- - A N N B X - -

PREVENTION OF LOCAL DISASTER IN THE AREA

THOUGHT OF SEDIMENT CONTROL

1

2

Besides environmental aspects aforementioned, sediment control will be discussed in this chapter. There exists the collapse area spreading 0.2 km^2 in the mountain regions in the upstream of the Jeneberang river which has produced tremendous amount of sediment in the past and has flown it down into the River.

At the present, the collapse area is supposed not to give ill-effects to the river, even if no sediment control facilities be built as described in the above chapter. It is, however, feared that the sediment discharge from the collapse area, if and when it occurs, may cause local disaster in the immediate downstream of the above-mentioned area. From this point of view, installation of appropriate sediment control facilities will be recommended to mitigate local disaster in the upstream area, though it is not to be included as a part of this project.

LOCATION AND FUNCTION OF SABO DAM

Three Sabo dams are recommended as the appropriate sediment control facilities and their locations are shown in Fig.1-23, in due consideration to the following conditions.

- 1) the active collapse areas in the lower reaches where sediments are currently produced
- narrowness of the valley which helps saving the total dam volume (and, thereby, saving dam construction cost)
- 3) the place suitable for preventing lateral erosion of terrace and fan scrap through raising the riverbed and
- 4) the place which is situated in an easy reach of Sabo dam construction materials

The function of the Sabo dam is generally as follows.

- 1) to catch sediment discharge
- 2) to regulate sediment transportation, and
- 3) to prevent producing sediments.

The third function is atainable as Sabo dam will help raising the riverbed at its upper reaches by arresting outflowing sediments and the raised riverbed plays the role of counterweight to check fresh occurrence of collapse. Sabo dam will, therefore, be effectively installed in the very area where sediments are being produced.

3. PRELIMINARY STANDARD DESIGN, COST ESTIMATE AND CONSTRUCTION SCHEDULE OF SABO DAM

3.1 Preliminary Standard Design

The proposed Sabo dam will be desinged as the gravity structure of a floating type on their foundation consisting of thick sand and gravel. The size of the Sabo dam is given 15 m in height, 50 m in crest length and 2 m in crest width based on the field reconnaissance and the preliminary standard design of the Sabo dam is illustrated in Fig. 1-1(AN) as an example.

3.2 Cost Estimate

The construction cost of one dam is estimated at about 0.4 million dollars as indicated below and, therefore total construction cost of 1.2 million dollars will be required for the three proposed Sabo dam construction.

	Item	Quantity	Unit Price	Cost
a.	Concrete Works	2,800 m3	120US\$/m ³	336,000US\$
b.,	Excavation Works	3,200 m3	7US\$/m ³	22,400US\$
c.	Preparation Works & Others	L.S.		36,000 U S\$
	Total	· . · .		394,000US\$

3.3 Construction Schedule

As for the construction schedule, the period of three years is proposed for the entire completion of three proposed dams considering the following conditions:

- 1) One dry season from April to November is allotted to the construction period of one dam; the preparation works (1 month), the excavation works (2 months) and the concrete works (4 months).
- The construction of three proposed dams will proceed consecutively for three years running from the upstream side to downstream side.

Table 1-1 COMPARISON OF PRINCIPAL FEATURES OF DAM AND RESERVOIRS

Pattalikang (Jenelata) 12-0×106 186×10⁶ 220×106 1.48 276×106 226.3 8•5 65-0 15.5 300 6 Jeneberang) 19.1×106 280×106 242-0 8.2 243×106 439×106 1.81 100-0 12.7 Jonggoa 200 **4** Pasaratowaya (Jeneberang) 12.5×106 240×106 288×106 192×106 1.50 319.2 7.8 80-0 15.4 200 29 (Jeneberang) <u>B111-B111</u> 362×106 6.3×106 304×106 157×106 0.52 384-4 17.8 66-0 48.3 790 38 (s/¤3) ("sou") (Km²) (f/d) (Km²) run-off volume (1976)(%) (m3) (fg Reservoir capacity (m^3) Ì (ŝ) per Effective storage capacity per Annual Effective storage Construction cost Effective storage Construction cost Effective storage Submerged houses capacity per Dam Catchment area Itens Surface area Dan volume Dam height capacity capacity volume , A d. с. • 44 ÷ **.** . بر Ĵ ÷ ÷ , d

	:		ана стана 19		8
Name of dam	Island or Province	Catchment Area (km)	Design flod (m ³ /s)	Specific discharge	Remarks (Rp.Years)
Jatiluhur	W. Java	4,500	8,000	1.78	1,000
Karangkates	E. Java	2,050	4,200	. 2.05	1,000
Selorejo	E. Java	-236	920	3.90	1,000
Navangan	E. Java	2.7	40	14.98	500
Riamkanan	Kaliman	1,040	1,950	1.87	2,000
Lahor	E. Java	160	690	4.13	200 + 20%
Jatigede	W. Java	1,460	6,700 10,500	4.59	2,000
Sempor	C. Java	43	1,400	32.56	P+H+F 100+20%×20
Glepan	C. Java	796	4,500	5.65	10,000
Ngrambat	C. Java	607	3,900	6.43	10,000
Jaragung	C, Java	94	1,000	10.64	10,000
Jipang	E. Java	10,810	8,660	0.80	200+202
Wonogiri	E. Java	1,350	6,250	4.63	200+203
Bendo	E. Java	138	9,600 850	7.11 6.16	P.N.F. 200+202
Blega	Madura	118	1,010	8.56	P.H.F
Samiran	Madura	78	810	10.38	P.H.F
Klampis	Madura	51	290	5.69	(1/2)P.M.F
Palasari	Bali	42.5	225	5.29	1,000
Vapu	Lampung	205	696	3.40	200
Parangjoho	P.B.S	2+8	310	14.22	500
Songputri	P.B.S	2.7	52	19.20	
Sangiran	P.B.S	21.0	290	13.80	
Poñdok	P.B.S	33.0	370	11.21	
Gondang	P.B.S	68.1	465	6+80	

(

Table 1-2 THE MAIN DAMS OF EXISTING AND PLANNING IN INDONESIA

Table 1-3 ALLOCATION OF RESERVOIR CAPACITY AND SPILLWAY COSTRUCTION COST

	Discharge Fac	e Facilities	Water Utilization		Capacity for safety	Construction
	Free flow Sec	Gate Section	Capacity (x106m3)	Capacity (x106m3)	of dam body(x106m ³)	
Type I	L = 130 m		224	63	45	22-9
Type II	L1 - 130 m		245	63	24	29.3
	L2 = 320 B					
Type III	г т	6.5mx7.2mx2	230	46	\$\$	23.5
Type IV	L1 = 100 m L2 = 337 m	6.5ax7.2ax2	258	97	38	31-0
Type V	н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.5m×7.2m×2 7.3m×9.9m×4	237	46	8 2 2	26.7

	Classification	Amount
1.	Land	
	Cultivated land	
	Paddy Field Field	660 ha 120 ha
	Forest	350 ha
	Bamboo	305 ha
	Residential Area	156 ha
2.	Houses	790 nos
3.	Relocation of Road	19 km
4.	Relocation of Pumping Station	l place

Table 1-4 LAND ACQUISITION AND HOUSE EVACUATION

Table 1-5 SOURCE OF EMBANKMENT MATERIALS

				-
(Unit			103	
(UILL	÷.	x	TO.	M-)

Material	Rock	Filter	Core	Randam	Waste & other use	Total
Required Embankment Volume	3,790	800	1,060	630	-	6,280
Available from						
Diversion channels	_	-	· 🛶 ·	100	194	294
Dam foundation	~	100	_	40	750	890
Spillway	300 -	-	500	300	440	1,540
Intake	10	-	- '	6	8	24
Power plant	-	- .	10	5	15	45
Pressure tunnel	-		5		22	27
Tailrace channel	5	-	•• .	-	15	20
Deficiency supplied						
from					ľ	
Borrow pit	-	~	545	-	-	545
Rock quarry	3,460	-		179	-	3,639
River bed	-	700	-	-	-	700

·

•

													•
(IIII)	JAN	FER	MAR	APR	XVX	NUC	JuL	AUG	SEP	ц В	NON	DBC	TOTAL
•	9.8	6.3	12.3	17-8	21.6	23.2	24.5	26.5	23.8	26.4	15-0	10-0	217.2
0.1 - 2.0	0-9	1.5	1.4	1.2	0.6	1.3	1.5 ·	0-6	0*9	0_3	0.7	0.5	11-4
2-1 - 5.0	2-2	2-7	2.5	1.8	1.4	1.6	1-4	1-4	1•1	6-0	1.5	2.3	19.8
5.1 - 10.0	3.1	2.6	3•5	1.7	1-2	0.8	1.0	0.8	6-0	6-0	2.0	4=0	22.5
10-1 - 20-0	3.4	4-5	4.8	2.1	2.1	1+3	6-0	1.5	1.5	0.9	2.8	4.3	30.1
20.1 - 30.0	2 4	2.9	1.9	0-8 0	1.5	0.8	6•0	0	1-3	0.7	2.3	3.3	18-8
30-1 - 40-0	2.5	3-2	2-2	1.2	6•0	0•6	0	0	0-1	0.2	8-1	1-6	14-3
40.0 over	6.7	5.3	2-4	3-4	1.7	0.4	0.8	0-2	0.4	0-7	3.9	5.0	30.9
Total	31.0	28.0	31-0	30-0	31-0	30-0	31.0	31-0	30-0	31-0	30-0	31.0	365
Total Rainy day	21.2	21.2	18.7	12.2	4.6	6.8 8	6.5	4-5	6.3	4	< 31	c č	0

.

Table 1-6 SUMMARY OF MONTHLY RAINY DAY AT BILI-BILI

·····

3.

1-49

1.

Table 1-7 MONTHLY WORKABLE DAY FOR EACH WORK

DC. Tecal R

-8

50. 87. Ą .

JAN. PER. MAR. ATS. MY. JUN. JUN. ANG.

HOMPHLY WORKABLE DAY FOR ENAMOREMENT ROCK WORK

1

2

7 • -

4

2 -0 .

1

8

ä ~ • ~ * -

.

ä

(1) Columber day

.

eň,

. • ł

•

÷ ~ ~ ~

4 -1 •

4 N •

(1) Annual

ò 2

> ~ .

~

• 4 4 4

• •

(2) . Not Innel Ind Juny

4 -

(c) + (c) (t)

\$ Ŷ • 2 22

• ó

> . -• ,

•

.

.

0

• đ 1 2

-

...

9

(3) Ralay day (i) (i)

NOMTHLY NOWARIA BAY PUN CONCRETE NOW

Π	I	į	ź	i i i	ś	÷.	3	JUL AUG.		÷.	15	ż		Ta ka	
. 1	Colondor day	"	×	ž	8	4	8	3	à	8	ĸ	2	1	ž	
		•		*	•	^	•	-	-	•		-	•	2	-
	Medianal Naliday	^	9	٥	-	~	•	•	-	•	~	•	~	12	
(C) + (C)		•;		•	*	`	•	•	•	•	•	-	•	3	
	Return day	~	-07	16	•	•	~	-	•	-	~	4	=	*	
	(I) - (1)		•	^	-	-	•	•	•	•		14	~	1	-
	maile day	-	*	•	-	-	-	-	-	-	-	-	-	=	
	(8) University day	11	3	2	2	2	ź		2	*	2	.=	=	â	
		1			ĺ	ĺ	ĺ		1	1	1	1	1]	

17 days/sench Michable dayor 225 deperveer

		Ę	HORTHLY MURICIAL DAT FOR DRIANDER' CATH LOAK	A A A			top	Ē	ŝ					•
Ľ		i	E	i	PER. MAL. AM. MY. JUN.	W.	ž	Ę	AUC.	JUL MG. SUP. QCT. W.Y. DCC. Tocal	5	i	ÿ	Ī
3	Colondar day	н	×.		71 - 12 - 92 - 14 -	R.		1C - K.		-77	7	8	7	
6	j	•	•	•	•	•		•	-	1	•	~	•	8
ŝ	()) Kettemat Initiday		•	4	-	*	٥	•	^	•	-	•	-	2
3	(c) (3) + (3)	۰.	•	^	•	•	4	•	•	•	•	•	•	3
ô	1 1 2	£.,	£	4	2		.*			•	•	=	=	1
3	() () ()	î	•	-			- - -	-	4	1	-	-	•	*
8	(1) tente des		-	-	-		-	T	4	-	-	-	-	2
3				=	2		i.	ŝ	12	22	~	1	•	1

MATHLY MINKABIE ON FOR EXCAVATOR MAN

- F	T	÷		1				
NOV. DRC. Tecal	*	2	1	3	8		1	2
Dec.	=	•	<u> </u>	•	•	•	-	1
	8	-	•	^		-	-	=
ė	7	•	•	•	-	•	-	Â.
1	8	-	•	•	•	•	-	\$
-004	7	•	•	•	•	•	-	1
ž	7	•	•		-	•	-	2
APR. MAT June, JUL.	8	Ŀ	0 	*	•	•	-	2
ž	#	•	8 1	· •	-	•	-	R.
	8			^	•	-	-	~
FEB. MAL	16		0	*	•	•	4	£
		A .,	0	*	^	-	н	1
JAN.	ĩĊ		^			÷.	۲.	
	(1) (2) miler, 457	(2) Annias	(3) Neccessi Induced	(1) (1) (1)	(S) Aminy day	(4) (4) = {};	(7) . Homele day	(1) wetable day
	- U	19	- 2	÷	5	୍ ଅ	2	- 2

1-50

21. days/meth

Hertable Layer - 232 Laye/year

:

2

2

2

*

2

12 . 22

1

:

(8) wereasta day (7) Namely day

-

-1 ----

ы •

-

-

-

-1

- T - T - T

•

-

-

-

-

Unriabie depet 763 deperment

22 deys/math

14 daya/aanth 20 daya/aanth

JAN. Le WIG. 189 daye/year APR. te OCT. 142 daye/year Murtable days

lo .	Machinery	Capacity	Unit
1	Bulldozer	32 ton	•••••
2	Bulldozer w/Ripper	32 ton 32 ton	12
3	Bulldozer	21 tòn	12
4	Dump truck	20 ton	20
5	Dump truck	8 ton	30
6	Dozer shovel	2.0 m ³	54
7	Wheel loader	3.1 m ³	7
8	Backhoe	Hyd. 1.2 m ³	11
9	Ordinary truck	3.0 ton	5
10	Truck crane		. 15
11	Truck mixer		2
12	Concrete pump car	3.0 m ³	.6
13	Tractor and Trailer	$40 \text{ m}^3/\text{hr}.$	2
14	Hater tanker	30 ton	. <u>1</u> 3
15	Fuel tanker	8 kl.	3
16		8 kl.	5
17	Vibration roller	15 ton	5
	Tamping roller	13.5 ton	4
18	Road roller	10 ton	4
19	Soil compactor	22 ton	4
20	Motor grader	-3.7 m	5
21	Boring machine	max. 150 m	20
22	Grout mixer and pump	200 1.	20
23	Crawler drill	3 in.	8
24	Rock breaker	4 in.	10
25	Log drill w/sinker	1.5 in.	30
26	Pick hammer		30
27	Portable air compressor	$17 m^{3/min}$.	20
28	Concrete mixer		6
29	Concrete bucket	0.5 m ³ 0.8 m ³	3
30	Concrete vibrator	flexible 130 ø	5
31	Concrete vibrator	flexible 40 ¢	10
32	Concrete vibrator	moul type	Š
33	Vibrator roller	5 ton	Ś
34	Rammer	80 kg	15
35	Air tamper		30
36	Centrifugal pump	8 in,	5
17	Turbine pump	$3 \text{ m}^{3/\text{min}}$	5
8	Submergible pump	8 in.	5
99	Submergible pump	4 in.	5
0	Submergible pump	2 in.	
i	Sand pump		
2	Diesel generator		6
3	Screening plant	500 kW	2
4	Concrete plant	125 t/hr.	1
7	muncers hraut	$1 \text{ m}^3 \times 2$	1

