The river improvement works can be divided into four work sections including the urgent works. It is technically and economically proposed that the river improvement works are implemented following the order mentioned below taking into account the significance of the area to be protected from the flooding.

1.	Urgent river improvement	1	1982-1987
2.	Improvement of the section from 2.0 k to the Sungguminasa bridge	e t	1991
3.	Improvement of the section from the estuary to the diverted point, 4.4 k	· t	1992-1995
4.	Improvement of the section in the upper reaches of the Sungguminasa bridge	:	1992-1995

The work section of the river improvement is presented in Fig. 6-2. Its construction schedule is shown in Fig. 6-3.

Construction Machinery

The main construction machinery required for the river improvement work will be dredger, bulldozer, back hoe, wheel loader and dump truck.

The outline of the principal construction machinery is given in Table 6-3.

6.3.2 Cost Estimate

()

1

Construction Cost

The river improvement cost covers civil works, gates and equipment, land acquisition, engineering services and plus 15% physical contingencies. The total cost will be US\$22.9 million, out of which US\$10.8 million is of foreign currency and US\$12.1 million of local currency. The breakdown of the construction cost is shown in Table 6-4.

Operation, Maintenance and Replacement Cost

and a start of the second start of the second

The operation and maintenance cost will comprise the personnel cost, operational machinery and equipment, vehicles, administrative cost and miscellaneous. The annual operation and maintenance cost is estimated at US\$ 0.09 million for the whole period of the project life. Replacement cost of the groyne in every 10 years and the sluice gate in every 25 years have been estimated at US\$0.42 million and US\$0.37 million, respectively.

WATER SUPPLY 6.4

6.4.1 Construction Schedule

Construction schedule has been so arranged as to see its completion by 1990, in view of putting all the related facilities in serviceable conditions simultaneously with the completion of Bili-Bili dam.

(1)

A period of 4 years from 1984 to 1987 has been assumed for a feasibility study and dedailed design, and the construction works will be undertaken during the remaining 3 years from 1988 to 1990.

The construction schedule is shown in Fig. 6-4.

6.4.2 Cost Estimate

Construction Cost

The construction cost comprises civil works, gates and equipment, land acquisition, engineering services and plus 15% contingencies. The construction cost totals to US\$35.5 million, which is made up of the foreign currency portion amounting to US\$28.8 million and the local currency portion of US\$6.7 million. The construction cost is shown in Table 6-5.

Operation, Maintenance and Replacement Cost

The operation and maintenance cost comprises the personnel cost, operation machinery and equipment, vehicles, administrative cost and miscellaneous. US\$0.09 million will be estimated for an annual operation and maintenance cost. Replacement cost of the regulating valve and the flow meter in each 25 years has been estimated at US\$0.48 million.

6.5 IRRIGATION

6.5.1 Construction Schedule

Construction schedule is based on the assumption that 4 years (1983-1986) will be required for preparation works for commencing the construction works, and also that the improved irrigation facilities shall be ready for immediate use upon completion of Bili-Bili dam in 1990. Accordingly, the irri-gation construction works would be started in 1987 and completed in 1990, so that the irrigation facilities could be used from 1991 onward. The construction schedule is shown in Fig. 6-4.2 second of the state 6.5.2 (Cost Estimate. april 2014) - 2014 -

Construction Cost

Irrigation construction cost primarily comprises the direct construction cost, land acquisition cost, engineering cost and plus 15% physical contingencies. Construction cost

would be US\$29.8 million, which might be broken down into the local currency portion of US\$22.7 million and the foreign currency portion of US\$7.1 million, as detailed in Table 6-6.

Operaton, Maintenance and Replacement Cost

The operation and maintenance cost comprises the personnel cost, operational machinary and equipment, vehicles, administrative cost and miscellaneous. The annual operation and maintenance cost is estimated at US\$0.50 million. Replacement cost of the sluice gates in each 10 years amounts to US\$0.12 million.

6.6 HYDRO POWER

6.6.1 Construction Schedule

The commencement of commercial operation of power generation is scheduled at the end of April 1991, simultaneously with the completion of the dam construction.

A construction work schedule of power station is formed taking time required for manufacture of power generating equipment, transportation to the project site and installation into consideration. The total time required for the above is estimated at 2 years. Based on this, the construction works are scheduled to be started from 1989. The commencement of the construction of transmission line will be started from June 1990 to be in time with the completion of installation of the power generating equipment at the proposed site.

The construction schedule is shown in Fig. 6-4.

6.6.2 Cost Estimate

Construction Cost

The construction cost for the hydro power station comprises civil works, generating equipment, transmission line, engineering cost and plus 15% physical contingencies.

The total cost will be US\$25.4 million, out of which US\$18.1 million is of foreign currency and US\$7.3 million of local currency.

The breakdown of the construction cost is shown in Table 6-7.

Operation, Maintenance and Replacement Cost

The operation and maintenance cost will comprise the personnel cost, operational machinery and equipment, vehicles, administrative cost and miscellaneous. The annual operation and maintenance cost is estimated at US\$0.17 million for the whole period of the project life. Replacement cost of the generating equipment after 35 years from the initial operation amounts to US\$4.17 million.

CHAPTER VII - PROJECT EVALUATION

7.1 GENERAL

> The project has been formulated primarily in order to mitigate flood damage. The secondary objectives are to secure municipal/industrial water, to intensify rice production and to increase the power generation capacity: These sectors should be regarded as a package by totalizing their effectiveness.

> In this report, economic evaluation has been based on the total cost and benefit related to flood control, irrigation and hydro power sectors; in other words the cost and benefit concerning the municipal and industrial water supply are eliminated from the project cost and benefit. This is because the benefit of municipal and industrial water supply is still difficult to be quantified.

The economic viability of the project has been evaluated by means of calculating the Internal Rate of Return (IRR). Sensitivity analysis is also made on several assumtions.

Rupiah and Yen are converted to US Dollar at the exchange rate of Rp.625 to US\$1.00 and ¥220 to US\$1.00. The project life for the economic evaluation is fixed at 50 years from 1982, when the related engineering services are to start.

Ę.

7.2 PROJECT COST

The total project cost is estimated at US\$ 603.56 million, on the contract basis by using mid-1981 prices, of which US\$ 298.01 million or 49% is foreign currency, and US\$ 305.55 million or 51% is local currency. The quantity of works is estimated on the basis of the preliminary design which has been prepared during the study period. Unit prices and the costs of equipment required for the project implementation are in line with the recent bid prices for similar works. These prices and costs include about 10% of taxes and duties. Physical contingencies of 15% have been applied to all the works and equipment costs. Price contingencies are also taken into account at an annual escalation rate of 8% in 1982, 7.5% in 1983, 7% in 1984 and thereafter for foreign currency portion and 14% in 1982, 12% in 1983, 1984 and 1985, 10% in 1986 and thereafter for local currency portion. Compensation payments for house evacuation are in line with those of other Government-sponsered projects. The interest of bank loan during the construction period is computed at the annual rate of 3%. The project cost is classified by work item given as follows.

a an an the state of the second state of the s

Work Item	Foreign currency	Local currency	Total
Dam and reservior	151.43	158.76	310.19
River improvement $\frac{1}{1}$	38.77	66.18	104.95
Municipal/industrial water supply	56.91	14.79	71.70
Irrigation water supply	13.93	48.60	62.53
Power generatrion	36.97	17.22	. 54.19
Total	298.01	305.55	603,56

(x10⁶ US\$)

Annual disbursements of the project cost and the base cost are presented in Tables 7-1 and 7-2, respectively.

ECONOMIC EVALUATION 7.3

7.3.1 Project Benefit 10 g (4

()

The benefit of this project will accrue from flood control sector, irrigation sector and also power generation sector. The benefit derived from the municipal and industrial water supply has not been quantified for such a reason as stated in 7.1. General.

A state of the second se

Primary Benefit

 $c_{\rm ev} = \int_{-\infty}^{\infty} (t - s t)$

and a second s Second second

Annual benefit derived from each sector which has been calculated in the monetary terms are summarized in next page. The process and assumptions for benefit calculation of each sector are described in Chapter IV of this report and in detailes in the Supporting Report.

NOTE /1 : Including costs for implementation of the Urgent Flood Control Plan

and the second second

Annual benefit (x 10 ⁶ US\$)
13.0
31.5
3.9
- 0.56
47.84

Secondary Benefit

Secondary benefit, not only primary benefit, can be also expected from the project in the sectors such as recreation/tourism, and municipal/industrial water supply.

In and around the project area, the opportunities to enjoy recreation/tourism are limited to only a few places, although the project area has the capital city of South Sulawesi province (Ujung Pandang city) with a population of over 700,000. The Bili-Bili reservoir which is located only 31 km away after Ujung Pandang city and is quite accessible by Jl. Malino can provide a good opportunity for recreation/tourism.

As stated in 4.4.5, secondary benefits of municipal/ industrial water supply are 1) to upgrade the living standard, 2) to improve the sanitary condition, 3) to reduce the frequency of disease and 4) to spur the commercial and industrial activities.

Indonesia is now importing about 2.0 million tons of rice annually, while the project area is enjoying surplus production of rice. After completion of the project, rice production will increase by 0.15 million tons, which will contribute to achievement of self-sufficiency of rice.

7.3.2 Economic Cost

Based on the preliminary designs, the economic construction cost was estimated in such a manner that the import duties, government subsidies and compensation cost should be excluded from the project cost, and that physical contingencies of 15% is added to the cost though no price contingency is considered. Estimation of costs required for equipment and engineering services, which are to be procured by international competitive bidding, is based on the international price levels. The local cost is estimated on the basis of researches on the prevailing prices for similar works which are now going on in and around the project area.

NOTE

/1 : As negative benefit is counted a loss of production in the agricultural land to be submerged by the reservoir and to be acquired due to river improvement works. The negative benefit is subtracted from the annual benefit. The construction cost will be required for construction of dam and its appurtenant facilities, the urgent flood control plan and overall river improvement works, irrigation system improvement works, municipal/industrial water supply system and power generation work. The total economic cost is estimated at US\$ 276.43 million, which is composed of foreign currency portion of US\$ 150.95 million and local currency portion of US\$ 125.48 million equivalent. These costs are summarized below.

