LIST OF RESULTS

6-60 WATER PRESSURE TEST (1) 6-61 2). 3) 6-62 (4) 6-63 5) 6-64 6). 6-65 6-66 7) 8).... 6-67 6-68 9) 6-69 (10) 6-70 (11)... 6-71 (12) (13) 6-72 6-73 (14) (15).... 6-74 6-75 6-76 (18) 6-77 (19) 6-78 6-79 (20).... 6-80 (22) 6-81 (23) . . . 6-82 (24).... 6-83

Fig. 6 - 9 (AN)

RESULT OF WATER PRESSURE TESTS

Page

6-60 <u>RESULT OF VATER PRESSURE TEST</u> (1)

÷.,

RESULT BOREHOLE NO. BM.2. BOREHOLE NO. BM.2. DEPTH OF TEST SECTION 2000-2500-DEPTH OF TEST SECTIONS 00-10-00+ INUN PRESSURE 10.2 MAXINUM PRESSURE 10.2 MAN Kile 3. CRITICAL PRESSURE CRITICAL PRESSURE X1/12 3. Mar 4.LUGEON VALUE LUGEON VALUE Ó 4. 12 12 10 10 ()18 8 P P kg/ca²⁶ Kg 6 4 4 2 Ż 0 0 4 6 8 10 12 14 6 2 8 10 12 14 2 4 q (1/min./m) q (1/min./m)10.00-15.00 25.00-30.00 1. m 20 2. 10.2 Kilin 3. 2,___ 10-2 / Kr 3. Kika Kilin. 0.7 0.3 12 12 10 10 ()8 8 P kg/cm²6 xg,6 Yer 4 4 2 2 00 t. Ô 10 12 Ô 6 8 1 2 8 10 12 6 14 $q (1/min_*/m)$ q (1/min./m) 15.00 - 20.00 30.00 - 35.00 1. -____ n. 2 10.3 k/m2 3. Kylon 30 Kylon kik 2 10.2 6.8 4. 0.1 12 12 10 10 8 8 P P. kg/ca²6 ×8, Xar 6 4 4 1 2 2 0). ń 4 6 \$ 10 12 14 2 4 6. 8 10 12 Ĩ4 q (1/min./m) q (1/min./m) ł ș

6-62 PRESSURE TEST (3) OF. VATER

. .

d (That

6-64 PRESSURE TEST (5) BORFHOLE NO. BM 3 BORFHOLE NO. BM. 3 DEPTH OF TEST SECTION 1000-1500. 1. DEPTH OF TEST SECTION 2500-30.00-2. MAXIMUM PRESSURE 10.2 M/m 3. CRITICAL PRESSURE //// 2. HAXIMUN PRESSURE 3. CRITICAL PRESSURE 10.2 Kika 10.2 M/m - Xilas - 46s 4. LUGEON VALUE 0 Ş 4. LUGEON VALUE 12 12 10 10 $(\bar{})$ ÷ . 8 8 P Р ×g/ca²⁶ KB/ca2 4 4 2 2 00 0 2 4 6 8 10 12 14 6 10 12 14 8 q (1/min./m)q (1/min./m) 15.00-20.00 1. 30 00-35 00 'n, 2 2. 10.2 Kaler 3. Kehn. 10.2. 1/2 3 Kline. 0.6 4. 12 12 10 10 N. 8 P kg/cm²6 8 P kg 6 4 4 2 2 0 Ö 0 6 10 12 8 11 4 2 6 8 10 12 14 q (1/min./m) $q (1/min_*/m)$ 20-00-25-00 1. 2 <u>م ار</u> 3500-40-00 n _ 2. 103 klan 3 2, kite. 10.2 Milen 20_ Ke/ka2 0.7 4. 0.9 12 12 10 10 ()8 8 P P kg/ca²6 4 2 2 0 Ó 8 6 10 12 1 2 12 4 10 U q (1/min./m) q (1/min./m) Į., t

RESULT

Ò₽

VATER

()

۱

()

٩

F

6-70 PRESSURE 0F

G6-71 RESULT OF VATER PRESSURE TEST (12) \$

6-72 PRESSURE RESULT 07 VATER TEST (13)

()

6-74 PRESSURE TEST (15) RESULT OF VATER

.

()

()

6-76 PRESSURE TEST (17) RESULT 30 VATER

ι

6-77 PRESSURE TEST (18) OF VATER RESULT PORIHOLE NO. EORFHOLE NO. BL I DEPTH OF TEST SECTION 200 2500 m DEPTH OF TEST SECTION BOL 10** 2. MAXIMUM PRESSURE 3. CRITICAL PRESSURE 38 K/c 2 2. MAXIMUM PRESSURE 5-8 N/W CRITICAL PRESSURE 3. ______ Viler LUGEON VALUE LUGEON VALUE 35 18-3 4. 12 12 10 10 .:8 P kg/cn²⁶ P 4 4 2 2 0, 0₀ 10 14 12, 14 12 2 8 10 6 8 4 - **6** q:(1/min./m) q (1/min./m) 2500 3000 1, 2, 1, 1000- 1500 <u>m</u>. m 4642 5.9 Kelen 2, 3.8 1 4. 22.0 4. 9.5 12 12 10 10 8 8 P kg/cm²6 P ¥ë 6 Zel 4 4 2 2 00 0 10 12 10 12 14 ò 6 8 14 2 4 6 8 2 q (1/min./m) q (1/min./m) 1500- 2000 3500 3000m. 1, 2 ki kat 6.0 Ky/1m 30 4.5. ... Kelon 2, 3.7 Kin' 6.6 4. 15.3 4. 12 12 i, 10 10 P kg/ cm²6 8 P (e. Kar 6 4 2 2 00 0 2 10 12 น 8 10 12 a 6 q (1/min./m) q (1/min./m)

 $\left(\right)$

RESULT OF VATER PRESSURE TEST (19)

RESULT OF WATER PRESSURE TEST (20)

RESULT OF VATER PRESSURE TEST (21)

١

6-81 PRESSURE TEST (22) ATER RESUL

PORFHOLE NO. BL.3 BOREHOLE NO. BL.3. 1. DEPTH OF TEST SECTION30.00-3500 2. MAXIMUM PRESSURE 10.9 4/4 3. CRITICAL PRESSURE 444 1. DEPTH OF TEST SECTIONISCO-2000-1 10.9 MAN 2. MAXIMUN PRESSURE 3. CRITICAL PRESSURE 10.9 ×1/2 - <u>Mir</u> Mar 12:4. LUGEON VALUE 4. LUCEON VALUE 12 10 10 8 . 8 P P kg/ca26 */~==2 4 4 2 2 0<mark>,</mark> °0 10 12 14 10 12 14 2 4 6 8 2 6 8 4 q (1/min./m) $q(1/min_{l}/m)$ 35'00 - 40.00 1. 20.00-25.00 2. 10.8 K/4- 3. 3. 1,.... m ... Kykn' 2 10.9 M/ 3. Me 4. Ō 4. Ô 12 12 10 10 8 8 P kg/cm²6 P ¥ē,6 1 cal 4 4 2 2 0<u>1</u> 0 10 12 2 6 8 14 10: 12 6 8 14 a 4 q (1/min./m) q (1/min./m) 40.00-45.00 25.00 - 30.00 1 <u>,</u> 71 <u>k</u> 2, 10.8 kika. Kykm 3. 2, 10 9 KK Kilin_ 4. Ô 4. ñ 12 12 iŧ 10 10 ()il. 8 8 P P kg/ca²6 kg, X# 6 4 4 2 2 0: 0 12 โ 2 10 Ŕ 8 10 12 14 6 Å n $q (1/min_{\bullet}/m)$ q (1/min./m)ź.

RESULT OF VATER PRESSURE TEST (23)

 $\left(\right)$

 $\left(\right)$

()

()7. WATER SUPPLY ()()

CONTENTS OF WATER SUPPLY

al special de las

()

(

()

		Page
1.	GENERAL	7-1
2.	PRESENT CONDITION	7-1
	 2.1 Water Sources and Supply	7-1 7-2 7-2
3.	WATER DEMAND IN THE FUTURE ,	7-3
4	3.1 Future Demand	73 73
4.	WATER SUPPLY METHOD	7-4
	4.1 Comparative Study on Water Supply Method4.2 Benefit	7-4 7-5
s.	PRELIMINARY DESIGN	7-5
	5.1 Water Intake Facilities	7-5 7-6
6.	CONSTRUCTION SCHEDULE AND COST ESTIMATE	7-7
	6.1 Construction Schedule	7-7 7-7

i

LIST OF TABLES

			rage
Table	7-1	FUTURE DEMAND OF HUNICIPAL AND INDUSTRIAL	
		WATER	78
	72	WATER QUALITY AND PULIFICATION COST	7-9
	7-3	CONSTRUCTION COST OF WATER SUPPLY	7-10
	7-4	ANNUAL DISBURSEMENT SCHEDULE FOR WATER	
		SUPPLY	7-11

LIST OF FIGURES

Fig.	7-1	HEADRACE FOR NEW TREATMENT PLANT	2
	7-2	EXISTING PIPING NETWORD	3
-	7-3	THE MUNICIPAL AND INDUSTRIAL WATABE HEADRACE	
		ROUTE	4
	7-4	WATER SUPPLY FACILITIES	5
	7-5	CONSTRUCTION SCHEDULE FOR WATER SUPPLY	6
		and the second secon	
		and the second	

.

 $\left(\right)$

Page

Page

()

1. GENERAL

 $\left(\right)$

 $\left(\right)$

()

The waterworks for Ujung Pandang city had been administrated by the department of public works of the municipality until 1976, and transferred to PAM for management and operation.

"Penimpin Proyek Air Bersih Sulawesi Selatan" forecasts that the population of Ujung Pandang grows to about 1,500,000 in the year 2,000, and that the scope of the municipal water supply broadens to reach nearly 70% of the population. To meet with the above mentioned circumstances, the total municipal water supply of 3,500 1/s will be required based on the estimated municipal water demand percapita at 150 1/day. The above total supply consists of 64% for domestic and 23% for industrial and commercial.

The plan specifies the Jeneberang river as a source of a daily supply of 2,300 1/s which is about 70% of the required total.

In the preliminary study of this project, the proposed Bili-Bili reservoir is specified as a source of water supply, then an available volume of dependency is established, and a water supply method is considered giving preference to a pipeline.

2. PRESENT CONDITION

2.1 Water Source and Supply

Ujung Pandang is getting the municipal and industrial water from two sources, each of different origin : the one is from the Jeneberang river through the old treatment plant and the other, from the Maros river through the new treatment plant. The former system was built in 1924 with the design treatment capacity of 50 1/s which was subsequently expanded to 100 1/s in and around 1943. Although capacity has been increased to 150 1/s through the expansion work which was undertaken from 1967 to 1969, the actual intake water volume is 100 1/s at present. This system is treating the river water taken from the Jeneberang, being pumped up at its right bank immediately below the Sungguminasa bridge. A concrete pipe with 500 mm diameter transmits the river water for a distance of some 7 km to the old treatment plant. During dry season, discharge of the Jeneberang drops to about 50 1/s, diminishing the volume available for municipal and industrial water to the bottom; consequently, the municipal and industrial water for Ujung Pandang is largely switched over to that supplied from a new water supply system.

The new water supply system was built in 1977 by assistance from France and it treats the river water taken from the Maros, which is flowing in the north of the city, at Lekopancing weir to the amount of 500 1/s which is sent over a distance of some 28 km to the new treatment plant (refer to Fig. 7-1).

2.2 Treatment Plants

.

The existing facilities equipped with both the old and the new treatment plants will be outlined in the below: { }

6 1

()

	01d treatment plant	New treatment plant
Capacity	100 1/s	500 1/s
Raw Water Transmission	500 mm concrete pipe x 7 km	28 km aqueduct
Treatment Method	Rapid sand filtration	Rapid sand filtration
Related Facilities	Low lift pumps Sedimentation tanks Filters Reservoir Elevated tank Chemical apparatus Distribution pumps	Sedimentation tanks Filters Reservoir Chenical apparatus Distribution pumps

2.3 Water Distribution and Demand

The water treated at the old plant needs to be pumped up to an elevated tank for distribution among the consumers. As the distribution system was equipped in the 1920's, its facilities are now causing a lot of pipe-loss to make a stabilized supply of municipal and industrial water rather difficult. The new plant sends out pumpressurized water through distribution pipes with diameter ranging from 1,000 mm to 50 mm.

. · . .

The daily demand total of municipal and industrial water in 1980 was at 400 1/s approximately. Out of the total, about 25% was intended for domestic consumption (about 30% of the total population), about 60% for industrial and comercial and the balance for various public facilties, such as schools, etc.

The major water distribution network in Ujung Pandang is shown in Fig. 7-2.

3. WATER DEMAND IN THE FUTURE

3.1 Future Demand

()

()

The supply-demand master plan for the municipal and industrial water in Ujung Pandang city was prepared by Penimpin Proyek Air Bersih Sulawesi Selatan in 1981. The transition of the future demand during 1985 - 2000 is presented in Table 7-1.

According to the above-mentioned master plan, the future demands of the municipal and industrial water are 2,000 1/s in 1990 and 3,500 1/s in 2000 respectively.

Thus, it now constitutes an important problem which needs to be solved with urgency how to secure water sources to meet with the increasing demand for drinking water and industrial water in and around Ujung Pandang city.

Considering the future program of the increasing water demand, the target year for water supply has been fixed in the year 2000. Out of 3,500 1/s of the water demand in 2000, the water supply of 2,300 1/s has been determined to be secured from the Jeneberang river (proposed Bili-Bili reservoir) in due consideration of the prospective water resources develoment in the area.

The remaining part of the future water demand will have to be supplied from the present water source, that is, the Maros river.

PAM is considering to increase the capacity of the new treatment plant which remains at 500 1/s at present, by 600 1/s in 1982 and further by 1,100 1/s in 1985.