5. j

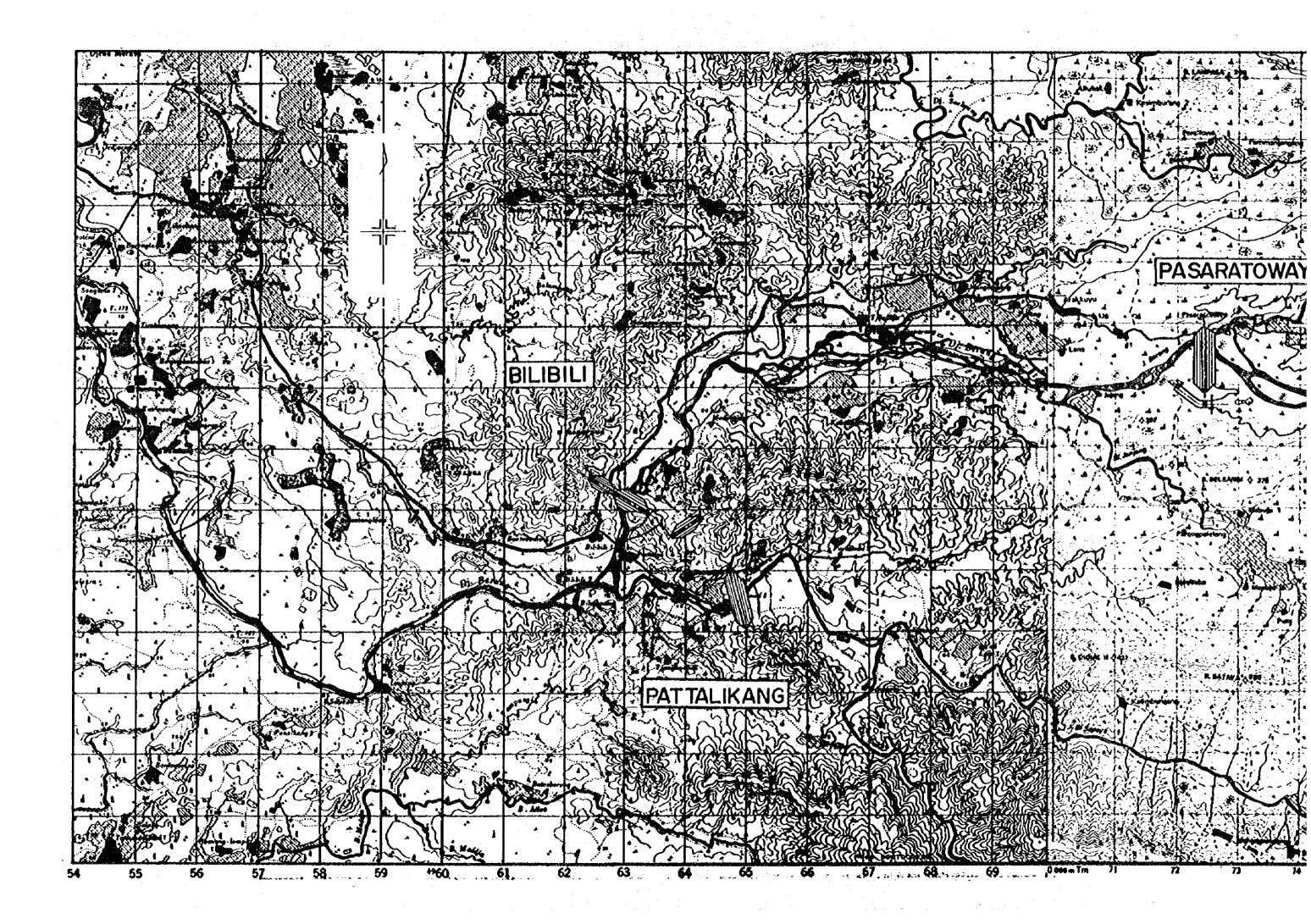
Table 1-8 MAIN CONSTRUCTION MACHINERY FOR DAM

	<u>, </u>			 	
Work Item	Unit	Quantity	Total Amount	Foreign Currencey	Local Currency
			(x10 ³ US\$)	(x10 ³ US\$)	(x10 ³ US\$)
1. Civil Works	-	2			
Excavation	m3	890,000	5,266	2,609	2,657
Enbankment	_в 3	6,280,000	42,205	28,771	23,434
Spillway	L.S.	1	32,140	16,586	15,554
Foundation	L.S.	1	9,000	5,940	3,060
Intake	L.S.	1	524	270	254
Headrace channel	L.S.	1	162	87	75
Diversion	L.S.	1	14,466	7,390	7,076
Preparatory works	L.S.	1	10,377	5,166	5,211
Sub-total	-	_	114,140	56,819	57,321
2. Gates & Equipment	L.S.	1	2,638	2,239	399
3. Road Relocation	km	19	2,500	250	2,250
4. Land Acquisition	ha	780	5,360	i de la companya de l La companya de la comp	5,360
5. House Evacuation	P.C.	790	380	en tanan 1917 - Satan T atan	380
6. Relocation of Pumping St.	P.C.	1 1	700	665	35
7. Engineering Service	L.S.	1	10,990	9,190	1,800
Sub-total (1-7)	-	-	136,708	69,163	67,545
8. Physical Contingency	L.S.	1	20,506	10,374	10,132
Grand-total (1-8)			157,214	79,537	77,677

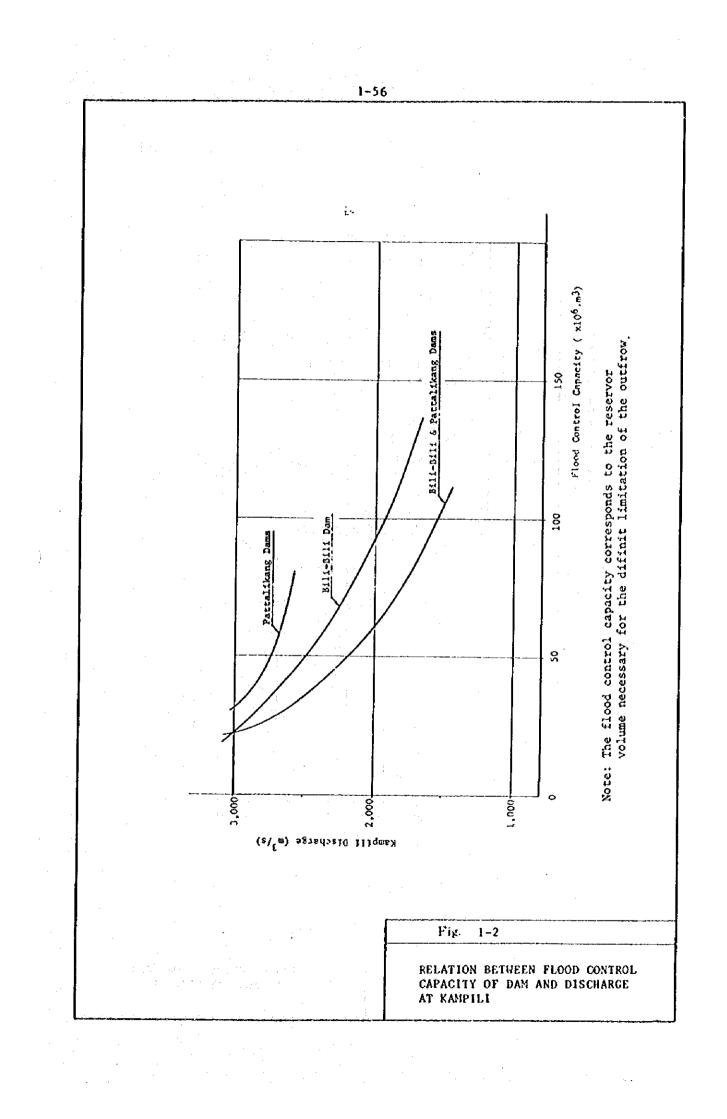
Table 1-9 CONSTRUCTION COST OF BILI-BILI DAN