		(x10 ⁶ US\$)		
Work Item	Foreign <u>currenc</u> y	Local currency	Total	
Dam and reservoir	79.54	67.00	146.54	
River improvement	17.35	21.81	39.16	
Municipal/industrial Water supply	28.78	6.68	35.46	
Irrigation	7.20	22.71	29.91	
Power	18.08	7.28	25.36	
Total	150.95	125.48	276.43	

Allocation of Dam Construction Cost

ţ

Ì

To identify the equitable cost for each purpose, the economic dam construction cost has been allocated by "Separable Cost - Remaining Benefit Method". The result of cost allocation is as follows:

	n de la companya. Na serie de la companya	(x10 ⁶	, US\$)
Purpose	Foreign currency	Local currency	Total
Flood control	21.48	18.09	39.57
Municipal/industrial water supply	14.87	12.53	27.40
Irrigation	43.19	36.38	79,57
Total	79,54	67,00	146.54

ين 1947 - مريد الدين المريخ في الم 1947 - تركي الأمريخ ومالية المهور المعوم

Cost Estimate by Sector

Based on the above allocation of the dam construction cost, the total project economic cost can be further classified by sector as follows:

1.1

	Roratao	(x10 ⁶ US\$)		
Sector	currency	currency	Total	
Flood control <u>/1</u>	38.83	39.90	78,73	
Municipal/industrial water supply <u>/2</u>	43.65	19.21	62.86	
Irrigation water supply <u>/3</u>	50.39	59.09	109.48	
Power generation $\underline{/4}$	18.08	7.28	25.36	
To,tal	150.95	125.48	276,43	

Operation and Maintenance Cost

To assure the benefits throughout the project life, the related facilities should be successfully operated and safely maintained. The annual cost for operation and maintenance is estimated at US\$ 0.92 million, which is composed of the following:

Work item	Annua	al cost (x10 ³ US\$)
Dam and reservoir	1	80
River and related structure	9 1	a 87
Municipal/induatrial water supply facilities	:	86
Irrigation facilities	:	500
Power generation	1	165
Total	•	918

NOTE: Each purpose can be attained in combination of respective effectiveness of the dam and other relative works as discribed below: and the second

/1	3 12	Dam + Urgent Flood Control Plan + Overall River
		Improvement Plan
12	ta	Dam + Pipeline
73	23	Dam + Irrigation Racilition

• + IFFIgation racilities

74 Generating Pacilities + Transmission Line 22

Replacement Cost

()

(

Facilities related to the project are to be replaced periodically to attain their original purposes during the project life; the facilities to be replaced and their costs are summarized as below.

Dam and reservoir	•	(x10 ⁶ US\$)
Gates (Durable period of 35 yrs.)	:	1.47
River and related facilities		
Groyne (Durable period of 10 yrs.) Sluice (Durable period of 25 yrs.)	:	0.42 0.37
Municipal/industrial water supply		
Gates and valves (Durable period of 25 yrs.)	:	0.48
Irrigation		
Wooden bar, Gabion, Screen (Durable period of 10 yrs.)	1	0.12
Power Generation		
Generating equipment (Durable period of 35 yrs.)	• \$	4.17
	Dam and reservoir Gates (Durable period of 35 yrs.) River and related facilities Groyne (Durable period of 10 yrs.) Sluice (Durable period of 25 yrs.) Municipal/industrial water supply Gates and valves (Durable period of 25 yrs.) Irrigation Wooden bar, Gabion, Screen (Durable period of 10 yrs.) Power Generation Generating equipment (Durable period of 35 yrs.)	Dam and reservoir Gates (Durable period of 35 yrs.) : River and related facilities Groyne (Durable period of 10 yrs.) : Sluice (Durable period of 25 yrs.) : Municipal/industrial water supply Gates and valves (Durable period of 25 yrs.) : Irrigation Wooden bar, Gabion, Screen (Durable period of 10 yrs.) : Power Generation Generating equipment (Durable period of 35 yrs.) :

7.3.3 Internal Rate of Return (IRR)

1.00

Evaluation of the project was made by means of calculating IRR on the basis of the estimated benefit and economic cost. The Internal Rate of Return of the Jeneberang River Flood Control Project (Phase II) is calculated at 14.8%, assuming a project life of 50 years. This rate shows economic viability of the Project.

The Internal Rate of Return has been further calculated for each sector based on the cost estimate by sector, which results in the following percentage.

Sector	IRR (%)
Flood Control	14.9
Irrigation	15.2
Power Generation	13.3
an a tha she the state of the state of the	11. Start 18
The Project	14.8

7.3.4 Sensitivity Analysis

Sensitivity analysis has been also made on the assumptions of 1) increase of construction cost, 2) decrease of annual benefit and 3) extension of construction period and build-up period for irrigation. The results are summarized below.

Case	Assumption	IRR (%)
I	Construction cost + 10%	13.7
11	Construction cost $+$ 20%	12.8
111	Annual benefit - 10%	13.6
IV	Annual benefit - 20%	12.6
v	Construction period + 3 years	12.5
VI	Build-up period + 3 years	12.7

7.4 Socio-Economic Impacts

In addition to the benefits stipulated in the economic evaluation, favourable socio-economic impacts are created by the implementation of the project.

Employment Opportunity

Increase of employment opportunity by the project implementation will give a favourable impact on the regional economy. About 10,000 persons will be newly employed during the construction period and 200 persons will be required permanently for the operation and maintenance works.

1

Employment opportunity of the population who are serving for agriculture will be certainly increased due to intensive crop cultivation. Unemployment on farm is such a serious problem in the project area that increase of employment opportunity will help considerably to solve the problem.

at the

Transfer of Knowledge and an in a second state of the second state

Technical knowledge will be also transferred to the Indonesian engineers through the detailed design and construction works in various engineering fields.

The Indonesian engineers are expected to make much of the technical knowledge to be transferred in order to formulate and implement for themselves other similar projects in the future.

Regional Economy and Social Stability

Living environment and sanitary in the project area will be surely improved due to less frequency of flooding, sufficient municipal water supply, more stable power distribution, and so on. Increase of industrial water supply will provide an possibility for further industrial development.

In compliance with increment of rice yield, farm income in the project area will be hightened, which will enhance the economic activity in the region through its multiple effects on other sectors of the regional economy.

All of the above-mentioned project effects will thus contribute to socio-economic stability in the area.

{ }

()

()

. . .

يريد الأراجي

CHAPTER VIII RECOMMENDATION

- 1. It has been identified that the project consisting of flood control, municipal and industrial water supply, irrigation, and power generation is technically feasible and economically viable, at the Internal Rate of Return (IRR) of 14.8%. It is, therefore, recommended that the each sector of the project be carried forward to the next stage with least lapse of time, in due consideration of an enhancement of the national economy, an advancement of the regional development and the promotion of the inhabitants' welfare. Especially, the commencement of construction of the proposed Bili-Bili daw which is the basical project for development and improvement of other related sectors is strongly recommended in the nearest future.
- 2. The flood control of the Jeneberang river with improvement scale of a 10-year return period was the subject-matter of the previous study and its results were incorporated into the "Urgent Flood Control Plan", whose detailed design work would be commenced from 1982.

The design flood of the river proposed under the abovesaid "urgent plan" is 2,100 m^3/s , while that proposed under the present plan is 2,300 m^3/s . Since the difference between the design floods, one under the "urgent plan" and the other under the present plan, is rather insignificant, and as it is both uneconomical and undesirable to make repetition or duplication of construction works likely to occure in up-grading the standards specified for the "urgent plan" to those proposed under the present plan, it is strongly recommended that the aforementioned discharge of 2,300 m^3/s be adopted as the design flood of the "urgent plan".

Final decision to this effect, however, will require a close co-ordination and adjustment among the authorities concerned.

3.

The peak discharge and hydrograph of the flood generated from a basin is principally governed by the amount of rainfall, the hourly rainfall distribution and the local distribution of rainfall. The study on the design flood discharge covering the above mentioned items could not have been conducted satisfactorily due to a lack of supporting data.

In this connection, Bili-Bili and Jenelata water gauging stations which were established in 1976 and 1979, respectively, are now engaged in observation and will supply available data. By using such data, it is desirable that check-up of the design flood in this project would be carried out in the detailed design study stage.

- 64:-

The rain gauging station at Malino is the only one in and around the upper reaches of the Jeneberang river, while none is found in the Jenelata river basin. For the formulation of the future development of the basin, it is desirable that more rain gauging stations be established in its upper reaches. It is thereby recommended to establish at least two more stations in the Jeneberang river basin and two stations in the Jenelata river basin.

The low laying land of Ujung Pandang city has been proposed for spoil bank of the soil excavated from the Jeneberang riverbed through implementation of the river improvement works. Though the urbanization plan was formulated for the area in question and has been partially implemented, most part of the area still remains as paddy field and swamps.

()

 $\langle \rangle$

()

4.

5.

6.

Prior to implementation of the project, it will be required to carry out further study of the available space for the spoil bank in the area through a close co-ordination among the authorities concerned so that proper adjustment may be made between the implementation schedules, one is for the urbanization project and the other for the river improvement project.

At present, the river basin whose upper reaches is covered mostly by the grassland appears stable and produce little sediment. A countermeasure is not required urgently for soil conservation. However, it is important that soil conservation be provided to prevent the possible future sediment discharge. It is recommended that further survey and study be conducted in the next stage.

The scale of agricultural plan proposed under the present project is confined to the availability of irrigation water which can be developed by the proposed Bili-Bili dam. There still remains more land - 14,800 ha in total - which could be agriculturally developed through the means as described in the below:

e part à b

110

The area of 4,800 ha which could be made irrigable during dry season out of the existing Bili-Bili and Kampili irrigation area, but which is unable to be fed with irrigation water under the present project plan,

- The area of 5,000 ha, located on the eastern bank of the Kampili irrigation channel, and

- The area of 5,000 ha in the Pamukulu area.

In this connection, it is recommended that a further study on a comprehensive agricultural development including the water resources development in this area be conducted.

- 7. There are a number of houses which need to be evacuated or moved for implementation of the proposed project, thus causing some social problems. Utmost care should be taken in carrying out the house evacuation program in accordance with the applicable laws and regulations in force.
 - The following items should be conducted for the next engineering study stage to facilitate successful implemention of the project.

Necessary study for the detailed engineering (Dam construction and river improvement) is;

8.

- Mapping with a scale of 1/500 covering the proposed dam site, with a scale of 1/2,500 for the proposed Jeneberang course and with a scale of 1/50 covering the proposed riparian structure sites,
 - Cross levelling and longitudinal survey along the proposed dam axis and at the proposed main structure sites related to the dam construction and along the proposed Jeneberang river,
 - Geological survey including boring and sesmic prospecting at the proposed dam site and at its main structure sites, and soil survey and test at the proposed borrow pit sites of the dam constuction and the river improvement, and
 - Laboratory test for the embankment materials and concrete strength for dam construction and hydrolic model test for the proposed spillway.