3.2

Required Reservoir Storage Capacity

The municipal and industrial water of 2,300 1/s will be taken directly from Bili-Bili reservoir, the municipal and industrial water has been estimated on the basis of the river discharge during the last five years for which reliable data are available, as follows:

Year		Required volume (x 10 ³ m ³)
1976	an an ann an Arainn an Arainn Agus an ann an Arainn agus an Arainn	17,000
1977		13,400
1978		3,100
: = 1979		13,000
1980	and the second sec	14,000
	$(X_{i}) \in \mathcal{C} \times \{Q_{i}\} \times \{Q_{i}\}$	

The volume of water to be supplied to Vjung Pandang as its municipal and industrial water has thus been designed at 17,000 x 10^3 m³ so that it could cover the water requirement in 1976 which is design year for municipal and industrial water supply.
4.1 Comparative Study on Water Supply Method

There are four methods to supply the raw water meant for the municipal consumption from Bill-Bill reservoir to Ujung Pandang, as follows:

Method 1.	To make use of the Jeneberang river;
Nethod 2.	To make use of the Bill-Bill irrigation channel;
Method 3.	To excavate a new open channel as a con- veyance route, and
Method 4.	To install a new pipeline.

()

()

The conveyance routes according to these 4 methods are shown in Fig. 7-3, and their tentatively estimated construction costs and annual running costs for the water purifications are presented below:

		in the figure for	i de la composición d	
the second second second	in the second	Open channe	1	Pipeline
	Method 1	Method 2	Method 3	Method 4
Construction cost (x 10 ⁶ US\$)	18	17	21	39
Annual running cost (x 10 ⁶ US\$/year)	14.5	14.5	10.9	3.6
		· · · ·		

Note: Table 7-2 shows the annual running costs in detail.

Judging from the study results mentioned below, pipeline is proposed for the water supply from the proposed reservoir to the consumption site.

and the second second

- 1) Though the construction cost estimated for a new installation of a pipeline will be enormous, the purification cost of the raw water conveyed by means of the open channel is also far bigger than that of the pipeline. The total construction cost required for conveyance and purification of raw water is not deemed to have any difference between two cases; open channel and pipeline.
- 2) To improve the sanitary condition in the site, the raw water is preferable to be conveyed without any deterioration in quality.
- To prevent the conveyance loss due to evaporation, seepage and so on, the conveyance facilities are preferable to be a closed type such as pipeline.

4.2 Benefit

()

 $\langle \rangle$

()

As aforementioned, a storage capacity for the municipal and industrial water will be secured in the second priority next to flood control, because it is one of the basic human needs and Ujung Pandang city suffers from shortage of the municipal and industrial water, especially in a dry season.

The municipal and industrial water supply will surely grade up the living standard, improve the sanitary condition, decrease the frequency of desease, and moreover spur the industrial and commercial activities development. In this sense, a great deal of benefit can be expected to accrue in the future, although it is quite difficult to quantify the benefit.

5. PRELIMINARY DESIGN

5.1 Water Intake Facilities

Intake of the reservoir water can be arranged either through the intake facilities exclusively for the municipal and industrial water or through those meant for both the municipal /industrial water and the irrigation water. At the present stage, a preliminary design of the intake facilities for the municipal and industrial water will be done for common use with the irrigation water which are more econmical than those for exclusive use of the municipal and industrial water.

Intake Volume

The common intake will be designed to draw the design volume of 32 m^3/s which is almost equal to the maximum demand of the municipal and industrial water, the irrigation and the vested right water.

Intake volume for the municipal and industrial water is fixed at the required municipal and industrial water of $2.3 \text{ m}^3/\text{s}$ all through the year.

The intake water will be distributed at the regulating basin on the right bank immediately below the right wing dan.

1.1.1.1.1.1.1.1

Intake Facilities

shall satisfy the conditions as specified below.

- Regardless of a reservoir storage, an intake of a certain predetermined volume required of municipal and industrial water shall be guaranteed all through the year.
- As the water is intended for drinking, the facility must be designed to eliminate the possibility of inclusion of suspended matters and sediment discharge into the water as much as possible.

As the facilities are deeply connected to the daily lives of the population, measures to facilitate maintenance and administration are to be worked out.

< 1

()

To satisfy the conditions mentioned above, some appurtenant facilities will be required. The water from the reservoir will be sent through the hydro power facilities and, after generation, will be divided into two purpose, the one for the municipal and industrial and the other for the irrigation.

The municipal and industrial water will be supplied to the sand basin and the regulating basin on the right bank of the river through the conduit buried under the river. The principal facilities in regard to the intake are as follows:

Gate-controlled division works	: 1 L.S.
Conduit	: 200 m in length
Sand basin	: 1 place
Regulating basin	: 1 place

The outline of the water supply facilities is shown in Fig. 7-4.

5.2 Conveyance Facilities

Conveyance of the municipal and industrial water will be made through a pipeline. The water taken from the reservoir will be deposited for sometime in the regulating basin nearby the dam, then sent to the treatment plant through a pipeline extending for approximately 25 km. Ductile cast-iron pipe with 1,500 mm diameter is proposed. This pipeline will be generally buried underground alongside the road between Ujung Pandang and Malino. The sharp bending of the pipeline should be avoided, either horizontally or vertically, from hydraulic viewpoint and its structural weakpoint. Furthermore, the pipeline should be installed below the hydraulic gradient line in order to prevent intra-pipeline pressure from dropping below the atmospheric pressure.

Again, to ensure conveyance of a well-stabilized volume of water through the pipeline, it is desirable to install the junction well, regulating value, flow-meter, air-vent, etc. with an interval of every 1 - 3 Km. The principal features of the proposed pipeline are as follows:

Design conveyance volume	: 2.3 m ³ /s
Conveyance pipe	: 1,500 mm dia,
	Ductile cast-iron pipe
Junction well, regulating	
valve, flow-meter, air-vent	: 12 sites

and the second second

and program and the

A Provide the Design of the second sec

6. CONSTRUCTION SCHEDULE AND COST ESTIMATE

6.1 Construction Schedule

The main work items involved in water supply will consist of:

- 1) Gate-controlled division works
- 2) Sand basin and regulating basin
- 3) Conveyance pipeline and appurtement facilities

Construction schedule has been so arranged as to see its completion by 1990, in view of putting all the related facilities in serviceable conditions simultaneously with the completion of Bili-Bili dam.

A period of 4 years from 1984 has been assumed for feasibility study and detailed design and the construction works will be undertaken during the remaining 3 years from 1988 to 1990.

The construction schedule is shown in Fig. 7-5.

6.2 Cost Estimate

()

 $\{ \}$

()

Construction Cost

The construction cost of the water supply has been estimated on the contract basis and on 1981 prices.

The cost comprises civil works, gates and equipment, land acquisition, compensation, engineering services and plus 15% contingencies. The construction cost totals to US\$53.5 million which is made up of the foreign currency portion amounting to US\$28.8 million and the local currency portion of US\$6.7 million. The construction cost and the annual disbursement schedule are shown in Tables 7-3 and 7-4, respectively.

Operation, Maintenance and Replacement Cost

The operation and maintenance cost comprises the personnel cost, operation machinery and equipment, vehicles, administrative cost and miscellaneous. US\$0.09 million will be estimated for an annual operation and maintenance cost. The replacement cost of the regulating valve and the flow meter in each 25 years is estimated at US\$0.48 million.

Table 7-1 FUTURE DEMAND OF MUNICIPAL AND INDUSTRIAL WATER

Distinguish	1985	1990	1995	2000
Houses	47,180	64,812	91,555	127,911
Public Facilities	1,887	2,991	4,578	6,396
Industry	23,400	29,100	31,100	33,100
Trading	8,580	9,610	10,770	12,070
Hotels	2,003	2,244	2,515	2,817
Sea Port	328	361	394	426
Office	4,804	5,816	7,043	8,527
Hospitals	674	890	1,168	1,523
Schools	3,002	5,609	9,684	15,228
Mosques	630	780	930	1,140
Sub-Total (m³/day)	92,488	122,213	159,737	209,138
loss	39,638	52,377	68,459	89,631
Total (m ³ /day)	139,126	174,590	228,196	298,769
(1/sec)	1,526	2,021	2,641	3,458
	[1,500]	[2,000]	[2,700]	[3,500]

(Unit: m³/day)

•

(

.

(î

Table-7-4 WATER QUALITY AND PURIFICATION COST

~

Class	н	H	III
Water Quality	BOD 1.0 mg/1 COD 1.0 mg/1 Turbidity 2.0 mg/1 NH4ZN 0.1 mg/1	BOD 2.0 mg/l COD 2.0 mg/l Turbidity 10.0 mg/l NN4N 0.1 mg/l	800 3-0 mg/1 C0D 3-0 mg/1 Turbidity 30.0 mg/1 Nit ₄ N 0.5 mg/1
Slow Sand Filter	Yes, as required	1	8
Chloríne Dísin- fection	Yes	Хсея	Үев
Chemical Coagulo- Sedimentation Basin	1	۲eв	Yes
Rapid Sand Filter	•	Yes	Yes
Pre- Chlori- nation	l l	ŧ	ζes Γ
Activated Carbon Treatment	9	J	Yes
Remarks		Require more than once daily water quality checkrup, and to fix a dosage of chemicals accordingly	
Purification Cost approx, US\$/m ³	0.02 - 0.05	0.07 - 0.15	0.20 - 0.50
Annual Rumang Cost x 10 ⁶ US\$	1.5 - 3.6	5.1 - 10.9	14.5 - 36.3

Note: This table shows estimated water purification costs to upgrade the quality of the conveyed municipal water (2,300 1/s) to the drinking water requirements in class I (water conveyed by pipeline), II and III (water conveyed by open channel).

1

Ĺ

()

7--9

t

Work Item	Total Amount (x10 ³ US\$)	Foreign Currency (x10 ³ US\$)	Local Currency (x10 ³ US\$)
1. Civil Works			
Gate-controlled division works	197	36	161
Sand basin & regulating basin	238	70	168
Pipeline & appurte- nant structures	8,981	4,535	4,446
Preparatory works	942	464	478
Sub-total	10,358	5,105	5,253
2. Gates & Equipment			
Gates	42	-	42
Ductile cast-iron pipe	17,151	17,151	
Valves	44	44	
Sub-total	17,237	17,195	42
3. Land Acquisition	11		11
4. Compensation	80	-	80
5. Engineering Service	3,153	2,727	426
Sub-total (1 ~ 5)	30,839	25,027	5,812
6. Physical Contingency	4,626	3,754	872
Grand-total (1 - 6)	35,465	28,781	6,684

Table 7-3 CONSTRUCTION COST OF WATER SUPPLY

()

•

	4
XIIAUS	(Ua:
WATER	
FOR	
SCHEDULE	
DISBURSEMENT	
ANNUAL	
7-4	
Table	

i									(Unit:	x 10 ³	US\$)		
	Work Item	Total F.C. L.C.	С .	1986 L.C.	F.C.	L.C.	F.C.	68 L.C.	198 F.C.	ن. د د	F.C. 13	90 L.C.	t
-1	Q Civil Works			2									
	Gate-controlled division works	36 16	 	ı	I .	1	1	1	•	t	36	161	
	Sand basin & regulating basin	70 16	۱ 	•	1	1	70	168	•	·	I	ı	
	Pipeline & appurtement facilities	4, 535 4, 44	•	*	•	1	1,452	1, 423	1,997	1, 959	1,086	1,064	
i	Preparatory works	464 47:	•	1	1	•	152	159	200	196	112	123	
İ	Sub-total	5,105 5,25	~	-			1,674	1,750	2,197	2,155	I, 234	1, 348	
5	Cats & Equipment	·	• .					· ·	,				
	Gates	-	1	1	I	I		32	ł	I	L	10	
	Ductile cast-iron pipe	17,151 -	•	I	•	I	5,455	, 1	7,480	1	4,216	1	
i	Valves	44 -	8	•	\$	3	15	1	22	1	7	ł	
i	Sub-total	17,195 42			:		5,470	32	7, 502	1	4,223	ទ្ម	<u></u>
ň	Land Acquisition		•	1	• •	ŧ	8,	Ø	1	. 4	. 1 .	-	
4	Compensation	1	1	I	I	I	ı	26	t ₽ 1	35	ŧ	19	
3	Engineering Service	2,727 426	1,023	133	477	81	409	69	409	69	409	69	
l	Sub-total (1-5)	25,027 5,812	1,023	128	477	18	7,553	1, 885	10, 108	2,261	5,866	1.447	
÷	Physical Contingency	3,754 872	153	2:1	72	12	1,133	283	. 1, 516	339	880	217.	
	Grand-total (1-6)	28, 781 6, 634	1, 176	159	549	93	8,686	2, 163	11,624	2, 600	6, 746	1,664	
					:								

7-11

()

.

()

.

.