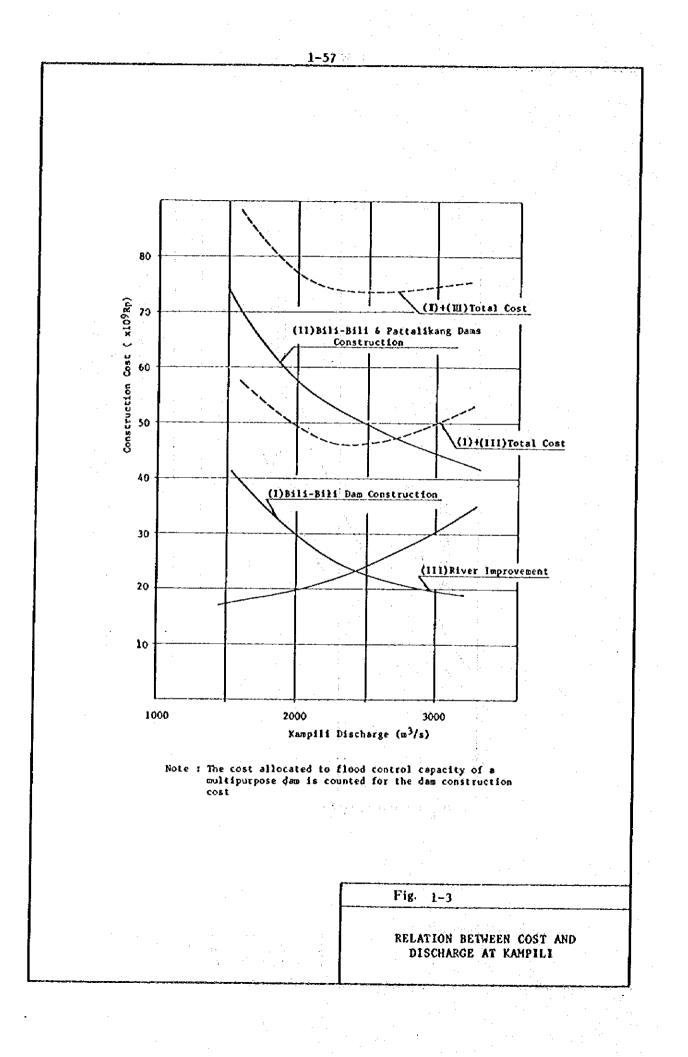
1. 11

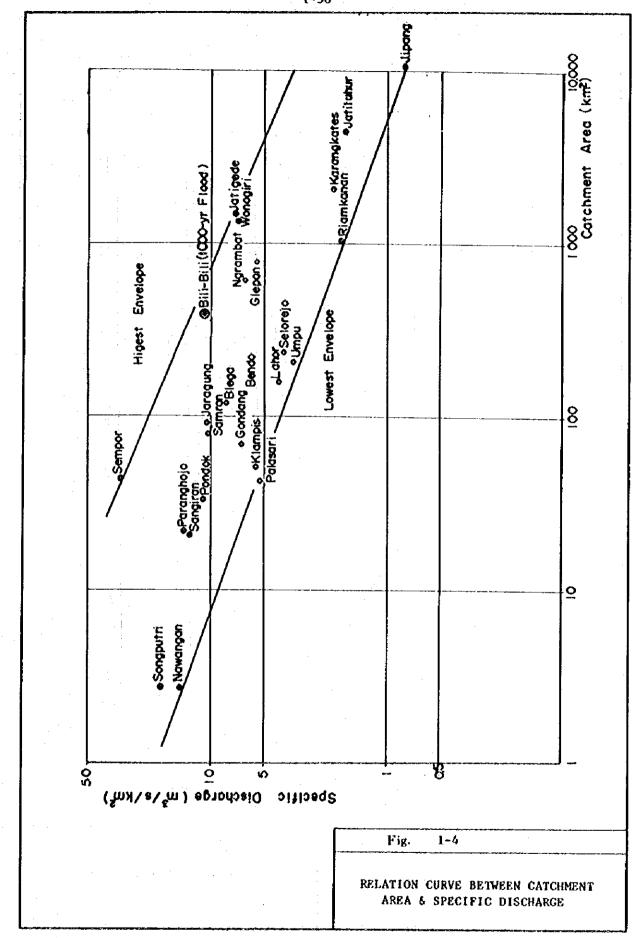
•

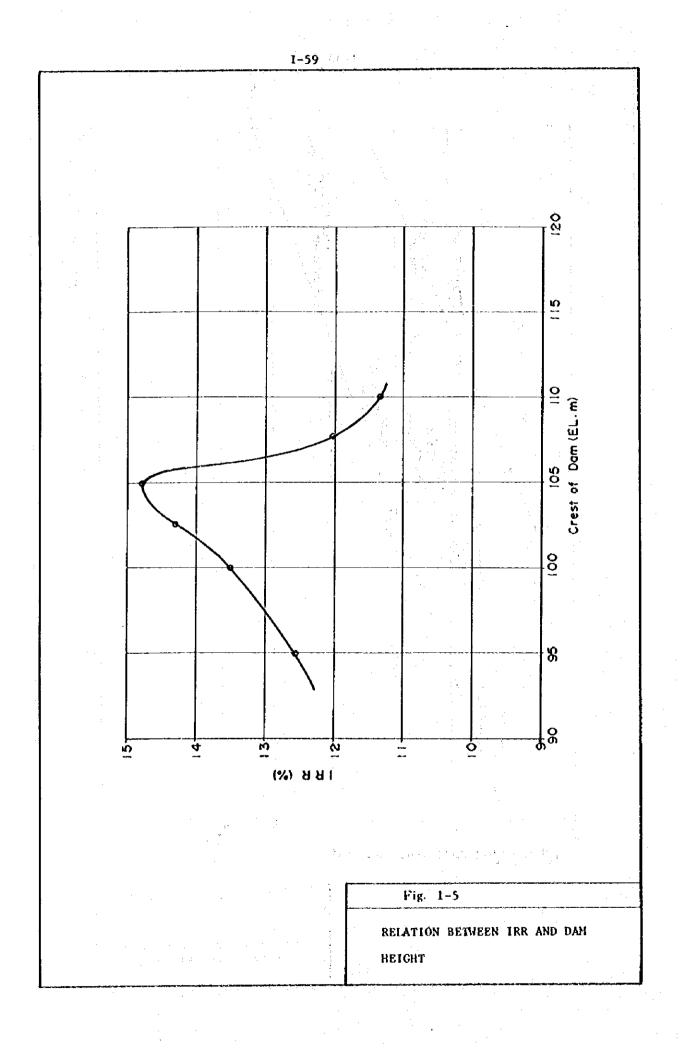

·	1	4	2	NUAL	LADLE 1-10 ANNUAL DISBURSEMENT		CHEDUL	SCHEDULE FOR DAM	.						·	
				•		:		· .								
		ļ	1.							· .		ਟ :	(Unic: ×	10 US\$	~	
Work Item	Total F.C. L.	ರ	1983 F.C. I	L-C. F	F_C1984	บ ม	1935 L.C.	F.C. 1986		1987 C. L.		1988 1C.	- U	1989	<u> </u>	l l
1. Civil Works									1 1 1	f	1				<u> </u>	
Necessies of the		267														
Enbackment	18, 771 23	729 56	J - I		∎ :	•	I	203	517	2,106	149		1	L		
Spillway		15, 554	1.1		1 	•	∎_1	•		3, 964 2, 964	2 7 7 7 7 7	ις. Έλλ	706 5.1	35 6,44	۰۹. ۲۰۱۰	6.437
Foundation		3.060					1 1			1,000,41		781 - 5,	656 7.T	17 7,11	1, 779	L, 35
Intake	;	254					¥.	2 I I		000			-	Ì	•	•
Headrace channel	87	75		 	•	•				22	1 1 1 1	3		• '	•	1
Diversion	7.390 7.	7.076	P,		•		•	0/0 7	1 1 1	14	3	60	4		1	3
Preparatory works		5, 211	ı				- 1		787	121 931		1.216 1.		10-1-37	826	22
Sub-total	56, 819 57	57, 321		•				9,712	8,613 14	10,240 10,340	-	13,379 13,633		12	9,081	9,613
2. Gates and Steel Pipe	2,239	399-	ı		F		ļ Ē	. B	1	D		•		701 123	1, 538	276
3. Road Relocation	250 2,	2,250	f					63	563	63	561	62	562	62 562		. .
4. Land Acquisition	۲ ک	5, 360			< 1	•	1,072	H 	1, 072	ੂਜ 1	1,073	- 1.072	1	, i	1	
5. House Evacuation	1	380	•	" 	21	. F	76	•	76		- 4	. t	76	92	1	ŧ
6. Relocation of Pumping St.	665	35		• ••••••	I	1	1	665	m			• 1	<u>!</u> 	•	ł	ī
7. Engineering Service	9,190 1,	1,800 2	2,165 (1 019	1,023 175	39	12	1, 148	1 761	1, 137	1 92 1.	1,239 2	209 I.137	7 194	1,273	214
Sub-total (1-7)	69,163 67.	67.545 2,	2, 165 (610 1	1,023 175	689	1, 160	11, 583 10, 553		11,440 12,243		14,680 15,552	•	16, 307 17, 147	11,892 10,10	10, 105
8. Physical Contingency	10,374 10,132	132	325	92	153 26	07	714	1,738 1,583		1, 716 1, 836		2,203 2,333	33 2,446	6 2.572	1, 783	1, 516
Grand-total (1-8)	79.537 77.677															

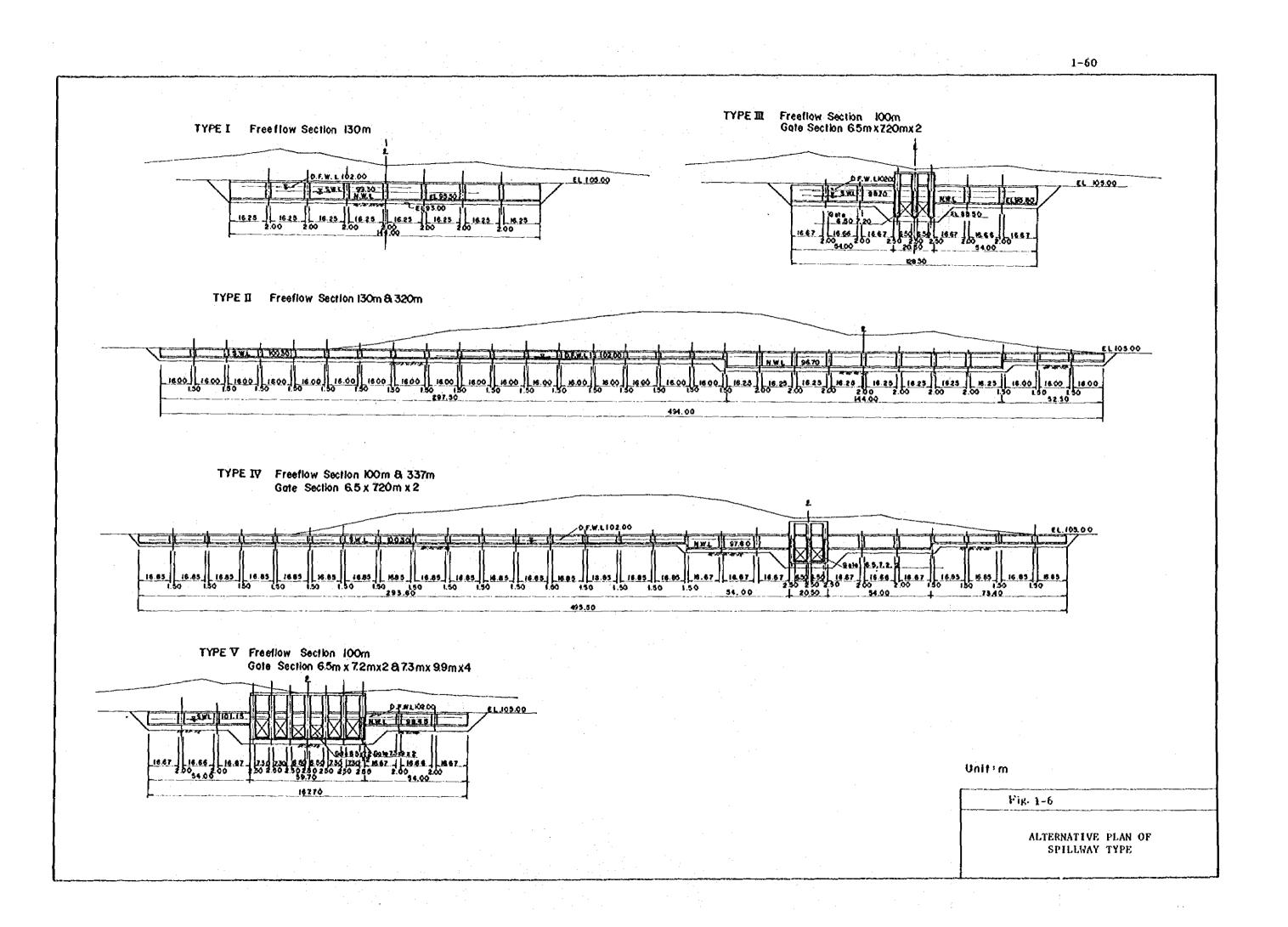
Age	Male (%)	Female (%)	Total (%)
0~4	7.6	7.0	14.6
529	8.4	8.2	16.6
10 ~ 14	7.0	5.2	12.2
15 ~ 19	3.9	5.0	8.9
20 24	3.3	4.4	7.7
25 29	4.5	5,2	9.7
30 1 34	3.0	3.3	6.3
35 1 39	3.6	3.5	7.1
40 ~ 44	2.6	2.4	5.0
45 ~ 49	2.0	2.1	4.1
50 ~ 54	1.4	1.3	2.7
55 1 59	0.7	0.7	1.4
60 ~ 64	0.6	0.9	1.5
65 ~ 69	0.5	0.6	1.1
Over 70	0.6	0.5	1.1
Crand Total	49.7	50.3	100.0