Necessary study for the feasibility study (municipal and industrial water supply, irrigation improvement and power generation) is;

- Mapping with a scale of 1/10,000 covering the proposed irrigation area and along the proposed conveyance route for the municipal/industrial water,
- Cross levelling and longitudinal along the proposed irrigation channel and the proposed transmission line and along the proposed conveyance route for the municipal/industrial water, and
- Soil investigation covering the proposed irrigation area and water quality test of the Jeneberang river.

(A) A set of the set of the first set of the set of

	Year : 1978		
Sector	Indonesta	South Sulawesi	
	ž	X	
Agriculture	30.7	54.9	
Mining and Quarrying	17.6	0.4	
Industry	9.9	3.6	
Electricity,Gas & Water	0.5	0,5	
Construction	5.7	1.0	
Trade	15.7	16.6	
Transportation & Communication	4.5	5.2	
Banking	1.8	0.8	
Services	10.6	0.9	
Others	3.0	16.1	
Total	100.0	100.0	

Table 2-1 SHARE OF GDP BY ECONOMIC SECTOR

Table 2-2 SHIFT OF THE ECONOMIC STRUCTURE IN INDONESIA DURING THE PELITA III

	and the second		
Sector	1979 / 79	Average Growth Rate	1983 / 84
Agriculture	31.4 %	3.5 %	27.2 %
Mining & Quarrying	17.9	4.0	15.9
Industry	10.2	11.0	12.6
Construction	4.9	9.0	5,5
Transportation & Communication	4.6	10.0	5.4
Services	31.0	8.1	33.4
Total	100.0	6,5	100.0

()

 $\left(\right)$

		1979/80	1980/81	1981/82	1982/83	1983/84
	Provincial GDP (mil. Rp.)	702,502	7.61,726	826,473.	896,723	972,944
	Investment (mil. Rp.)	147,925	171,392	166*961	222,285	248,601
	a. Central Government	88,873	101,738	115,693	129,614	143,915
÷	b. Provincial Covernment	11,864	13,779	15,887	17,983	20,161
	c. Private Sector	47,188	55,875	65,401	74,688	84,525
	Percentage of Investment(%)	22-1	22-5	23.8	24.8	52
	Per capita GDP (Rp.)	120,400	128,107	136,585	145,336	154,755

ĺ

ł

--

GROWTH OF GDP AND INVESTMENT IN SOUTH SULAWESI PROVINCE DURING PELITA III

Table 2-3

24

 - 68 -

Table 3-1

ECONOMIC ACTIVE POPULATION BY ECONOMIC SECTOR IN SOUTH SULAWESI (1976 AND 1979)

	1976	• : .	1979	
Economic Sector	Persons	X	Persons	%
Argiculture, Hunting, Forestry and Fishery	977,702	58.1	2,027,572	57.5
Mining and quariying	1,450	0.1	1,524	0.1
Manufacturing	208,770	12.4	219,419	12.3
Electricity, Gas and Water	790	0.0	830	0.0
Construction	13,570	0.8	14,262	0.8
Trade, Notels and Restaurants	193,224	1175	203,080	11.3
Transport, Shortage and Communication	42,689	2.5	44,866	2.5
Financing, Insurance, Real estate and Business Services	6,246	0.4	6,565	0.4
Community, Social and Personal Services	181,178	10.8	190,419	10.6
Activities, Not adequately defined	158	0.0	166	0.0
Seeking Work	56,493	3.4	81,367	4.5
Total	1,682,270	100.0	1,790,070	100.0

()

()

()

: 1

 $\{ \cdot \}_{i \in \mathbb{N}}$

-

1.4.1.1.4

÷

- 69 -

Table 3-2 MONTHLY RIVER DISCHARGE AT THE BILL-BILL &

1401	, α μ−<u>κ</u>ι ι ι βλα αι κα		MPILI INI	AKES		24
					(Unit:	m ³ /sec)
	1975	1976	1977	1978	1979	1980
Jan.	54.07	94.82	112.57	67.54	98.67	85.65
	87.73	153.85	182.65	109.59	160.09	138.14
Feb.	57.46 93.23	68.68 111.44	176.41 286.23	64.73 105.03	58.41 94.77	106.25 172.14
Mar.	51.20	68.79	60.02	35.34	61.18	73.56
	83.07	111.61	97.38	57.34	99.27	119.95
Apr.	53.60	16.59	53.13	21.05	25.55	49.32
	86.97	26.92	86.20	34.15	41.46	80.59
May	28.77	13.75	11.67	22.27	22.31	20.75
	46.68	22.31	18.93	36.13	36.20	33.32
Jun.	10.76	2.89	20.33	16+09	10.72	5.33
	17.46	4.69	32.99	26+11	17.39	8.18
Jul	4.66	2.75	2.72	27.54	2.67	2.57
	7.56	4.46	4.41	44.68	4.33	11.60
Aug.	3.55	2.58	2.60	6.69	2.54	2.44
	5.76	4.18	4.22	10.85	4.12	4.90
Sep.	2.58	2.33	2.40	4.34	2.38	2.29
	4.19	3.78	3.89	7.04	3.86	3.80
Oct.	3.99	7.69	2.23	4.44	2.44	6.79
	6.47	12.48	3.62	7.20	3.96	5.60
Nov.	41.77	17.48	17.05	20.57	7.07	21.53
	67.77	28,36	27.66	33.38	11.47	28.10
Dec.	68.19	24.10	64.13	76.11	70.75	85.84
	110.64	39.10	104.05	123.49	114.79	139.11
Dry Season Average	10.86 17.62	6.40 10.38	8.39 13.61	16.27 26.40	8.61 13.97	8.03 13.04

11

Note: Upper figures in the column -Lower figures in the column -

Bili-Bili Kamp111

 $\left(\right)$

Ĺ.

Ĺ 1 Table 3-3

()

1e 3-3 IRRIGATION SYSTEM PREVAILING IN THE PROJECT AREA

	Go	wa	Takal	ar	Ujung P	andang
1 	Area (ha)	X	Area (ha)	x	Area (ha)	X
D.P.U.P.S.S. technical	12,950	36+5	5,090	25.6	0	0.0
D.P.U.P.S.S. semi-tech.	7,450	21.0	1,920	9.6	0	0.0
Désa simple tech.	4,670	13.2	1,800	9.0	350	9.5
Désa non-tech.	10,410	29.2	11,100	55+8	3,330	90.5
Total	35,480	100.0	19,910	100.0	3,680	100.0

- 71 -

			E			
	2M05		138	JETE:	Sout	n surawest
Varieties	Dry season	Wet season	Dry season	Wet season	Dry season	Wet season
1 - 1d		1	1	1	663.33.	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Pl - 2	ł		I	ł	5-00	1
PB- 5	1	4).1,319.00	٩.	123-50	15,253-67	6,220.3
PB - 8	I,	225-00	1	Ĩ	266.00	0*677
C4 - 63	ł	559-00	3.50	4) 1,250-25	18,919,90	5) 8,760.5
Pellea	I	2,205.00	. I	150-00	· · · · ·	4,499.1
Adil	1) 756.95	307.00	1	ant 1 B Theory of the second of the second of the	1,296.95	1,301-5
Makmur	ı	125.00	ı	1	545.45	629.6
Cemar	I	21-00	ı		i i i	168.0
Sub Total	756.95	4,761.00	3.50	1,532,75	36,950.30	22,078-1
PB - 20	1	98-00			2,379-34	1,340.9
PB - 26	64-69	209-00	4.00	÷ 78•50	5) 21,184.65	3,386.9
PS - 28	3+00	18-00	ı	10-00	8,132.56	1,437.8
PB - 29		17.00	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7,259.26	1.697.I
PB - 30	3) 216.13	212-00	5) 16-25	345-00	13,599.11	4,054.4
PB - 32	4) 174,00	5) 1,018.00	3) 56.65	5) 1,141.65	1) 56,998.47	3) 36,787.6
PB - 34	71-28	429-00	· 4) 55-65	2) I,434-50	2,315.23	2,061.4
PS - 36	2.00	264.00	1	584+65	4) 26,330-87	4) 18,883-4
PB - 38	5) 112-83	641.00	2) 63-85	1,075.70	3,857.35	8,471.3
PB - 42		28.00	2.50	3) 1,373-50	2) 36,306-67	1) 57,088.6
Brancas	I	2) 1,697.00	3	423-96	2,786.81	4,384.1
CL Larun	2) 301-60	1,594.00	1) 219-75	1) I,678-30	3) 26,385.69	3) 35,337.0
Serayu	•	8.00	8	1	1,719-82	655+9
Asahan	62-38	55-00	I	5-00	2,527.44	6,903.6
Semeru	1	144.00	1	22 : 24 : C 1 1	154-35	343-0
Cisadane	I ,	22-00		1 8 5		341.7
Ayung	•	l	1			118-2
Sub Total	16-200.1	6,454.00	418.50	8,150,76 =	211,936-86	183,296.5
U. Lama	906-18	5,198.00	. 26.00	151+00	18,629.27	14,223.1
Lokal	697.52	12,219.00	I	6,251-04	47,137.07	73,246-7
Galur	59.44		8.50		10,570-80	4,475-9
TAER	2 422 00	28 632 00	456.50	16-085-55	225 224.20	207 220 4

Table 3-4 PLANTED AREA BY DIFFERENT PADDY VARIETIES IN THE PROJECT AREA

Į

ĺ

- 72

.