•

()

7-16

(1) 网络拉尔尔斯特尔 医子宫囊 医乙酰氨基乙酰乙酰氨基乙酰乙酸 (1)	
그렇는 그들은 것이 못한 것이 같은 것이 같이 못했는 것이 것 같아요. 이 것 같아요.	
에 있는 것은 사람이 있는 것은 것은 사람들은 사람들은 사람들은 것은 것을 가지 않는 것은 것을 가지 않는 것을 가지 이 같은 사람들은 것은 사람들은 것은 것은 것은 것은 것을	
방법 전문 전문 전문 전문 일부는 여행을 수 있다. 그는 것 같아요. 한 한 것 같아요. 한 한 것 같아요. 한 ? ? 한 ? ? ? ? 한 ? ? ? ? 한 ? ? ? ? ?	
에 비행할 수 있는 것은 사람이 있는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 있다. 이 가지 않는 것은 것이 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 이 사람들은 것이 가지 않는 것이 있는	
이 같은 것 같은 것은 것 같은 것이 있는 것이 같은 것이 같은 것이 같이 있는 것이 같은 것이 없는 것이 없는 것이 없다.	
이 사회가 물건을 하는 것 같아요. 이 사람들은 것 같아요. 이 것은 것은 것은 것은 것은 것이 있는 것 같아요. 이 것 같아요. 이 것은 것은 것은 것이 있는 것이 것 같아요. 이 것 같아요. 이 이 문화 같아요. 같아요. 이 것은	
· 물상에 가장 사용 것은 가장	
· · · · · · · · · · · · · · · · · · ·	
이 같은 것이 있는 것은 것은 것을 알려요. 이상은 것은 것을 가지 않는 것을 가지 않는 것을 가지 않는 것이 있다. 것은 것은 것은 것은 것은 것은 같이 같은 것은	
이는 것 같은 사람은 물건에 있는 것 같은 것 같은 것은 것은 것은 것을 알았다. 그는 것은 것은 것은 것은 것은 것은 것을 가지 않는 것이다. 것은 것은 것은 것은 것은 것은 것을 가지 않는 것은 이 제품은 것 같은 것은	
n in οι δ αλαγικά το δείδα το δείδα. Το δείδα το Ο, το ΙΚΛΙΦΑΙΙΥΛ ίας το κατά το δείδα το δείδα το δείδα.	
이렇게 사용하는 것 같아요. 이상 사용은 것 같아요. 이상 것 같은 것이 것 같아요. 이상 가장이 있는 것이 가지 않는 것 같아요. 이상 같아요. 이상 같아요. 가지 않는 것 같아요. 이상 가지 않 같은 것은 것은 것 같아요. 이상 것 같아요. 같아요. 이상 것은 것은 것은 것은 것이 같아요. 이상 것은 것은 것이 같아요. 이상 것이 같아요. 이상 것이 같아요. 이상 것 같아요. 이상 것이 같아.	
이 사람들은 것 같은 것 같은 것 같은 것 같은 것 같은 것은 것 같은 것이다. 이 가격 것이다. 이 가격 것은 것은 것은 것은 것은 것은 것은 것은 것은 것이다. 이 가격 것은 것은 것은 것은 것 같은 것은	
이는 사람은 사람이 있는 것은 것은 것이 가지 않는 것이 있는 것은 것이 있는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 있는 것이 있다. 가지 않는 것이 가지 않는 것이 같은 것은 것이 같은 것은 것이 같은 것은 것은 것이 같은 것이 같은 것이 같은 것이 같은 것이 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 같이 같이 같이 있다. 것이	
이는 것은	
이는 것은	
- () : : · · · · · · · · · · · · · · · · ·	
이 같이 있는 것 같은 것이 있는 것이 같은 것은 것이 있는 것이 같은 것이 같은 것이 같은 것이 가지만 것이 같이 있는 것이 같이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이 같이 것이 같은 것은 것이 같은 것이 같은 것이 같은 것이 같이	
이 방법이 있는 것 같은 것 같은 것은 것은 것 같은 것은 것은 것을 가지 않는 것을 가지 않는 것이다. 것은	
이 같은 것 같아요. 것 같아요. 것 같아요. 이는 것 같아요. 같아요. 것은 것은 것은 것은 것은 것이 가지 않는 것이 가지 않는 것이 같아요. 이가 있는 것은 것은 것은 것이다. 같이 같아요. 같아요. 것 같아요. 것 같아요. 같아요. 같아요. 것 같아요. 것 같아요. 같아요. 같아요. 같아요. 것 같아요. 같아요. 같아요. 같아요. 같아요. 같아요. 같아요. 같아요.	
그는 것은 것 같은 것 같은 것 같은 것이 같이 있는 것 같은 것은 것은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같을 것 같은 것을 알았는 것이 같이 했다.	
이 방법에 가장 사람이 있는 것 같은 것 같이 있는 것 같이 있다. 가장 br>이 것은	
이 같은 것은 것은 것 같은 것이 같은 것이 있는 것은 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것 이 같은 것은 것은 것 수많은 것은 것은 것은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것은 것이 같은 것이 같이 있는 것이	
이 사실에 가장 관계에 있는 것이 가장 있는 것이 가장 있었다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것은 것은 것은 것은 것은 것은 것은 것은 것이 있는 것이 있는 것이 있는 것이 같은 것이 같은 것이 있는 것이 것이 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있	
이 가장 가장 사람들은 동안을 가지 않는 것을 위해 있다. 것은 것 같은 것 같은 것은 것은 것은 것은 것을 가지 않는 것을 가지 않는 것을 하는 것을 가지 않는 것을 가지 않는 것을 하는 것을 하는 이 같은 동안은 같은 것은 것을 것 같은 것은 것은 것은 것은 것을 것 같은 것을 다 있는 것을 것 같은 것을 것을 것 같은 것을 것 같은 것	
이 같은 것 것 같은 것을 알았는 것 같은 것 것 같아요. 이 것은 것 같은 것은 것 같은 것 같이 있는 것 같이 것 같은 것은 것은 것 같은 것은 것 같은 것을 가지 않는 것 같은 것 같이 있는 것 그 같은 것 같은	
그는 바람이 같은 것을 가장 같은 것이 있는 것이 것을 알았다. 것이 있는 것이 가지만 가지만 것이 같은 것이 있는 것이 가지만 것이 있는 것이 같은 것이 있는 것이 있는 것이 있다. 이 같은 것이 것이 같은 것이 있는 것이 같은 것이 있는 것이 있는 것이 것이 같이 있는 것이 있는 것이 있는 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 있는 것이 있는 것이	
는 사람들은 것은 것은 것을 많은 것을 수 있을 것이다. 이 것은 것은 것은 것은 것은 것은 것은 것은 것은 것을 가지 않는 것을 가 같은 것은 것은 것을 같은 것은 것은 것은 것은 것을 같은 것은	
이 방법에 가장 동안에 가장 이렇게 있는 것을 수 있다. 이는 것을 알고 있는 것이 가장	
- C. 사람이 있는 것은 것은 것은 것은 것은 것은 것을 가지 않는 것을 수 있는 것을 하는 것을 수 있다. 이렇게 가지 않는 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 가지 않는 것을 수 있는 것을 수 있다. 이렇게 가지 않는 것을 수 있다. 이렇게 가지 않는 것을 수 있다. 이렇게 것을 수 있다. 이렇게 가지 않는 것을 수 있다. 이렇게 아니는 것은 것은 것은 것을 수 있다. 이렇게 가지 않는 것을 수 있다. 이렇게 있는 것을 수 있다. 이렇게 가지 않는 것을 수 있다. 이렇게 가지 않는 것을 수 있다. 이렇게 가지 않는 것을 하는 것을 수 있다. 이렇게 아니는 것을 수 있다. 이렇게 아니는 것을 수 있다. 이렇게 가지 않는 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 것을 수 있다. 이렇게 가지 않는 것을 수 있다. 이렇게 아니는 것을 수 있다. 이렇게 가지 않는 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 가지 않는 것을 수 있다. 이렇게 가지 않는 것을 하는 것을 수 있다. 이렇게 아니는 것을 수 있 이렇게 아니는 것을 수 있다. 이렇게 가지 않는 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 아니는 것을 수 있다. 이렇게 아니는 것 하는 것을 수 있다. 이렇게 아니는 것을 수 있다. 이렇게 아니는 것을 수 있다. 이렇게 것을 수 있다. 이렇게 것을 수 있다. 이 하는 것이 있다. 이 아니는 것이 않는 것이 않는 것이 있다. 이 아니는 것이 있다. 이 아니는 것이 않는 것이 것이 같아요. 이 아니는 것이 있다. 이 아니는 것이 있는 것이 있다. 이 아니는 것이 있는 것이 있다. 이 아니는 것이 않는 것이 있 이 아니는 것이 있는 것이 있는 것이 있다. 이 아니는 것이 있는 것이 있는 것이 있다. 이 아니는 것이 있는 것이 않는 것이 있다. 이 아니는 것이 있는 것이 있다. 이 아니는 것이 있는 것이 있 이 아니는 것이 아니는 것이 있는 것이 아니는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 이 아니는 것이 있는 것이 있다. 이 아니는 것이 있는 것이 있는 것이 있다. 것이 아니 것이 있는 것이 있다. 것이 하는 것이 있는 것이 있는 것이 있다. 이 아니는 것이 있는 것이 있	
· 그는 말했지만, 방침을 위한 사람은 말한 것은 것은 것이 있는 것이 있는 것은 것은 것은 것을 가지만 것이다. 것은 것은 것이 같은 것은 것은 것이 가지만 것이다. 것은 것이다. - 같은 말 같은 것은 것은 것은 것이다. 이는 것은 것은 것은 것은 것은 것은 것이다. 것은 것이다. 것은 것은 것이 같은 것이 같은 것은 것이다. 것이 것이 것이다. 것이 같은 것이 같은 것이 있	
· 사업에 가격 것은	
에 철상 경제에 대한 방법을 알았다. 이렇게 이렇게 이렇게 이렇게 가지 않는 것이 아니라. 이렇게 가지 않았다. 이렇게 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것 같은 것은	
에게 들고 관계되었다. 2017년 1월 2017년 2017년 1월 2017년 2017년 2017년 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 2017년 2017년 2 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년	
이는 사람은 사회 사람은 가장 가장에 가려 있는 것은 것은 것을 가장에 가장해 가지 않는 것이 있다. 것은 것은 것은 것은 것은 것은 것은 것을 가장하는 것은 것을 가장하는 것이다. 이는 것은	
- '방송 데이 그 동안되고 한 것은 것으로 같은 것을 몰랐다. 동안에는 동안을 가지 않는 것 같은 것을 수 있다.	
人名法法德 网络拉拉斯斯特拉斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯特斯斯斯斯斯斯斯斯斯斯斯斯	
· 그는 같은 사람은 가지가 있는 것이 있는 것이 있는 것은 사람들을 것을 수 있는 것을 하는 것이 것을 통해 있다. 가지는 것이 가지가 있는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 가 같은 것이 같은 사람들은 것이 가지 않는 것은 것을 같은 것이 있는 것이 같은 것이 있는 것이 것을 것이 같이 있다. 것이 같은 것이 같은 것이 같은 것이 같이 있는 것이 같이 있는 것이 있다. 것이	

CONTENTS OF IRRIGATION

		Page
1.	GENERAL	8-1
2.	PRESENT CONDITION	8-1
Ξ.		
	2.1 Agricultural Development Potential	8-1
4 - ¹	2.2 Overall Condition of the Area meant for	0.1
	Agricultural Development	8-1
	2.4 Irrigation System	8-2
	2.5 Cropping Pattern	8-3
	2.6 Farming Practices	8-3
	2.7 Crop and Yield	8-4
	2.8 Livestock Production	8-4
	2,9. Propagation of BIMAS and INMAS	8-4
	2.10 Processing and Marketing	8-5 0-5
Å		9-1
an an I	CROP AND YIRLD	8-5
· •		
1. E.	3.1 Decision of the Grop	8-5
	3.2 Proposd Cropping Pattern	8-6
	3.3 Estimated Crop Yield	8-6
1.		0 1
•	WATER REQUIREMENTS	8-7
	4.1 Rasic Year for Planning	8-7
e Al Carl	4.2 Benefitted Area	8-8
:	4.3 Irrigation Requirements	8-8
	and the second	1.1.2
•	IRRIGATION BENEFIT	8-10
6	DETIMINARY DECION AND COCY SCHWARE	9-11
2∎ : 		0-11
1	6.1 Bili-Bili Irrigation System	8-11
	6.2 Kampili Irrigation System	8-12
	6.3 Construction Schedule	8-13
	6.4 Cost Estimate	8-13
- 11. -	الا المراجع المراجع المراجع المراجع المراجع المراجع المراجع والمراجع والمراجع المراجع والمراجع المراجع والمراجع المراجع المراجع	· · · ·
ia di		
N 19		
n en ser Service		
E S		
34 - 3	and the second	
i (
•		

()

1

LIST OF TABLES

 $\left(\right)$

Table	8-1	MONTHLY RIVER DISCHARGE AT THE BILI-BILI AND KAMPILI INTAKES
Table	8-2	IRRIGATION SYSTEM PREVAILING IN THE PROJECT AREA
Table	8-3	PLANTED AREA BY DIFFERENT PADDY
		VARIETIES IN THE PROJECT AREA
Table	8-4	THE NUMBER OF FARM HOUSES
	-	IN KABUPATEN GOWA (1980)
Table	8-5	PRODUCTION OF PADDY AND
		OTHER PRINCIPAL FOOD CROPS 8-17
Table	8-6	PRODUCTION OF PADDY
		IN THE RELATED AREA
Table	8-7	HARVESTED AREA, YIELD AND YIELD RATE OF FOOD
		CROPS BY KIND IN THE RELATED AREA
Table	8-8	NUMBER OF THE LIVESTOCKS 8-19
Table	8-9	PROGRESS OF BIMAS AND INMAS
		OF RICE IN SOUTH SULAWESI
Table	8-10	PROGRESS OF BIMAS AND INMAS OF
		RICE IN THE RELATED AREA
Table	8-11	ECONOMIC ASPECTS OF FARM PRODUCTS
Table	8-12	INCOME OF CROP
Table	8-13	MOVEMENT OF PADDY FROM SOUTH SULAWESI
Table	8-14	GROWTH PERIOD OF VARIETIES OF PADDY
Table	8-15	CALCULATION OF SVAPOTRANSPIRATION
		(MODIFIED PENMAN METHOD)
Table	8-16	MONTHLY CONSUMPTIVE USE BY CROP
		AND WATER REQUIREMENT
Table	8-17	DIVERSION REQUIREMENTS DURING DRY SEASON 8-25
Table	8-18	IDENTIFICATION OF BASIC YEAR FOR PLANNING 8-25
Table	8-19	ECONOMIC PRICE OF DRY STALK PADDY
Table	8-20	IRRIGATION BENEFITS
Table	8-21	CONSTRUCTION COST OF IRRIGATION
Table	8-22	ANNUAL DISBURSEMENT SCHEDULE FOR IRRIGATION. 8-29

LIST OF FIGURES

Fig.	8-1	IRRIGATION STUDY AREA
Fig.	8-2	PRESENT CROPPING AND RAINPALL PATTERN
		IN PROJECT AREA
Fig.	8-3	MARKETING SYSTEM OF RICE
Fig.	8-4	PROPOSED CROPPING PATTERN
Fig.	8-5	DIAGRAM OF DISTRIBUTION SYSTEM (BILL-BILL
		BENEFITTED AREA)
Fig.	8-6	DIAGRAM OF DISTRIBUTION SYSTEM (KAMPILI
		BENEFITTED AREA)
Fig.	8-7	CROP CONSUMPTION PACTOR
Fig.	8-8	BILI-BILI CONNECTION CHANNEL
Fig.	8-9	KAMPILI MAIN CHANNEL
Fig.	8~10	CONSTRUCTION SCHEDULE

1. GENERAL CONTRACTOR CONTRACTOR

()

The objective of the agricultural development is to stabilize the supply of irrigation water to existing facilities in the lower Jeneberang river. The irrigation water requirement of 241 $\times 10^{6} \mathrm{m}^{3}$ will be provided by the proposed Bilt-Bili dam.

2. PRESENT CONDITION

e por a p

2.1 Agricultural Development Potential

As shown in Fig. 8-1, up to 34,000 ha of land in the project area and related area is considered suitable for agricultural development.

The irrigation water to be developed by Bili-Bili dam is intended for use in Kampili and Bili-Bili irrigation system with 24,000 ha paddy field, which are relatively well maintained systems where expected benefit is large.