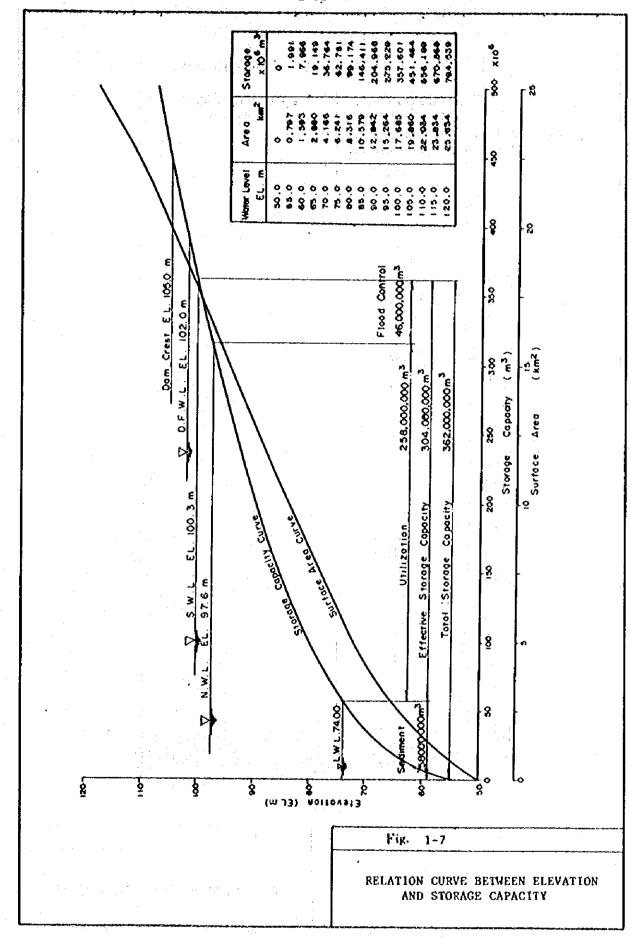

- s - -TABLE 1-11 AGE BRACKET DISTRIBUTION OF INHABITANT IN DAM SUBMERSION AREA • · •

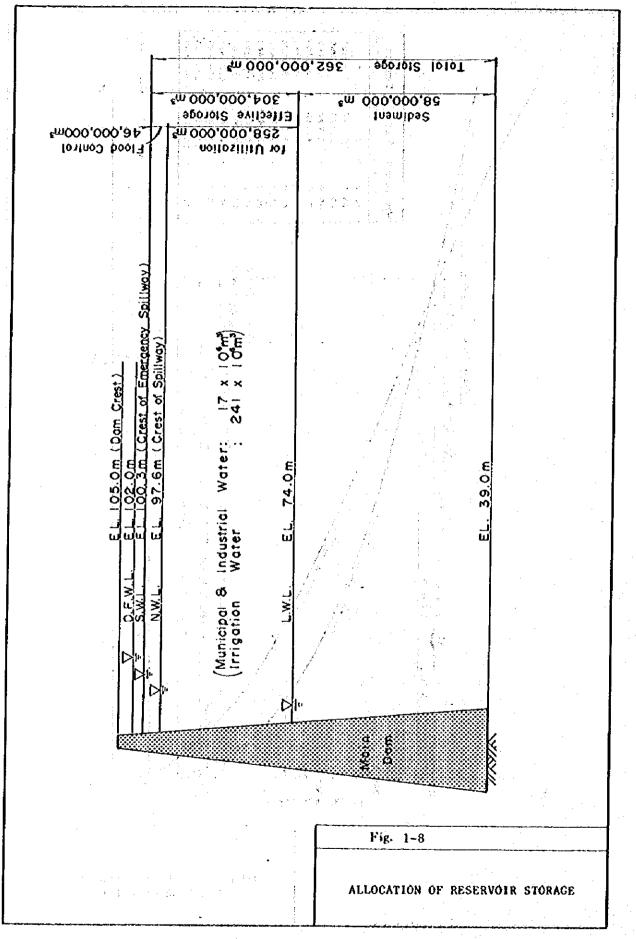

> Source: SENSUS PENDUDUK KABUPATEN


GOWA 1980

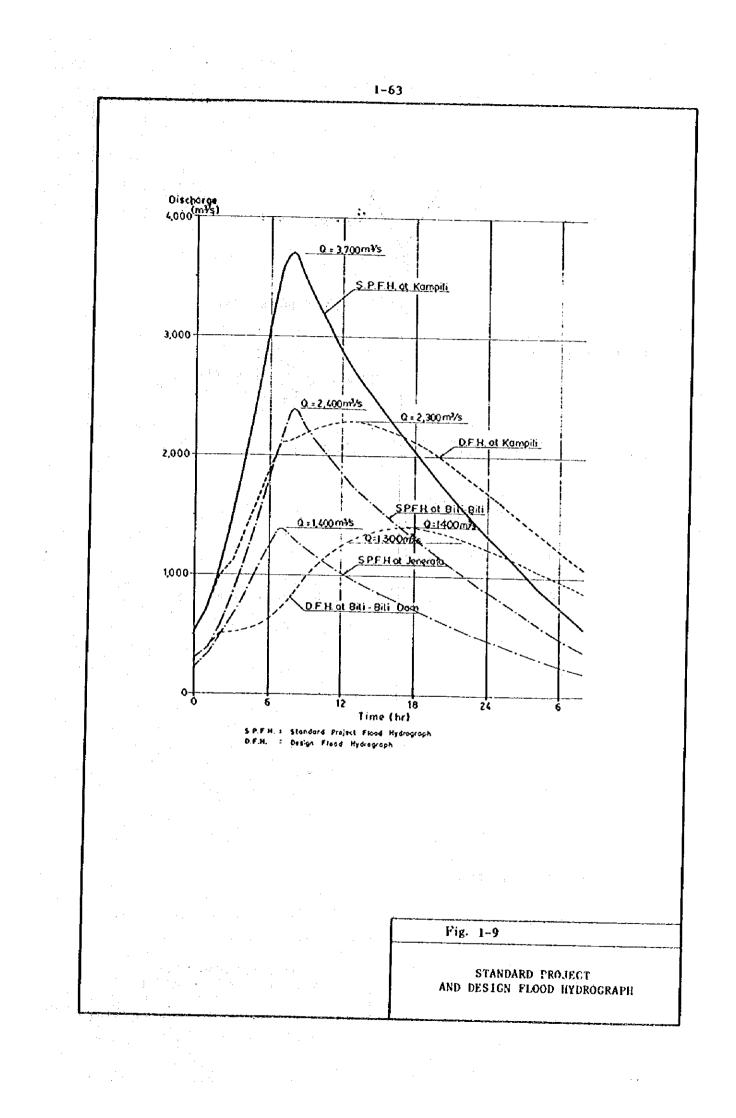


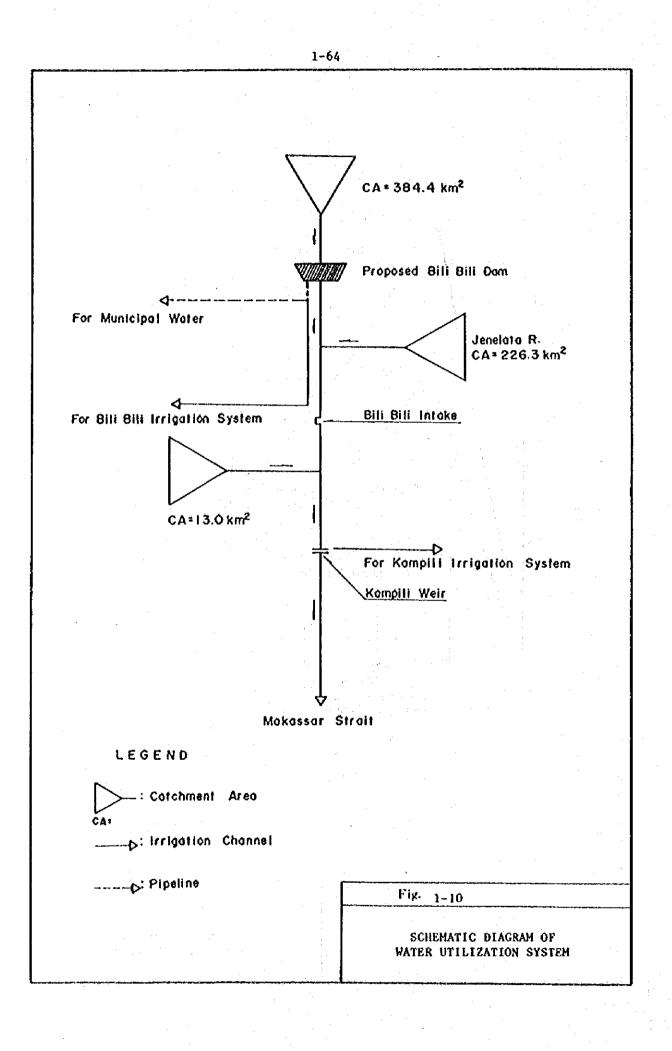