()

()

(

Table 3-5 THE NUMBER OF FARM HOUSES IN KABUPATEN GOWA (1980)

												1001 61	1 - 904
L			• • •	25 ha			0-25 -	0.50 ha			> 0*20	ha	
2	Name of Xecanatan	Yeoman	Tenant	Yeoman and Tenant	Tocal 3+4+5	Yeoman	Tenant	Yeoman and Tenant	Total 7+8+9	Yeonan	Tenant	Yoeman and Tenant	Total
<u> </u>	2	n	4	2	• 9	· 2	· 60	ه	, Q	11	12	13	14
	Bontonopo	1.733	196	126	2,055	1441	298	907	2,145	1,028	- 61	636	1,755
N 	3a) eng	1.910	563	149	2,622	1.614	383	390	2,387	1,133	116	700	1,949
<u>, n</u>	Tompobulu	813	20	\$ 3	928	2,123	212	521	2,861	6,749	293	2,331	9,373
, ,4	Tinggimoncong	1, 332	197	187	1.716	1.690	160	437	2,287	2,236	92	863	3,191
	Parangloe	618	139	24	1,006	820	160	207	1,187	668	103	374	1,145
•	Bontamatunnu	306	309	51	666	825	539	340	1,704	908	392	707	2,007
-	Pallangga	2,164	219	127	2,510	1,735	229	578	2,532	810	106	1,002	1,918
00	Somba. Opu	325	120	69	514	369	201	68	659	343	. 20	271	814
	Total	9.396	1,813	808	12,017	10,612	2,182	2,968	15,762	13,875	1,393	6.884	22,152

Source: Sensus penduduk 1980, penduduk Kabupaten Cowa 1980

1

Table 3-6 ECONOMIC ASPECTS OF FARM PRODUCTS

•

- RESULT OF FIELD SURVEY -

	modity	Paddy	Paddy	Corn	Cassave	Creen bean	Sov bean	Ground hean
Andex Method of Cultivation (Traditional: New technic Bimas, Inmas, etc.)		wer season tradicional type	by animal	up land	up land	traditional type	tradicional type	traditional
Gross Product							3	
Area planted Products Unit price (A) Cross products	ha ton/ha Rp/ton	1.00 2.500 71,500 178,750	1.00 2.000 71,500 143,000	1-00 0-670 35,000 23-450	7,000 10,000 70,000	1.00 0.290 125,000 36,500	1.00 1.410 70,000 98,700	1.00 0.800 125,000 96,000
Labor Force								
Family labors Employed Labors (B) Total labors Animals Machines	day day day day day	10 100 1700 1700	10334	00011	70	, , , , , , , , , , , , , , , , , , ,	99911	95 37-5 1 132-5
Production Cost								
Cost of employed labor Cost of material Cost of depreciation Chargersand fees	*****	1 1 1 000 33,000 30,000	12,800 29,400 22,000	2,000 2,850 2,850	10,400	1,500	005 005 005	7,500
(C) Production cost	ġ	63,900	64,200	4,850	10,400	3,500	15,000	21,900
Income Frofit (D) Family in income (A-C) (E) Cost of family labor (F) Farm profit (D-E) (C) Labor productivity (D:3)	Rp. Rp. Rp. Rp./day	114,850 2,000 112,850 676	78,800 16,000 62,200 1,091	18,600 6,000 12,600	59,600 13,000 41,600 851	32,750 4,000 28,750 1,638	83,200 2,000 81,200 2,080	74.100 15,000 59,1000 559

.

- .74 -

1. A.

(

Source : Agricultural Training Center in Gowa, 1978

Į

Installed Capacity	Peak Load	Generated Energy	Energy Sold	Number of Consumer
(MW)	(MW)	(10 ³ MWH)	(10 ³ MVH)	(nos.)
37.7	*	78.0	59.6	28,000
37.7	*	96.0	73.6	30,600
52.1	20.8	125.7	94.2	51,200
52.1	22.5	145.3	105.3	70,900
52.1	27.3	171.2	125.6	97,300
	Installed Capacity (MW) 37.7 37.7 52.1 52.1 52.1	Installed Capacity Peak Load Capacity (MW) (MW) 37.7 * 37.7 * 52.1 20.8 52.1 22.5 52.1 27.3	Installed Capacity Peak Load Energy Generated Energy (MW) (MW) (10 ³ MWH) 37.7 * 78.0 37.7 * 96.0 52.1 20.8 125.7 52.1 22.5 145.3 52.1 27.3 171.2	Installed Peak Load Generated Energy Energy Sold (MW) (MW) (10 ³ MWH) (10 ³ MWH) (10 ³ MWH) 37.7 * 78.0 59.6 37.7 * 96.0 73.6 52.1 20.8 125.7 94.2 52.1 22.5 145.3 105.3 52.1 27.3 171.2 125.6

Table 3-7 POWER DEMAND & CONSUMPTION AT WILAYAH VIII

Source: PLN

Note : * No figure available

Table 3-8 NUMBER OF HOUSEHOLD ELECTRIFIED IN UJUNG PANDANG SYSTEM

a second a second s

111-1-6	NT	•
1111111111	NAG.	•

			1		10317
Description	1976	1977	1978	1979	1980
Number of Consumer	22,688	26,339	31,773	44,267	46,608
- Small consumer	4,772	4,085	3,629	2,747	2,590
- Household	14,959	19,109	24,871	38,139	40,631
- Commercial	2,957	3,145	3,273	3,381	3,387
Number of Household	233,310	238,697	241,109	248,342	254,550
Number of Household Electrified in Percentage	9.7%	11.0%	13.2%	17.8%	18,3%
	Description Number of Consumer - Small consumer - Household - Commercial Number of Household Number of Household Electrified in Percentage	Description1976Number of Consumer22,688- Small consumer4,772- Household14,959- Commercial2,957Number of Household233,310Number of Household9.7%Electrified in Percentage	Description 1976 1977 Number of Consumer 22,688 26,339 - Small consumer 4,772 4,085 - Household 14,959 19,109 - Commercial 2,957 3,145 Number of Household 233,310 238,697 Number of Household 9.7% 11.0%	Description 1976 1977 1978 Number of Consumer 22,688 26,339 31,773 - Small consumer 4,772 4,085 3,629 - Household 14,959 19,109 24,871 - Commercial 2,957 3,145 3,273 Number of Household 233,310 238,697 241,109 Number of Household 9.7% 11.0% 13.2%	Description 1976 1977 1978 1979 Number of Consumer 22,688 26,339 31,773 44,267 - Small consumer 4,772 4,085 3,629 2,747 - Household 14,959 19,109 24,871 38,139 - Commercial 2,957 3,145 3,273 3,381 Number of Household 233,310 238,697 241,109 248,342 Number of Household 9.7% 11.0% 13.2% 17.8%

()

, i

420 B. (1997)	i in se gan	19. 9-82 0 89 (8 40	Unit : x	10 ⁹ Rp.
	CITY S	IDE AREA	MOUNTA	IN SIDE AREA
GROUND HEIGHT	VALUE	ACCUMULA- TION	VALUE	ACCUMULA- TION
0.5 - 1.0	-	11 <u>14</u> 2-1488 	2.0	2.0
1.0 - 1.5	8.4	8.4	3.4	5.4
1.5 - 2.0	42.5	50.9	14.4	19.8
2.0 - 2.5	190.5	241.4	71.7	91.5
2.5 - 3.0	137.9	379.3	15.9	107.4
3.0 - 3.5	50.9	430.2	9.7	117.1
3.5 - 4.0	18.5	448.7	-	-
		and the second sec		and the second

Table 3-9 ASSETS DISTRIBUTION BY GROUND HEIGHT

e Alto Britage - entrol de la constance des

 $(1,1,1,\dots,1) \in \{1,\dots,N\}$

í

The state

Table 3-10 PADDY FIELD DISTRIBUTION BY GROUND HEIGHT

			Unit :	ha.	ŀ
	CITY SID	DE AREA	MOUNTAIN	I SIDE AREA	
GROUND HEIGHT	ARBA	ACCUMULA- TION	AREA	ACCUMULA- TION	
0.0 - 0.5	1	T	25.2	25.2	
0.5 - 1.0		të €i N N T	701.1	723.3	
1.0 - 1.5	prest Ziller		406.2	1,132.5	sini S
1.5 - 2.0	120.4	120.4	361.8	1,494.3	
2.0 - 2.5	108.4	228.8	455.5	1,949.8	
2.5 - 3.0	45.0	273.8	254.2	2,204.0	
3.0 - 3.5	69.9	343.7	85.8	2,289.8	
3.5 - 4.0	3.0	346.7	50.3	2,340.1	त्मर्ह्म इ.स.
					e

• .

4 de 14 de 1

Table 3-11 ASSETS DISTRIBUTION BY GROUND HEIGHT IN THE FIRST STACE URBANIZATION AREA

.

C J IN OUANTITATIVE TERMS

÷.

	ACCUMULA-	NOL	426	1,512	1,552	0	968	1,141	
	TOTAT.		426	1,086	07	0	968	173	-
Unit : nos	MOSOTE		Ö	2	0	0	0	2	
	301330	777 777	0	27	1	0	34	0	
	COBOOL	30000	ň	9	0	0	6	0	
	ACTOR T	LAULUAL	0	0	0	0	29	0	
	STOPE		2	0	0	0	0	0	
	ы С	SMALL	63	240	0	0	666	114	
	S I D E N (MIDDLE	961	410	. 18	0	190	36	
rerms	RE	LARGE	162	107	21	0	07	21	
QUANTITATIVE 3		Jacora Tustan	1.5 - 2.0	2.0 - 2.5	2.5 - 3.0	1.5 - 2.0	2.0 - 2.5	2-5 - 3-0	
NI	- Hereit	TNIDDAD	69	e yr 1ty-	PIS O	рэ: -u	tstri rA sl	PIS NoW	

NI	MONETARY TERMS				-			. 	Jait : mil	lion Rp.	
ROUN	D HEIGHT (m)	R E LARCE	S I D E N MIDDLE	C E Small	STORE	FACTORY	SCHOOL	OFFICE	MOSQUE	TOTAL	ACCUMULA-
B	1.5 - 2.0 mm	11,417.0	5,880.8	756.8	644.7	0-0	101-1	0-0	0*0	18,800.4	18,800.4
ο	2.0 - 2.5	28,260-6	12,301.7	2,882.9	0*0	0*0	523.1	6,849.6	322.3	51,140-2	69,940.6
PIS	2.5 - 3.0	1,479.9	540.I	0*0	0-0	0-0	0*0	527-2	0.0	2,547.2	72,487.8
еэ	1.5 - 2.0	0-0	0.0	0-0	0-0	0*0	0-0	0-0	0-0	0-0	0-0
e Ar	2.0 - 2.5	2,819.0	5,770.8	8,000-0	0-0	6,283.4	518.9	6,609.3	0*0	29,931.4	29,931.4
PIS	2.5 - 3.0	1,479-9	1,080.1	1,369.4	0-0	0*0	0-0	0-0	0-0	3,929.4	33,860.8

- 77 -

Table 4-1 COMPARISON OF PRINCIPAL FEATURES OF DAM AND RESERVOIRS

	Items	 	Bili-Bili (Jeneberang)	Pasaratowaya (Jeneberang)	Jonggoa (Jeneberang)	Pattalikang (Jenelata)
* • •	Catchment area	(Km ²)	384.4	319.2	242.0	226-3
1	Surface area	(Xm ²)	17.8	7.8	8.2	\$. 8
· .	Dam height	(Ħ)	66•0	80.0	100-0	65-0
5 - G	Dam volume	(^m 3)	6-3×106	12-5×106	19.1×106	12.0×106
	Reservoir capacity	(m ³)	362×106	240×106	280×106	220×106
	Effective storage capacity	(^m ³)	304×106	192×106	243×106	186×106
	Construction cost	(\$)	157×10 ⁶	288×105	439×106	276×106
	Effective storage capacity per Dam volume	(£/d)	48.3	15.4	12.7	15-5
	Construction cost per Effective stor capacity	age (\$/m ³)	0.52	1.50	1-81	L-48
	Submerger houses	(nos.)	290	300	100	300
	Effective storage capacity per Annua run-off volume (19	1 76)(Z)	38	36 36	67	07

1 F.

-

 $\left(\right)$

()

- 78 -

.