After the realization of the project, however, 4,800 ha of paddy will be left behind with conventional cultivation of single crop in wet season.

Other irrigable areas include 5,000 ha land to the left bank of Kampili channel and 5,000 ha in Panukulu irrigation system of Panukulu river basin. Combined area of irrigable area is 14,800 ha and water requirement is estimated to be $180 \times 10^6 \text{ m}^3$.

A comprehensive feasibility study for agriculture and water resources development would be necessary in the following stage of development.

2.2 Overall Condition of the Area meant for Agricultural Development

المراجعة المحافظ المراجعة المراجعة المراجعة المراجعة المراجعة المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ ا المحافظ
The area which is proposed for agricultural development under the present project consists of the paddy field approximately 24,000 has in size which is spreading on the alluvial plain on the both banks of the Jeneberang river; this area is administratively divided into Kab. Gowa, Kab. Takalar, and the Municipality of Ujung Pandang. Out of this 24,000 ha. paddy field, about 5,000 ha. which is spreading on the right bank and administratively divided between Kab. Gowa and the Municipality of Ujung Pandang, is being irrigated by existing Bili-Bili system, of which intake structure is located at about 5 km downstream of the proposed Bili-Bili dam, that is immediately below the confluence point of the Jeneberang and Jenelata rivers; the remaining 19,000 ha. is located in Kab. Gowa and Kab. Takalar is on the left bank of the Jeneberang river and is irrigated by Kampili intake which is situated at about 7.5 km downstream of the above mentioned Bili-Bili intake structure.

i i

)

Bili-Bili intake is not provided with any weir except a makeshift barrage piling cobblestones on the river bed extending for a certain distance from the right bank; the river water is taken into the channel through two gates. Kampili intake was built in the early part of the 1920's as a fixed weir on the foundation rock which is outcropped from the riverbed. It is equipped with two intake gates which are furnished with a scouring sluice built on the left bank. Since deterioration of its irrigation channel had advanced to a considerable degree, the Public Works Sulawesi Selatan (DPUSS) has been taking up repair works along its channel and with its appurtenant structures since 1979 fiscal year.

During dry season, paddy field spreading on both the right and the left banks of the Jeneberang river is made irrigable to the extent of 10%; the water taken at Bili-Bili intake would not irrigate more than 10% of its benefitted area which is spreading on the right bank, that is about 500 ha. in the upstream part of Kab. Gowa only, leaving the remaining area, particularly the paddy field in Ujung Pandang which is situated in the downstream part, in drought condition. Similarly, the water taken from Kampili intake would enable dry season paddy cultivation in 10% of the entire paddy field on the left bank.

2.3 Available Water Resources

The existing paddy field is generally rain-fed by rainfall during wet season and by the Jeneberang river water is utilized during dry season.

The river discharge falls down to about $4.5 \text{ m}^3/\text{s}$ on an average during the three months of August, September and October. The detailed figures of the monthly river discharge at the Bill-Bill and Kampili intakes are shown in Table 8-1.

2.4 Irrigation System

Irrigation system prevailing in the project area which is spreading in Kab. Gowa, Kab. Takalar and Ujung Pandang city will be classifiable as shown in Table 8-2. The benefitted area (24,000 ha.) consists of the area fed by Bili-Bili and Kampili intakes and is covered by the irrigation system defined by DPUSS as either technical or semi-technical. However, the benefits are not obtained as expected due to shortage of water supply.

An accurate estimation of the flow capacity of the existing facilities needs to be based on survey results with the intake facilities as well as the irrigation channels; for Kampili irrigation system, it can be known from the data on hand that the maximum intake capacity of the weir is approx. 25 m^3 /sec. and the flow capacity of its channel is about 12 m^3 /sec. in the section with the lowest flow capacity because of bottlenecks along its course. As for Bili-Bill system the capcity of the intake is approximately 3.5 m^3 /sec.

The flow capacity of the channel between the intake and Pakatto weir is about 3.2 m^3 /sec due to the bottleneck located at the channel's crossing at J1. Malino.

2.5 Cropping Pattern

 $\left(\cdot \right)$

The cropping pattern which has come to be consolidated in the project area has as its nucleus the paddy cultivation during wet season (November to April) when the entire paddy field is devoted to paddy cultivation. Other crops being raised include corn, cassava, sweet potato and green beans. Cultivation of paddy during dry season is restricted according to the availability of irrigation water.

The present cropping pattern prevailing in the related area is illustrated in Fig. 8-2.

While the improved varieties of paddy such as C_4 -63, PB30, PB32, PB42, Adil, Citarum and others are mainly planted in the BIMAS/INMAS areas, the local varieties predominate in the other areas. The area planted by different varieties of paddy in Kab. Gowa and Kab. Takalar, in contrast with that in South Sulawesi, during 1980 agri-cultural year is shown in Table 8-3.

1.11 2.

2.6 Farming Practices

11.5 **X**.

. . . . Paddy is the most important crop in the project area. Its cultivation is undertaken, from the very stage of sowing to that of harvesting, by human labour consisting of almost all the members of the farm family with the help of two kinds of animal, viz., buffalces and oxen which are extensively used for land preparation. In a word, the farming practices having been adhered to in the project area still remain "traditional", and only a limited kinds and number of mechanical equipment have so far been introduced therein. The improvement program, both varietal and technical, of paddy cultivation has been positively extended in South Sulawesi. However, it now seems to be confronted with the problem of stagnation in its return, due to planting in unfavourable area and shortage of irrigation water, after experiencing successful expansion in the last several years. While the use of chemical fertilizers and agro-chemicals has been universalized by BIMAS program side by side with wider use of the improved varieties, the per-ha. yield does not rise as expected. The reasons for such a stagnancy are supposed to be two-fold: an increasing ratio of inferior land on one hand, and the the poor irrigation facilities, on the other. Provision of adequate irrigation facilities and increased supply of irrigation water would, therefore, contribute enormously for an increased production of paddy. This is evident, within the project area itself, from the higher paddy productivity in Kab. Gowa where the irrigation facilities are in better condition in comparison with those in Kab, Takalar and Ujung Pandang city where the irrigation facilities are not as well equipped as in Kab. Gowa.

Land holdings in the project area will be shown in Table 8-4, for reference.

2.7 Crop and Yield

Production of paddy and the other principal food crops per ha. of South Sulawesi province and the project area are shown in Table 8-5, 8-6 and 8-7, respectively. The annual mean yield is at level of about 3.6 t/ha. in the wet season and at about 3.0 t/ha. in the dry season. These figures are for the average of last three years in Kab. Gowa and kab Takalar.

2.8 Livestock Production

Livestock raising does not occupy an important position due to it in agricultural undertaking in the project area. The animals and birds are mostly grazed on small scale in and around paddy fields and yet they consit of the vital source of draught-power in farm operation and transportation, and of protein foods consumable by the inhabitants.

The number of the livestock and poultry in the project area and its vicinity is summarized in Table 8-8.

2.9

Propagation of BIMAS and INHAS

The increase of paddy production which is one of first priority policy in pelita I and II has gradually shown its achievements through improvement of irrigation system and introduction of BIMAS/INMAS and other high yielding varieties together with agricultural extension programs. At Batangkaluku in Kab. Gowa of South Sulawesi province, an agricultural training center was founded in 1974 as a part of technical cooperation from Japan. Staff members for agricultural extension as well as administrative offices are trained there under the guidance of resident expert from Japan. After the training, they would go into the field propagating BIHAS/INMAS cultivation. Tables 8-9 and 8-10 show the distribution of BIHAS/INMAS in South Sulawesi province and the related area.

2.10 Processing and Marketing

()

()

The main crop for marketing is rice in the project area. Three routes are provided for rice marketing there as shown in Fig. 8-3. Most of the surplus paddy, after conswntpion of farmers, is generally sold to KUD and/or middle men through brokers. Sub-DOLOG in each Kabupaten purchases rice from KUD. The rice purchased by Sub-DOLOG is distributed for the local government use, and further transferred to the provincial DOLOG. The provincial DOLOG arranges for the provincial consumption and its movement to other provinces. The paddy collected by the middle men is usually sold at the regional market in Ujung Pandang city. Some of the surplus paddy is sold at the local markets in and around the project area directly by farmers or sometime by brokers.

The price of rice is generally controlled by the Government through DOLOG. In 1980/81, the floor price of milled rice is set at Rp. 175/kg. and the ceiling price at Rp. 190/kg. When the market price goes down below the floor price, DOLOG purchase the market rice and when the price is over the ceiling price, DOLOG sells its stock.

2.11 Farm Income

 $\{\cdot,\cdot\}$

The income and production cost per ha, of the farm products in South Sulawesi province as identified and reported by the Agricultural Training Center at Batangkaluku in Kab. Gowa through its survey undertaken in 1978 are presented in Table 8-11.

3. CROP AND YIELD

3.1 Decision of the Crop

Trrigation water made available by construction of the proposed dan will primarily be used for crop cultivation during dry season. Among various kinds of crops to be planted during dry season, paddy has been selected on the ground of the following reasons:

1) The benefitted area is not going to be created anew but has already been developed as paddy field in its entirety, with its own irrigation network;

- The benefitted area is largely made up of a flat alluvial plain and is most suitable for paddy cultivation;
- 3) From the economic point-of-view, paddy is the most favorable crop among those which have been cultivated during dry season such as maize, green bean, cassava, etc., as will be easily understood from the comparison given in Table 8-12; and
- 4) Indonesia as a whole is still in short of rice.

Movement of paddy from South Sulawesi is shown in Table 8-13.

3.2 Proposed Cropping Pattern

Through an analysis of the hydrological data, it has been found that paddy cultivation in the benefitted area can depend on the effective rainfall from November to April and on the river discharge from November to May. Puddling, a process of paddy cultivation during which irrigation water requirement comes to a peak, should preferably fall, in case of both wet season paddy as well as dry season paddy, in the above-said period of the year. As for the wet season paddy, harvesting of paddy and its drying will be performed in a wet season. This will make farmer's activities inconvenient. Therefore, to avoid the above inconvenience, the proposed cropping pattern has had to assume the shape as proposed in Fig. 8-4, though it may be somewhat less advantageous from irrigation water point-of-view.

This cropping pattern has been worked out on the assumption that the growth period of paddy would be 125 days, which is an average of the HYV's of rice that are expected to be planted in the benefitted area (refer to Table 8-14) as recommended by the Agricultural Extension Service in Ujung Pandang under BIMAS/INMAS program (up till 1983).

3.3 Estimated Crop Yield

The paddy yield expected at the full fruition stage of the project has been estimated as below, by taking into consideration 1) the past performance in South Sulawesi province and 2) improvement of appropriate cultivation techniques including proper use of fertilizers and agrochemicals.

()

The paddy yield with the project is as follows.

a ser a ser en		(Unit:	tons/ha)
	Paddy	Dry stalk paddy	Gaba
Wet season paddy: Dry season paddy:	4.59	6.00 6.00	3.12 3.12

The paddy yield "without the Project" would remain as follows:

(Unit: tons/ha)

				Paddy	Dry stalk paddy	Caba
	Wét	season	paddy:	3.85	5.03	2.62
en en el compo en compositor en el compo	Dry	season	paddy:	3.30	4.31	2.24

4. WATER REQUIREMENTS

()

4.1 Basic Year for Planning

(11. A ser litera) Angel - Sach

34月1日 - ANDA

"这些话话来"攫辱怒声 医激素 自己进行

In Indonesia, it has been customary to select the second droughtiest year in the last 10 years (equivalent to a 5-year probability) as the "basic year" for its irrigation projects. It seems appropriate to adopt the second droughtiest year in the past decade for this project also.

and the state of the

The "drought year" in this case will be defined as such a year when the dependency on the reservoir could have become the largest due to the climatological condition, the availability of river discharge and the other reasons.

Undoubtedly, the year 1972 has been the top droughtlest year during the last decade (1971-1980), as evidenced by various data on hand including the past rainfall records.

Identification of the second droughtiest year during the same period cannot be made from the rainfall records alone and, therefore, a possible dependence on reservoir supply for its irrigation requirements has been computed with those years whose dry season rainfall may be put in the order starting from the second to the fifth, as follows (refer to Table 8-18)

Consequently the year 1976 happens to be the year in which the dependency on reservoir supply could possibly be the one next to the largest. Hence this specific year has been adopted as the "basic year" for planning the present irrigation plan.

14.4

4.2 Benefitted Area

As much as 24,000 ha of paddy field in wet season (the entire project area) and 19,200 ha in dry season would benefit from the irrigation project. Allocation of water to Kampili and Bili-Bili area is summarized below:

Wet	season paddy	an a
	Kampili area Bili-Bili area	19,000 ha 5,000 ha
		24,000 ha

Dry season paddy

Kampili area	 15,200 ha
Bili-Bili area	 4,000 ha

19,200 ha

}

()

The proposed distribution system for Kampili area as well as Bili-Bili area are illustrated in Figs. 8-5 and 8-6.

4.3 Irrigation Requirements

Evapotranspiration

For estimation of evapotranspiration from crops, two popular methods in Indonesia i.e., Modified Penman and Hargreaves were compared and modified Penman was adopted because it showed larger values. Table below shows monthly evapotranspiration.

	· .	1.1.1	96. d.,	÷.,	5. N. S. A.	, parte -	1.5		e star	: 1	- 5	
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Penman	5.7	5.0	3.1	*	4,3	4.7	6.1	6.5	4.7	*	4.7	4.7
Har-	2.6	1.9	1.4	*	3.0	3.3	4.9	6.0	4.1	² . ★	2.5	2.4
greaves			·	÷.,	14 C 16 C 14	1.1.1.1.1		1940 - Maria B		 4.5 A + 1.5 	de la companya de la comp	

Table 8-15 shows monthly data of evapotranspiration from crops based on Modified Penman method for five year period of 1976 to 1980.

Crop factor at respective growth stage of paddy is estimated as below:

60% - 1.30
70% - 1.20
80% - 1.10
90% - 0.90
100% - 0.50

Crop consumption factor for each month is shown in Fig. 8-7.