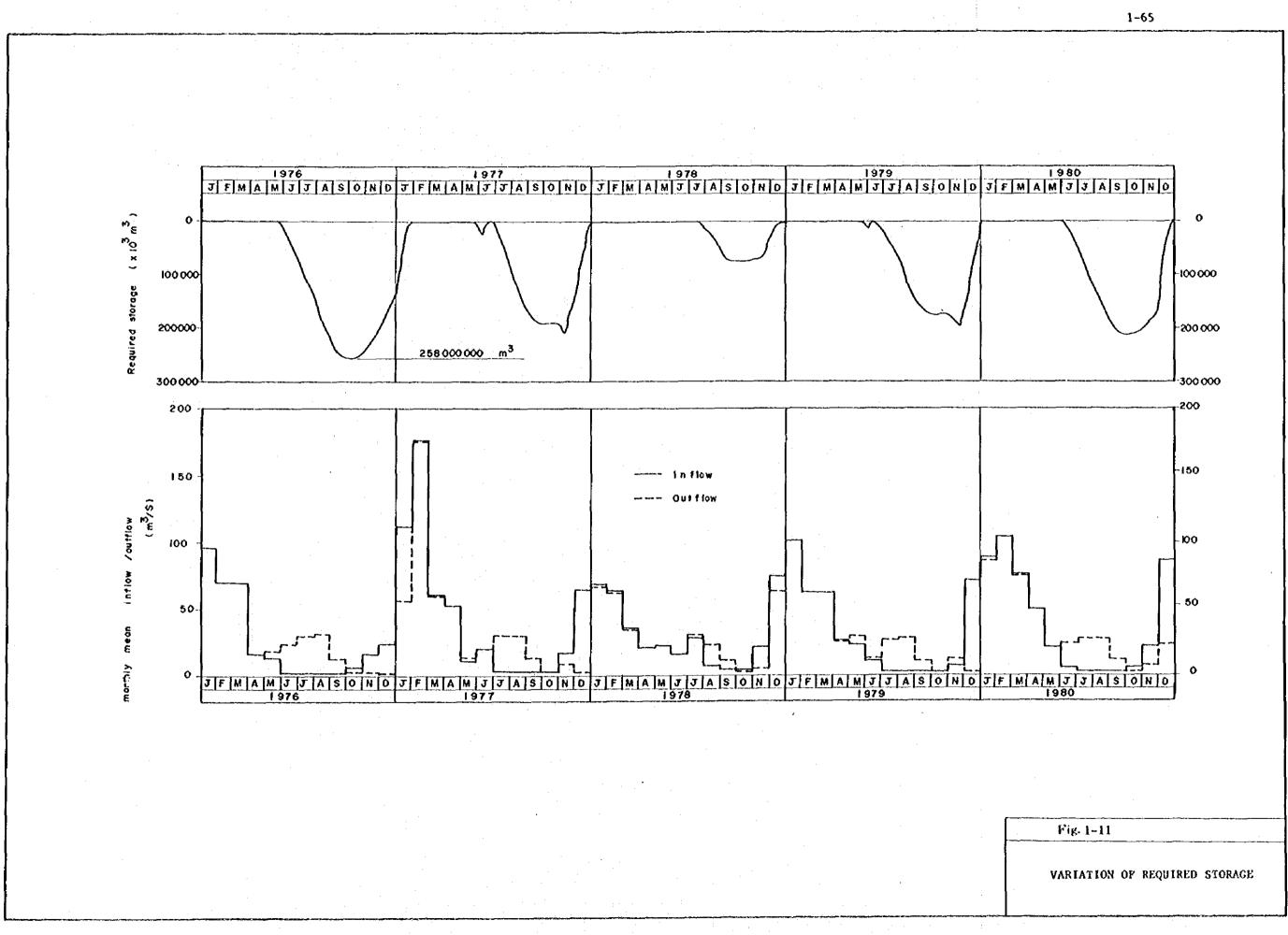
1

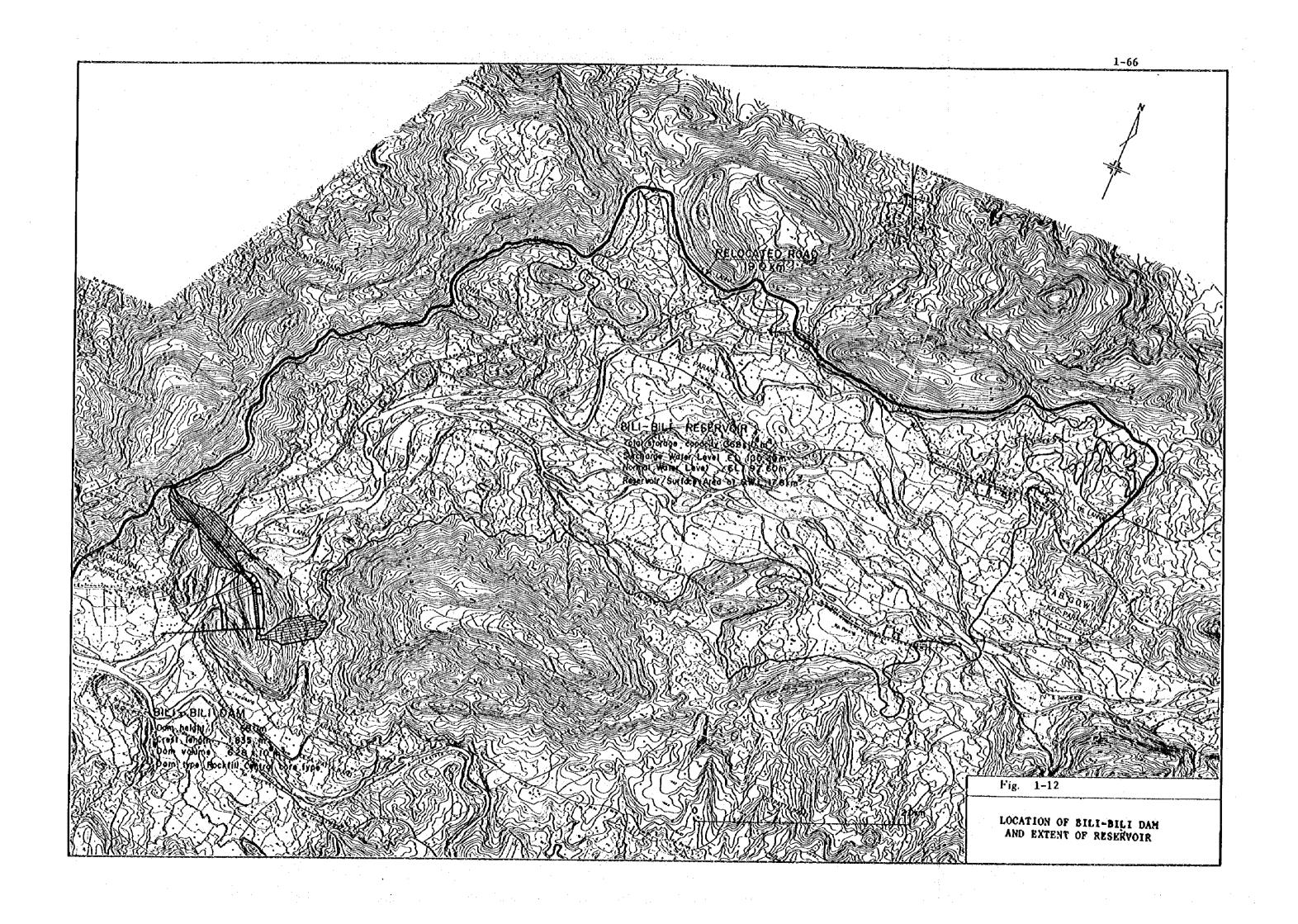


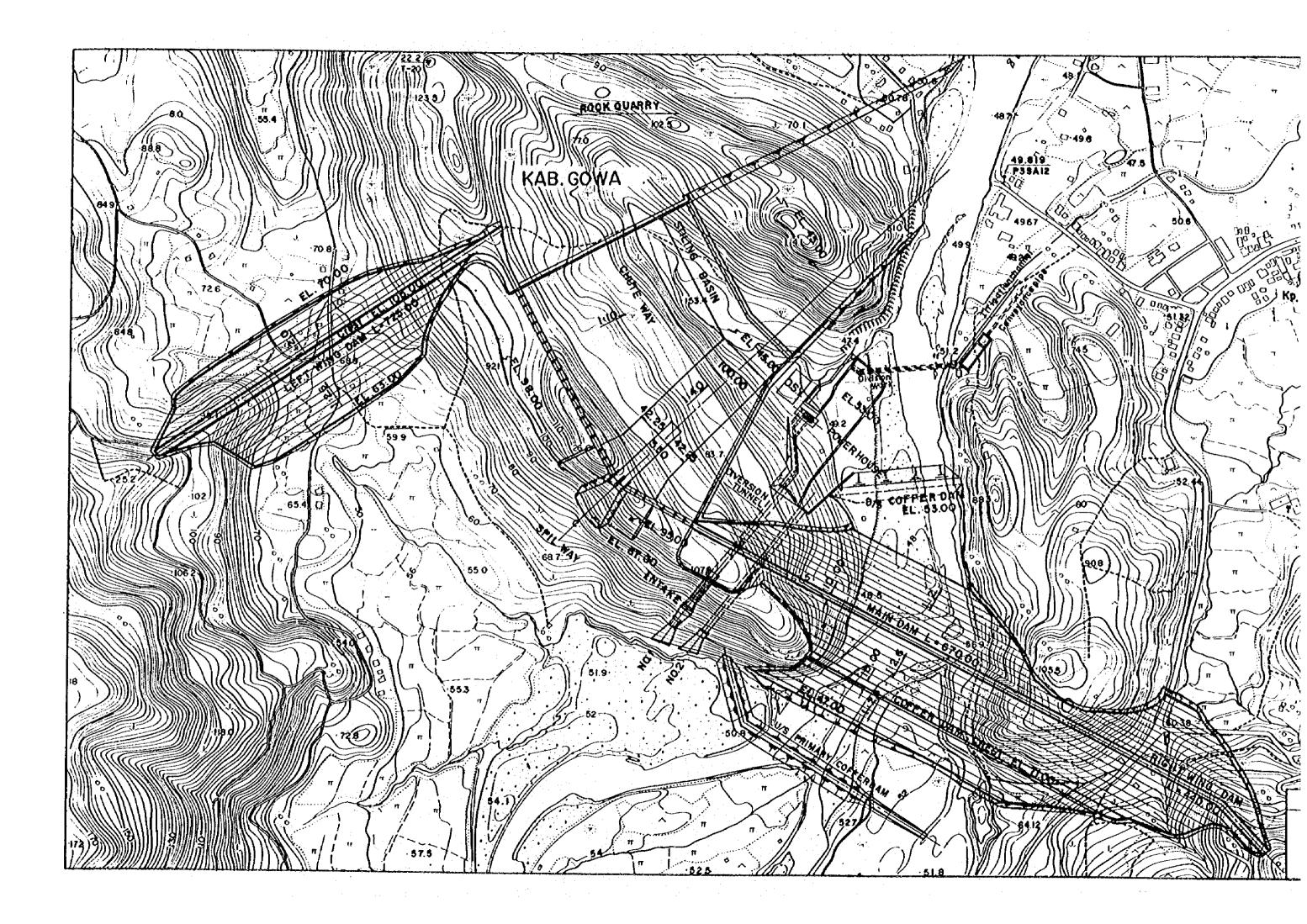


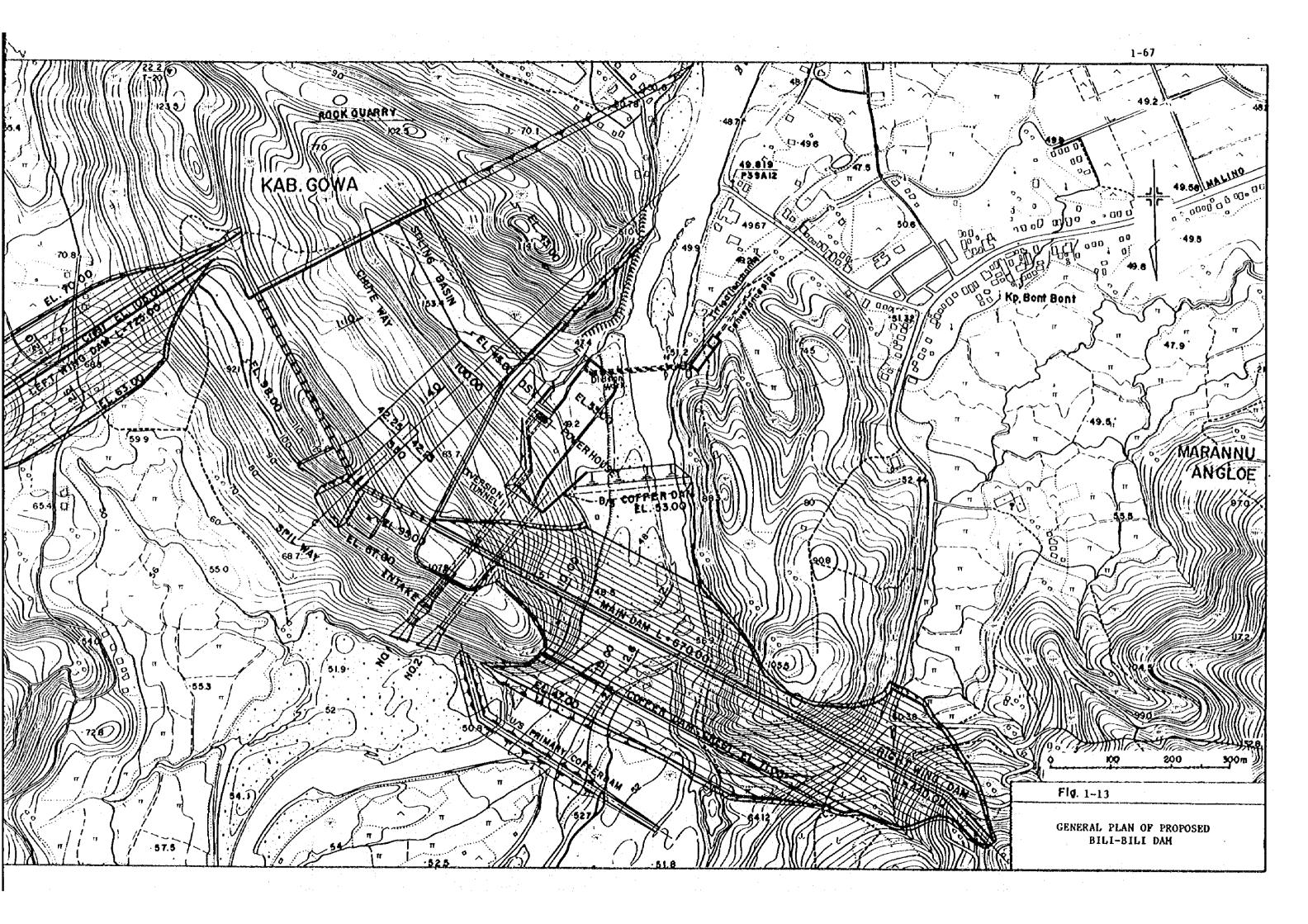
1-62.5

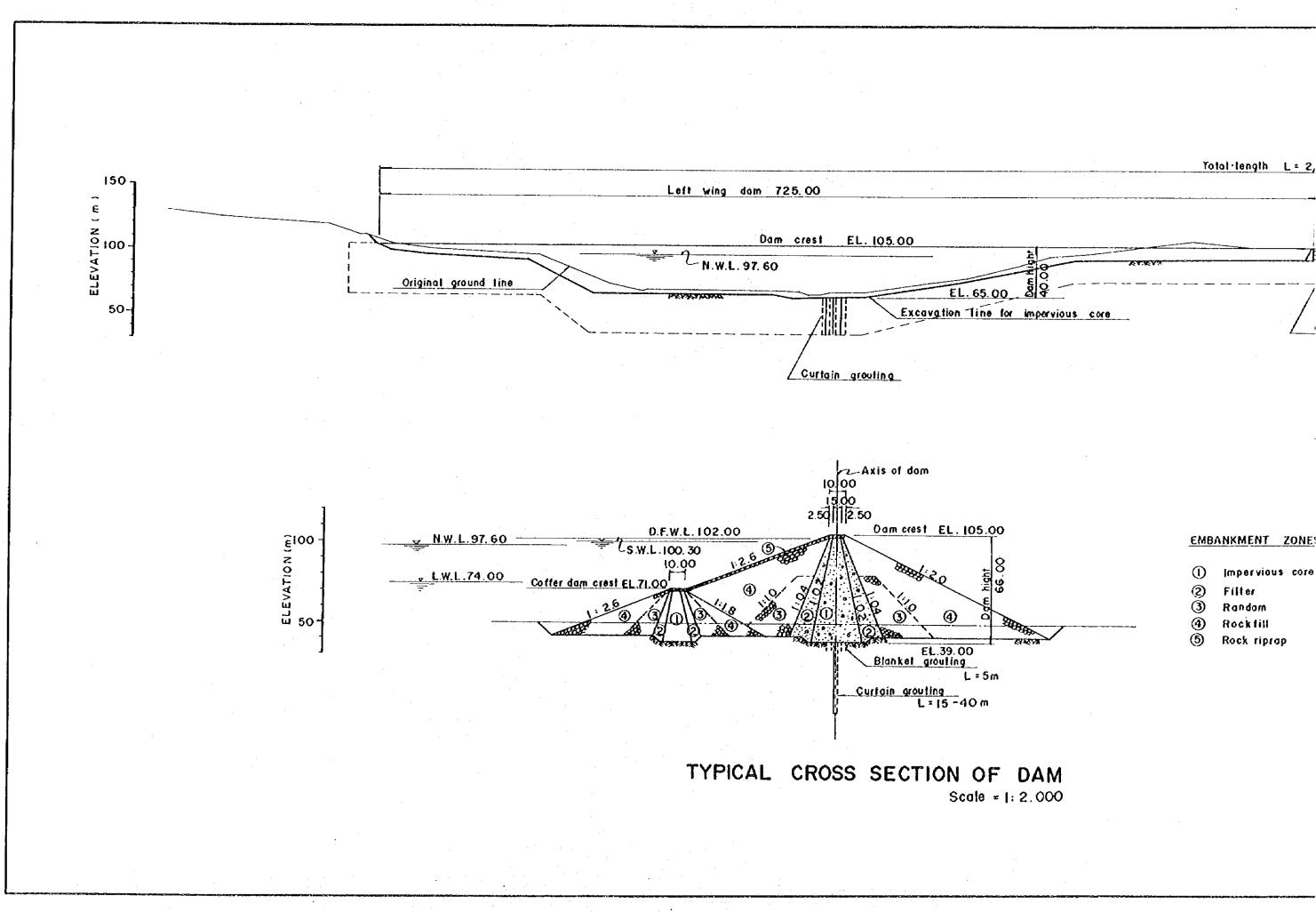
.

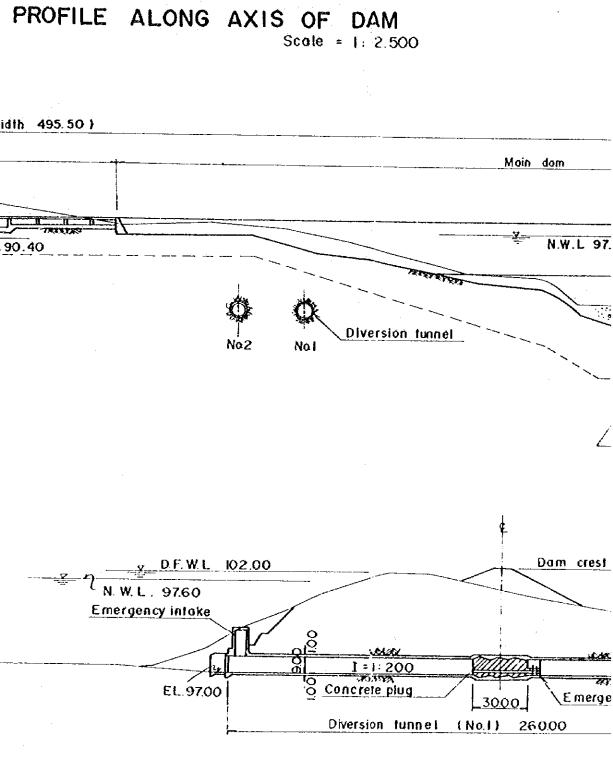

.

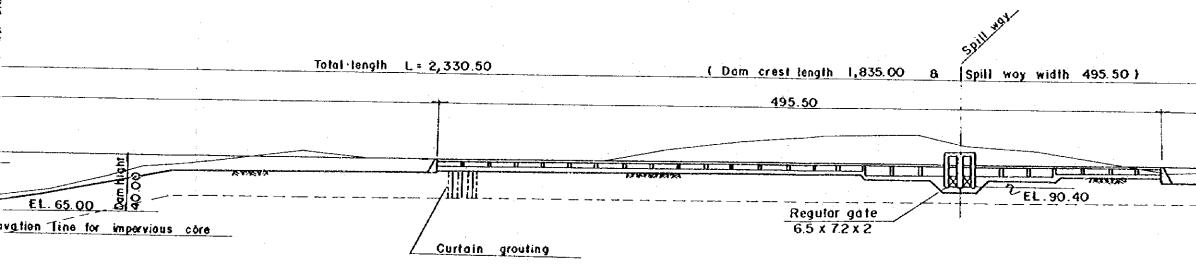

.