Table 4-2 THE HAIN DAMS OF EXISTING & PLANNING IN INDONESIA

Name of dam	Island or Province	Catchment Area (km)	Design flod (m ³ /s)	Specific discharge	Remarks (Rp.Years)
Jatiluhur	W. Java	4,500	8,000	1.78	1,000
Karangkastes	E. Java	2,050	4,200	2.05	1,000
Selorejo	E. Javá	236	920	3.90	1,000
Nawangan	E. Java	2.7	40	14.98	500
Riamkanan	Kaliman	1,040	1,950	1+87	2,000
Lahor	E. Java	160	690	4.13	200 + 20%
Jatigede	W. Java	1,460	6,700	4.59	2,000 P.M.F
Sempor	C. Java	43	1,400	32.56	100+20%×20
Glepan	C. Java	796	4,500	5.65	10,000
Ngrambat	C. Java	607	3,900	6.43	10,000
Jaragung	C. Java	94	1,000	10-64	10,000
Jipang	E. Java	10,810	8,660	0.80	200+20%
Wonogiri	E. Java	1,350	6,250	4.63	200+20%
Bendo	E. Java	138	850	6.16	200+20%
Blega	Madura	118	1,010	8+56	P. M. F
Samira	Madura	78	810	10.38	P.M.F
Klamp1s	Madura	51	290	5.69	(1/2)P.M.F
Palasari	Bali	42.5	225	5.29	1,000
Umpu	Lanpung	205	696	3.40	100
Parangjoho	P.B.S	2.8	310	14.22	500
Songputri	P.B.S	2.7	52	19.20	
Sangiran	P.B.S	21,0	290	13.80	
Pondok	P.B.S	33.0	370	11.21	
Gondang	P.B.S	68.1	465	6.80	
			l J		

•

 $\langle \rangle$

)

TABLE 4-3 HYDROLOGICAL EFFECTIVENESS IN WATER STAGE

()

()

Ĺ

Re Pe	eturn eriod	Below : City- Side Area	Sunguminasa Mountai Side Ar	ln- cea	Abc Sunggu (12.0 K	ove minasa (point)	·
2 2.4 5 10 30 50	- year - year - year - year - year - year - year	w/o w 2.03 1.2 2.05 1.60 2.61 1.74 2.82 1.94 2.86 2.01 2.89 2.01	w/o 1.45 1.50 3.2.04 4.2.53 1.2.82 7.2.86	w 1.30 1.34 1.42 1.55 1.77 1.88	9.4 9.7 9.9 10.0 10.0 10.0	w 8.1 9.2 10.0 10.4 10.4	
 	••••••••••••••••••••••••••••••••••••••		<u>→</u> - ↓			↓	
-				· .			-
-		st i		19 ¹³ 1			
:				$\frac{1}{2} = \frac{1}{2} $		· · ·	• .
•	:					⁴	
				- 1 	· · · ·	·	
	- :		a An an Angelora			2.4	:
:	<u>.</u>				· ·		4
:							1
:							• • •
•		(X + 1			• بر ۲۰۰		• .*
					4) - 11 - 1 14) - 11 - 11	te star	
		1	2				••.
-	· '.	1 <u>1</u> .				$+m_{T}$	
	taa 1				4	- 1.1	
				· · · · · · · · · · · · · · · · · · ·		a a second a second	
	just to f				i i Navis		. 1.
1				2	1 1 10 1 1 1	Let a	Lat
•							. 1
	12 ° • 1				• 1 · · · · ·	n i strandri	

			(Uni	t: m ³ /day)
Distinguish	1985	1990	1995	2000
Houses	47,180	64,812	91,555	127,911
Public Facilities	1,887	2,991	4,578	6,396
Industry	23,400	29,100	31,100	33,100
Trading	8,580	9,610	10,770	12,070
Hotels	2,003	2,244	2,515	2,817
Sea Port	328	361	394	426
Office	4,804	5,816	7,043	8,527
Nospitals	674	890	1,168	1,523
Schools	3,002	5,609	9,684	15,228
Mosqués	630	780	930	1,140
Sub-Total (m ³ /day)	92,488	122,213	159,737	209,138
Loss	39,638	52,377	68,459	89,631
Total (m ³ /day)	139,126	174,590	228,196	298,769
(1/sec)	1,526	2,021	2,641	3,458
Adjusted Volume (1/sec)	[1,500]	[2,000]	[2,700]	[3,500]

()

 $\left\{ \right\}$

- 81 -

Varieties	Yield (tón/ha)	Unit Price (Rp/ton)	Gross Products (Rp/ha)	Production Cost (Rp/ha)	Income (Rp/ha)
Paddy	2.5	71,500	178,750	64,000	114,750
Maize	0.7	35,000	24,500	4,850	19,650
Green bean	0.5	125,000	62,500	3,500	59,000
Cassava	7.0	10,000	70,000	10,400	59,600
					0*************************************

Table 4-5 INCOME OF CROP

. : .

Table 4-6 GROWTH PERIOD OF VARIETIES OF PADDY

्यू विक्रम

(Unit: Number of Days) After Transplanting Varieties Growth Period Total of Seedlings Irrigation Cultivatio of Paddy Growth Period 95 125 - 130 1. C4 - 6320 - 25 105 20 - 25 95 105 2. PB - 26 125 - 130 118 - 119 21 - 27 108 - 109 140 - 145 3. PB - 32 82 - 89 92 - 99 4. PB - 36 18 - 21 110 - 120 105 125 - 130 5. Citarum 20 - 2595

Note 1 : Persuasion seed sowing : 7 - 10 days Note 2 : Puddling : 10 - 14 days

- 82 -

t

Note: The order of the "drought year" was determined based on the rainfall amount during dry season at Hasanuddin.

- 83 -

Table 4-8 CALCULATION OF EVAPOTRANSPIRATION (Modified Penman Method)

(Unit: mm/day)

		<u> </u>			<u>.</u>								<u>`</u>
80	Er	4-5	4-0	3.1	• • •	3.7	4.2	с.	5.2	3-9	*	4-5	4•2
19	ы	3.577	3.477	4.181	4.116	4.049	3.761	4-179	4.536	5-238	5.215	4-925	3.656
79	拹	4.8	4•3	2.8	¥	3-6	4-4	4.9	5 °3	3.7	**	4.6	4-4
19	ы	3.742	3.763	3.724	4-312	3.963	3-921	3.851	4.593	4.955	5-097	4.986	3.864
78	Er	5.6	5.1	3.5	*	4.0	4.8	5.3	5.8	3.9	*	4 80	4.8
19	ы	4.377	4.443	4.689	5-079	4-302	4.267	4.134	5-053	5-228	5.944	5.181	4.142
77	붭	5.2	• • ••	3.5	*	4.4	4.6	6.3	6.2	4.8	*	5.4	5-4
19	ы	4-067	4-015	4.638	5.000	4.753	4.078	4-929	5.425	6.372	6.879	5-918	4.664
76	Ła	5.7	5.0		*	4°.	4.7	6+1	6.5	4.7	*	4-7	4.7
19	ы	4-476	4.357	4.079	5-136	4-625	4.227	4.792	5.673	6-308	5.860	5-084	4.116
Crop Consumptive	use factor	1.27	1.15	0.75		0.92	1-12	1.27	1.15	0.75	· · · · · · · · · · · · · · · · · · ·	0.92	1.15
		Jan.	reb.	Mar.	Apr.	May	Jun.	Jul	•Suk	Sep.	8ct.	.vov	Dec.

- 84 .--

(

0

	in ² st 48 tr. ▲		····			·
· · ·	: 	Sep.	1.238	*2) 4.952-0	*2) 18.818-0	*2) 23.770-0
(1976)		Aug.	1.527	6.108	23-210	29.318
ORY SEASON		Jul.	1.463	5.852	22•238	28.090
S DURING		Jun.	1.212	4.848	18.422	23.270
REQUIREMENT	a processione	May	1.433	*1) 0- 4.396	*1) 0-16.706	*1) 0-21.102
DIVERSION		Unit	l sec/ha	ш ³ /sec	m3/sec	¤3/sec
Table 4-9			Unit Water Requirement	Bili-Bili Intake (4,000 ha)	Kampili Intake (15,200 ha)	Total (19,200 ha)

. 1 (

()

.

May 07 - 76.77 area Sep. 1007 - 07 area

ମ ର * *

- 85 -

•

	·			(Unit:	Rp/ton)
. Interna (F.O.B.	tional Market Bangkok) <u>/</u> 1	Price US\$557			348,125
. Externa (Bangko	1 Transportat k - Ulung Pag	ion Cost dang)			8,125
. Port Ha	ndling Charge	e and Sto	ring		
Cost (1	ncluding cost Price of Ric	: of sack :e at Bx-	s) <u>7</u> 2 mill Cat	e	361,960
					• • •
5. Milling	Charge	а.			- 6,000
5. Handlin (Farm g	g and Transpo ate to mill)	ortation	Cost		- 2,700
7. Economi	c Farm Gate I	Price of	Dry		353,260
SLAIK P	auuy				353,000 }
and the second s				· · · · · · · · · · · · · · · · · · ·	

Table 4-10 ECONOMIC PRICE OF RICE (GABA) - Import Substitution Price -

Projected price to 1985 in 1980 constant US dollars.

<u>12</u> : Handling charge at harbor Storing chasrge Cost of sacks

.

,

1

÷.