Unit Irrigation Requirement

1

()

()

Diversion requirement at both Bili-Bili and Kampili intakes have been computed on the basis of the evapotranspiration obtained in the preceding sub-section. The items necessary for computation will be as follows:

and the party

1) Water requirement in depth (percolation)

and the second	(a) A. B. K. S. S. S. S. M. S.		1
Wet season	(November-April)		2.5 mm/day
Dry season	(May-October)	(1)	3.0 mm/day

2) Effective rainfall

Re = $0.7 \times \text{Rm}$ (mm/month)

a tangan dari

Re: effective rainfall Rm: monthly rainfall

3) Water required for preparation of paddy field and for puddling

Preparation Puddling) Conveyance loss Main channel	150 mm 50 mm
4) Conveyance loss	
Main channel Branch channel	20%
Field internal	10%

Thus, the overall water conveyance efficiency will be

Diversion requirements during dry season in the Basic Year (1976) will be as shown in Table 8-16.

Diversion Requirement

Diversion requirement at headrace on S-day basis would be 29.3 m³/sec at maximum in August. The components are as below:

Kampili Intake $Q = 1.527 \times 15,200 \times \frac{1}{1,000} = 23.2 \text{ m}^3/\text{sec}$

Bili-Bili Intake Q = 1.527 x 4,000 x $\frac{1}{1,000}$ = 6.1 m³/sec Real And a second second second second

Monthly diversion water requirement of 1976 which is selected as "basic dry year" is shown in Table 8-17.

5. IRRIGATION BENEFIT

Irrigation benefit is defined as an incremental net production value under the with- and without-the-project conditions. In this study, only the net incremental rice production has been calculated as the irrigation benefit derived from this project.

The allocation of water between the areas of Bili-Bili and Kampili was based on their respective area, i.e., 4,000 ha for Bili-Bili and 15,200 ha for Kampili in the dry season and 5,000 ha and 19,000 ha in the wet season, respectively.

Economic Price of Rice

Economic price of rice is assumed to be equivalent to the import substitution price, whose calculation is based upon the projected international market price (F.O.B. price at Bangkok). Projected price to 1985 in 1980 constant US dollars which was prepared by IBRD, has been employed to its calculation.

The price of rice at the full operation stage of the project has been assumed at Rp. 353,000/ton (refer to Table 8-19), in reference to the example of Langkemme Irrigation Project (which is proposed at about 130 km northwest along the provincial road away from Ujung Pandang).

Production Cost

The corresponding production cost has been estimated as below. Langkemme Irrigation Project has also been referred to for its estimation.

(Unit: RP/ha)

7

Without project With project

Wet	season	paddy	180,000	190,000
Dry	season	paddy	190,000	200,000

Net Production Value With and Without the Project

The net production value without project would remain at approximately Rp.19,319 million (US\$30.91 million) or Rp.731,780 (US\$1,171) per ha. in a year. On the other hand, net production value with project in a year would be Rp.38,980 million (US\$62.37 million) or Rp.902,315 (SU\$1,444) per ha.

Consequently, the project would bring about an increment of income amounting to Rp.19,661 million (US\$31.46 million) per year, as detailed in Table 8-20.

6. PRELIMINARY DESIGN AND COST ESTIMATE 化学学学校 化化学学校 化化学学校 化化学学校 化化学学校

6.1 Bili-Bili Irrigation System されたり ひんけい

The maximum discharge projected for Bili-Bili system is $Q = 6 \cdot 1 \text{ m}^3/\text{sec.}$ The volume tapped at Bili-Bili by natural intake is 3.5 m³/sec when the discharge water amount of the Jeneberang is 30 m³/sec.

The flow capacity of the channel between the intake and Pakatto weir is known to be $Q = 3.2 \text{ m}^3/\text{sec}$ where the channel meets J1. Malino, which is subject to improvement.

The improvement scale of the Bili-Bili system would be as follows. 이 같이 아파 이 가지? and the second
and the second of the second s irrigation system)

	Conduit	200 m
۰.	Open channel	1,300 m
1	Total	1,500 m
÷	建物学生 电空中分子 化合合合金	

The route of and the cross section of the connecting channel are shown in Fig. 8-8.

2) Improvement of existing system (Bili-Bili intake to Pakatto weir)

8,000 m in total

Improvement of Intake Facilities

Natural intake by present facility is very limited in volume. Additional volume would be diverted from discharge at power plant and conveyed to Bili-Bili irrigation system by conduit and open channel, accounted

The alternative intake methods would be as follows.

建筑 建胶理机 的现在分词 化合金

医周围 医鼻骨 化二磷酸 化氯化 建合金

1) Direct tapping from stream

Direct tapping from reservoir for Bili-Bili irriga-Parameters (the lation requirementation) from a fast

toperated and 3) Direct tapping from tailrace at hydro power station 1. Second and the second a

Direct tapping from Jeneberang with relatively lower Beased build intake stage would require damning of water by weirs as high as 1.2 m from riverbed (width: 150 m) for the intake water of 6.1 m^3 /sec. The construction cost is estimated to be US\$1.34 million. The construction for the second

observations die The irrigation requirement at Bili-Bili may be tapped and the Sate Intake placed at dam, h The water is then conveyed to and have irrigation system by open channel laid out for 1,000 m. The construction cost would be US\$3.85 million:

()

()

 $\left\{ \right\}$

化化化学学 化乙烯

2 (1 **8** - 1

and ordered Space of the South

.

The third alternative which utilize the discharge from hydro power station require channel composed of conduit and open channel extending 1,100 m from power station. The construction cost would be US\$0.91 million.

A comparative study for three alternative plans above has revealed that the third alternative would be the optimum choice for such advantages as below:

 $\left(\right)$

- Less construction cost

Improvement of Present Channels

The channel between Bili-Bili intake and Pakatto weir extending 8 km make use of natural river channel. Irregular sections and bottlenecks of the natural channel require improvement by adjustment of channel section.

Improvement of Secondary Channels and Relevant Facilities

The area subject to this improvement work corresponds to the benefitted area in wet season, which is 5,000 ha. As for the cost of improvement, US\$900/ha. is adopted same as the cost for Bili-Bili system.

6.2 Kampili Irrigation System

The maximum projected amount for Kampili irrigatin system is disjoined at $Q = 23.2 \text{ m}^3/\text{sec}$. The present intake capacity of the Kampili intake is approximately $25 \text{ m}^3/\text{sec}$, making available the continued use of such facilities as intake and silting basin. Bottlenecks in some sections of main channel (flow capacity: approximately 12 m³/sec) will be expanded. The improvement works of the system may be summarized as below:

- 1) Improvement of main channel 2,500 m (Setting basin to BL₁)
- 2) Improvement of secondary channel 19,000 ha and relevant facilities

Improvement of Main Channel

The narrow sections between silting basin to BL₁ diversion work (approximately 2,500 m) will be expanded to allow volume of $Q = 23.2 \text{ m}^3$ /sec. The work volume would be 25 m³ per meter, and the total, 62,500 m³.

Fig. 8-9 shows the improvement section of main channel and its cross-section.

Improvement of Secondary Channels and Relevant Facilities

The area subject to this improvement work corresponds to the benefitted area in wet season, which is 19,000 ha. As for the cost of improvement, US\$900/ha. is adopted same as the cost for Bili-Bili system.

6.3 Construction Schedule

The construction schedule is based on the assumption that 4 years (1983-1986) will be required for preparation works for commencing the construction works, and also that the improved irrigation facilities shall be ready for immediate use upon completion of Bill-Bill dam in 1990. Accordingly, the irrigation construction works would be started in 1987 and completed in 1990, so that the irrigation facilities could be used from 1991 onward. The construction schedule is shown in Fig. 8-10.

6.4 Cost Estimate

()

 \bigcirc

()

Construction Cost

Irrigation construction cost primarily comprises the direct construction cost, land acquisition cost, engineering cost and plus 15% physical contingencies. Construction cost would be US\$29.8 million, which might be broken down into the local currency portion of US\$22.7 million and the foreign currency portion of US\$7.1 million, as detailed in Table 8-21 and Table 8-22 shows annual disbursement currency.

Operation, Maintenance and Replacement Cost

The operation and maintenance cost comprises the personnel cost, operational machinery and equipment, vehicles, administrative cost and miscellaneous. The annual operation and maintenace cost is estimated at US\$0.50 million. Replacement cost of wooden bar, gabion and screen in every 10 years amounts to US\$0.12 million.

_					and the second	the second s
	1975	1976	1977	1978	1979	1980
Jan.	54.07 87.73	94.82 153.85	112.57 182.65	67.54 109.59	98.67 160.09	85.65 138.14
Feb.	57.46 93.23	.68.68 111.44	176.41 286.23	64.73 105.03	58.41 94.77	106.25 172.14
Kar.	· 51.20 83.07	68.79 111.61	60.02 97.38	35.34 57.34	61.18 99.27	73.56 119.95
Apr.	53.60 86.97	16.59 26.92	53.13 86.20	21.05 34.15	25.55 41.46	49.32 80.59
Kay	28.77 46.68	13.75 22.31	11.67 18.93	22.27 36.13	22.31 36.20	20.75 33.32
Jun	10.76 17.46	2.89 4.69	20.33 32.99	16.09 26.11	10.72 17.39	5.33 8.18
Jul	4.66	2.75 4.46	2.72	27.54 44.68	2.67 4.33	2.57
Aug.	3.55 5.76	2.58 4.18	2.60	6.69 . 10.85	2.54 4.12	2.44 4.90
Sep.	2.58 4.19	2.33 3.78	2.40 3.89	4.34 7.05	2.38 3.86	2.29 3.80
Oct.	3.99	7.69	2.23 3.62	4.44 7.20	2.44 3.96	6.79 5.60
Nov.	41.77	17.48 28.36	17.05 27.66	20.57 33.38	7.07	21.53 28.10
Deci	68.19 110.64	24.10 39.10	64.13 104.05	76.11 123.49	70.75 114.79	85.84 139.11
Dry Season Average	10.86 17.62	6.40 10.38	8.39 13.61	16.27 26.40	8.61 13.97	8.03 13.04

Table 8-1 MONTHLY RIVER DISCHARGE AT THE BILI-BILI AND KAMPILI INTAKES (Unit: m³/sec)

Note: Upper figures in the column - Bili-Bili Lower figures in the column - Kampili

Table	8-2	IRRIGATION	SYSTEM	PREVAILING	IN	THE	PROJECT	AŔĖA
					1 2 (- 3	(U	nit: ha)	

	Gova		Takalar		Ujung Pandang		
	Area	2	Агеа	X	Area	X	
D.P.U.P.S.S. technical	12,950	36.5	5,090	25.6	0	0.0	
D.P.U.P.S.S. sepi-tech.	7,450	21.0	3,920	9.6	0	0.0	
Dess simple tech.	4,670	13.2	1,800	9.0	350	. 9.5	
Dess non-tech.	10,410	29.2	11,100	\$5.8	3,330	\$0.5	
TOTA 1	35,480	100.0	19,910	100.0	3,680	100.0	