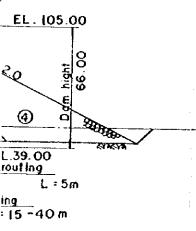

·

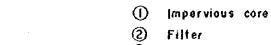

·


•

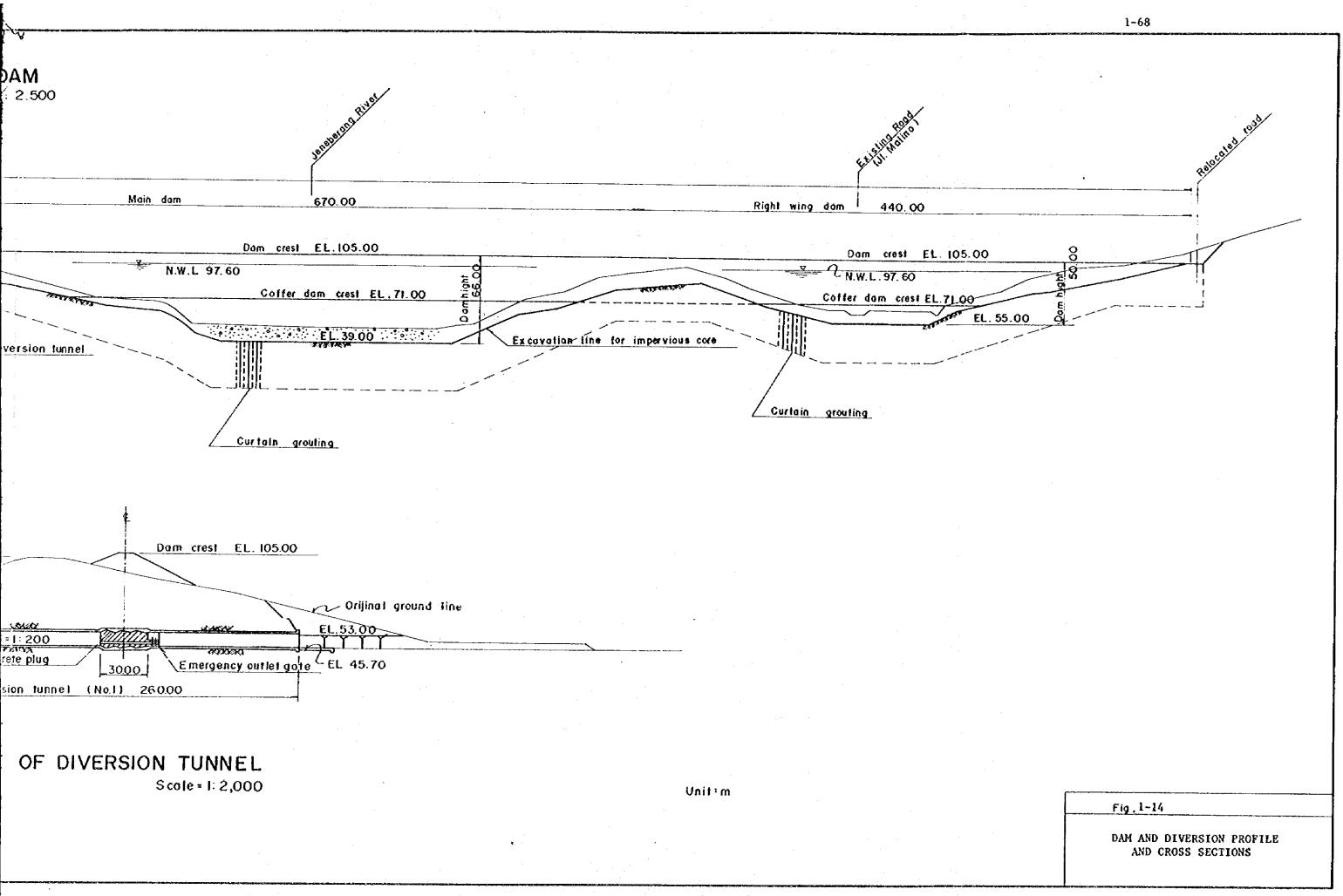


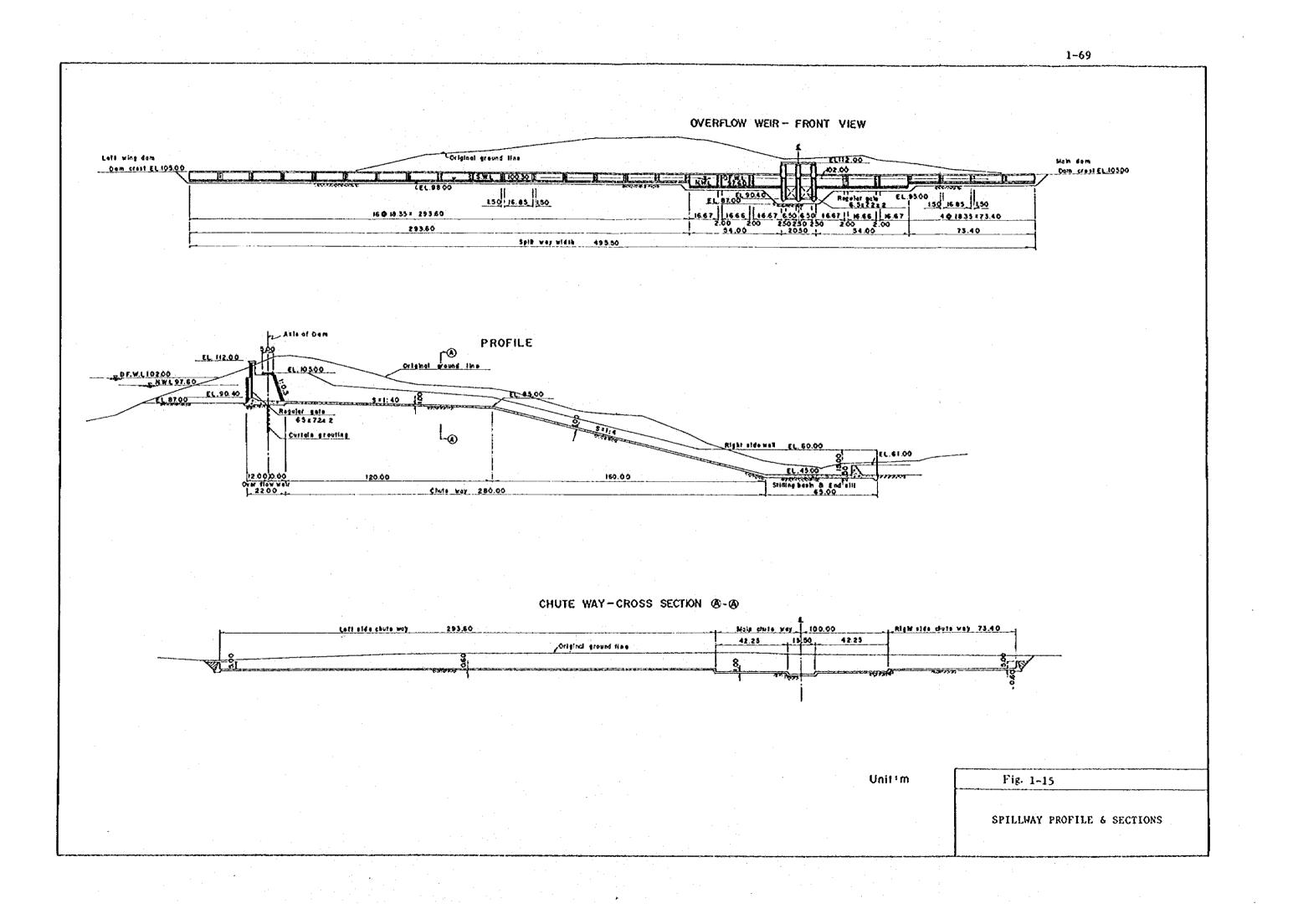


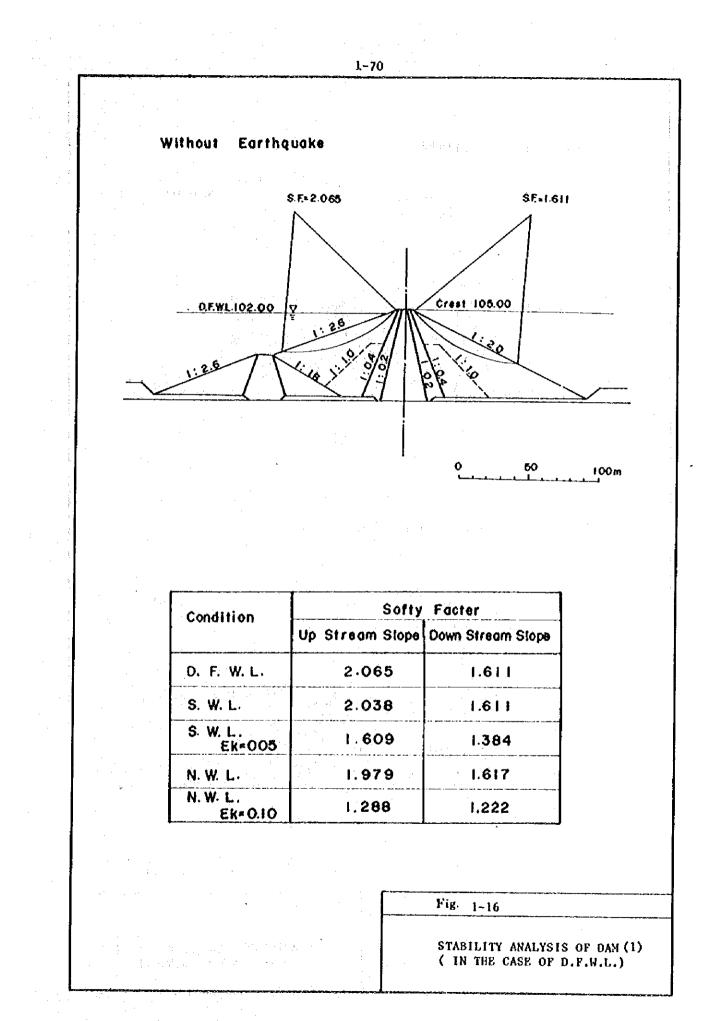


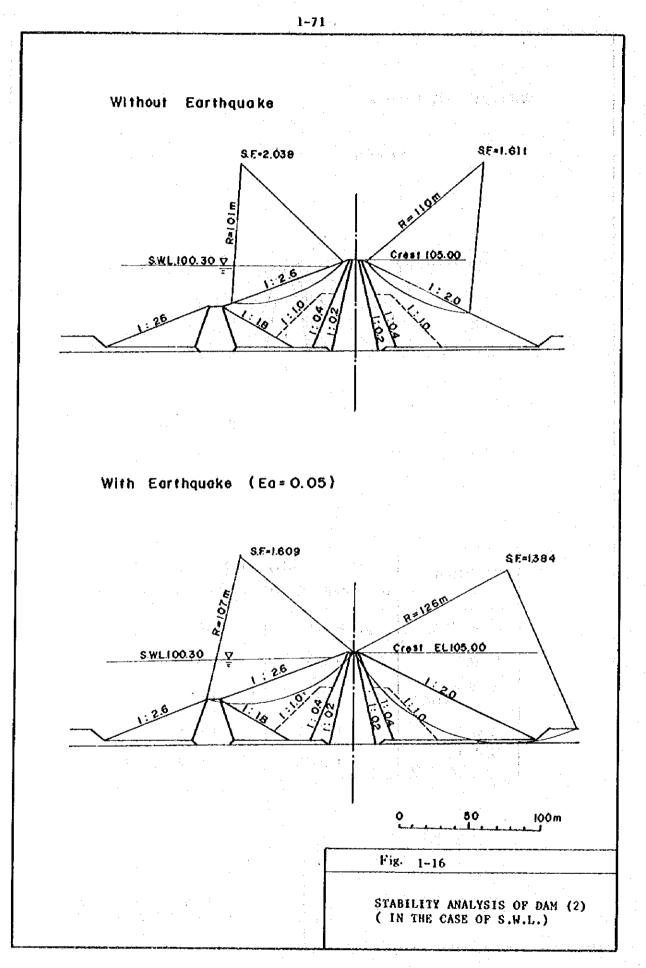


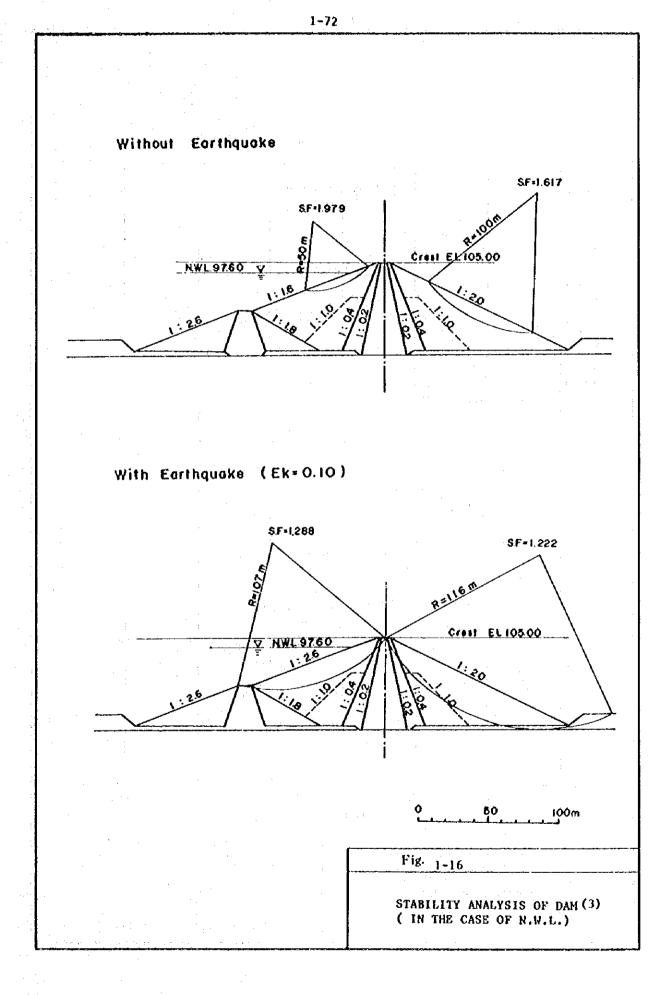
ر ک

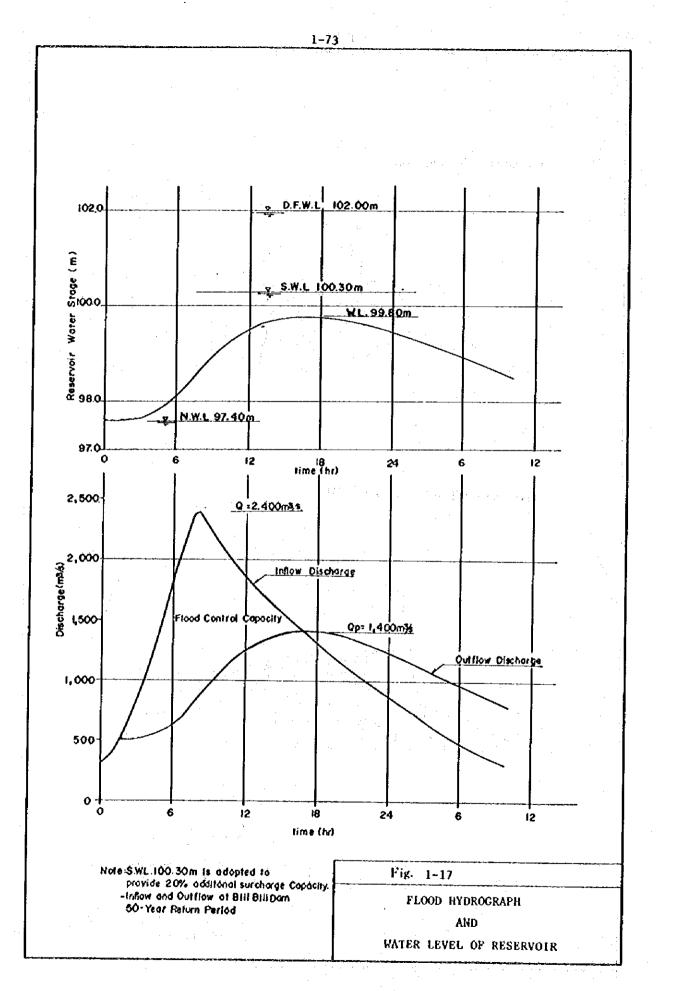


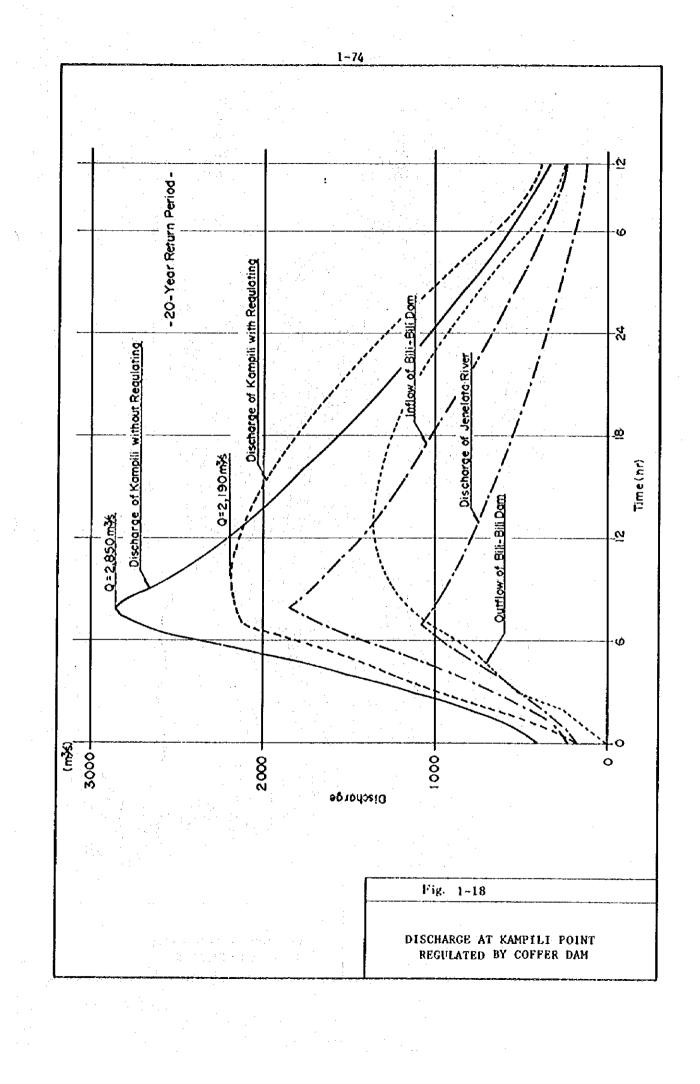

- 3 Randam
- 4 Rockfill
- (5) Rock riprap

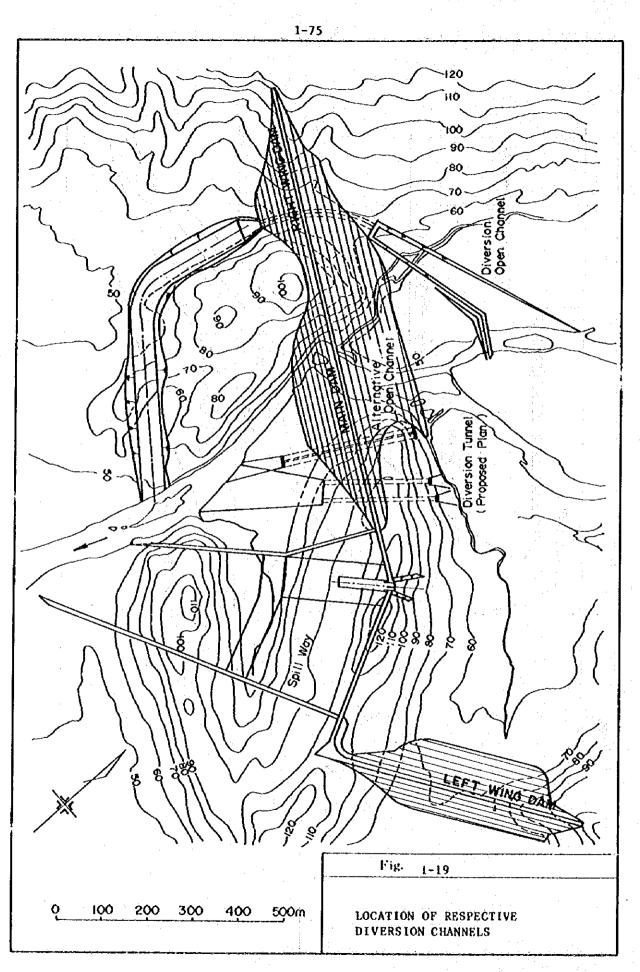

EMBANKMENT ZONES


ON OF DAM Scale = 1: 2.000 ELEVATION (m) 05

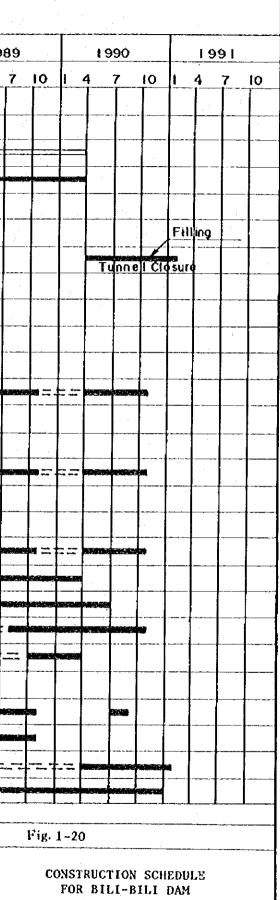

PROFILE OF DIVERSION TUN Scole = 1: :