30 Rp/ton 7 Rp/ton/day x 240 days 4000 Rp/ton ĺ

 \hat{I}
Table 4-11 IRRIGATION BENEFITS

Description	W/O Project	W/Project	Increment
1. Planted Area (ha) -wet season paddy field -dry season paddy field	24,000 2,400	24,000 19,200	0 16,800
2. Unit Yield (ton/ha) -wet season rice -dry season rice	2.62 2.24	3.12 3.12	0.50 0.88
3. Project Price of Paddy (Rp/ton) -rice (Gaba)	353,000	353,000	0
4. Unit Production Cost (Ro/ba)			
-wet season rice -dry season rice	180,000 190,000	190,000 200,000	10,000 10,000
5. Gross Production Value (1x2x3) (x10 ⁶ Rp)	24,095	47,579	23,484
-wet season rice -dry season rice	22,197 1,898	26,433 21,146	4,236 19,248
6. Total Production Cost (1 x 4) (x10 ⁶ Rp)	4,776	8,400	3,624
-wet season rice -dry season rice	4,320 456	4,560 3,840	240 3,384
7. Net Production Value (5 - 6) (x10 ⁶ Rp)	19,319	39,179	19,860
-wet season rice -dry season rice	17,877 1,442	21,873 17,306	3,996 15,864
8. Crop Damage Due to Water Shortage (x10 ⁶ Rp)	0.0	282	282
-wet season rice -dry season rice	0.0 0.0	109 173	109 173
9. Adjusted Net Production Value (7 - 8) (x10 ⁶ Rp)	<u>19,319</u>	38,897	19,578
-wet season rice -Dry season rice	17,877 1,442	21,764 17,133	3,887 15,691

. -

()

()

.

- 87 -

n gana an		en e			
Maxiœum available discharge	Kaximum output	Annual generated energy	Construction cost	Unit construction cost per kWH (sending end)	Internal Rate of Return
m ³ /s	KW	MWH	× 106 US\$	US\$/KWH	X
22	7,700	54,610	17,651	0.323	13.2
32	11,200	69,600	22,052	0.317	13.3
42	14,900	80,580	25,851	0.321	12.9
62	22,200	94,570	31,122	entrole 0.329 via 1887 Grunde Ay	12.5

· .

.

Table 4-12 RELATION BETWEEN IRR AND MAXIMUM AVAILABLE DISCHARGE

- 88 -

(1) A set and a set of the se

ł

1

(

Table 4-13 CENERATED ENERCY AT BILI-BILI HYDRO POWER STATION

()

3

C > 1

			•				.	-		-	(Unit	(HWH)	
Year	Jan-	Feb.	Mar.	Apr.	May	Jun.	Jul.	-3nk	Sept.	oct.	Nov.	Dec.	Annual
1976	8,333	7,795	8,333	4,836	4,074	6,751	7,581	6,561	2,336	557	422	723	58,301
1977	7,883	7,526	8,333	7,800	3,604	5,775	8,307	7,490	2,967	3,853	1,618	5,889	170*12
1978	8,277	7,526	8,333	5,539	4,036	4,730	6,873	7,077	2,953	116*2	6,449	6,521	76,225
1979	8,333	7,526	8,333	6,717	6,110	166*8	7,432	6,959	2,689	4,583	2,085	5,792	70,549
1980	8,269	7,795	8,333	8,064	5,214	6,891	7,339	6,349	2,485	2,483	1,312	7,309	71,843

- 89 -

f

			۰.	<u></u>
	Classification			Amount
1.	Land	1.5		
	Cultivated land	-		2 41
	Paddy Field Field		н. М.	660 ha 120 ha
	Forest			350 ha
	Bamboo			305 ha
	Residential Area			156 ha
2.	Houses			790 noś
3.	Relocation of Road	4		19 km
4.	Relocation of Pumping Stat	tion		1 place

Table 5-1 LAND ACQUISITION AND HOUSE EVACUATION

	No.	Nachinery	Capacity	Unit
	1	Bulldozer	32 ton	12
	2	Bulldozer w/Rioper	32 ton	12
Д	3	Bulldozer	21 ton	20
	ž	Dump truck	20 ton	30
	s s	Dump truck	8 tón	54
	6	Dozer shovel	2.0 3	7
	7	Wheel loader	3.1 53	111
	8	Backhoe	Hvd. 1.2 m3	5
	ă	Ordinary truck	3.0 ton	15
	10	Truck crane	Hvd. 50 ton	2
		Truck miver	3.0 m3	6
· . :	12	Concrete numb car	40 m ³ /br	2
	12	Tractor and Trafler		1
		Vator tankar	9 11	3
•	14	Fual tankar	0 11	
	12	Nibrotion rollor		5
	17	Temping vollar	13 5 ton	
: .	17	Tamping forrer	13.5 ton	
	18	Koad Foller		4
	19.	Soll compactor	22 con	4 E
1	20	motor grader	3.7 0	20
	21	Boring machine	max. 150 b	20
5 - A	22	Grout mixer and pump	200 1.	20
	23	Crawler drill	3 1n.	8
	24	Rock breaker	4 in.	10
-	25	Log drill w/sinker	1.5 10.	30
	26	Pick hammer		30
,	27	Portable air compressor	17 m ⁻ /min.	20
	28	Concrete mixer	0.5 m3	2
÷	29	concrete bucket		
	30	Concrete vibrator	flexible 150 Ø	2
	31	Concrete vibrator	riexible 40 0	10 10 LV
	32		mout cype	
1 A A	33	Viorator roller		15
	34	Kamper	0V *8	20
- 1.	35	Air tanper	0 da	- JU
	36	Centritugal pump	$\frac{8}{2}$ 1n.	2
1.2	37	iuroine puip	3 0 / 1010.	2
	38	Submergible pump	8 10.	
	39	Submergible pump	4 in,	
	40	Submergible pump	Z 10.	
	41	sand pump	1 02/010.	0
	42	Diesel generator	500 kW	2
÷ ;	43	Screening plant	125 t/hr.	1
	: 44	Concrete plant	$1 \text{ m}^3 \times 2$	a an
• 14'	1			

Table 6-1 MAIN CONSTRUCTION HACHINERY FOR DAM

()

()

(N

44.00

199

		-	an star	and Attack	
			Total	Foreign	Local
Work Item	Unit	Quantity	Amount	Currencey	Currency
			(x10 ³ US\$)	(×10 ³ US\$)	(x10 ³ US\$)
1. Civil Works					
Excavation	<mark>щ</mark> З	. 890,000	5,266	2,609	2,657
Embankgent	<u>m</u> 3	6,280,000	42,205	28,771	23,434
Spillway	L.S.	1	32,140	16,586	15,554
Foundation	L.S.	1	9,000	5,940	3,060
Intake	L.S.	1	524	270	254
lleadrace channel	L.S.	· 1	162	87	75
Diversion	L.S.	1	14,466	7,390	7,076
Preparatóry works	L.S.	1	10,377	5,166	5,211
Sub-total	a na		114,140	56,819	57,321
2. Gates & Equipment	L.S.	1	2,638	2,239	399 ·
3. Road Relocation	kın	19	2,500	250	2,250
4. Land Acquisition	ha	780	5,360		5,360
5. House Evacuation	P.C.	790	380		380
6. Relocation of Pumping St.	₽.C.	1	700	665	35
7. Engineering Service	L.S.	1	10,990	9,190	1,800
Sub-total (1-7)	-	-	136,708	69,163	67,545
8. Physical Contingency	L.S.	1	20,506	10,374	10,132
Grand-total (1-8)	-	-	157,214	79,537	77,677

Table 6-2 CONSTRUCTION COST OF BILI-BILI DAM

Solation and solated strategy

4

ĺ

- 92 🗄 🗉

	No.	Machinery	Capacity	Unit
	1	Dredger	800 PS	1
	2	Anchor Barge	35 PS	1
1 × ¹	3	Wheel Loader	2.1 m ³	3
1	4	Wheel Loader	1+2 m ³	4
- <u>-</u>	5	Back Hoe	1.2 m ³	4
	6	Back Hoe	0.7 m ³	4
. *	7	Asphalt Engine Sprayer	200 1	1
	8	Asphalt Finisher	2.4 - 3.6 m	1
	9	Road Roller	10/12 ton	1
:	10	Tire Roller	8/20 ton	l
	11	Vibration Roller	25 ton	5
1 A.	12	Soil Compactor	90 kg	10
. ***	13	Tamper	80 kg	10
1	14	Bull Dozer	21 ton	8
· ·	15	Bull Dozer	11 ton	4
1 11 11 	16	Dump Truck	8 ton	90

Table 6-3 MAIN CONSTRUCTION MACHINERY FOR RIVER IMPROVEMENT

.

()

()

\$. .