8-14

_

1.22

()
ARE	
PROJECT	
THE	
Ä	
VARIETIES	
PADDY	
DIFFERENT	
Ъ	
AREA	
PLANTED	
8-3	
Table	

Tatakine Tatakine South Sutheres P1 - 1 2 4) 1.319.00 6,220.30 6,220.30 P1 - 2 - 4) 1.319.00 6,220.30 6,220.30 P3 - 5 - 4) 1.319.00 6,220.30 6,220.30 P3 - 5 - 4) 1.319.00 6,220.30 6,220.30 P4 - 63 - - 1.250.00 1,250.25 1,301.50 Painta 1) 756.95 1,200.00 1,250.05 1,301.50 Maint - - 2,100 - 2,205.00 2,209.00 Maint - - 1,250.00 - 2,209.00 1,301.50 Maint - - 1,250.00 - 2,209.50 1,497.41 Maint - - - - 1,301.50 1,497.41 Maint - - - - 1,312.50 1,497.41 Maint - - - -	- -			- 1980			(Unit: na
Variation Dry season Wer define Dry season Season Dry season Season Dry season Season Dry season Season		Cowa		Tak	alar	Sout	D Sulavest
P1 = 1 - 660.33 - P1 = 2 - 4) 11319.00 - 5250.00 5.233.67 6.230.37 P8 = 3 - 2,1319.00 - - 123.50 15,253.67 6.230.07 Parte - - 255.50 - 4,1319.00 - - 4,095.17 6.230.07 Parte - - 1350.00 - 3.50 1,1250.05 5.76.35 1,201.55 4,099.11 Matt 1 7 55.95 0.76.00 - - 55.95 1,001.55 6.200.81 1,001.55 6.206.87 1,001.57 Matt 1 7 7 55.95 0.76.00 - 2.005.01 1,256.05 1,401.86	Varieties	Dry season	Wet season	Dry season	Wet season	Дгу веакоп	WET SEASOD
P: 1 2 4) 1,319.00 5.205.00	P1 - 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1		663.33	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P1 - 2	1	ľ	, , , ,		2.00	•
R5 = 3 255.00 - 255.00 - 256.00 4,49.01 C4 150.00 - 235.05 3.50 1,150.00 1,295.95 5,30.35 1,205.05 1,206.00 4,495.01 5,30.01 5,35.95 1,301.55 1,205.05 1,206.00 4,495.01 5,30.01 1,295.95 1,301.55 1,201.55 1,437.56 1,201.55 1,437.56 1,201.55 1,437.56 1,201.55 1,437.56 1,201.55 1,437.56 1,201.55 1,437.56 1,201.55 1,437.56 1,212.56 1,437.56 1,2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	4) 1.319.00	•	123-50	15,253.67	6,220.30
Cit - 63 - 559.00 - 5.50 4) 1,250.25 18,919.90 5) 8,700.55 Mature - 10 150.00 - 150.00 1,256.95 4,499.15 Mature - 10.00 - 10.00 - 22.005.00 - 4,499.15 Mature - 10.00 - 20.00 - 20.00 - 20.00 - 20.00 Mature - 10.00 - 10.00 - 20.00 - 20.00 - 20.00 Mature - 10.00 - 0.0 - 0.0 - 0.00 - 20.00 - 20.00 Mature - 10.00 - 0.0 - 0.0 - 0.00 - 20.00 - 20.00 Mature - 10.00 - 0.00 - 0.00 - 0.00 - 20.00 - 20.00 Mature - 0.00 - 0.00 - 0.00 - 0.00 - 20.00 - 20.00 Mature - 0.00 - 0.00 - 0.00 - 0.00 - 20.00 - 1.430.2 Mature - 0.00 - 0.00 - 0.00 - 0.00 - 20.00 - 1.430.2 Mature - 0.00 - 0.00 - 0.00 - 0.00 - 1.430.2 - 20.00 PS - 20 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 1.430.2 PS - 20 - 0.00 <td></td> <td>ſ</td> <td>225.00</td> <td>I</td> <td>•</td> <td>266.00</td> <td>449-00</td>		ſ	225.00	I	•	266.00	449-00
Peiter 2,700-00 2,700-00 4,400-10 150-00 1,206-95 6,20-5 1,301-55 Mature - 21.000 - - 1,301-55 555-55 1,301-55 150-00 1,301-55 150-00 1,301-55 150-00 1,301-55 150-00 1,301-55 160-00 1,301-55 160-00 1,301-55 160-00 1,301-55 160-00 1,301-55 1,301	ະ ເຈົ້າ ອ	ł	559.00	3+50	4) 1.250.25	18,919,90	5) 8,760.55
Additi 1) 756.95 307.00 - 1,296.95 1,301.55 62.65 Mahuur - 21.00 - 3.50 1,532.75 55.35 535.45 62.65 Submur - 21.00 - 2.100 - 2.100 - 1.0100 - 55.45 5.1144.65 1.335.95 1.437.65 5.356.55 5.1144.65 1.437.65	Pattra .		2.205.00	1	150-00	•	4,499.16
Malaute 125.00 23.50 545.45 629.65 Cenart 5.5 5.9 20 20.6	Att	1) 756.95	307-00	· · · · · · · · · · · · · · · · · · ·		1,296.95	1,301,52
Count 21.00 - 21.00 - 168.00 Stb Toteal 756.55 $4.761.00$ 3.50 1.532.75 36.930.30 2.008.13 FB = 20 64.69 209.00 - 4.00 78.50 2.1184.65 3.366.95 FB = 20 64.69 209.00 - 4.00 78.50 5.1184.65 3.366.97 FB = 22 64.69 209.00 - 4.00 78.50 5.1184.65 3.366.97 FB = 23 3.0 174.00 5) 16.12 5.998.47 3) 56.988.47 3) 56.988.47 3) 56.988.47 3) 56.988.47 3) 56.988.47 3) 56.988.47 3) 56.988.47 3) 56.988.47 3) 56.988.47 3) 56.988.47 3) 56.988.47 3) 56.988.47 3) 56.398.47 3) 56.398.47 3) 56.398.47 3) 56.398.47 3) 56.398.47 3) 56.306.67 1) 57.306.67 1)	Makmust		125.00	•	•	545.45	629-65
Sub Total 75.95 $4,761.00$ 3.50 $1.532.75$ $36.950.30$ $22.078.18$ PB = 20 $=$ 98.000 $=$ 98.000 $=$ 2.00 $2.1184.65$ $1.437.65$ PB = 28 3.000 17.000 $=$ 1.700 $2.1184.65$ $3.365.65$ $3.365.65$ $3.365.65$ $3.365.65$ $3.365.65$ $3.365.65$ $3.565.73.65$ $1.459.23$ $4.054.71.35$ $4.054.71.35$ $4.054.71.35$ $4.054.45$ $4.054.45$ $4.054.45$ $4.054.45$ $4.054.45$ $1.437.65$ $1.437.65$ $1.437.65$ $1.437.65$ $1.657.45$ $1.437.65$ $1.437.65$ $1.657.47$ $3.95.11$ $4.054.47$ $3.95.116.13$ $4.054.47$ $3.95.735$ $8.471.33$ $4.054.76$ $4.054.76$ $4.054.76$ $4.057.76$ $8.471.33$ $4.057.76$ $3.357.52$ $2.061.47$ $3.96.731.67$ $4.567.66$ $4.367.76$ $6.997.67$ $1.726.831.67$ $4.367.76$ $6.967.67$ $1.726.831.67$ $4.384.11.37$ PB = 32 $5.1166.0$ 1.272	Cemar	1	21,00		•		168.00
PB = 20 $1,300.9$ $2,379.34$ $1,300.9$ PB = 20 64.69 209.00 4.00 78.50 $51,184.65$ $5,356.9$ $1,457.15$ PB = 28 3.00 170.00 5 16.25 345.00 $1,557.15$ $1,457.15$ PB = 30 3 216.13 212.000 5 16.25 345.00 $13,599.11$ $4,054.45$ 354.45 354.45 354.45 354.45 354.45 354.45 354.45 354.45 $36.787.45$ $36.787.44$ 6.9906 $4.334.41.25$ $36.786.81$ $4.334.41.25$ $36.786.81$ $4.334.41.25$ $36.786.81$ $4.334.41.25$ $36.786.81$ $4.334.41.25$ $36.786.81$ <td>Sub Toral</td> <td>756-95</td> <td>7.761-00</td> <td>3 50</td> <td>1.532.75</td> <td>36,950-30</td> <td>22,078,18</td>	Sub Toral	756-95	7.761-00	3 50	1.532.75	36,950-30	22,078,18
PB-26 64.69 209.00 4.00 78.50 5 $21,184.65$ $3,336.96$ $PB-26$ 3.00 18.00 $ 17.00$ $8,132.56$ $1,457.16$ $3,136.13$ 3.00 117.00 $8,132.56$ $1,457.16$ $3,59.11$ $4,697.16$ $PB-30$ 3 216.13 2103.00 3 56.55 5 $1,141.65$ 1 $4,054.16$ $3,587.16$ $4,054.16$ $3,587.356$ $1,457.65$ $2,315.23$ $2,061.41$ $4,054.16$ $4,054.16$ $2,061.41$ $4,054.16$ $2,061.41$ $4,344.50$ $2,54.306$ $3,584.65$ $4,124.65$ $2,315.23$ $2,061.41$ $4,344.16$ $PB-38$ 5 112.633 641.000 $2,55.65$ 3 $1,275.02$ $2,357.32$ $2,061.41$ $4,334.11$ $PB-38$ 5 $11,27.50$ 2 $1,475.90$ $2,537.56$ $4,344.11$ $4,384.11$ $PB-38$ 5 $11,26.70$ $1,570.26$ $2,357.56$ 3 $3,573.37.00$ $5,537.20$ $2,557.46$ $6,903.66$ $5,5737.62$	<u>98 - 20</u>		98.00			2,379.34	1,340.95
PB = 28 3.00 13.00 - 10.00 8,132.56 1,437.85 PB = 32 4) 17.00 5 16.25 345.00 13.595.16 1,437.85 PB = 32 4) 17.00 5 16.25 5 11441.65 1 55.95.16 1,437.85 PB = 32 4) 71.28 4.29.00 4) 55.65 5 1,444.65 1 5,595.15 4,054.47 3) 56,787.65 5 1,444.65 1 5,061.47 3) 56,998.47 3) 36,787.65 3,471.36 4,054.47 3) 36,783.64 3,57.35 8,471.36 4,054.41 4,384.41 <td>44 = 26</td> <td>69-69</td> <td>209-00</td> <td>4-00</td> <td>78-50</td> <td>5) 21, 184-65</td> <td>3,386,95</td>	44 = 26	69-69	209-00	4-00	78-50	5) 21, 184-65	3,386,95
PB = 29 17.00 5 16.25 345.00 15,595.44 4,697.44 PB = 32 4) 174.00 5) 16.13 212.00 5) 5655 5) 1,141.65 1) 56,995.47 30 56,595.45 5) 3061.40 4,054.43 5,595.47 3) 36,595.44 3) 36,595.44 3) 36,595.44 3) 36,595.45 3) 36,506.47 3) 36,506.47 3) 36,506.47 3) 36,506.47 3) 36,506.47 3) 36,506.47 3) 36,506.47 3) 36,506.47 3) 36,506.47 3) 36,506.47 3) 36,506.47 3) 36,506.47 3) 36,573.55 8,471.36 4,71.34	98 I 38	00.5	18.00	•	10-00	8,132.56	1,437-83
PB-30 3) 216-13 212.00 5) 16-25 345-00 13,599-11 4,054.43 PB-32 4) 174-00 5) 1,018.00 3) 56.65 5) 1,141.65 1) 56,998.47 3) 36,787.66 PB-32 4) 174.00 5) 1,018.00 3) 56.65 5) 1,141.65 1) 56,998.47 3) 36,787.66 PB-36 5) 12.00 2,64.00 4) 55.65 2) 1,434.50 2,315.23 2,067.43 2,068.67 1) 56,938.67 4) 18,833.44 PB-38 5) 112.83 6,41.00 2) 53.465 4) 2,986.67 1) 5,471.36 2,986.67 1) 5,471.36 5,7088.65 4,7136.85 4,7136.85 4,7136.85 4,7136.85 4,7136.85 4,7136.85 4,7136.85 5,7088.65 3) 5,737.05 5,7088.65 3) 5,737.05 5,7088.65 3) 5,737.05 5,708.85 5,708 5,709 5,708 5,708 5,709 5,709 5,7105 5,709 5,710.75	PR - 20	: * • • •	17-00	•	· · ·	7.259.26	1,697.13
PB = 32 4) 174.00 5) 1.018.00 3) 56.65 5) 1.141.65 1) 56.998.47 3) 36.787.65 PB = 34 71.28 429.00 4) 55.65 2) 1.434.50 2,315.23 2,061.41 PB = 36 2.00 264.00 - 55.65 2) 1.434.50 2,315.23 2,061.41 PB = 36 5) 112.83 6.41.00 2) 55.455 3) 1.533.56 4) 118.833.45 PB = 42 - 2) 1.597.00 2) 53.355 3 4.71.36 4,71.368 PB = 42 - 2) 1.597.00 2) 53.456 1) 57.088.65 4,71.368 PB = 42 - 2) 301.60 1.597.00 1) 219.35 3 25.336.69 3) 57.335.69 3) 57.337.60 Exantus 2) 301.60 1.597.00 1) 219.81 423.96 55.93 55.337.60 55.337.60 55.337.60 55.337.60 55.337.60 55.337.60 55.337.60 55.337.60	06 1 80	3) 216-13	212.00	5) 16-25	345-00	13,599-11	4,054.42
PB = 34 71.28 429.00 4) 55.65 2) 1,434.50 2,315.23 2,061.4 PB = 36 2.00 264.00 - 534.65 4) 26.330.87 4) 18,883.4 PB = 36 5) 112.83 641.00 2) 63.85 1,075.70 3,857.35 8,471-36 PB = 42 - 2) 1697.00 2,550 3) 1,372-50 2) 36,306.67 1) 57.088.65 PS = 42 - 2) 1,697.00 2 2.55.00 3) 1,372-50 2) 36,37.00 4,384.1 Brantas 2) 301.60 1,594.00 1) 219.75 1) 1,678.30 3) 26,385.69 3) 35,37.00 Serayu 2) 201.60 1,594.00 1) 219.750 2,786.81 4,384.10 Serayu 622.38 55.00 - 2,786.81 4,384.10 1,433.00 5,355.69 3) 343.00 Citarum 2) 1,678.30 3) 26,385.69 3) 343.00 1,440.00 1	P8 - 32	4) 174-00	5) 1.018-00	3) 56.65	5) 1,141-65	1) 56,998.47	3) 36,787.68
PB = 36 2.00 264.00 - 534.65 4) 26,330.87 4) 18,883.4 PB = 38 5) 112.83 641.00 2) 63.85 1,075.70 3,857.35 8,471.36 PB = 42 - 2,1697.00 2 63.85 1,075.70 3,857.35 8,471.36 PB = 42 - 2) 1,697.00 2.50 3) 1,373.50 2) 36,306.67 1) 57,088.65 Brantas - 2) 301.60 1,594.00 1) 219.75 1) 1,678.30 3) 26,335.69 3) 3,5,337.00 Strayu - - 2) 301.60 1) 219.75 1) 1,678.30 3) 26,335.69 3) 3,5,337.00 Stantas - - - - - - 4,384.1 Stantas - - - 219.70 1 4,23.96 3) 3,5,37.00 Stantas - - - - - - - 4,34.1 Stantas - - - - - - - 5,337.00 5,44.1 5,435.2 5,44.0 Stantas - - -	PB = 34	71.28	429-00	4) 55-65	2) 1,434.50	2,315-23	2,061.41
PB - 38 5) 112.83 641.00 2) 63.85 1,075.70 3,857.35 8,471.36 PB - 42 - 2) 1,597.00 2.50 3) 1,373.50 2) 36,306.67 1) 57,088.65 PB - 42 - 2) 1,697.00 - 2.50 3) 1,373.50 2) 36,306.67 1) 57,088.65 Brancas - 2) 1,597.00 - 2.786.81 4,384.1 Brancas - 2) 301.60 1,594.00 1) 219.75 1) 1,678.30 3) 26,385.69 3) 35,337.00 Serayu - - - - - - - 4,384.1 Serayu 62.38 1,44.00 - - 5.00 2,527.44 6,903.65 Semeru - - 5.00 - 5.00 2,527.44 6,903.65 Semeru - - - - - - - - Semeru - - - - - - - - - - Semeru - - - - - - -	PB = 36	2.00	264-00		584.65	4) 26,330.87	4) 18,883,45
PB - 42 2 28.00 2-50 3) 1,373.50 2) 306.67 1) 57.088.65 Brantas - 2) 1,697.00 - 2.786.81 4,394.11 Brantas - 2) 1,597.00 1) 219.75 1) 1,678.30 3) 26,385.69 3) 35,337.05 Strayu - - - - - - 5.385.69 3) 35,337.05 Strayu - - - - - - 5.55.93 555.53 Serayu - - - - - - 5.355.69 3) 35,337.05 Serayu - - - - - 5.435 555.93 543.00 54.37 543.00 543.00 544.07 544.07 544.07 544.00 544.07 544.07 544.07 544.07 544.07 544.07 544.07 544.07 544.07 54.25.01 14.25.07 14.255.01 14.255.01 14.475.97 54.25.01 14.475.97 54.251.04 4.17.137.07	P.8 - 36	5) 112.83	641.00	2) 63-85	1,075+70	3, 857.35	8,471.36
Brantas - 2) 1,697-00 - 423-96 2,786.81 4,394.10 Citarum 2) 301.60 1,594.00 1) 219.75 1) 1,678.30 3) 26,335.69 3) 35,337.00 Serayu - 8.00 - 5.00 1,719.82 655.93 Serayu 62.38 55.00 - 5.00 2,786.81 4,394.10 Asahan 62.38 55.00 - 5.00 2,527.44 6,903-65 Semeru - 5.00 2,527.44 6,903-65 341.71 Semeru - 5.00 2,527.44 6,903-65 341.71 Semeru - - 5.00 2,527.44 6,903-65 Ayung - - - - 118.3 246.77 Ayung - - - - - - 118.3 256.56 Ayung - - - - - - 118.3 256.56 341.77 Ving - - - - - - - - -	p8 - 42	l	28.00		3) 1,373-50	2) 36,306,67	1) 57,088.63
Cf tarum 2) 301.60 1,594.00 1) 219.75 1) 1,678.30 3) 26,385.69 3) 35,337.05 Serayu 6 8.00 - 55.00 - 55.93 655.93 Semeru 62.38 55.00 - - 5.00 2,527.44 6,903-65 Semeru 6 2.55.00 - - 5.00 2,527.44 6,903-65 Semeru - 144.00 - - 5.00 2,527.44 6,903-65 Semeru - - - - 5.00 2,527.44 6,903-65 Aduat - - - - - - 341.77 Semeru - - - - - - - 341.77 Zeadane - - - - - - - 118.33 Ayung - - - - - - - 118.33 Sub Total - - - - - -	Brantas	1	2) 1.697-00	•	423-96	2,786.81	4,384.14
Serayu - 1,719.82 655-93 Asahan 62.38 55.00 - 5.00 2,527.44 6,903-65 Asahan 62.38 55.00 - 5.00 2,527.44 6,903-65 Semeru - 5.00 2,527.44 6,903-65 343.06 Semeru - - 5.00 2,527.44 6,903-65 Avung - - - 5.134.00 - 118.35 Avung - - - 5.198.00 26.00 151.00 18,5296.55 Volkal 697.52 12,219.00 8.50 6,251.04 47,137.07 73,246.77 Calur 59.44 8.50 - - 57,236 74,475.97		2) 301-60	1.594-00	1) 219-75	1) 1,678-30	3) 26,385.69	3) 35,337.02
Asahan 62.38 55.00 - 5.00 2,527.44 6,903-6 Semeru - 144.00 - 5.00 2,527.44 6,903-6 Semeru - 144.00 - 5.00 2,527.44 6,903-6 Semeru - 124.35 341.7 243.00 144.00 - 118.3 Ayung - - 22.00 - - 118.3 Ayung - - - - - 118.3 Ayung - - - - 118.53 134.50 Ayung - - - - - 118.3 Ayung - - - - - 118.33/296.56 Ayung - 5.198.00 266.00 - 151.936.86 14,223.11 Cotalut 59.44 - 8.50 - - - - - - - - - - - <td></td> <td></td> <td>8.00</td> <td>•</td> <td>ì</td> <td>1,719-82</td> <td>655-98</td>			8.00	•	ì	1,719-82	655-98
Semeru - 154.35 343.00 Cteadane - 22.00 - 341.7 Ayung - 118.35 Ayung - 6,454.00 418.50 8,150.76 211,936.86 183,296.55 Sub Total 1,007.91 6,454.00 26.00 151.00 18,629.27 14,223.19 U. Lama 906.18 5,198.00 - 26.00 151.00 18,629.27 14,223.19 Cokal 697.52 12,219.00 - 8.50 - 47,137.07 73,246.77 Calur 59.44 - 475.99	Acahan	62-38	55-00	100 100 100	5.00	2,527.44	6,903-61
Ct sadane - 22.00 - 341.7 Ayung - 118.35 Sub Total 1,007.91 6,454.00 418.50 8,150.76 211,936.86 183,296.55 U. Lama 906.18 5,198.00 26.00 151.00 18,629.27 14,223.17 tokal 697.52 12,219.00 - 8.50 6,251.04 47,137.07 73,246.77 calur 59.44 - 35.04 10,570.80 4,475.97	Seme Tr	1	144.00		1	154-35	343-00
Ayung - - 118-3 Sub Total 1,007.91 6,454.00 418-50 8,150.76 211,936.86 183,296.55 Vib Total 906-18 5,198-00 26-00 151-00 18,629.27 14,223-17 Vib Lama 905.52 12,219-00 6,251.04 47,137.07 73,246.77 Colur 59.44 8.50 8.50 4,475.97	Cfaadane"	🗮 tan 111 A. 1	22-00	•	,	1	341.71
Sub Total 1,007.91 6,454.00 418.50 8,150.76 211,936.86 183,296.56 U-Lama 906-18 5,198.00 26.00 151.00 18,629.27 14,223.17 U-Lama 697.52 12,219.00 - 6,251.04 47,137.07 73,246.77 Colar 59.44 - 8.50 - 10,570.80 4,475.97	Awing	1	1			•	118-32
U-Lama 906-18 5,198-00 26-00 151-00 18,629-27 14,223-1/ Lokal 697.52 12,219-00 - 6,251.04 47,137.07 73,246-77 Calur 59-44 - 10,570.80 4,475.97	Sub Total	1.007-91	6.454.00	418-50	8,150-76	211,936,86	183,296.58
tokal 697.52 12,219.00 - 6,251.04 47,137.07 73,246-7 calur 59.44 - 10,570.80 4,475.9	U. Lama	906-18	5,198-00	26-00	151-00	18,629.27	14,223-19
Calur 59-44 - 8.50 - 10.570.80 4.475.9	Lokal	697.52	12,219.00		6,251-04	47.137.07	73,246-73
	Calur	59-44	•	8.50		10.570.80	4,475.92

