which were observed from 1983 to 1984. It can be seen that frequent floods occurred in the K. Glidik. On May 3, 1983, a discharge in the order of $3,000\text{m}^3/\text{s}$ was observed at Pronojiwo on the K. Glidik which was a debris flow including a large amount of sediment. In respect to the K. Mujur, a flood of more than $100\text{m}^3/\text{s}$ did not occur during these two years.

Table-2.3 gives the results of the density measurements of transport sediment conducted in February and March, 1983. In respect to the K. Glidik, a debris flow with a density volume of 50% and a fluid density of 1.85t/m³, was observed.

Table-2.3 Debris Density of Flowing Lahar

Date Time St				Ob	served Vol	Estimated Value		
		Station.	Water Discharge (m /s)	① Total Volume (m)	② Soil (gr)	(gr)	@ Dd	Øp
Feb. 9, 1983	11:20	Promojiwo Bridge II	598.0 (11:00)	530	612,350	315,125	0.41	1.75
Feb. 9, 1983	11:20	Pronojivo Bridge I	598.0 (11:00)	530	710.875	270,075	0.49	1.85
Feb. 15, 1983	13:00	K. Lengkong II	19.2	1900	186.050	1862.800	0.02	1.08
Feb. 15, 1983	14:00	K. Lengkong I	3.78 (14:15)	1900	516.800	1652.075	0,13	1.14
Feb. 8, 1983	15:00	K. Leprak II	1.1	530	7.200	535,950	_	1.02
Feb. 8, 1983	16:00	K. Leprak I	1.1	530	18.375	524.625	0.01	1.02
Mar. 16, 1983	15:30	Mujur Bridge	10.8	2000	10,525	1995,450	0.00	1.00

D: Specific Gravity of Lahar
$$D = \frac{2}{1} + \frac{3}{1}$$

Cd: Volumetric density $Dd = \frac{1}{2} \frac{1}{2}$

^{*} Estimated Value from Flood Mark

Table-2.4 Main Observed Floods

						(K. I	Rejali)
•	Peak Dis- charge	Ra	infall Sta	tions & Th	iessen Co		
Data (1983)	(m ³ /s) RP-4 K. Leprak	10 G. Sawur	30 G. Leker	31 G. Pakis	32 Kamar A	33 Wonore- nggo	38(11) Curah Kobo'an
, t	No.1 Check Dam	0.02	0.36	0.06	0.18	0.03	0.35
1/May/83	422	0	x	x	x	0	0
26/May	289	o	×	×	×	o	o
24/Jan/84	307	0	×	×	0	0	o
7/Feb/	223	o	×	Ó	×	x	0
						(K. G	lidik)
	Peak Dis- charge	Ra	infall Sta	tions & Th			
Data	(m ³ /s) RP-3 Planned	30 G. Leker	31 G. Pakis	32 Kamar A	34(14) Prono- jiwo	38(11) Curah Kobo'an	42(13) Supit Urang
	Pronojiwo Dam	0.01	0.02	0.34	0.16	0.09	0.38
26/Feb/83	720.5	x	x	0	0	×	0
3/Mar	468.4	\mathbf{x}_{\cdot}	×	o -	0	×	o
13/Mar	436.0	×	x	0	. 0	0	0
19/Mar	436.0	×	×	•	0	0	o
20/Mar	517.0	×	×	0	o	0	0
29/Mar	232.6	* x	x	x	0	0	0
19/Apr	243.7	×	o	0	• •	O	0
28/Apr	221.6	x	. 0	o	. 0	o	o
l/May	2,956.8	×	X	x	• 0	o	0
3/May	221.6	×	0	×	0	O -	0
6/May	421.0	x	o	0	О	0	o
7/May	532.0	x .	x	0	o .	o	0
13/May	243.7	×	×	o	. 0	. o	0
25/May	998.2	x	x	x	o	o	0
27/May	243.7	x	x	x	0	0	O
14/Jan/84	456	x	x	O	0	0	o
16/Jan	244	x	x	0	o	0	Ó
15/Feb	758	×	0	x	0	· o	0
6/Mar	244	x	O	o ·	o	O	o
14/Mar	244	×	o	0	0	o	o

Data available o: Yes x: No

2.2 SOCIO-ECONOMIC CONDITIONS

2.2.1 ADMINISTRATIVE DIVISION AND POPULATION

(1) Administrative Division

The area of Kab. Lumajang, which belongs to the East Java Province and incorporates the Study Area is 1,791km² and is a typical medium size Kabupaten in Java Island. Lumajang currently consists of 16 Kecamatans as the Kec. Pronojiwo was divided into two during the study period (refer to Fig.-2.11).

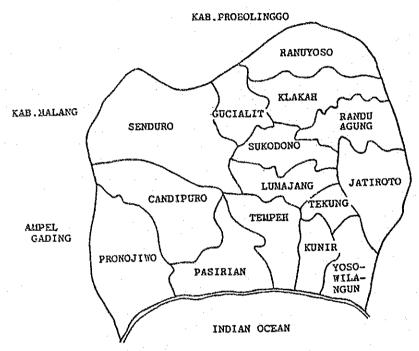


Fig.-2.11 Location of Kecamatans in Kab. Lumajang

(2) Population

As of 1980, the population of Kab. Lumajang is 874,000 with an average annual population increase rate of 1.17% and 1.36% for 1971-1980 and 1976-1980 respectively, which is fairly low in comparison with the population increase rate for Indonesia as a whole (2.32% for 1971-1980) and East Java Province (1.49% for 1971-1980). The population density of Kab. Lumajang $488/\text{km}^2$ which is lower than that of West Java $(609/km^2)$.