an an shekara Tarihi ƙwalar

Table 6-4 CONSTRUCTION COST OF RIVER IMPROVEMENT

Work ItemUnitQuantityAmount $(x10^3 USS)$ Currency $(x10^3 US$		}		Total	Foreign	Local
1. Civil Works Dredging m^3 $816,000$ $2,685$ $1,371$ $1,314$ Excavation m^3 $1,320,000$ $6,559$ $3,443$ $3,116$ Embankment m^3 $270,000$ $1,565$ 761 804 Filling m^3 $360,000$ $1,043$ 507 536 Sodding m^2 $347,000$ 441 $ 441$ Revetment m $5,400$ 732 $ 732$ GroyneP.C. 54 123 $ 123$ SluiceP.C. 2 44 2 42 Drainage ditch m $1,200$ 69 34 35 Grounds111P.C. 2 405 19 386 Diversion channel m^3 $80,000$ 352 176 176 Sub-total $ 15,420$ $6,944$ $8,476$ 2. GatesP.C. 2 42 $ 442$ 3. Land Acquisitionha 43 $1,376$ $ 1,376$ 4. House EvacuationP.C. 85 204 $ 204$ 5. Engineering ServiceL.S. 1 $2,990$ $1,415$ $1,575$ $5. Fhysical$ L.S. 1 $2,990$ $1,415$ $1,575$ $contingency$ L.S. 1 $2,990$ $1,415$ $1,575$	Work Item	Unit	Quantity	Amount (x10 ³ US\$)	Currency (x10 ³ US\$)	Currency (x10 ³ US
Dredging n^3 816,0002,6851,3711,314Excavation n^3 1,320,0006,5593,4433,116Embankment n^3 270,0001,565761804Filling n^3 360,0001,043507536Sodding n^2 347,000441-441Revetment n 5,400732-732GroyneP.C.54123-123SluiceP.C.244242Drainage ditch n 1,200693435GroundsillP.C.240519386Diversion channel n^3 80,000352176176Of S. Garassi n^3 80,000352176176Sub-total $ -$ 15,4206,9448,4762. GatesP.C.242 $-$ 423. Land Acquisitionha431,376 $-$ 1,3764. House EvacuationP.C.85204 $-$ 2045. Engineering ServiceL.S.12,8852,488397Sub-total (1 - 5) $ -$ 19,9279,43210,4955. PhysicalL.S.12,9901,4151,575ContingencyL.S.12,9901,4151,575Crand-total (1 - 6) $ -$ 22,91710,84712,070	I. Civil Works					
Excavation m^3 1,320,0006,5593,4433,116Embankment m^3 270,0001,565761804Filling m^3 360,0001,043507536Sodding m^2 347,000441-441Revetment m 5,400732-732GroyneP.C.54123-123SluiceP.C.244242Drainage ditch m 1,200693435GroundsillP.C.240519386Diversion channel m^3 80,000352176176Sub-total15,4206,9448,4762. GatesP.C.242-423. Land Acquisitionha431,376-1,3764. House EvacuationP.C.85204-2045. Engineering ServiceL.S.12,8852,488397Sub-total (1 - 5)19,9279,43210,495ContingencyL.S.12,9901,4151,5756ContingencyL.S.12,9901,4151,575Grand-total (1 - 6)22,91710,84712,070	Dredging	<u>ш</u> 3	816,000	2,685	1,371	1,314
Embankment m3 270,000 1,565 761 804 Filling m3 360,000 1,043 507 536 Sodding m2 347,000 441 - 441 Revetment m 5,400 732 - 732 Groyne P.C. 54 123 - 123 Stuice P.C. 2 44 2 422 Drainage ditch m 1,200 69 34 35 Grounds111 P.C. 2 405 19 366 Diversion channel m3 80,000 352 176 176 Sub-total - - 15,420 6,944 8,476 2. Gates P.C. 2 42 - 42 3. Land Acquisition ha 43 1,376 - 1,376 4. House Evacuation P.C. 85 204 - 204 5. Engineering Service	Excavation	<u>m</u> 3 ч	1,320,000	6,559	3,443	3,116
Filling m ³ 360,000 1,043 507 536 Sodding m ² 347,000 441 - 441 Revetment m 5,400 732 - 732 Groyne P.C. 54 123 - 123 Sluice P.C. 2 44 2 442 Drainage ditch m 1,200 69 34 35 Groundsill P.C. 2 405 19 386 Diversion channel of S. Garassi m ³ 80,000 352 176 176 Sub-total - - 15,420 6,944 8,476 2. Gates P.C. 2 42 - 42 3. Land Acquisition ha 43 1,376 - 1,376 4. House Evacuation P.C. 85 204 - 204 5. Engineering Service L.S. 1 2,885 2,488 397 5. Physical Contingency L.S. 1 2,990 1,415 1,575	Embankment	m3 (270,000	1,565	761	804
Sodding m^2 $347,000$ 441 - 441 Revetment m $5,400$ 732 - 732 GroyneP.C. 54 123 - 123 SluiceP.C. 2 44 2 42 Drainage ditch m $1,200$ 69 34 35 GroundsillP.C. 2 405 19 386 Diversion channel m^3 $80,000$ 352 176 176 Diversion channel m^3 $80,000$ 352 176 176 Sub-total15,420 $6,944$ $8,476$ Preparatory worksL.S.1 $1,402$ 631 771 Sub-total15,420 $6,944$ $8,476$ P. GatesP. C. 2 42 - 442 A. Land Acquisitionha 43 $1,376$ - $1,376$ House EvacuationP. C. 85 204 - 204 Sub-total (1 - 5) $19,927$ $9,432$ $10,495$ Sub-total (1 - 5) $2,990$ $1,415$ $1,575$ ContingencyL.S.1 $2,990$ $1,415$ $15,75$ Grand-total (1 - 6) $22,917$ $10,847$ $12,070$	Filling	<mark>в</mark> 3 с	360,000	1,043	507	536
Revetment n 5,400 732 - 732 Groyne P.C. 54 123 - 123 Sluice P.C. 2 44 2 44 Drainage ditch n 1,200 69 34 35 Groundsill P.C. 2 405 19 386 Diversion channel of S. Garassi n ³ 80,000 352 176 176 Preparatory works L.S. 1 1,402 631 771 Sub-total - - 15,420 6,944 8,476 Reversion P.C. 2 42 - 42 Sub-total - - 15,420 6,944 8,476 Sub-total - - 10,492 - 42 Augustition ha 43 1,376 - 1,376 House Evacuation P.C. 85 204 - 204 Sub-total (1 - 5) - - 19,927 9,432 10,495 Sub-total (1 - 5) <td< td=""><td>Sodding</td><td><u>m</u>2</td><td>347,000</td><td>441</td><td></td><td>: 441</td></td<>	Sodding	<u>m</u> 2	347,000	441		: 441
GroyneP. G.54123-123SluiceP. C.244242Drainage ditchm1,200693435GroundsillP. C.240519386Diversion channelm380,000352176176Of S. GarassiL.S.11,402631771Sub-total15,4206,9448,4762. GatesP. C.242-443. Land Acquisitionha431,376-1,3764. House EvacuationP. C.85204-2045. Engineering ServiceL.S.12,8852,488397Sub-total (1 - 5)19,9279,43210,4955. Physical ContingencyL.S.12,9901,4151,575Grand-total (1 - 6)22,91710,84712,070	Revetment	<u>m</u>	5,400	732	1. 	732
Sluice P.C. 2 44 2 42 Drainage ditch m 1,200 69 34 35 Groundsill P.C. 2 405 19 386 Diversion channel of S. Garassi m ³ 80,000 352 176 176 Preparatory works L.S. 1 1,402 631 771 Sub-total - - 15,420 6,944 8,476 P. Gates P.C. 2 42 - 42 B. Land Acquisition ha 43 1,376 - 1,376 G. House Evacuation P.C. 85 204 - 204 Sub-total (1 - 5) - - - 19,927 9,432 10,495 Sub-total (1 - 5) - - - 19,927 9,432 10,495 Sub-total (1 - 5) - - - 10,847 12,070 Grand-total (1 - 6) - - 22,917 10,847 12,070	Groyne	P.C.	54	123		123
Drainage ditch m 1,200 69 34 35 Groundsill P.C. 2 405 19 386 Diversion channel of S. Garassi m ³ 80,000 352 176 176 Preparatory works L.S. 1 1,402 631 771 Sub-total - - 15,420 6,944 8,476 P. Gates P. C. 2 42 - 42 A. Land Acquisition ha 43 1,376 - 1,376 House Evacuation P. C. 85 204 - 204 Sub-total (1 - 5) - - 19,927 9,432 10,495 Sub-total (1 - 5) - - 10,847 12,070 Grand-total (1 - 6) - - 22,917 10,847 12,070	Sluice	P.C.	2	44	2	42
Groundsill P.C. 2 405 19 386 Diversion channel of S. Garassi m ³ 80,000 352 176 176 Preparatory works L.S. 1 1,402 631 771 Sub-total - - 15,420 6,944 8,476 e. Gates P.C. 2 42 - 42 b. Land Acquisition ha 43 1,376 - 1,376 e. Gates P.C. 2 42 - 42 b. Land Acquisition ha 43 1,376 - 1,376 e. House Evacuation P.C. 85 204 - 204 b. Engineering Service L.S. 1 2,885 2,488 397 Sub-total (1 - 5) - - 19,927 9,432 10,495 contingency L.S. 1 2,990 1,415 1,575 Grand-total (1 - 6) - - 22,917 10,847 12,076	Drainage ditch	to :	1,200	69	34	35
Diversion channel of S. Garassi m^3 $80,000$ 352 176 176 Preparatory worksL.S.1 $1,402$ 631 771 Sub-total15,420 $6,944$ $8,476$ c. GatesP.C.2 42 - 42 d. Land Acquisitionha43 $1,376$ - $1,376$ d. House EvacuationP.C.85 204 - 204 d. Engineering ServiceL.S.1 $2,885$ $2,488$ 397 Sub-total $(1 - 5)$ 19,927 $9,432$ $10,495$ contingencyL.S.1 $2,990$ $1,415$ $1,575$ Grand-total $(1 - 6)$ $22,917$ $10,847$ $12,070$	Groundsill	P.C.	2	405	19	386
Preparatory works L.S. 1 1,402 631 771 Sub-total - - 15,420 6,944 8,476 Sub-total - - 15,420 6,944 8,476 Sub-total - - 15,420 6,944 8,476 Sub-total - - 2 42 - 42 Sub-total ha 43 1,376 - 1,376 House Evacuation P.C. 85 204 - 204 House Evacuation P.C. 85 204 - 204 Sub-total (1 - 5) - - 19,927 9,432 10,495 Sub-total (1 - 5) - - 10,990 1,415 1,575 Contingency L.S. 1 2,990 1,415 1,575 Grand-total (1 - 6) - - 22,917 10,847 12,070	Diversion channel of S. Garassi	m 3	80,000	352	176	176
Sub-total - - 15,420 6,944 8,476 2. Gates P.C. 2 42 - 42 3. Land Acquisition ha 43 1,376 - 1,376 4. House Evacuation P.C. 85 204 - 204 5. Engineering Service L.S. 1 2,885 2,488 397 5. Engineering Service L.S. 1 2,985 2,488 397 5. Physical L.S. 1 2,990 1,415 1,575 6. Physical L.S. 1 2,990 1,415 1,575 6. Gate - - 22,917 10,847 12,070	Preparatory works	L.S.	. 1	1,402	631	771
P. C.P. C.242-444. Land Acquisitionha43 $1,376$ - $1,376$ 4. House EvacuationP. C.85204-2045. Engineering ServiceL. S.1 $2,885$ $2,488$ 3975. Ub-total (1 - 5)19,927 $9,432$ $10,495$ 5. Physical ContingencyL. S.1 $2,990$ $1,415$ $1,575$ 6. Gates22,917 $10,847$ $12,070$	Sub-total	_		15,420	6,944	8,476
A. Land Acquisition ha 43 1,376 - 1,376 A. House Evacuation P.C. 85 204 - 204 A. House Evacuation P.C. 85 204 - 204 B. Engineering Service L.S. 1 2,885 2,488 397 Sub-total (1 - 5) - - 19,927 9,432 10,495 Sub-total (1 - 5) - - 12,990 1,415 1,575 Grand-total (1 - 6) - - 22,917 10,847 12,070	. Gates	P.C.	2	42	-	42
House Evacuation P.C. 85 204 - 204 b. Engineering Service L.S. 1 2,885 2,488 397 Sub-total (1 - 5) - - 19,927 9,432 10,495 b. Physical Contingency L.S. 1 2,990 1,415 1,575 Grand-total (1 - 6) - - 22,917 10,847 12,070	. Land Acquisition	ha	43	1,376	-	1,376
i. Engineering Service L.S. 1 2,885 2,488 397 Sub-total (1 - 5) - - 19,927 9,432 10,495 Sub-total (1 - 5) - - 19,927 9,432 10,495 Physical Contingency L.S. 1 2,990 1,415 1,575 Grand-total (1 - 6) - - 22,917 10,847 12,070	. House Evacuation	P.C.	85	204	-	204
Sub-total (1 - 5) - - 19,927 9,432 10,495 5. Physical Contingency L.S. 1 2,990 1,415 1,575 Grand-total (1 - 6) - - 22,917 10,847 12,070	. Engineering Service	L.S.	1	2,885	2,488	397
Or Physical Contingency L.S. 1 2,990 1,415 1,575 Grand-total (1 - 6) - - 22,917 10,847 12,070	Sub-total (1 - 5)		-	19,927	9,432	10,495
Grand-total (1 - 6) 22,917 10,847 12,070	 Physical Contingency 	L.S.	1	2,990	1,415	1,575
	Grand-total (1 - 6)	~		22,917	10,847	12,070