()

 $\langle \rangle$

						÷	:		:	•			
			:	1		14 	in in Mga At	[.]			ti je		
		- 200		· • · · ·				* € 21,83				(Unit:	Nos.
	n de An Istra		0	25 ha 🗄			0.25 -	0.50 ha			> 0-50	, vu	
2	ame of Kecamatan	Yeoman	Tenant	Yeoman and Tenant	Total 3+4+5	Yeoman	Tenant	Yeoman and Tenant	To cal 7+8+9	Yeoman	Tenant	Yoeman arid Tenant	To tal
	2	6	7	5	6	,	8	6	10	11	12		^14
	bontonompo	1,733	196	126	2,055	1.441	298	907	2,145	1,02R	16 16	636	1,755
- 1	ba j eng	1,910	563	149	2,622	1,614	3%3	390	2,387	1.133	116	200	1.949
	Tompobulu	813	20 2	45	928	2,123	212	521	2,861	6 . 7 4 9	293	2,331	9.373
4	11 ngg1moncong	1,332	197	187	1,716	1.690	160	437	2,287	2,236	62	863	3,191
	Parangloe	813	139	7	1,006	820	160	207	1,187	663	103	374	I,145
	אס הנאוות בעוות ש	306	309	51	666	828	539	340	1*704	208	392	707	2,007
, ,	Pallan rra	2,164	219	127	2,510	1,735	229	578	2,532	810	106	1,002	1,918
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Somba Opu	325	120	69	514	369	201	89	659	343	200	27.1	814
	Total	9,396	618.1	SOR.	12,017	10,612	2,132	2,968	15,762	13,875	1,393	6.884	22,152

Source: Sensus penduduk 1980, penduduk Kahupaten Gowa 1980

ndersten strict in der Statistikken der Statisten Aller in der Statistikken in Statistiken

()

()

Sou	th Sula	wes1		(ton/	ha)
	1975	1976	1977	1978	1979
Wet land paddy					
rainy season	3.267	3.519	3.656	3.748	3.944
dry season	3.567	3.814	4.583	4,239	3.656
(sub-total)	3.391	3,591	3.883	3.875	4.633
Dry land paddy	1.343	1,483	1.441	1.501	1.688
Maize (corn)	0.645	0.669	0.723	0.774	0.690
Cassava	7.260	7.100	7.044	7.173	6.961
Sweet potato	5.032	4.649	4.714	5.149	5.475
Soy bean	0.608	0.582	0,630	0.715	0.546
Green bean	0.485	0.450	0.471	0.599	0.607
Peanuts	0.586	0.587	0.625	0.626	0,607

### Table 8-5 PRODUCTION OF PADDY AND OTHER PRINCIPAL FLOOD CROPS

Table 8-6 PRODUCTION OF PADDY IN THE RELATED AREA

Project Are	a = (Gowa	+ Takalar	+ U. Pandan	g)
· · · · · · · · · · · · · · · · · · ·	1977	1978	1979	mean
Wet land paddy				
rainy season	3.263	3.446	3.797	3.50
dry season	2.400	3.624	2.986	3.00

()

( )

:	EA	5			• • • • • • • • • •				)					
	ATED AI	ON/HA)	1979	3.732	3.797	2.986	1-944	3.694	0.662	5.897	4.486	0.615	0.451	0.610
	THE REL	RATE (T	1978	3 467	3.446	3.624	2.361	3 - 449	0.659.	7.022	3-826	0.474	0.463	0-605
	NI ONI	TELD	1977	3.185	3.263	2.400	1.606	3.137	0-700	6.561	3.774	0.477	0-505	0.585
	KOPS BY K		1979	199,410	186,646	12,764	2,280	201,690	16,519	32,893	2,813	24	1,294	275
	DF FOOD CI	D (TON)	1978	196,240	168,275	27,965	3,391	199,631	19,146	43,392	2,969	6	1,790	321
	ILD RATE (	YIEI	1977	166,453	155,114	11,339	2,673	169,126	18,771	32,275	3,212	21	4,560	380
	D AND YIE	(EA)	1979	53,429	49,154	4,275	1,173	54,602	24,594	5,578	627	39	2,868	451
	EA, YIEL	TED ARES	1978	56,544	48,828	7,716	I ,436	57,880	29,067	6,179	776	61	3,865	531
- - - - - - -	ESTED AR	HARVES	1977	52,255	47,531	4 ,724	1,664	53,919	26,834	4,919	851	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9,301	650
	8-7 HARV		<ul> <li>The second se Second second sec</li></ul>	AND PADDY	NY SEASON	SEASON	AND PADDY	TAL		Å				
	Table			DY WET L	EAT.	DRY	DRY-L	С Ц	IZE	SSAV	ET POTATO	BEAN	EN NUTS	NUTS
				QVA					A M	C A	SWE	SoY	80	PEA
					el €e s									
							-					a Sili		
ange and and a			46 S	\$ 		a de la		1. s						

SOURCE: AGRICULTURE SERVICE OF SOUTH SULAWESI RELATED AREA: TAKALAR + GOWA + UJUNG PANDAND

8-18

an a staar

.

. . .

()

	V.Pandang	Gowa	Takalar	Total
Korse	182	2,214	9,785	12,181
Cow	788	6,210	16,350	23,348
Buffalo	3,750	67	35,850	39,667
Goat	4,330	6,245	26,535	37,110
Pig	23,040	4,960	4,260	32,260
Villáge hen	164,820	64,575	927,675	1,157,070
Improved hen	72,560	450	470	73,480
Duck	19,290	1,830	19,510	40,630

#### Table 8-8 NUMBER OF THE LIVESTOCKS

Source: Statistical year book South Sulawesi 1979

Table 8-9 PROGRESS OF BIMAS AND INMAS OF RICE IN SOUTH SULAWESI

YEAR	BIMAS (ha)	INMAS (ha)	TOTAL(Ha)	INDEX'S
1969/1970	47,549	13,190	60,379	100
1970/1971	46,432	21,791	68,223	112.9
1971/1972	28,006	82,780	110,786	183.4
1972/1973	89,025	77,910	116,935	193.6
1973/1974	87,117	58,287	145,404	240.8
1974/1975	95,034	17,680	112,714	186.6
1975/1976	94,646	30,533	125,179	207.3
1976/1977	114,579	66,134	180,713	299.2
1977/1978	112,528	106,615	219,143	362.9
1978/1979	110,763	143,202	153,965	420.6
1979/1980	70,959	155,073	226,032	374.3
			and the second	

	· ·				(DR	Y + WET SEA	SON)
	KABUPA Kota	TEN/ MADYA	YEAR	BIMAS (ha)	INMAS (ha)	TOTAL (ha)	K
	GOWA		1977	6,109	5,820	11,929	36.7
			1978	7,240	6,946	14,186	39.5
	·		1979	3,658	7,328	10,986	33.1
	TAKALA	R	1977	1,924	1,589	3,513	21.7
	•		1978	2,175	1,710	3,885	22.8
	<b>~</b>	: :	1979	1,369	2,796	4,165	25.1
	J.PAND	ANG	1977	205	454	659	18.6
			1978	90	196	286	8.0
	<b></b>	: ; ;	1979	25	324	349	9.6
	TOTAL	2	1977	8,238	7,863	16,101	30.8
			1978	9,505	8,852	18,357	32.5
	• • • • • • • • • •	*	1979	5,052	10,448	15,500	29.0
· · ·	* · ·			· · · · · · · · · · · · · · · · · · ·			· .
		•	Source: A	griculture	Service of	South Sulaw	est
		2 	% : Ī	Bi Bimas + Inga	mas + Inwas s + Noń Bim	as & Inmas	x 100
÷.				1	• • • • • • • • •	· · ·	
	* :	:		-			
 7			на на 29 година 20 година				
* .	•			an a sangan da			•
					÷		
		-	\$				
					1 		
					4 4		
ي هيد کرد د هري مردد د د							÷

Table 8-10 PROGRESS OF BIMAS AND INMAS OF RICE IN THE RELATED AREA

()

Table 8-11 ECONOMIC ASPECTS OF FARM PRODUCTS

(Results of Field Survey)

Contract	mmodity .	Paddy Ver seree	Paddy Truy careon	н 8	Ca seava	Green bean	Soy bean	Ground bean
Method of Cultivation (Traditional: New technic Simas, Inmas, etc.)		type type	by animal	up land	up land	type type	tradicional type	tradicional
Gross' Product		· ,						
Area planted Producta Unit price (A) Cross products	ha con/ha Rp/con	1-00 2-500 71,500 178,750	1-00 2-000 71,500 143,000	1-00 0-670 35,000 23,450	7,000 10,000 70,000	1-00 0-290 125,000 36,500	1.00 1.410 70,000 98,700	1.00 0.800 125,000 96,000
Labor Force								
Family labors Employed labors (5) Total labors Animals Machines	487 487 487 487	990	¥826.	82311	81811	S S	. 90911	95 375 1 122-5
Production Cost			ب ب					
Cost of employed labor Cost of material	221	33,000 30,900	12,800 29,400	2,000 2,850	10,400	3,500	6,000 5,500	14,400 7,500
Chargersand fees	22	1 1	22,000				) <b>1</b>	<b>1</b>
Tax (C) Production cost	é é	63,900	64,200	4,850	10,400	3,500	15,000	21,900
Income Profit								
(D) Family in income (A-C)	28	114,850	78,800	18,600	59,600	32,750	83,200 2,000	74,100
(C) Labor productivity (D:B)	Po-/day	112,850	62,200	12,600	41,600 851	28,750 1,638	81,200 2,080	655 259

.