One possible reason to explain Lumajang's low population increase is the migration of people out of the Kabupaten. This migration is caused not only by new employment or marriage but also by the administrative transmigration of people who have lost their means of livelihood due to disasters. Taking the disasters in 1976 and 1981 as examples, more than several thousand people moved out to resettle at Slawazi, Sumatra, etc.

Some 10% of the total population of Kab. Lumajang is concentrated in Kec. Lumajang, where the local government offices are located, and the population density and population increase rate of the Kecamatan are 1,167 head/km² and 3.1% (1976-1980) respectively.

2.2.2 AGRICULTURE

The basic industry in Kab. Lumajang is agriculture. Based on the 1980 statistics, 118,000 households, more than half of the total 207,000 households in Kab. Lumajang, are engaged in agriculture. Agricultural land occupies 86% of the total land area of the Kabupaten, which is 1,654km². 356km² and 1,188km² are used for paddy rice fields and other crops respectively, showing that paddy fields take up about one fourth of all the agricultural land.

The production volumes of the major agricultural products in Kab. Lumajang are shown in Table-2.5. As the table shows, rice is by far the most important product and supports the local society and economy. The unit yield of rice is 4.7 ton/ha. with husk and is much higher than the average volume in East Java Province (4.3ton/ha.) or the Indonesian average (3.3 ton/ha.). This excellent yields is considered to be the result of plenti- ful water, stored by Mt. Semeru, and the good quality of the soil.

The paddy fields are irrigated using river water and spring water. Depending on the installation and management situation of the irrigation facilities, the distinction between technical irrigation, semi-technical irrigation or non-technical irrigation is made, responding to the respective case where these activities are conducted mainly by governmental organizations,

jointly by governmental organizations and village, which is a beneficiary, or soley by village.

In the K. Mujur and K. Rejali basins, $57 \, \mathrm{km}^2$ of land has been irrigated by 20 intakes. $42 \, \mathrm{km}^2$, which accounts for 73% of the total irrigated area, has been subjected to either technical or semi-technical irrigation.

A representative cropping pattern is shown in Fig.-2.12 and two and a half crops or a maximum of three crops are carried out where adequate irrigation is available. In areas of inadequate irrigation, either double-cropping or single cropping of rice is carried out while corn, tobacco and beans are cultivated as secondary products.

In addition, the domestic livestock and poultry shown in Table-2.6 are raised for farming, transportation, food or for cash income.

2.2.3 SOCIAL FACILITIES

The transportation facilities in the Study Area consist of roads and railways. Road transportation has become the most important method of transportation due to the recent increase of automobiles. The major routes from Lumajang run north towards Proboringo, west towards Malan bypassing the Mt. Semeru and east towards Junbel. Although the railway consists of two lines, one running north to south connecting Proboringo and Pasirian via Lumajang and another running east to west branching at Lumajang towards Jenbel, the services are infrequent and the maintenance situation is not very good.

The electric power supply cannot be said to be adequate for the demand and the supply and demand is regulated by periodical blackouts.

Water and sewage facilities are almost non-existant. Wells and spring water are relied upon in daily life while the water channels and rivers around inhabited areas are used for sewage.

Table-2.5 Production of Major Crops - 1980

(ton)

Kecamatan		Rice	Maize	Soy Bean	Cassava	Coffee
1.	Lumajang	29,839	2,485	570	830	###
2.	Sukodono	19,196	6,374	2,136	4,013	440
3.	Senduro	14,045	7,207	977	780	759
4.	Gucialit	133	4,846	354	3,107	1.40
5.	Klakah	7,314	14,918	2,978	8,553	1.0
6.	Ranuyoso	•	10,488	2,742	8,393	4
7.	Randuagung	15,979	8,403	2,250	920	8
8.	Pasirian	32,437	6,126	11_	1,187	21
9.	Tempeh	21,274	3,742	281	1,661	and the second s
10.	Candipuro	41,334	2,020	1.7	1,362	580
11.	Pronojiwo	11,814	423		14,697	904
12.	Yosowilangun	26,636	4,478	1,647	594	
13.	Jatiroto	25,404	2,543	676	4,400	
14.	Kunir	11,109	4,968	1,587	880	
15.	Tekung	12,012	1,849	805	590	يونون مورون در
	Total	268,094	80,870	17,032	51,966	2,426

Source: Statistic Lumajang 1980

Table-2.6 Livestock and Poultry in Kab. Lumajang (1980) (head)

<u> </u>				**************************************		The second state of the se	September 1990 Septem	
Buffalo	Cow & Ox	Horse	Goat	Sheep	Pig	Duck	Chicken	
5,830	90,105	2,369	40,838	20,196	2,915	68,241	688,724	

Rainy Season			Ory Season					Rainy Season			
Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
<u> </u>	-									e3	
Pa	7		Pa				ρa.				p _a
Pa		••••	Pa	1		7	To ∵Co				Pa.
Pa				·			7	7		Pa	
			7		 Ca	7					
	Ра		7					<u> </u>	<u> </u>		
f			,				Co			/	
	Co			Co		y	То				Co
	To			Co	7	<u> </u>					Ta
	Co								/#### 	.Co∴ Be	******
					Cas	ssava					
					Sug	garcar	ie				
00000	00000		00000		200000 200000 200000	ffee S					
					=Clo	ove=					

Pa; Paddy Ta; Tobac∞ Co; Corne B; Beans

Fig.-2.12 Typical Cropping Patterns in the Study Area