94 -

Work Iten	Total Amount (x10 ³ US\$)	Foreign Currency (x10 ³ US\$)	Local Currency (x10 ³ US\$)
1. Civil Works			
Gate-controlled division works	197	. 36	161
Sand basin & regulating basin	238	70	168
Pipeline & appurte- nant structures	8,981	4,535	4,446
Preparatory works	942	464	478
Sub-total	10,358	5,105	5,253
2. Gates & Equipment			
Gates	42	-	42
Ductile cast-iron pipe	17,151	17,151	· · · · · -· ·
Yalves	44	44	2 19
Sub-total	17,237	17,195	42
3. Land Acquisition	11	· · ·	11
4. Compensation	80	-	80
5. Engineering Service	3,153	2,727	426
Sub-total (1 - 5)	30,839	25,027	5,812
6. Physical Contingency	4,626	3,754	872
Grand-total (1 - 6)	35,465	28,781	6,684

Table 6-5 CONSTRUCTION COST OF WATER SUPPLY

()

 $\left(\right)$

(

- 95 -

Work Item	Total Amount	Foreign Currencey	Local Currency
	(x10 ³ US\$)	(x10 ³ US\$)	(x10 ³ US\$)
l. Main Works		n an	
Work I (S.C. & R.F.)	5,400	778	4,622
Work II (S.C. & R.F.)	5,400	778	4,622
Work III	5,833	984	4,849
S.C. & R.F. Kampili main channel	5,400 433	778 206	4,622 227
Work IV	6,214	1,018	5,196
S.C. & R.F. Bili-Bili connecting channel Bili-Bili existing channel	5,400 648 166	778 161 79	4,622 487 87
Sub-total	22,847	3,558	19,289
2. Engineering Service	3,100	2,640	460
Sub-total (1-2)	25,947	6,198	19,749
3. Physical Contingency	3,892	930	2,962
Grand-total (1-3)	29,839	7,128	22,711

Table 6-6 CONSTRUCTION COST OF IRRIGATION

l

Note: S.C. & R.F. = Secondary Channel and Relevant Facilities

Table 6-7 CONSTRUCTION COST OF HYDRO POWER

	the site Theorem	Total	Foreign	Local
	MOLK TCGU	(×10 ³ US\$)	(x10 ³ US\$)	(×10 ³ US\$)
1.	Civil Works			
	Intake	491	270	221
	Headrace tunnel	152	87	65 -
	Penstock	525	254	271
	Power house	6,156	3,426	2,730
	Tailrace channel	1,021	524	497
	Preparatory works	835	456	379
<u> </u>	Sub-total	9,180	5,017	4,163
2.	Gates & Penstock	1,392	1,182	210
3.	Generating Equipment	5,955	5,590	365
4.	Transmission line & Sub-station	3,640	2,320	1,320
5.	Engineering Service	1,885	1,613	272
<u></u>	Sub-total (1-5)	22,052	15,722	6,330
6.	Physical Contingency	3,308	2,358	950
 - -	Grand-total (1-6)	25,360	18,080	7,280

 $\left(\right)$

 $\langle \rangle$

(`)

- 97 -

COST
PROJECT
THE
Ч
DISBURSEMENT
ANNUAL
7-7
Table

(unit : x10⁶ US\$)

				- 1 - 2	3-2	1.9.8	E 2	3 6 T	7 8	1 9	8 5	6 T	8 6	61	8 7	·
WORK ITEM	ъ-С.	5	TOTAL	U M	r c.	C A	L C	F.C.	1-C	४ - С	U T	F C	- T - C	F.C.	г-с-	
X V Q	151-43	158-76	310-19	1	، ÷ ا	2-83	0.85	12-1	0-28	0.23	2.02	18-68	20.40	20.27	26.05	
RIVER IMPROVEMENT	38.77		104-95	1.22	0.19	0*30	+0-0-	1-11	3.52	2.82	- 26*9	2.61	7.25	2.63	7.44	
MUNICIPAL & INDUSTRIAL WATER SUPPLY	56-91	14.79	72-70	•	1	1999 - 19		. I	1	1	1	1-63	0.27	0-87		
IRRIGATION	13-93	48-60	62-53	1	,	1	1	1	1	1-19	0-24	0-04	1 1	2.17	66*6	
RYDRO-PONER	36-97	17.22	54.19	1	1	1	•	1	1	I	1 (1		1.28	0.25	
TOTAL	298.01	305-55	603-56	1.22	0-16	3.13	0-89	3.22	3.80	4.24	9-23	22.96	27.92	27-22	43.90	
(CONTINUED)			1	n - Anna an Anna												
	19	8 8 8	19	6 8	1 9 5	0	6 1	16	6.1	9 2	1 9	5 6	6 1	76	1 9	5 6
WORK ITEM	F.C.	-0-1	F.C.	L.C.	F.C.	L.C.	F.C.	L-C.	F.C.	L-C-	Б.С.	L.C.	ъ.С. М	L-C.	F.C.	L.C.
XVQ	28-15	36-38	34-03	44-14	27.93	28.64	3.74	.)	3.75	B Talang	3.75	•	3.75	ŧ	2.81	1
RIVER IMPROVEMENT	1-59	0-24	0.80	0-11	0.53	0-02	3.92	3.90	4.95	.7.39	5.37	7.73	5-96	9.88	4-36	11.50

(`)

11-50

9.23

9.88

12.45

7.73

11-86

7.39

11-44

3.90

10.39

58-85

70-22

68.34

64.38

52.03

46.05

TOTAL

ı

1-08

ŧ

1-44

• ;. •

1-44

1

1-44

1

L-43

4.11

13.38

5.82

20.30

4.42

13.90

MUNICIPAL & INDUSTRIAL WATER SUPPLY

I ŧ

0.26

t ŧ

0.35

• ł

0.35 0.95

1

0.35 0.95

I i

0.35

14.80 11.28

3-43 24.95

12.58

3.07 6.18

10.99

2.37

5-69

1

0-04

RYDRO-POWER IRRIGATION

0.95

ŧ

0.72

0.95

()

- 98 -

			5	24	50	80	72	13	67		1995	L.C.	1	24 2.52	۱ 	1	1	24 2-52
		1987	ב ט ט	44 12-	39 3-	48	23 4.	80 0.	34 20-					38 1.	· 			38 1.
	6 US\$)		4	5		4		•	4 IS.		5 6 6	1.	•	5- 0	•	•	• 	0 2-
	t : xlo	986	L.C	10-5	3-7	0.1	•	•	74-4		-4	E.C.	۱ 		I	•	*	5-1-5
	tay)	~	F.C.	11+59	1+52	1-02	1	1	I4.13	1993	560	יט גייט	1	2-0	1	1	1	2-0
		8 5	r.c.	1-16	4-00	I	0.14	B	5-30		۳.C.	I	1.85	I	ŧ	•	1.85	
4 2 2 2		6	F.C.	0.07	1.83	1	0.79	I	2.69		92	L.C.	1	2.16	l	i	I	2.16
		4	L-C.	0-18	2.26	1	(I	2.44		19	ъ.С. Ж	1	1.86	I	1	I	1.86
		198	F.C.	1.02	1.19	•	3	I	2.21	*	1 6	L.C.	I	1-25	1	I	1	1.25
		6	L.C.	0-61	0.03	•	•	1	0.64		19	F-C-	I	I.58	ł	1	1	1-58
		198	F.C.	2-17	0-20	. •	1	1	2.37		0	L.C.	10-11	0-01	1.45	5.26	3-99	20-82
		~	L.C.	; 1	0.16	1	1	•	0.16		199	F.C.	11-89	0.08	5.87	1.49	11.79	31.12
	·	198	F.C.	1	66-0	1	1	J	66-0		<u>م</u>	L.C.	17.15	0.0 4	2.26	16-7	2.21	26.57
			TOTAL	136.71	40.77	30.84	25-95	22.05	256.32		198	F.C.	16-30	0.23	11-01	1.46	3-13	31-23
			1.0.1	67.55	24.21	5.81	19.75	6.33	123.65		8	L.C.	15.55	01-0	1.88	4.72	1	22.25
			・ ひ み	69.16	16.56	25-03	6-20	15-72	132.67		198	F.C.	14.68	0-70	7.55	1.23	1	24-16
			WORK ITEM	A A G	RIVER LAPROVEMENT	MUNICIPAL & INDUSTRIAL WATER SUPPLY	IRRIGATION	RYDRO-POWER	TOTAL			MORK ITEM	X V.Q	RIVER LEPROVEMENT	MUNICIPAL & INDUSTRIAL WATER SUPPLY	IRIGATION	HYDRO-POWER	10HAU TOHAU
											·				· .			

Table 7-2 ANNUAL DISBURSEMENT OF THE BASE COST

.

e alternation

()

 $\left(\right)$

- 99 -

. .

1 3 { .

(

· ·

4

.

- 104 -- 1

Į

í

ł

()

()

()

. .

.

Ĉ

(

ĺ

- 113 -

()

(

()

- 115 -

- 116 -

.

- 122 -

()

 $\langle \rangle$

í

•

- 126 -

 $\left(\right)$

()

()

- 127 -

Method 2. To make use of the Bili-Bili irrigation channel Method 3. To exavate a new open channel as a conveyance route

.

Bill-Bili Dam

Fig. 4-16

THE MUNICIPAL AND INDUSTRIAL WATER HEADRACE ROUTE

•

()

BILI-BILI IRRIGATION SYSTEM

ì

·