8-21

()

 $\langle \cdot \rangle$ 

 $\bigcirc$ 

()

	Yield (ton/ha)	Unit Price (Rp/ton)	Gross Products (Rp/ha)	Production Cost (Rp/ha)	Income (Rp/ha)
Paddy	2.5	71,500	178,750	64,000	114,750
Maize •	0.7	35,000	24,500	4,850	19,650
Green bean	0.5	125,000	62,500	3,500	59,000
Cassava	7.0	10,000	70,000	10,400	59,600

Table 8-12 INCOME OF CROP

Table 8-13 MOVEMENT OF PADDY FROM SOUTH SULAWESI

		(Unit: ton)
	1978 - 1979	1979 - 1980
NORTH SULAWESI	8,460	14,490
CENTRAL SULAVESI	2,000	2,995
EAST KALIHANTAN	9,976	23,930
WEST KALIMANTAN	3,000	17,400
MALUKU	10,250	15,450
SOUTH-EAST ISLANDS	2,000	

## Table 8-14 GROWTH PERIOD OF VARIETIES OF PADDY

۰.

u Ali seri,	<u></u>	<u> </u>	(Unit:	Number of Days)
Varieties	Growth Period	After Tra	nsplanting	Total
of Paddy	of Seedlings	Irrigation	Cultivatio	Growth Period
3. 64 - 63	20 - 25	95	105	125 - 130
2. PB - 26	20 - 25	2,95 ∰ 1. 1,95 ∰ 1.	105	125 - 130
3. PB - 32	21 - 27	108 - 109	118 - 119	140 - 145
4. PB - 36	18 - 21	82 - 39	92 - 99	110 - 120
S. Ciçarum	20 - 25	95	105	125 - 130

Note 1 : Persuasion seed soving : 7 - 10 days Note 2 : Puddling : 10 - 14 days

2		
୍		
70		
~		
- 6		
F		
- <b>A</b> L		
- 14	1	
c		

.

		2
METHOD)		/ Jo
PENMAN		(11-4
(MODIFIED		
EVAPOTRANSPIRATION		
40 0		
CALCULATION		
8-15		
Table	•	

<u> </u>		Crop Consumptive	19	76	19	77	.61	78	19	- 62	19	80
		use factor	ផ	뇗	<b>ш</b>	Er	ш	Er	ω	Er	а	ង
~	en.	1.27	4-476	5.7	4-067	5-2	4-377	5.6	3.742	4-8	3.577	4.5
<u>Š.</u>	ړ .	1-15	4.357	5.0	4-015	4.6	4.443	5.1	3.763	4.3	3.477	4.0
ž	שנ	0.75	4.079	3.1	4.638	5 • •	4.689	3.5	3-724	2.8	4-181	3 <b>.</b> 1
\$	br.	*	5.136	*	5.000	*	5-079	*	4.312	*	4.116	nati ka ĝi  2 = 10 −
ž	ау	0-92	4.625	4-3	4.753	4.4	4.302	4.0	3.963	3.6	4-049	3.7
5	nn.	1.12	4.227	4.7	4.078	4.6	4.267	4.8	3.921	4-4	3.761	4.2
5	4	1.27	4792	6.1	4.929	6-3	4.134	5+3	3-851	<b>4.</b> 9	4-179	5.3
4	8	1.15	5.673	6.5	5.425	6-2	5.053	5.8	4.593	5.3	4.536	5.2
Ø.	- Q-	0.75	6-308	4.7	6.372	4.8	5.228	3•9	4.955	3.7	5-238	3.9
8	ů	*	5.860	*	6.879	ĸ	5-944	*	5-097	*	5.215	*
Ž	• • •	0.92	5.084	4.7	5-918	5.4	5.181	4.8	4.986	4.6	4.925	4•5
Ă	ů	1.15	4-116	4-7	4-664	5.4	4.142	4•8	3.864	4.4	3-656	4-2

)

577 (1 2016 - 1

i Angeland Ngangangan

ſ

 $\langle \rangle$ 

Table 8-16 MONTHLY CONSUMPTIVE USE BY CROP AND WATER REQUIREMENT (1976)

()

.

and a second sec

 $\cdot$ 

		1420	- 120	* C 5 3	- 7543	- 140		- 110-0		- 274	-			
(1) Gropping Pattern			Sec. 5	10889				Ъ. Б	Beagon			• •		
		: :	2400	dy 0 ha)				61)	peddy 200 he)	·	-	•		
	•	LJ	, , ,	$\left( \right)$	Λ	1. - - -			an Alas Al		$\bigwedge$			
(2) Tvanoration (dav)			5.7	5•0 5	3.1	: *	4.3	4.7	6-1	6.5	4.7	ł	4-7	4.7
(3) Francretion (month)		88	176-7	140-0	96.1	*	133-3	141-0	189-1	201.5	141-0	*	141-0	145+7
(v) Barcolarios (dav)		ä	2	2.5	2.5	¥	0 1 0	0-6	3-0	0 <b>-</b> 6	0.4 0	¥	2-5	2.5
<pre>/4/ KetCutetto: /ms// /6/ Bercolarios (moorb)</pre>		1	77.5	20-0	77.5	*	93-0	0-06	93+0	93.0	0-06	¥	75-0	77.5
(1) secondation (2) (4) teres regulareds (7)	(3)+(7)		254.0	210.0	173.6	ŧ	226.3	231-0	282-1	294-5	231.0	*	216-0	223.2
(7) where accurate and		I	1.0	0.9851 C	3360	*	0.0048	0.5950	0-1	1-0	0-5	<b>≰</b>	0.0556	0-7849
(8) Garar requirement (11)	( <b>6)</b> x( <b>7</b> )		254.0	206.9	58.3	*		137-4	282-1	294.5	115-5	¥	12-0	175-2
(a) Putdifine water		đ	0	0	0.0	*	86-7	113-3	0-0	0-0	0-0	ŧ	133-3	66-7
(10) Water requirement (111)	(8)+(8)		254.0	206-9	58.3	¥	87.8	250.7	282-1	294.5	115-5	*	145-3	241-9
(1) Sainfall		đ	834-0	524.0	382.0	æ	46+0	45.0	0.0	0-0	0-0	ŧ	328+0	445-0
(12) References rainfall	0.7×(11)		583.0	366.8	267.4	4	32-2	31.5	0		0:0	*	229-6	311-5
(13) Area ratio			1.0	0.9851 (	0.3360	#	0-2844	0.9728	1-0	2.1	0•S	*	\$ <b>-</b> \$	2-1
	(12)×(13)	ľ	583-0	361.3	89.8	*	9.2	37-6	0-0	0-0	0-0	*	114-8	311-5
			*	*	•	<b>*</b>	78-6	220-1	282-1	294.5	115.5	*	30-5	ł
		1/anc/ha	#	*	*	ł	1.032	0.873	1-053	1-100	0-891	ł	0-235	*
(17) Diversion requirement	(16)/0.72	1/##C/h#	#			*	1.433	1.212	1-463	1-527	1.238	#	0-327	#

NOTE: (16)-(15)/(dayw of month x (13)] x 10,000 / 86,400

8-24

1

				nay	מחל	•	-7n	Aug		Sep.
Unit Water Require	ment	l sec/hé		1-433	1.21	5	1.463	1-52	~	1.238
Bili-Bili Incake (4,000 ha)		3/sec	6	*1) 4.396	4 - 84	Ø	5.852	6-10		4.952
Kampili Intake (15	,200 ha)	m ³ /sec		*1) .6.706	18.42	2	2.238	23.21(		18.818
Total (19,000 ha)		m ³ /sec		*1) 1.102	23.27	2 0	8 - 090	29.31		23.770
* *	2) : N 2) : S	ay 02 - 7 ep. 1002	76.7% - 0%	area Zrea					•	
			•				·.		- - -	
										·
		· · · · · · · · · · · · · · · · · · ·	• •						•	. 4 ⁻ 4
Tabl	le 8-18	IDENTIF	LCATI	ON OF B	ASIC YE	AR FOR	PLANNING	0		
				×. 1 ×		Benef	ttced A	rea: 10	2001	50
	1971	1972 1	1973	1974	1975	1976	1977	1978	1979	1980
Volume dependent on reservoir supply (x 106m3)		1				241	061	69	178	198
Order of the "drought year"	Jch	ы С Г	9 c h	éch	loch	2nd	Sch	ßch	4 t h 4	3rd

Table 8-17 DIVERSION REQUIREMENTS DURING DRY SEASON (1976)

8-25

 $\left( \right)$ 

#### Table 8-19 ECONOMIC PRICE OF RICE (GABA) - Import Substitution Price -

8-26

·	(Un	it: Rp/ton)
	1. International Market Price (F.O.B. Bangkok) <u>/</u> 1 US\$557	348,125
•		. 1
. • :	2. External Transportation Cost (Bangkok - Ujung Pandang)	8,125
	3. Port Handling Charge and Storing Cost (including cost of sacks) <u>/</u> 2	5,710
		:
	4. Selling Price of Rice at Ex-mill Gate	361,960
·		
	5. Nilling Charge	- 6,000
		0,000
:		
	6. Handling and Transportation Cost (Farm gate to mill)	- 2.700
· · · · •		
	7. Economic Farm Gate Price of Dry	353,260
	Stalk Paddy	1 252 000 1
·	and the second	1 333,000 1
		<u> </u>
• •	Commodities IBRD, 1980	rrimary
	Projected price to 1985 in 1980 co	nstant US dollar
14 L L 2 L	12 + Handling charge at harbor 30 R	n/ton
·	Storing chasrge 7 Rp	$ton/day \times 240 d$
	UOST OI SSCKS of for a 4000	kp/ con
1 - A		1
e e e e e e e e e e e e e e e e e e e		and the second second

()

.

()

# Table 8-20 IRRIGATION BENEFITS

Ì

1

()

Description	W/O Project	W/Project	Increment
1. Planted Area (ha)	an a		
-wet season paddy field	24,000	24,000	0
-dry season paddy field	2,400	19,200	16,800
2. Unit Yield (ton/ha)		· · · · *,	
-wet season rice	2.62	3.12	0.50
-dry season rice	2.24	3.12	0.88
			€ 1.1
3. Project Price of Paddy	the state of the second	a the	
(Rp/ton)	$1 \leq   f_{i}  _{2} \leq   f_{i} $	and the second second	
-rice (Gaba)	353,000	353,000	0
4. Unit Production Cost	and the second		
(Rp/ha)			
-wet season rice	180,000	190,000	10,000
-dry season rice	190,000	200,000	10,000
	o/ 00F	19 676	00.101
5. Gross Production value	24,095	47,579	23,484
(1x2x3) (x10° xp)	22.107	26 1.22	1. 226
-wet season rice	1 808	20,433	10 2/8
-dry season rice	1,070	21,140	17,240
6 Total Production Cost	4 776	8.400	3.624
$(1 \times 4)$ (x10 ⁶ Rn)	4,110		
-vet season fice	4.320	4.560	240
-dry season rice	456	3.840	3.384
7. Net Production Value	19,319	39,179	19,860
(5-6) (x10 ⁶ Rp)			
-wet season rice	17,877	21,873	3,996
-dry season rice	1,442	17,306	15,864
8. Crop Damage Due to Water	0.0	282	282
Shortage (x10 ^o Rp)			
-wet season rice	0.0	109	109
-dry season rice	0.0	173	1/5
Adducted Nat Praduation		· .	
y, Adjusted Net rioduction	10 310	28 897	10.578
(7 ~ 8) (v106 pn)	17,017	30,077	179510
wat gasen rice	17,877	21,764	3,887
-Dry geagon rice	1.442	17,133	15,691
pey dealon reco	*3.1.1.t.	413444	

el construction per parte

		Total	Foreign	Local
	Work Item	Anount	Currencey	Currency
		(x10 ³ US\$)	(x10 ³ US\$)	(x10 ³ US\$)
. 1	I. Main Works			
	Work I (S.C. & R.F.)	5,400	778	4,622
	Work II (S.C. & R.F.)	5,400	778	4,622
	Work III	5,833	984	4,849
	S.C. & R.F.	5,400	778	4,622
	Kampili main channel	433	206	227
	Work IV	6,214	1,018	5,196
	S.C. & R.F.	5,400	778	4.622
	Bili-Bili connecting channel	648	161	487
	Bili-Bili existing channel	166	79	87
	Sub-total	22,847	3,558	19,289
	2. Engineering Service	3,100	2,640	460
-	Sub-total (1-2)	25,947	6,198	19,749
	3. Physical Contingency	3,892	<b>9</b> 30	2,962
	Grand-total (1-3)	29,839	7,128	22,711

()

#### Table 8-21 CONSTRUCTION COST OF IRRIGATION

Note: S.C. & R.F. = Secondary Channel and Relevant Facilities

a dalah sa kacamatan 
		: 				2	·			(Unic	× IO	3 US\$)		
Work Item	່ ບ ະ	Cotal L.C.	F.C. 198	2 2 2	198 F.C.	e.c.	F.C.	L.C.	F.C.	28 L.C.	F.C.	E.C.	P.C.	990 L.C.
L. Main Works														
Vork I	778	4,622	, .	1	8	1	778	4, 622	t	1	I	1	•	
Work II	778	4,622	1	• 1	ŧ	•	•	1	778	4, 622	. 1	4	l	•
Work III	786	4, 849		;	4	Į.	<b>1</b> ,1	1	•	:	984	4, 849	I	I
WOTH IV	1,018	5, 196	1	1	4	ł	•	1	1				1,018	5,196
Sub-total	3, 558	19,289		1		1	778	4,622	778	4, 622	984	4, 849	1,018	5, 196
2. Engineering Service	2.640	091	800	140			460	0a	097	8	460	80	097	8
3. Thysical Contingency	626	2,962	120	5	•••		186	705	186	705	217	739	221	792
Creat-total (1+3)	7.128	22, 711	920	161		•.	2,424	5,407	1,424	5,407	1,661	5, 668	1,699	6,063

 $\langle \rangle$ 

ļ

()

Table 8-22 ANNUAL DISBURSEMENT SCHEDULE FOR IRRIGATION





 $\cap$ 