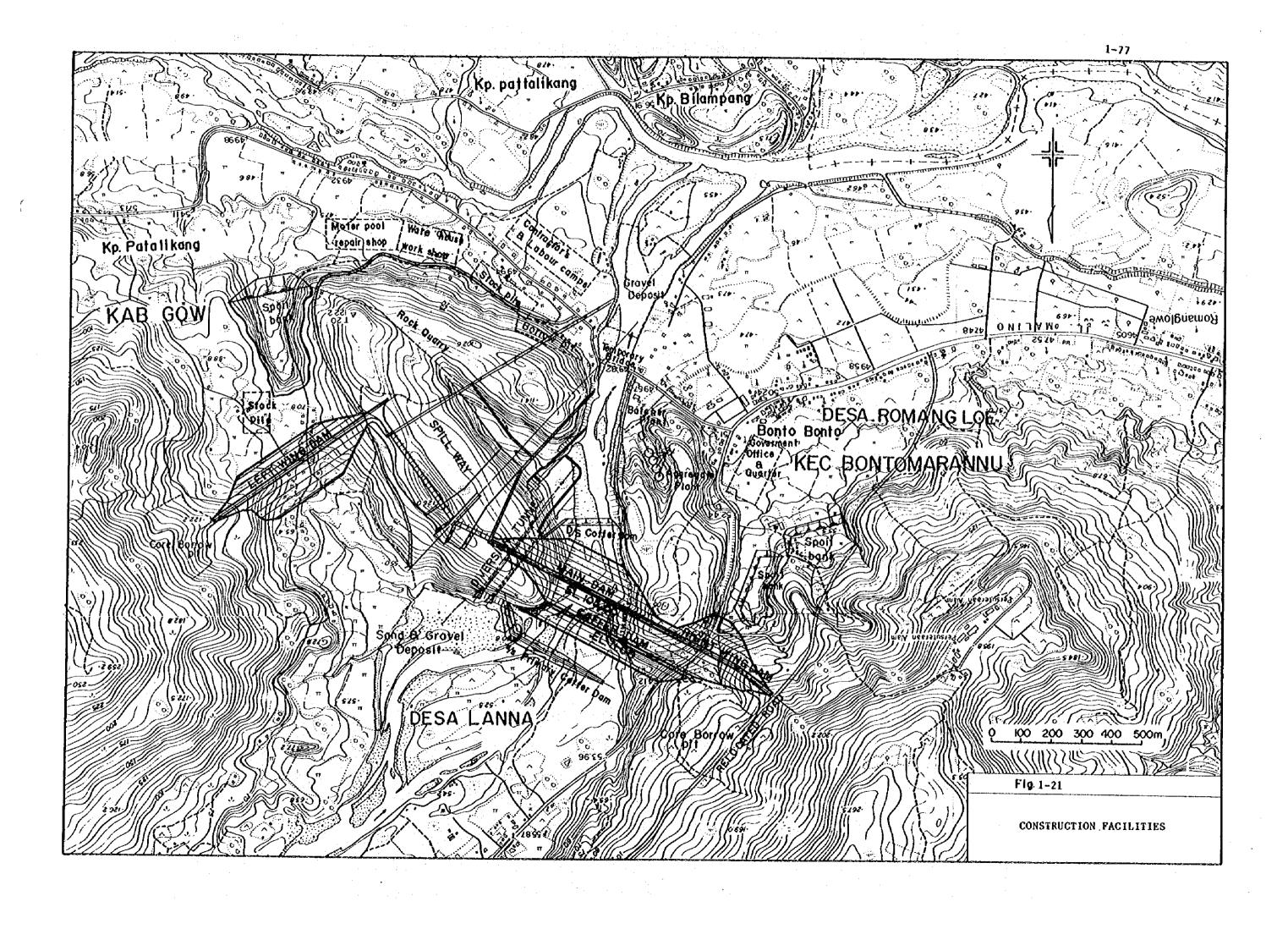


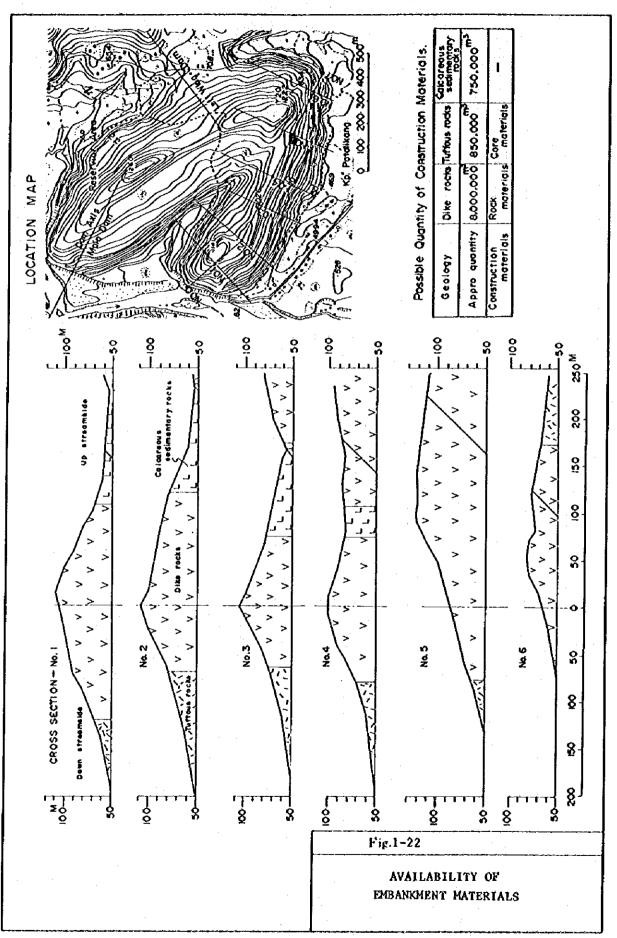




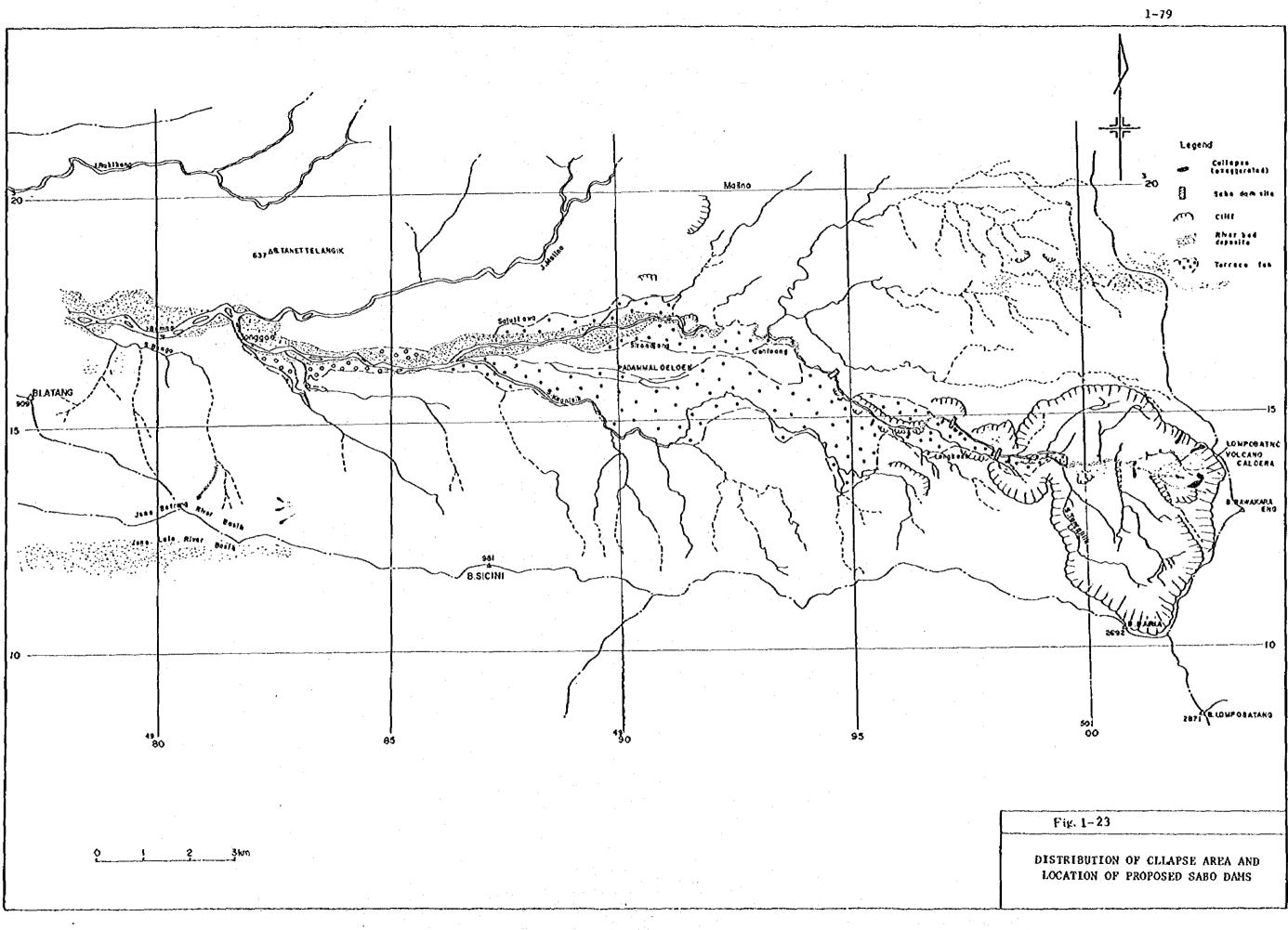
• •

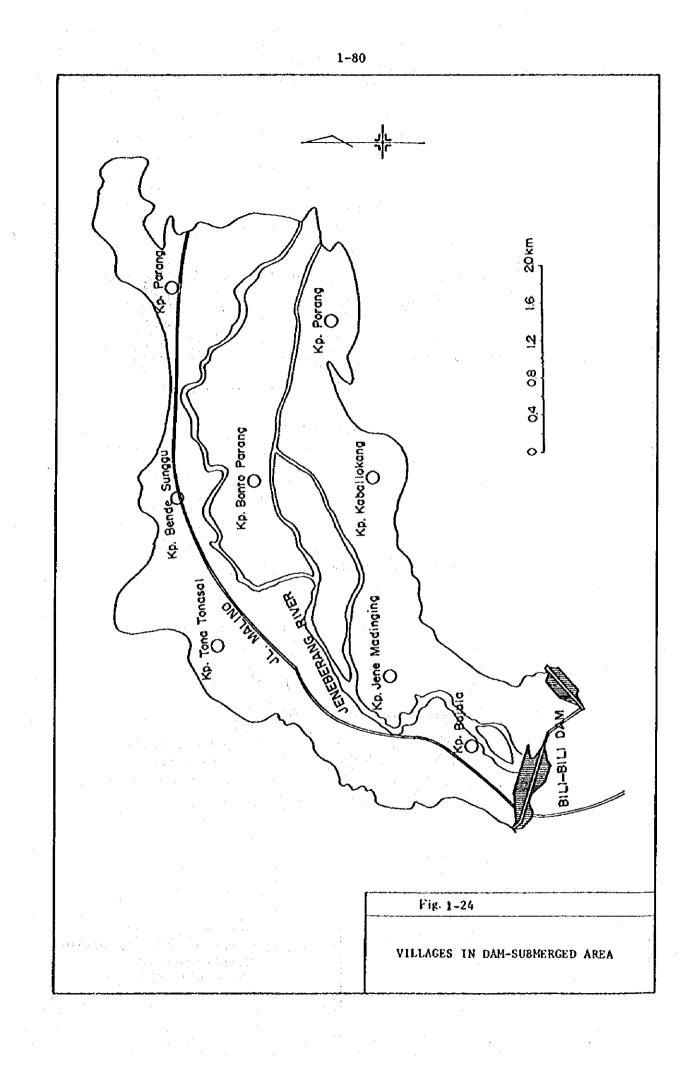


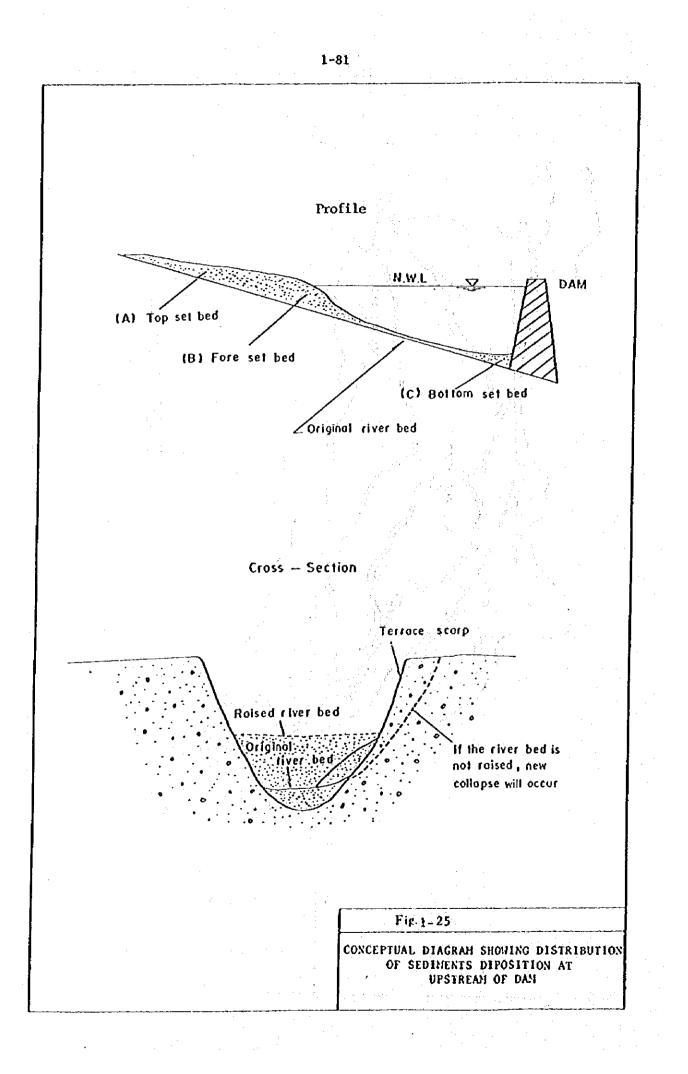


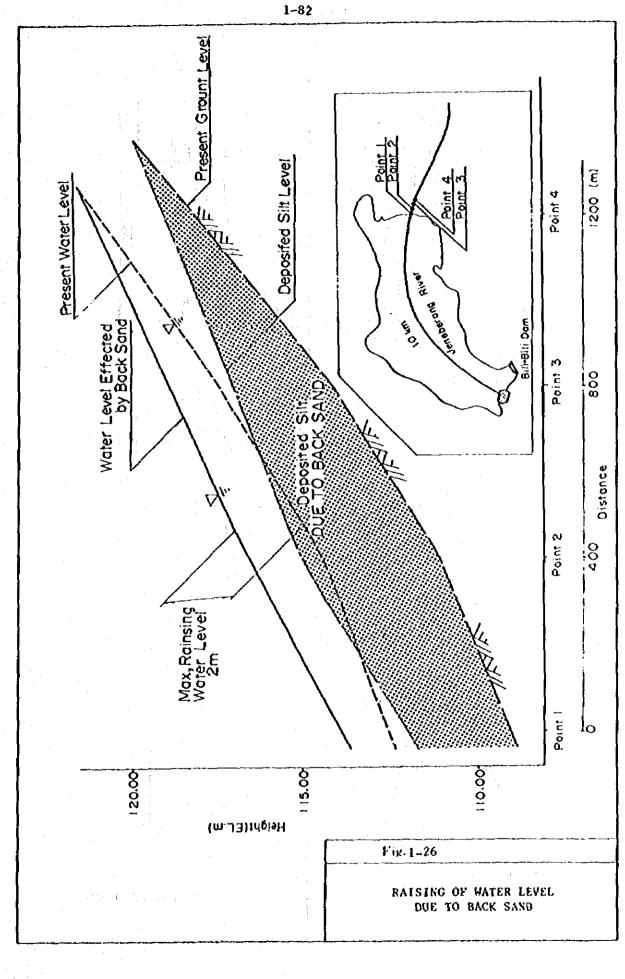

. .

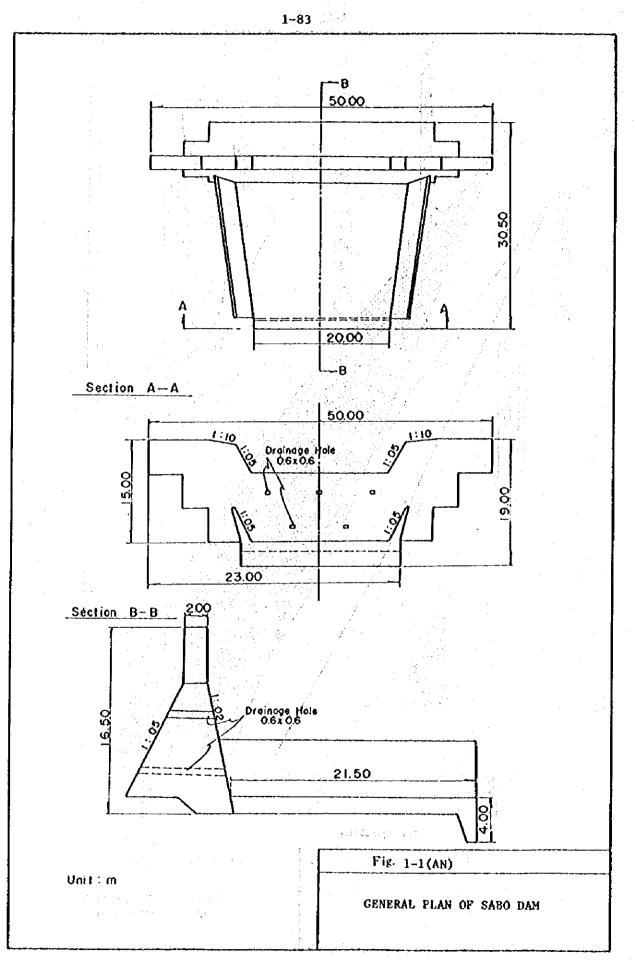
			T	<u> </u>							ч - 1	SCł			- 	FQ	н н ——		- E 		D	AM	¥	÷					<u> </u>				
WORK Item Preparation		Quantities		 4	1982			1983			-	1984			<u> </u>	1985 4 7 10			1986			1 987			_	1988				1 98			
		L/S		<u> </u>		IO Deto		4 De	7	10	 = =	_4 ={-=	7	10		T		T	<u> </u>	T	7 ==	10	 	4 ·	7	10		4	7	10	₽-	4	
	tailed Design		†												CQU		and C			9 <u>0</u> 			·						+			•	╀
Land Acquisition B House Evacuation							ĺ				1-																+	+	- -	+		-	
	ad Relocation location of Pumping Station	19 km	- -			 																											
	Preparatory Works	L/S														<u> </u>										-	-	1	•	<u> </u>	-		-
	River Diversion	L/S											Dar	nWół		Breb	Eva	luati	on					·		1	-	+	-	-	-	·	t
	Coffer Dam Excavation	150.000 ^{m³}					÷																· · ·				-	ŀ			1	1	-
	Embankment	1.000.000																					•••••				\uparrow		1	-		1	
	Main Dom Excavation	370.000 ^{m²}											1														4		1	1			t
-	Foundation	19.500 ^m			¹	·																		· · ·					-	:			
	Embankment	2.750000 ^{m2}		÷.,																									1		==		
	Left wing Dam Excavation	170.000 ^{m3}																								1	1		1				Γ
	Foundation	23.000 ^m		· · •																						1				1		<u> </u>	
Work	Embankment	1.350.000 ^{m3}																									=	80535			≠≍		
2 E	Right wing Dam Excavation	m ³ 200.000								·										:							FRAME						
Ö	Foundation	17.500 ^m					-																						1				
pose	Embankment	m ³ 1.180.000																											1996		==		
purp	Spiliway Excavation	m ³ 1.540000		<u> </u>																					5569		980 B (B)	elessy di					
	Concrete	m3 127.000																												Sensory	944.99	2 CHARD	
Multi	Bridges	500 m																											==		==	====	-
<u> </u>	Gates	L/S																											==				
	Intake 8Headrace channel Excavation	m ³ 27.200																							_			 		C 500			
	Concrete	6.000 ^{m3}					_																										
	Gate& Screen	L/S																								Gat	es_				==		666
	Steel Pipe	L/S									·																	S	teel	Plr	0		
	Outlet	L/S		ĺ	·			Í	·																							 17850	


1-76






1-78



.

CONTENTS OF RIVER IMPROVEMENT

5

			Page
1.	GENE	RAL	2-1
2.	PRESI	ENT CONDITION	2-1
	2.1	River Basin	2-1
	2.2	Features of the River	2-2
	2.3	Plow Capacity	2-2
	2.4	Riverbed Fluctuation	2-3
	2.5	Transition of Estuary	2-3
	2.6	River Utilization	2-3
3.	FLOOI	D DAMAGE	2-4
	· .		
4.	FLOOI	D CONTROL	2-4
	4.1	Optimum Share of Design Flood	
		between Dam and River	2-5
	4.2	General Conception	2-6
	4.3	Basic Study for the Project Formulation	2-7
5.	RIVER	R IMPROVEMENT	29
	5.1	River Improvement	2-9
	5.2	Benefit	2-10
6.	PRELI	HINARY DESIGN	2-15
	6.1	Earthwork Required	215
	6.2	Riparian Structures	2-15
	6.3	Land Acquisition and Nouse Evacuation	2-19
7.	CONST	RUCTION PLANNING AND COST ESTIMATE	2-19
	7.1	Construction Schedule	2-19
	7.2	Construction Machinery	2-20
	7.3	Construction Materials	2-28
	7.4	Cost Estimate	2-28

t

LIST OF TABLES

			Page
Table	2-1	HYDROLOGICAL REFECTIVENESS IN WATER STAGE	2-11
Table	2-2	ANNUAL EXPECTED DAMAGE REDUCTION (1)	2-13
Table	2-2	ANNUAL EXPECTED DAMAGE REDUCTION (2)	2-30
	÷	(Buildings and Interior Effects)	
Table	2-2	ANNUAL EXPECTED DAMAGE REDUCTION (3)	2-31
Table	2-3	FLOOD DAMAGE RATE OF BUILDING AND	
		INTERIOR EFFECTS	2-32
Table	2-4		2-33
		(Import Substitution Price)	• . • •
Table	2-5	FLOOD DAMAGE RATE OF PADDY	2-34
Table	2-6	FLOOD FREQUENCY	2-34
Table	2-7		
Table		FIGURES OF SLUICE	2-36
Table	2-9	MAIN CONSTRUCTION MACHINERY FOR	
		RIVER IMPROVEMENT	2-37
Table	2-10	MAIN CONSTRUCTION MATERIALS FOR	
		RIVER IMPROVEMENT WORKS	2-38
Table	2-11	CONSTRUCTION COST OF RIVER IMPROVEMENT	
Table	212	ANNUAL DISBURSEMENT SCHEDULE FOR	
	· .	RIVER IMPROVEMENT	2-40

LIST OF FIGURES

Page

	· · · · ·	
Fig.	2-1	GENERAL MAP OF THE JENEBERANG RIVER COURSE 2-41
Fig.		LONGITUDINAL PROFILE OF THE JENEBERANG RIVER 2-42
		(EXISTING CONDITION)
Fig.	2-3	PRESENT FLOW CAPACITY OF
1. A.		THE JENEBERANG RIVER (1), (2) 2-43
Fig.	2-4	CROSS-SECTION OF THE JENEBERANG RIVER 2-45
Fig.		NATURAL BUFFER
Fig.	2-6	GRAIN-SIZE ACCUMLATION CURVE ALONG
		THE JENEBERANG RIVER (1), (2)
Fig.		TRANSITION OF ESTUARY SANDBAR
	2-8	
Fig.	2-9	EXISTING RIPARIAN FACILITIES OF
•		THE JENEBERANG RIVER (1),(2)
		INUNDATION MAP OF THE FLOOD OF JAN. 1976 2-53
Fig.	2-11	STANDARD PROJECT AND DESIGN FLOOD 2-54
		(SO-YEAR RETURN PERIOD)
		RELATION BETWEEN COST AND DISCHARGE AT KAMPILI 2-55
Fig.	2-13	RELATION BETWEEN THE DISCHARGE AND
		HOUSE EVACUATION/LAND ACQUISITION 2-56
Fig.	2-14	COMPARISON OF TRACTIVE BETWEEN
		EXISTING CHANNEL AND PROPOSED CHANNEL 2-57
		PROPOSED ALIGNMENT OF THE JENEBERANG RIVER 2-58
Fig.	2-16	PROPOSED LONGITUDINAL PROFILE OF
		THE JENEBERANG RIVER 2-59
		STANDARD CROSS-SECTION 2-60
Fig.	2-18	PROPOSED CROSS-SECTION OF
		THE JENEBERANG RIVER CHANNEL $(1) - (10)$ 2-61
		CALCULAITON HODEL AND OUTLET WATER STAGE (1),(2) 2-71
		DAILY RAINFALL DISTRIBUTION 2-73
Fig.	2-21	RELATION CURVE BETWEEN DAMAGE AND
~ 1	~ **	FLOODING WATER STAGE
		ROAD RAISING SECTION
		STANDARD CROSS-SECTION OF DIKE 2-76
		SPECIFIC FLOW-AREA FOR A DRAINAGE CHANNEL 2-77
		STANDARD CROSS-SECTION OF REVETHENT 2-78
		PROFILE AND PLAN OF GROYNE 2-79
		STANDARD DESIGN OF SLUICE
		CROSS-SECTION OF GROUNDSILL
		STANDARD CROSS-SECTION OF ROAD RAISING 2-82
		RIVER INPROVEMENT WORK SECTION
rig.	2-31	CONSTRUCTION SCHEDULE FOR RIVER IMPROVEMENT 2-84

GENERAL

1.

Prior to the present project, a feasibility study on the so-called "Lower Jeneberang Flood Control Project" whose improvement scale is a 10-year return period had been performed by JICA in the period from June, 1979 to October, 1980.

The above-mentioned study is particularly for the "Urgent Flood Control Project", purpose of which is to produce an immediate relief of flood damage suffered by Ujung Pandang City. However, even after the completion of the project mentioned above, the basin areas including Ujung Pandang City, will still be exposed to the menace of damage caused by big floods.

Taking the above-mentioned situations into consideration, the present project is for a futher feasibility study on the overfall flood control project to upgrade the safety and on the water resources development project for a steady water supply by the construction of the proposed dam at Bill-Bill on the Jeneberang river.

As for the above-mentioned flood control scheme, the design scale is based on a flood of 50-year return period and the discharge is controlled by the proposed dam and river improvements. The ratio of the optimum flood control shares between the two may have to be determined taking technical, economic and social conditions fully into consideration.

2. PRESENT CONDITION

2.1 River Basin

The Jeneberang river, with a catchment basin of 727 km² and a length of 75 km., originates in the Bawakaraeng Mountain. In its upper reaches, the river runs down through a feather-shaped mountanious region with poor natural vegetation except a few tall trees and Aran-Aran; the rainfall pattern and the topographic features in this part of the river are combinedly responsible for concentration of flood run-off along the same river. In its top reaches, there remains a collapse whose scar being kept unhealed for unknown period of time had produced sediments which had nostly caused to raise the riverbed level of the Jeneberang. The riverbed rising has also been due to terrace scarp erosion in its upper reaches and bank erosion in its middle reaches. After passing Bili-Bili, the river enter its low reaches which is spreading an alluvial fan on both the right and the left banks of the river. On its right bank, the city of Ujung Pandang came to shape itself which does not cease swaying its urbanizing influences on, and quickly robbing the rural nature of, the agricultural land which is spreading around it; the left bank consists of an extension of a fertile agricultural land.